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Abstract
Parallel programming is known to be difficult to apply, exploit and reason about.

Programs written using low level parallel constructs tend to be problematic to under-
stand and debug. Declarative programming is a step towards the right direction be-
cause it moves the details of parallelization from the programmer to the runtime sys-
tem. However, this paradigm leaves the programmer with little opportunities to co-
ordinate the execution of the program, resulting in suboptimal declarative programs.
We propose a new declarative programming language, called Linear Meld (LM), that
provides a solution to this problem by supporting data-driven dynamic coordination
mechanisms that are semantically equivalent to regular computation.

LM is a logic programming language designed for programs that operate on
graphs and supports coordination and structured manipulation of mutable state. Co-
ordination is achieved through two mechanisms: (i) coordination facts, which allow
the programmer to control how computation is scheduled and how data is laid out,
and (ii) thread facts, which allow the programmer to reason about the state of the
underlying parallel architecture. The use of coordination allows the programmer
to combine the inherent implicit parallelism of LM with a form of declarative ex-
plicit parallelism provided by coordination, allowing the development of complex
coordinated programs that run faster than regular programs. Furthermore, since co-
ordination is indistinguishable from regular computation, it allows the programmer
to reason both about the problem at hand and also about parallel execution.

We have written several graph algorithms, search algorithms and machine learn-
ing algorithms in LM. For some programs, we have written informal proofs of cor-
rectness to show that programs are easily proven correct. We have also engineered
a compiler and runtime system that is able to run LM programs on multi core archi-
tectures with decent performance and scalability.
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Chapter 1

Introduction

Multi core architectures have become more widespread recently and are forcing the development
of new software methodologies that enable developers to take advantage of increasing process-
ing power through parallelism. However, parallel programming is difficult, usually because pro-
grams are written in imperative and stateful programming languages that make use of low level
synchronization primitives such as locks, mutexes and barriers. This tends to make the task of
managing multi threaded execution complicated and error-prone, resulting in race hazards and
deadlocks. In the future, many-core processors will make this task even more daunting.

Past developments in parallel and distributed programming have given birth to several pro-
gramming models. At one end of the spectrum are the lower-level programming abstractions
such as message passing (e.g., MPI [GFB+04]) and shared memory (e.g., Pthreads [But97] or
OpenMP [CJvdP07]). While such abstractions give a lot of control to the programmer and pro-
vide excellent performance, these APIs are hard to use and debug, which makes it difficult to
prove that a program is correct, for instance. On the opposite end, we have many declarative
programming models [Ble96] that can exploit some form of implicit parallelism. Implicit paral-
lelism allows the runtime system to automatically exploit parallelism by deciding which tasks to
run in parallel. However, it is not always obvious which tasks to run in parallel and which tasks
to run sequentially. This important issue, known as the granularity problem, needs to be handled
well because creating too many parallel tasks will make the program run very slowly since there
is a significant overhead for creating parallel tasks. It is then fundamental that there is a good
mapping between tasks and available processors. Another different, but related problem, is that
declarative programming paradigms offer little to no control to the programmer over how parallel
execution is scheduled or how data is laid out, making it hard to improve efficiency. Even if the
runtime system reasonably solves the granularity problem, there is a lack of specific information
about the program that a compiler cannot easily deduce. Furthermore, the program’s data layout
is also critical for performance since poor data locality will degrade performance even if the task
granularity is optimal. If the programmer could provide such information, then execution would
improve in terms of run time, memory usage, or scalability.

In the context of the Claytronics project [GCM05], Ashley-Rollman et al. [ARLG+09, ARRS+07]
created Meld, a logic programming language suited to program massively distributed systems
made of modular robots with a dynamic topology. Meld programs can derive actions that are
used by the robots to act on the outside world. The distribution of computation is done by first
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partitioning the program state across the robots and then by making the computation local to the
robot. Because Meld programs are sets of logical clauses, they are more amenable to proofs than
programs written using lower-level programming abstractions.

In this thesis, we present Linear Meld (LM), a new language for parallel programming over
graph data structures that extends the original Meld programming language with linear logic and
coordination. Linear logic gives the language a structured way to manage state, allowing the
programmer to assert and retract logical facts. While the original Meld sees a running program
as an ensemble of robots, LM sees the program as a graph of node data structures, where each
node performs computation independently of other nodes and is able to communicate with its
neighborhood of nodes. Using the graph as the main program abstraction, LM also solves the
granularity program by allowing nodes to be grouped into tasks that can be ran in a single thread
of control.

LM introduces a new mechanism, called coordination, that is semantically equivalent to reg-
ular computation and allows the programmer to reason about parallel execution. Coordination
introduces the concept of coordination facts, which are logical facts used for scheduling and data
partitioning purposes, and thread facts, which allow the programmer to reason about the state of
the underlying parallel architecture. The use of these new facilities moves the LM language from
the paradigm of implicit parallelism to some form of declarative explicit parallelism, but without
the pitfalls of imperative parallel programming. In turn, this makes LM a novel declarative lan-
guage that allows the programmer to optionally control how execution and data is managed by
the execution system.

Our main goal with LM is to efficiently execute provably correct declarative graph-based
programs on multi core machines. To show this, we wrote many graph-based algorithms, proved
program correctness for some programs and developed a compiler and runtime system where we
have seen good experimental results. Finally, we have also used coordination in some programs
and we were able to see interesting improvements in terms of run time, memory usage and
scalability.

1.1 Thesis Statement
In this thesis, we describe a new linear logic programming language, called Linear Meld (LM),
designed to write declarative parallel graph based programs for multi core architectures. Our
goal with LM is to prove the following thesis:

Linear logic and coordination provide a suitable basis for a programming language
designed to express parallel graph-based programs which, without a significant loss
of efficiency, are scalable and easy to reason about.

LM is a novel programming language that makes coordination a first-class programming
construct that is semantically equivalent to computation. Coordination allows the program-
mer to write declarative code that reasons about the underlying parallel architecture in order to
improve the run time and scalability of programs. Since LM is based on logical foundations,
programs are amenable to reasoning, even in the presence of coordination.
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We support our thesis through seven major contributions:

Linear Logic We integrated linear logic into our language, so that program state can be encoded
naturally. The original Meld was fully based on classical logic where everything that is
derived is true forever. Linear logic turns some facts into resources that can be consumed
when a rule is applied. To the best of our knowledge, LM is the first linear logic based
language implementation that attempts to solve real world problems.

Coordination Facts LM offers execution control to the programmer through the use of coordi-
nation facts. These coordination facts change how the runtime system schedules computa-
tion and partitions data and is semantically equivalent to standard computation facts. We
can increase the priority of certain nodes according to the state of the computation and to
the state of the runtime in order to make better scheduling decisions so that programs can
be more scalable and run faster.

Thread-Based Facts While LM can be classified as a programming language with implicit par-
allelism, it introduces thread facts to support some form of declarative explicit parallelism.
Thread facts allow the programmer to reason about the state of the underlying parallel ar-
chitecture, namely the execution thread, by managing facts about each thread. Thread facts
can be used along with regular facts belonging to nodes and coordination facts, allowing
for the implementation of customized parallel scheduling algorithms. We show how some
programs take advantage of this facility to create optimal scheduling algorithms that are
not possible in the limited context of implicit parallelism.

Provability We leveraged the logical foundations of LM to show how to prove the correctness
of programs. We also show that coordination does not change those correctness proofs but
only improves run time, scalability or memory usage.

Efficient Runtime and Compilation We have implemented a runtime system with support for
efficient data structures for handling linear facts and a compiler that is designed to trans-
form inference rules into C++ code that make use of those data structures. We have
achieved a sequential performance that is less than one order of magnitude slower than
hand-written sequential C++ programs and is competitive with some more mature frame-
works such as GraphLab [LGK+10] or Ligra [SB13].

Multi core Parallelism The logical facts of the program are partitioned across the graph of the
nodes. Since the logical rules only make use of facts from a single node, computation can
be performed locally, independently of other nodes of the graph. We view applications
as a communicating graph data structure where each processing unit performs work on
a different subset of the graph, thus enabling concurrency. This allows LM to solve the
granularity problem by allowing computation to be grouped into sub-graphs that can be
processed by different processing cores. Even if there is poor work imbalance between
cores, it is possible to easily move nodes between cores to achieve better load balancing
and scheduling.

Experimental Results We have implemented a compiler and a virtual machine prototype from
scratch that executes on multi core machines. We have implemented programs such as
belief propagation, belief propagation with residual splash, PageRank, graph coloring, N
queens, shortest path, diameter estimation, MapReduce, game of life, quick-sort, neural
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network training, among others. Our experiments performed on a machine with 32 cores
shows that our implementation provides good scalability with up to 32 threads of execu-
tion.
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Chapter 2

Parallelism, Declarative Programming,
Coordination and Provability

In this chapter, we introduce background concepts related to parallel programming, declarative
programming with a focus on logic programming, coordination and provability of parallel pro-
grams. Some sections of this chapter may be skipped if the reader is already familiar with the
topics at hand.

2.1 Explicit Parallel Programming

A popular paradigm for implementing parallelism is explicit parallel programming, where par-
allelism must be explicitly defined and all the mechanisms for coordinating parallel execution
must be specified by the programmer. Explicit parallel programming is made possible through
the use of imperative programming extended with either a multi-threaded or message passing
model of programming.

Multi-Threaded Model In multi-threaded parallelism, the programmer must coordinate the ex-
ecution of multiple threads of control by sharing state through a shared memory area.
The existence of a shared memory area makes it easy to share data between workers,
however, access to data from multiple workers needs to be protected, otherwise it might
become inconsistent. Many constructs are available to ensure mutual exclusion such as
locks [SGG08], semaphores [Dij02], mutexes [SGG08], and condition variables [Hoa74].

Message Passing For message passing, communication is not done through a shared memory
area, but by allowing, as the name says, messages to be sent between threads of con-
trol or processes. Message passing is well suited for programming clusters of computers,
where it is not possible to have a shared memory area, however message processing is
more costly than shared memory area due to the extra work required to send and serialize
messages. The most well known framework for message passing is the Message Passing
Interface (MPI ) [For94].

Since explicit parallel programming is hard to get right due to the non-deterministic nature
of parallel execution, other, less explicit, parallel programming models were devised in order to
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alleviate some of the problems inherent to the model. One such problem is the fork/join model
which has made popular with the Cilk [BJK+95] programming language. In Cilk, the program-
mer writes C programs that can spawn parallel tasks and then explicitly join (or wait) until the
spawned tasks are complete. An advantage of Cilk over more pure explicit parallel programming
is that the parallel control is performed by the compiler and runtime system, allowing for auto-
matic control over the threads of control through the use of techniques such as work stealing,
where spawned tasks can be stolen by other processors. However, the programmer still must
explicitly indicate where procedures can be spawned in parallel and where they should join.

Another model that uses the fork/join model is the X10 [CGS+05] programming language
where spawned procedures are called activities. However, X10 innovates by introducing the con-
cept of places, which are processes that run on different machines and do not share any memory
area. This is also commonly called the partitioned global address space (PGAS) model, since the
memory area is partitioned among processes in order to increase locality. While X10 solves many
of the communication and synchronization issues between threads of control and processes, it is
still the job of the programmer to effectively use the parallel programming constructs in order to
take advantage of parallelism.

2.2 Implicit Parallel Programming

Another form of parallel programming is implicit parallel programming, a style of programming
commonly present in declarative programming languages. The declarative style of programming
allows the programmer to concentrate more on what the problem is, rather than telling the com-
puter the steps it needs to do to solve the problem. In turn, this gives freedom to the language
implementation to work out the details of parallelism, solving many of the issues that arise when
writing explicit parallel programs. The programmer writes code without having to deal with par-
allel programming constructs and the compiler automatically parallelizes the program in order
to take advantage of multiple threads of execution. Unfortunately, this comes at a cost of low
programmer control over how computation is performed, which may not be optimal under every
circumstance. However, declarative programming remains attractive because formal reasoning
is performed at a higher level and does not have to deal with low level parallel programming
constructs such as locks or message passing.

2.2.1 Functional Programming

Functional programming languages are considered declarative programming languages and are
based on the lambda calculus, a model for function application and abstraction.

In pure functional programming languages, the side effect free nature of computation allows
multiple expressions to evaluate safely in parallel [LRS+03]. This has been realized in in lan-
guages such as Id [Nik93] and SISAL [GDF+01] with relative success. However, this kind of
parallelism still remains elusive in the functional programming community since practical func-
tional programs have, in general, a high number of fine-grained parallel tasks, which makes it
harder for a compiler to schedule computations efficiently [SJ09]. Alternative approaches such
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as data parallelism [Ble96, CLJ+07, JLKC08], semi-explicit parallelism [MML+10, FRRS10],
and explicit parallelism [HMPJH05] have shown to be more effective in practice.

Data parallelism attempts to partition data among a set of processing units and then apply
the same operation on the data. The simplest form of data parallelism is flat data parallelism,
where the data is flat (list or array) and is easily partitioned. However, functional applications
are composed of many recursive data manipulation operations, which is not a good fit for flat
data parallelism. However, in the NESL language [Ble96], a new compiler transformation was
proposed that could take a program using nested data parallelism and turn it into a program using
flat data parallelism, which is easier to parallelize. This approach has been later implemented in
more modern languages such as Haskell [CLJ+07]. The main advantage of this approach is that
it remains true to the original goal of implicit parallelism.

In semi-explicit parallelism, the programmer uses an API to tell the runtime system which
computations should be carried out in parallel, thus avoiding the fine-grain granularity problem.
An example of such API are the so-called called sparked computations [MML+10], which have
been made available in the Haskell programming language and express the possibility of per-
forming speculative computations which are going to be needed in the future. In a sense, sparked
computations can be seen as lazy futures [BH77]. This type of construct was also realized in the
Manticore language [FRRS10], which introduces the pval binding form for creating potential
parallel computations. Interestingly, Manticore also combines support for parallel arrays in the
style of NESL and explicit parallelism in the form of a spawn keyword that allows the program-
mer to create threads that communicate using message passing.

2.2.2 Logic Programming

Another example of declarative programming that is suitable for implicit parallel programming
is logic programming. Logic programming is usually based on classical logics, such as the pred-
icate and propositional calculus, or in non-classical logics such as constructive or intuitionistic
logic, where the goal is to construct different models of logical truth.

Logical systems define their own meaning of truth and a set of consistent rules to manipulate
truth. Proofs about statements in a logical system are then constructed by using the rules appro-
priately. For instance, the system of propositional logic contains the modus ponens rule, where
truth is manipulated as follows: if P implies Q and P is known to be true, then Q must also be
true. For example, if we know that “it is raining” and that “if it is raining then the grass is wet”,
we can prove that “the grass is wet” by using the modus ponens rule.

Logic programming arises when the proof search strategy in a logical system is fixed. In the
case of propositional logic, the following programming model can be devised:

• A set R of implications of the form “P implies Q” represents the program;
• A set D of truths of the form “P ” represents the database of facts;
• Computation proceeds by proof search where implications in R are used to derive new

truths using facts from D;
• Every new truth generated using modus ponens is added back to D.

This particular proof search mechanism is called forward-chaining (or bottom-up) logic pro-
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gramming, since it starts from the initial facts and then uses inference rules (modus ponens) to
derive new truth. The proof search may then stop if the search has found a particular proposition
to be true or a state of quiescence is reached (it is not possible to derive any more truths).

An alternative proof search strategy is backward-chaining (or top-down) logic programming.
In this style of programming, we want to know if a particular proposition is true and then work
backwards using the inference rules. For instance, consider the implications: (i) “if it is raining
then the grass is wet” and (ii) “if the weather forecast for today is rain then it is raining” and the
proposition (iii) “the weather forecast for today is rain”. If we want to know if (iv) “the grass is
wet”, we select the implication (i) and attempt to prove “it is raining” since it is required by (i) to
prove (iv). Next, the goal proposition becomes “it is raining” and the conclusion of implication
(ii) matches and thus we have to prove “the weather forecast for today is rain”, which can be
proved immediately using proposition (iii).

Prolog [CR93] was one of the first logic programming languages to become available, yet
it still one of the most popular logic programming languages in use today. Prolog is based on
First Order Logic, a logical system that extends propositional logic with predicates and variables.
Prolog is a backward-chaining logic programming language where a program is composed of a
set of rules of the form “P implies Q” that can be activated by inputing a query. Given a query
q(x̂), a Prolog interpreter will work backwards by matching q(x̂) against the head Q of a rule. If
found, the interpreter will then try to match the body P of the rule, recursively, until it finds the
program base facts. If the search procedure succeeds, the interpreter finds a valid substitution for
the x̂ variables in the given query.

Datalog [RU93, Ull90] is a forward-chaining logic programming language originally de-
signed for deductive databases. Datalog has been traditionally used in deductive databases, but
is now being increasingly used in other fields such as sensor nets [CPT+07], cloud comput-
ing [ACC+10], or social networks [SPSL13]. In Datalog, the program is composed of a database
of facts and a set of rules. Datalog programs first populate the database with the starting facts
and then saturate the database using rule inference. In Datalog, logical facts are persistent and
once a fact is derived, it cannot be deleted. However, there has been a growing interest in inte-
grating linear logic [Gir87] into bottom-up logic programming, allowing for both fact assertion
and retraction [CCP03, LPPW05a, SP08, CRGP14], which is one of the topics of this thesis.

In logic programming languages such as Prolog, researchers took advantage of the non-
determinism of proof-search to evaluate subgoals in parallel. The most famous models are OR-
parallelism and AND-parallelism [GPA+01]. When performing proof search with two implica-
tions of the form “P implies Q” and “R implies Q” then we have OR-parallelism because the
proof search can select “P implies Q” and try to prove P but also select “R implies Q” and try
to prove R. In AND-parallelism, there is an implication of the form “P and R implies Q” and,
to prove Q, it is possible to prove P and Q at the same time. AND-parallelism becomes more
complicated when P and Q actually depend on each other, for example, if P = prop1(x̂) and
R = prop2(x̂, ŷ) then the set variables x̂ must be the same in the two propositions. This issue
does not arise in OR-parallelism, however AND-parallelism may be better when the program is
more deterministic (i.e., it contains less alternative implications) since rule’s bodies have more
subgoals than the heads.

In Datalog programs, parallelism arises naturally because new logical facts may activate mul-
tiple inference rules and thus generate more facts [GST90, SL91, WS88]. A trivial parallelization
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can be done by splitting the rules among processing units, however this may require sharing of
logical facts depending on the rule partitioning [WS88]. Another alternative is to partition the
logical facts among the machines [ZWC91, LCG+06], where rules are restricted in order to fa-
cilitate fact partitioning and communication. The LM language presented in this thesis follows
this latter approach.

Origins of LM

LM is a direct descendant of Meld by Ashley-Rollman et al. [ARLG+09, ARRS+07], a logic
programming language developed in the context of the Claytronics project [GCM05]. Meld is
a language suited for programming massively dynamic distributed systems made of modular
robots. While mutable state is not supported by Meld, Meld performs state management on
the persistent facts by keeping a consistent database of facts whenever there is a change in the
starting facts. If an axiom is no longer true, everything derived from that axiom is retracted.
Likewise, when a fact becomes true, the database is immediately updated to take the new logical
fact into account. To take advantage of these state management facilities, Meld supports sensing
and action facts. Sensing facts are derived from the state of the world (e.g., temperature, new
neighbor node) and action facts have an effect on the world (e.g., movement, light emission).

Meld was inspired by the P2 system [LCG+06], which includes a logic programming lan-
guage called NDlog [Loo06] for writing network algorithms declaratively. Many ideas about
state management were already present in NDlog. NDlog is essentially a Datalog based lan-
guage with a few extensions for declarative networking.

2.2.3 Data-Centric Languages

Recently, there has been increasing interest in declarative data-centric languages. MapReduce [DG08],
for instance, is a popular data-centric programming model that is optimized for large clusters.
The scheduling and data sharing model is simple: in the map phase, data is transformed at each
node and the result reduced to a final result in the reduce phase. In order to facilitate the writ-
ing of programs over large datasets, SQL-like languages such as PigLatin [ORS+08] have been
developed. PigLatin builds on top of MapReduce and allows the programmer to write complex
data-flow graphs, raising the abstraction and ease of programmability of MapReduce programs.
An alternative to PigLatin/MapReduce is Dryad [IBY+07] that allows programmers to design
arbitrary computation patterns using DAG abstractions. It combines computational vertices with
communication channels (edges) that are automatically scheduled to run on multiple comput-
ers/cores.

LM, the language presented in this thesis, also follows the data-centric approach since it is
designed for writing programs over graph data structures. In Section 3.6, we discuss data-centric
languages in more detail and present some other programming systems for data-centric parallel
computation and how they compare to LM.

9



2.2.4 Granularity Problem

In order for implicit parallelism to be effective in practice, its implementation must know which
computations should be done in parallel and which computations are better performed sequen-
tially due to the overhead of task synchronization. This is commonly known as the granularity
problem and it is a crucial issue for good parallel performance. If the implementation uses coarse
grained tasks, then this may lead to poor load balancing and thus poor scalability since the tasks
take too long. On the other hand, if fine grained tasks are used, then scalability will suffer due to
the overhead of synchronization.

In functional programming, every expression can potentially be computed in parallel. If such
parallelism is explored eagerly, it will rapidly lead to an enormous overhead due to the amount of
fine grained parallelism. The same problem arises in logic programming [TZ93] where multiple
subgoals can be proven in parallel at each point in the program, generating large proof trees. It
is then fundamental that declarative programming languages target the right level of granularity
in order to achieve good scalability and performance.

Several solutions have been proposed and implemented to tackle this granularity problem. As
seen in the previous sections, some languages provide explicit keywords that allow the program-
mer to give hints about which parts of the program can be parallelized. A more general solution
has been devised by Acar et al. [ACR11] with the Parallel Algorithm Scheduling Library (PASL),
a library that attempts to provide a general solution to task scheduling and granularity control by
providing a combination of user-provided asymptotic cost functions and execution time profiling.
PASL comes with a novel work stealing algorithm [ACR13] based on private deques that further
reduces the overhead of task creation and task sharing. LM also solves the granularity problem
but by modeling the application as a graph of nodes where nodes can compute independently of
other nodes, allowing for nodes, which represent tasks, to be grouped together into subgraphs to
provide the right level of granularity.

2.3 Coordination
Although declarative languages give limited opportunities to coordinate programs, there are other
programming languages that directly support different kinds of coordination [PA98]. Most of the
following languages cannot be easily classified into either imperative or declarative languages,
but tend to be a mix of both.

Coordination programming languages tend to divide execution in two parts: computation,
where the actual computation is performed, and coordination, which deals with communication
and cooperation between processing units. This paradigm attempts to clearly distinguish between
these two parts by providing abstractions for coordination as a way to provide architecture and
system-independent forms of communication.

We can identify two main types of coordination models:

Data-Driven: In a data-driven model, the state of the computation depends on both the data
being received or transmitted by the available processes and the current configuration of
the coordinated processes. The coordinated process is not only responsible for reading and
manipulating the data but is also responsible for coordinating itself and/or other processes.
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Each process must intermix the coordination directives provided by the coordination model
with the computation code. While these directives have a clear interface, it is the program-
mer’s responsibility to use them correctly.

Task-Driven: In this model, the coordination code is more cleanly separated from the computa-
tion code. While in data-driven models, the content of the data exchanged by the processes
will affect how the processes coordinate with each other, in a task-driven model, the pro-
cess behavior depends only on the coordination patterns that are setup before hand. This
means that the computation component is defined as a black box and there are clearly
defined interfaces for input/output. These interfaces are usually defined as a full-fledged
coordination language and not as simple directives present in the data-driven models.

Linda [ACG86] is probably the most well-known coordination model. Linda implements
a data-driven coordination model and features a tuple space that can be manipulated using the
following coordination directives: out(t) writes a tuple t into the tuple space; in(t) reads
a tuple using the template t; rd(t) retrieves a copy of the tuple t from the tuple space; and
eval(p) puts a process p in the tuple space and executes it in parallel. Linda processes do not
need to know the identity of other processes because processes only communicate through the
tuple space. Linda can be implemented on top of many popular languages by simply creating a
communication and storage mechanism for the tuple space and then adding the directives as a
language library.

Another early coordination language is Delirium [LS90]. Unlike Linda, which is embedded
into another language, Delirium actually embeds operators written in other languages inside the
Delirium language. The advantages of Delirium are improved abstraction and easier debugging
because sequential operators are isolated from the coordination language.

The original Meld [ARLG+09] can also be seen as a kind of data-driven coordination lan-
guage. The important distinction is that in Meld there is no explicit coordination directives.
When Meld rules are activated they may derive facts that need to be sent to a neighboring robot.
In turn, this will activate computation on the neighbor. Robot communication is implemented by
localizing the program rules and then by creating communication rules. The LM language also
implements communication rules, however it goes further because some facts, e.g., coordination
facts, can change how the processing units schedule computation, which may in turn change the
program’s final results or execution time. This results in a more complete inter-play between
coordination code and data.

There are also several important programming models, which are not programming languages
on their own right, but provide ways for a programmer to specify how computation should be
coordinated. On example is the Galois [PNK+11] system, which is a graph-based programming
model that applies operators over the nodes of a graph. Operator activities may be scheduled
through runtime coordination, where activities are ordered in a specific fashion. In the context of
Galois, Nguyen et al. [NP11] expanded the concept of runtime coordination with the introduc-
tion of an approach to specify scheduling algorithms. The scheduling language specifies three
base schedulers that can be composed and synthesized without requiring users to write complex
concurrent code. Another language that builds on top of Galois is Elixir [PMP12], which allows
the user to specify how operator application should be scheduled from a high level specification,
that is then compiled into low level code. In Section 7.9, we delve deeply into these and other
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systems.

2.4 Provability
Many techniques and formal systems have been devised to help reason about parallel programs.
One such example is the Owicki-Gries [OG76] deductive system for proving properties about im-
perative parallel programs (deadlock detection, termination, etc). It extends Hoare logic [Hoa69]
with a stronger set axioms such as parallel execution, critical section and auxiliary variables.
The formal system can be successfully used in small imperative programs, although using it on
languages such as C is difficult since these do not restrict the use of shared variables.

Some formal systems do not build on top of a known programming paradigm, but instead
create an entirely new formal system for describing concurrent systems. Process calculus such as
π-calculus [Mil99] is a good example of this. The π-calculus describes the interactions between
processes through the use of channels for communication. Interestingly, channels can also be
transmitted as messages, allowing for changes in the network of processes. The π-calculus is
powerful enough to prove that two processes behave the same through the use of bi-simulation
equivalence.

Mobile UNITY [RM97] is a proof logic designed for applications with mobility of pro-
cesses. The basic UNITY model [Mis89] assumes that statements could be executed non-
deterministically in order to create parallelism. Mobile UNITY extends UNITY by adding loca-
tions to processes and removing the nondeterministic aspect from local processes. Processes can
then communicate or move between locations.

The Meld language, as a logic programming language, has been used to produce proofs of
correctness. A Meld program is amenable to mechanized analysis via theorem checkers such as
Twelf [PS99], a logic system designed for analyzing program logics and logic program imple-
mentations. For instance, a meta-module based shape planner program was proven to be correct
under the assumption that actions derived by the program are always successfully applied in the
outside world [DARR+08, ARLG+09]. While the fault tolerance aspect is lax, the planner will
always reach the target shape in finite time.

In this thesis, we limit ourselves to informal correctness proofs for LM programs. Unfor-
tunately, there are no available meta reasoning tools for linear logic based programs and proof
mechanization is beyond the scope of this work.

2.5 Chapter Summary
In this chapter, we presented the background concepts of this thesis, including parallel program-
ming, declarative programming, coordination, and provability. In the next chapters, we delve
more deeply on some of these concepts by including a separate section about recent work that is
related to the material covered by each chapter.
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Chapter 3

Linear Meld: The Base Language

Linear Meld (LM) is a forward chaining logic programming language where a program is defined
by a database of facts and by a set of derivation rules. LM supports structured manipulation of
mutable state through the use of linear logic [Gir87] by supporting two types of logical facts,
namely, persistent facts (which cannot be retracted) and linear facts (which can be retracted).

LM programs are evaluated as follows. Initially, we populate the database with the program’s
initial facts and then determine which derivation rules can be applied by using the facts from the
database. Once a rule is applied, we derive new facts, which are then added to the database.
If a rule uses linear facts, they are consumed and thus deleted from the database. The program
stops when we reach quiescence, that is, when we can no longer obtain new facts through rule
derivation.

LM views the database of facts as a graph data structure where each node contains facts
belonging to that node. The database of facts can also be seen as a collection of node objects and
each node contains several attributes represented as facts that describe the node. Derivation rules
are restricted so that they are only allowed to manipulate facts belonging to the same node. This
restriction allows nodes of the graph to compute independently of other nodes since they can
only perform computation with their current attributes. Communication between nodes arises
when a rule derives a fact that belongs to another node. These design decisions allow LM to
be concurrent and to also avoid the granularity problem that is usually present in declarative
languages. Since computation is performed locally at each node of the graph, it is possible to
group nodes into computation units that can processed independently by the same processing
thread, which allows the implementation to easily control the granularity of the program.

3.1 A Taste Of LM

In order to understand how LM programs are written, we now present and discuss three LM
programs.
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3.1.1 First Example: Message Routing
Figure 3.1 shows the first LM program, a message routing program that simulates message trans-
mission through a network of nodes. Lines 1-3 declare the predicates used in the program’s
rules. Note that the first argument of every predicate must be typed as node because the first ar-
gument indicates where the fact lives in the graph. Predicate edge is a persistent predicate while
message and processed are linear predicates. Persistent predicates model facts that are never
retracted from the database, while linear predicates model linear facts which are retracted when
used in rules. To improve readability of LM rules, persistent predicates are preceded with a !
symbol. Predicate edge represents the connections between nodes, predicate message contains
the message content and the route list, and predicate processed keeps count of the number of
messages routed at each node. Along with the type, a predicate argument can also be named
(e.g., see Neighbor and Content) for documentation purposes.

1 type edge(node, node Neighbor). // Predicate declaration
2 type linear message(node, string Content, list node Routing).
3 type linear processed(node, int Total).
4

5 message(A, Content, [B | L]), // Rule 1
6 !edge(A, B),
7 processed(A, N)
8 -o processed(A, N + 1),
9 message(B, Content, L).

10

11 message(A, Content, []), // Rule 2
12 processed(A, N)
13 -o processed(A, N + 1).

Figure 3.1: LM code for routing messages in a graph.

The message routing program in Fig. 3.1 implements two rules. An LM rule has the form
L1, · · · , Ln−o R1, · · · , Rm, whereL1, · · · , Ln is the left-hand side (LHS) of the rule andR1, · · · , Rm

is right-hand side (RHS) of the rule. The meaning of a rule is then as follows: if facts L1, · · · , Ln
are present in the database then consume all the facts Li that are linear facts and derive the facts
R1, · · · , Rm from the RHS. Note that in the rules, the LHS of each rule uses only facts from the
same node (represented by A in both rules of Fig. 3.1), but the rule’s RHS may derive facts that
belong to other nodes (case of B in the first rule) if the variable is instantiated in the LHS.

The first rule (lines 5-9) grabs the head node B in the route list (third argument of message
using the syntax [B | L] to represent the head and tail of a list) and ensures that a communication
edge exists (through edge(A, B)). If so, the number of processed messages is increased by
consuming processed(A, N) and deriving processed(A, N + 1), along with a new message
to the head node B. When the route list is empty, the message has reached its destination and thus
it is simply consumed (second rule in lines 11-13).

The initial facts of the program are presented in Fig. 3.2. The edge facts describe the structure
of the graph, where the node in the first argument has a direct connection with the node in the
second argument. Node literals are represented using the syntax @N, where N is an non-negative
number. We also declare the message that needs to be routed with the content "hello world"
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and a route list with the nodes @3 and @4.
1 !edge(@1, @2). !edge(@2, @3).
2 !edge(@3, @4). !edge(@1, @3).
3 processed(@1, 0). processed(@2, 0).
4 processed(@3, 0). processed(@4, 0).
5 message(@1, "hello world", [@3, @4]).

Figure 3.2: Initial facts for the message routing program. There is only one message (”hello
world”) to route through nodes @3 and @4.

In Fig. 3.3 we present an execution trace of the message routing program. The database is
represented as a graph structure where the edges represent the edge initial facts. To simplify
the figure, we dropped the first argument of each fact since the first argument corresponds to
the node where the fact is placed. In Fig. 3.3(a) the database is initialized with the program’s
initial facts. Note that the initial message fact is instantiated at node @1. After applying rule 1,
we get the database represented in Fig. 3.3(b), where the message has been derived at node @3.
After applying rule 1 again, the message is then routed to node @4 (Fig. 3.3(c)) where it will be
consumed (Fig. 3.3(d)).

!edge(@2)
!edge(@3)
processed(0)

message(“…”, [@3, @4])

!edge(@3)
processed(0)

!edge(@4)
processed(0)processed(0)

@1 @2

@4 @3

(a) Initial database.

!edge(@2)
!edge(@3)

processed(1)

!edge(@3)
processed(0)

!edge(@4)
processed(0)

message(“…”, [@4])
processed(0)

@1 @2

@4 @3

(b) After applying rule 1 at node @1.

!edge(@2)
!edge(@3)
processed(1)

!edge(@3)
processed(0)

!edge(@4)
processed(1)

processed(0)
message(“…”, [])

@1 @2

@4 @3

(c) After applying rule 1 at node @3.

!edge(@2)
!edge(@3)
processed(1)

!edge(@3)
processed(0)

!edge(@4)
processed(1)processed(1)

@1 @2

@4 @3

(d) After applying rule 2 at node @4.

Figure 3.3: An execution trace for the message routing program. The message ”hello world”
travels from node @1 to node @4.

The attentive reader will wonder how much concurrency is available in this particular routing
implementation. For a single message, there is no concurrency because the message follows
a pre-determined path as it travels from node to node. However, concurrency arises when the
program needs to route multiple messages. The amount of concurrency is then dependent on the
messages routing lists being non-overlapping. If messages travel in different paths, then there is
more concurrency because more nodes are routing messages at the same time.
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3.1.2 Second Example: Key/Value Dictionary

1 type left(node, node Child). // Predicate declaration
2 type right(node, node Child).
3 type linear value(node, int Key, string Value).
4 type linear replace(node, int Key, string Value).
5

6 replace(A, K, New), // Rule 1: we found our key
7 value(A, K, Old)
8 -o value(A, K, New).
9

10 replace(A, RKey, RValue), // Rule 2: go left
11 value(A, Key, Value),
12 RKey < Key,
13 !left(A, B)
14 -o value(A, Key, Value),
15 replace(B, RKey, RValue).
16

17 replace(A, RKey, RValue), // Rule 3: go right
18 value(A, Key, Value),
19 RKey > Key,
20 !right(A, B)
21 -o value(A, Key, Value),
22 replace(B, RKey, RValue).

Figure 3.4: LM program for replacing a key’s value in a BST dictionary.

Our second example, shown in Fig. 3.4, implements the key update operation for a binary
search tree (BST) represented as a key/value dictionary. Each LM node represents a binary
tree node. We first declare all the predicates in lines 1-4. Predicates left and right represent
the child nodes of each BST node. Linear predicate value stores the key/value pair of a node,
while the linear predicate replace represents an update operation where the key in the second
argument is to be updated to the value in the third argument.

The algorithm uses three rules for the three possible cases of updating a key’s value. The first
rule (lines 6-8) performs the update by removing replace(A, K, New) and value(A, K, Old)
and deriving value(A, K, New). The second rule (lines 10-15) recursively picks the left branch
for the update operation by deleting replace(A, RKey, RValue) and re-deriving it at node B.
Similarly, the third rule (lines 17-22) recursively descends the right branch. The derivation of
replace facts on node B can also be seen as a implicit message passing from A to B, since B is a
different node than A and the LHS of each rule can only manipulate facts from the same node.

The initial facts of the program are presented in Fig. 3.5 and describe the initial binary tree
configuration, including keys and values, and the replace(@1, 6, "x") fact instantiated at the
root node @1 that manifests the intent to change the value of key 6 to ”x”.

Figure 3.6 represents the trace of the algorithm. The program database is partitioned by the
seven nodes using the first argument of each fact. In Fig. 3.6 (a), we present the database filled
with the program’s initial facts. Next, we follow the right branch using rule 3 since 6 > 3
(Fig. 3.6 (b)). We use the same rule again in Fig. 3.6 (c) where we finally reach the key 6. Here,
we apply rule 1 and value(@7, 6, "g") is updated to value(@7, 6, "x").
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1 !left(@1, @2).
2 !right(@1, @3).
3 !left(@2, @4).
4 !right(@2, @5).
5 !left(@3, @6).
6 !right(@3, @7).
7

8 value(@1, 3, "a").
9 value(@2, 1, "b").

10 value(@3, 5, "c").
11 value(@4, 0, "d").
12 value(@5, 2, "e").
13 value(@6, 4, "f").
14 value(@7, 6, "g").
15

16 // Update key 6 to value "x".
17 replace(@1, 6, "x").

Figure 3.5: Initial facts for replacing a key’s value in a BST dictionary.

Like the message routing example shown in the previous section, the amount of concurrency
present in this example depends on the number of replace facts. If there are many replace
operations to perform on different parts of the BST, then there is more concurrency. On the other
hand, if only a few BST nodes are being updated, then concurrency is reduced. This is the same
behavior that one would expect from an parallel implementation of the BST data structure in an
imperative language.

3.1.3 Third Example: Graph Visit

Our third example, shown in Fig. 3.7, presents another LM program that, for a given graph
of nodes, performs a visit to all nodes reachable from node @1. The first rule of the program
(lines 6-9) visits node A for the first time: fact visited(A) is derived and a comprehension
construct is used to go through all the edge facts and then derive visit(B) at each neighbor
node B. The second rule of the program (lines 11-13) applies when the node is already visited
more than once: we keep the visited fact and delete visit. The initial facts shown in Fig. 3.8
use the visit(@1) fact to start the program.

Fig. 3.9 shows a possible execution trace for the visit program. After applying the first rule
at node @1 we get the database in Fig 3.9 (b). Note that node @1 is now visited and nodes @2 and
@4 now have a visit fact. At this point, we could either apply rule 1 at node @2 or at node @4.
For this specific trace, we apply the rule at node @2, resulting in Fig. 3.9 (c). Node @4 now has
two visit facts, thus we can apply rule 1 followed by rule 2, therefore consuming both visit
facts and deriving visited. In addition, we can also apply rule 1 at node @3 to reach the state of
Fig. 3.9 (d).

The graph visit has the potential to have plenty of concurrency. Once the visit starts from
the initial node, it expands to other nodes, allowing several nodes to derive rules concurrently.
At some point, the amount of concurrency is reduced because more and more nodes have been
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!left(@2)
!right(@3)
value(3, a)

replace(6, “x”)

!left(@4)
!right(@5)

value(1, “b”)

value(0, “d”) value(2, “e”)

!left(@6)
!right(@7)

value(5, “c”)

value(4, “f”) value(6, “g”)

@1

@2 @3

@4 @5 @6 @7
(a) Initial database.

!left(@2)
!right(@3)

value(3, “a”)

!left(@4)
!right(@5)

value(1, “b”)

value(0, “d”) value(2, “e”)

!left(@6)
!right(@7)

value(5, “c”)
replace(6, “x”)

value(4, “f”) value(6, “g”)

@1

@2 @3

@4 @5 @6 @7
(b) After applying rule 3 at node @1.

!left(@2)
!right(@3)

value(3, “a”)

!left(@4)
!right( @5)

value(1, “b”)

value(0, “d”) value(2, “e”)

!left(@6)
!right(@7)

value(5, “c”)

value(4, “f”) value(6, “g”)
replace(6, “x”)

@1

@2 @3

@4 @5 @6 @7
(c) After applying rule 3 at node @3.

!left(@2)
!right(@3)

value(3, “a”)

!left(@4)
!right(@5)

value(1, “b”)

value(0, “d”) value(2, “e”)

!left(@6)
!right(@7)

value(5, “c”)

value(4, “f”) value(6, “x”)

@1

@2 @3

@4 @5 @6 @7
(d) After applying rule 1 at node @7.

Figure 3.6: An execution trace for the binary tree dictionary algorithm. The first argument of
each fact was dropped and the address of the node was placed beside it.

1 type edge(node, node). // Predicate declaration
2 type linear visit(node).
3 type linear unvisited(node).
4 type linear visited(node).
5

6 visit(A), // Rule 1: visit node
7 unvisited(A) -o
8 visited(A),
9 {B | !edge(A, B) -o visit(B)}.

10

11 visit(A), // Rule 2: node already visited
12 visited(A)
13 -o visited(A).

Figure 3.7: LM code for the graph visit program.

visited. The level of concurrency depends on the structure of the graph. In the worst case, if the
graph is a chain of nodes then the program becomes effectively sequential. In the best case, if the
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1 !edge(@1, @2).
2 !edge(@1, @4).
3 !edge(@2, @3).
4 !edge(@2, @4).
5 !edge(@2, @1).
6 !edge(@3, @2).
7 !edge(@4, @1).
8 !edge(@4, @2).
9

10 unvisited(@1).
11 unvisited(@2).
12 unvisited(@3).
13 unvisited(@4).
14

15 visit(@1).

Figure 3.8: Initial facts for the graph visit program. Nodes reachable from node @1 will be
marked as visited.

graph is densely connected (each node connects to most nodes in the graph), then it is possible
to run the program on most nodes at the same time.

The goal of introducing higher-level declarative languages is to facilitate reasoning about the
properties of a program. In the case of the visit program, the most important goal is to prove
that, if the graph is connected, then all the nodes will become visited, regardless of the order
in which we apply the rules. First, we define a visit graph:

Definition 3.1.1 (Visit graph)
A visit graph is an ordered pair G = (N,E) comprising a set N of nodes together with a
set E of edges. Set E contains pairs (A,B) that correspond to facts !edge(A,B). For every
pair (A,B) ∈ E there is also a pair (B,A) ∈ E, representing an undirected edge.

To prove the correctness property of the program, we first define the main invariant of the
program:

Invariant 3.1.1 (Node state)
A node is either visited or unvisited but not both.

Proof. From the initial facts we check if all nodes start as unvisited. This is clearly true for the
previous example. Rule 1 changes a node from unvisited to visited, while rule 2 keeps the
node visited, proving the invariant.

Invariants are conditions that never change, no matter which rules are derived during execu-
tion. With this invariant, it is now possible to classify nodes of the graph G according to their
state:
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unvisited()
visit() unvisited()

unvisited()unvisited()

@1 @2

@4 @3

(a) Initial database.

visited() unvisited()
visit()

unvisited()unvisited()
visit()

@1 @2

@4 @3

(b) After applying rule 1 at node @1.

visited()
visit() visited()

unvisited()
visit()

unvisited()
visit()
visit()

@1 @2

@4 @3

(c) After applying rule 1 at node @2.

visited()
visit()
visit()

visited()
visit()
visit()

visited()visited()

@1 @2

@4 @3

(d) After applying rule 1 and 2 at node @4 and
rule 1 at node @3.

Figure 3.9: A possible execution trace for the visit program. Note that the edge facts were
omitted for simplicity.

Definition 3.1.2 (Node sets)
visited nodes are contained in set V , while unvisited nodes are in set U . From the node
state invariant, we know that V ∪ U = N and V ∩ U = ∅.

We can now prove an important lemma about sets V and U :

Invariant 3.1.2 (Visited set)
After each rule derivation, visited set V always increases or stays the same size. The inverse
is true for set U .

Proof. Initially, V = ∅ and U = N . By rule 1, V increases by 1 while U decreases by 1. With
rule 2, set membership remains unchanged.

In turn, since set membership changes from U to V , we now prove the following:
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Lemma 3.1.1 (Edge visits)
The program generates at most one visit per directed edge and for a node a ∈ N that
receives a visit fact, then for all b ∈ N where (a, b) ∈ E, exactly one visit fact is
generated at b.

Proof. From the visited set invariant, we know that once nodes become members of set V , they
no longer return to set U , therefore rule 1 applies once per node. This rule generates a visit fact
per neighbor node.

In order to prove that all the nodes in the graph are visited, we need to make sure that the
graph is connected.

Definition 3.1.3 (Connected graph)
A connected graph is a graph where every pair of nodes has a path between them.

Finally, we prove that all nodes will become visited.

Theorem 3.1.1 (Graph visit correctness)
If graph G is connected, set V will eventually include all nodes in N , while U = ∅.

Proof. Proof by induction.

• Base case: initial fact visit(@1) adds node @1 to V . By Lemma 3.1.1, a visit fact is
generate for all edges of @1.

• Inductive case: assume visited set V ′ and unvisited set U ′. Since the graph is connected,
there must be a node a ∈ V ′ that is connected to a node b ∈ U ′. Using the Edge visits
lemma, a visit(b) fact is generated, swapping b from U ′ to V ′.

Eventually, set V will include all nodes in N . Otherwise, there would be unreachable nodes
in the graph and that would be a contradiction since the graph is connected.

3.2 Types and Locality
Each fact is an association between a predicate and a tuple of values. A predicate is a pair with
a name and a tuple of types (the argument types). LM rules are type-checked using the predicate
declarations in the header of the program. LM has a simple type system that includes the follow-
ing basic types: node, int, float, string, bool. The following structured types are also supported:
list X , for lists of type X; struct X1, . . . , Xn, for composite values made of n elements; and
array X , for arrays of type X .
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LM allows the definition of new type names from simpler types using the declaration type
simple-type new-type in the header of the program. The type new-type can then be used as
any other type. Note that LM uses structural equivalence to check if two types are the same,
therefore simple-type and new-type are type equivalent.

Type checking LM programs is straightforward due to its simple type system and mandatory
predicate declarations. For each rule, the variables found in the LHS are mapped to types based
on their use on atomic proposition arguments. Some constraints of the form X = expression
that force an equality between X and expression may actually represent an assignment if X is
not defined by any LHS atomic proposition. In this case, all the variables in expression must
be typed and X is assigned the value of expression during run time. Any variable used in
the RHS of the rule must be defined in the LHS, because otherwise derived facts would not be
grounded, that is, some arguments would be undefined or uncomputable. For comprehensions
(and aggregates), type checking is identical, however, the LHS of each construct must declare
explicitly the variables in scope.

Another important component of type checking is locality checking. The first argument of
each atomic proposition in the LHS must use the same variable in order to enforce locality and
allow concurrency. This home variable is always typed as a node and represents a node in the
graph. In the rule’s RHS, other home variables are allowed, as long as they have been defined in
the LHS. For comprehensions, the LHS must use the same home argument as the rule’s LHS.

3.3 Operational Semantics
Nodes are selected for computation non-deterministically (i.e., any node can be picked to run).
This means that the programmer cannot expect that facts coming from different nodes will be
considered as a whole since the process is non-deterministic. The operational semantics promises
that rule derivations are performed atomically, therefore, if a rule derives many facts belonging
to a node then that node will receive them all at once. Under these restrictions, computation can
then be parallelized by processing nodes concurrently.

Each rule in LM has a defined priority that is inferred from its position in the source file.
Rules at the beginning of the file have higher priority. At the node level, we consider all the
new facts that have not been considered yet to create a queue of candidate rules. The queue
of candidate rules is then applied (in priority order) and updated as new facts are derived or
consumed. As an example, consider the following three rules:

f(A), g(A) -o f(A).

h(A) -o g(A).

g(A) -o 1.

If the database contains the facts h(@1) and f(@1), then the second rule is applied, retracting
h(@1) and deriving g(@1). Next, the first and third rules are candidate rules, but since the first
rule has higher priority, it is applied first, resulting in a database with a single fact f(@1), where
no rule can be applied. Later, in Section 5.3, we give more details about how our implementation
manages the set of candidate rules.
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3.4 LM Abstract Syntax

Previously, we presented the LM syntax and usage through the presentation of three program
examples. We now delve more deeply into LM by presenting the underlying abstract syntax of
the language in Table 3.1.

A LM program Prog consists of a list of derivation rules Σ and a database D. A database
fact l(t̂) is an association between a predicate l and a list of literals t̂. Literals t can be either a
number number(N), a node node(N), a list list(t̂), among other literals such as strings, arrays,
booleans, etc.

Each derivation rule R can be written as LHS ( RHS with the meaning described in
Section 3.1.1. Rules without an LHS are called initial facts. All the variables in the rule’s scope
must be introduced explicitly in the abstract syntax using the ∀x.R production. However, when
the programmer writes LM programs, those variables are introduced implicitly. A rule can also
use a selector of the form [ S ⇒ y; LHS ] ( RHS which allows the programmer to force a
specific ordering during rule derivation. Selectors are described in more detail in Section 3.4.1.

