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Abstract
Real-world, social phenomena produce various types of data, like explicit net-

works or user-emitted text. When different sets of data describe the same entities, the
data is termed multi-view or multi-modal. A distinct advantage of multi-view data
is that different views may better capture different aspects of the latent structure of
the data. However, there are difficulties in combining that data to produce something
like a clustering of the data. Multi-view clustering techniques, primarily developed
for image or biological use cases or network only use cases, have typically not been
used for clustering social-based use cases. I investigate the use of multi-view clus-
tering on various social-based, multi-view data sets, and propose new techniques for
multi-view clustering of social-based data.

In the first part of this thesis I discuss the use of multi-view clustering for social-
based data, and propose a new paradigm and new techniques for multi-view clus-
tering. In chapter two I propose a new hybrid paradigm of multi-view clustering,
which combines elements of late paradigm and intermediate paradigm integration. I
test the various intermediate, late, and hybrid paradigm algorithms on a wide range
of benchmark data sets from social-based data scenarios. The results of the empiri-
cal testing demonstrate a wide variance in the performance of multi-view clustering
techniques. This is in part because social-based data often have high inter- and intra-
view variances that are not present in other data scenarios, which presents difficulties
for existing techniques. Only two techniques proposed in the chapter have good per-
formance across all of the data sets and are robust to inter- and intra-view differences.
From the results in chapter two, I devise a new algorithm based in network modular-
ity and graph learning to cluster multi-view social data in chapter three. I present the
results of a series of empirical tests of the new technique, as well as possible vari-
ations on the technique. The results demonstrate that the presented technique often
performs well across a wide range of social-scenarios that give rise to multi-view
data, is scalable to large data sets, and is robust to inter- and intra-view variance.

In the second part of this thesis I use the new techniques to do clustering anal-
yses of real-world data. In chapter four I use multi-view clustering on Twitter data
collected during the initial stages of the COVID-19 pandemic. This analysis is the
first ever use of multi-view clustering to cluster hashtags from large, social-media
data sets. The results display that hashtags form topical clusters and that these top-
ical clusters have changed over the course of the pandemic. In chapter five I use
multi-view clustering to cluster malware samples. The results demonstrate that a
multi-view clustering of malware samples provides insight into communities of mal-
ware use, and confirm the techniques developed can be applied to a wide range of
social-based data scenarios.

In sum, I demonstrate the suitability of, and create techniques for, multi-view
clustering of complex, multi-view, social-based data. This thesis advances practical
clustering analyses of large-scale, noisy, social-based data and contributes to the
field of multi-view clustering in general.
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Chapter 1

Introduction and Background

1.1 Introduction

In today’s social media-laden, digital world, researchers are increasingly able to see many differ-
ent views of social interactions. Everything from social media networks and content to observed
online and in-person interactions can all be recorded and used to understand important structures
within those social actors like communities or patterns of usage. Despite the benefit provided by
all of these different views of the data, this complexity can also pose challenges for computa-
tionally analyzing the data. One particular challenge is how to cluster multi-view, social-based
data — which could contain any number and variety of data types, like network and non-network
data — in order to do things like explore meso-structures in the data, find communities, or char-
acterize interesting patterns of usage. Typically, only one of these different views of the data
are used in exploring structures, like clusters, in the data due to difficulty with using multiple
different types of data in one cohesive clustering. So, to tackle this problem, I propose the use
of multi-view clustering; in this thesis investigate how multi-view clustering can be applied to
social-based data scenarios.

The field of multi-view clustering, like many other multi-view, or multi-modal, machine
learning fields rests on the idea that not only more data, but incorporation of different types
of data, can lead to better outcomes. In the case of multi-view clustering, many techniques
have been developed around multi-view data of images or genetic interactions. Additionally,
within the discipline of network science there have been a plethora of techniques developed to
analyze individuals that interact in many different networks. Generally, techniques which can
incorporate additional modes, or views, of the data perform better at tasks like clustering than
those techniques which cannot. So, as social-based scenarios, especially from social media sites,
are giving rise to more types of data, it is important to investigate how these multi-view and
multi-modal techniques can be used with social-based, multi-view data scenarios. In particular,
it is important to investigate techniques which are capable of taking any kind of data that can
arise from social interactions, like networks and text or user attributes.

In this thesis, I will investigate the use of multi-view clustering on social-based data. In par-
ticular, I will investigate the use of multi-view clustering of social-based data scenarios that can
give rise to multiple types data in the different views of the data, and not just those techniques
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which can only handle one type of view (i.e. just network views or non-network views). In
contrast to previous work, this work is the first to propose a multi-view data paradigm to cluster
social-based data. It also is the first work to empirically investigate the use of multi-view clus-
tering techniques on social based data; most previous work on multi-view clustering techniques
focuses on image or biological data. As a result of this work, a new multi-view clustering tech-
nique has been developed which not only shows strong empirical performance on benchmark
data sets, but also great utility in investigation of clusters in real-world, multi-view data.

The thesis is organized as follows: In the first section, I give some background on multi-
view clustering and its various applications and paradigms of techniques. I will also define
some of the key concepts and terms used throughout the thesis. In the second chapter, I will
investigate various techniques from the different paradigms of multi-view clustering in terms of
their performance in clustering benchmark, multi-view, social-based data from several different
social-based data scenarios. I also propose a new hybrid paradigm for clustering social-based
data and some techniques from this hybrid paradigm. In the third chapter, I develop a new
technique based on lessons from the previous chapter for clustering multi-view, social-based
data and investigate its performance and the performance of variations in the technique. In the
final two chapters, I use the previously developed techniques on actual data from real-world
problems to gain meaningful insight into those problems. In the fourth chapter, I use multi-view
clustering to investigate hashtag usage on Twitter during the COVID-19 pandemic. And, in the
fifth chapter, I use multi-view clustering to understand communities of malware samples.

1.2 Background

This section summarizes the key concepts and frequently used terms in the thesis as well as
covering the relevant background research. This section provides all of the meaningful context
for the reader to understand the remaining chapters of the thesis and their research value.

1.2.1 Definitions

This section details some of the key concepts and terms that will be used throughout the thesis.

Graph The first key concept used throughout this thesis is a graph. A graph, G, is a set
of homogeneous objects called vertices, V that have relationships between each other. These
relationships are called edges, denoted as E. A graph can further have a weight, W , on each
of the edges which represents the strength of the relationship between the vertices at the end
points of the edge. Finally, an edge may have a direction which indicates a one-way relationship
or flow. Directed edges can also be referred to as arcs [94]. The connections of a graph may
also be summarized as an adjacency matrix, A, which is an |V | by |V | matrix that has entries
representing the edges (and their weights in the case of a weighted graph). The following figure
1.1 displays some of these different definitions of a graph:
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Figure 1.1: On the left is a directed, weighted graph, where arrows indicate the direction of the edge and the width
of the edge indicates the weight, with its associated adjacency matrix. On the right is a undirected, unweighted graph
with its associated adjacency matrix

An unweighted, directed or undirected graph, G, will be denoted as G = (V,E) and a
weighted undirected or directed graph as G = (V,E,W ). It should be noted that the term
‘network’ is often synonymous with the term graph and that its constituent terms of ‘node’ and
‘link’ correspond directly to ‘vertex’ and ‘edge’ respectively [94]. The two frameworks will be
used interchangeably in this thesis, and use of one or the other is meant to be consistent with
the research that gave rise to findings or methods being mentioned. Typically network will be
used for actual observed relations between actors, while a graph will be used to refer to inferred
relations or calculated similarities between entities.

From the definition of the graph we can then derive another important definition, that of the
neighbors of a vertex. The neighbors of some vertex, u, are all those vertices of V which u has
an edge to them, eu,v ∈ E, ∀v 6= u. This is equivalent to the nonzero elements of the row of the
adjacency matrix assigned to vertex u. The neighbors of any given vertex, u, are denoted as Nu.

Clusters and Clustering In this work, clustering is the task of splitting a collection of objects
into non-overlapping subsets, such that all objects are assigned to exactly on subset, and each
subsets’ objects are more similar to each other than they are to any other subsets’ objects [14],
[7]. So, at the end of performing a clustering on a data set, a labeling is produced where each
object in the data set now has a label for the cluster that that object belongs to. In this work, a
cluster is a particular label or subset of the data, and a clustering is the collection of all of the
labels or subsets produced by a single application of a clustering algorithm to the data.

Multi-view or Multi-modal Data Another concept that is key to understanding this proposal
is multi-view, or multi-modal, data. In this work, multi-view data is a data set which has different
sub-divisions of the data (which could be of different types of data) each of which describe the
same set of entities [31], [58], [141], [12]. Furthermore, each entity can be described in all of the
views of the data, but may not always have data within each view [12], [32]. By these definitions,
multi-view data has features which are inherently correlated; each view of the data should be
correlated in some respect with every other view since they are describing the same phenomena.
An example of multi-view data would be news about an event; news articles often contain text
and images which both are data describing the same event [12]. Another example would be
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an image of something which has been put through many different filters. Each version of the
image could be a view of the data of the image [12]. In fact, this latter example represents much
of the types of multi-view data that disciplines like graph learning have been applied to [10], [9],
[106]. Overall, multi-view data is data which either explicitly has different views describing the
same set of entities or data which can be made multi-view through different representations of,
or measurements on, the same data.

Common Notations Throughout this thesis, I will use the common mathematical notational
rules to include having matrices be represented by uppercase letters, vectors or constants repre-
sented by lowercase letter, and parameters by Greek symbols. In addition the following table,
Table 1.2.1, summarizes some notations that are particular to this work, for reference by the
reader.

Commonly used Symbols and Definitions
n the number of objects in the data set
m the number of views in the data set
k the number of clusters of a data set
d/dv the dimensionality of a set of features/ set of features within a particular view, v
ci a cluster produced by a clustering technique
X/Xv the matrix of features vectors/ matrix of features vectors for a particular view, v
G/Gv a network or graph/ the network or graph for a particular view, v
V the set of all vertices or nodes in a graph or network
E the set of all edges or links in a graph or network
A/Av the adjacency matrix of a particular graph or network/ adjacency matrix for a

particular view, v
P /P v the clusters or partitions produced by a clustering algorithm/ clusters for a

particular view, v

1.2.2 Related and Foundational Research
In this section I will review the fields of study and previous research that is fundamental to the
contributions in this work. I will begin with detailing the use of multi-view data in machine
learning. I will then describe the specific work on unsupervised learning with multi-view data.
As this work focuses on clustering with multi-view, social-based data I will also then detail the
research in the field of social network analysis that attempts to address finding communities
in multi-view, social-based data. In particular, I will outline the research done in clustering
attributed graphs and clustering of multiplex and multi-layer social networks.

Machine Learning with multi-view Data

Multi-view data has been used for many types of machine learning tasks. A recent survey of
the works in machine learning with multi-view data by Baltrušaitis et al. generally categorizes
the challenges of using multi-view data as representation, translation, alignment, fusion, and
co-learning [11], [12]. In this work we are primarily investigating the challenge of fusion of
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multiple views of data in order to produce meaningful clusters of the data [12]. Fusing various
types of multi-view data remains an active area of research due to its salience in fields like
medicine and computer vision among others [160], [12], [99]. Within this framework of data
fusion, the techniques of fusing multi-view data for an unsupervised learning task break into
three paradigms: early integration, intermediate integration, and late integration [12], [160].
Early integration approaches, which historically have made up the bulk of all multi-view data
uses typically feature concatenation of the different views into one view [12]. In essence, early
integration techniques create one feature vector from all of the view feature vectors and then
apply a particular machine learning algorithm to this new feature set. The strength of early
integration approaches are their simplicity since they can be used without having to design any
kind of specialized machine learning algorithms. The weakness of early integration approaches
are that concatenating the information before using it in a machine learning algorithm can cause
certain view-specific patterns to be masked by the other views’ features [12]. Additionally, some
types of data simply do not concatenate easily, such as network and non-network data. Figure
1.2 displays an example of an early integration approach.

Figure 1.2: Schematic of the early integration paradigm. An phenomenon of interest can give rise to many different
types of data. In the early integration paradigm, the different types of data are converted to the same type of features,
and then these features are just concatenated together and used in a standard machine learning algorithm.

Late integration approaches work by applying a machine learning algorithm to each view
independently and then averaging or otherwise ensembling together the output of each view’s
machine learning algorithms. Late integration techniques derive a new feature vector of outputs
from each view’s machine learning algorithms and then use that feature vector in a final machine
learning algorithm. The main advantage of late integration approaches is that they can leverage
specialty algorithms designed for certain types of data (i.e. using network clustering algorithms
or algorithms designed specifically to cluster text for the network and text views of the data)
and can be parallelized in execution across the views. The main drawback of late integration ap-
proaches is that each view is treated independent of the other views which means complementary
information between the views is not used and that just using the outputs of each view’s machine
learning algorithms will entail some loss of information which often degrades the performance
of the algorithms. Figure 1.3 displays an example of a late integration approach.
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Figure 1.3: Schematic of the late integration paradigm. An phenomenon of interest can give rise to many different
types of data. In the late integration paradigm, the different types of data are clustered or otherwise transformed by
whatever algorithm makes sense for that type of data. The resulting view labels are then fed to a ensembling technique,
which is generally another machine learning algorithm, to produce the final labels.

Intermediate integration techniques are those which work directly on the multi-view data in
a multi-view format to produce the desired output. Typically each view’s features are cast to
some kind of compatible data format, like graphs, and then a loss function that combines the
loss across each of the views is used in the machine learning algorithm. The main advantage of
intermediate integration approaches is that they take advantage of information present within and
between the views of the data. Their primary disadvantage is that they require all of the views
of the data to be of a certain type (i.e. all graphs) which can limit the types of multi-view data
that they can be used on. Furthermore, different data set ups can require completely new loss
functions, which makes many of the techniques limited in their application domains. Figure 1.4
displays an example of an intermediate integration approach.

Figure 1.4: Schematic of the intermediate integration paradigm. An phenomenon of interest can give rise to many
different types of data. These different types of data are then featurized and a machine learning algorithm which has a
loss function that works on all of the views simultaneously to produce the desired output. Often, each of the views are
mapped to the same space or data type (i.e. a graph) as part of the algorithm.

While each of the integration strategies have their strengths and weaknesses, late or in-
termediate integration approaches are generally seen as superior approaches for dealing with

6



multi-view data [12], [160], [123]. This is due to these approaches better using aspects of the
multi-view data like complementary information between views or algorithms that are specific
to certain types of data within the views. Overall, while the use of multi-view data can lead to
improved results for machine learning, it also presents distinct challenges for fusing the data to
be used for a machine learning task.

To date most of the data being characterized as multi-view data — and, by corollary, driving
algorithmic development for multi-view data — has been limited to a few domains. The domains
that almost exclusively dominate multi-view data usage in machine learning are audio-visual-
text, image, and medical/genetic. Perhaps the oldest use of multi-view data has been for solving
problems in the combined domains of audio-visual and text [12]. Within this domain of data,
problems like providing text annotations for videos, recognizing speech, and translating text
between languages form many of the multi-view problems [12], [97], [118], [79], [46]. Many
of these problem setups and corresponding algorithms exploit labeled data (or, partially labeled
data), and deep neural network architectures.

More recently, image data has become increasingly characterized as multi-view data [10],
[157], [1]. Many of the approaches designed for image data utilize different filters, representa-
tions, or similarity measurements on the same set of images and represent each of these differ-
ences as a different view of the image. Additionally, many of the techniques used on multi-view
image data exploit graph representations of the data and properties of graphs for fusing the data
[10], [9], [157], [43], [134]. Much like the techniques used in the image domain, many of the
most successful multi-view techniques used for biological and genetic data also typically use
graph-based representations [107]. Some techniques utilize diffusion processes in order to fuse
or otherwise enhance graph-based biological structures like protein-protein interaction networks
[135], [136]. Other techniques use ensembles of graphs or label information to otherwise aid in
the fusion of the graphs of the different views of the biological data [160], [56], [99], [91], [100].
Taken together, audio-visual, biological/genetic, and image data make up nearly all of the data
domains that have exploited multi-view data characterizations for machine learning.

Most recently, a few recent studies have begun using social data in a multi-view way for su-
pervised learning problems. In this context, social data is that data which is generated by a social
process, like data coming from online social networks or social interactions in an organization.
Some recent works using multi-view, online social data have found that using more modalities
of online social media data than just the text emitted by users or their social interactions have
led to gains in supervised learning. In particular, recent research has found the fusion of content
data (i.e. text) with network diffusion data (i.e. to whom that text spread to in an online social
network) to be especially useful for detecting fake news and characterizing online conversations
[104], [116], [117], [77]. Thus, solutions for some very tricky supervised learning problems in
a social data domain have received substantial boosts in predictive performance by the inclusion
of multi-view data into their algorithms.

Clustering of multi-view Data

In this section I will describe the primary techniques used in multi-view clustering. As was
detailed in the previous section, multi-view clustering techniques break into the three paradigms
of early, intermediate, and late integration techniques. Since early integration techniques use
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standard clustering algorithms, after transforming the features from the different views into one
feature, this review will focus on intermediate and late integration clustering techniques.

The advantage of multi-view clustering derives form two basic principles: complementarity
and consensus. The complementarity principle is that multiple views of data can be employed to
more comprehensively and accurately describe the phenomena of interest [147]. With multi-view
data, any single view is sufficient for the clustering task, but the combination of multiple views
can provide complementary information to any single view which improves the clustering task.
The consensus principle is the idea that a clustering solution should be maximally consistent
across the multiple views [147]. This principle implies that finding a clustering solution that
reduces the error between it and all of the view clustering solutions will be the optimal clustering
solution. So, any successful multi-view clustering algorithm should be able to take into account
complementary information between the views of the data and seek a final clustering which is
maximally consistent with the clusterings from each view.

Intermediate Integration Intermediate integration, multi-view clustering methods are those
methods which attempt to cluster features from all of the views simultaneously. Generally speak-
ing, these methods require that each view of the data be projected into the same space and have
a loss function that is defined for all of the views concurrently. Several techniques that were de-
signed for uni-modal data have been extended for use on multi-view data sets [31], [58], [141],
[1]. Typically, these methods modify the loss function for a uni-modal clustering technique, such
as k-Means, to have the computation of loss be across all of the views of the data [148]. These
techniques often employ multiple kernel learning where there is a different pre-defined kernel
for each of the views which allows for all of the views to be better accounted for in a singular
loss function [147].

More recently, intermediate integration techniques have focused on using graphs as the com-
mon data format for multi-view clustering and the use of factorization procedures to produce a
common subspace due to their high performance on empirical tests in the image and genetic data
domains [147], [107]. In the case of graph-based intermediate integration techniques there are
several techniques that use a spectral clustering framework [58], [141], [150], [143], [153], [140].
Some of the spectral clustering-based methods additionally use techniques which automatically
learn weights for the different graphs from the different views to allow for discounting less useful
views of the data[150], [153]. Other techniques in the graph-based methods use Tensor Factor-
ization techniques or a form of Non-Negative Matrix Factorization to produce latent features
which can be clustered by a technique like k-Means [153], [60], [139], [55], [151]. In this way,
these graph-based techniques employing matrix factorization can often closely resemble those
techniques that attempt to just find a common subspace across views [147]. The primary dif-
ference is typically in the loss functions which can either take a graph as input or a raw feature
matrix as input [147]. Many of these factorization-based techniques also include additional reg-
ularization terms in the loss function to encourage sparse or low-rank results, which can be used
to produce better common subspaces or graphs for subsequent clustering [147], [139], [151].
Additionally, some factorization-based techniques also include a model of the view data that has
an explicit term for view inconsistencies or error [147], [143], [82], [139]. Inclusion of such a
view inconsistency term allows for a more resilient clustering solution since differences between
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the views of the data have less of an impact on the joint subspace or graph.
The primary strength of intermediate integration techniques is their ability to exploit the com-

plementary principle when producing clustering solutions. As such, they are often considered the
superior class of techniques for clustering multi-view data [123], [160]. However, these methods
rely on data being the same format or the same space, which can present challenges for hetero-
geneous data formats like networks and non-network data (i.e text) [147]. Furthermore, many
techniques in intermediate integration can also be computationally demanding and have certain
initialization and hyper-parameter dependencies that can substantially affect their performance.

Late Integration Late integration, multi-view clustering methods are those methods which
cluster each view of the data independently and then attempt to find a consensus clustering
across all of the view clusterings. The vast majority of the late integration methods are clus-
ter ensembling methods. Cluster ensembling is the idea that multiple clusterings are taken of
the same set of data, and then the partitions are combined to produce a better partition of the
data set by a consensus method [18]. In this way, cluster ensembling techniques are targeting the
consensus principle involved in clustering of multi-view data. In the original problem setup for
cluster ensembling the consensus method only has access to the the individual partitions and no
other information about the underlying data [119], [18]. While cluster ensembling was originally
designed for uni-modal clustering as a means of providing for more robust and accurate clusters,
the methodology has been recently extended to explicitly handle multi-view data scenarios [18],
[152].

The main methodological traditions of cluster ensembling are optimization-based and graph-
based. In optimization-based cluster ensembling, the consensus function typically consists of
a loss function and an optimization procedure for the loss function [18], [152]. In particular,
most optimization-based methods have a loss function that measures the difference between the
consensus clustering and each of the ensemble measure with an optimization procedure to reduce
this difference.

Since the optimization-based methods can suffer from having NP-hard optimization schemes
and scalability to larger data sets, graph-based methods have been the preferred methods for
cluster ensembling [18]. Within graph-based methods there are several proposed techniques for
constructing the graph, producing weightings for the graph, and clustering the graph for the final
consensus partition [18], [152]. For constructing a graph of all the view partitions three main
methods are used. The first method is to produce a co-association graph of the objects being
clustered by placing edges between the objects in the graph if the share clusters in the view
clusterings [119], [18], [152], [71], [65], [64], [85]. The second main method of constructing
a graph from the view partitions is to create a meta-cluster graph where the vertices are now
the view clusters and the edges represent some measure of how many objects the view clusters
share [119], [64], [65]. The third main method of constructing a graph from the view partitions
is to create an object by view cluster bipartite graph where an edge represents that an object
belongs to a view cluster [65], [47]. With these basic graph formats, there are many proposed of
ways of weighting the graphs in order to better emphasize good view clusterings over bad view
clusterings [152]. Typically, the weighting of an edge in any of these methods encompasses the
strength of the connection between its endpoints in the view clusters and the consistency of the
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view clusters that indicate the endpoints should have an edge, with all of the other view clusters
[85], [152], [64], [6], [65], [71]. Once a graph (possibly weighted) has been constructed from
the view partitions there have also been several means of clustering this graph to produce the
final partitions. The most often used means of the final clustering are Spectral, METIS, and
agglomerative hierarchical clustering [119], [18], [152].

Most recently, some authors have sought methods that combine the final clustering with
construction of the graphs from the view partitions. In particular, several recent works have used
a spectral clustering paradigm combined with a graph learning paradigm for cluster ensembling
[125], [124], [156], [86], [75], [126]. These methods typically combine an iterative optimization
procedure that first minimizes the final clustering error and then uses that solution to produce
optimal graphs from the view clusters, and so on.

The primary strength of late integration techniques is their ability to exploit the consen-
sus principle and view-specific clustering techniques. They are, however, generally regarded as
inferior to intermediate integration techniques as they inherently do not take into account the
complementary principle by clustering each view independently. This view of late integration
techniques has been empirically challenged by some recent works, and so for any given data
scenario it is not clear that an intermediate integration technique will perform better than a late
integration technique [124], [147]. Thus, the late integration paradigm is a valid way of designing
methods for multi-view clustering.

Community Detection in multi-view Social Networks

Within the realm of social-based data, and in particular social network analysis, there are two
main areas of research that deal with multi-view data. The first is multi-layer or multiplex social
network analysis and the second is attributed network clustering. Multiplex networks are net-
works in which a node has more than one type of link connecting it to other nodes [3]. These
networks can be modeled as a collection of networks that are defined over the same nodeset but
have different links within each of the networks. So, in this data format, each network represents
a possible view of the data. Multi-layer networks contain the same networks as multiplex net-
works, but with the addition of inter-layer links where a node in one layer can be connected to
nodes in other layers [3]. As with multiplex networks, each layer can be considered a view of the
data. Attributed networks are networks which also have additional information on the nodes [32].
So, an attributed network will have two views of data; one view which is the network itself and a
second view of features describing the nodes present in the network. Thus, the social-based data
models of multiplex and multi-layer networks and attributed networks present limited versions
of multi-view data, which can be clustered for tasks like community detection.

Multi-layer and Multiplex Network Clustering Over the years, several methods have been
put forward to find clusters in multiplex and multi-layer methods. The most common way of
finding communities within these networks is to compress all of the layers of the network into
one network (typically by directly adding the graphs together) and use a more traditional network
clustering technique [3], [41]. However, since compressing all of the layers, or views, of the data
into one entails a loss of information, some methods have been put forward to correct for this loss
of information when combining the layers, or otherwise determine what layers can be combined
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without losing too much information [53], [42]. In this way, the compression of multi-layer and
multiplex networks represents the early integration approach to clustering this class of multi-view
data.

There have also been numerous intermediate integration approaches proposed for multi-layer
and multiplex network clustering. Generally, the major difference between the various interme-
diate integration clustering approaches is the loss function that they are minimizing. The most
widely used loss function is the Network Modularity function which was extended to cover both
multi-layer and multiplex networks [93], [101]. Other loss functions include network flows and
clustering coefficients which can be optimized by the same procedures as was done for Net-
work Modularity [20], [37]. Another common intermediate integration approach to clustering
multi-layer and multiplex networks are stochastic block models which are generative models
that assume the community structure present in the data arises from statistical properties of the
links [98], [101], [68]. Finally, some other methodological ideas like spectral clustering have
also been adopted to multi-layer and multiplex network clustering [39].

Only a few, recent works exist in the late integration paradigm for clustering multiplex or
multi-layer networks. Generally speaking, all of these works use a network-based clustering
technique (i.e. Louvain [15]) on each of the views independently, and then create a co-association
graph (i.e. each object has a link to another object weighted by the number of view clusters that
those two objects share) and cluster that graph to get the final clustering [81], [121], [90], [122].
In contrast to most co-association late integration techniques, these methods typically feature a
sparsification step on the co-association graph (as it is often dense), to make it more amenable to
further network clustering, and apply network clustering and co-association graph construction
in an iterative fashion to refine the final clusterings [81], [121], [90], [122]. Of note, these
techniques have been applied to social media data with good results for community detection
[59]. Also, there is one recent late integration multiplex network clustering method that included
an additional step in the refinement iterations to add back in edges to the co-association graph
based on the presence of that edge in all of the networks from the original, multiplex network
[121], [90]. In this way, a limited amount of intermediate integration information is infused into
the late integration model to produce better results. Overall, while there have been some methods
from the late integration paradigm applied to multiplex network clustering, these methods are
largely overshadowed by the intermediate network clustering techniques in actual usage.

Attributed Network Clustering Attributed network clustering has several methods from all
three of the multi-view clustering paradigms. In the early integration paradigm most methods
tend to follow the pattern of creating a new graph from the given network and the nodal attributes
and then clustering this new graph to produce the final clusters. Most methods of early integra-
tion adopt a combination strategy of directly combining the aspects from the network view and
aspects of the attribute view in a convex combination, W (eij, α) = αWT (eij) + (1− α)Ws(eij),
where WT and WS are the functions for the network views and the attributes respectively [32],
[102], [4], [103]. This final combined graph is then clustered by standard network clustering
techniques to produce the final clusters. A salient variation on this model is to include adding in
the attributes as nodes themselves to the given network to produce the final network [30]. Addi-
tionally, recent research has also tied the network model construction to the clustering output to
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give better combined models of the network and attributes views [22], [21].
There have also been a number of intermediate and late integration techniques for clustering

attributed graphs. Within the paradigm of intermediate integration techniques, most methods
tend to modify the loss function used in the clustering. In particular, most functions add an
additional term for the attributes to Network Modularity and then cluster the network by standard
network modularity maximization techniques using this new combined modularity [34], [32].
Thus, most intermediate integration techniques use the same modularity optimization techniques
for a single network, but include an additional term for the attributes. There have also been some
recently proposed techniques that adopt a matrix factorization approach to jointly factor both
the network and attribute views to produce combined features which can be easily clustered by
standard techniques (i.e. k-Means) [61], [54]. Recently, a late integration technique has been
applied to attributed network clustering where a graph-based ensemble clustering technique is
used on clusters from the attribute and network views [83]. Overall, while there have been
late and intermediate integration techniques developed for attributed network clustering, most of
the more successful attributed network clustering techniques still belong to the early integration
paradigm [32]. While it is not definitively clear why certain multi-view clustering paradigms or
techniques within the paradigms perform better than others, part of the problem is combining
network and non-network views of data [32]. Since the network and non-network views of the
data present very different features and can have different statistical properties and manifolds,
combining information form these two views presents a distinct challenge.

Summary

The use of multi-view data can provide for distinct performance improvements in various ma-
chine learning tasks, including the unsupervised learning task of clustering. The use of multi-
view data, however, presents new challenges including the fusion of the different views of the
data for machine learning tasks like clustering [12]. The methods proposed for the fusion of
multi-view data for clustering break into three major paradigms: early integration, intermedi-
ate integration, and late integration [12], [160]. Generally speaking, no one of these paradigms
is a priori superior to any other paradigm, but rather the data environment often dictates what
methods are plausible and, by corollary, which ones will be successful [160], [32]. That said,
intermediate and late integration techniques are generally believed to be the superior paradigms
across data environments due to their ability to exploit the two main principles of multi-view
clustering, the complementarity and consensus principles [147], [12], [123]. The following ta-
ble, Table 1.1, summarizes the paradigms of multi-view clustering.

Based on the current state of research on clustering multi-view data, there are some dis-
tinct gaps in the research. To date and the best of the author’s knowledge only two works have
proposed trying to cross the paradigms to produce a hybrid technique that utilizes late and in-
termediate integration information [70], [90]. Even the limited use of another paradigm’s in-
formation in their technique gave a performance boost to their methods on their empirical tests
[70], [90]. Thus, using a hybrid technique that can use concepts and information from both
late and intermediate integration paradigms would seem to be a promising avenue for future
research. Additionally, most multi-view clustering research has been for audio-visual-text, im-
age, and medical/genetic data scenarios [160], [12], [99], [107]. One of the main differences
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between these data scenarios and social-based data is that social-based data often comes with
explicit network views of data, while these other data scenarios do not [32]. While there has
been some research and development of techniques for social-based multi-view data, it has been
limited to multi-layer/multiplex network clustering and attributed network clustering [32], [3]. It
is not clear how the different multi-view clustering paradigms, and their associated techniques,
might perform on more general types of social based data that could feature multiple network
and non-network views.
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Table 1.1: Summary of the different paradigms used in multi-view clustering
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Chapter 2

Hybrid Paradigm Clustering of Multi-view
Social-based Data

In this chapter I will primarily investigate the use of hybridization of intermediate and late in-
tegration paradigms in multi-view clustering. As was highlighted in the first chapter in the lit-
erature review, there are two main paradigms for multi-view clustering: intermediate and late
integration. The main benefit of intermediate integration techniques is that they can best take
advantage of the complementary information between the views of the data. Their main disad-
vantage is that they often require transformation of the data to some kind of compatible format
or space which may result in a loss of information that could aid in the task of clustering for
some views. On the other hand, the main advantage of late integration techniques is their abil-
ity to leverage data-specific clustering algorithms for the different views of the data to produce
clusters. However, late integration techniques can suffer in performance from the fact that they
do not take into account complementary information between the views when clustering. Thus,
a natural question arises: is it possible to use aspects of both intermediate and late integration
paradigms to develop techniques that leverage the strengths of both of the paradigms and possibly
mitigate their weaknesses?

To date, there has been very little work on trying to produce techniques that combine aspects
of late integration and intermediate integration paradigms [70], [90]. However, the works that
have done some limited hybridization have shown strong empirical performance in finding clus-
ters from multi-view data. In particular the inclusion of some view specific cluster information
tends to preserve useful information relating to the clusters in the data that can be lost by the
process of transforming the different views to all of the same type or space [70]. Conversely,
using intermediate level information in late integration cluster ensembling can help to overcome
the view-specific idiosyncrasies that can manifest in view clusterings, and thereby improve late
integration performance [90], [121]. So, in this chapter I will outline a general framework to pro-
duce hybrid techniques for multi-view clustering, and then describe several hybrid techniques.
In particular, I will show a class of techniques that use view-produced clusters to augment inter-
mediate integration techniques and show a class of techniques that use intermediate integration
data representations to improve late integration techniques.

After detailing the hybrid techniques, along with some new late and intermediate integration
techniques, I then go on to test all of these techniques along with several state-of-the-art inter-
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mediate and late integration techniques. The techniques are evaluated on several, benchmark
social-based multi-view data sets that represents many of the social-based data scenarios that oc-
cur. Following this empirical comparison I then go on to evaluate the various aspects of the data
sets as they relate to multi-view clustering performance. The main contributions of this chapter
are as follows:

• This chapter is the first work to present a new paradigm for multi-view clustering that
combines late and intermediate integration paradigms. It proposes a systematic means of
hybridization and presents several possible hybrid paradigm techniques derived from this
general concept of hybridization.

• This chapter has the first major empirical test of multi-view clustering on many different
types of social-based data; previous works in multi-view clustering have only considered
one type of multi-view, social-based data (i.e. multi-layer networks or attributed graphs).

• This chapter uses the results of the empirical tests to analyze the properties of multi-view
data sets that correlate to the success of multi-view clustering and their clusterability. The
analyses provide the first comprehensive, practical, empirically-based guidance on which
multi-view clustering techniques to use as well as a better understanding of when multi-
view clustering will be successful.

2.1 Hybrid Paradigm Clustering Techniques

In this section I will outline the proposed methodology for hybridizing intermediate and late in-
tegration techniques. I will detail two main classes of techniques that derive from this model.
The first class are intermediate integration techniques that use additional late integration infor-
mation. So, this class would contain techniques which have a loss function defined for all of
the view’s graphs simultaneously but incorporates elements of the view clusterings. The second
class are those techniques that use intermediate integration information to augment late integra-
tion techniques. This class of techniques follow a late integration approach but incorporate view
information, like view graphs, into the ensembling procedure.

Since the focus of this work is on social-based, multi-view data and intermediate integration
techniques are often data scenario specific (due to the need to define a particular clustering qual-
ity measure over all of the views of the data), the focus will be on those intermediate integration
techniques than can use graph representations of data [147]. It should also be noted that non-
network data can — and often are — converted to graph representations in clustering for better
cluster identification [23], [147]. So, the process of clustering multi-view social-based data from
the intermediate integration paradigm consists of converting each of the non-network modes to a
graph and then using this collection of graphs combined with a suitable clustering quality func-
tion and optimization procedure to produce clusters. On the other hand, for late integration, each
of the views of the data are clustered by whatever technique is meaningful for that view’s type of
data, and then the collection of view clusterings is used to derive a final clustering for the data.
Given the different paradigm approaches to clustering multi-view data, a general hybridization
of the paradigms would be to create both graphs and clusters from every view, and then use both
of those representations of the data to produce the final clustering. The following figure, Figure
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2.1, summarizes the overall process of hybridizing intermediate and late paradigm approaches to
clustering multi-view, social-based data.

Figure 2.1: General methodology of hybridizing intermediate and late integration paradigm techniques. When pre-
sented with multi-view data (which could contain networks), X , one clusters each view by an appropriate technique
and produces graphs from the non-network modes of the data. These two transformations of the data are combined in
hybrid paradigm clustering technique, P (G,B) to produce the final clusters of the multi-view data.

For each view of the data, two transformations are done. First, each view can be clustered by
a suitable clustering technique. These clusters can then be transformed into a cluster association
matrix Bv for each view of the data, v, of size the number of objects being clustered, n, by the
number of clusters for that view, kv, which has the property that all rows in Bv sum to one,∑kv

j=1B
v
ij = 1, ∀i = 1...n. That is to say that each object being clustered has a probability of

association with a certain view’s clusters. Generally speaking, Bv will often be a binary cluster
association matrix with only one nonzero element in each row equal to one due to the fact that
most cluster ensembling is done with hard or crisp clustering in which each object can only
belong to one cluster [18], [152]. Second, a graph can be derived from each view of the data, Gv.
For the views that are already networks or graphs, no transformation of the data is required to
produce Gv. For non-graph modes several techniques from graph learning or network inference
can be employed to transform the data to a graph [23], [106]. After the transformation of the data
into the formats previously described, this transformed data is then subsequently used to obtain
the final clusters through either intermediate, late, or hybrid integration techniques.
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2.1.1 Late Integration Information in Intermediate Integration Models
In this first class of techniques, late integration information — namely, the view clusterings —
are used to augment intermediate integration techniques. In particular, these techniques employ
the same general procedure developed in augmented network clustering in that they combine
graph and attribute information directly to produce an augmented graph structure which can then
be clustered as a graph [32]. This set up presents two main design choices: the first is the means
by which a particular view’s graph is combined with cluster labels. The second is how the final
augmented graphs from each view are then clustered.

The two main means of combining graph information with the view clusterings are an addi-
tive model and a multiplicative model. The general form of the additive model is:

αAv + (1− αv)Cv ′ (2.1)

where Av is the adjacency matrix of the graph from view v, Cv ′ is a suitably sparsified
co-association matrix. The co-association matrix is constructed from all of the view cluster
association matrices, B, of all of the modes except the current mode:

Cv =
1

m− 1

m∑
i=1,i 6=v

BiBiT (2.2)

The co-association matrix is sparsified in this model as it is often much denser than the graph
of the view and can thus overwhelm any information coming fromAv as well as be more difficult
to cluster if it is not sparsified [81], [122]. αv is a user-set parameter(s) which controls the amount
of influence given to either the graphs from the different views or the clusterings coming form
the views. The general form of the multiplicative model is:

Av � Cv (2.3)

where Av is once again the adjacency matrix for a particular view and the Cv is the co-
association matrix of of all the cluster association matrices, B, from all of the views except the
current view, v. In this case, the co-association matrix is not sparsified, as sparsification will
come inherently from the Hadamard product with the view’s adjacency matrix. Thus, the only
edges that will exist in the augmented graph will be those whose vertices share clusters within
the views and are connected in the graph of the view.

There are several intermediate integration techniques which could be used to cluster the aug-
mented graphs. In this work we focus on three in particular due to their strong empirical per-
formance. The first is Spectral Integration, which was introduced by Tang in Liu in [123] for
the purpose of finding clusters in multi-layer social networks and is a generalized version of
Spectral Clustering [96]. In this method, the top k eigenvectors are extracted from each of the
augmented view graphs’ Laplacians and concatenated together to form a new feature matrix of
size n by k ×m. This feature matrix then has Singular Value Decomposition applied to it as a
view blending and denoising process to produce a final feature matrix of size n by k. This final
feature matrix is then clustered by k-Means [123]. The second method is a co-learning inspired
procedure referred to as cross-learning [16], [134]. For this method each augmented graph from
each of the views is clustered to produce a new set of view clusters for each view, Bv

t+1. These
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new view clusterings are then combined with the view graphs to produce new augmented graphs
for each view. This process is repeated for a series of iterations and the final output of Bv

tfinal
is

then clustered by a clustering ensemble technique to produce the final clusters. The third method
is to treat the task of clustering the augmented view adjacency matrices as a multiplex network
clustering problem. In this case, multi-layer modularity maximization is used to cluster the view
augmented graphs to produce the final clusters [93].

Direct Integration with Spectral Clustering

The first method within this class of methods is the Direct Integration with Spectral Clustering
method. At a high level, after finding view-specific cluster association matrices, Bv, and creating
graphs for each view, Gv, the view clusterings are integrated into the modal graphs to produce
augmented graphs. These augmented graphs are then clustered by taking the top k eigenvectors
corresponding to the k smallest eigenvalues of the graph Laplacians of each view’s augmented
graph. These eigenvectors are then concatenated together to form a new n by k × m feature
matrix. Singular Value Decomposition is then performed on this feature matrix and the first k
columns of the left singular matrix form the final feature matrix which is then clustered by k-
Means. The pseudocode of the Direct Integration with Spectral Clustering procedure is detailed
below, in Algorithm 1

Algorithm 1 Direct Integration with Spectral Clustering (DISC A, DISC M)
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• Integration model type: {additive, multiplicative}
• Graph-Cluster trade off parameters: αv ∈ [0, 1] (only for additive model)
• Number of clusters, k

output: Cluster assignments
for v = 1 : m do

Cv ← 1
m−1

∑m
i=1,i 6=v B

iBiT

if additive then
Cv ′ ← prune(Cv, density(Av)
Augv ← Av + (1− αv)Cv ′

else
Augv ← Av � Cv

end if
Lv ← I −Dv

invAug
v

U v ← eig(Lv)[:, 1 : k]
end for
U ← concatenate(U1, ..., Um)
V ← SV D(U)[:, 1 : k]
clusters← kMeans(V, k)
return clusters
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For each view of the data, the algorithm computes the augmented adjacency matrix, Augv

based on whether the view clusterings are incorporated by a multiplicative model or an addi-
tive model. In the case of the additive model, the additional step of pruning the the cluster-
association graph is performed. Each augmented adjacency matrix is used to compute a random
walk Laplacian, I − Dv

invAug
v, where Dv

inv is a diagonal matrix where each diagonal entry is
the inverse of the sum of its corresponding row (i.e. vertex degree) in the adjacency matrix,∑n

j=1Aij,∀i = 1...n. The random walk Laplacian is used instead of a standard or normalized
Laplacian due to recent research demonstrating that the random walk Laplacian is more suitable
for clustering [133]. Each views random walk Laplacian can then be decomposed by any stan-
dard procedure to produce eigenvectors, eig(), of which the top k are kept. Each of the view’s
eigenvectors, U v, are then concatenated together and and SVD is run on the resulting matrix, U .
The top k left singular vectors, V , from the Singular Value Decomposition operation, SV D(),
are then clustered by kMeans, kMeans(V, k), to produce the final clusters.

An important operation done in the additive model is the prune() procedure which sparsifies
the cluster-association matrices, Cv. Typically, the pruning procedure is a global procedure done
by picking a value in the interval [0, 1] and then removing all edges from the co-association graph
that have a weight beneath that value [23], [80]. Some more recent works use a combination of
local edge additions and global thresholding to get better results in cluster ensembling [121],
[122]. In view of the success of these works, the pruning procedure used in this work is a global-
local thresholding. At a high-level, it works by the user selecting the maximum sparsity that
the graph should be pruned back to, rather than the edge weights that should be pruned. It then
determines what the global threshold, τ , would be for the edge weights to be removed. For each
vertex that has an edge with a weight less than τ , only the lowest weighted edges are removed
such that the vertex keeps a fraction of its edges equivalent to the maximum sparsity. The pruning
algorithm is described in detail by the following psuedocode, Algorithm 2:

Algorithm 2 Global-Local Pruning of Graphs
input:
• Adjacency matrix to be pruned, C
• Maximum sparsity of the pruned graph, d

output: Pruned Adjacency Matrix
τ ← quantile(nonzero(C), d)
for i = 1 : n do

minimum← min((nonzero(Ci))
if minimum < τ then

τlocal ← quantile((nonzero(Ci), d)
Ci[Ci < τlocal]← 0

end if
end for
return C

Based on the maximum sparsity supplied, d, the algorithm calculates the edge weight, τ ,
where d percent of edges are beneath that edge weight. The algorithm the goes through each
row in the adjacency matrix (vertex in the graph) and once again uses the quantile to find the
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edge weight, τlocal, such that d percent of that vertex’s edges fall below τlocal. The first advantage
of this method of pruning is that it prevents isolates (i.e. a vertex is not connected to any other
vertices in the graph) from forming in a co-association matrix which can strongly affect the
performance of subsequent graph clustering techniques. Secondly, the algorithm still maintains
a global threshold so that strongly connected vertices (i.e. those objects which often fall into the
same clusters together, regardless of view) do not experience any local thresholding. Once the
thresholding is complete the method finally returns the newly pruned graph.

An important variation of the Direct Integration Spectral techniques previously described is
to use a regularized spectral model instead of the additive or multiplicative models. In this case,
the graph Laplacian of each of the view graphs, Lv, is now regularized by the view clusterings.
The inspiration for this model comes from constrained clustering research, where one wants
to include externally-determined constraints about certain objects that should or should not be
clustered together [84]. In this model, we follow the model proposed by Liu et al. in [84] and
now do the eigendecompositon of Lv+λCv, where λ is the user-set regularization parameter that
controls how much influence the view clusterings should have. So, the final Direct Integration
Spectral method is detailed in the following algorithm, Algorithm 3.

Algorithm 3 Regularized Multi-View Spectral Clustering (DISC R)
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• Regularization parameter: λ
• Number of clusters, k

output: Cluster assignments
for v = 1 : m do

Cv ← 1
m−1

∑m
i=1,i 6=v B

iBiT

Lv ← I −Dv
invA

v

U v ← eig(Lv + λCv)[:, 1 : k]
end for
U ← concatenate(U1, ..., Um)
V ← SV D(U)[:, 1 : k]
clusters← kMeans(V, k)
return clusters

Taken all together the spectral methods present three distinct techniques for combining late
integration information, in the form of view clusterings, into an intermediate integration tech-
nique. These techniques work on the fundamental, and empirically successful, clustering ideas
from Spectral Clustering, and its various extensions to multi-view data but with the inclusion of
view-specific cluster information.

Direct Integration with Cross-Learning

The second method within this class of methods is the Direct Integration with Cross-Learning
method. Much like the previous method, augmented matrices are constructed from the graphs of
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each view, Gv, as well as the cluster co-associations from each view, Cv, by either an additive or
multiplicative model. The major difference with this method is that now, instead of extracting the
spectral qualities of the augmented graphs for clustering, the augmented graphs are re-clustered
to produce a new set of view clusterings, Bv

t+1, which can then be used to create a new set of
cluster co-associations from each view, Cv

t+1. This process is repeated for a series of iterations or
until stability is reached in the cluster assignments across all of the views. The following psue-
docode displays the the algorithm, Algorithm 4, for direct integration of view cluster information
and view graphs in a cross learning scenario.

Algorithm 4 Direct Integration with Cross-Learning (DICL A, DICL M)
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• number of iterations: T
• Graph-Cluster trade off parameter: αv ∈ [0, 1] (only for additive model)
• Graph clustering algorithm: f
• Bipartite Graph clustering algorithm: g

output: Cluster assignments
for v = 1 : m do

Bv
1 ← Bv

end for
for t = 1 : T do

for v = 1 : m do
Cv ← 1

m−1
∑m

i=1,i 6=v B
i
tB

i
t
T

if additive then
Augv ← Av + (1− αv)Cv

else
Augv ← Av � Cv

end if
clusters← f(Augv)
Bv
t ← create association matrix (clusters)

end for
end for
Bfinal ← concatenate(B1, ..., Bm)
clusters← g(Bfinal)
return clusters

In each iteration of the algorithm, an augmented matrix is constructed for every view, Augv,
using either an additive or multiplicative model. This augmented matrix is then clustered by any
suitable graph clustering technique. In this work a modularity maximization technique such as
Louvain or Leiden is employed for this procedure do to their speed and proven empirical per-
formance [15], [129]. The result of this graph clustering then becomes that view’s clusters for
the next iteration of the cross-learning procedure. In this way, the algorithm uses the cluster
structures from all of the views to influence the cluster structure arising from any particular view
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and that view’s graph. Once the algorithm has completed all of the cross-learning iterations, it
then concatenates all of the view cluster association matrices, Bv, into a final object-by-clusters
matrix, Bfinal. the final step is to use a cluster ensembling technique to get the final cluster as-
signments. Since Bfinal can also be a bipartite graph between objects and clusters, the algorithm
uses the BGPA algorithm and clusters Bfinal as a bipartite graph [47]. To perform the bipartite
clustering in this work, the bipartite modularity maximization procedure, BiLouvain, is utilized
due to its scalability and proven empirical performance [155].

One variation to the model used in the cross-learning procedure is to have the view clus-
ters become vertices in the augmented graphs. This model follows techniques developed in the
attributed graph clustering to incorporate nodes’ categorical attributes into networks [30], [32].
Since there are often fewer clusters than there are objects being clustered and each object will
belong to at least one cluster per view, the view clusters function as hub vertices within the view
graph, which will then bias the subsequent clustering of the augmented view graph toward the
view clusters. The following algorithm, Algorithm 5, displays the pseudocode of this variation
in the Cross-Learning techniques.

Algorithm 5 Graph Vertex Augmentation with Cross-Learning (DICL AG
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• number of iterations: T
• Graph clustering algorithm: f
• Bipartite Graph clustering algorithm: g

output: Cluster assignments
for v = 1 : m do

Bv
1 ← Bv

end for
for t = 1 : T do

for v = 1 : m do
Cv ← concatenate(Bi∀i = 1, ...,m, i 6= v)

Cv ′ ← concatenate(CvT , zeros(kv, kv)
T

Augv ← concatenate(Augv, Cv)

Augv ← concatenate(AvT , Cv ′)
T

clusters← f(Augv)[1 : n, :],
Bv
t ← create association matrix (clusters)

end for
end for
Bfinal ← concatenate([B1, ..., Bm)
clusters← g(Bfinal)
return clusters

As with the direct integration algorithm, Algorithm 4, the graph vertex augmentation algo-
rithm functions in much the same way. The main difference is that for each view, v, the the

23



augmented matrix, Augv, is created by appending a cluster association matrix, Cv, of all the
views except the present views to the adjacency matrix of that view, Av, to form a new adjacency
matrix. The new augmented adjacency matrix will have the form of:[

Av Cv

CvT 0

]
After constructing the augmented adjacency matrix, the algorithm then clusters the new ma-

trix using a suitable graph clustering technique (i.e. Louvain). Only the clustering assignments
for the objects are then carried forward to the next step of the algorithm. After the clustering step,
the algorithm proceeds exactly the same as the other cross-learning algorithm including using a
bipartite graph clustering of the concatenated view cluster association matrices to produce the
final clusters.

