Improving Collaboration Efficiency in
Fork-based Development

Shurui Zhou

May 2020
CMU-ISR-20-103

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christian Késtner (Advisor)
James D. Herbsleb
Laura A. Dabbish
Andrzej Wasowski (IT University of Copenhagen)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

(©2020 Shurui Zhou

This research was sponsored by the National Science Foundation (awards 1318808, 1552944, and 1717022) and
AFRL and DARPA (FA8750-16-2-0042). Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the Center for the Future of Work or the National Science Foundation

Keywords: Collaborative Software Development, Distributed Collaboration, Fork-Based
Development, Social Coding, GitHub, Open-Source

Abstract

Fork-based development is a lightweight mechanism that allows developers to
collaborate with or without explicit coordination. Recent advances in distributed
version control systems (e.g., ‘git’) and social coding platforms (e.g., GitHub) have
made fork-based development relatively easy and popular by providing support for
tracking changes across multiple forks with a common vocabulary and mechanism
for integrating changes back. However, fork-based development has well-known
downsides. When developers each create their own fork and develop independently,
their contributions are usually not easily visible to others, unless they make an active
attempt to merging their changes back into the original project. When the number
of forks grows, it becomes very difficult to keep track of decentralized development
activity in many forks. The key problem is that it is difficult to maintain an overview
of what happens in individual forks and thus of the project’s scope and direction.
Furthermore, the problem of lacking an overview of forks can lead to several addi-
tional problems and inefficient practices: lost contributions, redundant development,
fragmented communities, and so on.

In this dissertation, I mixed a wide range of research methods to understand the
problem space and the solution space. Specifically, I first design measures to quan-
tify how serious are these inefficiencies, then I developed two complementary strate-
gies to alleviate the problem: First, during the process of sampling 1311 GitHub
projects and quantifying the inefficiencies, also by opportunistically reaching out
to developers who have used forks, I recognized that there are differences among
projects. Therefore, I identified existing best practices and suggesting evidence-
based interventions for projects that are inefficient. Moreover, I observed that the
notion of forking has changed since the invention of fork-based development, so I
conducted mixed-method experiment to understand the perception of forking by in-
terviewing developers and identified future research directions. Second, as we found
that the lack of an overview problem that we observed in fork-based development
environment is essentially the same as the lack of awareness problem that have been
studied previously in other distributed software development scenarios but with new
challenges, I designed awareness tool to improve the awareness in the fork-based
development environment and help developers to detect redundant development to
reduce developers’ unnecessary effort. To evaluate the effectiveness and usefulness
of these awareness tools, I conducted both quantitative and qualitative studies.

My dissertation work focuses on improving collaboration efficiency for distributed
software teams, but the research method has a lot wider applicability. For example,
in the future, I will study other forms of collaboration, such as the collaboration of
interdisciplinary software teams.

v

Acknowledgments

I would not have finished this thesis without the help and support from my pro-
fessors, my family, and my friends, and my colleagues.

First and foremost, I would like to thank my advisor, Prof. Christian Kistner,
who is always supportive and patient, provides me guidance, and challenges me. I
could have never been here without his countless and significant support for the last
6 years. Through him, I learned the spirit of academics. I will never forget when I
was struggling with research, mentoring experiences, and my future plans, he said
“I am here to help”. I wish I could be a great advisor as Christian in the future.

I would like to express my thanks to my ‘informal” advisor and collaborator Prof.
Bogdan Vasilescu, who is always positive, supportive, and optimistic. From him, I
learned the power of passion and perseverance.

I would like to say ‘thank you’ to Prof. Andrzej Wasowski, who is a terrific
collaborator, a mentor, and has been helping me since 2015, and always provides me
valuable and helpful feedback.

I would like to thank my thesis committee members Prof. James D. Herbsleb
and Prof. Laura A. Dabbish. I have learned a great deal from this joyful experience.

I am so grateful to Prof. Yingfei Xiong at Peking University. Without Yingfei’s
support, I would not have the chance to join Carnegie Mellon. Without his help and
willing to sacrifice rest time over 2 years to attend my weekly meetings at night, I
could not publish my first ICSE paper and get the motivation of pursuing my aca-
demic dream.

I would like to express my deepest gratitude to Prof. Yuan Rao at Xi’an Jiaotong
University who helped me, supported me, guided me for the last 12 years, in Xi’an
and in Pittsburgh, as an advisor, a friend and family.

I would like to thank my professors in ISR — Prof. Claire Le Goues, Prof. Eunsuk
Kang, Prof. Fei Fang, Prof. David Garlan, Prof. Michael Hilton, Prof. Heather
Miller, who gave me millions of valuable advice and help during my Ph.D.

I would like to give thanks to my wonderful and perfect parents Xiling Wang and
Lingguo Zhou, who give me endless and selfless love and always cheer me on, just
as they have every step of the way. They gave me the ability to maintain hope for a
brighter morning, even during our darkest night. It is time to repay my parents.

I am so lucky to have my husband Xilin Liu, who is my knight in shining armor
and a gift. He always supports me and has been amazing during my Ph.D. Xilin, we
are best friends, best buddies, and you can always count on me.

I would like to thank my best friend Shengchen Du, who has been the definition
of what a friend is. For the past 12 years, you always support me and trust me no
matter whether we are in the same city or miles apart. I promise I will be supportive
to you as always and treasure our friendship like my favorite lyrics in Friends — “I’11
be there for you, like I’ve been there before; I'll be there for you, because you’re
there for me too”.

vi

Special thanks to my friend and colleague, Chu-Pan Wong, who is always pos-
itive and reliable. Thank you for being on this journey with me. I wish you all the
best in your future.

I would like to thank my brilliant girls and roommates, Zhuyun Dai and Fuchen
Liu. Without their support, my life in Pittsburgh would be boring and lonely. Thank
you for sticking by me.

I would like to thank my kindred spirit, Ang Liu, who is always by my side and
would explore this brave new world with me.

I would like to also thank my officemates and colleagues, Jaspreet Bhatia, He-
mank Lamba, Stefan Stanciulescu, Gabriel Ferreira, Jens Meinicke, Pooyan Jamshidi,
Miguel Velez, Olaf LeBenich, Connie Herold, Jamie Lou Hagerty, and Jennifer
Cooper, and all other people who shared their expertise and great ideas and always
provided me prompt support so that I could enjoy such an open and collaborative
environment.

Thank you all.

Contents

(I Introduction| 1
(1.1 Inefficiencies in Social Forking| 0. 2
(.2 Possible Solutions|. L 7
M3TRESIS -+« o o o e e e 8
(1.4 Summary of Contribution| 8
M3 0utling o o oot 9

2" Distributed Collaboration of Software Development] 11
2.1 History of Forking| 11
[2.2 Collaboration in Software Engineering Projects| 13
[2.3 Importance of Awareness in Distributed Collaboration|. 14

|3 Natural Interventions| 17
[3.1 Identifying Potential Context Factors and Deriving Hypotheses| 18

[3.1.1 Modularity affects forking practices| 19
[3.1.2 Coordination mechanisms aftect forking practices|. 20

[3.1.3 Contribution barriers affect community fragmentation| 21
[(3.1.4 Summary| 22

[3.2 Operationalization|. 22
[3.2.1 Outcome: Ratio of contributing forks.| 24
[3.2.2 Outcome: Ratio of merged pull requests.| 24

[3.2.3 Outcome: Ratio of duplicate pull requests.| 25
3.2.4 Outcome: Presence of hard forks) 25
[3.2.5 Predictor for modularity: Logic couplingindex.|. 26
[3.2.6 Predictor for modularity: Additive contribution index.| 26

[3.2.7 Predictor for coordination: Centralized management index.|. 26
3.2.8 Predictor for coordination: Pre-communication index.| 26

2 ntrol variables). o oo 27

3.3 DataCollection| 27
[3.4 Statistical Analysis| o o 29
[3.5 Threatsto Validity|. 29
B Resull . . . o o oo e 30
[3.6.1 When do forks attempt to contribute back? (Hp, H)| 30
13.6.2 When are more contributions integrated? (Hg, Hg)| 31

vil

viii CONTENTS

[3.6.3 When 1s duplicate work more common? (Hg)[. 31
[3.6.4 When does the community risk fragmentation? (Hg—Hg)| 32

B7 Discussion]. 32
[3.7.1 Modularity| 32
372 Coordinationl 33
[3.7.3 Redundant development.|, 34

3.8 Implications| L 34
[3.8.1 Implications for practitioners|. 34
[3.8.2 Implications for researchers and tool builders| 34

3.9 Summary| 35
4_Hard Forksl 37
.1 Motivationl. e 37
4.2 Research Questions and Methods|. 39
[4.2.1 Instrument for Visualizing Fork Activities| 39
[4.2.2 Identifying Hard Forks| 40
[4.2.3 Classifying Evolution Patterns| 41
424 Interviews|. 43
4.2.5 Threats to Validity and Credibility| 45

B3 Resultsl. . . . o oot 45
4.3.1 Frequency of Hard Forks|, .. 47
4.3.2 Why Hard Forks Are Created (And How to Avoid Them)[. 47
{4.3.3 Interactions between Fork and Upstream Repository| 49
4.3.4 Perceptions of Hard Forking| 50

M4 Summary| e e 52
5 New Intervention: INFOX 53
D1 Motivationl. e 53
5.2 Methodl 54
[5.2.1 Generating a dependency graph| 56
[5.2.2 Identifying features by clustering the graph| 57
[5.2.3 Labeling features| Lo L 59

[5.3 Implementation & User Interface|{ 61
5.4 Evaluationl 62
[5.4.1 Quantitative Study (RQI & RQ2) 63
[5.4.2° Human-subject study (RQ3 & RQ4) 67

0.5 RelatedWorkl o 70
5.6 Discussion|. e 71
[5.7 Productization: forks-insight.com| 72

5.8 Summary| e 73

CONTENTS

[6 New Intervention: Identifying Redundancies|

[6.3.1 Identifying Clues to Detect Redundant Changes|.

[6.3.2 Clues for Duplicate Changes|

[6.4 Identitying Duplicate Changes in Forks| . .

[6.4.1 Calculating Stmilarities for EachClue|
[6.4.2 Predicting Duplicate Changes Using Machine Learning|.
6.5 Evaluation: Effectiveness| oo
6.5.1 Datasetl
[6.5.2 Analysisand Results| o000
6.6 Related Workl

6.7 Summary|,

[7__Future Workl

(/.1 Improving coordination capability in fork-based development|.

(7.2 Exploring Different Forms of Collaboration|

iX

75
75
77
78
78
79
83
83
85
86
86
87
94
95

97
97
99

101

103

CONTENTS

List of Figures

(L1 Outhneofthesisl. L 1
(1.2 Existing solutions for the problem of lack of overview in fork-based development.| 3
(1.3 Density plots of mnefficient forking practices.|. 4
[2.1 'Timeline of some popular open-source forkingevents| 12
[3.1 Outline of studying natural intervention| 18
[3.2 Eight Hypothesis| 23
[3.3 Determining the origin of commits.| 23
[3.4 Density plots for our main predictors|, 28
.1 An example of commit history graph of fork tmyroadctfig/jnode| 39
¥.2 Statistics on 1dentified candidate hard forks and actual hard forks/ 42
[5.1 Complementary solutions for lack of overview problem in fork-based development.| 55
[5.2 Edge examples of an email system.|.o L. 57
B3 Throe steps OF INFOX|. - -+ -+« o o oo oo e 58
[5.4 Source code excerpt from Marlin.| 0L 60
[5.5 Examples of identified features in fork DomAmato/ofxVideoRecorder|. 61
[5.6 Extracting preprocessor-based ground truth and simulating forks.|. 64
[5.7 Accuracy of INFOX and CLUSTERCHANGES (CC) for 10 projects| 66
[5.8 Accuracy across all 1560 simulated forks for different variations.| 66
[5.9 User Interface of FORKS INSIGHT. This example shows searching “cuda™ in |

repository of tensorflow/tensorflow.o oL 73
(6.1 Pull requests rejected due to redundant development.| 76
[6.2 Duplicate Pull Request Detector: A GitHubBot| 77
6.3 Research Method of INTRUDE 78
(6.4 Screenshot - Duplicate pull requests with similar text information|. 80
(6.5 Screenshot - Duplicate pull requests with similar code change information| 81
[6.6 Calculating similarity for description / patch content|. 84
(6.7 Similarity of changed files and code change location (loc: Lines of code).| 85
6.8 ROQI: Precision & Recalll 89
[6.9 Simulating commit history of a pair of pull requests| 90
[6.10 RQ2: Can we detect duplicationearly? 91

X1

Xii LIST OF FIGURES

[6.11 RQ3: INTRUDE vs the state-of-the-art|. 93
[6.12 RQ4: Sensitive analysis|. 93

[/.1 Future work: Improving coordination capability in forks| 98

List of Tables

3.1 How we stratified oursample. | o L. 28
3.2 Contributing forks model (R =17%).. 30
.3 External PR merge ratio model (RZ =27%).]« v v v 31
3.4 Duplicate PR ratio model (R* =4%)./ 32
3.5 Hard forks model (R* = 10%).| 33
4.1 Background information of participants.| 44
4.2 Evolution patterns of hard forks| 0 0000 46
[5.1 Subjectprojects| 65
[5.2 Participants of our user study and their projects| 68
[6.1 Clues and corresponding machine learning features| 83
[6.2 subject projects and their duplicate PRpars.|. 87
(6.3 RQI: Simulating PR history| oo o0 o 88
[6.4 RQI, precision at default threshold|00, 89
[6.5 ROI, recall at default threshold| 90

Xiii

Xiv LIST OF TABLES

Chapter 1

Introduction

In this dissertation, I study how to improve collaboration efficiency for distributed software teams
using fork-based development mechanism. Fork-based development is a innovation that pro-
vides developers the flexibility to implement ideas without affecting each other and has com-
pletely changed the way of collaboratively building software systems, however it has downsides.
For example, when the number of forks increases, developers find it is difficult to maintain an
overview of the activities of the team, which further leads to collaboration inefficiencies like lost
contribution, redundant development, and fragmented community (shown as the problem space
in Figure[I.). Facing these problems, I design complementary solutions to address correspond-
ing problems (shown as the solution space in Figure [I.1): First, I study natural interventions
to identify best practices; Second, I design new interventions to improve the fork-based devel-
opment mechanism. Last but not least, I mix a wide range of research method to evaluate the
solutions from different perspectives.

Problem Solution Analysis/Evaluation

Lack of Overview | Natural Intervention

N

(Social Fork][ch.3 [FSE 2019]
| Hard Fork J[Ch. 4 [1CSE 2020]

Lost Contribution Identifying Best Practices] {

New Intervention

Redundant Development . H m
! Identifying Feature } :{ [Ch. 5 [ICSE 2018]
I 1 L Usefulness

Fragmented Community . i
1

Identifying Redundancies } :{[M’ Ch. 6 [SANER 2019]
_____________________________ L[Usefulness |

Figure 1.1: Outline of the thesis. (Arrows present the mapping between solution and its targeting
problems)

Collaboration is essential for software development at scale, in both industrial and open-
source projects. As the software teams become increasingly distributed, many of the mecha-
nisms that support coordination in a co-located setting are absent or disrupted in a distributed
project [103, 106, 139]. Geographic distance profoundly affects the ability to collaborate [1635]],

2 CHAPTER 1. INTRODUCTION

and leads to various disruptions to different degrees, such as much less communication, lack of
awareness, and incompatibilities [[106].

Fork-based (known as branch-based or pull-based) development is an emerging paradigm
and a lightweight mechanism that supports distributed software development. Developers could
start with an independent development from an existing codebase by simply copying code files
and creating a fork or a branch [36], while having the freedom to make any modifications [37, 71,
81, 230]. Recent advances in distributed version control systems [2},223] (e.g., ‘git’) and social-
coding platforms (e.g., GITHUB, Bitbucket, and GITLAB) have made fork-based development
relatively easy and popular [97, [179] by providing support for tracking changes across multiple
forks, and using a common vocabulary and mechanism for integrating changes back [61]]. More
and more projects, both closed source and open source, are being migrated to these code hosting
sites [24]. As of January 2020, GitHub reports having over 40 million users and more than 100
million repositories (including at least 28 million public repositories), making it the largest host
of source code in the world [[14]].

Forking has become very common: As we measured from the GHTorrent [96] data, over
114,120 GITHUB projects have more than 50 forks, and over 9,164 projects have more than
500 forks as of June 2019, with numbers rising quickly. The large population of forks in the dis-
tributed software development comes at costs to open-source (such as lacking of an overview, lost
contribution, redundant development, and fragmented communities), which may even threaten
the sustainability of the open-source communities, as we will explain later. Moreover, inadequate
models of collaboration can stifle innovation, hurt common infrastructure, and lead to inefficient
development process, for example, when team members lack of awareness of what others are
doing [70, 103]], when code structure does not align with team structure [[107]], or when the struc-
ture of governance of a community is inefficient [64]. Improving this situation is the core goal
of this thesis.