Program Prog ::= Σ, D
List Of Rules Σ ::= · ‖ Σ, R
Database D ::= Γ; ∆
Known Linear Facts ∆ ::= · ‖ ∆, l(t̂)
Known Persistent Facts Γ ::= · ‖ Γ, !p(t̂)
Literal List t̂ ::= · ‖ t, t̂
Literal t ::= number(N) ‖ node(N) ‖ list(t̂) ‖ . . .
Rule R ::= LHS ( RHS ‖ ∀x.R ‖ [ S ⇒ y; LHS ]( RHS
LHS Expression LHS ::= L ‖ P ‖ C ‖ LHS,LHS ‖ ∃x.LHS ‖ 1
Selector Operation S ::= asc ‖ desc ‖ random
RHS Expression RHS ::= L ‖ P ‖ C ‖ RHS,RHS ‖ EE ‖ CE ‖ AE ‖ 1
Linear Atomic Proposition L ::= l(x̂)
Persistent Atomic Prop. P ::= !p(x̂)
Term List x̂ ::= · ‖ x, x̂ ‖ t, x̂
Constraint C ::= e O e
Expression e ::= x ‖ t ‖ fun(ê) ‖e M e ‖ e O e
Expression List ê ::= · ‖ e, ê
Math Operation M ::= + ‖ × ‖ / ‖ − ‖ %
Boolean Operation O ::= = ‖ <> ‖ > ‖ ≥ ‖ < ‖ ≤
Exists Expression EE ::= existsx̂.SRHS
Comprehension CE ::= { x̂ | SLHS ( SRHS }
Aggregate AE ::= [ A⇒ y; x̂ | SLHS ( SRHS1 ; SRHS2 ]
Aggregate Operation A ::= min ‖ max ‖ sum ‖ count ‖ collect
Sub-LHS SLHS ::= L ‖ P ‖ SLHS, SLHS ‖ ∃x.SLHS
Sub-RHS SRHS ::= L ‖ P ‖ SRHS, SRHS ‖ 1

Table 3.1: Core abstract syntax of LM.
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The LHS of a rule may contain linear (L) and persistent (P ) atomic propositions and con-
straints (C). Atomic propositions are template facts that instantiate variables from facts in the
database (example in line 11 of Fig. 3.7). Variables can be used again in the LHS for matching
and also in the RHS when instantiating facts. Constraints C are boolean expressions that must
be true in order for the rule to be derived. Each constraint starts with a boolean operation e O e,
where each expression e may be a literal, a variable, a function call fun(ê) or a mathematical
operation e M e.

The RHS of a rule contains linear (L) and persistent (P ) atomic propositions which are
uninstantiated facts. The RHS can also have exists expressions (EE), comprehensions (CE) and
aggregates (AE). All those expressions may use all the variables instantiated in the rule’s LHS
and are explained in Section 3.4.2. To introduce variables in the scope of the RHS, it is possible to
use the ∃x.LHS production, which can be used for sub-computations for instantiating the atomic
propositions of the RHS. This production is heavily used by the compiler to move variables
defined in the rule’s LHS to the RHS which are only used in the RHS, however it is still possible
for the programmer to define RHS’s variables explicitly using an equality constraint of the form
x = e (represented by C in the syntax).

In order to understand how LM rules are translated into the abstract syntax, consider again
the two rules in the graph visit program shown in Fig. 3.7:

visit(A),
unvisited(A)

-o visited(A),
{B | !edge(A, B) -o visit(B)}.

visit(A),
visited(A)

-o visited(A).

First, we have to de-sugar the code and introduce the variable A, that is not explicitly quanti-
fied, as follows:

∀A.visit(A), unvisited(A)( visited(A), { B | !edge(A,B)( visit(B) } (3.1)
∀A.visit(A), visited(A)( visited(A) (3.2)
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For the initial facts, they are translated as rules where the LHS is 1:

1( !edge(@1,@2) (3.3)
1( !edge(@2,@3) (3.4)
1( !edge(@1,@4) (3.5)
1( !edge(@2,@4) (3.6)
1( unvisited(@1) (3.7)
1( unvisited(@2) (3.8)
1( unvisited(@3) (3.9)
1( unvisited(@4) (3.10)
1( visit(@1) (3.11)

3.4.1 Selectors

During rule derivation, the facts to be used in the LHS of the rule are picked non-deterministically.
While our system uses an implementation dependent order for efficiency reasons, sometimes it
is important to sort facts by one of the arguments. The abstract syntax for this construct is
[ S ⇒ y; LHS ]( RHS, where S is the selector operation and y is the variable in LHS that
represents the value to be sorted according to S. An example using concrete syntax is as follows:

[asc => W | !edge(A, B, W), select(A)] -o best-neighbor(A, B, W).

In this case, we sort the edge facts by W in ascending order and then try to match them. Other
operations available are desc and random (to force no pre-defined order at the implementation
level).

3.4.2 Exists Expressions

Exists constructs (EE) are based on the linear logic construct of the same name and are used
to create fresh node addresses. We can use the new node address to instantiate new facts. As
an example, consider extending the key/value dictionary example described in Fig. 3.4 with an
insertion operation for a node that has no left branch:

insert(A, IKey, IValue),
value(A, Key, Value),
no-left-branch(A),
IKey < Key

-o value(A, Key, Value),
exists B. (value(B, IKey, IValue), !left(A, B)).

The exists construct creates a new node B containing the linear fact value(B, IKey,
IValue) (the newly inserted key/value pair) and the persistent fact !left(A, B) that connects A
to B is also added to node A.
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3.4.3 Comprehensions
When consuming a linear fact we might want to generate several new facts depending on the con-
tents of the database. To solve this particular end, we use comprehensions, which are sub-rules
that are applied with all possible combinations of facts from the database. In a comprehension
{ x̂ | SLHS ( SRHS }, x̂ is a list of variables in the scope of SLHS and SRHS, where
SLHS is the comprehension’s left-hand side and SRHS is the comprehension’s right-hand side.
SLHS is used to generate all possible combinations for SRHS according to the list of variables
x̂ and to the facts in the database. We have already seen an example of a comprehension in the
graph visit program (Fig. 3.7 line 9):

visit(A),
unvisited(A)

-o visited(A),
{B | !edge(A, B) -o visit(B)}.

In this example, the comprehension matches !edge(A, B) using all the combinations avail-
able in the database for node B and for each combination it derives visit(B).

3.4.4 Aggregates
Another useful feature is the ability to reduce several facts into a single fact. LM features aggre-
gates (AE), a special kind of sub-rule that works somewhat like comprehensions. In the abstract
syntax [ A ⇒ y; x̂ | SLHS ( SRHS1 ; SRHS2 ], A is the aggregate operation, x̂ is
the list of variables introduced in SLHS, SRHS1 and SRHS2 and y is the variable in SLHS
that represents the values to be aggregated using A. Like comprehensions, we use x̂ to try all the
combinations of SLHS, but, in addition to deriving SRHS1 for each combination, we aggregate
the values represented by y into a new y variable that is used to derive SRHS2.

To understand how aggregates work, let’s consider the following rule:
count-neighbors(A) -o [count => T; B | !edge(A, B) -o 1 -> num-neighbors(A, T)].

The rule uses a count-neighbors proposition to iterate over all !edge facts (the SLHS) of
node A. Since the SRHS1 of the aggregate is 1, nothing is derived for each !edge. Since we use
a count aggregate, for each !edge fact, the variable T is incremented by one and the total result
is used to derive a single num-neighbors(A, T) fact (the SRHS2).

To further understand aggregates, let’s consider a rule from the PageRank program to be
presented in Section 3.5.2:

update(A),
!numInbound(A, T)

-o [sum => V; B, Val, Iter | neighbor-pagerank(A, B, Val, Iter), V =
Val/float(T) -o neighbor-pagerank(A, B, Val, Iter) -> sum-ranks(A, V)].

The rule aggregates the values V by iterating over neighbor-pagerank(A, B, Val, Iter)
(the SLHS) and by re-deriving the fact neighbor-pagerank(A, B, Val, Iter) (the SHRS1).
Once all values are inspected, the atomic proposition sum-ranks(A, V) present in SRHS2 is
derived once with V representing the sum of all the neighbor values Val/float(T). LM provides
several aggregate operations, including the min (minimum value), max (maximum value), sum,
count (count combinations) and collect (collect items into a list).

26



3.4.5 Directives
LM also supports a small set of extra-logical directives that are not represented by the abstract
syntax but may be used by the programmer to change the compilation and runtime behavior of
the program. The full list is presented in Appendix D.

3.5 Applications
In this section, we present more LM solutions to well-known problems. We start with straightfor-
ward graph-based problems such as bipartitness checking and the PageRank program. Next, we
present a version of the Quick-Sort algorithm which, from a first impression, was not expected to
fit well under the programming paradigm offered by LM. Informal correctness and termination
proofs are also included to further show that it is easy to reason about LM programs.

3.5.1 Bipartiteness Checking
The problem of checking if a graph is bipartite can be seen as a 2-color graph coloring problem.
The code for this algorithm is shown in Fig. 3.10. The code declares five predicates, namely:
edge, to specify the structure of the graph; uncolored, to mark nodes as uncolored; colored, to
mark nodes as colored and the node’s color; fail, to mark an invalid bipartite graph; and visit
to perform the coloring of the graph. Initially, all nodes in the graph start as uncolored, because
they do not have a color yet. The initial fact visit(@1, 1) is instantiated at node @1 (line 19) in
order to start the coloring process by assigning it with color 1.

If a node is uncolored and needs to be marked with a color P then the rule in lines 9-11 is
applied. We consume the uncolored fact and derive a colored(A, P) to effectively color the
node with P. We also derive visit(B, next(P)) in neighbor nodes to color them with the other
color. The coloring can fail if a node is already colored with a color P and needs to be colored
with a different color (line 15) or if it has already failed (line 17).

In order to show that the code in Fig. 3.10 works as intended, we first setup some invariants
that hold throughout the execution of the program. Assume that the set of nodes in the graph is
represented as N .

Invariant 3.5.1 (Node state)
The set of nodes N is partitioned into 4 different states that represent the 4 possible states
that a node can be in, namely:

• U (uncolored nodes)
• F (fail nodes)
• C1 (colored(A, 1) nodes)
• C2 (colored(A, 2) nodes)

Proof. Initially, all nodes start in set U (line 20 of Fig. 3.10. All the 4 rules of the programs
either keep the node in the same set or exchange the node with another set.
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1 type edge(node, node). // Predicate declaration
2 type linear uncolored(node).
3 type linear colored(node, int).
4 type linear fail(node).
5 type linear visit(node, int).
6

7 fun next(int X) : int = if X <> 1 then 1 else 2 end. // Function declaration
8

9 visit(A, P), uncolored(A) // Rule 1: coloring a node
10 -o {B | !edge(A, B) -o visit(B, next(P))},
11 colored(A, P).
12

13 visit(A, P), colored(A, P) -o colored(A, P). // Rule 2: node is already colored
14

15 visit(A, P1), colored(A, P2), P1 <> P2 -o fail(A). // Rule 3: graph is not bipartite
16

17 visit(A, P), fail(A) -o fail(A). // Rule 4: graph is still not bipartite
18

19 visit(@1, 1). // Initial facts
20 unvisited(A).

Figure 3.10: Bipartiteness Checking program.

A bipartite graph is one where in every edge(a, b), there is a valid assignment that makes a
member of set C1 or C2 and node b member of either C2 or C1 respectively.

Variant 3.5.1 (Bipartiteness Convergence)
We now reason from the application of the program rules. After each application of an
inference rule, one of the following events will happen:

1. Set U will decrease and set C1 or C2 will increase, with a potential increase in the
number of visit facts.

2. Set C1 or C2 will stay the same, while the number of visit facts will be reduced.
3. Set C1 or C2 will decrease and set F will increase, while the number of visit facts

will be reduced.
4. Set F will stay the same, while the number of visit facts decreases.

Proof. Trivially from the rules.

From this variant, it can be inferred that set U never increases in size and in a node transition
from uncolored to colored, the database may increase in size. For every other rule applica-
tion, the database of facts always decreases. This also means that the program will eventually
terminate, since it is limited by the number of visit facts that can be generated.

Theorem 3.5.1 (Bipartiteness Correctness)
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If the graph is connected and bipartite then the nodes will be partitioned into sets C1 and C2,
while sets F and U will be empty.

Proof. By induction, we prove that uncolored nodes become part of either C1 or C2 and, if there
is an edge between nodes in the two sets then they have different colors.

In the base case, we start with empty sets but node @1 is made member of C1. Rule 1 sends
visit facts to the neighbors of @1, forcing them to be members of C2.

In the inductive case, we have sets C ′1 and C ′2 with some nodes already colored. From Vari-
ant 3.5.1, we know that U always decreases. Since the graph is bipartite, events 3 and 4 never
happen since there is a possible partitioning of nodes. With event 1, we have set C1 = C ′1 ∪ {n},
(or C2) where n is the new colored node. With event 2, the sets remain the same. Since the graph
is connected, every node will be colored, therefore event 1 will happen for every node of the
graph.

Theorem 3.5.2 (Bipartiteness Failure)
If the graph is connected but not bipartite then some nodes will be part of set F .

Proof. Assume that the algorithm completely partitions the nodes into sets C1 and C2 and thus
F is empty. Since the graph is connected, we know that the algorithm tries to build a valid
partitioning represented by C1 and C2. This is a contradiction because the graph is not bipartite
(by definition) and thus at least one node will be part of set F with rule 3.

3.5.2 Synchronous PageRank
PageRank [Pag01] is a well known graph algorithm that is used to compute the relative relevance
of web pages. The standard formulation of the PageRank algorithm uses three n × n matrices
(where n is the number of pages):

• An adjacency matrix A, where Aij is 1 if page i has an outgoing link to j;
• A transition matrix P , where Pij = Aij/deg(i) and deg(i) is the number of outgoing links

for page i;
• A ‘Google matrix’ G, where G = αP +(1−α)I , where α is the damping factor and I is a
n× n matrix where every Iij is 1. The damping factor is the probability of a user jumping
to a random page instead of following the links of the current page.

The PageRank vector x of size 1× n is the solution to the following linear system:

x = Gx (3.12)
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To solve this problem, it is possible to use an iterative method by starting with an initial
vector x(0) where all pages start with the same value (that adds up to 1) and then perform the
following computation:

x(t+ 1) = Gx(t) (3.13)

To compute the PageRank value of a single page, it is possible to use the following formula:

xi(t+ 1) = Gix(t) (3.14)

where Gi is the row of the G matrix that corresponds to the inbound links of page i. Note that
the full x(t) vector is not required since most elements of Gi are 0.

The LM code for this iterative computation is shown in Fig. 3.11 and the code starts by
declaring six predicates, namely: outbound, that specifies outbound links where the third ar-
gument represents a value in the transition matrix P ; numInbound, with the number of inbound
links; pagerank, to represent the PageRank of a page; accumulator, to accumulate the incoming
neighbor’s PageRank values; neighbor-pagerank, to represent an incoming PageRank value;
and start to initialize a node. Since this program is synchronous, the PageRank values of all
nodes must be computed before the next PageRank is computed.

We use constant definitions provided by LM (lines 8-10) to refer to constant values used
throughout the program. The damping constant is the damping factor α used in the PageRank
calculations. The constant iterations reads the number of iterations to execute from the pro-
gram’s input arguments and pages is assigned to @world, a special constant that evaluates to the
number of nodes in the program (in this case, the number of pages).

The initial PageRank representing xi(0) is initialized in the first rule (lines 12-13) along with
the accumulator. All the initial PageRank values form the initial x(0) vector. The second rule of
the program (lines 15-17) propagates a newly computed PageRank value to all neighbors and rep-
resents a step in the iterative method for a column in theGmatrix. The fact neighbor-pagerank
informs the neighbor node about the PageRank value of node A for iteration Iter + 1. For ev-
ery iteration, each node will accumulate all the neighbor-pagerank facts into the accumulator
fact (lines 19-21). When all inbound neighbor PageRank values are accumulated, the third rule
(lines 23-27) is derived and a PageRank value is generated for iteration Iter.

The synchronous version of the PageRank algorithm has a large amount of concurrency.
First, the program starts on all nodes of the graph, which makes the program trivial to parallelize.
However, because this is a synchronous algorithm, there is a data dependency between PageRank
iterations, i.e., nodes can only compute their next iteration after they receive all the neighbor’s
PageRank values from the previous iteration.

Appendix F.1 further expands this section with the asynchronous version of PageRank and
also includes a proof of correctness.

3.5.3 Quick-Sort
The Quick-Sort algorithm is a divide and conquer sorting algorithm that works by splitting a list
of items into two sublists and then recursively sorting the two sublists. To split a list, it picks a
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1 type outbound(node, node, float). // Predicate declaration
2 type numInbound(node, int).
3 type linear pagerank(node, float Rank, int Iteration).
4 type linear accumulator(node, float Acc, int Left, int Iteration).
5 type linear neighbor-pagerank(node, node Neighbor, float Rank, int Iteration).
6 type linear start(node).
7

8 const damping = 0.85. // probability of user following a link in the current page
9 const iterations = str2int(@arg1). // iterations to compute

10 const pages = @world. // number of pages in the graph.
11

12 start(A), !numInbound(A, T) // Rule 1: initialize pagerank and accumulator
13 -o accumulator(A, 0.0, T, 1), pagerank(A, 1.0 / float(pages), 0).
14

15 pagerank(A, V, Iter), // Rule 2: propagate pagerank
16 Iter < iterations
17 -o {B, W | !outbound(A, B, W) -o neighbor-pagerank(B, A, V * W, Iter + 1)}.
18

19 neighbor-pagerank(A, B, V, Iter), // Rule 3: accumulate neighbor's value
20 accumulator(A, Acc, T, Iter)
21 -o accumulator(A, Acc + V, T - 1, Iter).
22

23 accumulator(A, Acc, 0, Iter), // Rule 4: generate new pagerank
24 !numInbound(A, T),
25 V = damping + (1.0 - damping) * Acc,
26 Iter <= iterations
27 -o pagerank(A, V, Iter), accumulator(A, 0.0, T, Iter + 1).
28

29 start(A). // Initial facts

Figure 3.11: Synchronous PageRank program.

pivot element and puts the items that are smaller than the pivot into the first sublist and the items
greater than the pivot into the second list.

The Quick-Sort algorithm is interesting because it does not map immediately to the graph-
based model of LM and will demonstrate that LM supports applications with dynamic graphs.
The LM program starts with a single node where the initial unsorted list is located. Then the list
is split as usual and two nodes are created that will recursively sort the sublists. Interestingly,
this looks similar to a call tree in a functional programming language.

Figure 3.12 presents the code for the Quick-Sort algorithm in LM. The code uses six pred-
icates described as follows: down represents a list that needs to be sorted; up is the result of
sorting an down list; sorted represents a sorted sublist; back connects a node that is sorting a
sublist to its parent node; split is used for splitting a list into two sublists using a pivot element;
and waitpivot waits for two sorted sublists.

For each sublist, we start with a down fact that later must be, eventually, transformed into an
up fact with the sublist sorted. In line 36 we start with the initial list at node @0. If the list has a
small number of items (two or less), then rules at lines 8-14 will immediately sort it, otherwise
the rule in line 16 is applied to split the list in 2 sublists. The fact split first splits the list
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using the pivot Pivot using rules in lines 23-27. When there is nothing else to split, the rule in
lines 19-21 uses an exists construct to create nodes B and C and then the sublists are sent to nodes
B and C using down facts. back facts are also derived to be used to send the sorted list back to the
parent node using the rule in line 34.

When two sublists are sorted, two sorted facts are derived that must be matched against
waitpivot in the rule in lines 29-32. The sorted sublists are appended and send up to the parent
node via the derivation of an up fact (line 32).

1 type linear down(node, list int). // Predicate declaration
2 type linear up(node, list int).
3 type linear sorted(node, node, list int).
4 type linear back(node, node).
5 type linear split(node, int list int, list int, list int).
6 type linear waitpivot(node, int, node, node).
7

8 down(A, []) -o up(A, []). // Rule 1: empty list
9

10 down(A, [X]) -o up(A, [X]). // Rule 2: single element list
11

12 down(A, [X, Y]), X < Y -o up(A, [X, Y]). // Rule 3: two element list
13

14 down(A, [X, Y]), X >= Y -o up(A, [Y, X]). // Rule 4: two element list
15

16 down(A, [Pivot | Xs]) // Rule 5: lists with more than two elements
17 -o split(A, Pivot, Xs, [], []).
18

19 split(A, Pivot, [], Smaller, Greater) -o // Rule 6: create nodes to sort sublists
20 exists B, C. (back(B, A), back(C, A),
21 down(B, Smaller), down(C, Greater), waitpivot(A, Pivot, B, C)).
22

23 split(A, Pivot, [X | Xs], Smaller, Greater), X <= Pivot // Rule 7: split case 1
24 -o split(A, Pivot, Xs, [Y | Smaller], Greater).
25

26 split(A, Pivot, [X | Xs], Smaller, Greater), X > Pivot // Rule 8: split case 2
27 -o split(A, Pivot, Xs, Smaller, [Y | Greater]).
28

29 waitpivot(A, Pivot, NodeSmaller, NodeGreater), // Rule 9: merge sublists
30 sorted(A, NodeSmaller, Smaller),
31 sorted(A, NodeGreater, Greater)
32 -o up(A, Smaller ++ [Pivot | Greater]).
33

34 up(A, L), back(A, B) -o sorted(B, A, L). // Rule 10: send list to parent
35

36 down(@0, initial_list). // Initial facts

Figure 3.12: Quick-Sort program written in LM.

The use of the exists construct allows the programmer to create new nodes where facts can
be derived. In the case of the Quick-Sort, it allows the program to create a tree of nodes where
sorting can take place concurrently.
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The amount of concurrency available in the Quick-Sort program depends on the quality of
the selected pivot. If the pivot splits the list in equal parts, then there is more concurrency
because it is now possible to work on the two halves of the list concurrently. If a bad pivot is
selected, then we may end up in situations where the pivot is the smallest (or largest) element
of the list, splitting the list into an empty list and a list with n − 1 elements. It is clear that the
amount of work required to sort the empty list is much smaller than the work required to sort
the larger list. Repeatedly choosing a bad pivot will effectively turn Quick-Sort into a sequential
algorithm. This is not surprising since it is directly related to the Quick-Sort’s average and worst
case complexity, O(n log n) and O(n2), respectively.

The proof of correctness for Quick-Sort follows a different style than the proofs done so far.
Instead of proving invariants, we prove what happens to the database given the presence of some
logical facts.

Lemma 3.5.1 (Split lemma)
If a split(A,P ivot, L, Small, Great) fact exists then it will be consumed to derive a
split(A,P ivot, [], Small′++Small, Great′++Great) fact, where the elements of Small′

are lesser or equal than Pivot and the elements of Great′ are greater than Pivot.

Proof. By induction on the size of L.

Theorem 3.5.3 (Sort theorem)
If a down(A,L) fact exists then it will be consumed and a up(A,L′) fact will be derived,
where L′ is the sorted list of L.

Proof. By induction on the size of L.
The base cases are proven trivially (rules 1-4).
In the inductive case, only rule 5 applies:

down(A, [Pivot | Xs]) -o split(A, Pivot, Xs, [], []).

which necessarily derives a split(A,P ivot,Xs, [], []) fact. By applying the split lemma, a
split(A,P ivot, [], Smaller,Greater) fact is generated, from which only rule 6 can be used:

split(A, Pivot, [], Smaller, Greater) -o
exists B, C. (back(B, A), back(C, A),

down(B, Smaller), down(C, Greater), waitpivot(A, Pivot, B, C)).

which necessarily derives back(B,A), back(C,A), down(B, Smaller), down(C,Greater) and
also a waitpivot(A,P ivot, B,C) fact. The semantics of LM ensure that B and C are fresh
node addresses, therefore those new facts will be derived on nodes with no facts. The lists
Smaller and Greater are both smaller (in size) than L, so, by the the induction hypothesis, an
up(B, Smaller′) and an up(C,Greater′) facts are derived. These last two facts will be used in
the following rule:
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up(A, L), back(A, B) -o sorted(B, A, L).

which generates a sorted(A,B, Smaller′) and a sorted(A,C,Greater′) facts. In the contin-
uation, there is only one rule that accepts sorted and waitpivot facts:

waitpivot(A, Pivot, NodeSmaller, NodeGreater),
sorted(A, NodeSmaller, Smaller),
sorted(A, NodeGreater, Greater)

-o up(A, Smaller ++ [Pivot | Greater]).

returning up(A, Smaller′+ +[Pivot|Greater′]). We know that Smaller′+ +[Pivot|Greater′]
is sorted since Small′ contains the sorted list of elements lesser or equal than Pivot andGreater′

the elements greater than Pivot.

3.6 Related Work

3.6.1 Graph-Based Programming Models
Many programming systems have designed for writing graph-based programs. Some good ex-
amples are the Dryad, Pregel, GraphLab, Ligra, Grace, Galois and SociaLite systems.

The Dryad system [IBY+07] combines computational vertices with communication channels
(edges) to form a data-flow graph. The program is scheduled to run on multiple processors or
cores and data is partitioned during runtime. Routines that run on computational vertices are
sequential, with no synchronization. Dryad is better suited for a wider range of problem domains
than LM, however Dryad is not a language but a framework upon which languages such as LM
could be built.

The Pregel system [MAB+10] is also graph based, although programs have a more strict
structure. They must be represented as a sequence of iterations where each iteration is composed
of computation and message passing. Pregel is especially suited for large graphs since it aims to
scale to large architectures. LM does not impose iteration restrictions on programs, however it is
not as well suited for large graphs as Pregel.

GraphLab [LGK+10] is a C++ framework for developing parallel machine learning algo-
rithms. While Pregel uses message passing, GraphLab allows nodes to have read/write access to
different scopes through different concurrent access models in order to balance performance and
data consistency. While some programs only require access to the local node’s data, others may
need to update edge information. Each consistency model will provide different guarantees that
are better adapted to some algorithms. GraphLab also provides different schedulers that dictate
the order in which nodes are computed. The downside of GraphLab is that GraphLab has a steep
learning curve and programs must be written in C++, requiring a lot of boilerplate code. LM pro-
grams tend to be smaller and easier to reason about since they are written at a higher abstraction
level.

Ligra [SB13] is a lightweight framework for large scale graph processing on a single multi
core machine. Ligra exploits the fact that most huge graph datasets available today can be made
to fit in the main memory of commodity servers. Ligra is a simple framework that exposes two
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main interfaces: EdgeMap and VertexMap. The former applies a function to a subset of edges
of the graph, while the latter applies a function to a subset of vertices. The functions passed as
arguments are applied to either a single edge or a single vertex and the user must ensure that the
function can be executed in parallel. The framework allows the use of Compare-and-Swap (CAS)
instructions when implementing functions in order to avoid race conditions.

Grace [WXDG13] is another graph-based framework for multi core machines. Unlike Ligra,
Grace programs are implemented from the point of view of a vertex. Each vertex and edge can
be customized with different data depending on the target application. By default, programs are
executed iteratively: for each iteration the vertex program reads incoming edge messages, per-
forms computation and sends messages to the outbound edges. Since iterative programs require
synchronization after each iteration, Grace allows the user to relax these constraints and imple-
ment customizable execution policies by implementing code for describing which vertices are
allowed to run and in which order. The order is dictated by assigning a scheduling priority value.

Galois [PNK+11] is a parallel programming model with irregular applications based on
graphs, trees and sets. A Galois parallel algorithm is viewed as a parallel application of an
operator over an irregular data structure which generate activities on the data structure. Such op-
erator may, for instance, be applied to the node of the graph in order to change its data or change
the structure of its neighborhood, allowing for data structure changes. In Galois, active elements
are nodes of the graph where computation needs to be performed. Each operator performed on
an active element needs to acquire the neighborhood, which are the nodes connected to the active
element that are involved in the operator’s computation. Furthermore, operators are selected for
execution according to some specific ordering. From the point of view of the programmer, the
active elements are represented in a work-list, while operators can be implemented on top of
work-list’s iterators. Galois supports speculative execution by allowing operator rollback when
an operator requires a node that is held by another operator.

Ligra, Grace and Galois are not programming language but frameworks built on top of other
programming languages such as C and Java. Naturally, programs written in these frameworks
need to take into account several implementation details such as compare-and-set instructions,
work-lists, and scheduling order. LM programs are more abstract since reasoning is performed
around logical rules and logical facts which are much closer to the problem domain of graph-
based programs.

SociaLite [SPSL13] is a Datalog-based language for writing algorithms for social-network
analysis. SociaLite takes Datalog programs and compiles them to efficient distributed Java code.
The language places some restrictions on rules in order to make distribution possible, however,
the programmer is free to tell the system how to shard database’s facts. Like LM, these restric-
tions deal with the first argument of each fact, however, the first argument is not related to a
graph abstraction but is instead related to fact distribution, allowing programmers to optimize
how messages are sent between machines.

3.6.2 Sensor Network Programming Languages
Many programming languages have been designed to help developers write programs that run on
sensor networks, which are networks that can be represented as graphs. Programming languages
such as Hood [WSBC04], Tinydb [MFHH05] or Regiment [NMW07] have been proposed, pro-
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viding support for data collection and aggregation over the network. These systems assume that
the network remains static and nodes stay in place.

Other languages such as Pleiades [KGMG07], LDP [RGL+08] or Proto [BB06] go beyond
static networks and support dynamic reconfiguration. In Pleiades, the programmer writes an
application from the point of view of the whole sensor network and the compiler transforms it
into code that can be run on each individual node. LDP is a language derived from a method for
distributed debugging, that allows it to efficiently detect conditions on variably-sized groups of
nodes. It is based on the tick model, generating a new set of condition matchers throughout the
ensemble on each tick. Like Pleiades and LDP, Proto also compiles global programs into locally
executed code.

Finally, the original Meld [ARLG+09] is also a language designed for dynamic networks,
namely, ensembles of robots. As we have seen before, Meld is a logic programming language
where programs are sets of logical rules that infer over the state of the ensemble. Meld supports
action facts and sensing facts, which allow the robots to act on the world or sense the world,
respectively. Like Pleiades programs, Meld programs are also written from the point of the view
of the whole ensemble.

3.6.3 Constraint Handling Rules

Since LM is a bottom-up linear logic programming language, it also shares similarities with
Constraint Handling Rules (CHR) [BF05, BF13]. CHR is a concurrent committed-choice con-
straint language used to write constraint solvers. A CHR program is a set of rules and a set of
constraints. Constraints can be consumed or generated during the application of rules. Unlike
LM, in CHR there is no concept of rule priorities, but there is an extension to CHR that supports
them [DKSD07]. There is also another CHR extension that adds persistent constraints and it has
been proven to be sound and complete [BRF10] in relation to the standard formulation of CHR.

3.6.4 Graph Transformation Systems

Graph Transformation Systems (GTS) [EP04], commonly used to model distributed systems,
perform rewriting of graphs through a set of graph productions. GTS also introduces concepts
of concurrency, where it may be possible to apply several transformations at the same time. In
principle, it should be possible to model LM programs as graph transformations: we directly
map the LM graph of nodes to GTS’s initial graph and consider logical facts as nodes that are
connected to LM’s nodes. Each LM rule is then a graph production that manipulates the node’s
neighbors (the database) or sends new facts to other nodes. On the other hand, it is also possible
to embed GTS inside CHR [RF11].

3.7 Chapter Summary

In this chapter, we gave an overview of the LM language, including its syntax and operational
semantics. We also explained how to write programs using all the facilities provided by LM,
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including linear facts, comprehensions, and aggregates. We also explained how to informally
prove the correctness of several LM programs.
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Chapter 4

Logical Foundations: Abstract Machine

This chapter provides an overview of the proof theoretic basis behind LM and the dynamic
semantics of the language. First, we will present the subset of linear logic on which LM is
built. Second, we present the high level dynamic semantics, i.e., how rules are evaluated and
how node communication is done, followed by the low level dynamics, a close representation
of how the virtual machine runs and we prove that the low level dynamic semantics are sound
in relation to the high level dynamic semantics. The presence of rule priorities, comprehensions
and aggregates makes the low level dynamic semantics not complete, since these are features are
not represented directly by the underlying linear logic system. This is the same approach used in
Prolog, which includes useful features such as the cut operator and a depth-first search strategy
that make the language sound but not complete. Note that the semantics presented in this chapter
do not take into account coordination or thread-based facts. This chapter may be skipped without
loss of understanding of the main thesis of the dissertation.

4.1 Linear Logic

Logic, as classically understood, treats true propositions as persistent truth. When a persistent
proposition is needed to prove other propositions, it can be reused as many times as we wish
because it is true indefinitely. This is also true in the constructive or intuitionistic school of
logic. Linear logic is a substructural logic (lacks weakening and contraction) developed by
Girard [Gir95] that extends persistent logic with linear propositions which can be understood as
ephemeral resources that can be used only once to prove other propositions. Due to the resource
interpretation of the logic, linear logic presents a good basis for implementing a structured way
of managing state in programming languages [Mil85]. Linear logic has also been used in game
semantics [LS91, Bla92], concurrent programming [LPPW05b, MZ10, PCPT12], knowledge
representation [Bos11], or narrative generation [MFBC14, MBFC13].

In the context of the Curry-Howard correspondence [How80], linear logic has been applied
in programming languages as a mechanism to implement linear types. Linear types force objects
to be used exactly once. Surprisingly, such types add mutable state to functional languages be-
cause they enforce a linear view of state, allowing the language to naturally support concurrency,
input/output and data structure’s updates. Arguably, the most popular language that features
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uniqueness types is the Clean programming language [AP95]. Monads [Wad97], made popular
with the Haskell programming language, are another interesting way to add state to functional
languages. Monads tend to be more powerful than linear types as they also ensure equational
reasoning in the presence of mutable data structures and I/O effects.

Linear logic programming is a different approach than either monads or linear types. While
the latter are mechanisms that enhance functional programming with state, the former uses state
as a foundation, since computation is driven forward through the manipulation of state.

Traditional forward-chaining logic programming languages like Datalog only use persistent
logic, however many ad-hoc extensions [Liu98, LHL95] have been devised to support state up-
dates, but most are extra-logical which makes the programs harder to reason about. LM uses
linear logic as its foundation, therefore state updates are natural to the language.

In linear logic, truth is treated as a resource that is consumed once it is used. For instance, in
the graph visit program in Fig. 3.7, the unvisited(A) and visit(A) linear facts are consumed
in order to prove visit(A). If those facts were persistent, then the rule would make no sense,
because the node would be visited and unvisited at the same time.

4.1.1 Sequent Calculus
We now describe the linear logic fragment used as a basis for LM. Note that in this thesis we
follow the intuitionistic approach and use the sequent calculus [Gen35] to specify the logic. Our
initial sequent is written as Ψ; Γ; ∆ ` C and can be read as ”assuming persistent resources Γ
and linear resources ∆ then C is true”. More specifically, Ψ is the typing context which contains
unique variables, Γ is a multi-set of persistent resources, ∆ is a multi-set of linear resources while
C is the proposition we want to prove. The sequent can also be decomposed into a succedent (C)
and the antecedents (contexts that appear before `).

We now present the connectives and their associated rules for the linear logic fragment. First,
we have the simultaneous conjunction A⊗B that packages linear resources together. In the right
rule, A ⊗ B is true if both A and B are true, and, in the left rule, it is possible to split A ⊗ B
apart.

Ψ; Γ; ∆ ` A Ψ; Γ; ∆′ ` B
Ψ; Γ; ∆,∆′ ` A⊗B ⊗R Ψ; Γ; ∆, A,B ` C

Ψ; Γ; ∆, A⊗B ` C ⊗L

Note that the inference rules above can be decomposed into premises (the sequents above the
separator line) and conclusion (the sequent below the line).

Next, we have the additive conjunction ANB that allows us to select between A or B. In the
right rule we must prove A and B using the same resources, while in the left rule, we can select
one of the resources.

Ψ; Γ; ∆, A ` C
Ψ; Γ; ∆, ANB ` C NL1

Ψ; Γ; ∆, B ` C
Ψ; Γ; ∆, ANB ` C NL2

Ψ; Γ; ∆ ` A Ψ; Γ; ∆ ` B
Ψ; Γ; ∆ ` ANB

NR

To express inference, we introduce the linear implication connective written as A( B. For
the right rule, we prove A ( B by assuming A and then proving B, while in the left rule, we
obtain B by using some linear resources to prove A.
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Ψ; Γ; ∆, A ` B
Ψ; Γ; ∆ ` A( B

( R
Ψ; Γ; ∆ ` A Ψ; Γ; ∆′, B ` C

Ψ; Γ; ∆,∆′, A( B ` C ( L

Next, we introduce persistent resources written as !A. For the right rule, we prove !A by
proving it without any linear resources. Likewise, to use a persistent resource, we simply drop
the !. There is also a copy rule that moves persistent resources from Γ to ∆. Remember that Γ
contains persistent resources.

Ψ; Γ; · ` A
Ψ; Γ; · ` !A

!R
Ψ; Γ, A; ∆ ` C
Ψ; Γ; ∆, !A ` C !L

Ψ; Γ, A; ∆, A ` C
Ψ; Γ, A; ∆ ` C

copy

Another useful connective is the multiplicative unit of the⊗ connective. It is written as 1 and
is best understood as something that does not need any resource to be proven.

Ψ; Γ; · ` 1
1R

Ψ; Γ; ∆ ` C
Ψ; Γ; ∆,1 ` C 1L

Next, we introduce the quantification connectives, namely universal quantification ∀n:τ .A
and existential quantification ∃n:τ .A (n : τ means that n has type τ ). These connectives use
the typing context Ψ to introduce and read term variables. The right and left rules of those two
connectives are dual.

Ψ,m : τ ; Γ; ∆ ` A{m/n}
Ψ; Γ; ∆ ` ∀n:τ .A

∀R
Ψ `M : τ Ψ; Γ; ∆, A{M/n} ` C

Ψ; Γ; ∆,∀n:τ .A ` C ∀L

Ψ `M : τ Ψ; Γ; ∆ ` A{M/n}
Ψ; Γ; ∆ ` ∃n:τ .A

∃R
Ψ,m : τ ; Γ; ∆, A{m/n} ` C

Ψ; Γ; ∆,∃n:τ .A ` C ∃L

The judgment Ψ `M : τ introduces a new term M with type τ that does not depend on Γ or
∆ but may depend on the variables in Ψ. In rules ∀R and ∃L, the new m variable introduced in
Ψ must always be fresh. We complete the linear logic system with the cut rules and the identity
rule:

Ψ; Γ; ∆ ` A Ψ; Γ; ∆′, A ` C
Ψ; Γ; ∆,∆′ ` C cutA

Ψ; Γ; · ` A Ψ; Γ, A; ∆ ` C
Ψ; Γ; ∆ ` C cut!A

Ψ; Γ;A ` A idA

4.1.2 From The Sequent Calculus To LM

The connection between LM and the sequent calculus fragment is presented in the Table 4.1. In
the table, we show how each connective is translated into LM’s abstract syntax and then into LM
programs. In order to understand how LM rules are related to the sequent calculus, consider the
first rule of the graph visit program shown in Fig 3.7:
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Connective Description LM Syntax LM Place LM Example
fact(x̂) Linear atomic propositions. fact(x̂) LHS or RHS path(A, P)
!fact(x̂) Persistent atomic propositions. !fact(x̂) LHS or RHS !edge(X, Y, W)
1 Represents rules with an empty RHS. 1 RHS 1
A⊗B Connect two expressions. A,B LHS and RHS path(A, P), edge(A, B, W)
∀x.A To represent variables defined inside the rule. Please see A( B Rule path(A, B) ( reachable(A, B)
∃x.A Instantiates new node variables. existsx̂.B RHS exists A.(path(A, P))
A( B ( means ”linearly implies”. A( B Rule path(A, B) ( reachable(A, B)

A is the rule’s LHS and B is the RHS.
!C Constraint. A = B LHS A = B

R(V̂ ,M)
comp For comprehensions (M is not used). { x̂ | A( B } RHS {B | !edge(A, B) -o visit(B)}

For aggregates (M accumulates). V̂ captures rule variables.

Table 4.1: Connectives from linear logic and their use in LM.

1 visit(A),
2 unvisited(A)
3 -o visited(A),
4 {B | !edge(A, B) -o visit(B)}.

This rule is translated to a sequent calculus proposition, as follows:

∀A.(visit(A)⊗ unvisited(A)( visited(A)⊗R(A)
comp) (4.1)

First, the rule’s variable A is included using the ∀ connective. The rule’s LHS and RHS are
connected using the( connective. The comprehension is transformed into R(A)

comp, which is a
recursive term that is assigned to an unique name, namely, comp. This name is related to the
following persistent term:

!∀A.(R(A)
comp( (1 N (∀B.(!edge(A,B)( visit(B))⊗R(A)

comp))) (4.2)

Notice that the enclosing ∀ includes all the arguments of the unique name in order to pass
around variables from outside the definition of the comprehension, in this case variable A. The
persistent term allows the implication of the comprehension to be derived as many times as
needed. However, the argument list can also be used to implement aggregates. Recall the PageR-
ank aggregate example shown before:

update(A),
!numInbound(A, T)

-o [sum => V; B, Val, Iter | neighbor-pagerank(A, B, Val, Iter), V =
Val/float(T) -o neighbor-pagerank(A, B, Val, Iter) -> sum-ranks(A, V)].

This rule is translated into a linear logic proposition as shown next:

∀A.∀T .(update(A)⊗ !numInbound(A, T )( R(A,T,0)
agg ) (4.3)

The persistent term for agg is defined as follows:
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!∀A.∀T .∀S.(R(A,T,S)
agg ( sum-ranks(A, S)N

(∀V .∀B.∀V al.∀Iter.(neighbor-pagerank(A,B, V al, Iter)⊗ !V = V al/float(T )− o
neighbor-pagerank(A,B, V al, Iter)⊗R(A,T,S+V )

agg ))) (4.4)

The argument S of Ragg accumulates the PageRank values of the neighborhood by consum-
ing neighbor-pagerank and re-deriving a newRagg with S+V . Once the aggregate is complete,
we simply select sum-ranks(A, S) instead. As an aside, note how the constraint are translated
into a persistent term of the form !V = V al/float(T ) since it does not require any fact to be
proven true. This recursive mechanism is inspired in Baelde’s work on fix points [BM07, Bae12],
which allows the introduction of recursive definitions into a consistent fragment of linear logic.

4.2 High Level Dynamic Semantics
In this section, we present the high level dynamic (HLD) semantics of LM. HLD formalizes
the mechanism of matching rules and deriving new facts. HLD semantics present a simplified
overview of the dynamics of the language that are closer to the sequent calculus (presented in
Section 4.1.1) than the implementation principles of the virtual machine. The low level dy-
namic (LLD) semantics are much closer to a real implementation and represent the operational
semantics of the language. Both the HLD and LLD semantics model local computation at the
node level.

Note that neither HLD nor LLD model the use of variable bindings when matching facts
from the database. The formalization of bindings tends to complicate the formal system and it
is not necessary for a good understanding of the system. Therefore, when we write an atomic
proposition as p, we assume a proposition of the form p(x̂), where x̂ is the list of terms for that
proposition (either values or variables), which is used for matching during the derivation process.

Starting from the sequent calculus, we consider Γ and ∆ the database of our program. Γ
contains the database of persistent facts while ∆ the database of linear facts. We assume that the
rules of the program are persistent linear implications of the form !(A ( B) that can be used
several times. However, we do not put the rules in the Γ context but in a separate context Φ. The
persistent terms associated with each comprehension and aggregate are put in the Π dictionary
that maps the unique name of the comprehension/aggregate to the persistent term.

The main idea of the dynamic semantics is to ignore the right side of the sequent calculus
and then use focusing [And92] on the implications in Φ so that we only have atomic facts (e.g.,
the database of facts). Focusing is a proof search mechanism that prunes the proof search by
constructing proofs using two alternating phases called chaining and inversion. During inver-
sion, propositions are decomposed into smaller propositions using invertible rules (which are
sequent rules where the premises of the rule are derivable whenever the conclusion is derivable).
In chaining, a proposition is in focus and non-invertible rules are applied to that proposition.
Propositions have either negative or positive polarity, if either the right rule of a given connec-
tive is invertible or not, respectively. Atomic propositions can be either negative or positive. For
our case, we make them positive so that the succedent of the sequent is ignored and chaining
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proceeds by focusing on implications (rules) A ( B ∈ Φ where the antecedents A must be
already in ∆.

4.2.1 Step
Operationally, LM proceeds in steps. A step happens at some node i and proceeds by picking
one rule to apply, matching the rule’s LHS against the database, removing all those facts and
then deriving all the constructs in the rule’s RHS. We assume the existence of n nodes in the
program and that Γ and ∆ are split into Γ1, . . . ,Γn and ∆1, . . . ,∆n respectively. After each step,
the database of each fact is updated accordingly.

Steps are defined as step Γ; ∆; Φ =⇒ Γ′; ∆′, where Γ′ and ∆′ are the new database contexts
and Φ are the derivation rules of the program. The step rule is as follows:

runΓi;Π ∆i; Φ→ Ξ′; [Γ′1; · · · ; Γ′n]; [∆′1; · · · ; ∆′n]

step [Γ1; · · · ; Γi; · · · ; Γn]; [∆1; · · · ; ∆i; · · · ; ∆n]; Φ

=⇒
[Γ1,Γ

′
1; · · · ; Γi,Γ

′
i; · · · ; Γn,Γ

′
n];[∆1,∆

′
1; · · · ; (∆i − Ξ′),∆′i; · · · ; ∆n,∆

′
n]

step

A step is then a local derivation of some rule at a given node i. The effects of a step result in
the addition and retraction of facts from node i and also the assertion of facts in remote nodes.
In the rule above, this is represented by the contexts Γ′j and ∆′j .

4.2.2 Application
A step is performed through runΓ;Π ∆; Φ → Ξ′; Γ′; ∆′. Γ, ∆, Φ and Π have the meaning ex-
plained before, while Ξ′, Γ′ and ∆′ are output multi-sets from applying one of the rules in Φ and
are sometimes written as O for conciseness. Ξ′ is the multi-set of retracted linear facts, Γ′ is the
set of derived persistent facts and ∆′ is the multi-set of derived linear facts. Note that for HLD
semantics there is no concept of rule priority, therefore a rule is picked non-deterministically.

The judgment appΓ;Π
Ψ ∆; Π → O applies one derivation rule. First, it non-deterministically

chooses the correct term values to the ∀ variables and then splits the ∆ context into ∆1 and ∆2,
namely the multi-set of linear facts consumed to match the rule’s LHS (∆1) and the remaining
linear facts (∆2). The Ψ context is used to store a substitution that maps variables to values. In
the next section, we will see how LLD semantics deterministically calculate ∆1 and Ψ.

mΓ ∆1 → A derΓ;Π∆2; ∆1; ·; ·;B → O
appΓ;Π

Ψ ∆1,∆2; Π→ O
app rule

appΓ;Π
Ψ,m:M :τ ∆; Π→ O Ψ `M : τ

appΓ;Π
Ψ ∆; Π→ O

app ∀

appΓ;Π
· ∆; Π→ O

runΓ;Π ∆;R,Φ→ O run rule
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4.2.3 Match
The mΓ ∆ → C judgment uses the right (R) rules of the sequent calculus in order to match
(prove) the term C using Γ and ∆. We must consume all the linear facts in the multi-set ∆ when
matching C. The context Γ may be used to match persistent terms in C but such facts are never
retracted since they are persistent.

mΓ · → 1
m1

mΓ p→ p
mp

mΓ,p · → !p
m!p

mΓ ∆1 → A mΓ ∆2 → B

mΓ ∆1,∆2 → A⊗B
m⊗

4.2.4 Derivation
After successfully matching a rule’s LHS, we next derive the RHS. The derivation judgment has
the form derΓ;Π∆; Ξ; Γ1; ∆1; Ω→ O with the following meaning:

Γ the multi-set of persistent resources in the database;

Π dictionary of persistent terms for comprehensions and aggregates;

∆ the multi-set of linear resources in the database not yet retracted;

Ξ the multi-set of linear resources that have been retracted while matching the rule’s LHS,
matching comprehensions or aggregates;

Γ1 the multi-set of persistent facts that have been derived using the current rule;

∆1 the multi-set of linear facts that have been derived using the current rule;

Ω an ordered list which contains the propositions of the rule’s RHS that need to asserted into
the database;

O the output contexts, including consumed facts and derived persistent and linear facts.
The following derivation rules are a direct translation from the sequent calculus:

derΓ;Π∆; Ξ; Γ1; p,∆1; Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1; p,Ω→ O

der p

derΓ;Π∆; Ξ; Γ1, p; ∆1; Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1; !p,Ω→ O

der !p

derΓ;Π∆; Ξ; Γ1; ∆1;A,B,Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1;A⊗B,Ω→ O

der ⊗

derΓ;Π∆; Ξ; Γ1; ∆1; Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1;1,Ω→ O

der 1
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derΓ;Π∆; Ξ′; Γ′; ∆′; · → Ξ′; Γ′; ∆′
der end

The main rule for deriving aggregates is der agg1. It looks into Π for the appropriate persis-
tent term and applies Ragg to the implication and then selects the recursive case. On the other
hand, the rule der agg2 is identical but instead decides to derive the final part of the aggregate by
selecting the additive conjunction’s left hand side. The HLD semantics do not take into account
the contents of the database to determine how many times a comprehension should be applied.

Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)
agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,Σ′+σ)

agg ))))

derΓ;Π∆; Ξ; Γ1; ∆1;∀x̂,σ.(A( B ⊗R(v̂,Σ+σ)
agg ){V̂ /v̂}{Σ/Σ′},Ω→ O

derΓ;Π∆; Ξ; Γ1; ∆1;R(V̂ ,Σ)
agg ,Ω→ O

der agg1

Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)
agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,Σ′+σ)

agg ))))

derΓ;Π∆; Ξ; Γ1; ∆1;C{V̂ /v̂}{Σ/Σ′},Ω→ O

derΓ;Π∆; Ξ; Γ1; ∆1;R(V̂ ,Σ)
agg ,Ω→ O

der agg2

We do not include comprehensions here because they are a special case of aggregates.
Finally, because both comprehensions and aggregates create implications A ( B and use

the ∀ connective, we add a derivation rules der ( and der ∀.

mΓ ∆a → A derΓ;Π∆b; Ξ,∆a; Γ1; ∆1;B,Ω→ O
derΓ;Π∆a,∆b; Ξ; Γ1; ∆1;A( B,Ω→ O

der (

derΓ;Π∆; Ξ; Γ1; ∆1;A{V/x},Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1;∀x.A,Ω→ O

der ∀

4.3 Low Level Dynamic Semantics
The Low Level Dynamic (LLD) semantics remove all the non-deterministic choices in the pre-
vious dynamics and makes them deterministic. The new semantics will do the following:

• Match rules by priority order;
• Determine the set of linear facts needed to match either the rule’s LHS or the LHS of

comprehensions/aggregates without guessing;
• Apply as many comprehensions as the database allows.
• Apply as many aggregates as the database allows.

While the implementation presented in Chapter 5 follows the LLD semantics, there are sev-
eral optimizations not implemented in LLD, such as:
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• Indexing: the implementation uses indexing for looking up facts using a specific argument;
• Better candidate rules: when selecting a rule to execute, the implementation filters out

rules which do not have enough facts to be derived;
• Multiple rule derivation: the LLD semantics only execute one rule at the time, while the

implementation is able to derive a rule multiple times when there are no conflicting rule;
• Matching and substitution: in the implementation, matching is done implicitly using vari-

ables and comparisons, while LLD uses the Ψ context to hold substitutions.

The complete set of inference rules for the LLD semantics are presented in Appendix C.
LLD is specified as an abstract machine and is represented as a sequence of state transitions

of the form S1 7→ S2. HLD had many different proof trees for a given triplet Γ; ∆; Φ because
HLD allows choices to be made during the inference rules. For instance, in HLD any rule could
be selected to be executed. In LLD there is only one state sequence possible for a given Γ; ∆; Φ
since there is no guessing involved. LLD semantics present a complete step by step mechanism
that is needed to correctly evaluate a LM program. For instance, when LLD tries to apply a rule,
it will check if there are enough facts in the database and backtrack until a rule can be applied.

4.3.1 Application

LLD shares exactly the same inputs and outputs as HLD. The inputs correspond to the Γ and ∆
fact contexts and the list of rules Φ, while the outputs correspond to the newly asserted facts in
Γ′ and ∆′ and the retracted facts which are put in the Ξ′ context.

The first difference between LLD and HLD start when picking a rule to derive. Instead of
guessing, LLD treats the list of rules as a stack and picks the first ruleR1 to execute (the rule with
the highest priority). The remaining rules are stored as a continuation. If R1 cannot be matched
because there are not enough facts in the database, we backtrack and use the rule continuation to
pick the next rule and so on, until one rule can be successfully applied.

The machine starts with a database (Γ; ∆) and a list of rules Φ. The initial state is always
infer ∆; Φ; Γ. We start by picking the first rule R1 from Φ:

infer ∆;R1,Φ; Γ 7→ apply ·; ∆; Π; Γ;R (select rule)

If, after trying all the rules, there are no remaining candidate rules, the machine enters into
the next state, which means that no more rules are possible for this node and the machine should
perform local computation on another node.

infer ∆; ·; Γ 7→ nextΓ;∆ (fail)

In order to try a particular rule, we either need to unfold the ∀ connective, by adding its
variable to the Ψ context, or, initiate the matching process when reaching the ( connective.
The variables in the Ψ context, which are initially assigned to an unknown value , will later be
assigned to a concrete value as the matching process goes forward.

apply Ψ; ∆; Π; Γ;∀x:τ .A 7→ apply Ψ, x : : τ ; ∆; Π; Γ;A (open rule)
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apply Ψ; ∆; Π; Γ;A( B 7→ ΨImΓ ·→1
A(B (∆; Φ); ·; Γ; ∆;A (init rule)

4.3.2 Continuation Frames

The most interesting aspects introduced by the LLD machine are the continuation frame and
the continuation stack. A continuation frame acts as a choice point that is created during rule
matching whenever we try to match an atomic proposition against the database. The frame
considers all the facts relevant to the proposition given the current context Ψ.

The frame contains enough state to resume the matching process at the time of its creation,
therefore we can easily backtrack to the choice point and select the next candidate fact from the
database. We keep the continuation frames in a continuation stack for backtracking purposes.
If, at some point there are no candidate facts because the current variable assignments are not
usable, we update the top frame to try the next candidate fact. If all candidates are exhausted, we
pop the top frame and continue with the next available frame.

By using this match mechanism, we determine which facts need to be used to match a rule.
Our LM implementation works like LLD, by iterating over the available facts at each choice
point and then committing to the rule if the matching process succeeds. However, while the
implementation only attempts to match rules when the database has all the facts required by the
rule’s LHS, LLD is more naı̈ve in this aspect because it tries all rules in order.

4.3.3 Structure of Continuation Frames

We have two continuation frame types, depending on the type of the candidate facts.1

Linear continuation frames

There are two types of continuation frames. Linear frames use the form (∆; ∆′′; p(x̂); Ω; Ψ)
mΓ ∆′→Ω′

,

where:

p(x̂) atomic proposition that created this frame. The predicate for the proposition is p;

∆ multi-set of linear facts that are not of predicate p plus all the other candidate facts of the
predicate p we have already tried, including a fact p, which is the current candidate fact;

∆′′ facts of predicate p that match p(x̂) which we haven’t tried yet. It is a multi-set of linear
facts;

Ω ordered list of remaining terms needed to match;

∆′ multi-set of linear facts we have consumed to reach this point;

Ω′ terms matched already using ∆′ and Γ;

Ψ substitution of variable assignments (includes variable and value).

1All continuation frames have an implicit Ψ context that models variable assignments, including variable names,
values and their locations in the terms. This is important if we want to model variable assignments and matchings.
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Persistent continuation frame

Persistent frames are slightly different since they only need to keep track of remaining persistent
candidates. They are structured as [Γ′′; ∆; !p(x̂); Ω; Ψ]

mΓ ∆′→Ω′

2:

!p(x̂) persistent atomic proposition that created this frame;

Γ′′ remaining candidate facts that match !p(x̂);

∆ multi-set of linear facts not consumed yet;

Ω ordered list of terms needed to match past this frame;

∆′ multi-set of linear facts consumed up-to this frame;

Ω′ terms matched up-to this point using ∆′ and Γ;

Ψ substitution of variable assignments (includes variable and value).

We now introduce some definitions which helps define what means for a continuation frame
to be well-formed.

Term equivalence

The first definition defines the equality between two multi-sets of terms. Two multi-sets A and
B are equal, A ≡θ B, when there a substitution θ that allows Aθ and Bθ to have the same con-
stituent atoms. Each continuation frame builds a substitution Ψ which can be used to determine
if two terms are equal.

A ≡θ B pθ , qθ

p, A ≡θ q, B
≡ p

A ≡θ B !pθ , !qθ

!p,A ≡θ !p,B
≡ !p A ≡θ B

1, A ≡θ B ≡ 1 L

A ≡θ B
A ≡θ 1, B ≡ 1 R · ≡θ ·

≡ · A,B,C ≡θ D
A⊗B,C ≡θ D

≡ ⊗ L
A ≡θ B,C,D
A ≡θ B ⊗ C,D

≡ ⊗ R

Theorem 4.3.1 (Match equivalence)
If two multi-sets are equivalent,A1, . . . , An ≡θ B1, . . . , Bm, and we can matchA1⊗· · ·⊗An
in HLD such that mΓ ∆→ (A1 ⊗ · · · ⊗ An)θ then mΓ ∆→ (B1 ⊗ · · · ⊗Bm)θ is also true.

Proof. By straightforward induction on the first assumption.

Definition 4.3.1 (Split contexts)
split(Ω) is defined as split(Ω) = times(flatten(Ω)), where:

2We will sometimes use p in place of p(x̂) for brevity.
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flatten(·) = · (4.5)
flatten(1,Ω) = flatten(Ω) (4.6)

flatten(A⊗B,Ω) = flatten(A), f latten(B), f latten(Ω) (4.7)
flatten(p,Ω) = p, flatten(Ω) (4.8)
flatten(!p,Ω) = !p, flatten(Ω) (4.9)

And times(A1, . . . , An) = A1 ⊗ · · · ⊗ An.

Theorem 4.3.2 (Split equivalence)
split(Ω) ≡θ Ω.

Proof. Induction on the structure of Ω.

Well-Formed Continuation Frames

We now define the concept of a well-formed frame given initial linear and persistent contexts
and a term A that needs to be matched.

Definition 4.3.2 (Well-formed frame)
Consider a triplet A; Γ; ∆I where A is a term, Γ is a set of persistent resources and ∆I a
multi-set of linear resources. A frame f is well-formed iff:

1. Linear frame f = (∆, p1; ∆′′; p; Ω; Ψ)
mΓ ∆′→Ω′

(a) p,Ω,Ω′ ≡Ψ A (the remaining terms and already matched terms are equivalent to the
initial LHS A);

(b) ∆′ = ∆′1, . . . ,∆
′
n and Ω′ = Ω′1 ⊗ · · · ⊗ Ω′n;

(c) ∆,∆′′,∆, p1 = ∆I (available facts, candidate facts for p, consumed facts and the
linear fact used for p, respectively, are the same as the initial ∆I);

(d) mΓ ∆′ → Ω′ is valid.

2. Persistent frame f = [Γ′′; ∆; !p; Ω; Ψ]
mΓ ∆′→Ω′

(a) !p,Ω,Ω′ ≡Ψ A;
(b) ∆′ = ∆′1, . . . ,∆

′
n and Ω′ = Ω′1 ⊗ · · · ⊗ Ω′n;

(c) ∆,∆′ = ∆I ;
(d) Γ′′ ⊂ Γ (remaining candidates are a subset of Γ);
(e) mΓ ∆′ → Ω′ is valid.
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Definition 4.3.3 (Well-formed stack)
A continuation stack C is well-formed iff every frame is well-formed. For two consequent
linear frames f1 = (∆,∆q, q1, p1; ∆p; p; Ω1)

mΓ ∆′1→Ω′1

and f2 = (∆,∆p, q1; ∆q; q; Ω2)
mΓ ∆′1,p1→Ω′1⊗p

where f2 is on

top of f1, we also know that Ω1 ≡Ψ Ω2, p. Identical relationships exist between different
pairs of frames.

4.3.4 Match

The matching state for the LLD machine uses the continuation stack to try different combinations
of facts until a match is achieved. The state is structured as ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; Ω, where:

A( B rule being matched: A is the rule’s LHS and B the RHS;

R rule continuation to be used if the current rule fails. Contains the original ∆I and the rest of
the rules Φ;

C ordered list of frames representing the continuation stack used for matching A;

∆ multi-set of linear facts still available to complete the matching process;

Ω ordered list of deconstructed RHS terms to match;

∆′ multi-set of linear facts from the original ∆I that were already consumed (∆′,∆ = ∆I);

Ω′ parts of A already matched. They are in the form P1 ⊗ · · · ⊗ Pn. The idea is to use term
equivalence and the fact that Ω,Ω′ ≡Ψ A to justify mΓ ∆′ → Awhen the matching process
completes.

Not shown in the matching state is the context Ψ that maps variables to values. At the start of
matching, the x̂ variables are set as undefined. Matching then uses facts from ∆ and Γ to match
the terms of the rule’s LHS represented as Ω. During the matching process, continuation frames
are pushed into C and if matching fails, we use C to restore the process using different candidate
facts. New facts also update the variables in the Ψ context by assigning them concrete values.

Linear atomic propositions

The first 2 state transitions are used when the head of Ω is a linear atomic proposition p(x̂). In the
first transition we find p1 and ∆′′ as facts from the database that match p(x̂)’s hidden and partially
initialized arguments. Context ∆′′ is stored in the second argument of the new continuation frame
but is passed along with ∆ since the facts have not been consumed yet (just fact p1).

The second transition deals with the case where there are no candidate facts and thus a dif-
ferent machine state is used for enabling backtracking.

Note that the proposition p1,∆
′′ ≺ p(x̂) indicates that facts ∆′′, p1 satisfy the constraints of

p(x̂) while ∆ � p(x̂) indicates that no fact in ∆ satisfies p(x̂). In the first rule, the substitution
context Ψ is extended with a new set of variable assignments θ which take into account the new
linear proposition.
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ΨImΓ ∆′→Ω′

A(B R; C; Γ; ∆, p1,∆
′′; p(x̂),Ω 7→

extend(Ψ,θ)ImΓ ∆′,p1→Ω′⊗p(x̂θ)
A(B R; (∆, p1; ∆′′; p(x̂); Ω; extend(Ψ, θ))

mΓ ∆′→Ω′
, C; Γ; ∆,∆′′; Ω

(p1,∆
′′ ≺ p(x̂) ∆ � p(x̂)) (match p ok)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; p(x̂),Ω 7→ /A(B R; C; Γ (∆ � p(x̂)) (match p fail)

Persistent atomic propositions

The next 2 state transitions are used when the head of Ω contains a persistent atomic proposition
!p(x̂). They are identical to the previous 2 transitions but they deal with the persistent context Γ.

ΨImΓ ∆′→Ω′

A(B R; C; Γ; ∆; !p(x̂),Ω 7→
extend(Ψ,θ)ImΓ ∆′→Ω′⊗!p(x̂θ)

A(B R; [Γ′′; ∆; !p(x̂); Ω; extend(Ψ, θ)]
mΓ ∆′→Ω′

, C; Γ, p1,Γ
′′; ∆; Ω

(!p1,Γ
′′ ≺ !p(x̂) Γ � !p(x̂)) (match !p ok)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; !p(x̂),Ω 7→ /A(B R; C; Γ (Γ � !p(x̂)) (match !p fail)

Other propositions

Finally, we have the transitions that deconstruct the other LHS terms and a final transition to
initiate the RHS derivation.

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆;1,Ω 7→ ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; Ω (match 1)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆;X ⊗ Y,Ω 7→ ImΓ ∆′→Ω′

A(B R; C; Γ; ∆;X, Y,Ω (match ⊗)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; · 7→ y·;·∆′ Γ; ∆;B (match end)
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4.3.5 Backtracking

The backtracking state of the machine reads the top of the continuation stack C and restores the
matching process with a different candidate fact from the continuation frame. The state is written
as /A(B R; C; Γ, where:

A( B the rule being matched;

R next available rules if the current rule does not match; the rule continuation;

C the continuation stack for matching A;

Linear continuation frames

The next two state transitions handle linear continuation frames on the top of the continuation
stack. The first transition selects the next candidate fact p1 from the second argument of the
linear frame and updates the frame. Otherwise, if we have no more candidate facts, we pop the
continuation frame and backtrack to the remaining continuation stack.

/A(B R; (∆; p2,∆
′′; p; Ω)

mΓ ∆′→Ω′
, C; Γ 7→ ImΓ ∆′,p2→Ω′⊗p

A(B R; (∆, p2; ∆′′; p; Ω)
mΓ ∆′→Ω′

, C; Γ; ∆; Ω (next p)

/A(B R; (∆; ·; p; Ω)
mΓ ∆′→Ω′

, C; Γ 7→ /A(B R; C; Γ (next frame)

Persistent continuation frames

We also have the same two kinds of inference rules for persistent continuation frames.

/A(B R; [!p2,Γ
′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C; Γ 7→ ImΓ ∆′→Ω′⊗!p2

A(B R; [Γ′′; ∆; !p; Ω]
mΓ ∆′→Ω′

, C; Γ; ∆; Ω (next !p)

/A(B R; [·; ∆; !p; Ω]
mΓ ∆′→Ω′

, C; Γ 7→ /A(B R; C; Γ (next !frame)

Empty continuation stack

Finally, if the continuation stack is empty, we simply force execution to try the next inference
rule in Φ.

/A(B (∆; Φ); ·; Γ 7→ infer ∆; Φ; Γ (rule fail)
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4.3.6 Derivation
Once the list of terms Ω of the LHS is exhausted, we derive the rule’s RHS. The derivation state
simply iterates over B, the rule’s RHS, and derives terms into the corresponding new contexts.
The state is represented asyΓN ;∆N

Ξ Γ; ∆; Ω with the following meaning:

Γ set of persistent facts;

∆ multi-set of remaining linear facts;

Ξ multi-set of linear facts consumed up-to this point;

ΓN set of persistent facts derived;

∆N multi-set of linear facts derived;

Ω remaining terms to derive as an ordered list. We start with B if the original rule is A( B.

Atomic propositions

When deriving either p or !p we have the following two inference rules:

yΓ1;∆1

Ξ Γ; ∆; p,Ω 7→ yΓ1;∆1,p
Ξ Γ; ∆; Ω (new p)

yΓ1;∆1

Ξ Γ; ∆; !p,Ω 7→ yΓ1,!p;∆1

Ξ Γ; ∆; Ω (new !p)

RHS deconstruction

The following two inference rules deconstruct the RHS list Ω from terms created using either 1
or ⊗.

yΓ1;∆1

Ξ Γ; ∆;1,Ω 7→ yΓ1;∆1

Ξ Γ; ∆; Ω (new 1)

yΓ1;∆1

Ξ Γ; ∆;A⊗B,Ω 7→ yΓ1;∆1

Ξ Γ; ∆;A,B,Ω (new ⊗)

Aggregates

We also have a transition for aggregates. The aggregate starts with a set of values V̂ and an
accumulator initialized as ·. The second state initiates the matching process of the LHS A of the
aggregate (explained in the next section).

yΓ1;∆1

Ξ Γ; ∆;R(V̂ ,·;·)
agg ,Ω 7→ ΓN ;∆N

ΩI ;∆;Ξ I
mΓ ·→1

agg;· ·; ·; Γ; ∆;A

Π(agg)=∀v̂,Σ′ .(R
(v̂,Σ′)
agg (((λx.Cx)Σ′N(∀x̂,σ .(A(B⊗R

(v̂,σ::Σ′)
agg ))))

(new agg)
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Successful rule

Finally, if the ordered list Ω is exhausted, then the whole execution process is done. Note how
the output arguments match the input arguments of the derLLD judgment.

yΓ1;∆1

Ξ Γ; ∆; · 7→ 	 Ξ; Γ1; ∆1 (rule finished)

4.3.7 Aggregates
The most intricate part of the derivation process is processing comprehensions and aggregates.
For both of them, we need to perform as many derivations as the database allows, therefore
we need to deterministically check the contents of the database until no more derivations are
possible. The matching process is then similar to the process used for matching a rule’s LHS as
presented in Section 4.3.4, however we use two continuation stacks, C and P . In P , we put all
the initial persistent frames and in C we put the first linear frame and then everything else.

In order to reuse the stacks C and P , we need to update them by removing all the frames
in C pushed after the first linear continuation frame. If we tried to use those frames, we would
assumed that the linear facts used by the other frames were still in the database, but that is not
true because they have been consumed during the first application of the comprehension. For
example, if the LHS is !a(X) ⊗ b(X) ⊗ c(X) and the continuation stack has three frames (one
per fact), we cannot backtrack to the frame of c(X) because, at that point, the matching process
was assuming that the previous b(X) linear fact was still available. Moreover, we also need to
remove the consumed linear facts from the frames of b(X) and !a(X) in order to make the stack
fully consistent with the new database. We will see later on how to do that.

Example

As an example, consider the following snippet of code inspired in the PageRank program shown
in Fig. F.1:

update(A),
!numInbound(A, T)

-o [sum => V; B, W, Val | !edge(A, B), neighbor-pagerank(A, B, Val),
V = Val/float(T) -o neighbor-pagerank(A, B, Val) -> sum-ranks(A, V)].

Let’s assume that the rule above was successfully matched with A = 1 and T = 2 and the
database contains the following facts: !edge(1, 2), !edge(1, 3), neighbor-pagerank(1, 2,
0.5) and neighbor-pagerank(1, 3, 0.5). Figure 4.1 shows how the aggregate is computed
using the continuation stack. An initial frame is created for !edge(1, B) which includes two
edge facts and !edge(1, 2) is selected to continue the process. Since B = 2, the frame for
neighbor-pagerank(1, 2, Val) includes only neighbor-pagerank(1, 2, 0.5) which
completes the first application of the aggregate and the same linear fact is re-derived using the
first aggregate’s RHS. Computation then proceeds by backtracking to the first linear frame, the
frame of neighbor-pagerank(1, 2, Val), but there are no more available candidates, therefore
the frame is removed and the next candidate !edge(1, 3) of frame !edge(1, B) is selected.
Here, a frame is created for B = 3 with neighbor-pagerank(1, 3, 0.5) and the second

55



application of the aggregate is completed. The process backtracks again twice but now there are
no more candidates and the second aggregate’s RHS derives sum-ranks(1, 1.0) because V =
0.5 + 0.5, completing the aggregate computation.

!edge(1, 2)
!edge(1, 3)

neighbor-
pagerank(1, 2, 0.5)

!edge(1, 3)

neighbor-
pagerank(1, 3, 1.0)

Continuation Stack Continuation Stack

neighbor-pagerank(1, 2, 0.5)

*Empty*

neighbor-pagerank(1, 3, 0.5) sum-ranks(1, 1.0)

Continuation Stack

… backtrack

derive derive

derive

B = 2 B = 3

Val = 1.0
V = 0.5

Val = 1.0
V = 0.5

V = 1.0

!edge(1, 2)
!edge(1, 3)

*Empty*

Continuation Stack

backtrack backtrackB = 2

Figure 4.1: Generating the PageRank aggregate.

Matching

The matching state for aggregates is ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; Ω

ΩI ordered list of remaining terms of the rule’s RHS to be derived;

∆I multi-set of linear facts that were still available after matching the rule’s LHS and all the
previous aggregates. Note that ∆,Ξ = ∆I ;

Ξ multi-set of linear facts used during the matching process of the rule’s LHS and all the
previous aggregates;

Γ1 set of persistent facts derived up to this point in the rule’s RHS;

∆1 multi-set of linear facts derived up to this point in the rule’s RHS;

∆′ multi-set of linear facts consumed up to this point;

Ω′ terms matched using ∆′ up to this point;

agg aggregate that is being matched;

Σ the list of aggregated values;

C continuation stack that contains both linear and persistent frames. The first frame must be
linear;

P initial part of the continuation stack with only persistent frames;

∆ multi-set of linear facts remaining up to this point in the matching process;

Ω ordered list of terms that need to be matched for the comprehension to be applied.

Since aggregates accumulate values (from specific variables), we retrieved the value from the
Ψ context. Remember that Ψ is used for the quantification connectives in the sequent calculus
and in LLD is used to store current variable bindings.
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Linear atomic propositions

The following two transitions deal with the case when there is a linear atomic propositions in the
aggregates’ LHS.

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆, p1,∆

′′; p,Ω 7→
ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′,p→Ω′⊗p
agg;Σ

(∆, p1; ∆′′; p; Ω)
mΓ ∆′→Ω′

, C;P ; Γ; ∆,∆′′; Ω (agg match p ok)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; p,Ω 7→ ΓN ;∆N

ΩI ;∆I ;Ξ/agg;Σ
C;P ; Γ (agg match p fail)

Persistent atomic propositions

The transitions for dealing with persistent facts are similar to the previous ones.

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
·;P ; Γ, p1,Γ

′′; ∆; !p,Ω 7→
ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
·; [Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
,P ; Γ, p1,Γ

′′; ∆; Ω (agg match !p ok P)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ, p1,Γ

′′; ∆; !p,Ω 7→
ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
[Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C;P ; Γ, p1,Γ

′′; ∆; Ω (agg match !p ok C)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; !p,Ω 7→ ΓN ;∆N

ΩI ;∆I ;Ξ/agg;Σ
C;P ; Γ (agg match !p fail)

LHS Deconstruction

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆;X ⊗ Y,Ω 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆;X, Y,Ω (agg match ⊗)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆;1,Ω 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; Ω (agg match 1)
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Successful match

When the aggregate’s LHS finally matches, we retrieve the term for variable x (the aggregate
variable) and add it to the list Σ.

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; · 7→ ΓN ;∆N

ΩI ;∆;Ξ;∆′ ./agg;Σ
C;P ; Γ (agg match end)

Continuation stack update

As we said before, to update the continuation stacks, we need remove to all the frames except the
first linear frame and remove the consumed linear facts from the remaining frames so that they
are still valid for the next application of the aggregate. The judgment that updates the stack has
the form ΓN ;∆N

ΩI ;∆;Ξ;∆′ ./agg;Σ
C;P ; Γ, where:

ΩI ordered list of remaining terms of the rule’s RHS to be derived;

∆ multi-set of linear facts that were still available after matching the rule’s LHS and the
aggregate’s LHS;

Ξ multi-set of linear facts used during the matching process of the rule’s LHS and all the
previous aggregates;

∆′ multi-set of linear facts consumed by the aggregate’s LHS;

ΓN set of persistent facts derived by the rule’s RHS and all the previous aggregates;

∆N multi-set of linear facts derived by the rule’s RHS and all the previous aggregates;

agg the current aggregate;

Σ list of accumulated values;

C,P continuation stacks for the comprehension;

Γ set of usable persistent facts.

Remove linear continuation frames

To remove all linear continuation frames except the first one, we simply go through all the frames
in the stack C until only one frame remains. This last frame and stack P are then updated by
removing ∆′ from its contexts.

ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

, f, C;P ; Γ 7→ ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

f, C;P ; Γ (agg fix rec)

ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

f ;P ; Γ 7→ ΩI ;∆;Ξ;∆′ yΓN ;∆N
agg;V ::Σ f

′;P ′; Γ;B{Ψ(x̂), V/x̂, σ}
Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,σ::Σ′)
agg ))))

f ′ = remove(f,∆′)

P ′ = remove(P ,∆′)
V = Ψ(σ)

(agg fix end1)
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ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

·;P ; Γ 7→ ΩI ;∆;Ξ,∆′ yΓN1;∆N1

agg;V ::Σ ·;P
′; Γ;B{Ψ(x̂), V/x̂, σ}

Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)
agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,σ::Σ′)

agg ))))

P ′ = remove(P ,∆′)
V = Ψ(σ)

(agg fix end2)

Aggregate backtracking

If the aggregate match fails, we need to backtrack to the next candidate fact. The backtracking
state has the form ΓN ;∆N

ΩI ;∆I ;Ξ/agg;Σ
C;P ; Γ, where:

ΩI ordered list of remaining terms of the rule’s RHS to be derived;

∆I multi-set of linear facts that were still available after matching the rule’s LHS and the
aggregate’s LHS;

Ξ multi-set of linear facts used during the matching process of the rule’s LHS and all the
previous aggregates;

ΓN set of persistent facts derived by the rule’s RHS and all the previous aggregates;

∆N multi-set of linear facts derived by the rule’s RHS and all the previous aggregates;

agg the current aggregate;

Σ list of accumulated values.

C,P continuation stacks for the comprehension;

Γ set of usable persistent facts.

Using the C stack The following 4 state transitions use the C stack, the stack where the first
continuation frame is linear, to perform backtracking.

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

(∆; p1,∆
′′; p; Ω)

mΓ ∆′→Ω′
, C;P ; Γ 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′,p1→Ω′⊗p
agg;Σ

(∆, p1; ∆′′; p; Ω)
mΓ ∆′→Ω′

, C;P ; Γ; ∆; p,Ω (agg next p C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

[p1,Γ
′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C;P ; Γ 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
[Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C;P ; Γ; ∆; p,Ω (agg next !p C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

(∆; ·; p; Ω)
mΓ ∆′→Ω′

, C;P ; Γ 7→ ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

C;P ; Γ (agg next frame C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

[·; ∆; !p; Ω]
mΓ ∆′→Ω′

, C;P ; Γ 7→ ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

C;P ; Γ (agg next !frame C)
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Using the P stack The following 2 state transitions rules use the P stack instead, the stack
where all continuation frames are persistent.

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·; [p1,Γ
′′; ∆; !p; Ω]

mΓ ∆′→Ω′
,P ; Γ 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
·; [Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
,P ; Γ; ∆; p,Ω (agg next !p P)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·; [·; ∆; !p; Ω]
mΓ ∆′→Ω′

,P ; Γ 7→ ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·;P ; Γ (agg next !frame P)

Aggregate done If both the C and P stacks are empty, backtracking is impossible and the
aggregate is done. The final aggregate’s RHS is then derived along with the rest of the rule’s
RHS.

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·; ·; Γ 7→ yΓN1;∆N1

Ξ Γ; ∆I ; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN

Π(agg)=∀v̂,Σ′ .(R
(v̂,Σ′)
agg (((λx.Cx)Σ′N(∀x̂,σ .(A(B⊗R

(v̂,σ::Σ′)
agg ))))

(agg end)

Aggregate Derivation

After updating the continuation stacks, the first aggregate’s RHS is derived. The derivation state
has the form ΩI ;∆;Ξ yΓN ;∆N

agg;Σ C;P ; Γ; Ω, where:

ΩI ordered list of remaining terms of the rule’s RHS to be derived;

∆ multi-set of remaining linear facts that can be used for the next aggregate applications.

Ξ multi-set of linear facts consumed both by the rule’s LHS and previous aggregate applica-
tions;

ΓN set of persistent facts derived by the rule’s RHS, previous aggregates and current deriva-
tion;

∆N multi-set of linear facts derived by the rule’s RHS, previous aggregates and current deriva-
tion;

agg current aggregate symbol;

Σ accumulated list of values of the aggregate;

C,P new continuation stacks;

Γ set of persistent facts;

Ω ordered list of terms to derive.

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ; p,Ω 7→ ΩI ;∆;Ξ yΓN ;∆N ,p

agg;Σ C;P ; Γ; Ω (agg new p)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ; !p,Ω 7→ ΩI ;∆;Ξ yΓN ,p;∆N

agg;Σ C;P ; Γ; Ω (agg new !p)
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ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ;X ⊗ Y,Ω 7→ ΩI ;∆;Ξ yΓN ,p;∆N

agg;Σ C;P ; Γ;X, Y,Ω (agg new ⊗)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ;1,Ω 7→ ΩI ;∆;Ξ yΓN ,p;∆N

agg;Σ C;P ; Γ; Ω (agg new 1)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ; · 7→ ΓN ;∆N

ΩI ;∆;Ξ/agg;Σ
C;P ; Γ (agg next)

This completes the specification of the LLD semantics.

4.3.8 State well-formedness
Given all the state transitions show above, we now define what it means for a given machine state
to be well-formed.

Definition 4.3.4 (Well-formed LHS match)
ΨImΓ ∆′→Ω′

A(B R; C; Γ; ∆; Ω is well-formed in relation to a triplet A; Γ; ∆I iff:
• ∆,∆′ = ∆I
• Ω′,Ω ≡Ψ A;
• mΓ ∆′ → Ω is valid;
• C is well-formed in relation to A; Γ; ∆I and:

If C = ·
Ω ≡Ψ A.
If C = (∆a, p1; ∆b; p; Ωa; Ψ)

mΓ ∆c→Ωb

, C ′:

− Ω′ ≡Ψ Ω;
− ∆ = ∆a,∆b;
− ∆′ = ∆c, p1.
If C = [Γ′′; ∆a; !p; Ωa; Ψ]

mΓ ∆a→Ωb

, C ′:

− Ω ≡Ψ Ωa;
− ∆′ = ∆a;
− ∆ = ∆a.

Definition 4.3.5 (Well-formed backtracking)
/A(B R; C; Γ is well-formed in relation to a triplet A; Γ; ∆I iff C is well-formed in relation
to A; Γ; ∆I .
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Definition 4.3.6 (Well-formed aggregate match)

The matching state ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; Ω is well-formed in relation to a triplet

A; Γ; ∆I iff:
• P is composed solely of persistent frames;
• C is composed of either linear or persistent frames, but the first frame is linear;
• mΓ ∆′ → Ω is valid;
• ∆,∆′ = ∆I ;
• Ω,Ω′ ≡Ψ A;
• C andP are well-formed in relation toA; Γ; ∆I and follow the same rules presented before

in ”Well-formed LHS match” as a stack C,P .

Definition 4.3.7 (Well-formed aggregate backtracking)
ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

C;P ; Γ is well-formed in relation to a triplet A; Γ; ∆I iff:

• P is composed solely of persistent frames.
• C is composed of either linear or persistent frames, but the first frame is linear.
• C and P are well-formed in relation to A; Γ; ∆I .

Definition 4.3.8 (Well-formed stack update)
ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

C;P ; Γ is well-formed in relation to a triplet A; Γ; ∆I iff:

• P is composed solely of persistent frames.
• C is composed of either linear or persistent frames, but the first frame is linear.
• C and P are well-formed in relation to A; Γ; ∆I .
• ∆,∆′ = ∆I

Definition 4.3.9 (Well-formed aggregate derivation)
ΩI ;∆;Ξ yΓN ;∆N

agg;Σ C;P ; Γ; Ω is well-formed in relation to a triplet A; Γ; ∆I iff:
• P is composed solely of persistent frames.
• C is empty or has a single linear frame;
• C and P are well-formed in relation to A; Γ; ∆I .

For the theorems that follow, we always assume that the states are well-formed in relation to
their main contexts and matching LHS, be it either a rule LHS or an aggregate LHS.
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4.4 Soundness Proof
Now that we have presented both the HLD and LLD semantics, we are in position to start building
our soundness theorem. The soundness theorem proves that if a rule was successfully derived in
the LLD semantics then it can also be derived in the HLD semantics. Since the HLD semantics
are so close to linear logic, we prove that our language has a determined, correct, proof search
behavior when executing programs. However, the completeness theorem cannot be proven since
LLD lacks the non-determinism inherent in HLD.

First and foremost, we need to prove some auxiliary theorems and definitions that will be
used during the soundness theorem.

4.4.1 Soundness Of Matching
The soundness theorem will be proven into two main steps. First, we prove that performing a
rule match at LLD is sound in relation to HLD and then we prove that the derivation of the rule’s
RHS is also sound.

In order to prove the soundness of matching, we want to reconstitute a valid match mΓ ∆→
A in HLD from machine steps in LLD. Our machine specification already includes a built-in
mΓ ∆ → A judgment that can be used to prove soundness immediately. However, we need to
prove that every state transition preserves the well-formedness of the machine from the previous
definitions.

Theorem 4.4.1 (Rule transitions preserve well-formedness)
Given a ruleA( B, consider a triplet T = A; Γ; ∆N . If a state s1 is well-formed in relation
to T and s1 7→ s2 then s2 is also well-formed.

Proof. Case by case analysis.

• match p ok: simple manipulation of multi-set equality and use of equivalence rules.
• match p fail: trivial.
• match !p ok: multi-set manipulation and use of equivalence rules.
• match !p fail: trivial.
• match 1: use of term equivalence rules.
• match !: use of term equivalence rules.
• next p: simple multi-set manipulation.
• next frame: trivial.
• next !frame: trivial.

Given this result, we now need to prove that from an initial matching state, we end up with
a final matching state. The final matching state will include the soundness result since all state
transitions preserve well-formedness. However, LLD may fail during matching, therefore the
match lemma needs to handle unsuccessful matches. In order to be able to use induction, we
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must assume a general matching state that already contains some continuation frames in stack
C. The lemma also needs to relate the matching state with the backtracking state since there is
a need to backtrack during the matching process. Apart from an unsuccessful match, we deal
with two situations during a successful match: (1) we succeed without needing to backtrack to a
frame in stack C or (2) we need to backtrack to a frame in C. The complete lemma is stated and
proven below.

Lemma 4.4.1 (LHS match result)
Given a rule A( H , consider a triplet T = A; Γ; ∆N and a context ∆N = ∆1,∆2,Ξ.
If s1 = ΨImΓ ∆′→Ω′Ψ

A(B R; C; Γ; ∆1,∆2; Ω is well-formed in relation to T and s1 7→∗ s2

then:
• Match succeeds with no backtracking to frames of stack C:

s2 = extend(Ψ,Ψ2)ImΓ ∆′,∆2→Ω′Ψ⊗split(Ω)Ψ2

A(B R; C ′′, C; Γ; ∆1; ·
• Match fails:

s2 = /A(B R; ·; Γ
• Match succeeds with backtracking to a linear frame:

s2 = extend(Ψf ,Ψ2)I
mΓ ∆′f ,p2,∆′′f→ΩfΨf⊗(p⊗split(Ω′f ))Ψ2

A(B R; C ′′′, f ′, C ′′; Γ; ∆c; ·
C = C ′, f, C ′′
f = (∆a; ∆b1 , p2,∆b2 ; p; Ωf ; Ψf )

mΓ ∆′f→Ω′f

turns into f ′ = (∆a,∆b1 , p2; ∆b2 ; p; Ωf ; Ψf )
mΓ ∆′f→Ω′f

• Match succeeds with backtracking to a persistent frame:

s2 = extend(Ψf ,Ψ2)I
mΓ ∆′f ,∆c2→ΩfΨf⊗(!p⊗split(Ω′f ))Ψ2

A(B R; C ′′′, f ′, C ′′; Γ; ∆c1 ; ·
C = C ′, f, C ′′
f = [Γ1, p2,Γ2; ∆c1 ,∆c2 ; !p; Ωf ; Ψf ]

mΓ ∆′f→Ω′f

turns into f ′ = [Γ2; ∆c1 ,∆c2 ; !p; Ωf ; Ψf ]
mΓ ∆′f→Ω′f

If s1 = /A(B R; C; Γ is well-formed in relation to T and s1 7→∗ s2 then either:
• Match fails:

s2 = /A(B R; ·; Γ
• Match succeeds with backtracking to a linear frame:

s2 = extend(Ψf ,Ψ2)I
mΓ ∆′f ,p2,∆′′f→ΩfΨf⊗(p⊗split(Ω′f ))Ψ2

A(B R; C ′′′, f ′, C ′′; Γ; ∆c; ·
C = C ′, f, C ′′
f = (∆a; ∆b1 , p2,∆b2 ; p; Ωf ; Ψf )

mΓ ∆′f→Ω′f

turns into f ′ = (∆a,∆b1 , p2; ∆b2 ; p; Ωf ; Ψf )
mΓ ∆′f→Ω′f

• Match succeeds with backtracking to a persistent frame:

s2 = extend(Ψf ,Ψ2)I
mΓ ∆′f ,∆c2→ΩfΨf⊗(!p⊗split(Ω′f ))Ψ2

A(B R; C ′′′, f ′, C ′′; Γ; ∆c1 ; ·
C = C ′, f, C ′′
f = [Γ1, p2,Γ2; ∆c1 ,∆c2 ; !p; Ωf ; Ψf ]

mΓ ∆′f→Ω′f

turns into f ′ = [Γ2; ∆c1 ,∆c2 ; !p; Ωf ; Ψf ]
mΓ ∆′f→Ω′f
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Proof. Proof by lexicographic induction on the state transitions. First on the size of Ω and then
on the size of the second argument of the linear frame or on the first argument of the linear frame
and then on the size of the stack C. Sub-cases:

• match p ok
Induction on the state with a new frame (Ω is smaller). Trivial if match fails, otherwise it
succeeds by adding new frames (including the new frame) or by backtracking.

• match p fail
State gets smaller (see next).

• match !p ok
Use the strategy used for match p ok.

• match !p fail: state gets smaller.
• match 1: trivial because split removes 1.
• match !: same.
• next p

Frame gets smaller so we can use the induction hypothesis:
Match fails: trivial.
Match succeeds with no backtracking: the frame that was updated is the successful frame
to backtrack to.
Match succeeds with backtracking: the frame f ∈ C is the frame we need.

• next frame: stack gets smaller.
• next !frame: stack gets smaller (see above).

For the induction hypothesis to be applicable in Lemma 4.4.1 there must be a relation between
the machine states. We can define a lexicographic ordering s1 ≺ s2, meaning that s1 has a smaller
number of remaining steps than state s2. The specific ordering is as follows:

1. /A(B R; C; Γ ≺ /A(B R; C ′, C; Γ

The continuation must use the top of the stack C ′ before using C;

2. /A(B R; (∆,∆1; ∆2; p; Ω)
mΓ ∆f→Ωf

, C; Γ ≺ /A(B R; (∆; ∆1,∆2; p; Ω)
mΓ ∆f→Ωf

, C; Γ

A continuation frame with more candidates has more steps to do than a frame with less can-
didates;

3. /A(B R; [Γ1; ∆; !p; Ω]
mΓ ∆f→Ωf

; Γ ≺ /A(B R; [Γ1,Γ2; ∆; !p; Ω]
mΓ ∆f→Ωf

; Γ

Same as the previous one;

4. /A(B R; C; Γ ≺ ImΓ ∆′→Ω′
A(B R; C ′, C; Γ; ∆; Ω

5. ImΓ ∆′→Ω′
A(B R; C; Γ; ∆; Ω ≺ /A(B R; C ′, C; Γ

6. ImΓ ∆′1→Ω′1
A(B R; C ′, C; Γ; ∆1; Ω1 ≺ I

mΓ ∆′2→Ω′2
A(B R; C; Γ; ∆2; Ω2

Adding continuation frames to the stack makes the proof smaller as long as Ω is also smaller;
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7. ImΓ ∆′1→Ω′1
A(B R; C ′, (∆f ,∆f1 ; ∆f2 ; p; Ωf )

mΓ ∆′f→Ω′f

, C; Γ; ∆1; Ω1

≺ ImΓ ∆′2→Ω′2
A(B R; C ′′, (∆f ; ∆f1 ,∆f2 ; p; Ωf )

mΓ ∆′f→Ω′f

, C; Γ; ∆2; Ω2

8. ImΓ ∆′1→Ω′1
A(B R; C ′, [Γ1; ∆f ; !p; Ωf ]

mΓ ∆f→Ωf

, C; Γ; ∆1; Ω1

≺ ImΓ ∆′2→Ω′2
A(B R; C ′′, [Γ1,Γ2; ∆f ; !p; Ωf ]

mΓ ∆′f→Ω′f

, C; Γ; ∆2; Ω2

4.4.2 Soundness Of Derivation
Proving that the derivation of the rule’s RHS is sound is trivial except for comprehensions and
aggregates. LLD deterministically computes the number of available aggregates to apply while
HLD ”guesses” the number of required derivations. In the next two sections, we show how to
prove the soundness of aggregates. The strategy for proving both is identical due to their inherent
similarities.

4.4.3 Aggregate Soundness
The proof that deriving an aggregate in LLD is sound in relation to HLD is built from four results:
(1) proving that matching the aggregate’s LHS is sound in relation to HLD; (2) proving that
updating the continuation stacks makes them suitable for use in the next aggregate applications;
(3) proving that deriving the aggregate’s RHS is sound in relation to HLD; (4) proving that we
can apply as many aggregates as the database allows.

Lemma 4.4.2 (Aggregate LHS match)
Consider an aggregate agg, where Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A (
B ⊗R(v̂,σ::Σ′)

agg )))), a triplet T = A; Γ; ∆I and a context ∆I = ∆1,∆2,∆
′.

If s1 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆1,∆2; Ω is well-formed in relation to T and s1 7→∗

s2 then either:
• Match succeeds with no backtracking to frames of stack C or P (C 6= ·):

s2 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′,∆2→Ω′⊗split(Ω)

agg;Σ
C ′, C;P ′,P ; Γ; ∆1; ·

• Match fails:
s2 =yΓN ;∆N

Ξ Γ; ∆I ; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN

• Match succeeds with backtracking to a linear continuation frame in stack C (C 6= ·):

s2 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′f ,p2,∆′′→Ωf⊗p⊗split(Ω′f )

agg;Σ
C ′′′, f ′, C ′′;P ; Γ; ∆c; ·

C = C ′, f, C ′′
f = (∆a; ∆b1 , p2,∆b2 ; p; Ωf )

mΓ ∆′f→Ω′f

turns into f ′ = (∆a,∆b1 , p2; ∆b2 ; p; Ωf )
mΓ ∆′f→Ω′f
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• Match succeeds with backtracking to a persistent continuation frame in stack C (C 6= ·):
s2 = ΓN ;∆N

ΩI ;∆I ;Ξ I
mΓ ∆′f ,∆c2 ,→Ωf⊗!p⊗split(Ω′f )

agg;Σ
C ′′′, f ′, C ′′;P ; Γ; ∆c1 ; ·

C = C ′, f, C ′′
f = [Γ1, p2,Γ2; ∆c1 ,∆c2 ; !p; Ωf ]

mΓ ∆′f→Ω′f

turns into f ′ = [Γ2; ∆c1 ,∆c2 ; !p; Ωf ]
mΓ ∆′f→Ω′f

• Match succeeds with backtracking to a persistent continuation frame in stack P (C = ·):
s2 = ΓN ;∆N

ΩI ;∆I ;Ξ I
mΓ ∆′f ,∆c2 ,→Ωf⊗!p⊗split(Ω′f )

agg;Σ
C ′;P ′′′, f ′,P ′′; Γ; ∆c1 ; ·

P = P ′, f,P ′′
f = [Γ1, p2,Γ2; ∆c1 ,∆c2 ; !p; Ωf ]

mΓ ∆′f→Ω′f

turns into f ′ = [Γ2; ∆c1 ,∆c2 ; !p; Ωf ]
mΓ ∆′f→Ω′f

If ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

C;P ; Γ is well-formed in relation to T then either:

• Match fails:
s2 =yΓN ;∆N

Ξ Γ; ∆I ; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN

• Match succeeds with backtracking to a linear continuation frame in stack C (C 6= ·):

s2 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′f ,p2,∆′′→Ωf⊗p⊗split(Ω′f )

agg;Σ
C ′′′, f ′, C ′′;P ; Γ; ∆c; ·

C = C ′, f, C ′′
f = (∆a; ∆b1 , p2,∆b2 ; p; Ωf )

mΓ ∆′f→Ω′f

turns into f ′ = (∆a,∆b1 , p2; ∆b2 ; p; Ωf )
mΓ ∆′f→Ω′f

• Match succeeds with backtracking to a persistent continuation frame in stack C (C 6= ·):
s2 = ΓN ;∆N

ΩI ;∆I ;Ξ I
mΓ ∆′f ,∆c2 ,→Ωf⊗!p⊗split(Ω′f )

agg;Σ
C ′′′, f ′, C ′′;P ; Γ; ∆c1 ; ·

C = C ′, f, C ′′
f = [Γ1, p2,Γ2; ∆c1 ,∆c2 ; !p; Ωf ]

mΓ ∆′f→Ω′f

turns into f ′ = [Γ2; ∆c1 ,∆c2 ; !p; Ωf ]
mΓ ∆′f→Ω′f

• Match succeeds with backtracking to a persistent continuation frame in stack P (C = ·):
s2 = ΓN ;∆N

ΩI ;∆I ;Ξ I
mΓ ∆′f ,∆c2 ,→Ωf⊗!p⊗split(Ω′f )

agg;Σ
C ′;P ′′′, f ′,P ′′; Γ; ∆c1 ; ·

P = P ′, f,P ′′
f = [Γ1, p2,Γ2; ∆c1 ,∆c2 ; !p; Ωf ]

mΓ ∆′f→Ω′f

turns into f ′ = [Γ2; ∆c1 ,∆c2 ; !p; Ωf ]
mΓ ∆′f→Ω′f

We prove this particular lemma by reapplying the strategy used in Lemma 4.4.13. Next, we
need to prove that, when matching succeeds, the continuation stack is corrected for the next
application of the aggregate. Note that the aggregate value is appended to Σ after the stack is
corrected.

Theorem 4.4.2 (From update to derivation)
Consider an aggregate agg, where Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A (

3We have omitted the Ψ context for brevity.
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B ⊗R(v̂,σ::Σ′)
agg )))), a triplet T = A; Γ; ∆I and that ∆I = ∆,∆′. A well-formed stack update

ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

C;P ; Γ implies ΩI ;∆;Ξ,∆′ yΓN ;∆N
agg;V ::Σ f

′;P ′; Γ;B{Ψ(x̂), V/x̂, σ}, where:

• If C = · then C ′ = ·
• If C = C ′′, (∆a; ∆b; p; Ω)

mΓ ·→Ω′
then C ′ = (∆a −∆′; ∆b −∆′; p; Ω)

mΓ ·→Ω′

• P ′ is the transformation of stackP , where for every frame f ∈ P of the form [Γ′; ∆I ; !p; Ω]
mΓ ·→Ω′

will turn into f ′ = [Γ′; ∆I −∆′; !p; Ω]
mΓ ·→Ω′

Proof. Use induction on the size of the stack C.