In the cross learning techniques, the view clusterings are used in combination with the view
graphs to iteratively improve the consensus between the view clusterings. The combination of
view clusterings with the view graphs can be done in three possible models: an additive model, a
multiplicative model, and a augmenting model whereby the clusters are added to the view graphs
as nodes. After completing iterations of cross learning, the final clustering is done by a cluster
ensembling technique applied to the clusterings coming from all of the views.

Direct Integration with Multiplex Clustering

The final method within this class of methods is the Direct Integration with Multiplex Clustering
method. As with the previous methods in this section, this method uses the same additive and
multiplicative models to integrate the view clusterings into the view graphs. Once integrated,
the method then treats the problem of finding clusters from the augmented graphs as a multiplex
network clustering problem [41]. One of the most successful methods to cluster a multiplex
network is the modularity maximization technique originally proposed by Mucha et al. in [93].
So, within the proposed method of this section, we use the same modularity maximization tech-
nique to cluster all of the augmented graphs from all of the views. The following pseudocode,
Algorithm 6, summarizes the algorithm.

In this algorithm, the final clustering is done through a multiplex modularity optimization
technique. The particular form of the modularity is give as:

Q =
m∑
v=1

Qv (2.4)

That is to say the modularity value for a particular clustering of a multiplex network, Q, is a
(possibly weighted) combination of the modularities that is produced by the clustering for all of
the views of the data, Qv. In the case of a view graph being undirected, the modularity of that
view graph is given by:

Qv
undirected =

n∑
i,j=1

(Avij −
degreevi × degreevj

2|Ev|
)δ(ci, cj) (2.5)
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Algorithm 6 Direct Integration with Multiplex Clustering (DIMC A, DIMC M)
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• Multiplex Modularity Maximization Algorithm: f
• Graph-Cluster trade off parameter: αv ∈ [0, 1] (only for additive model)

output: Cluster assignments
for v = 1 : m do

Cv ← 1
m−1

∑m
i=1,i 6=v B

iBiT

if additive then
Cv ′ ← prune(Cv, density(Av)
Augv ← Av + (1− αv)Cv ′

else
Augv ← Av � Cv

end if
end for
clusters← f(Aug1, ..., Augm)
return clusters

WhereAv is a particular view’s adjacency matrix, degreevi is the degree of vertex i (
∑n

j=1A
v
ij),

Ev is number of edges present in the view graph, and δ(ci, cj) indicates whether vertices i and j
are in the same cluster. γv is a resolution parameter which controls the impact of the null model
of edges which is used in determining a cluster’s significance in terms of its internal and exter-
nal edges [94]. Similar to the undirected case, in the case of a view graph being directed, the
modularity of that view graph is given by:

Qdirected =
n∑

i,j=1

(Avij −
outdegreevi × indegreevj

2|Ev|
)δ(ci, cj) (2.6)

Where now outdegreesi is the outdegree of vertex i in Av, (i.e.
∑n

j=1A
v
ij) and indegreesj

is the indegeree of vertex j in Av, (i.e.
∑n

i=1A
v
ij). Having defined the modularity measure

being optimized for determining the community structure, any suitable modularity maximization
technique can be used [101]. Overall, the general idea of this method is to integrate all of the
late and intermediate integration into a collection of view networks, which are then a multiplex
network, which can then be clustered by techniques for multiplex clustering.

2.1.2 Intermediate Integration Information in Late Integration Models
In the second class of techniques, the information used in intermediate network clustering —
namely the view graphs — are used to improve the view cluster qualities for a late integration
approach. In has been mentioned in previous chapters, one of the major shortcomings of late
integration approaches is that they do not take into account complementary information between
the views when doing the clustering; all view clusterings are done independently. That said,
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late integration approaches can also take advantage of specialty clustering algorithms that are
designed for specific types of data, like modularity maximization for networks or topic mod-
eling for text. So, late integration techniques can avoid possible cluster information being lost
in the conversion to a common data format (i.e. a graph) that is common in many intermedi-
ate integration techniques. Furthermore, the use of just the view clusters can also be a form
of denoising of the original data [124]. So, in this section, we seek to use the advantages of
late integration techniques, but also include information from the view graphs to add comple-
mentary information back into the view clusterings and thereby improve the performance of late
integration techniques.

Cross-Network Diffusion Clustering

The first method in this class of the methods is called Cross-Network Diffusion Clustering. This
technique builds on the ideas of similarity network fusion [134], [135]. This method uses a graph
diffusion model combined with a cross-learning process in order to learn a similarity matrix
between all of the objects which can then be clustered for the final clusters. The graph diffusion
model is the Tensor Product Graph, given by:

St+1 = αPStP
T + (1− α)I (2.7)

Where S is a similarity matrix between the objects, P is a sparse kernel graph (i.e. a k-
Nearest Neighbor graph of the objects), I is an n-by-n identity matrix, and alpha is a user defined
parameter that controls how far the impact of diffusion reaches into the graph. Each of the
matrices is row normalized. In this work the Tensor Product Graph diffusion model is used due to
its demonstrated empirical performance and guaranteed convergence under certain assumptions
like all of the matrices being row stochastic [146], [43].

As in the previous section and in Similarity Network Fusion, the different similarity matrices
can be used with kernel graphs other than the view that the similarity matrix came from using
the cross-learning method. Thus, the update model for a particular view becomes:

Svt+1 = αvP v

∑m
i=1,i 6=v S

i
t

m− 1
P vT + (1− αv)I (2.8)

In this model, to update the similarity matrix for a particular view, Sv, all of the similarity
matrices from the other views are element-wise averaged together and then this matrix is used
in the diffusion model with the kernel matrices from that view, P v. Once a suitable number
of diffusion steps have been run, the final similarity matrices are then averaged together and
clustered as a graph or affinity matrix.

This method leaves some possible design choices regarding how to incorporate the view
graphs and view clusterings. In this work I use the view graphs as the kernel graphs and have two
different variations for the use of the view clusterings. In the first variation, the co-association
matrices from the view clusterings can be used as the initial similarity matrices for each of the
modes, Sv0 . Thus, similarity is the idea of being in the same clusters and this similarity is then
fused across the modes using the view graphs. This fusion uses the view graphs to provide
intermediate integration information back into the view clusterings so that the view clusterings
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obtain some complementary information from across the views before the final clustering. In
the second variation co-association matrices from the view clusterings can be used in place of
the identity matrix I in the diffusion model. In the original diffusion model, the use of the
identity matrix is to promote ‘self-similarity’ and the greatest impact of diffusion for a particular
vertex to be from itself [146]. Thus, in this model using co-association matrices in the second
part of the diffusion model ensures that learned similarities are continually biased by the view
clusterings. All together, the following pseudocode, Algorithm 7, details the Cross-Network
Diffusion algorithm with its possible variations.

Algorithm 7 Cross Network Diffusion Clustering (CNDC C1, CNDC C2, CNDC I)
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• Integration model type: {first, second, none}
• Diffusion strength parameter: αv ∈ [0, 1]
• Graph-based or Similarity-based clustering algorithm: f

output: Cluster assignments
for v = 1 : m do

Cv ← 1
m−1

∑m
i=1,i 6=v B

iBiT

if first then
Sv0 ← row normalize(Cv)

else
Cv

0 ← row normalize(Cv)
Sv0 ← I

end if
P v ← row normalize(Av)

end for
for t = 1 : T do

for v = 1 : m do
if first then

Svt+1 = αvP v
∑m
i=1,i 6=v S

i
t

m−1 P vT + (1− αv)I
else if second then

Svt+1 = αvP v
∑m
i=1,i 6=v S

i
t

m−1 P vT + (1− αv)Cv

else
Svt+1 = αvP v

∑m
i=1,i 6=v S

i
t

m−1 P vT + (1− αv)I
end if

end for
end for
Sfinal ←

∑m
i=1 S

i
T

m

clusters← f(Sfinal)
return clusters

This algorithm first converts the view adjacency matrices, Av into diffusion kernel matrices,
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P v, by row normalizing them. Then, it creates view co-association matrices, Cv from each of
the view clusterings and row-normalizes them as well. Then depending on the model type, (i.e.
first or second) the initial similarity matrix for each view Sv0 is assigned as the identity matrix or
the row-normalized cluster association matrix. From there, the diffusion is done for T iterations
using the appropriate diffusion model (i.e. first or second). The final view diffusion matrices are
then element-wise averaged together and the result is clustered by a graph-based or similarity-
based clustering technique. Note, that it is also possible to have a diffusion model where none
of the view clusterings are taken into account (none). This variation of the algorithm is solely
an intermediate integration technique and uses just the graphs of all of the views to learn the
similarity matrix between the objects being clustered.

The method proposed in this section uses view graphs to infuse intermediate level information
into the view clusterings for better subsequent late integration clustering. This is done by using
a diffusion model that iteratively adjusts the similarities between objects depending on their
nearness in the view graphs. In this way, complementary information between the views is
encoded into the learned similarity matrices which should then lead to better clusters. Within the
method there are a few variations in how to include the view clusterings to include not including
the view clusterings at all. The different models allow for the view clusterings to have different
levels of impact on the subsequently learned similarities. Overall, this method leverages a cross-
learning process with graph diffusion in order to combine useful information from the different
views in order to identify clusters from the multi-view data.

Cross-View Influence Clustering

The other method in this class of methods also employs a diffusion process, but has a much
different model for that diffusion process. Cross-View Influence Clustering uses an diffusion
model inspired by Friedkin’s Social Influence model [51]. The diffusion model is given by:

Bv
t+1 = αvW vBt + (1− αv)B0 (2.9)

Where Bt is the cluster association matrix from the previous iteration, W v is the row nor-
malized adjacency matrix of the graph for a particular view, and αv is an influence trade-off
parameter that controls the how much influence the neighbors of an object have on that object
in a particular view. At each iteration, the cluster associations for each object are updated as a
combination of the neighbors of that object in that view and by the the original cluster associ-
ations B0. In this way, the model can infuse information from the different views through the
view graphs into the view clusterings in order to provide more complementary information for
the subsequent cluster ensembling task. To infuse this information across all of the views, after
each iteration the resulting view cluster association matrices are averaged together to provide the
cluster association for the next step:

Bt+1 =

∑m
i=1B

i
t+1

m
(2.10)

Following all of the diffusion iterations, the final cluster association matrices from each view
can then be averaged together and the result clustered as a bipartite graph. The following pseu-
docode, Algorithm 8, details the Cross-View Influence Clustering algorithm.
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Algorithm 8 Cross-View Influence Clustering (CVIC)
input:
• Adjacency for each view: Av
• Cluster association matrices for each view: Bv

• Diffusion strength parameter(s): αv ∈ [0, 1]
• Number of iterations: T
• Bipartite Graph clustering algorithm: g

output: Cluster assignments
for v = 1 : m do

W v ← row normalize(Av)
end for
B0 ← concatenate(B1, ..., Bm)
B1 ← B0

for t = 1 : T do
for v = 1 : m do

Bv
t+1 = αvW vBt + (1− αv)B0

end for
Bt+1 =

∑m
i=1B

i
t+1

m

end for
Bfinal ←

∑m
i=1B

i
T

m

clusters← g(Bfinal)
return clusters
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The algorithm begins by row-normalizing all of the view graphs and creating one cluster as-
sociation matrix, B0, by appending all of the cluster association matrices together. From their
the algorithm performs an iteration of the diffusion for each view and then combines the results
from each view together. This new cluster association matrix is then fed back into the diffu-
sion model until the desired number of iterations is reached. Much like the previous diffusion
based technique, Cross-Network Diffusion Clustering, this technique will also converge to stable
cluster association matrices [51]. Once the iterations are complete the final cluster association
matrix can be clustered as a bipartite graph. The clusters of this graph can be used to define both
communities of objects but also communities of the original view clusterings.

The Cross-View Influence Clustering technique builds on the ideas of social influence. In
this technique, the view clusterings are treated as the ‘beliefs’ and they are subsequently updated
through interactions in the view graphs. So, complementary information between the views
can be infused into the the original view clusterings by using local influence from the different
view graphs. In this way the strength of association for an object to view cluster assignments is
affected by the nearby objects from the different views, which allows for some complementary
information between the views to affect the view clusterings.

The two techniques, along with their variations, presented in this section generally rely on
diffusion processes to infuse additional information into view clusterings, and thereby improve
the performance of late integration techniques. These view clusterings should then be more
representative of the whole of the multi-view data set as they now contain some complementary
information form across the views. The subsequent ensembling of these modified clusters should
then perform better than just using the view clusterings by themselves due to their complementary
information.

2.2 Empirical Testing
In this section I will use several benchmark, social-based data sets in order to empirically evaluate
the hybrid paradigm techniques proposed in the previous section. The proposed techniques will
be compared to several state of the art intermediate and late integration techniques at their ability
to recover the given clusters from the benchmark data sets. The general set up of the empirical
testing is as follows:
• Each view of each data set is clustered by an appropriate clustering technique.
• Each non-network view of the data set is transformed into a graph. The same graph is used

across all methods that require graphs.
• The collection of each data set’s clusters and graphs are then clustered by each multi-

view technique twenty times. This is to account for the fact that many of the optimization
routines for these techniques are stochastic.

• Each of the twenty results are then evaluated against the benchmark labels for each data
set and the average performance is reported.

In the next section the data sets will be described in detail, including view cluster and view
graph information. In the following section all of the techniques that are being used for compar-
ison will be briefly described. Finally, the results of empirical testing will then be presented.
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2.2.1 Data Set Information
For the empirical evaluation I used twelve different, social-based data sets. The data sets were
chosen to encompass a wide array of scenarios that give rise to multi-view data. Since multi-view
data can arise from many different types of social interactions, which can all be qualitatively
different, it is important to see if there are any techniques that can work for social-based data
generally or any that work for particular social scenarios. Since it is well established in clustering
theory that different clustering functions will have different properties with inherent trade-offs,
it is expected that certain certain types of clustering functions may work well for some data
scenarios, but poorly for others [76], [7].

The data sets break into four types of scenarios that give rise to multi-view data: publication
networks, social media, news stories, and multi-layer networks. Of the social media data sets,
most of the data sets come from Twitter, however there is also representation of other social
media sites as well. All but two of the data sets include both network and non-network views of
the data. More traditional multi-view data sets of a text only data set and a multi-layer graph are
also included in order to better evaluate the proposed methods across the full range of possible
views arising from social-based data. The following table, Table 2.1, displays a summary of the
different data sets.

Data set Views
Number of
Objects

Number of
Clusters

Meaning of
Clusters

Cora [113]
- Text (binary feature
vector)
- Network

2,708 7
General categories
of the papers

CiteSeer [113]
- Text (binary feature
vector)
- Network

3,312 6
General categories
of the papers

Flickr [66]
- Network
- User tags

7,575 9 User Communities

BlogCatalog [66]
- Network
- Blog keywords

5,196 6 User Communities

Wiki [144]
- Text (TF-IDF
feature vector)
- Network

2,405 19
General categories
of the pages

3Sources [73]

- BBC (text term
counts)
- Reuters (text
term counts)
- The Guardian
(text term counts)

169 6 News topic

AUCS [28]

- Network (lunch)
- Network (Facebook)
- Network (co-author)
- Network (work)
- Network (leisure)

61 9 Research group

31



Football [57]
(Twitter)

- List
- Text (term counts)
- Network (follows)
- Network (mentions)
- Network (retweets)

248 20 Team membership

Olympics [57]
(Twitter)

- List
- Text (term counts)
- Network (follows)
- Network (mentions)
- Network (retweets)

464 28 Sport affiliation

Politics IE [57]
(Twitter)

- List
- Text (term counts)
- Network (follows)
- Network (mentions)
- Network (retweets)

348 10 Political party

Politics UK [57]
(Twitter)

- List
- Text (term counts)
- Network (follows)
- Network (mentions)
- Network (retweets)

419 4 Political Party

Rugby [57]
(Twitter)

- List
- Text (term counts)
- Network (follows)
- Network (mentions)
- Network (retweets)

854 8 National affiliation

Table 2.1: Benchmark, social-based data used in the empirical validation of the techniques. Most data sets consist of
network and non-network modes of the data. An all text data set (3Sources) and an all network data set (AUCS) were
also included in order to get a better empirical investigation across the types of social-based data that exists.

Since all of the multi-view methods evaluated in this section use either the clusters or the
graphs, or both, from every view, the following tables summarize the view cluster qualities and
the graphs form each of the views. The first table, Table 2.2, summarizes the clusters from each
of the views across each of the data sets.

Data set Mode ARI AMI
Without
labels

Number
of
clusters

Best method
to cluster

Actual
number
of
clusters

Average ARI
consensus
between
view clusters

Cora network 0.21 0.43 0.83 107 Leiden 7 0.05text 0.12 0.17 -0.02 7 LDA

CiteSeer network 0.1 0.25 0.89 466 Leiden 6 0.05text 0.11 0.14 0.002 6 LDA

Flickr network 0.09 0.11 0.25 15 Leiden 9 0.06attributes 0.56 0.56 -0.38 19 Leiden on kNN

BlogCatalog network 0.13 0.23 0.37 8 Leiden 6 0.04attributes 0.41 0.44 -0.04 6 LDA

Wiki network 0.2 0.29 0.77 72 Leiden 17 0.22
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text 0.38 0.45 -0.085 17 LDA

3Sources
BBC -text 0.16 0.34 0.02 6 Agglomerative

6 0.147Reuters -text 0.01 0.23 0.05 6 Agglomerative
Guardian -text 0.12 0.24 0.1 6 Agglomerative

AUCS

lunch network 0.59 0.64 0.66 6 Leiden

9 0.247
facebook network 0.27 0.21 0.34 33 Leiden
coauthor network 0.18 0.17 0.76 44 Leiden
work network 0.54 0.55 0.46 5 Leiden
leisure network 0.45 0.45 0.57 20 Leiden

Football
(Twitter)

list 0.4 0.56 -0.04 19 LDA

20 0.396
text 0.02 0.08 -0.05 18 LDA
follows 0.49 0.74 0.45 11 Leiden
mentions 0.78 0.87 0.67 18 Leiden
retweets 0.59 0.72 0.69 29 Leiden

Olympics
(Twitter)

list 0.45 0.56 -0.06 28 LDA

28 0.497
text 0.09 0.25 -0.13 27 LDA
follows 0.57 0.78 0.48 11 Leiden
mentions 0.86 0.91 0.8 22 Leiden
retweets 0.85 0.89 0.84 47 Leiden

Politics Ire
(Twitter)

list 0.16 0.16 -0.05 7 LDA

7 0.315
text 0.15 0.23 -0.04 7 LDA
follows 0.9 0.85 0.37 4 Leiden
mentions 0.85 0.78 0.53 12 Leiden
retweets 0.75 0.7 0.66 49 Leiden

Politics UK
(Twitter)

list 0.81 0.79 0.05 4 LDA

5 0.402
text 0.14 0.15 -0.03 5 LDA
follows 0.97 0.92 0.4 4 Leiden
mentions 0.67 0.65 0.29 13 Leiden
retweets 0.64 0.59 0.36 43 Leiden

Rugby
(Twitter)

list 0.33 0.51 -0.09 15 LDA

15 0.506
text 0.17 0.3 0.08 14 LDA
follows 0.63 0.67 0.53 14 Leiden
mentions 0.36 0.61 0.67 19 Leiden
retweets 0.35 0.6 0.7 44 Leiden

Table 2.2: Cluster properties and performances for each view of each of the data sets. Note, that in many cases the
number and quality of clusters differs significantly between network and non-network modes of the data. Furthermore,
while the network measure of clustering performance, Network Modularity, is generally indicative of the clustering
performance on the network views, the Silhouette Index is not indicative of the performance of clustering the non-
network views.

In order to evaluate how well the view clusters match the given, benchmark labels both the
Adjusted Rand Index (ARI) and the Adjusted Mutual Information (AMI) were used to compare
the cluster labels to the given labels [69], [132]. Generally speaking, there is a wide disparity of
view cluster qualities relative to the benchmark labels, both within and between data sets. Some
data sets like Cora and 3Sources have no particular view cluster well, while many of the Twitter
data sets have at least one interaction network that does cluster well. The average pairwise ARI
between the clusters between each of the views was also recorded. This average pairwise ARI
represents a measure of consensus between the individual view clusterings. There is a wide
disparity in this average ARI consensus between the data sets with the Twitter data sets having
the highest values. These results indicate that there can be a wide disparity in the views in terms
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of their clusterability for recovering the benchmark labels. Based on the consensus principle of
multi-view clustering, it would be expected that those data sets with a greater disparity in their
view clusterings should also have worse multi-view clusterings.

In order to evaluate the performance of the view clustering techniques in the absence of any
ground-truth labels I have has to adopt two different measures. If the view is a graph, then
I use network modularity [94] to evaluate clustering performance. If the view is other than a
graph, I use the Silhouette Index to evaluate clustering performance [109]. Both the modularity
and the silhouette score do not correlate well with a view’s clustering performance across the
data sets. Nor do they provide much insight into determining the clusterability of views within
a data set. Using these measures, one cannot definitively tell the clusterability of the various
views of the data sets. This would suggest that the common approach clustering data by trying
various numbers of clusters and/or clustering algorithms and choosing that which delivers the
best silhouette score may not be suitable for these data sets. Additionally, for many of the non-
network views the silhouette score is negative, indicating overlapping clusters and poor clustering
performance. For these reasons, whenever the clustering method requires the number of clusters
be specified (which is most of the non-network clustering techniques) I choose to simplify the
clustering procedure and just set the number of clusters to the benchmark number of clusters. As
a result, there is often a disparity in number of clusters between the network and non-network
modes. However, this disparity is also likely, at least in part, a function of the differences in
clustering structure between views. For example, the AUCS multi-layer data set, which only
has network views, has different numbers of clusters within each view as found by a network
clustering procedure which automatically determines the number of clusters. Thus, there is not
clustering consistency between the views of the same data set which is one source of potential
difficulty in clustering these multi-view data sets.

In terms of clustering the individual views, I tried various types of commonly available clus-
tering techniques and used those which produced the best results in terms of the benchmark
labels. For the network views, the clustering technique used the Leiden modularity maximiza-
tion technique [129]. For the text views either Ward Aggolmerative Clustering (using the actual
number of clusters) of Latent Dirichlet Allocation and selecting the most probable cluster (again,
using the actual number of clusters) produced the best clusters from the non-network modes.

The second table, Table 2.3, summarizes the graphs from each of the views across each of the
data sets. For each of the the non-network views, a symmetric k Nearest Neighbor graph (kNN)
was constructed from the features of the view. To construct the symmetric kNN, each object is
connected to k of its nearest neighbors to produce a graph and then only the reciprocated edges
are kept. So, euv ∈ E iff u ∈ kNN(v) and v ∈ kNN(u). For weighted graphs, the lowest edge
weight is used as the reciprocated edge weight. The symmetric kNN can be formed from the
adjacency matrix of the original kNN by doing a element-wise minimum between the adjacency
and its transpose, by Asym = min(A,AT ). A symmetric kNN is used as it has been found to
better reveal cluster structure in kNNs [110], [88], [89], [27]. For the value of k I used k = d

√
ne,

which is generally regarded are producing effective graphs for clustering [88], [105].
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Data set Mode Graph type
Graph
density

Number of
graph
components

Number
of graph
isolates

Degree
assorti-
ativity

Clustering
coefficient

Cora
network directed 0.0007 78 0 -0.035 0.13
text undirected 0.008 1 0 0.404 0.14

CiteSeer
network directed 0.0004 438 0 0.129 0.07
text undirected 0.007 4 3 0.378 0.13

Flickr
network undirected 0.009 1 0 -0.217 0.33
attributes undirected 0.006 12 11 0.205 0.23

BlogCatalog
network undirected 0.013 1 0 -0.01 0.12
attributes undirected 0.006 6 5 0.439 0.32

Wiki
network directed 0.0029 45 0 0.0047 0.323
text undirected 0.012 98 97 0.534 0.48

3Sources
BBC -text undirected 0.08 1 0 0.407 0.4
Reuters -text undirected 0.07 1 0 0.504 0.48
Guardian -text undirected 0.07 3 2 0.479 0.39

AUCS

lunch network undirected 0.11 2 1 0.004 0.66
facebook network undirected 0.068 30 29 0.0027 0.283
coauthor network undirected 0.01 44 36 0.017 0.109
work network undirected 0.106 2 1 -0.213 0.63
leisure network undirected 0.048 16 14 -0.01 0.302

Football
(Twitter)

list undirected 0.046 1 0 0.51 0.69
text undirected 0.017 66 58 0.62 0.3
follows directed 0.06 2 1 -0.019 0.37
mentions directed 0.05 2 1 0.046 0.38
retweets directed 0.02 15 14 0.062 0.28

Olympics
(Twitter)

list undirected 0.03 2 0 0.49 0.56
text undirected 0.02 56 47 0.6 0.33
follows directed 0.05 2 1 -0.017 0.4
mentions directed 0.04 4 3 0.078 0.42
retweets directed 0.02 26 24 0.049 0.36

Politics IE
(Twitter)

list undirected 0.03 7 6 0.52 0.49
text undirected 0.02 58 56 0.5 0.36
follows directed 0.14 1 0 -0.082 0.48
mentions directed 0.05 6 5 -0.147 0.39
retweets directed 0.03 42 41 -0.152 0.34

Politics UK
(Twitter)

list undirected 0.03 26 21 0.48 0.47
text undirected 0.01 93 84 0.59 0.21
follows directed 0.16 2 1 -0.079 0.53
mentions directed 0.08 8 7 0.0207 0.33
retweets directed 0.04 39 38 0.067 0.26

Rugby
(Twitter)

list undirected 0.025 15 14 0.45 0.56
text undirected 0.01 201 186 0.69 0.29
follows directed 0.05 7 6 0.019 0.41
mentions directed 0.046 7 6 0.16 0.41
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retweets directed 0.017 28 27 0.089 0.31

Table 2.3: Graph properties for all of the views across all of the data sets. As with the view clusterings in the previous
table, there are often significant differences in topology between the the network view graphs and the non-network
view graphs.

There is a high degree of variability of view graphs both between and within data sets. Typ-
ically, the graphs constructed from the non-network views have different topologies than the
network view graphs. Across most of the data sets, the non-network view graphs are often
denser, have higher degree assortiativity, are symmetric, and have fewer components and iso-
lates. However, this pattern does not hold across all of the data sets, as most of the Twitter data
sets reverse this pattern. All of these topological differences are partly related to the fact that the
non-network views have their graphs constructed by a kNN procedure. However, these differ-
ences are not solely related to the network and non-network view differences. For example. the
text only data set (3Sources) has differences in topology between the view graphs and all of these
graphs were constructed by the same method with the same parameters. Thus, while there are
distinct differences between the network and non-network views graphs, these differences can
only partly a function of the graph learning technique for the non-network views. So, the differ-
ences in graph topologies between views in a data set is function of the differences in views and
the processes that form the different views. Thus, it is unlikely that the graphs from every view
will line up topologically and this lack of alignment will contribute to the difficulty of producing
one set of cluster labels for all of the graphs.

The graphs in these social-based data sets have topological features that can present difficul-
ties for clustering that other data scenarios do not have. For example, many of the data sets will
have one or more view graphs that feature isolates. These isolates are normal in social-based data
scenarios; they often represent individuals that are not interacting in a particular view. For ex-
ample not all users will engage in re-tweeting or re-posting behavior. This is in contrast to other
data scenarios, like image processing, where there will never be isolates since all images inter-
act in all of the views. Additionally, the graphs from social-based data can also be undirected,
directed, weighted, or unweighted all within the same data set. In other data scenarios all of the
view graphs are typically of only one type (i.e. unweighted and undirected). So, social-based,
multi-view data scenarios present new challenges for multi-view clustering techniques as they
have much more difficult graph topologies to cluster and have a large degree of heterogeneity
between views of the data than do other multi-view data scenarios.

2.2.2 Compared Methods
In this section all of the methods that will be tested across the social-based data sets are described.
Several state-of-the-art late and intermediate integration techniques that are used in the empirical
tests are described in this section. The is section will also detail the user-set parameter settings
for all of the proposed techniques form the methods section of this chapter.

The intermediate and late integration multi-view clustering techniques from other works I
investigated are as follows:

Intermediate Integration Techniques
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• CG: Consistent Graph [82] aims to learn both consistent and inconsistent graphs across
graphs from from multiple views of the data. The method does this using graph represen-
tations of each of the views of the data and a unified optimization framework. The final
consistent graph output is clustered via spectral clustering for the final clusters.

• ETL-MSC: Essential Tensor Learning for Multi-view Spectral Clustering [139] uses a
regularized tensor decomposition method along with some other tensor operations to get
a lower-dimensional representation of the data. Each mode of the data is converted into a
graph and then each graph into a probability transition matrix, which are then stacked to
produce a tensor. The output of the decomposition is then clustered by spectral clustering
for the final clusters.

• NFC-CCE: Network Fusion for Composite Community Extraction [55] uses a Non-Negative
Matrix Factorization for a graph of each view and across each of the views in a combined
model to produce a low-dimensional cluster indicator matrix which can be clustered via
k-Means. Each view of the data is converted into a graph for input into this method. I used
α = 0.0001 which was determined by hand tuning the parameter to best fit the social-based
data.

• SPSL: Self-Paced Spectral Learning [150] iteratively clusters a weighted combination of
the graphs from each of the views, and updates the weight for each view’s graphs depend-
ing on how well that particular view graph does with the clusters obtained by partitioning
the weighted combination of all of the view graphs.

• ResK: RESCAL Factorization with K-Means Clustering [130] creates a tensor from all
of the graphs from each of the views and then uses RESCAL tensor factorization of this
tensor to produce a cluster indicator matrix. The method then clusters the cluster indicator
matrix by k-Means to produce the final clusters.

• SFI: Spectral Feature Integration [123] computes the random-walk normalized Laplacian
for each of the view graphs. It then takes the top eigenvectors from each view’s Laplacians,
concatenates them, and finally uses SVD on the concatenated matrix to produce the final
set of feature vectors. It then clusters those feature vectors via k-Means to get the final
clusters. I each decomposition, only k vectors were taken forward from the decomposition.

• MSIM C: In this technique [70] row and column similarity matrices are learned in a co-
learning set up, across all of the views. The row-similarity matrices are also clustered
in every iteration to produce an co-association matrix, which is then used to enhance the
row-similarity matrix. After a set number of iterations are run, the final row-similarity
matrix is then clustered as a graph to produce the final clusters. It should be noted that this
technique does not require each of the views to be converted to a view graph, however, in
empirical tests I have found universally better performance if it is given the view graphs
instead of the raw data matrices from each view. Each test ran for four iterations, which
was the suggested number of iterations from the paper.

Late Integration Techniques
• CSPA+: Cluster-based Similarity Partitioning Algorithm [119] computes the co-association

matrix from all of the view clusterings. I have then incorporated a global-local prun-
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ing procedure and iterative refinement of the co-association matrix, both of which have
been shown to improve the performance of co-association matrix-based methods [80],
[90], [122]. Additionally, I also use modularity maximization techniques to cluster the
co-association matrices due to their superior empirical performance in terms of accuracy
and speed [80].

• BGPA+: Bipartite Graph Partitioning Algorithm [18], [47] is a cluster ensembling tech-
nique that forms a bipartite graph from every object and every cluster across all modal
clusterings. This bipartite graph can then be clustered to get final cluster assignments. I
improve upon existing algorithms by using a bipartite graph-specific clustering algorithm
rather than a generic graph clustering algorithm. In particular, I use a BiLouvain algorithm
for clustering the object-by-clusters bipartite graph 1.

• LWMC: Locally Weighted Meta-Clustering [64] is a cluster ensembling technique that
clusters a specially-weighted cluster-to-cluster graph in order to produce meta-clusters
which can then be used to determine the final cluster assignments. The weighting in the
cluster-to-cluster graph is done by determining the joint entropy for each cluster with re-
spect to every other cluster, across all modes, and represents how well that particular cluster
is at capturing an actual cluster in the data.

• LWBG: Locally Weighted Bipartite Graph clustering [64] is a cluster ensembling tech-
nique which clusters a specially weighted bipartite graph of objects-to-clusters from all of
the modes. The weighting in the object-to-cluster bipartite graph is done by determining
the joint entropy for each cluster with respect to every other cluster, across all modes, and
represents how well that particular cluster is at capturing an actual cluster in the data.

• GP-MGLA: Graph Partitioning with Multi-Granularity Link Analysis [65] is a cluster
ensembling technique that creates a weighted graph of all of the objects and the clusters.
The weight in the graph varies based on the type of the vertices of the edge (i.e. whether
its a object to cluster or cluster to cluster). This weighted graph of objects and clusters is
then clustered as a standard weighted graph. I set α = 0.5 and β = 2 as was done in the
method’s original paper.

• MCLA+ Meta-Clustering Algorithm [119] is a cluster ensembling technique that com-
putes a weighted cluster-to-cluster graph in order to produce meta-clusters which can then
be used to determine the final cluster assignments. In this implementation, I use Louvain
2 instead of METIS to cluster the cluster-to-cluster graph and weight the cluster-to-cluster
graph by the mutual information between clusters rather than the Jaccard Index, as these
modifications produced better results.

• DREC: Dense Representation based Ensemble Clustering [156] uses a sparse graph learn-
ing technique to learn a similarity matrix from the cluster association matrices from each
view. In order to improve performance, the algorithm also uses a slimming procedure,
by which all of the objects that are clustered together in all of the views are grouped to-
gether and treated as a new object. The final similarity matrix is then clustered by spectral
methods. I used a grid search over the values of [0.001, 0.01, 1, 10, 100] for the lambda

1https://scikit-network.readthedocs.io/en/latest/tutorials/clustering/louvain.html#Bigraphs
2https://scikit-network.readthedocs.io/en/latest/tutorials/clustering/louvain.html
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regularization value, and selected that one which lead to the best performance in ARI and
AMI.

In addition to those intermediate and late integration methods from other works, I also tested
some intermediate and late integration techniques that are natural extensions of the techniques
already proposed in this work. These techniques are described below:
• IPMMC & LPMMC: Intermediate Paradigm and Late Paradigm Multiplex Modularity

Clustering. These techniques are a natural extension of the direct integration methods
proposed in this work. Instead of combining the view clusterings into the view graphs
and clustering these as a multiplex network, just use either the view graphs (IPMMC) or
the cluster association matrices folded into graphs (LPMMC) in the multiplex clustering.
The intermediate integration version, (IPMMC) is somewhat related to a technique for
attributed network clustering in that the technique maps the attributes to a graph [32].

• CNDC I: Cross Network Diffusion Clustering with no late integration information. As
was mentioned in the section describing the CNDC technique, it is possible to not use any
view clusterings in the diffusion equation and just have each view begin with and identity
matrix for the staring similarity matrix.

For the proposed techniques relying on diffusion, (i.e. CNDC and CMIC), each were run
for 30 iterations and used an alpha value of 0.9 for all views, which is generally agreed upon
as an appropriate setting for diffusion models [43]. For the direct integration with an additive
model, the alpha value was set to 0.5 for all views in all tests. Finally, for the direct integration
techniques using cross-learning, cross-learning was done for 10 iterations.

2.2.3 Performance Across All Techniques and Data Sets
In this section I present the results of all of the methods being applied to all of the data sets. Since
many of the techniques in this work have stochastic elements, each technique was run on each
data set twenty times and the average scores are reported. The tables of results are broken out
the data set types: publication networks, social media, single type of data, and Twitter. For each
data set both the ARI and AMI are reported and the three highest results are shaded in green and
the best result is in bold. In the first table, Table 2.4 are the results for the publication network
data sets.

Data Set
Cora
ARI

Cora
AMI

CiteSeer
ARI

CiteSeer
AMI

GP-MGLA 0.22 0.28 0.15 0.17
CSPA+ 0.12 0.17 0.12 0.14
BGPA+ 0.23 0.32 0.15 0.17
LWBG 0.19 0.3 0.1 0.16
MCLA+ 0.18 0.24 0.15 0.17
LWMC 0.21 0.22 0.18 0.19
DREC* 0.12 0.17 0.11 0.14
LPMMC 0.12 0.17 0.12 0.14
DISC A* 0.15 0.21 0.15 0.17
DISC M* -0.004 0.004 0.11 0.25
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DISC R* 0.23 0.28 0.14 0.16
DICL A 0.25 0.32 0.21 0.23
DICL M 0.19 0.25 0.1 0.14
DICL AG 0.36 0.4 0.32 0.31
DIMC A 0.24 0.29 0.12 0.13
DIMC M 0.25 0.43 0.11 0.25
MSIM C 0.22 0.33 0.04 0.16
CVIC 0.35 0.45 0.23 0.24
CNDC C1 0.44 0.49 0.43 0.41
CNDC C2 0.4 0.45 0.26 0.26
CNDC I 0.42 0.49 0.33 0.35
SFI* 0.01 0.19 0.03 0.047
SPSL* 0.0003 0.01 0.008 0.02
CG* 0.36 0.42 0.14 0.18
ResK* 0.03 0.17 0.03 0.16
IPMMC 0.33 0.4 0.37 0.37
NF-CCE* 0.25 0.34 0.28 0.3
ETL-MSC* 0.32 0.46 0.42 0.41
Best
Individual
Mode

0.32 0.17 0.11 0.25

Table 2.4: Multi-view clustering performance on publication networks. The top three techniques for each data set
are highlighted in green and the top performing techniques is in bold font. The techniques are list in three different
sections. From top to bottom they are late integration, hybrid integration, and intermediate integration. Techniques
wirh an asterisk (*) by them indicate that the number of clusters must be supplied to the algorithm. The hybrid
integration techniques of CNDC C1 and the intermediate integration technique of ETL-MSC are some of the best
performing on this data scenario.

Generally, the CNDC methods provide the best performance in terms of recovering the
benchmark labels for the publication data sets. In particular, the CNDC C1 model wherein
the starting similarities for the diffusion process are the co-association matrices created from the
view clusterings. The intermediate integration techniques of ETL-MSC and just using multiplex
Leiden clustering on the view graphs (IPMMC) were also competitive. Turning now to the social
media data sets, the following table, Table 2.5, displays the results.

Data Set
Flickr
ARI

Flickr
AMI

BlogCatalog
ARI

BlogCatalog
AMI

Wiki
ARI

Wiki
AMI

GP-MGLA 0.4 0.43 0.31 0.36 0.23 0.38
CSPA+ 0.2 0.23 0.4 0.423 0.23 0.35
BGPA+ 0.51 0.52 0.44 0.46 0.25 0.4
LWBG 0.56 0.57 0.15 0.25 0.25 0.38
MCLA+ 0.27 0.31 0.3 0.33 0.23 0.37
LWMC 0.31 0.35 0.27 0.3 0.23 0.36
DREC* 0.27 0.32 0.41 0.43 0.23 0.39
LPMMC 0.09 0.15 0.38 0.45 0.21 0.34
DISC A* 0.53 0.54 0.2 0.29 0.29 0.45
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DISC M* 0.01 0.04 0.28 0.34 -0.0007 0.11
DISC R* 0.53 0.54 0.24 0.29 0.25 0.42
DICL A 0.33 0.38 0.45 0.47 0.23 0.37
DICL M 0.36 0.41 0.37 0.37 0.21 0.39
DICL AG 0.29 0.33 0.27 0.26 0.31 0.46
DIMC A 0.14 0.19 0.4 0.47 0.2 0.33
DIMC M 0.54 0.56 0.41 0.49 0.2 0.4
MSIM C 0.05 0.09 0.36 0.42 0.17 0.3
CVIC 0.58 0.58 0.51 0.52 0.31 0.44
CNDC C1 0.1 0.18 0.62 0.61 0.24 0.38
CNDC C2 0.57 0.58 0.29 0.37 0.24 0.36
CNDC I 0.2 0.29 0.4 0.39 0.14 0.29
SFI* 0.004 0.04 0.02 0.05 0.03 0.14
SPSL* 2.90E-07 3.30E-07 -2.60E-05 -1.84E-05 -0.001 0.003
CG* 0.49 0.54 0.49 0.54 0.29 0.44
ResK* 0.013 0.12 0.05 0.2 0.04 0.36
IPMMC 0.57 0.64 0.63 0.62 0.29 0.49
NF-CCE* 0.46 0.51 0.4 0.44 0.24 0.46
ETL-MSC* 0.63 0.65 0.74 0.71 0.34 0.49
Best
Individual
Mode

0.56 0.56 0.41 0.44 0.29 0.45

Table 2.5: Multi-view clustering performance on social-media data. The top three techniques for each data set are
highlighted in green and the top performing techniques is in bold font. The techniques are list in three different
sections. From top to bottom they are late integration, hybrid integration, and intermediate integration. Techniques
with an asterisk (*) by them indicate that the number of clusters must be supplied to the algorithm. ETL-MSC is a
clear front-runner for this data scenario, although the simple technique of IPMMC also has strong performance.

The intermediate integration technique of ETL-MSC performed the best across all of the
social media data sets. Using multiplex Leiden on the view graphs (IPMMC) was again com-
petitive across nearly all of the data sets tested. Some of the hybrid integration techniques,
particularly those of the late integration with intermediate integration information (i.e. CNDC
and CVIC) were also competitive. However, the performance of these techniques could vary
quite substantially between the data sets. For example, CNDC C1 produces competitive results
on BlogCatalog, but produces some of the worst results across all methods on Flickr. In the third
table, Table 2.6, the results for data sets that are only of one data type (i.e. only text or only
networks) are displayed.

Data Set
3Sources
ARI

3Sources
AMI

AUCS
ARI

AUCS
AMI

GP-MGLA 0.31 0.41 0.49 0.55
CSPA+ 0.04 0.22 0.59 0.62
BGPA+ 0.42 0.47 0.59 0.64
LWBG 0.3 0.41 0.43 0.36
MCLA+ 0.38 0.45 0.55 0.63
LWMC 0.36 0.44 0.53 0.6
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DREC* 0.33 0.3 0.67 0.8
LPMMC 0.34 0.43 0.57 0.69
DISC A* 0.24 0.4 0.66 0.75
DISC M* 0.5 0.59 0.51 0.57
DISC R* 0.2 0.4 0.49 0.56
DICL A 0.4 0.47 0.45 0.5
DICL M 0.46 0.66 0.62 0.68
DICL AG 0.76 0.73 0.59 0.62
DIMC A 0.37 0.45 0.58 0.61
DIMC M 0.6 0.66 0.61 0.67
MSIM C 0.59 0.58 0.14 0.11
CVIC 0.53 0.56 0.6 0.63
CNDC C1 0.68 0.69 0.66 0.7
CNDC C2 0.65 0.65 0.63 0.67
CNDC I 0.73 0.73 0.66 0.7
SFI* 0.63 0.66 0.56 0.59
SPSL* 0.62 0.7 0.53 0.59
CG* 0.65 0.73 0.6 0.71
ResK* 0.26 0.48 0.59 0.7
IPMMC 0.76 0.74 0.57 0.69
NF-CCE* 0.34 0.52 0.63 0.74
ETL-MSC* 0.46 0.57 0.1 0.2
Best
Individual
Mode

0.16 0.34 0.59 0.64

Table 2.6: Multi-view clustering performance on the single data type data sets (text only and multiplex network).
The top three techniques for each data set are highlighted in green and the top performing techniques is in bold font.
The techniques are list in three different sections. From top to bottom they are late integration, hybrid integration, and
intermediate integration. Techniques with an asterisk (*) by them indicate that the number of clusters must be supplied
to the algorithm. The intermediate integration algorithms of IPMMC and CNDC I show strong performance as does
the late integration technique of DREC.

For the text only data set, the best method was IPMMC, while for the multiplex network it
was the late integration technique of DREC. The multiplex network data set was one of only four
data sets where a late integration technique produced competitive results. Some of the hybridized
techniques also produced competitive results, such as DICL AG and DISC A. Finally, in the last
table, Table 2.7, are the results for the Twitter data sets.

Data Set
Football
(Twitter)
ARI

Football
(Twitter)
AMI

Olympics
(Twitter)
ARI

Olympics
(Twitter)
AMI

Politics
Ire
(Twitter)
ARI

Politics
Ire
(Twitter)
AMI

Politics
UK
(Twitter)
ARI

Politics
UK
(Twitter)
AMI

Rugby
(Twitter)
ARI

Rugby
(Twitter)
AMI

GP-MGLA 0.49 0.73 0.56 0.78 0.76 0.74 0.86 0.79 0.52 0.66
CSPA+ 0.5 0.75 0.57 0.78 0.88 0.82 0.96 0.9 0.68 0.69
BGPA+ 0.53 0.75 0.55 0.77 0.78 0.7 0.77 0.74 0.55 0.66
LWBG 0.65 0.79 0.72 0.85 0.74 0.68 0.83 0.73 0.45 0.63
MCLA+ 0.43 0.67 0.56 0.54 0.59 0.59 0.44 0.56 0.44 0.57
LWMC 0.39 0.64 0.54 0.74 0.79 0.7 0.86 0.76 0.45 0.58
DREC* 0.78 0.88 0.9 0.94 0.91 0.84 0.86 0.82 0.52 0.63
LPMMC 0.51 0.76 0.56 0.77 0.88 0.82 0.96 0.91 0.64 0.68
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DISC A* 0.83 0.89 0.85 0.91 0.81 0.8 0.78 0.76 0.53 0.67
DISC M* 0.47 0.73 0.56 0.76 0.45 0.6 0.9 0.84 0.34 0.54
DISC R* 0.79 0.87 0.76 0.85 0.56 0.68 0.58 0.67 0.34 0.58
DICL A 0.35 0.66 0.46 0.74 0.87 0.81 0.96 0.9 0.71 0.7
DICL M 0.73 0.86 0.74 0.87 0.92 0.87 0.87 0.87 0.44 0.65
DICL AG 0.44 0.71 0.51 0.75 0.89 0.83 0.78 0.77 0.51 0.63
DIMC A 0.69 0.84 0.65 0.83 0.87 0.87 0.98 0.94 0.69 0.71
DIMC M 0.59 0.81 0.57 0.79 0.9 0.86 0.98 0.94 0.64 0.69
MSIM C 0.07 0.21 0.24 0.51 0.64 0.6 0.77 0.82 0.36 0.45
CVIC 0.51 0.75 0.57 0.8 0.83 0.77 0.96 0.9 0.72 0.7
CNDC C1 0.36 0.63 0.49 0.72 0.83 0.79 0.92 0.87 0.63 0.65
CNDC C2 0.53 0.76 0.55 0.79 0.75 0.73 0.97 0.93 0.64 0.66
CNDC I 0.72 0.78 0.63 0.77 0.64 0.67 0.92 0.87 0.65 0.67
SFI* 0.52 0.73 0.4 0.69 0.32 0.51 0.7 0.64 0.32 0.54
SPSL* 0.79 0.87 0.77 0.88 0.75 0.82 0.98 0.96 0.54 0.66
CG* 0.71 0.79 0.85 0.89 0.65 0.67 0.64 0.63 0.4 0.56
ResK* 0.004 0.09 0.02 0.25 0.017 0.09 0.01 0.15 -0.0005 0.18
IPMMC 0.65 0.83 0.54 0.77 0.89 0.86 0.99 0.97 0.65 0.68
NF-CCE* 0.25 0.45 0.66 0.76 0.73 0.7 0.56 0.53 0.26 0.51
ETL-MSC* 0.7 0.78 0.83 0.87 0.44 0.55 0.67 0.58 0.36 0.53
Best
Individual
Mode

0.78 0.87 0.86 0.91 0.9 0.85 0.97 0.92 0.63 0.67

Table 2.7: Multi-view clustering performance on Twitter social media data sets. The top three techniques for each data
set are highlighted in green and the top performing techniques is in bold font. The techniques are list in three different
sections. From top to bottom they are late integration, hybrid integration, and intermediate integration. Techniques
with an asterisk (*) by them indicate that the number of clusters must be supplied to the algorithm. There is no clear
one techniques that is best, but many of the intermediate integration techniques show strong performance. Also, these
data sets typically feature a particular (usually the mentions or retweets) which clusters very well by itself.

For these data sets the competitive techniques vary across data set and across paradigms; there
is no one technique or multi-view clustering paradigm that has superior performance for all of
these data sets. The direct integration methods tend to have a lot of high performing techniques,
but no one technique that is consistently good across all of the data sets. IPMMC and DREC also
show strong performance but only on one or two data sets. Additionally, all methods generally
show better performance on the Twitter data sets then on any of the other data sets. These data
sets also typically have at least one view that has good clusters relative to the benchmark labels.
In fact, for the Football and Olympics data sets, the best individual view’s clusters are better than
most of the multi-view clusters.

