
Beyond Congurable Systems:

Applying Variational Execution to Tackle

Large Search Spaces

Chu-Pan Wong

January 2021
CMU-ISR-21-100

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Christian Kästner (Chair)
Claire Le Goues
Heather Miller

Abhik Roychoudhury (National University of Singapore)

Submitted in partial fulllment of the requirements

for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2021 Chu-Pan Wong

This research was supported in part by the NSF (awards 1318808, 1552944, 1717022), AFRL, and DARPA (FA8750-16-
2-0042). The views continaed in this document are those of the author, and should not be interpreted as representing
the ocial policies, either expressed or implied, of any sponsoring institution, or any other entity.

Keywords: Dynamic Analysis, Variational Execution, Congurable System, Automatic Program
Repair, Mutation Testing, Bytecode Transformation

Abstract

Variations are ubiquitous in software. Some variations are intentionally intro-
duced, e.g., to provide extra functionalities or tweak certain program behavior, while
some variations are speculatively generated to achieve certain search goals, such as
mutating a buggy program to repair a bug. Although program variations provide
great exibility, their interactions are dicult to manage, as the number of possible
interactions grows exponentially with the number of variations. There is increasing
evidence showing the importance of studying interactions among variations in
various domains, such as testing highly congurable systems, secure information
ow tracking, higher-order mutation testing, and automatic program repair. In this
thesis, we tackle large search spaces of interactions among variations.

Among existing approaches that study interactions of intentional variations, a
recent dynamic analysis technique called variational execution has been shown to
be promising. Variational execution can eciently analyze many variations and
keep track of their interactions accurately, by aggressively sharing redundancies
of program executions. While existing use of variational execution has focused on
intentional variations, we argue that variational execution is also useful for studying
interactions among speculative variations, which remains an open challenge despite
many years of research.

To study interactions among speculative variations, we set out to improve the
scalability and extensibility of variational execution by using transparent bytecode
transformation. With an improved implementation of variational execution, not
only can we extend existing work on intentional variations, but also open new
avenues for analyzing speculative variations in higher-order mutation testing and
automatic program repair.

Automatic program repair and higher-order mutation testing often use search-
based techniques to nd optimal or good enough solutions in huge search spaces
of speculative variations. As search spaces continue to grow, nding solutions
that require interactions of multiple variations can become challenging. To tackle
the huge search spaces, we propose to encode the search problems as Boolean
satisability problems, using variational execution and SAT solving techniques to
iterate all solutions eciently. For automatic program repair, our approach can
systematically explore the search space to nd high-quality multi-edit patches. For
higher-order mutation testing, our approach can nd a complete set of solutions
with regard to a given search space, enabling further study on their characteristics
to understand their nature and learn useful insights to inspire new ideas, such as
lightweight but more eective heuristics-based search strategies.

Acknowledgments

This dissertation would not exist without the help and support from my advisor,
my collaborators, my family, and my friends.

First and foremost, I would like to thank my advisor Christian Kästner, who had
oered me tremendous support throughout my PhD. I was lucky to have Christian
as my guide on my research journey. Through Christian, I learnt coding, writing,
speaking, teaching, collaborating, cooking, and a bit of juggling. I admire his passion
and dedication to research. He has always been my most reliable source of advice
and solace during the most dicult times. Christian has been and will always be
my role model as a researcher.

I would like to thank my committee members Claire Le Goues, Heather Miller,
and Abhik Roychoudhury. I greatly appreciate their time and feedback. Their input
to my research and dissertation is invaluable.

I am grateful to my undergrad mentors Yingfei Xiong and Lu Zhang at Peking
University. They gave me the rst taste of research. Without their support and
encouragement, I could not have started my research journey at Carnegie Mellon.

Special thanks to my closest collaborator Jens Meinicke, who has always been
helpful and supportive. I appreciate the countless hours we have spent together on
various research projects since the rst day of my PhD.

I would like to thank all other collaborators Leo Chen, João P. Diniz, Eduardo
Figueiredo, DanHao, Lukas Lazarek, David Lo, HongMei, MengMeng, Gunter Saake,
Mauricio Soto, Thomas Thüm, Ferdian Thung, Bogdan Vasilescu, Eric Walkingshaw
and Hongyu Zhang, for their guidance and inspiration in research. It has been my
pleasure to work with these wonderful researchers, and I wish we can extend our
collaboration in the future.

None of my accomplishment matters without my parents Kam-Fai Wong and
Hongmei Zu. I am forever indebted to them for their love, care, and education
that have made me who I am. They have always been selessly supporting me to
challenge myself, to learn from failure, and to be grateful for what life has given me.

Special thanks to my dear friend Shurui Zhou for always being there when I
need support. I wish you all the best for future endeavors at University of Toronto.
Thanks to other members in our research group Gabriel Ferreria, Pooyan Jamshidi,
and Miguel Velez, for all the thought-provoking discussions and feedback.

I would like to also thank my friends and colleagues at Carnegie Mellon. Thanks
to Tobias Dürschmid, David Widder, and Roykrong Sukkerd for all the fun at board
game parties. Thanks to Iain Cruickshank and Matt Benigni for being the nicest
ocemates. Thanks to Kyle Liang for the grocery adventures. Thanks to Wode Ni
for the fun on pool tables. Thanks to Connie Herold, Jamie Lou Hagerty, Jennifer
Cooper, Ryan Johnson, and Emanuel Bowes for all the prompt assistance. And
nally, thanks to all other researchers and friends at Carnegie Mellon for sharing
their knowledge and expertise with me.

This journey has been exciting and fullling thanks to all of you.

Contents

1 Introduction 1

1.1 Analyzing Intentional Variations . 2
1.2 Analyzing Speculative Variations . 3
1.3 Thesis . 4
1.4 Outline . 5

2 Criteria of Applying Variational Execution 7

2.1 Terminology . 7
2.2 Variational Execution . 8
2.3 Existing Applications . 12

2.3.1 Conguration Testing . 12
2.3.2 Information Flow Tracking . 12
2.3.3 Other Applications . 13

2.4 Key to Successful Applications . 14
2.5 Summary . 15

3 Scaling Variational Execution 17

3.1 Faster Variational Execution . 17
3.2 Motivation: A Manual Rewrite . 19
3.3 Bytecode Transformation . 20

3.3.1 Basic Lifting . 21
3.3.2 Method Invocation and Return . 21
3.3.3 Using Objects . 23

3.4 Control Transfer . 23
3.4.1 VBlock . 24
3.4.2 Execution Strategy . 25
3.4.3 Properties . 28
3.4.4 Values on the Stack between VBlocks . 30

3.5 Implementations, Optimizations, Limitations . 30
3.5.1 Optimization: Deciding What to Transform 31
3.5.2 Optimization: Using Model Classes . 32
3.5.3 Limitations . 33

3.6 Empirical Evaluation . 35
3.6.1 Experimental Setup . 35

vii

3.6.2 Execution Time . 37
3.6.3 Memory Usage . 39
3.6.4 Sharing Eciency . 40

3.7 Related Work . 41
3.8 Proofs . 43
3.9 Summary . 47

4 Higher-Order Mutation Testing 49

4.1 Strongly Subsuming Higher-Order Mutants . 49
4.2 Higher-Order Mutants . 52

4.2.1 Usefulness of Higher-Order Mutants . 52
4.2.2 Strongly Subsuming Higher-Order Mutants (SSHOMs) 54
4.2.3 Finding SSHOMs . 54

4.3 Step 1: Complete Search With Variational Execution (searchvar) 55
4.3.1 Mutant Generation . 56
4.3.2 Variational Execution . 56
4.3.3 SSHOM Search as a SAT Problem . 57
4.3.4 Limitations . 58
4.3.5 Evaluation . 59

4.4 Step 2: SSHOM Characteristics . 63
4.5 Step 3: Prioritized Search (searchpri) . 65

4.5.1 Search Strategy . 66
4.5.2 Implementation . 66
4.5.3 Evaluation . 67

4.6 Test Suite Relevance . 69
4.7 Related Work . 71
4.8 Summary . 72

5 Automatic Program Repair 75

5.1 Automatic Program Repair . 75
5.2 Motivating Example . 78
5.3 Approach Overview . 81
5.4 Meta-Program Generation . 82
5.5 Systematic Search with Variational Execution 84
5.6 Patch Ranking . 86
5.7 Implementation . 89
5.8 Evaluation . 90

5.8.1 Research Questions . 90
5.8.2 Datasets . 91
5.8.3 Meta-Program Generation . 91
5.8.4 RQ1 (Eectiveness) . 92
5.8.5 RQ2 (Patch Quality) . 97
5.8.6 RQ3 (Fixing Ingredients) . 104
5.8.7 RQ4 (Multi-Edit) . 107

viii

5.8.8 RQ5 (Patch Ranking) . 108
5.9 Related Work . 114
5.10 Summary . 115

6 Conclusions 117

6.1 Future Work: Variational Execution . 118
6.1.1 Improving Variational Execution . 118
6.1.2 New Applications . 121

6.2 Future Work: Higher-Order Mutation Testing 122
6.3 Future Work: Automatic Program Repair . 123

Bibliography 125

ix

Chapter 1

Introduction

Variations are ubiquitous in software, some are intentionally introduced and some are specula-
tively created. A typical example of intentionally introduced variations are program options,
which are often controlled by command-line options or conguration les to trigger dierent
functionalities or tweak existing features. Similarly, successful software frameworks tend to
provide various extension points such as APIs for third-party developers to create extensions
or plugins to enrich user experience. Beyond intentional variations, there are also variations
that are created speculatively for various software engineering goals. For example, search-based
automatic program repair techniques create hundreds or thousands of patch candidates while
looking for potential patches [113]; and mutation testing approaches mutate an existing program
to create dierent mutants to assess the quality of the existing test suite [125].

Although it is useful to create variations, whether they are intentionally introduced or
speculatively created, their interactions are hard to manage. While intentionally introduced
program options or framework plugins provide great exibility, we risk the possibility that
variations will create conicts, especially those variations that are introduced independently
by third parties, commonly known as the feature interaction problem [21, 118]. Conicts
among variations arise when one variation interferes with another in an unintended way, which
is dicult to foresee even in small programs [111]. On the other hand, interactions among
speculatively created variations are also of interests to researchers. A recent study by Zhong and
Su [175] shows that more than 70 % of bug xes in practice require more than two repair actions
(i.e., the interaction of more than two code changes), and Jia and Harman [56] show that certain
combinations (i.e., interactions) of rst-order mutants are valuable for mutation testing, in that
they denote more subtle bugs, reduce testing eort, and are less likely to be equivalent mutants.

There are several challenges posed by interactions among variations:
• The number of possible interactions is exponential to the number of variations, making
systematic exploration of all possible interactions separately infeasible in most practical
settings.

• Interactions of variations are dicult to track. The eects of interactions can easily
propagate via control ow or data ow [110].

• Interactions are dicult—if not impossible—to foresee. For intentional variations, they are
typically developed independently without any knowledge that other variations might

1

2 CHAPTER 1. INTRODUCTION

exist. It is even more dicult for speculative variations as they are generated randomly.

Historically, researchers have done extensive research on tackling these challenges for
intentional variations, as they are critical for software quality and information security in highly
congurable systems [7, 117]. In contrast, interactions among speculative variations are rarely
studied, despite strong interests from researchers. For example, existing automatic program
repair techniques can rarely generate successful multi-edit patches, bug xes that require making
multiple small changes to the buggy source code [113]. Mutation testing approaches typically
create rst-order mutants, mutated programs that have exactly one small change [125]. More
broadly, the search-based software engineering community is concerned with nding a good
balance of competing constraints by searching through dierent candidate solutions, but usually
one at a time [48].

The goal of this thesis is to nd eective ways to explore interactions among variations,
transferring recent advances from intentional variations to speculative variations to inform
existing research and inspire new applications in similar domains.

1.1 Analyzing Intentional Variations

Intentional variations typically manifest as program options or framework extensions, interac-
tions among which could cause faulty behaviors or even security concerns. Researchers have
proposed a broad spectrum of approaches to detect and manage their interactions. On the
lightweight side, there are approaches that specically target representative combinations of
variations. For example, combinatorial testing covers 𝑛-way interactions among variations, by
picking among all possible congurations a small set where each valid combination of 𝑛 options
appears at least once, where 𝑛 is congurable and up to 6 in practice [20, 24, 119]. On the heavy-
weight side, there are verication approaches that use model checking or symbolic execution
to statically analyze all possible interactions [134, 143, 157]. In general, heavyweight static
approaches can capture the entire space of possible combinations, but suer from scalability
issues due to state space explosion. In contrast, lightweight approaches cover the combination
space in a less systematic way, but scale to realistic programs more easily in practice.

More recently, dierent researchers have independently proposed dynamic analysis tech-
niques that seek to balance scalability and coverage of possible combinations [7, 110, 117, 166].
Although called dierently in dierent work, the idea is similar: Central to the scalability prob-
lem of most analysis techniques is the sheer quantity of possible inputs to the program, which
include variations when performing analyses. By separating variations from other inputs, we
can analyze interesting interactions among variations. Comparing to combinatorial testing,
this line of work can explore interactions of any degree in a systematic and often ecient way
by sharing similar executions. Based on this idea, researchers have proposed dynamic analy-
sis techniques that analyze the eects of multiple variations by eciently tracking variations
at runtime. Researchers have applied these techniques to various scenarios, such as testing
highly congurable systems [66, 117], understanding feature interactions and conguration
faults [109, 110], and monitoring information ow of sensitive data [7]. We call these techniques
variational execution in this work, as they typically capture eects of variations at runtime.

1.2. ANALYZING SPECULATIVE VARIATIONS 3

1.2 Analyzing Speculative Variations

Speculative variations are changes made to an existing program automatically by other tools.
For example, in automatic program repair and mutation testing, patch candidates and mutations
are variations created speculatively for xing bugs and introducing bugs, respectively. More
broadly, the search-based software engineering community is interested in problems in which
solutions are sought in a search space of candidate solutions, which are often variations of
programs created speculatively [48].

Existing research on automatic variations often formulates the problem (e.g., xing bugs or
introducing bugs) as a search problem, in which optimal or near-optimal solutions are sought in
a (often huge) search space of variations, guided by some metaheuristic search strategies and
a carefully crafted tness function that distinguishes good and bad solutions [48]. Although
metaheuristic search strategies vary—such as genetic algorithms, hill climbing, and simulated
annealing—existing approaches lean toward the lightweight side in the aforementioned solution
spectrum, where the analysis can scale to realistic programs, but cannot explore the space system-
atically to uncover interesting interactions among variations. Existing heavyweight approaches
for intentional variations transfer poorly to automatic variations, largely because the number
of automatic variations is often much bigger than intentional variations due to the automatic
and speculative nature, making heavyweight approaches such as model checking or symbolic
execution even more dicult to scale. In this work, we propose to use variational execution to
investigate interactions among (many) speculative variations, demonstrating automatic program
repair and higher-order mutation testing as two important scenarios.

Recent successful applications in testing highly congurable systems and information ow
tracking show that variational execution is promising in exploring large search spaces. How-
ever, speculative variations pose severe challenges to the scalability of variational execution
techniques. On the one hand, the number of speculative variations tends to be much larger
than intentional variations, mainly because they are generated speculatively. On the other hand,
interactions among speculative variations can be complicated—in both control ow and data
ow—because they are generated randomly without any consideration of modularity, which is
usually considered best practice when introducing intentional variations manually [127]. For
example, we observed cases heavy interactions among hundreds of speculative variations cause
a single local variable to have more than 15,000 possible values.

Since existing implementations of variational execution have issues in scalability and ex-
tensibility (more details in Chapter 3), we set out to implement a new variational engine that
is more scalable and extensible to support our new applications, which becomes the founda-
tion of this thesis. With more scalable and extensible variational execution, we use it to track
ne-grained interactions among variations, while sharing commonalities to eciently explore
even exponentially large search spaces in many practical settings. At a high level, our approach
proceeds in three steps:

• We encode variations (e.g., patch candidates or rst-order mutants) as program options
into a single meta program, using 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 options to control inclusion or exclusion of
individual variations.

• We use variational execution to explore combinations of variations systematically and

4 CHAPTER 1. INTRODUCTION

completely. A secondary goal of accelerating the exploration of search space is also
favorable, depending on how much sharing we can exploit during variational execution.

• We use variational execution to collect data and insights about all interactions, which can
then be used to inspire new search-based strategies.

To gauge the potential of this work, we carefully analyze key elements that lead to successful
applications of variational execution and show that those elements manifest in search-based
automatic program repair and higher order mutation testing. The analysis of potential gives us
condence that this direction is promising. We envision that similar applications are feasible for
other search-based problems, as long as they exhibit the key elements of applying variational
execution (more in Chapter 2). We hope that this work can provide a new perspective of
improving automatic program repair, mutation testing, and other related areas.

1.3 Thesis

In this section, we summarize the overarching goal of the proposed thesis, highlight main
contributions, and discuss potential impact.

Thesis Statement: Variational execution can facilitate a systematic exploration of
how variations interact in real-world software systems. Drawing inspiration from
analyzing intentional variations, variational execution can be used to uncover interest-
ing interactions among speculative variations. Demonstrating higher-order mutation
testing and automatic program repair as two important applications, we show that
variational execution can tackle the large search spaces eciently, capturing interest-
ing interactions systematically and eectively.

To support the thesis statement, we make the following contributions in the thesis.
• Drawing inspiration from intentional variations, we analyze two successful applications
of variational executions—testing highly congurable systems and tracking information
ow—to identify ingredients of promising applications. These ingredients serve as a
guideline for future research on applying variational execution (Chapter 2).

• We propose a novel way of implementing variational execution using transparent bytecode
transformation. Comparing to existing work, our approach automatically transforms
existing programs without massive manual changes and produces transformed programs
that are portable to all standard JVMs. We provide an open-source implementation called
VarexC for the research community to explore new ideas (Chapter 3).

• We evaluate VarexC with pre-established benchmark programs and show that VarexC
has better performance and less memory consumption than the state of the art. With
improved performance and better scalability, our approach facilitates existing research
on intentional variations, and more importantly, open the gate to exploring interactions
speculative variations systematically (Chapter 3).

• We use variational execution to nd strongly subsuming higher-order mutants (SSHOM),
a special kind of higher-order mutant that can potentially mitigate several open challenges

1.4. OUTLINE 5

of mutation testing research. Using previously used benchmark programs, we show
that variational execution can identify, for the rst time, a complete set of SSHOMs,
greatly outperforming the state-of-the-art metaheuristics search in terms of time spent
and SSHOMs found (Chapter 4).

• By observing the identied complete set of SSHOMs, we identify a few patterns of how
SSHOMs are commonly composed from rst-order mutants. Based on these patterns, we
further design a priority search and evaluate it on a dierent set of much larger benchmark
programs. The results show that the patterns are eective in directing the search, again
nding much more SSHOMs than the state-of-the-art metaheuristics search (Chapter 4).

• Using a similar recipe, we apply variational execution to automatic program repair. Com-
paring to prior work, our approach can explore a vast search space of diverse xing
ingredients in a systematic way. A such like this can shed light on several open challenges
in automatic program repair, such as generating general patches, high-quality patches
and multi-edit patches (Chapter 5).

• We objectively evaluate our approach on two widely used datasets. The results indicate
that variational execution as a search strategy can eectively navigate the search space of
diverse xing ingredients to x buggy programs. Moreover, the systematic search of vari-
ational execution enables us to explore interesting interactions among xing ingredients,
yielding many multi-edit patches and high-quality patches (Chapter 5).

With these contributions, we hope that the work in this thesis can improve software quality
in general. We hope that our contributions to a more scalable variational execution technique
can push the eort of quality assurance further toward more practical programs, for example, by
scaling existing testing eort of highly congurable systems and information ow tracking of
sensitive programs. We hope that our contributions to analyzing speculative changes can reveal
useful insights for research in mutation testing, automatic program repair, or more broadly
search-based software engineering.

1.4 Outline

The remainder of the dissertation is structured as follows:

• Chapter 2 introduces the ideas of variational execution and summarizes how it has been
used in previous research to analyze interactions among intentional variations. Taking
inspiration from two important successful applications—testing highly congurable sys-
tems and information ow tracking—we carefully analyze key ingredients that lead to
promising applications of variational execution.

• Chapter 3 details our existing work on scaling up variational execution. By making
variational execution more scalable and accessible, not only do we improve upon existing
research on intentional variations, but also open the gate to a more systematic exploration
of speculative variations. We discuss our existing work on bytecode transformation.

• Chapter 4 describes how variational execution can be used to improve the search for
strongly subsuming higher order mutants, a valuable kind of higher-order mutants that is
dicult to nd due to exponentially large search spaces.

6 CHAPTER 1. INTRODUCTION

• Chapter 5 showcases another application of variational execution, using it as a search
strategy to navigate large search spaces in automatic program repair.

• In Chapter 6, we conclude the dissertation, summarize potential impact, and briey outline
future work.

Chapter 2

Criteria of Applying Variational

Execution

This chapter has two parts. First, we provide the essential background on variational execution,
specically why it is eective in exploring interactions of variations. Although the conceptual
ideas of variational execution are not new, existing applications span across multiple domains
and there is lack of conceptual criteria for gauging potential applications. To that end, in the
second part of this chapter, we analyze two important and successful applications of variational
execution, with the goal to distill key ingredients for future applications.

This chapter shares material with the following publications [165, 166]:
• Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster varia-
tional execution with transparent bytecode transformation. Proc. ACM Program. Lang. 2,
OOPSLA, Article 117 (November 2018), 30 pages.

• Chu-Pan Wong, Jens Meinicke, and Christian Kästner. 2018. Beyond testing congurable
systems: applying variational execution to automatic program repair and higher order
mutation testing. In Proceedings of the 2018 26thACM JointMeeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 749–753.

2.1 Terminology

Variational execution has been explored in dierent domains in the past with dierent names and
terminologies. To avoid confusion, we establish the terms that we will use heavily throughout
the document.

Variation refers to an input that modies the behavior of a program. It is also called
option, feature, or ag in the literature. We consider only Boolean variations in this work
because they are common and easy to reason about with standard tools, but the techniques
in this work can be extended to support other types of variations with nite domains (e.g.,
a predened set of Strings, numeric values) by encoding them as Boolean options.
Intentional variation refers to an input that is introduced intentionally and mindfully,
often by human developers. For example, program options are introduced purposefully to

7

8 CHAPTER 2. CRITERIA OF APPLYING VARIATIONAL EXECUTION

provide extra functionalities or tweak certain program behaviors.
Speculative variation refers to an input that is generated speculatively, randomly, and
automatically by other tools. For example, mutation testing randomly creates small
syntactic changes speculatively to introduce bugs in order to assess the strength of the
existing test suite.
Conguration refers to a complete setting of all variations [5]. A conguration can be
invalid if there are constraints among variations, such as having an option A to depend
on another option B. Constraints like this are often specied manually based on domain
knowledge.
Conguration space refers to all valid congurations, i.e., all possible settings of varia-
tions.

2.2 Variational Execution

Variational execution is a dynamic analysis technique that exploits sharing among similar
concrete executions. Conceptually, variational execution abstracts over a nite number of concrete
executions with minor dierences that are caused by variations. There are two main concepts
that distinguish variational execution from concrete execution: conditional value and variability

context.
Conditional Value: The key idea of variational execution is to execute a program with

concrete values, but support multiple alternative concrete values for dierent congurations. That
is, whereas each variable has one concrete value in concrete execution (e.g., 𝑥 = 1), the concrete
value of a variable may depend on the conguration in variational execution—we say the
variable has a conditional value [37]. A conditional value does not store a separate value for each
conguration in the conguration space (exponentially many), but partitions the conguration
space into partial spaces which share the same value. That is, all congurations sharing the same
concrete value are represented only once in the conditional value. Partial conguration spaces
are expressed through propositional formulas over options, such as (𝑎 ∨ 𝑏) ∧ ¬𝑐 representing
the potentially large set of all congurations in which conguration options 𝑎 or 𝑏 are selected
but not 𝑐 ; a tautology (denoted as true) describes all congurations, a contradiction (denoted as
false) none. Conditional values are typically expressed through possibly nested choices over
formulas (or if-then-else expressions), such as 𝑥 = 〈𝑎, 〈¬𝑏 ∨ 𝑐, 1, 3〉, 2〉, which means: 𝑥 has the
value 1 in the partial space 𝑎∧ (¬𝑏 ∨𝑐), 3 in 𝑎∧¬(¬𝑏 ∨𝑐), and 2 in ¬𝑎. With this representation,
we can reason about conguration spaces with SAT solvers and BDDs eciently.

Variability Context: Variational execution uses conditional values with the notion of
performing a computation conditionally in a variability context, similar to a path condition in
symbolic execution: An operation will only modify values in the part of the conguration space
indicated by the current variability context (that is, we conceptually split the execution). Again,
formulas over conguration options are used to express the variability context.

Operations on conditional values under variability contexts can often be shared. If none of
the used variables have alternative values, an operation only needs to be performed once for all
congurations (we say that we are executing under the true context). We begin execution in

2.2. VARIATIONAL EXECUTION 9

the true context, and only split into restricted variability contexts when conguration options
inuence execution—directly or indirectly. This conservative execution splitting strategy allows
us to aggressively share executions that would otherwise be repeated once per conguration.
This sharing avoids nonessential computations and makes variational execution ecient in
many scenarios.

Example of Variational Execution

As an example, consider Listing 1 in Figure 2.1, a simplied implementation of a blogging system
modeled after WordPress. 1 The blogging system has three variations, based on options for
smiley rendering and inlining weather reports, which aect how HTML code is generated. In its
current form, there is an issue: if both SMILEY and WEATHER are enabled, the replacement of a
smiley image takes precedence and breaks the expansion of weather information, resulting in
outputs like “[:w ”.

For this example, let us assume that we have a specication of what a web page should look
like. In order to ensure the absence of interaction bugs like this, typical testing techniques would
try all congurations one by one, resulting into 8 executions of the same program in this case.
Moreover, single executions alone reveal little information about the causes of interaction bugs,
especially for cases where interactions are obscured by complicated control ow or data ow.

Variational execution is much more ecient for detecting and monitoring interactions. The
execution trace in the bottom left of Figure 2.1 illustrates how variational execution explores
all possible interactions among SMILEY, WEATHER and FAHRENHEIT in a single run. An execution
trace like this can also be generated by logging and aligning concrete executions of all possible
congurations, but Meinicke et al. [109] showed that variational execution is muchmore ecient,
sidestepping correctness and performance issues of alignment.

The execution trace in Figure 2.1 highlights why variational execution is ecient. After
marking the three boolean elds as variations (e.g. via Java annotation), variational execution
initializes them with conditional values, representing both true and false. The symbols 𝛼 , 𝛽 ,
𝛾 denote the three variations respectively. Variational execution runs Line 6 and Line 7 once
under the variability context of true, meaning that they are shared across all congurations.
Sharing like this enables variational execution to explore large conguration spaces eciently.
To highlight sharing, we put all shared statements to the left of the arrows in the execution trace.
The execution is split when it comes to the rst if statement, where c is modied only under
the variability context of SMILEY. At this point, the content of c changes from containing one

value for all congurations to having two alternative values depending on the variation SMILEY,
and this change is reected in the conditional value assigned to c. Finally, variational execution
is able to share the execution of common code again at Line 14, after splitting executions in two
if branches.

This example illustrates the benets of variational execution. We can spot the problematic
interaction of SMILEY and WEATHER by inspecting the conditional value of c, as shown in
the execution trace. In fact, all possible interactions are recorded and detectable by inspecting
conditional values during the variational execution. All information about how variations interact

1hps://wordpress.org

https://wordpress.org

10 CHAPTER 2. CRITERIA OF APPLYING VARIATIONAL EXECUTION
Listing

1:
O

riginalversion

1
b
o
o
l
e
a
n

S
M
I
L
E
Y
;

2
b
o
o
l
e
a
n

W
E
A
T
H
E
R
;

3
b
o
o
l
e
a
n

F
A
H
R
E
N
H
E
I
T
;

45
p
u
b
l
i
c

S
t
r
i
n
g

t
o
H
T
M
L
()

{
6

S
t
r
i
n
g

h
=

g
e
t
H
T
M
L
H
e
a
d
e
r
(
)
;

7
S
t
r
i
n
g

c
=

g
e
t
C
o
n
t
e
n
t
(
)
;

8
if

(
S
M
I
L
E
Y
)

9
c

=
c
.
r
e
p
l
a
c
e
(
"
:]

"
,

"
<
i
m
g
...

>
"
);

10
if

(
W
E
A
T
H
E
R
)

{
11

S
t
r
i
n
g

w
=

g
e
t
W
e
a
t
h
e
r
(
)
;

12
c

=
c
.
r
e
p
l
a
c
e
(
"
[:

w
:]

"
,

w
);

13
}

14
S
t
r
i
n
g

f
=

g
e
t
H
T
M
L
F
o
o
t
e
r
(
)
;

15
r
e
t
u
r
n

h
+

c
+

f
;

16
}

1718
p
r
i
v
a
t
e

S
t
r
i
n
g

g
e
t
W
e
a
t
h
e
r
()

{
19

f
l
o
a
t

t
=

g
e
t
C
e
l
s
i
u
s
(
)
;

20
if

(
F
A
H
R
E
N
H
E
I
T
)

21
r
e
t
u
r
n

(
t

*
1
.
8

+
3
2
)

+
"
◦F

"
;

22
e
l
s
e

23
r
e
t
u
r
n

t
+

"
◦C

"
;

24
}

S
M
I
L
E
Y

=
〈α
,tru

e,f
a
lse〉

W
E
A
T
H
E
R

=
〈β
,tru

e,f
a
lse〉

F
A
H
R
E
N
H
E
I
T

=
〈γ
,tru

e,f
a
lse〉

h
=

〈“<
header>

...<
/header>

”〉

c
=

〈“It’s
[:w

:]”〉

c
=

〈α
,“It’s

[:w
<
im

g
...>

”,“It’s
[:w

:]”〉

w
=

〈γ
,“86 ◦F”,“30 ◦C

”〉

c
=

〈α
,“It’s

[:w
<
im

g...>
”,〈β

,〈γ
,“It’s

86 ◦F”,“It’s
30 ◦C

”〉,“It’s
[:w

:]”〉〉

f
=

〈“<
footer>

...<
/footer>

”〉

L6[tru
e]:

String
h

=
getHTMLHeader();

L7[tru
e]:

String
c

=
getContent();

L8[tru
e]:

if
(SMILEY)

L9[α
]:
c=c.replace(":]","<img...>");

L10[tru
e]:

if
(WEATHER)

L11[β]:
String

w
=

getWeather();

L12[β]:
c

=
c.replace("[:w:]",

w);

L14[tru
e]:

String
f

=
getHTMLFooter();

L15[tru
e]:

return
h

+
c

+
f;

Listing
2:

T
ransform

ed
version

25
V
<
B
o
o
l
e
a
n
>

S
M
I
L
E
Y

=
26

n
e
w

V
<
>(

n
e
w

P
r
o
p
E
x
p
r
(
"
S
M
I
L
E
Y
"
)
,

true
,

f
a
l
s
e
);

27
V
<
B
o
o
l
e
a
n
>

W
E
A
T
H
E
R

=
28

n
e
w

V
<
>(

n
e
w

P
r
o
p
E
x
p
r
(
"
W
E
A
T
H
E
R
"
)
,

true
,

f
a
l
s
e
);

29
V
<
B
o
o
l
e
a
n
>

F
A
H
R
E
N
H
E
I
T

=
30

n
e
w

V
<
>(

n
e
w

P
r
o
p
E
x
p
r
(
"
F
A
H
R
E
N
H
E
I
T
"
)
,

true
,

f
a
l
s
e
);

3132
p
u
b
l
i
c

V
<
S
t
r
i
n
g
>

t
o
H
T
M
L
(
P
r
o
p
E
x
p
r

c
t
x
)

{
33

P
r
o
p
E
x
p
r

s
u
b
C
t
x
;

34
V
<
S
t
r
i
n
g
>

h
=

g
e
t
H
T
M
L
H
e
a
d
e
r
(
c
t
x
);

35
V
<
S
t
r
i
n
g
>

c
=

g
e
t
H
T
M
L
C
o
n
t
e
n
t
(
c
t
x
);

36
s
u
b
C
t
x

=
w
h
e
n
T
r
u
e
(
S
M
I
L
E
Y
).

a
n
d
(
c
t
x
);

37
if

(
s
u
b
C
t
x
.
i
s
S
a
t
i
s
f
i
a
b
l
e
(
)
)

38
c

=
n
e
w

V
<
>(

s
u
b
C
t
x
,

39
c
.
s
m
a
p
(
s
u
b
C
t
x
,

x
-
>
x
.
r
e
p
l
a
c
e
(
"
:]

"
,
"
<
i
m
g
...

>
"
))

,
40

c
);

41
s
u
b
C
t
x

=
w
h
e
n
T
r
u
e
(
W
E
A
T
H
E
R
).

a
n
d
(
c
t
x
);

42
if

(
s
u
b
C
t
x
.
i
s
S
a
t
i
s
f
i
a
b
l
e
(
)
)

{
43

V
<
S
t
r
i
n
g
>

w
=

g
e
t
W
e
a
t
h
e
r
(
s
u
b
C
t
x
);

44
c

=
n
e
w

V
<
>(

s
u
b
C
t
x
,

45
c
.
s
f
l
a
t
M
a
p
(
s
u
b
C
t
x
,

46
x
-
>
w
.
s
m
a
p
(
s
u
b
C
t
x
,

47
y
-
>
x
.
r
e
p
l
a
c
e
(
"
[:

w
:]

"
,

y
)))

,
c
);

48
}

49
V
<
S
t
r
i
n
g
>

f
=

g
e
t
H
T
M
L
F
o
o
t
e
r
(
c
t
x
);

50
r
e
t
u
r
n

c
.
s
f
l
a
t
M
a
p
(
ctx

,
51

x
-
>
h
.
s
f
l
a
t
M
a
p
(
ctx

,
52

y
-
>
f
.
s
m
a
p
(
ctx

,
53

z
-
>
y

+
x

+
z
)
)
)
;

54
}

5556
p
u
b
l
i
c

V
<
S
t
r
i
n
g
>

g
e
t
W
e
a
t
h
e
r
(
P
r
o
p
E
x
p
r

c
t
x
)

{
57

P
r
o
p
E
x
p
r

s
u
b
C
t
x
;

58
V
<
F
l
o
a
t
>

t
=

g
e
t
C
e
l
s
i
u
s
(
c
t
x
);

59
V
<
S
t
r
i
n
g
>

r
e
t

=
n
e
w

V
<
>(

n
u
l
l
);

60
s
u
b
C
t
x

=
w
h
e
n
T
r
u
e
(
F
A
H
R
E
N
H
E
I
T
).

a
n
d
(
c
t
x
);

61
if

(
s
u
b
C
t
x
.
i
s
S
a
t
i
s
f
i
a
b
l
e
(
)
)

62
r
e
t

=
n
e
w

V
<
>(

s
u
b
C
t
x
,

63
t
.
s
m
a
p
(
s
u
b
C
t
x
,

x
-
>
x

*
1
.
8

+
32

+
"
◦F

"
)
,

64
r
e
t
);

65
s
u
b
C
t
x

=
w
h
e
n
F
a
l
s
e
(
F
A
H
R
E
N
H
E
I
T
).

a
n
d
(
c
t
x
);

66
if

(
s
u
b
C
t
x
.
i
s
S
a
t
i
s
f
i
a
b
l
e
(
)
)

67
r
e
t

=
n
e
w

V
<
>(

s
u
b
C
t
x
,

68
t
.
s
m
a
p
(
s
u
b
C
t
x
,

x
-
>
x

+
"
◦C

"
)
,

69
r
e
t
);

70
r
e
t
u
r
n

r
e
t
;

71
}

C
on

stru
ct

a
con

d
ition

al
valu

e
contain

in
g

tw
o

alter-
n
ative

valu
es

M
eth

od
whenTrue

takes
a

V
in

stan
ce

an
d

retu
rn

s
th

e
variab

ility
context

u
n
d
er

w
h
ich

th
e

valu
e

is
true

M
eth

od
smap

b
u
ild

s
a

n
ew

V
by

ap
p
lyin

g
a

fu
n
ction

to
elem

ents
selected

by
a

context

M
eth

od
sflatMap

is
sim

ilar
to

th
e
smap

excep
t

th
at

th
e

fu
n
ction

sh
ou

ld
retu

rn
a
V

C
on

stru
ct

a
con

d
ition

al
valu

e
from

tw
o
V

in
stan

ces

C
on

stru
ct

a
con

-
d
ition

al
valu

e
contain

in
g

on
ly

on
e

con
crete

valu
e

Figure
2.1:Running

exam
ple

m
odeled

afterW
ordPress[110].Listing

1
show

sthe
originalsource

code
w
ithoutvariationalexecution.Bottom

leftillustrates
variationalexecution

by
show

ing
the

execution
trace,w

here
boxes

representrelevantprogram
states

and
arrow

s
denote

execution
steps.The

executed
statem

ents
are

displayed
beside

arrow
s,togetherw

ith
the

variability
contexts.Listing

2
hints

atourvariationalexecution
transform

ation,w
hich

w
illbe

discussed
in

detailin
Chapter3.The

transform
ation

isshow
n
in

Java
instead

ofbytecode
forbetterreadability.

2.2. VARIATIONAL EXECUTION 11

can be obtained after one single run of variational execution, in contrast to exponentially many
with normal execution, and the dierence would still not be obvious without aligning all traces
of normal execution. The eectiveness of variational execution comes from using variability
context to manage splitting and sharing of executions.

Comparing to Symbolic Execution

Despite some similar concepts, there are important dierences between variational execution and
symbolic execution. A conditional value in variational execution is fundamentally dierent from
a symbolic value in symbolic execution, in that the former represents a nite number of concrete

valueswhile the latter often represents an innite set of possible values of a given data type. Unlike
symbolic execution where operations are carried out on symbolic values, variational execution
always computes with concrete values; symbols are used only to describe conguration spaces for
distinguishing alternatives and for describing contexts, but never intermix with concrete values.
For this reason, loop bounds are always known concrete values in variational execution, and
we avoid other undecidability problems. By considering nite conguration spaces, reasoning
about conguration space of conditional values involves inexpensive and decidable satisability
checks with SAT solvers or BDDs, while symbolic execution is often limited by expensive

constraint solving and the types of theories the underlying constraint solver supports. For
instance, reasoning about array elements in variational execution is fast, because we know the
concrete array indexes and elements, in contrast to symbolic execution where a symbolic array
index can dramatically slow down constraint solving because it can potentially refer to every
element in the array.

Furthermore, variational execution has dierent concepts of managing state and forking and
joining when compared to symbolic execution. Symbolic execution often forks new states either
completely or partially at every conditional branch, often resulting into exponentially many
paths in practice, commonly known as the path explosion problem. For example, Meinicke et al.
[110] have demonstrated that state-of-the-art symbolic execution implementations for Java split
o separate executions on variability and share only a common prex. Some symbolic execution
engines merge states from dierent paths to share executions after control ow decisions,
for example, introducing new symbolic values or using if-then-else expressions to represent
dierences among values from dierent paths—dierent designs make dierent tradeos with
regard to performance, precision, and implementation eort [10, 143]. Variational execution
uses a design that maximizes sharing. It maintains a single representation of program state
throughout the execution where dierences are represented at ne granularity (variables and
elds) with conditional values. Program state is always modied under the current variability
context, which is equivalent to merging states after every single statement.

Finally, variational execution is fundamentally dierent from traditional approaches of
multi-execution [27, 29, 50, 76, 147] and delta debugging [82, 149, 173] that execute programs
repeatedly (either variants of the program or the same program with dierent inputs) to compare
those executions to identify, for example, information-ow issues or causes of bugs. These
kinds of approaches execute programs repeatedly in parallel and align those executions either
afterward or through probes at specic points of the executions. In contrast, variational exploits
sharing and allows to observe dierences among executions during the execution.

12 CHAPTER 2. CRITERIA OF APPLYING VARIATIONAL EXECUTION

2.3 Existing Applications

Variational execution has a number of existing and potential application scenarios in dierent
lines of work. In each case, a program shall be executed for many variations, typically to observe
the similarities and dierences among congurations, often with the focus on interactions among
variations.

In this section, we discuss two established use cases of variational execution—conguration
testing and information ow tracking—followed by a brief summary of other closely related
work.

2.3.1 Conguration Testing

Computer programs often come with variations that adjust functionalities on demand, in the
form of command-line options, plugins, or features. Features oer great exibility, but also incur
risk of feature interaction problems [21, 118], where one feature interferes with another when
used together. As discussed earlier, Figure 2.1 illustrates how variational execution is used for
conguration testing. Comparing to brute-force testing of all congurations, which does not
scale when the number of features is large, variational execution can eciently execute the
program once and record all possible interactions of features if there is sucient sharing among
executions.

To detect feature interactions, Nguyen et al. [117] applied variational execution to test
WordPress with dierent combinations of 50 plugins, yielding 250 dierent congurations. Their
results show that variational execution can analyze the huge conguration space eciently and
exhaustively and identify a previously unknown feature interaction bug.

Along similar lines, Meinicke et al. [110] and Kim et al. [69] executed Java programs with
conguration parameters to observe dierences among dierent congurations. Given test cases
to provide global or feature-specic specications, variational execution can eciently check
such specications by executing test cases over large conguration spaces [66, 69, 117]. Soares
et al. [146] furthermore used dierences among executions as clues to nd suspicious feature
interactions. Variational execution can further be used to explain the dierences in program
executions among multiple inputs [109], in line with delta debugging [82, 149, 173]. Reisner et al.
[134] used symbolic execution to also detect feature interactions, which however required a lot
of eort (80 machine weeks to symbolically execute 319 tests with less than 30 conguration
options for 10 KLOC programs) due to limited sharing abilities of symbolic execution [110].

2.3.2 Information Flow Tracking

Information leaks in security-focused systems have gained substantial attention recently, espe-
cially leaks that are caused by subtle implicit information ow. In this line of work, variations
are dierent condentiality levels over a sensitive input, which determine whether private
values of that input or its eect can be observed. Dynamic information ow tracking struggles
with implicit ows, especially from paths that are not executed [6, 22]. Austin and Flanagan
[7] proposed a form of variational execution to track information ows precisely, called faceted

2.3. EXISTING APPLICATIONS 13

execution, which separates the executions of high condentiality input (denoted as H) and low
condentiality input (denoted as L) so that sensitive information in H is not aected by L.

The key idea is to compress information of both H and L into a conditional value (called
faceted value in the original work [7]). When H and L have the same value, the executions are
shared to reduce overhead. When H and L have dierent values, both values are accessed or
updated according to some security-preserving semantics. If H and L have the same value later,
the executions are shared again. Multiple principles (i.e., multiple pairs of H and L) are also
supported and their interactions are explored at runtime. This line of work was later extended
to support dierent languages and database systems [8, 140, 141, 171].

1 boolean f(boolean x) {
2 boolean y, z = true;
3 if (x)
4 y = false;
5 if (y)
6 z = false;
7 return z;
8 }

x = 〈α, true, false〉

y, z = 〈true〉

y = 〈α, false, true〉

z = 〈α, true, false〉

L2[true]: boolean y, z = true;

L3[true]: if (x) L4[α]: y = false;

L5[true]: if (y) L6[¬α]: z = false;

L7[true]: return z;

Figure 2.2: An example illustrating how variational execution can be used to handle implicit information ow.

Figure 2.2 shows an example of how to use variational execution to protect sensitive data.
From a security perspective, the program input x should be hidden from public observers.
Without variational execution, public observers can infer the value of x by checking the return
value z because x and z should have the same value due to the implicit ow caused by the two
if branches. The goal is to hide the secret value of x from public observers.

With variational execution, x is initialized with a conditional value so that private observers
see its real value 𝑡𝑟𝑢𝑒 and public observers see a fake value, using the symbol 𝛼 to denote private
and public observers. Using variational execution, values of H and L are separated safely. Finally,
public and private observers see dierent values of z, so that the secret value of x is protected.

2.3.3 Other Applications

Researchers have explored ideas similar to variational execution in dierent lines of work to
speed up computations. Variational execution can potentially be useful for these scenarios
because of more aggressive sharing of similar computations. For example, Sumner et al. [148]
shares similarities among executions of simulation workloads and computes with several values
in parallel. Wang et al. [159] shares executions of mutated programs with equivalence modulo
states in the same process and forks new processes only if there are dierences in program
states after executing mutated statements. Tucek et al. [155] executes patched and unpatched
programs together to share redundant computations when testing a patch. Since these lines of

14 CHAPTER 2. CRITERIA OF APPLYING VARIATIONAL EXECUTION

work do not look for interactions among variations, variational execution has the potential to
scale such use cases to explore interesting interactions.

Similar ideas of sharing computations can be found also in approaches for model checking
and symbolic execution [25, 143, 157], specically concepts to store variations as local as possible
to increase sharing and facilitate joining. Such tools can potentially be used for similar purposes
when dierences among inputs are modeled as symbolic decisions, but all other inputs are
concrete. However, as Meinicke et al. [110] have shown, current approaches are less eective at
sharing than the aggressive sharing in variational execution.

2.4 Key to Successful Applications

Despite the existing and potential applications of variational execution in dierent lines of
work as discussed in the previous section, most research has focused on a single application,
reinventing techniques independently. Moreover, researchers have mainly focused on analyzing
intentional variations, changes or input dierences that are made intentionally by human devel-
opers. We expect more application scenarios, such as automatic program repair and mutation
testing, where this specic avor of sharing computations with multiple concrete values is
useful for exploring large conguration spaces [165]. To predict applicability of variational
execution in new domains, it is useful to elicit the key characteristics of the existing successful
applications.

To that end, we analyzed how variational execution has been successfully applied to two
important domains—conguration testing and information ow tracking. The analysis resulted
in the following three main characteristics.

Finite Variations. The problem domain should have many but nite variations of in-
terest to begin with. In conguration testing and information ow tracking, variations
are dierent features and dierent private inputs, respectively. To justify the overhead of
variational execution, the nite set of variations should depict a exponentially large con-
guration space that challenges existing lightweight approaches, such as metaheuristics
search.
Interactions. Conditional values are especially useful for exploring interactions among
variations at runtime. The overhead of variational execution is easier to justify when cap-
turing all interactions among variations is invaluable. In conguration testing, developers
are interested in the interaction of multiple options to detect bugs; in information ow
tracking, interactions among multiple private inputs need to be tracked soundly to avoid
leaking sensitive information in unexpected ways.
Sharing. Variational execution is eective if there is substantial sharing among exe-
cutions of dierent variations and their interactions. Variational execution stores and
computes all concrete values for all congurations, but it exploits shared values and shared
operations to reduce overhead so that it can explore an exponentially large conguration
space. If there is no sharing at all among executions, variational execution suers from the
same combinatorial explosion as a brute-force strategy. However, studies have shown that
sharing is very common in practice for conguration testing [110, 134]. In information

2.5. SUMMARY 15

ow tracking, sharing is common in parts that are not aected by condentiality levels or
when outputs are independent of condentiality levels. Interactions are common, but not
among all variations at all times [110, 134]. That is, variational execution is eective in
large search spaces when interactions among multiple variations are important but not all
variations interact on all computations.

These criteria can be useful not only for identifying similar applications of intentional
variations, but also for predicting new applications of speculative variations, which is the main
goal of this thesis as has been noted. Using these criteria, we briey discuss the potential of
applying variational execution to two important problems of speculative variations—higher-
order mutation and automatic program repair. We will discuss these applications in greater
length in Chapter 4 and Chapter 5.

Higher-order mutation testing has all the key enablers of variational execution. Vari-
ations are used to encode mutations, so we can easily get many variations by generating
mutations randomly. Sharing is very likely due to the random generation of mutations
and local eect of many mutations. With variational execution, we can execute the test
suite once and observe the eect of all mutations, avoiding repeated executions of the
same test suite. Interactions are interesting to inspect because we could detect valuable
higher-order mutants that are much harder to kill than its constituent rst-order mutants.
Automatic program repair is also a promising application. Variations are xing ingre-
dients that modify a tiny part of the program. Oftentimes many xing ingredients are
generated to increase the likelihood of nding a patch. Interactions of xing ingredients
are important to observe because they might provide insights of synthesizing multi-edit
patches, which is still an open challenge in the eld. Sharing is very likely because of two
reasons. On the one hand, xing ingredients are generated independently, and thus often
modify unrelated states of the program. On the other hand, tests are invoked again and
again to calculate tness, causing a lot of redundancy in test executions. As a side benet,
we can also inspect how xing ingredients aect program state at runtime and use the
insights to guide the search of high-quality patches.