Before the rise of social coding, forking traditionally referred to the intention of splitting an
independent development line, competing with the original repository, often with a new name.
We use the term (social) fork in the sense of creating a public copy of a git repository and refer
to the traditional definition of splitting of a new independent project as a hard fork. We explain
the history of forking in Section[2.1]

1.1 Inefficiencies in Social Forking

Modern tools and platforms (e.g.,GITHUB, Bitbucket, and GITLAB) have made forking easier
(1) to track and integrate changes across multiple forks without central management and (2) to
publish changes, including incomplete and experimental ones. Forking has become very com-
mon and popular [97, [179] as we described previously. Social forking has been broadly studied
from different perspectives 61,162, 97,199, 100, 147, 226].

While easy to use and popular in practice, fork-based development has well-known down-
sides. When developers each create their own fork and develop independently, their contributions
are usually not easily visible to others, unless they make an active attempt to merge their code
changes back into the original project. When the number of forks grows, it becomes difficult to
keep track of decentralized development activity in many forks. The key problem is that it is dif-

1.1. INEFFICIENCIES IN SOCIAL FORKING

ficult to maintain an overview of what happens in individual forks and thus of the project’s scope
and direction. Also, for fork-based development in industrial contexts, both Berger et al. and
Duc et al. found that it is hard for individual teams to know who is doing what, which features

exist elsewhere, and what code changes are made in other forks [28],[72].

59 forks: 56 public, O internal, and 3 private

Kola Heyward-Rotimi / falsisign @
Merge branch 'master’ into 'master’

Dimitris / falsisign @
Merge branch 'master’ into 'master’

Baidik Chandra / falsisign @
Merge branch ‘master into ‘master’

Armel S. / falsisign @
Merge branch ‘master" into ‘master’

Stephan Michaud / falsisign @
Merge branch 'master’ into 'master’

Philip Phuong Tran / falsisign @
Merge branch 'master’ into 'master’

Benoit LEGER-DERVILLE / falsisign
Merge branch 'master' into 'master"

Sanardi / falsisign @
Merge branch ‘master" into ‘master’

Eddie / falsisign @
Merge branch 'master’ into 'master’

Cesar / falsisign @
Merge branch 'master’ into 'master’

* 0
Updated 2 days ago

* 0
Updated 5 days ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

* 0
Updated 1 week ago

(a) GITLAB’s fork list view.

Owners

28

30

Woah, this network is huge! We're showing only some of this network’s repositories.

M MarlinFirmware / Marlin
.8, OxPIT / Marlin

123bsharp / Marlin

-3 3cky / Marlin
3derbauer / Marlin
3sbill / Marlin

&5 42loop / Marlin
777doogy / Marlin

- 8 aaubry /Marlin

& adamjvr / Marlin

-@l adamrbates / Marlin

-@ adgaudio / Marlin
@ ADSu10 / Marlin
8 aeickho / Marlin

-#= agharasoul / Marlin

(b) GITHUB’s fork list view.

4 10 14 1

252592696 / Marlin

- & adamwmeek / Marlin

ahmetcemturan / Marlin

19 20 28

29

_/25 A

mojombo

eric

schacon

dosire

jackrabbit

ryanschwartz

halorgium

(c) GITHUB’s network graph shows commits across known forks, but is difficult to use to gain an overview

—

Eric Lindvall
Change logging of condition info to be at
:debug instead of :info.

sionor-Bor-yejop

of activities in projects with many forks [249].

Figure 1.2: Existing solutions for the problem of lack of overview in fork-based development.

4 CHAPTER 1. INTRODUCTION

StDev =0.22'

StDev =0.19

= =
& =
c c
(] (V)
© ©
0% o 25% 50% . 75% 100% 0% 25% 50% 75% 100%
% Forks contributing back PR merged ratio
(a) (b)
= =
S StDev = 0.059 5. StDev =0.02
© =]
. g 111 1L wwwww—%ﬁ‘
0% 25% 50% 75% 100% 0.0% 2.5% 5.0% 7.5% 10.0%
% Duplicate PRs among rejected PRs % Hard forks among all forks
(c) (d)

Figure 1.3: Among 1311 GITHUB projects, both efficient and inefficient forking practices are
common, motivating us to understand what influences inefficiencies. Plots are density plots
indicating which outcomes are common in many projects; the arrow indicates more efficient
outcomes; the dash line indicates the median [250].

Open-source developers (including the ones that we interviewed for this project) indicated
that they are interested in what happens in other forks [231]], but cannot effectively explore them
with current technologies [7]. Code hosting platforms invented different solutions to resolve this
problem. For example, GITHUB and GITLAB list all the forks of a project in one page (see Fig-
ure [I.2a)and Figure[I.2b)). In addition, GITHUB’s network graph shown in Figure visualizes
the history of commits over time across all branches and forks of a project [61]. Although the
fork list view helps people to know the existing forks, it is hard to figure out whether these forks
are still active and what are the code changes. While the network view is a good starting point
to understand how the project evolves, it is tedious and time consuming to use if a project has
many forks. In order to see older history, users click and drag within the graph, and if users want
to see the commit information, they hover the mouse over each commit dot and read the commit
message. Also, they complain that they “have to scroll back a lot to find the fork point and then
go to the end again for seeing what changed since then in the parent and in the fork” [7]. If
developers want to investigate the code changes of certain forks, they have to manually open and
check each fork. The GITHUB network view does not even load when there are over 1000 forks,
no matter whether they are active or inactive. As we measured from the GHTorrent [96] data,
over 2,236 GITHUB projects have more than 1000 forks as of June 2019.

Furthermore, the lack of overview of forks can lead to several additional problems and inef-
ficient practices:

e Lost contributions: Developers may explore interesting ideas, fix bugs, or add useful fea-
tures in forks, but unless they contribute those changes back to the original project, those
contributions are easily lost to the larger community, although these changes are tech-
nically public [249]. Fung et al. [91] report that only 14 percent of all active forks of

1.1. INEFFICIENCIES IN SOCIAL FORKING 5

nine popular JavaScript projects on GITHUB integrated back any changes; extrapolating to
open-source in general, this can amount to significant inefficiencies regarding development
talent and lost effort. Developers are often interested in activities by other developers, but
simply are not able to follow details in that many forks proactively—for example, one of
the developers in our user study discovered a feature in a fork and said “If it only exists in
this fork, then I want to somehow get this feature into my fork.” Only very recently tools
have been proposed to help developers monitor many forks [12} 184, [249]. In our study,
we regard a community in which more developers attempt to contribute their changes to
the upstream as more efficient. In our sample of 1311 GITHUB projects, we identified
the fraction of forks that attempt to contribute any changes back among all active forks.
And results shown that this problem is pervasive: a median of 50% active forks never
contribute back to the upstream (see Figure [[.3a). Lost contributions even happen in co-
ordinated software product line when people often struggle to identify which of multiple
existing forks/branches to select as a starting point [71]].

® Rejected pull requests. Not all attempted contributions are accepted by project maintain-
ers. When developers submit a pull request that gets rejected, they can perceive this as a
waste of their effort and get discouraged from contributing further [212]]. One important
factor that affects the decision of merging a pull request or not is project fit, which means
whether the proposed pull request is in line with the goals and target of the project, and
also the technical fit — does the code fit the technical design of the project [[18, 100, 212].
From the community’s perspective, a project in which most pull requests are accepted can
be considered as most effective with regard to contributor efforts. Observing the rate of
rejected pull requests among all closed pull requests in our 1311 GITHUB projects (see Fig-
ure[I.3b), we see that in most projects a majority of pull requests are accepted, but also note
the high variance. Again, we would like to identify whether different project characteris-
tics or practices can explain why some projects accept most pull requests whereas others
accept only a small percentage, and how project maintainers can strive for more efficiency.

® Redundant development: Unaware of activities in other forks, developers may re-
implement functionality already developed elsewhere. A developer we interviewed in
our study (Chapter [5) [249] also confirmed the problem as follows: “I think there are a
lot of people who have done work twice, and coded in completely different coding style.”
Gousios et al. [97] summarized nine reasons for rejected pull requests in 290 projects
on GITHUB, in which 23% were rejected due to redundant development (either parallel
development or superseded other pull requests). Redundant development further leads
to merging conflicts, which would demotivate or prevent developers from continuously
contributing to the repository [97, 212] and significantly increases the maintenance effort
for maintainers [71, 214]. In analyzing the fraction of pull requests rejected due to
redundancies, we found that redundant development is a small but pervasive problem:
about 1-5 % of all pull requests and 5-50 % of rejected pull requests (see Figures[I.3c).

¢ Fragmented Communities: Diffusion of efforts can be observed on GITHUB in the many
secondary forks (i.e., forks of forks) that contribute to other forks, but not to the original
repository [91, 211]]. This fragmentation can seriously threaten the sustainability of open
source projects when scarce resources are additionally scattered across multiple projects.
In fragmented communities, we see multiple related repositories receive contributions,

6 CHAPTER 1. INTRODUCTION

but those contributions are rarely shared. For example, Ultimaker was originally a fork
of the Marlin project aimed at certain hardware, but has evolved into an independently
managed hard fork with over 190 own forks and no interaction with Marlin anymore;
inefficiencies can be observed, for example, in a pull request for Marlin for an issue that
was independently fixed with a different pull request in Ultimaker two years earlier There
are different reasons for community fragmentation. For example, one of the developers
who have second level forks explained that he implemented a feature and submitted a pull
request. After it was rejected, he started to focus on his fork, and then more and more
developers started to fork his fork. Hard forks are rare, but potentially expensive for a
community. In analyzing the percentage of hard forks among all the sampled forks of
each project, the numbers show that a median of 5% sampled projects have hard forks
(see Figure[I.3d). Although this only happens to some projects, but the problem is severe.

Note that not all the practices that we described above (including unmerged code changes
in forks, rejected pull requests, similar implementations from different developers, and
fragmented communities) are inefficient and should be eliminated. For example, not all of
the unmerged code changes in forks are reusable, and they could be changes done for some other
reasons, like experimenting, getting familiar with the project, or for customization. It might be
more efficient not to send the owner a pull request that would take up the owner’s time and effort
to review a useless change. Moreover, these practices could even be beneficial. For example,
duplication could stimulate better solutions if two developers communicate and collaborate ear-
lier. However, currently there is no tool to notify developers who are working on similar features
or bug-fixes. Therefore, instead of collaborating upfront, developers compete at the end. Simi-
larly, community fragmentation could be beneficial for exploring new and larger ideas or testing
whether there is sufficient support for features and ports for niche requirements or new target
audiences (see Section[d.3.2)). However, current technology does not support coordination across
multiple hard forks well.

We have evidence showing that a large portion of communities treat these as inefficiencies,
and would like to address these to some extent (see Chapter[3). And studies have found that there
are many chances that developers could be notified about these cases earlier and collaborate more
efficiently (Chapter [S|and[6]). Therefore, as the first step, in this thesis, we treat lost contribution,
rejected pull requests, redundant development, and fragmented communities as indicators of
collaboration inefficiencies and design complementary solutions to address them. In the future,
we could design approaches to detect the intention behind each developer’s activity and come
up with a more targeted method to help community members to achieve higher collaboration
efficiency, but this is out of the scope of this thesis.

https://github.com/MarlinFirmware/Marlin/pull/10119
https://github.com/Ultimaker/Ultimaker2Marlin/pull/118

https://github.com/MarlinFirmware/Marlin/pull/10119
https://github.com/Ultimaker/Ultimaker2Marlin/pull/118

1.2. POSSIBLE SOLUTIONS 7

1.2 Possible Solutions

We would like to alleviate these inefficiencies. We developed two complementary strategies:
Identifying natural interventions and designing new interventionsE] First, by quantifying the
inefficiencies in a large number of GITHUB projects and by discussing with multiple develop-
ers regarding their experiences of using forks, we recognized that there are differences among
projects in terms of the degree of inefficient practices. These strong differences raise the ques-
tion of why these projects are so different and whether we could find natural interventions that
already exist and are correlated with higher collaboration efficiency, and then recommend these
best practices to other communities with lower collaboration efficiency. Second, since there is
a lot of information that is publicly available but not easily accessible, we saw opportunities of
building awareness tools to help people to gain a better understanding of the activities of others
and a context for their own activity in collaborative software development.

Identifying natural interventions. During discussions with developers from different open-
source communities, we observed that some communities have fewer problems with inefficien-
cies than others. In quantifying the inefficiencies of our sampled projects set, we found that
projects are indeed very different regarding the degree of collaboration inefficiencies. Specif-
ically, the degree of fork owners attempting to contribute their changes back to the upstream
varies, ranging from projects in which almost no fork attempts to contribute back, to projects
where almost all forks are used for attempted contributions (see Figure[I.3a)). Figure[I.3b|shows
that in most projects a majority of pull requests are accepted, but again with large differences.
Similarly, by plotting the fraction of pull requests rejected due to redundancies in Figures
we observe the differences that some projects have more redundant development cases than oth-
ers. And Figure |1.3d| shows the percentage of hard forks among all the sampled forks of each
project, we again observe that their frequency varies significantly across projects.

These strong differences in observed inefficiencies raise the question of why these projects
are so different, and bring us the opportunity of improving collaboration efficiencies for open-
source communities by identifying actually occurring interventions from some projects that are
more efficient.

Designing new interventions to improve awareness. As the fork-list view (GITHUB and
GITLAB) and the network view (GITHUB) shown in Figure [5.1] are not good enough to pro-
vide developers an overview of the activities in the community, we would like to design new
interventions to improve current situation. Through literature analysis, we found that the lack
of an overview problem that we observed in fork-based development environment is essentially
the same as the lack of awareness problem that have been studied previously in other distributed
software development scenarios [48, 163}, 70, (103, 200, 224], but with new challenges.

As there is a lot of information that is publicly available but not easily accessible in the fork-
based development environment, we saw opportunities for designing new intervention — building
awareness tools — to help team members to gain an understanding of the activities of others,

The term intervention is used in social studies and social policy to refer to the decision making problems of
intervening effectively in a situation in order to secure desired outcomes [3]].

8 CHAPTER 1. INTRODUCTION

which also provides a context for each developer’s own activity [/0]], and ultimately mitigate
the collaboration inefficiency. Specifically, we designed an approach INFOX [249] to summarize
un-merged code changes in forks in order to generate a better overview of the community. We
also designed an approach INTRUDE [1835]] to identify potentially redundant code changes to save
both project maintainers’ and developers’ effort.

Summary. We observe inefficiencies in fork-based development and different communities
has different inefficient practices, so we would like to understand how efficiently developers
use forks in different communities, and to what degree project characteristics and practices of
open-source communities associate with inefficiencies. Then we propose two complementary
strategies to mitigate those issues: First, we would like to identify existing best practices and
suggest evidence-based interventions to projects that are inefficient; second, we would like to
build tools that could improve the awareness of a community, and help developers to detect
redundant development to unnecessary effort. To evaluate the effectiveness and usefulness of
these approaches, we conducted both quantitative and qualitative studies. The research setting
for this study is the “social coding” platform GITHUB, which is a very popular contemporary
example of a fork-based development environment.

1.3 Thesis

My dissertation work is about alleviating the inefficiencies in fork-based development, by identi-
fying interventions from existing best practices and building awareness tools that could improve
the awareness of a community using fork-based development, and reduce developers’ unneces-
sary effort. The following is my thesis statement:

I study how communities using forks, design measures to quantify inefficiencies in fork-based
development. In order to mitigate the inefficiencies, I propose two strategies: first, I conduct
a cross-sectional, correlational study to identify existing best practices and generate evidence-
based recommendations that could improve collaboration efficiency; second, I design awareness
tools to generate a better overview of code changes in an open-source community, and detect
redundant development to reduce waste of maintenance and development effort.

The research questions we asked in this thesis are:

e RQI1: What characteristics and practices of a project associate with efficient forking prac-

tices?

¢ RQ2: How have perceptions and practices around hard forks changed?

e RQ3: Can awareness tools help fork-based development to mitigate collaboration ineffi-

ciencies?

1.4 Summary of Contribution
The contributions of this thesis include the following:

e Measures of inefficiencies in open source communities, and observations of strong dif-
ferences among projects in terms of lost contributions, rejected pull requests, redundant

1.5. OUTLINE 9

development, and fragmented communities. Result shows that projects are different in
terms of the degree of collaboration efficiencies (Chapter [2)).

e A cross-sectional, correlational study that test hypotheses whether certain context factors
of a project are correlated with inefficient practices by fitting statistical models with across
1311 GITHUB projects. The findings show that management strategy of the community
and project modularity is correlated with higher efficiency but with trade-offs. Based on
the findings, we derived evidence-based guidance to practitioners, and future research di-
rections and tooling ideas (Chapter [3)).

¢ A mix-methods empirical design, combining repository mining with developer interviews
to investigate the evolution patterns of hard forks, and study the perceptions of hard forks
comparing to 20 years ago. Our finding show that hard forks are a significant concern, even
though their relative numbers are low. In addition, we find that the ‘stigma’ often reported
around hard forks is largely gone, indeed forks including hard forks are generally seen as a
positive. Furthermore, with social forking encouraging forks as contribution mechanism,
we find that many hard forks are not deliberately planned but evolve slowly from social
forks (Chapter).