Corollary 4.4.1 (Match to derivation)
Consider an aggregate agg, where Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗
R(v̂,σ::Σ′)
agg )))), a triplet T = A; Γ; ∆I and that ∆I = ∆,∆′.

A well-formed ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; · implies ΩI ;∆;Ξ,∆′ yΓN ;∆N

agg;V ::Σ f
′;P ′; Γ;B{Ψ(x̂), V/x̂, σ},

where:

• If C = · then C ′ = ·
• If C = C ′′, (∆a; ∆b; p; Ω)

mΓ ·→Ω′
then C ′ = (∆a −∆′; ∆b −∆′; p; Ω)

mΓ ·→Ω′

• P ′ is the transformation of stack P , where for every frame f ∈ P of the form [Γ′; ∆I ; !p; Ω]
mΓ ·→Ω′

will turn into f ′ = [Γ′; ∆I −∆′; !p; Ω]
mΓ ·→Ω′

Proof. Invert the assumption and then apply Theorem 4.4.2.

Aggregate derivation We have just seen that after a single aggregate application, we add a
value V to the Σ context and that the continuation stacks are now valid. Now, we need to prove
that deriving the aggregate’s RHS is sound in relation to HLD by using the new stacks.

Theorem 4.4.3 (Aggregate derivation soundness)
If ΩI ;∆I ;ΞI y

ΓN ;∆N
agg;Σ C;P ; Γ; Ω1, . . . ,Ωn then:

• ΩI ;∆I ;ΞI y
ΓN ,Γ1,...,Γn;∆N ,∆1,...,∆n

agg;Σ C;P ; Γ; ·
• If derΓ;Π∆I ; ΞI ; ΓN ,Γ1, . . . ,Γn; ∆N ,∆1, . . . ,∆n; Ωx → O then
derΓ;Π∆I ; ΞI ; ΓN ; ∆N ; Ω1, . . . ,Ωn,Ωx → O

Proof. Straightforward induction on Ω1, . . . ,Ωn.
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Multiple aggregate derivation We now prove that it is possible to apply an aggregate several
times in order to a get multiple values (one per application). In turn, we also conclude important
results for the soundness of the aggregate computation mechanism.

Theorem 4.4.4 (Multiple aggregate derivation)
Consider an aggregate agg, where Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A (
B ⊗R(v̂,σ::Σ′)

agg )))), and a triplet T = A; Γ; ∆I . Assume that there exists n ≥ 0 applications
of agg where the ith application is related to the following information:
∆i : context of derived linear facts;
Γi : context of derived persistent facts;
Ξi : context of consumed linear facts;
Vi : a value representing the aggregate application;
Ψi : context representing new variable bindings for the aggregate.
Since each application consumes Ξi then the initial context ∆I = ∆,Ξ1, . . . ,Ξn. We now
define the two main implications of the theorem.
• Assume that ∆I = ∆a,∆b, ∆b = ∆′b, p1 and there is a frame f = (∆a, p1; ∆′b; p; Ω)

mΓ ·→Ω′f

If s1 = ΓN ;∆N
ΩI ;∆,Ξ1,...,Ξn;Ξ I

mΓ p1→Ω′f⊗p
agg;Σ

f ;P ; Γ; ∆a,∆
′
b; Ω (well-formed in relation to T ) and

s1 7→∗ s2 then:

n values Vi (Σ′ = Vn :: · · · :: V1 :: Σ)
n aggregate applications are derived:
s2 =yΓN ,Γ1,...,Γn;∆N ,∆1,...,∆n

Ξ,Ξ1,...,Ξn
Γ; ∆; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩI

n soundness proofs for the n aggregate matches:
− mΓ Ξ1 → A

− . . .

− mΓ Ξn → A

n derivation implications for HLD:
If derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi; ∆N ,∆1, . . . ,∆i; Ωx → O then
derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi−1; ∆N ,∆1, . . . ,∆i−1;B,Ωx → O

• Assume that there is a frame f = [Γ′; ∆I ; !p; Ω]
mΓ ·→Ωf

.

If s1 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ·→!p⊗Ωf

agg;Σ
·; f,P ; Γ; ∆I ; Ω (well-formed in relation to T ) and s1 7→∗

s2 then:

n values Vi (Σ′ = Vn :: · · · :: V1 :: Σ)
n aggregate applications are derived:
s2 =yΓN ,Γ1,...,Γn;∆N ,∆1,...,∆n

Ξ,Ξ1,...,Ξn
Γ; ∆; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩI

n soundness proofs for the n aggregate matches:
− mΓ Ξ1 → A

− . . .
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− mΓ Ξn → A

n derivation implications for HLD:
If derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi; ∆N ,∆1, . . . ,∆i; Ωx → O then
derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi−1; ∆N ,∆1, . . . ,∆i−1;B,Ωx → O

Proof. By mutual induction, first on either the size of ∆′b (second argument of the linear con-
tinuation frame) or Γ′ (second argument of the persistent frame in P) and then on the size of
C,P . We only show how to prove the first implication since the second implication is proven in
a similar way.

ΓN ;∆N
ΩI ;∆,Ξ1,...,Ξn;Ξ I

mΓ p1→Ω′f⊗p
agg;Σ

f ;P ; Γ; ∆a,∆
′
b; Ω 7→∗ s2 (1) assumption

By applying Lemma 4.4.2 to (1), we get:

• Failure:
s2 =yΓN ;∆N

Ξ Γ; ∆I ; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN (2) from lemma, thus n = 0

• Success with no backtracking to frames of stack C or P:

s2 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ p1,Ξ′1→Ω′f⊗p⊗split(Ω)

agg;Σ
C ′, f ;P ; Γ; ∆,Ξ2, . . . ,Ξn; · (2) from lemma

Ξ1 = Ξ′1, p1 (3) by definition

A ≡Ψ Ω′f ⊗ p⊗ split(Ω) (4) by well-formedness
mΓ Ξ1 → A (5) from match equivalence theorem and split equivalence on (4)

f = (∆a, p1; ∆′b; p; Ω)
mΓ ·→Ω′f

(6) definition

Now, we apply Corollary 4.4.1 on (2)

f ′ = (∆a, p1 − Ξ1; ∆b − Ξ1; p; Ω)
mΓ ·→Ω′f

(7) from the Corollary

ΩI ;∆,Ξ2,...,Ξn;Ξ,Ξ1 y
ΓN ;∆N
agg;V1::Σ f

′;P ′; Γ;B{Ψ(x̂), V/x̂, σ} . . . (8) from the Corollary

ΩI ;∆,Ξ2,...,Ξn;Ξ,Ξ1 y
ΓN ,Γ1;∆N ,∆1

agg;Σ f ′;P ′; Γ; ·
. . . (9) applying Theorem 4.4.3 on (8)
If derΓ;Π∆,Ξ2, . . . ,Ξn; Ξ,Ξ1; ΓN ,Γ1; ∆N ,∆1; Ωx → O then
derΓ;Π∆,Ξ2, . . . ,Ξn; Ξ,Ξ1; ΓN ; ∆N ;B{Ψ(x̂), V/x̂, σ},Ωx → O (10) from Theorem 4.4.3 on
(8)

ΓN ;∆N
ΩI ;∆,Ξ2,...,Ξn;Ξ/agg;V1::Σ

f ′;P ′; Γ (11) next state of (9)

By executing the next transition on (11) we either fail because there are no more candidates or
no more frames and thus n = 1 or we have a new match from which we can apply the inductive
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hypothesis (smaller number of candidates and/or frames) to get the remaining n− 1 aggregate
values.

• Success with backtracking to the linear continuation frame of stack C:

s2 = ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′f ,p2,Ξ′1→Ω′f⊗p⊗split(Ω)

agg;Σ
C ′, f ′;P ; Γ; ∆,Ξ2, . . . ,Ξn; · (2) from lemma

Ξ1 = ∆′f , p2,Ξ
′
1 (3) by definition

A ≡Ψ Ω′f ⊗ p⊗ split(Ω) (4) by well-formedness
mΓ Ξ1 → A (5) from match equivalence theorem and split equivalence on (4)

f = (∆a, p1; ∆′′′b , p2,∆
′′
b ; p; Ω)

mΓ ·→Ω′f

(6) frame to backtrack to

turns into f ′ = (∆a, p1,∆
′′′
b , p2; ∆′′b ; p; Ω)

mΓ ·→Ω′f

(4) resulting frame

Use the same approach as the case with no backtracking.
• Success with backtracking to a persistent continuation frame of stack P:

Use the same approach as before.

This last theorem proves that from a certain initial continuation stack, we are able to apply
the aggregate multiple times (until the stack is exhausted). The results of the theorem allows us
to rebuild the proof tree in HLD since we get the HLD matching and derivation propositions.
What remains to be done is to prove that we do the same for an empty continuation stack.

Lemma 4.4.3 (All aggregates)
Consider an aggregate agg, where Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A (
B ⊗R(v̂,σ::Σ′)

agg )))), and a triplet T = A; Γ; ∆I . Assume that there exists n ≥ 0 applications
of agg where the ith application is related to the following information:
∆i : context of derived linear facts;
Γi : context of derived persistent facts;
Ξi : context of consumed linear facts;
Vi : a value representing the aggregate application;
Ψi : context representing new variable bindings for the aggregate.
Since each application consumes Ξi then the initial context ∆I = ∆,Ξ1, . . . ,Ξn.

If s1 = ΓN ;∆N
ΩI ;∆,Ξ1,...,Ξn;Ξ I

mΓ ·→1

agg;· ·; ·; Γ; ∆,Ξ1, . . . ,Ξn;A (well-formed in relation to T ) and
s1 7→∗ s2 then:
• n values Vi (Σ′ = Vn :: · · · :: V1 :: Σ)
• n aggregate applications are derived:
s2 =yΓN ,Γ1,...,Γn;∆N ,∆1,...,∆n

Ξ,Ξ1,...,Ξn
Γ; ∆; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩI

• n soundness proofs for the n aggregate matches:
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mΓ Ξ1 → A

. . .

mΓ Ξn → A
• n derivation implications for HLD:

If derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi; ∆N ,∆1, . . . ,∆i; Ωx → O then
derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi−1; ∆N ,∆1, . . . ,∆i−1;B,Ωx → O

Proof. Apply Lemma 4.4.2 to get two sub-cases:

• Match fails:
s2 =yΓN ;∆N

Ξ Γ; ∆I ; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN (2) from lemma, thus n = 0

• Match succeeds:
s2 = ΓN ;∆N

ΩI ;∆I ;Ξ I
mΓ Ξ1→1⊗split(A)

agg;· C;P ; Γ; ∆,Ξ2, . . . ,Ξn; · (2) from lemma
A ≡Ψ 1⊗ split(Ω) (3) by well-formedness
mΓ Ξ1 → A (4) from match equivalence theorem and split equivalence on (4)

Now, we apply Corollary 4.4.1 on (2)

ΩI ;∆,Ξ2,...,Ξn;Ξ,Ξ1 y
ΓN ;∆N
agg;V1::· f

′;P ′; Γ;B{Ψ(x̂), V/x̂, σ} . . . (5)

ΩI ;∆,Ξ2,...,Ξn;Ξ,Ξ1 y
ΓN ,Γ1;∆N ,∆1

agg;V1::· f ′;P ′; Γ; · (6) applying Theorem 4.4.3 on (5)
If derΓ;Π∆,Ξ2, . . . ,Ξn; Ξ,Ξ1; ΓN ,Γ1; ∆N ,∆1; Ωx → O then
derΓ;Π∆,Ξ2, . . . ,Ξn; Ξ,Ξ1; ΓN ; ∆N ;B{Ψ(x̂), V/x̂, σ},Ωx → O (7) from Theorem 4.4.3 on
(5)

ΓN ;∆N
ΩI ;∆,Ξ2,...,Ξn;Ξ/agg;V1::· f

′;P ′; Γ (8) next state of (6)

When executing the next transition of state (6) we either get n = 1 application of the aggregate
or we apply Theorem 4.4.4 to get the remaining n− 1 applications.

4.4.4 Soundness Of Derivation
We are finally ready to prove that the derivation of the rule’s RHS is sound in relation to HLD.

Lemma 4.4.4 (RHS derivation soundness)
If s1 =yΓN ;∆N

Ξ Γ; ∆I ; Ω then s1 7→∗ 	 Ξ,Ξ∗; ΓN ,Γ
∗; ∆N ,∆

∗ and
derΓ;Π∆I ; Ξ; ΓN ; ∆N ;A( B,Ω→ Ξ,Ξ∗; ΓN ,Γ

∗; ∆N ,∆
∗
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Proof. Induction on Ω. Most of the sub-cases can be proven using the induction hypothesis or by
straightforward rule inference. The sub-case for aggregates is more complicated and is proved
below.

Aggregates Apply Lemma 4.4.3 on the assumption to get n applications of the aggregate.
Assume that ∆I = ∆,Ξ1, . . . ,Ξn, where Ξi are the facts consumed and Γi,∆i the facts derived
by the ith application. The lemma proves the following:

• n values Σ = Vn :: · · · :: V1 :: ·
• n applications are derived:
yΓN ,Γ1,...,Γn;∆N ,∆1,...,∆n

Ξ,Ξ1,...,Ξn
Γ; ∆; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN (final state) (1)

• n propositions mΓ Ξi → A (2)
• n implications

If derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi; ∆N ,∆1, . . . ,∆i; Ωx → O then
derΓ;Π∆,Ξi+1, . . . ,Ξn; Ξ,Ξ1, . . . ,Ξi; ΓN ,Γ1, . . . ,Γi−1; ∆N ,∆1, . . . ,∆i−1;B,Ωx → O (3)

• n contexts Ψ1, . . . ,Ψn for variable bindings (4)

From (1) we apply the inductive hypothesis since C is smaller than the original aggregate:
derΓ;Π∆; Ξ,Ξ1, . . . ,Ξn; ΓN ,Γ1, . . . ,Γn; ∆N ,∆1, . . . ,∆n; (λx.C{Ψ(v̂)/v̂}x)Σ,Ω

→ Ξ,Ξ1, . . . ,Ξn,Ξ
∗; ΓN ,Γ1, . . . ,Γn,Γ

∗; ∆N ,∆1, . . . ,∆n,∆
∗

Since we are building the proof tree backwards, starting from the final derivation result, we first
need to deriveR(V̂ ,Σ)

agg by applying rules der agg2:
derΓ;Π∆; Ξ,Ξ1, . . . ,Ξn; ΓN ,Γ1, . . . ,Γn; ∆N ,∆1, . . . ,∆n;R(Φ(v̂),Σ)

agg ,Ω
→ Ξ,Ξ1, . . . ,Ξn,Ξ

∗; ΓN ,Γ1, . . . ,Γn,Γ
∗; ∆N ,∆1, . . . ,∆n,∆

∗

If n = 0 then this is all we need, otherwise we need to rebuild the matching and derivation tree
of the nth aggregate. Using the nth implication (3) on (5):
derΓ;Π∆,Ξn; Ξ,Ξ1, . . . ,Ξn−1; ΓN ,Γ1, . . . ,Γn−1; ∆N ,∆1, . . . ,∆n−1;B,R(Φ(v̂),Σ)

agg ,Ω
→ Ξ,Ξ1, . . . ,Ξn,Ξ

∗; ΓN ,Γ1, . . . ,Γn,Γ
∗; ∆N ,∆1, . . . ,∆n,∆

∗

Using der ( and the matching proposition (2) on (6), the A( B implication is reconstructed:
derΓ;Π∆,Ξn; Ξ,Ξ1, . . . ,Ξn−1; ΓN ,Γ1, . . . ,Γn−1; ∆N ,∆1, . . . ,∆n−1;A( B,R(Φ(v̂),Σ)

agg ,Ω
→ Ξ,Ξ1, . . . ,Ξn,Ξ

∗; ΓN ,Γ1, . . . ,Γn,Γ
∗; ∆N ,∆1, . . . ,∆n,∆

∗

Next, we package the implication and the aggregate using der ⊗:
derΓ;Π∆,Ξn; Ξ,Ξ1, . . . ,Ξn−1; ΓN ,Γ1, . . . ,Γn−1; ∆N ,∆1, . . . ,∆n−1; (A( B)⊗R(Φ(v̂),Σ)

agg ,Ω
→ Ξ,Ξ1, . . . ,Ξn,Ξ

∗; ΓN ,Γ1, . . . ,Γn,Γ
∗; ∆N ,∆1, . . . ,∆n,∆

∗

Now, we apply der ∀ to include the whole term and deconstruct Σ into σ :: Vn−1 :: · · · :: V1 :: ·
since Vn is the σ variable. The x̂ terms included in the aggregate’s LHS are replaced using
information constructed in Ψn:
derΓ;Π∆,Ξn; Ξ,Ξ1, . . . ,Ξn−1; ΓN ,Γ1, . . . ,Γn−1; ∆N ,∆1, . . . ,∆n−1;

∀x̂,σ.((A′( B′)⊗R(Ψ(v̂),σ::Vn−1::···::V1::·)
agg ),Ω
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→ Ξ,Ξ1, . . . ,Ξn,Ξ
∗; ΓN ,Γ1, . . . ,Γn,Γ

∗; ∆N ,∆1, . . . ,∆n,∆
∗

This last expression can be folded intoR(Ψ(v̂),Vn−1::···::V1::·)
agg :

derΓ;Π∆,Ξn; Ξ,Ξ1, . . . ,Ξn−1; ΓN ,Γ1, . . . ,Γn−1; ∆N ,∆1, . . . ,∆n−1;R(Ψ(v̂),Vn−1::···::V1::·)
agg ,Ω

→ Ξ,Ξ1, . . . ,Ξn,Ξ
∗; ΓN ,Γ1, . . . ,Γn,Γ

∗; ∆N ,∆1, . . . ,∆n,∆
∗

The last 5 steps are then applied n− 1 times to get:
derΓ;Π∆,Ξ1, . . . ,Ξn; Ξ; ΓN ; ∆N ;R(Ψ(v̂),·)

agg ,Ω
→ Ξ,Ξ1, . . . ,Ξn,Ξ

∗; ΓN ,Γ1, . . . ,Γn,Γ
∗; ∆N ,∆1, . . . ,∆n,∆

∗

This completes the sub-case for aggregates.

4.4.5 Wrapping-up
In order to bring everything together, we need to use the RHS derivation soundness lemma
(Lemma 4.4.4) and the LHS match result lemma (Lemma 4.4.1). We first prove that if the LLD
machine is able to reach the final state, then there exists one rule where matching was successful.
Then, we prove that the application of such rule is sound in relation to HLD.

Theorem 4.4.5 (Soundness)
If s1 = infer ∆I ; Φ; Γ then either s1 7→∗ 	 Ξ; ΓN ; ∆N and ∃R∈Φ.app

Γ;Π
Ψ ∆I ; Π →

Ξ; ΓN ; ∆N or s1 7→∗ nextΓ;∆I .

Proof. If Φ = · then the second conclusion applies immediately, otherwise use induction on the
size of Φ.

Assume Φ = A( B,Φ′ andR = (∆I ; Φ′).
infer ∆I ; Φ; Γ (1) first state of the assumption

Applying Lemma 4.4.1 (LHS match result) to the state after two transitions of (1) leads to
two sub-cases:

• Match fails:
/A(B R; ·; Γ (2)
infer ∆I ; Φ′; Γ (3) state after (2)

∃R′∈Φ′ .app
Γ;Π
Ψ ∆I ; Π→ Ξ; ΓN ; ∆N . (4) i.h. on (3) where R′ ∈ Φ′ if Φ′ is not empty

nextΓ;∆I (5) if Φ′ = ·

• Match succeeds:
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ΨImΓ ∆′→split(A)Ψ
A(B R; C; Γ; ∆; · (1) ∆I = ∆′,∆

split(A) ≡Ψ A (2) well-formedness of state (1)

mΓ ∆→ AΨ (3) match equivalence for (2) and (1)

y·;·∆′ Γ; ∆;B (4) state after (1)

y·;·∆′ Γ; ∆;B 7→∗ 	 Ξ; ΓN ; ∆N (5) applying Lemma 4.4.4 to (4)

derΓ;Π∆; Ξ; ΓN ; ∆N ;B → ∆′,Ξ∗; ΓN ; ∆N (5) from the same Lemma

appΓ;Π
Ψ ∆,∆′; Π→ ∆′,Ξ∗; ΓN ; ∆N (6) using app rule on (5) and (3)

4.5 Related Work
Linear logic has been used in the past as a basis for logic-based programming languages [Mil85],
including bottom-up and top-down programming languages. Lolli, a programming language pre-
sented in [HM94], is based on a fragment of intuitionistic linear logic and proves goals by lazily
managing the context of linear resources during top-down proof search. LolliMon [LPPW05a]
is a concurrent linear logic programming language that integrates both bottom-up and top-down
search, where top-down search is done sequentially but bottom-up computations, which are en-
capsulated inside a monad, can be performed concurrently. Programs start by performing top-
down search but this can be suspended in order to perform bottom-up search. This concurrent
bottom-up search stops until a fix-point is achieved, after which top-down search is resumed.
LolliMon is derived from the concurrent logical framework called CLF [WCPW04, CPWW02,
WCPW03].

4.6 Chapter Summary
In this chapter we presented the proof theoretic foundations of LM. First, we introduced the
sequent calculus of the linear logic fragment that supports LM. We then presented HLD, the high
level dynamic semantics that was created by interpreting the linear logic fragment using focusing
and chaining. Next, we designed LLD, an abstract machine for the operational semantics that
mimics the execution of rules in our virtual machine minus small details. Finally, we proved
that LLD is sound in relation to HLD, thus showing a connection from LLD to the linear logic
fragment.

75



76



Chapter 5

Local Computation: Data Structures and
Compilation

In Chapter 3, we presented different programs that showcased the declarative core of the LM
language. In this chapter, we focus on the implementation of LM by describing how local com-
putation is achieved, with a focus on compilation and rule execution. Next, in Chapter 6, we
describe the multi threaded implementation that allows LM programs to run on multi core archi-
tectures. The coordination aspects of LM, that we introduce later in this dissertation along with
the implementation details, are discussed in depth in Chapters 7 and 8.

This chapter is organized as follows. We start a brief overview of the LM’s implementation,
including its compiler and virtual machine. Next, we present the node data structure, including
a detailed description of the data structures used to efficiently manipulate logical facts. We also
describe how rules are scheduled locally from newly derived facts stored in the database. Finally,
we give a description of the compilation algorithm that turns logical rules into efficient compiled
code.

5.1 Implementation Overview
The implementation of the LM language includes a compiler and a virtual machine (VM). Fig-
ure 5.1 presents an overview of the compilation process for LM programs. The two main boxes
represent the two major components of the system, namely, the compiler and virtual machine.

The virtual machine contains supporting data structures for managing the database of facts
and to schedule the execution of rules. The parallel engine described in Chapter 6 is also a
major part of the virtual machine and is responsible for managing multi threaded execution by
launching threads, managing communication and scheduling concurrent execution.

The compiler transforms LM files into C++ code that uses the virtual machine facilities to
implement the program logic. The compiled code implements the inference rules of the program
and uses the API of the virtual machine to derive and retract facts and to schedule the execution
of rules in the file named file.cpp. Since LM does not have traditional input/output facilities,
the compiler also creates a separate file, named file.data, that contains the program’s initial
facts and graph structure and is loaded by the runtime when the program is executed.
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Figure 5.1: Compilation of a LM program into an executable. The compiler transforms a LM
program into a C++ file, file.cpp, with compiled rules, and into a data file with the graph
structure and initial facts, file.data. The virtual machine which includes code for managing
multi threaded execution and the database of facts is then linked with both files to create a stand
alone executable that can be run in parallel.

To complete the compilation process, we use a C++ compiler to compile the virtual machine
files and file.cpp into object files that are then linked along with file.data. At the end, we
have a stand alone executable that allows the user to input the number of threads to use, program
arguments, facilities to measure run time and also database printing facilities.

Alternatively, the programmer may also decide to compile a more general version of the
virtual machine that is able to run byte-code files generated by the compiler. This allows faster
development since the programmer only needs to recompile the LM program and not the whole
runtime stack. However, LM programs will run slower since the byte-code must be interpreted
by the virtual machine. This imposes a significant penalty on programs with many mathematical
operations, especially floating point computations.
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5.2 Node Data Structure
The main characteristic of LM rules is that they are constrained by the first argument. Rule
derivation uses only facts from the same node, therefore there is no need to synchronize with
other nodes to derive facts. However, when nodes derive non-local facts (owned by other nodes),
then the implementation must synchronize and send the facts to the target node. From the point
of view of the receiving node, these are called incoming facts. Note that this is related to the
parallel aspects of the virtual machine and more details are given in the next chapter.

During the lifetime of a program, each node goes through different states as specified by
the state machine. Figure 5.2 presents the state machine with the valid state transitions. In the
running state, the node is applying rules. In the inactive state, the node has no new facts to be
considered and all candidate rules have been tried. In the active state, the node has new facts to
be considered but is waiting to be executed by a thread. Finally, in the stealing state, the node is
currently being stolen by some thread.

INACTIVE

RUNNING

ACTIVE STEALING
Exhausted

candidate rules

New facts

Start executing

Node stolen

Figure 5.2: The node state machine.

As shown in Fig. 5.3, each node contains the following attributes:

• State: the node state flag.
• State Lock: a lock that protects the following node attributes: State, Owner and Incoming

Fact Buffer.
• DB Lock: a lock that protects Linear DB, Persistent DB and Rule Engine. The lock is held

when the node is applying rules or when incoming facts from other nodes need to be added
to the database data structures.

• Rule Engine: a data structure that detects which rules are candidates and should be derived.
The data structure is fully explained in Section 5.3.

• Owner: a pointer to the thread responsible for executing this node.
• Incoming Fact Buffer: a data structure that holds incoming facts that could not be added to

the database data structures since the node is currently applying rules.
• Linear DB: the database of linear facts as a set of structures for storing linear facts for each

linear predicate.
• Persistent DB: the database of persistent facts.
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Array
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Figure 5.3: Layout of the node data structure.

The database of facts must be implemented efficiently because during matching of rules we
need to restrict the facts using join constraints, which fix arguments of predicates to instantiated
values. A database fact is made up of 2 pointers (prev and next) and a variable number of
arguments. The first (node) argument of each fact is not stored in memory since facts are already
indexed by node. Additionally, facts are indexed by predicate and use one of the following data
structures:

• Trie Data Structures are used to store persistent facts. Tries are trees where facts are
indexed by common prefix arguments. The prev and next pointers are used to navigate
through all the facts stored in the trie.

• Array Data Structures are used to store persistent facts that are used in the LHS of rules
that do not require matching (e.g., no join constraints) and exist only as initial facts. Facts
stored in this data structure do not have the prev and next pointers because they are
already chained by being part of a contiguous memory area. The compiler performs static
analysis of the program’s rules in order to choose between trie and array data structures for
a particular persistent predicate.

• Doubly Linked List Data Structures are used to store linear facts. We use a doubly linked
list because adding and removing facts are efficient operations. The prev and next pointers
are used to chain the facts of the linked list.

• Hash Tree Data Structures are used to improve lookup when linked lists are too long and
when we need to do search filtered by a fixed argument. The virtual machine decides which
arguments are best to be indexed (see Section 5.2.1) and then uses a hash table indexed by
the appropriate argument. If we need to go through all the facts, we just iterate through all
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the facts in the table. Facts are hashed by using the indexed argument and each item in the
table corresponds to a value that contains a list of facts with such argument. When a hash
bucket has too many values, then the bucket is expanded from a linked list into another
hash table, creating a hash tree [Bag01].

Figure 5.4 shows an example for a hash table data structure for a p(node, int, int)
predicate with 5 linear facts indexed by the third argument. Note that for each bucket, facts are
indexed by either a list or another hash table, recursively.

prev
next
list
3

prev
next
list
13

prev
next
list
43

0

1

3

2

Hash Tree

...

9

prev
next

0

20

next
prev

20list

1
next
prev

3
2

next
prev

13
2

next
prev

43

1
next
prev

20

Figure 5.4: Hash tree data structure for a p(node, int, int) predicate containing the following
facts: p(@1, 0, 20), p(@1, 1, 20), p(@1, 1, 3), p(@1, 2, 13), and p(@1, 2, 43). Facts
are indexed by computing arg2 mod 10 where arg2 is the third argument of the fact. The node
argument is not stored.

5.2.1 Indexing Engine
During rule derivation, facts to be searched and filtered to match the rule constraints. One of the
most common constraints is to ensure that some arguments of facts are equal to an arbitrary value.
In order to avoid iterating over all the facts in such cases, the VM employs a dynamic mechanism
that decides, heuristically, which argument may be optimal to index. When a predicate is indexed,
it will use a hash tree data structure instead of doubly linked list for faster lookup. The indexing
algorithm is executed along with normal computation and empirically tries to assess the argument
of each predicate that more equally spreads the database across the values of the argument.

The indexing algorithm is performed in three main steps and executes only in one thread of
the VM, along with normal computation. First, the algorithm gathers lookup statistics by keeping
a counter for each predicate’s argument. Every time a fact search is performed where arguments
are fixed to a value, the counter of such arguments is incremented. This phase is performed
during rule execution for the first 100 nodes (or 1% of the nodes of the graph, when there are
more than 100000 nodes) that are executed by the thread running the indexing algorithm.
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The second step of the algorithm selects the candidate arguments of each predicate. If a
search for a predicate required no fixed arguments, then the predicate will be not indexed. If
only one argument was fixed, then that argument immediately becomes the indexing argument.
Otherwise, the top 2 arguments are selected for the third phase, where entropy statistics are
collected dynamically.

During the third phase, each candidate argument has an entropy score. Before a node tran-
sitions to the running state, the facts of the predicate are used in the following formula applied
for the two arguments:

Entropy(F,A) = −
∑

v∈values(F,A)

count(F,A = v)

total(F )
log2

count(F,A = v)

total(F )

where A is the target argument, F is the set of linear facts for the target predicate, values(F,A)
is set of values of the argument A, count(F,A = v) counts the number of linear facts where
argument A is equal to v and total(F ) counts the number of linear facts in F . The entropy value
is a good metric because it tells us how much information is needed to describe an argument. If
more information is needed, then that must be the best argument to index.

For each argument, the Entropy(A,F ) value is then multiplied by the number of times
it has been used for lookup. The argument with the best score is selected and then a global
variable called indexing epoch is updated to completed. When nodes are executed and the
global indexing epoch variable has changed to completed, the node data structures are rebuilt
by transforming doubly linked lists into hash tree data structures. Note that the transformation is
only done if the linked list has a large number of facts (at least eight).

The VM dynamically augments hash trees if necessary. When a hash tree bucket has too
many elements, a child hash tree node is created. On the other hand, if the number of elements
in the hash node gets too small, then the hash node is removed and replaced with a doubly linked
list.

We have seen good results with this scheme. The overhead of dynamic indexing is negligible
since the whole algorithm is performed only once. The programmer can also add indexes stati-
cally, if needed, using the directive index pred/arg, where pred is the argument name and arg
is the argument number to index.

5.3 Rule Engine

The rule engine decides which rules may need to be executed while respecting the rule priority
semantics presented in Section 3.3. The rule engine is composed of 3 data structures:

• Rule Queue is a bitmap representing the rules currently scheduled to run. When bit i in the
Rule Queue is set, it means that rule i is scheduled to be run. A rule i is set to run when all
the facts that satisfy the rule’s LHS are available. Rules are executed by fetching the least
significant bit of the bitmap, unsetting that bit and then executing the corresponding rule.
This operation is accomplished by using the bit scan forward (bsf) assembly instruction
available on x86/x86-64 machines;
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a, e(1) -o b. // Rule 1.
a -o c. // Rule 2.
b -o d. // Rule 3.
e(0) -o f. // Rule 4.
c -o e(1). // Rule 5.

a.
e(0).

0 1 0 1 0

0 1 0 0 0 1

0 1 0 1 2

abcdef

1 1 0 0 0

0 1 0 1 0 0

1 1 0 0 1

abcdef

(b) (c)

12345 12345
Rule Queue

Predicate Bitmap

Rule Counter

0 1 0 1 1

0 1 0 0 0 1

0 1 0 1 2

abcdef

(a)

12345

Figure 5.5: Example program and corresponding rule engine data structures. The initial state is
represented in (a), where the rules scheduled to run are 1, 2 and 4. After attempting rule 1, bit 0
is unset from the Rule Queue, resulting in (b). Figure (c) is the result of applying rule 2, a -o
c, which marks rule 5 in the Rule Queue since the rule is now available in the Rule Counter.

• Rule Counter counts the number of predicates that exist in the database and that are needed
by a rule. For instance, the rule a, e(1) -o b needs predicates a and e, which means
that when the count in the rule counter goes up to two, then the rule is scheduled to run.
Likewise, if the counter is decremented to one then the rule is removed from the Rule
Queue.

• Predicate Bitmap is a bitmap representing the existence of facts for a given predicate in the
database. When a predicate becomes available then the Rule Counter is updated to take
into account the existence of new facts.

To better understand how our rule engine works, Fig. 5.5 shows an example program and the
corresponding rule engine data structures. When the program starts, the facts for predicates a
and e exist, therefore the Rule Counter starts with rules 1, 2 and 4 where the values are 2, 1, and
1, respectively. Since these rules have the required counter to be applied, the Rule Queue bitmap
starts with the same three rules (Fig. 5.5(a)). In order to pick rules for execution, we take the
rule corresponding to the least significant bit from the Rule Queue bitmap, initially the first rule
a, e(1) -o b. However, since we don’t have fact e(1), this rule fails and its bit in Rule Queue
must be set to 0. Figure 5.5(b) shows the rule engine data structures at that point.

The next rule in Rule Queue is the second rule a -o c. Because this rule succeeds, fact
a is consumed and fact c is derived. We thus update Predicates Bitmap accordingly, and
decrease the counters for the first and second rules in Rule Counter since such rules are no longer
applicable (a was consumed), and increase the counter for the fifth rule since c was derived.
Finally, to update the Rule Queue, we must schedule the fifth rule since its counter has been
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increased to the required number (we have all predicates). Figure 5.5(b) shows the rule engine
data structures at that point. In the continuation, the rule engine will schedule the fourth and fifth
rules to run.

Note that every node in the program requires the set of data structures presented in Fig. 5.5.
We use 64 bit integers to implement the 2 bitmaps and an array of 16 bits integers for the Rule
Counter.

For persistent facts, we do a small optimization to reduce the number of derivations. We
divide the program rules into two sets: persistent rules and non persistent rules. Persistent rules
are rules where only persistent facts are involved. We compile such rules incrementally, i.e., we
attempt to fire all rules when a new persistent fact is derived. This is called the pipelined semi-
naive evaluation and it originated in the P2 system [LCG+06]. This evaluation method avoids
excessive re-derivations of the same fact. The order of derivation does not matter for those rules,
since only persistent facts are used.

5.4 Compilation
As an intermediate step, our compiler first transforms rules into high level instructions that are
then transformed into C++. In Appendix E we present an overview of the high level instruc-
tions that can be used as a reference to the operations that are required by the compiler. In this
section, we present the main algorithm of the compiler and its key optimizations. To make our
presentation more readable, we present our examples using pseudo-code instead of C++ code.

5.4.1 Ordinary Rules
After a rule is compiled, it must respect the fact constraints (facts must exist in the database)
and the join constraints that can be represented by variable constraints and/or boolean expres-
sions. For instance, consider the second rule of the bipartiteness checking program presented in
Fig. 3.10:

visit(A, P),
colored(A, P)

-o colored(A, P).

The fact constraint include the facts required to trigger the rule, namely visit(A, P) and
colored(A, P), and the join constraints include the implicit constraint that the second argument
of visit must be equal to the second argument of colored because the variable P is used for
both arguments. However, rules may also have explicit constraints, such as:

visit(A, P1),
colored(A, P2),
P1 <> P2

-o fail(A).

The data structures presented in Section 5.2 support iteration over facts and for linear facts,
they also support deletion. Iteration is provided through iterators. For linked lists, the iterator
points to the linear fact in the list and uses the next field to traverse the list. For hash tables, it
is possible to iterate through the whole table or iterate through a single bucket. For tries, while
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iteration goes through every fact, the operation can be customized with join constraints in order
to prune search. To illustrate how rules are compiled, consider again the rule:

visit(A, P),
colored(A, P)

-o colored(A, P).

The compiler transforms the rule into two nested while loops, as follows:
1 colored_list <- linked_list("colored")
2 visit_list <- linked_list("visit")
3 visit <- visit_list.head()
4 while(visit is valid)
5 {
6 colored <- colored_list.head() // Retrieve first element of the list.
7 while(colored is valid)
8 {
9 if(visit.get_int(1) == colored.get_int(1)) { // Equal arguments?

10 // New fact is derived.
11 new_colored <- create_fact("colored") // New fact for predicate colored.
12 new_colored.set_int(1, visit.get_int(1)) // Set arguments.
13

14 colored_list.add(new_colored) // Add new fact to the linked list.
15

16 // Deleting used up facts.
17 colored <- colored_list.delete_and_next(colored)
18 visit <- visit_list.delete_and_next(visit)
19 goto next
20 }
21 colored <- colored.next()
22 }
23 visit <- visit.next()
24 next:
25 continue
26 }

The compilation algorithm iterates through the atomic propositions of the rule’s LHS and
creates nested loops to try all the possible combinations of facts. For this rule, all the pairs of
facts colored and visit must be searched until the implicit constraint is true. First, the visit
linked list is iterated over by first retrieving the head fact and then using the next pointer of each
fact. Inside this outer loop, a nested while loop is created for predicate colored. This inner loop
includes a check for the constraint.

If the constraint expression is true then the rule matches and a new colored fact is derived
and two used linear facts are consumed by deleting them from the linked lists. After the rule is
derived, the visit and colored facts are deleted from the linked list and the pointers adjusted to
the next elements of each list. Afterwards, the goto next statement is used to jump to the outer
loop, which will use the new fact pointers. This forces the procedure to try all the combinations
of the rule from the database. Furthermore, we must jump to the first linear loop because we
cannot use the next fact from the deepest loop since we may have constraints between the first
linear loop and the deepest loop that were validated using deleted facts.

If the implicit constraint failed, another colored fact would be checked by assigning colored
to colored.next(). Likewise, if the initial visit fact fails for all colored facts, then the next
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visit fact in the list is tried by following the next pointer. Note that, for this particular example,
we ignore some obvious optimizations such as avoiding the deletion and then re-derivation of
colored facts.

In order to understand how rule priorities affect compilation, consider a slightly different
bipartiteness checking program where the second and third rules are swapped:

1 visit(A, P),
2 uncolored(A)
3 -o {B | !edge(A, B) -o visit(B, next(P))},
4 colored(A, P).
5

6 visit(A, P1),
7 colored(A, P2),
8 P1 <> P2
9 -o fail(A).

10

11 visit(A, P),
12 colored(A, P)
13 -o colored(A, P).
14

15 visit(A, P),
16 fail(A)
17 -o fail(A).

The procedure for the rule being compiled cannot be the same since the derived colored fact
is used in the LHS of a higher priority rule, namely, the rule in line 9. Once the colored fact is
derived, the procedure must return to schedule the higher priority rule, as follows:

1 colored_list <- linked_list("colored")
2 visit_list <- linked_list("visit")
3 colored <- colored_list.head()
4 while(colored is valid)
5 {
6 visit <- visit_list.head() // Retrieve first element of the list.
7 while(visit is valid)
8 {
9 if(visit.get_int(1) == colored.get_int(1)) { // Equal arguments?

10 new_colored <- create_fact("colored") // New fact for predicate colored.
11 new_colored.set_int(1, visit.get_int(1)) // Set arguments.
12

13 // New fact is derived.
14 colored_list.add(new_colored) // Add new fact to the linked list.
15

16 // Deleting facts.
17 colored_list.delete_and_next(colored)
18 visit_list.delete_and_next(visit)
19 return
20 }
21 visit <- visit.next()
22 }
23 colored <- colored.next()
24 }
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This enforces the priority semantics of the language described in Section 3.3. When a rule
derives facts that were used as input to a higher priority rule, the initial rule is only fired once
because the newly derived facts may trigger the application of a higher priority rule.

Figure 5.6 presents the algorithm for compiling rules into C++ code. First, we split the rule’s
RHS into atomic propositions and constraints. Fact expressions map directly to iterators while
fact constraints map to if expressions. A possible compilation strategy is to first compile all
the atomic propositions and then compile the constraints. However, this may require unneeded
database lookups since some constraints may fail early. Therefore, our compiler introduces con-
straints as soon as all the variables in the constraint are all included in the already compiled
atomic propositions. The order in which fact propositions are selected for compilation does not
interfere with the correctness of the compiled code, thus our compiler selects the atomic propo-
sition (RemoveBestProposition) that needs the highest number of join constraints, in order
to prune search and avoid undesirable database lookups. If two atomic propositions have the
same number of new constraints, then the compiler always picks the persistent proposition since
persistent facts are not deleted.

Derivation of new facts belonging to the local node requires only that the new facts are added
to the local node data structure. Facts that belong to other nodes are sent using an appropriate
runtime API.

5.4.2 Persistence Checking

Not all linear facts need to be deleted. For instance, in the compiled rule above, the fact
colored(A, P) is re-derived in the rule’s RHS. Our compiler is able to turn linear loops into
persistent loops for linear facts that are consumed and then asserted. The rule is then compiled
as follows:

1 colored_list <- linked_list("colored")
2 visit_list <- linked_list("visit")
3 colored <- colored_list.head()
4 while(colored is valid)
5 {
6 visit <- visit_list.head() // Retrieve first element of the list.
7 while(visit is valid)
8 {
9 if(visit.get_int(1) == colored.get_int(1)) { // Equal arguments?

10 // Delete visit.
11 visit <- visit_list.delete_and_next(visit) // Get next visit fact.
12 goto next
13 }
14 visit <- visit.next()
15 next:
16 continue
17 }
18 colored <- colored.next()
19 }

In this new version of the code, only the visit facts are deleted, while the colored facts
remain untouched. In the bipartiteness checking program, each node has one colored fact and
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Data: Rule R1, Rules
Result: Compiled Code
LHSProps←− LHSAtomicPropositionsFromRule(R1);
Constraints←− ConstraintsFromRule(R1);
Code←− CreateFunctionForRule();
FactIterators←− [];
CompiledProps = [];
while LHSProps not empty do

Prop←− RemoveBestProposition(LHSProps);
CompiledProps.push(Prop);
Iterator ←− Code.InsertIteration(Prop);
FactIterators.push(Iterator);
// Select constraints that are covered by CompiledFacts.
NextConstraints←− RemoveConstraints(Constraints, CompiledProps);
Code.InsertConstraints(NextConstraints);

end
RHSProps = RHSAtomicPropositionsFromRule(R1);
while RHSProps not empty do

Prop←− RemoveFact(RHSProps);
Code.InsertDerivation(Prop);

end
for Iterator ∈ FactIterators do

if IsLinear(Iterator) then
Code.InsertRemove(Iterator);

end
end
// Enforce rule priorities.
if FactsDerivedUsedBefore(Rules, R1) then

Code.InsertReturn();
else

Code.InsertGoto(FirstLinear(FactIterators));
end
return Code

Figure 5.6: Compiling LM rules into C++ code.

88



this compiled code simply filters out the visit facts with the same color. Please note that the
colored facts are now iterated in the outer loop in order to make the goto statement jump to the
inner loop. This is now possible because the colored fact is not deleted during rule derivation.

5.4.3 Updating Facts
Many inference rules consume and then derive the same predicate but with different arguments.
The compiler recognizes those cases and, instead of consuming the fact from its linked list or
hash table, it updates the fact in-place. As an example, consider the following rule:

new-neighbor-pagerank(A, B, New),
neighbor-pagerank(A, B, Old)

-o neighbor-pagerank(A, B, New).

Assuming that neighbor-pagerank is stored in a hash table and indexed by the second
argument, the code for the rule above is as follows:

1 new_neighbor_pagerank_list <- linked_list("new-neighbor-pagerank")
2 neighbor_pagerank_table <- hash_table("neighbor-pagerank")
3 new_neighbor_pagerank <- new_neighbor_pagerank.head()
4 while(new_neighbor_pagerank is valid)
5 {
6 // Hash table for neighbor-pagerank is indexed by the second argument,
7 // therefore we search for the bucket using the second argument
8 // of new-neighbor-pagerank.
9 neighbor_pagerank <- neighbor_pagerank_table.lookup(new_neighbor_pagerank.get_node(1))

10 while(neighbor_pagerank is valid)
11 {
12 if(new_neighbor_pagerank.get_node(1) == neighbor_pagerank.get_node(1))
13 {
14 // Update fact argument.
15 neighbor_pagerank.set_float(2, new_neighbor_pagerank.get_float(2))
16 new_neighbor_pagerank <- new_neighbor_pagerank_list.
17 delete_and_next(new_neighbor_pagerank)
18 goto next
19 }
20 neighbor_pagerank <- neighbor_pagerank.next()
21 }
22 new_neighbor_pagerank <- new_neighbor_pagerank.next()
23 next:
24 continue
25 }

Note that neighbor-pagerank fact is updated using set float. The rule also does not return
since it is the highest priority rule. If there was a higher priority rule using neighbor-pagerank,
then the code would have to return since the act of updating a fact is equivalent to deriving a new
one.

5.4.4 Enforcing Linearity
We have already introduced the goto statement as a mechanism to avoid reusing deleted linear
facts. However, this is not enough in order to enforce linearity of facts. Consider the following
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inference rule:
add(A, N1),
add(A, N2)

-o add(A, N1 + N2).

Using the standard compilation algorithm, two nested loops are created, one for each add fact.
However, notice that there is an implicit constraint (the two add linear facts must be different)
when creating the iterator for add(A, N2) since this fact cannot be the same as the first one.
That would invalidate linearity since a single linear fact would be used to prove two linear facts.
This is easily solved by adding a constraint in the inner loop by checking if the second fact is the
same as the first one.

1 add_list <- linked_list("add")
2 add1 <- add_list.head()
3 while(add1 is valid)
4 {
5 add2 <- add_list.head()
6 while(add2 is valid)
7 {
8 if(add1 != add2)
9 {

10 add1.set_int(1, add1.get_int(1) + add2.get_int(1))
11 add2 <- add_list.delete_and_next(add2)
12 goto next
13 }
14 add2 <- add2.next()
15 }
16 add1 <- add1.next()
17 next:
18 continue
19 }

Figure 5.7 presents the steps for executing this rule when the database contains three facts.
The fact variables never point to the same fact.

5.4.5 Comprehensions

Consider the comprehension used in the first rule of the bipartiteness checking program in
Fig. 3.10:

visit(A, P),
uncolored(A)

-o {B | !edge(A, B) -o visit(B, next(P))},
colored(A, P).

The attentive reader will remember that comprehensions are sub-rules, therefore they should
be compiled like normal rules. Comprehensions must also derive all possible combinations.
However, the rule itself must return if the comprehension’s RHS derives a fact that is used by a
higher priority rule. The example rule does not need to return since it has the highest priority and
the visit facts derived in the comprehension are contained in other nodes. The code for the rule
is shown below:
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Figure 5.7: Executing the add rule. First, the two iterators point to the first and second facts and
the former is updated while the latter is consumed. The second iterator then moves to the next
fact and the first fact is updated again, now to the value 6, the expected result.

1 colored_list <- linked_list("colored")
2 visit_list <- linked_list("visit")
3 uncolored_list <- linked_list("uncolored")
4 visit <- visit_list.head()
5 while(visit is valid)
6 {
7 uncolored <- uncolored_list.head()
8 while(uncolored is valid)
9 {

10 // Comprehension code.
11 edge_trie <- trie("edge")
12 edge <- edge_trie.first()
13 while(edge is valid)
14 {
15 new_visit <- create_fact("visit") // New visit fact.
16 new_visit.set_int(1, next(visit.get_int(1)))
17 // Send fact to B.
18 send_fact(new_visit, edge.get_node(1))
19 edge <- edge.next()
20 }
21 new_colored <- create_fact("colored")
22 new_colored.set_int(1, visit.get_int(1))
23 colored_list.add(new_colored)
24 visit <- visit_list.delete_and_next(visit)
25 uncolored <- uncolored_list.delete_and_next(uncolored)
26 goto next
27 }
28 uncolored <- uncolored.next()
29 next:
30 continue
31 }
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Special care must be taken when the comprehension’s sub-rule uses the same predicates
that are derived by the main rule. Rule inference must be atomic in the sense that, after a rule
matches, the comprehensions in the rule’s RHS can use the facts that were present before the
rule was matched. Consider a rule with n comprehensions or aggregates, where each CLHSi
and CRHSi are the LHS and RHS of the comprehension/aggregate i, respectively, and RHSP
represents the atomic propositions found in rule’s RHS. The formula used by the compiler to
detect conflicts between predicates is the following:

n⋃
i

[CLHSi ∩RHSP ] ∪
n⋃
i

[CLHSi ∩
n⋃
j

[CRHSj]]

If the result of the formula is not empty, then the compiler disables optimizations for the
conflicting predicates and derives the corresponding facts into a temporary data structure before
being added into the database data structures. As an example, consider the following rule:

update(A),
!edge(A, B)

-o {P | points(A, B, P) -o update(B)},
points(A, B, 1).