2.5 Summary

In this chapter, we introduced the key ideas of variational execution, analyzed existing appli-
cations, and more importantly, elicited three important criteria for gauging the potential of
applying variational execution to new domains. New domains that concern speculative varia-
tions are emerging, but understanding interactions of speculative variations remain challenging.
Using the three key criteria, we show that variational execution is useful for higher-order muta-
tion testing (Chapter 4) and automatic program repair (Chapter 5). As discussed in Introduction
(Section 1.2), analyzing speculative variations requires variational execution to be more scalable,
so we discuss our work of scaling variational execution in the next chapter before delving into
the two new applications.

Chapter 3

Scaling Variational Execution

There exist dierent implementations of variational execution [8, 110, 117], but none of them is
scalable or extensible enough for analyzing speculative variations. Thus, we set out to improve
the scalability and extensibility of variational execution. With improved scalability, not only
can we extend existing work on intentional variations, but also open new avenues for analyzing
speculative variations, as we will show in Chapter 4 and Chapter 5.

This chapter shares material with the following publication [166]:
• Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster varia-
tional execution with transparent bytecode transformation. Proc. ACM Program. Lang. 2,
OOPSLA, Article 117 (November 2018), 30 pages.

3.1 Faster Variational Execution

Existing implementations of variational execution rely on either manual modication to the

source code [8, 140, 141] or modication to the language interpreter [110, 117].
On the one hand, variational execution can be implemented by writing the source code to

use some libraries or programming language constructs, so that the programs compute with
multiple values in parallel [8, 140, 141]. Implementations of this kind put a heavy burden on
developers because the use of these libraries or language constructs usually obscures the original
programs. Moreover, rewriting existing programs is often tedious and error-prone.

On the other hand, variational execution can be implemented by executing a normal program
with a special execution engine, such as an interpreter that tracks multiple values in parallel
with special operational semantics for each instruction [7, 110, 117]. Modied interpreters often
suer from a conict between functionalities and engineering eort: It would be painstaking
to modify a mature interpreter like OpenJDK, though it fully supports all functionalities of the
language, whereas it takes less engineering eort to modify a research interpreter such as Java
PathFinder [49], which however provides incomplete language support and often mediocre
performance. For example, VarexJ [110], the state-of-the-art variational execution engine for
Java, is implemented on top of Java PathFinder’s (JPF) interpreter for Java bytecode [49]. For
this reason, VarexJ inherits several limitations that restrict the programs it can analyze, such
as incomplete language features (e.g., native methods), lack of advanced optimizations (e.g.,

17

18 CHAPTER 3. SCALING VARIATIONAL EXECUTION

just-in-time compilation), and slow performance due to meta-circular interpreting (i.e., JFP itself
is yet another Java application).

We present a new way of implementing variational execution. Our approach sidesteps
manual modication to the source code and brittle modication to the language interpreter. The
key idea is to automatically transform programs in their intermediate representation. Specically,
we transparently modify Java bytecode automatically to mirror the eects of a manual rewrite.
The resulting bytecode can then be executed on an unmodied commodity JVM.

Transforming programs at the intermediate language level has several benets.
• Intermediate languages often have simple forms and strong specications, both of which
facilitate automatic transformation.

• Source code is not required, allowing us to transform also libraries used in the target
programs. We can also analyze other programming languages that are compilable to the
same intermediate language, such as Scala and Groovy for the JVM platform.

• Existing optimizations of the execution engine can be reused; in our case, our transformed
bytecode can take advantage of just-in-time compilation and other optimizations provided
by modern JVMs.

• Modications at the intermediate level remain portable. Our transformed bytecode can be
executed on any JVM that implements the JVM specication.

Transformations are nontrivial and not always local. While many bytecode instructions can
be transformed in isolation, encoding conditional control ow in a commodity JVM requires
careful encoding, such that both branches of control-ow decisions can be executed in dierent
variability contexts before subsequent computations are merged again to maximize sharing
overall. In additional, data-ow analyses are required to handle values on the operand stack
between blocks and object initialization sequences for variational execution. Finally, we perform
additional optimizations to statically pinpoint instructions that do not need to be transformed,
if they are guaranteed to be not related to variations in the program.

We formally prove that our transformation of control ow is correct, statically guarantee
optimal sharing for a large subset of possible control-ow graphs. Additionally, we empirically
evaluate performance, comparing execution time and memory consumption on seven highly
congurable systems against VarexJ, the state-of-the-art variational execution implementation.
The results show that our approach is 2 to 46 times faster than VarexJ while using 75 percent
less memory. The performance results also indicate that our approach is ecient for analyzing
highly congurable systems in practice.

We summarize our contributions as follow:
• We propose a novel strategy for variational execution using automatic bytecode trans-
formation, without any manual modications to the source code or to the language
interpreter.

• We prove that our automatic transformation of bytecode is correct for all control-ow
graphs and optimal with regard to sharing for a large subset.

• We propose further optimizations by performing data-ow analysis and using specialized
data structures.

• We implement a bytecode transformation tool that covers nearly the entire instruction
set of the Java language, with minor exceptions that we explain in Section 3.5. The

3.2. MOTIVATION: A MANUAL REWRITE 19

transformed bytecode is portable to any implementation of the JVM specication.
• An empirical evaluation with 7 subject systems showing that our approach is up to
46 times faster while saving up to 75 percent memory when compared to the state of the
art. In addition to statically guaranteeing optimal sharing for 89.7 percent of methods,
our approach achieves optimal sharing at runtime for 99.8 percent of all other method
executions.

We hope that the way we transform bytecode can inspire more ecient implementation
of similar techniques such as symbolic execution. Although we focus on Java bytecode in this
work, we can potentially generalize the core ideas to other programming languages and other
analyses, by performing a similar transformation at the well-dened intermediate representation
form of existing compiler frameworks like LLVM.

3.2 Motivation: A Manual Rewrite

To motivate transforming bytecode automatically, we illustrate how the source code of our
earlier WordPress example in Chapter 2 can be manually rewritten from Listing 1 to Listing 2
in Figure 2.1 on page 10. We show the rewrite in Java source code for better readability, as the
same program in bytecode is typically longer and harder to read, obscuring the essential ideas
of our rewriting. This manual rewrite in Listing 2 also highlights the key ideas (oating boxes
in Figure 2.1 on page 10) of our automated bytecode transformation.

We introduce variability contexts in all methods, represented by instances of the PropExpr

class, which model propositional expression over conguration options. Variables are rewritten
to use a new V type to store conditional values, either a single value for all congurations or
dierent values for dierent congurations. To manipulate values in V objects, we use smap

and sflatMap methods. The smap method applies a function to each alternative value of a V, and
the sflatMap method does the same but allows to split conguration spaces, producing more
alternatives. For example, the operation v.smap(ctx, f) on a conditional value v of type V<T> takes
as arguments (1) a variability context ctx and (2) a function literal f of type T => U, representing
the pending operation. It returns a new V instance of type V<U> that results from applying the
function f to each concrete element that exists under ctx in v (recall that a conditional value
stores concrete values along with the variability contexts under which they exist). The sflatMap

method works similarly, but takes functions of type T => V<U>.
Note that the manual rewrite shown in Listing 2 is not exactly the same as our bytecode

transformation, but close enough to show the key ideas. There are a few key points in this
manual rewrite:

• Variables store conditional values, represented by V objects.
• Most operations on conditional values (e.g., calling the replacemethod, String concatena-
tion) are redirected with smap and sflatMap and applied to all alternative concrete values.
It fact, this replacement is sucient for most bytecode instructions.

• Both the if branch and the else branch of an if-else statement are transformed into an
if statement, a statement that checks whether there exists any partial conguration under
which the surrounded code will be executed. If such a partial conguration exists, the
surrounded code will be executed under a restricted variability context (e.g., Line 36–40).

20 CHAPTER 3. SCALING VARIATIONAL EXECUTION

• All method calls have one additional parameter ctx, representing the variability context
under which this method is called. The variability context restricts all instructions of that
method invocation. Also, multiple return statements in the same method are replaced
with temporary assignment to a local variable, which is returned in the end of the method.

The transformation from normal code to variational code is nontrivial and obscures the
program. For example, we almost double the size of Listing 1 in order to transform a simple
example into a variational execution version. The introduction of smap calls and complicated
control-transfer structures also obscure the intention of the original program, making it hard
to understand and debug. This puts a heavy burden on developers to understand variational
execution and how to use it correctly. All of these issues can be resolved if we adapt an automatic
transformation approach that is transparent to developers. As we will see later in Section 3.5,
our transformation is also able to automatically decide which parts of a program need to be
transformed, as it is likely that some parts are not related to variations, such as the code before
the rst if statement (Line 7) and the code after the second if statement (Line 14) in Listing 2.

3.3 Bytecode Transformation

We discuss our transformation in two steps. First, in this section, we discuss how to transform
all instructions that are executed in a given variability context. The transformation of control
ow, which may change variability context, is nontrivial and orthogonal, so we discuss it second
in Section 3.4. We describe transformations for similar instructions together, following the
grouping of the JVM specication [93].

In a nutshell, we transform each bytecode instruction of the original program into a sequence
of bytecode instructions. Ideally, the transformation ofmost instructions should be local, meaning
that the transformation of the current instruction should not be aected by other instructions
around it. However, this locality assumption is not generally possible because an instruction
often aects another instruction by leaving data on the operand stack. The operand stack is
used internally in the JVM for exchanging data between instructions. Some instructions load
values (e.g., constants or values from local variables or elds) onto the operand stack, while
other instructions take values from the operand stack and operate on them. Results might be
pushed back onto the operand stack as a result of an operation. The operand stack is also used
to prepare parameters to be passed to method invocations and to receive return values.

To assist local transformation of individual instructions, we introduce several transformation
invariants:

Invariant 1 All local variables and elds store conditional values.
Invariant 2 All values on the operand stack are conditional values.
Invariant 3 All methods take conditional values as parameters and return conditional values.

We ensure that these invariants hold before and after the execution of each transformed
bytecode sequence. They help us establish a common ground about the environment, enabling
concise transformations of most instructions. In addition, we assume that each instruction is
executed in a local variability context. We will explain how variability contexts are propagated
and changed as part of our discussion of control ow in Section 3.4.

3.3. BYTECODE TRANSFORMATION 21

3.3.1 Basic Lifting

To achieve our invariants, we change all parameters and local variables in a method frame to
the V type to store conditional values. Primitive types are boxed in the process.

Load and Store Instructions. Load and store instructions transfer values between the local
variables and the operand stack. Since we assume local variables and stack values to represent
conditional values (Invariant 1, Invariant 2), we can directly load them with the aload in-
struction (replacing load instructions for primitive types if needed). Store instructions require
more attention, because they may be executed under a restricted variability context, in which
case not all values shall be overwritten. For example, suppose we have 𝑥 = 1 under context true,
but store 2 to 𝑥 under context A, then 𝑥 stores the conditional value 〈𝐴, 2, 1〉 instead of 2. To
this end, we always create a new conditional value, compressing the updated values under the
current context with possibly unaected old values. As an example, consider the V constructor
call when c is updated in Line 38–40 of Listing 2 in Figure 2.1 on page 10.

Arithmetic and Type Conversion Instructions. Arithmetic and type conversion instruc-
tions compute a result based on one or two values from the operand stack, and then push the
result back on the operand stack. For example, the iadd instruction takes two 𝑖𝑛𝑡 values from
the stack, adds them together and pushes the result back. Given Invariant 2, we need to pop
and push conditional values. We achieve this by invoking smap with the current variability
context on the stack’s conditional values, performing the original arithmetic or type conversion
operation on each alternative concrete value. For operations on two conditional values, we
combine sflatMap and smap to compute results for all possible combinations. For example, the
original oating point calculation in Line 21 of Figure 2.1 on page 10 is transformed to a smap
call in Line 63.

Operand Stack Management Instructions. Operand stack management instructions di-
rectly manipulate entries on the operand stack, such as pop for discarding the top value, and
swap for swapping the top two values. They work the same for conditional values and concrete
values, and therefore do not need to be transformed. A technical subtlety in Java is that some
primitive values (e.g., long, double) are represented by two 32-bit values on the stack, but only
by a single reference value for a conditional value; here we adjust stack operations accordingly.

3.3.2 Method Invocation and Return

Method invocations pass the top stack values as arguments to the method and push the method’s
result back to the stack. Non-static methods also take their receiver from the stack. Since method
arguments and return types are conditional values, just as stack values (Invariant 2, Invariant
3), they can be passed along directly. If a method call has multiple receiver objects, we call the
method for each of them in the corresponding variability context and merge results using a
sflatMap call.

Special handling is required though in cases in which Invariant 3 does not hold for the
target. Ideally, all classes and all methods in variational execution should be transformed, but this

22 CHAPTER 3. SCALING VARIATIONAL EXECUTION

is not always possible in practice because of the environment barrier. At some point, variational
programs may need to interact with an environment that does not know about variational
values and variability contexts. The environment barrier can be at dierent places, depending
on how the system is implemented (e.g., between user code and library code, between Java code
and native code, between the program and the operating system or network), but can never be
avoided entirely. When hitting the environment barrier, we have three options:

• Multiple Invocations. For side eect free methods, we can invoke the target method
multiple times for each feasible combinations of concrete argument values, merging the
results into a single conditional value. Since the method is side eect free, invoking it
repeatedly with dierent arguments does not change the program states, it just forgoes
potential sharing.

• Model Classes. We can always provide variational models for the environment, for
example, replacing all reads and writes to a le with a special implementation that can
store alternative le context under dierent contexts. Such model classes are common in
model checking and symbolic execution [25, 143, 157] and have been explored in variants
of variational execution for database storage [171]. Model classes can also be used to
provide more ecient variational implementations for classes than would be achieved
with our automated transformation, as we will discuss in Section 3.5.

• Abort. Finally, we can execute the program but abort execution when we reach the
environment barrier at runtime. This way, we can still support executions that do not cross
the barrier, even though the source code refers to nonvariational methods. Furthermore,
we can allow calls to nonvariational methods during the execution when they are shared
by all congurations (with variability context true) in which all parameters have only a
single concrete value.

In our approach, we transform all methods possible, including libraries, to push the environ-
ment barrier as far outside as possible. In the JVM, the environment barrier often manifests as
native methods, i.e., methods that are hard-coded in the JVM in other programming languages
such as C and C++. We maintain a list of model classes and side-eect free methods that are
automatically applied when encountered. For all remaining calls to nonvariational code, we issue
warnings during transformation and abort the execution at runtime when invoked. We then
manually and incrementally inspect aborts in our executions and mark methods as side-eect
free or develop model classes as needed. In fact, so far, we needed to implement model classes
only for a small number of classes. We have not yet encountered executions that heavily rely on
variational interactions with the environment and thus require additional model classes.

Return instructions are more straightforward to transform than method invocation instruc-
tions. To not prematurely end the execution of a method at a return instruction, we rewrite
the method to use a single return instruction at the end of the method. If the method being
transformed has more than one return instructions, we rewrite all of them to jump to a single
return at the end of the transformed method. If necessary, we store the values of dierent
original return instructions in a variable. Technically, we again replace all non-void returns
by a single areturn instruction, returning a reference to the resulting conditional value. For
example, see how Line 21 and 23 are transformed to Lines 62, 67 and 70 in Figure 2.1 on page 10.

3.4. CONTROL TRANSFER 23

3.3.3 Using Objects

In the JVM, both class instances and arrays are objects, but the JVM creates and manipulates class
instances and arrays using distinct sets of instructions. This section presents our transformation
of them respectively.

Class Instances. We transform all elds of a class instance to have the conditional value type.
The key idea is to maximize sharing of data across similar class instances. If two instances of
the same class only dier in one eld, we represent the dierence in a conditional value for
that eld, rather than as a conditional reference to two copies of the object. This design stores
variability as local as possible to avoid redundancy in memory and in computations [110]. As
elds store conditional values (Invariant 1), reads and writes to elds work just as loads and
stores to local variables.

A technical challenge to independent transformation of bytecode instructions arises for the
new instruction used to instantiate classes and push them to the operand stack. The challenge is
that the new instruction creates an uninitialized object that cannot be passed as a reference for
safety reasons until the object’s constructor is invoked on it, and thus cannot be wrapped in a V
type as needed for Invariant 2. Instead, we treat new and the subsequent initialization sequence
as one bytecode instruction for our transformation. Whenever we encounter a new instruction, we
use a data-ow analysis to identify the relevant following initialization sequence, re-arranging
the original bytecode if necessary to separate object initialization from other instructions (e.g.,
instructions to compute constructor parameters).

Arrays. For a given array, we transform it into an array of conditional values to again store
variability as local as possible to preserve sharing. To support arrays of dierent length though
and fulll our invariants, we support also variations of arrays. That is, an array of objects
(Object[]) would be represented as a conditional array of conditional objects (V<V<Object>[]>).
Type erasure in Java complicates the implementation, but this can be solved by inserting
additional dynamic type checks.

We arrived at this design after considering several tradeos: Our representation can store
variability more locally, avoiding that a single variation in an entry requires to copy the entire
array; also load and store operations are simple and fast. Overheads are only encountered for
arrays with dierent length in dierent congurations, which is less common than variability
in values in our experience. An alternative design could loosen our invariants for arrays
and create a single maximum-length array of conditional values (based on the length of the
conguration with the longest array; V<Object>[]) and a shadow variable and extra instructions
for bookkeeping and length checking, but we only expect marginal performance benets from
this more complicated design.

3.4 Control Transfer

After describing how to transform bytecode instructions within a given variability context, we
now focus on how to transform control-ow related constructions that may change variability

24 CHAPTER 3. SCALING VARIATIONAL EXECUTION

contexts by splitting or joining executions. For example, in a branching statement the condition
may dier among congurations, such that we may need to execute both branches under
corresponding variability contexts, but join afterward to maximally share subsequent executions.

We signicantly change the way programs are executed and track and change variability
contexts. As introduced in Section 2.2, variability contexts are propositional formulas over
conguration options that describe the partial conguration space for which an instruction is
executed, similar to path conditions in symbolic execution. Instructions executed in a variability
context only have an eect on the state of that partial conguration space, as discussed, for
example, for store instructions in Section 3.3.1. The challenge is now to propagate and change
variability context to achieve a shared execution for all congurations with maximal sharing.

In this section, we explain how we structure the program in blocks with the same variability
context, and how we transfer control and contexts among these blocks. Subsequently, we then
discuss two important properties of our design: (1) that variational execution preserves behavior
of the original program (Correct Execution Property) and (2) that control transfer among blocks
is ecient (Optimal Sharing Property). Finally, we present some technical challenges and their
solutions regarding stack values during control transfer.

3.4.1 VBlock

We group all instructions that are statically guaranteed to always share the same variability
context at runtime in a VBlock. VBlocks are separated by conditional jumps, that is, jumps that
may depend on conditional values, in which case we may “split” the execution. After executing
multiple VBlocks we may “join” the execution in another VBlock with a broader variability
context (such joining is rare in symbolic execution approaches). For example, String replacement
of a smiley image (Line 9) in Listing 1 has a more restricted context than the getHTMLHeader call
(Line 6) because Line 9 is only executed when SMILEY is true, whereas the later getHTMLFooter
call is again shared among all congurations.

VBlocks are similar to basic blocks in traditional program analyses. However, unlike basic
blocks, which group individual instructions together because they are always executed in
sequence, VBlocks group basic blocks together because they always share the same variability
context. Thus, there can be jumps inside a VBlock as long as they do not depend on conditional
values and thus share the same variability context.

Bytecode instructions can be partitioned into VBlocks by merging basic blocks in a control-
ow graph iteratively until a xpoint is reached. A block 𝐵1 can be merged with a successor 𝐵2
if the jump between 𝐵1 and 𝐵2 is not conditional (e.g., goto or if statement with non-conditional
expression)1 and all predecessors of 𝐵2 are in the same VBlock. The latter condition is needed to
recognize potential join points, when a block can be reached from two dierent VBlocks. Hence,
a VBlock can be terminated by either a conditional jump or an unconditional jump. A VBlock
can end with an unconditional jump if, for example, while merging basic blocks to form VBlocks,
basic block A has an unconditional jump to basic block C, while basic block B has a conditional
jump to C. We cannot merge A and C into one VBlock because of the conditional jump from

1
Invariant 2 implies that all values evaluated in an if statement are conditional, however, as we will discuss

later in Section 3.5, we can optimize the transformation to statically recognize values that will not depend on
conguration options, including, in the simplest case, constants.

3.4. CONTROL TRANSFER 25

B. Thus, A and C have to be separated into two dierent VBlocks with an unconditional jump
between them.

3.4.2 Execution Strategy

This subsection presents how VBlocks are used. We rst outline the goals of using VBlocks to
achieve splitting and joining execution. Then, we present a solution that achieves our goals and
provide an example.

Goals. Whereas variational-execution approaches that modify interpreters (such as VarexJ)
can track multiple instruction pointers and their variability contexts, we need to cope with the
fact that the instruction pointer of an unmodied JVM can only point to a single location at a
time. So instead of changing the control transfer mechanism of the JVM, we use VBlocks to
organize and create the execution order we want. At a high level, we pursue the following:

• Both branches of a conditional jump can be executed under corresponding restricted
contexts (we call them “subcontexts”). That is, we are able to split execution.

• The code after both branches of a conditional jump should be executed only once for
mutually exclusive contexts. That is, we should join execution as early as possible.

Context Propagation. Using VBlocks, we modify control ow decisions and manipulate
variability contexts to achieve splitting and joining. The key idea of our design is to associate
each VBlock with a variability context (a fresh local variable). We dynamically update variability
contexts along execution to keep track of which VBlock(s) can be executed next and under
which context. At any point in a method’s execution, all VBlocks with a satisable variability
context (i.e., the proposition formula is satisable) can be executed. The order in which multiple
VBlocks with satisable contexts are executed does not matter for correctness, but does matter
for performance, as we will show in Section 3.4.3.

At a jump between VBlocks, we transfer the current block’s variability context to the target
block’s context. If the jump is conditional, we split the current variability context and transfer
the two mutually exclusive contexts to the two successor VBlocks of the jump. The split is
determined by the partial conguration space in which the if statement’s expression evaluates
to true.

To describe the control transfer more precisely, let us denote the sequence of VBlocks as
𝑏0, 𝑏1, . . . , 𝑏𝑛 (𝑛 ≥ 0), where 𝑏0 represents the entry node in the control ow graph and 𝑏𝑛
represents the exit node. Let us denote the variability context of a VBlock 𝑏𝑖 as 𝜙 (𝑏𝑖) (stored in
a fresh local variable for each VBlock).

• At the beginning of a method execution, we initialize 𝜙 (𝑏0) with the method context, and
𝜙 (𝑏𝑖) = False for all other VBlocks to indicate that only the initial VBlock of the method
can be executed.

• After executing a VBlock 𝑏𝑖 , we remember its variability context Φ = 𝜙 (𝑏𝑖) and then set
that variability to False, indicating that this block should not be immediately executed
again. We subsequently propagate its prior variability context Φ as follows:

26 CHAPTER 3. SCALING VARIATIONAL EXECUTION

1. If the execution of VBlock 𝑏𝑖 ends with an unconditional jump (e.g., goto instruction)
to another VBlock 𝑏 𝑗 , the context of 𝑏 𝑗 is updated as a disjunction between the
current context of 𝑏 𝑗 and 𝑏𝑖 ’s prior context Φ. A disjunction is required because the
target block may already have been executable under a dierent context, which we
now broaden to join executions.

𝜙′(𝑏 𝑗) = 𝜙 (𝑏 𝑗) ∨ Φ (3.1)

2. If the execution of VBlock 𝑏𝑖 ends with a conditional jump with two possible target
VBlocks 𝑏 𝑗 and 𝑏𝑘 ,2 we split the execution based on the condition of the jump
(usually the top value on the stack representing result of evaluating an if statement’s
expression). Let us denote the variability context in which the jump condition
indicates a jump to 𝑏 𝑗 as 𝑋 . For example, the condition of the rst if statement in
our WordPress example is 〈𝑆𝑀𝐼𝐿𝐸𝑌, 1, 0〉, which indicates the then branch should
be taken under context 𝑋 = 𝑆𝑀𝐼𝐿𝐸𝑌 . We update the variability contexts of 𝑏 𝑗 and
𝑏𝑘 as follows, again considering potential joins:

𝜙′(𝑏 𝑗) = 𝜙 (𝑏 𝑗) ∨ (𝑋 ∧ Φ) 𝜙′(𝑏𝑘) = 𝜙 (𝑏𝑘) ∨ (¬𝑋 ∧ Φ) (3.2)

• After propagating the variability context, the control transfer (i.e., the actual instruction
pointer in the JVM) does not actually follow the jump.

Execution Order. The actual execution order though (in terms of moving the instruction
pointer) is independent from the transfer of variability contexts. We start execution at the
beginning of the method with 𝑏0. At the end of a VBlock 𝑏𝑖 , we jump to the next VBlock 𝑏𝑖+1
by default, even if the block ended with a dierent jump. If that VBlock’s variability context is
unsatisable, we proceed to the next VBlock, and so forth. We only jump back to a VBlock with a
lower index (using a plain goto instruction) when we update the variability context of an earlier
block to be satisable as part of the described context transfer. This way, the instruction pointer
is always at an unsatisable block (to be skipped) or at the satisable block with the lowest index.
This strategy ensures that later VBlocks are always executed with joined variability contexts
from earlier VBlocks and that VBlock 𝑏𝑛 is executed last with the full method context. For that
reason, the indexing order of VBlocks matters. Figure 3.1 illustrates the idea of jumping among
VBlocks with a concrete example.

Ordering VBlock Execution. Given that we always execute the rst VBlock with a satisable
variability context and always join at later VBlocks, we can execute the same method in dierent
ways by changing the way we order the VBlocks. We can reorder VBlocks in dierent orders as
long as the rst and last VBlock remain constant (the last block ending with a return statement
must be executed last) and always achieve equivalent (i.e., correct) results, as we will show in
Section 3.4.3. However, as the block order determines the join points, dierent orders may be
more or less eective at joining early and sharing subsequent computations.

2We transform switch statements into an equivalent series of if-else statements to simplify our design of control
transfer.

3.4. CONTROL TRANSFER 27

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏0
int i = 0;

Update: 𝜙 (𝑏1) Goto 𝑏1

𝑏1

Skip to 𝑏2 unless 𝑆𝐴𝑇 (𝜙 (𝑏1))
while (i < b) {

Update: 𝜙 (𝑏2) , 𝜙 (𝑏5) Goto 𝑏2

𝑏2

Skip to 𝑏3 unless 𝑆𝐴𝑇 (𝜙 (𝑏2))
i++
if (i != a)

Update: 𝜙 (𝑏3) , 𝜙 (𝑏4) Goto 𝑏3

𝑏3

Skip to 𝑏4 unless 𝑆𝐴𝑇 (𝜙 (𝑏3))
continue;

Update: 𝜙 (𝑏1) Goto 𝑏1

𝑏4

Skip to 𝑏5 unless 𝑆𝐴𝑇 (𝜙 (𝑏4))
. . .

} Update: 𝜙 (𝑏1) Goto 𝑏1
𝑏5 return;

Figure 3.1: An example illustrating control-ow encoding through updates of variability contexts and jumps
between blocks.

To maximize sharing during the execution (i.e., prefer executing a block once under a broader
variability context rather than multiple times under narrow contexts), we order VBlocks based
on the strict transitive predecessor relation in the control-ow graph. A VBlock 𝑏𝑖 is a strict
transitive predecessor of 𝑏 𝑗 if there is a path from 𝑏𝑖 to 𝑏 𝑗 in control-ow graph, but not from 𝑏 𝑗
to 𝑏𝑖 (i.e., not in a loop). For any pair of VBlocks, if one VBlock is a strict transitive predecessor of

the other, the transitive predecessor shall have the lower VBlock index to be executed rst. For other
pairs, we preserve the original lexical order produced by the compiler as a default.

In the next subsection, we will show that the above partial order is sucient to statically
guarantee optimal sharing on a subset of control-ow graphs, regardless of the original lexical
order of the bytecode, but that optimality cannot be statically guaranteed for all control-ow
graphs. We will also experimentally show in Section 3.6 that this order is nearly always optimal
for the remaining control-ow graphs.

Example. Let us exemplify our solution by stepping through the getWeather method in Listing
2 (Figure 2.1 on page 10). There are four VBlocks: code before the if statement (𝑏0, Line 57-
59), then branch (𝑏1, Line 60-64), else branch (𝑏2, Line 65-69) and return block (𝑏3, Line 70).
These blocks are already indexed according to the strict transitive predecessor relation: 𝑏0 is
executed rst, 𝑏1 and 𝑏2 are executed before 𝑏3; the order between 𝑏1 and 𝑏2 is merely derived
from the lexical order and could be switched. Initially, 𝜙 (𝑏0) = MCtx (method context) and
𝜙 (𝑏1) = 𝜙 (𝑏2) = 𝜙 (𝑏3) = False. After executing 𝑏0 at Line 59, 𝜙 (𝑏1) and 𝜙 (𝑏2) are updated
to 𝜙 (𝑏1) = False ∨ (FAHRENHEIT ∧MCtx) and 𝜙 (𝑏2) = False ∨ (¬FAHRENHEIT ∧MCtx), thus
splitting the execution. Note that this update of contexts is not shown in Listing 2 because we
transform the control ow in bytecode dierently from howwe show for Java. At this point, both
𝜙 (𝑏1) and 𝜙 (𝑏2) are satisable and execution continues with the next VBlock 𝑏1. After executing
𝑏1 at Line 64, 𝜙 (𝑏3) is updated to 𝜙 (𝑏3) = False ∨ (FAHRENHEIT ∧MCtx) because 𝑏3 is the sole
successor of 𝑏1 in the control ow graph. We execute the next satisable block, which is 𝑏2, after
which 𝜙 (𝑏3) is updated to 𝜙 (𝑏3) = (¬FAHRENHEIT ∧MCtx) ∨ (FAHRENHEIT ∧MCtx) = MCtx;
thus, 𝑏3 at Line 70 is executed last under the joined context MCtx.

28 CHAPTER 3. SCALING VARIATIONAL EXECUTION

3.4.3 Properties

We have presented how we choose VBlocks for execution. While splitting executions, we need
to ensure that the execution order is correct. By always executing the satisable VBlock with
the lowest index rst and ordering VBlocks deliberately, we make sure that the joining happens
as early as possible. This section formalizes these properties.

Correctness

The following property ensures that our variational execution is correct, in a sense that it
preserves the semantics of the original program.
Property (Correct Execution Property). At any point of execution, if there are multiple

VBlocks with satisable contexts, the order in which they are executed does not aect correctness

of execution.

To prove this, we rst introduce a useful lemma:
Lemma (Disjoint Context Lemma). At any point of variational execution, the context of two

dierent VBlocks are mutually exclusive. That is, 𝜙 (𝑏𝑖) ∧ 𝜙 (𝑏 𝑗) = False for any 𝑖 ≠ 𝑗 .

Mutual exclusion is guaranteed by the way we propagate contexts in Equations 3.1 and 3.2.
A proof by induction can be found in Section 3.8. With this lemma, we prove our Correct
Execution Property as follows:

Proof. Ensuring that VBlocks have mutually exclusive variability contexts guarantees that each
VBlock operates on mutually exclusive runtime states. As we have discussed in Section 3.3,
states (e.g., local variables, elds) are stored separately for dierent contexts using conditional
values. Our variability contexts further ensure that all state changes only update values in the
(disjoint) contexts referred to by the current variability context. Thus, execution order among
satisable VBlocks does not aect correctness of overall variational execution. �

Optimal sharing

The main utility of variational execution is its ability to share common computations; our
execution scheme pursues to perform executions with the broadest variability context possible.
While we cannot share repeated executions under the same context, we can avoid executing
the same VBlock under mutually exclusive contexts and rather execute it once, shared, under a
broader context. In a nutshell, what we want to achieve is to execute every VBlock as few times
as possible by sharing the execution of VBlocks in dierent contexts. This sharing is crucial
for the overall performance of variational execution, otherwise it may degrade to executing
each variation in a brute-force way or sharing only common prexes of traces, conceptually
equivalent to joining only after the very last instruction.

To formalize optimal sharing, we dene a variational trace as a chronological sequence of
VBlocks executed during variational execution. We denote a variational trace as a sequence
of executed VBlocks with corresponding variability context, e.g., 𝑡𝑣 = [𝑏𝑇𝑟𝑢𝑒0 , 𝑏𝛼1 , 𝑏

¬𝛼
2 , 𝑏𝑇𝑟𝑢𝑒3].

Conceptually, a variational trace corresponds to a separate concrete trace for each conguration,
in our example 𝑡𝛼 = [𝑏0, 𝑏1, 𝑏3] and 𝑡¬𝛼=[𝑏0, 𝑏2, 𝑏3]. Another variational execution trace that

3.4. CONTROL TRANSFER 29

𝑏0
𝑏1
𝑏2
𝑏3
𝑏1
𝑏2
𝑏4
𝑏1
𝑏5

𝑏0
𝑏1
𝑏2
𝑏4
𝑏1
𝑏5

𝑏0
𝑏1
𝑏2
𝑏4
𝑏1
𝑏2
𝑏3
𝑏1
𝑏5

𝑏0
𝑏1
𝑏2
𝑏3
𝑏1
𝑏5

Figure 3.2: An example where static order between VBlocks cannot not achieve optimal sharing. The control-ow
graph is shown in Figure 3.1

represents the same concrete traces could be 𝑡 ′𝑣 = [𝑏𝑇0 , 𝑏𝛼1 , 𝑏𝛼3 , 𝑏¬𝛼2 , 𝑏¬𝛼3]. It is likely that 𝑡𝑣 is more
ecient than 𝑡 ′𝑣 because 𝑏3 is executed twice in 𝑡 ′𝑣 .

A variational trace can be seen as the result of aligning multiple concrete traces. Dierent
aligning schemes produce dierent variational traces (e.g., 𝑡𝑣 and 𝑡 ′𝑣). Given a set of concrete
traces, we can use sequence alignment algorithms (e.g., Needleman-Wunsch algorithm [115])
to obtain a globally optimal solution of merging concrete traces. For example, two optimal
matchings of 𝑡𝛼 and 𝑡¬𝛼 are 𝑡𝑜 = [𝑏0, 𝑏1, 𝑏2, 𝑏3] and [𝑏0, 𝑏2, 𝑏1, 𝑏3]. We use 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡) to denote the
number of elements in a trace. For example, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑣) = 4, and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡 ′𝑣) = 5.
Definition (Optimal Sharing). Given a variational trace 𝑡𝑣 and its corresponding set of concrete

traces 𝑡1, 𝑡2, . . . , 𝑡𝑚 , we say 𝑡𝑣 has optimal sharing if and only if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑣) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑜), where 𝑡𝑜
is the optimal matching of 𝑡1, 𝑡2, . . . , 𝑡𝑚 .

It would be ideal if optimal sharing could be achieved for all possible programs in the wild,
but there is no join strategy that could statically order blocks to guarantee optimal sharing for
all executions of all programs. Figure 3.2 illustrates an example: In order to achieve optimal
sharing (with optimal dened as the optimal trace alignment in the gure), there is both a case
where 𝑏3 needs to be executed before 𝑏4 and a case where 𝑏4 needs to be executed before 𝑏3
after a control-ow decision at 𝑏2 (critical nodes highlighted in the trace). That is, we cannot
statically decide an ordering between 𝑏3 and 𝑏4, and even an optimal decision at runtime would
have to depend on knowing the future execution trace. We could apply some greedy strategies
to approximate optimality, but that the required runtime monitoring is unlikely to justify the
performance benets of additional sharing execution.

Fortunately, we can prove optimal sharing for static VBlock ordering for many shapes of
control-ow graphs and will show in our empirical evaluation that the remaining ones (often
with nontrivial interleaving of looping and branching instructions) are often optimal for actual
executions.
Property (Optimal Sharing Property). Given a control ow graph where each node represents

a VBlock, our variational execution based on the strict transitive predecessor relation on this graph

has optimal sharing if it is acyclic or only contains simple loops. A loop is a simple loop if it satises

the following three criteria: (1) has only one loop header; (2) has only one exiting node; (3) has no

conditional jumps among nodes in the loop.

The proof can be found in Section 3.8. Intuitively, we prove by case analysis that our

30 CHAPTER 3. SCALING VARIATIONAL EXECUTION

variational trace has the same length as the optimal alignment of corresponding concrete traces
in every possible case. Since we only consider simple control-ow graphs, the length of our
variational trace and the length of the optimal alignment trace can be determined from the
structure of the control-ow graph.

3.4.4 Values on the Stack between VBlocks

In Java, blocks can leave values on the operand stack to be consumed by subsequent blocks.
Since, in variational execution, there might be multiple successor blocks that will be executed,
and successor blocks may not be executed immediately after their predecessor, sharing values on
the stack becomes tricky. Since the operand stack in a commodity JVM is not variational itself,
we cannot pop the same value from the stack under dierent variability contexts as possible
when modifying the interpreter itself (e.g., done in VarexJ [110]).

Figure 3.3 shows a concrete example in which VBlock 𝑏0 leaves some value on the operand
stack after execution, that both blocks 𝑏1 and 𝑏2 try to read. Conversely, those two blocks each
leaves a (dierent) value on the stack that 𝑏3 attempts to consume.

𝑏0

ALOAD 0
GETFIELD a
ICONST_1
IFEQ 𝑏2

𝑏1
ICONST_1
GOTO 𝑏3

𝑏2 ICONST_0
𝑏3 . . .

Figure 3.3: A snippet of bytecode showing the scenario where VBlocks could leave some values on the operand
stack after execution.

To make the transition between VBlocks possible in all cases, we need one more invariant in
addition to those introduced in Section 3.3:
Invariant 4 A VBlock does not leave any values on the operand stack at the VBlock boundary.

To meet this invariant, we store all remaining values on the operand stack (if they exist)
to local variables, at the end of each VBlock. Then at the beginning of each VBlock, we check
if the current VBlock expects some values from the operand stack, and load those values
from corresponding local variables if so. Since we support loading and storing under dierent
variability contexts, as discussed above, this solution generalizes to all control-ow graphs.

3.5 Implementations, Optimizations, Limitations

We implemented a bytecode transformation tool for the ideas discussed in Section 3.3 and
Section 3.4, and we call it VarexC. We use the ASM3 library to implement our data ow analysis
and transformation of bytecode. Transformations happen at class loading time via our own

3hp://asm.ow2.org/

http://asm.ow2.org/

3.5. IMPLEMENTATIONS, OPTIMIZATIONS, LIMITATIONS 31

class loader that transforms classes before they are actually loaded. We also save the previously
transformed classes and reuse them if there are no changes. To ensure correct implementation
of variational execution, we apply dierential testing to compare execution results and exe-
cution traces in variational execution against brute-force concrete executions for our subject
systems [65]. Our implementation is available on GitHub.4 We implement transformations for all
bytecode instructions and provide a mechanism for model classes, as discussed in Section 3.3.2.
In addition to implementing the full transformation described previously, we explored two
optimizations and briey outline them. Finally, we discuss the current limitations of our tool.

3.5.1 Optimization: Deciding What to Transform

Not all bytecode instructions in a program may depend on conguration options. If we can
statically guarantee that parts of the program never depend on conditional values or condi-
tional jumps, we can reduce our transformation to relevant parts; this reduces the overhead
of computing with conditional values and conditional jumps where not needed. Guaranteed
non-conditional computations happen often in the beginning of methods and typically involve
initialization sequences or constants, such as in logging statements “System.out.println("done");”.

We designed a simple data-ow analysis to decide which instructions need to be transformed.
Along the lines of a standard taint analysis, we mark all local variables and values on the
operand stack as conditional or unconditional with a ‘lift’ bit, marking them as conditional when
instructions based on other conditional values write to them.

So far, we implemented an intra-procedural analysis that assumes all elds (including elds
representing conguration options, as in our WordPress example) and method parameters and
method results are conditional. As such, all stack values produced by eld reads, loads of method
parameters, and results from method invocations are marked with the lift bit. We then propagate
the lift bit to all values resulting from computations in which operands had the lift bit and to
local variables when such values are stored. Based on the lift bit, we decide which control-ow
decisions are conditional (i.e., potentially depend on conditional values) and compute VBlocks
correspondingly. Finally, we determine with a simple control-ow analysis, which VBlocks are
guaranteed to be executed with the method’s variability context (in a nutshell, all VBlocks that
dominate the method exit) and mark all variables stored in other VBlocks as conditional, as they
may be stored only in restricted contexts. As is common for data-ow analyses, we repeat these
computations until a xpoint is reached.

Based on our analysis, we transform bytecode based on a potentially smaller number of
VBlocks (because some jumps are statically guaranteed to be non-conditional when their ex-
pression does not have the lift bit). We also transform only variables and instructions with the
lift bit. We introduce additional instructions to translate concrete values into conditional values
when values ow from unmodied into transformed code (i.e., just wrapping the concrete value
in a V instance, boxing primitive types if necessary), such that our invariants still hold from the
perspective of the transformed instructions.

Our current analysis is very conservative, because it assumes all elds and method signatures
are conditional, thusmost savings relate to constants and initialization sequences. Nonetheless, in

4hps://github.com/chupanw/vbc

https://github.com/chupanw/vbc

32 CHAPTER 3. SCALING VARIATIONAL EXECUTION

the programs of our evaluation (Section 3.6), we can statically decide to not lift up to 32.6 percent
of all instructions, which however has only a marginal impact on performance. We hope that
future work can push this analysis even further by performing an inter-procedural analysis to
determine which methods and method arguments need to be transformed, potentially providing
multiple transformed or partially transformed copies of the same method.

3.5.2 Optimization: Using Model Classes

As discussed in Section 3.3.2, we provide a mechanism for model classes with which we can im-
plement custom implementations for classes where automated transformations are not possible
(e.g., native methods, environment barrier) or inecient. In fact, it is often possible to provide
more ecient implementations of common data-structure implementations that are specically
designed for variability [112, 158]. Our model-class mechanism allows drop-in replacements for
such classes.

Variational data structures

We implemented a small number of custom variational data structures for commonly used col-
lections. For example, instead of an automated transformation of the java.util.LinkedList class,
which would support conditional values and conditional successors of linked-list nodes, we use a
custom implementation that internally stores a list of optional elements and provides correspond-
ing accessor functions. Similarly, rather than automated transformation of java.util.HashSet
objects, we can represent variational sets as a mapping from values to variability contexts that
describe the conguration space in which the set contains that value. As explored by Walk-
ingshaw et al. [158], such tailored representations are often (though not generally) much more
ecient, especially when they hold many optional elements with dierent conditions [112, 158].

Depending on dierent computations in dierent programs, the eectiveness of model classes
varies. For example, our model LinkedList is optimized for iterating elements, so programs that
iterate lists of optional entries frequently gain more benets from our model classes. Our
evaluation shows dierent levels of improvement after the drop-in replacement of some model
classes, with up to 6 times speedup for GPL.

Custom access patterns

While custom data structures can store conditional entries more eciently, common accessor
patterns to iterate over list entries can still be very inecient. For example, getting rst the
rst, then the second element of a list with optional entries [1𝛼 , 2𝛽, 3𝛾 , 4, 5] would create large
conditional values (e.g., 〈𝛼, 1, 〈𝛽, 2, 〈𝛾, 3, 4〉〉〉 for the rst element).

Instead, we detect common access patterns and transform them more intelligently. Instead of
iterating over all elements of the list one by one (where each element can be a conditional value),
we iterate over all optional elements, where the element is a concrete value, but the iteration is
executed under a restricted variability context based on that element’s condition, which marks
under what context this element exists in the list. We integrate the most recent detection and

3.5. IMPLEMENTATIONS, OPTIMIZATIONS, LIMITATIONS 33

rewrite of such access patterns of Lazarek [84]. Our current implementation detects loops that
use iterator and automatically transform such loops to use our specialized list more eciently.

In our evaluation, there were only few instances that beneted from this optimization, but
if they did, the improvements were substantial. For example, in CheckStyle (see Section 3.6),
the program iterates over a list of 135 optional checks. The basic transformation results in
exponential behavior, that makes it infeasible to execute the code without manual rewrites of
the CheckStyle implementation, whereas our optimization of access patterns allows to execute
this code fragments eciently. Overall, several researchers have explored variational data
structures and access patterns recently [112, 158]. Model classes and additional rewrites during
the transformation allow us to easily integrate such advances to improve performance of
variational execution on real-world systems.

3.5.3 Limitations

Our current implementation of variational execution has some limitations, most of which are
related to low-level details of the JVM or restrictions posed by the Java runtime (e.g., we cannot
directly modify classes in the java.lang package for safety reasons). Most limitations are
engineering challenges that can be overcome with additional implementations, typically in the
form of model classes.

Exception. Wedistinguish two types of exceptions: non-variational exceptions and variational
exceptions. Non-variational exceptions are thrown or propagated under the current method
context. Variational exceptions are thrown or propagated under a smaller context than the
current method context (i.e., only in some partial congurations). Semantically, non-variational
exceptions represent cases where invoking a method under ctx would always result in the same
exception under all congurations of ctx, whereas variational exceptions occur only in some

partial congurations.
Non-variational exceptions are easy to support because the control ow is the same for all

congurations. In fact, we only found non-variational exceptions when executing our subject
systems in evaluation.

Variational exceptions are trickier to handle because method execution might be interrupted
under some partial congurations. If the exception is not caught inside method invocation,
returning from a method results into a normal return value in some congurations and an
uncaught exception in other congurations. Although it is possible to support variational
exceptions by delaying throwing them and wrapping them together with normal return values
as a conditional value, the transformation would complicate the control ow of transformed
bytecode in a nontrivial way, especially if exceptions are supposed to be caught inside the
current method or some outer methods. Since variational exceptions are not that common in
our experience, we adopt a less ecient but easier approach to support variational exceptions:
The key idea is to throw an exception immediately when it occurs and continue the rest of
the variational execution only under the variability context of the exception; then we restart
variational execution under the remaining contexts that did not result in the previous exception,
and keep repeating until all contexts have been explored. Re-executions might aect overall
eciencies of variational execution, but we only observed variational exceptions in our own

34 CHAPTER 3. SCALING VARIATIONAL EXECUTION

articial examples. In cases where not all exceptions are important to capture, we can simply
ignore the paths that throw exceptions and continue variational execution under restricted
contexts that represent exception-free paths. In this chapter and Chapter 4, we adopt the re-
execution approach to exception handling in order to accurately handle all exceptions, but in
Chapter 5, we avoid re-execution and focus on paths that execute normally without exceptions,
which we will discuss in greater length in Section 5.5.

Model Classes. We only implemented a handful of model classes (9 classes and in total 1030
lines of Java code) to tackle the environment barrier required by our subject programs. We
consider all classes that have native methods and classes that are closely related to internals of
the JVM to be behind the environment barrier and use the strategies discusses above, including
repeated invocations and model classes.

Currently we support a large set of Java programs, but we may need to provide more model
classes if another program uses certain advanced language features. We adopt an incremental
approach, in which we carefully monitor the need for model classes at runtime (i.e., when
conditional values are passed across environment barriers). When implementing model classes,
our main focus is to support conditional values. Symbolic execution and model checking face a
similar challenge, but we argue that the implementation eort is lower for variational execution,
because we compute with concrete values and can therefore delegate to existing implementations
rather than reimplement abstractions of those operations.

Reection. Reection is relatively simple to handle due to the dynamic nature of our approach.
Since reection cannot modify bytecode (i.e., we cannot introduce conditional instructions at
runtime), it does not aect our bytecode transformation of classes. We intercept reection calls
and replace them with our special call stubs, where we wrap arguments into conditional values,
append variability context to the argument list, and invoke the transformed method, just as
we would transform bytecode statically. We have implemented partial support for reection as
needed by our subject systems incrementally.

Synchronization. Two instructions (monitorenter and monitorexit) are used to synchro-
nize concurrent operations. We currently keep them as is, which implies that we lock sec-
tions for all congurations, not just in the current variability context; this may lead to over-
synchronization and potential liveness issues.