Overall Summary of Technique Performances

Across all of the test data sets, no one method is dominant. Also, across all of the data sets
late integration techniques are often mediocre in performance whereas hybrid and intermediate
integration techniques have better performance. Methods like ETL-MSC can have good perfor-
mance on social media data sets, except twitter, and even publication networks, but then very
poor performance for Twitter. Similarly, methods like the CNDC family of techniques can have
strong performance in publication networks and all text data sets, but very poor performance for
some of the social media data sets. Additionally, some techniques, like just using multiplex clus-
tering on the view graphs (IPMMC) are often not the best but are often competitive across nearly
every data set. To further understand the comprehensive performance of the different techniques,
we turn to Table 2.8, which provides a summary across all techniques and data sets.
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Method
Average
ARI

STD
ARI

Average
AMI

STD
AMI

Within Top
Three of
ARI

Within Top
Three of
AMI

Best of
ARI

Best of
AMI

GP-MGLA 0.442 0.217 0.523 0.213 0 0 0 0
CSPA+ 0.441 0.306 0.508 0.281 0 0 0 0
BGPA+ 0.481 0.197 0.550 0.191 0 0 0 0
LWBG 0.448 0.252 0.509 0.228 0 0 0 0
MCLA+ 0.377 0.150 0.453 0.165 0 0 0 0
LWMC 0.427 0.220 0.490 0.205 0 0 0 0
DREC* 0.509 0.305 0.555 0.295 3 3 2 2
LPMMC 0.448 0.291 0.526 0.281 0 0 0 0
DISC A* 0.502 0.283 0.570 0.263 3 3 1 1
DISC M* 0.344 0.277 0.448 0.290 0 0 0 0
DISC R* 0.426 0.223 0.525 0.223 1 1 0 0
DICL A 0.473 0.247 0.546 0.212 1 1 0 1
DICL M 0.501 0.273 0.585 0.263 1 1 1 1
DICL AG 0.503 0.212 0.567 0.203 2 2 1 0
DIMC A 0.494 0.290 0.555 0.284 2 3 0 0
DIMC M 0.533 0.260 0.629 0.208 2 2 0 2
MSIM C 0.304 0.246 0.382 0.223 0 0 0 0
CVIC 0.558 0.209 0.612 0.185 3 2 1 0
CNDC C1 0.533 0.237 0.593 0.195 4 3 2 2
CNDC C2 0.540 0.215 0.601 0.202 2 1 0 0
CNDC I 0.537 0.236 0.583 0.209 3 2 0 1
SFI* 0.295 0.268 0.402 0.282 0 0 0 0
SPSL* 0.416 0.384 0.459 0.412 2 2 0 0
CG* 0.523 0.200 0.592 0.190 1 1 0 0
ResK* 0.089 0.173 0.246 0.183 0 0 0 0
IPMMC 0.603 0.212 0.672 0.182 5 7 2 3
NF-CCE* 0.422 0.181 0.522 0.146 0 2 0 0
ETL-MSC* 0.501 0.214 0.567 0.177 4 5 3 3

Table 2.8: Performance summary of the techniques across all of the data sets. The top three techniques for each
summary measure are highlighted in green and the top performing techniques is in bold font. The techniques are
listed in three different sections. From top to bottom they are late integration, hybrid integration, and intermediate
integration. Techniques with an asterisk (*) by them indicate that the number of clusters must be supplied to the
algorithm. The performance measures of ARI and AMI were averaged across all of the data sets and the how many
times a technique was the best or in the top three for a data set is also recorded. Generally speaking, those techniques
which had good average performance were not often among the best for a particular data set, while those techniques
which were among the best for a certain class of data sets tended to have low average performance as they could be
among the worst for other data sets. The one exception to this pattern is IPMMC.

Across all of the data sets, the IPMMC method, which is the application of multiplex Leiden
clustering to the view graphs, has the best results on average. This same method is also frequently
in the top three methods across all of the data sets and within the top three across all methods
for the being the best method for a particular data set. The CNDC C1 method, wherein the
view clustering are used as the starting similarity graphs for the diffusion model, along with the
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intermediate integration, tensor factorization technique, and the late integration method of DREC
have good performance on some data sets but not others. As a result, they are the best or at least
in the top 3 for some data sets, but have low performance in terms of ARI and AMI on average.
CNDC C1 shows strong performance on the publication network and text only data sets. ETL-
MSC shows strong performance on the non-twitter, social media data sets that have only two
views. And, DREC shows strong performance on the Twitter data sets, wherein at least one of
the view clusterings also performs well. Finally, some methods like CVIC have good average
performance across all of the data sets, but are rarely the best method and are only occasionally
within the top three performers for any given data set. Thus, it would seem from these results
that while some methods may be good on average, they can be outperformed by other methods
on specific data scenarios. Additionally, those methods which do feature superior performance
on some data sets often have very poor performance on others, which makes there performance
on average mediocre.

To get a better sense of the performance of the different techniques across the different data
sets, the following figure, Figure 2.2, displays a color plot of the relative performance on each
technique, for each measure across all of the data sets. Green indicates better performance on
that data set and measure and red indicates worse performance and on that data set and measure.

From the color map, one can again observe similar conclusions to what has been mentioned
previously. Namely, for many techniques, there can be high amount of variance in performance
between the different data sets. For example ETL-MSC shows very good performance (among
the best three) for publication networks and some of the social network sites, but then very poor
performance for the Twitter data sets. Whereas, techniques like SPSL performed very poorly on
the publication networks and social media sites — likely due to the components present in the
view graphs — but fair to good performance on the Twitter data sets. It is also interesting to note
that the late integration techniques, with a few exceptions, seem to be generally worse than either
the hybrid or intermediate integration techniques. So, no one technique is dominant across all of
the social-based data scenarios.

With these summary results detailed per method, we now turn to the summary of performance
across paradigms. The following table, Table 2.9, displays the average performance of all of the
methods from across the different paradigms.

Multi-view Paradigm
Macro Average ARI
across Paradigm

STD ARI
across Paradigm

Macro Average AMI
across Paradigm

STD AMI
across Paradigm

Late Integration 0.446 0.0386 0.514 0.033
Hybrid Integration 0.4758 0.0793 0.551 0.0712
Intermediate Integration 0.423 0.1645 0.5053 0.133

Table 2.9: Summary performance statistics across all techniques for the three paradigms. The hybrid integration
techniques have the best average performance, followed by intermediate and then late integration techniques. However,
many intermediate integration techniques did have good performance, but some did have very bad performance which
resulted in a lot more deviation in their performance then other paradigms.

When the results from all methods across the three different paradigms are averaged together,
the hybrid integration paradigm methods perform the best, followed by intermediate integration
and late integration. While this does seem to indicate that the hybrid paradigm is empirically
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Figure 2.2: Qualitative performance overview of the different multi-view clustering techniques. Green indicates a
better performance, relative to the other techniques and red indicates a worse technique. Color squares with a bolded
border indicate that technique in the column achieved one of the top three performances on that data set. Across the
top, the techniques are broken into late integration (light red shading), hybrid integration (light blue shading), and
intermediate integration (light green shading). Techniques with an (*) indicate that that technique requires the number
of clusters to be specified. Finally, techniques in bold font are those that had the highest average performance across
all of the data sets.

superior to the other data sets for social-based data, it should be noted that the standard deviation
in method performances is also much higher for intermediate integration techniques than for the
other two paradigm’s techniques. This high variation is a result of some methods, like ETL-MSC
performing very well on some of the social media data sets, and other methods like SPSL or ResK
performing very poorly on some of the data sets like social networks or publication networks.
So, while the hybrid paradigm techniques tend to be better on average, depending on the data
scenario, a properly chosen intermediate integration paradigm technique can give competitive, if
not superior, performance.

2.2.4 Data Set Clusterability

One of the main results from the empirical testing is that clustering performance not only varies
across all of the published and proposed techniques, but also across all of the data sets. Some
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data sets like the publication networks have uniformly worse results than the Twitter data sets.
Taken together, the results would suggest that the different data sets have different clusterability.
In the theoretical work of traditional clustering there are many notions as to what makes a data
set clusterable [2], [14], [7]. Following the theoretical guidance outlined in [2], the different
clusterings produced by the different techniques can be used to analyze the clusterability of the
data sets. Namely, I assume that each of the techniques can produce a ‘suitable’ clustering of the
data set and I then compare these clusterings with their ARI and AMI values to the ground truth
labels. In this way, both how clusterable the data set is and how well the data set’s clusterability
relates to the benchmark labels can be observed. The following table, Table 2.10, displays the
average and standard deviations of the ARIs and AMIs for all of the data sets, across all of the
methods.

Data set Measure
Average
across
techniques

Std.
across
techniques

ARI 0.221 0.125
Cora

AMI 0.295 0.132
ARI 0.175 0.115

CiteSeer
AMI 0.208 0.097
ARI 0.322 0.212

Flickr
AMI 0.360 0.201
ARI 0.350 0.173

BlogCatalog
AMI 0.388 0.156
ARI 0.210 0.091

Wiki
AMI 0.359 0.111
ARI 0.461 0.185

3Sources
AMI 0.539 0.142
ARI 0.543 0.134

AUCS
AMI 0.603 0.153
ARI 0.535 0.207Football

(Twitter) AMI 0.715 0.185
ARI 0.593 0.186Olympics

(Twitter) AMI 0.763 0.138
ARI 0.717 0.208Politics Ire

(Twitter) AMI 0.713 0.159
ARI 0.802 0.214Politics UK

(Twitter) AMI 0.777 0.176
ARI 0.499 0.166Rugby

(Twitter) AMI 0.609 0.108

Table 2.10: Average and standard deviations of clustering performance across all techniques for each of the data sets.
The top three highest averages and lowest standard deviations for both ARI and AMI are highlighted in green and the
top of each is in bold. The Twitter sets see the best performances on average, while the social media data sets see the
least variability in performances across techniques.

Generally the twitter data sets see the highest performance relative to the benchmark labels
while the the social media data sets see the lowest variability in performance. Interestingly,
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those data sets with low variability in performance also tend to have low average performance,
like Wiki or CiteSeer. This would suggest that these data sets are more easily clusterable in
the sense that they have less variability in the clusters found by the different methods, but that
the information used to form the clusters (i.e. the two different views) are not actually that
informative for finding the benchmark clusters. In fact, for Cora and CiteSeer, this conclusion
has been reached by other works that have bench-marked from these data sets [150], [143].
Conversely, the Twitter data sets have much higher average ARI and AMI values, but also higher
variability in the clustering performances of the various techniques. However, from looking back
at the other results tables, much of this variability is a direct result of one or two methods like
MSIM C, NF-CCE, or ResK doing very poorly on these data sets. Thus, these results would
seem to indicate two things. First, that the Twitter data sets are actually easily clusterable and
that the views used to form the clusters are actually informative to the cluster structure. Second,
that not all techniques are suitable for any kind of social-based data. So, overall, there are
differences in the clusterability of the different data sets with the Twitter data being some of the
most clusterable of the benchmark data.

2.2.5 View Qualities and their Impact on Multi-view Clustering
Having observed the differences in clusterability of the data sets, another question arises as to
what properties of the data sets could give rise to these performance differences across all tech-
niques. In particular, I will explore in this section the differences in performance of the tech-
niques as they relate to the view graphs and the view clusterings.

Effect of View Graphs

One of the critical components of the intermediate integration and hybrid integration techniques
are the view graphs. In order to evaluate the view graphs, several metrics that are known to effect
the clustering performance of view graphs are analyzed. The first metric is the average across all
views of the percent of difference between the number of components of a graph and the number
of clusters in the data set. It is generally believed that these numbers should be approximately
the same, and so the more deviation there is, the more likely the graph structure performs poorly
in recovering the clusters [89]. So, a higher Average percent difference between the number
of components and the number of clusters, the lower the performance of multi-view clustering
techniques should be. Another metric which could affect performance is the average across all
views of the number of isolates relative to the number of vertices in the graphs. The affect of
having a higher number of isolates is the same as that as having more components than clusters
in a graph but even more so, since an isolate has no ties to any other vertex. A third metric would
be whether the view graphs are heterogeneous with respect to the directedness of the graph; are
the view are graphs all directed, undirected, or some combination of both. Since the different
directedness of the graphs often require different clustering methods, it would be expected that
those data sets with heterogeneous view graphs would have worse clustering performance. The
following table, Table 2.11, summarizes these graph metrics for across the different data sets.
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Data set

Average %
Difference
Between Clusters
and Components

STD %
Difference
Between Clusters
and Components

Average
Isolate
Ratio

STD
Isolate
Ratio

Heterogeneous
graphs

Cora 0.884 0.038 0.000 0.000 Yes
CiteSeer 0.660 0.462 0.000 0.001 Yes
Flickr 0.569 0.452 0.001 0.001 No
BlogCatalog 0.417 0.589 0.000 0.001 No
Wiki 0.724 0.144 0.020 0.029 Yes
3Sources 0.722 0.192 0.004 0.007 No
AUCS 0.698 0.150 0.266 0.262 No
Football 0.739 0.290 0.060 0.100 Yes
Olympics 0.657 0.373 0.032 0.044 Yes
Politics Ire 0.543 0.433 0.062 0.072 Yes
Politics UK 0.720 0.232 0.072 0.079 Yes
Rugby 0.491 0.329 0.056 0.091 Yes

Table 2.11: Derived network statistics for the different data sets. The lowest values for the first four columns are
highlighted in green and the lowest is bolded. Generally, a graph should have better cluster performance if it is lower
in these metrics. The final column summarizes whether the data has all undirected graphs for its views or it has a
combination of directed and undirected graphs across its views. Across the data sets, the Twitter data sets have more
isolates, which are a result of a user not engaging in a certain behavior, like re-tweeting, but also have a number of
graph components close to the number of clusters in the data set.

Generally, the Twitter data sets have lower average percent differences between the numbers
of their view graph components and the number of clusters. The Twitter data sets are also make
of the bulk of the heterogeneous data sets as well, as most of the observed networks are directed,
while the graphs constructed from the text and list views are undirected. The publication net-
works have the lowest average isolates per number of vertices, which is a direct result of the data
sets’ construction, in that only publication with at least one other tie to the other nodes in the
network are included.

In addition to the derived, graph related metrics, some mainstream, existing metrics are also
known to be related to the presence and detectability of clusters within a graph. The first is the
average across views of the average clustering coefficient of the graph [94]. Generally, the higher
the clustering coefficient for a graph, the stronger the cluster or community structure within the
graph is and the better a clustering algorithm should be able to work on the graph. The second
is the average across views of the degree assortiativity. The degree assortiativity is the Pearson
Correlation Coefficient of the degrees of connected vertices, can also believed to have an impact
on the community structure present in networks [94], [13]. The following table, Table 2.14,
presents the network metrics for all of the data sets.

Data set
Average of
Clustering
Coefficient

STD of
Clustering
Coefficient

Average
Degree
Assortiativity

STD
Degree
Assortiativity

Cora 0.135 0.007 0.185 0.310
CiteSeer 0.100 0.042 0.254 0.176
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Flickr 0.280 0.071 -0.006 0.298
BlogCatalog 0.220 0.141 0.215 0.317
Wiki 0.402 0.111 0.269 0.374
3Sources 0.423 0.049 0.463 0.050
AUCS 0.397 0.239 -0.040 0.097
Football 0.404 0.166 0.244 0.297
Olympics 0.414 0.089 0.240 0.283
Politics Ire 0.412 0.069 0.128 0.350
Politics UK 0.360 0.136 0.216 0.299
Rugby 0.396 0.107 0.282 0.281

Table 2.12: Common network statistics used to ascertain whether there is a strong community structure within a
network. The three best values are highlighted in green and the best value is bolded. The degree assortiativity statistics
are not bolded as both assortiative networks and disassortiative networks could have distinct community structure.
Generally, the twitter data sets possesses best metrics indicative of communities being present in their graphs.

As with the other graph metrics, the Twitter data sets generally contain the highest average
clustering coefficient across their views. The degree assortiativity is generally positive — in-
dicating vertices of the same degree typically connect to other vertices of the same degree —
with the exception of the Flickr and the AUCS data sets. In both of these data sets, there is at
least one highly disasortiative network. While it is not always clear whether a more assortiative
or disassortiative network will cluster better, these data sets with a high variance in their de-
gree assortiativiy, such as Cora, Wiki, BlogCatalog, and Flickr would be expected to have worse
clustering performance since the connectivity patterns between the views will be more different.

With these graph metrics, it is now possible to compare the performance of the various tech-
niques against these graph metrics. To do so, the correlation coefficient between the average
ARI (only the ARI results are displayed since the correlation is comparable to the AMI, as the
two measures of performance strongly correlate) and the different graph metrics was calculated.
The following table, Table 2.13, summarizes the correlation coefficients between the multi-view
clustering techniques’ performance and the earlier derived graph metrics.

Measure
Average % Difference
Between Clusters
and Components

STD % Difference
Between Clusters
and Components

Average
Isolate
Ratio

STD
Isolate
Ratio

Heterogenous
graphs

GP-MGLA -0.183 0.080 0.390 0.441 0.219
CSPA+ -0.301 0.140 0.478 0.538 0.321
BGPA+ -0.322 0.165 0.450 0.492 -0.034
LWBG -0.041 0.050 0.280 0.349 0.257
MCLA+ -0.221 0.044 0.598 0.649 0.008
LWMC -0.118 0.011 0.443 0.466 0.198
DREC* -0.168 0.123 0.465 0.534 0.216
LPMMC -0.219 0.049 0.457 0.516 0.262
DISC A* -0.078 0.069 0.469 0.550 0.246
DISC M* -0.019 -0.027 0.436 0.471 0.050
DISC R* 0.016 0.088 0.329 0.410 0.202
DICL A -0.345 0.145 0.268 0.307 0.194
DICL M -0.107 0.069 0.431 0.487 0.131
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DICL AG 0.053 -0.181 0.353 0.363 0.087
DIMC A -0.143 0.007 0.431 0.512 0.310
DIMC M -0.214 0.061 0.373 0.417 -0.019
MSIM C -0.133 -0.037 -0.020 -0.025 0.058
CVIC -0.313 0.111 0.341 0.378 0.012
CND C1 -0.148 -0.018 0.352 0.343 0.057
CND C2 0.004 -0.137 0.384 0.412 0.017
CND I 0.106 -0.179 0.414 0.475 0.123
SFI* 0.208 -0.302 0.525 0.572 -0.022
SPSL* 0.072 -0.121 0.397 0.479 0.246
CG* -0.010 0.013 0.292 0.333 -0.129
ResK* 0.173 -0.370 0.784 0.701 -0.597
IPMMC -0.305 0.217 0.199 0.233 -0.102
NF-CCE* -0.238 0.228 0.466 0.406 -0.146
ETL-MSC* -0.275 0.555 -0.498 -0.448 0.063

Table 2.13: Correlation between multi-view clustering techniques’ performance and the derived graph metrics. It is
generally expected that the correlation should be negative (i.e. as the graph metric increases in value or the graphs
are heterogeneous, that performance should decrease). For the average difference between the number of components
and clusters this expected negative correlation exists, but only weakly so, and the it doe snot exits for the ratio isolates
present in the graphs. This suggests that the performance of the multi-view clustering techniques is not strongly
effected by these network statistics.

The correlations between the multi-view clustering techniques’ performance and the graph
metrics present some surprising results. First, most techniques have a negative correlation be-
tween their performance and the percent difference between the average connected components
and number of sub groups. This result should be expected, but it is surprising that this negative
correlation holds for the late integration techniques — which do not use any of the view graphs
— and not all of the intermediate integration techniques — which only use the view graphs.
More surprising is the fact that the average isolate ratio is actually positive correlated with most
techniques’ performance. The expectation would be that these two measures should be neg-
atively correlated. It is possible that because the the Twitter data sets, which had the highest
average isolate ratios, also had the best individual view clustering performances, that having at
least one view which clusters well is more important than the negative effect from the presence
of isolates. A notable exception to this pattern is ETL-MSC which had much worse perfor-
mance than the other techniques on the Twitter data sets. This would suggest that sensitivity to
isolates is also technique dependent. Finally, having heterogeneous graphs is only consistently
negatively correlated with the intermediate integration techniques. This result suggests that hav-
ing heterogeneous graphs can indeed effect the performance of those techniques which rely on
graphs. Turning now to the other graph metrics which can influence cluster structure and detec-
tion in graph, the following table, Table 2.12, displays the correlations of these metrics with the
multi-view clustering techniques performance.
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Measure
Average of
Clustering
Coefficient

STD of
Clustering
Coefficient

Average
Degree
Assortiativity

STD
Degree
Assortiativity

GP-MGLA 0.578 0.348 -0.220 0.213
CSPA+ 0.493 0.482 -0.259 0.311
BGPA+ 0.636 0.439 -0.296 0.118
LWBG 0.628 0.267 -0.233 0.252
MCLA+ 0.773 0.493 -0.176 -0.096
LWMC 0.568 0.315 -0.183 0.092
DREC* 0.671 0.495 -0.152 0.142
LPMMC 0.600 0.430 -0.033 0.114
DISC A* 0.668 0.466 -0.321 0.193
DISC M* 0.562 0.456 0.131 -0.239
DISC R* 0.544 0.413 -0.334 0.253
DICL A 0.445 0.212 -0.054 0.184
DICL M 0.677 0.417 -0.148 0.086
DICL AG 0.586 0.077 0.132 -0.257
DIMC A 0.601 0.426 -0.016 0.143
DIMC M 0.635 0.323 -0.137 0.019
MSIM C 0.358 -0.081 0.337 0.008
CVIC 0.543 0.306 -0.183 0.121
CND C1 0.268 0.199 0.167 -0.216
CND C2 0.543 0.206 -0.116 -0.132
CND I 0.495 0.323 0.208 -0.308
SFI* 0.679 0.452 0.187 -0.453
SPSL* 0.710 0.338 0.156 -0.139
CG* 0.677 0.338 -0.031 -0.078
ResK* 0.239 0.536 -0.300 -0.750
IPMMC 0.487 0.234 0.049 -0.065
NF-CCE* 0.371 0.269 -0.487 -0.026
ETL-MSC* 0.045 -0.078 0.216 0.362

Table 2.14: Correlation between multi-view clustering performance and commonly used network statistics to charac-
terize a network for having strong community structure. Generally, there is a strong positive correlation between the
average clustering coefficient and the performance of multi-view clustering techniques. Thus, the stronger the com-
munity structure present within the view graphs the better the performance. For the other metric, there is no distinct
correlation between the degree assortiativity and the multi-view clustering performance.

Having a higher average clustering correlation across all of the view graphs is always corre-
lated with having better multi-view clustering performance. This is an expected result, however,
it is surprising to see that the late integration techniques have just as strong of a correlation with
the average clustering coefficient than do the intermediate integration techniques. This again is
likely a result of the data sets that are high in clustering performance also having one or more
views that cluster well. More surprising is that degree assortiativity has a negative correlation
with late integration performance and a technique-dependent correlation for hybrid and inter-
mediate integration techniques. The negative correlation between the late integration techniques
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performance and disassortiativity likely comes from the fact that most of the data sets that had
a low disassortiativity also tended to have somewhat better view clustering performance for at
least one view (i.e. Flickr and Twitter data sets).

Overall, many of the graph quality metrics do not particularly correlate well with multi-view
clustering performance. While some metrics like having the number of components in the view
graphs be close to the number of clusters and the average clustering coefficient across all of the
views do correlate strongly with clustering performance, other metrics like the average isolate
ratio, surprisingly do not. That said some of these metric do correlate to performance for specific
techniques, such as a greater presence of isolates leading to noticeably worse performance by
techniques like ETL-MSC.

Effect of View Clusterings

In this section the effect of the view clusterings on the performance of the multi-view clustering
techniques is investigated. In addition to the view graphs, the other main input to multi-view
clustering techniques are the view clusterings. Also, earlier in the results section it was noted
that data sets that have a particular view which cluster well relative to the benchmark labels
(i.e. the Twitter data sets), also tend to have better multi-view clustering results, especially for
late integration techniques. So, in this section, I will investigate the importance of the view
clusterings in the performance of multi-view clustering techniques.

Based on the previous empirical testing results as well as the consensus principle in multi-
view clustering, I analyzed three different aspects with regard to the multi-view clusters. The
first is the performance of the best view clustering. The intuition behind this metric is that a
data set which has a particular view cluster well should also have good multi-view clustering
performance. The second is the average of the performances of the view clusterings. A data set
which has a good average clustering performance across its views should also have good multi-
view clustering performance. Finally, coming directly from the multi-view clustering principles
is the consensus of clustering labels between the different views of the data sets. One can use
the same clustering performance measures of ARI and AMI to compare how similar two views’
clusterings are. A data set which has high consensus among its view clusterings should also
have good multi-view clustering performance. The following table, Table 2.15, summarizes the
multi-view clustering result for every method with the aforementioned view clustering results.

Method

Correlation between
multi-view clusters
and best view’s
clusters

Correlation between
multi-view clusters
and average of
view’s clusters

Correlation between
multi-view clusters
and average consensus
between view’s
clusters

GP-MGLA 0.9375 0.9421 0.7913
CSPA+ 0.9143 0.9240 0.7905
BGPA+ 0.9068 0.8920 0.6992
LWBG 0.9176 0.9123 0.7466
MCLA+ 0.7921 0.7972 0.7400
LWMC 0.8858 0.8923 0.7764
DREC* 0.9297 0.9170 0.7712
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LPMMC 0.8483 0.8609 0.7841
DISC A* 0.9432 0.9223 0.7681
DISC M* 0.7162 0.7356 0.6797
DISC R* 0.8911 0.8829 0.6885
DICL A 0.8096 0.8161 0.7057
DICL M 0.8920 0.8808 0.7224
DICL AG 0.6034 0.6149 0.6552
DIMC A 0.8740 0.8759 0.7832
DIMC M 0.8356 0.8102 0.6433
MSIM C 0.3781 0.4303 0.4295
CVIC 0.8551 0.8357 0.6626
CNDC C1 0.4713 0.4999 0.4981
CNDC C2 0.7700 0.7381 0.6221
CNDC I 0.6256 0.6123 0.6155
SFI* 0.5882 0.6161 0.6719
SPSL* 0.7704 0.7572 0.7356
CG* 0.7101 0.6974 0.5228
ResK* -0.1309 -0.0662 0.0508
IPMMC 0.7397 0.6981 0.5198
NF-CCE* 0.6537 0.6771 0.4767
ETL-MSC* 0.4163 0.4401 0.2050

Table 2.15: Correlation between cluster qualities across and between the views of each data set and the performance of
the multi-view clustering techniques. The top three correlations are highlighted in green and the strongest correlation
between the methods and the cluster quality metric is bolded. There is a strong positive correlation between a data set
having a good view clusterings and multi-view clustering performance, especially for late integration techniques.

Generally, most methods have a high correlation with all three measures of view clustering
quality. This result would suggest that most techniques rely on individual views having good
cluster quality in order to have good clustering quality themselves. Some techniques like GP-
MGLA which is a composite between CSPA and MCLA have a very high correlation between
the view clustering qualities and the multi-view clustering quality. While most late integration
techniques like GP-MGLA have high correlation in their clustering qualities to the clustering
qualities of individual views, some hybrid integration techniques like DISC A also have high
correlation to the view clusterings. Somewhat surprisingly, most of the intermediate integra-
tion techniques (the exceptions being ETL-MSC and ResK) also high positive correlations to
the view clustering performances. This result seems to suggest that the better any given view
clusters are, the better the result of multi-view clustering will be, regardless of the paradigm. To
further investigate the value of the quality of view clusterings and the the performance of multi-
view clustering techniques, the following table, Table 2.16, gives the summary of the different
paradigms of multi-view clustering and the different types of evaluating view clustering quality.

54



Measure

Correlation between
multi-view clusters
and best view’s
clusters

Correlation between
multi-view clusters
and average of
view’s clusters

Correlation between
multi-view clusters
and average consensus
between view’s
clusters

Late Integration 0.892 0.892 0.762
Hybrid Integration 0.753 0.754 0.655
Intermediate Integration 0.547 0.554 0.475
All 0.734 0.736 0.634

Table 2.16: Correlation between cluster qualities across and between the views of each data set and the performance
of multi-view clustering paradigms. Late integration techniques have the strongest correlation to the view clustering
qualities followed by hybrid and than intermediate integration paradigm techniques. Generally, having a view that
clusters well tends to correlate most strongly with multi-view clustering performance across the paradigms.

On average, late integration techniques have higher correlation with view clustering quality
than do intermediate or hybrid integration techniques. That is to say when the view clusterings
perform well, so too do the late integration techniques. This result should in some degree follow
from the basic mechanism of late integration techniques; late integration techniques use the view
clusterings the most out of all the paradigms and should therefore by more reliant on the view
clusterings for their performance. It is interesting to note that there is little difference between
having one view that clusters well and all views clustering well on average, and the performance
of multi-view clustering techniques. This result would suggest that while it is beneficial to have
all views provide information that is useful for clustering of the multi-view data, as long as one
view performs well, multi-view clustering of the data will also perform well. Curiously, having
consensus between all of the view’s clustering results does not appear to be as strongly correlated
as having one particular view that performs well in regards to multi-view clustering performance.
This result would suggest that while meeting the consensus principle of multi-view clustering is
important, it only matters in the context of having at least on view clustering well and only
matters significantly for those techniques which employ view clusterings.

2.2.6 Comparison Between Hybridized and Non-Hybridized Techniques
One of the main contributions of this chapter is the introduction of the hybrid paradigm tech-
niques in multi-view clustering. Some of these techniques are natural extensions of existing late
or intermediate integration paradigm techniques. Thus, a natural to ask is how the hybridized ver-
sions of these techniques compares to the non-hybridized versions. In the first set of comparisons
I compare the direct integration techniques (i.e. DICL and DIMC) to their non-hybridized, inter-
mediate integration counterparts (i.e. IPMMC and SFI). Table 2.17 summarizes the difference
in the performance metrics of ARI and AMI across all of the data sets for the direct integration
techniques and their corresponding non-hybridized versions.

Data set Measure
IPMMC
& DIMC A

IPMMC
& DIMC M

DISC A
& SFI

DISC M
& SFI

DISC R
& SFI

Cora
ARI -0.09 -0.08 0.14 -0.014 0.22
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AMI -0.11 0.03 0.02 -0.186 0.09

CiteSeer
ARI -0.25 -0.26 0.12 0.08 0.11
AMI -0.24 -0.12 0.123 0.203 0.113

Flickr
ARI -0.43 -0.03 0.526 0.006 0.526
AMI -0.45 -0.08 0.5 0 0.5

BlogCatalog
ARI -0.23 -0.22 0.18 0.26 0.22
AMI -0.15 -0.13 0.24 0.29 0.24

Wiki
ARI -0.09 -0.09 0.26 -0.0307 0.22
AMI -0.16 -0.09 0.31 -0.03 0.28

3Sources
ARI -0.39 -0.16 -0.39 -0.13 -0.43
AMI -0.29 -0.08 -0.26 -0.07 -0.26

AUCS
ARI 0.01 0.04 0.1 -0.05 -0.07
AMI -0.08 -0.02 0.16 -0.02 -0.03

Football
(Twitter)

ARI 0.04 -0.06 0.31 -0.05 0.27
AMI 0.01 -0.02 0.16 0 0.14

Olympics
(Twitter)

ARI 0.11 0.03 0.45 0.16 0.36
AMI 0.06 0.02 0.22 0.07 0.16

Politics Ire
(Twitter)

ARI -0.02 0.01 0.49 0.13 0.24
AMI 0.01 0 0.29 0.09 0.17

Politics UK
(Twitter)

ARI -0.01 -0.01 0.08 0.2 -0.12
AMI -0.03 -0.03 0.12 0.2 0.03

Rugby
(Twitter)

ARI 0.04 -0.01 0.21 0.02 0.02
AMI 0.03 0.01 0.13 0 0.04

Mean
Across All

ARI -0.109 -0.070 0.206 0.048 0.131
AMI -0.117 -0.043 0.168 0.046 0.123

Table 2.17: Performance comparison between the direct integration hybridized and non-hybridized techniques. The
hybrid techniques that have directly analogous techniques for either intermediate or late integration are compared. A
negative value indicates the non-hybridized techniques performed better on the data set and performance measure than
the hybridized technique.

Across nearly all of the data sets, the hybridized technique of DIMC, wherein cluster infor-
mation is directly incorporated into the view graphs and then these view graphs are clustered
as a multiplex network, have worse performance than the non-hybridized counterpart, IPMMC,
which is the multiplex clustering of just the view graphs. This result would suggest that the mul-
tiplex clustering of the view graphs does not benefit from the incorporation of view clusterings,
even when a particular view or groups of views for a data set clusters well. In contrast, the com-
parison of the hybridized spectral direct integration techniques (DISC) with its non-hybridized
counterpart (SFI) generally shows that hybridization had a positive effect on performance. For
most of the data sets, and especially those with at least one view that clustered well, the spectral
direct integration techniques often produce much better results than just using the same spectral
technique on the view graphs alone. So, it would seem that hybridization in terms of incorpo-
rating view clusterings into an intermediate integration paradigm technique is only beneficial for
certain techniques and under conditions of at least one view clustering performing well.

The other class of hybridized techniques that can be compared to non-hybridized techniques
are the class of techniques that use the view graphs to diffuse view information into a late integra-
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tion, cluster ensembling technique (i.e. CNDC and CVIC). These hybridized techniques can be
compared to the late integration techniques that determine their final cluster assignments. In this
way, it can be seen if incorporation of intermediate level information into the view clusterings
(i.e. hybridization) is beneficial or not. The following table, Table 2.18, summarizes the compar-
isons between the diffusion-based, hybridized methods and their non-hybridized counterparts.

Data set Measure
CNDC I
& CSPA+

CNDC C1
& CSPA+

CNDC C1
& CNDC I

CNDC C2
& CSPA+

CNDC C2
& CNDC I

CVIC
& BGPA+

Cora
ARI 0.3 0.32 0.02 0.28 -0.02 0.12
AMI 0.32 0.32 0 0.28 -0.04 0.13

CiteSeer
ARI 0.21 0.31 0.1 0.14 -0.07 0.08
AMI 0.21 0.27 0.06 0.12 -0.09 0.07

Flickr
ARI 0 -0.1 -0.1 0.37 0.37 0.07
AMI 0.06 -0.05 -0.11 0.35 0.29 0.06

BlogCatalog
ARI 0 0.22 0.22 -0.11 -0.11 0.07
AMI -0.033 0.187 0.22 -0.053 -0.02 0.06

Wiki
ARI -0.09 0.01 0.1 0.01 0.1 0.06
AMI -0.06 0.03 0.09 0.01 0.07 0.04

3Sources
ARI 0.69 0.64 -0.05 0.61 -0.08 0.11
AMI 0.51 0.47 -0.04 0.43 -0.08 0.09

AUCS
ARI 0.07 0.07 0 0.04 -0.03 0.01
AMI 0.08 0.08 0 0.05 -0.03 -0.01

Football
(Twitter)

ARI 0.22 -0.14 -0.36 0.03 -0.19 -0.02
AMI 0.03 -0.12 -0.15 0.01 -0.02 0

Olympics
(Twitter)

ARI 0.06 -0.08 -0.14 -0.02 -0.08 0.02
AMI -0.01 -0.06 -0.05 0.01 0.02 0.03

Politics Ire
(Twitter)

ARI -0.24 -0.05 0.19 -0.13 0.11 0.05
AMI -0.15 -0.03 0.12 -0.09 0.06 0.07

Politics UK
(Twitter)

ARI -0.04 -0.04 0 0.01 0.05 0.19
AMI -0.03 -0.03 0 0.03 0.06 0.16

Rugby
(Twitter)

ARI -0.03 -0.05 -0.02 -0.04 -0.01 0.17
AMI -0.02 -0.04 -0.02 -0.03 -0.01 0.04

Mean
Across All

ARI 0.096 0.093 -0.003 0.099 0.003 0.078
AMI 0.076 0.086 0.010 0.093 0.018 0.062

Table 2.18: Performance comparison between the diffusion-based, hybridized techniques and non-hybridized tech-
niques. The hybrid techniques that have directly analogous techniques for either intermediate or late integration are
compared. A negative value indicates the non-hybridized techniques performed better on the data set and performance
measure than the hybridized technique.

Generally, the performance of the CNDC family of techniques relative to late integration
CSPA+ or the intermediate integration CNDC I depends on the view clusterings performance.
For the CNDC C1 technique, its performance is very similar to the intermediate integration tech-
nique of CNDC I with some data sets like BlogCatalog and the Football data set being notable
exceptions. When compared to its equivalent late integration technique, CSPA+, CNDC C1 of-
ten performs much better across most of the data sets and only slightly worse than CSPA+ on
those data sets that have a good view clustering (i.e. Twitter or Flickr). The CNDC C2 model of-
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ten performs better than CSPA+ and often slightly worse than CNDC I. Finally, the intermediate
integration technique of CNDC I shows much better performance than CSPA+ on data sets that
do not cluster well and only slightly worse performance on data sets that do cluster well. Thus,
incorporation of intermediate integration information through the diffusion process generally
provides better results for a subsequent late integration technique then by using the view clus-
terings by themselves. However, hybridization does not always result in superior performance
relative to the equivalent intermediate integration technique.

In the case of the CVIC hybrid technique, it is almost uniformly better than then its late in-
tegration paradigm equivalent technique of BGPA+. The best performance gains of the CVIC
technique over its equivalent late integration technique are, however, not as dramatic as the per-
formance gains from the CNDC family of techniques compared to CSPA+. So, the integration of
intermediate integration information in the CVIC model does provide for better cluster ensem-
bling then cluster ensembling without any intermediate integration information being used.

When compared to comparable non-hybridized techniques, hybridization of multi-view clus-
tering techniques is not always advantageous. The integration of intermediate level information
into late integration techniques generally provides for performance increases, whereas the inte-
gration of late integration information in the form of view clusterings into intermediate integra-
tion techniques does not always provide for better performance. Additionally, it also seems that
with hybridized techniques that there is a trade off between being robust to bad view clusterings
and failing to fully utilize good view clusterings. Those techniques that use more information
from the view clusterings (i.e. CNDC C2) can have superior performance — even relative to late
integration techniques — when a view clustering performs well, but also decidedly worse per-
formance when no view clustering performs well. Overall, the empirical tests would suggest that
hybridization improves late integration techniques, through the introduction of complementary
information between the views to the view clusterings, but may not always improve intermediate
integration techniques by the introduction of view clustering information.

2.3 Discussion
From the the empirical testing of multi-view clustering techniques on social-based data several
interesting results have emerged. First, hybridization — or the incorporation of information used
in different paradigms of multi-view clustering — does not always improve multi-view clus-
tering. In general, inclusion of intermediate integration information, through diffusion with the
view graphs, into the view clusterings before the final cluster ensembling nearly always produces
better results and, for some data sets like the publication networks, produces much better results.
The reason for this performance increase is that using just the view clusterings ignores com-
plementary information between the views that can be used to produce better clusters. So, by
diffusing the view clustering information with the intermediate level data structures of the view
graphs allows for complementary information to be diffused into the view clusterings. So, it is
possible to use hybridization to overcome the shortcomings of late integration techniques.

On the other hand, the inclusion of the view clusterings into intermediate integration tech-
niques does not always produce better results and seems to be model dependent. For example
in a spectral clustering model, like SFI, using the view clustering information often results in
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better clusters than by just using the view graphs by themselves. This seems to be because in-
corporation of the view clusterings can connect what would otherwise be disconnected graphs,
which are difficult for spectral clustering to cluster. In contrast to these improvements, if the in-
termediate clustering is done through multiplex modularity maximization, inclusion of the view
clusterings almost universally results in worse clusters. Thus, it would seem that the idea of
using the view clusterings does not always overcome the limitation of possible information loss
by having everything mapped to the same space as is required by most intermediate integration
techniques.

Those limitations aside, the use of hybridization also produced the best performances, on
average, of the three paradigms across all of the data sets. This is because most of the hybridized
techniques tend to be more robust across the various data scenarios. For some data scenarios
intermediate integration techniques like ETL-MSC or SPSL could produce great results, and
then on other data sets, produce very poor results. The same pattern was also true of the late
integration techniques like DREC. Thus, while the hybridized techniques were not always the
best, they were also not the worst techniques either. This robustness across data sets is a result of
the greater information used in the techniques and is a promising feature of using hybridization
between late and intermediate paradigm techniques in multi-view clustering.

The second main finding from the empirical testing is that there is no one clustering tech-
nique that works for all multi-view, social-based data. In fact most of the techniques that perform
very well on a particular data set or data scenario often perform very poorly on other data sets
or scenarios. For example, techniques like CNDC C1 or ELT-MSC perform well on publica-
tion networks or some types of social media data respectively but then do poorly on multiplex
networks or other types of social media data. This suggests first that not all social-based data
scenarios are the same and so only evaluating a new technique against something like Cora or
CiteSeer does not guarantee the technique’s performance across the social-based data spectrum.
Secondly, having some techniques perform well in some scenarios and not in others is consistent
with theoretical work on clustering. Any given clustering technique must make certain trade-offs
in the aspects of clustering that it attempts to fulfill [7], [76]. These trade offs often come from
how the quality of how a clustering solution is defined. So, from a practical use stand-point
these trade-offs in the clustering algorithm can have impacts on the types of data scenarios that
a particular clustering algorithm will perform well on. For example, data scenarios that give rise
to connected graphs for each view will be more amenable to spectral clustering goodness func-
tions, as there are no disconnects in the graph that can affect spectral measures on a graph. It is
important to note that this conclusion of no one clustering technique being always the best is not
a limitation of the study, but an empirical confirmation of the theory and nature of clustering.

Finally, the results also suggest from a practical use standpoint that those techniques which
are not always the best but also far from the worst across the various data sets (i.e. CVIC or
IPMMC) may be more desirable than those that perform the best for a select group of data sets
or scenarios. Since clustering is inherently an exploratory data analysis technique, the ability to
produce meaningful clusters — which is itself an ill-defined concept — from new data without
labels is paramount [7]. So, a technique which is stable, if not always optimal to a particular
labeling-scheme for a data set, across the various social-based data sets is still of practical value.
Furthermore, the technique of IPMMC which is the application of a modularity maximization
technique like Leiden or Louvain to the view graphs is not only often okay across all data sets
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but even occasionally gives superior performance. So, based on the results of this empirical
investigation this technique will be further analyzed and developed in the next chapter.

The third main finding is that intermediate integration techniques appear to be superior to
late integration techniques for multi-view, social-based data. Across nearly every data set, either
intermediate integration or hybrid integration techniques produce superior results for multi-view
social-based data. For those data sets on which a late integration technique had superior per-
formance across the techniques, both intermediate and hybrid integration approaches also per-
formed well and were very close to the same level of performance as the superior late integration
technique. So, the empirical results from this study have provided further evidence that late inte-
gration techniques are generally inferior to intermediate (or hybrid) integration techniques when
clustering multi-view data.

The final main finding is that the aspects of the view clusterings, and in particular having at
least one view that clustered well relative to the desired labeling scheme, had a higher correla-
tion with successful multi-view clustering than any other aspect of views. Across nearly every
technique the measures relating to view clustering quality, like the best ARI/AMI of a view or
the consensus between view clusterings was correlated — often strongly — with multi-view per-
formance. In some ways, this result should be expected. After all, the more ‘clusterable’ a data
set is, the better the performance of any suitable clustering technique should be [2]. However, in
supplement to the theory for traditional clustering (i.e. with one view of the data), this ‘cluster-
ability’ of the data set does not need to exist equally across all of the views; it would seem as long
as at least one view is very clusterable, multi-view clustering can still be successful. It would be
interesting as future research to better understand the clusterability attributes of multi-view data
sets, as they seem to have more intricacies than clusterability for standard (i.e. one view) data
sets.

In contrast to the positive view clustering results, only two of the graph metrics had any
correlation across techniques with view performance. These metrics were the average percent
of differences between the number of connected components and the number of clusters and the
average clustering coefficient. In both cases, these metrics represent having a cluster structure in
the graphs and so also reflect the importance of having good clusterings for the different views of
a data set. What is more, these correlations to having at least one good view clustering cross all of
the paradigms, whether they use view clusterings or not. This result suggests that perhaps there
needs to be a third principle to multi-view clustering — derived from standard clustering theory
— in addition to the complementarity and consensus principles. The third principle would be the
quality principle which states that at least one view has the ability to cluster well. Put another
way, if all views cluster poorly — even in the presence of complementary information between
views and the use of intermediate integration techniques — that clustering performance will still
suffer. Thus, for multi-view clustering, in addition to seeking maximum consensus between
views and using the complementary information between views, one must also have at least one
view that produces desirable clusters.

There are some important caveats to the findings from this chapter that need to be mentioned.
First, all of the conclusions drawn in this section derive from the empirical testing of the previous
section; these conclusions are only empirical conclusions and have not been definitively proven.
Second, I have only focused on social-based for this work. It is not clear if any of the conclusions
found extend to other types of data scenarios, like images or genetic and biological data, espe-
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cially since the conclusions are founded on empirical investigations. Third, I deliberately choose
a sampling of the most recent, state-of-the-art techniques in multi-view clustering. It is possible
that since clustering of multi-view, social-based data has not been as thoroughly researched as
other multi-view data scenarios that older techniques might actually work better on these types
of data than the current state-of-the-art techniques.

2.3.1 Empirically-based Recommendations for Multi-view Clustering of
Social-Based Data

Based on the findings from the testing in this chapter, I have outlined the relative strengths
and weaknesses of the various techniques and provide some recommendations for usage for
practitioners. The following table, Table 2.19, summarizes the strengths and weaknesses of the
techniques.

Technique
Data Scenario
Strengths

Performance
on Strong
Data Sets

Data Scenario
Weaknesses

Performance
on Weak
Data Sets

Computational
Requirements

Recommended
for use on
Social-Based
Data?

GP-MGLA -Twitter Fair
-Publication
Networks Poor High No

CSPA+ -Twitter Fair
-Publication
Networks Very Poor Moderate

Only on
Certain Data
Scenarios

BGPA+

-Twitter
-Some Social
Media
-Multiplex Network

Fair to
Good

-Publication
Networks Poor Low

Only on
Certain Data
Scenarios

LWBG
-Twitter
-Some Social
Media

Fair to
Good

-Publication
Networks
-Other Social
Media

Poor
Low to
Moderate

No; use
simpler
BGPA+

MCLA+
-Twitter
-Multiplex Network Fair

-Publication
Networks
-Other Social
Media

Poor Low No

LWMC -Twitter Fair

-Publication
Networks
-Other Social
Media

Poor
Low to
Moderate No

DREC*
-Twitter
-Multiplex Network Very Good

-Publication
Networks
-Text

Poor High
Only on
Certain Data
Scenarios

LPMMC -Twitter Good

-Publication
Networks
-Other Social
Media

Poor Low No

DISC A*
-Twitter
-Some Social Media
-Multiplex Network

Good to
Very Good

-Publication
Networks
-Text

Poor Moderate
Only on
Certain Data
Scenarios
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DISC M*
-Text
-Some Twitter Fair

-Publication
Networks
-Other Social
Media

Very Poor Moderate No

DISC R*
-Some Twitter
-Some Social Media

Fair to
Good

-Publication
Networks
-Text
-Some Twitter

Poor to
Fair Moderate No

DICL A -Twitter Good
-Text
-Multiplex
Network

Fair
Moderate to
High

Only on
Certain Data
Scenarios

DICL M

-Some Twitter
-Text
-Multiplex
Network

Fair to
Good

-Publication
Networks Fair

Moderate to
High No

DICL AG
-Publication
Networks
-Text

Good
-Twitter
-Other Social
Media

Fair
Moderate to
High

Only on
Certain Data
Scenarios

DIMC A -Twitter Good
-Other Social
Media Poor to Fair Low

No; use
IPMMC

DIMC M

-Publication
Networks
-Twitter
-Some Social Media

Fair to
Good

-Other Social
Media Poor Low

No; use
IPMMC

MSIM C -Text Fair

-Other Social
Media
-Twitter
-Multiplex
Networks

Poor
Moderate to
High No

CVIC

-Publication
Networks
-Twitter
-Some Social Media

Good -Text Fair
Low to
Moderate Yes

CND C1

-Publication
Networks
-Some Twitter
-Some Social Media
-Text

Good to
Very Good

-Other Social
Media
-Other Twitter

Poor High
Only on
Certain Data
Scenarios

CND C2

-Publication
Networks
-Some Twitter
-Some Social Media
-Text

Good
-Other Social
Media
-Other Twitter

Fair High
Only on
Certain Data
Scenarios

CND I
-Publication
Networks
-Text

Good
-Other Social
Media
-Some Twitter

Fair High
No; Use a
Different
CND model

SFI* -Text Fair

-Publication
Networks
-Other Social
Media

Very Poor Moderate No
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SPSL* -Some Twitter Very Good

-Publication
Networks
-Other Social
Media

Very Poor
Moderate to
High No

CG*
-Some Social Media
-Text Good -Some Twitter Fair High No

ResK* -Multiplex Network Fair

-Publication
Networks
-Other Social
Media
-Twitter

Very Poor High No

IPMMC
-Other Social Media
-Text
-Some Twitter

Good to Very
Good -Some Twitter Fair Low Yes

NF-CCE*
-Other Social Media
-Multiplex Network

Fair to
Good -Twitter

Poor to
Fair High No

ETL-MSC*
-Publication
Networks
-Other Social Media

Very Good
-Twitter
-Multiplex
Network

Very Poor
to Poor High

Only on
Certain Data
Scenarios

Table 2.19: Summary of the performance and recommend usage situations for the various multi-view clustering tech-
niques tested in this chapter. The data scenarios where techniques perform well and poor at, along with how good or
poor their performance is when clustering in that data scenario are summarized. I have also provided a brief compar-
ison of the computational requirements for the different techniques and their recommended usage. Only IPMMC and
CVIC are recommended for usage generally.