We have n = 1 comprehensions, whereCLHS0 = points(A, B, P),CRHS0 = update(B),
and RHSP = points(A, B, 1). There is a conflict because CLHS0 ∩ RHSP = {points},
which requires points(A, B, 1) to be derived after the comprehension or be stored in a tempo-
rary data structure to avoid conflicts with the comprehensions, which could consume the newly
derived fact. Fortunately, most rules in LM programs do not show these kinds of conflicts and
thus can be fully optimized.

5.4.6 Aggregates
Aggregates are similar to comprehensions. They are also sub-rules but a value is accumulated
for each combination of the sub-rule. After all the combinations are derived, a final RHS term
is derived with the accumulated value. Consider the following rule that computes a PageRank
value by aggregating all neighbors PageRank values:

update(A),
pagerank(A, OldRank)

-o [sum => V; B | neighbor-pagerank(A, B, V) -o neighbor-pagerank(A, B, V)
-> pagerank(A, damping/P + (1.0 - damping) * V)].

The variable V is initialized to 0.0 and sums all the PageRank values of the neighbors as seen
in the code below. The aggregate value is then used to update the second argument of the initial
pagerank fact.

1 pagerank_list <- linked_list("pagerank")
2 update_list <- linked_list("update")
3 neighbor_pagerank_list <- linked_list("neighbor_pagerank_list")
4 pagerank <- pagerank_list.head()
5 while(pagerank is valid)
6 {
7 update <- update_list.head()
8 while(update is valid)
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9 {
10 V <- 0.0
11 neighbor_pagerank <- neighbor_pagerank_list.head()
12 while(neighbor_pagerank is valid)
13 {
14 V <- V + neighbor_pagerank.get_float(2)
15 neighbor_pagerank <- neighbor_pagerank.next()
16 }
17 // RHS of the aggregate
18 pagerank.set_float(1, damping / P + (1.0 - damping) * V)
19 update <- update_list.delete_and_next(update)
20 goto next
21 }
22 pagerank <- pagerank.next()
23 next:
24 continue
25 }

5.5 Chapter Summary
In this chapter, we gave an overview of LM’s implementation, including the compiler and the
virtual machine. We focused on the sequential aspects of the implementation, namely, the data
structures used for manipulating facts and how the compiler turns logical rules into efficient
code. In the next chapter, we focus on the parallel aspects of the virtual machine and present an
evaluation of the performance and scalability of the implementation.
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Chapter 6

Multi Core Implementation

This chapter describes the multi core aspects of LM’s virtual machine and provides a detailed
experimental evaluation of the performance and scalability of the system. First, we describe
how local node computation and parallelism are integrated, with a focus on locking and memory
allocation, and then we evaluate the performance, memory usage and scalability of our imple-
mentation. The mechanisms related to coordination and their implementation will be described
in Chapter 7.

6.1 Parallelism
A key goal of our parallel design is to keep the threads as busy as possible and to reduce the
overhead of inter-thread communication. Initially, the VM partitions the application graph of
N nodes into T subgraphs (the number of threads) and then each thread works on their own
subgraph. During execution, threads can steal nodes of other threads to keep themselves busy.
The load balancing aspect of the system is performed by our work scheduler that is based on a
simple work stealing algorithm.

Since LM uses an asynchronous and graph-based model of computation where nodes of the
graph can compute independently of other nodes, the granularity problem, common in other
declarative languages, can be solved by dynamically grouping nodes of the graph into subgraphs
that are processed by a single executing thread. This avoids the creation of too many threads of
control and allows the dynamic assignment of nodes to threads through the use of work stealing.

In our VM, each VM’s thread uses a Work Queue that contains active nodes, i.e., nodes that
have new facts to process and are part of the thread’s subgraph. The work queue is implemented
as a singly linked list and is embedded in the node data structures. Initially, the work queue is
filled with the nodes in the thread’s subgraph in order to derive the initial facts. A thread may
go through different states during its lifetime. The state is kept track in the State flag which may
have one of the following values:

• active: The thread has a non-empty Work Queue or is currently executing rules for a node
(which is not in the Work Queue).

• stealing: The thread has no active nodes in the Work Queue and is attempting to steal
nodes from other threads.
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• idle: The thread is trying to synchronize with other threads to terminate the program.
• terminated: The thread (and all the other threads) have terminated and the program is

finished.

Figure 6.1 presents the valid transitions for the thread state flag. The dashed line from idle to
stealing indicates that the transition is made in a non-deterministic fashion.

STEALING

IDLE

ACTIVE

Steal nodes

New active nodes

No more work

Success
Failure

TERMINAT
ED

Program finished

Figure 6.1: The thread state machine as represented by the State flag. During the lifetime of a
program, each thread goes through different states as specified by the state machine.

The pseudo-code for the main thread loop is shown in Fig. 6.2. After a loop iteration, a thread
inspects its Work Queue and while there are active nodes, procedure process node() (complete
pseudo-code in Fig. 6.4) will perform local computation on active nodes. When a thread’s Work
Queue is empty, it attempts to steal half of the nodes from another thread. Starting from a random
thread, it cycles through all the threads to find one active thread from whom it will try to steal
half of its nodes. If the thread fails to steal work, it will go idle and periodically attempt to steal
work from another active thread. Eventually, all threads will fail to steal work since there is no
more work to do and they will go idle. There is a global atomic counter that is used to detect
termination. Once a thread goes idle, it decrements the global counter and changes its flag to
idle. Since every thread will be busy-waiting and checking the global counter, they will detect a
zero value and stop executing, transitioning to the terminated state.

Figure 6.3 ties everything together and presents the layout of our virtual machine for a pro-
gram with six nodes and two running threads. In the figure, we represent the thread’s Work Queue
and the thread’s logical space where the thread’s subgraph is located. We also show the internals
of node @1 and the thread operations that force threads to interact with the node data structures.

In order to understand how threads interact with each other, we now review the node data
structure that was presented in Section 5.2. The node lock DB Lock protects the data structures
of the database, including the array, trie, linked list and hash table data structures and the Rule
Engine. The State Lock structure protects everything else, especially the State flag and the tem-
porary set of facts represented by the Incoming Fact Buffer. The Incoming Fact Buffer is used to
hold logical facts that can not be added immediately to the database data structures. The Owner
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Data: Thread TH
while true do

TH.work queue.lock();
node←− TH.work queue.pop node() ;
TH.work queue.unlock();
if node then

process node(node);
else

// Attempt to steal some nodes.
if !TH.steal nodes() then

TH.become idle();
while len(TH.work queue) == 0 do

// Try to terminate
if TH.synchronize termination() then

terminate;
end
if TH.steal nodes() then

// Thread is still in the stealing state
break;

end
end
// There’s new nodes in the queue.
TH.become active();

end
end

end

Figure 6.2: Thread work loop: threads process active nodes from the work queue until no more
active nodes are available. Node stealing using a steal half strategy is employed when the thread
has no more active nodes.
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Figure 6.3: Layout of the virtual machine. Each thread has a work queue that contains active
nodes (nodes with facts to process) that are processed one by one by the thread. Communication
between threads happens when nodes send facts to nodes located in other threads.

field points to the thread responsible for processing the node and the Rule Engine schedules local
computation.

Whenever a new fact is derived through rule derivation, we need to update the data structures
for the corresponding node. If the node is currently being executed by the thread (local send),
then the fact is added to the node data structures since the DB Lock is being held while the node is
being executed. If that is not the case, then we have to synchronize since multiple threads might
be updating the same data structures. For example, in Fig. 6.3, when thread 2 derives a fact to
node @1 (owned by thread 1), it first locks node @1 using the State Lock and then it attempts to
lock DB Lock, which gives thread 2 full access to the node. In this case, thread 2 adds the new
fact to the database (New fact (2) in Fig. 6.3) and to the Rule Engine. However, if the DB Lock
could not be acquired because node @1 is currently being processed, then the new fact is added
to Incoming Fact Buffer (New fact (1) in Fig. 6.3). The facts stored in Fact Buffer will then be
processed whenever the corresponding node is processed again.

When a thread interacts with another thread to send a fact, it also needs to make sure that
the target node is made active (see Fig. 5.2) and that it is also placed in the target thread’s Work
Queue (Activate node in Fig. 6.3). To handle concurrency issues, we have a (per thread) per Work
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Data: Node N
N.state lock.lock();
N.db lock.lock();
// Add facts from the Incoming Fact Buffer into the database
N.DB.merge(N.incoming fact buffer);
N.state lock.unlock();
N.rule engine.run rules();
N.db lock.unlock();
// Check if node N is done for now
N.state lock.lock();
if N.rule engine.has candidate rules() or

N.incoming fact buffer.has facts() then
N.state lock.unlock();
// Start from the beginning
goto start of procedure;

end
N.state←− inactive;
N.state lock.unlock();

Figure 6.4: Pseudo-code for the process node procedure.

Queue lock called the Queue Lock that is held when the Work Queue is being operated on. As
an example, consider again the situation in which thread 2 sends a new fact to node @1. If node
@1 is not active, then thread 2 also needs to activate node @1 by pushing it to the Work Queue
of thread 1. After this synchronization point, the target thread is ensured to be active and with a
new node to process.

We now summarize the synchronization hot-spots of the VM by describing how the locks are
used in order to implement different operations:

• Deriving New Facts: We use the node’s State Lock and then attempt to lock the DB Lock.
If the DB Lock cannot be used, then the new facts are added to the Incoming Fact Buffer,
otherwise the node database structures are updated with new facts. If the target node is not
currently in any work queue, we lock the destination work queue and then add the node
and change the state of the node to active. Finally, if the target thread that owns the target
node is idle, we activate it by updating its state flag to active. The complete pseudo-code
for this operation is shown in Fig. 6.5.

• Node Stealing: For node stealing, we acquire the lock of the target thread’s queue and
then copy the stolen node pointers to a temporary buffer. For each node, we use the
State Lock to update its Owner attribute and then add it to the thread’s work queue. Fig-
ure 6.6 presents the pseudo-code for this synchronization mechanism. Note that when
using pop half(stealing), the Work Queue will (unsafely) change the state of the nodes
to stealing. When adding coordination to the language as presented in Chapter 7, the node
stealing loop in the pseudo-code must have an extra check for cases when the node’s owner
is updated using coordination facts.
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Data: Target Node N, Fact F
if N.db lock.try lock() then

// New Fact (1)
N.DB.add fact(F );
N.rule engine.new fact(F );
N.db lock.unlock();
// Still need to check if node is active
N.state lock.lock();

else
// New Fact (2)
N.state lock.lock();
N.FactBuffer.add fact(F );

end
// Activate node
TTH ←− N.Owner;
if N.state == inactive then

TTH.work queue.lock();
TTH.work queue.push(N);
TTH.work queue.unlock();
N.state←− active;
if TTH.State == idle then

TTH.become active();
end

end
N.state lock.unlock();

Figure 6.5: Synchronization code for sending a fact to another node.
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Data: Source Thread TH, Target Thread TTH
TTH.work queue.lock();
nodes←− TTH.work queue.pop half(stealing);
TTH.work queue.unlock();
for node in nodes do

node.state lock.lock();
if node.state! = stealing then

// Node was put back into the queue, therefore we give up
node.state lock.unlock();
continue

end
node.owner ←− TH;
node.state←− active;
node.state lock.unlock();

end
TH.work queue.push(nodes);

Figure 6.6: Synchronization code for node stealing (source thread steals nodes from target
thread).

• Node Computation: The DB Lock is acquired before any rule is executed on the node
since node computation manipulates the database. The lock is released when all candidate
rules are executed. The initial pseudo-code for the process node procedure in Fig. 6.4
shows this synchronization protocol.

• Node Completion: Once node computation is completed and all candidate rules have been
executed, the State Lock is acquired in order to change the state flag. Note that if newer
facts have been derived by other nodes, computation is resumed on the current node instead
of using another node from the Work Queue. The final section of process node in Fig. 6.4
shows this synchronization protocol.

All the locks in the VM are implemented using Mellor-Crummey and Scott (MCS) spin-
locks [MCS91], which are fair and contention-free spin-locks that use a FIFO queue to imple-
ment spin-lock operations.

In order to manipulate the State flag of each thread (see Section 6.1) we do not use locks but
instead manipulate the state flag using lock-free compare-and-set operations to implement the
thread state machine as specified in Fig. 6.1.

6.2 Runtime Data Structures And Garbage Collection

LM supports recursive types such as lists, arrays and structures. These compound data structures
are immutable and shared between multiple facts. Such structures are stored in the heap of the
VM and are managed through reference counting. For instance, each list is a cons cell with 3
fields: tail, the pointer to the next element of the list; head, the element stored by this element
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of the list; and refs, which counts the number of pointers to this list element in the VM. The list
is deleted from the heap whenever refs is decremented to zero.

Nodes are also subject to garbage collection. If the database of a node becomes empty and
there are no references to the node from other logical facts, then the node is deleted from the
program. We keep around a small number of freed nodes that can be reused immediately if
another node is created. We avoid garbage collection schemes based on tracing since objects are
created and discarded at specific points of the virtual machine. A reference counting mechanism
is thus more appropriate than a parallel tracing garbage collector which would entail pausing the
execution of the program to garbage collect the unused objects.

6.3 Memory Allocation
Memory allocation in the VM is extremely important because there is a need to repeatedly allo-
cate and deallocate logical facts. Logical facts tend to be small memory objects since they are
composed of two pointers (16 B) plus a variable number of arguments (8 B each), which may lead
to fragmentation if allocation is not done carefully. Moreover, since the VM is multi threaded,
allocation also needs to be scalable, therefore using the standard malloc facility provided by the
POSIX standard is not preferred since each operating system uses a different implementation
that may or may not scale well in multi threaded environments.

next

Small pool

Medium pool nextfree

Thread Allocator

Large pool nextfree

free array

chunk
2

chunk
1

free free
4 8

Figure 6.7: Threaded allocator: each thread has 3 memory pools for objects and each pool
contains a set of memory chunks. Each pool also contains an ordered array for storing deallocated
objects of a particular size. In this example, the pool for small objects has an ordered array for
sizes 4 and 8, where size 4 has 3 free objects and size 8 has just 1.

In order to solve these two issues, we decided to implement a memory allocator inspired on
the SLAB allocator [Bon94]. SLAB allocation is a memory management technique created in
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the Solaris 5.4 kernel used to efficiently allocate kernel objects. Its advantages include reduced
fragmentation and improved reuse of deallocated data structures since these are reused in newer
allocations.

We pre-allocate three pools of memory chunks: one pool for small objects (at most 128 B),
one pool for medium objects (at least 1 KB) and another pool for large objects (more than 1 KB).
A memory pool is composed of multiple chunks (or arenas) which are large contiguous areas of
memory. Each pool has a next pointer that points to a position in the current chunk, i.e., that
which has objects that have not been allocated yet. The third and final element of the memory
pool is the free array, which is an array which is ordered by size and each position points to
a free object of a given size. When an object is freed, a binary search is performed on the sorted
and the position for that object’s size is updated to point to the deleted object. As expected, freed
objects are reused whenever an object of the target size is requested by the system.

When allocating a particular object, we compute the object size and use the appropriate pool.
First, we check if there are any free objects in the free list for that particular size and if there isn’t
any, we use the next pointer to rapidly allocate space on the current chunk of the memory pool.
Whenever the next pointer reaches the end of the latest chunk, a bigger chunk is allocated and
next is reset to the first position of the new chunk. The objects in free list are chained together
so that it is possible to mark multiple objects as being deallocated. An example is presented in
Fig. 6.7.

In order to reduce thread contention in the allocator, each thread uses a separate instance of
the threaded allocator. When a thread wants to allocate an object, it asks its own allocator for a
new object. When deallocating, a thread may deallocate an object that is part of another thread’s
chunk. This is not an issue since chunks are not garbage collected from the system, therefore
both allocation and deallocation require no synchronization between threads.

Our threaded allocator does not attempt to place facts of the same node physically together.
When firing rules, this may become an issue since the thread may need to read multiple chunks
which were allocated by different threads, increasing the number of cache line misses. In Sec-
tion 6.4.6, we explore an alternative allocator design and compare it against the allocator pre-
sented in this section.

6.4 Experimental Evaluation

In this section, we evaluate the performance and scalability of the VM. The main goals of our
evaluation are:

• Compare the performance of LM programs against hand-written imperative C++ pro-
grams;

• Evaluate the scalability of LM programs when using up to 32 cores in parallel;
• Understand the impact and effectiveness of our dynamic indexing algorithm and its index-

ing data structures used for logical facts (namely, hash tables);
• Understand the impact of the memory allocator on scalability and multi core performance

and compare it against alternative designs;
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For our experimental setup, we used a computer with a 32 Core AMD Opteron(tm) Processor
6274 HE @ 1400 MHz with 32 GBytes of RAM memory running the Linux Kernel 3.18.6-
100.fc20.x86 64. The C++ compiler used is the GCC 4.8.3 (g++) with the following CXXFLAGS
flags: -O3 -std=c++11 -march=x86-64. All experiments were executed 3 times and the running
times were averaged.

6.4.1 Sequential Performance

To understand the absolute performance of LM programs, we compared their execution time
using a multi threaded capable virtual machine running on a single thread against hand-written
sequential C++ programs1. All C++ programs were compiled with the same compilation flags
used for LM for fairness. Arguably, compiled C/C++ programs are a good standard for compar-
ing the performance of new programming languages since they tend to offer the best performance
on several popular benchmarks [lan]. Python is a scripting programming language that is much
slower than compiled C/C++ programs and thus can be seen as a good lower-bound in terms of
performance.

The goal of the evaluation is to understand the effectiveness of our compilation strategy and
the effectiveness of our dynamic indexing algorithms, including the data structures (hash trees)
used to index logical facts. We used the following programs in our experiments2:

• Belief Propagation: a machine learning algorithm to de-noise images. Program is pre-
sented in Section 8.3.3.

• Heat Transfer: an asynchronous program that solves the heat transfer equation using an
implicit method for transferring heat between nodes. Program is presented in Section 7.8.3.

• Multiple Single Shortest Distance (MSSD): a program that computes the shortest distance
from a subset of nodes of the graph to all the nodes in the graph. A modified version is
later presented in Section 7.1.

• MiniMax: the AI algorithm for selecting the best player move in a Tic-Tac-Toe game. The
initial board was augmented in order to provide a longer running benchmark. Program is
presented in Section 7.8.1.

• N-Queens: the classic puzzle for placing queens on a chess board so that no two queens
threaten each other. Program is presented in Section 7.8.2.

Table 6.1 presents the comparison between LM and sequential C++ programs. Comparisons
to other systems are shown under the Other column, which presents the speedup ratio of the
C++ program over the target system (numbers greater than 1 indicate C++ is faster). Note that
the systems used are executed with a single thread. Since we also want to assess the VM’s
scalability, we use different dataset sizes for each program.

The Belief Propagation experiment is the program where LM performs the best when com-
pared to the C++ version. We found out that the mathematical operations required to update the
nodes belief values are expensive and make up a huge part of the total computation time. This

1All C++ programs available at http://github.com/flavioc/misc.
2All LM programs available at http://github.com/flavioc/meld/benchs/progs.
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Program Size C++ Time (s) LM Other

Belief Propagation

50x50 3.16 1.27 1.08 (GraphLab)
200x200 49.36 1.36 1.25 (GraphLab)
300x300 135.56 1.35 1.25 (GraphLab)
400x400 169.99 1.35 1.27 (GraphLab)

Heat Transfer
80x80 4.62 7.28 -

120x120 20.29 7.07 -

MSSD

US 500 Airports 0.69 2.76 13.44 (Python) 0.25 (Ligra)
OCLinks 7.00 7.35 16.10 (Python) 0.34 (Ligra)
EU Email 13.47 2.08 9.80 (Python) 0.32 (Ligra)

Twitter 27.22 8.58 8.28 (Python) 0.27 (Ligra)
US Power Grid 55.33 5.64 10.99 (Python) 0.30 (Ligra)

Live Journal 221.91 4.38 5.75 (Python) 0.20 (Ligra)
Orkut 281.59 1.66 4.23 (Python) 0.23 (Ligra)

MiniMax
Small 2.89 7.58 27.43 (Python)
Big 21.47 8.81 -

N-Queens

11 0.28 1.81 20.36 (Python)
12 1.42 3.09 24.30 (Python)
13 7.90 4.99 27.85 (Python)
14 47.90 6.42 31.52 (Python)

Table 6.1: Experimental results comparing different programs against hand-written versions in
C++. For the C++ programs, we show the execution time in seconds (C++ Time (s)). In columns
LM and Other, we show the speedup ratio of C++ by dividing the run time of the target system
by the run time of the C++ program. Numbers greater than 1 mean that the C++ program is
faster.

is clearly shown by the low overhead numbers. We also compared our performance against the
GraphLab and LM is only slightly slower, which is also a point in LM’s favor.

The Heat Transfer program behaves somewhat like Belief Propagation but LM is almost an
order of magnitude slower than the C++ version. We think this is because the heat transfer
computation is small which tends to show the overhead of the VM.

For the MSSD program, we used seven different datasets:
• US 500 Airports [CPSV07, Ops15], a graph of the 500 top airports in the US with around

5000 connections. The shortest distance is calculated for all nodes;
• OCLinks [Ops15, OP09], a Facebook-like social network with around 2000 nodes and

20000 edges. The shortest distance is calculated for all nodes;
• US Power Grid [Ops15, WS98], the power grid for western US with around 5000 nodes

and 13000 edges. The shortest distance is calculated for all nodes;
• Twitter [LK14, LM12], a graph with 81306 nodes and 1768149 edges. The shortest dis-

tance is calculated for 40 nodes;
• EU Email [LK14, LKF07] a graph with 265000 nodes and 420000 edges. The shortest
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distance is calculated for 100 nodes;
• Orkut [LK14, YL12], a large graph representing data from the Orkut social network. The

graph contains 3072441 nodes and 117185083 edges.
• Live Journal [LK14, Bac06], a large graph representing data from the Live Journal social

network. The graph contains 4847571 nodes and 68993773 edges.

The C++ MSSD version applies the Dijkstra algorithm for each node we want to compute the
shortest distance from. While the Dijkstra algorithm has a better complexity than the algorithm
used in LM, LM’s algorithm is able to process distances from multiple sources at the same time.
Our experiments show that the C++ program effectively beats LM’s version by a large margin,
but that gap is reduced when using larger graphs such as EU Email. The Python version also uses
the Dijkstra algorithm and is one order of magnitude slower than the C++ version and usually
slower than LM. We also wrote the MSSD program using the Ligra system [SB13]3, an efficient
and scalable framework for writing graph-based programs. Our experiments show that Ligra is,
on average, three times as fast as our C++ program, which means that LM is around 15 times
slower than Ligra. We also experimented with Valgrind’s cachegrind tool [NS07], and measured
the number of cache misses for LM, C++, and Ligra. For instance, in the OCLinks dataset,
Ligra’s MSSD program has only a 5% cache miss rate (for 700 million memory operations) while
the C++ version has a 9.4% miss rate (for 2 billion memory operations), which may explain the
differences in performance between C++ and Ligra. LM shows a 6% cache miss rate but also a
much higher number of memory accesses (seven times more than the C++ program). Note that
we compiled Ligra without parallel support.

For the MiniMax program, we used two different starting states, Small and Big, where the
tree generated by Big is ten times larger than the one generated by Small. The C++ version of the
MiniMax program uses a single recursive function that updates a single state as it is recursively
called to generate the best score and corresponding move. The LM version is seven to eight
times slower due to the memory requirements and costs of creating new nodes using the exists
construct. In Chapter 7, we will show how to improve the space complexity of the MiniMax
program and the corresponding run time.

The LM’s N-Queens programs shows some scalability issues since the overhead ratio in-
creases as the size of the problem increases. However, the same behavior is seen in the Python
program. The C++ version uses a backtracking strategy to try out all the possibilities and uses
a vector to store board states. Since there is only at most N (size of the board) vectors at the
same time, it shows better behavior than all the other programs. However, we should note that a
3 to 6-fold slowdown is a good trade-off for a higher-level program that will execute faster when
using more threads as we are going to observe next.

From these results, it is possible to conclude that LM’s virtual machine offers a decent perfor-
mance when compared to hand-written C++ programs. We think these results originate from four
main aspects of our system: efficient indexing, good locality with array data structures for persis-
tent facts, an efficient memory allocator, and a good compilation scheme. As noted in [MIM15],
scalability should not be the sole focus of a parallel/distributed system such as LM. This is even
more important in declarative languages which are known to suffer from performance issues

3Available at http://github.com/flavioc/ligra.
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when compared to programming languages such as C++.

6.4.2 Memory Usage

To complete our comparison against the C++ programs, we have measured and compared the
average memory used by both systems. Table 6.2 presents the memory statistics for LM programs
while Table 6.3 presents statistics of the C++ programs and a comparison to LM’s memory
requirements. In this thesis, the memory usage is measured by the memory occupied by all the
live objects in the virtual machine. The Final column shows the total memory usage after the
program finishes firing the last rule and the Average column indicates the average memory usage
of the program throughout its lifetime 4.

In the Belief Propagation program, LM uses 2 to 3 times more memory than the correspond-
ing C++ version. This is because the nodes in the LM program keep a copy of the belief values of
neighbor nodes, while the C++ program uses shared memory and the stack to read and compute
the neighbors belief values. The LM version of Heat Transfer has a slightly larger gap when
compared to C++, since heat values are represented as integers while the belief values in Belief
Propagation are represented as arrays, which is a more compact representation when compared
to the memory required to store linear facts.

When the MiniMax program completes, there are only two facts on the database that indicate
the best player move. The MiniMax program is also the only program in this experiment that
dynamically generates a (tree) graph, which is destroyed once the best move is found. The VM’s
garbage collector that collects empty nodes is able to delete the tree nodes (except the root) and
the Final memory usage reflects that since it is much smaller than the Average statistic. However,
because the garbage collector retains a small number of freed nodes that may be reused later, the
average size per fact is 15KB, which also includes those freed nodes. Note that the memory
usage of the C++ program is much smaller because it uses function calls to represent the tree
structure of the MiniMax algorithm.

The MSSD program shows that the LM VM requires about 2 to 5 times more memory than
the corresponding C++ program. The ratio is larger when the graph and computed distances
are smaller and this is due to the extra data structures required by the VM (i.e., the node data
structure). For the Live Journal and Orkut datasets, LM’s memory usage is about the same or
smaller than the C++ program. We think this is because the VM uses hash tree data structures,
which use less memory than the hash table data structures in the C++ program. In terms of
average memory per fact, we see that the MSSD requires on average 100B, where a big part of
it are the hash table data structures used for indexing. For the Orkut dataset, where 100 million
facts are derived, the average memory per fact is exactly 30B, which is about the 32B required
to store a particular linear fact for representing one shortest distance.

For the N-Queens program, the results show why there are scalability issues when using
a larger N since the memory usage increases significantly. On the positive side, the average
memory usage per fact remains the same for all data sets. In respect to the C++ program, it
is expected that it should consume almost no memory because it uses the stack to compute the

4The Average values were computed by taking memory usage measurements every 100 milliseconds, from
which an average was computed.
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Program Size Average Final # Facts Each

Belief Propagation

50x50 3.7MB 3.6MB 34.4K 0.11KB
200x200 58.5MB 57.6MB 557.6K 0.11KB
300x300 131.1MB 129.6MB 1256.4K 0.11KB
400x400 233.3MB 230.5MB 2.2M 0.11KB

Heat Transfer
80x80 8.7MB 8.2MB 63.3K 0.13KB

120x120 19.6MB 18.4MB 143.4K 0.13KB

MSSD

US 500 Airports 27.8MB 19.3MB 164.3K 0.12KB
OCLinks 502.1MB 231.9MB 2.2M 0.11KB
EU Email 485.4MB 401.8MB 3.8M 0.13KB

Twitter 1125.7MB 362.9MB 4.5M 0.08KB
US Power Grid 2.7GB 2.6GB 24.4M 0.11KB

Live Journal 5.5GB 3.3GB 71.5M 0.05KB
Orkut 3.6GB 2.9GB 100.6M 0.03KB

MiniMax
Small 1667.9MB 30KB 2 15.00KB
Big 13.5GB 30KB 2 15.00KB

N-Queens

11 2.8MB 667KB 3.2K 0.20KB
12 13.4MB 2.9MB 14.9K 0.20KB
13 71MB 14.5MB 74.5K 0.20KB
14 403.7MB 73.1MB 366.5K 0.20KB

Table 6.2: Memory statistics for LM programs. The meaning of each column is as follows:
column Average represents the average memory use of the program over time; Final represents
the memory usage after the program completes; # Facts represents the number of facts in the
database after the program completes; Each is the result of dividing Final by # Facts and repre-
sents the average memory required per fact.

solutions.
We conclude that the LM VM has high memory requirements due to the relatively large size

of the node data structures (including the rule engine and indexing data structures). The high
memory usage tends to degrade the performance of programs when compared to more efficient
languages and systems.

6.4.3 Dynamic Indexing

In the previous experiments, we used the full functionality of the virtual machine, including
dynamic indexing and indexing data structures. We now evaluate the impact of the dynamic
indexing algorithm by running the previous experiments without dynamic indexing. Table 6.4
shows the comparison between the versions with and without indexing. Column Run Time
shows that the MSSD program benefits from indexing because the version without indexing is
around 2 to 100 times slower than the version with indexing enabled. Since MSSD computes
the shortest distance to multiple nodes, its rules require searching for the shortest distance facts
of arbitrary nodes. All the other programs do not require significant indexing but also do not
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Program Size Average C / LM Final C / LM

Belief Propagation

50x50 2.7MB 73% 2.7MB 45%
200x200 45.1MB 77% 45.1MB 35%
300x300 99.7MB 76% 99.8MB 38%
400x400 181.3MB 77% 181.4MB 35%

Heat Transfer
80x80 2.3MB 26% 2.3MB 20%

120x120 5.4MB 27% 5.4MB 23%

MSSD

US 500 Airports 7.8MB 28% 15.7MB 23%
OCLinks 76.6MB 15% 151.9MB 14%
EU Email 267.3MB 55% 298.2MB 44%

Twitter 245.3MB 21% 333.10MB 15%
US Power Grid 744.5MB 35% 1491.7MB 32%

Live Journal 5.4GB 99% 5.4GB 64%
Orkut 7.5GB 206% 7.6GB 109%

MiniMax
Small 1KB 0% 0KB 0%
Big 1KB 0% 0KB 0%

N-Queens

11 1KB 0% 528KB 8%
12 1KB 0% 2.5MB 6%
13 1KB 0% 16.9MB 13%
14 1KB 0% 75.9MB 9%

Table 6.3: Average and final memory usage of each C++ program. The columns C / LM compare
the memory usage of C programs against the memory usage of LM programs for the average and
final memory usage, respectively (higher numbers are better).

display any significant slowdown from using dynamic indexing. In terms of memory usage, the
version with indexing uses slightly more memory, especially for the MSSD program, requiring,
on average, 50% more memory due to the existence of hash trees used to support indexing.

6.4.4 Scalability

In this section, we analyze the scalability of several LM programs using up to 32 threads. Note
that we are studying declarative LM programs that do not make use of coordination. We also
compare the run times against the run time of the hand-written C++ programs when such run
times are available. We used the programs of the previous section with a few additions:

• PageRank: an asynchronous version of the PageRank program without synchronization
between iterations. Every time a node sends a new PageRank value to its neighbors and
the change is significant, then the neighbors are scheduled to recompute their PageRanks.

• Greedy Graph Coloring (GGC): an algorithm that colors nodes in a graph so that no two
adjacent nodes have the same color. We start with a small number of colors and then we
expand the number of colors when we cannot color the graph.
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Program Size Run Time Average Memory

Belief Propagation

50x50 0.88 0.03
200x200 1.00 0.02
300x300 1.08 0.02
400x400 1.01 0.03

Heat Transfer
80x80 1.01 1.00

120x120 1.12 1.00

MSSD

US 500 Airports 34.57 1.65
OCLinks 108.93 1.36
EU Email 3.86 1.45

Twitter 1.97 1.19

MiniMax
Small 0.98 1.00
Big 0.95 1.00

N-Queens

11 0.98 1.00
12 1.00 1.00
13 1.00 1.00
14 1.00 1.00

Table 6.4: Measuring the impact of dynamic indexing and related data structures. Column Run
Time shows the slow down ratio of the unoptimized version (numbers greater than 1 show in-
dexing improvements). Column Average Memory is the result of dividing the average memory
of the optimized version by the unoptimized version (large numbers indicate that more memory
is needed when using indexing data structures).

These two programs were not used in the previous section because we did not implement the
corresponding C++ program.

We executed all the programs using 17 configurations. The base configuration uses 1 thread
and the other 16 configurations use an even numbers of threads for a maximum of 32 threads.
Figure 6.8 presents the overall scalability computed as the weighted harmonic mean of all the
benchmarks presented in this section. The weight used in the harmonic mean formula is the
run time of each program when executed with one thread. The one threaded version executes
with all the synchronization mechanisms enabled, just like the multi-threaded executions. The
experimental results show that, on average, our benchmarks have a 15-fold speedup when using
32 threads.

We now analyze each program separately. For the plots presented next, the x axis represents
the number of threads used, the left y axis represents the run time (in milliseconds) for that
particular configuration and uses a logarithmic scale and the right axis y represents the speedup
computed as T1/Ti, where Ti represents the run time of the program using i threads. In some
plots, there is also an horizontal black line that represents the run time of the C++ program and is
used to understand how many threads are needed in order for an LM program to run faster than
the C++ program. Note that all run times are the average of three runs.

The scalability results for the Belief Propagation program are presented in Fig. 6.9. This
program has the best scalability with a 60-fold speedup for 32 threads. This is because the de-
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Figure 6.8: Overall scalability for the benchmarks presented in this section. The average speedup
is the weighted harmonic mean using the single threaded run time as the weight of each bench-
mark.

Figure 6.9: Scalability results of the Belief Propagation program.

fault ordering used for 1 thread is not optimal, while the same ordering works better for multiple
threads. Additionally, the existence of multiple threads increase the amount of up-to-date in-
formation from neighbor nodes, resulting in super-linear speedups. Note that we also used the
same computation ordering in the C++ program, which is also the one used in the GraphLab
framework.

The results for the Heat Transfer program are shown in Fig. 6.10. We note that LM requires
around 15 threads to reach the run time of the C++ program. This results from the poor absolute
performance of the LM program that was mentioned in the previous section. Although we use
a grid dataset, the work available in the graph is not equally distributed due to different initial
heat values, therefore an almost linear speedup should not be expected. When comparing the
two datasets used, the 80x80 configuration has less scalability than the 120x120 dataset due to
its smaller size. For the 120x120 dataset, LM has a 12-fold speedup for 32 threads, which makes
the LM version run almost twice as fast as the C++ version.

Figure 6.11 presents the results for the Greedy Graph Coloring (GGC) program. In GGC, we
use two datasets: Google Plus [LK14], a graph representing social circles in Google Plus with
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Figure 6.10: Scalability results for the Heat Transfer program. Because the Heat Transfer pro-
gram performs poorly when compared to the C++ program, the LM version needs at least 15
threads to reach the run time of the C++ program (for the 120x120 dataset).

Figure 6.11: Scalability of the Greedy Graph Coloring program.

107614 nodes and 13673453 edges, and Twitter, a graph representing Twitter networks with
81306 nodes and 1768149 edges (note that Twitter was also used before in the MSSD program).
The Twitter and Google Plus datasets have almost the same number of nodes but Google Plus
has ten times more edges, which makes coloring more time consuming. Since Twitter is a much
smaller dataset, its speedup is much smaller than Google Plus, as expected. However, while the
speedup of Twitter starts to drop after 16 threads, the LM system is still able to make it faster by
adding more threads. For Google Plus, a 20-fold speedup is achieved for 32 threads, which is a
reasonable scalability considering that GGC is not a program where work is equally distributed.

The results for the N-Queens program are shown in Fig. 6.12. We decided to just use the
13 and 14 configurations since those take longer to run. The 13-Queens configuration has 169
(13x13) nodes while the 14-Queens configuration has 196 (14x14) nodes. The LM program
considers the chess board as a graph and the bottom rows have more work to perform since the
valid queens placements are built from the top to the bottom row. For a more in-depth explanation
of the N-Queens program please see Section 7.8.2.
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Figure 6.12: Scalability results for the N-Queens program. The 13 configuration has 73712
solutions, while the 14 configuration has 365596 solutions. In terms of graph size, the 13 config-
uration has 13× 13 nodes while the 14 configuration has 14× 14 nodes.

Due to the small number of nodes in the N-Queens program and the fact that more work is
performed at the bottom rows, the N-Queens program is hard to parallelize. Furthermore, the
solutions for the puzzle are built by constructing lists which are shared between threads. This
introduces some potential false sharing because the reference count of each list data structure
needs to be updated when new solutions are constructed. The 14-Queens configuration has good
efficiency using 16 to 20 threads, while the 13-Queens configuration efficiency starts to drop
after 14 threads. One can argue that the best number of threads is correlated to the size of the
board, because the second half of execution is better balanced and partitioned when the number
of threads matches the size of the board.

The speedup results for the MiniMax program is shown in Fig. 6.13. This is an interesting
program because the graph is constructed during run time. Furthermore, due to the LM default
scheduling order, the tree is explored in a breadth-first fashion, requiring the program to hold the
complete MiniMax tree in memory. The Big configuration, for instance, uses, on average, 14GB
of memory and a total of 30GB of memory before collecting the tree. Since the machine used for
the experiments has only 32GB, the Small configuration scales better due to the smaller memory
requirements. In Section 7.8.1, we will show how this program can be improved by changing the
default scheduling order of LM and improving the memory usage of the program.

The scalability results for the MSSD program are shown in Fig. 6.14. The amount of work
required to compute the results of each dataset depends on the size of the graph and the number
of nodes from which the distance must be computed. The first conclusion is that more work
implies more scalability, and the US Power Grid dataset has a 20-fold speedup for 32 threads,
the best from the 6 datasets used. The second conclusion is that all datasets are able to, at least,
reach the execution speed of the corresponding C++ program. However, some datasets such as
EU Email or Orkut, are notoriously faster than C++ when using more than 5 threads, which is a
impressive result. We think this is because the number of source nodes is small. Furthermore,
LM as a slight advantage over the C++ program because, in LM, distances to different nodes are
propagated at once, while in the C++ version, the Dijkstra algorithm runs in iterations - one for
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Figure 6.13: Scalability for the MiniMax program. Although the Big configuration has more
work available and could in principle scale better than Small, the high memory requirements of
Big makes it scale poorly.

each node from which we want to calculate the distance from.
The final scalability results are shown for PageRank in Fig. 6.15. We used two datasets,

Google Plus and Pokec. Google Plus [LK14] has 107614 nodes and 13673453 edges and is
based on a Google Plus social network, while Pokec [LK14] has 1632803 nodes and 30622564
edges and represents data from a popular social network website in Slovakia. Even though Pokec
is the larger graph, Google Plus has a denser graph, where the average number of edges per node
is 127 compared to the average of 18 for Pokec. This may explain why Google Plus is more
scalable with a 14-fold speedup for 32 threads.
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(a) Graph with 265000 nodes and 420000
edges. The shortest distance is calculated for
100 nodes.

(b) Graph with around 2000 nodes and
20000 edges. The shortest distance is cal-
culated for all nodes.

(c) Graph with 81306 nodes and 1768149
edges. The shortest distance is calculated for
40 nodes.

(d) Graph with around 5000 nodes and
13000 edges. The shortest distance is cal-
culated for all nodes.

(e) Graph with 3072441 nodes and
117185083 edges. The shortest distance is
calculated for two nodes.

(f) Graph with around 4847571 nodes and
68993773 edges. The shortest distance is
calculated for two nodes.

Figure 6.14: Scalability for the MSSD program. The LM system scales better when there is more
work to do per node, with the US Power Grid dataset showing the most scalability.
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(a) The Google Plus graph has a high aver-
age of edges per node of 127.

(b) The Pokec graph has a lower average of
edges per node of 18.

Figure 6.15: Scalability results for the asynchronous PageRank program. The superior scalability
of the Google Plus dataset may be explained by its higher density of edges.
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6.4.5 Threaded allocator versus malloc

In order to understand the role that our threaded allocator plays in the performance of programs,
we evaluate and compare it against the performance of the LM system by using the malloc
function provided by the operating system.

Figure 6.16 presents several programs comparing malloc with the threaded allocator. The
programs Belief Propagation, MiniMax, and N-Queens have poor scalability when using the
malloc operator due to high thread contention when calling malloc since those programs need
to allocate many small objects. The PageRank program shows good scalability with malloc
but it is only because the configuration with 1 thread runs slowly when compared to the other
configurations. For all the remaining programs, there is less overall performance and scalability
when compared to the threaded allocator.

As these results show, the performance of the memory allocator is crucial for good perfor-
mance and scalability. Linear logic programs spend a significant amount of time asserting and
retracting linear facts which require that memory allocation must be done efficiently and without
starving other threads. Reuse of deallocated linear facts also makes more likely that threads will
hit hot cache lines and thus improve speed significantly.

6.4.6 Threaded allocator versus node-local allocator

While our default threaded allocator performs and scales well, we also explored some alternative
designs. In this section, we explore a design where we move the allocation decisions from the
thread to the node itself, in order to store the facts of the same node close together and thus
increase locality. However, this design requires locking since multiple threads may allocate facts
from the same node. Our expectation is that such costs will be offset by the increased locality
and reduced cache misses when deriving facts.

The node-local allocator allocates pages of memory from the threaded allocator which are
then used to allocate facts for that particular node. When a thread needs to allocate or deallocate
a fact, it acquires the allocator lock of the target node’s allocator and performs the allocation
operation. There is a doubly-linked list of memory pages and each page contains facts of different
sizes (predicates).

Figure 6.17 presents an example state of a node-local allocator. The node has 3 memory
pages, all connected using the next and prev pointers. Each page also has a reference count
(refcount) of the objects allocated in the page. If the reference count ever drops to zero, then
the memory page is deallocated. Deallocated facts are kept on an ordered array for different sizes
using the mechanism we implemented for the threaded allocator. We have decided to reference
count objects in the node-local allocator because it is more difficult to share objects between
nodes and maintaining a reference count helps reduce memory usage.

Figure 6.18 presents the comparison between the threaded and node-local allocator for the
most relevant datasets (the performance was similar for the other datasets).

The first major observation from the comparison is that the threaded allocator has better
sequential performance than the node-local allocator for most programs. This is probably the
result of better locality for the threaded allocator because it does not need to create pages for each
node and instead uses the thread pages to maintain all facts, reducing cache line misses. Overall,
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Figure 6.16: Comparing the threaded allocator described in Section 6.3 against the malloc allo-
cator provided by the C library.

the performance of the threaded allocator is better or similar than the node-local allocator, for
both single and multi threaded threaded execution (see GGC for a clear example).

The second observation is in the N-Queens program, where the threaded allocator beats the
node-local allocator by a high margin in terms of scalability and performance. Note that the N-
Queens program allocates many lists, which are not allocated on a per node basis but on a thread
basis, therefore the extra work required to maintain each node-local allocator is not offset by the
increased locality because the threads need to traverse lists to find valid board states.

To make our comparison more interesting, we also deactivated the reference counting mech-
anisms of the node-local allocator and compared it against the threaded allocator. The goal is
to understand how reference counting affects the performance of the node-local allocator. The
complete comparison are shown in Fig. 6.19. In a nutshell, it performs almost the same as the
full featured node-local allocator, except for programs which require more memory such as Min-
iMax and Heat Transfer. In the case of MiniMax, we were unable to completely execute the
Big dataset since the VM required more memory than the available memory, resulting in long
execution times. This is the result of not collecting unused memory pages, which results in high
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Figure 6.17: Fact allocator: each node has a pool of memory pages for allocating logical facts.
Each page contains: (i) several linked lists of free facts of the same size (free array); (ii) a
reference count of used facts (refcount); (iii) a ptr pointer that points to unallocated space in
the page. In this figure, predicates f and g have several deallocated facts that are ready to be
used when a new fact needs to be acquired.

memory usage.
Overall, the performance of both allocators is similar, therefore we have decided to use the

threaded allocator by default since it is simpler and offers good performance across the board.
Furthermore, the threaded allocator requires less allocated memory because it enables more shar-
ing between nodes.

6.5 Related Work

6.5.1 Virtual Machines

Virtual machines are a popular technique for implementing interpreters for high level program-
ming languages. Due to the increased availability of parallel and distributed architectures, several
machines have been developed with parallelism in mind [KDGN97]. One good example is the
Parallel Virtual Machine (PVM) [Sun90], which servers as an abstraction to program hetero-
geneous computers as a single machine. Another important machine is the Threaded Abstract
Machine (TAM) [CGSvE93, Gol94], which defines a self-scheduled machine language of paral-
lel threads where a program is represented using conventional control flow.

Prolog, the most prominent logic programming language, has a rich history of virtual ma-
chine research centered extending/adapting the Warren Abstract Machine (WAM) [War83]. Be-
cause Prolog programs tend to be naturally parallel, much research has been done to either paral-
lelize the WAM or create new parallel machines. Two types of parallelism are possible in Prolog:
OR-parallelism, where several clauses for the same goal can be executed, and AND-parallelism,
where goals in the same clause are tried in parallel. For OR-parallelism, we have several mod-
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Figure 6.18: Comparing the threaded allocator described in Section 6.3 against the node-local
allocator.

els such as: the SRI model [War87], the Argonne model [BDL+88], the MUSE model [AK90]
and the BC machine [Ali88]. For AND-parallelism, different implementations were built on top
of the WAM [Her86, LK88], however more general models such as the Andorra model [HJ90]
were developed which allows both AND and OR-parallelism. In contrast to LM, where paral-
lelism arises from computing on different nodes with a partitioned database of facts, AND and
OR-parallelism arises from proving different facts independently.

6.5.2 Datalog Execution

The Datalog language is a forward-chaining logic programming and therefore requires different
evaluation strategies than those used by Prolog, which is a backward-chaining logic program-
ming language. Arguably, the most well-known strategy for Datalog programs with recursive
rules is the Semi-Naı̈ve Fixpoint algorithm [BR87], where the computation is split into itera-
tions and the facts generated in the previous generation are used as inputs to derive the facts in
the next iteration. The advantage of this mechanism is that no redundant computations are per-
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Figure 6.19: Comparing the threaded allocator described in Section 6.3 against the fact allocator
without reference counting.

formed, which could happen in the case of recursive rules but is avoided when the next iteration
only uses new facts derived by the previous iteration.

In the context of the P2 system [LCG+06], which was created for developing declarative
networking programs, the previous strategy is not suitable since it is centralized, therefore a new
strategy, called Pipelined Semi-Naı̈ve (PSN) evaluation, was developed for distributed compu-
tation. PSN evaluation evaluates one fact at a time by firing any rule that is derivable using the
new fact and older facts. If the new fact is already in the database, then the fact is not used for
derivation since it would derive redundant facts.

LM’s evaluation strategy is similar to PSN, however, it considers the whole database of facts
when firing rules due to the existence of rule priorities. For instance, when a node fires a rule,
new facts added for the local node are considered as a whole in order to select the next inference
rule. In the case of PSN, each new fact would be considered separately. Still, PSN and LM
are both asynchronous strategies which take advantage of the nature of distributed and parallel
architectures, respectively. Finally, an important distinction that should be made between PSN
and LM is that PSN is for logic programs with only persistent facts, which results in deterministic
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results, however because LM uses linear facts, it follows a don’t care or committed choice non-
determinism, which may result in different results depending on the order of computations.

6.5.3 CHR implementations
Many basic optimizations used in the LM compiler such as join optimizations and the use of dif-
ferent data structures for indexing facts were inspired in work done on CHR [HdlBSD04]. Wuille
et al. [WSD07] have described a CHR to C compiler that follows some of the ideas presented
in this chapter and De Koninck et al. [DKSD08] showed how to compile CHR programs with
dynamic priorities into Prolog. The novelty of our work focuses on supporting a combination of
comprehensions, aggregates and rule priorities.

6.6 Chapter Summary
This chapter provided a full description of the multi core implementation of LM, with a focus
on thread management, work stealing and memory allocation. We explained how the virtual
machine is organized to provide scalable multi threaded execution and provided experiments on
a wide range of problems to demonstrate its applicability and scalability. We also studied the
importance of good memory allocators for improved scalability and execution.
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Chapter 7

Coordination Facts

In Chapter 6, we saw that an LM program operates on a graph data structure G = (V,E) with
nodes V and edges E. Concurrent computation is performed non-deterministically by a set of
execution threads T that work on subsets ofG. Our implementation allows threads to steal nodes
from other threads in order to improve load balancing. However, there are many scheduling
details that are left for our implementation to decide and which the programmer has no control
over. How should a thread schedule the computation of its sub-graph? Is node stealing beneficial
to all programs? What is the best sub-graph partitioning for a given LM program? In order to
allow custom node scheduling and partitioning, we introduce coordination facts, a mechanism
that is indistinguishable from regular computation and that allows the programmer to control how
the runtime system executes programs. This is an important first step in allowing the programmer
to declaratively control execution. In Chapter 8, we further extend the language with thread-
based facts to allow reasoning over the state of the execution threads.