Array. As we will see in Section 3.6, array operations are generally expensive in their current
form. Especially when crossing the environment barrier, we may need to translate conditional
arrays into plain concrete arrays, which can be relatively expensive if the arrays are large. A
more ecient implementation of variational arrays would be future work.

Comparing to VarexJ. Our approach comes with its own limitations, but most of them can be
improved with additional engineering eort. We sidestep most bottlenecks of the state-of-the-art
approach (VarexJ) by transforming bytecode instead of modifying the underlying JVM. Although
the limitations of VarexJ can potentially also be removed by more engineering eort, we argue

3.6. EMPIRICAL EVALUATION 35

that the eort in VarexJ is much higher because of those additional complexities from the JVM
itself. As an example, native methods are notoriously dicult to support in Java PathFinder
(JPF), the underlying JVM of VarexJ, largely because JPF has its own memory model for objects,
which cannot be passed to native methods directly and therefore require additional conversion.
In contrast, native methods can be supported in our approach by providing simple model classes
to handle conditional values so that concrete values can be passed to native methods.

3.6 Empirical Evaluation

In an empirical evaluation, we now execute a number of congurable systems to assess perfor-
mance (time and memory consumption) and eectiveness of sharing. Specically, we compare
our implementation against repeatedly executing the unmodied code in all congurations
(brute-force execution)5 and against VarexJ [110], a state-of-the-art variational execution engine
for Java, which executes bytecode with a modied virtual machine based on Java Pathnder.
While performance measures implicitly indicate the benets of sharing, we additionally empiri-
cally assess how often our VBlock ordering results in optimal sharing at runtime, especially for
methods for which we cannot guarantee optimal sharing statically.

3.6.1 Experimental Setup

Benchmarks. Table 3.1 shows the benchmark programs used in this study. For comparability,
we use the same set of benchmark programs from VarexJ [110], which includes programs from
various domains: Jetty 7 is a HTTP server; Checkstyle is a static coding style checker for Java
programs; Prevayler is an in-memory database system; QuEval is an academic evaluation frame-
work for database index structures; Elevator, GPL and E-Mail are commonly used benchmarks
from the software product-line community that are designed to have many variations. These
programs have 6 to 141 options, each of which is a boolean controlling inclusion or exclusion
of a feature. Feature combinations are usually restricted by a feature model [142]. The goal
of analyzing these programs is to estimate the eort of exploring a big conguration space,
which can be useful for testing, static analysis, and so forth. We execute each program with a
representative input, which in each system covers all conguration options and signicant parts
of implementation. For example, we feed Checkstyle with 4 Java source code les and use 135
dierent checkers to check coding style.

Implementation andHardware. To compare with our tool VarexC, we use the latest VarexJ
code base as of 12/12/2017, which includes the most recent optimizations, added after the last
publication. Both VarexC and VarexJ are executed with Java HotSpotTM 64-bit Server VM
(v1.8.0_161). We use a laptop with 2.30GHz Intel Core i7 CPU and 16GB system memory. All
results are measured when the machine is idle and unloaded.

5For benchmark programs that have more than 20 conguration options, we randomly select 1 million valid
congurations for measuring.

36 CHAPTER 3. SCALING VARIATIONAL EXECUTION

Performance Measurement. We measure performance in three dierent settings:
• First, we measure the performance of executing the unmodied program in every single
conguration separately on a commodity JVM. Since the execution time may dier signi-
cantly between congurations, we report both the average execution time (reported as
𝜇JVM) and the execution time of the slowest conguration (reported as max JVM).

• Second, we measure the time it takes VarexJ, the state of the art variational interpreter
built on top of Java Pathnder, to execute the program across all congurations (reported
as VarexJ).

• Finally, we measure how long it takes to execute the program across all congurations by
executing the modied bytecode with a commodity JVM (reported as VarexC).

Ideally, the performance of variational execution (VarexJ and VarexC) would be between the
execution time of the slowest conguration (max JVM) and the combined execution time of
all congurations (𝜇JVM · number of congurations): Variational execution needs to at least
execute all instructions of the slowest conguration, but it can usually share eort among
multiple congurations.

In all three cases, we measure steady-state performance for each benchmark, based on
repeated executions [39]. Steady-state measurement excludes JVM startup time, which typically
dominates by JIT compilation and class loading. We do not compare startup performance
because VarexJ is implemented as a Java interpreter itself—in addition to loading classes of
benchmark programs, VarexJ needs to load a lot of necessary classes for the meta-circular
interpreter to work, which would bias our results against VarexJ. For VarexC, we exclude the
bytecode transformation time from measurement because transformation happens once for each
program, similar to compiling source code. We only measure VarexC with all optimizations

(see Section 3.5) for brevity. Following the suggestion from Georges et al. [39], we measure
steady-state performance in the following steps:

1. Start a JVM invocation 𝑖 and iterate the benchmark until a steady-state is reached, i.e.,
once the coecient of variation (CoV) of 10 consecutive iterations falls below a predened
threshold, which is 0.02 in our case.

2. For the JVM invocation 𝑖 , compute the mean execution time of those 10 steady iterations,
and denote it as 𝑥𝑖 .

3. Repeat Step (1) and (2) for 10 times and compute the overall mean 𝑥 =
∑10

𝑖=1 𝑥𝑖
10 . Finally, we

report 𝑥 as the measurement result.
In the above measurement, Step (1) and (2) are designed to warm up the JVM, excluding

factors like class loading and JIT compilation. These factors are less interesting to our evaluation
because our main goal is to measure performance of variational execution. The coecient of
variation threshold is useful for controlling the eect of garbage collection. Step (3) is designed to
minimize non-determinism of JIT compilation across JVM invocations, because JVM uses timer-
based sampling to drive JIT optimization (e.g., which methods to optimize, at what level). Other
main sources of non-determinism include thread scheduling and garbage collection. Thread
scheduling is less of a concern for us because all programs except Jetty are single-threaded.
Regarding Jetty, we congure Jetty to run a small server that has minimal thread scheduling.
Georges et al. [39] recommends reporting a condence interval instead of the mean alone.
However, as we will show, the performance dierence between our approach and VarexJ is so

3.6. EMPIRICAL EVALUATION 37

large that reporting condence intervals is unnecessary. The dierence is so obvious and the
variation so small in comparison that statistical tests are not needed. Due to this large eect
size, we omit condence intervals for brevity.

Memory usage. To measure memory usage, we calculate the used heap space by calling
APIs of java.lang.Runtime at every method entry, and then record the maximum heap space used
throughout the entire JVM invocation. Even with this frequent sampling, we cannot guarantee
accurate measurement of memory usage, largely because of the non-deterministic garbage
collection and bulk memory allocation. Thus, the memory measurement is only useful for
coarse-grained comparison. For VarexC and VarexJ, we perform each single measurement
on a given subject program by executing it once. As a comparison goal, we also measure the
memory usage of executing one representative conguration on a commodity JVM (reported
as JVM). The representative conguration is chosen as a valid conguration with the most
features enabled. Since VarexC and VarexJ explore the entire conguration space, their memory
consumption is strictly larger than execution of a single conguration. To reduce noise, we
repeat each measurement 10 times and report the average.

Sharing Eciency. As discussed in Section 3.4.3, our approach is able to give static guarantees
of optimal sharing to methods that satisfy certain conditions. To assess sharing for other methods,
we monitor the sharing in our benchmark executions. Specically, we collect traces of which
VBlocks are executed under which conditions and subsequently analyze whether those traces
were optimal, with regard to sharing. For each variational trace, we expand it into a set of all dis-
tinct concrete traces that it represents, and then compute the alignment of these concrete traces.
Since an optimal alignment of 𝑛 traces is NP-hard [160], we compute pairwise alignments be-
tween all distinct concrete executions using Needleman-Wunsch algorithm [115]. If the observed
variational trace is longer than the longest pairwise alignment, we consider the sharing as not op-
timal. This pairwise approximation is conservative in that we may consider executions with opti-
mal sharing as not optimal if the n-way alignment is longer than the longest pair-wise alignment;
conversely, if the variational trace is not longer than the longest pair-wise alignment we can be
sure that the sharing is optimal. Our pairwise alignment approach sidesteps the need of comput-
ing optimal alignment, but it still has scalability issues if there are too many pairs, which happen
sometimes in our evaluation. For those cases, we conservatively mark them as suboptimal.

3.6.2 Execution Time

Table 3.1 summarizes the performance results, showing that VarexC outperforms VarexJ by a
factor between 2 to 46. Variational execution is obviously signicantly slower than executing
a single conguration (between 4 and 3200 times slower), but as conguration spaces grow
exponentially, this slowdown is often practical to cover the entire space.

VarexC vs. VarexJ. Comparing VarexC and VarexJ, we can see that VarexC outperforms
VarexJ in all cases, with a speedup of 2 to 46. To better understand the speedup, it is useful to
divide our subject programs into two groups and discuss them separately.

38 CHAPTER 3. SCALING VARIATIONAL EXECUTION

Table 3.1: Statistics about benchmark programs and performance comparison among JVM, VarexJ and VarexC.
Statistics include lines of code, number of (boolean) options, and number of valid congurations. Numbers in bold
denote the cases where VarexC or VarexJ outperforms brute force execution. The last three columns denote the
relative speedup or slowdown.

Subject LOC #Opt #Cong 𝜇JVM max JVM VarexJ VarexC VarexJ/ VarexJ/ VarexC/
(in ms) (in ms) (in ms) (in ms) VarexC maxJVM maxJVM

Jetty 145, 421 7 128 949 1, 246 166, 340 4, 660 36x 133x 4x
Checkstyle 14, 950 141 > 2135 811 946 ∗89, 366 3, 825 23x 94x 4x
Prevayler 8, 975 8 256 13 44 33, 124 725 46x 753x 16x
QuEval 3, 109 23 940 0.03 0.38 2, 354 1, 244 2x 6, 195x 3, 274x
GPL 662 15 146 0.55 6.23 4, 691 479 10x 753x 479x
Elevator 730 6 20 0.03 0.07 45 7.88 6x 643x 113x
E-Mail 644 9 40 0.02 0.06 21 6.19 3x 350x 103x

QuEval, GPL, Elevator, E-mail are academic examples that only need basic language features,
such as arithmetic computation and array operations. Thus, a comparison between VarexC
and VarexJ on these programs reveals the performance gap between bytecode transformation
and interpreter instrumentation. As we can see, we are up to 10 times faster than VarexJ, due
to lower interpreter overhead and JVM optimizations. QuEval is dominated primarily by heavy
computations with arrays with only moderate sharing that are expensive in both VarexC and
VarexJ. In a micro-benchmark, we conrmed that sorting on an array of 1000 variational elements
with VarexC is roughly 2 times faster than VarexJ, which likely explains the low performance
dierence for this program.

Jetty, Prevayler, Checkstyle are medium-sized real-world programs that are widely used in
practice. These programs use various more advanced JVM features, including dynamic class
loading (CheckStyle), network access (Jetty) and le access (Prevayler). Since VarexJ is built
upon a research JVM, it inherits limitations from its underlying JVM in this regard, whereas
code transformed with VarexC remains portable across JVMs.

VarexC vs. Individual Executions. To investigate how useful conguration-complete anal-
yses are in practice, we compare VarexC (and for comparison also VarexJ) with the time it takes
to execute individual congurations, both average congurations and worst-case congurations.

The overhead of variational execution is generally high, which is explained both by the
instrumentation overhead (creating and propagating conditional values, boxing, control-ow
indirections, SAT solving at runtime), and by doing the additional work of executing all congu-
rations. The overhead is usually only justied for large conguration spaces, and so VarexC (as
VarexJ) outperforms the brute-force execution of all congurations only for Jetty, CheckStyle,
and Prevayler.

QuEval, GPL, Elevator, Email represent extreme cases where variations are used heavily. As
we can see from Table 3.1, up to 940 congurations are encoded in merely 3, 109 lines of code for
QuEval. When program variations (we called them features interchangeably) present compactly,
the sharing of data and execution becomes less frequent, and thus explains why VarexC and
VarexJ cannot outperform brute force because variational execution relies on sharing to be
ecient. In fact, there is a loop in Checkstyle that causes state space explosion for VarexJ because

3.6. EMPIRICAL EVALUATION 39

Table 3.2: Memory usage comparison of JVM, VarexJ and VarexC.

Subject JVM VarexJ VarexC VarexJ/ VarexJ/ VarexC/
(in MB) (in MB) (in MB) VarexC JVM JVM

Jetty 268 2, 739 648 4.2 10.2 2.4
Checkstyle 504 1, 106 835 1.3 2.2 1.7
Prevayler 65 1, 378 288 4.8 21.1 4.4
QuEval 59 301 282 1.1 5.1 4.8
GPL 141 342 151 2.3 2.4 1.1
Elevator 58 92 67 1.4 1.6 1.2
E-Mail 59 67 67 1.0 1.1 1.1

of looping a list that has 2135 variants. VarexC uses a model class to handle this loop gracefully,
as discussed in Section 3.5. However, unlike these extreme cases, programs in practice often
adopt separation of concerns and thus features do not interact very heavily all the time [110].

Jetty, Prevayler, Checkstyle implement conguration options such that they are often or-
thogonal to each other or have relatively local eects, which facilitates sharing better. As we
can see in Table 3.1, by exploiting sharing, the performance of VarexC for exploring the entire
conguration space is even relatively close to executing only the slowest conguration, with a
slowdown as small as a factor of 4.

Verdict. We argue that the runtime overhead of VarexC is reasonable except for one case
(QuEval) where expensive array operations with little sharing dominate the performance. Run-
time overhead does increase for the cases where interactions of variations are heavily used,
but the overhead amortizes quickly in large conguration spaces, which grow exponentially
with the number of options, unless all options interact. More importantly, research shows that
interactions do not increase with the worst-case exponential behavior in most cases [110, 134].
Even the academic programs that are designed to interact heavily are still well-behaved with
plenty of sharing despite many interactions. Finally, we argue that the overhead is worthwhile
if we consider the ability to identify all interactions among all options, for which the alternative
is sampling only a small set of congurations.

Summary

VarexC outperforms VarexJ with a speedup of 2 to 46 times. The performance gain
comes from various factors, including further optimizations at low level and portability
to mature JVM implementations, all of which benet from our strategy of transforming
bytecode instead of modifying a language interpreter. Moreover, VarexC is performant
and ecient for practical use in analyzing the whole conguration space of programs.

3.6.3 Memory Usage

Table 3.2 summarizes the memory usage results, showing that VarexC is more memory ecient
than VarexJ in all cases except for a tie in E-Mail. Conceptually, VarexC and VarexJ perform

40 CHAPTER 3. SCALING VARIATIONAL EXECUTION

Table 3.3: Sharing eciency of VarexC. We analyze methods both statically and at runtime. At runtime, we
distinguish between method executions that are statically guaranteed to be optimal, that are dynamically observed
to be optimal, and that are dynamically observed to be not optimal.
∗ Our alignment analysis has scalability issues with some variational traces of Checkstyle, mainly because there are too many features (up
to 130) in each single trace, resulting into too expensive pairwise alignment. For those variational traces, we conservatively report them as
non-optimal.

Method analysis (static) Method execution (dynamic)

Guaranteed No Guaranteed Observed as Observed as
Subject Optimal Guarantee Optimal Optimal Non-Optimal

Jetty 2, 667 257 19, 043 3, 734 0
Checkstyle 2, 878 281 1, 992, 879 268, 689 ∗230
Prevayler 722 108 58, 274 5, 036 0
QuEval 458 103 57, 383 8, 920 267
GPL 244 44 34, 641 3, 476 0
Elevator 119 13 2, 453 218 1
E-Mail 314 40 2, 264 120 0
Total 7, 402 846 2, 166, 937 290, 193 498

a similar computation, so the extra memory consumed by VarexJ could result from two main
aspects: less ecient sharing in data and the overhead of the underlying meta-circular interpreter.
As the dierences are fairly consistent across benchmarks, we attribute most eciency gains to
the interpreter’s overhead rather than to dierences in sharing. Both VarexC and VarexJ, as
expected, consume more memory when compared to the execution of a single conguration,
with the gaps noticeably smaller for VarexC. The memory overhead of VarexC largely comes
from analyzing other congurations. We argue that the extra memory overhead shown in
Table 3.2 is acceptable for modern machines.

Summary

VarexC is more memory ecient than VarexJ, due to more ecient sharing in data and
less overhead from the implementation. Moreover, VarexC has the memory eciency to
analyze the entire conguration space in practice.

3.6.4 Sharing Eciency

Table 3.3 shows how ecient our sharing of VBlocks is in practice. As we can see, we can
make static guarantees for 89.7 percent of all the methods in our benchmark programs. When
observing the executions, those methods with static guarantees account for 88.2 percent of the
executed methods, and we observed that 99.8 percent for the remaining ones were optimal as
well. The number of method executions that redundantly execute VBlocks with suboptimal
sharing is minimal.

3.7. RELATED WORK 41

Summary

Sharing in VarexC is ecient, with static guarantees to 89.7% of all methods. For methods
with no static guarantees, VarexC achieves runtime optimality for 99.8% of those method
invocations.

3.7 Related Work

We implement variational execution by transforming bytecode.

Variational execution. Variational execution is a technique to execute a program for dierent
values while sharing common computations as far as possible. It has similarities with model
checking and symbolic execution, but performs concrete executions, where multiple concrete
values are distinguished with conditions external to the program, and focuses on maximizing
sharing during the execution by storing variations in data locally and by aggressively merging
control-ow dierences. Variational execution has a number of existing and potential application
scenarios in dierent lines of work. In each case, a program shall be executed for many similar
inputs, typically to observe the similarities and dierences among executions, often with the
focus on interactions among multiple dierences.
• A common use case is testing congurable systems, in which a single test case should be
executed over a large conguration space. For example, Nguyen et al. [117] used variational
execution to render the content of WordPress while controlling how various plugins interact
and aect the execution; Meinicke et al. [110] and Kim et al. [69] executed Java programs with
conguration parameters (as used in our evaluation) to observe dierences among dierent
congurations. Given test cases to provide global or feature-specic specications, variational
execution can eciently check such specications by executing test cases over large congu-
ration spaces [66, 69, 117]. Soares et al. [146] furthermore used dierences among executions
as clues to nd suspicious feature interactions. Reisner et al. [134] used symbolic execution to
also detect feature interactions, which however required a lot of eort (80 machine weeks to
symbolically execute 319 tests with less than 30 conguration options for 10KLOC programs)
due to limited sharing abilities of symbolic execution [110].

• Austin and Flanagan [7] uses variational execution (under the name faceted execution) to
track information ows in a program. In this context, the program is evaluated with sensitive
and nonsensitive values at the same time, where the equivalent of options are decisions who
is allowed to see which value. In contrast to prior multi-execution work which observes
dierences between two executions, Austin’s analysis based on variational execution can
track interactions among multiple decisions. This line of work has been extended with mod-
els for variational database storage [171]. There are also libraries to enable developers to
directly write variational programs for this information-ow analysis, rather than relying on
a variational execution engine [8, 140, 141].

• Variational execution can further be used to explain the dierences in program executions
among multiple inputs [109], in line with delta debugging [82, 149, 173].

42 CHAPTER 3. SCALING VARIATIONAL EXECUTION

• Variational execution is potentially useful for approaches that speculatively change source
code or execution to evaluate the consequences. For example, mutation testing [57] and
heuristics-based automatic program repair [90] typically try many small changes to the source
code and re-execute the test suite for each change to evaluate test suite quality or nd patches
(Chapter 5). Zhang et al. [174] speculatively switches predicates in program and re-executes
the program to detect execution omission errors. Brun et al. [18] proactively merges dierent
versions and repeatedly executes the test suite to detect collaboration conicts early. By encod-
ing changes as variations, variational execution can explore the eects of changes eciently
and uncover interesting interactions of changes [165].

• Finally, variational execution can be used to speed up similar computations if there is sucient
sharing to oset the overhead. For example, Sumner et al. [148] shares similarities among
executions of simulation workloads and computes with several values in parallel. Wang et al.
[159] shares executions of mutated programs with equivalence modulo states in the same
process and forks new processes only if there are dierences in program states after executing
mutated statements. Tucek et al. [155] executes patched and unpatched programs together to
share redundant computations when testing a patch. Variational execution has the potential
to scale such use cases to exploring interactions among multiple changes.
Variational execution is fundamentally dierent from traditional approaches of multi-

execution [27, 29, 50, 76, 147] and delta debugging [82, 149, 173] that execute programs repeatedly
(either variants of the program or the same program with dierent inputs) to compare those
executions to identify, for example, information-ow issues or causes of bugs. These kinds of
approaches execute programs repeatedly in parallel and align those executions either afterward
or through probes at specic points of the executions. In contrast, variational execution exploits
sharing and allows to observe dierences among executions during the execution.

Ideas similar to variational execution can be found also in approaches for model checking
and symbolic execution [25, 143, 157], specically concepts to store variations as local as possible
to increase sharing and facilitate joining. Such tools can potentially be used for similar purposes
when dierences among inputs are modeled as symbolic decisions, but all other inputs are
concrete. However, as Meinicke et al. [110] has shown, current approaches are less eective at
sharing than the aggressive sharing in variational execution.

Implementing Variational Execution. Existing variational execution approaches (and re-
lated approaches) are typically implemented by modifying the execution engine [7, 12, 66, 69,
105, 110, 143], typically research prototypes or metacircular interpreters that cause signicant
overhead and provide only limited support for all language features. Schmitz et al. [140, 141] pro-
vided a library for Haskell with which users can directly implement programs to use variational
execution, similar to our example in Listing 2 of Figure 2.1 on page 10.

Instead, we pursue an approach in which we transparently modify Java bytecode to achieve
variational execution on a commodity JVM. Our approach was inspired by Phosphor [13], a
dynamic taint analysis for Java that tracks taints by instrumenting bytecode. In contrast to
Phosphor, ourmodications are signicantlymore extensive, as we need not only track additional
data, but entirely change how computations and control ow happen in the program. CROCHET
allows to explore dierent inputs to the same function by modifying bytecode to perform

3.8. PROOFS 43

checkpoints and rollbacks on the heap of a commodity JVM [14]. Comparing to CROCHET,
our approach can achieve a more ne-grained sharing of executions while exploring dierent
alternative values. The only other approach to execute programs variationally with commodity
infrastructure is the implementation behind Jeeves [171], that uses metaprogramming to achieve
similar changes for a small subset of Python. Their transformations are incomplete and not
described beyond their implementation for a small example program.

Quality assurance for congurable systems. Amain goal of variational execution is testing
congurable systems. There are a wide range of approaches to analyze congurable systems
with large conguration spaces, typically focused on reusing test cases across product variants,
on sampling and on static analysis [36, 108, 119, 131, 152]. Sampling strategies analyze or execute
a subset of congurations, but such analysis is neither exhaustive nor does it allow to easily
compare executions [119]. For static analyses (including type checking, model checking, and
data-ow analysis), researchers have explored many sharing strategies to encode variability
locally (e.g., alternative types for expressions), to reason about large conguration spaces with
propositional formulas, and to join computations early [92, 152]. In a sense, variational execution
can be seen as a generalization of these sharing techniques for an interpreter [66]. Bodden
et al. [16] and Dimovski et al. [31] describe how to lift existing static analyses by providing a
variational framework on how to execute them.

3.8 Proofs

Lemma (Disjoint Context Lemma). At any point of execution, the contexts of two dierent

VBlocks are mutually exclusive. That is, 𝜙 (𝑏𝑖) ∧ 𝜙 (𝑏 𝑗) = False for any 𝑖 ≠ 𝑗 .

Proof. We prove by induction and case analysis on the jumping targets of a given VBlock. In the
following, we use 𝑏 to denote a VBlock, 𝜙 (𝑏) to denote the variability context of 𝑏, and 𝜙′(𝑏) to
denote the new context after context propagation.

Base Case. At the beginning of execution, only the entry VBlock has a non-false context.
Thus, 𝜙 (𝑏𝑖) ∧ 𝜙 (𝑏 𝑗) = False because at least 𝜙 (𝑏𝑖) or 𝜙 (𝑏 𝑗) equals False.

Induction Step. Suppose before execution step 𝑘 , 𝜙 (𝑏𝑖) ∧ 𝜙 (𝑏 𝑗) = False, for any 𝑖 ≠ 𝑗 . After
execution of the next VBlock, say 𝑏𝑙 , we need to update the context of 𝑏𝑙 ’s jumping targets.

• If 𝑏𝑙 has only one jumping target 𝑏𝑚 , according to our context propagation, 𝜙′(𝑏𝑙) = False,
𝜙′(𝑏𝑚) = 𝜙 (𝑏𝑙) ∨ 𝜙 (𝑏𝑚). Obviously, 𝜙′(𝑏𝑙) is mutually exclusive to other VBlock context.
For any VBlock context, say 𝜙 (𝑏𝑜):

𝜙′(𝑏𝑚) ∧ 𝜙 (𝑏𝑜) = (𝜙 (𝑏𝑙) ∨ 𝜙 (𝑏𝑚)) ∧ 𝜙 (𝑏𝑜)
= (𝜙 (𝑏𝑙) ∧ 𝜙 (𝑏𝑜)) ∨ (𝜙 (𝑏𝑚) ∧ 𝜙 (𝑏𝑜))

(3.3)

According to our induction hypothesis, we have 𝜙 (𝑏𝑙) ∧𝜙 (𝑏𝑜) = False and 𝜙 (𝑏𝑚) ∧𝜙 (𝑏𝑜) =
False, thus induction hypothesis holds after execution of 𝑏𝑙 .

44 CHAPTER 3. SCALING VARIATIONAL EXECUTION

• If 𝑏𝑙 has two jumping targets 𝑏𝑚 and 𝑏𝑛, splitting the execution on condition 𝑋 , after
executing 𝑏𝑙 , we have 𝜙′(𝑏𝑙) = False, 𝜙′(𝑏𝑚) = 𝜙 (𝑏𝑚) ∨ (𝑋 ∧ 𝜙 (𝑏𝑙)) and 𝜙′(𝑏𝑛) = 𝜙 (𝑏𝑛) ∨
(¬𝑋 ∧ 𝜙 (𝑏𝑙)). For any VBlock context, say 𝜙 (𝑏𝑜):

𝜙′(𝑏𝑚) ∧ 𝜙 (𝑏𝑜) = (𝜙 (𝑏𝑚) ∨ (𝑋 ∧ 𝜙 (𝑏𝑙))) ∧ 𝜙 (𝑏𝑜)
= (𝜙 (𝑏𝑚) ∧ 𝜙 (𝑏𝑜)) ∨ (𝑋 ∧ 𝜙 (𝑏𝑙) ∧ 𝜙 (𝑏𝑜))

(3.4)

According to our induction hypothesis, we conclude that 𝜙′(𝑏𝑚) ∧𝜙 (𝑏𝑜) = False. Similarly,
we can conclude 𝜙′(𝑏𝑛) ∧ 𝜙 (𝑏𝑜) = False. Moreover:

𝜙′(𝑏𝑚) ∧ 𝜙′(𝑏𝑛) = (𝜙 (𝑏𝑚) ∨ (𝑋 ∧ 𝜙 (𝑏𝑙))) ∧ (𝜙 (𝑏𝑛) ∨ (¬𝑋 ∧ 𝜙 (𝑏𝑙))
= (𝜙 (𝑏𝑚) ∧ 𝜙 (𝑏𝑛))
∨ (𝜙 (𝑏𝑚) ∧ ¬𝑋 ∧ 𝜙 (𝑏𝑙))
∨ (𝜙 (𝑏𝑛) ∧ 𝑋 ∧ 𝜙 (𝑏𝑙))
∨ (𝑋 ∧ 𝜙 (𝑏𝑙) ∧ ¬𝑋 ∧ 𝜙 (𝑏𝑙))

(3.5)

Again, our induction hypothesis guarantees that 𝜙′(𝑏𝑚) ∧ 𝜙′(𝑏𝑛) = False. Thus, induction
hypothesis holds after execution of 𝑏𝑙 .

�

Property (Optimal Sharing Property). Given a control ow graph where each node represents

a VBlock, our variational execution on this graph has optimal sharing if it is acyclic or only contains

simple loops. A loop is a simple loop if it satises the following three criteria: (1) has only one loop

header; (2) has only one exiting node; (3) has no conditional jumps among nodes in the loop.

As discussed in Section 3.4.2, the actual variational traces generated by our approach are
inuenced by the lexical order of VBlocks in the bytecode. To help us focus on the essential
ideas of proving optimality on control-ow graphs, we introduce one precondition to the lexical
order.
Precondition. We assume that the strict transitive predecessor relation aligns with the lexical

order of VBlocks in the bytecode. That is, for any pair of VBlocks 𝑏𝑖 and 𝑏 𝑗 , if 𝑏𝑖 is a strict transitive

predecessor of 𝑏 𝑗 , 𝑏𝑖 precedes 𝑏 𝑗 in the lexical order of bytecode.

We also introduce two useful lemmas.
Lemma 1. For any two concrete executions of the same simple loop expressed as traces of VBlocks,

the shorter execution is a prex of the longer execution.

Proof. We prove by contradiction. Let us denote the shorter execution as [𝑥1, 𝑥2, . . . , 𝑥𝑚], and the
longer execution as [𝑦1, 𝑦2, . . . , 𝑦𝑛], where each 𝑥𝑖 or 𝑦 𝑗 represents a VBlock in the control-ow
graph and𝑚 ≤ 𝑛. Since a simple loop has only one loop header and one exiting node, 𝑥1 must
be the same as 𝑦1, and 𝑥𝑚 must be the same as 𝑦𝑛 .

For the shorter trace, let us assume it diers from the longer trace at the element 𝑥𝑖 (the
𝑖 − 𝑡ℎ element). Thus, [𝑥1, 𝑥2, . . . , 𝑥𝑖−1] is the same as [𝑦1, 𝑦2, . . . , 𝑦𝑖−1]. Since 𝑥𝑖 is dierent from
𝑦𝑖 , there must be a conditional jump at 𝑥𝑖−1 that jumps to either 𝑥𝑖 or 𝑦𝑖 in the control-ow graph.

3.8. PROOFS 45

This is contradicting the simple loop criterion that there are no conditional jumps among nodes
in the loop.

�

Lemma 2. For any variational execution of a simple loop, the variational trace is a prex of the

longest concrete execution trace it represents.

Proof. We prove by contradiction. Let us denote the variational execution as [𝑣1, 𝑣2, . . . , 𝑣𝑚], and
the longest concrete execution as [𝑥1, 𝑥2, . . . , 𝑥𝑛], where each 𝑣𝑖 or 𝑥 𝑗 represents a VBlock in
the control-ow graph. Elements of a variational trace use superscripts to indicate variability
contexts of execution, but they are less important in this proof so we omit them for brevity.
Since a simple loop has only one loop header and one exiting node, 𝑣1 must be the same as 𝑥1,
and 𝑣𝑚 must be the same as 𝑥𝑛 .

Let us assume the variational trace diers from the longest trace at the element 𝑣𝑖 (the 𝑖 − 𝑡ℎ
element). Thus, [𝑣1, 𝑣2, . . . , 𝑣𝑖−1] is the same as [𝑥1, 𝑥2, . . . , 𝑥𝑖−1]. Since 𝑣𝑖 is dierent from 𝑥𝑖 ,
there could be two causes. First, there is a conditional jump at 𝑥𝑖−1 that jumps to either 𝑣𝑖 or 𝑥𝑖 in
the control-ow graph. Second, during variational execution of the loop, two dierent VBlocks
have satisable contexts, which also requires at least a conditional jump among VBlocks in the
loop because conditional jumps are the only places where we split variability contexts. Both
of these cases contradict the simple loop criterion that there are no conditional jumps among
nodes in the loop.

�

With the precondition and lemmas above, we will prove the original property below. Again,
we prove that, given a control ow graph of VBlocks, our variational execution on this graph
has optimal sharing if it is acyclic or only contains simple loops.

Proof. We prove by case analysis on acyclic control-ow graphs and control-ow graphs with
simple loops, respectively.

Acyclic. For any acyclic control-ow graph, suppose our variational execution generates a
trace 𝑡𝑣 with 𝑛 elements. Our static partial ordering between VBlocks ensures that these 𝑛
elements are dierent. Otherwise, suppose 𝑏𝑖 appears twice in 𝑡𝑣 , there must be a transitive
predecessor of 𝑏𝑖 between these two appearances of 𝑏𝑖 in 𝑡𝑣 because the control-ow graph is
acyclic. However, this is impossible because 𝑏𝑖 ’s transitive predecessors can only precede 𝑏𝑖 in
our variational traces, due to our static partial ordering.

As discussed in Section 3.4.3, 𝑡𝑣 represents a set of concrete execution traces under dierent
restricted contexts. These concrete traces have the following two properties:

• There is no duplicated VBlock in each concrete trace, because the control-ow graph is
acyclic.

• The 𝑛 dierent VBlocks in 𝑡𝑣 must appear in one or more of these concrete traces, because
our variational execution only executes VBlocks with satisable contexts.

46 CHAPTER 3. SCALING VARIATIONAL EXECUTION

We denote the optimal sharing of these concrete traces as 𝑡𝑜 . From these two properties, we
know that 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑜) = 𝑛 because each VBlock must occur at least once, and at most once if the
traces are optimally aligned. So, the length of the optimal alignment must be 𝑛. Since 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑣)
is also 𝑛, we achieve optimal sharing.

Simple Loop. For any control-ow graph with one or more simple loops, we denote a loop as
𝐿𝑖 , with the subscript distinguishing dierent loops. Suppose our variational execution generates
a trace 𝑡𝑣 . Our static partial ordering guarantees that 𝑡𝑣 has the following properties:

• If a loop 𝐿𝑖 is executed, VBlocks belonging to 𝐿𝑖 are adjacent to each other in 𝑡𝑣 , without
any VBlock that does not belong to 𝐿𝑖 in between. We call this region a looping region
of 𝐿𝑖 , denoted as 𝑅𝑉𝑖 . This can be proven by contradiction. If there is a VBlock 𝑏 (not
belonging to 𝐿𝑖) inside 𝑅𝑉𝑖 , between 𝑏𝑥 and 𝑏𝑦 (both 𝑏𝑥 and 𝑏𝑦 are part of the loop 𝐿𝑖), 𝑏
must have the same transitive predecessor relation with 𝑏𝑥 and 𝑏𝑦 , because 𝑏 is not part of
the loop 𝐿𝑖 . If this is the case, our static partial ordering would require 𝑏 to either precede
both 𝑏𝑥 and 𝑏𝑦 or fall behind 𝑏𝑥 and 𝑏𝑦 in the trace. This is contracting to the assumption
that 𝑏 is between 𝑏𝑥 and 𝑏𝑦 in the trace 𝑡𝑣 .

• In 𝑡𝑣 , any VBlock 𝑏 that is outside looping regions have no duplication. This can also be
proven by contradiction. Suppose 𝑏 (not belonging to any loops) appears twice in 𝑡𝑣 , there
must be a transitive predecessor of 𝑏 between these two appearances of 𝑏 in 𝑡𝑣 because 𝑏
does not belong to any loops. However, 𝑏’s transitive predecessor cannot appear between
two occurrences of 𝑏 in 𝑡𝑣 , due to our static partial ordering.

• For any loop 𝐿𝑖 , there is at most one looping region 𝑅𝑉𝑖 in 𝑡𝑣 . Otherwise, 𝐿𝑖 must be a inner
loop of another bigger loop. If this is the case, there must be at least one conditional jump
in the outer loop, and therefore the outer loop fails to satisfy the simple loop premise.

Based on these properties, we have 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑣) =
∑
𝑖

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑉𝑖) + 𝑛, where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑉𝑖)
denotes the number of elements in 𝑅𝑉𝑖 , and 𝑛 denotes the number of VBlocks in 𝑡𝑣 that are not
part of any loops.

Now if we consider the concrete traces represented by 𝑡𝑣 , in order to produce the optimal
merging of these traces 𝑡𝑜 , we need to take two steps: (1) merge looping regions of concrete
traces and (2) merge VBlocks that do not belong to any loop.

1. From Lemma 1, we know that the length ofmerging all looping regions of 𝐿𝑖 across concrete
traces is determined by the longest looping region, which we denote as 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑀𝑎𝑥𝑖).

2. Merging VBlocks that do not belong to any loop would result in 𝑛 elements. This is
equivalent to merging concrete traces of acyclic control-ow graphs, which we have
already proven in the rst half of this proof.

Thus, we have 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑜) =
∑
𝑖

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑀𝑎𝑥𝑖) + 𝑛. For any loop 𝐿𝑖 , the length of its looping

region 𝑅𝑉𝑖 in 𝑡𝑣 (if exists) is bounded by 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑀𝑎𝑥𝑖), (i.e., 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑉𝑖) ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑀𝑎𝑥𝑖)), as
we have proven in Lemma 2. On the other hand, 𝑅𝑉𝑖 is guaranteed to represent the longest looping
of 𝐿𝑖 in concrete traces because the context with the longest looping must be executed to satisfy

3.9. SUMMARY 47

correctness. So, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑉𝑖) ≥ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑀𝑎𝑥𝑖), which gives us 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑉𝑖) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑀𝑎𝑥𝑖).
Since 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑣) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑜), we achieve optimal sharing.

�

3.9 Summary

While variational execution has been applied in dierent areas, an ecient implementation is
still missing for practical use. We proposed to implement variational execution by transforming
programs at the bytecode level. Our approach is transparent to the developers, and has various
advantages such as making use of underlying optimizations of the JVM and remaining portable
to dierent JVMs. Our approach transforms individual instructions and modies the control ow
of methods to exploit sharing of common execution across congurations. Even with aggressive
modication to the control ow decisions, we formally proved that our transformation to the
control ow is correct for all cases, and optimal for a large subset of cases. We further optimized
our implementation with two dierent optimizations, each of which optimizes our approach
from dierent aspects. With an empirical evaluation on 7 highly congurable systems, we show
that our approach is 2 to 46 times faster while saving up to 3 quarters of memory usage when
compared to the state of the art. A monitoring at runtime further conrms that we achieve
99.8% optimality for the methods that we cannot guarantee optimal sharing. Overall, our results
indicate that our approach is useful for analyzing highly congurable systems in practice.

The more scalable and ecient variational execution proposed in this chapter allows us
to extend existing work on exploring intentional variations, but more importantly, lays the
foundation for branching into a new direction of exploring speculative variations. In the next two
chapters, we make the rst attempt to use variational execution to analyze complex search spaces
of two important areas—higher-order mutation testing (Chapter 4) and automatic program repair
(Chapter 5). More broadly, we hope that the techniques we used to scale and improve variational
execution can inform more scalable and ecient implementations of similar techniques such as
symbolic execution.

Chapter 4

Higher-Order Mutation Testing

In this chapter, we explore interactions among speculative variations in mutation testing. In this
context, speculative variations are small syntactic changes to the program under analysis, and
interactions are valuable combinations of these small changes that have been shown to denote
more subtle errors.

Higher-order mutation has the potential for improving major drawbacks of traditional
rst-order mutation, such as by simulating more realistic faults or improving test-optimization
techniques. Despite interest in studying promising higher-order mutants, such mutants are
dicult to nd due to the exponential search space of mutation combinations. State-of-the-art
approaches rely on genetic search, which is often incomplete and expensive due to its stochastic
nature. First, we propose a novel way of nding a complete set of higher-order mutants by using
variational execution. Second, we use the identied complete set of higher-order mutants to
study their characteristics. Finally, we use the identied characteristics to design and evaluate
a new search strategy, independent of variational execution, that is highly eective at nding
higher-order mutants even in large codebases.

This chapter shares material with the following publication [164]:
• Chu-Pan Wong, Jens Meinicke, Leo Chen, João P. Diniz, Christian Kästner, and Eduardo
Figueiredo. 2020. Eciently nding higher-order mutants. Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Association for Computing Machinery, New York,
NY, USA, 1165–1177.

4.1 Strongly Subsuming Higher-Order Mutants

Mutation analysis has been studied for decades in research [125] and is increasingly adopted in
industry [129, 130]. Mutation analysis has many applications, including assessing and improving
test suite quality, generating or minimizing a test suite, or as a proxy for evaluating other
research techniques such as fault localization [62, 125]. Traditionally, mutation analysis injects
syntactic mutations into an existing program and runs the existing tests to assess whether the
tests are sensitive enough to detect the mutations.

Higher-order mutation is the idea of combining multiple mutations to represent more subtle

49

50 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

Test Outcomes
Test Original Mutation 1 Mutation 2 Both

 f(1, 2) Pass Fail Fail Fail
!f(0, 3) Pass Fail Pass Pass
!f(1, 1) Pass Pass Fail Pass

Original
bool f(int a, int b):
 if (a == 1):
 return a < b
 return a > b

Mutation 1 (FOM)
bool f(int a, int b):
 if (a != 1):
 return a < b
 return a > b

Mutation 2 (FOM)
bool f(int a, int b):
 if (a == 1):
 return a >= b
 return a > b

Both (HOM)
bool f(int a, int b):
 if (a != 1):
 return a >= b
 return a > b

Test Orig. Mut. 1 Mut. 2 Both Failure Cond.

𝑇1: assert f(1, 2) 3 7 7 7 𝑚1 ∨𝑚2
𝑇2: assert !f(0, 3) 3 7 3 3 𝑚1 ∧ ¬𝑚2
𝑇3: assert !f(1, 1) 3 3 7 3 ¬𝑚1 ∧𝑚2

Figure 4.1: Example of mutations with their test outcomes.

changes, more complex changes, or changes that better mirror human mistakes [56]. To that end,
Jia and Harman [56] distinguish rst-order mutants, consisting of a single change, from higher-

order mutants that combine multiple changes (cf. Fig. 4.1). While most research on mutation anal-
ysis has focused on rst-order mutants, recent studies claim that higher-order mutants are less
likely to be equivalent mutants [74, 99, 104, 126] and that higher-order mutants can reduce test
eort [54, 56, 132]. In Section 4.2.1, we will discuss a specic use case with a motivating example.

A key challenge in adopting higher-order mutation is identifying benecial higher-order
mutants. Most higher-order mutants are as easy to kill as their constituent rst-order mutants,
due to coupling. Jia and Harman [56] argue that only a subset of all possible combinations better
simulate real faults and increase the subtlety of the seeded faults. Specically, Jia and Harman
[54, 56] look for what they name a strongly subsuming higher-order mutant (SSHOM), a particular
kind of higher-order mutant that is harder to detect than its constituent rst-order mutants, as
we will explain in Section 4.2. However, SSHOMs are tricky to nd among the vast quantity of
possible combinations of rst-order mutants. Current approaches use genetic-search techniques,
guided by a simple tness function [46, 54, 56, 83]. Since SSHOMs are dicult to nd, little is
known about them and their characteristics.

In this work, we develop a technique that can nd a complete set of SSHOMs for given
rst-order mutations and tests on small to medium-sized programs, which enables us to study

4.1. STRONGLY SUBSUMING HIGHER-ORDER MUTANTS 51

characteristics of SSHOMs. Based on the identied characteristics, we then develop a new heuris-
tic search technique that is lightweight, scalable, and practical. Overall, we proceed in three steps:

(1) Variational Search: For the purpose of studying SSHOM in a controlled setting, we
develop a new search strategy searchvar that allows us to nd a complete set of higher-order
mutants for a given test suite and given set of rst-order mutants in small to medium-sized
programs. Specically, we use variational execution (Chapter 2 and Chapter 3), a dynamic-
analysis technique that jointly explores many similar executions of a program. Conceptually,
our approach searches for all possible higher-order mutants at the same time, identifying, with a
propositional formula for each test case, which mutants and combinations of mutants cause a
test to fail. From these formulas, we then encode search as a Boolean satisability problem to
enumerate all SSHOMs. An exploration of all possible mutant combinations with variational
execution is often feasible for small to medium-sized programs because variational execution
shares commonalities among repetitive executions. Though it does not scale to all programs,
analyzing a complete set of SSHOMs for smaller programs and their test suites allows us to
study SSHOMs more systematically.

(2) Characteristics Analysis: We study the characteristics of the identied higher-order
mutants from Step 1. Where previous approaches found only a few samples of higher-order
mutants, we have a unique opportunity to study the characteristics of higher-order mutants on
a much more complete set. We analyze characteristics, such as the typical number of mutants
combined and their distance in the code. This helps us better understand higher-order mutants
without the potential sampling bias from a search heuristic. For example, we found that most
SSHOMs are composed of fewer than 4 rst-order mutants and that constituent rst-order
mutants tend to locate within the same method or the same class.

(3) Prioritized Heuristic Search: Finally, we develop a second new search strategy searchpri
that prioritizes likely promising combinations of rst-order mutants based on the characteristics
identied in Step 2. The searchpri is easy to implement and does not require the heavyweight
variational analysis of searchvar. Although it does not provide any completeness guarantees,
it is highly ecient at nding higher-order mutants fast and scales to much larger systems with
thousands of rst-order mutants. We evaluate the new search strategy using a dierent set of
larger systems to avoid overtting. Our results indicate that the identied characteristics indeed
eectively guide the search. For example, we found 390,533 SSHOMs among combinations of
103,663 rst-order mutations, where existing search approaches can barely nd any.

We summarize our contributions as follow:
• We propose a novel way of using variational execution to nd a complete set of SSHOMs
for a given set of rst-order mutations and tests, by formalizing the search as a Boolean
satisability problem. An evaluation of small to medium-sized programs shows that we can
achieve completeness and simultaneously increase eciency (Section 4.3).

• Using the identied set of SSHOMs, we make the rst step in studying the basic characteristics
of SSHOMs to inform future research (Section 4.4).

• To show how useful the characteristics are, we use them to design a new lightweight prioritized
search strategy, independent of variational execution. We evaluate the prioritized search
strategy on a fresh set of larger benchmarks, showing that the new search is scalable and
generalizable (Section 4.5).

52 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

4.2 Higher-Order Mutants

Mutation analysis introduces a set of syntactic changes to a software artifact and observes
whether the previously passing test suite is sensitive enough to detect the changes (termed “to
kill the mutant”). Traditionally, many simple small changes are explored in isolation, one at a
time; several catalogs of mutation operators that perform small syntactic changes exist [73, 125].

In its simplest form, higher-order mutants are combinations of two or more rst-order
mutants [54, 56]. The set of possible second-order mutants grows quadratically with the size of
the set of rst-order mutants from which they are combined; if considering combining more
than two rst-order mutants, the set of possible higher-order mutants grows much faster.

Many higher-order mutants are of little value in practice, because a test that would kill any
constituent rst-order mutant will likely also kill the higher-order mutant, discussed as the
coupling eect hypothesis [120]. However, Jia and Harman [56] argue that there exist several
classes of higher-order mutants that exhibit interesting behavior. They specically highlight
strongly subsuming higher-order mutant (SSHOM), in which the constituent mutants interact in
ways making the higher-order mutant hard to kill, as we will explain in detail in Section 4.2.2.

4.2.1 Usefulness of Higher-Order Mutants

A recent survey of over 39 papers on higher-order mutation testing [41] summarized a large
number of dierent application scenarios for higher-order mutants claimed in prior research,
including mutant reduction [40, 46, 52], coupling eect analysis [43, 56], equivalent mutant
reduction [75, 99], test data evaluation [45], and test suite reduction [46, 104]. In the following,
we illustrate a concrete example of how higher-order mutations can be useful to software-
engineering researchers for creating synthetic, but challenging faults to evaluate various software
engineering tools.

The eectiveness of many approaches in software-engineering research needs to be evaluated
on faults in software systems. For example, fault localization tools need to evaluate how
accurately they can localize the faults, test suite generation tools need to evaluate how eective
the generated tests are at nding bugs, and program repair tools need to evaluate how many
faults they can repair. When evaluating their tools, researchers often have the choice of running
evaluations on a curated, often small, set of real bugs or running on large numbers of synthetically
seeded bugs. Both approaches have known benets and drawbacks:
• Seeded faults are convenient: Easy to create and providing a perfect ground truth, they allow

researchers to run experiments with very large numbers of faults on almost any system. For
example, fault localization techniques were often evaluated on articially seeded single-edit
faults, such as those in the Siemens test suite [51] (e.g., [2, 59, 94, 128, 135]). Researchers
have been critical of this style of evaluation, arguing that seeded single-edit faults are not
representative of most real faults (which often require xes in multiple locations) [62, 175]
and that fault localization techniques may not generalize as they are over-optimized in nding
such simple single-edit faults [128].