In terms of practical use of multi-view clustering algorithms on social based-data, there are
some steps which should be observed.

1. Ensure that one of the views has a good clustering of the data. There is no specific rule
as to what constitutes a good clustering, as different types of data and different algorithms
have different measures of quality (and there are no ‘ground truth’ labels as there are in
the benchmark data sets). From the empirical tests in this chapter I have found measuring
either the modularity of the clustering of the network modes or view graphs or the average
clustering coefficient of the network modes or the view graphs to be an indicator of a view’s
clustering performance. If no view has good clustering performance, it is likely multi-view
clustering will also not recover good clusters and more or different data may be needed.

2. Compare the data scenarios to those listed in Table 2.3 and Table 2.3. If the data scenario
closely resembles one of those, then use the techniques that perform best on that particular
data scenario, from Table 2.19. Care should also be taken to pick a technique that can
handle the size of the data; there is a wide variance in computational demands by the
techniques. For example, if the objective is to find clusters in a corpus of texts and citations
of a few thousand in number, then something like CNDC C1 should be the technique.
Whereas, if the objective is to find communities in a large sample of Twitter data, then
something like IPMMC or possibly BGPA+ should be used.

3. If the data scenario does not match any of those explored, then something either CVIC
or IPMMC should be used. While these two techniques may not give the best clusters,
they are robust across the data sets and will be mostly likely to produce reasonable cluster
assignments.
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In summary, this chapter has proposed a new hybrid paradigm to clustering multi-view data.
I then tested the new hybrid paradigm techniques along with several state-of-the-art intermediate
integration and late integration techniques using social-based, multi-view data. These results
of these tests indicated that hybridization can sometimes help multi-view clustering, especially
when compared to late integration techniques. Also, multi-view, social-based data poses distinct
challenges for multi-view clustering due to the wide variety of data types and interactions. As a
result, no particular multi-view clustering technique is superior across the range of multi-view,
social-based data. However, some techniques can give superior performance in certain types
of social-based data and two techniques showed robust performance across the range of social-
based data. These results indicate that more research should be done into those techniques which
were more stable in their ability to produce meaningful clusters from data.
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Chapter 3

Network Modularity-based Clustering of
Multi-View Data

In this chapter I will investigate the use of modularity and converting all views of a multi-view
data set to graphs as a means of finding clusters in the data. In particular, I investigate modular-
ity’s suitability as an optimization objective when clustering multi-view, social-based data. I then
present a new algorithm that further improves the use of modularity for multi-view clustering,
MVMC, which is able to automatically adjust parameters like the view weights and view resolu-
tions. I then demonstrate the algorithms effectiveness in clustering multi-view, social-based data
using a collection of benchmark, multi-view data sets that come from different social-based data
generation scenarios. The results of the empirical testing not only demonstrate the effectiveness
of the proposed method, but also show that the proposed method has certain desirable properties
that give a user useful, evidence-based measures to judge the clusters produced by the algorithm
and the clusterability of the data set.

the organization of the chapter is as follows. In the first section, I present some salient back-
ground information on modularity and its use in clustering. I then perform empirical testing
to demonstrate the suitability of modularity for multi-view clustering. Then, I describe a new
modularity-based algorithm, along with some variants, to use for clustering multi-view, social-
based data. Finally, I empirically test the new algorithm against other state-of-the-art algorithms,
which were used in the previous chapter, across a collection of benchmark data sets to demon-
strate the proposed methods effectiveness.

3.1 Background

Network modularity is one of the most frequently used functions to describe communities within
real-world networks. As such, it is often used as the objective function in network clustering
techniques [94], [13]. Generally, network modularity measures the amount of links internal to a
cluster versus what would be expected to exist if links were placed at random. It has the form of:

Q =
1

2|E|
∑
ij∈E

[Aij − Pij]δ(Ci, Cj) (3.1)
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where the δ function is one if nodes i and j are in the same cluster and |E| are the number
of edges present in the graph (note, this can be substituted with sum of all the edges in the
graph,

∑
E in a weighted graph scenario). In terms of the null-model used for determining the

significance of the links, Pij , the most common choice is:

Pij =
deg(i)× deg(j)

2|E|
(3.2)

for undirected networks and:

Pij =
degin(i)× degout(j)

|E|
(3.3)

for directed networks, where deg(i), degin(i), and degout(i) are the total degree, in-degree,
and out-degree for node i [94], [44]. Despite its empirical successes and strong grounding in
statistical physics, modularity does have an important shortcoming: modularity has a resolution
limit. In brief, the resolution limit is when modularity cannot detect clusters present in a network
when the network is sufficiently large and communities are sufficiently small [80], [50]. In order
to address this shortcoming, several authors have proposed various means of correcting for dif-
ferent resolutions when clustering networks [127], [38], [108], [128]. One means of addressing
the resolution limit is to add a parameter to the modularity to directly account for the resolution
that may be present in a network:

Q =
1

2|E|
∑
ij∈E

[Aij − γ
deg(i)× deg(j)

2|E|
]δ(Ci, Cj) (3.4)

where γ is now a resolution parameter that can be set depending on the number of clusters
that are present in the network relative to the network’s size [108]. Another way of address
the resolution limit is to use ‘resolution-free’ definitions of modularity [127], [38]. Typically,
these definitions of modularity include a new term relating the network’s structure to the internal
density of communities, rather than a null-model. A prominent example of these formulations is
the Constant Potts Model:

Q =
1

2|E|
∑
ij∈E

[Aij − γ]δ(Ci, Cj) (3.5)

where now the resolution parameter of γ is a boundary between the internal and external
densities of non-isolate communities in a network [127].

Due to modularity’s widespread success as an optimization objective for clustering networks,
it has been subsequently adapted to cluster both attributed networks and multi-layer networks
[32], [93]. for the general case of multi-layer networks, network modularity can be broken into
two components of inter-layer modularity plus intra-layer modularity:

Q =
m∑
v=1

∑
ij∈Ev

[Avij − γv
deg(i)v × deg(j)v

2|Ev|
]δ(Cv

i , C
v
j ) +

m∑
v=1

∑
s 6=v

n∑
i=1

ωsvi δ(C
s
i , C

v
j )

Q = Qintra +Qinter

(3.6)
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for multiplex clustering, or multi-view clustering, where clusters are not allowed to vary
between views or layers, this modularity can be reduced to just the sum of the intra-layer mod-
ularities. Furthermore, it is also possible to weight the different views, or layers, differently as
well. So, a weighted multi-view modularity would have the form of:

Q =
m∑
v=1

wv
∑
ij∈Ev

[Avij − γv
deg(i)v × deg(j)v

2|Ev|
]δ(Ci, Cj) (3.7)

wherewv is the weight of a particular view. It was this form of modularity that was used in the
previous chapter in the IPMMC, LPMMC, DIMC A, and DIMC M, and generally showed good
empirical performance. However, in these methods the view resolutions and weights were all
set to one. This formulation does, however, present the additional problem of how to determine
appropriate view weights.

The weighting of different views in a multi-view clustering quality function is not new. It has
seen use in techniques which use spectral clustering [150], [9], [10]. In this case the weighting
term can be updated in an iterative fashion by using something like the eigenvectors, X , of the
weighted combination of graphs to update the weights by measuring the smoothness of the eigen-
vectors through each graph’s Laplacian by tr(XTLvX), and down-weighting those views which
are not smooth. The problem with this form of weighting is that a graph with disconnects will
naturally be very un-smooth and so will be down-weighted even if it contains useful information
for the cluster structure. So, selecting appropriate view weights in an adaptive and automatic
way is still an open problem, and dependent on the nature of the cluster goodness function.

3.2 Use of Modularity in Multi-view Clustering
In this section I will investigate the modularity function’s appropriateness for use in multi-view
clustering of social-based data. As has been noted earlier, the IPMMC method, which produced
the most stable and some state-of-the-art clusterings on benchmark social-based data sets, uses
network modularity as the function being maximized to determine a good clustering of the data.
Given this reliance on the measure of modularity for the clustering of the data, it is important
to know how well the function works as an objective function for clustering multi-view, social-
based data.

For these experiments, the modularity being maximized is the unweighted sum of the modu-
larities from all of the view graphs. The function is as follows:

Q =
m∑
v=1

1

2|E|
∑
ij∈Ev

[Avij −
deg(i)v × deg(j)v

2|E|v
]δ(Ci, Cj) (3.8)

So, the summation across the views uses each view’s adjacency matrix, Av, but only has one
clustering across all of the views C. It should be noted that if a particular view is a directed
graph, one can easily substitute in the modularity for a directed graph.

In order to evaluate the modularity function, I looked at four measures across all twelve
of the benchmark data sets for all of those methods that optimize on network modularity from
the previous chapter (IPMMC, LPMMC, DIMC A, and DIMC M). The first two measures are
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the Pearson correlation coefficient of the ARI/AMI of the clustering and the final, optimized
modularity. This is to determine if when the techniques obtain a good modularity value, is the
clustering also good and vice versa. Finding the optimal modularity value in the technique should
correspond to finding a good clustering of the data. The third measure is the correlation between
modularity and a cluster goodness indicator (i.e. ARI) over the optimization procedure. This
measures if when the optimization function improves, does the clustering quality also improve.
The final evaluation measure is the difference between the modularity value of the benchmark
clustering and the modularity of the technique’s optimal modularity. This will give an indication
of the appropriateness of the model in terms of capturing the desired, benchmark labels. The
optimal modularity found by the technique for a given graph should be close to the modularity
that would be produced on the same graph by the benchmark clusterings. The following table,
Table 3.1, displays these measures for the modularity-based techniques of IPMMC, LPMMC,
DIMC A, and DIMC M. It should be noted that the primary difference between these techniques
is the graph being used; IPMMC just uses graphs of the data while LPMMC uses the cluster
association graphs, and DIMC A, and DIMC M use combinations of the latter. For the final two
measures, only the averages across all of the data sets are reported here. The full values of the
measures both across the data sets and the views of the data sets are available in the Appendices
(Appendix A).

Comparison Measure IPMMC LPMMC DIMC A DIMC M
Correlation between
modularity and ARI 0.318 0.649 0.456 0.418

Correlation between
modularity and AMI 0.529 0.767 0.451 0.594

Avg. correlation of modularity
improvement over optimization 0.984 0.995 0.773 0.984

Avg. of absolute difference
between modularities of found
clusters and benchmark clusters

0.193 0.122 0.130 0.101

Table 3.1: Correlation between the clustering qualities and the modularities of the various modularity-based multi-
view clustering methods. While all of the methods do have positive correlation, some methods, which primarily differ
in the graphs use, have a stronger correlation to the clustering quality.

Based on the testing of the modularity function, two primary results supporting its use in
multi-view clustering emerge. First, for each technique there is a positive correlation between
the resultant modularity value and the actual quality of the resultant clusters, relative to the
benchmark data sets. The IPMMC method, despite being the best performing method of all of
the four, does have the lowest correlation at 0.318. For some of the data sets with more sparse
graphs (i.e. Cora, AUCS, etc.), the technique finds higher modularity clusters than what would
be found from the benchmark clusterings. This result is further supported by the differences
between the modularity produced by the clustering from the techniques versus the modularity
produced by the benchmark clusterings. The IPMMC method has the highest difference between
the two modularity values on average. Second, for each model, improvement in modularity
highly correlates with improvement in the cluster quality over the course of the optimization.
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That is to say that as a better modularity value is sought, a better clustering solution emerges.
Taken all together, these results do not at first glance strongly support the use of modularity as

the optimization function for multi-view clustering of social-based data. While improvements in
modularity do correlate strongly with improvements in the clustering, the final modularity only
moderately correlates with the actual quality of the clustering, relative to the benchmark labels.
However, this correlation between the final modularities and the clustering performance also
seems to be highly model dependent. IPMMC has a much lower correlation than does LPMMC
with the other two techniques having values in between. Since the primary difference between
these techniques are the graphs of the views that are being used, this would suggest that if more
appropriate view graphs that better encode the cluster structure were used, that the clusterings
would be better. However, it should be noted that there are also performance differences between
these techniques as well, with IPMMC actually having the best performance and LPMMC having
worse performance. So, while optimizing on modularity does seem to produce good results and
seems to be a reasonable optimization function to use in multi-view clustering of social-based
data, it’s quality is dependent on how the views are modeled as graphs and a good modularity is
not a guarantee of a good clustering.

3.3 Multi-view Modularity-based Clustering Methods
In this section I will outline two new techniques that modify the technique of Intermediate
Paradigm Modularity Multi-view Clustering (IPMMC) that was proposed in the preceding chap-
ter. The IPMMC method uses standard network modularity, which is known to have some issues
with being an objective function used in clustering graphs, and considers all views as equal in
terms of their contributions to the multi-view clusters. As was described in the introduction to
this chapter, one of the chief issues with modularity is its resolution limit. Two means of over-
coming this resolution limit is to adopt a resolution parameter into the modularity function or to
use one of the ‘resolution free’ density-based modularity functions. In the case of using a res-
olution parameter in the modularity function, recent work has shown what the optimal value of
that resolution parameter should be for a given graph, given some assumptions about the nature
of the graph [95]. This work has been even more recently extended to multi-layer graphs and
been used to define what the optimal weight for each layer should be when using a modularity
function with a resolution parameter [101]. Given these means of correcting for the deficiencies
in the modularity function, this section will use these corrections within the same procedure as
IPMMC to produce a better means of clustering multi-view, social-based data.

Common to both the proposed methods in this section and IPMMC is the framework of
clustering multi-view data. In all of these techniques the general framework is to convert each
view to a graph, if it is not a graph already, and then simultaneously cluster the graphs using
modularity as the optimization function for the clustering. It should be noted that many of the
multi-view clustering techniques employed in multi-view image clustering and multi-view clus-
tering of medical data use the same first step of transforming all of the views into graphs [148],
[147], [107]. However, none of these techniques, to the best of the author’s knowledge, ever em-
ploy network modularity as the optimization function when clustering the multi-view networks.
Within the realm of social-based data, only one technique in attributed graph clustering does a
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similar first step of converting the attributes to graphs [67]. The paper only considers a limited
case of attributes in that there is only one view of categorical attributes. So, the common frame-
work used by IPMMC and the two proposed methods here is new to social-based, multi-view
data. The following figure, Figure 3.1, displays the overall framework.

Figure 3.1: Overview of the Multi-view Modularity Clustering method. the method works in two main steps. In step
A, all of the views of the data are converted into graphs. In step B, these view graphs are collectively clustered using
an iterative modularity maximization technique to produce clusters.

The methodology proposed in this work for clustering multi-view. social-based data con-
sists of two steps. The first step is to form graphs for every view of the data (A in Figure 3.1).
This has been done by the computationally quick procedure of using a symmetric k-Nearest
Neighbor graph, where k is the square root of the number of vertices, k = b

√
nc, for modes

that are not already networks or graphs [106]. While this method can be used for creating the
graphs, there are many other methods for inferring or learning graphs from data which could
easily be used in this methodology [23], [106]. Transforming the data into a graph space pro-
vides two important advantages for multi-view clustering. First, it allows for the definition of a
clustering goodness function that is parsimonious to all combinations of views of social-based
data. Second, graphs better preserve the latent manifold structure of the data which allows for
better structure, like clusters, to emerge [106]. Having formed graphs of all of the views, the
next step is to use a modularity-based clustering procedure to simultaneously cluster all of the
views (B in Figure 3.1). Based on the results of the previous chapter, modularity-based cluster-
ing — especially in an intermediate integration paradigm — gives some of the best clustering
results. Having established the overall methodology, I will now describe in detail the means of
performing modularity-based clustering.
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3.3.1 Multi-view Modularity Clustering
For the first proposed technique, the weighted and resolution-corrected network modularity func-
tion will form the clustering quality function. that is to say, the quality of any clustering over the
multi-view data is evaluated by:

Q =
m∑
v=1

wv
∑
ij∈Ev

[Avij − γv
deg(i)v × deg(j)v

2|Ev|
]δ(Ci, Cj) (3.9)

In effect, clustering with this function is optimizing Q, given the appropriate weight and
resolution parameters. However, since the weight and resolution parameters are not always know
a priori this function can be considered as having three, free parameters for determining the
quality any given clustering: the cluster assignments, C, the view weights, wv, and the view
resolutions, γv. So, the clustering technique can be written as optimizing the following problem:

max
w,C,γ

m∑
v=1

wv
∑
ij∈Ev

[Avij − γv
deg(i)v × deg(j)v

2|Ev|
]δ(Ci, Cj)

s.t. C is integer
γ, w ∈ R

(3.10)

In order to solve this problem, I have adopted an alternating, iterative optimization procedure.
In the first step, γ and w are fixed and C is adjusted by a modularity optimization procedure. In
the second step,C is fixed and γ andw are adjusted. This alternating iterative procedure performs
well in practice at finding good solutions and has certain other benefits for evaluating the quality
of solutions, which will be seen later in the section on empirical testing.

For the first step of the procedure, a standard modularity maximizing clustering procedure
(i.e. Louvain, Newman-Girvan, Leiden, etc.) can be used to find the the best values for C, given
the resolutions and weights remain fixed. This then leaves the problem of how to optimally set
the resolutions and weights, once the cluster assignments are fixed. To do so, I utilize analyti-
cally derived equations for producing the optimal values for the weights and resolutions, given a
clustering. In order to set the the resolution parameter to an optimal value for a particular graph,
the following function is used:

γ =
θin − θout

logθin − logθout
(3.11)

where γ is the resolution parameter, and θin and θout are the propensities of having edges
internal to clusters or external to clusters respectively. This function was derived by relating
modularity maximization to the planted partition Stochastic Block Model [95], [101]. The intu-
ition behind this function is that when there is a greater propensity to form edges internal rather
than external to clusters that the resolution should be higher which would bias the function to find
more tightly-knit and possibly smaller communities. Since this formulation relies on knowing
the clusters to compute the θ values, it does not on first glance seem useful for actually clustering
a graph. However, the function for computing the resolution has been used in an iterative fash-
ion with modularity-based graph clustering to optimally cluster graphs in reasonably few (i.e.
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less than 20) iterations [95], [101]. So, it is possible to iteratively cluster and then update the
resolution parameter to both find the optimal clustering of the graph as well as its appropriate
resolution parameter.

The same means of computing the optimal resolution parameter can be extended to compute
the optimal view weights. Pamfil et al. used the same derivation process of finding the optimal
resolution parameters from the relation of Reichardt and Bornholdt modularity to planted parti-
tion Stochastic Block Models to obtain the optimal weights for each of the layers in a multiplex
graph as:

wv =
logθvin − logθvout

< logθvin − logθvout >v

(3.12)

where wv is the weight given to a view, v, and θvin θ
v
out are the propensities for edges to form

internal to a cluster or external for the vth view, respectively. < . >v is the average across all
of the views. The intuition behind this derivation is that those views with higher propensity to
have edges internal to clusters versus having edges external to clusters relative to the average
across all views will have higher weights. So, a view with a better than average propensity to
have edges internal to clusters should be weighted more heavily in the modularity calculation for
clustering. It should be noted that this version of choosing the weights does not suffer from the
same disconnected graph problem that the spectral version of updating the weights does. Once
again, as with the resolution parameter, the weight parameter can be determined in an iterative
fashion [101].

Having defined the new objective function as well as means of optimizing that function, a new
algorithm can then be developed to cluster multi-view data. At a high level, the algorithm runs by
first assigning starting resolution and weight parameters for every view (typically one) and then
clustering the graph using a modularity maximization technique like Louvain or Leiden. These
clusters are then used to compute new resolution and weight parameters. This process is repeated
until the resolution and weight parameters no longer change. In the event that the resolution and
weight parameters do not converge (which can happen in practice [101]), the clustering with the
highest modularity value is chosen as the final clustering. The following psuedocode, Algorithm
9 describes the algorithm in detail.
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Algorithm 9 Multi-view Modularity Clustering (MVMC)
input:
• Adjacency for each view: Av
• Max number of iterations: max iter = 20
• Starting resolutions: γv1 = 1, ∀v ∈ m
• Starting weights: wv1 = 1, ∀v ∈ m
• Convergence tolerance: tol = 0.01

output: Cluster assignments
clustering∗ ← None
modularity∗ ← −∞
for i = 1 : max iter do

clusteringi ← cluster(A,wi, γi)
modularityi ← RBmodularity(A, clusteringi, wi, γi)
θin, θout ← calculate thetas(A, clusteringi)

γvi+1 ←
θvin−θvout

logθvin−logθvout
, ∀v ∈ m

wvi+1 ←
logθvin−logθvout

<logθvin−logθvout>v
, ∀v ∈ m

if abs(γi+1 − γi) < tol AND abs(weightsi+1 − weightsi) < tol then
clustering∗ ← clusteringi
modularity∗ ← modularityi
BREAK

end if
if iter >= max iter then

best iteration← argmax(modularity)
clustering∗ ← clustering[best iteration]
modularity∗ ← modularity[best iteration]

end if
end for
return clustering∗

The algorithm begins by initializing all the resolution parameters, γv1 , and weight parameters,
wv1 to one (or whatever the user may specify). The algorithm then goes on to cluster the view
graphs, Av, by a modularity maximization technique (i.e. Louvain, Leiden), cluster(), with
the current resolution and weight settings. The output of this is then used to determine the
propensities for internal edge formation θvin, and external edge formation, θvout for each view.
These values are then used to update the resolution, γv, and weight parameters, wv, for each of
the views. If the new weight and resolution parameters are the same as the previous ones (within
tolerance), the algorithm then exists and returns the final clustering. If the algorithm fails to
converge to stable resolution and weight parameters, within the maximum number of iterations
allowed, then the algorithm returns whichever clustering produced the highest modularity. Note,
that modularity for this algorithm is the view-weighted, Reichardt and Bornholdt modularity,
which incorporates the view modularities.

One of the important elements in the aforementioned algorithm, Algorithm 9, is the com-
putation of the edge propensities, θ. In order to calculate these edge propensities, I follow the
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guidance outlined in previous works and assume edges form by a degree-corrected model [95],
[101]. Given a degree corrected model, the expected number of edges that occur internal to
clusters is given by:

ein =
1

2

∑
c

∑
ij∈E

θin
deg(i)deg(j)

2|E|
δ(Ci, Cc)δ(Cj, Cc)

=
θin
4|E|

∑
c

κ2c

(3.13)

where c is a cluster and κc =
∑

i deg(i)δ(Ci, Cc), or the sum of the degree of the vertices
within cluster c. Using the observed number of edges internal to the clusters for the expected
number of edges internal to clusters, ein, this equation can then be used to calculate the propensity
to form edges internally as:

θin =
ein∑
c
κ2c
4|E|

(3.14)

The same update can be derived for directed graphs as:

θin =
ein∑

c

∑
ij∈c degin(i)degout(j)

2|E|

(3.15)

Similar to the propensity to form edges internally, the propensity to form edges externally
can be derived from the expected external edges under the degree-corrected model as:

θout =
|E| − ein
|E| −

∑
c κ

2
c

4|E|

(3.16)

and for directed graphs as:

θout =
|E| − ein

|E| −
∑
c

∑
ij∈c degin(i)degout(j)

2∗|E|

(3.17)

With these equations, and the assumption of edges forming by a degree-corrected model, the
propensities for edges to occur internal or external to a cluster can be calculated. It is important to
note, however, that these equations assume the observed edges internal or external to the clusters
are equal to the expected edges internal or external to clusters. In practice, these values may
actually differ. For example, if every vertex ends up in its own cluster, than no edges will be
internal which will lead to the propensity internal term, θin to become zero, and the resolution
and weight updates to fail. A similar problem can occur if all the vertices end up in one cluster
and so no external edges occur. While at first glance these examples may appear to be edge
cases, these problems can also occur in more important cases. For example, if the graph consists
of a series of disconnected cliques. The optimal clusters in this situation would then be to put
all of the cliques within their own, separate clusters. However, this would result in there being
no external edges, and so the resolution and weight updates would fail. In order to address these
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shortcomings, I have chosen to have a small value substitute for the propensities if there are either
no internal edges and/or no external edges. So, while the observed edges can act as a proxy for
the expected edges in most cases, the expected edges will always be a nonzero number. With
these corrections, the algorithm for computing the propensity values is given in pseudocode by
Algorithm 10.

Algorithm 10 Calculation of Edge Propensities
input:
• Adjacency for each view: Av
• clustering: C

output: Internal and external edge propensities (θin, θout)
for v = 1:m do

ein = 0
κ2 = []
for c = 1:—C— do

ec = |Ev
c |

ein+ = ec
if Av is directed then

κ2.append(
∑

ij∈V vc
degin(i)degout(j))

else
κ2.append((

∑
i∈V vc

deg(i))2)
end if

end for
if Av is directed then

if ein = 0 then
θvin ← 1

|Ev |
else

θvin ← ein∑ κ2

2|Ev |

end if
if ein == |Ev| then

θvout ← 1
|Ev |

else
θvout ←

|Ev |−ein
|Ev |−

∑ κ2

2|Ev |

end if
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else
if ein = 0 then

θvin ← 1
|Ev |

else
θvin ← ein∑ κ2

4|Ev |

end if
if ein == |Ev| then

θvout ← 1
|Ev |

else
θvout ←

|Ev |−ein
|Ev |−

∑ κ2

4|Ev |

end if
end if

end for
return θin, θout

The algorithm goes through each graph to calculate the propensities for each graph separately.
For each graph, the algorithm begins by calculating the number of internal edges and the degree-
corrected, null-model terms (i.e. κ2)for each of the clusters. Then, the algorithm checks as to
whether the graph is directed or undirected and whether there are no internal or external edges
and then calculates the final propensities for that view graph, θvin, θ

v
out. Once the propensities

have been calculated for all of the view graphs, these are then returned.

3.3.2 Multi-view Density-Modularity Clustering
As was mentioned in the introduction to this chapter, another means of addressing the resolution
problem is to use one of the density-based modularities. In particular, the Constant Potts Model
has been proven to have very desirable resolution-free properties [127]. Despite these favorable
properties and in contrast to the Reichardt and Bornholdt modularity there is no known way to
appropriately set the resolution parameter, γ, in the absence of some ground-truth knowledge
about the communities. All of the density-based modularity works use a priori knowledge about
the probabilities of edges forming internal and external to clusters to set the resolution parameters
[127], [38]. Furthermore, the resolution parameter in these modularities acts as a bound on the
internal and external edge densities of the clusters present within the graph. So, at first glance
it would seem the optimal way of setting the resolution parameter would be to set it to a value
that maximizes the internal edge density of the clusters under the intuition that denser clusters
are better clusters. Unfortunately, this has the effect of causing the optimization procedure to
over-cluster the graph, which produces many, small — but internally dense — clusters which are
generally not meaningful. In other words, for density-based modularities there exists a balance
between the internal density of clusters and the number of clusters when it comes to finding the
optimal resolution parameter.

In the course of this work I have tried several ratios that attempt to balance internal cluster
density with the number of clusters but did not find any that provided good performance in
accurately determining the resolution parameter without ground-truth knowledge of the clusters
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that are sought. Additionally, trying to update the weights of the different views by the same
intuition as was done with the MVMC method (i.e. those views which have a higher than average
difference between internal and external edge propensities should be weighted more heavily) did
not produce significant differences in the outcomes and so a weight update step is omitted in this
technique. Since there is no good means of determining the resolution parameter of density-based
modularities, I have instead adopted a grid search framework over a set of possible resolution
values, and selecting that resolution (and clustering) which gave the highest modularity. The
following psuedocode, Algorithm 11, displays the algorithm for multi-view density modularity
clustering.

Algorithm 11 Multi-view Density Modularity Clustering (MVDMC)
input:
• Adjacency for each view: Av
• Resolutions: γposs = [0.0001, 0.001, 0.005, 0.01, 0.05]
• Weights: wv = 1, ∀v ∈ m

output: Cluster assignments
clustering∗ ← None
modularity∗ ← −∞
γ = cross product(γposs,m)
for i = 1 : |γ| do

clusteringi ← cluster(A,w, γi)
modularityi ← modularity(A, clusteringi, w)
if modularityi > modularity∗ then

clustering∗ ← clusteringi
modularity∗ ← modularityi

end if
end for
return clustering∗

The algorithm first sets the best modularity found to −∞ in order to make sure at least one
modularity value will be selected form its iterations, and creates an array of resolutions using
the cross product such that every combination of view and possible resolutions γposs is tried.
These different combinations of views and resolutions are necessary as there are different graph
topologies between the views and so having one resolution value for across all views will likely
produce worse results. The algorithm then uses these view resolutions to perform modularity
maximization with the Constant Potts Model of resolution. If the clustering produced at those
resolution values is better than the current best clustering, than it becomes the new best cluster-
ing, clustering∗. It is important to note that standard modularity is used to judge the clusterings,
and not the Constant Potts Model modularity that was used in the optimization. In the course of
testing, it was observed that picking the clustering that had highest Constant Potts Model modu-
larity was never the best clustering, in large part due to the density issues described previously. It
is also important to note that the number of runs of the algorithm increases exponentially with the
inclusion of more possible modularities or more views of the data. Thus, given all of the assump-
tions and alterations needed to form this algorithm, this algorithm is not intended for practical
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clustering use, but rather used to investigate the suitability of resolution-free, density-based mod-
ularities for clustering multi-view, social-based data within the proposed methodology.

3.4 Empirical Testing
In this section I evaluate the proposed algorithm, multi-view modularity clustering (MVMC), in-
cluding investigating the use of density-based modularities (MVDMC) using benchmark, multi-
view, social-based data sets. The data sets used for evaluation are the same twelve benchmark
data sets from the previous chapter. These data sets encompass various types of social-based data
scenarios, like social media and publication networks. For each data set, each method was run
20 times and the averages across the 20 iterations are reported. In order to evaluate the quality
of the clusters found by different techniques, I once again used the Adjusted Rand Index (ARI)
and Adjusted Mutual Information (AMI) [69], [132].

The settings for the algorithms used in the tests are the same as those from the previous
chapter. The MVMC algorithm was allowed to run for a maximum of 20 iterations, and the
resolutions for all of the views were initialized to one. Two different settings for the initial
values of the weights were tried: all views set to one and each view being weighted by its
sparsity divided by the maximum sparsity across all of the modes. The reasoning behind trying
the second initialization was to see first, if changing the initialization changes the outcomes,
and second because the denser view graphs are generally (but not always) the less useful graphs
for cluster determination. So, the sparsest view graph will have am initial weight of one, and
the other view graphs will have weights less than one. Finally, the tolerance for determining
whether the resolutions and weights have converged was set to 0.01. For the MVDMC variant
the possible resolution values tried were: γposs = [0.0001, 0.001, 0.005, 0.01, 0.05]. These values
were determined by some initial trials of MVDMC on the data set and seemed to encompass the
range of resolution values that would give good clusters.

3.4.1 Multi-view Modularity Clustering Results
In this section I evaluate the clustering performance of the MVMC algorithm. First, I compare
whether the proposed algorithm of MVMC, which modifies the IPMMC algorithm, actually
performs better than the IPMMC algorithm. The following table, Table 3.2, summarizes the
difference in performance between MVMC and its simplified, progenitor algorithm of IPMMC.

Data set ARI AMI
Difference with
IPMMC ARI

Difference with
IPMMC AMI

Cora 0.36 0.44 0.03 0.09
CiteSeer 0.39 0.38 0.02 0.04
Flickr 0.63 0.61 0.06 0.01
BlogCatalog 0.64 0.62 0.01 0.09
Wiki 0.294 0.498 0.004 0
3Sources 0.73 0.72 -0.03 -0.02
AUCS 0.632 0.739 0.062 0.049
Football 0.87 0.92 0.22 0.09
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Olympics 0.73 0.87 0.19 0.1
Politics Ire 0.914 0.88 0.024 0.02
Politics UK 0.99 0.97 0 0
Rugby 0.64 0.68 -0.01 0

Table 3.2: Performance of MVMC and its progenitor algorithm IPMMC on their ability to produce good clusters
relative to the benchmark clusters. In every case, the MVMC algorithm performs as good or better than IPMMC,
indicating that setting appropriate resolution and weight parameters provides a distinct benefit. The data sets where
there are slight negative values in performance for MVMC are a result of random fluctuation and not indicative of
worse performance than IPMMC.

Across all of the data sets the MVMC method performs as good or better than the IPMMC
method. While there are some small negative values in the performance comparison for MVMC,
these small values are the result of the random fluctuations of the algorithms and not a result
of generally worse performance. The small negative and positive values for the differences in
performance between the two methods indicate the same performance. The most notable im-
provements of the MVMC method over the IPMMC method are for the Football and Olympics
twitter data sets. It would seem that even with smaller data sets there can be not only differ-
ences between the views but also significant resolution effects. These results demonstrate both
the superiority of the MVMC method over its simpler counterpart and emphasize the importance
of having appropriate resolution values for different data sets, which has been observed in other
works [95]. Having established MVMC’s performance relative to its simplified version of IP-
MMC, I now turn to how the algorithm does against all of the other algorithms considered in this
work. The following table, Table 3.3 summarizes MVMC’s performance as compared to the best
algorithm for each data set.

Data set ARI
Difference
with Best
ARI

AMI
Difference
with Best
AMI

Avg.
number of
clusters

Difference
in number
of clusters

Best Method

Cora 0.36 -0.08 0.44 -0.05 10.25 3.25 CNDC C1
CiteSeer 0.39 -0.04 0.38 -0.03 8 2 CNDC C1
Flickr 0.63 0 0.61 -0.04 19.05 10.05 ETL-MSC
BlogCatalog 0.64 -0.1 0.62 -0.09 9 3 ETL-MSC
Wiki 0.294 -0.046 0.498 0.008 18.9 1.9 ETL-MSC
3Sources 0.73 -0.03 0.72 -0.02 4.65 -1.35 IPMMC
AUCS 0.632 -0.038 0.739 -0.061 6 -3 DREC
Football 0.87 0.04 0.92 0.03 22.9 2.9 DISC A
Olympics 0.73 -0.17 0.87 -0.07 45.9 17.9 DREC
Politics Ire 0.914 -0.006 0.88 0.01 4.3 -2.7 DICL M
Politics UK 0.99 0 0.97 0 4 -1 IPMMC
Rugby 0.64 -0.08 0.68 -0.02 10 -5 CMIC

Table 3.3: Summary of the performance comparison to the clusters produced by MVMC and those produced by the
method that performed the best on each benchmark data set. Values highlighted in black are where MVMC did as well
or better than the best algorithm on that data set. A positive value in the difference in the number of clusters indicates
MVMC produced more clusters than the benchmark clusters and vice-versa.
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The MVMC algorithm is able to match or slightly exceed some of the best results for the
benchmark data sets. While MVMC is not clearly the dominant method across all of the methods,
it is often close to the performance of many of the best methods, across all of the data sets. The
only data sets where MVMC does not have close performance to the best method on that data set
are the BlogCatalog and Olympics data sets. For both of these data sets the MVMC method tends
to produce too many clusters relative to the benchmark clusters, while those methods that do
have state-of-the-art performance on these data sets require the number of clusters as part of the
algorithms. In the case of the BlogCatalog data set the data set has unusually few clusters relative
to the number of objects and vice-versa for the Olympics data set. So, part of the difference in
performance comes down to the number of benchmark clusters being some disjoint with the
number of objects that is to be clustered, which is accounted for by a method that requires the
number of clusters and not accounted for by one that does not, like MVMC. So, while the MVMC
may not be fully better than the various state-of-the-art methods across all of the data sets, it is
able to achieve close to state-of-the-art performance and do so across all of the different data
scenarios.

Looking more broadly across the different techniques and data sets, MVMC produces the
best results on average. The following table, Table 3.4, summarizes the average performance of
all of the techniques across all of the data sets.

Method
Average
ARI

STD
ARI

Average
AMI

STD
AMI

Within Top
Three of
ARI

Within Top
Three of
AMI

Best of
ARI

Best of
AMI

GP-MGLA 0.442 0.217 0.523 0.213 0 0 0 0
CSPA+ 0.441 0.306 0.508 0.281 0 0 0 0
BGPA+ 0.481 0.197 0.550 0.191 0 0 0 0
LWBG 0.448 0.252 0.509 0.228 0 0 0 0
MCLA+ 0.377 0.150 0.453 0.165 0 0 0 0
LWMC 0.427 0.220 0.490 0.205 0 0 0 0
DREC* 0.509 0.305 0.555 0.295 3 3 2 2
LPMMC 0.448 0.291 0.526 0.281 0 0 0 0
DISC A* 0.502 0.283 0.570 0.263 3 3 0 0
DISC M* 0.344 0.277 0.448 0.290 0 0 0 0
DISC R* 0.426 0.223 0.525 0.223 1 0 0 0
DICL A 0.473 0.247 0.546 0.212 1 1 0 1
DICL M 0.501 0.273 0.585 0.263 1 1 1 0
DICL AG 0.503 0.212 0.567 0.203 2 1 1 0
DIMC A 0.494 0.290 0.555 0.284 2 2 0 0
DIMC M 0.533 0.260 0.629 0.208 1 0 0 2
MSIM C 0.304 0.246 0.382 0.223 0 0 0 0
CVIC 0.558 0.209 0.612 0.185 2 2 1 0
CNDC C1 0.533 0.237 0.593 0.195 3 2 2 2
CNDC C2 0.540 0.215 0.601 0.202 1 0 0 0
CNDC I 0.537 0.236 0.583 0.209 3 2 0 1
SFI* 0.295 0.268 0.402 0.282 0 0 0 0
SPSL* 0.416 0.384 0.459 0.412 2 1 0 0
CG* 0.523 0.200 0.592 0.190 1 1 0 0
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ResK* 0.089 0.173 0.246 0.183 0 0 0 0
IPMMC 0.603 0.212 0.672 0.182 3 5 1 2
NF-CCE* 0.422 0.181 0.522 0.146 0 1 0 0
ETL-MSC* 0.501 0.214 0.567 0.177 4 5 2 2
MVMC 0.651 0.219 0.694 0.193 7 8 3 4

Table 3.4: Performance summary of the techniques across all of the data sets. The top three techniques for each
summary measure are highlighted in green and the top performing techniques is in bold font. The techniques are
listed in three different sections. From top to bottom they are late integration, hybrid integration, and intermediate
integration. Techniques with an asterisk (*) by them indicate that the number of clusters must be supplied to the
algorithm. The performance measures of ARI and AMI were averaged across all of the data sets and the how many
times a technique was the best or in the top three for a data set is also recorded. The newly proposed technique of
MVMC shows the best performance on average.

From the table, it can be observed that MVMC produces the best average performance across
all of the data sets. Additionally, of all the techniques investigated in this empirical study, MVMC
is also most often the best or in the top three performers across all of the data sets. So, while it is
not always the best performing across every data set, it frequently shows superior performance
and has a good performance on average. To get a better sense of the relative performance of
the different techniques, the following figure, Figure 3.2, displays a color plot of the relative
performance on each technique, for each measure across all of the data sets. Green indicates
better performance on that data set and measure and red indicates worse performance and on that
data set and measure.
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Figure 3.2: Qualitative performance overview of the different multi-view clustering techniques. Green indicates a
better performance, relative to the other techniques and red indicates a worse technique. Color squares with a bolded
border indicate that technique in the column achieved one of the top three performances on that data set. Across the
top, the techniques are broken into late integration (light red shading), hybrid integration (light blue shading), and
intermediate integration (light green shading). Techniques with an (*) indicate that that technique requires the number
of clusters to be specified. Finally, techniques in bold font are those that had the highest average performance across
all of the data sets.

As was indicated by the averages, the MVMC technique often shows good performance
across all of the social-based data sets. It is also notable that the MVMC has superior perfor-
mance over its progenitor algorithm of IPMMC, especially for the publication data sets and some
of the Twitter data sets.

MVMC Performance Results

Having evaluated MVMC in terms of the qualities of the clusters produced on various social-
based, multi-view data sets, I now turn to the evaluation of the performance of the technique.
Since MVMC is a modularity-based, iterative algorithm it would be of interest to understand how
many iterations it takes to converge (or not converge) as well as what modularity it can achieve
on the various data sets. Additionally, one of the core components of MVMC is its ability to
automatically determine the best resolution and weight parameters, which could provide insight
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into the data sets in terms of the best views for the multi-view clustering structure. For example,
having higher weighted views may indicate that those views are more important to the cluster
structure of the multi-view data. The following table, Table 3.5, summarizes the performance
characteristics of MVMC across all of the benchmark data sets.

Data set View
View
Resolutions

View
Weights

Average
number
of iterations

Average of
iteration when
best clustering
ocured

Optimal
weighted
Modualrity

Cora network 1 1 20 1 1.043
text 1 1

CiteSeer network 1 1 20 1 1.087
text 1 1

Flickr network 1.52 0.62 19.5 2.4 0.59
attributes 3.11 1.38

BlogCatalog network 1.23 0.53 19 5.3 0.77
attributes 2.52 1.5

Wiki network 1.8 1 18.75 0.6 1.37
text 1.48 0.999

3Sources BBC -text 1.5 1 6.1 6.1 1.31
Reuters -text 1.46 1.005
Guardian -text 1.47 1

AUCS lunch 1.26 1.21 3 3 2.76
facebook 1.22 0.47
coauthor 0.85 1.73
work 1.48 0.75
liesure 1.16 0.83

Football list 3.48 1.1 4.9 4.9 1.419
text 1.91 0.44
follows 5.21 1.09
mentions 5.46 1.14
retweets 5.61 1.23

Olympics list 4.02 0.99 8 8 1.45
text 3.25 0.8
follows 5.99 1
mentions 5.88 1.01
retweets 6.82 1.19

Politics Ire list 1 1 20 1 2.13
text 1 1
follows 1 1
mentions 1 1
retweets 1 1

Politics UK list 0.508 1.71 2 2 2.39
text 0.974 0.38
follows 1.16 1
mentions 1.19 0.784
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retweets 0.916 1.129
Rugby list 0.88 1.14 13 11 1.58

text 0.95 0.67
follows 1.05 1.03
mentions 1.03 1.025
retweets 1.02 1.12

Table 3.5: Performance metrics of the MVMC algorithmn across all of the benchmark data sets. The algorithm was
allowed a maximum of 20 iterations, so those data sets that have an average of 20 iterations indicate that the algorithm
did not converge to a stable resolution and/or weight and instead selected the clustering with the highest modularity as
the best clustering (which was often the one at the initial values).

The performance of the MVMC algorithm produces some interesting results across the dif-
ferent data sets. First, the converged resolutions and weights provide insight into the data sets.
Generally, the denser view graphs within a data set have higher resolution parameters. This di-
rectly mirrors the intuition behind resolution in modularity [50]. However, it is also interesting
to note that some of the smaller-sized data sets like Football and Olympics also have some of the
highest resolution values across their views relative to other data sets. This result reflects findings
by other authors that using quick heuristics to set resolution parameters (like scaling up the res-
olution parameter for larger, denser graphs) is not the best strategy, and that similarly sized data
sets can have very different topologies and thus need very different resolutions [95]. Turning to
the weights, there is a general pattern of having view weights that reflect the view’s individual
clustering quality. For example, on both the Flickr and BlogCatalog data sets, clustering just the
graph of the interactions view produces very poor clusters, while clustering just the tags view
produced reasonable clusters. And, from Table 3.5, one can observe that the weights for the tags
views are close to double the weights for the network views. So, for any given data set, one can
use the final view weights to gain insight into the relative importance of the different views to
the multi-view clustering structure.

Second, MVMC does not converge to stable resolutions or weights across all of the data sets
or all of the runs within a particular data set. In particular, the method does not converge for the
Cora, CiteSeer, or Politics Ire data sets. In these cases, the initialized resolutions and weights
of one end up producing the highest modularity results, and thus become the final clustering.
Also, for some data sets like Flickr, BlogCatalog, and Wiki the method often did not converge
until it was close to its maximum number of iterations, resulting in the converged resolutions
and weights being used some of the time and the initial resolutions and weights being used other
times. The convergence behavior of these data sets mirrors what other authors have observed in
terms of having networks with difficult to recover cluster structure [101]. So, from these initial
results, the convergence of the MVMC algorithm gives insight into the cluster nature of the data
set. To investigate this result further, the following table, Table 3.6, shows the Pearson Correla-
tion Coefficient between the number of iterations and the various cluster goodness metrics.

Within MVMC Method Across All Methods
Correlation
between ARI and
number of iterations

-0.584 -0.648
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Correlation
between AMI and
number of iterations

-0.702 -0.719

Correlation
between number
of iterations and modualrity

-0.619 N/A

Table 3.6: Correlation between the number of iterations used by MVMC and the clustering performance of both
MVMC and the average across all techniques. There is a strong negative correlation indicating that the more iterations
it takes MVMC to reach convergence the worse the clusters found are and the worse the clusterability of the data set
is.

The number of iterations of MVMC has a moderate to strong negative correlation with clus-
tering performance. That is to say, that the greater the number of iterations MVMC takes to
converge (or not converge) the lower quality will be the clusters that are produced. This effect
applies not just to the clusters produced by the MVMC method, but to the clusterability of a data
set as well. There are moderately strong negative correlations between the number of MVMC
iterations and the average of the ARIs and AMIs across all techniques for each data set. So,
the convergence of the MVMC method not only gives a reasonable diagnostic on whether the
method is producing quality clusters, but also how clusterable the data set is as well.

There is one notable exception to the aforementioned pattern, which is skewing the correla-
tion to be less negative, and that is the Politics Ire data set. For this data set the method alternately
iterates between two stable configurations of resolutions and weights. One configuration of res-
olutions are all less than 1 and the other are all larger than three. So, the technique never hits its
convergence criteria, even though it does find stable resolution and weight settings. So MVMC
uses the maximum iterations, when it should actually be much less, and does actually get good
performance on the data set. Exploring this phenomena further, it was found that changing the
initialization of the resolution parameters does not prevent this alternating pattern from happen-
ing. So, the Politics Ire data set seems to contain two distinct regions and weights of modularities
that are also quite distinct from each other. So, while the number of iterations does not always
guarantee its clustering performance or the clusterability of the data set, it does always provide
some insight into cluster structures present within the data set.

Taken together, these results suggest that the performance measures of the MVMC algorithm
can be used as evidence-based measures for understanding the quality of the clusters produced.
First, the weighted combination of the modularities from all of the views gives a measure of
how well the MVMC method performed and the quality of the clusters produced, much like
standard network modularity. Second, the number of iterations taken to reach convergence (or,
not reach convergence) is also a strong indicator of the clustering structure present in the data.
The more iterations MVMC takes to reach convergence, the weaker the cluster structure present
in the data is. This evidence-based convergence measure is one of the benefits of the iterative
algorithm used in the MVMC procedure. Third, and finally, the relative weights of the MVMC
procedure illustrate which of the views are most important to the clustering that is produced.
Just as the spectral adaptive view weights indicate which of the views are the most important to
clustering, so do does the adaptive view weights in the MVMC algorithm. So, one of the distinct
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benefits of the MVMC algorithm are that it provides evidence-based indicators of the clustering
performance as well as which views are the most important to a clustering, without having any
knowledge of any labeling scheme for the data.

MVMC with Different Weight Initialization

In all of the previous tests, the resolutions and weights of the MVMC method were all initialized
to one. In this section, I will analyze changing the initialization of these parameters in way
that incorporates some knowledge form the view graphs. In particular, it was observed in the
previous chapter that the denser view graphs were more often then not the less useful graphs for
multi-view clustering. Part of this reason is that the denser graphs were usually the derived view
graphs of data like text, instead of the naturally occurring view graphs. So, in these test the view
weights are initialized as:

wv =
sparsity(Av)

max(sparsity(A))
(3.18)

So, the sparsest view weight gets an initialized weight of one, and all the other views get
proportionately less weight based on how sparse they are compared to the sparsest view. The fol-
lowing table, Table 3.7, summarizes the difference in results of using this sparsity-based weight
initialization from the standard all-one weight initialization.

Data set View
Difference in
final resolutions

Difference in
final weights

Difference
in ARI

Difference
in AMI

Cora network -1.69 -0.1 0.1 0.1
text -0.71 0.1

CiteSeer network -1.67 -0.18 0.15 0.09
text -0.71 0.18

Flickr network 0.03 -0.05 0.04 0.06
attributes 0.09 0.05

BlogCatalog network -1.32 -0.01 0.5 0.42
attributes -8.32 0.04

Wiki network -3.37 0.02 0.014 -0.01
text -1.72 -0.021

3Sources BBC -text -0.09 -0.002 0.06 0.01
Reuters -text -0.09 0.015
Guardian -text -0.1 -0.007

AUCS lunch 0 0.01 0.002 -0.001
facebook -0.01 0
coauthor -0.01 -0.01
work 0 0
liesure -0.01 0

Football list 0 0 0 0
text 0.01 0
follows 0 -0.01
mentions -0.01 0
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retweets 0 0
Olympics list 0 0 -0.01 -0.01

text 0 0
follows 0.09 -0.005
mentions -0.02 -0.002
retweets -0.01 0

Politics Ire list -0.02 0 0.174 0.07
text -0.13 0.497
follows -0.57 -0.102
mentions -0.68 -0.07
retweets -0.56 -0.41

Politics UK list 0.008 0 0 0
text 0.004 0
follows -0.01 0
mentions 0 0.004
retweets -0.004 0.009

Rugby list -3.28 0.06 0.09 0.09
text -1.86 -0.02
follows -5.37 0
mentions -5.44 -0.015
retweets -6.38 -0.04

Table 3.7: Comparison of results of the MVMC algorithm with different weight initializations. A negative value indi-
cates that the sparsity-based initialization produced higher values and vice-versa for the positive values. So, positive
values Difference in ARI and AMI columns indicate the the standard initialization MVMC prodcued better results and
vice-versa.