7.1 Motivation

To motivate the need for coordination, we use the Single Source Shortest Path (SSSP) program,
a concise program that can take advantage of custom scheduling policies to improve its perfor-
mance. Figure 7.1 and Figure 7.2 show a possible implementation in LM, and Fig. 7.3 shows
an instance of the program on a particular dataset. Note that in Section 6.4.1, we presented the
MSSD program which is essentially the SSSP program modified to compute multiple shortest
distances.

The SSSP program starts with the declaration of the predicates (lines 1-3). As usual, the
edge predicate is a persistent predicate that describes the edges of the graph, where the third
argument is the weight of each edge. Predicate shortest represents a valid distance and path
from node @1 to the node in the first argument. Predicate relax also represents a valid path, and,
is used to improve the distance in shortest. The program computes the shortest distance from
node @1 by improving the distance in the shortest facts, until the shortest distance is reached
in all nodes. In Fig. 7.2, we declare an example set of initial facts for the program: edge facts
describe the graph; shortest(A, +00, []) is the initial shortest distance (infinity) for all nodes;
and relax(@1, 0, [@1]) starts the algorithm by setting the distance from @1 to @1 to be 0.
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1 type edge(node, node, int). // Predicate declaration
2 type linear shortest(node, int, list int).
3 type linear relax(node, int, list int).
4

5 shortest(A, D1, P1), D1 > D2, relax(A, D2, P2) // Rule 1: newly improved path
6 -o shortest(A, D2, P2),
7 {B, W | !edge(A, B, W) -o relax(B, D2 + W, P2 ++ [B])}.
8

9 shortest(A, D1, P1), D1 <= D2, relax(A, D2, P2) // Rule 2: longer path
10 -o shortest(A, D1, P1).

Figure 7.1: Single Source Shortest Path program code.

1 !edge(@1, @2, 3). !edge(@1, @3, 1).
2 !edge(@3, @2, 1). !edge(@3, @4, 5).
3 !edge(@2, @4, 1).
4 shortest(A, +00, []).
5 relax(@1, 0, [@1]).

Figure 7.2: Initial facts for the SSSP program.

The first rule of the program (lines 5-7) reads as follows: if the current shortest path P1 with
distance D1 is larger than a new path relax with distance D2, then replace the current shortest path
with D2, delete the new relax path and propagate new paths to the neighbors (comprehension
at line 7). The comprehension iterates over the edges of node A and derives a new relax fact
for each node B with the distance D2 + W, where W is the weight of the edge. For example, in
Fig. 7.3(a) we apply rule 1 in node @1 and two new relax facts are derived at node @2 and @3.
Fig. 7.3(b) is the result after applying the same rule but at node @2.

The second rule of the program (lines 9-10) retracts a relax fact that has a longer distance
than the current shortest distance stored in shortest. There are many opportunities for custom
scheduling in the SSSP program. For instance, after applying rule 1 in Fig. 7.3(a), it is possible to
either apply rules in either node @2 or node @3. This decision depends largely on implementation
factors such as node partitioning and number of threads in the system. Still, it is easy to prove
that, independent of the particular scheduling used, the final result presented in Fig. 7.3(c) is
always achieved.

The SSSP program is concise and declarative but its performance depends on the order in
which nodes are executed. If nodes with greater distances are prioritized over other nodes, the
program will generate more relax facts and it will take longer to reach the shortest distances.
From Fig. 7.3, it is clear that the best scheduling is the following: @1, @3, @2 and then @4,
where only 4 relax facts are generated. If we had decided to process nodes in order @1, @2,
@4, @3, @4, @2, then 6 relax facts would have been generated. The optimal solution for SSSP
is to schedule the node with the shortest distance, which is essentially the Dijkstra shortest path
algorithm [Dij59]. Note how it is possible to change the complexity of the algorithm by sim-
ply changing the order of node computation, but still retain the same declarative nature of the
program.
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Figure 7.3: Graphical representation of an example dataset for the SSSP program: (a) represents
the program’s state after propagating the initial distance at node @1, followed by (b) where the
first rule is applied in node @2, and (c) represents the final state of the program, where all the
shortest paths have been computed.
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7.2 Types of Facts

LM introduces the concept of coordination that allows the programmer to write code that changes
how the runtime system schedules and partitions the set of available nodes across the threads of
execution. Beyond the distinction between linear and persistent facts, LM further classifies facts
into 3 categories: computation facts, structural facts and coordination facts. Predicates are also
classified accordingly.

Computation facts are regular facts used to represent the program state. In Fig. 7.1, relax
and shortest are both computation facts.

Structural facts describe information about the connections between the nodes in the graph.
In Fig. 7.1, edge facts are structural since the corresponding edge is used for communication
between nodes. Note that structural facts can also be seen as computation facts since they are
heavily used in the program’s logic.

Coordination facts are classified into scheduling facts and partitioning facts and allow the
programmer to change how the runtime schedules nodes and how it partitions the nodes among
threads of execution, respectively. Coordination facts can be used either in the LHS, RHS or both.
This allows scheduling and partition decisions to be made based on the state of the program
and on the state of the underlying machine. In this fashion, we keep the language declarative
because we reason logically about the state of execution, without the need to introduce extra-
logical operators into the language which would generate significant difficulties when proving
properties about the programs.

Both scheduling and partitioning facts can be further classified into two kinds of facts: sens-
ing facts and action facts. Sensing facts are used to sense information about the underlying
runtime system, such as the placement of nodes in the CPU and scheduling information.1

Action facts are used to apply coordination operations on the runtime system. Action facts
are linear facts which are consumed when the corresponding action is performed.2 We use them
to change the order in which nodes are evaluated in the runtime system and to make partitioning
decisions (assign nodes to threads). It is possible to give hints to the virtual machine in order to
prioritize the computation of some nodes.

With sensing and action facts, we can write rules that sense the state of the runtime system
and then apply decisions in order to improve execution speed or change partitioning information.
In most situations, this set of rules can be added to the program without modifying the meaning
of the original rules. When using sensing facts in rules, the meaning of the programs will change
and the programmer needs to be aware of the semantics of coordination and how the virtual
machine transitions from one state to another using built-in linear logic rules (see Section 8.4 for
a detailed discussion).

1In the original Meld [ARLG+09], sensing facts were used to get information about the outside world, like
temperature, touch data, neighborhood status, etc.

2Like sensing facts, action facts were also introduced in the original Meld and were used to make the robots
perform actions in the outside world (e.g., moving, changing speed).
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7.3 Scheduling Facts

In order to allow different scheduling strategies, we introduce the concept of node priority by
assigning a priority value to every node in the program and by introducing coordination facts
that manipulate the priority values. By default, nodes have the same priority value and thus can
be picked in any order. In our implementation, we use a FIFO approach because older nodes
tend to have a higher number of unexamined facts, from which they can derive subsequent new
facts.

We have two kinds of priorities: a temporary priority and a default priority. When a tem-
porary priority exists, it supersedes the default priority. Once a node is processed and becomes
inactive, the temporary priority is removed and the default priority is used. In a nutshell, the
priority of a node is equal to the temporary priority if there is one or it is the default priority
otherwise. Initially, all nodes have a default priority of −∞.

The following list presents the action facts available to manipulate the scheduling decisions
of the system:

• update-priority(node A, float F): Changes the temporary priority of node A to F.
• set-priority(node A, float F): Sets the temporary priority of node A to F if F is

better than the current priority (either default or temporary). The programmer can decide
(see 7.5) if priorities are to be ordered in ascending or descending order, thus if node A has
priority G, we only change the temporary priority to F if F > G (ascending order) or F < G
(descending order).

• add-priority(node A, float F): Changes the temporary priority of node A to F + G,
where G is the priority of the node. A negative priority is also allowed.

• remove-priority(node A): Removes the temporary priority from node A.
• schedule-next(node A): Changes the temporary priority of node A to be +∞ if priorities

are descending, or −∞ if priorities are ascending.
• set-default-priority(node A, float F): Sets the default priority of node A to F.
• stop-program(): Immediately stops the execution of the whole program.

LM also provides two sensing facts:

• priority(node A, float P): Represents the priority of node A. Value P is equal to the
temporary priority or equal to the default priority if A has no temporary priority assigned
to it.

• default-priority(node A, float P): Value P represents the default priority of node
A.

Sensing facts can only be used in the LHS of rules and are exempt from the constraint that
forces every fact used in the body to have the same first argument. Note that when sensing facts
are used to prove new facts, they must be re-derived so that the coordination model remains
consistent. Furthermore, when the programmer uses action facts such as set-priority and
set-default-priority, the runtime system implicitly updates and re-derives the associated
sensing facts, without any programmer interaction.
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Figure 7.4: Priorities with sub-graph partitioning. Priorities are used on a per-thread basis there-
fore thread T0 schedules @0 to execute, while T1 schedules node @4.

The priorities assigned to nodes follow a partial ordering since each thread selects the highest
priority node from its sub-graph and not from the whole graph. Figure 7.4 shows an example
of a graph being processed by two threads, T0 and T1. The order for T0 will be @0, @1, @3, @2
and for thread T1 it will be @4, @6, @5. Note that priorities of nodes can be set from any node in
the graph, even if those nodes live on different threads. Of course, this requires communication
between threads.

7.4 Partitioning Facts
We provide several coordination facts for dealing with node partitioning among the running
threads. Since each node is placed in some thread, the partitioning facts revolve around thread
placement. In terms of action facts, we have the following:

• set-thread(node A, thread T): Places node A in thread T until the program terminates
or a set-moving(A) fact is derived.

• set-affinity(node A, node B): Places node B in the thread of node A until the program
terminates or a set-moving(B) fact is derived.

• set-moving(node A): Allows node A to move freely between threads.

As an example of set-thread, consider again the graph in Fig. 7.4. If a coordination fact
set-thread(@2, T1) is derived, then node @2 will become part of the sub-graph of thread T1.
The result is shown in Fig. 7.5.

Sensing facts retrieve information about node placement and are specified as follows:
• thread-id(node A, thread T): Linear fact that maps node A to thread T which A belongs

to. Fact set-thread implicitly updates fact thread-id.
• is-static(node A): Fact available at node A if A is not allowed to move between threads.
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Figure 7.5: Moving node @2 to thread T1 using set-thread(@2, T1).

• is-moving(node A): Fact available at node A if A is allowed to move between threads.
• just-moved(node A): Linear fact derived by the set-thread action if, at that moment,

the node A is running on the target thread.

7.5 Global Directives
We also provide a few global coordination statements that cannot be specified as sensing or action
facts but are still important:

• priority @order ORDER (ORDER can be either asc or desc): Defines if priorities are to
be selected by the smallest or the greatest value, respectively.

• priority @default P: Informs the runtime system that all nodes must start with default
priority P. Alternatively, the programmer can define a set-default-priority(A, P)
initial fact.

• priority @base P: Informs the runtime system that the base priority should be P. The
base priority is, by default, 0 when the priority ordering is desc and +∞when the ordering
is asc and represents the smallest priority value possible.

• priority @initial P: Informs the runtime system that all nodes must start with tempo-
rary priority P. Alternatively, the programmer can define a set-priority(A, P) fact. By
default, the initial priority value is equal to +∞ (for desc) or 0 (for asc).

7.6 Implementation
In order to support priorities and node partitioning, we transformed the singly linked list work
queue of each thread, as presented in Fig. 6.3, into two pairs of queues: two standard queues
implemented as doubly linked lists and two priority queues implemented as min/max heaps.
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Figure 7.6: Thread’s work queue and its interaction with other threads: the dynamic queue
contains nodes that can be stolen while the static queue contains nodes that cannot be stolen.
Both queues are implemented with one standard queue and one priority queue.

These four queues are decomposed into the static queue and the dynamic queue, where each
queue has a standard and a priority queue. The static queue contains nodes that cannot be stolen
and the dynamic queue contains nodes which can be stolen by other threads.

The standard queue contains nodes without priorities (i.e., nodes with base priorities) and
supports push into tail, remove node from the head, remove arbitrary node, and remove first half
of nodes. The priority queue orders contains nodes with priorities (ordered by the priority
sensing fact) and is implemented as a binary heap array. It supports the following operations:
push into the heap, remove the min node, remove an arbitrary node, remove half of the nodes
(vertical split), and priority update. Operations for removing half of the queue are implemented
in order to support node stealing, while operations to remove arbitrary nodes or update priority
allows threads to change the priority of nodes. In the regular queue, the first n/2 elements are
removed from the front of the list and, in the priority queue, the binary heap is split vertically for
improved distribution of priorities.

Figure 7.6 presents an overview of the dynamic queue and how the remove half operations
are implemented in the sub-queues in order to support node stealing. Note that the static queue
is not represented but it also includes the same two sub-queues. Table 7.1 shows the complexity
of queue operations and compares the standard queue against the priority queue. Except for the
remove half operation, priority queue operations are more expensive.

The next and prev pointers of the standard queue are part of the node structure in order to
save space. These pointers are also used in the priority queue but for storing the current priority
and the node’s index in the binary heap array.

Note that, in order to minimize inter-thread communication, node priorities are implemented
at the thread level, i.e., when a thread picks the highest priority node from the priority queue, it
picks the highest priority node from its subgraph of nodes and not the highest priority node from
the whole graph.
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Operation Standard queue Priority Queue
Push O(1) O(logN)
Pop O(1) O(logN)

Remove O(1) O(logN)
Remove Half O(N) O(logN)

Priority Update - O(logN)

Table 7.1: Complexity of queue operations for both the standard queue and the priority queue.

7.6.1 Node State Machine

To accommodate the new coordination facilities, we added a new node state to the state machine
presented previously in Fig. 5.2. Figure 7.7 reviews the new set of states of the state machine.

• running: The node is deriving facts.
• inactive: The node is inactive, i.e., it has no new facts and it is not in any queue for

processing.
• active: The node has new facts and it is in some queue waiting to be processed.
• stealing: The node has just been stolen and it is in the process of being moved to another

thread.
• coordinating: The node moves from one queue to another or inside the priority queue

when changing its priority.

INACTIVE

RUNNING

ACTIVE

STEALING

COORDI
NATING

Executed

New facts

Start executing

Priority change

Node stolen

Figure 7.7: Node state machine extended with the new coordinating state.

7.6.2 Coordination Instructions

Coordination facts are implemented as API calls to the virtual machine which implement the
appropriate operations. Sensing facts read information about the state of the virtual machine
while action facts lock and update the appropriate underlying data structures such as the node
data structure or the thread’s queues.
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When a thread T1 performs coordination operations to a node owned by a thread T2, it needs
to synchronize with T2 and, for that, the State Lock in the target node needs to be acquired.
Optionally, we may need to also acquire the locks of T2’s queues if the priority is being up-
dated. Note that both the standard queue and priority queue have separate locks in order to allow
concurrent manipulation of the two data structures.

For the coordination facts set-priority and add-priority, when multiple operations are
directed to the same node during a single node execution, we coalesce the multiple operations
into a single operation. As an example, if a node derives two set-priority facts that change
the priority of node @1 to 1 and 2, the virtual machine coalesces the two instructions into a
single set-priority that is applied with value 2 (the higher priority) after all the candidate
rules of the node are executed. The reason for this optimization is that nodes may run for some
number of steps during the lifetime of the program, therefore immediately applying each and
every coordination instruction is not cost effective. We aim to reduce the amount of locking and
movement of nodes inside the queues due to priority updates.

7.7 Coordinating SSSP
Now that we have presented the coordination facts for LM, we present an example of their usage
in Fig. 7.8 by extending the SSSP program presented before. The coordinated version of SSSP
uses a global program directive to order priorities in ascending order (line 5) and the coordi-
nation fact set-priority (line 11). The proof of correctness for this program is presented in
Appendix G.1.

1 type edge(node, node, int). // Predicate declaration
2 type linear shortest(node, int, list int).
3 type linear relax(node, int, list int).
4

5 priority @order asc.
6

7 shortest(A, D1, P1), D1 > D2, relax(A, D2, P2) // Rule 1: newly improved path
8 -o shortest(A, D2, P2),
9 {B, W | !edge(A, B, W) -o

10 relax(B, D2 + W, P2 ++ [B]),
11 set-priority(B, float(D2 + W))}.
12

13 shortest(A, D1, P1), D1 <= D2, relax(A, D2, P2) // Rule 2: longer path
14 -o shortest(A, D1, P1).
15

16 shortest(A, +00, []). // Initial facts
17 relax(@1, 0, [@1]).

Figure 7.8: Shortest Path Program taking advantage of the set-priority coordination fact.

Figure 7.9 presents the 4 steps of computation for the new SSSP program when executed
with 1 thread. In every step, a new shortest path is computed at a different node, starting from
the shorter paths up to the longer paths. This is exactly the same behavior as the Dijkstra’s
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Figure 7.9: Graphical representation of the new SSSP program in Fig. 7.8. (a) represents the
program after propagating initial distance at node @1, followed by (b) where the first rule is
applied in node @3. (c) represents the result after retracting all the relax facts at node @2 and
(d) is the final state of the program where all the shortest paths have been computed.

algorithm [Dij59]. For multiple threads, the scheduling may not be optimal since threads pick
the node with the shortest distance from their subset of nodes. However, we have increased
parallelism (no global synchronization) and threads are still able to locally avoid unnecessary
work.

In order to experiment with the coordinated SSSP program, we extend it to support the com-
putation of shortest distances from multiple sources. This modified version, named MSSD, was
already used in Section 6.4.1 for measuring the performance of LM’s virtual machine. MSSD
is not only more interesting than SSSP but also allows us to better understand the advantages of
using coordination.

Table 7.2 presents fact statistics of the regular and coordinated versions of MSSD when
executed using 1 thread. We gathered the number of facts derived, number of facts deleted,
number of facts sent (to other nodes) and the final number of facts. Note that the number of facts
sent is a subset of the number of facts derived, while the final number of facts is the number of
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facts derived minus the number of facts deleted plus the number of initial facts. As expected,
there is a reduction in the number of facts derived in all datasets. There is also a clear correlation
between the reduction in facts processed and the run time reduction achieved using coordination.

Dataset # Derived # Sent # Deleted # Final
US 500 Airports 2.9M 83% 2.9M 83% 2.7M 82% 164.3K

OCLinks 64.9M 81% 64.9M 81% 62.8M 80% 2.2M
EU Email 35.4M 67% 34.9M 67% 32.7M 61% 3.8M

Twitter 357.5M 20% 357.4M 20% 354.7M 19% 4.5M
US Power Grid 207.6M 65% 207.6M 65% 183.2M 60% 24.4M

Live Journal 776.5M 21% 765.9M 20% 768.6M 20% 71.5M
Orkut 251.3M 40% 247.9M 39% 248.4M 39% 100.6M

Table 7.2: Fact statistics for the MSSD program when run on 1 thread. For each dataset, we
gathered the number of facts derived, number of facts deleted, number of facts sent to other nodes
and total number of facts in the database when the program terminates. Columns # Derived, #
Sent and # Deleted show the number of facts for the regular version (first column) and then the
ratio of facts for the coordinated version over the regular version. Percentage values less than
100% mean that the coordinated version produces fewer facts.

Figure 7.10 shows the comparison between the regular version (without coordination) and
the coordinated version of the MSSD program. We use the datasets already described in Sec-
tion 6.4.1. In each plot we present the following lines: Regular, which represents the run time
of the regular version; Coordinated, which represents the run time of the coordinated version;
Coordinated(1)/Regular(t), which represents the speedup of the regular version using the single
threaded coordinated version as the baseline; Coordinated(1)/Coordinated(t), which represents
the speedup of the coordinated version against the run time of the coordination version using 1
thread as the baseline; C++, which represents the run time of the MSSD C++ program already
presented in Section 6.4.1; Ligra, which represents the run time of the MSSD program written
in the Ligra framework [SB13]. Ligra’s program computes the multiple shortest distance com-
putations using the BellmanFord program provided by the source distribution3, but modified to
compute the distance from a single source node separately. Note that the run time (vertical axis)
axis uses a logarithmic scale.

Overall, there is a clear improvement in almost every dataset used. The datasets that see the
best run time reductions are Twitter, Orkut and LiveJournal, which are the datasets where the
distance is calculated for fewer nodes. When calculating the distance from multiple sources,
the set-priority fact is less effective because, although it selects the node with the shortest
distance to some source node, other distance computations (from other source nodes) are also
propagated to neighbor nodes, which may not be optimal. However, a potential solution to this
problem is to add new coordination facts and then change the underlying coordination machinery
to support fact-based priorities (instead of node based). This shows the beauty of our coordina-
tion model since this would not require changes to the semantics of the language. Furthermore,

3Modified version of the program is available at http://github.com/flavioc/ligra
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the shortest distance algorithm would still remain declarative and correct due to the invariants
that are always held when applying the program’s rules.

There is another interesting trend in our results which relates the improvement offered by
the coordination version over the regular version and the number of threads used. Even if the
number of threads goes up, the coordinated version is still able to keep about the same run time
reduction ratio over the regular version. This means that even if higher priority nodes are picked
from the each thread’s subgraph, the coordinated version is still able to reduce run time. In other
words, optimal (global) node scheduling is not required to see good results.

Ligra’s version of the MSSD program performs badly when using multiple source nodes
(datasets EU Email, OCLinks and US Power Grid). We found Ligra primitives (edgeMap and
vertexMap) unsuitable for simultaneous computation of shortest distances. It would have been
better to drop Ligra and use a task-parallel approach, where tasks, represented as source nodes,
are assigned to threads and each task would use a sequential shortest distance algorithm. LM
shines in such cases since it is a declarative language that can be used to solve a wider range
of problems. Ligra beats LM in the Twitter, Orkut and LiveJournal datasets, where Ligra is, on
average, 9, 3, and 10 times faster than LM, respectively. In terms of scalability, LM has similar
scalability in the Twitter and Orkut datasets, but worse scalability in the LiveJournal dataset. It
should be also noted that the datasets EU Email and OCLinks are too small for Ligra, therefore
it is hard to make a scalability comparison for those datasets.

In Section 7.6.2, we described the coalescing optimization where priority action facts are
coalesced into single operations. The MSSD program computes the shortest distances to multiple
nodes and thus it can take advantage of this optimization. Consider a MSSD program that is
computing the shortest distances from node @1 and @2. If a node @3 needs to propagate the
shortest distance d1 to another node @4 (distance from @1) and a distance d2 to node @4 (distance
from @2), then it would need to change the priority twice, first to d1, and then to d2. With the
coalescing optimization, it only changes the priority to the best of both. It is then advantageous
to only apply a single coordination operation in order to reduce queue operations and overall
locking.

In order to observe the effects of the coalescing optimization, we disabled its support from
the VM and then we ran the same experiments where priority updates are done immediately.
The results are presented in Fig. 7.11 and are represented using the UnOptimized label. From
the results, we can see that some datasets, such as EU Email and US Power Grid, maintain their
overall scalability, especially the speedup (Coordinated(1)/Coordinated(t)) for 32 threads (t =
32). For the OCLinks, Twitter and Live Journal datasets, there is some performance degrada-
tion since their overall scalability drops without the optimization. This shows that coordination
coalescing is an effective optimization for improving the run time of coordinated programs.

7.8 Applications

To further understand how coordination facts work, we present other programs that take advan-
tage of them.
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(a) Graph with 265000 nodes and 420000
edges. The shortest distance is calculated for
100 nodes.

(b) Graph with around 2000 nodes and
20000 edges. The shortest distance is cal-
culated for all nodes.

(c) Graph with 81306 nodes and 1768149
edges. The shortest distance is calculated for
40 nodes.

(d) Graph with around 5000 nodes and
13000 edges. The shortest distance is cal-
culated for all nodes.

(e) Graph with 3072441 nodes and
117185083 edges. The shortest distance is
calculated for two nodes.

(f) Graph with around 4847571 nodes and
68993773 edges. The shortest distance is
calculated for two nodes.

Figure 7.10: Scalability comparison for the MSSD program when enabling coordination facts.
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(a) Graph with 265000 nodes and 420000
edges. The shortest distance is calculated for
100 nodes.

(b) Graph with around 2000 nodes and
20000 edges. The shortest distance is cal-
culated for all nodes.

(c) Graph with 81306 nodes and 1768149
edges. The shortest distance is calculated for
40 nodes.

(d) Graph with around 5000 nodes and
13000 edges. The shortest distance is cal-
culated for all nodes.

(e) Graph with 3072441 nodes and
117185083 edges. The shortest distance is
calculated for two nodes.

(f) Graph with around 4847571 nodes and
68993773 edges. The shortest distance is
calculated for two nodes.

Figure 7.11: Scalability for the MSSD program when not coalescing coordination directives.
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7.8.1 MiniMax

The MiniMax algorithm is a decision rule algorithm for minimizing the possible loss for a worst
case (maximum loss) scenario in a zero sum game for 2 (or more) players who play in turns.

The algorithm builds a game tree, where each tree node represents a game state and the
children represent the possible game moves that can be made by either player 1 or player 2. An
evaluation function is used to compute the score of the game for each leaf of the tree. A node is a
leaf when the game state can no longer be expanded. Finally, the algorithm recursively minimizes
or maximizes the scores of each node. To select the best move for player 1, the algorithm picks
the move maximized at the root node.

Figure 7.12 shows LM’s code for the MiniMax program using coordination facts. The fol-
lowing predicates are specified: parent connects nodes to represent a tree; score(A, Score,
Play) and new-score(A, Score, Play) represent the score of a node, along with the game
move in the Play argument; minimize and maximize are counters that either maximize or min-
imize the scores coming from the children nodes; expand expands and creates children in the
current node; and play starts the MiniMax expansion and computation at the current node.

The LM program starts with a root node (with the initial game state) that is expanded with
the available moves at each level. The graph of the program is dynamic since nodes are created
and then deleted once they are no longer needed. The latter happens when the leaf scores are
computed or when a node fully minimizes or maximizes the children scores. When the program
ends, only the root node has facts in its database.

The first two rules in lines 14-20 check if the current game is final, namely, if a player has
won or the game drew: the first rule generates the score for the final state while the second
expands the game state by generating all the possible plays for player NextPlayer.

The expansion rules create the children for the current node and are implemented in lines 22-
40. The first two rules create either a maximize or minimize fact that will either maximize or
minimize the scores of the children nodes. The third and fourth expansion rules simulate a player
move and, for that, create a new node B using the exists language construct. We link B with
A using parent(B, A) and kickstart the recursive expansion of node B by deriving a play fact.
Finally, the rule in lines 39-40 is for the case when the current player cannot play in the current
game position.

At the end of execution, there should be a single fact, namely, score(@1, Score, Play),
where Score is the MiniMax score for the best play Play that can be made by the main player
for the initial game state. Note that the full proof of correctness of the MiniMax program is
presented in Appendix G.2.

As noted in Section 7.3, LM’s default scheduler uses a FIFO approach, which results in a
breadth-first expansion of the MiniMax tree. This results in O(n) space complexity, where n is
the number of nodes in the tree, since the tree must be fully expanded before the scores at the
leaves are actually computed. With coordination, we set the priority of a node to be its depth
(lines 29 and 30) so that the tree is expanded in a depth-first fashion, leading to O(dt) memory
complexity, where d is the depth of the tree and t is the number of threads. Since threads prioritize
deeper nodes, the scores of the first leaves are immediately computed and then sent to the parent
node. At this point, the leaves are deleted and reused for other nodes in the tree, resulting in
minimal memory usage. As an example, consider a system with 2 threads, T1 and T2, where T1
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1 type list int game. // Type declaration
2 type linear parent(node, node). // Predicate declaration
3 type linear score(node, int, int).
4 type linear new-score(node, int, int).
5 type linear minimize(node, int, int, int).
6 type linear maximize(node, int, int, int).
7 type linear expand(node, game FirstPart, game SecondPart, int Descendants, int Player, int Play, int Depth).
8 type linear play(node, game Game, int Player, int Play, int Depth).
9

10 const root-player = 1. const initial-game = [...]. // Constant declaration: player and initial game state
11 fun next(P : int) : int = if P = 1 then 2 else 1 end. // Function declaration: select next player
12 external fun minimax_score(game, int, int). // Returns the score of a board
13

14 play(A, Game, NextPlayer, LastPlay, Depth), // Rule 1: ending game state
15 Score = minimax_score(Game, NextPlayer, root-player), Score > 0
16 -o score(A, Score, LastPlay).
17

18 play(A, Game, NextPlayer, LastPlay, Depth), // Rule 2: expand state
19 0 = minimax_score(Game, NextPlayer, root-player) // minimax_score is an external function
20 -o expand(A, [], Game, 0, NextPlayer, LastPlay, Depth).
21

22 expand(A, Game, [], N, Player, Play, Depth), Player = root-player // Rule 3: maximize node
23 -o maximize(A, N, -00, 0).
24

25 expand(A, Game, [], N, Player, Play, Depth), Player <> root-player // Rule 4: minimize node
26 -o minimize(A, N, +00, 0).
27

28 expand(A, First, [0 | Xs], N, Player, Play, Depth), Depth >= 5 // Rule 5: create static child node
29 -o exists B. (set-affinity(A, B),
30 set-default-priority(B, float(Depth + 1)),
31 play(B, Game ++ [P | Xs], next(P), length(First), Depth + 1), parent(B, A).
32 expand(A, First ++ [0], Xs, N + 1, Player, Play, Depth)).
33

34 expand(A, First, [0 | Xs], N, Player, Play, Depth), Depth < 5 // Rule 6: create child node
35 -o exists B. (set-default-priority(B, float(Depth + 1)),
36 play(B, Game ++ [P | Xs], next(P), length(First), Depth + 1), parent(B, A),
37 expand(A, First ++ [0], Xs, N + 1, Player, Play, Depth)).
38

39 expand(A, First, [C | Xs], N, Player, Play, Depth), C <> 0 // Rule 7: next game play
40 -o expand(A, First ++ [C], Xs, N, Player, Play, Depth).
41

42 score(A, Score, BestPlay), parent(A, B) -o new-score(B, Score, BestPlay).// Rule 8: sending score to parent node
43

44 new-score(A, Score, Play), minimize(A, N, Current, BestPlay), Current > Score // Rule 9: keep current score
45 -o minimize(A, N - 1, Score, Play).
46

47 new-score(A, Score, Play), minimize(A, N, Current, BestPlay), Current <= Score // Rule 10: select new best
48 -o minimize(A, N - 1, Current, BestPlay).
49

50 minimize(A, 0, Score, BestPlay) -o score(A, Score, BestPlay).// Rule 11: score minimized
51

52 new-score(A, Score, Play), maximize(A, N, Current, BestPlay), Current < Score // Rule 12: keep current score
53 -o maximize(A, N - 1, Score, Play).
54

55 new-score(A, Score, Play), minimize(A, N, Current, BestPlay), Current >= Score // Rule 13: select new best
56 -o maximize(A, N - 1, Current, BestPlay).
57

58 maximize(A, 0, Score, BestPlay) -o score(A, Score, BestPlay). // Rule 14: score maximized
59

60 play(@0, initial-game, root-player, 0, 1). // Initial fact

Figure 7.12: LM code for the MiniMax program.
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first expands the root node and then expands the first child. Since T2 is idle, it steals half of the
root’s children nodes and starts expanding one of the nodes in a depth-first fashion.

We also take advantage of memory locality by using set-affinity (line 30), so that nodes
after a certain level are not stolen by other threads. While this is not critical for performance in
shared memory systems where node stealing is efficient, we expect that such coordination to be
critical in distributed systems.

The rest of the program contains rules for maximizing and minimizing scores (lines 44-58),
through the retraction of new-score incoming facts.

Dataset Threads Average Final # Malloc
Regular Coord Regular Coord Regular Coord

Small

1 1667.9MB 52KB 30KB 31KB 42 11
2 816.4MB 48KB 60KB 61KB 79 22
4 375.3MB 45KB 119KB 121KB 149 44
8 189.7MB 43KB 236KB 240KB 281 88

16 81.3MB 40KB 472KB 478KB 531 172
24 26.6MB 39KB 707KB 712KB 734 252
32 24.4MB 37KB 937KB 953KB 932 332

Big

1 13.5GB 62KB 30KB 31KB 48 12
2 6.7GB 54KB 60KB 61KB 92 23
4 2.4GB 52KB 119KB 121KB 171 44
8 1545.6MB 50KB 236KB 240KB 331 88

16 624.2MB 47KB 472KB 479KB 613 177
24 400.5MB 45KB 707KB 717KB 886 265
32 222.7MB 44KB 942KB 955KB 1145 353

Table 7.3: Comparing the memory usage of the regular and coordinated MiniMax programs.

In Table 7.3 we compare the memory usage of the coordinated MiniMax program against
the regular MiniMax program. The Average column presents the average memory usage during
the lifetime of the program, the Final column indicates the amount of memory used at the end
of the program, while the # Malloc column represents the number of calls made to the malloc
function by the threaded allocator. The coordinated version uses significantly less memory than
the regular version. Both the Big and the Small dataset use about the same memory when using
coordination, which is an excellent result since the Big dataset is ten times larger than the Small
dataset. As the number of the threads increases, the average memory usage of the regular version
decreases because there are more threads that are able to complete different parts of the tree at
the same time. The same happens for the coordinated version, but at a much smaller scale since
threads are exploring the tree in a depth-first fashion. Finally, as expected, there is also a large
reduction in the number of malloc’s called by the threaded allocator in the coordinated version.

The run time and scalability results are presented in Fig. 7.13. There is a clear performance
improvement when coordinating the MiniMax program due to the low memory usage. The Big
dataset needs only 5 threads to reach the performance of the sequential C++ program and, when
using 32 threads, the LM program is more than four times faster than the C++ version. The use
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Figure 7.13: Scalability for the MiniMax program when using coordination.

of coordination facts allows us to improve the execution of this declarative program and make it
run significantly faster than it would be otherwise.

7.8.2 N-Queens
The N-Queens puzzle is the problem of placing N chess queens on an NxN chessboard so that
no pair of queens attack each other [HLM69]. The specific challenge of finding all the distinct
solutions to this problem is a good benchmark in designing parallel algorithms. Most popular
parallel implementations of the N-Queens problem distribute the search space of the problem
by assigning incomplete boards as tasks to threads. Our approach is unusual since we see the
squares of the board as the LM’s nodes of the program, where each square can communicate
with other 4 squares: the adjacent right and the adjacent left on the same row, and the first non-
diagonal square to the right and to the left on the row below. To represent a partial/valid board
state, we use a list of integers, where each integers represents the column in which a queen is
placed. For example [2, 0] means that a queen is placed in square (0, 0) and another in square
(1, 2). At any given time, many partial board states may use the same squares and each square can
belong to several board states. An example final database for the 8-Queens problem is presented
in Fig. 7.16, where only 8 valid states of the possible 92 states are shown.

Figure 7.15 presents our solution. The predicates left, right, down-left and down-right
represent each square’s four connections to the squares on the same row and to the row below.
Predicate coord represents the coordinate of the given square. Predicates propagate-left and
propagate-right propagate a given board state to the left or to the right in the current row
of the board. Predicates test-y, test-diag-left and test-diag-right take one valid board
state (last argument) and then determine if the current square is able to add itself to that state by
checking the three restrictions of the N-Queens puzzle. Predicate new-state represent a new
valid board state in the current square, while send-down forces a square to send a new state to
the squares in the row below. Finally, predicate final-state represents a full board state. Once
the program completes, the last row of squares of the board should have several final-state
facts which represent all the distinct solutions to the puzzle.

In terms of facts and rules, we have an initial fact that represents an empty state (line 51),
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which is instantiated in the top-left square and must be propagated to all squares in the same row
(rule in lines 16-17). If a square S receives a new state L, it checks if S can be incorporated
into L. For that, it checks if there is no queen on S’s column (rules in lines 21-27), if there is no
queen on S’s left diagonal (rules in lines 29-35) and if there is no queen on S’s right diagonal
(rules in lines 37-43).

Figure 7.14: Propagation of states using the send-down fact.

If there is any conflict, we do not derive anything and for that we use the language expression
1 (lines 25, 33 and 41). If there are no conflicts, this means that it is possible to add a queen
to the current state (line 39). The fact send-down is used to either complete the computation of
a valid state (lines 45-46) or to propagate the state to the row below (lines 47-49) as shown in
Fig. 7.14. The full proof of correctness for the N-Queens program is presented in Appendix G.3.

Since computation goes from the top row to the bottom row, not all static placements of nodes
to threads will perform equally well. This is especially true because the bottom rows perform the
most work. The best placement is then to split the board vertically with axiom set-thread(A,
vertical(X, Y, side, side)) so each thread gets the same number of columns, where
vertical is a function that accepts the coordinates X and Y and the size of the board and then
returns the thread for node A. Our experiments show that, on a shared memory system, it does
not matter much if we start with a bad placement since node stealing overcomes those issues by
load balancing dynamically.

However, the N-Queens program incrementally builds and shares lists representing valid
board states that are transmitted from top to bottom. In order to improve memory locality, we
should then manipulate board states that share a significant number of elements because each
board state needs to be iterated before being extended with a new position. To accomplish this,
we used the coordination fact set-default-priority(A, X) (not shown in Fig. 7.15) to ex-
periment with two main configurations: Top, where top rows are prioritized; and Bottom, where
squares closer to the bottom are computed first. We also decided to optionally pin nodes to
threads, as mentioned earlier, to see if memory locality affects the multi-threaded performance
of the program. These configurations are referred as Static.

The complete results are shown in Fig. 7.17 (for the 13-Queens problem) and Fig. 7.18 (for
the 14-Queens problem). We present the 4 possible configurations side by side and compare their
run time against the version without coordination. The line Regular(1)/Config(t) represents the
speedup of the configuration Config against the run time of the regular version (no coordination)
using 1 thread.

The first observation is that using the Top configuration for a small number of threads results
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1 type list int state. // Type declaration
2 type left(node, node). type right(node, node). // Predicate declaration
3 type down-left(node, node). type down-right(node, node).
4 type coord(node, int, int).
5 type linear propagate-left(node, state).
6 type linear propagate-right(node, state).
7 type linear test-y(node, int, state, state).
8 type linear test-diag-left(node, int, int, state, state).
9 type linear test-diag-right(node, int, int, state, state).

10 type linear new-state(node, state).
11 type linear send-down(node, state).
12 type linear final-state(node, state).
13

14 propagate-left(A, State) // Rule 1: propagate to the left
15 -o {L | !left(A, L), L <> A -o propagate-left(L, State)}, new-state(A, State).
16 propagate-right(A, State) // Rule 2: propagate to the right
17 -o {R | !right(A, R), R <> A -o propagate-right(R, State)}, new-state(A, State).
18

19 new-state(A, State), !coord(A, X, Y) -o test-y(A, Y, State, State). // Rule 3: check if queen can be added
20

21 // check if there is no queen on the same column
22 test-y(A, Y, [], State), !coord(A, OX, OY) // Rule 4: check vertical
23 -o test-diag-left(A, OX - 1, OY - 1, State, State).
24 test-y(A, Y, [Y1 | RestState], State), Y = Y1 // Rule 5: check vertical
25 -o 1. // fail
26 test-y(A, Y, [Y1 | RestState], State), Y <> Y1 // Rule 6: check vertical
27 -o test-y(A, Y, RestState, State).
28

29 // check if there is no queen on the left diagonal
30 test-diag-left(A, X, Y, _, State), X < 0 || Y < 0, !coord(A, OX, OY) // Rule 7: check left diagonal
31 -o test-diag-right(A, OX - 1, OY + 1, State, State).
32 test-diag-left(A, X, Y, [Y1 | RestState], State), Y = Y1 // Rule 8: check left diagonal
33 -o 1. // fail
34 test-diag-left(A, X, Y, [Y1 | RestState], State), Y <> Y1 // Rule 9: check left diagonal
35 -o test-diag-left(A, X - 1, Y - 1, RestState, State).
36

37 // check if there is no queen on the right diagonal
38 test-diag-right(A, X, Y, [], State), X < 0 || Y >= size, !coord(A, OX, OY) // Rule 10: check right diagonal
39 -o send-down(A, [OY | State]). // add new queen
40 test-diag-right(A, X, Y, [Y1 | RestState], State), Y = Y1 // Rule 11: check right diagonal
41 -o 1. // fail
42 test-diag-right(A, X, Y, [Y1 | RestState], State), Y <> Y1 // Rule 12: check right diagonal
43 -o test-diag-right(A, X - 1, Y + 1, RestState, State).
44

45 send-down(A, State), !coord(A, size - 1, _) // Rule 13: final state
46 -o final-state(A, State).
47 send-down(A, State), !coord(A, CX, _), CX <> size - 1 // Rule 14: propagate the state down
48 -o {B | !down-right(A, B), B <> A -o propagate-right(B, State)},
49 {B | !down-left(A, B), B <> A -o propagate-left(B, State)}.
50

51 propagate-right(@0, []). // Initial fact

Figure 7.15: N-Queens problem solved in LM.

in better run times (see Fig. 7.18(a) for an example), however that advantage is lost when adding
more threads. We argue that Top allows threads to build all the valid states on row i and then
process them all at once on row i + 1, improving overall memory locality since LM rules run
for all possible board configurations of row i. However, when the number of threads increases,
it results in reduced scalability since there is less work available per thread since row i must be
processed before row i+ 1.

In the Bottom configuration, there is little change when compared to the uncoordinated ver-
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1 final-state(@57, [0, 4, 7, 5, 2, 6, 1, 3]). // States at square (7, 0)
2 final-state(@57, [0, 5, 7, 2, 6, 3, 1, 4])
3 final-state(@57, [0, 6, 3, 5, 7, 1, 4, 2])
4 final-state(@57, [0, 6, 4, 7, 1, 3, 5, 2])
5

6 (...)
7

8 final-state(@63, [7, 1, 3, 0, 6, 4, 2, 5]) // States at square (7, 7)
9 final-state(@63, [7, 1, 4, 2, 0, 6, 3, 5])

10 final-state(@63, [7, 2, 0, 5, 1, 4, 6, 3])
11 final-state(@63, [7, 3, 0, 2, 5, 1, 6, 4])

Figure 7.16: Final database for the 8-Queens program.

sion of N-Queens. However, interesting things happen in the Bottom Static configuration when
the number of rows is equal to the number of threads. For an example, observe Fig. 7.18d where
using 14 threads takes almost the same run time as the regular version when using 32 threads. In
this case, each thread is assigned a single column of the chess board and is able to process only the
states for that particular column. This behavior was investigated in the Valgrind’s CacheGrind
tool, which showed that this particular combination has the smallest number of cache misses.
This indicates that it is helpful to match the problem to the number of available CPU’s in the
system in order to increase memory locality.
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(a) (b)

(c) (d)

Figure 7.17: Scalability for the N-Queens 13 program when using different scheduling and par-
titioning policies.
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(a) (b)

(c) (d)

Figure 7.18: Scalability for the N-Queens 14 program when using different scheduling and par-
titioning policies.
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7.8.3 Heat Transfer
In the Heat Transfer (HT) algorithm, we have a graph where heat values are exchanged between
nodes. The program stops when, for every node i, the new heat values Hi differ only a small ε
from the old valuesHi−1, where δ = |Hi−Hi−1| ≤ ε. The algorithm works asynchronously, i.e.,
heat values are updated using information as it arrives from neighboring nodes. This increases
concurrency since nodes do not need to synchronize between iterations.

Figure 7.19 shows the HT rules that send new heat values to neighbor nodes. In the first rule
we added an add-priority action fact to increase the priority of the neighbor nodes for the case
when the current node has a large δ. The idea is to prioritize the computation of heat values of
nodes (using update) that have a neighbor that changed significantly. Multiple add-priority
facts will increase the priority of a node so that nodes with multiple large deltas will have higher
priority.

1 new-heat(A, New, Old),
2 fabs(New - Old) > epsilon
3 -o {B | !edge(A, B) -o
4 new-neighbor-heat(B, A, New),
5 update(B), add-priority(B, Delta)}.
6

7 new-heat(A, New, Old)
8 fabs(New - Old) <= epsilon
9 -o {B | !edge(A, B) -o

10 new-neighbor-heat(B, A, New)}.

Figure 7.19: Coordination code for the Heat Transfer program.

Fig. 7.20 presents the scalability results for the regular and coordinated version. The dataset
used in the experiments was already used in Section 6.4.1, which is a square grid with an inner
square with high heat nodes. Comparing the coordinated version with the regular version, with
1 thread there is a 50% reduction in run time, while for 32 threads there is, on average, a 15%
reduction. The increasing number of threads makes selecting the higher priority nodes less likely
since each thread is only able to select the higher priority node from its own (ever decreasing)
subgraph.

To further improve locality, we modified the second rule to avoid sending small δ values if
the target node is in another thread (Fig. 7.21). We used thread-id to retrieve the thread T of the
node A and match the thread-id of each neighbor B against T. The comprehension in lines 10-11
only generates new-neighbor-heat facts if B is in the same thread. Note that in this version, the
heat values computed by the program will have increased errors since they are computed with
less accurate information. However, it is possible to write more complicated rules where nodes
could accumulate incoming heat values and then compute and propagate new heat values when
appropriate. This would also increase locality but without increasing the statistical error.

The results for the improved version are presented in Fig. 7.22. There is a clear improve-
ment when compared to the previous version, since when using 32 threads, there is a 25% run
time reduction for the coordinated version. For the same number of threads, the line Coor-
dinated(1)/Coordinated(t) reaches a 10-fold speedup, while the old version achieves a 9-fold
speedup. However, this comes at the price of reduced accuracy in the computed heat values.
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(a) 80x80 grid dataset. (b) 120x120 grid dataset.

Figure 7.20: Scalability for the Heat Transfer program when using coordination. We used the
datasets used in Section 6.4.1

1 new-heat(A, New, Old),
2 fabs(New - Old) > epsilon
3 -o {B | !edge(A, B) -o
4 new-neighbor-heat(B, A, New),
5 update(B), add-priority(B, Delta)}.
6

7 new-heat(A, New, Old)
8 fabs(New - Old) <= epsilon,
9 thread-id(A, T)

10 -o {B, T | !edge(A, B), thread-id(B, T) -o
11 new-neighbor-heat(B, A, New), thread-id(B, T)},
12 thread-id(A, T).

Figure 7.21: To improve locality, we add an extra constraint to the second rule to avoid sending
small δ values if the target node is in another thread.

7.8.4 Remarks

We showed four applications that make use of the new coordination facilities of LM. Coor-
dination makes it possible for programmers to fine tune, if necessary, the scheduling and load
balancing of declarative programs in the same way that regular LM computation is accomplished.

In the Single Source Shortest Path program, we demonstrated that coordination makes it easy
to avoid redundant computations and thus significantly reduce the run time of several, relatively
large, datasets.

In the MiniMax program, we used default priorities to minimize the memory usage of the
program and allow the declarative program to be far more competitive with the corresponding
program implemented in C++.

In the N-Queens program, we used partitioning facts to pin columns of the chess board to
threads and then improve the scalability of the program for configurations where the number of
columns is equal to the number of threads. The partitioning mechanism allows the programmer
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(a) 80x80 grid dataset. (b) 120x120 grid dataset.

Figure 7.22: Scalability for the Heat Transfer program when using coordination and avoiding
some communication between nodes of different threads.

to improve the locality of the program by deciding where nodes and computation should be
placed during execution.

Finally, in the Heat Transfer program, we made use of both scheduling and partitioning facts
to improve performance and reduce inter-thread communication. The sensing facts for partition-
ing makes it trivial to selectively do computation by reasoning about the state of the underlying
parallel system.

7.9 Related Work
As mentioned in Section 2.3, Linda [ACG86] and Delirium [LS90] are two programming lan-
guages that support coordination. When compared to LM, Linda and Delirium are limited in the
sense that the programmer can only coordinate the scheduling of processing units, while place-
ment of data is left to the implementation. LM differs from those languages because coordination
acts on data instead of processing units. Coordination facts as used in this chapter raise the ab-
straction by considering data and algorithmic aspects of the program instead of focusing on how
processing units are used. Furthermore, LM is both a coordination language and a computation
language and the distinction between the two components is small.

There are also several programming models also support some kind of coordination prim-
itives that allow explicit scheduling and load balancing of work between available processing
units but are not considered proper programming languages.

The Galois [PNK+11] programming model implements autonomous scheduling by default,
where activities may be rolled back in case of conflict. However, it is possible to employ a con-
crete scheduling strategy for coordinating parallel execution in order to improve execution and
avoid conflicts. First, there is compile-time coordination, where the scheduling ordered is com-
puted during compilation and is pre-defined before the program is executed. Secondly, there is
runtime coordination, where the order of activities is computed during execution. The execution
of the algorithm proceeds in rounds: first, a set of non-conflicting activities is computed and
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then executed by applying the operator; conflicting activities are postponed to the next round.
The third and last scheduling strategy is just-in-time coordination where the order of activities is
defined by the underlying data structure where the operator is applied (for instance, computing
on a graph may depend on its topology).