• In contrast, if curated well, datasets of real faults can be much more representative of realistic
usage scenarios. Research on automated program repair is almost exclusively evaluated on
a few hundred real faults [89]. For example, the widely used Defects4J dataset [61] curated

4.2. HIGHER-ORDER MUTANTS 53

bool f(int a, int b):
if (a != 1):

return a < b
return a > b

(a) Mutation 1

bool f(int a, int b):
if (a == 1):

return a >= b
return a > b

(b) Mutation 2

bool f(int a, int b):
if (a != 1):

return a >= b
return a > b

(c) HOM

Figure 4.2: Suspicious lines based on spectrum-based fault localization [59]. The ranking is shown as the intensity
of danger , suspicious , caution and safe .

438 faults from 5 libraries. Creating high-quality datasets of realistic and representative faults
is challenging and typically requires signicant human and engineering eort [61, 98, 154].
Therefore, while it is easy to seed millions of faults in almost any program, only a few datasets
of curated real faults are available, often only with moderate numbers of faults in a small
number of libraries or programs. Some researchers warn that overly focusing on a few shared
datasets of faults leads to approaches that overt the available faults [33, 154].

In this tension between simple seeded faults and expensive to curate real faults, higher-order mu-
tation may provide a compromise. Certain kinds of higher-order mutants, in particular SSHOMs
that we study in this work, are more subtle and harder to kill (shown both theoretically [43] and
empirically [44, 54, 56, 83, 124]). They are more promising to simulate real faults than traditional
rst-order mutants: For example, Zhong and Su [175] and Just et al. [62] found that more than
50–70 % of real faults are caused by faults in more than two locations. Just et al. [62] also found
that 73% of real faults are coupled to mutants, while on average 2 mutants are coupled to a
single real fault. That is, certain kinds of higher-order mutants may be more representative of
real faults. Thus, assuming we can nd them eciently, which is the goal of this work, we can
still automate their creation and seed thousands of these more challenging faults in almost any
software system.

Let us illustrate the potential of higher-order mutation for fault localization in Figure 4.2.
Our example program from Figure 4.1 is mutated with two rst-order mutants, which are later
combined to form a higher-order mutant; note how this higher-order mutant fails for fewer test
cases than the constituent rst-order mutants. In this simple setting, the classic fault localization
technique Tarantula [59] works quite well for the rst-order mutants, highlighting the mutated
lines as shown in Figure 4.2; but Tarantula fails to report the twomutated lines of the higher-order
mutant, instead highlighting the unchanged line. This example shows how fault localization
fails to locate the faulty lines of interacting mutations, which, as discussed, may be expected
for realistic faults [62, 175]. As a further consequence, a program repair technique based on
spectrum-based fault localization may not even attempt to x the rst return statement [88].

To realize the full potential of higher-order mutants for these and other use cases, it is critical
to have an ecient way of nding interesting higher-order mutants. In this work, we do not
reevaluate the usefulness of HOMs for various use cases [41] or how well they represent real
faults [56, 62, 175], which has been studied repeatedly and comprehensively in prior work [32].
Instead, we focus on a technical problem that made SSHOMs too costly and impractical: How to

eciently nd SSHOMs.

54 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

4.2.2 Strongly Subsuming Higher-Order Mutants (SSHOMs)

Jia and Harman [56] classify higher-order mutants into several kinds, highlighting SSHOMs as
useful. For this reason, our work targets SSHOMs, though we expect that it can be generalized
to other classes of higher-order mutants. Specically, Jia and Harman [56] dene an SSHOM as
a higher-order mutant that can only be killed by a subset of test cases that kill all its constituent
rst-order mutants. More formally, let ℎ be a higher-order mutant composed of rst-order
mutants 𝑓1, 𝑓2, . . . , 𝑓𝑛 , 𝑇ℎ the set of test cases that kill the higher-order mutant ℎ, and 𝑇𝑖 the set of
test cases that kill the rst-order mutant 𝑓𝑖 , then ℎ is an SSHOM if and only if:

𝑇ℎ ≠ ∅ ∧ 𝑇ℎ ⊆
⋂
𝑖∈1...𝑛

𝑇𝑖 (4.1)

If we further restrict 𝑇ℎ to be a strict subset, we get an even stronger type of SSHOM, which
we call strict strongly subsuming higher-order mutant, denoted as strict-SSHOM.1 In other
words, there must be at least one test case that kills one of the rst-order mutants, but not the
higher-order mutant. Thus, in a strict-SSHOM, multiple rst-order mutants interact such that
they mask each other at least for some test cases, making the strict-SSHOM harder to kill than
all the constituent rst-order mutants together.

Our (manually constructed) SSHOM in Figure 4.1 illustrates this relation: Intuitively, the
rst rst-order mutant (replacing ‘==’ by ‘!=’) forces the execution to go into an unexpected
branch, and the second (replacing ‘<’ by ‘>=’) inverts the return values. The two changes in
control and data ow are easy to detect separately (i.e., killed by two test cases each), but the
combination of them is more subtle and only detected by one test case.

4.2.3 Finding SSHOMs

SSHOM is dened in terms of test results of rst-order mutants. All existing search strategies
aim to nd SSHOMs in terms of a given test suite and a given set of rst-order mutants. The
search space can be large due to the exponential combinatorial explosion of possible mutant
combinations. Since only very few of the combinations are interesting and those are hard to nd
in a vast search space, higher-order mutation testing has long been considered too expensive.

Jia and Harman [56] explored several search techniques to nd SSHOMs, nding that genetic
search performs best. We will use their genetic-search strategy, together with a brute-force
strategy, as baselines for our evaluations. Although the genetic search has been shown to
successfully nd SSHOMs, it requires considerable resources to evaluate many candidates,
involves signicant randomness, and cannot enumerate all SSHOMs in the search space.

It is conceptually possible to dene SSHOMs in terms of an idealized test suite that represents
all (possibly innite) possible behaviors in the program. In practice though, all search strategies
have to work with existing test suites and whether a combination of rst-order mutants is
considered an SSHOM is evaluated in terms of a given test suite. Dierent test suites and

1SSHOMs have been dened inconsistently in the literature as subset [46] and strict subset [54, 56]. We inherit
the denition of SSHOMs from Harman et al. [46], as it is the most recent work. As we will see in the evaluation,
the dierence between subset and strict subset is signicant, so we make the distinction explicit, introducing
strict-SSHOM as a distinct subclass and reporting results for both.

4.3. STEP 1: COMPLETE SEARCH WITH VARIATIONAL EXECUTION (SEARCHVAR) 55

def findSSHOMs(program P, mutants M, testsuite T):
failing_conditions = Map[Test, FailingCondition]()
Merge all first−order mutants into one meta−program
mutated_P = encode_all_mutants(P, M)
for (test ← T):
Variational execution returns under what combinations of mutants the
given test fails, compactly represented as a propositional formula.
f𝑡 = variational_execution(mutated_P, # mutated program

test, # entry point of execution
M) # symbols representing mutants

failing_conditions.add(test → f𝑡)
search of SSHOMs as a satisfiability problem, using Equation 2−4
constraint = encodeSAT(failing_conditions, T, M)
allSAT returns all solutions to the constraint, each represented
as a set of activated variables (first−order mutants)
found_SSHOMs = allSAT(constraint)
return foundSSHOMs

Figure 4.3: Using variational execution to nd SSHOMs.

dierent rst-order mutants may result in dierent SSHOMs; SSHOMs found with a specic
test suite could be interpreted as approximations of SSHOMs potentially found with an idealized
test suite. A specic test suite and set of rst-order mutants form a large but nite search space
and it is possible to dene and nd a complete set of SSHOMs with regard to those given mutants

and tests, as we will discuss in Section 4.3.
In this work, in line with prior work on nding SSHOMs, we focus on nding SSHOMs

with regard to a xed test suite and xed set rst-order mutants, as would be useful in the fault
localization and program repair scenarios discussed above. Although orthogonal to the goal of
this work, which is improving existing search strategies, in Section 4.6, we discuss the notion
of SSHOMs in terms of a theoretical idealized test suite and the inuence of test suite size on
identiable SSHOMs.

4.3 Step 1: Complete Search With Variational Execution

(searchvar)

In this step, we develop searchvar to compute a complete set of SSHOMs with respect to given
tests and rst-order mutants, so that we can study their properties later. Figure 4.3 shows the
pseudo-code of applying variational execution to nd SSHOMs.

First, given a program under analysis 𝑃 , we mutate it into 𝑃 ′ by applying our mutation opera-
tors exhaustively at every applicable location to generate all rst-ordermutants upfront. We repre-
sent each rst-order mutant as a Boolean option and use a ternary conditional operator to encode
the change. Mutations to the same expression are expressed as nested ternary conditional expres-
sions. For example, we show below how we encode the two rst-order mutants from Figure 4.1.
bool f(int a, int b):

if (m1 ? a != 1 : a == 1):

return m2 ? a >= b : a < b
return a > b

After encoding rst-order mutants, we use variational execution as a black-box technique

56 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

to explore, for each test case, under what combinations of rst-order mutants the test would fail.
In a nutshell, variational execution runs the program by dynamically tracking the dierences in
program state that are caused by mutations (similar to executing the program symbolically with
symbolic values for all mutations) [7, 110, 117, 166]. Conceptually, a single run of variational exe-
cution is equivalent to running all combinations of rst-order mutations in a brute-force fashion,
but it is usually much faster due to the sharing of similar executions at runtime [110, 117, 166].
For each test execution, variational execution will return a failing condition, which is a proposi-
tional formula that represents exactly the combinations of mutations for which the test fails. We
show examples of failing conditions in our running example in Figure 4.1 (last table column).

Finally, we collect all propositional failing conditions for all test cases and use them to search
for SSHOMs by encoding the search as a Boolean satisability problem. Using BDDs or SAT
solvers, we can then enumerate all solutions, which correspond directly to all SSHOMs. Although
the formulas can be large if we havemany rst-ordermutants and test cases and nding satisable
assignments is NP-hard, modern SAT solving techniques are scalable enough. Our implementa-
tion and data are available on GitHub: hps://github.com/poosomooso/SSHOM-Search.

4.3.1 Mutant Generation

We generate rst-order mutants exhaustively and encode them all at once into a metaprogram,
which is later used for nding SSHOMs. This compact encoding of mutations denes a nite
search space, which is critical for variational execution to be ecient [165]. Similar encodings
have been explored in dierent contexts, such as speeding up mutation testing [63, 100, 156].
Using this encoding, we also ensure a fair comparison with baseline approaches by excluding
compilation time and using the same metaprograms.

For our experiments, we implemented 3 mutation operators: (1) Arithmetic Operator Replace-

ment (AOR, mutating +, -, *, /, %) (2) Relational Operator Replacement (ROR, mutating ==, !=,
<, >, <=, >=) and (3) Logical Connector Replacement (LCR, mutating || and &&). These comprise
3 of 5 most well-studied mutation operators [121, 122], excluding two further based on recent
insights: (4) Absolute Value Insertion (ABS) has been shown to be less useful in practice [129],
so we excluded it to avoid a meaninglessly large search space. (5) Unary Operator Insertion

(UOI) would add many more mutants, most of which are likely equivalent to the ones generated
from other mutation operators (e.g., mutating a+b to a+-b using UOI is equivalent to a-b using
AOR) [73, 100, 129].

4.3.2 Variational Execution

We use variational execution to determine which combinations of mutants fail a test case. The
novelty of using variational execution lies in the ecient and complete exploration of all mutants,
as opposed to one mutant at a time in traditional search-based approaches. For this work, we
use variational execution as a black-box technique. Technical details of variational execution
are available in existing literature [7, 110, 117, 166] and previous chapters, such as how it works
(Chapter 2) and how it can be implemented (Chapter 3). In this chapter, we only provide intuition
as a recap.

https://github.com/poosomooso/SSHOM-Search

4.3. STEP 1: COMPLETE SEARCH WITH VARIATIONAL EXECUTION (SEARCHVAR) 57

Conceptually, variational execution is similar to symbolic execution, in that it executes a
program with symbolic Boolean values representing mutants and concrete values for test inputs.
Specically, variational execution performs computations with conditional values (Section 2.2),
which may represent multiple alternative concrete values. For example, a conditional value
〈𝛼, 1,−1〉 indicates that it has the value 1 under 𝛼 , and -1 otherwise. Conditional values can
represent a nite number of alternative concrete values distinguished by propositional conditions
over symbolic values (representing mutations). Variational execution computes with conditional
values and propagates them along data and control ow. At control-ow decisions, both branches
are explored under corresponding symbolic path conditions; afterward, state is merged again
into conditional values to exploit sharing in subsequent statements. In a nutshell, variational
execution can be considered as an extreme design choice among various forms of symbolic
program evaluation [15, 17, 25, 72, 143] for nite domains, in which computations are maximally
performed on concrete values, but Boolean symbolic values may distinguish between multiple
concrete values in program state [7, 110, 166].

For our purposes, we consider all Boolean options representing rst-order mutants as sym-
bolic options. This way, all state changes caused by mutants can be compactly tracked, which
enables us to explore all combinations of mutants at the same time. As output, we determine
under which combinations of mutants a test case fails (propositional formula over rst-order
mutants as illustrated in Fig. 4.1), by simply observing under which condition any asserted
expression evaluates to false.

In theory, mutant interactions can cause a combinatorial explosion in conditional values
where exponentially many alternative values for dierent combinations of mutants need to be
tracked for a single variable. However, in practice, not all mutants aect each test and not all
mutants interact, enabling an often reasonably ecient exploration of all feasible combinations.
We defer the discussion of this scalability issue to Section 4.3.4.

In this work, we use VarexC, the state-of-the-art implementation of variational execution
for Java. Implementation details about VarexC are available in Chapter 3.

4.3.3 SSHOM Search as a SAT Problem

We use the output of variational execution—propositional formulas indicating under which
combinations of mutations each test fails—to construct a single formula that is satisable exactly
for those assignments that represent SSHOMs, based on our denition of SSHOM in Chap-
ter 4.2.2. This way, the search for SSHOMs is transformed into a Boolean satisability problem,
which we can solve with BDDs or SAT solvers. To derive the formula, we outline the criteria
for identifying SSHOMs as dened by Jia and Harman [56] (also see Section 4.2.2) and construct
a logical expression for each criterion.

Let𝑇 be the set of all tests,𝑀 be the set of all rst-order mutants, and 𝑓𝑡 be the propositional
formula over literals from𝑀 describing the mutant congurations in which test 𝑡 ∈ 𝑇 fails (𝑓
is generated with variational execution, e.g., see Figure 4.1). As a shorthand, let Γ(𝑚, 𝑡) be the
result of evaluating 𝑓𝑡 with rst-order mutant𝑚 assigned to true and all other mutants assigned
to false; in other words, whether test 𝑡 fails for rst-order mutant𝑚. To identify SSHOMs, we
encode three criteria:

58 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

First, we ensure that a mutant combination is killed by at least one test, encoding 𝑇ℎ ≠ ∅ in
Formula 4.1 (Section 4.2.2):

1. The SSHOM must fail at least one test (i.e., must not be an equivalent mutant):∨
𝑡∈𝑇

𝑓𝑡 (4.2)

Second, if a given mutant combination (i.e., higher-order mutant) is killed by a test 𝑡 , the
same test must kill each constituent rst-order mutant. That is, for all tests and rst-order
mutants, the rst-order mutant must either be killed by the test (Γ(𝑚, 𝑡)) or not be part of the
higher-order mutant (¬𝑚). This is the encoding of 𝑇ℎ ⊆

⋂
𝑖∈1...𝑛𝑇𝑖 in Equation 4.1 (Section 4.2.2):

2. Every test that fails the SSHOM must fail each constituent rst order mutant:∧
𝑡∈𝑇
(𝑓𝑡 ⇒

∧
𝑚∈𝑀
(¬𝑚 ∨ Γ(𝑚, 𝑡)) (4.3)

In addition, we can optimize for SSHOMs that are harder to kill than the constituent rst
order mutants, excluding those that are equally dicult to kill [56]. As discussed in Section 4.2.2,
we call these strict-SSHOM and require a strict subset relation in Equation 4.1 (i.e.,𝑇ℎ ⊂

⋂
𝑖∈1...𝑛𝑇𝑖

rather than 𝑇ℎ ⊆
⋂

𝑖∈1...𝑛𝑇𝑖), which requires the additional encoded condition:

3. There exists a test that can kill all constituent rst-order mutants but cannot kill the
strict-SSHOM. ∨

𝑡∈𝑇

(
¬𝑓𝑡 ∧

∧
𝑚∈𝑀
(¬𝑚 ∨ Γ(𝑚, 𝑡))

)
(4.4)

To nd SSHOMs and strict-SSHOMs, we take the conjunction of Equations 4.2–4.3 and
4.2–4.4, respectively, and use BDD or SAT solver to iterate over all possible solutions. For
example, if our approach returns a satisable assignment in which𝑚1 and𝑚3 are selected and
all other mutants are deselected, then the combination of𝑚1 and𝑚3 is a valid (strict-)SSHOM.

We use BDDs to enumerate all satisable solutions by default. While constructing BDDs can
be expensive, getting a solution from a BDD is fast (O(𝑛), where 𝑛 represents the number of
Boolean variables [19]). In some rare cases where we cannot construct a BDD due to insucient
memory, we fall back to using a SAT solver. With a SAT solver, we ask for one possible solution,
then add the negation of that solution as an additional constraint before asking for the next
solution, repeating the process until all solutions are enumerated. We can usually eciently enu-
merate all possible SSHOMs for the given set of rst-order mutants and the variational-execution
result of a given test suite.

4.3.4 Limitations

While variational execution and the SAT encoding provide a new strategy to nd SSHOMs,
this approach comes also with severe restrictions, mostly regarding scalability and engineering
limitations inherited from the tools we use, which limits broad applicability in practice (which
we address with an alternative strategy in Section 4.5).

4.3. STEP 1: COMPLETE SEARCH WITH VARIATIONAL EXECUTION (SEARCHVAR) 59

Combinatorial Explosion. Recent studies show that combinatorial explosion is uncom-
mon for the types of highly-congurable programs analyzed with variational execution in the
past [110, 134], mainly because programs are usually written by human developers to have
manageable interactions among options. When applied to higher-order mutation testing, we did
observe some combinatorial explosion caused by random combinations of rst-order mutants.
For example, we observed cases where interactions of rst-order mutants create more than
15,000 alternative concrete values in one single local variable. We argue that this is the essential
complexity of the mutated program, and it would be equally dicult for other approaches to
exhaustively explore a complex search space like this. However, it is possible to nd ecient
search strategies when giving up the completeness goal, as we will show in Section 4.5.

In the evaluation of searchvar, we manually removed some problematic rst-order mutants
and test cases that caused an excessive number of interactions (See Table 4.1). For fairness, we
remove these mutants and test cases across all compared approaches.

Environment Barrier. Similar to symbolic execution, variational execution needs to handle
the environment barrier carefully when interacting with an external runtime environment that
is not aware of conditional values or path conditions. This barrier often manifests as I/O or
native method calls. As discussed in Section 3.3.2, there are several strategies to mitigate this
issue, such as creating model classes for these operations. In our study, only a few tests and
mutants triggered problematic environment interactions. While solvable with engineering eort,
we consider them noncritical for our goal and removed the problematic tests or mutants after
manual inspection.

4.3.5 Evaluation

In addition to using searchvar to get a complete set of SSHOMs with regard to given tests and
rst-order mutants, we compare the eciency and eectiveness of searchvar against the existing
state-of-the-art genetic search (searchgen) and a baseline brute-force strategy (searchbf), based
on subject systems previously used in evaluating the genetic search strategy [46].

Subject Systems. We replicate the setup of the largest previous study on higher-order muta-
tion testing [46]. While we cannot perform an exact replication since we could not obtain the
original tools from the authors, not all relevant details and parameters have been published,
and some engineering limitations discussed earlier, we still select the same subject systems and
reimplement search strategies in our own infrastructure. That is, our results cannot be compared
directly against the numbers reported in prior work [46], but we report comparable numbers
within a consistent setup.

We use the same four small to medium-sized Java programs,Monopoly, Cli, Chess, and Valida-
tor, all of which come with good quality test suites that are deemed complete by developers [46].
In addition, we use the triangle program commonly used in mutation testing [56]. We report the
statistics of our subject systems in Table 4.1 (top), which are comparable to those reported in
prior work [46], with slight dierences likely caused by dierent mutation operators used and
excluded tests (as discussed in Section 4.3.4).

60 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

Table
4.1:Subjectsand

Found
(strict-)SSH

O
M
s;the

lastthree
subjectsand

the
P
r
icolum

n
are

discussed
in

Section
4.5.

Found
SSH

O
M

(and
strict-SSH

O
M
)

Subject
LO

C
Tests(%used)

LCov
FO

M
s(%used)

M
utScore

Var
G
en

BF
Pri

Validator
7,563

302
(83%)

54%
1,941

(97%)
36%

(68%)
1.34*10 10(281)

4,041
(0)

273
(4)

36,995
(10)

Chess
4,754

847
(84%)

74%
956

(26%)
81%

(86%)
3,268 †

(216)
484

(0)
19

(6)
16,403

(24)
M
onopoly

4,173
99

(89%)
74%

366
(90%)

80%
(83%)

818
(43)

81
(4)

349
(15)

817
(43)

Cli
1,585

149
(95%)

92%
249

(51%)
71%

(81%)
376

(21)
309

(18)
326

(21)
369

(21)
Triangle

19
26

(100%)
100%

128
(100%)

92%
(92%)

965
(6)

949
(6)

493
(6)

965
(6)

A
nt

108,622
1354

(77%)
53%

18,280
(92%)

57%
(94%)

-(-)
1
(0)

0
(0)

44,496
(61)

M
ath

104,506
5177

(79%)
90%

103,663
(100%)

66%
(71%)

-(-)
0
(0)

0
(0)

390,533
(2,830)

JFreeChart
90,481

2169
(99%)

59%
36,307

(99%)
21%

(45%)
-(-)

0
(0)

6
(0)

576,725
(513)

L
O
C
representslinesofcode,excluding

testcode,m
easured

w
ith

s
l
o
c
c
o
u
n
t.
T
e
s
t
s
and

F
O
M
s
reportthe

num
bersoftestcasesand

rst-orderm
utantsw

e
used

in
experim

ents,w
ith

the
percentagesrelative

to
the

totalnum
bersin

parentheses.
L
C
o
v
reportsline

coverage
ofthe

testsused
in

ourexperim
ents.

M
u
t
S
c
o
r
e

reportsthe
m
utation

score
ofallused

rst-orderm
utantsand

the
score

in
parenthesisconsidersonly

FO
M
sthatare

covered
by

the
tests.

V
a
r,
G
e
n,

B
F,

P
r
i

denote
ourapproach

(Step
1,search

v
a
r),the

genetic
algorithm

(search
g
e
n),brute

force
(search

b
f),and

ourprioritized
search

(Step
3,search

p
r
i)respectively.†

incom
plete

results,solutionsfound
w
ith

SAT
solving

w
ithin

the
12

hoursbudget.

4.3. STEP 1: COMPLETE SEARCH WITH VARIATIONAL EXECUTION (SEARCHVAR) 61

Baseline Search Strategies. We compare our approach against the state-of-the-art genetic
algorithm [46, 54, 56] and a naive brute-force search. The brute-force search iterates over all
valid higher-order mutants, starting from all pairs, then all triples, and so on until a time limit is
reached. The brute-force search serves as a reliable baseline as there is no randomness involved.

We reimplemented the genetic algorithm approach based on the description in Jia et al.’s
work [53, 54, 56]. As the exact setup was not available or documented, we leave undocumented
parameters at default values. The core of the genetic algorithm is a tness function for candidate
higher-order mutants. Following existing work [53, 54, 56] and using the notations in Equa-
tion 4.1, we calculate the tness as |𝑇ℎ | / |

⋂
𝑖∈1...𝑛𝑇𝑖 |.2 The intuition is that an SSHOM should

fail only for a subset of test cases that kill all its constituent rst-order mutants. Thus, we use
it as a piece-wise function: a tness of (0, 1] indicates an SSHOM and (0, 1) a strict-SSHOM,
with lower tness more preferable; a tness of 0 and larger than 1 indicate potential equivalent
mutants and non-SSHOMs, respectively, which are discarded between generations of the genetic
algorithm.

Measurements. All experiments were performed on AWS EC2 instances, each of which has an
Intel 4-core Xeon CPUwith 16GB of RAM.We ran benchmarks to conrm that the performance is
stable enough for our measurements across dierent instances; given that we often demonstrate
order-of-magnitude dierences in outcomes, dierences are unlikely explained by measurement
noise. For each search strategy (i.e., searchgen, searchbf, searchvar), we measure each subject
system three times and report the average, like the three restarts in the work of Harman et al.
[46]. We ran each trial of genetic algorithm and brute force for 12 hours.

Threats to Validity. External validity might be limited by the specic programs, mutation
operators, and test cases. We used common mutation operators and selected subject systems
from previous papers to avoid any own sampling bias. From most subject systems, we had to
remove some tests or mutations due to technical problems, either engineering limitations of
variational execution or issues with memory leaks and innite loops, which might aect the
results to some degree—though we do not expect a systematic bias. Our study only considers
three representative mutation operators among all possible ones [125] and may not generalize
to other operators. A further analysis of the sensitivity of SSHOMs to a wide array of mutation
operators is outside the scope of this work.

Regarding internal validity, like other studies, our results might be aected by possible
mistakes in our implementations or measurements and especially by we reimplemented the
existing searchgen approach. To mitigate this issue, we veried that the SSHOMs found by
searchgen and searchbf are a strict subset of the ones found by searchvar. For SSHOMs found
only by our approach, we additionally veried a sample manually to ensure they are SSHOMs.

To reduce the impact of nondeterminism in performance measurements and genetic search,
we report averages across 3 runs, as in previous work [46]. Most dierences are large, far
exceeding the margins of error from nondeterminism or measurement noise.

2The tness function has been dened either using intersect of 𝑇𝑖 [53] or union [54, 56]. We use the former in
our reimplementation as it more precisely captures our intuition of SSHOMs.

62 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

SSHOM Strict-SSHOM
Va

lid
at
or
†

10s 1m 10m 1h 12h

0
50

00
0

10s 1m 10m 1h 12h

0
28

1

Ch
es
s‡

10s 1m 10m 1h 12h

0
16

40
3

10s 1m 10m 1h 12h

0
21

6

M
on

op
ol
y

10s 1m 10m 1h 12h

0
81

8

10s 1m 10m 1h 12h

0
43

CL
I

10s 1m 10m 1h 12h

0
37

6

10s 1m 10m 1h 12h

0
21

Tr
ia
ng

le

10s 1m 10m 1h 12h

0
96

5

10s 1m 10m 1h 12h

0
6

searchvar searchgen
searchbf searchpri

†We cap the plot for Validator since there are 13.4 billion SSHOMs; ‡ we could not enumerate all
nonstrict-SSHOMs for Chess due to the diculty of the SAT problem and report only those found within the time

limit

Figure 4.4: (Strict-)SSHOMs found over time in each subject system, averaged over 3 executions. Note that time is
plotted in log scale as most SSHOMs are found within the rst hour.

4.4. STEP 2: SSHOM CHARACTERISTICS 63

Results. In Table 4.1, we report the number of (strict-)SSHOMs found within the 12-hour time
budget and, in Figure 4.4, we plot the numbers of (strict-)SSHOMs found over time. Note that
by construction, if searchvar terminates (all cases except Chess, where solving the satisability
problem takes considerable time), it enumerates all SSHOMs, thus provides an upper bound for
other search strategies—without searchvar this upper bound would not be known.

These results show clear trends: searchvar requires a relatively long time to nd the rst
SSHOM because variational execution must nish executing all tests for all combinations of rst-
order mutants. However, once variational execution nishes, it can enumerate all SSHOMs very
quickly by solving the Boolean satisability problem. Variational execution takes longer with
more and longer test cases and with more rst-order mutants but still outperforms a brute-force
execution by far, indicating signicant sharing, as found in prior analyses of highly-congurable
systems [110, 117, 166].

In contrast, searchgen and searchbf can test many candidate SSHOMs before variational
execution terminates and nds some actual SSHOMs early, but both approaches take a long
time to nd a substantial number of SSHOMs and miss at least some SSHOMs in all subject
system within the 12h time budget given. In some systems with moderate numbers of rst-order
mutants, searchbf is fairly eective as it systematically prioritizes pairwise combinations which
are more common among SSHOMs than combinations of more than two mutants, as we will
discuss.

In summary, for systems where variational execution scales, searchvar can nd all SSHOMs
whereas other approaches nd only an often much smaller subset within a 12h time window.
Whereas prior approaches often nd their rst SSHOMs faster, searchvar needs more time
upfront for variational execution but can then enumerate SSHOMs very quickly. To scale
searchvar to more realistic programs, more engineering is needed to overcome the limitations
discussed in Section 4.3.4. Nevertheless, searchvar is valuable to the research community as it
provides a precise and ecient way of identifying all SSHOMs.

4.4 Step 2: SSHOM Characteristics

In this second step, we study the characteristics of (strict-)SSHOMs, with the goal to inform
subsequent heuristic search strategies (Step 3) and future research in general. Using the complete

set derived for the subject systems in the previous step, rather than a (potentially biased) sample
of SSHOMs, we can study characteristics with higher condence.

We explored the dataset in an iterative exploratory fashion, focusing primarily on char-
acteristics that may guide future search strategies, such as specic composition patterns and
proximity of constituent rst-order mutants for the set of all higher-order mutants. Kurtz et al.
[79] argue that mutation operators should be specialized for individual programs, so we focus
on high-level characteristics that are largely independent of specic mutation operators to avoid
overtting. We started by randomly sampling a large number of identied SSHOMs (among the
pool of all SSHOMs). We manually inspected the sampled SSHOMs to pose hypotheses about
common characteristics. We then operationalized the hypothesized characteristics (i.e., develop
measures to apply across all SSHOMs) to quantitatively validate them. We repeated the process
until we could not identify additional hypotheses. Due to space constraints, we only report

64 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

Table
4.2:CharacteristicsofSSH

O
M
sand

strict-SSH
O
M
sfound

in
oursubjectsystem

s.

O
rder

Equal-FailRule
N
+1

Rule
D
istribution

Subject
SSH

O
M

strict-SSH
O
M

SSH
O
M

strict-SSH
O
M

SSH
O
M

strict-SSH
O
M

SSH
O
M

strict-SSH
O
M

Validator †
-

-
96%

-
99%

-
Chess †

-
-

76%
-

38%
-

M
onopoly

11%
100%

99%
100%

Cli
53%

5%
98%

100%
Triangle

8%
17%

98%
50%

O
rdercountsthe

num
berofconstituentrst-orderm

utants;equal-failand
N
+1

rule
explained

in
text;distribution:allconstituentrst-orderm

utantsin
the

sam
e
m
ethod

(M
),m

ultiple
m
ethodsin

the
sam

e
class(C),tw

o
classes(2C),orspread

acrossm
ore

than
tw

o
classes(*).

†
forValidatorand

Chessw
e
om

itstatisticsbecause
w
e
cannotenum

erate
allpossible

SSH
O
M
s(too

m
any

in
Validatorand

incom
plete

setin
Chess)

4.5. STEP 3: PRIORITIZED SEARCH (SEARCHPRI) 65

characteristics for which we could quantitatively identify strong support.

Mutation Order. SSHOMs and strict-SSHOMs are typically composed of only very few rst-
order mutants. Overall, over 90 % of all SSHOMs and strict-SSHOMs are composed of at most 4
rst-order mutants, indicating that subtle interactions are mostly caused by very few rst-order
mutants. Although we found a few SSHOMs that are up to sixth-order in Chess and Triangle,
such cases are rare, especially for strict-SSHOMs. We plot the distribution of orders for both
SSHOMs and strict-SSHOMs in Table 4.2.

Equivalent Test Failures. In multiple subject systems, many SSHOMs and strict-SSHOMs are
composed of rst-order mutants that are killed by the same set of test cases (nonstrict-SSHOMs
are often killed by the same test cases, whereas strict-SSHOMs necessarily are killed by fewer).
In Table 4.2, we report how many of the SSHOMs and strict-SSHOMs in each project could be
found when only combining rst-order mutants that are killed by the same test cases, which we
name Equal-Fail SSHOMs.

Containment Relationships. In addition, we found a common containment pattern: when a
(strict-)SSHOM is composed of more than two rst-order mutants, it is very likely that a subset of
these rst-order mutants also forms a (strict-)SSHOM. In other words, an N+1 Rule, combining a
previously identied (strict-)SSHOM with one further rst-order mutant is a promising strategy
to identify more (strict-)SSHOMs. In Table 4.2, we report how many of the (strict-)SSHOMs in
each project with more than two constituent rst-order mutants could be generated with such a
rule.

Proximity. Finally, for most SSHOMs, all constituent rst-order mutants are in the same class
and often even in the same method, likely because rst-order mutants with close proximity have
higher chances of data-ow or control-ow interactions. The eect is even more pronounced
for strict-SSHOMs. This stronger eect was previously conjectured though not validated [56].
We plot the distributions for all subject systems in Table 4.2.

Other. We also explored other patterns that may inform search heuristics, such as common
combinations of mutation operators (using frequent-itemset mining [3]), but found no additional
strong patterns. While we believe a qualitative analysis of the mutants and their characteristics
may reveal interesting insights about SSHOMs and whether they more closely mirror realistic
human-made faults, such analysis goes beyond our scope of nding SSHOMs eciently.

4.5 Step 3: Prioritized Search (searchpri)

In a nal third step, we develop a new search strategy using heuristics based on characteristics
found in Step 2, which will be an incomplete, but practical alternative to our searchvar strategy.

66 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

4.5.1 Search Strategy

Our new search strategy searchpri avoids the overhead of variational execution, but instead
again evaluates each candidate higher-order mutant by executing the corresponding test suite,
one candidate mutant at a time just like searchbf and searchgen. Our key contribution is ordering
how we explore candidate mutants to steer the search toward more likely candidates. That
is, instead of a naive enumeration of all combinations (searchbf) or an exploration based on
random seeds (searchgen), we prioritize based on the previously identied typical characteristics
of higher-order mutants. Since characteristics for SSHOM and strict-SSHOM do not dier
strongly, we develop only a single search strategy.

Conceptually, we calculate a penalty for every candidate higher-order mutant and prioritize
those candidates with the lowest penalty. We compute the weighted sum of three factors:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜔1 · order + 𝜔2 · testDi − 𝜔3 · isN1 (4.5)

First, we assign penalties based on the number of constituent rst-order mutants (order):
a candidate with a higher order receives a larger penalty than a lower-order candidate, thus,
prioritizing candidates with lower order that, as our data shows, are more likely to be SSHOMs.
Second, we penalize candidates constructed from rst-order mutants that do not get killed by
the same test cases (testDi, counting the number of test cases that can kill only a subset of all
constituent rst order mutants), generalizing our Equivalent Test Failures insight: if all rst-order
mutants are killed by the same test cases, the candidate is likely to be an SSHOM, and thus gets
a 0 penalty, whereas mutants that are killed by dierent test cases are less likely to form an
SSHOM, and thus is deferred with a higher penalty. Finally, we reduce the penalty of a candidate
if the N+1 Rule applies (isN1, returning 1 or 0); that is, if a candidate can be constructed by
adding one more rst-order mutant to a known SSHOM, the candidate receives a boost and
gets prioritized. By default and for our evaluation, we assign the weights 𝜔1 = 5, 𝜔2 = 1, and
𝜔3 = 15, based on our experience with the subject systems in Section 4.3.5.

Unlike previously used genetic search strategies, where the exploration order nondetermin-
istically depends on random mutation and crossover in every generation, searchpri explores
candidates in a deterministic order (lexical order if two candidates have the same priority).

4.5.2 Implementation

Since we cannot enumerate and sort all possible candidate higher-order mutants for large
programs, and even the execution of all rst-order mutants may take a long time, we devise
an algorithm for searchpri that identies likely candidates in batches, shown in Figure 4.5. In
each batch (congurable, by default one Java package at a time), we enumerate all candidate
higher-order mutants up to a distance and order bound, then sort these candidates by priority,
and nally explore these candidates in order until a (time) budget is reached for that batch.
Batching and bounding the search is feasible since the order and distribution characteristics
dominate the prioritization anyway and candidates beyond those bounds would be explored
only very late. If needed batches could be revisited later with larger bounds to explore more
(less likely) candidates.

4.5. STEP 3: PRIORITIZED SEARCH (SEARCHPRI) 67

def findSSHOMs(program P, mutants M, testsuite T,
maxOrder, maxDist, budget):

foundSSHOMs = ∅
explore the program one fragment at a time
for (batch ← fragments(P)):
identify reachable first−order mutants in fragment
mutants = reachable(M, batch)
run tests on reachable first−order mutants
fomTestResults = for (m ← mutants) evaluate(T, {m})

enumerate candidate SSHOMs up to order and distance bounds
candidates = enumerateCandidates(mutants, maxOrder, maxDist)
compute priorities for each candidate
priorities = computePriorities(candidates, fomTestResults, {})

explore candidates in decreasing priority
while (candidates ≠ ∅ ∧ within budget):
candidate = getNext(candidates, priorities)
candidates −= candidate
homTestResult = evaluate(T, candidate)
if (isSSHOM(fomTestResults, homTestResult)):
foundSSHOMs += candidate
update priorities based on N+1 rule
priorities = computePriorities(candidates, fomTestResults,

foundSSHOMs)
return foundSSHOMs

Figure 4.5: Characteristics-based prioritized search algorithm.

After batching, our algorithm identies all rst-order mutants dened within the given
batch (function reachable) and runs the test suite for each of these rst-order mutants to identify
which tests fail (function evaluate). Subsequently, the algorithm enumerates all candidates
(function enumerateCandidates) up to a given order bound (by default, mutants composed of up
to 6 rst-order mutants) and up to a given distance bound (by default, up to 4 methods spread
across at most 3 classes). We also discard candidates where constituent rst-order mutants have
no common failing tests because they cannot form SSHOMs according to the denition. Having
a manageable set of candidates in the given batch, the algorithm computes priorities (function
computePriorities) for all candidates using Equation 4.5 and then explores these candidates in
order of decreasing priorities (function getNext) until either all candidates are explored or a (time)
budget has been reached in that batch (by default, 1 hour per batch). For each candidate, it runs
the test suite and compares test results to determine whether a (strict-)SSHOM has been found
(function isSSHOM); identied SSHOMs are collected and used to recompute priorities based on
additional information for the N+1 rule.

4.5.3 Evaluation

We evaluate how eective searchpri is at nding (strict-)SSHOMs, and additionally evaluate how
it generalizes and scales to much larger systems than in prior studies on SSHOMs (and used in
Section 4.3.5).

Subject Systems. We evaluate searchpri both on the subjects previously used in Section 4.3.5
and on a fresh set of much larger subject systems. The comparison against the 5 previously

68 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

SSHOM Strict-SSHOM

A
nt

0h 6h 12h 18h 24h
0

44
50

7
0h 6h 12h 18h 24h

0
62

M
at
h

0h 6h 12h 18h 24h

0
39

05
33

0h 6h 12h 18h 24h

0
28

30

JF
re
eC

ha
rt

0h 6h 12h 18h 24h

0
57

67
25

0h 6h 12h 18h 24h

0
51

3
searchgen searchbf searchpri

Figure 4.6: (Strict-)SSHOMs found over time, averaged over 3 executions. Note that time is plotted in a linear scale
as SSHOMs are found consistently over time due to batching.

used subject systems allows us to compare eectiveness against the ground truth derived from
variational execution, but the results may suer from overtting, as we evaluate the search
strategy on systems from which the insights that drive its design have been derived.

Hence, we use 3 additional subjects, listed in Table 4.1 (bottom), after nishing the design
of our new search strategy. The new systems are signicantly larger, allowing us to explore the
dierent search strategies at a much larger (and possibly more realistic) scale. To select the new
subject systems, we collected all research papers published in the last 5 years at ASE, FSE, and
ICSE that have the word “mutation” or “mutant” in the title. We then selected the ve largest
Java systems used, discarding two for which we failed to reliably execute the tests. We did not
run searchvar on these systems, but we still had to exclude some tests or mutants (reported in
Table 4.1), due to technical issues like hard-to-terminate innite loops.

Measurements. We mirror our previous setup in Section 4.3.5 and count the number of
(strict-)SSHOMs found over time. We collect measurements for searchbf, searchgen, and
searchpri. Experiments on the small subject systems were performed on the same AWS EC2
instances (Section 4.3.5). For the new systems, we collected measurements on Linux machines
with 1.30GHz Intel i5 CPU and 16 GB of memory. When using searchpri, we used batching for
the new larger subject systems, one package at a time, with a 1 hour budget for each package;
all other parameters were left at their defaults (described above). For the new subject systems,
we ran each measurement for 24 hours, repeated searchgen 3 times.

4.6. TEST SUITE RELEVANCE 69

All considered search strategies require executing the test suite repeatedly for each candidate
SSHOM. For the larger systems, long test-execution times severely limit the number of mutants
we can explore. To minimize the slowdown from test execution that aects all approaches
equally, we implement a standard regression test selection technique [125] that only executes
test cases that can reach the candidate mutant (technically, we instrument the program to record
which test reaches the location of each rst-order mutant and only execute tests that reach at
least one rst-order mutant of a candidate higher-order mutant). We apply this test optimization
for all search strategies.

Threats to Validity. In addition to the threats discussed in Section 4.3.5, it would be possible
to improve searchbf and searchgen by applying insights from our research, such as a similar
batching strategy to explore one Java package at a time and possibly also other insights from
analyzing SSHOM characteristics. When using batching (results not shown), these approaches
indeed perform better on the large subject systems but are still signicantly outperformed by
searchpri, as we will see subsequently. For brevity and consistency, we only compare searchpri
against vanilla searchbf and searchgen.

Results. On the small subject systems, as shown in Table 4.1 and Figure 4.4, our new search
strategy searchpri is often very eective, performing at least as well as and usually signicantly
outperforming both searchbf and searchgen in all subjects. In a few cases, it even outperforms
searchvar: In Monopoly it nds almost all higher-order mutants before variational execution
nishes running the tests and in Chess it nds SSHOMs quickly, not limited by the eort to
solve large satisability problems.

For the new and larger systems, our results in Table 4.1 and Figure 4.6 show that the baseline
approaches perform very poorly at this scale. Without being informed by SSHOM characteristics
the search in this vast space (e.g., 5 billion candidate combinations of mutation pairs in Math)
these approaches nd rarely any SSHOMs even when run for a long time. In contrast, searchpri
nds a signicant number of (strict-)SSHOMs in each of these systems: Within 24 hours it
explores most batches (91 % of all packages) and has a reasonable precision for nding actual
SSHOMs among the tested candidates (60.9 % in Math, 29.4 % in Ant, and 77.8 % in JFreeChart).

We conclude that searchpri is an eective search strategy that scales to large systems and
generalizes beyond systems from which the characteristics have been collected. While we
cannot assess how many SSHOMs we are missing, our strategy is eective at nding a very
large number of them in a short amount of time.

4.6 Test Suite Relevance

As discussed in Section 4.2.3, for all practical search strategies, SSHOMs are identied in terms of
used rst-order mutants and tests. Dierent test suites may result in dierent SSHOMs, though
it is conceptually possible to dene SSHOMs in terms of an idealized test suite that covers all
(possibly innitely many) executions of a program.

To explore the inuence of the test suite, in this appendix, we explore how dierent (real
and ideal) test suites aect the number of (strict-)SSHOMs in a simple program. Given the large

70 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

number of executions involved and the use of symbolic execution to represent the ideal test
suite, we limit our exploration to our smallest subject system, the triangle program.

Real Test Suite of Varying Size

Keeping the rst-order mutants xed, we use searchvar to compute the set of SSHOMs with
regard to dierent test suites. Instead of the 26 tests used previously, we generate and use a much
larger set of 1334 tests for this experiment, by systematically exploring combinations of dierent
inputs for the program: For each of the triangle’s three inputs, we consider values from −5 to
5, thus yielding 113 tests (easily reaching 100% line and branch coverage). To achieve maximum
rst-order mutation score, we manually add 3 more tests and verify that the remaining 3 out
of 128 rst-order mutants are equivalent mutants. From this large test suite, we downsample
test suites of dierent sizes, each time randomly picking a subset of tests; we then identify
(strict-)SSHOMs for this test suite with searchvar. We report the median of ve executions to
account for randomness in selecting tests.

From Figure 4.7, we can see that the number of SSHOMs heavily depends on the test suite
used, as expected (see Section 4.2). Also, there is a clear trend that the number of SSHOMs
decreases as we use more comprehensive tests: the more tests used, the more constrained the
search becomes and the fewer SSHOMs remain. In contrast, the number of strict-SSHOMs is
low across dierent test suites, likely due to the fact that they are rare.

Idealized Test Suite Using Symbolic Execution

Since the number of SSHOMs decreases as more comprehensive tests are used, one could expect
that the number of SSHOMs will converge if we consider all possible tests (usually innitely
many). Given a set of rst-order mutants, one can consider the SSHOMs with regard to a given

test suite as an approximation of a true set of SSHOMs with regard to an idealized test suite

that includes all possible tests, similar to how comprehensive tests can be used to approximate
dominator mutants [64]. One would expect that larger test suites are better approximations of
such an idealized test suite. While such a test suite usually does not and cannot exist, for the
triangle program we can actually simulate the idealized test suite through symbolic execution.
The program is simple enough that formal verication of whether two (mutated) variants are
semantically equivalent is decidable and automatable.

To identify SSHOMs with an idealized test suite, we symbolically execute the triangle
program with three symbolic variables for the three inputs to compute a symbolic representation
of the program output—for which we developed a custom symbolic execution engine. The
(possibly innite) set of tests that distinguishes two programs 𝑝1 and 𝑝2 is the set of values
for which 𝜙 (𝑝1) ≠ 𝜙 (𝑝2) where 𝜙 computes the symbolic output of the triangle program;
if there are no such assignments to the three symbolic inputs, the two programs must be
equivalent (as determined by an SMT solver). To check the behavior of a mutation𝑚, we use
Δ(𝑚) =

(
𝜙 (𝑝) ≠ 𝜙 (𝑝 +𝑚)

)
to denote the symbolic expression that represents all tests that kill

the mutant.
Using symbolic execution and an SMT solver, we can now determine whether a higher-order

mutant is an SSHOM with regard to an idealized test suite, by using an SMT solver to solve

4.7. RELATED WORK 71

1% 2% 5%
10%

25%
50%

100%

0

5000

10000

1% 2% 5%
10%

25%
50%

100%

0

5

10

15

Figure 4.7: Number of found SSHOMs (left) and strict-SSHOMs (right) using dierent percentages of tests.

constraints that encode Equation 4.1 to determine whether there are any assignments to the
symbolic input variables, such that (1) the higher-order mutant fails at least for some tests (i.e.,
𝑆𝐴𝑇 (Δ(ℎ)), (2) that the higher-order mutant fails for those tests where all rst-order mutants
fail (i.e., TAUT

(
Δ(ℎ) ⇒ ∧

𝑖 Δ(𝑚𝑖)
)
), and (for strict-SSHOMs) that at least one test input passes

for the higher-order mutant but fails for all rst-order mutants (i.e., 𝑆𝐴𝑇
(
¬Δ(ℎ) ∧∧𝑖 Δ(𝑚𝑖)

)
).

In theory, we can use our symbolic analysis to enumerate and verify all valid higher-order
mutants in triangle to establish the set of SSHOMs wrt. the idealized test suite. However, we
limit this experiment to only combinations of two and three mutants due to the vast search space.
Using the idealized test suite of all possible tests, we found 159 second-order and 157 third-order
SSHOMs, and 5 and 3 of them are strict-SSHOMs. Interestingly, all 159 and 157 SSHOMs and 2
(of 5) and all 3 strict-SSHOMs were also identied by searchvar using the original 26 test cases
(Section 4.3). Furthermore, 467 of the 965 SSHOMs and 5 of the 6 strict-SSHOMs identied using
the 26 tests in Section 4.3.5 are valid (strict-)SSHOMs with regard to the idealized test suite. That
is, SSHOMs with regard to a given test suite can indeed be seen as an approximation of a true set
of SSHOMs with regard to an idealized test suite.

4.7 Related Work

In this section, we focus our discussions on higher-order mutation testing and refer interested
readers to a detailed survey for recent advances in mutation testing in general [125].