¢ INFOX, an approach and the corresponding tool, which automatically identifies and sum-
marizes features in forks of a project, using source code analysis, community detection,
and information retrieval techniques. And we provide evidence that INFOX improves ac-
curacy over existing techniques and provides meaningful insights to maintainers of forks.
Furthermore, we developed a web service forks-insight.com to improve our research im-
pact in practice (Chapter [3)).

¢ INTRUDE, an approach that automatically identifies duplicate code changes using natural
language processing and machine learning. We develop clues for indicating redundant
development, beyond just title and description. And we designed quantitative study to
prove that the approach outperforms the state-of-the-art (Chapter [6).

1.5 Outline

In this thesis, we first study the problem space by quantifying the efficiencies in fork-based
development: Lost contribution, rejected pull requests, redundant development, and fragmented
community (already described in Chapter [I)). Chapter [2] grounds our work by discussing the
history of forking, and the importance of awareness of a distributed collaborative environment.
Next, we propose two complementary strategies to mitigate these problems (Chapter [3}
[6): First, we identified existing best practices and suggesting evidence-based interventions to
projects that are inefficient (marked as the Natural Intervention in Figure [I.1)); second, we built
tools that could improve the awareness of a community using fork-based development and help
developers to detect redundant development to reduce developers’ unnecessary effort (marked as
New Intervention in Figure . To evaluate the effectiveness and usefulness, we conducted both
quantitative and qualitative studies. Chapter [7]discusses potential future research directions.

10

CHAPTER 1. INTRODUCTION

Chapter 2

Distributed Collaboration of Software
Development

In this thesis, we discuss different approaches to improving collaboration efficiency for dis-
tributed software teams using fork-based development mechanism. In this chapter, we first give
a brief introduction of the history of forking and then compare the old notion of forking with the
recent social forking phenomenon, which also lays the foundation to one of the projects (Chap-
ter d)) — identifying different types of forks to understand the community fragmentation problem.
Furthermore, we discuss the importance of awareness in a collaborative environment, from which
we got inspirations and then design new interventions to improve fork-based mechanisms.

2.1 History of Forking

Traditionally, the processes of collaboration in distributed software development is through patch
submission and acceptance [34, 35, 156, 235]]. With the advances in distributed version control
systems (e.g., git) and social coding platforms (e.g., GITHUB, GITLAB, and Bitbucket), fork-
based development became relatively easy and popular for the last 12 years, both in open-source
and in industry [97,179].

Traditionally, forking was the practice of copying a project and splitting off new independent
development; in the past, forking was rare and was often intended to compete with or supersede
the original project [85, 131,161} [181]. For example, when OpenOffice was acquired by Oracle
in 2010 but did not fit anywhere in Oracle’s grand plans, developers in the community decided to
fork OpenOffice and created LibreOffice in the same year. Similarly, in 2011, Hudson was forked
as Jenkins because of the governance disagreements with Oracle [9]. In 2014, “after a public
spat with the “steward” of the framework™ [199, 240], a number of Node.js developers started
their own fork of the framework called io.js, but after a year, the Linux Foundation announced
that Node.js and io.js officially merge codebases back.

Nowadays, forks are typically understood to be public copies of repositories in which devel-
opers can make changes, potentially, but not necessarily, with the intention of integrating those
changes back into the original repository. With the rise of social coding and explicit support in
distributed version control systems, forking of repositories has become very popular [97, [179].

11

12 CHAPTER 2. DISTRIBUTED COLLABORATION OF SOFTWARE DEVELOPMENT

sgurce Popularity Trend since 2014

Forgel GitHub
> :
Hard fork : Google code Bltbucket
| snurce \
T T T T T T, — T T |
93 ; 99 02 ‘ 11 9 3 17
a4
BSé Hudson o Je“k‘“s
Since, P ~ X !
o \?reeBSD OpenOfiice Librlgﬁce

Figure 2.1: Timeline of some popular open-source forking events; popularity approximated with Google
Trends.

In this thesis, we use the term (social) fork in the sense of creating a public copy of a git
repository with the intention of integrating those changes back into the original repository and
refer to the traditional definition of the splitting of a new independent project as a hard fork.

Forking research focused primarily on hard forks in open-source, where a popular topic was
understanding the motivations [S1}, 169, 81, [131} 1162, 190, 232], the controversial perceptions
around hard forks [42, 185,131,161, 181} 237], and the outcomes of hard forks (including study-
ing factors that influence such outcomes) [[190, 237]. Specifically, Nyman et al. [[162] analyzed
self-described reasons for hard forks and found that variants targeting specific needs or user seg-
ments are the most common, followed by variants for different hardware (porting), bug fixes, and
reviving abandoned projects. Researchers also found that forking can be a suitable practice for
variant management [81]] and to overcome governance disputes [93].

Hard forks have been discussed controversially: The right for hard forks (codified in open
source licenses) was seen as essential for guaranteeing freedom and useful for fostering dis-
ruptive innovations [85) (161, [164], encouraging a survival-of-the-fittest model [234]], but hard
forks themselves were often seen as antisocial and as risky to projects since they could fragment
a community and lead to confusion for both developers and users [85, [131} 161} [181]. Also,
Yoo [243] studies the tension between freedom of forking with the challenge of fragmenting the
community. There are not many cases where both communities survived after a hard fork, with
a prominent but relatively rare example of the BSD variants [163} (179, 180, [190].

However, essentially all that research has been conducted before the rise of social coding,
much of it on SourceForge (GITHUB was launched in 2008 and became the dominant open-
source hosting site around 2012; cf. Fig[2.1).

In recent years, researchers started studying collaborative development with forks on social
coding platforms. The openness of social coding creates transparency [61, 62] by making devel-
opment activities in forks public and making pull request (PR) contributions visible. Prior work
studied GITHUB’s pull-request model to investigate the reasons and factors that affect the PR
evaluation process [97, 99, 227, 244]. Among the findings, both technical and social factors af-
fect the chance of acceptance, such as the quality of the PR and the submitters’ social connection

2.2. COLLABORATION IN SOFTWARE ENGINEERING PROJECTS 13

to core members of the community.

As the notion of forking has changed over the last 20 yeas, we argue that perceptions and
practices around forking could have changed significantly since SourceForge’s heydays. In con-
trast to the strong norm against forking back then, we conjecture that the promotion of social
forks on sites like GITHUB, and the often blurry line between social and hard forks, may have
encouraged forking and lowered the bar also for hard forks.

Therefore, in this thesis we revisit, replicate, and extend research on hard forks to update
and deepen our understanding regarding practices and perceptions around hard forks in order to
inform the design of better tools and management strategies to facilitate efficient collaboration.

Also, prior work confirmed that forking provides increased opportunities for community
engagement [61) 162, 97, 99, [149]]; e.g., over half of the commits in the Marlin project come
from forks [214]. Biazzini et al. defined three collaboration models of open source projects on
GITHUB by understanding the dispersion of commits created by forks in the community, and re-
vealed that collaboration patterns may differ significantly among projects [31]. More generally,
it has been observed that communities often adopt a shared culture of common practices, but
cultures can differ significantly between communities [38]].

Overall, most prior works focused on hard forks, though understanding the acceptance of
individual contributions through PRs has recently come in focus. In this thesis, we study forks as
a contribution mechanism at the project level and focus on factors associated with project-wide
inefficiencies.

2.2 Collaboration in Software Engineering Projects

Software engineering projects are inherently collaborative, requiring many software engineers
to coordinate their efforts to produce a software system. To ensure the collaboration efficiency,
team members are developing shared understanding surrounding multiple artifacts [[132, 238]].
As the number of people working on a project increases, the potential for communication in-
creases “multiplicatively in proportion to the square of the number of people taking part” [[1435].
Bandinelli points out that due to the co-operative nature of software development, success is de-
pendent upon “the quality and effectiveness of the communication channels established within
the development team” [21]. Thus communication is important.

Research into computer-supported co-operative working (CSCW) suggests a two dimen-
sional model for collaborative work [210]: distance vs. time separation (i.e., same-time same-
place, same-time different-place, different-time same-place, or different-time different-place).
The work presented in this thesis focuses on examples of different-time different-place distribu-
tion, and many of the findings are applicable to the other components of the model. The purpose
of our study is to form an understanding of collaborative working issues for distributed software
teams using fork-based development mechanisms in order to inform future software engineering
tools to facilitate efficient collaboration.

Software engineering research has proposed methods aiming for collaboration problems from
different perspectives, including documenting and enforcing programmers’ intentions [101],
physically co-locating development teams to improve communication[105} 220], and improv-
ing awareness in the collaborative development environment (see details in Sec.[2.3)). This thesis

14 CHAPTER 2. DISTRIBUTED COLLABORATION OF SOFTWARE DEVELOPMENT

is focusing on improving awareness for distributed software teams using fork-based development
to collaborate by designing new interventions (Chapter [5and [6).

2.3 Importance of Awareness in Distributed Collaboration

As described in Section [I.T when the number of forks grows, it becomes difficult to maintain
an overview of what happens in individual forks and thus of the project’s scope and direction.
This lack of an overview problem is similar to the lack of awareness problem that has been
studied previously in other distributed software development scenarios [48,163},70,1103, 1200, 202,
2241, but with new challenges. For example, most of the previous works focused on industrial
settings, in which all the team members are working on the same project. While in fork-based
development, especially in open-source, the number of forks is much bigger than the industry
setting, and fork owners are not necessarily contributing to the same projects, which makes
creating an overview for the community and identifying the useful information for individual
developer even harder. Therefore it is necessary to design awareness tool under the fork-based
development environment.

Dourish et al. defined awareness as “an understanding of the activities of others, which pro-
vides a context for your own activity”, and demonstrate that awareness of individual and group
activities are critical to successful collaboration because it helps group members to better un-
derstand of sequence and timing of things and the temporal boundaries of their actions [70]. In
the software development environment, awareness means that team members can become aware
of the work of others that is interdependent with their current tasks, therefore enabling better
coordination of teams.

Developers may be globally distributed [[171] while collaborating on the same project. Dis-
tance creates an additional challenge to software development processes, because of fewer op-
portunities for rich interaction and lower frequencies of direct communication [108]]. Especially,
for an open-source project, it is common to require distributed software developers to coordinate
their efforts [[156]]. The distance affects collaboration issues, such as awareness and communica-
tion [109, 198]. Thus, it is important to keep awareness of the activity of the projects and other
developers in such a distributed collaboration situation [[102, [103]].

There are many kinds of information need to be aware of, such as the technical and social as-
pects of the development [[65]], current and upcoming articulation work [151]], the overall status of
their projects and critical deadlines, understand current priorities and bottlenecks, dependencies
between components and teams, and need to be informed of changes to tasks they are working
on in a real-time manner [224]. For example, there are awareness tools for software development
to focus on low-level code-specific tasks [204], like seesoft [76] and Augur [89].

Gutwin et al. [103] defined workspace awareness as the up-to-the-moment understanding
of another person’s interaction with the shared workspace, which means an understanding of
actions on shared artifacts. Correspondingly, researchers have investigated different approaches
to provide workspace awareness [22, 189, 166, 201]]. For instance, FastDASH [32]] shows when
two developers are working concurrently on a file, allowing them to preempt merge conflicts;
Palantir [202] follows a similar approach by notifying developers when changes are made to
relevant work artifacts. In addition, there are tools presenting the high-level activities, like

2.3. IMPORTANCE OF AWARENESS IN DISTRIBUTED COLLABORATION 15

project management issues, change requests and social and historical patterns in the develop-
ment process [78]]. For example, the World View in Palantir also addresses “awareness in the
large” [200], which provides a comprehensive view of the team dynamics of a project especially
for the geographical location of developers. Furthermore, practitioners designed toolsets target-
ing distributed and collaborative software development, such as IBM’s Jazz [90], Microsoft’s
CollabVS [[104].

Workspace awareness is also important for open-source software development. Developers
need to seek out information about their fellow developers in order to stay aware of their work
activities [226]. Specifically, people seek awareness information such as who is working on
what part of the project from simple text communication such as mailing lists and text chat
to stay aware of the work of other developers on the project [103]. Newcomers need to seek
similar awareness information from text communication tools in order to “recruit” core project
developers towards supporting their contributions [73]]. Also, developers on a project used similar
work awareness information from the mailing list in order to select code contributions to review.

Gutwin et al. [[102] present techniques that address the visibility problem, when the workspace
is larger than a member’s screen and when people can move their views independently. The paper
shows that overview representation that shows the entire workspace in miniature and provides a
high-level perspective on artifacts and events in unseen areas of the workspace, is the most useful
view to help people to maintain workspace awareness. Because of visual awareness information
makes it easier to communicate useful information without talking, and awareness information
gives people confirmation about the other person’s activities [102]].

However, too much awareness could be a problem leading to information overload [187].
In our project, we also found that developers think it is hard to quickly get an overview of the
community, except checking each fork one by one, although, with the advent of transparent de-
velopment environments, all the information is publicly available [61]. Communication happens
when transparency break down — there was certain information developers could not directly ob-
serve [61]]. Thus, there is an opportunity for extracting useful information and summarizing the
activity of each fork to provide an overview.

Furthermore, an uncoordinated team — with lack of communication — tends to lose the notion
of who is changing which parts of the system (awareness), which leads to merging conflicts and
duplicated work [63]]. In our work, we also found inefficiencies, such as redundant development,
lost contribution (described in Chapter [I)), happened in fork-based development mechanism be-
cause of a lack of awareness.

Thus, in order to help globally distributed developers to gain a better overview, better commu-
nicate, and find the potential collaborator, we will design awareness tools in fork-based develop-
ment to mitigate inefficiencies because of lacking awareness, such as summarizing information
of un-merged code changes information in forks, and detecting potentially redundant develop-
ment (see details in Chapter [5|and [6).

16 CHAPTER 2. DISTRIBUTED COLLABORATION OF SOFTWARE DEVELOPMENT

Chapter 3

Identifying Natural Interventions from
Best Practices

This chapter shares material with the FSE’19 paper “What the Fork: A Study of Inefficient and
Efficient Forking Practices in Social Coding” [250)].

As we discussed in Chapter [I] modern tools and platforms (e.g.,GITHUB, Bitbucket, and
GITLAB) have made forking easier (1) to track and integrate changes across multiple forks with-
out central management and (2) to publish changes, including incomplete and experimental ones.
Forking has become very common and popular [97, [179]].

While easy to use and popular in practice, fork-based development has well-known down-
sides. In this dissertation, we study one of the problems — a lack of an overview and correspond-
ing inefficiencies: lost contribution, redundant development, rejected pull requests, and frag-
mented communities. In this chapter, we study the differences among open source communities
in terms of forking practices, identify and measure inefficiencies, and model how characteristics
and practices, such as modularity and centralized management, are associated with these ineffi-
ciencies. Specifically, we investigate the research question: What characteristics and practices
of a project associate with efficient forking practices? Understanding what influences ineffi-
ciencies correlated with higher collaboration efficiency.

Concretely, we derived potential characteristics and practices that could affect forking (in) ef-
ficiency by (1) asking open-source developers about their forking practices and (2) exploring
exiting theories on distributed collaboration. We then designed a cross-sectional correlational
study to test these hypotheses at scale on GITHUB data (study overview is shown in Figure [3.1).
Specifically, we designed measures for four inefficiencies and potential characteristics and prac-
tices, collected data from 1311 GITHUB projects with different number of forks, and used mul-
tiple regression modeling.

We found that better modularity of the project structure and more centralized management
practices for contributions are strong predictors of more contributions and more merged pull
requests. Interestingly, our models also reveal a tradeoff: centralized management also associates
with higher risk of community fragmentation through hard forks, as does a low pull request
acceptance rate. Our results suggest best practices that project maintainers can adopt if they want

17

18 CHAPTER 3. NATURAL INTERVENTIONS

{ Interviewing Stakeholders ‘ Deriving

“ Hypotheses

[Literature/Theory Search

Sampling <:D @
(Inefficiencies |

Q Quantifying{ Practices :> Test

Context Factors) Hypotheses
Q ’ Modeling ‘

Figure 3.1: Outline of studying natural intervention.

A

to make fork-based development more efficient. Our operationalizations and results also lay the
foundation for future tool support, such as benchmarking projects and highlighting inefficient
practices [40].

In a nutshell, here we study the natural interventions that are correlated with efficient fork-
ing practices, and identify the best practices that are potentially helpful to improve collaboration
efficiencies for other projects.

3.1 Identifying Potential Context Factors and Deriving Hy-
potheses

To identify potential context factors of a project that are potentially correlated with forking effi-
ciency, we pursued two strategies in parallel: interviews with active open-source contributors and
analysis of the literature on distributed collaboration (shown in Figure [3.1). This way, we col-
lect perceptions of inefficiencies and their causes from practitioners and can contrast practices
in different open-source systems, while at the same time also considering theories describing
factors for efficient distributed collaboration, albeit established in contexts outside of fork-based
development.