In the context of the Galois model, Nguyen et al. [NP11] expanded the concept of runtime
coordination with the introduction of a flexible approach to specify scheduling policies for Ga-
lois programs. This approach was motivated by the fact that some algorithms can be executed
faster if computations use better scheduling strategies. The scheduling language specifies 3 main
scheduler types: FIFO (First-In First-Out), LIFO (Last-In First-Out) and OrderedByMetric (or-
der activities by some metric). These schedulers can be composed and synthesized without
requiring users to write complex concurrent code.

Elixir [PMP12] is a domain specific language that builds on top of the Galois and allows easy
specification of scheduling strategies. The main idea behind Elixir is that the user should be able
to specify how operator application is scheduled and the framework will compile this high level
specification to low level code using the provided scheduling specification. One of the motivat-
ing examples is the Single Source Shortest Path program that can be specified using multiple
scheduling specifications, generating different well-known shortest path algorithms such as the
Dijkstra or Bellman-Ford algorithm. Unlike the work of Nguyen et all. [NP11], Elixir does not
allow graph mutations.

Halide [RKBA+13] is a language and compiler for image processing pipelines with the goal
of optimizing parallelism, locality and re-computation. Halide decouples the algorithm definition
from its execution strategy, allowing the compiler to find which execution strategy may be the
best for optimizing for locality and parallelism. The language allows the programmer to specify
the scheduling strategy, allowing the programmer to decide the order of computations, what
intermediate results need to be stored, how to split the data among processing units and how
to use vectorization and the well-known sliding window mechanism. However, the compiler is
able to use stochastic search to find good schedules for Halide pipelines. Notably, experimental
results indicate that automatic search sometimes leads to better execution than hand-written code.

In contrast to the previous systems, LM stands alone in making coordination (both schedul-
ing and partitioning) a first-class programming construct and semantically equivalent to compu-
tation. Furthermore, LM distinguishes itself by supporting data-driven dynamic coordination,
particularly for irregular data structures. Elixir and Galois do not support coordination for data
partitioning, and, in Elixir, the coordination specification is separated from computation, limiting
the programmability of coordination. Compared to LM, Halide is targeted for regular applica-
tions and therefore only supports compile time coordination.

7.10 Chapter Summary
In this chapter, we presented the set of coordination facts, a new declarative mechanism for
coordinating declarative parallel programs. Coordination facts are implemented as sensing and
action facts and allow the programmer to write derivation rules that change how the runtime
system schedules computation and partitions the data in the parallel system, thus improving the
executing time. In terms of programming language design, our coordination mechanisms are
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unique in the sense that they are treated like regular computation, which allows for complex
run-time coordination policies that are declarative and is part of the main program’s logic.
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Chapter 8

Thread-Based Facts

In the previous chapter, we introduced coordination facts, a mechanism that can be used by the
programmer to coordinate execution. While these facilities retain the implicit parallelism of
the language, they do not allow the programmer to fully reason about the underlying parallel
architecture since the only reasoning allowed relates to node partitioning and data placement.
In principle, it should be advantageous to reason about thread state, that is, to perform rule
inference about facts stored on each thread and allow threads to communicate and coordinate
between them depending on their current state. This introduces a kind of explicit parallelism into
the implicit parallel model of LM. However, this explicit parallelism remains declarative so that
the programmer is able to reason about thread coordination as well as regular computation.

8.1 Motivating Example: Graph Search

Consider the problem of checking if a set of nodes S in a graph G is reachable from an arbitrary
node N . An obvious solution to this problem is to start at N , gather all the neighbor nodes into
a list and then recursively visit all those reachable nodes, until S is covered. This reduces to
a problem of performing a breadth or depth-first search on graph G. However, this solution is
sequential and does not have much concurrency. An alternative solution to the problem is to
recursively propagate the search to all neighbors and aggregate the results in the node where the
search started. The code for this later solution is shown in Fig. 8.1, where nodes are searched by
analyzing their unique value facts.

Each distinct reachability search is represented by a number (Id) and a search initial fact.
Associated to each search Id is a list of nodes to reach. The predicate visited marks nodes that
have already participated in search, while predicate do-search is used to propagate a specific
search. The first rule (lines 12-14) starts a particular search by deriving a do-search and an
lookup fact. The lookup fact is used as an accumulator and is stored in the starting node. The
third rule (lines 19-21) avoids visiting the same node twice in the presence of a visited fact.
This visited fact is derived in the next two rules (lines 25 and 32). If the node has a value in the
reachability set (ToReach) then we remove the node value from the list and propagate the search
to the neighbor nodes (line 27). Otherwise, the search is propagated but no value is removed
from ToReach.
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1 type int id. // Type declaration
2 type list int reach-list.
3

4 type edge(node, node). // Predicate declaration
5 type value(node, int).
6 type linear search(node, id, reach-list).
7 type linear do-search(node, id, node, reach-list).
8 type linear lookup(node, id, reach-list, int Val).
9 type linear new-lookup(node, id, int Val).

10 type linear visited(node, id).
11

12 search(A, Id, ToReach) // Rule 1: initialize search
13 -o do-search(A, Id, A, ToReach),
14 lookup(A, Id, ToReach, []).
15

16 lookup(A, Id, ToReach, Found), new-lookup(A, Id, Val)// Rule 2: new reachable node found
17 -o lookup(A, Id, remove(ToReach, Val), [Val | Found]).
18

19 do-search(A, Id, Node, ToReach), // Rule 3: node has already seen this search
20 visited(A, Id)
21 -o visited(A, Id).
22

23 do-search(A, Id, Node, ToReach), // Rule 4: node found and propagate search
24 !value(A, Val), Val in ToReach // New node was found.
25 -o visited(A, Id),
26 new-lookup(Node, Id, Val),
27 {B | !edge(A, B) -o do-search(B, Id, Node, remove(ToReach, Val))}.
28

29 do-search(A, Id, Node, ToReach), // Rule 5: node not found and propagate search
30 !value(A, Val), ˜ Val in ToReach // Not the node we are looking for.
31 -o {B | !edge(A, B) -o do-search(B, Id, Node, ToReach)},
32 visited(A, Id).

Figure 8.1: LM code to perform reachability checking on a graph.

As an example, consider Fig. 8.2, which shows 2 reachability checks on a graph with 10
nodes. For instance, the search with Id = 0 starts at node @1 and checks if nodes @1, @2, and
@3 are reachable from @1. Since @1 is the starting node, 1 is immediately removed from the
reachable list, including the propagated do-search facts but also the lookup fact that is stored
at node @1. Once do-search reaches node @3, the value 3 is removed from the list and a new
do-search is propagated to node @1 (not shown in the figure) and @2. At the same time, node @2
receives the list [2,3], removes 2 and propagates [3] to node @3 and @1. Node @1 receives two
new-lookup facts, one from @3 and another from @2, due to successful searches and the lookup
fact becomes lookup(@1,0,[], [1,2,3]).

The attentive reader will notice that node @1 already knows that all the nodes have been
reached and that nodes @7 and @4 will, needlessly, continue to check if [2,3] are reachable.
This is an issue that arises because the programmer has valued concurrency by increasing redun-
dancy and reducing communication between nodes. It would be expensive to share reachability
information between nodes. An alternative solution is to store the results of the search on the
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thread performing the search and then coordinate the results with other threads since the number
of threads is usually smaller than the number of nodes. Before showing how the reachability
program is solved using thread-based facts, we first present the changes to the language.

6

7

1

4 2

3

9

5

0

8

search(@1,0,[1,2,3])
lookup(@1,0,[2,3],[1])

do-search(@3,0
[2,3])

do-search(@2,0,
[2,3])

do-search(@4,0,
[2,3])

do-search(@7,0,
[2,3])

search(@6,1,[8,2])

search(@0,1,
[8,2])

search(@9,1,
[8,2])

search(@7,1,
[8,2])

lookup(@6,1,[8,2],[])

do-search(@2,0,[2])

Figure 8.2: Performing reachability checks on a graph using nodes @1 (Id = 0) and @6 (Id =
1). Search with Id = 0 wants to reach nodes @1, @2, and @3 from node @1. Since @1 is part of
the target nodes, the fact do-search propagated to neighbor nodes does not include 1.

8.1.1 Language Changes

In the previous chapter, we presented coordination facts such as thread-id and set-thread that
already bring some awareness about the underlying parallel system. Furthermore, such facts also
introduce the thread type for predicate arguments, which refers to a thread in the system that is
related to a core in a multi core processor. We now introduce the concept of thread facts, which
are logical facts stored at the thread level, meaning that, each thread is now an entity with its own
logical facts. The type thread is also now the type of the first argument of thread predicates,
indicating that the predicate is related and is to be stored in a specific thread. We also view the
available threads as forming a separate graph from the data graph, a graph of the processing units
which are operating on the data graph.

The introduction of thread facts increases the expressiveness of the system in the sense that it
is now possible to write inference rules that reason about the state of the threads. This creates op-
timization opportunities since we can now write algorithms with global information stored in the
thread, while keeping the LM language fully declarative. Moreover, threads are now allowed to
explicitly communicate with each other, and in conjunction with coordination predicates, enable
the writing of complex scheduling policies.
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We discriminate between two new types of inference rules. The first type is the thread rule
and has the form a(T), b(T) -o c(T), and can be read as: if thread T has fact a(T) and b(T)
then derive fact c(T). The second type is the mixed rule and has the form a(T), d(N) -o e(N)
and can be read as: if thread T is executing node N and has the fact a(T) and node N has the fact
d(N) then derive e(N) at node N. Thread rules reason solely at the thread level, while mixed rules
allow reasoning about both thread and node facts. Logically, the mixed rule uses an extra fact
running(T, N), which indicates that thread T is currently executing node N. The running fact
is implicitly retracted and asserted every time the thread selects a different node for execution.
This makes our implementation efficient since a thread does not need to look for nodes that match
mixed rules and it is then the scheduling of the program that drives the matching of such rules.

8.1.2 Graph Of Threads

Figure 8.3 represents a schematic view of the two graph data structures of a program with three
threads: thread T1 is executing node @5, T2 is executing node @4, and T3 is executing node @3.
Note that every thread has access to its own facts and to the node facts.

a(@1)
edge(@1,@5)

a(@2)
edge(@2,@1)
edge(@2,@3)

b(@3,5)
edge(@3,@1)

b(@4,1)
edge(@4,@3)

edge(@5,@3)
edge(@5,@4)

g(T1,20)
running(T1,@5)

!other-thread(T1,T2)
!other-thread(T1,T3)

Thread 1

f(T2)
running(T2,@4)

!other-thread(T2,T1)
!other-thread(T2,T3)

Thread 2

g(T3,5)
running(T3,@3)

!other-thread(T3,T1)
!other-thread(T3,T2)

Thread 3

Figure 8.3: An example program being executed with three threads. Note that each threads has a
running fact that stores the node currently being executed.

We added several helpful predicates that allow the programmer to inspect the graph of threads
and reason about the state of computation as it relates to threads:

• !thread-list(T, L): Fact instantiated in all threads where L is a list of all threads exe-
cuting in the system.

• !other-thread(T1, T2): Connects thread T1 to all the other threads T2 executing in the
system. Note that in Fig. 8.3, we use !other-thread fact to specify the graph of threads.
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• !leader-thread(T, TLeader): Fact instantiated in all threads where TLeader refers to
a selected thread (the first thread in L of !thread-list(T, L)).

• running(T, A): Used to retrieve the current node A running on thread T.

With the exception of running, every other fact is added at the beginning of the program as
a persistent fact.

8.1.3 Reachability With Thread Facts

We now update the graph reachability program presented in Fig. 8.1 to use thread facts in order
to avoid needless searches on the graph. The search process is still done concurrently as before,
but the search state is now stored in each thread, allowing the thread to store partial results and
coordinate with other threads. The code for this new version is shown in Fig. 8.4.

Lines 1-4 start the search process by assigning a thread Owner to search Id using the persis-
tent fact !thread-list which contains the list of all available threads in the system. Next, in
line 3, a fact thread-search is created for all threads using a comprehension. We use predicate
do-search to propagate the search through the graph and a predicate visited to mark nodes al-
ready processed for a specific search. The two rules in lines 14-27 propagate the search process
to the neighbor nodes and check if the current node is part of the list of nodes we want to reach.

An interesting property of this version is that each owner thread responsible for a search keeps
track of the remaining nodes that need to be reached. In line 18, we derive remove-thread-search
in order to inform owner threads about new reachable nodes. Once an owner thread detects that
all nodes have been reached (lines 33-36), all the other threads will know that and update their
search state accordingly (lines 42-44). When every thread knows that all nodes were reached,
they will consume do-search facts (lines 6-8), effectively pruning the search space.

An alternative implementation could force every thread to share its reached nodes to all the
other threads in the system. However, this would generate a lot of traffic between threads, which
would actually make the program perform worse. Our final solution is a good trade off since it
only forces threads to coordinate when pruning can actually happen.

Figure 8.5 presents experimental results of the graph reachability program using 4 different
datasets. Except for Random, all the datasets were already used in the MSSD program and were
presented before. The Random dataset is a randomly generated graph with 50000 nodes and
about a million edges. In the plots, we show the run time of the version without thread facts
(Regular) and the version using thread facts called Threads. We also show the speedup of the
Threads and Regular versions against the Regular version with 1 thread.

Our results indicate that using thread facts produces a significant reduction in run time. This
is especially true in the case of datasets with large number of edges, since less facts are produced
and propagated in the graph when the threads know that the search has been completed. The
results also show that, in the case of the Facebook dataset, in which the number of queries is the
same as the number of nodes, the use of thread facts does not produce great improvements due to
the costs of managing the reachability results on each thread’s database. These costs are related
to the need to index and lookup thread-search facts on the Id argument every time a node is
inspected.
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The graph reachability program shows how to introduce complex coordination policies be-
tween threads by reasoning about the state of each thread. In addition, the use of linear logic
programming makes it easier to prove properties of the program since computation is done by
applying controlled changes to the state.
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1 search(A, Id, ToReach), // Rule 1: initialize search
2 !thread-list(T, L), Owner = nth(L, Id % @threads) // Allocate search to a thread
3 -o {T2 | !other-thread(T, T2) -o thread-search(T2, Id, ToReach, Owner)},
4 do-search(A, Id).
5

6 thread-search(T, Id, [], Owner), // Rule 2: search completed
7 do-search(A, Id)
8 -o thread-search(T, Id, [], Owner).
9

10 do-search(A, Id), // Rule 3: node already visited
11 visited(A, Id)
12 -o visited(A, Id).
13

14 do-search(A, Id), // Rule 4: node found
15 thread-search(T, Id, ToReach, Owner),
16 !value(A, Val), Val in ToReach
17 -o thread-search(T, Id, remove(ToReach, Val), Owner),
18 remove-thread-search(Owner, Id, Val), // Tell owner thread about it.
19 {B | !edge(A, B) -o do-search(B, Id)},
20 visited(A, Id).
21

22 do-search(A, Id), // Rule 5: node not found but propagate search
23 thread-search(T, Id, ToReach, Owner),
24 !value(A, Val), ˜ Val in ToReach
25 -o thread-search(T, Id, ToReach, Owner),
26 visited(A, Id),
27 {B | !edge(A, B) -o do-search(B, Id)}.
28

29 remove-thread-search(T, Id, Val), thread-search(T, Id, ToReach, Owner)// Rule 6: node found
30 -o thread-search(T, Id, remove(ToReach, Val), Owner),
31 check-results(T, Id).
32

33 check-results(T, Id), // Rule 7: search is completed
34 thread-search(T, Id, [], Owner)
35 -o thread-search(A, Id, [], Owner),
36 {B | !other-thread(T, B) -o signal-thread(B, Id)}.
37

38 check-results(T, Id), // Rule 8: search not completed yet
39 thread-search(T, Id, ToReach, Owner), ToReach <> []
40 -o thread-search(T, Id, ToReach, Owner).
41

42 signal-thread(T, Id), // Rule 9: thread knows search is done
43 thread-search(T, Id, ToReach, Owner)
44 -o thread-search(T, Id, [], Owner).

Figure 8.4: Coordinated version of the reachability checking program. Note that @threads
represent the number of threads in the system.
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(a) Facebook has 2000 nodes and 20000
edges. The dataset makes 2000 graph
queries to 5% of the graph’s nodes.

(b) Twitter has 81306 nodes and 1768149
edges. The dataset makes 100 graph queries
to 1% of the graph’s nodes.

(c) Random is a graph with 50000 nodes and
1052674 edges. The dataset makes 20 graph
queries to 5% of the graph’s nodes.

(d) Pokec has 1632803 nodes and 30622564
edges. The dataset makes 3 graph queries to
1% of the graph’s nodes.

Figure 8.5: Measuring the performance of the graph reachability program when using thread
facts.
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8.2 Implementation Changes

To support thread-based facts, both the compilation and runtime system described in Chapter 6
require some changes.

8.2.1 Compiler

The compiler needs to recognize rules that use thread facts. For thread rules, the compiler checks
if the rule’s body is using facts from the same thread by checking the first argument of each fact.
For mixed rules, the rule’s body may use a thread T and a node A and all the node facts have to
use A, while all threads facts must use T as the first argument. If the programmer was to retrieve
either the thread or the node for the current computation, she may use running(T, A).

Once rules are type checked, the iteration code for thread-based facts needs to be adapted.
When a rule requires facts from the thread, it must use the data structures from the thread. The
runtime API used for inserting thread facts is also different since they have to be added to the
thread’s database.

8.2.2 Runtime

In the runtime system, thread-based facts are implemented just like regular facts. Each thread has
its own database of facts and uses exactly the same data structures for facts, as presented before
for regular nodes. The major difference between a regular node and a thread node is that a thread
node is never put into the work queue of its thread. As shown in the updated work loop presented
in Fig. 8.6, the thread node executes alongside the regular node when TH.process node is called.
It is also important to note that, before a thread becomes idle, it may have potential candidate
thread rules that are now derivable because another thread has derived thread facts in the current
thread. In particular, it is entirely possible to have programs that only deal with thread facts.

Thread-based facts also introduce new synchronization logic in the runtime system. For
instance, when a rule derives a new thread fact on another thread, it needs to synchronize with
that thread (using the appropriate thread node locks) to add the facts to the thread’s database.
When a thread is executing its own node or a regular node, it also must lock the thread node’s DB
Lock in order to protect its data structures from being manipulated by other threads concurrently.

Matching rules using thread facts requires special care since they may require both facts
from the regular node and from the thread’s node. Before a node is executed, the rule engine
(Section 5.3) of the regular node is updated to take into account the facts of the thread’s node so
that mixed rules (rules that use both thread and regular facts) execute. In this scheme, mixed rules
may be unsuccessfully fired repeatedly until a node which has matching facts gets to execute.
Since the LHS of mixed rules use an implicit running(T, N) fact, it is enough that a different
node is running to fire mixed rules as long as the running node has the required facts. Without
using an implicit running fact, the system would need to lookup for a regular node that would
successfully activate a given mixed rule. This would be expensive since some programs might
have millions of regular nodes.
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Data: Thread TH
while true do

TH.work queue.lock();
node←− TH.work queue.pop node() ;
TH.work queue.unlock();
if node then

TH.process node(node, TH.thread node);
else

// The thread’s node may have candidate rules using incoming
thread facts

TH.process node(nil, TH.thread node);
// Attempt to steal some nodes.
if !TH.steal nodes() then

TH.become idle();
while len(TH.work queue) == 0 do

// Try to terminate
if TH.synchronize termination() then

terminate;
end
if TH.steal nodes() then

// Thread is still in the stealing state
break;

end
end
// There’s new nodes in the queue.
TH.become active();

end
end

end

Figure 8.6: Thread work loop updated to take into account thread-based facts. New or modified
code is underlined.
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8.3 Applications
This section presents more applications that demonstrate the usefulness and power of thread-
based facts.

8.3.1 Binary Search Trees: Caching Results
In Section 3.1.2, we have presented an algorithm for replacing a key’s value in a BST dictionary.
To make the program more interesting, we consider a sequence of n lookup or replace operations
for different keys in the BST (which may or may not be repeated). A single lookup or replace
has worst-case time complexity O(h) where h is the height of the BST, therefore performing n
operations takes O(h× n) time.

In order to reduce the execution time of the new program, we can cache the search and replace
operations so that repeated operations become faster. Instead of traversing the entire height of
the BST, we look in the cache and send the operation immediately to the node where the key is
located. Without thread facts, we might have cached the results at the root node, however, this is
not a scalable approach as it would introduce a serious bottleneck.

Figure 8.7 shows the updated BST code with a thread cache. We just added two more predi-
cates, cache and cache-size, that are facts placed in the thread and represent cached keys and
the total size of the cache, respectively. We also added three new rules that handle the following
cases:

1. A key is found and is also in the cache (lines 8-12 in Fig. 8.7);

2. A key is found but is not in the cache (lines 14-19 in Fig. 8.7);

3. A key is in the cache, therefore a replace fact is derived in the target node (lines 21-24).

In Appendix G.4 we prove several properties about the extended BST program. Also note
that it is quite easy to extend the cache mechanism to use an LRU type approach in order to limit
the size of the cache.

In order to understand the effectiveness of the new cached version of the program, we created
synthetic datasets that stress the algorithm using a complete binary search tree and an arbitrary
number of (repeated) tree operations such as replace and lookup. The tree operations apply to a
subset of the tree and each node is associated with a list of operations that need to be performed.
We have auxiliary nodes (not connected to the tree) that coordinate the tree operations for a given
node. An auxiliary node will start the first operation by sending it to the tree root node. Once
the operation is performed on the target node, the auxiliary node will start the next operation in
the list for that target node. By using auxiliary nodes, we are able to experiment with operations
that target the same node and also allow for some parallelism when doing tree operations. In our
experiments, we generated two trees with the following characteristics:

• 19 levels: a tree with 19 levels (220 − 1 nodes) and two million operations. Each targeted
node has, on average, 40 operations.

• 21 levels: a tree with 21 levels (222 − 1 nodes) and five million operations. Each targeted
node has, on average, 20 operations.

Note that in both datasets, the operations target 10% of the tree nodes.
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Table 8.1 presents fact statistics for the Regular version (without a cache) and the Cached
version (with a cache). Figure 8.8 presents the run time scalability of both versions when using
the Regular with 1 thread as the baseline. In terms of facts, the Cached version sees an 80%
reduction in number of derived facts for 1 thread. When the number of threads increases, more
facts are being set since there is less opportunity to cache tree nodes since there are more threads
doing more work at the same time. For instance, when using 32 threads, the reduction is only
about 30%.

When comparing these reduction numbers to the reduction in run time, we see the same
pattern but the reduction is not quite as large. For instance, when using 1 thread, the Cached
version is only able to reduce the run time in about 50%, and for 32 threads, only a 12% reduction
is seen. Threads need to index and lookup many cache items using the node’s key. This process
is somewhat expensive since threads will lookup keys as each operation travels down the tree
looking for a node. For instance, if a thread does not have a given node in the cache, it may
need to perform about h (the height of the tree) lookup into the database hash tree before the
node arrives at the destination. However, a given tree operation is usually not handled by just
one thread as it travels through the tree and another thread may have the target node in its cache.

Dataset Threads # Derived # Deleted # Final
Regular Cached Regular Cached Regular Cached

19 levels

1 45.6M 23% 42.4M 17% 3.1M 3.2M
2 45.6M 30% 42.4M 24% 3.1M 3.2M
4 45.6M 35% 42.4M 30% 3.1M 3.2M
8 45.6M 38% 42.4M 33% 3.1M 3.2M

16 45.6M 51% 42.4M 48% 3.1M 3.2M
24 45.6M 64% 42.4M 62% 3.1M 3.2M
32 45.6M 70% 42.4M 67% 3.1M 3.2M

21 levels

1 126.5M 24% 116.9M 18% 9.6M 9.8M
2 126.5M 28% 116.9M 22% 9.6M 9.8M
4 126.5M 34% 116.9M 28% 9.6M 9.8M
8 126.5M 41% 116.9M 36% 9.6M 9.8M

16 126.5M 50% 116.9M 46% 9.6M 9.8M
24 126.5M 58% 116.9M 54% 9.6M 9.8M
32 126.5M 66% 116.9M 63% 9.6M 9.8M

Table 8.1: Fact statistics for the Regular version and the Cached version. The first two Cached
columns show the ratio of the Cached version over the Regular version. Percentages less than
100% means that the Cached version produces fewer facts.
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1 type left(node, node). // Predicate declaration
2 type right(node, node).
3 type linear value(node, int Key, string Value).
4 type linear replace(node, int Key, string Value).
5 type linear cache(thread, node, int).
6 type linear cache-size(thread, int).
7

8 replace(A, Key, RValue), // Rule 1: key exists and is also in the cache
9 value(A, Key, Value),

10 cache(T, A, Key)
11 -o value(A, Key, RValue),
12 cache(T, A, Key).
13

14 replace(A, Key, RValue), // Rule 2: key exists and is not in the cache
15 value(A, Key, Value),
16 cache-size(T, Total)
17 -o value(A, Key, RValue),
18 cache-size(T, Total + 1),
19 cache(T, A, Key).
20

21 replace(A, RKey, RValue), // Rule 3: cached by the thread
22 cache(T, TargetNode, RKey)
23 -o replace(TargetNode, RKey, RValue),
24 cache(T, TargetNode, RKey).
25

26 replace(A, RKey, RValue), // Rule 4: go left
27 value(A, Key, Value),
28 !left(A, B),
29 RKey < Key
30 -o value(A, Key, Value),
31 replace(B, RKey, RValue).
32

33 replace(A, RKey, RValue), // Rule 5: go right
34 value(A, Key, Value),
35 !right(A, B),
36 RKey > Key
37 -o value(A, Key, Value),
38 replace(B, RKey, RValue).
39

40 cache-size(T, 0). // Initial cache size of each thread

Figure 8.7: LM program for performing lookups in a BST extended to use a thread cache.
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Figure 8.8: Scalability for the Binary Search Tree program when using thread based facts.
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8.3.2 PowerGrid Problem

Consider a power grid with C consumers andG generators. We are interested in connecting each
consumer to a single generator, but each generator has a limited capacity and the consumer draws
a certain amount of power from the generator. A valid power grid is built in such a way that all
consumers are serviced by a generator and that no generator is being overdrawn by too many
consumers. Although consumers and generators may be connected through a complex network,
we analyze the simple case where any consumer is able to attach to any generator.

Thread 1

Thread 2

Consumers Generators

Figure 8.9: Configuration of a power grid with
6 consumers, 4 generators and 2 threads, with
each thread responsible for 2 generators.

A straightforward distributed implementa-
tion for the PowerGrid problem requires that
each consumer is able to connect to any gen-
erator. Once a generator receives a connec-
tion request, it may or may not accept it.
If the generator has no power available for
the new consumer, it will disconnect from it
and the consumer must select another gener-
ator. This randomized algorithm works but
may take a long time to converge, depend-
ing on the amount of power available in the
generators. Figure 8.10 shows the LM code
for this solution. Consumer and generators
node types are declared in lines 1-2 using the
node declaration, allowing us to have differ-
ent predicates for consumers and generators.
The consumer and generator types become
a subtype of node, that is, consumer <: node
and generator <: node. These subtypes al-
low us to declare initial facts that only apply
to either the consumer or generator subtype.

An example PowerGrid configuration with
its initial facts is presented in Fig. 8.11. Con-
sumers have a persistent fact !power(A, P),
where P is the amount of power required by the consumer. Consumers also start with a
reconnect fact that is used in lines 39-42 in order to randomly select a generator from list L
in the !generators(A, L) fact. The generators have a connect-to-list(A, L) fact that man-
ages the list of connected consumers. The generator fact capacity(A, Total, Used), stores
the Total capacity of the generator and the amount of power currently being Used (Used <
Total at any point in the program).

Consumers and generators complete a connection when the generator receives a connect fact
which is used in lines 28-32 when the generator has enough power for the new consumer. When
there is not enough power (Used + Power > Total), the generator disconnects the consumer in
lines 34-37. Note that each generator maintains a fail fact that counts the number of times the
consumers have failed to connected. If there is too many failures, then the generator decides to
disconnect one consumer already connected in lines 16-26, allowing for different combinations

167



1 node generator. // Type declaration
2 node consumer.
3 type linear capacity(generator, int Total, int Used). // Predicate declaration
4 type linear connected-to(generator, consumer, int).
5 type linear connected-to-list(generator, list consumer).
6 type power(consumer, int).
7 type linear disconnected(consumer).
8 type linear connected(consumer, generator).
9 type generators(consumer, list generator).

10 type linear fails(generator, int).
11 type linear random-reconnect(generator).
12 type linear reconnect(consumer).
13 type linear connect(generator, consumer, int).
14 type linear disconnect(consumer, generator).
15

16 fails(G, Fails), Fails > maxfails // Rule 1: disconnect one consumer
17 -o random-reconnect(G).
18

19 capacity(G, Total, Used), random-reconnect(G), // Rule 2: disconnect one consumer
20 connected-to-list(G, L), L <> [], C = nth(L, randint(length(L))),
21 connected-to(G, C, Power)
22 -o fails(G, 0), capacity(G, Total, Used - Power),
23 connected-to-list(G, remove(L, C)), disconnect(C, G).
24

25 capacity(G, Total, Used), random-reconnect(G)// Rule 3: unable to disconnect one consumer
26 -o capacity(G, Total, Used), fails(G, 0).
27

28 connect(G, C, Power), capacity(G, Total, Used), // Rule 4: connect consumer
29 fails(G, Fails), connected-to-list(G, L), Used + Power <= Total
30 -o capacity(G, Total, Used + Power),
31 fails(G, max(Fails - 1, 0)), connected-to(G, C, Power),
32 connected-to-list(G, [C | L]).
33

34 connect(G, C, Power), capacity(G, Total, Used), // Rule 5: unable to connect consumer
35 Used + Power > Total, fails(G, Fails)
36 -o capacity(G, Total, Used), disconnect(C, G),
37 fails(G, Fails + 1).
38

39 !generators(C, L), !power(C, Power), // Rule 6: connect to a generator
40 reconnect(C), disconnected(C),
41 G = nth(L, randint(num-generators))
42 -o connected(C, G), connect(G, C, Power).
43

44 disconnect(C, G), connected(C, G) // Rule 7: finish disconnection
45 -o disconnected(C), reconnect(C).
46

47 connected-to-list(G, []). fails(G, 0). // Initial facts
48 disconnected(C). reconnect(C). !generators(C, all-generators).

Figure 8.10: LM code for the regular PowerGrid program.
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to happen. In Fig. 8.12 we present the final database of the example PowerGrid configuration,
which shows that all consumers have been able to find a suitable generator.

1 const generators = [@7, @8, @9, @10].
2

3 reconnect(@1). !generators(@1, generators). !power(@1, 5).
4 reconnect(@2). !generators(@2, generators). !power(@2, 10).
5 reconnect(@3). !generators(@3, generators). !power(@3, 5).
6 reconnect(@4). !generators(@4, generators). !power(@4, 10).
7 reconnect(@5). !generators(@5, generators). !power(@5, 10).
8 reconnect(@6). !generators(@6, generators). !power(@6, 5).
9

10 connected-to-list(@7, []). capacity(@7, 15, 0). fail(@7, 0).
11 connected-to-list(@8, []). capacity(@8, 15, 0). fail(@8, 0).
12 connected-to-list(@9, []). capacity(@9, 10, 0). fail(@9, 0).
13 connected-to-list(@10, []). capacity(@10, 5, 0). fail(@10, 0).

Figure 8.11: Initial facts for a PowerGrid configuration of 6 consumers and 4 generators.

1 connected(@1, @7). !power(@1, 5).
2 connected(@2, @7). !power(@2, 10).
3 connected(@3, @8). !power(@3, 5).
4 connected(@4, @8). !power(@4, 10).
5 connected(@5, @9). !power(@5, 10).
6 connected(@6, @10). !power(@6, 5).
7

8 connected-to-list(@7, [@1, @2]). connected-to(@7, @1, 5). connected-to(@7, @2, 10).
9 connected-to-list(@8, [@3, @4]). connected-to(@8, @3, 5). connected-to(@8, @4, 10).

10 connected-to-list(@9, [@5]). connected-to(@9, @5, 10).
11 connected-to-list(@10, [@6]). connected-to(@10, @6, 5).
12 capacity(@7, 15, 15).
13 capacity(@8, 15, 15).
14 capacity(@9, 10, 10).
15 capacity(@10, 5, 5).

Figure 8.12: Final facts for a PowerGrid configuration of 6 consumers and 4 generators.

The issue with this initial implementation presented in Fig. 8.10 is that it lacks a global view
of the problem, which introduces inefficiencies and more communication between consumers
and generators. A better algorithm will require a more sophisticated communication pattern
between the nodes. As we have seen before, thread local facts are an excellent mechanism to
introduce a global view of the problem without complicating the original algorithm written in a
declarative style. For our solution, we will partition the set of generators G among the threads in
the system and make each thread assume the ownership of its generators. Each thread can then
process consumers with a global view over its set of generators, allowing the immediate assign-
ment of consumers to generators. Figure 8.9 shows how the configuration presented previously
is adjusted to take into account the number of available threads.

The LM code using thread facts shown in Fig. 8.13. It uses four thread predicates: predicates
thread-connected-to and thread-connected-to-list assign consumers to the generators

169



owned by the thread; thread-capacity stores the capacity of each generator assigned to the
thread; and predicate thread-total-capacity provides a capacity overview of all the genera-
tors owned by the thread. The program starts with the rule in lines 7-8 by moving generators to
their corresponding threads using set-thread. Once the generator is executing on the proper
thread, the rule in lines 10-12 is derived with the just-moved coordination fact and the state
of the thread is initialized. Consumers connect with the thread’s generators with the rule in
lines 37-43 by selecting the first generator with enough power and then by updating the state of
the thread. Otherwise, if the thread does not have a suitable generator, a generator is randomly
selected using the method described before. For such cases, the thread assigned with the selected
generator will derive the rules in lines 26-35 and the thread state is updated accordingly.

The experimental results for the PowerGrid program are presented in Fig. 8.14. In the plots,
we show the run time of the version without thread facts, named Regular, and the version using
thread facts, called Threads. We also show the speedup of the Threads and Regular versions
against the Regular version with 1 thread. We experimented with four datasets:

1. 0.5 M C / 2000 G: Half a million consumers connected to 2000 generators. This is the
baseline dataset.

2. 0.5 M C / 64 G: Half a million consumers connected to 64 generators. This is similar to
the previous dataset, but the number of generators is much smaller.

3. 1 M C / 4000 G / Low Variability: 1 million consumers connected to 4000 generators. The
capacity of each generator has low variability so that each generator has a similar capacity.

4. 1 M C / 4000 G / High Variability: 1 million consumers connected to 4000 generators. The
capacity of each generator has high variability so that some generators have no capacity or
three times the average the capacity.

All the datasets were generated randomly so that the total capacity of the generators is about
2% more than the required consumer capacity. The capacity of each generator is generated
randomly and, except for the last two datasets, the capacity is between 0 and twice the average
capacity (total capacity divided by the number of generators).

The first important observation relates to the first two datasets. In the 0.5 M C / 2000 G,
the Threads version has more than a 150-fold speedup for 32 threads while the 0.5 M C / 64
G dataset only reaches a 70-fold speedup. Having only 64 generators instead of 2000 makes it
harder to scale the program since there is only a few generators to distribute among threads. How-
ever, it must be noted that the 0.5 M C / 64 G dataset performs proportionally faster when using 1
thread than the 2000 G dataset since that one thread has a small number of generators to choose
from when processing consumers. The rule that assigns generators to consumers (lines 26-32 in
Fig. 8.13) needs to iterate through all the generators to find one with enough power to handle
the consumer, therefore, a smaller number of generators is a clear advantage over having many
generators in the case of using just 1 thread.

The second important observation relates to the last two datasets where we experimented
with a variable capacity for the generators. For the Low Variability dataset, the consumers have
identical capacities, while in the High Variability dataset, generators have a more variable capac-
ity, which should make it harder for the algorithm to find a valid generator/consumer assignment.
Our results show exactly that: the Low Variability shows a small difference between the Reg-
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1 type linear thread-connected-to(thread, generator, consumer, int). // Predicate declaration
2 type linear thread-connected-to-list(thread, generator, list consumer).
3 type linear thread-capacity(thread, generator, int, int).
4 type linear thread-total-capacity(thread, int, int).
5 type linear start(generator).
6

7 start(G), !generator-id(G, Id)
8 -o set-thread(G, Id % @threads).
9

10 just-moved(G), capacity(G, Total, Used), thread-total-capacity(T, TotalCapacity, TotalUsed)
11 -o thread-connected-to-list(T, G, []), thread-capacity(T, G, Total, Used),
12 thread-total-capacity(T, Total + TotalCapacity, Used + TotalUsed).
13

14 fails(G, Fails), Fails > maxfails
15 -o random-reconnect(G).
16

17 thread-capacity(T, G, Total, Used), thread-total-capacity(T, TotalCapacity, TotalUsed),
18 random-reconnect(G), thread-connected-to-list(T, G, L), L <> [], C = nth(L, randint(length(L))),
19 thread-connected-to(T, G, C, Power), NewUsed = Used - Power
20 -o fails(G, 0), thread-capacity(T, G, Total, NewUsed),
21 thread-total-capacity(T, TotalCapacity, TotalUsed - Power),
22 thread-connected-to-list(T, G, remove(L, C)), disconnect(C, G).
23

24 random-reconnect(G) -o fails(G, 0).
25

26 connect(G, C, Power), thread-total-capacity(T, TotalCapacity, TotalUsed),
27 thread-capacity(T, G, Total, Used), fails(G, Fails), thread-connected-to-list(T, G, L),
28 NewUsed = Used + Power, NewUsed <= Total
29 -o thread-capacity(T, G, Total, NewUsed),
30 thread-total-capacity(T, TotalCapacity, TotalUsed + Power),
31 fails(G, max(Fails - 1, 0)), thread-connected-to(T, G, C, Power),
32 thread-connected-to-list(T, G, [C | L]).
33

34 connect(G, C, Power), thread-capacity(T, G, Total, Used), Used + Power > Total, fails(G, Fails)
35 -o thread-capacity(T, G, Total, Used), disconnect(C, G), fails(G, Fails + 1).
36

37 !power(C, Power), reconnect(C), disconnected(C), thread-total-capacity(T, TotalCapacity, TotalUsed),
38 TotalNewUsed = TotalUsed + Power, NewUsed <= TotalCapacity,
39 thread-capacity(T, G, Total, Used), thread-connected-to-list(T, G, ConnectList),
40 NewUsed = Used + Power, NewUsed <= Total
41 -o connected(C, G), thread-capacity(T, G, Total, NewUsed),
42 thread-connected-to-list(T, G, [C | ConnectList]), thread-connected-to(T, G, C, Power),
43 thread-total-capacity(T, TotalCapacity, TotalNewUsed).
44

45 !generators(C, L), !power(C, Power), reconnect(C), disconnected(C), G = nth(L, randint(num-generators))
46 -o connected(C, G), connect(G, C, Power).
47

48 disconnect(C, G), connected(C, G)
49 -o disconnected(C), reconnect(C).
50

51 thread-total-capacity(T, 0, 0). // Initial facts
52 fails(G, 0). disconnected(C). reconnect(C). !generators(C, all-generators). start(G).

Figure 8.13: LM code for the optimized PowerGrid program.

ular and Threads version, while in the High Variability dataset, the Threads version is much
faster than the Regular version. However, for the High Variability dataset, we were expecting
a speedup that was closer to the 0.5 M C / 2000 G dataset, since the number of generators is
much higher. Furthermore, if we compare the run times of the Regular and Threads version
when using 1 thread, we notice that the Threads version is actually slower. As noted before, this
may be due to the fact that the LM rule for assigning generators to consumers needs to perform a
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(a) (b)

(c) (d)

Figure 8.14: Measuring the performance of the PowerGrid program when using thread facts.
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linear scan on the available generators to find a suitable generator which then negatively impacts
performance. This is a clear drawback of the logic programming model that could potentially be
solved by maintaining a sorted list of thread-capacity facts.

In Table 8.2, we present several fact statistics that compare the Regular version with the
Threads version when executing with multiple threads. The # Derived column indicates the
number of derived facts, # Deleted indicates the number of retracted facts, while # Final is the
number of facts in the database after the program terminates. The table results clearly show that
using thread-based facts results in a decrease in the number of generated facts, which is more
significant in the 0.5M C / 2000 G dataset (10-fold reduction). The table also explains why this
dataset performs much better than the 1M C / 4000 G High Variability dataset, which only sees
a 2-fold reduction in derived facts.

When comparing the number of facts derived when using a different number of threads, the
overall trend indicates that having more threads slightly increases the number of derived facts.
This is especially true for the 0.5 M C / 64 G datasets, where twice as many facts are generated
when using 32 threads when compared to 1 thread.

8.3.3 Splash Belief Propagation
Approximation algorithms can obtain significant benefits from using customized scheduling poli-
cies since they follow important statistical properties and thus can trade correctness for faster
convergence. An example of such algorithm is the Loopy Belief Propagation (LBP) [MWJ99].
LBP is an approximate inference algorithm used in graphical models with cycles which employs
a sum-product message passing algorithm where nodes exchange messages with their immediate
neighbors and apply some computations to the messages received.

new-neighbor-belief

update (Δ > bound)

Figure 8.15: LBP communication patterns. new-neighbor-belief facts are sent to the neigh-
borhood when the node’s belief value is updated. If the new value sent to the neighbor differs
significantly from the value sent before the current the round, then an update fact is also sent (to
the node above and below in this case).

LBP is an algorithm that maps well to the graph-based model of LM. The original algorithm
computes the belief of all nodes using several iterations with synchronization between iterations.
However, it is possible to avoid the synchronization step, if we take advantage of the fact that LBP
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will converge even when using an asynchronous approach. So, instead of computing the belief
iteratively, we keep track of all messages sent/received (and overwrite them when we receive
a new one) and recompute the belief asynchronously. Figure 8.15 presents the communication
patterns of the program, while Fig. 8.16 presents the LM code for the asynchronous version of
LBP.
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Dataset Threads # Derived # Deleted # Final
Regular Threads Regular Threads Regular Threads

0.5M C / 2000 G

1 49.7M 8% 48.2M 5% 2.5M 2.5M
2 48.5M 8% 47.7M 5% 2.5M 2.5M
4 49.4M 8% 47.9M 5% 2.5M 2.5M
8 49.4M 8% 47.9M 5% 2.5M 2.5M

16 50.8M 8% 49.3M 5% 2.5M 2.5M
24 49.8M 8% 48.3M 5% 2.5M 2.5M
32 49.3M 9% 47.8M 6% 2.5M 2.5M

0.5M C / 64 G

1 20.2M 20% 18.5M 13% 2.5M 2.5M
2 19.9M 21% 18.4M 14% 2.5M 2.5M
4 20.7M 22% 18.5M 15% 2.5M 2.5M
8 19.9M 28% 18.4M 22% 2.5M 2.5M

16 19.8M 34% 18.3M 28% 2.5M 2.5M
24 19.7M 42% 18.2M 38% 2.5M 2.5M
32 19.9M 45% 18.4M 40% 2.5M 2.5M

1M C / 4000 G
Low Variability

1 9.4M 80% 6.4M 70% 5.1M 5.1M
2 9.4M 79% 6.4M 70% 5.1M 5.1M
4 9.4M 79% 6.4M 70% 5.1M 5.1M
8 9.4M 80% 6.4M 71% 5.1M 5.1M

16 9.4M 80% 6.4M 71% 5.1M 5.1M
24 9.4M 81% 6.3M 72% 5.1M 5.1M
32 9.3M 80% 6.3M 71% 5.1M 5.1M

1M C / 4000 G
High Variability

1 16.4M 53% 13.4M 43% 5.1M 5.1M
2 16.5M 53% 13.5M 43% 5.1M 5.1M
4 16.5M 53% 13.4M 43% 5.1M 5.1M
8 16.5M 54% 13.5M 43% 5.1M 5.1M

16 16.5M 53% 13.5M 43% 5.1M 5.1M
24 16.5M 54% 13.5M 44% 5.1M 5.1M
32 16.5M 54% 13.5M 44% 5.1M 5.1M

Table 8.2: Measuring the reduction in derived facts when using thread-based facts. The first two
Threads columns show the ratio of the Threads version over the Regular version. Percentages
less than 100% means that the Threads version produces fewer facts.
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1 type list float belief. // Type declaration.
2

3 type potential(node, belief). // Predicate declaration
4 type edge(node, node).
5 type linear neighbor-belief(node, node, belief).
6 type linear new-neighbor-belief(node, node, belief).
7 type linear sent-neighbor-belief(node, node, belief).
8 type linear check-residual(node, float, node).
9 type linear belief(node, belief).

10 type linear update-messages(node, belief).
11 type linear update(node).
12

13 neighbor-belief(A, B, Belief), // Rule 1: update neighbor belief value
14 new-neighbor-belief(A, B, NewBelief)
15 -o neighbor-belief(A, B, NewBelief).
16

17 check-residual(A, Residual, B), // Rule 2: check residual
18 Residual > bound
19 -o update(B).
20

21 check-residual(A, _, _) -o 1. // Rule 3: check residual
22

23 update-messages(A, NewBelief), // Rule 4: compute belief to be sent to a neighbor node
24 -o {B, OldIn, OldOut, Cavity, Convolved, OutMessage, Residual |
25 !edge(A, B),
26 neighbor-belief(A, B, OldIn),
27 sent-neighbor-belief(A, B, OldOut),
28 Cavity = normalize(divide(NewBelief, OldIn)),
29 Convolved = normalize(convolve(global-potential, Cavity)),
30 OutMessage = damp(Convolved, OldOut, damping)
31 Residual = residual(OutMessage, OldOut)
32 -o check-residual(A, Residual, B),
33 new-neighbor-belief(B, A, OutMessage),
34 neighbor-belief(A, B, OldIn),
35 sent-neighbor-belief(A, B, OutMessage)}.
36

37

38 update(A), update(A) -o update(A). // Rule 5: prune redundant update operations
39

40 update(A), // Rule 6: initiate update operation
41 !potential(A, Potential),
42 belief(A, MyBelief)
43 -o [sum Potential => Belief; B, Belief |
44 neighbor-belief(A, B, Belief) -o
45 neighbor-belief(A, B, Belief) ->
46 Normalized = normalizestruct(Belief),
47 update-messages(A, Normalized), belief(A, Normalized)].

Figure 8.16: LM code for the asynchronous version of the Loopy Belief Propagation problem.
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Belief values are arrays of floats and are represented by belief/2 facts. The first rule
(lines 13-15) updates a given neighbor belief whenever a new belief value is received. This
is the highest priority rule since we want to update the neighbor beliefs before doing anything
else. In order to store the belief values of the neighbor nodes, we use neighbor-belief/3 facts,
where the second argument is the neighbor address and the third argument is the belief value.

The last two rules (lines 37-47) update the belief value of a node. An update fact starts
the process. The first rule (line 38) simply removes redundant update facts and the second
rule (lines 40-47) performs the belief update by aggregating all the neighbor belief values. The
aggregate in lines 43-47 also derives copies of the neighbors beliefs that need to be consumed in
order to compute the belief value that is going to be sent to the target neighbor. The aggregate
uses a custom accumulator that takes two arrays and adds the floating point numbers at each
index of the array.

The rule in lines 23-35 iterates through the neighbor belief values and sends new belief values
by performing the appropriate computations on the new belief value of the current node and
on the belief value sent previously. For each neighbor update, we also check in lines 17-21
if the change in belief values is greater than bound (a program constant) and then force the
neighbor nodes to update their belief values by deriving update(B). This allows neighbor nodes
to use updated neighbor values and recompute their own belief values using more up-to-date
information. The computation of belief values will then start to converge to their true belief
values, independently of the node scheduling used.

However, if we prioritize nodes that receive new neighbor belief values with a larger Residual
then we may converge faster. Figure 8.17 shows the fourth rule modified with a add-priority
fact, which increases the priority of neighbor nodes when the source node has large changes in
its belief value.

1 update-messages(A, NewBelief), // Rule 4: compute belief to be sent to a neighbor node
2 -o {B, OldIn, OldOut, Cavity, Convolved, OutMessage, Residual |
3 !edge(A, B),
4 neighbor-belief(A, B, OldIn),
5 sent-neighbor-belief(A, B, OldOut),
6 Cavity = normalize(divide(NewBelief, OldIn)),
7 Convolved = normalize(convolve(global-potential, Cavity)),
8 OutMessage = damp(Convolved, OldOut, damping)
9 Residual = residual(OutMessage, OldOut)

10 -o check-residual(A, Residual, B),
11 new-neighbor-belief(B, A, OutMessage),
12 neighbor-belief(A, B, OldIn),
13 add-priority(B, Residual),
14 sent-neighbor-belief(A, B, OutMessage)}.