Approaches for Finding SSHOMs. Early work has investigated dierent strategies to com-
bine rst-order mutants into second-order mutants [74, 99, 104]. Jia and Harman extended this
eort to even higher orders using heuristic search looking for certain kinds of valuable higher-
order mutants, specically SSHOMs. They compare a greedy, a hill-climbing, and a genetic
algorithm and found that genetic search produces the best results for nding SSHOMs [54, 56].
Since then, higher-order mutation testing has been implemented in dierent mutation testing
tools and frameworks, for dierent languages [55, 81, 85, 101, 123, 153], usually using some
form of heuristic search [54, 56, 83, 124]. Although this work specically targets SSHOMs, our

72 CHAPTER 4. HIGHER-ORDER MUTATION TESTING

approach can be generalized to other types of interesting mutants, by updating the way we
encode the search as a Boolean satisability problem.

Orthogonal to SSHOMs, researchers have recently investigated an interesting type of hard-to-
kill mutants called dominator mutants [77, 78]. This line of work searches for the hardest-to-kill
rst-order mutants among a given set by comparing executions with regard to a test suite.
Dominator mutants have been shown to be an eective research tool to study existing mutation
testing techniques, for example for gauging mutation test completeness [80] and evaluating
selective mutation [79]. Just et al. [64] show that program context can be used to approximate
dominator mutants, which might also be promising for future search strategies for SSHOMs.

Characteristics of SSHOMs. Although SSHOMs are considered to be one of themost valuable
types of higher-order mutants [56], characteristics of SSHOMs have not been systematically
studied in the past. Existing work on SSHOMs mostly discusses the quantity of SSHOMs and
the diculty of nding them [46, 54, 55, 56, 83]. For example, Harman et al. [46] discussed how
SSHOMs relate to their constituent rst-order mutants, but their discussion focuses mainly on
test eectiveness and eciency. Jia and Harman [56] discussed characteristics of a single SSHOM
in the Triangle program (also used in our study) but did not explore SSHOM characteristics
further. In our work, we can nd a complete set of SSHOMs with regard to used tests and
rst-order mutants, which provides us more data to study what they look like. We hope that
future research on generating SSHOMs eciently can be informed by our work.

Using Variational Execution. With regard to using variational execution for mutation test-
ing, Devroey et al. [30]’s work is conceptually closest to our work in that they pursue a complete
exploration strategy with similarities to lazy conguration exploration in SPLat [70, 110]. How-
ever, they explore only traces in state machines without any joining and thus forgo much
possible sharing. Their analysis does not distinguish rst-order from higher-order mutants
and does not identify or analyze SSHOM. Orthogonal to our work, researchers have also used
various techniques to speed up traditional mutation testing, such as sampling tests for mutant
executions, condensing mutations into a metaprogram, and using advanced execution sharing
techniques [57, 60, 125, 159]. At a technical level, Wang et al. [159]’s work is closest to our work
in that they look for possible redundant mutant executions by inspecting program state, but
forgo potential joining after splitting mutant executions. Since our main goal of using variational
execution is to explore the interactions of rst-order mutants rather than speed up mutation
analysis, we did not perform a performance comparison.

4.8 Summary

To eciently nd SSHOMs, we proceeded in three steps. First, we used variational execution
to nd all SSHOMs in small to medium-sized programs. Second, we analyzed the basic charac-
teristics of the identied SSHOMs. Finally, we derived a new prioritized search strategy based
on the characteristics. The prioritized search scales to large systems and is eective (albeit not
complete) at nding SSHOMs and outperforms the existing state-of-the-art strategy by far. We

4.8. SUMMARY 73

hope that the insights and search strategies from this work can support future work in mutation
testing.

The work in this chapter illustrates that variational execution can eciently navigate the
search space of many speculative variations (i.e., rst-order mutations) and uncover many
interesting interactions among them (i.e., SSHOMs). It also presents a typical workow of
applying variational execution: First, we used variational execution as a black-box technique
to systematically and completely explore the relatively small search spaces of programs that
variational execution can easily analyze without too much engineering eort. Next, we analyzed
these results to identify interesting ndings or characteristics of the search space, which are
more likely to generalize because they are derived from a complete exploration of the search
space instead of a ad-hoc or potentially biased exploration as performed in most prior work.
Finally, we realized the potential of these ndings to improve or design new search strategies
that are more eective and more scalable, independent of variational execution. We suspect
that a similar workow could be useful for other heavyweight techniques such as symbolic
execution and model checking, by maintaining a reasonable balance between scalability and
engineering eort.

In Chapter 5, we will switch focus to another search problem of speculative variations—
automatic program repair.

Chapter 5

Automatic Program Repair

In this chapter, we explore speculative variations in automatic program repair. In this context,
speculative variations are automatically generated edits to a given buggy program. Edits can be
small, such as tweaking operators in expressions, but can also be big, such as replacing an entire
loop, which poses more challenges to exploring the search space systematically. Interactions of
edits yield multi-edit patches and potentially high-quality patches, patches of both kinds remain
challenging to identify within a large search space.

The problem of automatically repairing a bugging program is essentially a search problem,
in which code transformations are sought to meet a search goal such as passing all the tests.
Various search strategies have been explored, but they either navigate the search space in an ad

hoc way using heuristics, or systemically but at the cost of limited edit expressiveness in the kinds
of supported program edits. In this work, we explore the possibility of systematically navigating
the search space without sacricing edit expressiveness. The key enabler of this exploration
is variational execution, a dynamic analysis technique that has been shown to be eective at
navigating large search spaces.

5.1 Automatic Program Repair

Repairing buggy programs is a dicult, time-consuming, and expensive process [136]. A recent
report estimates that, in 2017, software failures have aected 3.6 billion people and caused
$1.7 trillion nancial loss [1]. To reduce the cost of xing bugs, researchers are working on
techniques that automate the program repair process, to nd patches to a given bug with little
human intervention. Not only have such techniques received lots of research attention in recent
years [113], but they also are beginning to see adoption in industrial settings [9, 102].

In essence, program repair techniques generate patches for a given buggy program to satisfy
a given specication of program behavior. Specications can take dierent forms [113], but this
work, as most existing work, targets test-based automatic program repair [95, 97, 107, 162, 163]:
Given a program and its test suite with at least one failing test, our approach creates patches
that make the whole test suite pass.

Existing approaches to automatic program repair essentially solve a search problem. The
search space comprises dierent program edits that could possibly x the buggy program, such

75

76 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

as copying existing code fragments in the program [162, 163] or modifying operators in if
conditionals [34, 95, 107]. The search space dened by the set of possible edits is large and it
grows exponentially if combinations of multiple edits are considered. To navigate such a huge
search space, dierent search strategies have been explored, such as genetic programming [162],
guided search using statistical models [97, 163], and formal program synthesis [34, 86, 107]. The
keys to solving the search problem of program repair are twofold: edit expressiveness and search

eectiveness, which determine what xing ingredients are in the search space and how eective
the search is at identifying patches that are available in the search space, respectively.

Despite years of research, there is a tension between edit expressiveness and search eectiveness.
This tension essentially divides most existing approaches into two families, namely heuristics-

based and semantics-based:

Heuristics-Based. Heuristics-based approaches excel at edit expressiveness in that dierent
forms of edits at dierent AST levels (e.g., expressions, statements) can be explored easily. For
example, in terms of edits explored, GenProg is one of the most generic approaches because it can
append, replace, and delete dierent kinds of statements [162]. At the other end of the spectrum
we have approaches like PAR where only highly specic edit templates are used [71]. Strong
edit expressiveness makes it possible to generate patches of dierent forms, but at the same time
inevitably yields a large search space of potential xing ingredients [96]. The large search space
demands an eective way of exploring it, but search eectiveness of heuristics-based approaches
is often limited by expensive validation of patch candidates. After a patch candidate is generated
by applying certain edit(s) to the buggy program, it is validated by executing the original tests or
its subset. The cost of repeated test executions can add up quickly and eventually dominate the
entire repair process. To mitigate expensive validation, dierent heuristics have been explored to
prioritize more-likely patch candidates, such as using genetic programming [162] and statistical
models [97, 163] to guide the selection of patch candidates for validation. Nonetheless, nding
high-quality patches in a large search space of xing ingredients remains challenging because
only a (more or less random) subset of them can be explored. In fact, they often stop at the
rst identied patch that passes all tests, even though that patch may overt the test suite, or
even when other better patches could have been found in the search space. Finding multi-edit
patches is theoretically possible, but unlikely in practice because the search space becomes
exponentially larger. Hercules can generate multi-edit patches eectively, but targets a specic
form of multi-edit patches, those that require all edits of a multi-edit patch to be the same or
similar [139].

Semantics-Based. Semantics-based approaches excel at search eectiveness, but at the cost of
limited edit expressiveness. Semantics-based approaches use symbolic execution to encode the
given test suite as constraints, which are then fed to program synthesis to synthesize patches.
Program synthesis uses classic AI search (e.g., SAT, SMT) [137] to eectively search large
spaces (e.g., by abstracting and pruning infeasible parts quickly), rendering semantics-based
approaches ecient at nding patches. However, existing program synthesis techniques tend
not to scale for large synthesis problems, hence the search space is typically constrained. Existing
semantics-based approaches only modify expressions in conditions or assignments [34, 86, 107,

5.1. AUTOMATIC PROGRAM REPAIR 77

144, 170]. Moreover, these approaches exclusively synthesize code fragments of boolean and
integer types, mainly because of the limited capacity of the underlying constraint solvers [86].
Due to such limited edit expressiveness, patches that require structural changes (e.g., moving
statements) or reasoning about other common data types (e.g., oating point and string) are out
of scope for existing semantics-based approaches. Multi-edit patch generation can, in theory,
benet from the high search eectiveness of semantics-based approaches, but in practice often
limited by the scalability of existing symbolic execution and program synthesis. For example,
DirectFix needs to symbolically execute the whole program under repair to synthesize edits at
multiple locations [106]. Angelix mitigates this issue by applying symbolic execution exclusively
to a few suspicious expressions, but requires buggy locations to be physically close [107].
S3 essentially repairs each buggy location separately using program synthesis, posing more
scalability challenge to the underlying program synthesizer [86].

In this work, we explore the possibility of achieving high search eectiveness without sac-
ricing edit expressiveness. Our goal is to perform an ecient systematic search, similar to
semantics-based approaches, in a search space of many dierent kinds of edits, similar to
heuristics-based approaches. Our key insight is that a systematic search over many edits and
their combinations may be feasible more eciently because many test executions will exhibit
very similar traces and those similarities can be exploited to speed up the search. The similarity
of test executions across multiple patch candidates (where edits tend to be focused in a relatively
small part of the trace as narrowed down by fault localization techniques) can be leveraged to
speed up executions of tests. Moreover, the dynamic information obtained from test executions
can potentially provide useful insights for improving patch quality, similar to how similarities
of test executions are used to classify correct patches [168]. To exploit test execution similarity,
we use variational execution [110, 117, 166] (Chapter 2 and Chapter 3).

As discussed throughout this thesis, variational execution is a dynamic analysis that executes
common parts of test executions only once, such as code that is irrelevant to any edits, before or
after the edits. Reminiscent of many model checking strategies, when an edit is encountered,
variational execution splits the execution to compute the program states with andwithout the edit,
but also, importantly,merges executions again to execute the rest only once. Conceptually, given
a search space of edits as xing ingredients, a single run of variational execution is equivalent to
running all edits and their combinations in isolation. But by splitting and merging executions,
variational execution can explore the search space eciently, as shown in recent work on testing
highly congurable systems [110, 117], tracking sensitive information ow [8, 171], and nding
higher-order mutants (Chapter 4).

The eciency of variational execution depends on how individual edits behave. If all indi-
vidual edits inuence program states independently without any interactions (e.g., modifying
completely dierent variables), variational execution can be very ecient. Interactions of individ-
ual edits can slow down variational execution because we need to compute alternative program
states for all edits and their combinations (but likely much sharing remains to outperform brute
force). Whether variational execution can tame the search space of program repair remains an
open question.

Our approach also has potential to improve patch quality. Similar to semantics-based
approaches, our approach analyzes large search spaces eectively and nds many or all plausible
patches within that search space. Having access to multiple plausible patches allows us to

78 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

deliberately prioritize patches that are more likely to generalize beyond the given test suite (e.g.,
prioritizing smaller patches, patches that aect less program state, or patches that have more
local eects). Furthermore, variational execution can easily collect runtime information that is
otherwise only obtainable by expensive alignment and comparison of execution traces, which
provides useful insights into control-ow and state changes caused by edits, that are useful for
selecting better patches among many plausible patches. In this work, we develop heuristics to
rank promising patches, using information of their control-ow and data-ow changes.

We evaluate the feasibility of variational execution using IntroClassJava, a dataset that
contains 297 bugs that are small but notoriously dicult to x. Results show that we can patch
107 of them, including 40 bugs that are exclusively repaired by our approach. For the patched
IntroClassJava bugs, we can generate up to 33017 plausible patches (i.e., patches that pass
all tests), and up to 32841 correct patches (i.e., patches that meet the specication of expected
program behavior). Due to a systematic search, we can nd up to hundreds of multi-edit patches.
Finally, using runtime information obtained from variational execution, our patch ranking is
eective in distinguishing correct patches from plausible but incorrect patches, ranking the
correct patches to top 10 for 23 out of 24 evaluated bugs.

To further evaluate scalability, we use two largest subjects from the Defects4J dataset. An
evaluation with 282 bugs from Math and Closure shows that our proposed techniques can solve
large repair problems in practice, xing 35 of themwith patches of varying quality. Most ndings
for IntroClassJava can be generalized to Defects4J, despite searching in much large search
spaces and running more tests, suggesting that our approach is scalable.

We make the following contributions in this work:
• An exploration of applying variational execution to systematically explore large search
spaces of program repair.

• A prototype repair tool built on top of GenProg and VarexC.
• An thorough evaluation showing that the direction of systematic search is promising
and can potentially shed light on several open challenges in the eld, such as generating
multi-edit patches and improving patch quality. For example, our approach can x 39
more bugs and generate thousands more high-quality patches when compared to the
baseline GenProg.

• A simple patch ranking mechanism that can eectively rank high-quality patches, for
example, to top 10 for 23 out of 24 cases.

5.2 Motivating Example

In this section, we use an example to discuss limitations of existing work and benets of our
approach. In Figure 5.1, we show a buggy program taken from the IntroClassJava dataset. The
specication of the program is to output the smallest number among the four integer inputs
(i.e., a, b, c, and d). Due to incorrect usage of relational operators, this buggy program would
fail if the smallest number appears more than once in the inputs.

With the highlighting in Figure 5.1, we show a patch generated by our approach. The patch
contains 3 edits, 2 of which modify operators in Boolean expressions and the last one inserts a
statement that is taken from the existing code. Intuitively, Edit 3 makes c the default output,

5.2. MOTIVATING EXAMPLE 79

1 if (a < b && a < c && a < d) {
2 smallest = a;

3 } else if (b 1 < ⇒ <= a && b < c && b < d) {

4 smallest = b;
5 } else if (c < a && c < b && c < d) {
6 smallest = c;
7 } else {

8 if (d < a && d < b 2 && ⇒ || d < c) {

9 smallest = d;
10 }

11 3 smallest = c;

12 }

Figure 5.1: Motivating example modeled after smallest-1b31fa5c-003. Code is simplied for readability.

Edit 1 handles cases where a and b are equal and smallest, and nally Edit 2 checks for cases
where d is the smallest. Existing work distinguishes patches that are plausible versus correct,
with the former dened as a patch that passes all given tests and the latter a patch that can
meet the specication of the program. The patch shown in Figure 5.1 is a correct patch. It is
important to note that there could be dierent ways of xing the bug, such as by changing all
< operators to <=. In the following, we discuss what makes this bug challenging for existing
approaches to x.

Edit Expressiveness vs. Search Eectiveness

As motivated in the introduction, the success of existing program repair techniques largely
depends on the balance between edit expressiveness and search eectiveness. Edit expressiveness
determines what xing ingredients are available in the search space, and search eectiveness
determines how likely a (correct) patch can be found. Existing approaches make dierent
tradeos.

Heuristics-Based. Heuristics-based approaches have the advantage that dierent edits can
be experimented with easily. Search spaces of dierent sizes and shapes have been explored to
increase the likelihood of capturing correct patches in the search space. For example, GenProg [90,
162] can add/replace/delete statements in the original program, such as Edit 3 in Figure 5.1 where
a statement is added. CapGen [163] further enlarges the search space by taking xing ingredients
from expressions in the original program. JMutRepair [103] uses classic mutation operators
to tweak existing expressions (e.g., Edits 1–2 in Figure 5.1). Another trend is to specialize the
shape of the search space to optimize for certain classes of faults. PAR [71] uses specic xing
templates that are mined from human patches. SPR [95] and Prophet [97] generate specic edits
for common mistakes such as adding conditional checks and memory initialization statements.
Overall, the community is moving toward increasingly larger search spaces of edits.

The larger the space of possible xing ingredients, the more challenging the search for a
patch [96]. Even just executing tests for every single-edit patch can take a long time, and when
exploring combinations of xing ingredients the search space explodes such that executing tests
for all possible patches is no longer feasible. Instead, existing approaches largely rely on dierent

80 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

forms of heuristic search. GenProg [90, 162] uses genetic programming, with the assumption
that partial patches can be evolved into correct ones, but a weak and non-monotone tness
function can potentially discard partial patches that fail more tests. RSRepair [133] uses random
search. AE [161] uses a deterministic heuristic traversal of the single-edit space. SPR [95] uses
carefully designed stages to prioritize certain classes of edits. Prophet [97] and CapGen [163]
rely on statistical models learned from human patches to prioritize more likely edits. Despite
the recent eort of improving search strategies, the search space has not been systematically

explored. Existing approaches can easily generate the 3 xing ingredients in Figure 5.1, but
cherry picking these three xing ingredients out of a potentially large pool remains challenging.
A recent empirical study suggests that existing search strategies suer from the increasingly
larger search spaces, generating fewer correct patches due to timeout or stopping when nding
plausible but incorrect patches [96]. In fact, our approach identied 10177 plausible patches for
the bug shown in Figure 5.1, among them only 3 are correct. Cherry picking the 0.03% of correct
patches from a much larger pool of plausible patches remains challenging without a systematic
search.

Semantics-Based. Semantics-based approaches can eectively explore search spaces by dele-
gating the search to program synthesis techniques, but they often restrict themselves to small
edits at the expression level (e.g., tweaking Boolean expressions in if conditions) to make the
scope of program synthesis tractable. Edit expressiveness is mainly restricted by the scalability
of constraint solvers and the types of theory they can reason about [86]. Thus, existing work
is unlikely to generate the patch shown in Figure 5.1 because inserting a statement remains
challenging for program synthesis. Although in theory one can synthesize a patch that only
changes boolean expressions for the specic bug in Figure 5.1 (e.g., changing all < operators
to <=), whether or not such a multi-edit patch can be synthesized remains an open question
because multiple expressions across dierent if conditions need to be synthesized.

Open Challenges

Several open challenges of automatic program repair boil down to the main challenge of main-
taining a good balance between edit expressiveness and search eectiveness, which we address
in this work by performing a systematic search using variational execution. In the following, we
discuss a few open challenges our approach can potentially shed light on:

• General-Purpose Repair. Recent semantics-based approaches can also perform a sys-
tematic search by using symbolic execution and program synthesis, but at the cost of using
small expression-level edits [34, 86, 107]. Our approach does not make any assumptions
about the types of edits, so we can potentially generate more general-purpose patches
for more diverse types of bugs than existing semantics-based approaches. Note however
that, the choice of edit templates inuences the size and shape of the search space. The
edit templates are a nite set, but our approach does not explore all possible insertions of
code at all locations. Our work performs a systematic search, but with regard to a nite
set of concrete edits encoded in a meta-program (Section 5.4), whereas semantics-based
approaches can often traversal a potentially innite space of simple edits by using symbolic

5.3. APPROACH OVERVIEW 81

execution and program synthesis.
• Multi-Edit Repair. Recent empirical studies suggest that making multiple edits is com-
mon when developers x bugs [61, 175], but automatically generating multi-edit patches
remain challenging. In theory, multi-edit patches are under the radar of heuristics-based
approaches such as GenProg, but oftentimes the search space is so large that nding them
based on heuristics takes time. With an ecient systematic search, multi-edit patches are
guaranteed to be found if they exist in the given search space.

• Patch Quality. Long and Rinard [96] in a recent study discovered that plausible patches
outnumber correct patches by far, making it dicult to prioritize searching correct patches.
Our work contrasts most existing approaches for improving patch quality, which typically
restrict the search space by reducing the edits considered. The work of Tan et al. [150]
is the most extreme example where highly specic patterns are used to exclude likely
low-quality patches, and this work implicitly informs most other modern techniques in
the edit templates they consider. In contrast, our approach diverges in a fundamental and
philosophic way from most existing work, in that we do not attempt to restrict the types
of edits considered, but rather include more diverse edits to enrich the search space. With
an ecient systematic search, correct patches are guaranteed to be found if they exist in
the search space. Long and Rinard [96] also suggest that repair techniques should leverage
information other than the test suite to pinpoint correct patches. Performing systematic
search can thus be a viable avenue to obtain a more complete picture of the space that is
otherwise infeasible with a heuristics-based search.

There are dierent ways to achieve a systematic search. Running each possible edit in a
brute force fashion is one way, but only works for tiny search spaces. Using program synthesis is
much faster than brute force, but with limited types of edits. In this work, we explore variational
execution.

5.3 Approach Overview

Given a faulty program and a test suite that can expose the fault, our approach automatically
generates patches that can pass all provided tests and subsequently ranks all plausible patches
based on their runtime behavior. Reminiscent of how we use variational execution in mutation
testing (Section 4.3), our approach consists of 4 steps, as illustrated in Figure 5.2.
1. Similar to most program repair approaches, we use a standard fault localization technique

to nd suspicious locations in the buggy program. Using the fault localization information,
we then generate a set of dierent edits by applying a predened set of edit templates to
suspicious locations.

2. In order to explore all edits and their combinations at the same time, we merge the entire
set of dierent edits into one meta-program by using if conditions to encode dierent edits.
Each if condition is guarded by a Boolean variable (e.g., E1, E2 in Figure 5.2) that controls
whether the corresponding edit should be included in a patch (Section 5.4).

3. We run the meta-program with variational execution against a given test suite. In contrast
to normal test execution that outputs which tests fail, variational execution reports the
combinations of edits that pass the entire test suite. To compactly encode combinations of

82 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Fault Localization

Buggy Program

Test suite

Edit Generation Factory

Step 1: Edits Generation with GenProg

Step 2: Meta-Program Generation

Single edits
Meta-Program

E1
E2
E3
E4
E5
E6

Step 3: Variational Execution

E1&E2&!E3
E1&E4
E1&E4&E5&E6

Step 4: Patch RankingPlausible Patches Ranked Patches

Figure 5.2: Overview of our approach. Steps are marked and surrounded with boxes.

edits, variational execution represents them as propositional formulas, such as 𝐸1∧ 𝐸2∧¬𝐸3
in Figure 5.2, which represents patches that include Edit 1 and 2 but not Edit 3 (Section 5.5).

4. To distinguish high-quality patches from low quality ones, we use the dynamic information
obtained from variational execution to rank patches, e.g., prioritizing patches that change
less program state, because variational execution can often output many plausible patches,
but not necessarily ones that generalize beyond the given test suite (Section 5.6).

5.4 Meta-Program Generation

We combine a large set of edits in a single meta-program. The edits in this program, and
their interactions, form the search space within which we later search for patches.

We use genprog4java1 to generate the set of mutants that form the search space. We decided
to build our approach on top of GenProg because of its conceptual simplicity. GenProg rst
uses a fault localization technique to rank likely statements based on howmany times statements
are executed by passing and failing tests, favoring statements that are mostly executed by the
failing tests (other fault localization approaches could be plugged in as well, but are generally
orthogonal to our main contributions). In those likely faulty statements, GenProg then applies
edit templates to generate single edits. Each edit is generated by applying one edit template
once.

We inherit three classic edit templates from GenProg: APPEND, REPLACE, and DELETE. They
append, replace, and delete code at the statement level of AST. The candidate statements for
appending and replacing are taken from the original buggy les, based on the assumption that
xing ingredients are close, known as the plastic surgery hypothesis [11]. To enrich the search
space, we add 5 generic expression-level mutation operators to GenProg, based on evidence
that shows their eectiveness [121, 122]: Arithmetic Operator Replacement (AOR), Relational

1hps://github.com/squaresLab/genprog4java

https://github.com/squaresLab/genprog4java

5.4. META-PROGRAM GENERATION 83

1 if (a < b && a < c && a < d) {
2 smallest = a;

3 } else if (b 1 (e1 ? b <= a : b < a) a && b < c && b < d) {

4 smallest = b;
5 } else if (c < a && c < b && c < d) {
6 smallest = c;

7 } else if (2 e2 ? (d < a && d < b || d < c) : (d < a && d < b && d < c)) {

8 smallest = d;
9 } else {

10 3 if (e3)

11 3 smallest = c;

12 3 else

13 3 smallest = Integer.MAX_VALUE;

14 }

Test Original Passing Condition

assert smallest(1, 2, 3, 4) == 1 3 true
assert smallest(1, 1, 1, 1) == 1 7 e3
assert smallest(1, 1, 2, 3) == 1 7 e1
assert smallest(1, 2, 3, 1) == 1 7 e2

Whole test suite 7 e1 ∧ e2 ∧ e3

Figure 5.3: The upper part is an example of meta-program that encodes 3 edits for smallest-90834803-005. The
lower part is a manually constructed test suite for demonstrating how variational execution is used. The Original
column reports test outcomes of the original buggy program.

Operator Replacement (ROR), Logical Connector Replacement (LCR), Absolute Value Insertion
(ABS), and Unary Operator Insertion (UOI). Other edit templates (e.g., recently developed ones
that target specic fault classes [96, 139, 163]) can be easily integrated as extensions. We modify
GenProg to repetitively mutate the given buggy program until a specied number of dierent
edits are generated. After ltering out edits that are not compilable (standard GenProg step),
we merge the remaining edits into one meta-program.

Similar to meta-program generation in Chapter 4, we encode all edits as optional code paths
(guarded by if-then-else statements and expressions) into a single meta-program. For each
edit, we introduce a Boolean option (e.g., global static eld in Java) that decides whether the
original or the edited code is executed, as illustrated in Figure 5.3. Our encoding of edits is
exible, allowing other more recent types of edits to be expressed freely in the meta-program.
This way, our approach maintains the expressive power of existing heuristics-based approaches.

The idea of generating a meta-program for program repair is not new, but rather an important
preprocessing step that denes a search space for variational execution to search (cf. Chapter 4).
The repair techniques ofWeimer et al. [161] and Kern and Esparza [68] also generate conceptually
similar meta-programs. Our work on nding higher-order mutants (Chapter 4) and Devroey
et al. [30] used similar encodings for speeding up mutation analysis. However, we implemented
our meta-program generation from scratch on top of genprog4java because the one we used in
Chapter 4 for mutation testing does not perform fault localization or produce statement-level
changes.

Edit generation as part of creating the meta-program involves randomness, i.e., selecting

84 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

edits from a potentially very large pool of possible edits (APPEND alone can produce many edits
in most programs). We use the undeterministic weighing scheme from GenProg to generate
edits and repeatedly invoke GenProg until we generate a predened number of distinct edits.
Due to randomness, a dierent run might yield a dierent search space, but we can alleviate the
randomness by generating a large pool of edits, which we will show in Section 5.8.

5.5 Systematic Search with Variational Execution

Given a meta-program and its test suite, we use variational execution to determine what com-
binations of edits can pass all tests. We can achieve high search eectiveness because we can
explore the search space in an ecient and comprehensive way, as opposed to heuristics-based
approaches that validate one patch candidate at a time (hence inecient) and rarely systemati-
cally explore combinations of edits due to a lack of reasonable measure for partial patch (hence
incomprehensive).

Similar to other applications of variational execution discussed in previous chapters, the key
insight in using variational execution is that most test executions are similar or even identical
when edits modify the buggy program. Many edits have only minor and local eects on control-
ow and program state of some test executions, whereas most computations are the same or
similar independent of whether an edit is applied. Variational execution exploits those sharing
opportunities among many similar executions with minor dierences, regarding both data ow
and control ow. It shares the same value for a variable across all or many possible combinations.
More technical details of variational execution are available in Chapter 3. We use VarexC, but
make several adjustments to better t the characteristics of this search space.

Finding Plausible Patches with Variational Execution

To identify which combinations of edits can pass all tests and x the buggy program, we simply
execute each test for the meta-program (with symbolic values representing all edits) and capture
for each test the condition under which the test passes. We call this condition a passing condition,
which is a propositional formula over the symbolic values to compactly capture all combinations
of edits that pass the test. Any solution to the propositional formula represents a plausible patch.
To get plausible patches that pass all the tests, we simply use a SAT solver or BDD to enumerate
all solutions that satisfy the conjunction of all passing conditions.

As of recap of how we use variational execution (cf. Chapter 4), we execute every test in the
test suite, setting all variables representing edits in the meta-program as symbolic inputs (e.g.,
e1, e2, e3 in Figure 5.3). When the test execution nally hits an assert statement, we can simply
capture the path condition to identify under which conditions the test passes. For example,
in Figure 5.3, assert smallest(1, 2, 3, 4) == 1 passes under condition true, meaning that the
test can pass with or without any edits. However, assert smallest(1, 1, 1, 1) == 1 passes under
condition e3, meaning that it can pass only when Edit 3 is applied, independent of the other
edits. Finally, the passing condition for the whole test suite is e1 ∧ e2 ∧ e3, suggesting that we
need all three edits to x the program.

We use variational execution to execute test cases one at a time, but prioritizing test cases

5.5. SYSTEMATIC SEARCH WITH VARIATIONAL EXECUTION 85

that the original buggy program fails. After each test execution, we check if there exist any
combinations that can pass the tests executed so far, and continue to the next test only if there
remain solutions in the search space. In the scenario shown in Figure 5.3, one of the 3 failing
tests will be executed rst, and let us suppose the rst test is assert smallest(1, 1, 2, 3) == 1.
If we did not have Edit 1 in the meta-program shown in Figure 5.3, we could terminate our
search already after executing the rst test, because no combination of available edits would
pass this test; there are simply not enough xing ingredients in the search space. This way,
we can narrow down the search space quickly or conclude that no patch exists early on in the
searching process.

This way of using variational execution to search for repair is both sound in that each repair
emitted by our approach passes all given tests, and complete with regard to the given search
space (i.e., repair must be found if exists within the search space).

Bounded Search

While variational execution can conceptually explore all possible interactions within the search
space, doing so may be expensive when many edits (i.e., xing ingredients instantiated from edit
templates) interact. In addition, patches that combine more than a few edits may be too complex
for human developers to be interesting. Hence it can be benecial to bound the search space.

We extended VarexC to (optionally) bound the search space to limit the number of individual
edits in a patch. That is, if we set a bound to be 𝑛, all patches that comprise more than 𝑛 edits
will be out of consideration. For example, the patch shown in Figure 5.3 is only discoverable if
the bound is greater than or equal to 3. Technically, when representing alternative values in
variational execution, we prune those alternatives that depend on more than 𝑛 activated edits;
we also do not execute path that have a path condition requiring more than 𝑛 activated edits.

Note that within the bound, our search with variational execution is still complete in that
part of the search space.

Partitioning Mode

Orthogonal to bounded search, an alternative way of bounding the search space is to limit the
number of individual xing ingredients, especially for large search spaces that contain thousands
of edits.

We extended VarexC to optionally partition the search space, considering at most 𝑛 edits
throughout the search where 𝑛 is congurable. Dierent strategies can be used to pick the 𝑛
edits among all edits in the large search space, such as picking edits based on fault localization
suspiciousness or picking edits that have close proximity. As the rst attempt, we randomly

pick 𝑛 edits once at the beginning of variational execution and leave other alternative ways of
picking edits to future work.

Similarly, within the bound, our search with variational execution is complete in that partition
of the search space, but dierent partitions can be taken to incrementally explore larger portions
of the overall search space.

86 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Fast Mode

In addition to bounding, we implemented another optional optimization for prioritizing test
executions that do not throw any exceptions. Many edits introduce behavior in the program that
ends in exceptions (e.g., null pointer exceptions, division by zero). As discussed in Section 3.5, we
can reliably handle all exceptions at the cost of potentially expensive re-execution of variational
execution. Although it is possible that those exceptions can be caught in other parts of the
program, we have not observed any in practical repair problems. Ignoring conditional exception
handling paths can signicantly prune the search space and speed up variational execution.
This optimization is similar to how S3 uses symbolic execution to run failure-free execution
paths [86].

In an optional mode we call fast mode, we reduce the search space whenever we encounter
an exception in a conditional code path (i.e., with a path condition that is not true). We simply
terminate that code path early and do not join it with the other paths. We record the path
condition of the exception in case we want to explore those paths later, which we only do if we
do not nd any plausible patches without handling exceptions. For example, if a test case expects
certain exception to be thrown in order to pass, variational execution will not nd any plausible
patches with fast mode, but will fall back to normal mode to explore exception-throwing paths.
Note that exceptions thrown in all executions are still executed as usual (i.e., not caused by edits,
commonly in early parts of the execution trace before reaching the edits).

Our fast mode may introduce incompleteness, because it will prioritize nding patches that
do not require catching exceptions thrown by edited code even when exception handling is part
of the normal behavior, but we trade that incompleteness with a performance improvement of
exploring a smaller search space. Soundness is not aected, identied patches are still passing
all tests.

5.6 Patch Ranking

With variational execution, we can systematically explore the search space to nd many plausible
patches if they exist. For example, as we will show in Section 5.8, our approach can nd up
to 33017 plausible patches for a buggy program. However, recent studies have revealed that
oftentimes plausible patches have low quality, to the extent that they might impair developer
productivity [151]. It is thus important to distinguish high-quality patches from low-quality
ones.

Note that, existing approaches often have an internal component that ranks patch candidates

to decided in which order to validate them. Our problem of ranking plausible patches is inherently
dierent from ranking patch candidates in that all plausible patches can pass the provided test
suite, so measures such as ranking based on the number of tests passed [90, 162] do not apply
to our ranking problem. As suggested by Long and Rinard [96], more information is needed
to generate high-quality patches. In this work, we leverage the dynamic information of test
executions. We take a two-step approach to ranking plausible patches.

5.6. PATCH RANKING 87

Minimization

First, we apply minimization to all generated plausible patches. Given a plausible patch composed
of multiple edits, minimization removes all edits that are not necessary for passing all tests.
Minimization is important for generating concise patches. Patches that can be minimized are
often constructed by adding an extra edit on top of smaller plausible patches. The extra edit
is typically a code change that does not aect executions of the provided tests. Edits like this
may x things not tested by the test suite or they may introduce new problems not detected by
the test suite; or they may add dead code. However, from the perspective of the test suite, they
are entirely undistinguishable. There are typically too many plausible patches that could be
minimized but we have no magic oracle to verify them automatically (held-out tests are only for
academic evaluations and would not be used in a practical setting). To generate concise patches
and reduce noise in patch ranking, our approach performs minimization on all plausible patches
and only outputs minimized ones.

There are dierent ways for minimizing patches, such as repeatedly running tests to verify
removal of edits one by one, or in a more ecient fashion similar to delta debugging as performed
in GenProg [162]. However, in our approach, if a non-minimized patch is found, it is guaranteed
that the corresponding minimized one can also be found because of the systematic search enabled
by variational execution. Hence, we simply examine the composing edits of plausible patches
and only keep those patches that cannot be subsumed by other patches. More formally, given a
set of plausible patches P, where each patch 𝑝 ∈ P consists of a set of edits 𝑒 ∈ 𝑝 , a patch 𝑝

is minimal in P i there is no other patch with a subset of these edits that also passes the test
suite:

𝑝 minimal in P ⇔ �𝑝′{𝑝′ ∈ P ∧ 𝑝′ ⊂ 𝑝}

Patch Ranking Heuristics

Given a set of minimized plausible patches, we use a heuristic-based ranking strategy to prioritize
patches that are more likely to have high quality. Our heuristic leverages dynamic information
about runtime behaviors of patches, such as what variables are modied, what branches are
taken, and what lines are executed. It has been shown in a recent study that dynamic information
is useful for distinguishing correct patches and plausible but incorrect patches [168]. This kind of
dynamic information can often be obtained by recording and aligning execution traces, a process
that can be expensive when performed in large scale [109]. Since variational execution can
aggressively share common execution paths, we can take this unique opportunity to use it as an
on-the-y alignment tool to record additional runtime information while runningmeta-programs
against tests, similar to how it has been used to record runtime data for debugging [109].

In a recent study, Xiong et al. [168] demonstrate how dynamic information can be used to
classify if a plausible patch is correct or not, by measuring the similarity of execution traces
between the patched program and the original program. The key idea is that, a correct patch
should have little eect on passing tests (hence high similarity between execution traces), but
should cause failing tests to behave dierently (hence certain dissimilarity). Although technically
Xiong et al. [168] address a classication problem rather than a ranking problem, we suspect

88 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

that the underlying principles are transferable. We adopted their central ideas and made some
adaptations to their formulas to compute a score for each plausible patch. We also extended their
ideas by exploring other types of dynamic information. Note that our patch ranking mechanism
is independent of variational execution. Other repair approaches can use external tools to obtain
necessary runtime information for ranking, similar to Xiong et al. [168].

For each plausible patch, we compute a penalty based on the distance between execution
traces of the patched program and the original program. Xiong et al. [168] dene a distance by
computing the longest common subsequence (LCS) of executed statements. We simulate their
distance by using executed lines, and dene 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙𝑖𝑛𝑒 as follows, where 𝑡𝑝 and 𝑡𝑜 represents
the trace (as executed lines) of the patched and original program, respectively.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙𝑖𝑛𝑒 (𝑡𝑝, 𝑡𝑜) = 1 −
|𝐿𝐶𝑆 (𝑡𝑝, 𝑡𝑜) |
𝑚𝑎𝑥 (|𝑡𝑝 |, |𝑡𝑜 |)

While executed lines capture control ow information at a ne-grain level, we can also
compute a coarse-grain control-ow distance by counting how many control ow branches
were taken dierently by the patched program. Hence, we dene 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 𝑓 as follows, where
Δ𝑖 𝑓 computes the number of dierent control-ow branches and

⋃
𝑖 𝑓 computes the total number

of unique control-ow decisions.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 𝑓 (𝑡𝑝, 𝑡𝑜) =
Δ𝑖 𝑓 (𝑡𝑝, 𝑡𝑜)⋃
𝑖 𝑓 (𝑡𝑝, 𝑡𝑜)

Finally, we use data-ow information to dene a distance based on changes to program state.
We dene 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑣𝑎𝑟 as follows, where Δ𝑣𝑎𝑟 computes the number of variables and elds that
are modied dierently at any point in the execution, and

⋃
𝑣𝑎𝑟 computes the total number of

unique variables and elds.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑣𝑎𝑟 (𝑡𝑝, 𝑡𝑜) =
Δ𝑣𝑎𝑟 (𝑡𝑝, 𝑡𝑜)⋃
𝑣𝑎𝑟 (𝑡𝑝, 𝑡𝑜)

Given these types of distance, we compute a penalty for each plausible patch as shown in
the formulas below, where 𝑝 and 𝑜 represent the patched program and the original program, 𝜏
represents a test case, and T represents all the tests. Dierent types of distance can be plugged in
to rank patches based on dierent dynamic information. Inspired by Xiong et al. [168], we treat
positive tests and negative tests dierently: For passing tests, we take the maximum distance
among all passing tests, based on the intuition that passing tests should behave similarly to
the original buggy program. Taking the maximum can help us penalize the patch for the most
abnormal execution. For failing tests, we take the average because the patched program is
expected to behave dierently, but how dierently can vary across tests. Finally, we sum up the
penalties from positive tests and negative tests to compute a nal penalty. All plausible patches
are ranked in ascending order of penalty.

5.7. IMPLEMENTATION 89

𝑝𝑜𝑠 (𝑝, 𝑜) =𝑚𝑎𝑥 ({𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜏 (𝑡𝑝, 𝑡𝑜) | 𝜏 ∈ T })
𝑛𝑒𝑔(𝑝, 𝑜) = 𝑎𝑣𝑔({𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜏 (𝑡𝑝, 𝑡𝑜) | 𝜏 ∈ T })

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑝, 𝑜) = 𝑛𝑒𝑔(𝑝, 𝑜) + 𝑝𝑜𝑠 (𝑝, 𝑜)

5.7 Implementation

We built our meta-program generator on top of genprog4java, reusing its fault localization and
edit generation infrastructure. First, we modied genprog4java to mutate the buggy program
repeatedly until we get a large pool of distinct edits. Next, we lter out edits that could make
the program fail to compile. We then apply all the remaining edits to the original program
by wrapping new edits in if conditionals, nesting multiple conditionals if necessary to apply
multiple edits at the same location. Finally, we run the generated meta-program against the
original test suite to make sure behaviors are the same as the original program when all edits in
the meta-program are disabled.

Similar to generating meta-programs for nding higher-order mutants (Chapter 4), putting
too many edits into a single method can result in methods that are too large for the JVM or
variational execution. Whenever possible, we push edits into small methods, as discussed in
Chapter 4 for expression-level changes. For statement-level changes, we automatically extract
relevant statements into small methods after refactoring, such as replacing local variables with
elds. Details can be found in our implementation.

Limitations and workaround. Due to the limitations of VarexC as a research prototype
(Section 3.5), we had to perform some minor refactoring in our subject systems, for example
replacing a collections library by a dierent one. Fast mode is also particularly eective in the
current implementation of VarexC because it avoids an unusually large performance overhead
of exception handling. We also failed to execute some tests with variational execution in some
subject systems; in those cases, we derive potential patch candidates from those test cases we
can execute and then subsequently execute other tests individually for those patch candidates
to see whether they actually pass all provided tests. We use variational execution to execute
all failing tests at the very least, in order to narrow down the search space as much as possible.
This way, variational execution is still benecial to identify a usually fairly small set of patch
candidates for this further analysis.

As in Chapter 4, we observed combinatorial explosion in a few cases: many random edits
cause a single variable to have more than 8000 alternative concrete values. Moreover, edits in
automatic program repair tend to create more innite loops and endless recursive calls than
higher-order mutation testing, likely because statement-level changes cause these issues more
easily than expression-level changes. For this reason, we carefully bound the number of executed
basic blocks and the height of the method call stack, terminating execution for the parts of search
space where a threshold is reached. This limitation might aect completeness of our approach if
the threshold is not set generously enough, but our approach remains sound. We argue that

90 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

this is the essential complexity of the mutated program and it would be equally challenging for
other search strategies to systematically explore such a complex search space.

5.8 Evaluation

We evaluate our approach in multiple dimensions such as search eectiveness and patch quality.
Where available, we compare our results with the state-of-the-art approaches by taking numbers
verbatim from prior work, because reproducing previous results can be expensive and time-
consuming [33]. Our experiment setup and evaluation data are publicly available online.

5.8.1 Research Questions

We ask the following research questions:
RQ1 (Eectiveness): How eective and ecient our approach is in nding patches

within a large search space of xing ingredients?
RQ2 (Patch Quality): To what extent do our generated patches overt to the provided

tests?
RQ3 (Fixing Ingredients): To what extent can our approach make use of dierent kinds of

xing ingredients?
RQ4 (Multi-Edit): How eective is our approach in generating multi-edit patches?
RQ5 (Patch Ranking): How eective is our patch ranking?

Central to an automatic program repair tool is its ability to identify patches. RQ1 (Eective-
ness) as an overarching research question investigates the overall eectiveness and eciency of
our approach. We measure eectiveness in terms of the ability to nd patches and eciency in
terms of the time it takes to nd the rst patch. Next, we examine the quality of our identied
patches by answering RQ2 (Patch Quality). It has been discovered that test-based program
repair often generates patches that fail to generalize to other tests beyond the ones used for
repair [86, 113, 145]. In theory, a systematic search like ours would increase the chance of
identifying high-quality patches if they exist in the search space. In the next two research
questions, we further investigate factors that make our approach eective. While it is important
to include the right xing ingredients into the search space, it is also critical to use and gather
all necessary ingredients to form a patch. In RQ3 (Fixing Ingredients), we investigate how
well the systematic search of variational execution can make use of the xing ingredients in
the search space. RQ4 (Multi-Edit) concerns multi-edit patches, which remains one of the
open challenges of automatic program repair [91, 113]. Multi-edit patches are dicult to nd
in a large search space because there could be exponentially many ways of combining xing
ingredients. We hypothesize that a systematic search like variational execution can increase the
likelihood of gathering multiple edits to form a patch. Finally, as we will see in our results, there
are usually abundant plausible patches in the search space, which is also pointed out by prior
work [96]. It is thus important to distinguish high-quality patches from the rest of the plausible
patches that likely fail to generalize. RQ5 (Patch Ranking) investigates whether our patch
ranking is eective at isolating high-quality patches from low-quality patches.

5.8. EVALUATION 91

5.8.2 Datasets

We use two existing datasets for our evaluation, both of which are commonly used to evaluate
program repair approaches. In Table 5.1, we show basic statistics of the subjects.

The IntroClassJava dataset [35] is ported from a set of small C programs written by
undergraduate students when taking an introductory programming course [145]. Each buggy
program is a homework submission for a basic programming task. Since programs in the
IntroClassJava dataset are written by dierent students, we report the average lines of code
(LOC) for each subject in Table 4.1. These programs are small, but there are several advantages
to using them in our evaluation. First, prior work shows that these bugs feature potentially
complicated xes despite their small program size [33, 86]. Second, these small programs yield
a reasonably sized search space, providing a perfect ground for in-depth comparison among
dierent search strategies. Third, all of these programs have their errors in one method so the
impact of fault localization is minimized, allowing us to focus on comparing search strategies.
Finally, the IntroClassJava dataset was originally proposed to evaluate patch quality because
the specications of these introductory programming tasks are simple and each subject comes
with two distinct test suites. Both test suites are comprehensive in terms of coverage so they are
useful for evaluating generality of patches [145]. In fact, we observe that these simple programs
barely use advanced language features beyond simple integer computations and if statements,
making it tractable to formally reason about patch correctness using our customized symbolic
execution engine, as discussed in Section 4.6. We excluded some IntroClassJava bugs that do
not pass any provided tests, in which case the fault localization component we inherit from
GenProg would fail.

The Defects4J [61] dataset is a carefully curated corpus of bugs taken from popular open-
source projects. Existing program repair work often uses a subset of this dataset to demonstrate
the usefulness of xing real bugs in practice [23, 58, 139, 167]. For our evaluation, we focus on
two subjects that (1) have been commonly used in previous work; (2) have the largest number of
bug counts; and (3) have the largest code base in terms of lines of code (LOC). Our approach is
conceptually generalizable to other subjects, but we focus on Math and Closure to maximize the
number of comparable results and minimize the engineering eort needed to set up variational
execution, specically for handling environment barrier as discussed in Section 3.5, which is
likely common to other heavyweight semantics-based approaches. In Table 5.1, we report the
number of bugs we actually used. Some bugs from Math and Closure were discarded because of
engineering issues discussed in Section 5.7 and Section 3.5.

5.8.3 Meta-Program Generation

We generate one meta-program for each buggy program and use it consistently in all research
questions, because generating meta-programs can be expensive (e.g., up to 8 hours for one bug).
We use all 8 edit templates discussed in Section 5.4 but assign a lower weight to UOI and ABS
(0.1 as opposed to 1.0 for others) because they can easily create lots of edits that are of little
value. For example, both UOI and ABS can be applied to any numeric constants, variables, and
elds, potentially yielding many patch candidates that are semantically equivalent to the original
program. For IntroClassJava we use GenProg to create up to 500 dierent edits, compile

92 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Table 5.1: Evaluation Subjects

Subject Description LOC Test LOC #Bugs/#Total #Tests

median median of 3 integers 78 130 46/57 13
smallest smallest of 4 integers 80 158 43/52 16
digits digits of an integer 83 153 68/75 16
grade numeric grade to letter grade 82 174 79/89 18
checksum checksum of a string 89 172 11/11 16
syllables count syllables 88 152 12/13 16

Math Apache Commons Math library 85k 19k 87/106 3,602
Closure Closure compiler 90k 83k 97/176 7,927
LOC numbers for IntroClassJava are counted using SLOCCount and averaged over all bugs.
LOC numbers for Defects4J are taken from the original work [61].
#Bugs/#Total denote the number of bugs included in our evaluation and the total number of bugs available in the
dataset, respectively. Some bugs were discarded due to setup issues.
#Tests denotes the number of test cases.

them individually, and merge compilable ones into one meta-program. The bound of 500 edits is
determined based on our experience. For Defects4J we increase the bound to 5000 to account
for the bigger program size.