Specifically, we interviewed 15 maintainers and fork owners of several popular open-source
projects, including Bitcoin, Marlin, Smoothieware, and scikit-learn (the number of forks ranged
from 60 to 18.2K; all interviewees had public email addresses on their GITHUB profiles), about
efficient and inefficient practices and what might influence them. We stratified our sample of
interviewees to include maintainers of projects with many forks, maintainers of projects with
many duplicate pull requests, developers who contributed to many open-source projects, and
developers who made changes in forks without attempting to contribute back. We conducted 12
interviews over Skype or email and 3 in person at two mixed academic-practitioner conferences.
To analyze the transcripts, we conducted axial coding. This way we identified context factors that
may affect the collaboration efficiencies, considering also the theories we found in the literature
on distributed collaboration.

3.1. IDENTIFYING POTENTIAL CONTEXT FACTORS AND DERIVING HYPOTHESES19

3.1.1 Modularity affects forking practices

Interviews. Discussions with contributors familiar with both Marlin and Smoothieware re-
vealed an interesting contrast: Marlin and Smoothieware are both frequently forked open-source
firmware projects for 3D printers (Marlin has over 8,800 forks on GITHUB and Smoothieware
has over 821 forks), but contributors perceive practices in both projects as very different. Learn-
ing from Marlin’s maintenance problem due to crosscutting implementations, Smoothieware was
designed modularly and emphasizes loose coupling and extension through separate modules, so
that developers can add functionality without having to modify Smoothieware’s core implemen-
tation. A developer who is familiar with both projects indicated that Smoothieware follows more
professional and industrial development practices, such as submitting smaller and more cohesive
changes. Another developer who has developed significant Marlin extensions in a fork without
attempting to merge them back mentioned that one of the reasons for not merging is that Marlin’s
structure causes high integration effort. Interestingly, some GITHUB projects have an extremely
modular structure, e.g., a collection of scripts or plug-ins that are assembled automatically (such
as homebrew package descriptions), such that many contributions simply add files instead of
modifying existing ones.

Modularity was not entirely uncontroversial in our interviews though, e.g., one Smoothieware
contributor suggested that modularity helped with some extensions, but made others harder: “So
many restrictions that you can’t just modify anything in the base code. [...] All this makes
the code upgradeable, clean, and manageable, but the development progress is much slower
because [...] some functions cannot be integrated with those restrictions.” This suggests tradeoffs
regarding the rigidity that modularity imposes on developers, making certain changes hard or
impossible.

Literature. Our interview observations align with theory (outside of social forking contexts)
about the importance of modularity for (distributed) collaboration. For example, Conway’s law
postulated that structure of the code mirrors the structure of the organization [55]. Parnas de-
fined a module as “a responsibility assignment rather than a subprogram”, which indicates that
dividing a software system is simultaneously a division of labor [169]. In addition, Herbsleb
et al. revisited Conway’s law by conducting a user study and found that integration turned out
to be the most difficult part of a geographically distributed software project [107]. The result
shows that in order to reduce the need for cross-site communication as much as possible, it is
better to assign work to different sites according to the architectural separation in a design that is
as modular as possible, and only split the development of well-understood products (or parts of
products), where plans, processes, and interfaces are established and likely to be very stable.
Researchers and practitioners have also emphasized the importance of modularity for open-
source development [128] (152, [222]]. For example, Torvalds [222] claims “for without [mod-
ularity], you cannot have people working in parallel” and Midha and Palvia [152] found that
modularity is positively associated to technical success of open-source projects. Specifically,
MacCormack et al. [[143] suggested that more modular projects could be more attractive to poten-
tial contributors. Similarly, Baldwin et al. found that a greater number of modules can yield more
design options, which creates more opportunities for the exchange of valuable work among de-
velopers and increases developers’ incentives to work on the codebase [[19]]. It is hence plausible

20 CHAPTER 3. NATURAL INTERVENTIONS

that modularity also has positive effects on collaboration efficiency in fork-based development
among loosely-connected developers on social coding platforms.

In summary, modularity is important for both technical and organizational perspectives, so
we suspect modularity as a collaboration mechanism could be also a good practice for fork-based
development. This aligns with our hypothesis that projects with a better modular design have a
larger portion of contributing forks.

Hypotheses. Despite raised concerns, we hypothesize that a modular design of the software
would make it easier to contribute to a project, which influences both whether developers attempt
to contribute and to what degree maintainers accept contributions:

H;. Projects with a better modular design have a larger fraction of contributing forks.

Hs. Projects with a better modular design have a larger fraction of merged pull requests.

3.1.2 Coordination mechanisms affect forking practices

Interviews. Interviewees of many projects, including Marlin and Smoothieware, indicated that
their communities welcome all pull requests that may benefit the larger community and that they
are interested in activities in various forks, though they find it hard to monitor them. In con-
trast, an interviewee from the cryptocurrency project Bitcoin (25,200 forks) expressed a different
view: Bitcoin has adopted a central management style, in which a relatively stable team of core
developers decides the direction of the project, and in which features are discussed and decided
upfront in an issue tracker (often political and hard fought among different camps [[140]). The
issue tracker records which forks contain the corresponding code changes for each issue; other
forks are of little interest to maintainers and unsolicited pull requests remain ignored for years.
Similarly, one of the maintainers of the Python machine-learning project scikit-learn (19,300
forks) indicated that developers have little chance of integrating their changes upstream unless
they talk to the maintainers first.

Developers also perceive explicit coordination as a key mechanism to avoid redundant devel-
opment. Certain open-source communities perceived redundancies as a significant problem and
promoted explicit coordination to combat it; e.g., Django adopted a policy requiring contribu-
tors to communicate with the core team upfront to claim issues before submitting patches [S].
A maintainer of scikit-learn was even surprised about the existence of duplicate pull requests,
because in their project explicit coordination (developers discuss with the core team before doing
any work) is the norm.

Literature. Researchers have long studied different degrees of explicit coordination and their
tradeoffs in distributed collaboration, often in corporate settings, e.g., Brandts et al. [41] found
that central coordination makes it easier to manage a division’s product types but more diffi-
cult to take advantage of each division’s private information. Comparing Linux and Wikipedia
to traditional organizations, Puranam et al. [176] observed that Linux uses a centralized task-
division strategy in which the initial problem formulation is defined by the founder of a project,
while Wikipedia’s task division is decentralized, which the researchers associate with problems
of misinformation and duplication contributions.

3.1. IDENTIFYING POTENTIAL CONTEXT FACTORS AND DERIVING HYPOTHESES21

Regarding task allocation, Linux and Wikipedia are both decentralized, so that tasks are al-
located through voluntary, self-selection of members into roles. Shaikh and Henfridsson [2035]]
studied the version control history of Linux and observed that Linux changed its management
strategies as the community evolved—from centralized to decentralized: The authors argued
that the governance strategy is a configuration of coordination processes, and governance varies
across open source communities. This matches our observation of different communities with
different coordination strategies. We expect to see similar tradeoffs among coordination strate-
gies also in new forms of collaboration with forks in open source.

As more design options justify multiple efforts directed at the same target, implicitly create
tournaments in which developers can compete to provide the best design, which developers may
intentionally duplicate each other’s efforts in order to obtain a higher best outcome [19]]. To mit-
igate this problem, Baldwin et al. studied that different programmers can communicate to avoid
redundant work. Since workers share costs, a collective effort with adequate communication is
always preferable to coding in isolation.

Hypotheses. We hypothesize that projects coordinating contributions upfront in an issue tracker
reduce inefficiencies by encouraging more focused development activities that are more fre-
quently integrated, and rejecting fewer pull requests because fewer pull requests misalign with
the maintainer’s vision. We also hypothesize that pre-communication, i.e., developers discussing
their contributions before submitting pull requests, associates with fewer redundant pull requests:

Hjs. Projects pursuing a centralized management strategy have a larger fraction of contributing
forks.

H,. Projects pursuing a centralized management strategy have a larger fraction of merged pull
requests.

H;. Projects in which external developers tend to discuss or claim an issue before submitting
pull requests have a lower frequency of redundant development.

3.1.3 Contribution barriers affect community fragmentation

Interviews. Some interviewees indicated that contribution barriers led them to create a hard
fork, e.g., the owner of a video recording project explained “I submitted a pull request but they
rejected it. Because it is incompatible to the maintainer’s vision [...] so I think, fine, I will keep
my own fork.” Later, this fork started to attract its own external contributions. Also, as one
Smoothieware interviewee said (quote above), the rigidity that modularity imposes on develop-
ers makes integrating certain changes hard or impossible, leading in some cases to active but
unmerged development; Bitcoin, with its rigorous centralized management, is one of the projects
that has the most hard forks. Disagreements between maintainers and contributors can lead to
hard forks and fragment communities.

Literature. As discussed in Section [2.1] reasons for hard forks have been well studied (be-
fore the rise of social coding and distributed version control), and conflicts between the project
leader’s vision and the needs of community members were a common cause [[18, [160]].

22 CHAPTER 3. NATURAL INTERVENTIONS

Also, researchers found that rejected contributions demotivate developers and discouraging
them from submitting contributions in the future [212]. Then developers decide to continue on
their own, rather than merging their changes this may fragmented communities, which hurts the
sustainability of a community. Thus, we explore related work about understanding the trade-offs
between different management strategies.

Meanwhile, researchers have found that many aspects of a software system are difficult to
implement modularly [219] and that too rigid compatibility requirements might hinder innova-
tion [38]]; also, modularity does not always align with how developers think [[167]].

Hypotheses. We hypothesize that a low rate of accepted external contributions, modularity
restrictions, and centralized management all can trigger community fragmentation:

Hg. Projects with a lower pull request merge ratio have higher likelihood of having at least one
hard fork.

H. Projects with a more modular design have higher likelihood of having at least one hard fork.

Hg. Projects pursuing a centralized management strategy have higher likelihood of having at
least one hard fork.

Note that Hg uses the pull request merge ratio (the predicted outcome in Hg and Hy) as a
factor. That is, we expect potential tradeoffs, in that factors that improve efficiency regarding
merged pull requests could at the same time reduce efficiency regarding community fragmenta-
tion.

3.1.4 Summary

Modularity and coordination are established theories in software engineering. After reviewing
the literature and interviewing open source contributors, we derived eight hypotheses about con-
text factors informed by the two theories (see Figure [3.2), that are expected to associate with
inefficient outcomes in a domain where the theories have not been tested before fork-based de-
velopment. To test these hypotheses, we operationalize our context factors in GITHUB trace data
and model their effects at scale across many open source projects. This way, we not only test
the limits of the two theories and expand them in the new domain of fork-based development,
but also provide quantitative empirical evidence on the effects of the different context factors on
relevant outcomes, where previously there were only beliefs. This step of providing data-driven
empirical evidence to popular theories is particularly important, as beliefs and evidence often
misalign in software engineering practice [26, 66].

3.2 Operationalization
To quantitatively test our hypotheses, we subsequently operationalize measures for context fac-

tors and inefficiencies, collect data from 1131 GitHub repositories. Specifically, we iteratively
developed outcome measures for the inefficiencies (lost contribution, redundant development,

3.2. OPERATIONALIZATION 23

Better Modularity HI More contributing forks | Efficiency
H Less duplicate PRs Efficiency
H7
More merged PRs Efficiency
H4
-Ho6
Centralized Higher likelihood of .
. . Inefficiency
management H8 | community fragmentation

Figure 3.2: Eight Hypothesis of characteristics and practices that could affect forking (in) effi-
ciency.

rejected pull requests, and fragmented communities), measures for context factors (modular-
ity, coordination mechanisms, and contribution barriers), and measures for control variables.
We first developed an initial measure and subsequently validated construct validity by manually
checking samples and outliers, repeating the process with a refined measure as needed. Several
measures are nontrivial and are built on top of significant prior research, as we will discuss. We
share implementations for all measurements as part of our replication package [13]].

10

Fork 1
Point 12 2 4 16
Upstream —@— - 9 -‘ master
7_’. 11
3 6 14
é -@ @ Fork_branch_1

Fork { 1 / 15
" -T. Fork_branch_2

5

'~ edge (weight=0) . merging edge (weight = 1):
(a) Commit history of fork and upstream

Fork Upstream

Only_F
7,15

(b) Only_F: only exist in fork; Only_U: only exist in upstream; F2U: merged from fork to upstream;
U2F: pulled from upstream to fork.

Figure 3.3: Determining the origin of commits.

24 CHAPTER 3. NATURAL INTERVENTIONS

3.2.1 Outcome: Ratio of contributing forks.

To assess inefficiencies regarding lost contributions (see Section[I.1]), we measure the fraction of
active forks in which developers have submitted pull requests or otherwise integrated their code
changes into the upstream project (higher values indicate higher efficiency). Specifically, we
query the GITHUB API to identify whether pull requests have been issued for any commits from
a fork. We also analyze the commit histories to identify whether commits have been merged
without publicly visible pull requests.

Unfortunately, reliably detecting active forks and merged changes is not trivial. Forks may
pull changes from upstream, upstream repositories can merge changes also without pull requests,
commits are often merged across various branches, and commit timestamps are not generally
reliable. Hence, we developed a new approach to identify from which fork a commit originates
and how it has been merged across branches and forks.

To this end, we analyze the joint commit graph of the fork and the upstream repository
(nodes are commits, edges are parent relationships, merge commits have multiple parents). Since
commits may be merged multiple times and in different directions across branches and forks, we
analyze the number of merge commits and assign a commit as originating in the fork from which
it was merged the fewest times, as follows:

¢ Each branch in the fork and the upstream repository corresponds to a commit node in the

graph (usually a node without children). For merge commits, we distinguish between the
direct parent (first parent) and the merged parents (other parents) of a commit.

e We assign a weight of 1 to an edge between a merge commit and its merge parents and a

weight of O to all other edges.

¢ For every commit node, the shortest path from that node to a commit node mapped to a

branch indicates the branch and thus the repository the commit originates from.

¢ If there is no path from a commit to any branch of a repository, it has not been merged into

that repository yet.

We illustrate an example in Figure [3.3(a): Commit node 5 has been merged from a branch into
another branch and from the fork into the upstream master; by counting the merge edges, we can
identify that it originates from the fork because more merge edges need to be traversed to reach
a branch from the upstream repository; similarly, we can identify that commit node 2 originates
from upstream; there is no path from commit node 7 to the upstream repository, indicating that
the commit originates from the fork and has not been merged yet. Note, a similar mechanism to
recognize the origin of commits was suggested in prior work [31]], but without a description of
how to perform it and without releasing an implementation.

To measure the ratio of contributing forks, we determine which forks are active (i.e., have
commits originating from the fork), then identify successful and attempted contributions from
merged commits in the commit graph and from pull requests originating from the fork.

3.2.2 Outcome: Ratio of merged pull requests.

To assess inefficiencies regarding rejected pull requests (see Section[I. 1)), we measure the fraction
of closed pull requests that have been accepted (higher values indicate more efficient outcomes).
The resolution status reported by GITHUB is often not reliable [97], as many developers integrate

3.2. OPERATIONALIZATION 25

pull requests through other mechanisms than GITHUB’s user interface, thus closing them without
marking them as accepted. We follow Gousios’ heuristics [97] to identify accepted contributions,
but refine them to account for frequent practices we observed:

e [f the pull request is marked as merged on GITHUB, we mark it as accepted. (83.2% of all
merged pull requests).

¢ If a commit closes the pull request (using certain phrase conventions advocated by GITHUB,
e.g., fixes #1234)and that commit appears in the target project’s branch, we consider the
pull request as accepted. Different from Gousios’ work, we use GITHUB’s issue events
timeline API, rather than analyzing textual comments, to detect links to pull requests in
commit messages. (8.8% of all merged pull requests).

e If any of the last 3 discussion comments of the pull request refers to a commit SHA, we
consider the pull request as accepted. Specifically, we follow Gousios’ criteria: (1) the
comment contains a reference to a specific commit identifier (SHA), (2) this commit SHA
appears in the project’s master branch, and (3) the comment can be matched by the reg-
ular expression (merg|apply|appl|pull |[push|integrat|land|cherry (-|\s+)pick]|
squash) (ing|i?ed). We extended this by making sure that no second linked pull request
appears in the comment, indicating a competing or superseding PR. (0.15% of all merged
pull requests).

o If the last comment before closing the pull request matches both rules (1) and (2) above,
or matches only rule (3), we consider the pull request as accepted, unless a link to another
pull request appears in the comment. (7.9% of all merged pull requests).

If no heuristic identifies a pull request as accepted, we mark it as rejected.

3.2.3 Outcome: Ratio of duplicate pull requests.

To assess inefficiencies regarding duplicate development (see Section[I.1]), we measure the frac-
tion of closed pull requests rejected due to redundant work (lower values indicate higher effi-
ciency). To identify duplicate pull requests, we refined heuristics, summarized and validated
by Yu et al. [245], based on regular expressions to identify duplicate-related keywords in pull
request comments and links to other pull requests. We also found many cases in which a pull
request is redundant to a commit so we extend the link detection to include commit SHAs. After
several rounds of refinement, we arrived at six patterns for detecting pull requests rejected due to
redundant development that can be found in the implementation [[13]].