The first result to note is that there are differences in both clustering qualities and algorithmic
metrics between the two different initializations. this would suggest that the initialization does
matter in terms of the final outcome. Starting from a different weight or resolution could cause
the algorithm to converge to different final weights and final resolutions. This idea of having
different stable regions of resolutions and weights has also been observed by other authors [128],
[138]. Also, some of the data sets with stronger cluster structures (i.e. they have generally
good performance across a range of clustering techniques and paradigms) like Politics UK or
Football tend to have much less difference between the initializations of MVMC in both the
ARI/AMI performance measures and the MVMC performance measures of view resolutions and
view weights. This would suggest that the results here conform to the results from other authors
where they have found that different data sets have very different stable regions of resolutions
and that the greater (and fewer) stable regions that exist, the more clusterable the data set is [138].
The second result to note is that the standard initialization of having the weights and resolutions
all equal to one produces consistently better results in terms of cluster quality.

3.4.2 Multi-view Density-Modularity Clustering Results
In this section, the ability of a density-based modularity (Constant Potts Model) to cluster multi-
view social-based data from a limited MVMC algorithm variant, Multi-view Density-Modularity
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Clustering (MVDMC) is empirically investigated. As with the MVMC algorithm, the MVDMC
algorithm was run twenty times across all of the data sets and the average results across all of
the runs and the data sets were collected. The following table, Table 3.8, displays MVDMC’s
peformance on the benchmark data sets relative to the baseline modularity method of IPMMC.

Data set ARI AMI
Difference with
IPMMC ARI

Difference with
IPMMC AMI

Cora 0.3 0.39 -0.03 -0.01
CiteSeer 0.38 0.36 0.01 -0.01
Flickr 0.038 0.28 -0.532 -0.36
BlogCatalog 0.32 0.39 -0.31 -0.23
Wiki 0.32 0.46 0.03 -0.03
3Sources 0.73 0.75 -0.03 0.01
AUCS 0.57 0.61 0 -0.08
Football 0.75 0.87 0.1 0.04
Olympics 0.67 0.82 0.13 0.05
Politics Ire 0.81 0.77 -0.08 -0.09
Politics UK 0.92 0.88 -0.07 -0.09
Rugby 0.64 0.69 -0.01 0.01

Table 3.8: Performance of MVDMC and the baseline modularity maximization algorithm IPMMC on their ability to
produce good clusters relative to the benchmark clusters. MVDMC often has performance close to IPMMC indicating
that density-based modularities can also be used in the proposed methodology.

Generally, the MVDMC algorithm has very similar performance across the benchmark data
sets. The two notable exceptions are Flickr and BlogCatalog where MVDMC has significantly
worse performance. So, it would seem that using a density-based modularity is also capable of
producing reasonably good results across many social-based data scenarios within the proposed
framework of this chapter. There are, however, two data sets that are notable exceptions to
this performance. To investigate these results further and better understand the performance of
using a density-based modularity, the following table, Table 3.9, records the results of MVDMC
algorithm’s performance against the best method for each data set and MVDMC’s number of
clusters.

Data set ARI
Difference
with Best
ARI

AMI
Difference
with Best
AMI

Avg.
number of
clusters

Difference
in number
of clusters

Best Method

Cora 0.3 -0.14 0.39 -0.1 25.2 18.2 CNDC C1
CiteSeer 0.38 -0.05 0.36 -0.05 42.6 36.6 CNDC C1
Flickr 0.038 -0.592 0.28 -0.37 239.5 230.5 ETL-MSC
BlogCatalog 0.32 -0.42 0.39 -0.32 61.9 55.9 ETL-MSC
Wiki 0.32 -0.02 0.46 -0.03 61.1 44.1 ETL-MSC
3Sources 0.73 -0.03 0.75 0.01 3.7 -2.3 IPMMC
AUCS 0.57 -0.1 0.61 -0.19 6.3 -2.7 DREC
Football 0.75 -0.08 0.87 -0.02 18 -2 DISC A
Olympics 0.67 -0.23 0.82 -0.12 21.7 -6.3 DREC
Politics Ire 0.81 -0.11 0.77 -0.1 13.3 6.3 DICL M
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Politics UK 0.92 -0.07 0.88 -0.09 11.7 6.7 IPMMC
Rugby 0.64 -0.08 0.69 -0.01 25.5 10.5 CMIC

Table 3.9: Summary of the performance comparison to the clusters produced by MVDMC and those produced by the
method that performed the best on each benchmark data set. Values highlighted in black are where MVDMC did as
well or better than the best algorithm on that data set. A positive value in the difference in the number of clusters
indicates MVDMC produced more clusters than the benchmark clusters and vice-versa.

As would be expected from MVDMC’s performance relative to IPMMC, MVDMC’s perfor-
mance against the best methods for each of the data sets mirrors the performance of IPMMC
against the best methods for each of the data sets. The two notable exceptions of much worse
performance are Flickr and BlogCatalog. Turning to the number of clusters found by MVDMC
for these data sets, it is clear that MVDMC heavily over-clusters the data. In fact, more often
then not, MVDMC tends to produce more clusters than the benchmark labels would indicate for
each of the data sets. So, while it seems using a density-based modularity can produce good
results, it also has the tendency to over-cluster.

Next, I analyze the performance of the MVDMC algorithm internally. To get a better under-
standing of the performance of the MVDMC algorithm, the following table, Table 3.10 displays
the various internal metrics of performance for MVDMC across all of the benchmark data sets.

Data set View
Mode of
view
resolutions

Number of
iterations used

Optimal
weighted
modularity

Cora network 0.0001 25 1.01
text 0.0001

CiteSeer network 0.0001 25 1.07
text 0.001

Flickr network 0.05 25 0.29
attributes 0.0001

BlogCatalog network 0.01 25 0.61
attributes 0.01

Wiki network 0.0001 25 1.4
text 0.01

3Sources BBC -text 0.0001 125 1.6
Reuters -text 0.05
Guardian -text 0.05

AUCS lunch 0.0001 3125 2.4
facebook 0.001
coauthor 0.05
work 0.05
liesure 0.05

Football list 0.05 3125 2.3
text 0.05
follows 0.05
mentions 0.05
retweets 0.05
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Olympics list 0.01 3125 2.738
text 0.05
follows 0.05
mentions 0.01
retweets 0.05

Politics Ire list 0.05 3125 2.08
text 0.001
follows 0.05
mentions 0.001
retweets 0.05

Politics UK list 0.0001 3125 1.89
text 0.05
follows 0.001
mentions 0.05
retweets 0.005

Rugby list 0.001 3125 2.8
text 0.01
follows 0.05
mentions 0.05
retweets 0.05

Table 3.10: Performance metrics of the MVDMC algorithm across all of the benchmark data sets. Since there is no
means of determining the resolutions and/or weights automatically for Constant Potts Model modularity, the number
of iterations is the combination of number of views and possible resolutions. The modularity is the standard network
modularity and not the Constant Potts Model modularity

From the MVDMC performance metrics a couple of interesting results emerge. First, as
was suspected and pointed out in the methods section, different views of the same data often
require different resolutions, even with density-based resolutions. So, when designing an density
modularity-based algorithm for clustering multi-view, social-based data, it is necessary to allow
the resolution parameter to vary between views. Also, the modularity obtained by the MVDMC
procedure also correlates strongly with the performance of the method relative to the benchmark
clusters. It should be mentioned again that this modularity is the standard network modularity
and not the Constant Potts Model that is used to cluster the graphs. So, in the absence of labels
it is possible to get some indication of the clustering quality found by using a density-based
modularity by looking at the standard network modularity.

3.4.3 Comparison Between Modularities
To conclude the empirical testing section I analyzed the differences between the MVMC algo-
rithm and the experimental MVDMC algorithm. The following table, Table 3.11, summarizes
the difference in goodness measures and number of clusters found between the two methods
across all of the benchmark data sets.
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Data set
ARI Difference
between MVMC
and MVDMC

AMI Difference
between MVMC
and MVDMC

Number of Clusters
Difference between
MVMC and MVDMC

Cora 0.06 0.05 -9.75
CiteSeer 0.01 0.02 -10.9
Flickr 0.592 0.33 -31.75
BlogCatalog 0.32 0.23 -102
Wiki -0.026 0.038 -18.5
3Sources 0 -0.03 -1.35
AUCS 0.062 0.129 0
Football 0.12 0.05 -0.1
Olympics 0.06 0.05 0
Politics Ire 0.104 0.11 -3.9
Politics UK 0.07 0.09 0
Rugby 0 -0.01 -9.5

Table 3.11: Comparison between the performance of the MVMC and experimental MVDMC algorithms. Negative
values indicate that the MVDMC algorithm had a greater value for the measure than MVMC and vice-versa for positive
measures. Generally, MVMC has better performance in terms of cluster goodness and does not over-cluster the data
like MVDMC often does.

Generally, the MVMC method with its use of Reichardt and Bornholdt modularity performs
better than MVDMC with its use of a density-based modularity. While in many ways this is
an unfair comparison, since the former has equations to precisely set the resolution and weight
parameters, and the later does not, it is also easy to see that the Constant Potts Modularity has a
tendency to over-cluster data. So, while using a density-modularity to cluster multi-view, social-
based data can often produce reasonable results, it can also easily over-cluster the data. As a final
comparison between the two methods the following table, Table 3.12 presents the performance
summaries for the two methods.

Comparison measure MVMC MVDC
Average ARI 0.652 0.537
Average AMI 0.694 0.606
Avg. of absolute
difference between
number of found clusters
and number of benchmark
clusters

1.257 9.816

Correlation between
modularity and ARI 0.464 0.769

Correlation between
modularity and AMI 0.575 0.816

Table 3.12: Performance summaries for MVMC and MVDMC. Bolded values indicate which method had better
performance for the given metric.
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From the results, MVMC has consistently better performance. Also, both methods produce
modularities that correlate reasonably well with actual performance across all of the benchmark
data sets. This suggests once again that the modularity found by a modularity-maximization
method can be a good evidence-based measure to judge the quality of labels found in the absence
of having any labels. Also, MVDMC has higher correlation with performance and modularity
than does MVMC. Since MVDMC is using standard network modularity in its cluster evaluation,
this result suggests that another evidence-based measure for determining cluster goodness in
the absence of labels with modularity-maximization techniques is to use the standard network
modularity, without any resolution or weight parameters.

3.5 Discussion
In this chapter I investigated the use of modularity as an objective function for characterizing
clusters in multi-view data. The empirical testing across many different benchmark, social-based,
multi-view data sets demonstrated that the adapted modularity function does indeed perform
well as an objective function for finding clusters within the data. In particular, having a good
modularity value for a multi-view clustering correlates with finding good clusters within the
data. In addition, it was observed in the empirical testing of modularity that the nature of the
view graphs can greatly effect the cluster quality with everything else being kept the same. In
this work, it has generally been observed that creating k-Nearest Neighbor graphs directly from
the view features tends to give the best results (as opposed to creating cluster association graphs
from the view clusters), but occasionally incorporation of other elements of information can
improve the cluster structure of these graphs. So, how to best create graphs from the different
views to best find clusters within the data remains an open area for future research.

Since it is well known in the Network Science community that the use of modularity for
clustering can be further improved by setting appropriate resolutions for the modularity function,
I next embarked on crafting an algorithm that could take into account resolutions and weights
from different views. Using previous works demonstrating the means to set resolution and weight
parameters given clusters and a planted partition model of the clusters in the networks, I have
proposed a new method of clustering multi-view, social-based data that can use any types of
data in the views. The overall procedure consists of transforming all of the data into a graph
space, which is common in multi-view clustering of image data, and then using an iterative
modularity maximization procedure the optimizes a view-weighted, resolution corrected version
of the network modularity function. In order to perform the optimization, I used an alternating,
iterative scheme that alternated between updating clusters assignments, and then updating the
view weights and resolutions. This optimization procedure leverage a means of approximate
fast graph clustering as well as analytic functions. It would be interesting for future research to
see if there are other means of optimizing the the special network modularity function proposed
in this chapter. Using an iterative, alternating procedure that alternates between clustering the
view graphs and updating the resolutions and weights for each of the views showed improved
empirical performance over just using modularity without setting these parameters. Additionally,
the proposed algorithm was also close to, or as good as state-of-the art across all the social-
based data scenarios tested in this work. Thus, the proposed technique can not only get state-
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of-the-art performance in some social-based data scenarios, but always gets good performance
for any social-based data scenario. No other technique investigated in this work could achieve
both results. Finally, the proposed technique is relatively computationally fast. The two most
computationally demanding aspects of the method are the construction of the view graphs and
the clustering of the view graphs. Both of these steps have fast, approximate techniques that can
also scale to very large (i.e. millions of objects) data sets. And, the construction of the view
graphs is only done once and the clustering of the view graphs is usually only done a few times
for a reasonably clusterable data set, which makes the computational demand low in practice.

Another means of correcting for the resolution in modularity is to use a ‘resolution-free’,
density-based modularity like Constant Potts Model modularity. In investigating the use of these
modularities for the practical clustering of multi-view, social-based data, some interesting re-
sults observed. First, there is not automatic means of setting the resolution parameter for these
modularities, since the resolution parameter is related to cluster densities which typically mono-
tonically increase the number of clusters increases. It does, however, seem possible to design a
function that could balance between obtaining high cluster density against the number of clusters,
and this is left to future work. It was also observed in testing Constant Potts Model modularity
that it tends to over-cluster data sets which could be another issue with the function to adress in
future work.

In addition to the good performance of the MVMC technique, the technique also provided
some beneficial byproducts from a practical use standpoint. For one, the view weights found by
the procedure provide a reasonably reliable evidence-based measure to understand which views
were more important to the cluster structure. Second, the number of iterations that MVMC takes
to reach convergence (or not reach convergence) provided a reliable evidence-based measure
for the quality of the clusters produced as well as indicated how clusterable the data set was.
This result suggests that data sets which have more stable and resolutions and weights also tend
to have a stronger cluster structure. This result confirms what other works have found both
empirically and theoretically concerning resolution in graphs. If a community structure exists
across a wide range of possible resolution values then it is a strong community structure. Third,
much like network modularity itself, the weighted combination of the view modularities also
gives a good, evidence-based indication of the strength of the cluster structure. Taken together,
all of this suggests one of the distinct benefits of MVMC is in its ability to explore patterns in
structure within data. Not only does it produce generally good cluster structures, but it also gives
evidence-base measures about the quality of the cluster structures as well as the importance of
different views relative to the multi-view cluster structure.
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Chapter 4

Case Study: Characterizing Communities
of Hashtag Usage on Twitter During the
2020 COVID-19 Pandemic

In this chapter I use a previously developed multi-view clustering technique in order to cluster
hashtags from twitter data collected on the COVID-19 pandemic. Hashtags are a social media
innovation that allows users to find and participate in discussions of interest. So, clusters of
hashtags can often give unique insight into topical focal points for social media users. In this
chapter, I perform the first ever multi-view clustering of hashtags from twitter data collected
during and about the COVID-19 pandemic. The results of the multi-view clustering demonstrate
that there are temporal patterns and changes in how users use Hashtags over the course of a
pandemic. The multi-view clusters also give distinct insight into the topical focus areas for
twitter users over the course of the pandemic and how different topics have different user bases.

4.1 Background

At the time of the writing of this thesis the world is undergoing a pandemic. This pandemic,
which is caused by the SARS-CoV-2 virus and often referred to as the COVID-19 pandemic,
has caused immense societal and economic disruption across the world. Since the onset of the
COVID-19 pandemic many nations have adopted a social-distancing strategy which has had the
unintended consequence of emphasizing and increasing the role of social media in linking people
together[8], [72]. Consequently, the study of social media data during the current COVID-19
pandemic can provide unique insights into online social behavior.

The first, and perhaps the most important, study into online social behavior during the COVID-
19 pandemic is studying how information and misinformation operates during a pandemic. Good
information is a key enabler to combat the effects of the pandemic whereas misinformation can
exacerbate its effects [72], [52]. Recent studies into the prevalence and persistence of misinfor-
mation have shown that misinformation on the COVID-19 pandemic has been especially persis-
tent and spreads through online social networks quickly [145], [8], [17]. The spread of COVID-
19 misinformation has become so problematic and widespread that many many researchers are
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referring to it as an ‘Infodemic’ [52], [33], [8]. The Infodemic is characterized by a virus-like
spread of misinformation across many different communication mediums, most notably online
social networks.

In the same line of research, other researchers have identified important mechanisms by
which the misinformation propagates in social media. Recent research has identified the im-
portance of bots in the spread of misinformation [48]. Other research has highlighted the role of
alternative news sources and user characteristics like political beliefs in the spread of COVID-
19 misinformation [17], [63]. Using some of the aforementioned means by which COVID-19
misinformation spreads, one recent article designed an Infodemic susceptibility score and inves-
tigates the correlations between countries that are susceptible to Infodemics and the impacts of
the actual pandemic on that country [52]. The important mechanisms underlying the Infodemic
susceptibility score are both the content that users are exposed and the interactions between users.

One area that is less clear is how social media users may be changing their behavior and how
social media communities and discussions are changing in response to the COVID-19 pandemic
and Infodemic. While the aforementioned research has shown that social media users are spread-
ing COVID-19 misinformation, sometimes even faster than good information, its not clear how
users’ interactions or how discussion communities may be changing during the pandemic. It is
also not clear if there are any topical areas of focus for social media users during the ongoing
pandemic. Are social media discussions focusing around topics like health and welfare or around
politics and business, or any combination thereof?

One of the recent social media innovations that have been used to track and understand con-
versations and conversational topics are hashtags. Hashtags originated in 2007 on the social me-
dia platform Twitter as a means of allowing users to efficiently retrieve information relevant to a
topic [154]. The use of hashtags on Twitter has expanded to not only be a means of characterizing
discussion topics, but also a means of predicting user links and characterizing both communities
of users as well as the users themselves [154], [142], [114], [112], [115]. As such, clustering of
hashtags can be used to understand topics of interest for social media users and the communities
that form around certain discussions [78], [131]. The clustering of hashtags has been done by
either the text context used with the hashtags, co-occurrence of hashtags within the same social
media post (i.e. same tweet), or by having similar users that use the same hashtags [78], [142].
More recent work on clustering hashtags has focused on better feature engineering of the text
that accompanies hashtags in order to capture the semantic meaning of the text and thus better
hashtag clusters [131]. To date, no work has attempted to combine all of these different views
of hashtag usage and use multi-view clustering to cluster hashtags in order analyze social media
data for understanding topics of interest for social media users. Part of the difficulty in multi-view
clustering of social media data like hashtags are that the data is often very large (on the order of
tens or hundreds of thousands of hashtags being used in any given conversation) which can pose
problems for many of the existing multi-view clustering techniques, especially intermediate inte-
gration techniques. Additionally, social media data often have partially-complete views of data;
social-media users and objects, like hashtags, may not have any interactions within some views.
For example, a hashtag may never co-occur with another hashtag, or a user may never engage in
an activity like re-tweeting. These partially complete views pose challenges for many existing
multi-view clustering techniques as these objects naturally become isolates or small connected
components in view graphs. Overall, clustering of hashtags can provide valuable insight into
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important topics in a discussion and insight into social media users, and that hashtags have never
been clustered by multi-view clustering.

So, in this chapter I use multi-view clustering in order to cluster hashtags from COVID-19
twitter data in order to better understand the discussion topics present during the pandemic and
if these topics change over the course of the pandemic. The main contributions of this chapter
are summarized as follows:
• The first use of a multi-view clustering technique and approach to understand topical

groups of hashtags.
• The first use of a multi-view clustering technique on a large, social-based data set; mul-

tiple collections each consisting of upwards of 85,000 objects are clustered in this study
whereas most multi-view clustering techniques have been used on data sets, social-based
or otherwise, of at most one collection of 70,000 objects (i.e. full MNIST data set).

• Discovery of a temporal trend in hashtag usage that displays three distinct periods of dif-
ferent hashtag usage and topical clusters over the course of the COVID-19 pandemic, from
the 1st of February 2020 to the 30th of April 2020.

• Characterization of topical clusters of hashtags that give distinct insight into what conver-
sations surround the COVID-19 pandemic on twitter, such as co-opting of the calamity to
support different causes and a persistent coupling of U.S. politics related hashtags with
conspiracy theory related hashtags.

4.2 Data and Methodology
In this section, I will detail the data used in this investigation of the use of COVID-19 hashtags
and the methodological set up to find clusters of hashtags. To cluster the hashtags, I will employ
a multi-view clustering technique — specifically, Multi-view Modularity Clustering (MVMC)
— in order to exploit the richness of the data in providing for multiple possible views of under-
standing clusters of hashtags.

4.2.1 Data
The data for this analysis comes from Twitter’s streaming API 1. The data collection was done us-
ing a list of key words including “coronavirus”, “coronaravirus”, “wuhan virus”, “wuhanvirus”,
“2019nCoV”, “NCoV”, “NCoV2019” [63]. The collected data spans the time period from 1
February 2020 to 30 April 2020 and consists of over 300 million tweets that have, on average,
45,000 unique hashtags per day. The following figure, Figure 4.1 depicts the daily statistics con-
cerning the use of hashtags within the data set. It should be noted that as a prepossessing step,
any hashtag that was not used in at least 3 tweets was not included in the data. These hashtags
are often misspellings of more widely used hashtags.

1https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters
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Figure 4.1: Daily Statistics of the COVID-19 Twitter Data from 1 February 2020 to 30 April 2020. Use of Hashtags
by users and within tweets remains high and persistent over the time period.

Hashtag usage within the data is both prevalent and increases in the diversity of hashtags
being used over time. The use of unique hashtags generally increase over the time period of data
collection and displays some weekly cyclical patterns as well (i.e. slight drops in the number
of unique hashtags being used on weekend days). It is interesting to note that these counts are
counts of unique hashtags and not the total use of hashtags. So, it is possible that as the scope of
the COVID-19 pandemic expanded, hashtags that were originally unassociated with the COVID-
19 pandemic end up becoming a part of the conversation. It is also possible that as the scope of
the pandemic expanded, that new hashtags were invented to better address the changing needs
of the conversation about the pandemic. Additionally, there is a relatively high ratio of hashtags
being used in tweets throughout all of the data (greater than 40% of tweets have a hashtag).
While this is in part due to the means of collecting the data, it also reflects a trend observed by
other authors of increasing hashtag usage among social media users generally [115], [154]. The
ratio of hashtag usage in tweets has three observable phases over time. In the first phase, from
1 February to 24 February, the ratio of hashtags present in tweets remains at its highest, with
a slight positive trend. Then, starting on the 25th of February the ratio of hashtags in tweets
decreases and remains lower until the 15th of March. Finally, in the third phase from the 16th of
March until the 30th of April, the ratio of hashtags being used in tweets remains stable at around
55% of the tweets. So, while there is a high percentage of tweets that have at least one hashtag,
this percentage is not stable over time. While its not clear why this temporal trend exists, it is
likely related to the dynamic nature of the users interacting on Twitter over the various stages of
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the COIVD-19 pandemic.
There is also a reasonably high percentage of hashtag use among individual users, which

generally increases with time. As with the ratio of tweets that feature a hashtag, the ratio of
users that use at least one hashtag on a given day breaks into three observable periods. The first
period is a period of a lot of oscillation in daily hashtag usage centered around 37%. The second
period is a decline in hashtag use corresponding to the same period of decreased hashtags being
used in individual tweets, from 25 February to 15 March. The third period is from the 16th of
March to the 30th of April and has a sustained hashtag use at around 43% of users using at least
one hashtag in a tweet per day. Overall, 50.47% of users use at least one hashtag during the
three months that data was collected. In terms of individual hashtag usage, for users in general
the usage statistics of hashtags are as follows: min: 0, max: 100%, mean: 31.6%, and standard
deviation: 38.8% of their tweets featuring hashtags. Of those users that use at least on hashtag
in their tweets, the usage statistics become: min: 1.9%, max: 100%, mean 62.6%, and standard
deviation: 32.4% of their tweets featuring hashtags.

This hashtag usage takes place in a background of variable trends in the number of unique
daily users present within the data set. There is a declining number of unique users within the data
from the 1st of February to around the 21st of February, at which point there is a large increase
in the number of unique users until the 20th of March. From the 20th of March to the end of
April, the number of daily unique users begins to decline again. So, while the use of hashtags
increases as well as the use of unique hashtags increases, the number of unique users actually
declines. So, during the early stages of the pandemic there are a fairly small number of users
tweeting relevant tweets which often have hashtags which then transitions over the course of the
pandemic to a much larger user base that does not initially use many hashtags. This observation
suggests that user’s interactions on Twitter are dynamic over the course of a pandemic and that
discussion topics, in the form of hashtags are also dynamic over the course of a pandemic. It also
suggests that hashtag usage becomes more widely adopted after an initial surge in users possibly
as means of better characterizing the new and burgeoning conversations happening on Twitter
surrounding the pandemic. All together, the nature of the use of hashtags and the hashtags in use
have likely changed over the course of the COVID-19 pandemic.

Data Processing

The aforementioned collection of raw tweets was then transformed into view data for clustering
of the hashtags. First, the data was separated into days. Second, the daily tweet data was pre-
processed as follows: First, any hashtag which was used in less than 3 tweets was excluded from
the data. Second, the tweet text was preprocessed by removing all of hashtags, URLs, symbols
(i.e. emojis, punctuation, etc.), and twitter-specific tags (i.e. mentions, quotes, etc.) from the
tweet text. From there, for each hashtag, the accompanying text, other hashtags, the user, and
any URLs used in each tweet that contained that hashtag were extracted. This data was then
separated into four separate views of the data.:

• The first view is the text view and contains all of the pre-processed text from each tweet
that features a hashtag. The intuition behind this view is that the text accompanying a
particular hashtag may give insight into how and what a particular hashtag is used for in
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discussions. The accompanying tweet text, whether used in a raw form or given semantic
enhancement has been previously used to cluster hashtags [78], [131].

• The second view is the users which tweet a hashtag with the idea that users may be partial
to tweeting particular hashtags as part of a discussion. Shared users have also been used to
cluster hashtags in previous works [78].

• The third view is the URLs which co-occur with a hashtag. Since URLs are often used as
information to support claims in tweets, this view should give insight into what information
is underlying the use of certain hashtags.

• The fourth view is the co-occurrence of hashtags within tweets. Within any given tweet
using hashtags, a user may use multiple, related hashtags as part of their tweet. The co-
occurrence of hashtags is frequently used to create hashtag-to-hashtag networks for analy-
sis by standard network science techniques [131].

So, all together, the collected tweets are processed to create four different views of the data
for each day in order to cluster the hashtags.

4.2.2 Methodology

In order to find clusters of the hashtags from the multi-view data, the Multi-View Modularity
Clustering (MVMC) procedure detailed in Chapter Three will be used. There are two primary
reasons for the use of this technique on this data. First, this technique, which uses a modularity
maximization based clustering as its principal means of extracting clusters, is scalable to large
data. The collected COVID-19 data often features tens of thousands of unique hashtags being
used each day. So, any multi-view clustering technique on the data must be able to handle data
of this size. Second, the previous chapter has empirically demonstrated that MVMC is the most
generalizable in terms of producing quality results for social-based, multi-view data. And, since
there is no accepted clustering procedure for multi-view twitter data scenarios, a technique which
is generalizable to many different data scenarios would be desired.

For the MVMC procedure there are two main steps. The first step is to create graphs of each
of the views, and the second is to cluster those graphs. For each view, a similarity graph was
created. So, for each view graph, an edge represents how similar two objects are with respect
to that view. For example, for the text view, an edge indicates that two hashtags share similar
text in their tweets, or for the co-occurence view that two hashtags tend to occur with the same
set of other hashtags. In order to measure similarity, I first transformed the view data from raw
counts (i.e. the number of times a users uses a hashtag) to Term Frequency-Inverse Document
Frequency (tf-idf) scores using,

wij = tfij ×
n

dfj
(4.1)

where tfij is the number of terms (i.e. users, word tokens, URLs, etc.) occur with hashtag i,
and dfj is the number of Hashtags that also feature the jth term. This transformation was done
in order to down-weight those terms which are common across all hashtags, like ‘COVID19’ and
up-weight those terms which may be significant for cluster structure. While it has been noted in
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previous works that tf-idf can be insufficient for textual information for tweets, the primary rea-
son for this insufficiency that individual tweets have very little text which can accompany them
[131], [142]. However, in this methodological set up, many tweets (often hundreds or thousands)
are combined for each hashtag, so the text size limitation is not a significant issue. Furthermore,
using tf-idf is also very scalable and does not require any kind of a priori semantic knowledge
database [131]. So, for these reason, I have opted to use tf-idf as a means of processing the view
data prior to learning the view graphs. Having applied tf-idf to all of the views, the similarity for
each of the views was measured by cosine similarity:

sij =
Ai.Aj

||Ai|| × ||Aj||
(4.2)

Since the data is large in the number of objects that need to be clustered (i.e. hashtags) —
on the order of tens of thousands — the graph learning procedure needs to be a computationally
efficient one [106]. For that reason, I have adopted the simple procedure of creating a symmetric
k-Nearest Neighbor Graph (k-NN) with the number of nearest neighbors as k =

√
n, where n

is the number of objects being clustered [89], [88]. To symmetrize the k-NN the following step
as used: once each object has been connected to k of its nearest neighbors, I have adopted the
average strategy, A′ = 1

2
A + AT , which is common in spectral clustering methods [106], [150],

[158]. So, at the end of the graph learning step, there is a cosine-similarity weighted, undirected
graph for each view of the data.

Having learned a graph for each view of the data for each day, the MVMC procedure is then
performed for each day. The initial weights and resolutions were all set to one. The convergence
tolerance for the resolutions was set to 0.3 and for the weights to 0.1. And, the procedure was
allowed to run for a maximum of 20 iterations.

4.3 Results
In this section, I describe the multi-view clustering results on the COVID-19 data. In the first
section, I provide an overview of the clustering results. In the second section, I detail the results
of learning graphs on the different views of the data and the insights the graphs give about
the data and the cluster structures present within the data. In the third section, I analyze the
performance of the multi-view clustering technique of MVMC. In the fourth section, I analyze
the temporal patterns within the hashtag cluster data. In the fifth section I analyze the user bases
of the different clusters of hashtags. Finally, in the sixth section I do an in depth analysis of some
of the interesting clusters identified within the data.

4.3.1 Overview of Multi-view Clustering Results
Multi-view clustering of the COVID-19 twitter data extracted between 20 and 160 clusters of
hashtags per day, with a varying size of the clusters. These clusters varied in size and also
in number between different days. The following figure, Figure 4.2, displays plots of the daily
number of clusters and daily cluster size statistics over the full 90 day period. The actual numbers
for each day are displayed in the Appendices (Appendix B).
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Figure 4.2: Daily clustering statistics on clusters produced by the MVMC technique on four views of the hashtags.
The daily clusters display three different, temporal patterns of clustering. The shading in the figures covers those areas
which display the three different patterns

There is a presence of several small clusters within the daily clusterings. First, on any given
day there were between 20 and 80 clusters that had a size of less than five objects. These clus-
ters were almost exclusively composed of either small, locality-specific hashtags, non-English
language hashtags, or hashtags that seem to have little relevance to the pandemic. For example,
a particular local business, like a car dealership may have a hashtag that is used in a tweet that
happens to mention one of the key terms, which was then retweeted by local residents, which
would cause it to be above the initial screening criteria of being used in more than three tweets,
but otherwise bear little relation to how any of the other hashtags in the data are used. These
small clusters are also often composed of objects that are isolates within one or more of the view
graphs, which is what makes them difficult to group into larger clusters. This result illustrates
an important point about multi-view clustering of real-world data; the data is often messy and
incomplete and requires some degree of additional processing. These arbitrary clusters do not
actually contribute much to understanding the data, or the macro-cluster structure of the data, or
use of hashtags beyond recognizing that the collection process can produce some noise in clus-
tering results. Removing these small clusters does not affect the overall patterns existing within
the clusters, and makes interpretation of the clusters easier.

Second, there are dynamic patterns within the clusters. The clusters start off as many in
number and small in size and become fewer in number and larger in size as time passes. Up
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until the end of February, there are around 80 non-arbitrary clusters with a size of around 250
hashtags. This pattern changes at the end of February where the number of daily hashtag clusters
decreases but the size of these clusters increases. This change in the clustering structure over
time may indicate that the use of hashtags and their associated discussions begin to congeal into
larger discussions over the course of the pandemic. Additionally, there can be large oscillations
in numbers of clusters and sizes of clusters between any given set of days. While, there is an
increasing trend toward fewer and larger clusters, there are oscillations present within the data,
especially during the middle of the time period, around the month of March. While it is not
quite clear why these oscillations occur, it was noted in the description of the data that there are
weekly periodic patterns within the number of unique hashtags used over time. So, its possible
these oscillations are in part due to cyclical, time-dependent patterns in twitter use. This dynamic
nature in the clusterings will be further investigated in an upcoming section.

4.3.2 Graph Learning Results
In order to better understand the clustering results, we now turn to the analyzing the view graphs.
As was described in the methodology section, the graphs for all of the different views were
created by a symmetric k-NN graph learning procedure. This procedure is meant to learn a
graph that represents the data. So, graph-theoretic and network science measures can be used
to analyze the graphs and thereby better understand the data. The following figures, Figure 4.3,
display some important graph properties of the different view graphs for each of the daily data
sets. The full numerical values of these measures for each day are available in the Appendices
(Appendix B).

From the graphs, one can first observe that the graph densities follow a pattern that would be
expected from the the number unique of hashtags. Density initially increases slightly, and then
decreases as time moves forward. From the section on the data it is also easy to observe that this
pattern is roughly the inverse pattern of the number of daily unique hashtags. So, as expected
from observations of real-world networks, as the number of nodes — or unique hashtags, in
this case — increases, the density decreases [94]. Additionally, the text view is consistently the
most dense graph while the shared users graph is the least dense graph. Since these graphs were
created by a symmetric k-NN graph learning procedure, most of difference in density for the
users view is from more groups of overlaps, around the size of k, in users between hashtags.
When there is more groups of overlaps around the size of k on the features, nearby objects in a
k-NN graph tend to be within the k nearest neighbors of each other and that there are only about
k neighbors for any given point, which results in fewer edges forming overall once the graph is
symmetrized. Conversely, when there are more similar neighbors for each object than the value
of k, there will be more edges in the symmetrized k-NN graph as two nearby objects, while very
similar to each other, may not be within the top-k nearest neighbors of each other.

Second, the component statistics vary considerably between the different views of the data.
The URLs view, which measures similarity between hashtags if they co-occur in tweets with the
same URLs, has far more components than the other views, and these components — with the
exception of one major connected component — are almost always isolates. This is to say that of
the hashtags that co-occur with a URL, there are a fair number of URLs that only co-occur with a
particular hashtag. This result is also partly an artifact of resolving the Twitter shortened URLs;
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Figure 4.3: Graph metrics for each of the daily view graphs. All views but the URL view display useful graph
properties for clustering the data.

some of the shortened URLs were unable to resolve to the non-Twitter URL, and Twitter does not
always have the same shortened URL for any given URL. Thus, we would expect the URL view
to not be particularly useful in finding communities of hashtag use. While much lower on the
number of components, a similar pattern is observed with the text mode; those hashtags which
are not part of the major connected component are almost always isolates. These hashtags are
often rarely used hashtags, typically because they are a common misspelling of a popular hashtag
or are a less popular hashtag that occurs with non-English text or no text (i.e. just the hashtag
by itself was tweeted). Also, it should be noted that the co-occurrence view, which measures
similarity between hashtags based on the other hashtags that those hashtags appear with in a
tweet with, has a slightly higher number of components and percentage of isolates than either the
user or text views. This is due to the fact that some hashtags never co-occur with another hashtag
in a tweet. finally, it is worth noting that for all of the views, the number of components increase
with time. These observations suggest that the use of hashtags is becoming more divided into
distinct and non-interacting communities.

4.3.3 Multi-view Clustering Results

In this section, we turn to analyzing the performance of the MVMC technique on clustering the
hashtags from the COVID-19 Twitter data. In the previous chapter it was established empirically
that certain performance indicators of the MVMC method can give insight into the multi-view
data itself, most notably the view weights and the number of iterations to reach (or not reach)
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convergence. The following figures, Figure 4.4 displays the MVMC performance stats. The
full numerical values of the performance stats for each view and each day are available in the
appendices (Appendix B).

Figure 4.4: Performance indicators of the MVMC method for each day’s clustering. Overall, the URL view was not
useful in finding clusters in the hashtag data, while the other 3 views were roughly equally useful. The method also
converged relatively easily indicating that there is cluster structure present among the hashtags, to varying degrees,
within each day of the data.

The URL view does not provide much information towards clustering the data. The URL
view is often close to zero, or even negative in terms of its modularity and view weights. The
negative values occur on the 4th of March and the the 7th, 10th, 17th, and 18th of April. Its not
clear why the URL view is especially poor at having a cluster structure these days, as these days
are not distinct outliers in terms of the found clusters relative to any other day or in terms of the
learned graphs on these days. It would seem that co-occurrence of a URL with certain hashtags
did not reflect the co-occurrence of those hashtags in the other views and may indicate that the
use of URLs, in a raw form, may not necessarily be a good indicator of a topical discussion
community. The URL co-occurrence graph was especially sparse with many outliers, so this
view likely would have benefited from some additional prepossessing, such as using the the
top level domains of the URLs as opposed to trying to use the full, exact URL in determining
similarity. Overall, as was hinted at in the previous section analyzing the learned graphs, the
shared URLs do not contribute much to the cluster structure present within the hashtags.

As for the other views, they are all roughly equal in their contribution to clustering the hash-
tags, with some views being better on some days and others on other days. The view weights for
the users, text, and co-occurrence of hashtags views are all generally between one and two and
close to each other. As for the view resolutions, while the three useful views follow the same
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temporal patterns, the co-occurrence consistently has a higher resolution followed by the user
than the text views. This is due to consistent topological differences in the learned graphs, noted
in the previous section. For example, the co-occurrence view is consistently more sparse than the
text view and consistently has more components than either the text or the co-occurrence views.
So, the other three views roughly contribute about the same in terms of clustering the hashtags.

Finally, there is a temporal pattern within the performance indicators of MVMC. From the
1st of February to the 21st of February all of the views obtain lower modularities and have
higher resolutions and the MVMC method takes more iterations to to converge. These results
indicate that this time period, which saw more and smaller clusters, was more difficult to cluster.
From the 22nd of February through around the 4th of April, there is a lot oscillation in the view
resolutions and modularities along with the number of iterations needed to reach convergence.
So, this intermediary time period which had many shifts in the number and size of clusters also
had variable performance in the ability of MVMC to cluster the data. Finally, from around the
5th of April to the 30th of April, view resolutions and the number of iterations required to reach
convergence remain generally higher than the previous period and the co-occurrence view has
consistently higher modularity than the other views. It was observed in the clustering results
statistics that this same period also saw an increase in the number of clusters and a decrease in
the size of the clusters. So, as with the other temporal periods in the performance of MVMC,
when there are more numerous and smaller clusters within the data, it is more difficult to find
clusters within the data and the clusters are less modular. Overall, MVMC never takes more than
8 iterations in order to reach convergence, which from previous empirical investigations of the
technique, would indicate that there are cluster structures present within the multi-view data.

4.3.4 Temporal Ensemble Clustering Results
As has been noted throughout the results section and the data section, the usage of hashtags seems
to have some temporal trends and changes over the period of investigation. So, in this section
I will analyze the daily clusterings produced by MVMC to understand the temporal nature of
the hashtag clusters and hashtag usage. To assess any possible temporal patterns that could
exist within the daily clusterings, I analyzed how similar the daily clusterings are to each other.
Comparing the similarities between the clusterings can give insight into how stable both the
usage of hashtags and the broader discussion topics which use the hashtags are between days.
In order to compare the daily clusterings, I opted to use the Adjusted Rand Index (ARI) [69],
which provides a value between zero and one that expresses how similar two clusterings are.
In order to measure the ARI between all of the daily clusterings, each clustering has to have
the same objects, or hashtags, as every other clustering. So, a set of all of the hashtags used
across the entire data set was collected from the filtered hashtag clusters (the filtered hashtag
clusters are those clusters which have at least five hashtags in them, for each day). For each daily
clustering, if a particular hashtag was not present on that day, it was added to the daily clustering
and assigned a dummy cluster label. So, for each day, the clusterings have the same hashtags
and those hashtags which do not occur on a particular day are all assigned the same dummy label
for that day. Having cross-leveled the hashtags across all of the days in the data set, the pairwise
ARI between each day’s clustering and every other day’s clustering can then be computed. The
pairwise ARIs between the daily clusterings are summarized in the following figure, Figure 4.5.
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Figure 4.5: Heat map of the ARI values between every daily clustering produced by MVMC with every other daily
clustering. The heat map shows there are some regions where the consecutive days are more similar to each other than
to other days. Examples include early to mid-February in the top left and mid to late-April in the bottom right.

From the figure it can be observed that there are some block structures present within the data
along with some outlier clusterings. For example, early to mid-February has clusterings which,
with the exception of the 13 of February, are all more similar to each other than to any other days’
clusterings. This temporal pattern was similarly observed in the clustering overview statistics
and MVMC performance statistics. Additionally, clusterings in April also tend to display a
block structure whereby the clusterings are more similar to each other than to any other days’
clusterings. Outside of these block structures, there are also some outlier clusterings that are
not more similar to those clustering which are temporally close. The 13th of February provides
an extreme example in that it has very low similarity to every other clustering. Since it appears
there are clusters of daily clusterings present within the data along with a pairwise measure of
similarity, the clusterings can themselves be clustered. To cluster the daily clusterings, I used the
pairwise ARI scores in Agglomerative Hierarchical Clustering with average linkage. It should
be noted that clustering a set of clusterings has been used to analyze other temporal streams of
data in order to understand dynamic trends within the data [87], [92]. The following the figure,
Figure 4.6, displays the full dendrogram for the clustering of the daily clusterings.
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Figure 4.6: Cluster Dendrogram of the daily clusterings produced by Agglomerative Hierarchical Clustering with ARI
as the measure of similarity. The Dendrogram shows 3 main clusters with some outlier daily clusterings.

From the dendrogram it can be observed that there are indeed clusters of the daily clusterings.
And, these clusters tend to consist of temporally nearby clusterings. Thus, it would seem that
there are temporal meta-clusters of daily clusterings present in the data. To analyze these tem-
poral meta-clusters, I first clustered the clusterings. Based the dendrogram, the clusterings were
divided into 5 clusters. Note that the division of the daily clusterings is done without respect to
time, but rather is done only on the pairwise ARI between the daily clusterings. Having parti-
tioned the daily clusterings into meta-clusters, we can then see if these meta-clusters correspond
to any time periods within the data. The following figure, Figure 4.7, displays a plot of the daily
clusterings over time versus the meta-cluster that the daily clusterings were partitioned into.
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Figure 4.7: Plot of daily clustering versus what meta-cluster that daily clustering falls into. Generally, the meta-clusters
of the daily clusterings have distinct temporal bounds indicating that daily clusterings have a macro, temporal structure
to them.

From the figure, there is an observable temporal pattern to the meta-clusters. There is a meta-
cluster (label 2) that is exclusively composed of the clusterings from early to late-February. The
other two meta-clusters largely contain clusterings from either February 23rd to April 3rd, or
April 4th to April 30th. There are also two outlier meta-clusters that consist of only one date,
February 13th and February 22nd (labels 3 and 4, respectively). Thus, there is a macro temporal
pattern within the daily hashtag clusterings. This temporal pattern in the hashtag clusterings
reflects a similar pattern regarding user hashtag ratios that were observed in the data section. In
fact the middle period of clusterings, which is the least distinct of the 3 time periods — having
meta-cluster 0 and 1 members — corresponds closely to the time period where there were many
oscillations in MVMC performance. So, not only does hashtags usage on the user level change
over the course of the pandemic, but also the topical groups of hashtags also change over the
course of the pandemic. And, it would seem there are two stable periods of hashtag usage that
occur during the early stages of the pandemic in February and after the pandemic had been raging
globally for some time, in early April.

4.3.5 Analysis of Temporally-Ensembled Clusters
Having observed three distinct time periods of hashtag clusters, we would now like to get a
better sense of how these periods differ in terms of hashtag usage. In order to better understand

109



the hashtag clusters from the different time periods, each of the clusterings making up a meta-
clustering are transformed into one clustering through cluster ensembling. This is done for two
reasons: First, it makes the selection of which days and which clusters to analyze less arbitrary
by reducing the number of clusters that need to be analyzed. Second, producing an ensemble
clustering for each of the time periods can better mitigate any daily idiosyncrasies that could
affect any given clustering on any given day, and thereby produce a better overall clustering that
represents the whole time period. To produce ensemble clusters for each time period the BGPA+
technique, which clusters the object-by-cluster graph, was used. This technique was used as
it displayed consistently strong performance among the many cluster ensembling techniques
tested in Chapter 2 and it is a very scalable technique. The following table, Table 4.1, displays a
summary of the results for each of the ensembled period meta-clusters.

Period
Number
of Clusters

Average
Size of
Clusters

STD Size
of Clusters

Average Internal
ARI

February 1 - February 22 14 751 1104 0.416
February 23 - April 3 13 747 1093 0.348
April 4 - April 30 16 566 691 0.536

Table 4.1: Cluster statistics of the ensembled clusterings of the daily clusterings for each time period. The ensembled
clusterings display similar temporal trends to the other analyses of the data in that attributes like the number of clusters
present in each period roughly reflect the numbers of daily clusterings and unique hashtag usage during these periods.

The ensembled, period meta-clusters produced somewhat different cluster structures for the
different time periods. The third period had slightly more clusters and smaller and more regu-
larly sized clusters than the other time periods. This time period also had a a higher clustering
similarity, in terms of the average pairwise ARI between its constituent daily clusterings. For the
first and second time periods, there was often one large cluster that had a size of around 4,400
hashtags while the largest cluster in the third time period was 3,025 hashtags. So, the third time
period has a more balanced cluster structure, across the entire time period, than the other two
time periods.

To get a better idea of the ensembled clusters, the following table, Table 4.2 provides a
qualitative assessment of the topic of cluster as well as how focused and easily assignable a topic
is to each of the clusters in each of the time periods.

Period 1 General Topic
Focus Level
of Cluster

0 Multi-language, general use hashtags low
1 Multi-lingual coronavirus-specific hashtags low
2 News resources related hashtags medium
3 Chinese focused hashtags (often of negative sentiment) high
4 Thai related hashtags medium
5 Economy/Commerce related hashtags high
6 U.S. Politics related hashtags high
7 technology and business related hashtags high
8 Asian-languages hashtags high
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9 Multi-lingual, anti-racism and health news related hashtag medium
10 French language and European related hashtags medium
11 Italian language hashtags high
12 Arabic script hashtags high
13 All-caps hashtags with some Syrian Civil War hashtags medium

Period 2 General Topic
Focus Level
of Cluster

0 News and U.S. Politics related hashtags medium
1 News-resources related hashtags low
2 Commerce, Economy, and technology related hashtags medium
3 Asian-languages hashtags medium
4 Spanish language hashtags medium
5 French language hashtags high
6 Italian language hashtags high
7 Turkish language with some conspiracy theory related hashtags medium
8 Online entertianment related hashtags hmedium
9 German language hashtags medium
10 Arabic script and middle-east related hashtags high
11 Australian and British news related hashtags high
12 Online education related hashtags high

Period 3 General Topic
Focus Level
of Cluster

0 Spanish language and many general hashtags low
1 Multi-lingual, coronavirus and general hashtags low
2 Commerce, Economy, and technology related hashtags medium
3 Multi-lingual, coronavirus and general hashtags low
4 British news, anti-racism, and medical science related and hashtags medium
5 U.S. Politics related hashtags high
6 Arabic-script and location related hashtags medium
7 Chinese focused hashtags (often of negative sentiment) high
8 French language hashtags high
9 Italian language hashtags high
10 Canadian and climate change related hashtags high
11 German language hashtags medium
12 Asian languages hashtags high
13 Indonesian and surrounding countries related hashtags medium
14 Thai language hashtags high
15 Turkish language hashtags high

Table 4.2: Topical labels for the temporally-ensembled meta-clusters. Some clusters had much more focused and
readily defined topics than did others. Also, some topics are persistent throughout all three time periods, while some
only exist in a time period.