5.8.4 RQ1 (Eectiveness)

Experiment Setup. To measure the eectiveness of our search strategy, we conduct an
experiment in which we apply VarexC on dierent bugs and measure how many bugs can be
xed. Consistent with prior work, we distinguish bugs that are xed by plausible patches and
those xed by generalizable patches. We will dene and discuss dierent kinds of patches in RQ2
(Patch Quality), but intuitively, generalizable patches have higher quality because they can pass
tests that are not provided for generating repairs, hence generalizable.

We run VarexC on each pre-computed meta-program and set a time limit of 3 hours for
IntroClassJava and 6 hours for Defects4J. Our time limit of 3/6 hours is on par with recent
prior work [33, 58, 139]. As discussed in Section 5.5 and Section 5.7, we can congure VarexC
in dierent ways to adjust the search for dierent types of programs and dierent shapes of
the search space. For example, programs that involve many recursive calls require a bigger
maximum stack height than programs without recursive calls. We use the same settings of
VarexC across all executions, but manually adjust certain parameters such as maximum stack

height and maximum block count for a few executions if we observe runtime errors. Since
expensive loops and recursive calls can sometimes hijack the overall search in VarexC, we
adjust the search bound of VarexC by carefully setting search degree and maximum edits: For
IntroClassJava, we set the search bound to degree 3 with maximum 500 edits if the buggy
program does not involve any loops. For those that have loops, meta-program generation tends
to insert the same loops multiple times due to limited xing ingredients in the small programs,
so we start with a search bound of degree 2, and continue with degree 3 if there is remaining
time budget. For Math and Closure, loops and recursions are common, so we increase the search
bound gradually, starting from degree 1 with all edits, then degree 2 with a sample of 500 edits,
and nally degree 3 with a sample of 300 edits. Multiple samples can be taken until the time

5.8. EVALUATION 93

limit is reached.
It is important to note that we exclude the time of meta-program generation from all time

measurement in our evaluation because it is a pre-processing step for variational execution. In
contrast, heuristics-based approaches tend to generate and validate patch candidates individually
on-the-y, and semantics-based approaches often include the synthesis step when measuring
execution time. We congured our baseline GenProg to search over the same meta-programs
for a fair comparison with VarFix. But eciency comparison with prior work should be made
with caution. Similarly, we report how many bugs prior work can x, but eectiveness should
be compared with caution because existing approaches use more tailored xing ingredients.
The novelty of our work lies solely in the search strategy, but our work is orthogonal to recent
advances in creating diverse xing ingredients.

To evaluate eectiveness of our approach, we measure how many bugs our approach can
x and compare our results with state-of-the-art approaches [23, 58, 86, 139, 163, 167, 170, 172].
To mitigate the confounding factor of having dierent xing ingredients in the search space,
we adapt GenProg to use the same meta-program as VarexC while performing genetic search.
We choose GenProg for its conceptual simplicity. GenProg remains a reasonable baseline
despite almost 10 years of research in program repair [23, 58, 163, 167]. We congure GenProg
to run continuously and record all identied patches during the search until timeout. For
IntroClassJava, we congure GenProg to run until it has tried 20 dierent seeds or exceeded
a time budget of 3 hours. For Defects4J, we scale up the search budget to 40 seeds or 6 hours
of execution. Since edit generation and compilation time are excluded, our search budget for
GenProg is generous, allowing it to suciently explore the search space using genetic search,
in the same spirit of Long and Rinard [96] where a generous budget was given to nd as many
patches as possible in a given search space.

To evaluate eciency of our approach, we measure the time it takes to generate the rst
plausible patch. Again, we compare VarexC with GenProg using the same meta-programs.
GenProg remains a representative heuristics-based repair approach because validation of
patch candidates still dominates the overall search. The search heuristics used to rank patch
candidates might aect eciency, especially in cases where validating each patch candidate
requires non-trivial amount of test execution. To mitigate the impact of search heuristics, we
make the validation in GenProg more ecient by sampling 10% of the provided tests when
validating patch candidates. If all the tests in the sample pass, GenProg continues with the rest
of the tests. This way, an eciency comparison with GenProg is likely generalizable to other
heuristics-based approaches.

We set up the experiments in Docker containers and ran all performance measurement
on Amazon Fargate. Each Fargate instance has 2 vCPU and 16 GB of RAM. Altogether, the
experiments for RQ1 took more than 5000 hours of CPU time.

Threats to Validity. Before we show results, we discuss potential threats to validity:
• We discarded some Math and Closure bugs because of diculties of setting them up for
variational execution, due to issues like unsupported API calls. As discussed in Section 3.5,
other semantics-based approaches that rely on symbolic execution are likely to face similar
diculties, which can often be addressed with more engineering eort such as writing

94 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

more model code to abstract those API calls [166]. The exclusion of these bugs might
aect our ndings to some extent, but we do not expect a systematic bias because the
existence and quality of patches are largely independent of specic API calls.

• Direct comparisons of raw numbers with prior work should be made with caution because
the setup could be drastically dierent, such as using dierent fault localization techniques
and dierent xing ingredients. To objectively evaluate our approach, we compare with
GenProg within a consistent setup.

• Randomness might aect several components of our experiment, such as generating
meta-programs, sampling edits for variational execution, and genetic search of GenProg.
To limit the impact of randomness, we intentionally generate a large pool of applicable
edits when we generate meta-programs. We also take dierent samples or seeds when
applicable.

• As with all existing approaches, our approach is evaluated on a limited number of bugs
and thus generality is unclear. Technical limitations in the current implementation may
make it more challenging to run other programs, but the conceptual ideas of variational
execution as a technique are generalizable. Following prior work, we use the most popular
datasets in our evaluation. Recent studies criticize that existing program repair approaches
tend to overt to specic benchmarks such as Defects4J [33], but we argue that the
overtting issues mainly come from using xing ingredients that are specic to certain
programs. The novelty of our approach lies in the eective and ecient search strategy.
We pick our eight edit templates because they are basic, general and well understood, but
our approach is generalizable to dierent kinds of xing ingredients. A further evaluation
using more advanced edit templates on other subjects is interesting but out of scope.

• Finally, potential errors in our tooling and manual analysis might aect the results. To
mitigate potential errors, we performed rigorous testing on our tooling and took due
diligence to verify our results. We present raw data and concrete examples in the paper,
and make our tools publicly available for open investigation.

Results. For IntroClassJava, as we can see in Table 5.2, our technique signicantly out-
performs the state of the art on all subjects, xing more bugs with generalizable patch. The
only exception is S3, which can produce generalizable patches for 7 more smallest bugs than
VarFix. We speculate that S3 performs better on smallest because S3’s search space includes
more diverse xing ingredients, (e.g., adding or removing Boolean expressions in branch condi-
tions) [86]. Even with the simple xing ingredients, VarFix can uniquely produce generalizable
patches for 40 bugs (e.g., 11 for median, 8 for smallest, and 19 for digits) when compared to
the state of the art.

Comparing to GenProg on the same meta-programs, VarFix outperforms GenProg on all
subjects, xing 28 more bugs with generalizable patches. In fact, the bugs xed by GenProg is
a strict subset of those xed by VarFix, indicating that the search strategy of VarFix is much
more eective at identifying patches that are available in the given search space.

For Defects4J, as shown in Table 5.3, we observed similar patterns as IntroClassJava,
although the repair problems of Defects4J are much larger in terms of lines of code and number
of tests (Table 5.1). While numbers are in the same ballpark, VarFix produces generalizable

5.8. EVALUATION 95

Table 5.2: Patch generation for IntroClassJava (Generalizable/Plausible).

Subject #Bugs VarFix GenProg CapGen S3 Nopol jMutRepair ARJA

median 57 23/32 13/18 8/- - 16 7 7
smallest 52 15/38 2/18 11/- 22/- 12 9 9
digits 75 22/30 16/26 3/- - 2 4 6
grade 89 4/4 4/4 3/- - 2 4 0
checksum 11 0/2 0/1 0/- - 0 0 1
syllables 13 0/1 0/1 0/- - 0 0 0

Total 297 64/107 35/68 25/- 22/- 32 24 23
A hyphen (-) denotes missing data.
#Bugs denotes the total number of bugs for the subject.
For VarFix, GenProg, CapGen, and S3, each cell shows the number of bugs patched by generalizable/plausible
patches.
For Nopol, jMutRepair, and ARJA, each cell shows the number of bugs patched by plausible patches since patch quality
is not evaluated [33].

Table 5.3: Patch generation for Math and Closure (Generalizable/Plausible).

Subject #Bugs VarFix GenProg Hercules SimFix ssFix CapGen JAID

Math 106 11/24 7/16 20/29 14/26 10/26 13/- 5/8
Closure† 176 6/11 0/1 8/13 5/7 2/11 -/- 7/10

Total 282 17/35 7/17 28/42 19/33 12/37 13/- 12/18
Each cell shows the number of bugs patched by generalizable/plausible patches.
#Bugs denotes the total number of bugs for the subject.
Numbers for existing approaches are taken from the corresponding papers[23, 58, 139, 163, 167].
CapGen was not evaluated on Closure and the paper only reports correct patches.
†: Closure-62 and Closure-63 are the same. We count only one of them and manually adjust numbers of other ap-
proaches for consistency.

patches for fewer bugs than the state of the art except ssFix on either Math or Closure. Again,
we speculate that these approaches x more bugs with generalizable patches because they use
more diverse xing ingredients. For example, Hercules can x Math-24 by inserting a method
call that is absent from the buggy source le. A xing ingredient like this is beyond the scope of
our search space because we only reuse code from the source le under repair. That said, even
with our simple xing ingredients, VarFix can uniquely x 7 bugs with generalizable patches (4
for Math and 3 for Closure). We suspect that VarFix can repair bugs that existing approaches
did not x because our search space is more expressive (i.e., we do not restrict the types of
edits) and our research is systematic with regard to the given search space (i.e., we do not use
heuristics to traverse the space).

When compared with GenProg, VarFix again shows clear advantage on all subjects. For
Closure, the results of VarFix are noticeably better than GenProg. We observed that Closure
bugs tend to involve thousands of test cases, making repeated validation of patch candidates very
expensive for GenProg. For this reason, GenProg can only explore limited number of plausible
patches and thus search eectiveness is impaired. In contrast, VarFix only executes test cases
once by using variational execution to aggressively share test executions of all plausible patches.
These results suggest that the search strategy of VarFix remains eective at identifying patches
in large search spaces of large programs with thousands of tests.

96 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

0 5,000 10,000
VarFix

GenProg

(a) median

0 5,000
(b) smallest

0 1,000 2,000
(c) grade

0 5,000 10,000
VarFix

GenProg

(d) digits

1,000 2,000 3,000
(e) checksum

500 1,000 1,500
(f) syllables

0 5,000 10,000 15,000 20,000
VarFix

GenProg

(g) math

0 5,000 10,000 15,000 20,000
(h) closure

Figure 5.4: Eciency comparison between VarFix and GenProg. In each box plot, we show the time taken to nd
the rst patch for all the bugs of the given subject. The horizontal axis displays time in seconds.

In Figure 5.4, we compare search eciency in terms of time to nd the rst plausible patch. For
IntroClassJava, VarFix tends to take slightly more time to nd the rst patch, mainly because
variational execution explores all the patch candidates at the same time. But when variational ex-
ecution terminates, VarFix can usually nd manymore patches thanGenProg (not shown in Fig-
ure 5.4 but reected in Table 5.2 and Table 5.3). For Defects4J, VarFix consistently outperforms
GenProg because of two reasons. First, the overhead of variational execution is oset by larger
search spaces andmore expensive test executionswhen xing bugs in large programs. Second, we
congured VarFix to gradually increase the search bound to prevent variational execution from
getting stuck at expensive loops or recursive calls. That is, VarFix attempts to x the given bug
with only 1 edit, then 2 edits, and nally 3 edits. If a single edit is sucient to x the bug, which
is the case for many bugs in Defects4J [61], VarexC can generate patches quickly. Similarly, we
could congure VarFix to gradually increase the search bound on the IntroClassJava dataset
if our goal is to optimize for search eciency. However, we argue that the overall repair time
for IntroClassJava is reasonable and the dierences between VarFix and GenProg are small.

Summary: RQ1 (Eectiveness)

How eective and ecient our approach is in nding patches within a large search space
of xing ingredients?

• A direct comparison with GenProg using the same meta-programs reveals that
VarFix is strictly more eective in identifying generalizable patches, xing 29 more
IntroClassJava bugs and 10 more Defects4J bugs with generalizable patches.

• VarFix signicantly outperforms prior work on IntroClassJava and can uniquely
x 7 Defects4J bugs. Although VarFix repaired fewer Defects4J bugs overall, the
main reason, we speculate, is that prior work uses more tailored xing ingredients.

• The eciency of VarFix is comparable to lightweight approaches like GenProg.
The overhead of VarFix becomes less obvious for larger programs with more tests.

5.8. EVALUATION 97

5.8.5 RQ2 (Patch Quality)

Experiment Setup. To study patch quality, we use automated analyses and manual checking
to categorize patches generated by VarFix into dierent groups. We distinguish high-quality
patches that are generalizable beyond the tests used for repair from patches that overt to the
provided tests. Existing work has taken dierent measures to assess patch quality and used
dierent terminologies to categorize patches. In the following, we describe the terms we use
and the measures we take to identify them:

• Plausible patch is a patch that can pass all the provided tests. All the patches identied
by VarFix, GenProg or other existing tools are plausible patches.

• Generalizable patch is a plausible patch that can additionally pass a high-quality held-
out test suite [86, 114, 145].

• Correct patch is a generalizable patch that adheres to the specication of the program.
For nontrivial programs in practice, specications are often hard to obtain and thus tests
are used for approximation. By denition, a generalizable patch that can pass all possible
tests is a correct patch. It is important to note that existing work often denes correct patch
dierently, as a patch that is syntactically or semantically equivalent to the developer patch
via manual check. We argue that checking syntactic and semantic equivalence is hard to
automate and can be subjective. For Defects4J, the distinction between generalizable
patch and correct patch is not important because we lack the absolute correctness ground
truth, which can be approximate with the developer patch but the process of manual
checking can be noisy. For this reason, we did not attempt to classify correct patches for
Defects4J and only discuss generalizable patches, for which we can automate objectively.

Using this taxonomy, we take multiple measures to evaluate patch quality. For IntroClass-
Java, the specications are simple enough that we can verify patch correctness via symbolic
execution and constraint solving. We use our customized symbolic execution verier to identify
correct patches for IntroClassJava except for digits. We treat digits dierently because the
buggy programs often involve loops that make our symbolic execution engine slow. Given the
sheer number of plausible patches we can identify for digits, we limit each program input to
[−100, 100]. We set this range based on our observation of dierent digits bugs. Because of
this additional constraint, we only identify generalizable patches for digits.

For Defects4J, we follow existing practice to use an additional held-out test suite to identify
generalizable patches [86, 114, 145]. We reuse existing high-quality held-out tests that were
specically constructed for evaluating patch quality [114]. For the few bugs that we cannot nd
existing held-out tests, we manually examine the generated patch and mark it as generalizable
only if it is syntactically or semantically close to the developer patch.

Note that by default, VarFix outputsminimized plausible patches, as discussed in Section 5.6.
Since IntroClassJava bugs are simple enough to reliably verify patch correctness using symbolic
execution, we take this opportunity to study how minimization aects patch quality. To that
end, we modify VarFix to record all plausible patches and subsequently verify each of them
using symbolic execution. But for Defects4J, we record only minimized plausible patches due to
the sheer quantify of plausible patches available in the large search spaces.

98 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Table 5.4: Comparing the number of dierent kinds of patches for IntroClassJava.

VarFix GenProg

Subject Bug𝑝𝑙 Bug𝑐𝑟𝑡 Pl M-Pl Crt M-Crt Bug𝑝𝑙 Bug𝑐𝑟𝑡 Pl M-Pl Crt M-Crt

median 32 23 3261 42 3222 23 18 13 77 4 79 3
smallest 38 15 2423 102 219 7 18 2 42 3 3 1
grade 4 4 102 4 99 4 4 4 44 2 41 2
checksum 2 - 4 4 - - 1 - 22 2 - -
syllables 1 - 105 7 - - 1 - 18 2 - -

digits∗ 30 22 280 9 238 6 26 16 229 4 140 3

median3 18 7 1944 34 4377 28 14 7 158 4 274 5
smallest3 30 4 3908 310 1908 44 20 3 74 3 23 1
grade3 0 0 0 0 0 0 0 0 0 0 0 0
checksum3 2 - 4 4 - - 1 - 64 2 - -
syllables3 1 - 12 12 - - 1 - 93 4 - -

digit∗3 12 8 135 10 164 9 12 7 255 6 144 3
Bug𝑝𝑙 reports the number of bugs xed by plausible patches.
Bug𝑐𝑟𝑡 reports the number of bugs xed by correct patches.
Pl reports the average number of plausible patches.
M-Pl reports the average number of minimized plausible patches.
Crt reports the average number of correct patches.
M-Crt reports the average number of minimized correct patches.
A hyphen (-) means we cannot use our customized symbolic execution engine to verify the subject due to technical limitations.
Subjects with the “3” subscript will be discussed in RQ3 (Fixing Ingredients).
digits and digits3 are separated from other subjects because we only verify whether a patch is generalizable, instead of correct (as discussed
in the experiment design of RQ2 (Patch Quality)).

Threats to Validity. Assessing patch quality remains an important open challenge in auto-
matic program repair. To avoid bias, we use objective and established measures when possible,
by relying on independent held-out tests and our customized symbolic execution engine. We
had to discard a small fraction of held-out tests for Closure that we cannot reliably execute, due
to issues related to the virtual le system of Evosuite. Our prototype symbolic execution engine
failed to analyze 8 IntroClassJava bugs due to the use of unsupported language features (e.g.,
array) or APIs (e.g., java.util.Scanner#findInLine). For these bugs, we conservatively mark
all patches as just plausible patches. For the few Defects4J bugs where manual checking is
unavoidable, we identify generalizable patches conservatively and present them as examples for
open investigation.

Results (IntroClassJava). In Table 5.4, we present the average number of generated patches.
Details of individual cases are available in Table 5.9 and Table 5.10. We can see that VarFix can
nd high-quality patches for a large percentage of repaired bugs (columns Bug𝑝𝑙 and Bug𝑐𝑟𝑡),
ranging from 39.5% for smallest to 100% for grade. When compared to GenProg, VarFix can
x all the bugs that GenProg can x while xing 28 more bugs with high quality patches. These
results indicate that VarFix is eective at identifying high-quality patches that are available in
the search space.

Moreover, we can see that plausible patches (column Pl) and correct patches (column Crt)
are abundant even for tiny programs like the ones in IntroClassJava. Long and Rinard [96]

5.8. EVALUATION 99

analyzed the search spaces of 24 bugs and discovered that plausible patches are common but
correct patches are rare. Our results agree with their study that plausible patches are abundant,
but also reveal that correct patches can be abundant as well. We speculate that Long and Rinard
[96] could not nd a large number of correct patches because their search strategies are not
eective enough to identify the rest of the correct patches. A direct comparison with the work
of Long and Rinard [96] is dicult to set up because their subjects are written in C. However,
we can use GenProg to approximate the search strategies of Long and Rinard [96], given that
they are all based on search heuristics and we gave GenProg a generous search budget in the
same spirit as the experiment design of Long and Rinard [96]. As we can see from Table 5.4,
VarFix can nd signicantly more correct patches than GenProg, indicating that high-quality
patches can be abundant, and VarFix is a much more reliable technique for identifying them.

Results (Eect ofMinimization). When analyzing the eect of minimization (columnsM-Pl
and M-Crt in Table 5.4), we nd that minimization can eectively reduce the number of patches,
of both low quality and high quality. For example, minimization can reduce plausible patches
to two orders of magnitude fewer for all subjects except for checksum. To study the eect of
minimization on patch quality, we sampled the patches that were reduced by minimization and
manually checked them.

In Figure 5.5, we show an example where minimization is useful for improving patch quality.
The buggy program tries to nd the median number of three input integers a, b, and c. The root
cause of this bug is that the second if statement overrules the rst one, rendering it useless
and so the buggy program can never tell that a is the median. The most straightforward x to
this bug is probably changing the else in Line 4 to else if. However, this change is beyond
the scope of our xing ingredients, so VarFix came up with a workaround, marked as Edit 1
in Figure 5.5. Edit 1 appends the rst if statement to the end, so that a can now be checked
without being overruled. Edit 1 alone is sucient to pass all provided tests, and in fact forms a
correct patch. Based on this edit, VarexC was able to nd a lot more multi-edit patches, such as
by swapping out the useless if statement in Line 1-3 with other statements that do not aect
the eventual program state. Despite being correct, these patches are of little value and might
even be considered noise from the code maintenance perspective. This example shows that
minimization can be helpful in eliciting high-quality patches.

However, there are also cases where minimization could preemptively remove valuable
patches. We show such an example in Figure 5.6. As we can see, the use of relational operators
is wrong and so the buggy program cannot handle cases where a, b, and c could be equal. To
x this problem, VarexC generated a three-edit patch as shown in Figure 5.6. Edit 3 replaces
the last if statement with its body, eectively changing the last else if branch into a else
branch that always considers c as the median. With only Edit 3, the program would still fail for
cases where a and b are equal, and thus we need Edit 1 and Edit 2 to fully x the buggy program.
Although Edit 1-3 together form a correct patch, VarFix would not generate such a patch by
default due to minimization. As discussed in Section 5.6, VarFix only outputs patches that are
minimally sucient to pass all provided tests, to avoid spamming developers with cases like the
one discussed in Figure 5.5. If we look at the provided tests at the bottom of Figure 5.6, we can
see that there is no such case where a == b && b > c, and thus Edit 1 is not necessary to pass

100 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

1 if ((a >= b && a <= c) || (a >= c && a <= b)) {
2 median = a;
3 }
4 if ((b >= a && b <= c) || (b >= c && b <= a)) {
5 median = b;
6 } else {
7 median = c;

8 1 if ((a >= b && a <= c) || (a >= c && a <= b)) {

9 1 median = a;

10 1 }

11 }

Figure 5.5: Code snippet modeled after median-0cdfa335-003 in the IntroClassJava dataset.

1 if ((a > b && b > c) || (c > b && b > a))
2 median = b;

3 else if ((b 1 > ⇒ >= a && a > c) || (c > a && a 2 > ⇒ >= b))

4 median = a;

5 else 3 if ((a > c && c > b) || (b > c && c > a))

6 median = c;
7
8 Blackbox
9 (2,6,8)→6, (2,8,6)→6, (6,2,8)→6, (6,8,2)→6, (8,2,6)→6, (8,6,2)→6, (9,9,9)→9
10
11 Whitebox
12 (0,0,0)→0, (2,0,1)→1, (0,0,1)→0, (0,1,0)→0, (0,2,1)→1, (0,2,3)→2

Figure 5.6: Code snippet modeled after median-3cf6d33a-007 in the IntroClassJava dataset. Blackbox and
Whitebox are the names of the test suites that come with the buggy program. Each test case is represented in the
form (a, b, c)→ o where a, b, c are inputs to the test and c is the expected output.

all provided tests. For this reason, VarFix will only generate a patch with Edit 2 and Edit 3 and
miss the correct patch if we had not congured VarFix to record all plausible patches for this
experiment.

As we can see, there are cases where minimization is helpful for improving patch quality
(e.g., Figure 5.5) and (potentially rare) cases where we might miss certain high-quality patches
due to minimization and weak specication (e.g., Figure 5.6). Quantifying which cases are more
common than other is unfortunately dicult because manually checking tens of thousands of
patches is time-consuming. Based on our observation, cases like Figure 5.6 are relatively rare, so
we decided to apply minimization by default.

Results (Defects4J). In Table 5.5, we show dierent kinds of patches VarFix and GenProg
generated. As we can see, VarFix can nd a nontrivial number of minimized plausible patches,
even for large programs like Math and Closure with thousands of tests. For 11 out of 24 Math
bugs and 6 out of 11 Closure bugs, VarFix can nd high-quality generalizable patches. In
most cases, the number of generalizable patches is small, likely because we have limited xing
ingredients in the search space. When compared to GenProg, VarFix can consistently nd more
minimized plausible and generalizable patches, indicating that the search strategy of VarFix is
more eective and reliable.

5.8. EVALUATION 101

Table 5.5: Dierent kinds of patches for Math and Closure.

Developer Patch M-Pl Gen

Bug Possible? Generated? GenProg VarFix GenProg VarFix Order

Math-5 3 3 1 1 1 1 1/0/0
Math-8 7 3 14 0 0
Math-22 3 3 0 2 0 1 0/1/0
Math-24 7 0 1 0 0
Math-28 7 32 69 0 0
Math-29 7 1 4 0 0
Math-35 7 2 4 1 2 0/1/1
Math-40 7 1 9 0 0
Math-49 7 5 6 0 0
Math-50 3 7 11 30 7 16 16/0/0
Math-53 3 3 2 2 2 2 2/0/0
Math-56 7 0 3 - -
Math-62 7 0 3 0 3 0/3/0
Math-65 7 1 1 - -
Math-70 3 3 3 3 2 2 2/0/0
Math-73 7 0 2 0 0
Math-80 7 0 6 0 0
Math-81 7 0 19 0 1 1/0/0
Math-82 3 3 1 6 1 6 4/2/0
Math-84 7 4 5 0 0
Math-85 3 3 11 28 2 4 2/2/0
Math-88 7 0 1 0 1 0/0/1
Math-95 7 10 13 0 0
Math-96 7 1 1 - -
Closure-11 3 7 0 1 0 1 1/0/0
Closure-13 3 7 0 28 0 27 27/0/0
Closure-19 7 0 5 0 0
Closure-21 7 0 78 0 0
Closure-22 7 0 97 0 0
Closure-62∗ 3 3 0 2 0 2 2/0/0
Closure-63∗ 3 3 0 2 0 2 2/0/0
Closure-66 7 0 8 0 0
Closure-73 3 3 0 1 0 1 1/0/0
Closure-86 3 3 0 1 0 1 1/0/0
Closure-126 3 7 4 9 0 0
Closure-161 3 7 0 1 0 1 1/0/0
A hyphen (-) denotes missing data.
“Possible?” denotes whether it is possible to use our mutation operators to generate the developer patch.
“Generated?” denotes whether VarFix generated the developer patch in our evaluation.
M-Pl denotes the number of minimized plausible patches.
Gen denotes the number of generalizable patches.
Order breaks down VarFix’s generalizable patches (second to last column) by order (i.e., number of edits), from order 1 to
order 3.
Closure-62 and Closure-63 are duplicate. We show them in this table for consistency with prior work, but only count one
of them when we report numbers [139].

102 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

1 if (childType.isDict()) {
2 report(t, property, TypeValidator.ILLEGAL_PROPERTY_ACCESS, "'.'", "dict");

3 1 } else if (n.getJSType() != null && parent.isAssign()) {

4 1 return;

5 } else if (validator.expectNotNullOrUndefined(t, n, childType,
6 "No properties on this expression", getNativeType(OBJECT_TYPE))) {
7 checkPropertyAccess(childType, property.getString(), t, n);

(a) Developer patch

1 if (childType.isDict()) {
2 report(t, property, TypeValidator.ILLEGAL_PROPERTY_ACCESS, "'.'", "dict");

3 } else if (n.getJSType() 1 != ⇒ == null && parent.isAssign()) {

4 return;
5 } else if (validator.expectNotNullOrUndefined(t, n, childType,
6 "No properties on this expression", getNativeType(OBJECT_TYPE))) {
7 checkPropertyAccess(childType, property.getString(), t, n);

(b) Generalizable patch generated by VarFix

Figure 5.7: Developer patch and VarFix patch for Closure-11.

When compared to developer patches, VarFix can generate the developer patch for 6 Math
bugs and 4 Closure bugs. For the few cases where the developer patch is feasible but not
generated, we manually examined the corresponding meta-programs to look for the xing
ingredients needed to generate the developer patch. It turns out that in all cases (i.e., Math-
50, Closure-11, Closure-13, Closure126, and Closure-161), at least some of the required xing
ingredients are missing in the meta-programs. We argue that this is the limitation of GenProg,
which we use to perform fault localization and generate individual edits, and thus independent
of the main contribution of this work. Although VarFix cannot generate the developer patch
in these cases, VarFix can still generate high-quality generalizable patches. We discuss a few
concrete examples below.

In Figure 5.7, we compare the developer patch and the patch generated by VarFix for
Closure-11. Although not syntactically the same, they are semantically close because both
patches try to skip the else if branch in Line 3-4. Similarly, in Figure 5.8, we contrast the
developer patch and the VarFix patch for Math-50. Instead of removing the if statement like
the developer patch does, the VarFix patch replaces it with a return check that is taken from the
very beginning of the surrounding method. Since the return check appears much earlier in the
method, Line 8-10 is unlikely to take eect. Looking at the code statically, there exist execution
paths that modify f0 between the original return check and the copied return check introduced
by the VarFix patch, but more domain knowledge is needed to determine whether those paths
are feasible. Again, albeit being syntactically dierent, the two patches in Figure 5.8 is likely to
be semantically close. The fact that the VarFix patches in Figure 5.7 and Figure 5.8 can pass an
independent held-out suite indicates that the patches have high quality.

Finally, in Figure 5.9, we show an example where the VarFix patch is nearly semantically
identical to the developer patch. Both patches add the same return check, but in two dierent
methods of the same class. A closer look at the code reveals that the method tryFoldArrayAccess,
which is modied in the developer patch, is only called in method tryFoldGetElem, which is
modied in the VarFix patch. Given the fact that both methods are private, the two patches

5.8. EVALUATION 103

1 break;
2 case REGULA_FALSI:
3 // Nothing.

4 1 if (x == x1) {

5 1 x0 = 0.5 * (x0 + x1 - FastMath.max(rtol * FastMath.abs(x1), atol));

6 1 f0 = computeObjectiveValue(x0);

7 1 }

8 break;
9 default:
10 // Should never happen.

(a) Developer patch

1 break;
2 case REGULA_FALSI:
3 // Nothing.

4 1 if (x == x1) {

5 1 x0 = 0.5 * (x0 + x1 - FastMath.max(rtol * FastMath.abs(x1), atol));

6 1 f0 = computeObjectiveValue(x0);

7 1 }

8 1 if (f0 == 0.0) {

9 1 return x0;

10 1 }

11 break;
12 default:
13 // Should never happen.

(b) Generalizable patch generated by VarFix

Figure 5.8: Developer patch and VarFix patch for Math-50.

are semantically very close. We refrain from asserting semantically equivalence because it is
theoretically possible that tryFoldGetElem is called outside of the Java class using reection.

From these examples, we can see that VarFix is eective at generating high-quality patches
that resemble the developer patch. They also illustrate that there could be dierent ways of
xing a bug, and thus using the developer patch as the only gold standard could be limited, and
even infeasible since determining semantic equivalence is often dicult for nontrivial programs.

Summary: RQ2 (Patch Quality)

To what extent do our generated patches overt to the provided tests?
• For both IntroClassJava and Defects4J, VarFix can identify signicantly more
high-quality patches for more bugs than GenProg, suggesting that the systematic
search is useful for identifying high-quality patches available in the search space.

• Minimization is useful for ltering out trivial patches, but can also occasionally
exclude high-quality patches that are not distinguishable by the test suite.

104 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

1 private Node tryFoldArrayAccess(Node n, Node left, Node right) {
2 Node parent = n.getParent();

3 1 if (isAssignmentTarget(n)) {

4 1 return n;

5 1 }

(a) Developer patch

1 private Node tryFoldGetElem(Node n, Node left, Node right) {
2 Preconditions.checkArgument(n.getType() == Token.GETELEM);

3 1 if (isAssignmentTarget(n)) {

4 1 return n;

5 1 }

6 if (left.getType() == Token.OBJECTLIT) {
7 return tryFoldObjectPropAccess(n, left, right);
8 }
9 if (left.getType() == Token.ARRAYLIT) {
10 return tryFoldArrayAccess(n, left, right);
11 }
12 return n;
13 }

(b) Generalizable patch generated by VarFix

Figure 5.9: Developer patch and VarFix patch for Closure-161.

5.8.6 RQ3 (Fixing Ingredients)

Experiment Setup. As discussed in RQ1 (Eectiveness) and RQ2 (Patch Quality), our ap-
proach is eective at generating high-quality patches. We hypothesize that VarFix is eective
because the systematic search enabled by variational execution can eectively make use of
the diverse xing ingredients in the search space. In this research question, we validate our
hypothesize by simulating dierent xing ingredients in the search space and explore whether
the eectiveness of our approach is aected. To that end, we design three experiments.

First, for IntroClassJava, we use the original three edit templates of GenProg to regenerate
meta-programs. These new meta-programs only have edits that append, replace, or delete
statements. In contrast, the meta-programs generated with all eight edit templates (Section 5.4)
have more diverse xing ingredients—expression-level edits that modify branch conditions. We
repeat the experiment setup of RQ1 (Eectiveness) to run VarFix and GenProg on these new
meta-programs and compare eectiveness of both approaches. We suspect that VarFix can make
use of the more diverse xing ingredients in the search space to generate more high-quality
patches for more bugs. Moreover, we expect a similar improvement with GenProg, but suspect
that VarFix’s improvement is bigger.

Second, for Defects4J, we manually examine all bugs to gauge whether the developer patch
can be simulated using our eight edit templates, and more importantly, why VarFix failed to x
the bug. This manual analysis helps us to understand if there is a case where VarFix failed to
make use of the available xing ingredients in the search space.

Finally, we pick 10 bugs that have not been xed by any prior work and manually enhance
the meta-programs with xing ingredients of their developer patch. To make the search more
challenging, we focus on bugs that need two or three edits in their developer patch. This way,

5.8. EVALUATION 105

the correct patch is guaranteed to be in the search space and an eective approach should be
able to identify it. We run VarFix and GenProg with the same settings as RQ1 (Eectiveness)
and compare the number of bugs xed this way.

Threats to Validity. In addition to the threats discussed in RQ1 (Eectiveness), our manual
selection of 10 Defects4J bugs might not be generalizable. We argue that manually enhancing
meta-programs is time-consuming, so we limit the scale of this experiment, but make it more
challenging by picking bugs that require multiple edits to x and have not been xed by any
existing work. There is also a question of whether the xing ingredients of developer patches
can be generated with automated techniques. We argue that this work focuses on the new search
strategy and thus generating xing ingredients is beyond the scope of this work.

Results (IntroClassJava). In the lower half of Table 5.4, we report the number of bugs
xed and the number of patches generated. Again, details of individual cases are available in
Table 5.9 and Table 5.10.

We can see that VarFix can x more bugs for all subjects, both plausibly (column Bug𝑝𝑙) and
correctly (column Bug𝑐𝑟𝑡). For example for median, VarFix can generate correct patches for 16
more bugs when all eight edit templates are used to generate more diverse xing ingredients.
GenProg can also make use of the xing ingredients, but to a lesser extent than VarexC. For
example, even though using the same meta-programs of median, GenProg can only generate
correct patches for 6 more median bugs. Moreover, GenProg xed 2 fewer smallest bugs when
eight edit templates are used, indicating that the randomness of genetic search can potentially
undermine the improvement of diverse xing ingredients.

If we compare the number of generated patches, we can observe two opposite trends. When
switched to using 8 edit templates, the number of patches can both increase (e.g., from 1944
to 3261 for median) and decrease (e.g., from 3908 to 2423 for smallest). But there is a clear
trend that fewer minimized correct patches (column M-Crt) are available in the search spaces
constructed with eight edit templates. GenProg exhibits similar trends as VarFix, but at a
smaller scale. We speculate that, using more edit templates can increase the likelihood of a
bug being xed, but can also decrease the number of patches generated if certain important
xing ingredients are squeezed out. Recall that, we set a limit of 500 edits independent of the
edit templates used, and thus we can only keep 500 edits that GenProg considers most likely
useful. We could increase the bound to include more edits in the search space, but we argue that
variational execution is not a silver bullet to the combinatorial explosion problem. Instead of
pushing variational execution or other similar techniques to handle arbitrary search spaces of
any sizes, we argue that it is more viable to improve techniques of generating xing ingredients
to form a search space that contains valuable xing ingredients.

Results (Defects4J). We manually examined all developer patches of Math and Closure and
discovered that 9 more bugs could have been xed using our eight edit templates. A closer look
into the corresponding meta-programs revealed that none of them contains all required xing
ingredients of the developer patch. There are two causes to missing required xing ingredients.
First, the fault localization used in GenProg failed to identify the buggy locations, the problem

106 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Table 5.6: Patch generalization for bugs with manually encoded xing
ingredients.

Bug Edits Methods Classes VarFix GenProg

Math-1 2 2 2 3 3
Math-26 2 1 1 3 3
Math-52 3 1 1 3 3
Math-83 3 2 1 3 7
Math-86 2 1 1 3 3
Closure-7 2 1 1 3 7
Closure-9 2 2 2 3 3
Closure-27 3 2 1 3 7
Closure-72 2 2 2 3 7
Closure-75 2 2 1 3 7

Edits denotes the number edits in the developer patch.
Methods denotes the number of methods modied in the developer patch.
Classes denotes the number of classes modied in the developer patch.

of which exists in Math-46, Math-72, Closure-133, and Closure-150. Second, GenProg does
not consider the required xing ingredients among the most 5000 useful edits (recall that we
limit the number of generated edits to 5000 for Defects4J), the problem of which exists in
Math-69, Closure-102, Closure-115, Closure-117, and Closure-126. These results together
with Table 5.5 indicate that VarFix has already generated all developer patches that are available
in the search space, and thus our approach as a search strategy is eective. Fault localization
and meta-program generation can be improved to x more bugs, but this work focuses on the
search strategy.

In Table 5.6, we show statistics of the bugs and their corresponding developer patch. 7 of
them require 2 edits to x and 3 of them require 3 edits. Most of the required edits span across 2
methods, and in three bugs even span across 2 classes. As we can see, VarFix can identify the
developer patch for all manually enhanced search spaces, while GenProg missed the developer
match in half of the cases. Interestingly, in 4 out of 10 cases, VarFix found a patch that contains
fewer edits than the developer patch, indicating that not all edits in the developer patch are
necessary for passing all provided tests. In 2 out of 10 cases, VarFix found more minimized
plausible patches, indicating that some edits of the developer patch can be swapped out with the
automatically generated xing ingredients. These ndings further suggest that using developer
patches as the only standard for evaluating patch quality could be limited.

Summary: RQ3 (Fixing Ingredients)

To what extent can our approach make use of dierent kinds of xing ingredients?

Using a systematic search,VarFix can eectivelymake use the necessary xing ingredients
in the search space to x more bugs whereas heuristics-based approach like GenProg
can sometimes miss xing ingredients due to the ad hoc exploration of search space.

5.8. EVALUATION 107

Table 5.7: VarFix patches for IntroClassJava by order.

Patched By Minimized Correct Patches

Subject Bug𝑐𝑟𝑡 O1 O2 O3 Total O1 O2 O3

median 23 7 14 18 537 18 87 432
smallest 15 1 3 14 116 1 9 106
grade 4 4 2 0 18 10 8 0
checksum - - - - - - - -
syllables - - - - - - - -

digits∗ 21 14 20 2 135 29 89 17
A hyphen (-) denotes missing data.
Bug𝑐𝑟𝑡 denotes the number of bugs that can be xed by correct patches.
O1, O2, O3 represents rst-order, second-order, third-order patch, respectively.
For digits, we discuss generalizable patches as opposed to correct patches because of
the limitations in our customized symbolic execution engine.

5.8.7 RQ4 (Multi-Edit)

Experiment Setup. To understand how eective our approach is at generating multi-edit
patches, we count the bugs for which VarFix can generate correct patches composed of 1 edit, 2
edits, and 3 edits. We also break down all minimized correct patches by order to observe the
distribution. For Defects4J, we include the 10 bugs with manually enhanced meta-programs
from RQ3 (Fixing Ingredients) because they feature multi-edit patches. We focus on minimized

correct patches because they have the highest quality among the patches generated by VarFix,
excluding unnecessary multi-edit patches that can be easily ltered out by patch minimization.

Threats to Validity. This research question shares the same threats as previously discussed.

Results (IntroClassJava). In Table 5.7, we show the collective results for IntroClassJava.
Details of individual bugs can be found in Table 5.9 and Table 5.10. As we can see, the number of
bugs xed correctly would decrease signicantly if only one edit is used. Between second-order
and third-order, there is no clear trend of which is more common, likely because the number of
edits needed depends on multiple factors, such as the nature of the bug and the xing ingredients
available in the search space. If we look at the breakdown of minimized correct patches, we can
see that the number of rst-order patches is relatively small comparing to multi-edit patches.
Together with the results reported in Table 5.2 of RQ1 (Eectiveness), these results suggest that
VarFix’s search strategy is eective at composing multiple edits to generate more high-quality
patches to x more bugs.

Results (Defects4J). In Table 5.5, we show a breakdown of identied generalizable patches

by order. Among the 17 bugs for which VarFix can generate generalizable patches, 4 of them
require at least two edits. Overall, the number of multi-edit patches is smaller than single-edit
patches. We speculate the main reason to be lack of proper xing ingredients in the search space,
the problem of which is orthogonal to the main contributions of this work. With all necessary
xing ingredients, VarFix can eectively gather all necessary edits to form a patch, such as the

108 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

1 // org/apache/commons/math3/distribution/FDistribution.java
2 public boolean isSupportLowerBoundInclusive() {

3 1 return true;

4 1 return false;

5 }
6
7 // org/apache/commons/math3/distribution/UniformRealDistribution.java
8 public boolean isSupportUpperBoundInclusive() {

9 1 return false;

10 1 return true;

11 }

Figure 5.10: A multi-edit patch generated by VarFix for Math-22. This patch is the same as the developer patch,
and we are the rst to report xing this particular bug.

one shown in Figure 5.10, where two return statements in two classes need to be modied. To
the best of our knowledge, we are the rst to generate a high quality patch for this bug. The
results of the 10 manually enhanced meta-programs in Table 5.6 further suggest that VarFix’s
search strategy is eective at identifying multi-edit patches that are available in the search space,
even at a larger scale than IntroClassJava.

Summary: RQ4 (Multi-Edit)

How eective is our approach in generating multi-edit patches?

For both IntroClassJava and Defects4J, VarFix can systematically explore the search
space to gather necessary xing ingredients to form multi-edit patches, thus xing more
bugs and leading to more high-quality patches than GenProg.

5.8.8 RQ5 (Patch Ranking)

Experiment Setup. To evaluate our patch ranking, we compare our ranking strategies with
two baselines on a subset of IntroClassJava bugs. As discussed in Section 5.6, VarFix by
default outputs minimized plausible patches. We apply our patch ranking mechanism to these
minimized plausible patches, for a subset of IntroClassJava bugs that (1) have at least one
correct patch and (2) have at least one plausible but incorrect patch. The rst criterion ensures
that we have a ground truth to evaluate our ranking. The second criterion excludes cases where
ranking is not necessary because all patches are correct. We do not rank patches of Defects4J
for two reasons. First, patch correctness as the ground truth of ranking is dicult to establish
for large programs like Math and Closure, making it dicult to objectively evaluate the ranking
results. Second, unlike IntroClassJava where we can identify many minimized patches, the
number of minimized patches as shown in Table 5.5 are small for Math and Closure and thus a
ranking is not interesting or necessary.

As baselines, we measure AST-based syntactic distance and Levenshtein distance. Re-
searchers have proposed dierent strategies for ranking patch candidates. Xiong et al. [168]
systematically analyzed existing strategies and discovered that most of them target specic

5.8. EVALUATION 109

patch categories (e.g., expression level patches) and thus cannot be applied to general patches.
We use the AST-based syntactic distance originally proposed by Le et al. [86], which is dened
as the number of AST node changes needed to transform the original program to the patched
version. AST node changes are computed using GumTree [38]. The assumption behind such a
syntactic distance is to prioritize patches that are close to the original program. Following the
same intuition, we also use the Levenshtein distance as a baseline by treating the original and
patched programs as strings.

Threats To Validity. This experiment shares the same threats as previously discussed.

Results. As we can see in Table 5.8, our ranking techniques signicantly outperform the
baselines, suggesting that the dynamic information obtained from variational execution is
useful for distinguishing high-quality patches. There are a few cases where the two baselines
(e.g., smallest-3b2376ab-008) perform reasonably well, indicating that static information can
potentially be combined with dynamic information to further improve patch ranking. CF-line
performs the best overall, ranking at least one correct patch to top 10 for all bugs except for one
case where the rst correct patch is ranked to the 11th place. We suspect that the success of
CF-line is due to the use of more ne-grain information. Future research in this direction should
explore more ne-grained runtime information for distinguishing high-quality patches.

Summary: RQ5 (Patch Ranking)

How eective is our patch ranking?
Our patch ranking strategies based on dynamic information are eective at ranking high-
quality patches to the top, signicantly outperforming the two baselines that use static
information.

110 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Table 5.8: Patch Ranking Results

Bug Minimized
Plausible
Patches

Minimized
Correct
Patches

AST Leven. DF CF-if CF-line

median-1bf73a9c-003 111 3 48 54 3 8 2
median-317aa705-002 154 150 1 1 1 1 1
median-36d8008b-000 103 3 39 36 11 6 3
median-6aaeaf2f-000 103 3 63 39 4 6 2
median-6e464f2b-003 52 4 27 21 3 6 2
median-b6fd408d-000 5 4 1 1 1 1 1
median-b6fd408d-001 16 15 1 1 1 1 1
median-cd2d9b5b-010 118 6 40 41 2 8 3
median-d43d3207-000 52 4 26 26 10 9 2
median-fcf701e8-002 5 4 2 2 1 2 2
median-fcf701e8-003 6 1 4 4 3 4 4
smallest-15cb07a7-007 84 1 8 7 14 28 5
smallest-1b31fa5c-003 146 3 19 7 21 47 11
smallest-346b1d3c-010 59 24 1 1 1 1 1
smallest-36d8008b-003 207 2 13 12 11 48 6
smallest-3b2376ab-008 92 2 4 4 17 35 9
smallest-48b82975-001 207 2 13 12 7 47 6
smallest-68eb0bb0-000 63 2 11 11 19 25 8
smallest-90834803-005 40 2 12 16 5 22 8
smallest-97f6b152-003 145 2 4 4 5 20 1
smallest-cb243beb-000 63 3 6 16 1 1 1
smallest-dedc2a7c-000 57 2 3 3 15 21 10
smallest-ea67b841-003 142 2 10 10 12 9 10
smallest-f8d57dea-000 92 2 4 4 4 28 3

Top 1 4 4 6 5 6
Top 5 10 10 14 7 16
Top 10 13 13 16 14 23
Numbers in the last 5 columns denote the rank of the rst correct patch in the ranking.
Top 𝑛 shows the number of bugs for which the correct patch is ranked to top 𝑛.
AST denotes the baseline that measures GumTree edit distance (see experiment design of RQ5 (Patch Ranking)).
Leven. denotes the baseline that measures Levenshtein distance (see experiment design of RQ5 (Patch Ranking)).
DF denotes our patch ranking based on data-ow information (see 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑣𝑎𝑟 in Section 5.6).
CF-if denotes our patch ranking based on executed if branches (see 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 𝑓 in Section 5.6).
CF-line denotes our patch ranking based on executed lines (see 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙𝑖𝑛𝑒 in Section 5.6).

5.8. EVALUATION 111

Table 5.9: Dierent kinds of patches for IntroClassJava.
3 Mut and 8 Mut represent using 3 mutation operators and 8 mutation operators, respectively.

Pl, Crt, M-Pl, and M-Crt represent the number of plausible, correct, minimized plausible, and minimized correct patches, respectively.
Order breaks down VarFix’s minimized correct patches by order, from order 1 to order 3.

Each cell shows the number for GenProg/VarFix and a hyphen (-) denotes data unavailable.