3.2.4 Outcome: Presence of hard forks.

To assess inefficiencies regarding community fragmentation, we measure whether projects have
at least one hard fork (see Section [I.1). We consider a fork as a hard fork if (a) it has attracted
its own external contributions (at least two pull requests submitted by other contributors) or (b)
it has substantial unmerged changes (at least 100 commits, as identified from our commit graph,
see Figure and the project’s name has been changed (with Levenshtein distance > 2). In our
sample, 28 % of the projects have at least one hard fork, as per our operationalization.

26 CHAPTER 3. NATURAL INTERVENTIONS

3.2.5 Predictor for modularity: Logic coupling index.

Researchers have proposed different metrics to measure the modularity of a project, taking dif-
ferent perspectives. For example, many approaches use program analysis to detect dependencies
among program structures [33, [79]]; others measure logic coupling from co-change patterns ob-
served in the project’s revision history [25, 45, 252]]. To measure modularity uniformly across
projects in different programming languages, we adopt a light-weight previously validated mea-
surement of logic coupling, ROSE [252]]: We define the logic coupling index of a commit as
the fraction of file pairs that have been changed together in that commit out of all file pairs in
the project. We aggregate this measure at the project level by computing the median of recent
commits. To focus on modularity relevant to external contributors and avoid bias from past
but now changed practices, for each project, we analyze the last 50 commits whose authors are
external contributors (the results are robust for different operationalizations with the last 100
or 500 commits). A lower logic coupling index indicates better modularity, as fewer files are
changed together.

3.2.6 Predictor for modularity: Additive contribution index.

In addition to logic coupling, we also measure the modularity of contributions in terms of whether
they add or modify code. This measure is motivated by observations, discussed above, that some
GITHUB projects have an extreme form of modularity in that they primarily collect extensions or
plug-ins and are extended by contributing additional files rather than editing existing ones. Thus,
we define a second modularity measure, the additive contribution index, that measures to what
degree external contributions are additive: We measure the fraction of new files added out of all
files touched per commits. We compute the median over results of all commits from external
contributors in a project. A higher additive contribution index indicates that more changes were
additive in nature, indicating better modularity from a contributors perspective.

3.2.7 Predictor for coordination: Centralized management index.

We measure the degree developers use the issue tracker to coordinate what to work on before
submitting a pull request: We observe which new pull requests are linked to existing issues
(typically by referring to the issue number in the text of the PR) by parsing the event timeline of
the pull request provided by the GITHUB API. We define the centralized management index of
a project as the fraction of pull requests that link to issues out of all closed pull requests from
external contributors. A higher centralized management index indicates that upfront coordination
on what to work on through issues is more common in a project.

3.2.8 Predictor for coordination: Pre-communication index.

We additionally measure to what degree developers coordinate who will work on an issue before
submitting a pull request by observing whether developers ‘claim’ an issue before completing the
work. Specifically, we look for two commonly recommended practices of pre-communication
before submitting a final PR: (1) Developers might leave a comment on the issue to which they

3.3. DATA COLLECTION 27

later respond, indicating their plan to work on the issue and possibly linking to their fork. (2) Fol-
lowing explicit recommendations from GITHUB [6], developers might submit an incomplete pull
request clearly marked as ‘work in progress’ (e.g., using labels) and later update that pull request
once they finish their work. Both practices publicly announce that a developer is working on
an issue. We define the pre-communcation index of a project as the fraction of pull requests for
which the author has commented under the linked issue before submitting the pull request or in
which the pull request was marked as work in progress in its history out of all closed pull requests
by external contributors that are linked to issues. A higher pre-communcation index indicates that
the practice of coordinating who will work on an issue is more common in a project.

3.2.9 Control variables.

Finally, we measure a number of controls that might co-vary with our efficiency outcomes.
Specifically, we collect form the GITHUB API the project age, size (in bytes), and number of
forks — older, bigger, or more heavily forked projects are likely to adopt different practices. We
additionally collect project-level aggregate statistics about all closed pull requests by external
(non-core) contributors, modeled closely after factors that prior research found to correlate with
the chance of accepting individual pull requests [97, 227]: (1) SubmitterPriorExperience — a
dummy encoding whether at least half of the pull requests in the project are submitted by people
with prior experience submitting and having merged pull requests in the same project in the past;
pull requests from people with prior experience are more likely to be accepted [97]. (2) Ratiopull
requestsWithTests — the ratio of pull requests containing test cases; pull requests containing test
cases are more likely to be accepted [97]. We reused our measure to identify tests [225] based on
file name patterns maintained by the package search service npms.io, such as matching file paths
containing test or spec. (3) PRHotness — the median over pull requests of the number of commits
on files touched by each pull request during the previous three months prior to the pull request
creation; pull requests touching “hot” files, changed frequently in the recent past, are more likely
to be accepted [97)]. and (4) SubmitterSocialConnections — a dummy encoding whether at least
half of the pull requests in the project are submitted by people who followed (already at pull re-
quest creation time) the maintainer who closed each respective PR; pull requests by more socially
connected submitters, who follow the maintainers, are more likely to be accepted [227].

3.3 Data Collection

We assembled a multidimensional dataset of actively-developed GITHUB open-source projects
with at least a moderate number of forks. Starting from a list of 137,424 projects with at least 20
forks in the March 2018 GHTorrent [96] dump, we filtered projects based on the a list of criteria:
® Projects should be developing software applications or frameworks. Interested in under-
standing software-development practices, we remove projects using GITHUB for docu-
ment storage or course project submission. We search for keywords like ‘homework’, ‘as-
signments’, ‘course’ to find online courses, remove projects starting with ‘awesome-’ (usu-
ally document collections), and remove projects with no programming-language-specific

files.

28 CHAPTER 3. NATURAL INTERVENTIONS

Table 3.1: How we stratified our sample.

Group #forks #projects on GITHUB #projects in sample
A [3,000, +] 231 200
B [1,000, 3,000) 847 300
C [20, 1,000) 116,532 1300

® Projects should have at least 10 commits, 10 active forks, and 1 closed pull request. We
are interested in active projects with some development history and some collaboration, so
we set a minimum threshold of 10 commits, 10 active forks (i.e., those with at least one
own commit after forking), and at least one pull request by an external contributor.

® Projects should have at least one closed issue. Finally, we exclude projects that do not use

the issue tracker, because we cannot establish coordination practices for those.

To not bias our analysis by practices applied only by the largest or by many small projects,
we stratify across projects with different numbers of forks, sampling 200 very frequently forked
projects, 300 frequently forked, and 1300 moderately forked, as shown in Table in each stra-
tum we select a random sample. Finally, we exclude all projects from which we have previously
interviewed developers and duplicate projects, resulting in 1311 projects for our analysis.

For each project, we need to analyze forks, external commits, external pull requests, and
issues. We only consider external pull requests and external commits by developers who are not
project owners and have not closed pull requests of others in the project.

Since computing the flow graph in Figure requires locally cloning all forks in a project
and is computationally expensive, we sample 100 active forks per project, that were forked more
than 30 days before our analysis, to allow for time for developers to attempt to contribute changes
back. We use the GITHUB API to fetch the history of each issue and links among issues and pull
requests.

In Figure we show the ranges and distributions of the four operationalized measures
of modularity and coordination in our dataset. Note the large variance across projects for all
variables.

>~7 >

2 StDev =0.21 @ StDev =0.086

Q. Q-

© ©
0.00 025 050 075 100 000 025 050 _ 075 100

Modularity Index Additive Contribution Index

> >

@ StDev =0.13 @ StDev =0.24

Q. ()

© T
—_— L —_— —_]
0.00 0.25 _ 050 0.75 100 000 025 0.50 075 1.00

Centralized Mngmt Index Ratio Precommunicated PRs

Figure 3.4: Density plots for our main predictors. The dashed line denotes the median.

3.4. STATISTICAL ANALYSIS 29

3.4 Statistical Analysis

We use multiple regression modeling to test, for each outcome, whether it is significantly asso-
ciated with the different hypothesized context factors, while controlling for known confounding
variables, cf. prior work. The multivariate nature of our analysis is especially relevant when
modeling the pull request merge ratio, which is known to be impacted by the presence of tests
and the prior experience of the pull request submitters [97, 227]].

Note that we perform our analysis at project level (each row of data aggregates information
about one project), i.e., we compare how projects with different characteristics and practices tend
to differ regarding forking inefficiencies, on average.

For the binary outcome variable (presence of hard forks), we build a standard logistic re-
gression model. Notably, we also build logistic regression models for the other three ratio out-
come variables. Logistic regression is more appropriate when trying to estimate probabilities of
frequencies (ratios) than linear regression, because in the latter case the binomial probabilities
would become increasingly spiked as the number of observations increases; e.g., the case with 50
pull requests merged out of 100 submitted gives more information than the case with 1 merged
out of 2 submitted. In a GLM, the denominator from the ratio (e.g., 100 for the former exam-
ple and 2 for the latter) can be specified explicitly as the weights parameter when using the glm
function in R.

When building the regression models, we take several steps to ensure robustness and validity.
First, we conservatively remove the top up to 1% of the data for variables with exponential
distributions; these outliers tend to have high leverage, decreasing the models’ robustness. We
also test for high-leverage points using Cook’s distance measure, and exclude additional projects
from each model as needed; below each regression model summary table in Section [3.6| we show
the exact number of data points modeled. Second, we test and correct for multicollinearity using
the variance inflation factor (VIF). Third, we evaluate the goodness-of-fit of our models using
McFadden’s pseudo-R? measure. Finally, we report, for each model variable, its exponentiated
coefficient (i.e., its odds ratio — the factor by which a one unit increase in a predictor increases
— if greater than 1 — or decreases — if less than 1 — the odds of the outcome occurring), standard
error, significance level (p-value), and effect size (i.e., n? — the fraction of deviance explained by
the model that can be attributed to that predictor, as per an ANOVA type-II analysis; see columns
“LR Chisq” in the model tables for the absolute amounts of deviance explained).

3.5 Threats to Validity

As usual, our operationalized measures can only capture some aspect of the underlying quality.
For example, logic coupling at the file level may miss some more granular dependencies that
may make changes challenging and our centralized-management index may miss rare practices
such as coordinating in a separate channel. In addition, the history of Git repositories is not
reliable, as users can rewrite histories after the fact, and merges are difficult to track if code
changes are merged as a new commit or through ‘squashing’ and ‘rebasing’ rather than through
a traditional merge commit. As a consequence, despite best efforts, there will be inaccuracies
in our operationalization of ratio of contributing forks, which we expect will lead to some mis-

30 CHAPTER 3. NATURAL INTERVENTIONS

classification of merged code.

As discussed, we manually validated construct validity of each measure on a sample of
projects to avoid systematic errors and explored different operationalizations to ensure robust-
ness. While we cannot exclude some noise, regression across over one thousand projects will
likely pick up on signals despite some noise in measurements. Nonetheless, our results must be
interpreted in the context of our operationalization. To this end, we share an R notebook detailing
our analysis [[13].

Finally, one must be careful to generalize our results beyond the context of our analysis
of social coding in open-source projects on GITHUB. Although many companies increasingly
adopt practices from open-source development [126], they likely do not share the same context
of loosely-coordinated distributed contributions from developers outside a core team.

3.6 Result

In the following, we discuss results from hypothesis testing organized by forking inefficiency
(outcomes).

Table 3.2: Contributing forks model (R? = 17%).

Ratio contributing forks
Coeffs (Errors) LR Chisq

(Intercept) 0.94 (0.05)

NumForks 0.78 (0.01)™™* 2631.77"*
Size 1.14 (0.00)™* 1109.29***
ProjectAge 1.00 (0.00)* 147.27***
CentralizedMngmtIndex 6.03 (0.06)""" 868.03***
ModularityIndex 1.23 (0.03)"* 35.72%*
AdditiveContributionIndex 0.97 (0.11) 0.09
***p < 0.001, **p < 0.01, *p < 0.05 N=1131

3.6.1 When do forks attempt to contribute back? (Hg, Hy)

To test our hypotheses that modularity (Hp) and coordination practices (Hg) associate with higher
rates of attempted contributions, we modeled a project’s ratio of contributing forks as a function
of the two modularity indices and the centralized management index, while controlling for the
overall number of forks, the project size, and the project age.

In Table [3.2] we show a summary of the regression model. Interpreting the coefficients, we
first note a strong positive effect for the centralized management index, explaining approximately
18 % of the deviance explained by the model: projects with stronger coordination practices, as
evidenced by advanced planning of what work needs to be done through issue linking, tend to
have a higher fraction of contributing forks that submit patches upstream. Modularity in terms of
logic coupling also has a positive effect, albeit weaker, accounting for about 1 % of the deviance
explained by the model: projects with more modular architecture, in which changes can be made

3.6. RESULT 31

in relative isolation, without touching many files, tend to have a higher fraction of contributing
forks. Therefore, we find evidence in support of both Hyp and Hg,.

Table 3.3: External PR merge ratio model (R? = 27%).

Ratio merged PRs

Coeffs (Errors) LR Chisq
(Intercept) 2.82 (0.04)"""
NumForks 0.82 (0.00)*** 3001.50***
Size 1.08 (0.00)™** 862.77***
ProjectAge 1.00 (0.00)™* 355.78***
SubmitterPriorExperienceTRUE 1.33 (0.01)™ 1084.06***
SubmitterSocialConnectionsTRUE 1.10 (0.01)™ 124.74***
PRHotness 1.01 (0.01)" 5.99*
RatioPRsWithTests 1.35 (0.06)™** 23.07***
CentralizedMngmtIndex 1.67 (0.03)™" 226.64***
ModularityIndex 1.50 (0.02)™ 308.46***
AdditiveContributionIndex 1.47 (0.07)™" 30.28***

***p < 0.001, **p < 0.01, *p < 0.05 N=1125

3.6.2 When are more contributions integrated? (Hg, Hy)

To test our hypotheses whether modularity (Hg) and coordination mechanisms (Hg) may also
facilitate the integration of changes originating in forks back into the upstream project, we mod-
eled the ratio of merged pull requests submitted by external contributors, as a function of the
modularity and centralized management indices. In the regression we control for known con-
founding factors, as per prior work: the total number of forks, the project size and age, the prior
experience of the pull request submitters, the ratio of pull requests containing test cases, and the
median pull request hotness.

In Table we summarize the regression results. As expected, most (90 %) of the deviance
explained by the model is attributed to the control variables. Still, even after controlling for
confounds, all three main predictors have sizeable, positive effects on the average pull request
merge ratio. Modularity, operationalized as low logical coupling and high ratio of added files
to modified files, has the strongest effect (6 % of the deviance explained for the two variables
together): the more modular the architecture, the higher the fraction of merged pull requests.
Coordination also has a positive and comparably large effect (4 % of the deviance explained):
the more planned the pull requests are, i.e., in response to open issues, the higher the average
acceptance rate, other variables held constant. Together, these results provide strong support for

both Hy and Hg,.

3.6.3 When is duplicate work more common? (Hpy)

To test whether discussing or claiming an issue before submitting a pull request correlates with
less redundant development (Hg), we modeled the average rate of duplicate pull requests per
project, as a function of the rate of pre-communicated pull requests, controlling for project age,

32 CHAPTER 3. NATURAL INTERVENTIONS

project size, and number of forks (older projects and bigger projects, with more forks, can be
expected to experience more duplication, on average).

Table 3.4: Duplicate PR ratio model (R? = 4%).

Ratio duplicate PRs
Coeffs (Errors) LR Chisq

(Intercept) 0.01 (0.09)***

NumPForks 1.16 (0.01)"™ 245.03***
Size 0.97 (0.01)"* 19.03**
ProjectAge 1.00 (0.00)"** 29.45%**
RatioPrecommunicatedPRs 0.84 (0.06)"" 7.81%*
***p < 0.001, **p < 0.01, *p < 0.05 N=1127

The regression summary in Table [3.4] suggests that the higher the rate at which pull requests
are pre-communicated, the lower the overall rate of duplication among pull requests. However,
we model rare events (both duplicates and pre-communication are relatively rare in our dataset),
the model fit is rather poor (R? = 4 %), and our pre-communication index explains only 3 % of
the deviance explained by the model. We conclude cautiously that: there is only weak evidence
that claiming pull requests before working on them associates with lower risk of duplicate work.

3.6.4 When does the community risk fragmentation? (Hg—Hg)

To test whether projects that reject many external contributions (Hg), have a more modular design
(Hpp), or have higher coordination requirements (Hg), correlate with fragmented communities and
hard forks, we modeled the likelihood of a project having hard forks as a function of the average
external pull request merge ratio and the modularity and centralized management indices, while
controlling for project size and the overall number of forks.

Our model, summarized in Table confirms a sizeable negative effect for the pull request
merge ratio (35 % of the deviance explained), strongly supporting Hg: the lower the pull re-
quest acceptance rate, the higher the chance of a project having hard forks, on average. The
centralized management index also has a statistically significant positive effect (12 % of the de-
viance explained), supporting Hg: more coordination requirements are associated with a higher
risk of community members fragmenting into various hard forks. We do not find a statistically
significant effect though for the modularity associating with hard forks (Hr).

3.7 Discussion

3.7.1 Modularity

Modularity has been widely recognized as an important quality that facilitates software evolu-
tion and eases division of labor and collaboration [20, 55, 150, [169]. Our study confirms that
better modularity is associated with higher efficiency of distributed fork-based development,

3.7. DISCUSSION 33

Table 3.5: Hard forks model (R? = 10%).