Looking at the hashtags present in the clusters of the different ensembled meta-clusterings
revealed both persistent topical groups and ones which change over time. In every time period,
there is always a cluster that has hashtags for breaking news or news sources, a cluster that has
business and commerce related hashtags, a cluster that has U.S. Politics-related hashtags, and
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foreign language clusters — most notably Italian, German, and Spanish. These topical groups
indicate that conversations about the global economy, news, and U.S. politics have remained
important and consistent topics throughout the pandemic, and that even with English-language
collection terms, the discussions occurring around the COVID-19 pandemic are international in
nature. In addition to these persistent clusters there are also transient cluster topics that emerge
in some time periods but not others. For example, in time period two there is a cluster of hash-
tags dedicated to online education and a cluster of hashtags concerning online entertainment and
entertainment services (i.e. Hulu, Netflix). Both first and third periods contain clusters with neg-
ative sentiment hashtags toward the Chinese government and in support of Hong Kong protests.
Overall, there are consistent topical clusters of discussion and other topics which emerge and
disappear over time.

4.3.6 User-base Analysis of Temporally Ensembled Clusters
In order to get a better sense of the hashtag clusters found through multi-view clustering and
temporal ensembling, we can analyze the users that use the hashtags. In particular, it is of
interest to observe whether those individuals which most use a hashtag also frequently use other
hashtags from the same cluster. Presence of a small number of users being most active in the
use of the hashtags could give insight into whether the topical conversation is being driven by a
small group of users or is more of an open, less centrally-dominated topical discussion. To do
so, I first found the top third of users for each hashtag in each cluster, across all periods, which
I refer to as the ‘top users.’ I then analyzed the number of unique top users for each cluster in
each time period. The number of unique top users within any given topical hashtag group can
give insight into whether there is a diverse user-base driving the topical discussion or not. The
following figure, Figure 4.8, shows the number of unique top users for each cluster in each time
period.

From the figure it can be observed that there are differences in user bases both between time
periods and between clusters. The first and third time periods have generally fewer unique users
in each of their clusters than the second time period. This due in a large part to the previous
observation that there are more unique users in general on any given day during the second
period than there are for the first or third periods. It is worth noting, however, that the total ratio
of unique users to total users in both the second and third periods are about the same at 0.202
and 0.206 respectively. That is to say that even as the number of unique users decreases slightly
in the third period and that the clusters in the third period do not have as many unique users,
the period retains a relatively high number of unique users across the time period. Additionally,
there are distinct differences in the number of unique top users between clusters within any of
the time periods. This is especially true for the second time period. Generally, this difference
in unique users is only partly accounted for by a difference in the size of the clusters as the 0th
and 1st clusters are always the largest in any given period but do not have the greatest number
of unique users for those time periods. This discrepancy in numbers of unique top users is also
a result of the generality of the particular topic of the clusters, with those clusters having more
general topics having higher numbers of unique top users. For example, the 4th cluster in the
second period contains many hashtags, from many languages, which describe COVID-19, such
as ‘#COVID-19’, ‘#covid19’, or ‘#COVID—19.’ So, the topical clusters of hashtags have
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Figure 4.8: Number of unique users for each cluster of hashtags in each time period. There are distinct differences
between the number of unique users between and within periods. These differences are largely not driven by the
number of hashtags present within a cluster, but rather with the topic of those hashtags.

differences in their top users with some clusters having a very small top user base and others, a
larger one.

One of the issues with just looking at the the number of unique top users is that hashtags have
different numbers of users in general. So, a hashtag could be completely used by a different user
in each use, but the hashtag itself is not widely used, which would result in that hashtag having
a small unique top user base. This effect extends to clusters where there are clusters of generally
less used hashtags. So, I also use a top user score for each cluster which compares the ratio of
the number of top unique users for the hashtags versus the number of top unique users if there
was no overlap between the top unique users of the hashtags. As a mathematical expression, this
top user score for a cluster is given by:

top user scorec =
∑⋂r

i=1 top users
c
i∑r

i=1

∑
top usersci

(4.3)

where c is a particular cluster, r is the number of hashtags present in cluster c, and top usersci
is the set of users for hashtag i in cluster c. The following figure, Figure 4.9, displays the top
user scores for each of the clusters in each of the time periods.
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Figure 4.9: Top user scores, which compares the number of unique users for each of clusters to what would be expected
if there were no overlap in the unique users between hashtags from the same cluster. Using this normalized measures
allows us to observer differences in diversity in user bases of clusters which may have a small, but diverse, number of
users

From the figure, normalizing the unique top users by the actual hashtag usage across the
clusters produces some different results than the previous figures. Some of the smaller clusters
with a small user base can actually have a very diverse user base. For example, period one
cluster 13, which focuses around the Syrian Civil War, has the highest top user score but a
relatively small number of unique users. Another example is period 2 cluster 12, which focuses
exclusively on online education-related hashtags, has a small number of unique users but the
most diverse user base for the second time period. So, some clusters which can be small in the
number of users can have very different users using the hashtags. This observation would suggest
that only analyzing hashtags by creating hashtag-to-hashtag networks based on users is actually
insufficient to find clusters of hashtags, which was a similar result observed by other authors
[131]. Additionally, some of the more mid-sized clusters can have less diverse user bases. For
example, period one cluster 3, which focuses on hashtags critical of the Chinese government,
has the least diverse user base in the first period, but a fair number of unique users. Period two
cluster 6, which has many Italian-language hashtags, and period 3 cluster 5, which focuses on
U.S. politics, have similar patterns. So, the topic of of a cluster tends to drive how diverse the
user base of that cluster is, and not the number of hashtags or even the number of unique users.

To further explore the nature of the unique users of hashtags within clusters, we can look at
how unique each hashtag’s user base is within each cluster. In order to better understand the user
base of a particular hashtag I calculated the ratio of the number of unique users that use a hashtag
versus the number of times a hashtag is used in a given period. These hashtag user scores can
then be combined to analyze each cluster within each of the time periods. The following figure,
Figure 4.10, displays a box and whisker plot of the hashtag user scores for each of the cluster for
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each of the time periods.

Figure 4.10: Box and whisker plot of the unique user scores for each of the hashtags within a cluster. Generally, each
cluster has a relatively wide spread of scores which indicates hashtags that have many unique users and those with
very few being present in each cluster. Many clusters also contain low-scoring outliers which are hashtags that are
used by very few or even just one user.

The unique user scores for each of the hashtags within each of the clusters show distinct
differences between the clusters within each period. First, it is worth noting that the spread of
scores for the different clusters tend to be consistently wide; most clusters have scores ranging
from 1.0 to near 0.2. There are notable exceptions to this, like period 2 cluster 12 which focuses
on online education, and period 1 cluster 12 which is an Italian-language cluster. Second, while
there is a wide range of scores for the hashtags within any given cluster, most clusters often have
outlier hashtags with very low user scores. That is to say, that most clusters have at least one
hashtag that is often tweeted, but only by a few or one user. So, while the clusters often present
distinct themes in their hashtags, the usage of the hashtags within the clusters can vary consid-
erably. Some hashtags have a much more diverse base of usage while some are promulgated by
only a few users. This result once again suggests that clusters of hashtags form around topical
groups and that all hashtags are not equal, at least in terms of usage, within a topical group.

Overall, the user base of the different hashtag clusters demonstrate that not only are the
clusters very different in their user make up, but so to are the user bases for individual hashtags
within the clusters. Certain topical areas of hashtag usage, and by extension, discussion, tend
to be driven by a small number of users, whereas others have a much more diverse user base.
Furthermore, within clusters of hashtags, hashtags can vary quite a lot with their user bases, with
some hashtags being promulgated by very few, or even one, users. So, even within a certain
topical area of hashtags, a small group of users will control the usage of certain hashtags and
possibly parts of the discussion as well.
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4.3.7 Detailed Analyses of Particular Clusters
In this section, I analyze a few of the clusters more deeply. In particular, I analyze the usage
statistics of different hashtags within the clusters as well as the verbiage associated with those
clusters.

First Period, Chinese-focused Cluster

The first cluster of interest is a Chinese-focused cluster from the first period. This cluster was
composed almost entirely of hashtags relating to either China or Wuhan. It should also be noted
that this time period had a hashtag that featured the term ‘china’ or ‘wuhan’ in every single
cluster except the cluster focused around business and commerce (period 1, cluster 11) and the
cluster focused around U.S. Politics (period 1 cluster 6); around 86% of the clusters in the first
period featured a hashtag with one of these terms. In contrast, 68% of the clusters in the second
period and 50% of the clusters in the third period had a hashtag with one of these terms. The
following table, Table 4.3, displays a sample of some of the hashtags present within the cluster.
Additional examples of the hashtags from this cluster are available in the appendices (Table B.4
in Appendix B).

Period 1, cluster 3: Chinese-Focused

Most Used Hashtags
Number of
Uses

Hashtag with Highest
Original User Ratio

User
Ratio

Hashtags with
Lowest User Ratio

User
Ratio

WuhanVirus 145252 WeStandWithHongKong 1.000 myedgeprop 0.058
HongKong 116401 HKpolicestate 1.000 hongkonggenocide 0.108
CCP 52252 Catastrophy 1.000 usdjpy 0.112
Hubei 46059 Darkness 1.000 china is territorist 0.122
Chinese 44336 ProtestArt 1.000 TechJunkieNews 0.161
WuhanPneumonia 31435 HKexit 0.998 EiSamay 0.165
Coronarivus 31152 Hubie 0.995 hongkongprotest 0.176
WuhanCoronavirusOutbreak 26612 timelapse 0.985 CaptainTripps 0.196
LiWenliang 26352 stayclam 0.982 Análisis 0.202
HongKongProtests 26324 PLAAF 0.982 EnvironmentHealth 0.207

Table 4.3: Top raked hashtags from period 1, cluster 3 which is Chinese-focused in its hashtags. Many of the hashtags
from this cluster are critical of the Chinese government for either its response to recent protests in Hong Kong or for
its response to the COVID-19 outbreak from Wuhan.

In general, the hashtags within this cluster express negative sentiment towards China and the
Chinese government. Some of the most used hashtags within the cluster express support for Hong
Kong protests and symbols of frustration with the Chinese government, like ‘#LiWenliang’ [35].
This trend is further emphasized with both those hashtags which are used by a diverse user base
(highest original user ratio) and those used by very few users. Overall, there is a mix of anti-
Chinese hashtags and pro-Hong Kong and pro-Tibet hashtags present within the cluster. So, in
the first period, which are the early days of the COVID-19 pandemic there is a distinct vein of
discussion within the COVID-19 discussions that is expressing negative sentiment toward the
Chinese and Chinese government. It is interesting to observe that this negative sentiment is not
limited to COVID-19 but also encompasses other issues with the Chinese government to include
protests in Hong Kong.
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To get a better idea of nature of the discussion that uses these hashtags, we now turn to the
text view and the words that co-occur with the hashtags in the cluster. The following figure,
Figure 4.11 displays a word map of the common words that co-occur with hashtags from the
cluster.

Figure 4.11: Word map of frequently occurring words and phrases that co-occur with hashtags from the Chinese-
focused cluster in the first period. There is a significant amount of verbiage about the spread of the virus and about
protests in Hong Kong.

As with the hashtags themselves, the words that often co-occur with the hashtags indicate a
focus on the spread of the Coronavirus and Hong Kong related issues. Thus, it would seem that
in the early period of the data there is a significant amount of negative discussion surrounding
China and the Chinese government both for recent actions in Hong Kong and for being the source
of the COVID-19 pandemic. When this result is combined with the user base analysis results of
this cluster which indicate that this cluster has the most overlap between the users of its hashtags,
it would seem that the discussion and condemnation of Chinese government actions during the
early part of the pandemic is driven by relatively few users. This result also indicates that those
users who were already critical of the either the Chinese response to Hong Kong protests or to the
initial Chinese government reaction to the COVID-19 pandemic may be using the other calamity
to draw attention to their calamity of focus. So, while Chinese related terms feature prominently
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in many of the clusters of hashtags in this period, there is also a distinct cluster of hashtag usage
that is critical of the Chinese government.

First Period, Syrian Civil War Cluster

The next cluster of interest is a cluster that features content centered on the Syrian Civil War.
At first glance, this is already a strange cluster to have in a data set that was collected based on
COVID-19 tweets; there is not an obvious connection between the two entities beside the fact
that they are both significant, contemporary calamities. Additionally, the cluster has a high user
ratio score, meaning different user accounts are using different hashtags. So, it would seem there
is actually a diverse base of users supporting the different hashtags, but the content is almost
solely focused on the Syrian Civil War. The following table, Table 4.4, displays some of the
salient hashtags from the cluster.

Period 1, cluster 13: Syrian Civil War

Most Used Hashtags
Number of
Uses

Hashtag with Highest
Original User Ratio

User
Ratio

Hashtags with
Lowest User Ratio

User
Ratio

CORONAVIRUS 38642 BILLGATES 0.955 AssadGenocide 0.122
CHINA 10509 Nation 0.944 Assad Torture 0.123
WUHAN 2397 ACTUALIZACIÓN 0.929 Chemical Assad 0.123
NCOV19 1543 LAMORGESE 0.927 TheResistance1776 0.123
IndianArmy 1316 FAKENEWS 0.908 AssadCrimes 0.123
ALERT 1294 CINA 0.899 PutinAtWar 0.124
BIOWEAPON 992 SINGAPORE 0.896 WhiteHelmets 0.125
Syrie 981 BIOWEAPON 0.860 InfoWars 0.215
VIRUS 910 BEIJING 0.859 TBT 0.233
AssadGenocide 831 ALERT 0.850 VIRUSCORONA 0.241

Table 4.4: Hashtags from period 1 cluster 13, which has content and some hashtags devoted to the Syrian Civil War.
Many of the hashtags within the cluster have non-overlapping users and are often all caps versions of more well known
hashtags.

The hashtags present in this cluster differ from hashtags in other clusters. For one, many
of the hashtags in use are all caps versions of other hashtags, such as ‘#CORONAVIRUS’ for
‘#coronavirus’. Second, those hashtags which have very little overlap are almost all of the
all caps variety while those with much less user overlap are more widely used and recognized
hashtags, like ‘#WhiteHelmets’. To get a better idea of the usage of the hashtags present in this
cluster, the text co-occurring with the hashtags can be analyzed. The following figure, Figure
4.12, displays a word map for the commonly used text that co-occurs with the hashtags in this
cluster.
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Figure 4.12: Word map of commonly occurring phrases and words from period 1, cluster 13. Much of the verbiage
seems aimed at directing users to links to support various parties involved in the Syrian Civil War.

As with the hashtag themselves, the text co-occuring with the hashtags is different from the
other clusters. Phrases like ‘link to’ and ‘to help’ feature prominently in the accompanying text
and the accompanying text is much more focused in the primary topical area of the cluster than
other clusters. Additionally, the text is multi-lingual in that there are mostly English words,
but also words from Spanish, French, and others. So, from the text, these hashtags are used to
promote awareness of the Syrian Civil War and to draw users to websites to provide support to
various organizations involved in the Syrian Civil War. Thus, these hashtags seem to be aimed at
using the COVID-19 pandemic to draw user interest to the Syrian Civil War. Additionally, it is
also interesting to note that while the text is very uniform in its drawing attention to the Syrian
Civil War, the user base is actually very diverse. This cluster has the most diverse user base of
any cluster in the first time period. So, these results would suggest that while there is a diverse
user base for this cluster, that this diversity is artificial; the users that use the hashtags within this
cluster are probably related and possibly being centrally coordinated. At any rate, it is clear from
the results that the hashtag usage in this cluster is meant to use the COVID-19 pandemic to draw
attention to an entirely different calamity.

119



Second Period, Online Education Cluster

Another cluster of interest is a cluster of hashtags that only exists in the second time period and
focuses exclusively on online education-related hashtags. This cluster contains relatively few
hashtags (37 in total) that all relate to online learning. It also exists only in the second period
when most of the world entered some form of lock-down to slow the spread of the coronavirus.
Despite the few number of hashtags in the cluster, this cluster has the most diverse user base in
the second period and has all of its hashtags generally having a diverse usage (the lowest user
score for a hashtag in the cluster is 0.619). The following table, Table 4.5, displays the some of
the salient hashtags from the cluster.

Period 2, cluster 13: Online Education

Most Used Hashtags
Number of
Uses

Hashtag with Highest
Original User Ratio

User
Ratio

Hashtags with
Lowest User Ratio

User
Ratio

education 9817 child 0.967 Education 0.619
onlinelearning 4386 teaching 0.907 Learning 0.694
edtech 4673 AcademicChatter 0.907 STEMeducation 0.712
college 3530 college 0.901 EdChat 0.714
AcademicTwitter 3606 student 0.899 intled 0.734
distancelearning 3505 virtuallearning 0.886 highered 0.739
AcademicChatter 3204 universities 0.879 edtech 0.751
edchat 3594 AcademicTwitter 0.876 HigherEd 0.761
online 3235 students 0.874 university 0.774
STEM 2936 distancelearning 0.867 education 0.777

Table 4.5: Hashtags from period two cluster 12 which focus on online education. The hashtags used in this cluster
have a diverse user base and are focused in that there are no hashtags that are not easily identifiable as being education-
related in the cluster.

As was mentioned previously, all of the hashtags in this cluster relate to education, especially
online education, and have diverse user bases. In order to better understand the nature of the
usage of the hashtags we turn to the words that co-occur with these hashtags. The following
figure, Figure 4.13, displays a word map for the frequently used words and phrases from the
cluster.
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Figure 4.13: Word map for commonly used words and phrases present in cluster 12 from period 2, which has education
hashtags. The verbiage is a mix of primarily English and French and has many phrases relating to school closures and
new school hygiene policies.

Despite the hashtags all being in English, there is a surprising amount foreign language text,
especially French, that co-occurs with these hashtags. Much of the text relates to the closing of
schools, and new health-related procedures for schools. These hashtags were used not only to
promote online learning solutions and products but also to advertise moving of courses to online
and new school-related health procedures. So, this cluster highlights the use of hashtags in order
to inform groups of users about both relevant happenings as well as education alternatives during
a pandemic. In that sense, this cluster differs from many of the other clusters in that it focuses
note only on different content but also seems more aimed at a sharing of non-partisan information
to users.
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Comparison of U.S. Politics Focused Clusters

Finally, the U.S. politics focused clusters from periods one and three are analyzed to both under-
stand their content and how the discussion topic of U.S. politics has changed over the course of
the COVID-19 pandemic. In the first period, the U.S. politics focused cluster is slightly above av-
erage in terms of the user base diversity and has a relatively large number of hashtags at 343. The
following table, Table 4.6 displays the salient hashtags from the cluster. Additional examples of
the hashtags from both time periods U.S. politics related clusters are available in the appendices
(Table B.5 in Appendix B).

Period 1, cluster 6: U.S. Politics

Most Used Hashtags
Number of
Uses

Hashtag with Highest
Original User Ratio

User
Ratio

Hashtags with
Lowest User Ratio

User
Ratio

MAGA 13842 OpenBorders 1.000 hillaryemails 0.008
Trump 11976 Newyork 0.999 HAction 0.018
FakeNews 9905 TheGreatAwakeing 0.994 StopTheMadness 0.048
AmericaFirst 9150 DemCast 0.985 bluelivesmatter 0.062
QAnon 8456 ThesePeopleAreSick 0.982 ImpeachTrump 0.105
GatesFoundation 7768 GatesFoundation 0.981 TRoom 0.106
Dobbs 7752 IngrahamAngle 0.980 ABQ 0.135
Newyork 7131 TrustThePlan 0.960 rockoftalk 0.135
FoxNews 6209 VoteBlueToEndThisNightmare 0.959 NM 0.140
FreeZeroHedge 5736 JoeBiden 0.955 Galaxy 0.148

Table 4.6: Hashtags from period one cluster 6 which focuses on U.S. Politics related clusters. There is a mix of
hashtags associated with political news, political personalities and prominent politically-based conspiracy theories.
The hashtags from this cluster also have a wide range of user bases in terms of the uniqueness of the users that use the
hashtags

The hashtags are a mix of political commentary, hashtags related to prominent political fig-
ures, and hashtags typically related to conspiracy theories (i.e. ‘#QAnon’). Some of the most
used hashtags within the cluster relate directly to current U.S. President Donald Trump (i.e.
‘#MAGA’ and ‘#Trump’) while some of the most diverse hashtags in the cluster are anti-
President Trump (i.e. ‘#VoteBlueToEndThisNightmare’ and ‘#DemCast’). It is also interesting
to note that the two hashtags with the least diverse user base — which have scores well outside
the inter-quartile range of user scores for the cluster — have only one user who posts both hash-
tags, 119 and 56 times respectively. So, the cluster contains various hashtags related to various
elements of U.S. Politics, including those which are generally associated with partisan content.
Thus, in some respects, as with the Syrian War Cluster this cluster contains hashtags which are
attempting to use the COVID-19 pandemic in order to draw attention to certain political views
or ideas.

To get a better idea of the hashtag usage in the first period’s U.S. Politics cluster, I analyzed
the text which co-occurs with the hashtags. As with the previous analyses of other clusters, the
following figure, Figure 4.14, displays the word map for the co-occurring text.
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Figure 4.14: Word map of commonly occurring phrases and text that co-occur with hashtags from period 1, cluster 6,
which is composed of U.S. politics related hashtags. There is a wide range of verbiage employed in the cluster, with
much of it focusing on the COVID-19 pandemics origins in China and its subsequent spread.

Generally, no phrase or word is particularly dominant in this cluster except for ‘the coro-
navirus’ itself. Much of the text mentions the origin of the pandemic in China as well as the
global spread of the virus. In this first period U.S. politics cluster, much of the verbiage centers
around the origin of the virus and its possible effects. So, much of the discussion from politically-
connected hashtags during the first period focuses on China’s role in the origin and spread of the
COVID-19 pandemic.
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Turning to the third period U.S. politics focused cluster, there are similar usage patterns
among the hashtags. The following table, Table 4.7, displays the salient hashtags from the third
period U.S. politics cluster.

Period 3, cluster 5: U.S. Politics

Most Used Hashtags
Number of
Uses

Hashtag with Highest
Original User Ratio

User
Ratio

Hashtags with
Lowest User Ratio

User
Ratio

Trump 189109 Satanism 0.988 hillaryemails 0.030
FakeNews 74076 DeutscheBank 0.987 PoliticalViews 0.037
MAGA 70999 Morons 0.986 HAction 0.040
FoxNews 67531 Socialists 0.981 drudge 0.051
WWG1WGA 49348 ShutItDown 0.978 slate 0.064
KAG 48339 AlexJones 0.977 newsabq 0.065
Trump2020 46790 2ndAmendment 0.971 abqfm 0.067
OneVoice1 43457 hypocrisy 0.969 rockoftalk 0.076
QAnon 41446 DrainingTheSwamp 0.960 NewsVideo 0.079
CoronavirusUSA 34819 Bullshit 0.960 bluelivesmatter 0.083

Table 4.7: Important hashtags from period 3 cluster 5 which has U.S. Politics related hashtags. As with other U.S.
politics clusters, this cluster is a mix of hashtags from political news sources, political personalities, and politically-
motivated conspiracy theories. Relative to the first period’s U.S. Politics cluster, there is an increase in the use of more
politically inflammatory hashtags.

As with the first period’s U.S. politics cluster, many of the hashtags surround political com-
mentary, politically-motivated conspiracy theories, and high profile politicians. Unlike the first
period, however, the hashtags with the lowest user scores have larger users bases (i.e. 1 unique
user versus 7 for the lowest scoring hashtag). There is also an increase in the number of hashtags
being used, 343 in period one versus 610 in period three. To get a better sense of the differences
between the two periods, the verbiage of the text co-occurring with the hashtags was then ana-
lyzed. The following figure, Figure 4.15, displays a word map of the commonly used phrases
and words from the cluster
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Figure 4.15: Word map of the commonly used phrases and words from period 3 cluster 5, which consists of U.S.
politics related hashtags. Much of the verbiage focuses on personalities, like President Donald Trump or Bill Gates
who has been erroneously linked to the COVID-19 outbreak by conspiracy theories.

In this time period phrases surrounding personalities become much more used, most espe-
cially President Donald Trump. Other personalities like Bill Gates and Joe Biden are also fre-
quently mentioned in the political hashtag tweets. So, from the first period to the third period,
much of the verbiage shifts from a focus on the virus’ origins in China and its spread, to per-
sonalities who are often political in nature or who have been linked to the coronavirus, even if
erroneously, such as Bill Gates. So, overall there is a shift in the focus of the verbiage paired
with the U.S. politics hashtags over the course of the pandemic. This shift generally goes from
an external focus to an internal focus relative to the United States.

Finally, to get a more complete sense of the differences between the period 1 and period
3 clusters, we directly compare the membership of these two clusters. The user base overlap
between the two time periods is small; only 8% of the union of the two time periods’ users are
present in both time periods. These users are generally high profile users like politicians or news
sources. There is also a 31.8% overlap in the hashtags used between the two time periods. To get
a sense of the differences in membership between these clusters, I analyzed the most important
hashtags that exist in only one of the two clusters. It should be noted that many of the hashtags
that exist in only one cluster do exist in the other time period that their cluster does not belong
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to, but not within the U.S. politics cluster of that time period. The following table, Table 4.8,
displays a side-by-side comparison of the hashtags between the two clusters.

Period 1 Only
Hashtags

Number of
Uses

Period 3 Only
Hashtags

Number of
Uses

Period 1 Only
Hashtags

User
Ratio

Period 3 Only
Hashtags

User
Ratio

coronavirusaustralia 35561 smartnews 28748 openborders 1.000 morons 0.986
newyork 7131 5g 27165 newyork 0.999 socialists 0.981
racism 5016 america 18568 thegreatawakeing 0.994 shutitdown 0.978
censorship 2426 oann 16456 bias 0.946 2ndamendment 0.971
thegreatawakeing 2017 pressbriefing 11899 virginia 0.943 hypocrisy 0.969
coronovirus 1829 new 8650 trumpbudget 0.939 justasking 0.959
trumpbudget 1689 nyt 8276 chaos 0.939 nyt 0.959
democracy 1613 deepstate 7982 confirms 0.926 senatorforsale 0.958
zerohedge 1574 senatorforsale 7389 lnpfail 0.923 justsaying 0.956
iran 1546 americans 7113 earthquakes 0.922 antivaxx 0.955

Table 4.8: Comparison of the important hashtags that either in the U.S. politics cluster in period one or period three,
but not both. Generally, there is an increase in conspiracy-related hashtag and inflammatory hashtag usage from period
1 to period 3.

There are some distinct differences in those hashtags only used in one of the clusters and not
in the other. First, the salient period one only hashtags feature Australian-related hashtags like
‘#coronavirusaustralia’ and ‘#lnpfail’ which are not in period 3. Also, there is a rise in the use
of conspiracy-related hashtags in the third period only hashtags, such as ‘#5g’, ‘#deepstate’,
‘#antivaxx’ and more inflammatory hashtags like ‘#morons’ or ‘#senatorforsale’. So, there is
not only a regional shift in terms of the difference in the U.S. politics hashtags between periods
one and three, but also one toward more polarizing and contentious hashtags over time as well.

Overall, the cluster of U.S. politics-related hashtags differs over the course of the pandemic.
The use of some hashtags (approximately a third) remains the same, but the verbiage associated
with those hashtags changes from a spread of the disease and Chinese focus to a personality
and conspiracy-theory focus. Additionally, the hashtags used in only one time period also show
some distinct differences between the time periods. So, while an easily defined topical discussion
characterized by the hashtags being used can be persistent over the course of the pandemic, the
nature of that topical discussion cluster changes. It is also worth noting that known conspiracy
theory related hashtags are always present in the U.S. politics cluster, which demonstrates an
strong connection between the two over the course of the COVID-19 pandemic.

4.4 Discussion

There are several findings from this study and results to inspire future research. First, through
a scalable technique, like MVMC, it is possible to extend multi-view clustering to a task like
clustering hashtags in large-scale social media data. Large scale social media data often requires
clustering of tens or even hundreds of thousands of objects and the ability to handle partially
incomplete data. The MVMC procedure can successfully deal with both of these conditions in
the data and produce meaningful clusters. Use of the MVMC technique also found that certain
views, in their current form of feature representation, like URLs which co-occur with hashtags
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in tweets were not useful in finding a cluster structure in the hashtags. Additionally, the MVMC
technique converged in every case and converged in less than eight iterations which, based on
previous empirical findings, support the belief that there is a cluster structure present in the
hashtags. That is to say that usage of hashtags is not uniformly at random and that groups of
hashtags tend to be used in similar fashion for similar purposes which supports the idea of using
hashtag clusters to understand conversation topics. Also the use of multi-view clustering on
hashtag can ameliorate problems with previous attempts to cluster hashtags based on just one
view. For example, incorporating text and shared users can overcome the observed phenomenon
where two hashtags are very related in usage, and should be clustered, but are never used by
the same users. Thus, through a technique like MVMC it is possible to incorporate all of the
previous research on clustering hashtags, that have used co-occurring text or users, into one
cohesive model and clustering.

Second, hashtag usage patterns during the COVID-19 pandemic displayed dynamic behavior
at both the individual and cluster levels. While the data collected is certainly an incomplete
picture of the discussions happening on twitter due to API restrictions and the terms used to
create the data, it is still large enough to offer some insights. From the early days of public
awareness about the pandemic in February of 2020, there was an increase in the number of
unique hashtags being used and the the number of unique users participating in the COVID-19
discussion on twitter. The usage patterns of hashtags, however, varied over the course of the
pandemic with there being an initially high rate of hashtag usage that drops when the number of
unique users increase, and then increases again as the number of unique users levels of in late
March/ early April. This suggests that when a major exogenous shock happens to social media
users, like a pandemic, there will be an initial phase of interaction without hashtags, and then a
move to start re-using hashtags, likely as a tool to aid in finding and participating in discussions.

At the cluster level, the data showed there were three main periods of clusters of hashtags
present in the data. The daily hashtag clusterings could themselves be clustered into three distinct
time periods of clusterings based solely on the pairwise similarity between the daily clusterings.
In general, the cluster structure of hashtags went from a large number of small clusters to fewer,
larger clusters and then back to smaller more numerous clusters. This macro temporal pattern in
the cluster structure mirrors those findings from the use of individual hashtags and supports the
conclusions that there was a surge in COVID-19 twitter discussion which produced an interme-
diary period of hashtag usage which then settled into a new pattern of hashtag usage different
from what was observed prior to the user surge.

Using the knowledge that the daily hashtag clustering breaks into three periods, I then created
an ensemble clustering for each of these periods. This ensemble clustering allows for a clustering
analysis of a prototypical clustering for the entire time period. The results of the analyses of these
ensembled clusterings produced some interesting insights into the nature of some of the topical
discussions happening during the pandemic. Firstly, there are some topics which have been
persistent over the course of the pandemic, like commerce, the economy, U.S. politics, and news.
Other topical groups like online education or negative-sentiment discussion about the Chinese
government are more transitory over the course of the epidemic. From these clusters it was also
observed that some topical groups are intending to direct COVID-19 discussion to other topics
like the Syrian Civil War or protests in Hong Kong. So, it would seem from the nature of the
clusters present that there is the presence and use of hashtags that are meant to use the COVID-
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19 pandemic to draw attention to other causes or ideas. So, hashtags can not only be a means
helping users to find and participate in discussions but also as means of shaping user engagement
and the discussions themselves.

From the results presented in this chapter there are several avenues for future research. First,
this study focused on the use of hashtags in order to understand topical discussions taking place,
which naturally discounts users who do not use hashtags. As was seen in the data section, there
is a sizeable amount of the population of users that are posting content related to the COVID-
19 discussions that do not use hashtags. So, a future area of research would be to look more
broadly at the concepts that users are employing in their tweets. So, instead of just clustering
on hashtags, one could look at clustering on hashtags and topical labels from something like
the tweet text. Second, for the multi-view clustering of large scale clustering of hashtags in
social media data there is a need for future research on the appropriate views and how to feature
engineer those views to be useful. The URLs view of the data ended up being unhelpful for
the found clusters, and this seems to be due in large part to the fact that there was very little
overlap on exact URLs, due to things like URLs including query terms or from the inability to
resolve shortened URLs. So, there were situations in which essentially the same story or piece of
news was used with two different hashtags in two different tweets, but because the URLs were
not exactly the same, those hashtags were not recognized as being similar by the method. So,
a means of processing the URLs to do something like just using the top level domains should
be tried in future work. Additionally, previous research on misinformation during the COVID-
19 pandemic has demonstrated that it can spread quickly by mechanisms like retweeting. It
would be of value to create a tweet type view to characterize what type of tweets are being used
with certain hashtags. Such a view may help with distinguishing between clusters of hashtags
used for misinformation versus those used for more legitimate information. Second there is also
potential for future research in better cleaning and representing real-world data for multi-view
clustering. For example, the tweets used in this study were not filtered by language. Performing a
filtering step like only using English-language tweets could lead to more nuanced and meaningful
clusters. Additionally, I adopted a simple and scalable graph learning procedure to form the
view graphs for multi-view clustering of this data due to scalability issues with many of the more
sophisticated graph learning procedures. Thus, an important avenue for future research is to find
a graph learning procedure for MVMC that can better fit the intrinsic structure of the data, but
that is also scalable to hundreds of thousands of entities. Finally, the data used in this study
was only a sample of the twitter data pertaining to COVID-19. It would be interesting to see
if different COVID-19 twitter data yield the same results and if there are differences between
different social media platforms that also employ hashtags.
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Chapter 5

Case Study: Characterizing Communities
of Malware Use

In this chapter, I use the previously described multi-view clustering techniques to analyze mal-
ware samples. Some of the most destructive use of malware has been by threat actor groups
[120]. These threat actor groups can be considered a special type of social community where the
community often has specialized knowledge and engages in particular behaviors. In this chapter
multi-view clustering techniques are used to analyze the community structures of threat actor
groups by their malware usage. I show that the used of the Hybridized technique of Cross-View
Influence Clustering (CVIC) provides the best ability to identify communities that mirror the
threat actor groups. I also demonstrate that the use of hybrid, late, and intermediate multi-view
clustering techniques outperform earl integration multi-view clustering.

5.1 Background

Malware continues to be one of the most prolific and destructive threats to cyber systems. Mal-
ware is also often a tool of choice for threat actor groups that seek to compromise various cyber
systems [120]. The volume of malware produced continues to accelerate resulting in thousands
of new samples of malware being discovered everyday. The vast majority of malware samples
are actually variants of existing malware, produced by transforming or obfuscating an existing
sample in such a way that it can evade detection by security products and other defenses. As
such, many malware samples could be characterized as being a malware community or family
with distinct relations between samples. Furthermore, many malicious actors employ different
types of malware (i.e. Worms, Trojans, Viruses, etc.) that have certain distinct patterns in their
features that can aid in identifying which actor a malware sample may have come from [29].
So, while there are millions of malware samples, they tend to congregate into families which
may only be used by a certain threat actors. Consequently, the categorizing of related malware
into possible threat actor groups and understanding relationships between the malware used by
different threat actors can aid malware analysts and security operations in prioritizing responses
and defenses for new malware-based attacks.

While there are a number of existing techniques for analyzing malware [149], one approach
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that has not been explored significantly involves analyzing features from malware samples from
a multi-view perspective. That is to say there are many types of features, modes or views, from
static to dynamic or hybrid, that could be used to identify different types malware and possibly
characterize them into threat actor groups. Most work on using these various features of the mal-
ware to date use an early integration approach with these features. Furthermore, most research
on identifying and characterizing malware samples focuses around placing malware samples into
malware families; few works to date try to identify the threat actor(s) that are using and devel-
oping the malware [149]. In this work, I approach the task of characterizing samples of malware
into possible threat actor groups, without any prior knowledge of possible threat actor groups,
as an intermediate or late integration multi-view, clustering problem. I demonstrate both the
effectiveness of intermediate, hybrid, and late integration multi-view approaches to clustering
samples of malware into threat actor groups and multi-view clustering techniques using several
hundred heterogeneous malware samples from three different threat actors: Dukes, APT-1, and
Deep Panda. The main contributions of this chapter are summarized as follows:
• The performance of the different multi-mview clustering algorithms is demonstrated using

heterogeneous malware samples from three different malware threat actors. The hybrid
integration technique of CVIC produces the best communities from malware samples in
terms of the samples’ threat actor groups.

• Clustering malware samples using intermediate, hybrid, or late integration multi-view ap-
proaches, rather than early integration, consistently shows better results in malware threat
actor characterization.

The chapter is organized as follows: In the next section I review some of the work related to
characterizing malware families and multi-view clustering. In Section 3, I outline the methods
used to extract features from malware samples and to create graphs the clusterings from the
features. In Section 4 I present the results of testing the algorithms on malware data. Finally,
the last section concludes with some reflections on the results and presents avenues for future
research in multi-view clustering of malware.

5.1.1 Related Work on Unsupervised Learning and Malware

The characterization and identifications of malware samples remains an active area of research.
Many of the current methods today break down into whether they employ supervised or unsu-
pervised machine learning and what types of features they use [149]. In terms of the features
being used to characterize or identify malware, most features come from either static or dynamic
analyses of the malware [149]. Dynamic features tend to focus on malware behavioral patterns,
whereas static features tend to be aspects of the malware sample itself [149]. One of the most
promising set of static features from a malware classification standpoint were those proposed by
Berlin and Saxe in [111]. These features have been shown to give state of art performance in
supervised learning of malware samples [111] as well as being useful for characterizing mal-
ware samples within a threat actor group in an unsupervised learning paradigm [36]. Despite
the prevalence and variety of malware features available, most approaches in use today use an
early integration approach with the different views of the data. That is to say, current meth-
ods take all of the views of features for identifying the malware and concatenate (typically with
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some kind of normalization or feature engineering across views) all views of the features into
one feature vector and then feed those vectors into standard machine learning algorithms. So,
while characterizing malware samples remains an important problem for things like cybersecu-
rity countermeasure or attribution, nearly all of the clustering of malware samples is done as a
standard clustering problem.

Outside of early integration approaches there have only been couple of techniques that have
been employed to cluster cybersecurity threats. Most of these techniques employ some kind of
cluster ensembling [18]. One recent paper used modified versions cluster ensembling algorithms
originally proposed by Strehl and Ghosh in [119] to combine some static and dynamic mal-
ware features for better malware clustering [62]. Another technique used features from Phishing
websites along with the malware present within the Phishing website to characterize Phishing
websites into communities and even assign attribution [159]. It should be noted however, that
while their proposed technique included cluster ensembling, it is actually an early integration
technique for multi-view clustering. The authors concatenated the features from the Phishing
websites and malware into one set of features, and then used cluster ensembling. Overall, there
has not been much employment of multi-view clustering from late or intermediate integration
paradigms for analyzing malware.

In summation, the characterizations of malware samples whether into families or into more
complex groups like threat actors remains an area of active research, and one that uses many
different types of data to characterize and identify malware. There has been little work analyzing
malware data from a multi-view data perspective using other than early integration techniques or
exploiting both clusterings and graphs within the same multi-view clustering algorithm.

5.2 Method

The overall method of characterizing malware samples consists of three, main steps: 1) Extract
the different features of the malware using the static analysis from Berlin and Saxe [111]. 2)
Find the cluster assignments and nearest-neighbor graphs for each of the modes of the data. 3)
Use a cross-diffusion, influence process to update the cluster assignments for each sample, and
cluster the resultant bipartite graph for the final cluster assignments (i.e. CVIC). The first steps
are existing means of dealing with malware data and graph learning respectively, so I summa-
rize them in the Background section for completeness. The third step of Cross-View Influence
Clustering is summarized in section subsection B. The following figure, Figure 5.1, graphically
summarizes the entire method for characterizing communities in the malware samples.

The use of the CVIC technique from Chapter 2 is empirically driven. First, CVIC, along
with IPMMC, were the only two algorithms found to be robust across all of the social-based
data scenarios. And, since clustering malware samples does not match of the social-based data
scenarios seen before, I have opted for one of the more robust empirically robust techniques.
Second, as will be seen in the results, section, CVIC produced the best performance across all of
the techniques.
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Figure 5.1: Graphical Overview of the Methodology for clustering malware samples into threat actor groups. In step
A I extract four different sets of features from the malware samples using the methodology originated by Berlin and
Saxe [111]. Following the feature extraction, In B I use a Mod-kNN procedure to find both cluster assignments and
nearest neighbor networks, G, for each of the sets of features. Then, in C-E I use hybrid integration methodology,
CVIC, which is based on concepts from network diffusion and social influence to get the final cluster labels for the
malware samples.

5.2.1 Background
Since the hybrid integration approach relies on both clustering assignments and a graph repre-
sentation for each view of the data, I now detail how view clusterings and graphs are obtained
in this section. For the sake of completeness, I also provide information on how the Berlin and
Saxe [111] features are extracted from malware samples.

Obtaining Features from Malware Samples

The features from Berlin and Saxe come from a deep neural network-based extraction method
that uses four static feature domains. In previous works these features have been show to achieve
high accuracy malware classification results [111], as well as provide insight into malware com-
munities present in a threat actor group through clustering [36]. The four categories of features
are Byte Entropies, Import Address Table, String Hashes, and Portable Executable (P.E.) head-
ers. The Byte Entropies are produced by concatenating the row values of a two-dimensional
histogram constructed from byte-entropy value pairs of all bytes in a given 1024-byte sliding
window. New entropy values and byte-entropy pairs are computed for each window, which tra-
verses the file using a step size of 256 bytes. The Import Address Table Features are generated
by hashing library and library function names to the range [0, 255), and measuring the frequency
counts of each resulting hash value. The String Hashes features are produced by by hashing all
printable strings of length 6 or more (in the ASCII printable range) to the range [0, 16), pair-
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ing each string’s hash with the log of its length, constructing a two-dimensional feature vector
mapping those hash value / log-length pairs, and then concatenating the rows of the histogram.
Finally, the P.E. Headers is produced by extracting numerical features from a file’s Portable Exe-
cutable packaging and aggregating those features into a 256-length array. In total, four different
sets of features that are all 256 dimensional vectors of non-negative, integer values are extracted
in the first step.

Obtaining k-Nearest Neighbor Graphs and Cluster Assignments for Each Mode

Since we are interested in the clusters present in the data, we want graphs (and clusters) that
highlight any cluster structure present in the data. One way of doing this is to explicitly learn
graphs that emphasize in clusters in the data. So, for the first step of finding clusters and nearest
neighbor graphs within each view of the data, I employ the modularity k-Nearest Neighbor graph
(mod-kNN) procedure [110], [26]. At a a high level, mod-KNN method iterates through various
possible numbers of neighbors for each vertex, k, and selects that k which produces the most
modular graph, relative to a null-model, random graph produced on the same set of vertices. It
then outputs this graph and the clustering assignment for each of the vertices that maximizes the
modularity. Modularity in this case is the network modularity as described in [94]:

Modularity(G) =
1

2n

∑
ij

[Aij −
deg(i)× deg(j)

2n
δ(ci, cj)] (5.1)

where v is the number of vertices in the graph, and c are the cluster assignments of the
vertices. Since it is known that random graphs can give rise to modular structures, I subtract
the modularity obtained from a random graph with the same number of vertices and edges from
the modularity value from clustering the derived graph. I further incorporate the changes to the
original algorithm from other works, namely to use asymmetric k-NN graphs for each value of
k (wherein an edge exists between two nodes, u and v, if either u ∈ kNN(v) or v ∈ kNN(u))
and the Louvain method for clustering the kNNs [25], [26], [15]. Finally, I note that the Louvain
algorithm, while very fast for clustering a graph, is also a greedy, stochastic algorithm that can
lead to different clustering outcomes for a graph depending on the initialization of the algorithm.
So, I also run the Louvain algorithm a number of iterations on each asymmetric kNN graph and
evaluate that value of k by the average modularity of each of the iterations of Louvain clustering
[15]. This is done to provide for greater stability in both the selection of the kNN graph and
the resulting cluster assignments by the procedure. The psuedo-code of my implementation of
network construction by mod-kNN is detailed in algorithm 12.
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Algorithm 12 Modularity k-Nearest Neighbor Graph
input: Distance or Affinity Metric, s, number of iterations to run Louvain method, liter
output: Optimal k-Nearest Neighbor Graph, G∗, and sub group assignments C(G∗).
for i = 1 : blog2(n)c do

k ← 2i

Gk ← kNN(s, k)
Gk ← maximum(Gk, G

T
k )

Gr
k ← randomize(Gk)

for l = 1 : liter do
Cl(Gk)← Louvain(Gk)
Cl(G

r
k)← Louvain(Gr

k)
end for
Modularityk ← 1

citer
∗
∑

(Modularity(C(Gk))− 1
citer
∗
∑

(Modularity(C(Gr
k)))

end for
k∗ ← argmaxkModularityk
G∗ ← Gk∗

C(G∗)← argmaxl Cl(G
∗)

return C(G∗), G∗

In Algorithm 12 an asymmetric kNN graph is created by doing a point-wise maximization
with the transpose of the raw kNN graph which is obtained through any subroutine that finds
the k-Nearest Neighbors of each data point given a means of calculating similarity or difference
between the data points, kNN(∗, ∗). In this way, the graph becomes undirected which is critical
for some algorithms that I investigate in the results section. Additionally, while I have repre-
sented the iterations of the different Louvain clusterings of the kNN graph within a for loop,
this operation can easily be parallelized for performance. Finally, I evaluate the modularity of
each possible value of k by using the average difference in modularity, but select the final cluster
assignments for the final k, k∗, by selecting these assignments from the Louvain iterations that
gave rise to the best difference in modularity.

5.2.2 Cross-View Influence Clustering

In this section, I will outline in more detail the CVIC algorithm originally proposed in Chapter 2.
Given a graph representation of each view of the data along with the optimal cluster assignments
for each mode, I use a cross-diffusion process [134] in a social influence model [51] to get the
final cluster assignments for each sample. Cross-View Influence Clustering (CVIC), iterates
through two main steps: 1) update the cluster assignments for each view by diffusion in a social
influence model with the cluster association matrix and view graphs. 2) Combine the updated
cluster assignments from each view into a new cluster association matrix. Once the iterations
are complete, the result is a new cluster association matrix that relates each entity to each of the
clusters. This matrix naturally forms a bipartite graph of all of the entities by the cluster labels,
which can be clustered by any bipartite graph clustering technique.

For the first step in CVIC procedure, I use a diffusion model inspired by social influence
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models. Social influence models are often used to simulate the propagation and formation of
belief clusters within social groups [49], [51]. As I am interested finding clusters of malware
samples, I use view clusterings as ‘beliefs’ and the modal graphs as the means by which sam-
ples may influence each others’ beliefs. In particular, I use the Friedkin social influence model
described in [51] due to its demonstrated utility and stability in terms of outcomes. Friedkin’s
social influence model is given by:

Cv
t+1 = αW viewvCt + (1− α)C0 (5.2)

where C is an object by cluster association matrix of size number of malware samples by
total number of clusters across all modes. A cluster association matrix is an object by cluster
matrix whose entries represent how strongly a particular object is related to a particular cluster.
W v is the row-normalized modal graph from view v and α is a influence parameter that balances
the strength of influence over belief in cluster labels coming from neighbors in a view versus the
initial beliefs in clustering labels. It should be noted that this influence model closely resembles
those used in metric learning, especially for image retrieval [43].

After having performed the influence step for each mode, I then need to combine the view
clustering association matrices, Cv

t+1, to create singular cluster association matrix Ct+1. To do
so, I adopted the simple averaging technique used in cross diffusion [134] and bipartite graph
partitioning for ensembling [47]:

Ct+1 =

∑m
v=1C

v
t+1

m
(5.3)

where M is the collection of modes and |M | is the number of modes. The cross diffusion
process diffuses a graph in each of the modes separately and then uses that newly diffused graph
in all of the other modes than the one which produced it for another diffusion step [43]. In
this way information from mode is spread across all of the modes, and the complementarity of
information between the modes is better used then trying to diffuse information in each mode
separately. The two steps of influence and aggregation are repeated for a specified number of
steps and the resulting cluster association matrix, Cfinal is then clustered as a bipartite graph as
has been done in other cluster ensembling techniques [47], [64]. The pseudo-code of the CVIC
procedure is detailed below, in Algorithm 13
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Algorithm 13 Cross-View Influence Clustering
input: Graph for each view Gv, cluster assignment for each view clustersv, Social influence
effect, α, and number of iterations, iterations
output: Cluster assignments for objects, Co, and for the original clusters, Cc.
for v = 1 : m do

Cv ← cluster association(clustersv)
W v ← row normalize(CvT )

end for
C0 ← concatenate(Cv∀m ∈M)
C ← C0

for t = 1 : iterations do
for v = 1 : m do

Cv ← α×W vC + (1− α)× C0

end for
C ←

∑|M |
m=1

Cv

|M |
end for
Co, Cc ← bicluster(C)
return Co, Cc

As a first step in the algorithm I create cluster association matrices Cv for each view of the
data v for all of the total number of modes m. It is row-stochastic by construction (

∑
iCij =

1,∀j), and in the case of crisp clustering, it will also be a binary matrix with only one entry
per row being equal to 1 and all others being equal to 0. I also transform each graph into a
transition matrix by making it row-stochastic (

∑
iWij = 1,∀j). From there, all of the view

clustering association matrices are concatenated into one cluster association matrix C, which is
of size number of entities by total number of clusters across all modes. This cluster association
matrix then undergoes an iterative two-step process that results in the final cluster association
matrix. In the first step, I use a social influence model to update the cluster associations within
each view of each object by a convex combination of its neighbor’s cluster associations and its
original cluster associations, Cv

i = α×
∑

j∈Nm(i)W
v
ijCj + (1− α)× C0

i , where i is a particular
object and j are the neighbors of that particular object in a particular view, v. Following this
step, I then combine all of the social influence updates into one cluster association matrix. This
cluster association matrix then becomes the input to the next iteration of the social influence
model. After all iterations are finished, I then use a biclustering algorithm such as Bi-Louvain
[155], to cluster the final cluster association matrix. In this way, I follow the same procedure as
employed in cluster ensembling, where the object by cluster association matrix is clustered to
produce a final, more robust clustering [64], [18]. The outcome is then not only the final cluster
assignments for each objects but cluster assignments for the original clusters across all modes.