3 Mut 8 Mut

Bug Pl Crt M-Pl M-Crt Pl Crt M-Pl M-Crt (Order)

m-0cd-03 702/9888 702/9888 11/69 11/69 168/7793 168/7793 13/55 13/55 (1/16/38)
m-0ce-03 -/4 -/0 -/4 -/0 2/78 0/2 1/11 0/2 (0/0/2)
m-1b-00 180/1604 0/0 7/60 0/0 159/8507 2/24 16/337 1/24 (0/0/24)
m-1b-03 19/592 0/0 8/71 0/0 60/6476 11/305 4/111 3/41 (0/4/37)
m-31-00 697/713 697/713 10/23 10/23 461/33017 435/32841 8/53 8/53 (7/9/37)
m-31-02 139/280 139/280 9/19 9/19 136/11336 136/11227 5/154 5/150 (2/24/124)
m-31-03 -/- -/- -/- -/- -/8 -/0 -/8 -/0 (0/0/0)
m-36-00 1/592 0/0 1/71 0/0 30/3282 2/149 5/103 1/22 (0/2/20)
m-3b-03 7/398 7/398 1/18 1/18 16/1630 16/1630 3/4 3/4 (2/2/0)
m-3b-06 49/61 49/61 1/1 1/1 5/914 5/914 1/1 1/1 (1/0/0)
m-3c-07 -/4 -/0 -/4 -/0 -/145 -/2 -/16 -/2 (0/0/2)
m-6a-00 1/592 0/0 1/71 0/0 11/3362 0/81 3/103 0/16 (0/1/15)
m-6e-03 2/180 0/0 2/22 0/0 10/2394 0/190 2/52 0/32 (0/4/28)
m-89-10 325/19094 325/19088 7/67 7/67 207/16775 207/16751 4/32 4/32 (4/0/28)
m-90-10 4/216 4/216 1/5 1/5 7/1175 7/1162 1/9 1/9 (1/8/0)
m-90-00 -/11 -/0 -/11 -/0 1/197 0/0 1/25 0/0 (0/0/0)
m-93-10 -/- -/- -/- -/- -/5 -/0 -/5 -/0 (0/0/0)
m-93-12 -/- -/- -/- -/- -/214 -/210 -/4 -/4 (0/4/0)
m-93-15 -/- -/- -/- -/- -/214 -/210 -/4 -/4 (0/4/0)
m-aa-03 -/- -/- -/- -/- -/4 -/0 -/4 -/0 (0/0/0)
m-af-04 -/- -/- -/- -/- -/256 -/0 -/13 -/0 (0/0/0)
m-af-07 -/- -/- -/- -/- -/253 -/0 -/13 -/0 (0/0/0)
m-b6-00 -/- -/- -/- -/- 0/5 0/4 0/5 0/4 (0/0/4)
m-b6-01 -/- -/- -/- -/- 39/271 39/270 1/16 1/15 (0/3/12)
m-c7-02 -/- -/- -/- -/- -/4 -/0 -/4 -/0 (0/0/0)
m-cd-10 98/592 0/0 5/71 0/0 66/3458 5/156 8/118 1/25 (0/2/23)
m-d0-00 -/- -/- -/- -/- -/8 -/0 -/8 -/0 (0/0/0)
m-d43-00 1/180 0/0 1/22 0/0 20/2394 3/190 3/52 1/32 (0/4/28)
m-d4a-00 -/- -/- -/- -/- -/4 -/0 -/4 -/0 (0/0/0)
m-e9-01 -/4 -/0 -/4 -/0 1/70 0/1 1/10 0/1 (0/0/1)
m-fc-02 -/- -/- -/- -/- -/38 -/6 -/5 -/6 (0/0/6)
m-fc-03 -/- -/- -/- -/- -/94 -/3 -/6 -/3 (0/0/3)
s-15-07 -/237 -/0 -/38 -/0 103/3025 0/4 2/84 0/4 (0/0/4)
s-1b-03 13/734 0/0 3/74 0/0 55/10177 0/3 4/146 0/3 (0/0/3)
s-26-00 -/- -/- -/- -/- -/321 -/0 -/36 -/0 (0/0/0)
s-30-07 1/110 0/0 1/4 0/0 133/10022 0/6 2/26 0/6 (0/0/6)
s-34-05 19/16 8/16 4/16 3/16 1/694 1/502 1/21 1/21 (0/6/15)
s-34-10 111/19 33/19 3/19 1/19 5/214 0/138 1/59 0/24 (0/1/23)
s-36-03 3/1391 0/0 1/282 0/0 -/6536 -/8 -/207 -/8 (0/0/8)
s-3b-07 290/34764 0/0 4/1970 0/0 28/8549 0/0 11/498 0/0 (0/0/0)
s-3b-08 43/263 0/0 2/43 0/0 -/2792 -/8 -/92 -/8 (0/0/8)
s-3c-03 -/- -/- -/- -/- -/321 -/0 -/36 -/0 (0/0/0)
s-48-01 -/1391 -/0 -/282 -/0 -/6536 -/8 -/207 -/8 (0/0/8)

To be continued on next page

112 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

Table 5.9 – continued from preview page

3 Mut 8 Mut

Bug Pl Crt M-Pl M-Crt Pl Crt M-Pl M-Crt (Order)

s-68-00 3/4 0/0 1/4 0/0 -/2122 -/4 -/63 -/4 (0/0/4)
s-6a-01 24/13447 0/0 1/493 0/0 8/823 0/0 2/77 0/0 (0/0/0)
s-76-02 -/- -/- -/- -/- -/13 -/0 -/13 -/0 (0/0/0)
s-76-03 -/- -/- -/- -/- 0/13 0/0 0/13 0/0 (0/0/0)
s-76-07 1/7789 0/0 1/1678 0/0 4/812 0/0 3/416 0/0 (0/0/0)
s-76-09 11/7789 0/0 4/1678 0/0 17/812 0/0 4/416 0/0 (0/0/0)
s-76-10 -/- -/- -/- -/- 1/13 0/0 1/13 0/0 (0/0/0)
s-81-02 -/6 -/0 -/6 -/0 -/- -/- -/- -/- (-)
s-81-03 229/2105 0/0 2/85 0/0 2/119 0/0 1/9 0/0 (0/0/0)
s-84-07 -/51 -/0 -/51 -/0 -/24 -/0 -/24 -/0 (0/0/0)
s-88-02 115/14475 0/0 7/498 0/0 45/5015 0/0 6/216 0/0 (0/0/0)
s-88-03 73/14475 0/0 12/498 0/0 50/5015 0/0 10/216 0/0 (0/0/0)
s-88-06 80/7 0/0 1/7 0/0 3/33 0/0 1/33 0/0 (0/0/0)
s-90-00 -/- -/- -/- -/- -/1 -/0 -/1 -/0 (0/0/0)
s-90-05 14/110 0/0 1/4 0/0 45/10115 0/2 2/40 0/2 (0/0/2)
s-90-01 -/- -/- -/- -/- -/1 -/0 -/1 -/0 (0/0/0)
s-93-00 -/31 -/0 -/31 -/0 -/163 -/0 -/45 -/0 (0/0/0)
s-97-03 -/764 -/0 -/135 -/0 -/5651 -/8 -/145 -/8 (0/0/8)
s-af-00 27/828 0/140 4/828 0/140 -/259 -/- -/259 -/- (-)
s-c8-00 239/5315 -/- 2/23 -/- 153/3215 -/- 1/7 -/- (-)
s-c9-03 -/- -/- -/- -/- -/1 -/0 -/1 -/0 (0/0/0)
s-cb-00 185/9554 28/7458 7/201 1/1 107/3676 5/2580 6/63 2/3 (1/2/0)
s-d0-01 -/51 -/0 -/51 -/0 -/24 -/0 -/24 -/0 (0/0/0)
s-de-00 -/263 -/0 -/43 -/0 1/264 0/6 1/57 0/6 (0/0/6)
s-e9-00 -/- -/- -/- -/- -/321 -/0 -/36 -/0 (0/0/0)
s-ea-03 1/985 0/0 1/209 0/0 -/1428 -/3 -/142 -/3 (0/0/3)
s-f2-00 -/31 -/0 -/31 -/0 -/163 -/0 -/45 -/0 (0/0/0)
s-f8-00 -/263 -/0 -/43 -/0 -/2792 -/8 -/92 -/8 (0/0/8)
g-b1-01 -/- -/- -/- -/- 15/168 15/164 1/4 1/4 (4/0/0)
g-b1-03 -/- -/- -/- -/- 137/168 129/164 1/4 1/4 (4/0/0)
g-bf-00 -/- -/- -/- -/- 15/37 15/34 5/5 5/5 (1/4/0)
g-bf-01 -/- -/- -/- -/- 9/37 8/34 4/5 4/5 (1/4/0)
c-36-03 -/4 -/- -/4 -/- -/5 -/- -/5 -/- (-)
c-e2-05 64/4 -/- 2/4 -/- 22/4 -/- 2/4 -/- (-)
sy-ca-03 93/12 -/- 4/12 -/- 18/105 -/- 2/7 -/- (-)

5.8. EVALUATION 113

Table 5.10: Dierent kinds of patches for digits.
3 Mut and 8 Mut represent using 3 mutation operators and 8 mutation operators, respectively.

Pl, Gen, M-Pl, and M-Gen represent the number of plausible, generalizable, minimized plausible, and minimized generalizable patches.
Order breaks down VarFix’s minimized generalizable patches by order, from order 1 to order 3.
Each cell shows the number for GenProg/VarFix and a hyphen (-) denotes data unavailable.

3 Mut 8 Mut

Bug Pl Gen M-Pl M-Gen Pl Gen M-Pl M-Gen (Order)

d-07-02 -/- -/- -/- -/- 423/168 423/168 4/4 4/4 (2/2/0)
d-0c-04 -/- -/- -/- -/- 159/257 -/- 6/10 -/- (-)
d-0c-05 -/- -/- -/- -/- 561/120 -/- 21/43 -/- (-)
d-0c-06 -/- -/- -/- -/- 778/116 -/- 20/39 -/- (-)
d-0c-07 1736/- -/- 41/- -/- 1331/1011 -/- 10/9 -/- (-)
d-1b-00 -/- -/- -/- -/- 205/122 205/122 4/9 4/9 (1/8/0)
d-1b-02 -/- -/- -/- -/- 360/122 -/122 8/9 -/9 (1/8/0)
d-29-02 -/- -/- -/- -/- 16/1083 16/1083 1/8 1/8 (1/1/6)
d-31-04 35/88 35/88 6/2 6/2 135/2 0/0 2/2 0/0 (0/0/0)
d-32-03 -/- -/- -/- -/- 375/209 375/209 5/5 5/5 (3/2/0)
d-48-00 -/1 -/0 -/1 -/0 28/1321 0/0 1/9 0/0 (0/0/0)
d-5b-00 5/6 -/6 1/6 -/6 28/46 -/46 2/4 -/4 (1/3/0)
d-6e-04 -/- -/- -/- -/- -/1 -/1 -/1 -/1 (0/1/0)
d-83-00 1/- 1/- 1/- 1/- 158/2332 158/2332 1/14 1/14 (1/2/11)
d-90-00 125/181 0/0 3/4 0/0 88/134 18/2 2/5 1/2 (0/2/0)
d-90-04 182/94 0/0 1/3 0/0 272/75 221/5 7/24 3/5 (0/5/0)
d-98-04 -/- -/- -/- -/- 13/62 13/62 2/3 2/3 (1/2/0)
d-bf-03 -/- -/- -/- -/- 39/59 39/59 3/4 3/4 (1/3/0)
d-bf-04 -/- -/- -/- -/- 80/78 80/78 6/8 6/8 (1/7/0)
d-bf-05 -/- -/- -/- -/- 159/202 159/202 5/5 5/5 (3/2/0)
d-c5-03 611/995 611/995 9/21 9/21 209/191 209/191 3/7 3/7 (3/4/0)
d-c9-00 -/- -/- -/- -/- -/1 -/0 -/1 -/0 (0/0/0)
d-c9-01 8/39 0/0 3/39 0/0 -/- -/- -/- -/- (-)
d-ca-03 -/2 -/2 -/2 -/2 -/- -/- -/- -/- (-)
d-ca-02 -/- -/- -/- -/- -/10 -/10 -/10 -/10 (0/10/0)
d-d1-01 72/13 72/13 3/13 3/13 94/173 94/173 3/5 3/5 (3/2/0)
d-d5-00 213/114 213/114 1/19 1/19 87/253 87/246 3/16 3/15 (5/10/0)
d-d6-00 -/- -/- -/- -/- -/1 -/1 -/1 -/1 (0/1/0)
d-e7-00 -/- -/- -/- -/- 88/68 0/1 2/1 0/1 (0/1/0)
d-e7-02 -/- -/- -/- -/- 130/67 -/0 1/1 -/0 (0/0/0)
d-e9-00 7/1 7/1 1/1 1/1 103/74 103/74 3/12 3/12 (1/11/0)
d-f2-02 71/97 71/97 5/9 5/9 54/65 54/65 2/3 2/3 (1/2/0)

114 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

5.9 Related Work

We already discussed some related work in Section 5.1 and Section 5.2, focusing on pros and
cons of dierent search strategies in existing program repair approaches. In this section, we focus
the discussions on a few closely related topics, and refer interested readers to a comprehensive
survey for automatic program repair in general [113].

Generating xing ingredients. Generating xing ingredients is a critical step for automatic
program repair approaches as it ultimately determines whether the generated search space
contains a (correct) patch. To increase the likelihood of including the right xing ingredients
into the search space, researchers have proposed various edit templates. For example, GenProg
uses three generic edit templates that append, replace and delete existing statements from the
buggy le(s) under repair [162]. CapGen improves these three edit templates to consider edits
at a more ne-grained expression level [163]. SearchRepair, in contrast, generalizes the idea of
taking existing code fragments to a more coarse-grained level to include larger code fragments
from an external code bank [67]. MutRepair takes inspiration from mutation testing research to
randomly mutate existing expressions using standard generic mutation operators [28].

Fixing ingredients that target more specic fault classes have also been explored. For
example, PAR generates xing ingredients based on repair templates that are manually mined
from developer patches [71]. ELIXIR targets method invocations by aggressively synthesizing
method calls as xing ingredients [138]. Tan et al. [150] propose anti-patterns to exclude
seemingly trivial repairs. Most existing semantics-based approaches target if conditions and
the right hand side of assignments via program synthesis [86, 95, 97, 107, 116, 169].

As discussed in Section 5.4, we consider 8 generic edit templates as a proof of concept.
The novelty of this work lies in the eective and ecient search strategy, but our approach is
orthogonal to recent research progress of generating diverse xing ingredients, as long as they
can be encoded as program variations via conditional statements or expressions.

Patch quality. Recent studies reveal that automatically generated patches tend to overt
to the tests used for generating repair [86, 113, 145]. To that end, researchers have explored
dierent ways of measuring patch quality to tackle the weak specication of existing tests.
The most widely adopted approach is to manually compare automatically generated patches
against the developer match, using the developer patch as a gold standard [58, 95, 107, 139, 163].
However, manually checking syntactic, semantic, or functional equivalence of two programs is
time-consuming, hard to scale, and even subjective. A more automated and objective approach
is to use a high-quality held-out test suite to evaluate how likely the automatically generated
patches can generalize to other tests [86, 114, 145].

In this work, we extend existing best practices of measuring patch quality with our symbolic-
execution-based program verier. Learning from prior work, we carefully distinguish dierent
kinds of patches (i.e., plausible, generalizable, correct) in the evaluation.

Multi-edit patches. Generating multi-edit patches remains an open challenge in program
repair research due to combinatorial explosion of xing ingredients, and yet empirical evidence

5.10. SUMMARY 115

suggests that a nontrivial portion of developer patches require making several edits [61, 175].
Most existing approaches can in theory generate multi-edit patches. For example, GenProg
incrementally adds more edits to the pool of patch candidates as part of the genetic programming
search [90, 162]. S3 can generatemulti-edit patches by synthesizing patches atmultiple suspicious
locations separately, and then consolidating them into a single patch [86]. However, most
existing approaches are not eective at generating multi-edit patches in practice, except for
two approaches that specically target this problem. Angelix can target multiple suspicious
expressions at the same time by using symbolic execution to capture inter-location dependencies
as constraints, but often require multiple suspicious locations to be close for symbolic execution
to be eective [107]. Hercules exploits the fact that similar code changes are often made to
similar locations (termed sibling relationship) to pro-actively derive similar edits at multiple
locations at the same time [139].

Our approach can eectively nd multi-edit patches because of the systematic search enabled
by variational execution. Compared to Angelix and Hercules, our approach can generate multi-
edit patches that are more general, independent of whether xing locations are close or whether
the xing ingredients are similar. The systematic search of variational execution can often
eectively identify multi-edit patches if they exist in the search space.

Patch ranking. Existing program repair approaches often have an internal component that
ranks patch candidates, prioritizing those that are more likely to pass all tests, or have higher
quality [26, 86, 90, 95, 97, 106, 107, 162, 163]. To rank patch candidates, existing approaches
exploit dierent information, such as the number of passing and failing tests [90, 162], syntactic
and semantic distance to the original program [26, 86, 106, 107], and probabilistic models learnt
from existing human patches [87, 97, 163, 169].

In this work, patch ranking is not part of the search, but rather a post-processing step to
prioritize presenting high-quality patches to developers. We rank plausible patches instead of
patch candidates, thus ranking based on the number of passing and failing tests does not apply
to our problem. However, orthogonal to other ranking strategies, we use dynamic runtime
information for ranking and thus our approach can potentially complement existing ranking
strategies that use syntactic and semantic distance or probabilistic models. Similar to our
work, JAID also nds multiple plausible patches and rank them, but based on fault localization
suspiciousness [23]. The work of Xiong et al. [168] on classifying correct patches is conceptually
closest to our ranking in that they also compare execution traces. Despite that they solve a
slightly dierent problem (i.e., patch classication rather than patch ranking), their ideas inspire
our ranking strategies.

5.10 Summary

Existing approaches to automatic program repair essentially solve a search problem in which
a trade-o needs to be made between edit expressiveness and search eectiveness. While most
existing work sacrice one or another, our work presented in this chapter strikes a balance
between the two aspects, by using variational execution to eectively search a large search space
of diverse xing ingredients. Similar to Chapter 4, we rst created a meta-program that contains

116 CHAPTER 5. AUTOMATIC PROGRAM REPAIR

abundant xing ingredients encoded as if conditionals. Next, we used variational execution
to collect test results by running the meta-program against a test suite. Finally, using the test
results that are encoded as Boolean constraints, we found patches by solving a well-studied
satisability problem. A thorough evaluation on IntroClassJava and Defects4J reveals that
our approach is eective at repairing programs of varying sizes by generating many high-quality
and multi-edit patches.

This chapter demonstrates yet another application of variational execution, in addition to
higher-order mutation testing as described in Chapter 4, showing that variational execution is a
viable way of exploring large search spaces and uncovering interesting interactions.

Although the overall recipe of using variational execution is the same in Chapter 4 and
Chapter 5, the techniques are dierent from the engineering perspective. The search space of
automatic program repair is more challenging because statement-level changes as speculative
variations are common. Statement-level changes aect both meta-program generation and
variational execution: We rebuilt meta-program generation in order to use fault localization
to guide edit generation, and more importantly, encode statement changes as if conditionals,
extracting them into separate methods via invasive refactoring if necessary. We made several
adaptations (e.g., fast mode, bounded search) to variational execution to cope with statement-
level changes, because unlike expression changes in mutation testing, statements can easily
disrupt control ow, posing more challenges to the already expensive handling of control transfer
(Section 3.4), in particular exception handling (Section 3.5), and potentially causing more innite
loops that can heavily impact performance of variational execution. Most of these issues can be
addressed with careful engineering, as we have demonstrated by evaluating our approach on two
of the largest subjects in Defects4J. While the conceptual idea of using variational execution
is more benecial to the research community, we hope that the ways we make engineering
tradeos as presented in this chapter can inspire new ways of applying other similar techniques,
such as symbolic execution and model checking.

Chapter 6

Conclusions

Variations are ubiquitous and can take two forms: intentional variations that are manually
introduced to tweak program behavior and speculative variations that are automatically generated
to analyze the program. While variations are useful, they can often yield a large conguration
space or search space that challenges existing software analysis techniques.

Variational execution has been proposed to systematically analyze vast conguration spaces
of intentional variations, indicating that the technique has the potential to explore large search
spaces of speculative variations. In Chapter 2, we analyzed existing successful applications of
variational execution to derive key criteria that can be used to gauge the potential of future
applications. Using these criteria, we discovered that, indeed, a wide range of software engi-
neering problems that heavily use speculative variations can benet from variational execution,
such as higher-order mutation testing and automatic program repair.

Since existing implementations of variational execution fail to handle the large scale of
speculative variations, in Chapter 3, we built a new variational execution engine based on
bytecode transformation, focusing on eciency, scalability, and extensibility. We compared
our new implementation with the state of the art, showing that our approach signicantly
outperforms existing work on all subjects. We call our new implementation VarexC and use it
consistently throughout this thesis to explore speculative variations.

In Chapter 4, we applied variational execution to search for strongly subsuming higher-order
mutants (SSHOM), a specic form of higher-order mutant that denotes subtle fault. Our approach
transforms the search for SSHOMs into a satisability problem: First, we used variational
execution to run all rst-order mutants (and their combinations) against a test suite, representing
test results compactly as Boolean constraints. Next, we used the test results (i.e., Boolean
constraints) to construct a propositional formula that bakes in the denition of SSHOM. Finally,
we used o-the-shelf SAT solving techniques to get all solutions to the propositional formula,
each of which corresponds directly to a SSHOM. Using this approach, not only can we nd
SSHOMs much faster, but also we can identify all SSHOMs in the given search space. Since our
approach explores the search space systematically, we had the unique opportunity to study the
characteristics of the search space. Using the identied characteristics, we further designed a
prioritized search that is lightweight, but eective at nding many SSHOMs in large systems.

Using a similar recipe in Chapter 5, we applied variational execution to automatic program
repair. The way we encode the search as a satisability problem is conceptually similar to

117

118 CHAPTER 6. CONCLUSIONS

higher-order mutation testing, but the techniques are dierent from the engineering perspective
because statement-level changes can be challenging for both meta-program generation and
variational execution. Comparing to existing work, our approachmakes a better tradeo between
edit expressiveness and search eectiveness, and this tradeo further sheds light on several
open challenges, such as patch quality and multi-edit patches. We evaluated our approach on
two widely used datasets, showing that the new search is eective in multiple aspects: xing
many bugs, generating many high-quality patches, identifying many multi-edit patches, and
distinguishing patch quality based on dynamic information.

Thesis Statement. We conclude that this thesis provides enough evidence that validates
the thesis statement set forth in Chapter 1, where we hypothesized that research problems of
speculative variations can benet from variational execution. To validate this hypothesis, we
started with a conceptual analysis of applicability, using three criteria derived from existing
successful applications to identify two promising problems—higher-order mutation testing
and automatic program repair (Chapter 2). With an improved implementation of variational
execution (Chapter 3), we showed that variational execution can indeed be useful for analyzing
speculative variations. For higher-order mutation testing, we were the rst to perform a complete
search of SSHOMs for medium-sized programs (Chapter 4). Furthermore, we demonstrated
that the complete search enabled by variational execution can facilitate a systematic study of
SSHOM characteristics, which can be useful for designing new heuristics-based search strategies
that scale to large real-world programs. For automatic program repair, we demonstrated that
a systematic exploration of the search space is eective at nding (many) patches (Chapter 5).
In contrast to existing work, our approach is also useful for nding high-quality and multi-
edit patches within a large search space. To take full advantage of variational execution, we
further used the dynamic information obtained from variational execution runtime to distinguish
high-quality patches from those that merely pass all provided tests.

6.1 Future Work: Variational Execution

This thesis is devoted to improving variational execution and applying it to important problems
of speculative variations. Reecting upon our experience, we highlight several future directions.

6.1.1 Improving Variational Execution

We made signicant improvement to variational execution, making it more ecient, more
scalable, and more extensible. These improvements have direct benets to variational execution,
but our implementation (VarexC) is far from being a full-edged tool that can be applied to
analyze arbitrarily complex programs.

Environment Barrier. The main inhibitor for broad adoption is the environment barrier
between code that can be executed with variational execution and code that needs to be executed
with native runtime (e.g., due to security reasons or use of native methods). Other similar
techniques such as symbolic execution face a similar challenge. For example, despite more

6.1. FUTURE WORK: VARIATIONAL EXECUTION 119

than 10 years of active development involving more than 70 contributors,1 KLEE remains a
research instrument that faces challenges from analyzing library code. In this thesis, wemanually
implemented model classes that were needed for running our experiment subjects, but ideally, a
mature variational execution engine should provide a much wider range of model classes to
support advanced language features like reection and lambda (Section 3.5).

Based on our experience, full support for the JDK classes could mitigate a lot of the environ-
ment barrier issues, as they are commonly used in application code and often serve as the basis
for third-party libraries. Ideally, a full-edged implementation of variational execution should
provide necessary infrastructure for (1) identifying Java classes that require model classes, and
more importantly, (2) automatically generating model classes. In this thesis, both steps are
performed manually, but they are automatable based on our experience. For example, to identify
classes that require model classes, we can use simple heuristics, such as looking for the native
keyword, which indicates the use of native methods. Automatically generating model classes is
viable in most of the cases we observed, especially in cases where non-variational code (i.e., code
that needs to be executed without variational execution) has no side eect to the program state
(e.g., delegating expensive mathematical computation to native libraries written in C). For these
cases, we can simply execute the non-variational code repeatedly, once for each combination of
concrete values involved, and nally compress the returned values into a conditional value again
for the rest of variational execution (Section 3.3.2). Note however that there could be better ways
of implementing model classes than repeatedly executing non-variational code, for example, by
using specialized data structures and custom access patterns (Section 3.5). But automatically
generated model classes can serve as a reliable baseline and more ecient implementations can
be incrementally designed if needed for performance reasons.

More broadly, techniques for addressing environment barrier issues in variational execution
can potentially be broadened to tackle similar challenges in closely related techniques, such as
symbolic execution and model checking. For example, the core interpreter of Java Pathnder
has been adapted to perform model checking [49], symbolic execution [4], and variational
execution [110], but they face a similar issue with regard to native methods. The solution is
also similar—to implement model classes that model the expected behavior in model check-
ing, symbolic execution, or variational execution. We were the rst to implement variational
execution via bytecode transformation, and there is no similar bytecode implementation for
symbolic execution or model checking at the time of writing. However, we suspect that most
of the challenges are similar and solutions are transferrable, in particular the techniques for
handling environment barrier issues.

Performance. While the three key criteria discussed in Chapter 2 are useful for conceptually
evaluating the potential of applying variational execution, actual performance of running
variational execution could be another main inhibitor that hinders adoption in practice. We
argue that performance of variational execution is an empirical question. On the one hand,
for intentional variations that are often carefully introduced to have manageable interactions,
empirical studies have shown that the complexity of how variations interact is often low [110,
134], making a complete exploration of the conguration space feasible. On the other hand,

1hps://github.com/klee/klee

https://github.com/klee/klee

120 CHAPTER 6. CONCLUSIONS

for speculative variations that are often generated randomly, the performance of variational
execution largely depends on how those variations interact at runtime for the specic tests
used. For example, if interactions of variations do not drastically modify program state, a lot of
sharing can be exploited by variational execution to maximize performance. That said, we did
observe a few rare cases where interactions are heavy, for both higher-order mutation testing
(Chapter 4) and automatic program repair (Chapter 5). We argue that those corner cases result
from essential complexity of the complex search space, and we can often side step those corner
cases by carefully restricting the search space.

To ease adoption, it would be nice to have some means of predicting whether running varia-
tional execution on a specic program with provided tests would incur signicant performance
overhead. As discussed above, performance largely depends on the specic variations and tests,
but heuristics can be used. For example, one could statically analyze the locations of variations.
Clustered variations that heavily modify a handful of variables that have a innite domain are
more likely to cause expensive interactions. Another way of approximating performance is
to look for certain expensive operations. In the case of VarexC, array operations that cross
the environment barrier are noticeably slow (Section 3.5) because transformation between a
variational array and the concrete arrays it represents could be expensive in the current imple-
mentation (Chapter 3). Several heuristics should be combined for better prediction. For example,
sparse variations that modify dierent variables in dierent methods might also cause heavy
interactions if they inuence the program state via implicit control ow and data ow.

Based on our experience, the performance of variational execution could be further im-
proved by performing several optimizations. First, we suspect that overall performance can be
improved drastically by having a more ecient way of representing and manipulating binary
decision diagrams (BDD), which are heavily used in variational execution to represent partial
conguration spaces. We have briey explored multi-terminal BDD as an alternative way of
representing conditional values (not included in this dissertation). At the time of writing this
dissertation, we are still working on a reliable implementation, but preliminary results indicate
that there is room for improvement in the way we use BDD. More research in this direction
can also benet other important domains that use BDDs, such as symbolic execution, model
checking, and hardware design.

Second, as discussed in Section 3.5, more specic optimizations can be performed if necessary
by designing specialized data structures that maximize performance of certain operations [112,
158], such as a List data structure that optimizes for appending elements rather than lookup.
Common access patterns can also be exploited to speedup common operations, as demonstrated
in thework of Lazarek [84]where list iteration via iterator can be optimized by using a specialized
model class implementation.

Finally, we can use heuristics to restrict running variational execution in a smaller search
space, and incrementally tackle the overall large search space in a divide-and-conquer manner.
We have briey explored several ways of restricting the search space of automatic program
repair (Chapter 5), such as a bounded search that limits the interaction degree and a fast
mode that focuses on exception-free paths. Note however that, running variational execution
separately for partial search spaces could miss potential interactions across partial search spaces.
Hence, this style of divide-and-conquer exploration might miss interactions as opposed to a
more heavyweight but complete exploration of the whole search space, unless for cases where

6.1. FUTURE WORK: VARIATIONAL EXECUTION 121

interactions are statically determined to be impossible [134]. However, restricting the search
space can still be benecial if combined with domain knowledge of the problem. For example, in
the case of program repair, if we know beforehand that modifying a single method is sucient,
we could group variations based on method boundaries and search in those smaller spaces.

More broadly speaking, performance improvement to variational execution is likely trans-
ferrable to similar techniques such as symbolic execution and model checking because they
can often be implemented similarly. For example, our experience of implementing variational
execution via bytecode transformation rather than modifying a language interpreter can poten-
tially inform a more scalable implementation of symbolic execution, because the state-of-the-art
symbolic execution for Java is based on modifying Java PathFinder, similar to how variational
execution was alternatively implemented in VarexJ [110]. Moreover, researchers have also tried
ways to limit symbolic execution to partial code [107] or partial inputs [42] in order to reduce
performance overhead, in a similar spirit as the way we restrict the search space of variational
execution.

6.1.2 New Applications

By analyzing existing work on variational execution, we derive three key criteria that predict
a successful application of variational execution. This strategy of deriving application criteria
turns out to be useful, as demonstrated with the two successful applications of variational
execution. We hope that the research community can benet from these criteria when gauging
future applications of variational execution, such as search problems that are similar to higher-
order mutation testing and automatic program repair, many of which fall under the umbrella of
search-based software engineering [47].

There could be dierent strategies of applying variational execution to solve new problems.
Traditionally for intentional variations, researchers had success with performing a complete

exploration of the search space on real-world large systems such as WordPress [117], which is
often feasible based on recent empirical ndings that variations do not interact heavily altogether.
For cases where interactions could be expensive, this thesis demonstrates two alternative ways
of applying variational execution.

First, for higher-order mutation testing in Chapter 4, we still performed a complete search
considering all variations in the search space, but only for small to medium-sized programs.
Because of the complete exploration, we could identify all SSHOMs for our subject programs and
later empirically study what they look like, with the goal to improve existing heuristics-based
search strategies or inform new design (Section 4.5). Taking advantage of the complete search
enabled by variational execution, we can derive insights with more condence than learning
from an incomplete and potentially biased sample of SSHOMs. This way of using variational
execution assumes that insights derived from small to medium-sized programs are transferrable
to larger programs or other types of program in general. We argue that this assumption is
reasonable if we focus primarily on insights that are largely independent of specic program
structure, as discussed in Section 4.4.

Second, for automatic program repair in Chapter 5, we perform the search for large real-world
programs (e.g., Apache Math and Closure), but used dierent strategies to restrict the search
space for performance reasons. As discussed above, performance can potentially be improved

122 CHAPTER 6. CONCLUSIONS

if more research is devoted and thus the restrictions on the search space can potentially be
relaxed in the future. But even with limited performance, we can use domain knowledge to help
us narrow the search. For example, in contrast to higher mutation testing where high-degree
SSHOMs are potentially valuable, we prefer low-degree patches in automatic program repair
because small xes that concisely x the buggy behavior are easy to safeguard manually and
can reduce the likelihood of introducing regression errors. Based on this domain knowledge,
a bounded search that limits the number or edits involved in a patch is not only useful for
alleviating performance issues but also favorable in practice.

There could be other ways of using variational execution, such as performing variational
execution on the most relevant part of the code, similar to how symbolic execution is selectively
applied in Angelix [107]. While we can learn from existing ways of using symbolic execution, we
suspect that the opposite direction of transferring knowledge is viable. That is, the methodology
of applying variational execution can potentially inform novel ways of using symbolic execution
and model checking.

6.2 Future Work: Higher-Order Mutation Testing

Higher-order mutants are not commonly used in practice mostly because valuable ones such as
SSHOMs are dicult to nd and thus little is known about them. Our work advances this research
direction by proposing two new search strategies that can eectively nd many SSHOMs for a
given test suite. This way, our work can facilitate future studies on SSHOMs.

One possible future direction is to use our techniques as research instrument for creating
bugs that are hard to detect by the given tests. These bugs can then be used to evaluate other
techniques, such as fault localization and automatic program repair as discussed in Chapter 4.
This way, we can easily generate a large number of challenging bugs to perform a objective
and comprehensive evaluation of other research, rather than relying solely on a few manually
curated datasets that are used heavily to the extent of raising overtting concerns [33, 154].

Another potential direction is to study how to generate SSHOMs without rst executing all
constituent rst-order mutants against the given test suite. Simple rst-order mutants are easier
to generate than SSHOMs because they can be created randomly, independent of any tests. In
contrast, whether a higher-order mutant is SSHOM depends on test results of its constituent
rst-order mutants (Chapter 4). For this reason, all existing approaches to nding SSHOMs,
including ours, need to execute many rst-order mutants against the given tests before actually
generating SSHOMs. Moreover, the set of SSHOMs is likely dierent after changing the source
code or test suite. To make SSHOMs more useful in practical mutation testing scenarios, we need
reliable ways of generating or approximating SSHOMs statically without running rst-order
mutants. Although not for SSHOMs, Just et al. [64] showed that static information such as
program context can be used to approximate dominator mutants, a special kind of mutants
that are similarly dened in terms of test results of rst-order mutants. Furthermore, future
research can use our techniques to generate abundant SSHOMs for a more systematic study of
their characteristics to inform static generation.

Finally, our techniques can be generalized to other types of higher-order mutants. Jia and
Harman [56] outlined a taxonomy of higher-order mutants based on subsuming relation of

6.3. FUTURE WORK: AUTOMATIC PROGRAM REPAIR 123

rst-order mutants, but only focused on SSHOMs. Other types of higher-order mutants or
dierent taxonomies might also be useful, and can potentially benet from our techniques, for
example, by tweaking the encoding of satisability problem (Section 4.3.3).

6.3 Future Work: Automatic Program Repair

Repair tools typically contain two important components—xing ingredient generation and
search strategy. This work only focuses on improving the search strategy, by reusing existing
infrastructure of classic GenProg for conceptual simplicity. Our work is orthogonal to recent
research progress in xing ingredient generation. To fully realize the potential of our work,
more research is needed to incorporate recent progress of xing ingredient generation and
improve the search strategy.

Fixing Ingredients Generation. The pool of xing ingredients ultimately decides whether
a patch can be found. In Chapter 5, we showed that xing ingredients generated from old-
fashion edit templates and a simplistic fault localization technique can already yield many
high-quality patches. It is thus likely that more bugs can be xed and more high-quality patches
can be identied if we incorporate more recent advanced edit templates and fault localization
techniques. That said, adding more and more xing ingredients all over the code base might
pose severe challenges to the scalability of variational execution tools. To mitigate this issue,
we can use heuristics to be selective about xing ingredients. For example, future work could
intelligently pick promising edit templates based on code structure, bug xes in the past, or
developer insights. This way, we can focus the search on a highly promising search space rather
than a unnecessarily large one. Moreover, xing ingredients can be generated in batches based
on fault localization insights. For example, we could learn from Hercules [139] to generate xing
ingredients for other code locations that are similar syntactically or semantically, as opposed to
all locations that the fault localization technique deems even slightly suspicious.

Search Strategy. At the core of a repair tool is the search strategy. Researchers have pro-
posed dierent strategies in the past, but they either search systematically in a conned search
space or forgo a systematic search in exchange for more expressive power in the search space
(Section 5.1). Our search strategy diverges drastically from existing trends in that we perform
a systematic search in a large expressive search space, by relying on variational execution to
aggressively exploit the similarities among test executions. This approach has both advantages
and disadvantages.

On the bright side, as our evaluation shows in Chapter 5, our approach can eectively
and eciently identify (many) patches even for large programs like Apache Math and Closure.
Conceptually, a systematic search like ours can identify all plausible patches if they are within the
given search space. Finding all plausible patches has several benets. First, if a patch is not found
with our approach, we can be certain that the search space lacks necessary xing ingredients
and so we can move on to generate more promising ingredients. In contrast, heuristics-based
search strategies cannot make such claims and so time could be wasted searching in a hopeless
search space. Second, since we nd all plausible patches, we also nd the high-quality ones if

124 CHAPTER 6. CONCLUSIONS

they exist. As shown empirical in our work (Chapter 5) and prior work [96], cherry picking the
high-quality patches from a much larger pool of plausible patches is challenging. However, this
issue is not relevant to our approach because we do not cherry pick, but identify all patches.
Finally, our approach stands out from existing work because the systematic search powered
by variational execution can eciently explore interactions of xing ingredients to identify all

multi-edit patches. Most heuristics-based search strategies can rarely nd multi-edit patches
because the search space becomes intractable quickly if multiple xing ingredients are combined.

However, there are two potential issues with our approach. First of all, although theoretically
feasible, our systematic search in practice can only go as far as the variational execution engine
scales. We can nd all patches if our variational execution tool can nish exploring the search
space in a reasonable time. But on the other hand, we cannot nd any patches if variational
execution does not terminate within the given time budget, whereas heuristics-based search
might nd some patches over time. We hope that this issue can be mitigated with performance
improvement to variational execution, for example, by exploring the ideas outlined in Section 6.1.
Moreover, we can often circumvent the performance bottleneck by making assumptions to
conne the search space, as discussed in Section 5.5. Finally, we argue that variational execution
is a recent and eective way of performing a systematic search, but not the only way. Future
work can swap out the variational execution component if more ecient techniques emerge
in the future. The second potential issue of our approach is that nding all patches might
overwhelm developers. We proposed simple patch ranking mechanisms that work well for
our evaluation subjects, but more research opportunities remain to automatically distinguish
high-quality patches from low-quality ones, for example, by leveraging more static or dynamic
information. That said, we argue that the issue of patch ranking is not exclusive to our work,
but rather a common challenge for all repair techniques. This issue becomes more obvious in
our work than most existing techniques because they are often satised with the rst plausible
patch.

Independent of our technical approach, we hope that our work can inform the design of
new search strategies. Mirroring our workow in higher-order mutation testing, future work
could systematically study characteristics of high-quality patches and multi-edit patches, and
then design new lightweight heuristics-based search strategies that exploit those identied
characteristics. For example, although not explicitly discussed in this work, since our patch
ranking results indicate that dynamic runtime information can be useful for predicting patch
quality, future search strategies can potentially exploit this nding to prune the search space
in the early stage and focus on patch candidates that have little inuence to passing tests but
moderate eect on failing tests.

Bibliography

[1] 2018. Tricentis Software Fail Watch Finds 3.6 Billion People Aected and $1.7 Trillion
Revenue Lost by Software Failures Last Year. (Jan. 2018). [Cited on page 75.]

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2007. On the Accuracy of
Spectrum-Based Fault Localization. In Proceedings of the Testing: Academic and Industrial

Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION ’07).
IEEE Computer Society, USA, 89–98. [Cited on page 52.]

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association Rules
Between Sets of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’93). ACM, New York, NY, USA,
207–216. hps://doi.org/10.1145/170035.170072 [Cited on page 65.]

[4] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. 2007. JPF–SE: A Symbolic
Execution Extension to Java PathFinder. In Tools and Algorithms for the Construction and

Analysis of Systems, Orna Grumberg and Michael Huth (Eds.). Vol. 4424. Springer Berlin
Heidelberg, Berlin, Heidelberg, 134–138. hps://doi.org/10.1007/978-3-540-71209-1_12 [

Cited on page 119.]

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented

Software Product Lines. Springer Berlin Heidelberg, Berlin, Heidelberg. hps://doi.org/10.
1007/978-3-642-37521-7 [Cited on page 8.]

[6] Thomas H. Austin and Cormac Flanagan. 2009. Ecient Purely-Dynamic Information
Flow Analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming

Languages and Analysis for Security (PLAS ’09). ACM, New York, NY, USAB, 113–124.
hps://doi.org/10.1145/1554339.1554353 [Cited on page 12.]

[7] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic Information
Flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL ’12). ACM, New York, NY, USA, 165–178. hps:
//doi.org/10.1145/2103656.2103677 [Cited on pages 2, 12, 13, 17, 41, 42, 56, and 57.]

[8] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. 2013.
Faceted Execution of Policy-Agnostic Programs. In Proceedings of the Eighth ACM SIGPLAN

Workshop on Programming Languages and Analysis for Security (PLAS ’13). ACM, New
York, NY, USA, 15–26. hps://doi.org/10.1145/2465106.2465121 [Cited on pages 13, 17, 41, and 77.]

[9] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getax: Learn-
ing to Fix Bugs Automatically. Proceedings of the ACM on Programming Languages 3,

125

https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/978-3-540-71209-1_12
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/2465106.2465121

126 BIBLIOGRAPHY

OOPSLA (Oct. 2019), 159:1–159:27. hps://doi.org/10.1145/3360585 [Cited on page 75.]

[10] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finoc-
chi. 2018. A Survey of Symbolic Execution Techniques. Comput. Surveys 51, 3 (May 2018),
1–39. hps://doi.org/10.1145/3182657 [Cited on page 11.]

[11] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro. 2014.
The Plastic Surgery Hypothesis. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering - FSE 2014. ACM Press, Hong Kong,
China, 306–317. hps://doi.org/10.1145/2635868.2635898 [Cited on page 82.]

[12] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens, and Exequiel Ri-
vas. 2012. Secure Multi-Execution through Static Program Transformation. In Formal Tech-

niques for Distributed Systems, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Klein-
berg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Ran-
gan, Bernhard Steen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi,
Gerhard Weikum, Holger Giese, and Grigore Rosu (Eds.). Vol. 7273. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 186–202. hps://doi.org/10.1007/978-3-642-30793-5_12 [Cited

on page 42.]

[13] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating Dynamic Data Flow in
Commodity Jvms. In Proceedings of the 2014 ACM International Conference on Object

Oriented Programming Systems Languages & Applications - OOPSLA ’14. ACM Press,
Portland, Oregon, USA, 83–101. hps://doi.org/10.1145/2660193.2660212 [Cited on page 42.]

[14] Jonathan Bell and Luís Pina. 2018. CROCHET: Checkpoint and Rollback via Lightweight
Heap Traversal on Stock JVMs. (2018), 31 pages. hps://doi.org/10.4230/LIPICS.ECOOP.
2018.17 [Cited on page 43.]

[15] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Symbolic
Model Checking without BDDs. In Tools and Algorithms for the Construction and Analysis

of Systems, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and W. Rance Cleaveland
(Eds.), Vol. 1579. Springer Berlin Heidelberg, Berlin, Heidelberg, 193–207. hps://doi.org/
10.1007/3-540-49059-0_14 [Cited on page 57.]

[16] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.
2013. SPLLIFT: Statically Analyzing Software Product Lines in Minutes Instead of Years.
ACM SIGPLAN Notices 48, 6 (June 2013), 355–364. hps://doi.org/10.1145/2499370.2491976
[Cited on page 43.]

[17] James Bornholt and Emina Torlak. 2018. Finding Code That Explodes under Symbolic
Evaluation. Proceedings of the ACM on Programming Languages 2, OOPSLA (Oct. 2018),
1–26. hps://doi.org/10.1145/3276519 [Cited on page 57.]

[18] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive Detection of
Collaboration Conicts. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering (ESEC/FSE ’11). Association
for Computing Machinery, New York, NY, USA, 168–178. hps://doi.org/10.1145/2025113.
2025139 [Cited on page 42.]

[19] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

https://doi.org/10.1145/3360585
https://doi.org/10.1145/3182657
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1007/978-3-642-30793-5_12
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.4230/LIPICS.ECOOP.2018.17
https://doi.org/10.4230/LIPICS.ECOOP.2018.17
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/2499370.2491976
https://doi.org/10.1145/3276519
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139

BIBLIOGRAPHY 127

Trans. Comput. C-35, 8 (Aug. 1986), 677–691. hps://doi.org/10.1109/TC.1986.1676819 [

Cited on page 58.]

[20] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. 2010. Improving the Testing and
Testability of Software Product Lines. In Proceedings of the 14th International Conference

on Software Product Lines: Going Beyond (SPLC’10). Springer-Verlag, Berlin, Heidelberg,
241–255. [Cited on page 2.]

[21] Muy Calder, Mario Kolberg, Evan H. Magill, and Stephan Rei-Marganiec. 2003. Feature
Interaction: A Critical Review and Considered Forecast. Comput. Netw. 41, 1 (Jan. 2003),
115–141. hps://doi.org/10.1016/S1389-1286(02)00352-3 [Cited on pages 1 and 12.]

[22] Deepak Chandra and Michael Franz. 2007. Fine-Grained Information Flow Analysis
and Enforcement in a Java Virtual Machine. In Twenty-Third Annual Computer Security

Applications Conference (ACSAC 2007). IEEE Computer Society, Miami Beach, Florida,
USA, 463–475. hps://doi.org/10.1109/ACSAC.2007.37 [Cited on page 12.]

[23] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-Based Program Repair without
the Contracts. In Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE 2017). IEEE Press, Urbana-Champaign, IL, USA, 637–647. [Cited

on pages 91, 93, 95, and 115.]

[24] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. 2007. Interaction Testing of Highly-
Congurable Systems in the Presence of Constraints. In Proceedings of the 2007 Interna-

tional Symposium on Software Testing and Analysis (ISSTA ’07). ACM, New York, NY, USA,
129–139. hps://doi.org/10.1145/1273463.1273482 [Cited on page 2.]

[25] Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov. 2007. Delta Execution for
Ecient State-Space Exploration of Object-Oriented Programs. In Proceedings of the 2007

International Symposium on Software Testing and Analysis (ISSTA ’07). ACM, New York,
NY, USA, 50–60. hps://doi.org/10.1145/1273463.1273472 [Cited on pages 14, 22, 42, and 57.]

[26] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair
with Quantitative Objectives. In Computer Aided Verication, Swarat Chaudhuri and
Azadeh Farzan (Eds.). Vol. 9780. Springer International Publishing, Cham, 383–401. hps:
//doi.org/10.1007/978-3-319-41540-6_21 [Cited on page 115.]

[27] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. 2012. Flow-
Fox: A Web Browser with Flexible and Precise Information Flow Control. In Proceedings

of the 2012 ACM Conference on Computer and Communications Security (CCS ’12). ACM,
New York, NY, USA, 748–759. hps://doi.org/10.1145/2382196.2382275 [Cited on pages 11 and 42.

]

[28] Vidroha Debroy and W. Eric Wong. 2010. Using Mutation to Automatically Suggest Fixes
for Faulty Programs. In Verication and Validation 2010 Third International Conference on

Software Testing. IEEE Computer Society, Paris, France, 65–74. hps://doi.org/10.1109/
ICST.2010.66 [Cited on page 114.]