Has hard forks (T/F)

Coefts (Errors) LR Chisq
(Intercept) 0.19 (0.49)™*
NumPForks 1.25 (0.05)™" 23.74**
Size 1.09 (0.04)* 5.76*
CentralizedMngmtIndex 4.92 (0.58)** 7.39*%*
ModularityIndex 0.66 (0.32) 1.57
AdditiveContributionIndex ~ 4.32 (0.93) 2.43
PRMergeRatio 0.14 (0.42)™* 22.24***
**#xp < 0.001, **p < 0.01, *p < 0.05 N=1131

specifically higher fraction of developers contributing their changes back (Hy) and higher rate
of integration of external contributions (Hg). Note that logic coupling was beneficial in general,
whereas extreme modularity where contributions are mostly additive do not seem to encourage a
higher percentage of developers to contribute back but it significantly eases integration.

While there are some concerns about limiting effects of modularity for certain changes, even
to the extent we could hypothesize potential fragmentation of communities through hard forks,
we did not find in our models any direct evidence supporting these concerns (Hp). However,
there is a noteworthy indirect effect: higher modularity is associated with higher pull request
acceptance ratios (Hg); in turn, higher pull request acceptance ratios are associated with higher
likelihood of community fragmentation through hard forks (Hg). More research is needed to
disentangle the effects of modularity more precisely from those of lower pull request acceptance
rates; we suggest this as a promising direction for future research.

In short, our results suggest a net-positive impact of modularity in fork-based collaborative
development, a new domain lacking the empirical evidence.

3.7.2 Coordination

Our study also indicates the importance of active coordination among developers. Even though
fork-based development on a transparent platform allows all developers to freely fork projects,
make changes without coordination, and suggest pull requests once done [61]], coordination is
associated with significant improvements to the efficiency of a community regarding forking
outcomes specifically. Projects with a practice to coordinate work through issues upfront have a
higher rate of developers who attempt to integrate their changes (Hg) and have a higher rate of
accepted pull requests (Hg).

However, coordination is known to incur some costs and could potentially be annoying to
some. Our models provide support for these concerns, suggesting that higher levels of coordina-
tion might actually encourage hard forks (Hg). Again, note a similar tradeoff as with modularity,
albeit this time more clearly visible in our models: coordination is directly and positively (Hg)
associated with likelihood of hard forking, but also indirectly and negatively (Hg), through its
effect on pull request acceptance rates (hard forks are associated more with projects that are

34 CHAPTER 3. NATURAL INTERVENTIONS

more selective in accepting external pull requests; Hg). We suspect that developers have to make
deliberate tradeoff decisions about how inclusive they want to be in accepting community con-
tributions, potentially at the cost of discouraging contributors and fragmenting their community
if their standards are too rigid.

3.7.3 Redundant development.

Finally, our models of duplicate pull requests are not sufficiently well fitting to conclude there
is strong evidence supporting different interventions; we found some evidence, but weaker com-
pared to the other hypotheses, that claiming an issue upfront is associated with a lower chance
of redundant work (Hg). Duplicates are rare in most projects, but may still cause substantial fric-
tion, especially for new developers; also, despite many recommendations, claiming issues is not a
common practice yet in most projects. Interestingly, anecdotally, we found cases where develop-
ers triggered duplicate work by posting an issue before addressing the issue themselves without
actually claiming the issue, which encouraged others to work on the same issue in parallel. More
research is needed to develop and evaluate interventions. Recently suggested awareness tools
that might detect duplicate work quickly rather than expecting upfront coordination [136, [1835]]
might be an interesting alternative strategy.

3.8 Implications

3.8.1 Implications for practitioners

Our results encourage practitioners to strive for implementations that are modularly extensible
and to adopt guidelines for contributors that suggest coordinating planned changes through an
issue tracker. Though some open-source developers might dislike the rigidness and effort of
central coordination, our results show that projects that do so receive a higher fraction of pull
requests from their active forks, end up integrating more changes, and likely frustrate fewer
contributors in the process. Maintainers might want to point newcomers especially to work on
problems which can be completed with modular changes. All of this can improve sustainability
and the perception of having a strong community for a project. Finally, while hard forks are
rare in practice, they can be expensive for a community and have gotten much easier on social
coding platforms—maintainers should consider carefully to what degree they can remain open
to various external contributions and how modularity can help to integrate contributions more
easily or to what degree they are willing to accept some degree of fragmentation.

3.8.2 Implications for researchers and tool builders

While we explored how project characteristics and existing practices influence efficiency out-
comes, there are many opportunities to design and study further interventions. For example,
improved tooling to navigate and understand changes in forks or to oversee large numbers of

3.9. SUMMARY 35

pull requests [10} (11}, 12, 184, 249] can help both maintainers and contributors to explore not-
integrated forks and detect work in progress, to detect interesting extensions and avoid redundant
development. Explicit GITHUB mechanisms rather than conventions to claim issues as work in
progress have been suggested [8], as have community tooling for coordination [[10], which would
be worth evaluating. There may be research opportunities to detect redundant pull requests auto-
matically to reduce the maintainers’ effort [136, [185) 245]] or even to detect redundant develop-
ment early before developers finished their work [[185]. Research on mentoring [47, [82] might
further establish good and efficient practices.

Furthermore, we suspect that many members of an open-source community are not aware of
their practices and how they relate to other projects (e.g., some interviewees where surprised that
some projects largely coordinate work in the issue tracker whereas others were surprised that not
all projects do that). We suspect that making practices transparent, for example, through repos-
itory badges [225] or metric dashboards [40, 46] can help community members to understand
their practices and how it relates to other (possibly more efficient) projects.

Finally, we argue that researchers should revisit hard forks and the cost of community frag-
mentation, given that new ease of forking on social-coding platforms may have changed dynam-
ics from the feared hard forks of the past. Many tools to manage distributed development with
forks can also be useful for industrial settings, where forks are also frequently used for collabora-
tion and for variant management [71], and recently several researchers have explored lightweight
tooling to support fork-based variant management [[17, 84, 211].

3.9 Summary

In this chapter, we investigated the research question: What characteristics and practices of
a project associate with efficient forking practices? Specifically, we interviewed stakehold-
ers and conducted literature search to derive eight hypotheses about project characteristics and
practices that could affect forking (in) efficiency. We then designed cross-sectional correlational
study to test the hypotheses. Through large-scale statistical modeling of factors operationalized
in GITHUB traces, we found that many of these inefficiencies associate with common project
characteristics and practices, especially modularity and coordination practices. We found that
better modularity of the project structure and more centralized management practices for contri-
butions are strong predictors of more contributions and more merged pull requests. Moreover,
our models also reveal a tradeoff: centralized management also associates with higher risk of
community fragmentation through hard forks, as does a low pull request acceptance rate. Our
results suggest best practices that project maintainers can adopt if they want to make fork-based
development more efficient. Our operationalizations and results also lay the foundation for future
tool support, such as benchmarking projects and highlighting inefficient practices. This is one of
the solutions that we studied to mitigate collaboration inefficiencies when using fork-based de-
velopment mechanisms, which is identifying natural interventions. And this is a complementary
solution to the new interventions that we designed and described in Chapter 5] and [6]

36

CHAPTER 3. NATURAL INTERVENTIONS

Chapter 4

A Study of Hard Forks on GitHub

This chapter shares material with the ICSE’20 paper “How Has Forking Changed in the Last 20
Years? A Study of Hard Forks on GitHub” [251]].

As discussed in Chapter[2.1] the common notion of a fork has changed: Traditionally, forking
was the practice of copying a project and splitting off new independent development, and often
intended to compete with or supersede the original project [85, 131, 161} [181]. Nowadays,
forks are typically understood to be public copies of repositories in which developers can make
changes, potentially, but not necessarily, with the intention of integrating those changes back
into the original repository. In this dissertation, we define the former as hard fork, which would
leads to the inefficiency of fragmented community; and we define the latter as (social) fork.

In chapter 3] we identified hard forks by the name change, number of unmerged commits, or
whether the fork is receiving external pull requests over 1311 projects, and studied the commu-
nity fragmentation phenomena as an indicator of collaboration inefficiency. In this chapter, we
take one step further to study hard forks over a larger number of GITHUB projects.

Since we observe the change of the notion of forking, we argue that perceptions and practices
around forking could have changed significantly since SourceForge’s heydays. In contrast to the
strong norm against forking back then, we conjecture that the promotion of social forks on sites
like GITHUB, and the often blurry line between social and hard forks, may have encouraged
forking and lowered the bar also for hard forks. Therefore, in this chapter, we update and deepen
our understanding regarding practices and perceptions around hard forks can inform the design
of better tools (see chapter[S|and[6]) and management strategies to facilitate efficient collaboration
(see chapter [3).

4.1 Motivation

Prior research into forking of free and open-source projects focused on the motivations behind
hard forks [51,169, 81, 131} 162,190, 232], the controversial perceptions around hard forks [42,
85,131,161, 1181} 2377]], and the outcomes of hard forks (including studying factors that influence
such outcomes) [190, 237]. However, essentially all that research has been conducted before the

37

38 CHAPTER 4. HARD FORKS

rise of social coding, much of it on SourceForge (GITHUB was launched in 2008 and became
the dominant open-source hosting site around 2012; cf. Figure [2.1)). Therefore, we argue that it
is time to revisit, replicate, and extend research on hard forks, asking the central question of this
work: How have perceptions and practices around hard forks changed?

In this chapter, we describe a mixed-methods empirical design, combining repository min-
ing with 18 developer interviews, the goal is to further investigate the frequency, common
evolution patterns, and perceptions of hard forks in the current social coding environment.

In this chapter, we investigate:

¢ Frequency of hard forks: We attempt to quantify the frequency of hard forks among all
the (mostly social) forks on GITHUB. Specifically, we design and refine a classifier to
automatically detect hard forks. We find 15,306 instances, showing that hard forks are a
significant concern, even though their relative numbers are low.

e Common evolution patterns of hard forks: We classify the evolution of hard forks and
their corresponding upstream repository to observe outcomes, including whether the fork
and upstream repositories both sustain their activities and whether they synchronize their
development. We develop our classification by visualizing and qualitatively analyzing
evolution patterns (using card sorting) and subsequently automate the classification process
to analyze all detected hard forks. We find that many hard forks are sustained for extended
periods and a substantial number of hard forks still at least occasionally exchange commits
with the upstream repository.

¢ Perceptions of hard forks: In interviews with 18 open-source maintainers of forks and
corresponding upstream repositories, we solicit practices and perceptions regarding hard
forks and analyze whether those align with ones reported in pre-social-coding research.
We find that the ‘stigma’ often reported around hard forks is largely gone, indeed forks
including hard forks are generally seen as a positive, with many hard forks complement-
ing rather than competing with the upstream repository. Futhermore, with social forking
encouraging forks as contribution mechanism, we find that many hard forks are not delib-
erately planned but evolve slowly from social forks.

Overall, we contribute (1) a method to identify hard forks, (2) a dataset of 15,306 hard forks
on GITHUB, (3) a classification and analysis of evolution patterns of hard forks, and (4) results
from interviews with 18 open source developers about the reasons for hard forks, interactions
across forks, and perceptions of hard forks.

Our research focuses on development practices on GITHUB, which is by far the dominant
open-source hosting platform (cf. Figure and has been key in establishing the social forking
phenomenon. Even large projects primarily hosted on other sites often have a public mirror on
GITHUB, allowing us to gather a fairly representative picture of the entire open-source commu-
nity. Our main research instruments are semi-structured interviews with open-ended questions
and repository mining with GHTORRENT [98]] and the GITHUB API. While our research is not
planned as an exact replication of prior work and exceeds the scope of prior studies by compar-
ing social and hard forks, many facets seek to replicate prior findings (e.g., regarding motivations
and outcomes of hard forks) and can be considered a conceptual replication [[125) 203]].

4.2. RESEARCH QUESTIONS AND METHODS 39

4.2 Research Questions and Methods

As described in Sec. the conventional use of the term forking as well as corresponding
tooling have changed with the rise of distributed version control and social coding platforms,
and we conjecture that this also influenced hard forks. Hence, our overall research question is
How have perceptions and practices around hard forks changed?

We explore different facets of hard forks, including motivations, outcomes, and perceived
stigma (cf. Sec. [2.I)). We also attempt to identify how frequent hard forks are across GITHUB,
and discuss how developers navigate the tension and often blurry line between social and hard
forks. We adopt a concurrent mixed-method exploratory research strategy [S7], in which we
combine repository mining — to identify hard forks and their outcomes — with interviews of
maintainers of both forks and upstream projects — to explore motivations and perceptions. Mixing
multiple methods allows us to explore the research question simultaneously from multiple facets
and to triangulate some results. In addition, we use some results of repository mining to guide
the selection of interviewees.

We explicitly decided against an exact replication 125, 203]] of prior work, because contexts
have changed significantly. Instead, we guide our research by previously explored facets of hard
forks, revisit those as part of our repository mining and interviews, and contrast our findings with
those reported in pre-GITHUB studies. In addition, we do not limit our research to previously
explored facets, but explicitly explore new facets, such as the tension between social and hard
forks, that have emerged from technology changes or that we discovered in our interviews.

4.2.1 Instrument for Visualizing Fork Activities

o © o @ o O . . 7 7 { J
'11-4 '12-1 '12-2 '12-3 '12-4 '13-1 '13-2 '13-3 '13-4 '14-1 '14-2 '14-3 '14-4 '15-1 '15-2 '15-3 '15-4 'l6-1 '16-2 '16-3 'l6-4 '17-1 '17-2 '17-3 '17-4 '18-1 '18-2 '18-3 'l8-4 '19-1 '19-2
Figure 4.1: An example of commit history graph of fork tmyroadctfig/jnode

We created commit history graphs, a custom visualization of commit activities in forks, as
illustrated in Figure to help develop and debug our classifiers (Sec.[4.2.2]and 4.2.3), but also
to prepare for interviews. Given a pair of a fork and corresponding upstream repositories, we
clone both and analyze the joint commit graph between the two, assigning every commit two
one of five states: (1) created before the forking point, (2) only upstream (not synchronized),
(3) only in fork (unmerged), (4) created upstream but synchronized to the fork, and (5) created
in the fork but merged into upstream. Technically, in a nutshell, we build on our prior commit
graph analysis [250], where merge edges are assigned weight 1 and all other edges weight 0, and
the shortest path from the commit to any branch in either fork or upstream repository identifies
where the commit originates and whether it has been merged (and in which direction)ﬂ

I'There are a few nuances in the process due to technicalities of Git and GITHUB. For example, if the upstream
repository deletes a branch after forking, the joint commit graph would identify the code as exclusive to the fork; to
that end, we discard commits that are older than the forking timestamp on GITHUB. Such details are available in
our open-source implementation (https://github.com/shuiblue/VisualHardFork).

https://github.com/shuiblue/VisualHardFork

40 CHAPTER 4. HARD FORKS

We subsequently plot activities in the two repositories over time, aggregated in three-month
intervals; larger dots indicate more commits. In these plots, we include additional arrows for
synchronization (from upstream into the fork) and merge (from fork to upstream) activities. With
these plots, we can quickly visually inspect development activities before and after the forking
point as well whether the fork and the upstream repository interact.

4.2.2 Identifying Hard Forks

Identifying hard forks reliably is challenging. Pre-GITHUB work often used keyword searches in
project descriptions, e.g., ‘software fork’, or relied on external curated sources (e.g., Wikipedia) [190].
Today, on sites like GITHUB, hard forks use the same mechanisms as social forks without any
explicit distinction.

Classifier development. For this work, we want to gather a large set of hard forks and even
approximate the frequency of hard forks among all 47 million forks on GITHUB. To that end,
we need a scalable, automated classifier. We are not aware of any existing classifier except our
own prior work [250], in which we classified forks as hard forks if they have at least two own
pull requests or at least 100 own, unmerged commits and the project’s name has been changed.
Unfortunately, we found that this classifier missed many actual hard forks (false negatives), thus
we went back to the drawing board to develop a new one.

We proceeded iteratively, repeatedly trying, validating, and combining various heuristics.
That is, we would try a heuristic to detect hard forks and manually sample a significant number of
classified forks to identify false positives and false negatives, revising the heuristic or combining
it with other steps. Commit history graphs (cf. Sec. and our qualitative analysis of forks
(Sec below) were useful debugging devices in the process. We iterated until we reached
confidence in the results and a low rate of false positives.

Our final classifier proceeds in two steps: first, we use multiple simple heuristics to identify
candidate hard forks; second, we use a more detailed and more expensive analysis to decide
which of those candidates are actual hard forks.

In the first step, we identify as candidate hard forks, among all repositories labeled as forks
on GITHUB, those that:

e Contain the phrase “fork of” in their description (H;). We use GITHUB’s search API to
find all repositories that contain the phrase “fork of”” in their project description and are a
fork of another project. The idea, inspired by prior work [[162], is to look for projects that
explicitly label themselves as forks (defined as ““self-proclaimed forks™), i.e., developers
explicitly change their description after cloning the upstream repository. To work around
GITHUB’s API search limit of 1000 results per query, we partitioned the query based on
different time ranges in which the repository was created. Next, we compare the descrip-
tion of the fork and its upstream project to make sure the description is not copied from
the upstream, i.e., that the upstream project is not already a self-proclaimed fork.