5.3 Results
In this section, I analyze the community detection properties of CVIC against several other multi-
view clustering techniques. I also look at the multi-view nature of the malware data and the
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robustness of the CVIC algorithm to changes in the user-set hyper-parameters. In order to empir-
ically evaluate the various algorithms I used heterogeneous malware samples from three different
threat actors. The first malware threat actor is Deep Panda, which is a nation-state backed actor
who targets a wide range of industries, including government, defense, financial and telecommu-
nications [5]. In this data all of the Deep Panda malware samples belong to the Sakula malware
family which are variations of remote access Trojan (RAT) tools [40]. The second set of samples
comes from the APT-1 threat actor which uses various types of malware to attack many different
systems in government and industry [29]. The third set of samples comes from the Dukes threat
actor which uses various types of malware to attack various targets in support of espionage and
security policy decision making for a nation-state [45]. In total, empirical testing was done with
2,185 different malware samples with 288 from the Deep Panda group (Sakula malware family),
973 coming from the APT-1 group, and 924 coming from the Dukes group. Within the the Dukes
samples, 83 of the samples have the actual malware family that the sample belongs to (e.g. Cos-
micDukes, PinchDukes, etc.). It should be noted that the types of malware present (i.e. Trojan,
Worm, Virus, etc.) are not necessarily homogeneous within any given threat actor’s samples.
APT-1 and Dukes contain a greater variety of types of malware than do the Deep Panda threat
actor which just has samples from the Sakula family of malware .

5.3.1 Community Detection Results
In this section I analyze how well various means of clustering the malware data can be used to
characterize malware samples into threat actor groups. In order to get as thorough analysis as
possible of detecting threat actor groups from heterogeneous samples of malware, I have have
chosen to use several different multi-view clustering techniques that were used in Chapter 2. The
following table, Table 5.1, summarizes the techniques and the multi-view clustering paradigms
that the techniques come from.

Intermediate
Integration

Hybrid
Integration

Late
Integration

CNDC I
SFI*
SPSL*
CG*
ResK*
IPMMC
NF-CCE*
ETL-MSC*

DISC A*
DISC M*
DISC R*
DICL A
DICL M
DICL AG
DIMC M
MSIM C
CVIC
CNDC C1
CNDC C2

GP-MGLA

CSPA+
BGPA+
LWBG
MCLA+
LWMC
DREC*
LPMMC

Table 5.1: Summary of the multi-view clustering methods used in evaluating the malware samples. Full descriptions
of the methods are available in Chapter 2.

For all of the multi-view techniques the cluster assignments and graphs for each view were
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determined using the mod-kNN procedure, Algorithm 12. This ensured that each technique was
using the same starting basis for a fair comparison and reasonable versions of both the view
graphs and view clusterings. For these experiments, the mod-kNN similarity metric used was the
Bray-Curtis dissimilarity [19], given by:

sij =
|Xi −Xj|1
|Xi +Xj|1

(5.4)

where i and j are two different objects (malware samples) and Xi and Xj are their respective
feature vectors. I also tested Euclidean distance, cosine distance, and the Jaccard Index, but
found Bray-Curtis to give the best results for the mod-kNN procedure with the Berlin and Saxe
malware features.

5.3.2 Graphs Learned From Malware Features

The graphs formed by the mod-kNN procedure from the four different types of malware features
have distinctly different topologies. In order to characterize the topologies the following table,
Table 5.2, summarizes the graph measures for each of the views of the malware data.

Feature Density
Number of
Components

Avg. Clustering
Coefficient Isolates

Average
Degree

Degree
Assortiativity

Byte
Entropies 0.001 1 0.68 0 21.3 0.14

Import
Address
Table

0.022 1 0.79 0 47.8 -0.17

String
Hashes 0.042 1 0.69 0 92.2 -0.084

PE Headers 0.021 2 0.79 0 46.6 -0.122

Table 5.2: Summary of the topological properties of the learned graphs from each of the views of the malware. In each
case, each graph has relatively string community structure, but also wide differences in edge statistics. This would
indicate that the patterns are different between the views of features.

Overall, all of the views have strong clustering coefficients, which correlates with a strong
cluster structure being present in the graphs [94]. From the empirical findings in chapter two,
this high average clustering coefficient also indicates that these graphs should also work well
with a multi-view clustering technique. The graphs are, however, very different in topology with
respect to the degree assortiativity, average degree, and density, despite all being formed by the
same process. These differences in edges statistics would indicate that there are different patterns
of structures present within each of the views. So, combining all of these features together could
obfuscate these view patterns which could be useful for detecting clusters in the samples. So,
this would suggest that the use of multi-view clustering should be successful on these malware
samples. To get a better idea of the differences in the graphs between the different views of the
malware, the following figure, Figure 5.2, depicts the actual view graphs.
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(a) Byte Entropies (b) Import Address Table

(c) PE Headers (d) String Hashes

Figure 5.2: Graphs of the four different views of the malware samples. Vertices in red are the Dukes malware samples,
blue the APT-1 malware samples, and green the Deep Panda malware samples. In all views, the Deep Panda samples
display two distinct communities.

The different view graphs display distinctly different topologies. However, Across the differ-
ent topologies, some distinct patterns emerge from the images. For one, the Deep Panda malware
samples, which are all of the Sakula virus, have two distinct clusters in ever view. This suggests
that even though the Deep Panda samples are all one homogeneous family of malware, that this
malware has some distinct differences within the family. This result is largely consistent with
other analysis of the communities in Sakula virus family of malware [36]. Also, in all views
except the Byte Entropies, the Dukes malware also displays a distinct, large community. Thus,
the different malware manifest community structure differently across the different views.
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5.3.3 Clustering Results
In this section I analyze the ability of the various techniques to cluster the malware samples
into threat actors. Since all current research on malware data represents the samples’ features
as being uni-modal (i.e. takes an early integration approach), I have also chosen to test various
common standard clustering techniques after concatenating all of the modes of features into one
mode. In particular, I create a uni-modal feature representation of each malware sample by
simply concatenating the four Berlin and Saxe feature vectors into one feature vector.

To evaluate the success of the different methods I have chosen to evaluate the clustering
outputs by the Adjusted Mutual Information (AMI) [132] and Adjusted Rand Index (ARI) [69] of
each method’s final clustering with the ground truth threat actor labels of each malware sample.
Both of these measures give an indication of how well each clustering matches the ground truth
clustering, with higher values indicating better performance. Also, I measured each method’s
Silhouette score, which is a measure of both how compact and how separate each cluster is, given
the original feature vectors [109]. The Silhouette score does not rely on ground truth knowledge
of the cluster assignments and is thus regularly used as a means of assessing the goodness of a
clustering method in the absence of ground truth labels. Finally, I ran each method 20 times and
report the average of all of their scores. The following table, Table 5.3 summarizes the results.

Clustering
Technique ARI AMI Silhouette

GP-MGLA 0.2 0.4 -0.51
CSPA+ 0.23 0.37 -0.68
BGPA+ 0.22 0.41 -0.53
LWBG 0.23 0.42 -0.73
MCLA+ 0.26 0.43 -0.46
LWMC 0.25 0.37 -0.47
DREC* 0.3 0.32 -0.51
LPMMC 0.31 0.41 -0.62
DISC A* 0.16 0.31 -0.54
DISC M* 0.2 0.33 -0.28
DISC R* 0.18 0.32 -0.51
DICL A 0.36 0.41 -0.53
DICL M 0.18 0.37 -0.83
DICL AG 0.23 0.39 -0.46
DIMC A 0.25 0.36 -0.61
DIMC M 0.18 0.39 -0.65
MSIM C 0.22 0.35 -0.26
CVIC 0.38 0.45 -0.49
CNDC C1 0.35 0.37 -0.46
CNDC C2 0.38 0.42 -0.48
CNDC I 0.34 0.37 -0.44
SFI* 0.24 0.38 -0.29
SPSL* 0.21 0.25 -0.44
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CG* 0.32 0.39 -0.49
ResK* 0.25 0.4 -0.28
IPMMC 0.23 0.42 -0.51
NF-CCE* 0.23 0.26 -0.097
ETL-MSC* 0.3 0.35 -0.4
k-Means* 0.18 0.17 0.97
Ward
Agglomerative* 0.18 0.17 0.97

mod-kNN 0.12 0.22 0.05
OPTICS 0.01 0.14 0.177
Spectral with
Gaussian
Transformation*

0.01 0.04 -0.39

Table 5.3: Clustering goodness scores for different clustering methodologies on malware samples coming from three
different threat actors. The top 3 performing technique for a goodness score are in green and the best performing
technique is bolded. The partitions from the top are late integration, hybrid integration, intermediate integration and
the bottom are uni-modal clustering techniques, performed on early integration of the modal features. Techniques
denoted with a * require the number of clusters as input.

The clustering goodness test presented several interesting results. First a hybrid integration
method, CVIC, performs the best in terms of finding clusters that agree with the malware fam-
ily labels. Its performance is closely followed by other hybrid integration techniques like the
CNDC family of techniques. Each of these are intermediate integration, multi-view clustering
techniques. It is interesting to note that all of these techniques rely on a diffusion process for
combining the graphs into the view clusterings. Additionally, CVIC along with the CNDC fam-
ily of techniques do not rely on knowledge of the number of families present in the malware.
Thus, CVIC is able to group the malware samples along threat actor lines heterogeneous types of
malware, without knowledge of how many families may be present in all of the malware samples.

Second, in every case, choosing to represent and cluster the malware samples with interme-
diate or late integration approaches as opposed to early integration gives better clustering results.
This is a surprising result as there is nothing a priori that would suggest treating malware in a
multi-view fashion would provide for better malware threat group identification. Furthermore,
Silhouette does not give a good indication of a clustering method’s performance across the multi-
view techniques. When compared to early integration, uni-modal silhouette scores, the clusters
found by the multi-view techniques have almost universally worse Silhouette scores indicating
that they should have universally worse cluster assignments. However, the tests clearly show
intermediate and late integration, multi-view clustering algorithms as being better able to find
threat actor groups in the samples. Furthermore, there is also no trend in the Silhouette scores
within the intermediate and late integration, multi-view techniques; more positive Silhouette
scores do not indicate better clustering results for these techniques. So, the cluster goodness test-
ing indicates that multi-view clustering performs the best at identifying meaningful threat actor
labels from malware samples and that intermediate and late integration, multi-view techniques
always outperform early integration with uni-modal techniques in this clustering task.
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5.3.4 Analysis of Discovered Communities
Having demonstrated the usefulness of CVIC in finding threat actor groups from samples of
malware data, I then analyzed the communities found by the CVIC method. As mentioned in
the method section, after preforming network influence iterations, I clustered the final output as
a bipartite graph with a method that does not require the specification of the number of clusters
(Bi-Louvain [155]). As such, the method will obtain clusters of both the malware samples and
the original clusters found from each view of the malware data. The method may also have a
different number of clusters than number of threat actor groups. The following table, Table 5.4
displays the clusters found by the CVIC method with their membership of malware samples and
view clusterings.

CVIC Cluster
Number of
Malware Samples

Number of
view clusterings

1 674 32
2 617 29
3 365 17
4 242 16
5 173 6
6 114 4

Table 5.4: Numbers of malware samples and clusters from each view of the malware samples in each of the final,
CVIC-derived clusters.

The CVIC with a Bi-Louvain clustering produces roughly double the number of clusters as
malware family labels. The found clusters also display heterogeneity in terms of size of the
clusters with the largest cluster having six times as many malware samples and view clusterings
as the smallest cluster. The differences in cluster sizes are also the same for each of the cluster
constituents; the largest cluster in terms of malware samples is also the largest cluster in terms
of view clusterings, and so on.

Since there is distinct heterogeneity in the CVIC-found clusters, I then analyzed the rela-
tionship between the found clusters and threat actor groups. The following figure, Figure 5.3,
displays the relative number of each threat actor found in each found cluster
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Figure 5.3: Fraction of each malware threat actor found in those clusters obtained by CVIC method.

The majority of APT-1 malware falls into the first, and largest cluster. Since APT-1 makes
up most of the samples across all of the threat actors, it would stand to reason that it would
dominant the larger clusters. More interestingly, the majority of samples between the Dukes and
Deep Panda threat actors break into two clusters. In the case of Deep Panda, previous research on
characterizing communities from malware samples found a similar result of their being actually
two main communities of malware present in the Deep Panda threat group [36]. Thus, it may
be possible that the Dukes and Deep Panda threat actors are more heterogeneous than the APT-
1 in terms of their malware usage. This is an unusual result, since APT-1 and Dukes contain
heterogeneous types of malware in its samples, while the Deep Panda samples are all from the
Sakula family. This result may suggest that even though threat actors may use different tools,
they may also share a lot of code between those tools, resulting in greater or lesser homogeneity
in their malware. Also, this result may suggest that the Dukes and Deep Panda threat actors
could actually be more than one threat actor. Finally, there is an outlier cluster in cluster number
four. This cluster does not contain a predominance of any of the threat actors and may represent
unusual malware samples or a different malware actor entirely.

Since the samples from the Dukes threat actor contains some malware family labels as identi-
fied in [45], I can analyze how the Dukes malware families distribute across the CVIC-discovered
clusters. The following figure, Figure 5.4, displays the relative number of each the Dukes mal-
ware families found in each found cluster.
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Figure 5.4: Fraction of Dukes malware families found in those clusters obtained by CVIC method.

Not unsurprisingly, most of the dukes samples fall within clusters 2 and 3 which contain
most of the dukes samples. However, their distribution is not equal between clusters 2 and 3,
with cluster 2 having most of the family-labeled Dukes malware samples. While its not clear
why this division exists it may be related to when the samples were produced, with those in
subgroup 3 coming from a later time period than those in subgroups 2, since the Dukes family
labels come from a 2015 report on the Dukes threat actor [45] Furthermore, the one sample that
belongs to the MiniDuke family fell into the outlier cluster (cluster 4) along with most of the
PinchDuke samples. PinchDuke was an earlier family of malware used by Dukes which briefly
had some code overlap with MiniDuke and was replaced by a near complete re-engineering of
their malware tools [45]. So, this would suggest that subgroup 4 does indeed contain more of
the anomalous samples across the different threat actors. Overall, it would seem given some of
the family labels from the Dukes threat actor that the relationship between threat actors and the
malware families that they employ can be a complex one.

Since the CVIC method also obtains clusters of the original view clusterings, I analyzed the
relationship between the clusters of the different modes and the found clusters. The following
figure, Figure 5.5, displays the fraction of each mode’s clusters that are present in each of the
found clusters.

144



Figure 5.5: Fraction of each of the modes’ clusters found in those clusters obtained by CVIC method.

Generally speaking, each mode’s clusters are not equally distributed across all of the found
clusters. The first two found clusters contain most of the clusters from all of the modes. This
is not a surprising result, as the first two found clusters contain most of the malware samples
across all of the modes. However, despite the preponderance of the first two found clusters, the
distribution of view clusterings differs across the found clusters. For instance, both the clusters
found from the import address table features and the clusters found from the string hashes have
significantly different distributions of clusters across the found clusters than do those found using
byte entropy and P.E. Header features. Given that found clusters also have different distributions
of malware families, this result implies that there are differences in the modes of the features
between the malware families. For example, cluster one contains mostly samples from the the
APT-1 malware family whereas cluster two contains mostly samples from the Dukes malware
family. These two found clusters also contain a lot of byte entropy and P.E. header clusters but
differ significantly on the string hash clusters and import address table clusters. This may indicate
that even though both of these malware threat actors use many different types of malware that
could be similar in some respects, that their malware can still be distinct in other areas like their
use of strings or import address table entries.

Overall, while the found clusters do generally follow the the threat actor groups there are
some subtle differences between the two labelings as well. For two of the three threat actors,
their found clusters actually tend to break into two main clusters which could indicate some
distinct heterogeneity in those threat actors. Also, not all of the clusters found in each of the
modes distribute the same way across all of the found clusters. This difference indicates that
there are differences between the threat actor groups within the modes as well as across the
modes.
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5.3.5 Analysis of Multi-view Nature of Malware
One of the main findings in the previous section was that clustering the malware samples using
intermediate and late integration, multi-view approaches always produced better clusters relative
to the malware threat actor labels than representing the malware as uni-modal through an early
integration approach. To investigate why this might be, I first investigated how well each mode’s
clusters relate to the threat actors. The following table, Table 5.5 presents the clustering good-
ness scores for each of the view clusterings, as found in the previous analysis by the mod-kNN
procedure, relative to the threat actors.

view ARI AMI Silhouette
Import Address Table 0.19 0.30 -0.85
Byte Entropies 0.17 0.26 -0.57
String Hashes 0.16 0.21 -0.57
P.E. Headers 0.13 0.22 0.19

Table 5.5: Cluster goodness results for each of the Berlin and Saxe feature sets, or modes, of the malware data.

For each view of the malware data, no particular view is especially good at clustering relative
to the threat actors, however, the Import Address Table features do perform as good as the early
integration clustering results. Thus, the Import Address Table features seem to have more relation
to the threat actors than do any of the other sets of features. Furthermore, by concatenating all of
the modes together in an early integration approach, the particular patterns of the Import Address
Table become muddled with all of the other modes’ patterns. In order to investigate this idea, I
then analyzed how similar the clusters from each view are to every other mode. The following
set of figures, Figure 5.6, display the ARI and AMI values for each set of modes.

(a) ARI (b) AMI

Figure 5.6: Comparison of the clusters found within the different modes of the features.

From the ARI and AMI values between the view clusterings, it is clear there is a fair amount
of overlap between the cluster assignments of each of the modes. Most of the modes have ARI
values greater than 0.4 and AMI values greater than 0.5 with every other mode, with the Byte
Entropy features being the only exception. These high values indicate that the clusters for the
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malware samples between each of the modes are reasonably similar. However, the cluster assign-
ments are not identical. This would indicate that using intermediate or late integration approaches
for malware allows for exploitation of the differences in cluster assignments between the modes
in order to produce better, overall cluster assignments. So, while not all modes of the Berlin and
Saxe malware features are as useful as the others in identifying the possible threat actors from
their malware usage, analyzing the data with intermediate and late integration approaches allows
for better threat actor characterization because these methods can better exploit the differences
in the clusters between the modes.

5.3.6 Analysis of User-Set Parameters of CVIC

I now turn to analyzing how robust the CVIC method is to changes in the user set parameters
of the number of iterations and network influence strength, α. Beginning with the number of
iterations to run the CVIC algorithm, I held the network influence strength value constant at
α = 0.9 and ran the algorithm for a number of iterations and recorded the AMI and ARI values
at that iteration. The following plot, Figure 5.7 displays the ARI and AMI values as a function
of the number of iterations of the algorithm.

Figure 5.7: Iterations of the CVIC method versus the clustering goodness relative to the malware family labels

As can be seen from the plot, the algorithm gets within good values of AMI and ARI in only
10 iterations. Furthermore, the algorithm stabilizes to its best AMI and ARI values by around
30 iterations. Thus, the algorithm not only converges to reasonable cluster labels quickly, but is
also stable with the number of iterations.
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Turning to the network influence parameter, α, I ran the CVIC algorithm for various values of
α and fixed the number of iterations at 30. Most diffusion based processes, to include the social
influence one I use in this work, typically have higher values of network influence (α >= 0.7)
[146], [136], [51]. So, I varied α from 0.5 to 0.99. The following plot, Figure 5.8, displays the
goodness of clustering results for the various α values.

Figure 5.8: α values of the CVIC method versus the clustering goodness relative to the malware family labels

From the figure, when α is within normal ranges of 0.75 to 0.95, the resulting AMI and ARI
values remain stable with less than a 0.02 variation in their values. Thus, the CVIC algorithm is
also robust to the selection of the network influence strength parameter, α, as long as the value is
within a reasonable range of 0.75 to 0.95. These results show that while a user must supply some
parameters for CVIC, the algorithm is robust to the user input and can converge to reasonable
cluster results quickly.

5.4 Discussion
This chapter presents the discovery and characterization of heterogeneous malware samples into
threat actor groups from a multi-view, unsupervised learning context. In this chapter I used the
static malware features originally proposed by Berlin and Saxe in [111] to identify families of
malware from three different families: APT-1, Deep Panda, and Dukes. The results of the empir-
ical tests first demonstrated that finding communities in malware samples using intermediate and
late integration, multi-view approaches, instead of early integration approaches, always resulted
in better threat group characterization. I believe this finding is a result of malware development

148



more generally. Since many makers of malware share aspects of code between their different
malware tools or only make small tweaks to a particular module of the malware to evade anti-
malware products, it should then follow that having features and algorithms that are sensitive
to the changes in only certain aspects of a malware sample should produce better results. So, a
key finding of of this chapter is that the characterization of malware samples into threat groups
should be done from a late or intermediate integration, multi-view approach.

Secondly, the hybrid integration algorithm, CVIC, outperforms all the other algorithms in
placing malware samples into their correct threat actor groups with a set of malware samples
from three different threat actors. Hybrid techniques like CVIC bridge the gap between the two
lines of methodological research in multi-view clustering by using cluster labels specific to each
view, but also uses diffusion across graphs constructed from each view. Thus, by using advances
from both lines of research I was able to design an algorithm that produces superior results in
finding clusters of malware from multi-view features.

The results of this case study chapter present several interesting avenues for future research.
First, In this chapter I used a select set of static features derived from malware samples. It
is well known that static features for malware identification can suffer from various forms of
obfuscation applied to the malware [62]. It would be interesting to see if more and wider varieties
of features taken from the malware samples, to include features from dynamic analyses, may be
even better at identifying malware threat groups from a multi-view data perspective. Second, it
would also be interesting to investigate a wider variety of malware threat actor groups of different
types of samples of malware (i.e. Trojans versus viruses, etc.) to see if the the multi-view
clustering approach still recovers useful groups of threat actors. In fact, while the experiments
in this chapter did produce reasonable threat actor groups in an unsupervised way, no particular
algorithm performed particularly well at finding the threat actor labels from the malware samples.
It would seem that characterizing threat actors, and not just malware families, from malware
samples remains a challenging problem. It would be interesting to test whether incorporating
more social-based data like observed collaboration networks might help with overcoming the
limitations of just using the malware samples. Finally, I also intend to investigate variations on
the CVIC algorithm to include network influence thresholds and the use of weighted averaging
during the mode-combining step.
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Chapter 6

Concluding Remarks

Social interactions among humans are a complex affair. They are blend of many types of content
and connections between people that occur in myriad, heterogeneous, and dynamic ways. This
complexity can give rise to many important social phenomena and also be a source of great
difficulty for understanding those social interactions. This complexity has only increased in
recent years. With the advent of online social media, there is now an unprecedented level of
detail that can be used to describe all of the many social interactions that shape our world. This
level of detail and volume of available data can lead to greater insights into understanding social
interactions, but also requires more computational tools to handle the volume and complexity of
the data. In this thesis, I have sought to develop techniques and methods to address a particular
aspect of understanding complex, social-based data, that of clustering multi-view, social-based
data.

Many social interactions naturally give rise to multiple modalities of data. Publishing papers
gives rise to the actual text of the papers as well as citation or co-authorship networks. Orga-
nizations give rise to multiple types of in person and electronic interactions between members
of the organization. Online social media sites give rise to user-to-user interactions as well as
users’ content. All of these different modalities offer views — often, incomplete views — into
the fundamental relationships between the actors engaging in the social activities. With this in-
sight, I have sought to take advances in the field of multi-view, or multi-modal, unsupervised
machine learning and apply those advances to better understand multi-view, social-based data.
In the process of investigating the various techniques from the field, I have proposed a new hy-
brid paradigm of techniques, both proposed and empirically demonstrated the effectiveness of
some multi-view clustering techniques on benchmark, social-based data, and demonstrated these
techniques on real-world, social-based clustering scenarios. Finally, using the findings and tech-
niques developed in the early chapters of this work, I apply multi-view clustering to two different
clustering investigations of real-world data, both of which show interesting results with respect to
exploring the data. So, this work builds upon two important lines of research. First, it is the first
work to use multi-view clustering to understand social-based data. Second, it is the first work
to empirically assess techniques from multi-view clustering on social-based data. In so doing,
this work both advances a better means of clustering social-based data as well as highlighting
important assumptions and characteristics that have been embedded into much research on clus-
tering multi-view data. It is hoped this research can aid practitioners analyzing social-based data
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to better analyze their data as well as those who develop new techniques to consider additional
aspects of real-world data which occur with social-based data scenarios when developing their
techniques.

6.1 Contributions
The overall aim of this thesis was to investigate, develop, and employ multi-view clustering for
social-based data. As such, this is the first work to investigate multi-view clustering on generic,
social-based data. There has been a wealth of research on multi-view clustering for data such as
image data or genetic data, as well as a wealth of research on clustering complex networks like
multi-layer or multiplex networks. However, there has been relatively little research in the way of
clustering social-based data beyond attributed graphs — which only consider one network mode
with one non-network mode — which could could consist of any number of network and non-
network views of the data. In this work, I have shown techniques for this more general form of
multi-view clustering and demonstrated its effectiveness using both various types of multi-view,
social-based benchmark data sets and real-world case studies.

In the second chapter, I performed the first comprehensive, empirical investigation of several
techniques from the different paradigms of multi-view clustering as well as proposed a hybrid
paradigm for multi-view clustering. Many previous works on multi-view clustering typically
tested their methods only one type of social-based data, like only publication networks or only
multiplex networks, if they tested on social-based data at all. In this chapter, I used benchmark
data sets from multiple scenarios of social-based data that give rise to multi-view data. The
results of this comprehensive testing demonstrated that while some techniques can work quite
well for some social-based data scenarios, they often work very poorly for other scenarios. In
other words, there is no one technique that is always good for every social-data based scenario
that gives rise to multi-view data. Furthermore, there are also some key differences between
image or genetic data and data which arises from human, social interactions. Some of these
differences are described below:
• Network and Non-network data: Most non-social-based data scenarios give rise to non-

network data. And, those methods that have been designed for social-based data largely
only consider the scenarios that give rise to network views of data. However, for social-
based data, there are often a combination of non-network and network views which poses
distinct challenges for multi-view clustering. For example, the network views will often
have topologically dissimilar graphs to the graphs learned from the non-network views of
the data.

• Topologically difficult view graphs: When working with non-social based, multi-view
data (and, even some social-based data scenarios) one often gets to pick the graph rep-
resentations of the different views of the data. For example, many image and genetic
multi-view clustering techniques use k-Nearest Neighbor graphs for each view of the data.
This allows for the graphs to have convenient properties in terms of connectedness and
having similar local structures across the entire graph. Many naturally arising networks,
however, do not have these computationally-convenient graph properties and, furthermore,
may not display them even if a similarity graph is learned from the networks. For example,
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it is not uncommon to have some actors in a social-based scenario that do not participate in
a certain view, and so that view will always have isolates in its view graphs. So, it would
seem social-based data naturally gives rise to difficult topologies of graphs which other
types of data scenarios do not.

• Selection of views for multi-view clustering: In some data scenarios, it is clear what
views should be used in multi-view clustering and what the cluster labels should be. For
example, in image clustering, it is generally clear that clusters of images should be all
images of same thing and that different ways of comparing the images (i.e. filters or
similarity measures) all contribute to this cluster structure. The selection of appropriate
views that could contribute to a desired cluster structure is much less clear for social-based
data. It is generally well known in social science that individuals often belong to many
different communities of different scales. So, all of the observable interactions between
people may not arise from the same latent cluster structure, and its not always clear which
interactions should be incorporated into a multi-view clustering and which should not be.

Additionally, I also proposed a new paradigm for clustering multi-view, social-based data.
Existing techniques, with very few exceptions, break into three paradigms for clustering multi-
view data: early, intermediate, and late integration techniques. In my work, I proposed a suite of
new techniques that bridged the intermediate and late integration paradigms. These techniques
use both the clusters from each of the views, as well as intermediate paradigm quality functions
and data representations to create new hybrid paradigm techniques. Empirical testing of these
techniques revealed that a hybrid paradigm of clustering multi-view data shows promise for
developing superior to techniques for clustering multi-view, social-based data.

In the third chapter, I used findings from the empirical investigations of the second chapter to
develop a new technique for multi-view clustering of social-based data called Multi-view Mod-
ularity Clustering (MVMC). This technique uses recent advances in modularity-based clustering
to iteratively determine the best clusters for the multi-view data from an intermediate integration
paradigm and set optimal parameters for the method. The MVMC method not only shows strong
performance across a range of multi-view social-based data scenarios — occasionally achieving
the best performance of any method considered in the investigation — but also provides addi-
tional insight into the data through its optimally-determined view weights and the number of
iterations the method takes to reach convergence. Furthermore, empirical testing of the various
modularity functions used in the chapter demonstrated that modularity can be a good evidence-
based measure to judge the cluster structure in a multi-view, clustering scenario. So, the MVMC
method provides a novel and consistently good means of clustering multi-view, social-based data
that can handle partially incomplete views and large multi-view data sets.

Given the findings of the second and third chapter, there are some evidence-based recom-
mendations for assessing the appropriateness of the different classes of techniques investigated
in this work. Since different techniques by their design emphasize different aspects of what it
means to have a cluster in the data, they also have different data scenarios where they are more
or less appropriate. In particular, in this work, there were five main aspects of the data that were
found to distinguish between the techniques in terms of their performance. The following figure,
Figure 6.1, displays a qualitative summary of the different types of techniques and the particular
aspects of the data for when they perform well or poorly.
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Figure 6.1: The following figure qualitatively depicts different aspects of the data and how different technique are able
to handle those different aspects of the data, as determined by the empirical testing done in this work. Those marked
with a red minus sign are when that particular class of techniques is especially poor for when the data has a particular
aspect and vice-versa for the green plus sign. If a class of techniques was not found to be particularly good or poor for
a given aspect of the data, then no symbol is given. The modularity-based, intermediate integration techniques tend to
have superior performance across a wide range of data characteristics.

Generally, the modularity-based, intermediate integration techniques like MVMC tend to
have superior performance across a lot the aspects of data that arise from social-based scenarios.
In particular, social-based features like having actors which do not interact within certain views
(e.g. users which never retweet or use hashtags) of the data is only really overcome through
optimizing the clustering procedure on a network modularity-based function. Other functions,
like spectrally-based functions, can suffer in these types of data scenarios as they rely on the
spectral properties of the view graphs’ Laplacians, which will necessarily be effected by any
disconnects in that graph. So, when real-world, social-based scenarios give rise to partially
complete views — as they often do — using a graph Laplacian-based model can have issues
with recovering the clusters. It should also be noted that many techniques are also not scalable to
the size of the data that occurs in social-based data scenarios. Many social-based data scenarios,
especially those occurring on social media, will necessarily have a need for clustering thousands
to hundreds of thousands of entities. However, many techniques, especially in the hybrid and

154



intermediate integration paradigms, rely on dense matrix-matrix multiplications as well as matrix
factorizations. Both of these operations can be computationally expensive for large data. Overall,
the evidence-based findings from this work indicate that not all techniques are created equal when
it comes to clustering social-based data; social-based data can have many different aspects and
any given clustering technique naturally encodes bias about the nature of good clusters, which
may not be amenable to certain real-world aspects of the data.

In the fourth chapter, I provide the first exploratory clustering analysis of hashtag usage on
Twitter during the COVID-19 pandemic. Hashtags are a social media innovation that allows users
to find and participate in discussions of interest. So, clusters of hashtags can often give unique
insight into topical focal points for social media users. In that chapter, I performed the first
ever multi-view clustering of hashtags from social media data. The use of the MVMC technique
not only demonstrated that multi-view clustering can produce meaningful topical clusters of
hashtags, but can do so with partially complete views, noisy data, and large data sets (on the
order hundreds of thousands of hashtags). Additionally, analysis of the hashtags clusters over
the course of the pandemic showed not only temporal patterns in hashtags usage, but also some
distinct insights into how different users or groups use certain topics of hashtags for different
purposes. For example some topical areas of hashtags are used to draw users participating in the
online discussions on the COVID-19 pandemics to other calamities, like the Syrian Civil War.
So, techniques from this thesis, like MVMC, can be used on large, noisy, real-world multi-view
social-based data scenarios to produce meaningful clusters.

Finally, in the fifth chapter, I used multi-view clustering to perform a novel community anal-
ysis of malware samples. In this chapter, I demonstrated that using a multi-view clustering
approach on features derived from static analyses of malware samples could provide meaningful
clusters, especially with regards to the providence of the malware samples. My research also
demonstrated that taking a multi-view clustering approach, regardless of the technique, provided
better clustering results relative to the threat actors that produced the malware samples, than did
any early integration or traditional approach to clustering malware samples. So, the techniques
developed in this thesis can even be applied to non-traditional sources of social-based data, like
malware samples.

6.2 Guidance for Practical Usage of Multi-view clustering on
Social-Based Data

Over the course of the research for this thesis, some consistent practices have emerged when
using multi-view clustering on social-based data. These practices are summarized here for prac-
titioners to keep in mind when using multi-view clustering on social-based data.

• Views of the data should all relate to the same cluster structure The selection of views
used in clustering of the data should all relate to the same cluster structure of the data. Not
all views of the same underlying objects will give rise to the same cluster structure. For
example, people’s online communities may not be the same as their in person communities,
and so trying to recover one community structure from both online and in-person data may
result in a poor community structure. So, for each view of the data, it is important to either
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know or have a reasonable mechanism by which that view relates to an underlying cluster
structure of the data, and that each view relates to the same cluster structure. Put another
way, the cluster structure present in each view of the data should all be, in some way, a
result of the same latent cluster structure. Thus, when using multi-view data, one should
ask themselves whether each view of the data relates to the same cluster structure and posit
how each view of the cluster structure relates to the same, latent cluster structure

• Whether to use the raw networks or similarity graphs for network views of the data
As has been mentioned throughout the thesis, multi-view social-based data can often be
in both network and non-network forms. Since many intermediate integration techniques
(including the ones developed in this thesis) require all views of the data to be modeled
as a graph, a natural question arises: does one convert the network views of the data not
a similarity graph, as one would do with the non-network modes, or not? In this thesis
I have used both approaches of converting the networks into similarity graphs and not
converting them to similarity graphs. Generally, I have found that it is preferable to leave
the networks in their raw format if a link in a network represents a significant, positive
social interaction, and otherwise convert it into a similarity graph. For example, on Twitter,
retweeting another user’s tweet does not typically represent a significant social interaction
between the user which posted the original tweet and the user which retweeted that tweet.
So, in this case, a more useful edge for clustering purposes would be one which models
how often two users retweet the same other users, rather than the users they are retweeting
themselves. So, the research conducted in this thesis indicates that one should convert
network views of the data to similarity graphs when links in the network do not represent
significant social interactions between the nodes.

• Always check graph statistics of the view graphs When performing multi-view cluster-
ing, especially with intermediate integration techniques that rely on graph representations,
one should always check the graph statistics of the view graphs. In general, from Chap-
ter Two and chapter Four, it was empirically observed that graphs which presented a less
defined cluster structure than the other view graphs were also less useful for finding clus-
ters in the multi-view data. So, if one or more views differ substantially in the number
of connected components with the other views, that view, in its current graph form, will
likely not contribute much to the multi-view clustering. Additionally, if it is feasible to do
so, calculating the average clustering coefficient of the view graphs can also give an indi-
cation of how well the graphs are modeling a cluster structure, with a higher coefficient
correlating to a better cluster structure. If a particular view graph presents significantly
more components than any of the other views, it may be worth excluding this view from
the multi-view clustering or otherwise transforming the graph.

• Selection of the technique to do multi-view clustering For some social-based data sce-
narios, certain techniques do tend to work well for clustering the multi-view data. Table
2.19 contains a list of these techniques and what social-based data scenarios they perform
well on. However, as has been shown in this thesis, no technique is always the best across
all of the social-based, multi-view data scenarios. So, when in doubt of the technique to
use for a particular social-based data scenario, it is best to use techniques which are broadly
good, if not always the best, like MVMC or CVIC.
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• Evaluation of the found cluster structure After performing the multi-view clustering
— if the technique used allows for it — evaluate the strength of the cluster structure and
importance of the different views in producing the multi-view cluster structure. For ex-
ample, network modularity-based methods can use the value of the modularity of the final
multi-view clustering to evaluate how strong the multi-view cluster structure is (i.e. hav-
ing a larger network modularity value, weighted or otherwise, is positively correlated with
their being a stronger cluster structure present within the data). Also, some methods like
MVMC provide view weights which can be used to assess the relative importance of the
different views in determining the multi-view cluster structure. Overall, these evidence-
based measures can be used to determine if the cluster structure is strongly present in the
data and thus should be trusted for analysis, and what views mostly contribute to the cluster
structure, which is also important for analysis of the data.

6.3 Limitations and Future Work
There are some salient limitations for this research and several avenues for future research. First,
the clustering in this work has focused on a scenario where all of the views of the data relate
to the same, single latent cluster structure for the data. This is, in some ways, a simplification
of the clusters that can arise from social-based data; social-based data scenarios, and the actors
which give rise on them can have different cluster structure for different views of the data. This
is a natural extension of the social science observation that we, as social actors, can often be-
long to many different communities depending on the social context [94], [137]. Additionally,
the same set of data could contain more than one valid clustering. Some recent research into
multi-resolution network clustering has highlighted that clustering structure can exist at multiple
resolutions and that some clustering structures can be stable across a range of resolutions values
[138], [74], [24]. This is all to say that a given set of data may have more than one valid clustering
structure and that the different clustering structures can represent the presence of different scales
in the data (i.e. clustering on geographic data could yield multiple multiple valid clusterings like
local county, state, or country, each of which differ in scale). So, an avenue of feature research
would be to expand the method to ascertain if there is more than one valid clustering structure
and recover those clustering structures.

Also, operating in a multi-view clustering paradigm means that every agent is at least capable
of interacting in every view. For some social-based scenarios, this may not be a reasonable
assumption (i.e. some individuals may not have access to certain social media sites and so
cannot interact within them and the views they generate, when combined with real-world views
of the actors). So, an interesting avenue for future research would be to develop techniques that
can address the multi-view clustering paradigm limitations. For example, within the world of
complex network clustering, there are techniques which can operate on multi-layer networks,
where each layer does not need to have the same clusters (i.e. [93], or [101]). It would be
beneficial to have similar techniques that can work on network and non-network views of the
data to produce more than one latent clustering across multiple views of the data, and could even
determine which views of the data are responsible for which latent clusterings.

Second, many of the conclusions and results from this research are based on empirical find-
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ings on only social-based data. I have endeavored in this research to compare techniques on a
broad array social-based data scenarios, but they are certainly not all of the possible scenarios
that exist. Furthermore, no testing on non-social based data was done in this research. So, while
I used techniques that were not explicitly designed for social-based data in this thesis it is not
clear if the reverse can be done, and those techniques designed for social-based data be used
on non-social-based data like images or genetic data. So, another promising avenue of future
research is to see if the techniques presented in this thesis can work in more data scenarios in
both social-based and other types of data scenarios.

Third, there are some limitations with the two main methods presented in this work, CVIC
and MVMC, which also apply more broadly to intermediate integration techniques. The main
limitation is how the graph for each of the views are constructed. In this work, I have used the
modularity kNN procedure [110], [25], [26], and simple symmetric graphs as the means of learn-
ing graphs for each of the views of a data set. While these did work for this research, they are not
guaranteed to work generally or even find the best fit graph for a view of the data. So, a promising
avenue of future research would be to find a scalable means of learning a best graph of the data
such that the graph optimally draws out the cluster structure present in the data. Furthermore,
it would also be interesting to see if the graph earning step could be included in the clustering
iterations of techniques like CVIC and CMIC, such that one could both find optimal clusters and
optimal graph representations of the data in tandem, as has been done with in modularity kNN
procedure and spectral clustering or non-negative matrix factorization procedures [125], [150],
[84]. So, finding a better means of learning graphs for the different views of any given data set
is promising avenue of future research for multi-view clustering of social-based data.

Finally, while showing some promise in clustering multi-view, social-based data, using infor-
mation from across the different multi-view clustering paradigms has not been fully investigated.
In this work I presented some techniques which use both intermediate and late paradigm infor-
mation in their clustering. While some techniques did preform well, many also did not. So, while
these techniques have access to more information, they do not always produce better results. So,
while there is some promise in the idea of using hybrid paradigm techniques, how these tech-
niques should be designed and what aspects of the different paradigms should be incorporated
is still very much a work in progress. Thus, an avenue of future research is to investigate what
information from the various stages and paradigms of multi-view clustering is actually useful to
the overarching goal of finding the latent clusters in multi-view data.

In many respects, unsupervised learning on multi-view, social-based data is still in its infancy.
Even the more robustly researched areas of multi-layer and multiplex network clustering are
still active areas of research that are producing new techniques and expanding their scope of
applications to practical problems. There remain many interesting problem domains for the
field including how to handle various data types, how to combine information for those various
data types, and how to appropriately and ethically select different views of data, among many
others. So, I sincerely hope the research done in this work provides a meaningful advancement
for researchers to better understand social-based data. And, I very much look forward to seeing
the field expand and produce meaningful insights on the nature of social interactions through
their many different data views. In a world that is becoming increasingly digitized and with
social media becoming a sine qua non of modern life, the need to understand complex social
interactions will only increase.
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Appendix A

Additional Modularity for Multi-view
Clustering Results

This appendix contains the detailed performance results for all of the modularity maximization-
based techniques proposed in Chapter 2 and tested in Chapter 3. These results include both late
and intermediate paradigm multi-view clustering techniques. For each method, the performance
results are detialed for every benchmark data set and all of the views of the data sets.

Data set View
Modularity of
clustering for
each view

Modularity of
ground-truth
clustering for
each view

Difference between
Modularities

Correlation between
ground-truth ARI and
clustering Modularity
over optimization steps

Cora network 0.507 0.643 -0.136 0.983
text 0.502 0.343 0.159

CiteSeer network 0.579 0.551 0.028 0.98
text 0.489 0.324 0.165

Flickr network 0.155 0.133 0.022 0.949
attributes 0.444 0.42 0.024

BlogCatalog network 0.261 0.233 0.028 0.959
attributes 0.499 0.5 -0.001

Wiki network 0.637 0.613 0.024 0.996
text 0.779 0.587 0.192

3Sources BBC -text 0.534 0.492 0.042 0.983
Reuters -text 0.532 0.504 0.028
Guardian -text 0.531 0.494 0.037

AUCS lunch 0.625 0.518 0.107 0.999
facebook 0.284 0.209 0.075
coauthor 0.739 0.673 0.066
work 0.434 0.351 0.083
liesure 0.481 0.471 0.01

Football list 0.503 0.465 0.038 0.988
text 0.132 0.119 0.013
follows 0.43 0.414 0.016
mentions 0.48 0.611 -0.131
retweets 0.555 0.629 -0.074

Olympics list 0.513 0.477 0.036 0.986
text 0.321 0.279 0.042
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follows 0.477 0.458 0.019
mentions 0.491 0.798 -0.307
retweets 0.639 0.842 -0.203

Politics Ire list 0.447 0.443 0.004 0.984
text 0.232 0.219 0.013
follows 0.363 0.356 0.007
mentions 0.393 0.526 -0.133
retweets 0.538 0.66 -0.122

Politics UK list 0.576 0.573 0.003 0.999
text 0.194 0.199 -0.005
follows 0.397 0.397 0
mentions 0.278 0.275 0.003
retweets 0.352 0.335 0.017

Rugby list 0.672 0.555 0.117 0.996
text 0.303 0.264 0.039
follows 0.529 0.443 0.086
mentions 0.528 0.547 -0.019
retweets 0.584 0.586 -0.002

Table A.1: Intermediate Paradigm Modularity Maximization Clustering (IPMMC) results for all of the multi-view,
social-based, benchmark data sets. Performance results are detailed for each data set and each view of each data set.

Data set Mode
Modularity of
clustering for
each view

Modularity of
ground-truth
clustering for
each view

Difference between
Modularities

Correlation between
ground-truth ARI and
clustering Modularity
over optimization steps

Cora network 0.111 0.508 -0.397 0.999
text 0.83 0.116 0.714

CiteSeer network 0.189 0.402 -0.213 1
text 0.814 0.098 0.716

Flickr network 0.659 0.048 0.611 0.999
attributes 0.0964 0.4707 -0.3743

BlogCatalog network 0.036 0.0899 -0.0539 0.993
attributes 0.698 0.2688 0.4292

Wiki network 0.654 0.279 0.375 0.971
text 0.562 0.299 0.263

3Sources BBC -text 0.273 0.127 0.146 1
Reuters -text 0.048 0.034 0.014
Guardian -text 0.119 0.045 0.074

AUCS lunch 0.667 0.418 0.249 1
facebook 0.556 0.384 0.172
coauthor 0.75 0.672 0.078
work 0.455 0.3 0.155
liesure 0.423 0.391 0.032

Football list 0.335 0.344 -0.009 0.987
text 0.017 0.0194 -0.0024
follows 0.822 0.368 0.454
mentions 0.797 0.686 0.111
retweets 0.59 0.516 0.074

Olympics list 0.352 0.358 -0.006 0.998
text 0.078 0.0585 0.0195
follows 0.805 0.379 0.426
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mentions 0.781 0.701 0.08
retweets 0.753 0.746 0.007

Politics Ire list 0.0635 0.059 0.0045 0.999
text 0.161 0.154 0.007
follows 0.573 0.477 0.096
mentions 0.496 0.472 0.024
retweets 0.506 0.5 0.006

Politics UK list 0.503 0.5 0.003 0.999
text 0.122 0.119 0.003
follows 0.538 0.5203 0.0177
mentions 0.492 0.485 0.007
retweets 0.517 0.499 0.018

Rugby list 0.589 0.45 0.139 0.999
text 0.0202 0.0186 0.0016
follows 0.694 0.465 0.229
mentions 0.773 0.579 0.194
retweets 0.768 0.575 0.193

Table A.2: Late Paradigm Modularity Maximization Clustering (LPMMC) results for all of the multi-view, social-
based, benchmark data sets. Performance results are detailed for each data set and each view of each data set.

Data set Mode
Modularity of
clustering for
each view

Modularity of
ground-truth
clustering for
each view

Difference between
Modularities

Correlation between
ground-truth ARI and
clustering Modularity
over optimization steps

Cora network 0.713 0.119 0.594 0.789
text 0.252 0.483 -0.231

CiteSeer network 0.813 0.099 0.714 0.999
text 0.194 0.387 -0.193

Flickr network 0.106 0.449 -0.343 0.999
attributes 0.644 0.056 0.588

BlogCatalog network 0.074 0.268 -0.194 0.522
attributes 0.653 0.101 0.552

Wiki network 0.356 0.312 0.044 0.997
text 0.78 0.336 0.444

3Sources BBC -text 0.038 0.102 -0.064 0.706
Reuters -text 0.101 0.147 -0.046
Guardian -text 0.12 0.135 -0.015

AUCS lunch 0.629 0.517 0.112 1
facebook 0.498 0.412 0.086
coauthor 0.703 0.644 0.059
work 0.522 0.439 0.083
liesure 0.594 0.523 0.071

Football list 0.324 0.322 0.002 -0.356
text 0.119 0.308 -0.189
follows 0.351 0.297 0.054
mentions 0.311 0.524 -0.213
retweets 0.328 0.366 -0.038

Olympics list 0.355 0.403 -0.048 0.638
text 0.343 0.422 -0.079
follows 0.271 0.396 -0.125
mentions 0.317 0.717 -0.4
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retweets 0.332 0.537 -0.205
Politics Ire list 0.367 0.434 -0.067 0.999

text 0.283 0.356 -0.073
follows 0.176 0.331 -0.155
mentions 0.231 0.449 -0.218
retweets 0.236 0.43 -0.194

Politics UK list 0.321 0.449 -0.128 0.999
text 0.4505 0.465 -0.0145
follows 0.298 0.418 -0.12
mentions 0.311 0.391 -0.08
retweets 0.319 0.441 -0.122

Rugby list 0.106 0.2801 -0.1741 0.979
text 0.5003 0.46 0.0403
follows 0.0869 0.254 -0.1671
mentions 0.105 0.454 -0.349
retweets 0.107 0.289 -0.182

Table A.3: Direct Integration Modularity Clustering (Additive) results for all of the multi-view, social-based, bench-
mark data sets. Performance results are detailed for each data set and each view of each data set.