[29] Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure Multi-
Execution. In 2010 IEEE Symposium on Security and Privacy. IEEE, Berkeley/Oakland, CA,
109–124. hps://doi.org/10.1109/SP.2010.15 [Cited on pages 11 and 42.]

https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/S1389-1286(02)00352-3
https://doi.org/10.1109/ACSAC.2007.37
https://doi.org/10.1145/1273463.1273482
https://doi.org/10.1145/1273463.1273472
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1145/2382196.2382275
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1109/SP.2010.15

128 BIBLIOGRAPHY

[30] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves Schobbens, and
Patrick Heymans. 2016. Featured Model-Based Mutation Analysis. In Proceedings of the

38th International Conference on Software Engineering (ICSE ’16). ACM, New York, NY,
USA, 655–666. hps://doi.org/10.1145/2884781.2884821 [Cited on pages 72 and 83.]

[31] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej Wąsowski.
2017. Ecient Family-Based Model Checking via Variability Abstractions. International
Journal on Software Tools for Technology Transfer (STTT) 19, 5 (Oct. 2017), 585–603. hps:
//doi.org/10.1007/s10009-016-0425-2 [Cited on page 43.]

[32] Jackson Antonio do Prado Lima and Silvia Regina Vergilio. 2019. A Systematic Mapping
Study on Higher Order Mutation Testing. Journal of Systems and Software 154 (Aug. 2019),
92–109. hps://doi.org/10.1016/j.jss.2019.04.031 [Cited on page 53.]

[33] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019. Empirical
Review of Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs and
23,551 Repair Attempts. In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering

- ESEC/FSE 2019. ACM Press, Tallinn, Estonia, 302–313. hps://doi.org/10.1145/3338906.
3338911 [Cited on pages 53, 90, 91, 92, 94, 95, and 122.]

[34] Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic Code Synthesis for
Automatic Program Repair. In Proceedings of the 11th InternationalWorkshop on Automation

of Software Test - AST ’16. ACM Press, Austin, Texas, 85–91. hps://doi.org/10.1145/
2896921.2896931 [Cited on pages 76 and 80.]

[35] Thomas Durieux and Martin Monperrus. 2016. IntroClassJava: A Benchmark of 297 Small
and Buggy Java Programs. (Feb. 2016), 7. [Cited on page 91.]

[36] Emelie Engström and Per Runeson. 2011. Software Product Line Testing - A Systematic
Mapping Study. Information and Software Technology 53, 1 (Jan. 2011), 2–13. hps:
//doi.org/10.1016/j.infsof.2010.05.011 [Cited on page 43.]

[37] Martin Erwig and Eric Walkingshaw. 2013. Variation Programming with the Choice
Calculus. In Generative and Transformational Techniques in Software Engineering IV, Ralf
Lämmel, João Saraiva, and Joost Visser (Eds.). Vol. 7680. Springer Berlin Heidelberg, Berlin,
Heidelberg, 55–100. hps://doi.org/10.1007/978-3-642-35992-7_2 [Cited on page 8.]

[38] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Mon-
perrus. 2014. Fine-Grained and Accurate Source Code Dierencing. In Proceedings of the

International Conference on Automated Software Engineering. Västeras, Sweden, 313–324.
hps://doi.org/10.1145/2642937.2642982 [Cited on page 109.]

[39] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous
Java Performance Evaluation. In Proceedings of the 22nd Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA ’07). Association for Computing Machinery, New York, NY, USA, 57–76. hps:
//doi.org/10.1145/1297027.1297033 [Cited on page 36.]

[40] Ahmed S. Ghiduk. 2016. Reducing the Number of Higher-Order Mutants with the Aid
of Data Flow. e-Informatica Vol. X (2016), 2016; ISSN 18977979. hps://doi.org/10.5277/

https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1016/j.jss.2019.04.031
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1016/j.infsof.2010.05.011
https://doi.org/10.1016/j.infsof.2010.05.011
https://doi.org/10.1007/978-3-642-35992-7_2
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.5277/E-INF160102
https://doi.org/10.5277/E-INF160102
https://doi.org/10.5277/E-INF160102

BIBLIOGRAPHY 129

E-INF160102 [Cited on page 52.]

[41] Ahmed S. Ghiduk, Moheb R. Girgis, and Marwa H. Shehata. 2017. Higher Order Mutation
Testing: A Systematic Literature Review. Computer Science Review 25 (Aug. 2017), 29–48.
hps://doi.org/10.1016/j.cosrev.2017.06.001 [Cited on pages 52 and 53.]

[42] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated
Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’05). Association for Computing Machinery,
New York, NY, USA, 213–223. hps://doi.org/10.1145/1065010.1065036 [Cited on page 121.]

[43] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2017. The Theory of Composite Faults. In
2017 IEEE International Conference on Software Testing, Verication and Validation (ICST).
IEEE, Tokyo, Japan, 47–57. hps://doi.org/10.1109/ICST.2017.12 [Cited on pages 52 and 53.]

[44] Mark Harman, Yue Jia, and William B. Langdon. 2010. A Manifesto for Higher Order
Mutation Testing. In 2010 Third International Conference on Software Testing, Verication,

and Validation Workshops. IEEE, Paris, France, 80–89. hps://doi.org/10.1109/ICSTW.2010.
13 [Cited on page 53.]

[45] Mark Harman, Yue Jia, and William B. Langdon. 2011. Strong Higher Order Mutation-
Based Test Data Generation. In Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering (ESEC/FSE ’11). ACM,
New York, NY, USA, 212–222. hps://doi.org/10.1145/2025113.2025144 [Cited on page 52.]

[46] Mark Harman, Yue Jia, Pedro Reales Mateo, and Macario Polo. 2014. Angels and Monsters:
An Empirical Investigation of Potential Test Eectiveness and Eciency Improvement
from Strongly Subsuming Higher Order Mutation. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering - ASE ’14. ACM Press, Vasteras,
Sweden, 397–408. hps://doi.org/10.1145/2642937.2643008 [Cited on pages 50, 52, 54, 59, 61, and 72.]

[47] Mark Harman and Bryan F Jones. 2001. Search-Based Software Engineering. Infor-

mation and Software Technology 43, 14 (Dec. 2001), 833–839. hps://doi.org/10.1016/
S0950-5849(01)00189-6 [Cited on page 121.]

[48] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-Based Software
Engineering: Trends, Techniques and Applications. Comput. Surveys 45, 1 (Nov. 2012),
1–61. hps://doi.org/10.1145/2379776.2379787 [Cited on pages 2 and 3.]

[49] Klaus Havelund and Thomas Pressburger. 2000. Model Checking JAVA Programs Using
JAVA PathFinder. International Journal on Software Tools for Technology Transfer (STTT) 2,
4 (March 2000), 366–381. hps://doi.org/10.1007/s100090050043 [Cited on pages 17 and 119.]

[50] Petr Hosek and Cristian Cadar. 2013. Safe Software Updates via Multi-Version Execution.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). IEEE
Press, Piscataway, NJ, USA, 612–621. [Cited on pages 11 and 42.]

[51] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Experiments
of the Eectiveness of Dataow- and Controlow-Based Test Adequacy Criteria. In
Proceedings of the 16th International Conference on Software Engineering (ICSE ’94). IEEE
Computer Society Press, Washington, DC, USA, 191–200. [Cited on page 52.]

https://doi.org/10.5277/E-INF160102
https://doi.org/10.5277/E-INF160102
https://doi.org/10.5277/E-INF160102
https://doi.org/10.5277/E-INF160102
https://doi.org/10.1016/j.cosrev.2017.06.001
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/ICST.2017.12
https://doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1145/2025113.2025144
https://doi.org/10.1145/2642937.2643008
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1007/s100090050043

130 BIBLIOGRAPHY

[52] Chihiro Iida and Shingo Takada. 2017. Reducing Mutants with Mutant Killable Precondi-
tion. In 2017 IEEE International Conference on Software Testing, Verication and Validation

Workshops (ICSTW). IEEE, Tokyo, Japan, 128–133. hps://doi.org/10.1109/ICSTW.2017.29
[Cited on page 52.]

[53] Yue Jia. 2013. Higher Order Mutation Testing. Ph.D. Dissertation. [Cited on page 61.]

[54] Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher Order Mutation
Testing. In 2008 Eighth IEEE International Working Conference on Source Code Analysis and

Manipulation. IEEE, Beijing, China, 249–258. hps://doi.org/10.1109/SCAM.2008.36 [Cited

on pages 50, 52, 53, 54, 61, 71, and 72.]

[55] Yue Jia and Mark Harman. 2008. MILU: A Customizable, Runtime-Optimized Higher
Order Mutation Testing Tool for the Full C Language. In Testing: Academic Industrial

Conference - Practice and Research Techniques (Taic Part 2008). IEEE, Windsor, UK, 94–98.
hps://doi.org/10.1109/TAIC-PART.2008.18 [Cited on pages 71 and 72.]

[56] Yue Jia and Mark Harman. 2009. Higher Order Mutation Testing. Information and Software

Technology 51, 10 (Oct. 2009), 1379–1393. hps://doi.org/10.1016/j.infsof.2009.04.016 [

Cited on pages 1, 50, 52, 53, 54, 57, 58, 59, 61, 65, 71, 72, and 122.]

[57] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation
Testing. IEEE Transactions on Software Engineering 37, 5 (Sept. 2011), 649–678. hps:
//doi.org/10.1109/TSE.2010.62 [Cited on pages 42 and 72.]

[58] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping
Program Repair Space with Existing Patches and Similar Code. In Proceedings of the

27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

2018). Association for Computing Machinery, New York, NY, USA, 298–309. hps:
//doi.org/10.1145/3213846.3213871 [Cited on pages 91, 92, 93, 95, and 114.]

[59] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’05). Association for Computing
Machinery, New York, NY, USA, 273–282. hps://doi.org/10.1145/1101908.1101949 [Cited

on pages 52 and 53.]

[60] René Just, Michael D. Ernst, and Gordon Fraser. 2014. Ecient Mutation Analysis by Prop-
agating and Partitioning Infected Execution States. In Proceedings of the 2014 International

Symposium on Software Testing and Analysis - ISSTA 2014. ACM Press, San Jose, CA, USA,
315–326. hps://doi.org/10.1145/2610384.2610388 [Cited on page 72.]

[61] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs. In Proceedings of the 2014

International Symposium on Software Testing and Analysis (ISSTA 2014). ACM, New York,
NY, USA, 437–440. hps://doi.org/10.1145/2610384.2628055 [Cited on pages 52, 53, 81, 91, 92, 96,

and 115.]

[62] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon
Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software Testing?. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

https://doi.org/10.1109/ICSTW.2017.29
https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2610384.2610388
https://doi.org/10.1145/2610384.2628055

BIBLIOGRAPHY 131

Engineering (FSE 2014). ACM, New York, NY, USA, 654–665. hps://doi.org/10.1145/
2635868.2635929 [Cited on pages 49, 52, and 53.]

[63] René Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2011. Using Conditional
Mutation to Increase the Eciency of Mutation Analysis. In Proceedings of the 6th Inter-

national Workshop on Automation of Software Test (AST ’11). ACM, New York, NY, USA,
50–56. hps://doi.org/10.1145/1982595.1982606 [Cited on page 56.]

[64] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from Program
Context. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 284–294. hps://doi.org/10.
1145/3092703.3092732 [Cited on pages 70, 72, and 122.]

[65] Christian Kästner. 2017. Dierential Testing for Variational Analyses: Experience from
Developing KCongReader. arXiv:1706.09357 [cs] (June 2017). arXiv:1706.09357 [cs] [Cited

on page 31.]

[66] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven Apel,
Tillmann Rendel, and Klaus Ostermann. 2012. Toward Variability-Aware Testing. In
Proceedings of the 4th International Workshop on Feature-Oriented Software Development -

FOSD ’12. ACM Press, Dresden, Germany, 1–8. hps://doi.org/10.1145/2377816.2377817 [

Cited on pages 2, 12, 41, 42, and 43.]

[67] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing Programs
with Semantic Code Search. In Proceedings of the 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE ’15). IEEE Press, Lincoln, Nebraska, 295–306.
hps://doi.org/10.1109/ASE.2015.60 [Cited on page 114.]

[68] Christian Kern and Javier Esparza. 2010. Automatic Error Correction of Java Programs. In
Proceedings of the 15th International Conference on Formal Methods for Industrial Critical

Systems (FMICS’10). Springer-Verlag, Berlin, Heidelberg, 67–81. [Cited on page 83.]

[69] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. 2012. Shared Execution for
Eciently Testing Product Lines. In 2012 IEEE 23rd International Symposium on Software

Reliability Engineering. IEEE, Dallas, TX, USA, 221–230. hps://doi.org/10.1109/ISSRE.
2012.23 [Cited on pages 12, 41, and 42.]

[70] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina Souto,
Paulo Barros, and Marcelo D’Amorim. 2013. SPLat: Lightweight Dynamic Analysis for
Reducing Combinatorics in Testing Congurable Systems. In Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 257–267. hps://doi.org/10.1145/2491411.
2491459 [Cited on page 72.]

[71] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic Patch
Generation Learned from Human-Written Patches. In 2013 35th International Conference

on Software Engineering (ICSE). IEEE, San Francisco, CA, USA, 802–811. hps://doi.org/
10.1109/ICSE.2013.6606626 [Cited on pages 76, 79, and 114.]

[72] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (July
1976), 385–394. hps://doi.org/10.1145/360248.360252 [Cited on page 57.]

https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/1982595.1982606
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/2377816.2377817
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ISSRE.2012.23
https://doi.org/10.1109/ISSRE.2012.23
https://doi.org/10.1145/2491411.2491459
https://doi.org/10.1145/2491411.2491459
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/360248.360252

132 BIBLIOGRAPHY

[73] K. N. King and A. Jeerson Outt. 1991. A Fortran Language System for Mutation-
Based Software Testing. Software: Practice and Experience 21, 7 (July 1991), 685–718.
hps://doi.org/10.1002/spe.4380210704 [Cited on pages 52 and 56.]

[74] Marinos Kintis, Mike Papadakis, and Nicos Malevris. 2010. Evaluating Mutation Testing
Alternatives: A Collateral Experiment. In 2010 Asia Pacic Software Engineering Conference.
IEEE, Sydney, NSW, Australia, 300–309. hps://doi.org/10.1109/APSEC.2010.42 [Cited on

pages 50 and 71.]

[75] Marinos Kintis, Mike Papadakis, and Nicos Malevris. 2015. Employing Second-Order
Mutation for Isolating First-Order Equivalent Mutants. Software Testing, Verication and

Reliability 25, 5-7 (Aug. 2015), 508–535. hps://doi.org/10.1002/stvr.1529 [Cited on page 52.]

[76] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. 2012. Rozzle:
De-Cloaking Internet Malware. In 2012 IEEE Symposium on Security and Privacy. IEEE,
San Francisco, CA, USA, 443–457. hps://doi.org/10.1109/SP.2012.48 [Cited on pages 11 and 42.]

[77] Bob Kurtz, Paul Ammann, Marcio E. Delamaro, Je Outt, and Lin Deng. 2014. Mutant
Subsumption Graphs. In 2014 IEEE Seventh International Conference on Software Testing,

Verication and Validation Workshops. IEEE, OH, USA, 176–185. hps://doi.org/10.1109/
ICSTW.2014.20 [Cited on page 72.]

[78] Bob Kurtz, Paul Ammann, and Je Outt. 2015. Static Analysis of Mutant Subsumption. In
2015 IEEE Eighth International Conference on Software Testing, Verication and Validation

Workshops (ICSTW). IEEE, Graz, Austria, 1–10. hps://doi.org/10.1109/ICSTW.2015.
7107454 [Cited on page 72.]

[79] Bob Kurtz, Paul Ammann, Je Outt, Márcio E. Delamaro, Mariet Kurtz, and Nida
Gökçe. 2016. Analyzing the Validity of Selective Mutation with Dominator Mutants.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (FSE 2016). ACM, New York, NY, USA, 571–582. hps:
//doi.org/10.1145/2950290.2950322 [Cited on pages 63 and 72.]

[80] Bob Kurtz, Paul Ammann, Je Outt, and Mariet Kurtz. 2016. Are We There Yet? How
Redundant and Equivalent Mutants Aect Determination of Test Completeness. In 2016

IEEE Ninth International Conference on Software Testing, Verication and Validation Work-

shops (ICSTW). IEEE, Chicago, IL, USA, 142–151. hps://doi.org/10.1109/ICSTW.2016.41 [

Cited on page 72.]

[81] Markus Kusano and ChaoWang. 2013. CCmutator: AMutation Generator for Concurrency
Constructs in Multithreaded C/C++ Applications. In 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, Silicon Valley, CA, USA,
722–725. hps://doi.org/10.1109/ASE.2013.6693142 [Cited on page 71.]

[82] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan Saltafor-
maggio, Xiangyu Zhang, and Dongyan Xu. 2016. LDX: Causality Inference by Lightweight
Dual Execution. In Proceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems - ASPLOS ’16. ACM Press,
Atlanta, Georgia, USA, 503–515. hps://doi.org/10.1145/2872362.2872395 [Cited on pages 11, 12,

41, and 42.]

https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1002/stvr.1529
https://doi.org/10.1109/SP.2012.48
https://doi.org/10.1109/ICSTW.2014.20
https://doi.org/10.1109/ICSTW.2014.20
https://doi.org/10.1109/ICSTW.2015.7107454
https://doi.org/10.1109/ICSTW.2015.7107454
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1145/2872362.2872395

BIBLIOGRAPHY 133

[83] William B. Langdon, Mark Harman, and Yue Jia. 2010. Ecient Multi-Objective Higher
Order Mutation Testing with Genetic Programming. Journal of Systems and Software 83,
12 (Dec. 2010), 2416–2430. hps://doi.org/10.1016/j.jss.2010.07.027 [Cited on pages 50, 53, 71,

and 72.]

[84] Lukas Lazarek. 2017. How to Eciently Process 2100 List Variations. In Proceedings Com-

panion of the 2017 ACM SIGPLAN International Conference on Systems, Programming,

Languages, and Applications: Software for Humanity (SPLASH Companion 2017). Associ-
ation for Computing Machinery, New York, NY, USA, 36–38. hps://doi.org/10.1145/
3135932.3135951 [Cited on pages 33 and 120.]

[85] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. 2014. MuCheck:
An Extensible Tool for Mutation Testing of Haskell Programs. In Proceedings of the 2014

International Symposium on Software Testing and Analysis (ISSTA 2014). ACM, New York,
NY, USA, 429–432. hps://doi.org/10.1145/2610384.2628052 [Cited on page 71.]

[86] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017.
S3: Syntax- and Semantic-Guided Repair Synthesis via Programming by Examples. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering - ESEC/FSE

2017. ACM Press, Paderborn, Germany, 593–604. hps://doi.org/10.1145/3106237.3106309
[Cited on pages 76, 77, 80, 86, 90, 91, 93, 94, 97, 109, 114, and 115.]

[87] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program Repair. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

(SANER). IEEE, Suita, 213–224. hps://doi.org/10.1109/SANER.2016.76 [Cited on page 115.]

[88] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A
Systematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each. In
Proceedings of the 34th International Conference on Software Engineering (ICSE ’12). IEEE
Press, Zurich, Switzerland, 3–13. [Cited on page 53.]

[89] Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current Challenges
in Automatic Software Repair. Software Quality Journal 21, 3 (Sept. 2013), 421–443.
hps://doi.org/10.1007/s11219-013-9208-0 [Cited on page 52.]

[90] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. Gen-
Prog: A Generic Method for Automatic Software Repair. IEEE Transactions on Software

Engineering 38, 1 (Jan. 2012), 54–72. hps://doi.org/10.1109/TSE.2011.104 [Cited on pages 42,

79, 80, 86, and 115.]

[91] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated Program
Repair. Commun. ACM 62, 12 (Nov. 2019), 56–65. hps://doi.org/10.1145/3318162 [Cited on

page 90.]

[92] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and Christian
Lengauer. 2013. Scalable Analysis of Variable Software. In Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 81–91. hps://doi.org/10.1145/2491411.
2491437 [Cited on page 43.]

[93] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The Java Virtual

https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1145/3135932.3135951
https://doi.org/10.1145/3135932.3135951
https://doi.org/10.1145/2610384.2628052
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3318162
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/2491411.2491437

134 BIBLIOGRAPHY

Machine Specication Java SE 8 Edition. [Cited on page 20.]

[94] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midki. 2005. SOBER: Statistical
Model-Based Bug Localization. ACM SIGSOFT Software Engineering Notes 30, 5 (Sept.
2005), 286. hps://doi.org/10.1145/1095430.1081753 [Cited on page 52.]

[95] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Synthesis. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE

2015. ACM Press, Bergamo, Italy, 166–178. hps://doi.org/10.1145/2786805.2786811 [Cited

on pages 75, 76, 79, 80, 114, and 115.]

[96] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate and
Validate Patch Generation Systems. In Proceedings of the 38th International Conference on

Software Engineering - ICSE ’16. ACM Press, Austin, Texas, 702–713. hps://doi.org/10.
1145/2884781.2884872 [Cited on pages 76, 79, 80, 81, 83, 86, 90, 93, 98, 99, and 124.]

[97] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Correct
Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages - POPL 2016. ACM Press, St. Petersburg, FL, USA, 298–312.
hps://doi.org/10.1145/2837614.2837617 [Cited on pages 75, 76, 79, 80, 114, and 115.]

[98] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019. Bears: An
Extensible Java Bug Benchmark for Automatic Program Repair Studies. In 2019 IEEE 26th

International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
Hangzhou, China, 468–478. hps://doi.org/10.1109/SANER.2019.8667991 [Cited on page 53.]

[99] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. 2014. Overcom-
ing the Equivalent Mutant Problem: A Systematic Literature Review and a Comparative
Experiment of Second Order Mutation. IEEE Transactions on Software Engineering 40, 1
(Jan. 2014), 23–42. hps://doi.org/10.1109/TSE.2013.44 [Cited on pages 50, 52, and 71.]

[100] Lech Madeyski and Norbert Radyk. 2010. Judy – a Mutation Testing Tool for Java. IET
Software 4, 1 (2010), 32. hps://doi.org/10.1049/iet-sen.2008.0038 [Cited on page 56.]

[101] Sonal Mahajan and William G.J. Halfond. 2014. Finding HTML Presentation Failures
Using Image Comparison Techniques. In Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering (ASE ’14). ACM, New York, NY, USA, 91–96.
hps://doi.org/10.1145/2642937.2642966 [Cited on page 71.]

[102] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and A. Scott. 2019.
SapFix: Automated End-to-End Repair at Scale. In Proceedings of the 41st International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’19). IEEE
Press, Montreal, Quebec, Canada, 269–278. hps://doi.org/10.1109/ICSE-SEIP.2019.00039
[Cited on page 75.]

[103] Matias Martinez and Martin Monperrus. 2019. Astor: Exploring the Design Space of
Generate-and-Validate Program Repair beyond GenProg. Journal of Systems and Software

151 (May 2019), 65–80. hps://doi.org/10.1016/j.jss.2019.01.069 arXiv:1802.03365 [Cited on

page 79.]

[104] Pedro Reales Mateo, Macario Polo Usaola, and José Luis Fernández Alemán. 2013. Validat-

https://doi.org/10.1145/1095430.1081753
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1109/SANER.2019.8667991
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1049/iet-sen.2008.0038
https://doi.org/10.1145/2642937.2642966
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1016/j.jss.2019.01.069

BIBLIOGRAPHY 135

ing Second-Order Mutation at System Level. IEEE Transactions on Software Engineering

39, 4 (April 2013), 570–587. hps://doi.org/10.1109/TSE.2012.39 [Cited on pages 50, 52, and 71.]

[105] Matthew Maurer and David Brumley. 2012. TACHYON: Tandem Execution for Ecient
Live Patch Testing. In Proceedings of the 21st USENIX Conference on Security Symposium

(Security’12). USENIX Association, Berkeley, CA, USA, 43–43. [Cited on page 42.]

[106] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking for
Simple Program Repairs. In Proceedings of the 37th International Conference on Software

Engineering - Volume 1 (ICSE ’15). IEEE Press, Florence, Italy, 448–458. [Cited on pages 77 and 115.

]

[107] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable Multiline
Program Patch Synthesis via Symbolic Analysis. In Proceedings of the 38th International

Conference on Software Engineering - ICSE ’16. ACM Press, Austin, Texas, 691–701. hps:
//doi.org/10.1145/2884781.2884807 [Cited on pages 75, 76, 77, 80, 114, 115, 121, and 122.]

[108] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. 2016.
A Comparison of 10 Sampling Algorithms for Congurable Systems. In Proceedings of

the 38th International Conference on Software Engineering - ICSE ’16. ACM Press, Austin,
Texas, 643–654. hps://doi.org/10.1145/2884781.2884793 [Cited on page 43.]

[109] Jens Meinicke, Chu-Pan Wong, Christian Kästner, and Gunter Saake. 2018. Understanding
Dierences among Executions with Variational Traces. arXiv:1807.03837 [cs] (July 2018).
arXiv:1807.03837 [cs] [Cited on pages 2, 9, 12, 41, and 87.]

[110] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter Saake. 2016.
On Essential Conguration Complexity: Measuring Interactions in Highly-Congurable
Systems. In Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE 2016). ACM, New York, NY, USA, 483–494. hps://doi.org/10.
1145/2970276.2970322 [Cited on pages 1, 2, 10, 11, 12, 14, 15, 17, 23, 30, 35, 39, 41, 42, 56, 57, 59, 63, 72, 77, 119, and 121.]

[111] Jean Melo, Claus Brabrand, and Andrzej Wąsowski. 2016. How Does the Degree of
Variability Aect Bug Finding?. In Proceedings of the 38th International Conference on

Software Engineering - ICSE ’16. ACM Press, Austin, Texas, 679–690. hps://doi.org/10.
1145/2884781.2884831 [Cited on page 1.]

[112] Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and Christian Kästner.
2017. A Choice of Variational Stacks: Exploring Variational Data Structures. In Proceed-

ings of the Eleventh International Workshop on Variability Modelling of Software-Intensive

Systems (VAMOS ’17). Association for Computing Machinery, New York, NY, USA, 28–35.
hps://doi.org/10.1145/3023956.3023966 [Cited on pages 32, 33, and 120.]

[113] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. Comput. Surveys

51, 1 (Jan. 2018), 1–24. hps://doi.org/10.1145/3105906 [Cited on pages 1, 2, 75, 90, and 114.]

[114] Manish Motwani, Mauricio Soto, Yuriy Brun, Rene Just, and Claire Le Goues. 2020. Quality
of Automated Program Repair on Real-World Defects. IEEE Transactions on Software

Engineering (2020), 1–1. hps://doi.org/10.1109/TSE.2020.2998785 [Cited on pages 97 and 114.]

[115] Saul B. Needleman and Christian D. Wunsch. 1970. A General Method Applicable to the

https://doi.org/10.1109/TSE.2012.39
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1145/2884781.2884831
https://doi.org/10.1145/2884781.2884831
https://doi.org/10.1145/3023956.3023966
https://doi.org/10.1145/3105906
https://doi.org/10.1109/TSE.2020.2998785

136 BIBLIOGRAPHY

Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular

Biology 48, 3 (March 1970), 443–453. hps://doi.org/10.1016/0022-2836(70)90057-4 [Cited

on pages 29 and 37.]

[116] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013.
SemFix: Program Repair via Semantic Analysis. In Proceedings of the 2013 International

Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 772–781.
[Cited on page 114.]

[117] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring Variability-
Aware Execution for Testing Plugin-Based Web Applications. In Proceedings of the 36th

International Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA,
907–918. hps://doi.org/10.1145/2568225.2568300 [Cited on pages 2, 12, 17, 41, 56, 63, 77, and 121.]

[118] Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. 2008. Feature Interaction: The
Security Threat from within Software Systems. Progress in Informatics 5 (March 2008), 75.
hps://doi.org/10.2201/NiiPi.2008.5.8 [Cited on pages 1 and 12.]

[119] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing. ACM Comput.

Surv. 43, 2 (Feb. 2011), 11:1–11:29. hps://doi.org/10.1145/1883612.1883618 [Cited on pages 2

and 43.]

[120] A. Jeerson Outt. 1992. Investigations of the Software Testing Coupling Eect. ACM
Transactions on Software Engineering and Methodology 1, 1 (Jan. 1992), 5–20. hps:
//doi.org/10.1145/125489.125473 [Cited on page 52.]

[121] A. Jeerson Outt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf.
1996. An Experimental Determination of Sucient Mutant Operators. ACM Transactions

on Software Engineering and Methodology 5, 2 (April 1996), 99–118. hps://doi.org/10.
1145/227607.227610 [Cited on pages 56 and 82.]

[122] A. Jeerson Outt, Gregg Rothermel, and Christian Zapf. 1993. An Experimental Evalua-
tion of Selective Mutation. In Proceedings of 1993 15th International Conference on Software

Engineering. IEEE, Baltimore, MD, USA, 100–107. hps://doi.org/10.1109/ICSE.1993.
346062 [Cited on pages 56 and 82.]

[123] Elmahdi Omar, Sudipto Ghosh, and Darrell Whitley. 2014. HOMAJ: A Tool for Higher
Order Mutation Testing in AspectJ and Java. In 2014 IEEE Seventh International Conference

on Software Testing, Verication and Validation Workshops. IEEE, Cleveland, OH, USA,
165–170. hps://doi.org/10.1109/ICSTW.2014.19 [Cited on page 71.]

[124] Elmahdi Omar, Sudipto Ghosh, and Darrell Whitley. 2017. Subtle Higher Order Mutants.
Inf. Softw. Technol. 81, C (Jan. 2017), 3–18. hps://doi.org/10.1016/j.infsof.2016.01.016 [

Cited on pages 53 and 71.]

[125] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman.
2019. Mutation Testing Advances: An Analysis and Survey. In Advances in Computers.
Vol. 112. Elsevier, 275–378. hps://doi.org/10.1016/bs.adcom.2018.03.015 [Cited on pages 1, 2,

49, 52, 61, 69, 71, and 72.]

[126] Mike Papadakis and Nicos Malevris. 2010. An Empirical Evaluation of the First and

https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1145/2568225.2568300
https://doi.org/10.2201/NiiPi.2008.5.8
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/125489.125473
https://doi.org/10.1145/125489.125473
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1109/ICSTW.2014.19
https://doi.org/10.1016/j.infsof.2016.01.016
https://doi.org/10.1016/bs.adcom.2018.03.015

BIBLIOGRAPHY 137

Second Order Mutation Testing Strategies. In 2010 Third International Conference on

Software Testing, Verication, and Validation Workshops. IEEE, Paris, France, 90–99. hps:
//doi.org/10.1109/ICSTW.2010.50 [Cited on page 50.]

[127] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into Modules.
Commun. ACM 15, 12 (Dec. 1972), 1053–1058. hps://doi.org/10.1145/361598.361623 [

Cited on page 3.]

[128] Spencer Pearson, Jose Campos, Rene Just, Gordon Fraser, Rui Abreu, Michael D. Ernst,
Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault Localization. In
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, Buenos
Aires, 609–620. hps://doi.org/10.1109/ICSE.2017.62 [Cited on page 52.]

[129] Goran Petrović and Marko Ivanković. 2018. State of Mutation Testing at Google.
In Proceedings of the 40th International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP ’18). ACM, New York, NY, USA, 163–171. hps:
//doi.org/10.1145/3183519.3183521 [Cited on pages 49 and 56.]

[130] Goran Petrović, Marko Ivanković, Bob Kurtz, Paul Ammann, and René Just. 2018. An
Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions.
In 2018 IEEE International Conference on Software Testing, Verication and Validation

Workshops (ICSTW). IEEE, Vasteras, Sweden, 47–53. hps://doi.org/10.1109/ICSTW.2018.
00027 [Cited on page 49.]

[131] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product Line

Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg. hps://doi.org/10.1007/
3-540-28901-1 [Cited on page 43.]

[132] Macario Polo, Mario Piattini, and Ignacio García-Rodríguez. 2009. Decreasing the Cost of
Mutation Testing with Second-Order Mutants. Softw. Test. Verif. Reliab. 19, 2 (June 2009),
111–131. hps://doi.org/10.1002/stvr.v19:2 [Cited on page 50.]

[133] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The Strength
of Random Search on Automated Program Repair. In Proceedings of the 36th International

Conference on Software Engineering (ICSE 2014). Association for Computing Machinery,
New York, NY, USA, 254–265. hps://doi.org/10.1145/2568225.2568254 [Cited on page 80.]

[134] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jerey S. Foster, and Adam Porter. 2010.
Using Symbolic Evaluation to Understand Behavior in Congurable Software Systems.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -

Volume 1 (ICSE ’10). ACM, New York, NY, USA, 445–454. hps://doi.org/10.1145/1806799.
1806864 [Cited on pages 2, 12, 14, 15, 39, 41, 59, 119, and 121.]

[135] Manos Renieres and Steven P. Reiss. 2003. Fault Localization with Nearest Neighbor
Queries. In 18th IEEE International Conference on Automated Software Engineering, 2003.

Proceedings. IEEE, Montreal, Que., Canada, 30–39. hps://doi.org/10.1109/ASE.2003.
1240292 [Cited on page 52.]

[136] RTI. 2002. The Economic Impacts of Inadequate Infrastructure for Software Testing. Technical
Report. National Institute of Standards and Technology. [Cited on page 75.]

https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1002/stvr.v19:2
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/1806799.1806864
https://doi.org/10.1145/1806799.1806864
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292

138 BIBLIOGRAPHY

[137] Stuart Russell and Peter Norvig. 2002. Articial Intelligence: A Modern Approach. [Cited on

page 76.]

[138] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR: Eective
Object Oriented Program Repair. In Proceedings of the 32nd IEEE/ACM International Con-

ference on Automated Software Engineering (ASE 2017). IEEE Press, Urbana-Champaign,
IL, USA, 648–659. [Cited on page 114.]

[139] Seemanta Saha, Ripon k. Saha, and Mukul r. Prasad. 2019. Harnessing Evolution for
Multi-Hunk Program Repair. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, Montreal, QC, Canada, 13–24. hps://doi.org/10.1109/ICSE.
2019.00020 [Cited on pages 76, 83, 91, 92, 93, 95, 101, 114, 115, and 123.]

[140] Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo. 2018.
Faceted Secure Multi Execution. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security - CCS ’18. ACM Press, Toronto, Canada, 1617–1634.
hps://doi.org/10.1145/3243734.3243806 [Cited on pages 13, 17, 41, and 42.]

[141] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and Cormac
Flanagan. 2016. Faceted Dynamic Information Flow via Control and Data Monads. In
Proceedings of the 5th International Conference on Principles of Security and Trust - Volume

9635. Springer-Verlag New York, Inc., New York, NY, USA, 3–23. hps://doi.org/10.1007/
978-3-662-49635-0_1 [Cited on pages 13, 17, 41, and 42.]

[142] Julia Schroeter, Malte Lochau, and Tim Winkelmann. 2012. Multi-Perspectives on Feature
Models. In Proceedings of the 15th International Conference on Model Driven Engineering

Languages and Systems (MODELS’12). Springer-Verlag, Berlin, Heidelberg, 252–268. hps:
//doi.org/10.1007/978-3-642-33666-9_17 [Cited on page 35.]

[143] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE: Multi-Path
Symbolic Execution Using Value Summaries. In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering - ESEC/FSE 2015. ACM Press, Bergamo, Italy,
842–853. hps://doi.org/10.1145/2786805.2786830 [Cited on pages 2, 11, 14, 22, 42, and 57.]

[144] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated Feedback
Generation for Introductory Programming Assignments. ACM SIGPLAN Notices 48, 6
(June 2013), 15–26. hps://doi.org/10.1145/2499370.2462195 [Cited on page 77.]

[145] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure Worse
than the Disease? Overtting in Automated Program Repair. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. ACM Press,
Bergamo, Italy, 532–543. hps://doi.org/10.1145/2786805.2786825 [Cited on pages 90, 91, 97, and 114.

]

[146] Larissa Rocha Soares, Jens Meinicke, Sarah Nadi, Christian Kästner, and Eduardo Santana
de Almeida. 2018. VarXplorer: Lightweight Process for Dynamic Analysis of Feature
Interactions. In Proceedings of the 12th International Workshop on Variability Modelling

of Software-Intensive Systems - VAMOS 2018. ACM Press, Madrid, Spain, 59–66. hps:
//doi.org/10.1145/3168365.3168376 [Cited on pages 12 and 41.]

[147] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. 2007. AutoBash: Improving Conguration

https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1145/3243734.3243806
https://doi.org/10.1007/978-3-662-49635-0_1
https://doi.org/10.1007/978-3-662-49635-0_1
https://doi.org/10.1007/978-3-642-33666-9_17
https://doi.org/10.1007/978-3-642-33666-9_17
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/3168365.3168376
https://doi.org/10.1145/3168365.3168376

BIBLIOGRAPHY 139

Management with Operating System Causality Analysis. In Proceedings of Twenty-First

ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07). ACM, New York, NY,
USA, 237–250. hps://doi.org/10.1145/1294261.1294284 [Cited on pages 11 and 42.]

[148] William N. Sumner, Tao Bao, Xiangyu Zhang, and Sunil Prabhakar. 2011. Coalescing
Executions for Fast Uncertainty Analysis. In Proceedings of the 33rd International Conference
on Software Engineering (ICSE ’11). ACM, New York, NY, USA, 581–590. hps://doi.org/
10.1145/1985793.1985872 [Cited on pages 13 and 42.]

[149] William N. Sumner and Xiangyu Zhang. 2013. Comparative Causality: Explaining the
Dierences Between Executions. In Proceedings of the 2013 International Conference on

Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 272–281. [Cited on pages 11,

12, 41, and 42.]

[150] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury. 2016. Anti-
Patterns in Search-Based Program Repair. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE 2016). Association
for Computing Machinery, New York, NY, USA, 727–738. hps://doi.org/10.1145/2950290.
2950295 [Cited on pages 81 and 114.]

[151] Yida Tao, Jindae Kim, SunghunKim, and ChangXu. 2014. Automatically Generated Patches
as Debugging Aids: A Human Study. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE 2014). Association for Computing
Machinery, New York, NY, USA, 64–74. hps://doi.org/10.1145/2635868.2635873 [Cited on

page 86.]

[152] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. 2014. A
Classication and Survey of Analysis Strategies for Software Product Lines. Comput.

Surveys 47, 1 (June 2014), 6:1–6:45. hps://doi.org/10.1145/2580950 [Cited on page 43.]

[153] Susumu Tokumoto, Hiroaki Yoshida, Kazunori Sakamoto, and Shinichi Honiden. 2016.
MuVM: Higher Order Mutation Analysis Virtual Machine for C. In 2016 IEEE International

Conference on Software Testing, Verication and Validation (ICST). IEEE, Chicago, IL, USA,
320–329. hps://doi.org/10.1109/ICST.2016.18 [Cited on page 71.]

[154] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu, Premku-
mar T. Devanbu, Bogdan Vasilescu, and Cindy Rubio-Gonzalez. 2019. BugSwarm: Mining
and Continuously Growing a Dataset of Reproducible Failures and Fixes. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, Montreal, QC, Canada,
339–349. hps://doi.org/10.1109/ICSE.2019.00048 [Cited on pages 53 and 122.]

[155] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. 2009. Ecient Online Validation
with Delta Execution. In Proceedings of the 14th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS XIV). ACM, New
York, NY, USA, 193–204. hps://doi.org/10.1145/1508244.1508267 [Cited on pages 13 and 42.]

[156] Roland H. Untch, A. Jeerson Outt, and Mary Jean Harrold. 1993. Mutation Analysis
Using Mutant Schemata. In Proceedings of the 1993 International Symposium on Software

Testing and Analysis - ISSTA ’93. ACM Press, Cambridge, Massachusetts, United States,
139–148. hps://doi.org/10.1145/154183.154265 [Cited on page 56.]

https://doi.org/10.1145/1294261.1294284
https://doi.org/10.1145/1985793.1985872
https://doi.org/10.1145/1985793.1985872
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/2635868.2635873
https://doi.org/10.1145/2580950
https://doi.org/10.1109/ICST.2016.18
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1145/1508244.1508267
https://doi.org/10.1145/154183.154265

140 BIBLIOGRAPHY

[157] Alexander von Rhein, Sven Apel, and Franco Raimondi. 2011. Introducing Binary Decision
Diagrams in the Explicit-State Verication of Java Code. In Proc. Java Pathnder Workshop.
82. [Cited on pages 2, 14, 22, and 42.]

[158] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden. 2014.
Variational Data Structures: Exploring Tradeos in Computing with Variability. In Pro-

ceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and

Reections on Programming & Software - Onward! ’14. ACM Press, Portland, Oregon, USA,
213–226. hps://doi.org/10.1145/2661136.2661143 [Cited on pages 32, 33, and 120.]

[159] Bo Wang, Yingfei Xiong, Yangqingwei Shi, Lu Zhang, and Dan Hao. 2017. Faster Muta-
tion Analysis via Equivalence Modulo States. In Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York,
NY, USA, 295–306. hps://doi.org/10.1145/3092703.3092714 [Cited on pages 13, 42, and 72.]

[160] Lusheng Wang and Tao Jiang. 1994. On the Complexity of Multiple Sequence Alignment.
Journal of Computational Biology 1, 4 (Jan. 1994), 337–348. hps://doi.org/10.1089/cmb.
1994.1.337 [Cited on page 37.]

[161] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging Program
Equivalence for Adaptive Program Repair: Models and First Results. In Proceedings of

the 28th IEEE/ACM International Conference on Automated Software Engineering (ASE’13).
IEEE Press, Silicon Valley, CA, USA, 356–366. hps://doi.org/10.1109/ASE.2013.6693094 [

Cited on pages 80 and 83.]

[162] WestleyWeimer, ThanhVuNguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automat-
ically Finding Patches Using Genetic Programming. In Proceedings of the 31st International

Conference on Software Engineering (ICSE ’09). IEEE Computer Society, Washington, DC,
USA, 364–374. hps://doi.org/10.1109/ICSE.2009.5070536 [Cited on pages 75, 76, 79, 80, 86, 87, 114,

and 115.]

[163] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-
Aware Patch Generation for Better Automated Program Repair. In Proceedings of the 40th

International Conference on Software Engineering - ICSE ’18. ACM Press, Gothenburg,
Sweden, 1–11. hps://doi.org/10.1145/3180155.3180233 [Cited on pages 75, 76, 79, 80, 83, 93, 95, 114,

and 115.]

[164] Chu-Pan Wong, Jens Meinicke, Leo Chen, João P. Diniz, Christian Kästner, and Eduardo
Figueiredo. 2020. Eciently Finding Higher-Order Mutants. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. ACM, Virtual Event USA, 1165–1177. hps:
//doi.org/10.1145/3368089.3409713 [Cited on page 49.]

[165] Chu-Pan Wong, Jens Meinicke, and Christian Kästner. 2018. Beyond Testing Congurable
Systems: Applying Variational Execution to Automatic Program Repair and Higher Order
Mutation Testing. In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ES-

EC/FSE 2018). ACM, New York, NY, USA, 749–753. hps://doi.org/10.1145/3236024.3264837
[Cited on pages 7, 14, 42, and 56.]

https://doi.org/10.1145/2661136.2661143
https://doi.org/10.1145/3092703.3092714
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3236024.3264837

BIBLIOGRAPHY 141

[166] Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster Varia-
tional Execution with Transparent Bytecode Transformation. Proc. ACM Program. Lang.

2, OOPSLA (Oct. 2018), 117:1–117:30. hps://doi.org/10.1145/3276487 [Cited on pages 2, 7, 17, 56,

57, 63, 77, and 94.]

[167] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-Related Code for Automated Pro-
gram Repair. In Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE 2017). IEEE Press, Urbana-Champaign, IL, USA, 660–670. [Cited

on pages 91, 93, and 95.]

[168] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018. Identifying
Patch Correctness in Test-Based Program Repair. In Proceedings of the 40th International

Conference on Software Engineering. ACM, Gothenburg Sweden, 789–799. hps://doi.org/
10.1145/3180155.3180182 [Cited on pages 77, 87, 88, 108, and 115.]

[169] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu
Zhang. 2017. Precise Condition Synthesis for Program Repair. In Proceedings of the 39th

International Conference on Software Engineering (ICSE ’17). IEEE Press, Buenos Aires,
Argentina, 416–426. hps://doi.org/10.1109/ICSE.2017.45 [Cited on pages 114 and 115.]

[170] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebastian Lamelas Mar-
cote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017. Nopol: Automatic
Repair of Conditional Statement Bugs in Java Programs. IEEE Transactions on Software

Engineering 43, 1 (Jan. 2017), 34–55. hps://doi.org/10.1109/TSE.2016.2560811 [Cited on

pages 77 and 93.]

[171] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan,
and Stephen Chong. 2016. Precise, Dynamic Information Flow for Database-Backed
Applications. In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’16). ACM, New York, NY, USA, 631–647.
hps://doi.org/10.1145/2908080.2908098 [Cited on pages 13, 22, 41, 43, and 77.]

[172] Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java Programs via
Multi-Objective Genetic Programming. IEEE Transactions on Software Engineering 46, 10
(Oct. 2020), 1040–1067. hps://doi.org/10.1109/TSE.2018.2874648 [Cited on page 93.]

[173] Andreas Zeller. 2002. Isolating Cause-Eect Chains from Computer Programs. In Proceed-

ings of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering (SIGSOFT

’02/FSE-10). ACM, New York, NY, USA, 1–10. hps://doi.org/10.1145/587051.587053 [Cited

on pages 11, 12, 41, and 42.]

[174] Xiangyu Zhang, Sriraman Tallam, NeelamGupta, and Rajiv Gupta. 2007. Towards Locating
Execution Omission Errors. In Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation - PLDI ’07. ACM Press, San Diego,
California, USA, 415. hps://doi.org/10.1145/1250734.1250782 [Cited on page 42.]

[175] Hao Zhong and Zhendong Su. 2015. An Empirical Study on Real Bug Fixes. In Proceedings

of the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE,
Piscataway, NJ, USA, 913–923. hps://doi.org/10.1109/ICSE.2015.101 [Cited on pages 1, 52, 53, 81,

and 115.]

https://doi.org/10.1145/3276487
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/2908080.2908098
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/1250734.1250782
https://doi.org/10.1109/ICSE.2015.101

	Introduction
	Analyzing Intentional Variations
	Analyzing Speculative Variations
	Thesis
	Outline

	Criteria of Applying Variational Execution
	Terminology
	Variational Execution
	Existing Applications
	Configuration Testing
	Information Flow Tracking
	Other Applications

	Key to Successful Applications
	Summary

	Scaling Variational Execution
	Faster Variational Execution
	Motivation: A Manual Rewrite
	Bytecode Transformation
	Basic Lifting
	Method Invocation and Return
	Using Objects

	Control Transfer
	VBlock
	Execution Strategy
	Properties
	Values on the Stack between VBlocks

	Implementations, Optimizations, Limitations
	Optimization: Deciding What to Transform
	Optimization: Using Model Classes
	Limitations

	Empirical Evaluation
	Experimental Setup
	Execution Time
	Memory Usage
	Sharing Efficiency

	Related Work
	Proofs
	Summary

	Higher-Order Mutation Testing
	Strongly Subsuming Higher-Order Mutants
	Higher-Order Mutants
	Usefulness of Higher-Order Mutants
	Strongly Subsuming Higher-Order Mutants (SSHOMs)
	Finding SSHOMs

	Step 1: Complete Search With Variational Execution
	Mutant Generation
	Variational Execution
	SSHOM Search as a SAT Problem
	Limitations
	Evaluation

	Step 2: SSHOM Characteristics
	Step 3: Prioritized Search
	Search Strategy
	Implementation
	Evaluation

	Test Suite Relevance
	Related Work
	Summary

	Automatic Program Repair
	Automatic Program Repair
	Motivating Example
	Approach Overview
	Meta-Program Generation
	Systematic Search with Variational Execution
	Patch Ranking
	Implementation
	Evaluation
	Research Questions
	Datasets
	Meta-Program Generation
	RQ1 (Effectiveness)
	RQ2 (Patch Quality)
	RQ3 (Fixing Ingredients)
	RQ4 (Multi-Edit)
	RQ5 (Patch Ranking)

	Related Work
	Summary

	Conclusions
	Future Work: Variational Execution
	Improving Variational Execution
	New Applications

	Future Work: Higher-Order Mutation Testing
	Future Work: Automatic Program Repair

	Bibliography