® Received external pull requests (Hy). Using the June 2019 GITHUB dataset [96], we iden-
tified all GITHUB repositories that are labeled as forks and have received at least three pull
requests (excluding pull requests issued by the fork’s owner to avoid counting developers

4.2. RESEARCH QUESTIONS AND METHODS 41

who use a process with feature branches). We consider external contributions to a fork as
a signal that the fork may have attracted its own community.
® Have substantial unmerged changes (Hs3). Using the same GHTORRENT dataset, we iden-
tify all forks that have at least 100 own commits, indicating significant development activ-
ities beyond what is typical for social forks.
® Have at least 1-year of development activity (Hy). Similar to the previous heuristic, we
look for prolonged development activities beyond what is common for social forks. Specif-
ically, we identify those forks as candidates in which the time between the first and the last
commit spans more than one year.
® Have changed their name (Hs). We check if the fork’s name in GITHUB has been changed
from the upstream repository’s name (with Levenshtein distance > 3). This heuristic
comes from the observation that most social forks do not change names, but that forks
intending to go in a different direction and create a separate community tend to change
names more commonly (e.g., Jenkins forked Hudson).
Each repository that meets at least one of these criteria is considered as a candidate. We show
how many candidates each heuristic identified in the second column of Figure Note, for all
heuristics that use GHTORRENT, we additionally validated the results by checking whether the
fork and upstream pair still exist on GITHUB and whether the measures align with those reported
by the GITHUB APIJ]
In the second step, we performed more detailed (and expensive) analyses of commit graphs
and repository metadata in each candidate hard fork, to filter false positives (details of the filtering
criteria in the paper [251])).

Classifier validation. To validate the precision of our classifier, we manually inspected a ran-
dom sample of 300 detected hard forks. By manually analyzing the fork’s and the upstream
repository’s history and commit messages, we classified 14 detected hard forks as likely false
positives, suggesting an acceptable accuracy of 95 %. Note that manual labeling is a best effort
approach as well, as the distinction between social and hard fork is not always clear (see also our
discussion of interview results in Sec. d.3.4).

Analyzing false negatives (recall) is challenging, because hard forks are rare, projects listed
in previous papers are too old to detect in our GitHub dataset, and we are not aware of any other
labeled dataset. We have manually curated a list of known hard forks from mentions in web
resources and from mentions during our interviews. Of the 3 hard forks of which both the fork
and the upstream repository are on GitHub, we detect all with our classifier, but the size of our
labeled dataset is too small to make meaningful inferences about recall.

4.2.3 Classifying Evolution Patterns

We identified different evolution patterns among the analyzed forks using an iterative approach
inspired by card sorting [209]. Evolution patterns describe how a hard fork and the corresponding

2We include this step after identifying occasional errors in GHTORRENT in our validation steps, such as switched
fork-upstream relations between two repositories.

42 CHAPTER 4. HARD FORKS

(a) Overlap between the heuristics (with detailed intersections).

Rule Candidates Actual

H; 10,609 551

H» 23,109 7,043

Hs 14,956 810

Hy 33,073 11,268

H; 20,358 5,568

Total 63,314 15,306
(b) Overlap between the heuristics (Proportional). (¢) Hard forks identified.

Figure 4.2: Statistics on identified candidate hard forks and actual hard forks.

4.2. RESEARCH QUESTIONS AND METHODS 43

upstream project coevolve and can help to characterize forking outcomes. In addition, we used
evolution patterns to diversify interviewees.

Specifically, we printed cards with commit history graphs of 100 randomly selected hard
forks (see Sec. [#.2.2)), then all three authors jointly grouped the cards and identified a few com-
mon patterns. Our card-sorting was open, meaning we had no predefined groups; the groups
emerged and evolved during the analysis process. Afterward, we manually built a classifier that
detects the forks for each identified pattern. We then applied this classifier to the entire dataset,
inspected that the automatically classified forks actually fit the patterns as intended (refining the
classifier and its thresholds if needed). We then picked another 100 hard forks that fit none of the
previously defined patterns and sorted those again, looking for additional patterns. We similarly
proceeded within each pattern, looking at 100 hard forks to see whether we can further split the
pattern. We repeated this process until we could not identify any further patterns.

After several iterations, we arrived at a stable list of 15 patterns with which we could classify
97.7 % of all hard forks. We list all patterns with a corresponding example commit history graph
in Table 4.2] The patterns use characteristics that relate to previously found outcomes, such as
fork or upstream being discontinued, but also consider additional characteristics corresponding
to features that were not available or easily observable before distributed version control, e.g.,
whether the fork and upstream merge or synchronize. We present the patterns in a hierarchi-
cal form, because our process revealed a classification with a fairly obvious tree structure, not
because we were specifically looking for a hierarchical structure.

4.2.4 Interviews

To solicit views and perceptions, we conducted 18 semi-structured interviews with developers,
typically 20 to 40 minutes. Despite reaching fewer developers, we opted for interviews rather
than surveys due to the exploratory nature of our research: Interviews allow more in-depth ex-
ploration of emerging themes.

Interview protocol. We designed a protocol [[15] that covers the relevant dimensions from
earlier research and touches on expected changes, including reasons for forking, perceived stigma
of forking, and the distinction and possible tensions between social and hard forks. We asked
fork owners about their decision process that lead to the hard fork, their practices afterward (e.g.,
why they renamed the projects), their current relationship to the upstream project (e.g., whether
they still monitor or even synchronize), and their future plans. In contrast, we asked owners of
upstream projects to what extent they are aware of, interact with, or monitor hard forks; and to
what degree they are concerned about such forks or even take steps to avoid them. In addition,
we asked all participants with a long history of open-source activity if they observed any changes
in their practices or perceptions and that of others over time.

All interviews were semi-structured, allowing for exploration of topics that were brought up
by the participants. Our interview protocol evolved with each interview, as we reacted to confu-
sion about questions and insights found in earlier interviews. That is, we refined and added ques-
tions to explore new insights in more detail in subsequent interviews — for example, after the first
few interviews we added questions about the tradeoff between being inclusive to changes versus

44 CHAPTER 4. HARD FORKS

Table 4.1: Background information of participants.

Par. Domain #Stars(U) #Stars(F) LOC Role Exp.(yr)
P1 Blockchain <20 <10 10K F 19
P2 Reinforcement learning 10K IK 30K F 3
P3 Mobile processing - 70 20K F 6
P4 Video recording - 100 300K F 18
P5 Helpdesk system 2K <10> 800K F 5
P6 CRM system 30 200 800K F 10
P7 Physics engine - 300 100K F 15
P8 Social platform 500 230 500K F 20
P9 Reinforcement learning <20 <20 30K 2nd-F 3
P10 Game Engine 500 <10 200K 2nd-F 21
P11 Networking 300 100 500K F 10
P12 Email library - 10K 20K F/U 32
P13 Game engine 3K 70 20K F 11
P14 Machine learning 30K 50 60K F 8
P15 Image editing 70 <10 20K F 20
P16 Image editing 70 <10 20K U 10
P17 Microcontrollers 9K IK 300K U 6
P18 Maps 400 <10 100K U 9

F: Hard Fork Owner; U: Upstream Maintainer; 2nd-F: Fork of the Hard Fork
*Some of the upstream projects are not in GITHUB,
so the number of stars is unknown. Numbers rounded to one significant digit.

risking hard forks and questions regarding practices and tooling to coordinate across repositories.
To ground each interview in concrete experience rather than vague generalizations, we focused
each interview on a single repository in which the interviewee was involved, bringing questions
back to that specific repository if the discussion became too generic.

Participant recruitment. We selected potential interviewees among the maintainers of the
15,306 identified hard forks and corresponding upstream repositories. We did consider main-
tainers with public email address on their GITHUB profile that were active in the analyzed repos-
itories within the last 2 years (to reduce the risk of misremembering). We sampled candidates
from all evolution patterns (Sec. and sent out 242 invitation emails [}

Overall, 18 maintainers volunteered to participate in our study (7 % response rate). Ten opted
to be interviewed over email, one through a chat app, and all others over phone or teleconferenc-
ing. In Table 4.2} we map our interviewees to the evolution pattern for the primary fork discussed
(though interviewees may have multiple roles in different projects). Naturally, our interviewees
are biased toward hard forks that are still active. Our response rate was also lower among main-
tainers of upstream repositories, who were maybe less invested in talking about forking. In
Table 4.1} we list information about our interviewees and the primary hard fork we discussed.
All interviewees are experienced open-source developers, specifically, many with more than 10
years experience of participating in open-source community, meaning they have interacted with

3We unfortunately could not recruit interviewees in all roles for all patterns. For example, for ‘reviving a dead
project” we would not find any upstream maintainers that were active in the last 2 years.

4.3. RESULTS 45

earlier open-source platform such as Sourceforge. Our interviews reached saturation, in that the
last interviews provided only marginal additional insights.

Analysis. We analyzed the interviews using standard qualitative research methods [196]]. After
transcribing all interviews, two authors coded the interviews independently, then all authors sub-
sequently discussed emerging topics and trends. Questions and disagreements were discussed
and resolved together, if needed asking follow up questions to some interviewees.

4.2.5 Threats to Validity and Credibility

Our study exhibits the threats to validity and credibility that are typical and expected of this kind
of exploratory interview studies and the used analysis of archival GitHub data.

Distinguishing between social and hard forks is difficult, even for human raters, as the dis-
tinction is primarily one of intention. In our experience, we can make a judgment call with high
inter-rater reliability for most forks, but there are always some repositories that cannot be accu-
rately classified without additional information. We build and evaluate our classifiers based on a
best effort strategy, as discussed.

While we check later steps with data from the GITHUB API, early steps to identify candidate
hard forks may be affected by missing or incorrect data in the GHTorrent dataset. In addition, the
history of Git repositories is not reliable, as timestamps may be incorrect and users can rewrite
histories after the fact. In addition, merges are difficult to track if code changes are merged
as a new commit or through ‘squashing’ and ‘rebasing’ rather than through a traditional merge
commit. As a consequence, despite best efforts, there will be inaccuracies in our classification
of hard forks and individual commits, which we expect will lead to some underreporting of hard
forks and to some underreporting of merged code.

We analyze data with right-censored time series data, in which we can detect that projects
have seized activity in the past, but cannot predict the future, thus seeing a larger chance for older
forks to be discontinued.

Our study is limited to hard forks of which both fork and upstream repository are hosted
on GitHub and of which the forking relationship is tracked by GitHub. While GitHub is by far
the most dominant hosting service for open source, our study does not cover forks created of
(typically older) projects hosted elsewhere and forks created by manually cloning or copying
source code to a new repository. In addition, our interviews, as typical for all interview studies
in our field, is biased toward answer from developers who chose to make their email public
and chose to answer to our interview request, which underrepresented maintainers of upstream
repositories in our sample.

4.3 Results

We explore practices and perceptions around hard forks along four facets that emerged from our
interviews and data.

46

CHAPTER 4. HARD FORKS

Table 4.2: Evolution patterns of hard forks

Id Category Total Sub-category Example Count Interviewees
1 632 Upstream remains in- ¢ N\ 576 P12
Success active
(F. active > 2 Qt.)
Revive
2 Dead Upstream active ®°® . .~ 56
Project again
3 420 e AN 420
Not success
(F active <=2 Qt)
4 only merge ees0o0see P10
5 Both Alive 723 only sync RN j : b J 107 P2,PI3,PI5
6 merge & sync S ®%%% » P9
: . oo oo - . P1, P3, P4,
7 no interation o\ 562 PS. P7. P14
8 only merge M N 174
Fork
9 Lived 7280 only sync TN E I)) 636
Longer
Forking
10 Active merge & sync RN I * 107
Project
11 no interaction A N 6313 P6, P8, P11
12 only merge 0060 c0000
Fork
13 does nOt £51 only sync . coe)
out live
upstream
14 merge & sync * ° * 199
15 no interaction AN C117)

4.3. RESULTS 47

4.3.1 Frequency of Hard Forks

Our classifier identified 15,306 hard forks, confirming that hard forks are generally a rare phe-
nomenon. As of June 2019, GITHUB tracks 47 million repositories that are marked as forks over
5 million distinct upstream repositories among GITHUB’s over 125 million repositories.

Among those, the vast majority of forks has no activity after the forking point and no stars.
Most active forks have only very limited activity indicative of social forks. Only 0.2 % of
GITHUB’s 47 million forks have 3 or more stars.

As our analysis of evolution patterns (Table 4.2)) reveals, cases where both the upstream
repository and the hard fork remain active for extended periods of time are not common (patterns
1, 2, and 4-7; 1157 hard forks, 8.8 %). Most hard forks actually survive the upstream project,
if the upstream project was active when the fork was created (patterns 8—11; 7280 hard forks,
47.6 %), but many also run out of steam eventually (patterns 3 and 12-15; 6671 hard forks,
43.6 %).

While most hard forks are created as forks of active projects (patterns 4—15; 14254 hard
forks, 93 %), there are a substantial number of cases where hard fork are created to revive a dead
project (pattern 1-3; 1052 hard forks, 6.8 %), in some cases even triggering or coinciding with a
revival of the upstream project (pattern 2; 56 hard forks, 0.36 %), but also here not all hard fork
sustain activity (pattern 3; 420 hard forks, 2.7 %).

Discussion and implications

Even though the percentage of hard forks is low, the total number of attempted and sustained
hard forks is not. Considering the significant cost a hard fork can put on a community through
fragmentation, but also the potential power a community has through hard forks, we argue that
hard forks are an important phenomenon to study even when they are comparably rare.

Whereas previous work typically looked at only a small number of hard forks, and research on
tooling around hard-fork issues typically focus on few well known projects, such as the variants
of BSD [180] or Marlin [138]] or artificial or academic variants [84, [122]], we have detected a
significant number of hard forks, many of them recent, using many different languages, that
are a rich pool for future research. We release the dataset of all hard forks with corresponding
visualizations as dataset with this paper [15].

4.3.2 Why Hard Forks Are Created (And How to Avoid Them)

At a first glance, the interviewees give reasons for creating hard forks that align well with prior
findings, including especially continuing discontinued projects or projects with unresponsive
maintainers (P1, P2, P8), disagreements around project governance (P2, P12), and diverging
technical goals or target populations (P3, PS5, P6, P11, P13, P14, P17). As discussed, we identi-
fied 1052 hard forks (Table d.2] patterns 1-3, 6.8 %) that forked an inactive project.

An interesting common theme that emerged in our interviews though was that many hard
forks were not deliberately created as hard forks initially. More than half of our interviewees
described that they initially created a fork with the intention of contributing to the upstream
repository (social fork), but when they faced obstacles they decided to continue on their own.

48 CHAPTER 4. HARD FORKS

Common obstacles were unresponsive maintainers (P1, P2, P8) and rejected pull requests (P11,
P13, P14), typically because the change was considered beyond the scope of the project. For
example, P2 described that “before forking, we started by opening issues and pull requests, but
there was a lack of response from their part. [We] got some news only 2 months after, when
our fork was getting some interest from others.” Similarly, some maintainers reported that a
fork initially created for minor personal changes evolved into a hard fork as changes became
more elaborate and others found them useful (P2, P14, P17); for example, P14 described that the
upstream project had been constantly evolving and the code base became quickly incompatible
with some libraries, so he decided to fix this issue while also adding functionality, after which
more and more people found his fork and started to migrate.

Several maintainers also had explicit thoughts about how to avoid hard forks (both main-
tainers of projects that have been forked and fork owners who themselves may be forked), and
they largely mirror common reasons for forking, i.e., transparent governance, being responsive,
and being inclusive to feature requests. For example, P2 suggests that their project is reactive
to the community, thus he considers it unlikely to be forked; similarly P16 decided to generally
“respond to issues in a timely manner and make a good faith effort to incorporate PRs and pos-
sibly fix issues and add features as the needs arrives” to reduce the need for hard forks. Beyond
these, P2 also mentioned that they created a contributing guide and issue templates to coordinate
with contributors more efficiently; P14 suggested to “credit the contributors” explicitly in release
notes in order to keep contributors stay in the community.

Discussion and Implications

Whereas forking was typically seen as a deliberate decision in pre-GITHUB days that required
explicit steps to set up a repository for the fork and find a new name, nowadays many hard forks
seem to happen without much initial deliberation. Social coding environments actively encour-
age forking as a contribution mechanism, which significantly lowers the bar to create a fork in the
first place without having to think about a new name or potential consequences like fragmenting
communities. Once the fork exists (initially created as social fork), there seems to be often a
gradual development until developers explicitly consider their fork a separate development line.
In fact, many hard forks seem to be triggered by rather small initial changes. These interview
results align with the observation that only about 36 % of the detected hard forks on GITHUB
have changed the project’s name (cf. Figure and [4.2b) [

More importantly, a theme emerged throughout our interviews that hard forks are not likely to
be avoidable in general, because of a project’s tension between being specific and begin general.
On the one hand, projects that are more inclusive to all community contributions risk becoming
so large and broad that they become expensive to maintain (e.g., as P17 suggests, the project
maintainers need to take over maintenance of third-party contributions for niche use cases) and
difficult to use (e.g., lots of configuration options and too much complexity). On the other hand,
projects staying close to their original vision and keeping a narrow scope may remain more
focused with a smaller and easier to maintain code base, but they risk alienating users who do

4 An intervieweed hard-fork owners explained that they did not change the fork’s name as a way to give credits
to the upstream project, so not all hard forks without name changes should be automatically interpreted as being
created through a gradual transition from social forks.