Data set Mode
Modularity of
clustering for
each view

Modularity of
ground-truth
clustering for
each view

Difference between
Modularities

Correlation between
ground-truth ARI and
clustering Modularity
over optimization steps

Cora network 0.871 0.676 0.195 0.999
text 0.925 0.703 0.222

CiteSeer network 0.898 0.586 0.312 0.999
text 0.934 0.581 0.353

Flickr network 0.838 0.662 0.176 0.996
attributes 0.569 0.514 0.055

BlogCatalog network 0.763 0.597 0.166 0.999
attributes 0.593 0.607 -0.014

Wiki network 0.892 0.768 0.124 0.999
text 0.943 0.687 0.256

3Sources BBC -text 0.537 0.518 0.019 0.831
Reuters -text 0.536 0.522 0.014
Guardian -text 0.585 0.514 0.071

AUCS lunch 0.685 0.571 0.114 1
facebook 0.533 0.404 0.129
coauthor 0.732 0.687 0.045
work 0.745 0.579 0.166
liesure 0.711 0.672 0.039

Football list 0.681 0.77 -0.089 0.996
text 0.621 0.679 -0.058
follows 0.556 0.672 -0.116
mentions 0.58 0.738 -0.158
retweets 0.634 0.752 -0.118

Olympics list 0.774 0.816 -0.042 0.996
text 0.747 0.774 -0.027
follows 0.703 0.789 -0.086
mentions 0.71 0.889 -0.179
retweets 0.782 0.916 -0.134
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Politics Ire list 0.591 0.625 -0.034 0.999
text 0.445 0.552 -0.107
follows 0.491 0.552 -0.061
mentions 0.54 0.659 -0.119
retweets 0.6101 0.716 -0.1059

Politics UK list 0.585 0.591 -0.006 1
text 0.491 0.516 -0.025
follows 0.478 0.524 -0.046
mentions 0.379 0.365 0.014
retweets 0.383 0.382 0.001

Rugby list 0.717 0.646 0.071 0.995
text 0.722 0.65 0.072
follows 0.5903 0.591 -0.0007
mentions 0.593 0.617 -0.024
retweets 0.6296 0.655 -0.0254

Table A.4: Direct Integration Modularity Clustering (Multiplicative) results for all of the multi-view, social-based,
benchmark data sets. Performance results are detailed for each data set and each view of each data set.
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Appendix B

Additional Results from COVID-19 Twitter
Hashtag Clustering

This appendix contains additional results from the multi-view clustering of COIVD-19 Twitter
hashtags. The first three tables display daily (and view, where relevant) results for the different
aspects of multi-view clustering. These results include graph statistics on the graph learning
for each of the views of the data, performance of the MVMC method, and clustering statistics
for each of the daily clusterings. The final two tables in the appendix have additional hashtag
examples from the clusterings investigated in Chapter four.

Date View
Number of
Nodes

Number of
Edges

Density
Number of Weakly
Connected Components

Number of
Isolates

2/1

co occurence 15287 1308045 0.011195 1050 881
text 15287 1573200 0.013465 393 392
URLs 15287 1318300 0.011283 4448 4447
user 15287 439109 0.003758 326 273

2/2

co occurence 16149 1438860 0.011035 1001 841
text 16149 1695823 0.013006 471 470
URLs 16149 1453646 0.011149 4565 4564
user 16149 537180 0.00412 285 232

2/3

co occurence 17982 1693603 0.010476 1151 972
text 17982 2031992 0.012569 329 328
URLs 17982 1783067 0.011029 4550 4549
user 17982 573124 0.003545 351 290

2/4

co occurence 16652 1508970 0.010884 1135 932
text 16652 1818503 0.013117 346 345
URLs 16652 1570702 0.01133 4364 4363
user 16652 515832 0.003721 393 304

2/5

co occurence 16152 1429575 0.01096 1076 915
text 16152 1725481 0.013229 410 407
URLs 16152 1504654 0.011536 4170 4169
user 16152 465291 0.003567 381 306

2/6

co occurence 15266 1303788 0.01119 1010 829
text 15266 1575807 0.013524 401 400
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URLs 15266 1376797 0.011816 3955 3954
user 15266 444828 0.003818 382 297

2/7

co occurence 15374 1326558 0.011226 1015 855
text 15374 1587152 0.013431 445 444
URLs 15374 1414551 0.01197 3754 3753
user 15374 466280 0.003946 341 276

2/8

co occurence 13118 1049068 0.012194 789 651
text 13118 1247921 0.014505 327 326
URLs 13118 1090407 0.012674 3432 3431
user 13118 408312 0.004746 271 213

2/9

co occurence 12584 993081 0.012543 778 641
text 12584 1167841 0.014751 350 349
URLs 12584 1014517 0.012814 3403 3402
user 12584 418691 0.005288 278 220

2/10

co occurence 15179 1308448 0.011359 970 801
text 15179 1581066 0.013725 340 339
URLs 15179 1392744 0.01209 3738 3737
user 15179 496210 0.004308 367 293

2/11

co occurence 15239 1313626 0.011314 965 806
text 15239 1587104 0.013669 343 342
URLs 15239 1381755 0.011901 3888 3887
user 15239 466958 0.004022 352 287

2/12

co occurence 14177 1174430 0.011687 923 756
text 14177 1436852 0.014299 307 306
URLs 14177 1273819 0.012677 3360 3359
user 14177 418024 0.00416 331 270

2/13

co occurence 14386 1207856 0.011673 910 766
text 14386 1436204 0.01388 387 386
URLs 14386 1289969 0.012467 3414 3413
user 14386 457879 0.004425 325 264

2/14

co occurence 12295 959264 0.012692 789 655
text 12295 1138638 0.015066 350 349
URLs 12295 1038141 0.013736 2740 2739
user 12295 371355 0.004914 298 236

2/15

co occurence 10515 760052 0.01375 582 490
text 10515 882256 0.015961 363 362
URLs 10515 802917 0.014525 2526 2525
user 10515 330037 0.005971 230 193

2/16

co occurence 10115 721737 0.01411 574 471
text 10115 838563 0.016394 257 256
URLs 10115 757437 0.014808 2428 2427
user 10115 341600 0.006678 214 164

2/17

co occurence 12664 1014749 0.012656 712 590
text 12664 1174771 0.014651 385 384
URLs 12664 1091110 0.013608 2787 2786
user 12664 388790 0.004849 277 216
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2/18

co occurence 12323 961434 0.012663 748 604
text 12323 1146372 0.015099 336 335
URLs 12323 1049730 0.013826 2735 2734
user 12323 359539 0.004736 294 232

2/19

co occurence 11919 918917 0.012938 711 572
text 11919 1075561 0.015143 412 411
URLs 11919 970881 0.01367 2891 2890
user 11919 340275 0.004791 309 240

2/20

co occurence 11767 896448 0.01295 627 499
text 11767 1051676 0.015192 328 327
URLs 11767 962209 0.0139 2722 2721
user 11767 356822 0.005155 253 192

2/21

co occurence 13975 1176267 0.012047 720 579
text 13975 1384228 0.014176 374 373
URLs 13975 1208756 0.012379 3605 3604
user 13975 520516 0.005331 277 210

2/22

co occurence 14848 1300698 0.0118 675 554
text 14848 1476573 0.013396 508 507
URLs 14848 1266354 0.011489 4236 4235
user 14848 601471 0.005457 202 159

2/23

co occurence 16093 1460843 0.011282 739 616
text 16093 1697379 0.013109 493 491
URLs 16093 1446184 0.011169 4464 4463
user 16093 718200 0.005547 191 151

2/24

co occurence 23657 2612548 0.009337 1270 1105
text 23657 3077836 0.011 625 624
URLs 23657 2643584 0.009448 6227 6226
user 23657 1063342 0.0038 343 284

2/25

co occurence 25485 2862600 0.008815 1666 1417
text 25485 3507437 0.010801 494 493
URLs 25485 2941166 0.009057 6846 6845
user 25485 1072493 0.003303 398 316

2/26

co occurence 27448 3184299 0.008454 1905 1630
text 27448 3939629 0.010459 579 578
URLs 27448 3289268 0.008732 7380 7379
user 27448 1079997 0.002867 493 405

2/27

co occurence 28844 3445061 0.008282 1935 1661
text 28844 4262252 0.010246 614 612
URLs 28844 3548242 0.00853 7716 7715
user 28844 1084069 0.002606 524 426

2/28

co occurence 28665 3433800 0.008358 1955 1666
text 28665 4278387 0.010414 420 419
URLs 28665 3517691 0.008562 7727 7726
user 28665 1035504 0.002521 567 454

2/29

co occurence 26679 3062861 0.008607 1737 1478
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text 26679 3801492 0.010682 555 554
URLs 26679 3112844 0.008747 7440 7439
user 26679 1024505 0.002879 414 330

3/1

co occurence 26560 2990148 0.008478 1842 1545
text 26560 3733658 0.010586 519 518
URLs 26560 3116878 0.008837 7153 7152
user 26560 1096898 0.00311 460 359

3/2

co occurence 30791 3786996 0.007989 2141 1832
text 30791 4717547 0.009952 584 583
URLs 30791 4032933 0.008508 7603 7602
user 30791 1189952 0.00251 587 469

3/3

co occurence 33534 4343459 0.007725 2180 1843
text 33534 5393075 0.009592 615 614
URLs 33534 4531931 0.00806 8633 8632
user 33534 1270716 0.00226 598 484

3/4

co occurence 34298 4483468 0.007623 2300 1972
text 34298 5551101 0.009438 636 635
URLs 34298 4731239 0.008044 8581 8580
user 34298 1296269 0.002204 650 531

3/5

co occurence 36655 5002809 0.007447 2315 1988
text 36655 6150833 0.009156 637 636
URLs 36655 5225353 0.007778 9143 9142
user 36655 1398143 0.002081 700 570

3/6

co occurence 37478 5143087 0.007323 2415 2065
text 37478 6343489 0.009033 677 676
URLs 37478 5377217 0.007657 9459 9458
user 37478 1395044 0.001986 680 568

3/7

co occurence 32563 4183264 0.007891 1964 1682
text 32563 5103512 0.009626 629 627
URLs 32563 4219169 0.007958 8963 8962
user 32563 1210568 0.002283 578 481

3/8

co occurence 31165 3916897 0.008066 1831 1562
text 31165 4783629 0.009851 639 638
URLs 31165 3973506 0.008182 8424 8423
user 31165 1308121 0.002694 472 383

3/9

co occurence 34513 4595183 0.007716 2062 1752
text 34513 5662158 0.009507 601 599
URLs 34513 4788394 0.00804 8465 8464
user 34513 1312631 0.002204 566 451

3/10

co occurence 33710 4435573 0.007807 2237 1921
text 33710 5512449 0.009702 497 496
URLs 33710 4591942 0.008082 8489 8488
user 33710 1112630 0.001958 630 516

3/11

co occurence 29834 3710000 0.008337 1949 1684
text 29834 4549186 0.010222 518 516
URLs 29834 3801714 0.008543 7602 7601
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user 29834 850497 0.001911 577 476

3/12

co occurence 32538 4232159 0.007995 2154 1881
text 32538 5277652 0.00997 334 333
URLs 32538 4174161 0.007886 9237 9236
user 32538 789361 0.001491 680 563

3/13

co occurence 34145 4554410 0.007813 2195 1892
text 34145 5686434 0.009755 370 369
URLs 34145 4511521 0.007739 9520 9519
user 34145 788741 0.001353 740 615

3/14

co occurence 36504 5116062 0.007679 2038 1781
text 36504 6284669 0.009433 414 413
URLs 36504 4774196 0.007166 11393 11392
user 36504 951724 0.001428 593 484

3/15

co occurence 40083 5906857 0.007353 1927 1665
text 40083 7217267 0.008984 529 528
URLs 40083 5339586 0.006647 13264 13263
user 40083 1134177 0.001412 502 410

3/16

co occurence 44579 6921264 0.006966 2294 2020
text 44579 8550334 0.008605 494 493
URLs 44579 6608853 0.006651 13144 13143
user 44579 1174207 0.001182 678 579

3/17

co occurence 46065 7217129 0.006802 2465 2164
text 46065 8994908 0.008478 405 404
URLs 46065 7059034 0.006653 12967 12966
user 46065 1215076 0.001145 735 611

3/18

co occurence 49377 8031118 0.006588 2571 2214
text 49377 9999982 0.008203 499 498
URLs 49377 7899346 0.00648 13671 13670
user 49377 1342326 0.001101 760 629

3/19

co occurence 50435 8327465 0.006548 2538 2200
text 50435 10297722 0.008097 583 581
URLs 50435 8137095 0.006398 13987 13986
user 50435 1388644 0.001092 749 617

3/20

co occurence 51776 8574626 0.006397 2777 2405
text 51776 10766590 0.008033 509 508
URLs 51776 8547938 0.006377 14006 14005
user 51776 1424429 0.001063 805 669

3/21

co occurence 49131 7880256 0.006529 2664 2315
text 49131 9788678 0.008111 585 583
URLs 49131 7569188 0.006272 14750 14749
user 49131 1474112 0.001221 720 591

3/22

co occurence 49396 8097011 0.006637 2236 1951
text 49396 9866549 0.008088 705 704
URLs 49396 7384271 0.006053 16014 16013
user 49396 1580565 0.001296 539 442

3/23

co occurence 56714 9973083 0.006201 2555 2267
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text 56714 12284376 0.007639 625 624
URLs 56714 9565130 0.005948 16394 16393
user 56714 1794422 0.001116 677 578

3/24

co occurence 58548 10374631 0.006053 2786 2421
text 58548 12834657 0.007489 733 732
URLs 58548 10089279 0.005887 16553 16552
user 58548 1799006 0.00105 724 599

3/25

co occurence 60968 10959787 0.005897 3001 2582
text 60968 13658304 0.007349 676 675
URLs 60968 10871376 0.005849 16638 16637
user 60968 1894732 0.001019 824 666

3/26

co occurence 61735 11192358 0.005873 3114 2698
text 61735 13912644 0.007301 733 731
URLs 61735 11117281 0.005834 16772 16771
user 61735 1928239 0.001012 851 695

3/27

co occurence 61691 11177223 0.005874 3125 2712
text 61691 13882971 0.007296 766 765
URLs 61691 11096333 0.005831 16810 16809
user 61691 1910421 0.001004 863 704

3/28

co occurence 57009 9916477 0.006103 2813 2438
text 57009 12166283 0.007487 850 849
URLs 57009 9581732 0.005897 16594 16593
user 57009 1918179 0.00118 731 595

3/29

co occurence 54611 9168923 0.006149 3006 2589
text 54611 11321969 0.007593 882 880
URLs 54611 8998724 0.006035 15832 15831
user 54611 1932976 0.001296 768 611

3/30

co occurence 62664 11313175 0.005762 3291 2847
text 62664 14150903 0.007208 897 896
URLs 62664 11539559 0.005877 16355 16354
user 62664 2143819 0.001092 913 752

3/31

co occurence 66817 12564544 0.005629 3328 2892
text 66817 15642964 0.007008 820 818
URLs 66817 12613459 0.005651 17778 17777
user 66817 2342428 0.001049 887 721

4/1

co occurence 68636 13086119 0.005556 3326 2873
text 68636 16218260 0.006886 916 915
URLs 68636 12954633 0.0055 18851 18850
user 68636 2411780 0.001024 864 701

4/2

co occurence 68159 12921278 0.005563 3406 2922
text 68159 16122006 0.006941 904 903
URLs 68159 13000447 0.005597 18199 18198
user 68159 2423759 0.001043 918 750

4/3

co occurence 71068 13704636 0.005427 3571 3095
text 71068 17133196 0.006785 848 847
URLs 71068 13805058 0.005467 19014 19013
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user 71068 2593038 0.001027 969 788

4/4

co occurence 64392 11692677 0.00564 3375 2870
text 64392 14552274 0.007019 926 925
URLs 64392 11635720 0.005613 18219 18218
user 64392 2507174 0.001209 847 684

4/5

co occurence 61647 10945327 0.00576 3295 2836
text 61647 13544070 0.007128 1034 1032
URLs 61647 10811578 0.00569 17864 17863
user 61647 2431118 0.001279 843 681

4/6

co occurence 67767 12628068 0.0055 3761 3221
text 67767 15832847 0.006895 1008 1007
URLs 67767 13184095 0.005742 16889 16888
user 67767 2508564 0.001093 981 784

4/7

co occurence 72653 14092171 0.00534 3826 3267
text 72653 17657535 0.006691 909 906
URLs 72653 14316697 0.005425 19273 19272
user 72653 2689533 0.001019 1054 847

4/8

co occurence 75832 15043486 0.005232 3840 3290
text 75832 18832764 0.00655 1046 1045
URLs 75832 15401513 0.005357 19660 19659
user 75832 2957848 0.001029 1087 876

4/9

co occurence 75722 15026145 0.005241 3872 3268
text 75722 18803070 0.006559 1016 1015
URLs 75722 15302849 0.005338 19898 19897
user 75722 2982852 0.00104 1072 817

4/10

co occurence 72566 14099819 0.005355 3709 3192
text 72566 17505343 0.006649 1077 1075
URLs 72566 14183413 0.005387 19658 19657
user 72566 2912466 0.001106 921 741

4/11

co occurence 66206 12162470 0.00555 3567 3009
text 66206 15125876 0.006902 1021 1019
URLs 66206 12081651 0.005513 19010 19009
user 66206 2717480 0.00124 926 714

4/12

co occurence 65675 12085740 0.005604 3465 2935
text 65675 14790467 0.006858 1214 1213
URLs 65675 11788072 0.005466 19253 19252
user 65675 2896898 0.001343 858 685

4/13

co occurence 72887 14052141 0.00529 3866 3306
text 72887 17482253 0.006582 1125 1124
URLs 72887 14355911 0.005405 19171 19170
user 72887 3144790 0.001184 1046 819

4/14

co occurence 76917 15339579 0.005186 4228 3610
text 76917 19141688 0.006471 1133 1131
URLs 76917 15889766 0.005372 19213 19212
user 76917 2980272 0.001008 1237 997

4/15

co occurence 77407 15499784 0.005174 4148 3553
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text 77407 19394901 0.006474 1211 1210
URLs 77407 16001360 0.005341 19530 19529
user 77407 2981994 0.000995 1128 917

4/16

co occurence 79653 16148152 0.00509 4227 3584
text 79653 20299610 0.006399 1145 1144
URLs 79653 16661657 0.005252 20291 20290
user 79653 3106543 0.000979 1178 929

4/17

co occurence 78367 15592973 0.005078 4491 3772
text 78367 19733196 0.006426 1106 1105
URLs 78367 16331688 0.005319 19633 19632
user 78367 3098978 0.001009 1225 956

4/18

co occurence 67899 12440165 0.005397 4058 3423
text 67899 15659217 0.006793 1248 1247
URLs 67899 12885653 0.00559 18124 18123
user 67899 2705727 0.001174 1096 868

4/19

co occurence 61885 10815632 0.005648 3372 2842
text 61885 13507919 0.007054 1237 1236
URLs 61885 11030604 0.005761 17193 17192
user 61885 2579525 0.001347 906 711

4/20

co occurence 79264 15968835 0.005083 4141 3540
text 79264 19961976 0.006355 1344 1343
URLs 79264 16492068 0.00525 20379 20378
user 79264 3347808 0.001066 1157 938

4/21

co occurence 80765 16467424 0.005049 4216 3580
text 80765 20666618 0.006337 1252 1250
URLs 80765 16959057 0.0052 20862 20861
user 80765 3291650 0.001009 1155 909

4/22

co occurence 81697 16734768 0.005015 4325 3682
text 81697 21036452 0.006304 1188 1187
URLs 81697 17245081 0.005168 21000 20999
user 81697 3334385 0.000999 1215 972

4/23

co occurence 83041 17029111 0.004939 4453 3796
text 83041 21518276 0.006241 1298 1296
URLs 83041 17803253 0.005164 21028 21027
user 83041 3535057 0.001025 1300 1027

4/24

co occurence 76507 15010702 0.005129 4442 3800
text 76507 19043433 0.006507 1100 1099
URLs 76507 15794897 0.005397 19086 19085
user 76507 2996896 0.001024 1311 1048

4/25

co occurence 72156 13606908 0.005227 4296 3618
text 72156 17036558 0.006544 1308 1307
URLs 72156 14148577 0.005435 19140 19139
user 72156 3135195 0.001204 1173 907

4/26

co occurence 70778 13131963 0.005243 4243 3538
text 70778 16482923 0.006581 1435 1431
URLs 70778 13581716 0.005422 19486 19485
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user 70778 3217555 0.001285 1107 843

4/27

co occurence 83252 17028252 0.004914 4488 3766
text 83252 21411786 0.006179 1502 1501
URLs 83252 17940021 0.005177 20733 20732
user 83252 3699063 0.001067 1346 1069

4/28

co occurence 84755 17561109 0.004889 4550 3841
text 84755 22145918 0.006166 1315 1313
URLs 84755 18331847 0.005104 21554 21553
user 84755 3664427 0.00102 1257 982

4/29

co occurence 86072 18018373 0.004864 4585 3879
text 86072 22691930 0.006126 1246 1245
URLs 86072 18728588 0.005056 21944 21943
user 86072 3674244 0.000992 1302 1041

4/30

co occurence 88539 18634524 0.004754 4878 4090
text 88539 23644676 0.006033 1395 1393
URLs 88539 19629344 0.005008 22228 22227
user 88539 3803211 0.00097 1428 1136

Table B.1: Graph metrics for each of the view graphs learned by a symmetric kNN procedure for each view for each
of the days.

Date View Modularity Resolution Weights Iterations

2/1

co occurence 0.278001 4.380331 1.482102

7
text 0.16435 2.95081 1.087881
URLs 0.005516 1.162796 0.147665
user 0.173467 3.930365 1.282352

2/2

co occurence 0.286614 3.938136 1.441558

6
text 0.188447 3.006953 1.143299
URLs 0.00555 1.145516 0.135136
user 0.192949 3.683846 1.280007

2/3

co occurence 0.286241 3.942712 1.457338

6
text 0.192167 2.970779 1.159595
URLs 0.004644 1.118974 0.114302
user 0.187434 3.567321 1.268766

2/4

co occurence 0.270026 4.041021 1.491818

6
text 0.172387 2.872412 1.136352
URLs 0.003812 1.096782 0.095418
user 0.171393 3.60256 1.276411

2/5

co occurence 0.284235 4.26236 1.525097

6
text 0.149828 2.738225 1.044148
URLs 0.005719 1.169057 0.157053
user 0.17069 3.721612 1.273701

2/6

co occurence 0.288712 4.211175 1.558165

6
text 0.142493 2.731876 1.062701
URLs 0.005725 1.160536 0.15406
user 0.14223 3.483169 1.225075
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2/7

co occurence 0.283714 4.291961 1.538853

6
text 0.14339 2.878466 1.085718
URLs 0.004994 1.163499 0.152936
user 0.140694 3.546961 1.222493

2/8

co occurence 0.280486 4.33098 1.519178

6
text 0.144824 2.896395 1.067268
URLs 0.006659 1.194224 0.176815
user 0.14431 3.673437 1.236739

2/9

co occurence 0.255646 4.601571 1.489243

6
text 0.143518 3.156272 1.107901
URLs 0.006713 1.215803 0.189922
user 0.135231 3.767356 1.212934

2/10

co occurence 0.283925 4.235479 1.533476

6
text 0.145416 2.890653 1.088735
URLs 0.005304 1.149715 0.14289
user 0.146814 3.574949 1.2349

2/11

co occurence 0.28832 4.179579 1.552373

6
text 0.141737 2.726751 1.054215
URLs 0.004601 1.13858 0.134586
user 0.152609 3.589321 1.258826

2/12

co occurence 0.289219 4.507069 1.564102

7
text 0.121123 2.81027 1.026068
URLs 0.004084 1.161964 0.150906
user 0.133947 3.798863 1.258924

2/13

co occurence 0.284712 4.399588 1.538355

6
text 0.124933 2.858436 1.044586
URLs 0.006907 1.22792 0.203677
user 0.136964 3.619306 1.213382

2/14

co occurence 0.259428 4.480011 1.508276

6
text 0.127484 2.933564 1.054594
URLs 0.006106 1.210207 0.188383
user 0.137655 3.861762 1.248746

2/15

co occurence 0.267328 4.645225 1.490221

6
text 0.128597 2.943381 1.014916
URLs 0.008547 1.263863 0.221435
user 0.164418 4.098882 1.273428

2/16

co occurence 0.267123 4.738217 1.515482

6
text 0.145081 3.197504 1.117502
URLs 0.003194 1.088496 0.08436
user 0.160704 4.007889 1.282657

2/17

co occurence 0.269745 4.288869 1.467299

6
text 0.142595 2.989108 1.077175
URLs 0.007121 1.20467 0.183143
user 0.161948 3.939208 1.272383

2/18

co occurence 0.269736 4.710909 1.472488

7
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text 0.141948 3.058842 1.044374
URLs 0.007816 1.26908 0.220965
user 0.170013 4.139215 1.262173

2/19

co occurence 0.284727 4.17269 1.517432

6
text 0.126586 2.704225 1.001628
URLs 0.007945 1.249613 0.221538
user 0.159276 3.761693 1.259402

2/20

co occurence 0.266664 4.556653 1.403855

7
text 0.153198 3.108558 1.036448
URLs 0.008953 1.344939 0.26308
user 0.178017 4.510735 1.296617

2/21

co occurence 0.286969 3.61909 1.37189

6
text 0.226821 3.049316 1.19249
URLs 0.007058 1.195812 0.175302
user 0.256497 3.194589 1.260318

2/22

co occurence 0.297618 1.324339 1.133198

2
text 0.46965 1.197193 1.514987
URLs 0.008295 1.020888 0.0576
user 0.374242 1.212409 1.294215

2/23

co occurence 0.248923 1.271907 1.039907

2
text 0.519247 1.12657 1.713544
URLs 9.27E-05 1.015685 0.04949
user 0.365007 1.186161 1.197059

2/24

co occurence 0.222656 1.27289 0.916761

2
text 0.570381 1.115851 1.828699
URLs -0.00575 1.010895 0.032384
user 0.355543 1.227456 1.222156

2/25

co occurence 0.20764 1.323024 0.986665

2
text 0.563256 1.110726 1.774222
URLs -0.00382 1.009106 0.026686
user 0.359003 1.244989 1.212427

2/26

co occurence 0.192079 1.270485 0.936145

2
text 0.599918 1.039578 1.842637
URLs -0.00033 1.006518 0.020718
user 0.360398 1.212687 1.200501

2/27

co occurence 0.294948 3.366221 1.472908

7
text 0.240941 2.604637 1.239237
URLs 0.000897 1.01579 0.018122
user 0.233629 2.782861 1.269732

2/28

co occurence 0.291972 3.337084 1.460744

7
text 0.229218 2.608077 1.219073
URLs 0.002165 1.029746 0.033401
user 0.234154 2.874624 1.286781

2/29

co occurence 0.255563 1.415784 1.088322

2
text 0.446156 1.380516 1.585263
URLs -0.00764 1.01466 0.035537
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user 0.359947 1.401837 1.290878

3/1

co occurence 0.199918 1.287432 0.978643

2
text 0.525888 1.111482 1.712439
URLs -0.00072 1.014175 0.041277
user 0.35313 1.239646 1.267641

3/2

co occurence 0.164966 1.22652 0.971942

2
text 0.571249 1.016744 1.83445
URLs -0.00245 1.006956 0.025928
user 0.323212 1.12456 1.16768

3/3

co occurence 0.173916 1.200179 0.954417

2
text 0.567749 0.991141 1.870842
URLs -0.00313 1.005763 0.022916
user 0.325724 1.108868 1.151825

3/4

co occurence 0.306137 3.743453 2.781681

8
text 0.192494 2.633356 2.055932
URLs -0.08256 0.379029 -3.01984
user 0.188126 2.889708 2.182231

3/5

co occurence 0.292791 3.563284 1.459546

7
text 0.216334 2.852342 1.231618
URLs 0.002351 1.046183 0.04893
user 0.216238 3.005523 1.259907

3/6

co occurence 0.183164 1.256289 0.996827

2
text 0.533682 1.041736 1.758472
URLs -0.00221 1.006483 0.023674
user 0.346764 1.1589 1.221027

3/7

co occurence 0.296231 3.625903 1.484642

6
text 0.216304 2.846983 1.232028
URLs 0.001625 1.030499 0.032776
user 0.229335 2.871041 1.250553

3/8

co occurence 0.224349 1.248575 1.049332

2
text 0.517919 1.05657 1.660098
URLs 0.000763 1.008385 0.028149
user 0.36423 1.179232 1.26242

3/9

co occurence 0.22108 1.305327 1.000826

2
text 0.486818 1.223353 1.663571
URLs 0.002005 1.012658 0.032226
user 0.351968 1.321711 1.303378

3/10

co occurence 0.186207 1.236602 0.998943

2
text 0.571919 0.999572 1.810448
URLs -0.00098 1.006107 0.022279
user 0.355327 1.122833 1.16833

3/11

co occurence 0.225269 1.364663 1.172956

2
text 0.510299 1.122007 1.685447
URLs 0.000979 1.007982 0.025093
user 0.347578 1.172693 1.116503

3/12

co occurence 0.290565 1.349464 1.294983

2
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text 0.480265 1.088079 1.628612
URLs 0.002657 1.006759 0.022509
user 0.294533 1.181421 1.053896

3/13

co occurence 0.346058 3.883607 1.623038

7
text 0.183697 2.525161 1.086668
URLs 0.001452 1.031608 0.034073
user 0.19911 3.116072 1.256221

3/14

co occurence 0.260563 1.306147 1.199402

2
text 0.543815 1.047454 1.694076
URLs 0.001478 1.005692 0.019252
user 0.329737 1.128263 1.08727

3/15

co occurence 0.296067 1.312708 1.17553

2
text 0.548048 1.044337 1.673799
URLs 0.000827 1.005254 0.016748
user 0.357103 1.139128 1.133922

3/16

co occurence 0.289601 1.244605 1.097948

2
text 0.555524 0.999444 1.76673
URLs -0.00028 1.004935 0.017222
user 0.34675 1.120048 1.1181

3/17

co occurence 0.382162 3.981867 1.681548

7
text 0.179203 2.516691 1.06546
URLs 0.001044 1.01111 0.012069
user 0.216385 3.004113 1.240923

3/18

co occurence 0.277646 1.281594 1.133369

2
text 0.542662 1.026866 1.733403
URLs -0.00227 1.00477 0.016042
user 0.339402 1.150873 1.117186

3/19

co occurence 0.281085 1.23744 1.124222

2
text 0.554111 0.999218 1.727616
URLs -0.00503 1.003669 0.013221
user 0.362303 1.118883 1.134941

3/20

co occurence 0.294435 1.32065 1.193985

2
text 0.514237 1.069149 1.688807
URLs -0.00203 1.004821 0.01542
user 0.351251 1.164605 1.101788

3/21

co occurence 0.31872 1.325723 1.129282

2
text 0.517221 1.080985 1.670099
URLs -0.00211 1.005442 0.016148
user 0.351594 1.214646 1.184472

3/22

co occurence 0.345428 1.380258 1.195941

2
text 0.495224 1.124381 1.616446
URLs -0.00502 1.005613 0.016106
user 0.353357 1.231984 1.171508

3/23

co occurence 0.372539 4.303172 1.638168

7
text 0.186882 2.794489 1.10104
URLs 0.000538 0.994394 -0.00581
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user 0.219748 3.352638 1.266605

3/24

co occurence 0.319018 1.302235 1.205148

2
text 0.513187 1.064847 1.662284
URLs -0.00393 1.004702 0.014826
user 0.337893 1.175806 1.117742

3/25

co occurence 0.379585 4.067591 1.650353

7
text 0.184089 2.65299 1.084851
URLs 7.37E-05 1.00744 0.007875
user 0.225739 3.125658 1.256921

3/26

co occurence 0.390823 3.849522 1.642042

6
text 0.1845 2.611706 1.085492
URLs 0.001215 1.00162 0.001738
user 0.230393 3.137124 1.270728

3/27

co occurence 0.33 1.306002 1.235194

2
text 0.478559 1.073015 1.651149
URLs -0.00819 1.00465 0.015555
user 0.313303 1.158017 1.098102

3/28

co occurence 0.359416 3.956025 1.583222

6
text 0.186968 2.739051 1.100696
URLs 0.000595 1.009867 0.010345
user 0.235748 3.359735 1.305737

3/29

co occurence 0.331773 1.313231 1.19494

2
text 0.473517 1.101318 1.646497
URLs -0.00543 1.005035 0.016006
user 0.323544 1.175837 1.142557

3/30

co occurence 0.341181 1.311435 1.242418

2
text 0.469658 1.085219 1.640168
URLs -0.00882 1.00478 0.015348
user 0.316228 1.14502 1.102065

3/31

co occurence 0.345672 1.305938 1.221588

2
text 0.48013 1.072957 1.657809
URLs -0.00256 1.005277 0.016536
user 0.319679 1.140275 1.104067

4/1

co occurence 0.373617 3.905897 1.610216

6
text 0.194402 2.709749 1.111916
URLs 0.000804 0.996072 -0.00419
user 0.232529 3.246359 1.282054

4/2

co occurence 0.343492 1.326723 1.240169

2
text 0.475614 1.08156 1.632088
URLs -0.00372 1.004315 0.013805
user 0.321531 1.152127 1.113938

4/3

co occurence 0.291739 1.284101 1.178471

2
text 0.501056 1.055677 1.66636
URLs -0.00622 1.004488 0.014926
user 0.356098 1.137683 1.140243

4/4

co occurence 0.368742 4.05489 1.59219

6
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text 0.183 2.727437 1.076657
URLs 0.001294 1.033441 0.033557
user 0.243818 3.39333 1.297597

4/5

co occurence 0.361219 4.192373 1.608245

6
text 0.188753 2.819537 1.114154
URLs -0.00046 0.973585 -0.02759
user 0.234523 3.475448 1.305191

4/6

co occurence 0.366153 3.729305 1.562138

6
text 0.190957 2.701268 1.119403
URLs 0.000518 0.99387 -0.00657
user 0.249396 3.283236 1.325024

4/7

co occurence 0.346924 4.263688 3.119555

8
text 0.178003 2.772574 2.119908
URLs -0.07697 0.333095 -3.64819
user 0.196012 3.299402 2.408727

4/8

co occurence 0.317079 1.301076 1.237214

2
text 0.48746 1.075788 1.663097
URLs -0.00283 1.004938 0.015772
user 0.337741 1.141115 1.083917

4/9

co occurence 0.358883 1.310046 1.239854

2
text 0.468538 1.082505 1.620417
URLs -0.00851 1.004955 0.015625
user 0.320859 1.14754 1.124104

4/10

co occurence 0.362408 4.379696 3.126548

8
text 0.169023 2.80675 2.060261
URLs -0.07708 0.338058 -3.51399
user 0.206326 3.191934 2.327177

4/11

co occurence 0.382534 4.173565 1.620814

6
text 0.17995 2.739352 1.068201
URLs 0.000759 1.008563 0.008691
user 0.245946 3.480686 1.302294

4/12

co occurence 0.374879 4.092456 1.534506

6
text 0.190368 2.769957 1.048161
URLs 0.005116 1.120881 0.11035
user 0.260993 3.614613 1.306983

4/13

co occurence 0.372679 3.820528 1.542172

6
text 0.187131 2.612595 1.044981
URLs 0.004505 1.092113 0.089151
user 0.271689 3.429403 1.323696

4/14

co occurence 0.378291 3.783146 1.566736

6
text 0.189152 2.665697 1.071477
URLs 0.0031 1.05573 0.055897
user 0.253812 3.325769 1.30589

4/15

co occurence 0.370377 3.562185 1.560853

6
text 0.191588 2.59113 1.079845
URLs 0.002432 1.034464 0.036178
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user 0.262691 3.213574 1.323124

4/16

co occurence 0.370728 3.553086 1.595097

6
text 0.195899 2.566821 1.117044
URLs -0.00062 0.971799 -0.03194
user 0.2497 3.103623 1.319799

4/17

co occurence 0.357899 3.953116 3.216401

7
text 0.165753 2.579116 2.095247
URLs -0.07776 0.336657 -3.802
user 0.209556 3.130921 2.490352

4/18

co occurence 0.365308 4.39719 3.1863

8
text 0.151244 2.680479 1.989463
URLs -0.07838 0.345162 -3.48982
user 0.190545 3.166194 2.314056

4/19

co occurence 0.377645 4.25813 1.632867

6
text 0.175616 2.782654 1.078959
URLs -0.00031 1.007908 0.00804
user 0.218089 3.474154 1.280134

4/20

co occurence 0.373325 3.975643 1.617862

6
text 0.179433 2.689335 1.076143
URLs 0.000493 0.997386 -0.00275
user 0.245725 3.382669 1.308741

4/21

co occurence 0.342113 1.253127 1.207957

2
text 0.479471 1.061709 1.665021
URLs -0.00536 1.004223 0.014363
user 0.317408 1.117807 1.11266

4/22

co occurence 0.381052 3.908378 1.647919

6
text 0.174562 2.597945 1.065182
URLs 0.000623 0.996246 -0.00402
user 0.228575 3.257679 1.29092

4/23

co occurence 0.383648 3.721941 1.605334

6
text 0.177987 2.589291 1.066264
URLs 0.001181 1.009656 0.010224
user 0.248143 3.275832 1.318178

4/24

co occurence 0.375464 3.695858 1.620669

6
text 0.177568 2.550345 1.074038
URLs 0.000483 0.996654 -0.00364
user 0.243392 3.167788 1.308932

4/25

co occurence 0.381492 3.924147 1.630713

6
text 0.168047 2.605728 1.053918
URLs 0.0013 1.012214 0.012799
user 0.224597 3.380724 1.302571

4/26

co occurence 0.378216 4.118803 1.61931

6
text 0.168512 2.678507 1.050519
URLs 0.001409 1.030307 0.030516
user 0.232398 3.469266 1.299654

4/27

co occurence 0.381412 3.662215 1.600407

5
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text 0.179316 2.565846 1.064348
URLs 0.001499 1.009718 0.01036
user 0.258497 3.258019 1.324885

4/28

co occurence 0.368548 3.620964 1.592892

6
text 0.184631 2.597744 1.093643
URLs -0.00012 0.986469 -0.01481
user 0.241676 3.28754 1.328278

4/29

co occurence 0.346739 1.289088 1.232358

2
text 0.45652 1.076153 1.659839
URLs -0.00473 1.004425 0.014965
user 0.300365 1.158802 1.092838

4/30

co occurence 0.299287 1.2675 1.20931

2
text 0.477057 1.068183 1.674795
URLs -0.00727 1.00444 0.015318
user 0.333816 1.136924 1.100577

Table B.2: Multi-view Modularity Clustering (MVMC) performance results for each view of each days’ data. Gen-
erally, the weight of a view correlates to the important of that view in finding clusters by MVMC and the number of
iterations correlates to the strength of the cluster structure present in the data.

Date
Number of
Clusters

Filtered Number
of Clusters
(cluster size >5)

Mean of
Filtered
Clusters Sizes

STD of
Filtered
Clusters Sizes

2/1 119 76 180.6053 167.4215
2/2 109 69 209.8261 201.1601
2/3 103 70 230 223.8302
2/4 109 70 211.9857 188
2/5 119 80 180.8375 178.3021
2/6 119 70 194.5 167.7832
2/7 112 80 173.075 163.6346
2/8 111 77 153.8701 138.3024
2/9 132 90 126.8667 120.3382
2/10 113 79 173.4937 169.7875
2/11 120 74 185 178.7091
2/12 116 76 168.7632 151.3474
2/13 115 78 168.141 161.5889
2/14 115 79 140.5823 126.7781
2/15 113 81 118.1235 104.2561
2/16 118 86 107.0233 103.8421
2/17 113 80 143.25 137.5473
2/18 120 83 134.506 122.7264
2/19 102 73 147.1781 135.223
2/20 118 90 119.0778 125.4855
2/21 86 63 199.6508 216.4846
2/22 16 11 981.9091 691.8503
2/23 15 9 1153.111 870.5808
2/24 19 9 1654.556 1292.167
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2/25 27 9 1717.778 1438.459
2/26 18 9 1737.444 1709.251
2/27 81 49 515.1224 507.0892
2/28 105 56 444.6429 475.7289
2/29 25 12 1770.167 1444.033
3/1 21 9 2133.333 1632.524
3/2 28 8 2352.625 1508.184
3/3 21 9 1994 1765.442
3/4 97 58 520.8276 543.1009
3/5 122 62 524.3387 579.0867
3/6 24 9 2701.667 1722.963
3/7 117 63 459.1905 508.5882
3/8 25 10 2018.8 1385.495
3/9 29 10 2478.5 1629.758
3/10 26 8 2561.75 1842.316
3/11 27 11 1826.455 1621.901
3/12 25 13 1679.923 1687.235
3/13 96 55 543.4182 451.5695
3/14 23 11 1906.182 2253.779
3/15 33 11 2171.636 2289.916
3/16 30 10 2483.4 2605.292
3/17 104 59 681.0678 569.2046
3/18 31 12 2404.083 2643.212
3/19 26 12 2411.167 2655.622
3/20 40 12 2924.5 2921.176
3/21 30 12 2593.917 2535.789
3/22 26 14 2296.143 2354.217
3/23 126 71 707.2535 654.7393
3/24 35 12 2999.333 2974.958
3/25 136 65 823.9077 756.9975
3/26 133 60 907.7667 799.3329
3/27 30 13 2994 2887.427
3/28 138 79 639.2025 719.539
3/29 35 15 2337.2 2362.898
3/30 36 12 3282.75 2847.888
3/31 32 12 3468.75 3025.41
4/1 134 66 914.5303 824.623
4/2 38 13 3308.692 3209.444
4/3 28 13 3503.077 3390.986
4/4 127 74 769.7838 728.8596
4/5 150 76 718.6842 695.6831
4/6 148 67 892.6269 895.985
4/7 134 74 869.3514 859.1948
4/8 35 13 3935.154 3798.074
4/9 36 12 3966.167 3332.758
4/10 150 75 861.96 861.9259
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4/11 136 76 771.8684 756.2456
4/12 122 67 869.3881 784.6204
4/13 128 66 971.4394 896.3212
4/14 141 70 971.4 1020.046
4/15 137 61 1115.115 1126.078
4/16 140 66 1059.303 1138.024
4/17 119 71 977.3099 1021.644
4/18 137 77 788.7662 778.0003
4/19 148 81 681.9753 716.2485
4/20 156 74 948.5135 983.3239
4/21 34 13 3793.462 4157.574
4/22 156 64 1126.406 1067.546
4/23 150 65 1131.477 1111.553
4/24 134 67 1005.925 1020.836
4/25 129 70 911.1714 890.3115
4/26 115 69 909.7536 816.8968
4/27 129 66 1114.167 1085.461
4/28 157 67 1114.403 1140.764
4/29 43 14 3835.214 3988.021
4/30 44 14 4187.643 4338.355

Table B.3: Cluster statistics for each days’ multi-view clusterings. Generally, clusters of size less than 5 hashtags
typically contained erroneous hashtags, and so these clusters were excluded.

Period 1, Chinese
Cluster

Period 1, Syrian Civil
War Cluster

Period 2, Online
Education Cluster

HongKongProstests Assad Torture study
ChinaCommunistParty TBT online
AnimalRights WORLD DigitalLearning
standwithhongkong Event201 edchat
SCMP CANADA edtech
expats AssadCrimes history
HubeiProvince GOD Education
seafood PANDEMIC child
BatSoup BIOWEAPON highereducation
Shangai CORONAVIRUSWORLD college
wuhanquaranted InfoWars kids
ChenQuishi MEXICO teaching
ZeroHedge SINGAPORE AcademicChatter
cononavirus CHINESE school
FreeTibet Nation highered
TaiwanCanHelp Infectados eLearning
AEWDynamite WhiteHelmets EdChat
WuhanCoronovirus OUTBREAK Teachers
DrLiWenliang CORONA intled
BoycottChina CORONAVIRUS AcademicTwitter
carrielam AlexJonesShow STEM
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Pets Caribbean students
HKexit FAKENEWS universities
terrorist BILLGATES international
Macau BEIJING MedEd
Killing Chemical Assad student
china is territorist PANDEMIA education
Hongkong LGBT math
SwineFever RETWEEET Learning
Muslims jesus elearning
JD CINA virtuallearning
Whistleblower RETWEET onlinelearning
MoonJaein NCOV19 university
Dictatorship Syrie HigherEd
BioWeaponsExpert fda distancelearning
hkprotest ISRAEL STEMeducation
BeltandRoad AssadGenocide schools
ChineseCommunistParty TRUMP
hongkongpolice VIRUSCORONA
Virology ALERT
Tibetans BBI
Vietnamese VIRUS
HongKongers BREAKINGNEWS
Beating CHINA
trust ACTUALIZACION
5DemandsNot1Less CONSPIRACY
StopBeijing2022 globalists
chinazi HUBEI
hkpolicebrutality WUHAN
myedgeprop TheResistance1776
CovID19 EBOLA
DrLi QUARANTINE
Hubie IndianArmy
China is terrorists HEALTH
dogmeat PutinAtWar
China is terrorist SaveIdlib
Tibet LAMORGESE
CoronaCartoons WW3
WuhanStrong Vimeo
martiallaw CORONAVIRUSOUTBREAK
Communist IdlibUnderFire
Weibo WUFLU
NeverForget
dangerous
Coronarivus
WuhanVirus
HK
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HKProtests
CloseTheBorder
XiaoZhan
Yulin
SaveUyghurs
conronavirus
Shanghai
HKgov
AnimalWelfare
NewsAlert
antiELAB
wuhanconoravirus
ChinaDaily
TsingYi
BRI
Wuhanhospital
Rats
CommunismKills
Mao

Table B.4: Additional example hashtags for each of the clusters of interest identified in Chapter Four. Note that these
hashtags, as presented in this table, are not ordered in any way relative to their usage.

Period 1, U.S.
Politics Cluster

Period 3,
U.S. Politics

BernieSanders2020 BarackObama
Democrats BernieSanders2020
Epstein Democrats
ImpeachmentHearings drudge
WETHEPEOPLE FlatEarth
UnitedNations Flu
xenophobia Epstein
BlackLivesMatter RevolutionNow
WakeUp DumpTrump2020
GatesFoundation CabalTakedown
WashingtonPost CoronaVirusTruth
DumpTrump ScienceMatters
USPolitics WednesdayWisdom
Exclusive donaldtrump
KAGA2020 TheRealDonaldTrump
BioWeapon TruthMatters
MAGA Infowars
Trump GeorgiaGuidestones
Bernie2020 FDA
AmericaFirst BlackLivesMatter
GOPComplicitTraitors WakeUp
DrainingTheSwamp Event201
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IowaCaucusDisaster AmericansFirst
YellowVests GatesFoundation
immigration DumpTrump
RIPAmerica KAGA2020
StopTheMadness BernieBeatsTrump
QAnon2020 socialism
VoteBlueToEndThisNightmare MAGA
TrumpBudget bioweapon
billgateseugenicist vaccination
NeverAgainIsNow Presidementia
KAG2020LandslideVictory Whistleblower
Bats CoronavirusUSA
SayNoToRacism AmericaFirst
WashingtonDC GOPComplicitTraitors
TheMoreYouKnow alternativefacts
Qanons tcot
imnotavirus ElonMusk
Schiff bigpharma
2A conspiracytheories
TheGreatAwakeningWorldwide CoronavirusVaccine
FoxNews Woke
WakeUpAmerica TrumpIsANationalSecurityThreat
VoteBlueNoMatterWho2020 StopTheMadness
Trump2020 NeverTrumper
ScottyfromMarketing Chinatown
Illuminati Breitbart
Agenda2030 JeffBezos
JoeBiden QAnon2020
VoteBlue2020 PutinsGOP
IoNonSonoUnVirus VaccinesKill
TrumpNotFitForOffice Schumer
PatriotsFight maga2020
PayAttention KAG2020LandslideVictory
QArmy SenatorForSale
Trump2020Landslide Qanons
TrumpAdministration Cult45
PatriotsUnite Schiff
Trump2020LandslideVictory HHS
TrumpsGuilty FoxNews
NancyPelosi WakeUpAmerica
Vaccine CrookedHillary
bluelivesmatter VoteBlueNoMatterWho2020
CloserNation Trump2020
qanon Depopulation
CoVID19 JoeBiden
q VoteBlue2020
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AlexJones QArmy
nytimes Trump2020Landslide
realDonaldTrump TeaParty
AlternativeMedicine TrumpAdministration
republicans antivax
racist illuminati
hillaryemails Freemasons
billgates TrumpResign
ImpeachTrump Conspiracy
IdiotInChief Fascism
stopracism GOPCowards
RemoveTrump TrumpsGuilty
IngrahamAngle 5g
EndTheFed Covfefe
Hannity qanon
BernieBros RushLimbaugh
highered AlexJones
Biowarfare FAKENEWS
NRA billgates
Globalists NRA
Obama chemtrails
conspiracy Vaccines
chemtrails CoronavirusCoverup
FakeNews WWG1WGAWORLDWIDE
MakeAmericaGreatAgain FalseFlag
QArmyJapanFlynn ChineseCoronavirus
VoteBlueNoMatterWho populationcontrol
AbolishICE StopTheCoup
Biden DeepState
Anons DrainTheDeepState
TCOT Zuckerberg
DemocratsTheEnemyWithin WhiteSupremacy
woke
DrainTheDeepState
PatriotsAwakened
CrimeMinisterMorrison
2AShallNotBeInfringed
GOPBetrayedAmerica

Table B.5: Additional hashtags from the U.S. politics clusters in period 1 (February) and period 3 (April). Note that
these hashtags are not ordered in any way by their relative usage.
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