4.3. RESULTS 49

not fit that original vision, who then may create hard forks. One could argue that hard forks are
a good test bed for contributions that diverge from the original project despite their costs on the
community: If fork dies it might suggest a lack of support and that it may have been a good
decision not to integrate those contributions in the main project.

In this context, a family of related projects that serve slightly different needs or target pop-
ulations but still coordinate may be a way to overcome this specificity-generality dilemma in
supporting multiple projects that each are specific to a mission, but together target a significant
number of uses cases. However, current technology does not support coordination across multi-
ple hard forks well, as we discuss next.

4.3.3 Interactions between Fork and Upstream Repository

Many interviewees indicate that they are interested in coordinating across repositories, either for
merging some or all changes back upstream eventually or to monitor activity in the upstream
repository to incorporate select or all changes. Some hard fork owners did not see themselves
competing with the upstream project, but rather being part of a larger project. For instance,
although fork owner P13 has over 1500 commits ahead of the upstream project, he still said
that “I would not consider it independent because I am relying on what they (upstream) are
doing. I could make it independent and stop getting their improvements, but it’s to their credit
they make it very easy for their many hundreds of developers to contribute patches and accept
patches from each other. They regulate what goes into their project very well, and that makes
[merging changes] into my fork much easier.”” Some (P4 and P11) indicate that they would like to
merge, once the reason for the hard fork disappears (typically governance practices or personal
disputes). Also upstream maintainers tend to be usually interested in what happens in their forks;
for example, P17, a maintainer of a project with thousands of (mostly social) forks, said “/ try to
be aware of the important forks and try to get to know the person who did the fork. I will follow
their activities to some extent.”

However, even though many interviewees expressed intentions, we see little evidence of ac-
tual synchronization or merging across forks in the repositories: For example, P1, P4, P8, and
P11 mention that they are interested in eventually merging back with the upstream repository,
but they have not done so yet and do not have any concrete plans at this point. Similarly, P2,
P6, and P10 indicate that they are interested in changes in upstream projects, but do not actually
monitor them and have not synchronized in a long time. Our evolution patterns similarly show
that synchronization (from upstream to fork) and merging (from fork to upstream) are rare. Only
16.18 % of all hard forks with active upstream repositories ever synchronize or merge (Tabled.2]
patterns 4-6, 8—10, and 12—14).

What might explain this difference between intentions and observed actions is that synchro-
nization and merging becomes difficult once two repositories diverge substantially and that mon-
itoring repositories can becoming overwhelming with current tools. For example, P2 reports to
only occasionally synchronize minor improvements, because the fork has diverged to much to
synchronize larger changes; P10 has experienced problems of synchronizing too frequently and
thus being faced with incomplete implementations and now only selectively synchronizes fea-
tures of interest. In line with prior observations on monitoring change feeds [38, 61} 168, 249]],
interviewees report that systematically monitoring changes from other repositories is onerous

50 CHAPTER 4. HARD FORKS

and that current tools like GITHUB’s network graph are difficult to use and does not scale (P11,
P16).

Discussion and Implications

Tooling has changed significantly since the pre-GITHUB days of prior studies on hard forks
which may allow new forms of collaboration across forks: Git specifically supports merges
across distributed version histories, as well as selectively integrating changes through a ‘cherry
picking’ feature. GITHUB and similar social coding pages track forks, allowing developers
to subscribe to changes in select repositories, and generally make changes in forks transpar-
ent [61) 162, 249]]. Essentially all interviewees were familiar with GITHUB’s network view [4]]
that visually shows contributions over time across forks and branches.

Even though advances in tooling provide new opportunities for coordination across multi-
ple forks and project maintainers are interested in coordinating and considering multiple forked
projects as part of a larger community, current tools do not support this use case well. Current
tools work well for short-term social forks but tend to work less well for coordinating changes
across repositories that have diverged more significantly.

This provides opportunities for researchers to explore tooling concepts that can monitor, man-
age, and integrate changes across a family of hard forks. Recent academic tools for improved
monitoring [[168, 249]] or cross-fork change migration [[180, |183] are potentially promising but
are not yet accessible easily to practitioners. Also more experimental ideas about virtual product-
line platforms that unify development of multiple variants of a project [[17, 84, [157, 192} 211]]
may provide inspiration for maintaining and coordinating hard forks, though they typically do
not currently support the distributed nature of development with competing hard forks. A tech-
nical solution could solve the specificity-generality dilemma (cf. Sec.[4.3.2), allowing subcom-
munities to handle more specific features without overloading the upstream project and without
fragmenting the overall community. We believe that our dataset of 15,306 hard forks can be
useful to develop and evaluate such tools in a realistic setting.

4.3.4 Perceptions of Hard Forking

Our discussion with maintainers confirmed that the line between hard forks and social forks is
somewhat subjective, but, when prompted, they could draw distinctions that largely mirror our
definition (long-term focus, extensive changes, fork with own community). For example, P2
agree that his fork is independent from the upstream project because they have different goals,
and suggests the fork has better code quality, and better community management practices; the
only remaining connection are upstream bug fixes that he incorporates from time to time. Also,
P6 considers his fork as independent, given a quicker release cycle and significant refactoring of
the code base.

For most interviewees, the dominant meaning of a fork is that of a social fork. When asked
about perceptions of forks, most interviewees initially thought of social forks and have strong
positive associations, e.g., others contributing to a project, onboarding newcomers and finding
collaborators, and generally fostering innovation. For instance, P6 described the advantages of
social forking as “it encourages developers to go in a direction that the original project may not

4.3. RESULTS 51

have gone,” and similarly P9 thought that “it could boost the creative ideas of the communities.”
One interviewee also mentioned that for young projects primarily focused on growth, being
forked is a positive signal, meaning that the project is useful to other people. Social forks were
so dominant in the interviewees’ mind as a default, that we had to frequently refocus the interview
on hard forks. When asked specifically about hard forks, several interviewees raised concerns
about potential community fragmentation (P4, P6, P17), worried about incompatibilities and
especially confusing end users (P3, P9, P14, P17), and would have preferred to see hard-fork
owners to contribute to the upstream project instead (P3, P8, P12). However, concerns were
mostly phrased as hypotheticals and contrasted with positive aspects.

Many interviewed owners of hard forks do not see themselves competing with the upstream
repository, as they consider that they address a different problem or target a different user popu-
lation. For example, P10 described his fork as a “light version” of the upstream project targeting
a different group of users.

While it is understandable that hard-fork owners see their forks as justified, also some inter-
viewed owners of upstream projects had positive opinions about such forks. For example, P17
expressed that forks are good if there is a reason (such as a focus on a different target population,
in this case beginners), and that those forks may benefit the larger community by bringing in
more users to the project; P18 suggested even that he would support and contribute forks of his
own project by occasionally contributing to them as long as it will benefit the larger community.

Discussion and Implications

Overall, we see that the perception of forking has significantly changed compared to perceptions
reported in earlier work. Forking used to have a rather negative connotation in pre-GITHUB days
and was largely regarded as a last resort to be avoided to not fragment the community and confuse
users. With GITHUB’s rebranding of the word forking, the stigma around hard forking seems to
have mostly disappeared; the word has mostly positive connotations for developers, associated
positively with external contributors and community. While there is still some concern about
community fragmentation, it is rarely a concrete concern if there are actual reasons behind a
hard fork. Transparent tooling seems to help with acceptance and with considering multiple hard
forks as part of a larger community that can mutually benefit from each other.

We expect that a more favorable view, combined with lower technical barriers (Sec.§.3.2) and
higher expectations of coordination (Sec. makes hard forks a phenomenon we should ex-
pect to see more of. However, positive expectations can turn into frustration (and disengagement
of valuable contributors to sustain open source) if fragmentation leads to competition, confusion,
and coordination breakdowns due to insufficient tooling.

With the right tooling for coordination and merging, we think hard forks can be a powerful
tool for exploring new and larger ideas or testing whether there is sufficient support for features
and ports for niche requirements or new target audiences (e.g., solving the specificity-generality
dilemma discussed in Sec. [4.3.2] with a deliberate process). To that end though, it is necessary
to explicitly understand (some) hard forks as part of a larger community around a project and
possibly even explicitly encourage hard forks for specific explorations beyond the usual scope of
social forks. We believe that there are many ways to support development with hard forks and
to coordinate distributed developers beyond what social coding site offer at small scale today.

52 CHAPTER 4. HARD FORKS

Examples include (1) an early warning system that alerts upstream maintainers of emerging
hard forks (e.g., external bots), which maintainers could use to encourage collaboration over
competition and fragmentation if desired, (2) a way to declare the intention behind a fork (e.g.,
explicit GITHUB support) and dashboard to show how multiple projects and important hard forks
interrelate (e.g., pointing to hard forks that provide ports for specific operating systems), and
(3) means to identify the essence of the novel contributions in forks (e.g., history slicing [135] or
code summarization [249]).

4.4 Summary

With the rise of social coding and explicit support in distributed version control systems, forking
of repositories has been explicitly promoted by sites like GITHUB and has become very popular.
However, most of these modern forks are not hard forks in the traditional sense. In this Chapter,
we revisited the question about the motivation for hard forks and explore whether they have
changed with the rise of social coding. We believe it is necessary to revisit hard forking after the
rise of social coding and GITHUB. Specifically, we aim to understand the hard-fork phenomenon
in a current social-forking environment, and understand how perceptions and practices may have
changed.

We automatically detected hard forks and their evolution patterns and interviewed open-
source developers of forks and upstream repositories to study perceptions and practices. We
found that perceptions and practices have indeed changed significantly: Among others, hard
forks often evolve out of social forks rather than being planned deliberately and developers are
less concerned about community fragmentation but frequently perceive hard forks a positive
noncompetitive alternatives to the original projects.

This project is a complement to the previous project described in Chapter 3| to update and
deepen our understanding regarding practices and perceptions around hard forks can inform the
design of better tools and management strategies to facilitate efficient collaboration. With the
right tooling for coordination and merging, we think hard forks can be a powerful tool for ex-
ploring new and larger ideas or testing whether there is sufficient support for features and ports
for niche requirements or new target audiences. Moreover, it is necessary to explicitly understand
(some) hard forks as part of a larger community around a project and possibly even explicitly
encourage hard forks for specific explorations beyond the usual scope of social forks.

Chapter 5

New Intervention: Identifying Features in
Forks (INFOX)

This chapter shares material with the ICSE’ 18 paper “Identifying Features in Forks” [249] and
ICSE’ 18 - Poster paper “Forks Insight: Providing an Overview of GitHub Forks” [182)].

In previous chapters, we observed differences between projects regarding the degrees of col-
laboration efficiency using fork-based development mechanisms, thus, we studied natural inter-
ventions that are correlated to higher collaboration efficiency and tested the feasibility of apply-
ing such intervention to a broader population (see Chapter [3)). However, we also observed that
some existing interventions (e.g., GITHUB network view and GITLAB fork list view shown in
Figure [5.1] for presenting an overview of the community) are not good enough. In this chapter,
we describe our first fooling intervention to improve the awareness of a community and generate
a better overview for fork-based development mechanism. We design an approach to identify
unmerged cohesive code changes (named features) from forks. The approach is called INFOX,
which is short for IdeNtifying Features in fOrKS.

5.1 Motivation

As described in Section|[I] because the number of forks of a project is large, it is hard to maintain
an overview of the whole community, which would lead to other problems. Several open-source
developers that we interviewed for this paper indicated that they are interested in what happens
in other forks, but cannot effectively explore them with current technology, such as GitHub’s
network graph shown in Figure [5.1b; “I care, but, it is very hard to track all of the forks.” This
developer is using SourceTree, which visualizes commit history of a repository through GUI, to
explore code changes in other forks one by one, and he said “it is just difficult” [P5]; “I do not
have much visibility of the forks. They are too many, and it is overwhelming to keep track of
them” [P9]. The difficulty to maintain an overview of forks leads to several additional problem:s,
such as redundant development, lost contributions and suboptimal forking point (as described in
Section [T).

33

54 CHAPTER 5. NEW INTERVENTION: INFOX

GitHub’s main facility to navigate forks is the network view (Figure [5.1b]), which visualizes
the history of commits over time across all branches and forks of a project. This cross-fork
visualization provides transparency to developers who want to track ongoing changes by others,
want to know who is active and what they are trying to do with the code [61]. For example, one
of the developers we have interviewed said: “I check the more updated forks. I think this view
is helpful, because I am not gonna look at all 60 forks. 60 is a lot, probably this project has
thousands, that will be ridiculous. I will never do that” [P4].

Although the network view is a good starting point to understand how the project evolves, it
is tedious and time consuming to use if a project has many forks. In order to see older history,
users click and drag within the graph, and if users want to see the commit information, they hover
the mouse over each commit dot and read the commit message. Also, they “have to scroll back
a lot to find the fork point and then go to the end again for seeing what changed since then in the
parent and in the fork” [[1]. If developers want to investigate the code changes of certain forks,
they have to manually open and check each fork. As one developer stated “I don’t look at the
graphs on GitHub. .. it is very hard to find the data, you have to scroll for 5 minutes to find stuff”
[P5]. The view does not even load when there are over 1000 forks, no matter they are active or
1nactive.

The goal of our work is to identify and label cohesive code changes, features, among changes
in forks to provide a compact overview of features and their implementations. This is a step to
establish an overview of development activities in various forks of a project.

In contrast to GitHub’s network view (Figure [5.1b), we deemphasize commits, which fre-
quently have unreliable descriptions and frequently are unreliable indicators of cohesive func-
tionality, as it is common that commits tangle code of multiple features and even more com-
mon that a single feature is scattered across multiple commits [23} [112} [113} [127, [135} [159].
Instead, we cluster changed code based on relationships and dependencies within those code
fragments and label each feature with representative keywords extracted from commit messages,
code, and comments. Technically, we take inspiration from CLUSTERCHANGES [23] to untan-
gle code changes during code review based on a graph of code dependencies and repurpose the
idea for our problem; furthermore we incorporate community-detection techniques [935] to refine
an initial clustering and information-retrieval techniques [[197]] for deriving concise labels (See
Figure[5.1a).

To summarize, we contribute (a) INFOX, an approach and corresponding tool, which auto-
matically identifies and summarizes features in forks of a project, using source code analysis,
community detection, and information-retrieval techniques, and (b) evidence that INFOX im-
proves accuracy over existing techniques and provides meaningful insights to maintainers of
forks.

5.2 Method

INFOX identifies and labels features within a larger change of a fork. It takes the code change
difference between the latest commit of the upstream (source snapshot) and the latest commit of

5.2. METHOD 55

L] Smoothieware /| Smoothieware @® Watch~ 179 s Star 530 YFork 573

#Active forks (within a year): 89
#Forks have un-submitted code changes: 33

luster| OpenBuilds/Smoothieware, last commmit: 16 days ago LOC
com, substr, smoothie, setcursor, build, lcd, c_str, openbuilds] 46
lcdwidth, shift, glcd_font, fb_size, framebuffer, memory, is_sh1106, size_sh1106, data, framebuff¢ 10
| con. [contrast, apex, is_sh1106, support, contrast, reversed, oled, ol, sh1106] 5
ol_checksum, new, variant, checksum, sh1106_ol, cksm, lcd_cksm, support, Icd, st7565] 2
ﬁluster Iciscon/Smoothieware, last commmit: Jan 27 LOC
bed, gcode, div, ha_letter, home_offset, gcode_receiv, nullstream, number, correct_checksum, stt 28
luster arhi/Smoothieware, last commmit: Jan 3 LOC
ampmod1_pin, adc_valu, ampmod2_pin, thekernel, value, by_default, name_checksum, as_numbe 92
added, example, config, function, pt100, class, streamoutput, snippet] 1

(a) INFOX’s overview summarizes features in active forks.

Owners Dec Jan Feb

25 28 30 4 10 14 1 19 20 28 29 13 15

mojombo .J ’

Eric Lindvall
Change logging of condition info to be at

:debug instead of :info.

eric

schacon
dosire
jackrabbit

J0BBot-sseo0ud-ynejep

ryanschwartz

halorgium

(b) GITHUB’s network graph shows commits across known forks, but is difficult to use to gain an overview
of activities in projects with many forks.

Figure 5.1: Complementary solutions for lack of overview problem in fork-based development.

56 CHAPTER 5. NEW INTERVENTION: INFOX

the fork (target snapshot) from GitHub, which returns the non-merged changes from forkE] Then

it proceeds in three steps (as shown in Figure [5.3)):

¢ Identify a dependency graph among all added or changed lines of code by parsing and analy