Figure 8.17: Extending the LBP program with priorities.

The proposed asynchronous approach has shown to be an improvement over the synchronous
version because it leads to faster convergence time. An improved evaluation strategy is the Splash
Belief Propagation (SBP) [GLG09], where belief values are computed asynchronously by first
building a tree and then by updating the beliefs of each node twice, first from the leaves to the
root and then from the root to the leaves. These splash trees are built by starting at a node whose
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belief changed the most in the last update. The trees must be built iteratively until convergence
is achieved.

In an environment with T threads, it is then possible to build T splash trees concurrently.
First, we partition the nodes into T regions and then assign each region to a thread. A thread is
then responsible for iteratively building splash trees on that region until convergence is reached.
Fig. 8.18 shows a grid of nodes that has been partitioned in two regions where splash trees will
be built. To build a splash tree, a thread starts from the highest priority node (the tree’s root) from
its region and then performs a breadth-first search from that node to construct the rest of the tree.
The belief values are then computed in order.

Thread 2Thread 1

Figure 8.18: Creating splash trees using two threads. The graph is partitioned into two regions
and each thread is able to build separate splash trees starting from the highest priority node.

The LM implementation for SBP is shown in Fig. 8.19. First, in lines 14-18, we partition
the nodes into regions using set-thread and then we start the creation of the first splash tree
(line 18) by deriving start-tree(T). The remaining phases of the algorithm are explained next.

Tree building: Starts after the rule in lines 20-21 is derived. Since the thread always picks
the highest priority node, we start by adding that node to the list that represents the tree.
In lines 24-27, we use an aggregate to gather all the neighbor nodes that have a positive
priority (due to a new belief update) and are in the same thread. Nodes are collected into
list L and appended to list Next (line 27).

First phase: When the number of nodes in the tree reaches a certain limit, a first-phase is
generated to update the beliefs of all nodes in the tree (line 30). As the nodes are updated,
starting from the leaves and ending at the root, an update fact is derived to update the
belief values (lines 37 and 39).

Second phase: Performs the computation of beliefs from the root to the leaves and the belief
values are updated a second time (lines 42 and 44).

SBP is also implemented in GraphLab [LGK+10], a C++ framework for writing machine
learning algorithms. GraphLab provides different schedulers that change how machine learn-
ing algorithms are computed and one of the available schedulers is the splash scheduler, which
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1 type list node tree.
2

3 type linear partitioning(thread, int). // Number of nodes to receive.
4 type linear start-tree(thread).
5 type linear new-tree(thread, tree, tree).
6 type linear expand-tree(thread, tree).
7 type linear first-phase(thread, tree, tree).
8 type linear second-phase(thread, tree).
9 type linear start(node).

10

11 start(A).
12 partitioning(T, @world / @threads). // Move @world/@threads nodes.
13

14 !coord(A, X, Y), start(A) // Moving this node.
15 -o set-thread(A, grid(X, Y)).
16 just-moved(A), partitioning(T, Left) // Thread received another node.
17 -o partitioning(T, Left - 1).
18 partitioning(T, 0) -o start-tree(T).
19

20 start-tree(T), priority(A, P), P > 0.0 // Tree building
21 -o priority(A, P), expand-tree(T, [A], []).
22 expand-tree(T, [A | All], Next)
23 -o thread-id(A, Id),
24 [collect => L ; | !edge(A, L), ˜ L in All, ˜ L in Next, priority(L, P), P > 0.0,
25 thread-id(L, Id2), Id1 = Id2 -o priority(L, P), thread-id(L, Id2) ->
26 new-tree(T, [A | All],
27 if len(All) + 1 >= maxnodes then [] else Next ++ L end)].
28

29 new-tree(T, [A | All], [])
30 -o schedule-next(A), first-phase(T, reverse([A | All]), [A | All]).
31 new-tree(T, All, [B | Next])
32 -o schedule-next(B), expand-tree(T, [B | All], Next).
33

34 first-phase(T, [A], [A]), running(T, A) // First phase
35 -o running(T, A), update(A), remove-priority(A), start-tree(T).
36 first-phase(T, [A, B | Next], [A]), running(T, A)
37 -o running(T, A), update(A), schedule-next(B), second-phase(T, [B | Next]).
38 first-phase(T, All, [A, B | Next]), running(T, A)
39 -o running(T, A), update(A), schedule-next(B), first-phase(T, All, [B | Next]).
40

41 second-phase(T, [A]), running(T, A) // Second phase
42 -o running(T, A), update(A), remove-priority(A), start-tree(T).
43 second-phase(T, [A, B | Next]), running(T, A)
44 -o running(T, A), update(A), schedule-next(B), second-phase(T, [B | Next]).

Figure 8.19: LM code for the Splash Belief Propagation program.

implements the scheduling described above. For comparison purposes with LM, we also experi-
mented with two other GraphLab schedulers: fifo, a first-in first-out scheduler and multiqueue,
a first-in first-out scheduler that also allows for work stealing (we used 1 queue per thread).

The default LM scheduling policy of LM is somewhat similar to both the fifo and the multi-
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(a) Comparing the scalability of LM and of
GraphLab’s fifo scheduler

(b) Comparing the scalability of LM and of
GraphLab’s multiqueue scheduler

Figure 8.20: Comparing the scalability of LM against GraphLab’s (fifo and multiqueue sched-
ulers.

queue schedulers, however, since LM also implements node stealing by default, the multiqueue
scheduler will be our main focus. We measured the run time of LBP and SBP for both LM and
GraphLab. For SBP, we used splash trees of 100 nodes in both systems.

Fig. 8.20 compares the performance of the LBP program in LM against both the fifo and
multiqueue schedulers. The results show that GraphLab’s fifo scheduler performance deterio-
rates with more 10 threads, while both LM and multiqueue tend to scale well and have a similar
behavior. For 1 thread, LM is about 1.5 times slower than GraphLab but that ratio increases to
about to about 2 once the number of threads increases. We think this is because the LBP pro-
gram is sensitive to scheduling policies and the multiqueue scheduler is better than LM’s default
scheduling policy.

The scalability and run time of the SBP program is compared in Fig. 8.21(a). When compared
to LM, GraphLab is about twice as fast and that advantage is constant across the number of
threads since both systems have a similar scalability. Finally, in Fig. 8.21(b), we compare the
performance of LBP program against the performance of SBP by calculating LBP (t)/SBP (t),
where LBP (t) is the run time of LBP for t threads, while SBP (t) is the run time of SBP for t
threads. For LM, SBP improves noticeably over LBP but that advantage is reduced as the number
of threads increases. The same behavior is also seen in GraphLab’s multiqueue scheduler but
since this scheduler works so well under a shared memory setting, the advantages of the splash
scheduler are reduced. LM is able to improve its performance with SBP since it is a slower
language and reducing the number of facts derived provides an improved performance.

8.4 Modeling the Operational Semantics in LM
The introduction of thread-based facts allows for explicit, but declarative, parallelism in a lan-
guage that used mostly implicit parallelism. This introduces issues when attempting to prove the
correctness of programs because the behavior of threads and the scheduling strategy is now also
part of the program’s logic. Some of this behavior is hidden from programs because it is part of
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(a) Measuring and comparing the perfor-
mance of SBP in LM and the same program
using GraphLab’s splash scheduler.

(b) Comparing the GraphLab’s splash
scheduler against the fifo and the multi-
queue schedulers.

Figure 8.21: Evaluating the performance of SBP over LBP in LM and GraphLab.

how coordination facts and thread scheduling works on the virtual machine.
Consider the SBP program in Fig. 8.19 where in lines 14-18 the graph of nodes is partitioned

into regions. In order to prove the correct partitioning, we need to know how the VM initially
randomly assigns nodes to threads and also how coordination facts set-thread and just-moved
are used by the VM. Fortunately, since linear logic is the foundation of LM, it is possible to
model the semantics of LM by using LM rules. In Chapter 6, we have seen that threads and
nodes transition between different states during execution and now we are going to model that.
We first define the following node facts:

• inactive(node A): Fact present on nodes that are not currently running on a thread. Facts
running(T, A) and inactive(A) are mutually exclusive.

• owner(node A, thread T): Fact that indicates the thread T that currently owns node A.
• available-work(node A, bool F): Fact that indicates if node A has new facts to be

processed.
In terms of thread facts we have the following:
• active(thread T): Fact exists if thread T is currently active.
• idle(thread T): Fact exists if thread T is currently idle. Facts idle(T) and active(T)

are mutually exclusive.
Figure 8.22 presents how the operational semantics for a given LM program is modeled using

the LM language itself.
First, we define the initial facts: owner(A, T) on line 11, which assigns a node to a thread;

available-work(A, F) on line 12, where F = true if node A has initial facts, otherwise F =
false; is-moving(A) on line 13 so that all nodes can move between threads; and active(T)
on line 14 to mark each thread as active;

Each program rule is translated as shown in lines 16-21. The original rule was node-fact(A,
Y), other-fact(A, B) -o remote-fact(B), local-fact(A), so we have a local derivation
of local-fact(A) and a remote-derivation of remote-fact(B). In the translation, we update
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available-work of node B to true because there is a new derivation for B. The fact running(T,
A) is used to ensure that thread T is running on node A. Note that for thread rules we do not need
to use running(T, A) on the rule’s LHS and the thread running the rule does not even need to
have active(T). This enforces the non-deterministic semantics for thread rules.

After the program rules are translated, we have the rule in lines 23-27 which forces thread
T to stop running on node A. Here, we use the coordination fact default-priority to update
the priority of node A. The thread’s state switches to idle(T), while the node’s state changes to
inactive(A). Note that this rule must appear after the program’s rules because the rule priorities
are exploited in order to force thread T to derive all the candidate rules for A.

If a thread is idle, then it is able to derive the rule in lines 29-34 in order to select another
node for execution. We use a max selector to select the node A with the highest priority Prio. If
there is such node, the node changes to running(T, A) and thread T changes to active(T).

Finally, the rule in lines 36-41 allows for threads to steal nodes owned by other threads.
If a node is not currently being executed (inactive(A)), can be moved (is-moving(A)), and
is owned by another thread (owner(A, Other)), then the thread owner is updated, potentially
allowing the previous rule to execute.

We now model several coordination facts presented in Chapter 7 using LM rules. We focus
on set-thread, set-priority, just-moved, and schedule-next. The rules are presented in
Fig. 8.23 and should be the highest priority rules in LM programs.

We start with the axiom priority(A, initial-priority) and default-priority(A,
initial-priority) (lines 7 and 8) to define the initial priorities of nodes. In line 10 we have
the rule for the schedule-next coordination fact, which simply re-derives a set-priority but
with an infinite priority. Fact set-priority is processed in lines 12-16 by updating the priority
values in the priority facts. As explained in Chapter 7, only higher priorities are taken into
account.

For the set-thread coordination fact, we have lines 18-28. The first rule applies when the
node is currently executing on some thread, forcing the thread to stop executing the node and to
derive just-moved(A). In the second rule, node A is not being executed and the owner fact is
simply updated to the new thread.

Note that the rules for updating the coordination sensing facts do not require the running
predicate in the rule’s body, therefore it should not matter which thread does the update as long
as it is done. In the VM, and for efficiency reasons, the update is always done by the thread that
derives the coordination fact.

8.5 Related Work
As already seen in the previous chapter, there are several programming models such as Ga-
lois [NP11], Elixir [PMP12] and Halide [RKBA+13] which allow the programmer to apply dif-
ferent scheduling policies to programs. Unfortunately, these models only reason about the data
or program being computed and not about the parallel architecture.

In the logic programming community, there have been some attempts at exposing a low level
programming interface in Prolog programs to permit explicit programmer control. An example is
the proposal by Casas et al. [CCH07] which exposes execution primitives for AND-parallelism,
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1 type linear running(thread, node).
2 type linear inactive(node).
3 type linear priority(node, float).
4 type linear default-priority(node, float).
5 type linear available-work(node, bool).
6 type linear active(thread).
7 type linear idle(thread).
8 type linear owner(node, thread).
9 type linear is-moving(node).

10

11 owner(A, T). // Initial node assignment.
12 available-work(A, F). // Some nodes have available work.
13 is-moving(A). // All nodes can be stolen.
14 active(T). // All threads are active.
15

16 node-fact(A, Y), // Program rules go here.
17 other-fact(A, B),
18 running(T, A), available-work(B, _)
19 -o remote-fact(B), local-fact(A),
20 running(T, A),
21 available-work(B, true).
22

23 active(T), running(T, A), priority(A, Prio), // Switching to another node.
24 default-priority(A, DefPrio), available-work(A, T)
25 -o inactive(A), priority(A, DefPrio),
26 default-priority(A, DefPrio),
27 available-work(A, false), idle(T).
28

29 [desc => Prio | // Select next node to be processed.
30 idle(T), owner(A, T),
31 priority(A, Prio), available-work(A, true)]
32 -o active(T), owner(A, T),
33 running(T, A), available-work(A, false),
34 priority(A, Prio).
35

36 idle(T), !other-thread(T, Other) // Attempt to steal a node.
37 owner(A, Other), inactive(A),
38 available-work(A, true),
39 is-moving(A)
40 -o idle(T), owner(A, T), is-moving(A),
41 inactive(A), available-work(A, true).

Figure 8.22: Modeling the operational semantics as a LM program. The underlined code rep-
resents how an example rule node-fact(A, Y), other-fact(A, B) -o remote-fact(B),
local-fact(A) needs to be translated for modeling the semantics.

allowing for different scheduling policies. Compared to LM, this approach offers a more fine
grained control to parallelism but has limited support for reasoning about thread state.
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1 type linear is-static(node).
2 type linear is-moving(node).
3 type linear set-priority(node, float).
4 type linear just-moved(node).
5 type linear move-to-thread(node, thread).
6

7 priority(A, initial-priority).
8 default-priority(A, default-priority).
9

10 schedule-next(A) -o set-priority(A, +00).
11

12 set-priority(A, P1), priority(A, P2), P2 < P1
13 -o priority(A, P1).
14

15 set-priority(A, P1), priority(A, P2), P2 >= P1
16 -o priority(A, P2).
17

18 running(T, A), set-thread(A, T),
19 available-work(A, _), is-moving(A)
20 -o available-work(A, true),
21 inactive(A), is-static(A),
22 just-moved(A).
23

24 inactive(A), set-thread(A, T),
25 owner(A, TOld), is-moving(A),
26 available-work(A, _)
27 -o is-static(A), owner(A, T), just-moved(A),
28 available-work(A, true).

Figure 8.23: Modeling the operational semantics for coordination facts as a LM program.

8.6 Chapter Summary
In this chapter, we have extended the LM language with a declarative mechanism for reasoning
about the underlying parallel architecture. LM programs can be first written in a data-driven
fashion and then optimized by reasoning about the state of threads, enabling the move from
implicit parallelism to some form of declarative explicit parallelism. We have presented four
programs that showcase the potential of the new mechanism and several experimental results
that validate our approach.
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Chapter 9

Conclusions

In this chapter, we summarize the main contributions of this thesis and suggest several directions
for further research.

9.1 Main Contributions

The goal of our thesis was to show the potential of using a forward-chaining linear logic pro-
gramming language to exploit parallelism in a declarative, efficient and scalable way. For this,
we designed and implemented LM, a programming language suitable for writing concurrent al-
gorithms over graph data-structures. LM programs are composed of a set of inference rules that
apply over a database of logical facts. Since LM is based on linear logic, facts used in rules may
be retracted, making it possible for the programmer to declaratively manage structured state.

Concurrency is achieved by partitioning the database across a graph data structure and then
forcing rule derivation to happen at the node level. The use of graphs allows LM to solve the task
granularity problem that is common in implicitly parallel languages. By localizing computation
to nodes, it is possible to group nodes together as sub-graphs that can be processed independently.
Even if certain sub-graph partitioning proves to have a poor task balance, nodes of sub-graphs
can be moved into other sub-graphs, allowing for easy load balance between processing cores.

We introduced coordination facts in LM to allow the programmer to fine-tune and optimize
their declarative programs. This is possible due to the existence of linear facts, which make it
possible for different scheduling decisions to have an effect on program computation. Without
them, a logic program would always compute the same result. Coordination facts are also another
way to combat the granularity problem since they allow the programmer to control how nodes
are grouped together.

We also introduced explicit parallelism in LM by adding support for thread facts. Thread
facts are facts stored at the thread level and allow the programmer to write rules that reason
about thread state. This opens new opportunities for program optimization and improved paral-
lelism because programs are aware of the existence of threads. Furthermore, the availability of
both thread and coordination facts allows and is convenient for implementing more sophisticated
scheduling parallel algorithms.

We now highlight in more detail the main contributions of this dissertation:
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Structured State Since LM is based on linear logic, LM enables programs to manage state
in a structured manner. Due to the restriction over the inference rules, rules are derived
independently on different nodes of the graph data structure, which makes it possible to
run LM programs in parallel.

Implementation Writing efficient implementations of declarative languages is challenging, es-
pecially when adding support for parallel execution. In this thesis, we have shown a compi-
lation strategy and memory layout organization for LM programs, which allows programs
to run less than one order of magnitude slower than hand-written C++ programs. We also
described how the LM runtime supports multi core execution by partitioning the graph
among threads. To the best of our knowledge, LM is the fastest linear logic based pro-
gramming language available.

Semantics and Abstract Machine We showed how LM semantics are specified in order to al-
low concurrent programs. We demonstrated how the language is based upon the sequent
calculus of linear logic and we specified a low level abstract machine that closely resembles
the real implementation. We also proved the soundness of the abstract machine.

Coordination We presented new coordination features that improve the expressive power of the
language by making coordination a first class programming construct that is semantically
equivalent to regular computation. In turn, this allows the programmer to specify how
declarative programs are scheduled by the runtime system, therefore improving overall
run time and scalability.
Coordination facts are divided into scheduling and partitioning facts. Scheduling facts
change how nodes are scheduled by the system while partitioning facts change how nodes
are assigned to threads and how they move between threads. Both these two types of facts
are divided into sensing facts (with information about the state of the runtime system)
and action facts (which perform actions on the runtime system). The interplay between
regular facts, sensing facts and action facts results in faster execution time and improved
parallelism because regular facts affect how action facts are derived and, conversely, action
facts may affect which regular facts are derived.
The coordination facts do not affect the correctness of programs and are well integrated
into proofs since they do not change how rules are scheduled but how nodes are scheduled
during execution.

Explicit Parallelism We also introduced the concept of thread facts, which enable LM programs
to exploit the underlying architecture by making it possible to reason about the state of
threads. Thread facts allow the programmer to escape the default implicit parallelism
of LM and allows the implementation of structured scheduling algorithms which require
explicit communication between threads. To the best of our knowledge, this is the first time
that such paradigm is available in a logic programming language and we are not aware of
competing systems that allow the programmer to reason directly about thread state in a
structured fashion.

Experimentation We compared LM sequential and multi threaded execution to hand-written se-
quential C++ programs and against frameworks such as GraphLab and Ligra. We showed
how well the LM runtime is able to scale using different programs and datasets. We mea-
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sured the run time, scalability and memory usage effects of using coordination facts and
their overheads. For thread facts, we analyzed different applications and measured the
performance improvements of using explicit parallelism.
In our experiments, we noted that the memory layout of applications, especially the mem-
ory allocator, tends to have a significant effect on the overall performance. In modern
architectures, good memory locality is as important as having efficient algorithms and in
LM this is no different. We experimented with two allocators to analyze how performance
and scalability may be affected by using different strategies. It is our belief that it is im-
portant to focus on faster sequential execution at the expense of scalability in order to
make declarative parallel languages more competitive with sequential programs written in
languages such as C++.

9.2 Drawbacks of LM

While LM provides answers to several known problems in implicitly parallel languages, it suffers
from several disadvantages:

Graph Of Nodes Even though graph data structures are flexible and can be used to model many
interesting problems, they are not always the best abstraction. Using graphs as an abstrac-
tion for concurrency requires some problems to be adapted to run on graphs in non intuitive
ways. For instance, in the N-Queens problem in Section 7.8.2, we had to map the chess
board into a grid of nodes and then parallelize the program by considering each square as a
unit that builds solutions to the problem. In general, the graph model of LM is suitable for
irregular algorithms but not as suitable for regular algorithms such as numerical algorithms
or algorithms that don’t use graphs as their main data structure.

Thread Reasoning Coordination facts and thread-based facts come with a cost when used to
create complex scheduling algorithms because reasoning with coordinated programs re-
quires that the programmer understands the semantics of the underlying virtual machine.
However, we think it will be impossible to avoid this issue unless the runtime system
performs all the optimizations, leaving no control to the programmer since optimization
always requires some knowledge about the underlying hardware and software. In LM, the
programmer pays a lower cost because the semantics of coordination provide a higher level
of abstraction. Lastly, it remains to be shown if LM provides the right kind of abstraction
for writing such programs.

Modularity Program composition is still an unsolved problem in linear logic programming
since it is hard to compose programs that manipulate the same state. Martens [Mar15]
introduces the concept of staged logic programming which allows sets of logical rules to
be grouped into stages. Each stage is computed separately and up to quiescence, allowing
stages to have precedence over others. However, it still remains to be studied how separate
rules can be grouped together without introducing conflicts.
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9.3 Future Work

While much progress has been achieved with this thesis, many new research avenues have been
opened with this work. We now enumerate further research goals that should be interesting to
pursue.

Faster Implementation LM is still not competitive enough to replace efficient parallel frame-
works such as Ligra. LM is a programming language on its own right and thus requires
more engineering effort to be competitive with frameworks implemented in languages such
as C or C++. Better compilation and runtime systems will be required in order to reduce
the overhead even further, especially as it relates to memory usage.
Aggressive code analysis should be employed to prove invariants about predicates and in-
troduce more specialized data structures for storing logical facts. The goal should be to
recover more of the imperative flavor that is present in linear logic programs in order to
make them more efficient. The restrictions of LM rules that make concurrency possible
makes this task harder since there is an inherent tension between concurrency and execu-
tion speed since concurrency implies communication. However, local node computation
has still some room for improvement.

Provability We need automated tools for reasoning about correctness and termination of pro-
grams. While we have shown that writing informal proofs is relatively easy because pro-
grams tend to be small, automated proof systems will increase the faith that programs will
work correctly. Ideally, the programmer should be able to write invariants about the pro-
gram and the compiler should be able to prove if such invariants are or are not being met
with the given inference rules.

Expressiveness Although LM programs are expressive, some work must be done in order to
reduce the restrictions on LM rules and allow for more programmer freedom. LM currently
only allows rules where the LHS refers to the same node, however, it should be possible
to allow rules that use facts from different nodes. The use of linear logic facts makes
this hard because we need to ensure that a linear fact is used only once, therefore the
compiler should generate code to enforce this, probably through the use of transactions. In
the CHR community, Lam et al. [LC13] have developed an encoding for distributed rules
using at most one immediate neighbor into rules that run locally. It should be relatively
straightforward to provide a similar encoding for LM and then assess how performance is
affected by such encoding.

Implicit and Explicit Parallelism We need more applications that take advantage of the mixed
parallelism that is available with thread facts. We feel that this paradigm needs to be fur-
ther explored in order to make it possible to write new scheduling and parallel algorithms
that could be compiled to efficient code in other application areas. Furthermore, mech-
anized proofs about such algorithms could then be automatic, improving the correctness
and reliability of parallel algorithms.
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9.4 Final Remark
We argue that our work makes LM the ideal framework for prototyping new (correct) graph
algorithms since LM programs tend to be relatively short and the programmer only needs to
reason about the state of the graph, without the need to understand how the framework must
be used to express the intended algorithms. Furthermore, the addition of coordination facts
and thread facts help the programmer exploit the underlying parallel architecture in order to
create better programs that take advantage of those architectures without radically changing the
underlying parallel algorithm. Finally, the good performance of the LM system allows programs
to run reasonably fast when executed on multi core systems.
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Appendix A

Sequent Calculus

Ψ; Γ; ∆ ` A Ψ; Γ; ∆′ ` B
Ψ; Γ; ∆,∆′ ` A⊗B ⊗R Ψ; Γ; ∆, A,B ` C

Ψ; Γ; ∆, A⊗B ` C ⊗L

Ψ; Γ; ∆, A ` B
Ψ; Γ; ∆ ` A( B

( R
Ψ; Γ; ∆ ` A Ψ; Γ; ∆′, B ` C

Ψ; Γ; ∆,∆′, A( B ` C ( L

Ψ; Γ; ∆, A ` C
Ψ; Γ; ∆, ANB ` C NL1

Ψ; Γ; ∆, B ` C
Ψ; Γ; ∆, ANB ` C NL2

Ψ; Γ; ∆ ` A Ψ; Γ; ∆ ` B
Ψ; Γ; ∆ ` ANB

NR

Ψ; Γ; · ` A
Ψ; Γ; · ` !A

!R
Ψ; Γ, A; ∆ ` C
Ψ; Γ; ∆, !A ` C !L

Ψ; Γ, A; ∆, A ` C
Ψ; Γ, A; ∆ ` C

copy

Ψ; Γ; · ` 1
1R

Ψ; Γ; ∆ ` C
Ψ; Γ; ∆,1 ` C 1L

Ψ; Γ;A ` A idA

Ψ,m : τ ; Γ; ∆ ` A{m/n}
Ψ; Γ; ∆ ` ∀n:τ .A

∀R
Ψ `M : τ Ψ; Γ; ∆, A{M/n} ` C

Ψ; Γ; ∆,∀n:τ .A ` C ∀L

Ψ `M : τ Ψ; Γ; ∆ ` A{M/n}
Ψ; Γ; ∆ ` ∃n:τ .A

∃R
Ψ,m : τ ; Γ; ∆, A{m/n} ` C

Ψ; Γ; ∆,∃n:τ .A ` C ∃L

Ψ; Γ; ∆ ` A Ψ; Γ; ∆′, A ` C
Ψ; Γ; ∆,∆′ ` C cutA

Ψ; Γ; · ` A Ψ; Γ, A; ∆ ` C
Ψ; Γ; ∆ ` C cut!A
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Appendix B

High Level Dynamic Semantics

B.1 Step

runΓi;Π ∆i; Φ→ Ξ′; [Γ′1; · · · ; Γ′n]; [∆′1; · · · ; ∆′n]

step [Γ1; · · · ; Γi; · · · ; Γn]; [∆1; · · · ; ∆i; · · · ; ∆n]; Φ

=⇒
[Γ1,Γ

′
1; · · · ; Γi,Γ

′
i; · · · ; Γn,Γ

′
n];[∆1,∆

′
1; · · · ; (∆i − Ξ′),∆′i; · · · ; ∆n,∆

′
n]

step

B.2 Application

mΓ ∆1 → A derΓ;Π∆2; ∆1; ·; ·;B → O
appΓ;Π

Ψ ∆1,∆2; Π→ O
app rule

appΓ;Π
Ψ,m:M :τ ∆; Π→ O Ψ `M : τ

appΓ;Π
Ψ ∆; Π→ O

app ∀

appΓ;Π
· ∆; Π→ O

runΓ;Π ∆;R,Φ→ O run rule

B.3 Match

mΓ · → 1
m1

mΓ p→ p
mp

mΓ,p · → !p
m!p

mΓ ∆1 → A mΓ ∆2 → B

mΓ ∆1,∆2 → A⊗B
m⊗
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B.4 Derivation
derΓ;Π∆; Ξ; Γ1; p,∆1; Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1; p,Ω→ O

der p

derΓ;Π∆; Ξ; Γ1, p; ∆1; Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1; !p,Ω→ O

der !p

derΓ;Π∆; Ξ; Γ1; ∆1;A,B,Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1;A⊗B,Ω→ O

der ⊗

derΓ;Π∆; Ξ; Γ1; ∆1; Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1;1,Ω→ O

der 1

derΓ;Π∆; Ξ′; Γ′; ∆′; · → Ξ′; Γ′; ∆′
der end

Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)
agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,Σ′+σ)

agg ))))

derΓ;Π∆; Ξ; Γ1; ∆1;∀x̂,σ.(A( B ⊗R(v̂,Σ+σ)
agg ){V̂ /v̂}{Σ/Σ′},Ω→ O

derΓ;Π∆; Ξ; Γ1; ∆1;R(V̂ ,Σ)
agg ,Ω→ O

der agg1

Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)
agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,Σ′+σ)

agg ))))

derΓ;Π∆; Ξ; Γ1; ∆1;C{V̂ /v̂}{Σ/Σ′},Ω→ O

derΓ;Π∆; Ξ; Γ1; ∆1;R(V̂ ,Σ)
agg ,Ω→ O

der agg2

mΓ ∆a → A derΓ;Π∆b; Ξ,∆a; Γ1; ∆1;B,Ω→ O
derΓ;Π∆a,∆b; Ξ; Γ1; ∆1;A( B,Ω→ O

der (

derΓ;Π∆; Ξ; Γ1; ∆1;A{V/x},Ω→ O
derΓ;Π∆; Ξ; Γ1; ∆1;∀x.A,Ω→ O

der ∀
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Appendix C

Low Level Dynamic Semantics

C.1 Application

infer ∆;R1,Φ; Γ 7→ apply ·; ∆; Π; Γ;R (select rule)

infer ∆; ·; Γ 7→ nextΓ;∆ (fail)

apply Ψ; ∆; Π; Γ;∀x:τ .A 7→ apply Ψ, x : : τ ; ∆; Π; Γ;A (open rule)

apply Ψ; ∆; Π; Γ;A( B 7→ ΨImΓ ·→1
A(B (∆; Φ); ·; Γ; ∆;A (init rule)

C.2 Match

ΨImΓ ∆′→Ω′

A(B R; C; Γ; ∆, p1,∆
′′; p(x̂),Ω 7→

extend(Ψ,θ)ImΓ ∆′,p1→Ω′⊗p(x̂θ)
A(B R; (∆, p1; ∆′′; p(x̂); Ω; extend(Ψ, θ))

mΓ ∆′→Ω′
, C; Γ; ∆,∆′′; Ω

(p1,∆
′′ ≺ p(x̂) ∆ � p(x̂)) (match p ok)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; p(x̂),Ω 7→ /A(B R; C; Γ (∆ � p(x̂)) (match p fail)

ΨImΓ ∆′→Ω′

A(B R; C; Γ; ∆; !p(x̂),Ω 7→
extend(Ψ,θ)ImΓ ∆′→Ω′⊗!p(x̂θ)

A(B R; [Γ′′; ∆; !p(x̂); Ω; extend(Ψ, θ)]
mΓ ∆′→Ω′

, C; Γ, p1,Γ
′′; ∆; Ω

(!p1,Γ
′′ ≺ !p(x̂) Γ � !p(x̂)) (match !p ok)
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ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; !p(x̂),Ω 7→ /A(B R; C; Γ (Γ � !p(x̂)) (match !p fail)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆;1,Ω 7→ ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; Ω (match 1)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆;X ⊗ Y,Ω 7→ ImΓ ∆′→Ω′

A(B R; C; Γ; ∆;X, Y,Ω (match ⊗)

ImΓ ∆′→Ω′

A(B R; C; Γ; ∆; · 7→ y·;·∆′ Γ; ∆;B (match end)

C.3 Continuation

/A(B R; (∆; p2,∆
′′; p; Ω)

mΓ ∆′→Ω′
, C; Γ 7→ ImΓ ∆′,p2→Ω′⊗p

A(B R; (∆, p2; ∆′′; p; Ω)
mΓ ∆′→Ω′

, C; Γ; ∆; Ω (next p)

/A(B R; (∆; ·; p; Ω)
mΓ ∆′→Ω′

, C; Γ 7→ /A(B R; C; Γ (next frame)

/A(B R; [!p2,Γ
′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C; Γ 7→ ImΓ ∆′→Ω′⊗!p2

A(B R; [Γ′′; ∆; !p; Ω]
mΓ ∆′→Ω′

, C; Γ; ∆; Ω (next !p)

/A(B R; [·; ∆; !p; Ω]
mΓ ∆′→Ω′

, C; Γ 7→ /A(B R; C; Γ (next !frame)

/A(B (∆; Φ); ·; Γ 7→ infer ∆; Φ; Γ (rule fail)

C.4 Derivation

yΓ1;∆1

Ξ Γ; ∆; p,Ω 7→ yΓ1;∆1,p
Ξ Γ; ∆; Ω (new p)

yΓ1;∆1

Ξ Γ; ∆; !p,Ω 7→ yΓ1,!p;∆1

Ξ Γ; ∆; Ω (new !p)

yΓ1;∆1

Ξ Γ; ∆;1,Ω 7→ yΓ1;∆1

Ξ Γ; ∆; Ω (new 1)
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yΓ1;∆1

Ξ Γ; ∆;A⊗B,Ω 7→ yΓ1;∆1

Ξ Γ; ∆;A,B,Ω (new ⊗)

yΓ1;∆1

Ξ Γ; ∆;R(V̂ ,·;·)
agg ,Ω 7→ ΓN ;∆N

ΩI ;∆;Ξ I
mΓ ·→1

agg;· ·; ·; Γ; ∆;A

Π(agg)=∀v̂,Σ′ .(R
(v̂,Σ′)
agg (((λx.Cx)Σ′N(∀x̂,σ .(A(B⊗R

(v̂,σ::Σ′)
agg ))))

(new agg)

yΓ1;∆1

Ξ Γ; ∆; · 7→ 	 Ξ; Γ1; ∆1 (rule finished)

C.5 Aggregates

C.5.1 Match

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆, p1,∆

′′; p,Ω 7→
ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′,p→Ω′⊗p
agg;Σ

(∆, p1; ∆′′; p; Ω)
mΓ ∆′→Ω′

, C;P ; Γ; ∆,∆′′; Ω (agg match p ok)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; p,Ω 7→ ΓN ;∆N

ΩI ;∆I ;Ξ/agg;Σ
C;P ; Γ (agg match p fail)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
·;P ; Γ, p1,Γ

′′; ∆; !p,Ω 7→
ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
·; [Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
,P ; Γ, p1,Γ

′′; ∆; Ω (agg match !p ok P)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ, p1,Γ

′′; ∆; !p,Ω 7→
ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
[Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C;P ; Γ, p1,Γ

′′; ∆; Ω (agg match !p ok C)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; !p,Ω 7→ ΓN ;∆N

ΩI ;∆I ;Ξ/agg;Σ
C;P ; Γ (agg match !p fail)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆;X ⊗ Y,Ω 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆;X, Y,Ω (agg match ⊗)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆;1,Ω 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; Ω (agg match 1)

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′

agg;Σ
C;P ; Γ; ∆; · 7→ ΓN ;∆N

ΩI ;∆;Ξ;∆′ ./agg;Σ
C;P ; Γ (agg match end)
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C.5.2 Stack Transformation
ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

, f, C;P ; Γ 7→ ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

f, C;P ; Γ (agg fix rec)

ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

f ;P ; Γ 7→ ΩI ;∆;Ξ;∆′ yΓN ;∆N
agg;V ::Σ f

′;P ′; Γ;B{Ψ(x̂), V/x̂, σ}
Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)

agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,σ::Σ′)
agg ))))

f ′ = remove(f,∆′)

P ′ = remove(P ,∆′)
V = Ψ(σ)

(agg fix end1)

ΓN ;∆N
ΩI ;∆;Ξ;∆′ ./agg;Σ

·;P ; Γ 7→ ΩI ;∆;Ξ,∆′ yΓN1;∆N1

agg;V ::Σ ·;P
′; Γ;B{Ψ(x̂), V/x̂, σ}

Π(agg) = ∀v̂,Σ′ .(R(v̂,Σ′)
agg ( ((λx.Cx)Σ′ N (∀x̂,σ.(A( B ⊗R(v̂,σ::Σ′)

agg ))))

P ′ = remove(P ,∆′)
V = Ψ(σ)

(agg fix end2)

C.5.3 Backtracking

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

(∆; p1,∆
′′; p; Ω)

mΓ ∆′→Ω′
, C;P ; Γ 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′,p1→Ω′⊗p
agg;Σ

(∆, p1; ∆′′; p; Ω)
mΓ ∆′→Ω′

, C;P ; Γ; ∆; p,Ω (agg next p C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

[p1,Γ
′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C;P ; Γ 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
[Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
, C;P ; Γ; ∆; p,Ω (agg next !p C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

(∆; ·; p; Ω)
mΓ ∆′→Ω′

, C;P ; Γ 7→ ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

C;P ; Γ (agg next frame C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

[·; ∆; !p; Ω]
mΓ ∆′→Ω′

, C;P ; Γ 7→ ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

C;P ; Γ (agg next !frame C)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·; [p1,Γ
′′; ∆; !p; Ω]

mΓ ∆′→Ω′
,P ; Γ 7→

ΓN ;∆N
ΩI ;∆I ;Ξ I

mΓ ∆′→Ω′⊗!p

agg;Σ
·; [Γ′′; ∆; !p; Ω]

mΓ ∆′→Ω′
,P ; Γ; ∆; p,Ω (agg next !p P)
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ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·; [·; ∆; !p; Ω]
mΓ ∆′→Ω′

,P ; Γ 7→ ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·;P ; Γ (agg next !frame P)

ΓN ;∆N
ΩI ;∆I ;Ξ/agg;Σ

·; ·; Γ 7→ yΓN1;∆N1

Ξ Γ; ∆I ; (λx.C{Ψ(v̂)/v̂}x)Σ,ΩN

Π(agg)=∀v̂,Σ′ .(R
(v̂,Σ′)
agg (((λx.Cx)Σ′N(∀x̂,σ .(A(B⊗R

(v̂,σ::Σ′)
agg ))))

(agg end)

C.5.4 Derivation

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ; p,Ω 7→ ΩI ;∆;Ξ yΓN ;∆N ,p

agg;Σ C;P ; Γ; Ω (agg new p)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ; !p,Ω 7→ ΩI ;∆;Ξ yΓN ,p;∆N

agg;Σ C;P ; Γ; Ω (agg new !p)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ;X ⊗ Y,Ω 7→ ΩI ;∆;Ξ yΓN ,p;∆N

agg;Σ C;P ; Γ;X, Y,Ω (agg new ⊗)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ;1,Ω 7→ ΩI ;∆;Ξ yΓN ,p;∆N

agg;Σ C;P ; Γ; Ω (agg new 1)

ΩI ;∆;Ξ yΓN ;∆N
agg;Σ C;P ; Γ; · 7→ ΓN ;∆N

ΩI ;∆;Ξ/agg;Σ
C;P ; Γ (agg next)
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Appendix D

LM Directives

In this section, we list all the extra-logical directives available in LM programs.
The following directives are related to coordination:
• priority @order ORDER (ORDER can be either asc or desc): Defines if priorities are to

be selected by the smallest or the greatest value, respectively.
• priority @default P: Informs the runtime system that all nodes must start with default

priority P. Alternatively, the programmer can define a set-default-priority(A, P)
initial fact.

• priority @base P: Informs the runtime system that the base priority should be P. The
base priority is, by default, 0 when the priority ordering is desc and +∞when the ordering
is asc and represents the smallest priority value possible.

• priority @initial P: Informs the runtime system that all nodes must start with tempo-
rary priority P. Alternatively, the programmer can define a set-priority(A, P) fact. By
default, the initial priority value is equal to +∞ (for desc) or 0 (for asc).

For predicate indexing, we have the following directive:
• index pred/arg: Informs the compiler that predicate pred should be indexed by the

argument arg (number). The runtime system will use hash tree data structures for facts of
this predicate indexed by the requested argument.

201



202



Appendix E

Intermediate Representation

In this appendix, we present the instructions implemented by our virtual machine. We consider
that the machine has an arbitrary number of registers (or variables) that can be assigned to values
or facts and a database of facts indexed by program predicates.

Values Values can be assigned to registers or to fact arguments which are stored in the database.
The following values are allowed:

• Boolean values;
• Integer numbers;
• Floating point numbers;
• Node pointers;
• Thread pointers;
• String pointers;
• List pointers;
• Array pointers;

E.1 Iteration Instructions
The iteration instructions perform searches on the database of facts. When inferring a rule,
each iteration instruction iterates over a predicate in the body of the rule in order to derive all
combinations of facts that match the rule.

Match Specification Every instruction points to a match specification that filters facts from the
database. The specification maps argument indexes to value templates. Value templates include
the values described in E and the following variable templates:

• Register: fact argument must equal to the value stored in the register;
• Fact argument: fact argument must be equal to the value stored in another fact argument;
• List template: describes the structure of a list, namely, the head and tail value template;
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Iteration Each iteration instruction contains the body, a list of instructions that must be exe-
cuted for each fact found in the database. The body also returns a status indicating whether rule
inference was successful or not.

• persistent iterate [pred : predicate, dest : register, m : match, body :
instructions]

Iterate over persistent facts with the predicate pred that match m. For each iteration, we
assign dest the next candidate fact and execute instructions body.

• linear iterate [pred: predicate, dest : register, m : match, body :
instructions]

Same as before but iterate over linear facts.
• reuse linear iterate [pred: predicate, dest : register, m : match, body
: instructions]

Iterates over linear facts but, if the rule has been successful, it does not remove the linear
fact stored in dest since the same fact has been re-derived in the head of the rule.

E.1.1 Return Instructions

Return instructions terminate the current execution flow and force the machine to backtrack to a
previous state. In most cases, they are the return values used by iterate instructions and force the
iterate instruction to use the next candidate fact.

• return

Return without return value. Used at the end of rules to complete rule inference or in rules
where a higher priority rule is available.

• return derived

The rule was successfully derived.
• return next

The matching has failed and the iterate instruction must use the next candidate fact.

E.2 Conditional Instructions
Conditional instructions are used to conditionally execute certain instructions.

• if [reg : register, body : instructions]

If the boolean value stored in reg is true then execute body.
• if [reg : register, body1 : instructions, body2 : instructions]

If the boolean value stored in reg is true then execute body1, otherwise execute body2.
• jump [offset : integer]

Used as a goto at the end of body1 in the instruction above. Jumps a certain number of
instructions.
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E.3 Arithmetic and Boolean Instructions
We briefly describe the most important arithmetic and boolean instructions.

Operations Available operations are as follows:
• Addition +;
• Subtraction -;
• Multiplication *;
• Division /;
• Integer remainder %;
• Equality =;
• Inequality <>;
• Greater >;
• Greater or equal >=;
• Lesser <;
• Lesser or equal <=;
• Logical or or;
• Logical and and;

Instructions These operations are used as follows:
• test nil [reg : register, dest : register]

If the list stored in reg is null then set dest as true.
• not [reg : register, dest : register]

Perform a boolean not operation.
• int op [op1 : register, op2 : register, dest : register]

Perform an binary arithmetic operation on two integer numbers op1 and op2 and store
result in dest. Operations include: +, -, *, /, %, =, <>, <, <=, >=, and >.

• float op [op1 : register, op2 : register, dest : register]

Perform an binary arithmetic operation on two floating point numbers op1 and op2 and
store result in dest. Operations include: +, -, *, /, =, <>, <, <=, >=, and >.

• node op [op1 : register, op2 : register, dest : register]

Perform an operation on two node addresses op1 and op2 and store result in dest. Opera-
tions include: = and <>.

• thread op [op1 : register, op2 : register, dest : register]

Perform an operation on two thread addresses op1 and op2 and store result in dest. Oper-
ations include: = and <>.

• [bool op [op1 : register, op2 : register, dest : register]
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Perform an operation on two boolean values op1 and op2 and store result in dest. Opera-
tions include: = and <>, and and or.

E.4 Data Instructions
Data instructions include instructions which move values between registers and fact arguments
and instructions which call external functions written in C++ code.

• move-value-to-reg [val : value, reg : register]

Moves any value presented in E to register reg.
• move-arg-to-reg [fact : register, arg : integer, reg : register]

Moves the argth argument of fact stored in fact to register reg.
• move-reg-to-arg [reg : register, fact : register, arg : integer]

Moves the value stored in reg to the argth argument of fact stored in fact.
• call [id : integer, gc : boolean, dest : register, n : integer, arg1 :
register, arg2 : register, ...]

Call external function with number id with n arguments arg1 up to argn and store the
return value in dest. If gc is true then garbage collect the return value at the end of the
rule.

E.5 List Instructions
List instructions manipulate and access list addresses.

• cons [head : register, tail : register, gc : boolean, dest : register]

Create a new list and store its address in dest. The value of tail must be a list address or
a null list. If gc is true then the list must be garbage collected after the rule executes.

• head [ls : register, dest : register]

Retrieve the head value from the list address ls and store it in dest.
• tail [ls : register, dest : register]

Retrieve the tail value from the list address ls and store it in dest.

E.6 Derivation and Removal Instructions
Derivation instructions create facts and add them to the corresponding node databases. We also
include instructions that remove facts from the database.

• alloc [pred : predicate, dest : register]

Allocate new fact for predicate pred and assign it to dest.
• add linear [fact : register]

Add linear fact stored in fact to the current node’s database.
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• add persistent [fact : register]

Add persistent fact stored in fact to the current node’s database.
• send [fact : register, dest : register]

Send fact stored in fact to the node address stored in dest.
• run action [fact : register]

Execute action fact stored in fact and then deallocate the fact. This instruction is used for
coordination instructions.

• remove [fact : register]

Removes linear fact stored in fact from the database. The fact has been retrieved from
one of the iterate instructions.
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Appendix F

Further Examples

F.1 Asynchronous PageRank
The asynchronous version of the PageRank algorithm avoids synchronization between iterations,
thus trading precision for convergence speed. The formulation is similar to the formulation
presented in Equation 3.14:

xi(t+ 1) = Gi[x0(ti0(t)), · · · , xn(tin(t)]T (F.1)

The major difference is that now we multiply Gi (the row of inbound links for page i) with a
transposed vector with PageRank values that are necessarily not from iteration t. The expression
tij(t) refers to the iteration before t when the page i received the PageRank value of page j. The
value xj(tij(t)) then refers to the most up-to-date PageRank value of j received at page i that is
going to be used to compute the PageRank value of i at t+ 1.

Figure F.1 shows the LM code for this particular version. The program uses seven predicates
which are described as follows: outbound represents an outbound page link; numInbound is the
number of inbound page links; pagerank represents the current PageRank value of the node;
neighbor-pagerank is the PageRank value of an inbound page; new-neighbor-pagerank rep-
resents a new PageRank value of an inbound page; sum-ranks is a temporary predicate used
for computing new PageRanks; and update re-computes the PageRank value from the neigh-
bor’s PageRank values. Rules in lines 9-17 update the neighbor-pagerank values, while rule
in lines 19-25 asynchronously updates the current PageRank value. Finally, the third rule in
lines 29-32 informs the neighbor nodes about the newly computed PageRank value by deriving
multiple new-neighbor-pagerank facts. Note that in this rule, we use the function fabs that
computes the absolute value of a floating point number.

To build the proof of correctness, we must again prove several program invariants. In what
follows, we will prove that this particular program corresponds to the computation on a nonneg-
ative matrix of unit spectral radius, which has been proven to converge [KGS06, LM86].

209



1 type outbound(node, node, float). // Predicate declaration
2 type numInbound(node, int).
3 type linear pagerank(node, float, int).
4 type linear neighbor-pagerank(node, node Neighbor, float Rank, int Iteration).
5 type linear new-neighbor-pagerank(node, node Neighbor, float Rank, int Iteration).
6 type linear sum-ranks(node, float).
7 type linear update(A).
8

9 new-neighbor-pagerank(A, B, New, Iteration), // Rule 1: update neighbor value
10 neighbor-pagerank(A, B, Old, OldIteration),
11 Iteration > OldIteration
12 -o neighbor-pagerank(A, B, New, Iteration).
13

14 new-neighbor-pagerank(A, B, New, Iteration), // Rule 2: update neighbor value
15 neighbor-pagerank(A, B, Old, OldIteration),
16 Iteration <= OldIteration
17 -o neighbor-pagerank(A, B, Old, OldIteration).
18

19 sum-ranks(A, Acc), // Rule 3: propagate new pagerank
20 NewRank = damping/float(pages) + (1.0 - damping) * Acc,
21 pagerank(A, OldRank, Iteration)
22 -o pagerank(A, NewRank, Iteration + 1),
23 {B, W, Delta | !outbound(A, B, W), Delta = fabs(NewRank -
24 OldRank) * W -o new-neighbor-pagerank(B, A, NewRank, Iteration + 1),
25 if Delta > bound then update(B) end}.
26

27 update(A), update(A) -o update(A). // Rule 4: prune update facts
28

29 update(A), // Rule 5: start update process
30 !numInbound(A, T)
31 -o [sum => V; B, Val, Iter | neighbor-pagerank(A, B, Val, Iter),
32 V = Val/float(T) -o neighbor-pagerank(A, B, Val, Iter) -> sum-ranks(A, V)].
33

34 pagerank(A, 1.0 / float(pages), 0). // Initial facts
35 update(A).
36 neighbor-pagerank(A, B, 1.0 / float(pages), 0). // pagerank of B is ...

Figure F.1: Asynchronous PageRank program.

Invariant F.1.1 (Page invariant)
Each page/node has a single pagerank(A, Value, Iteration) and:

• for each outbound link, a single !outbound(A, B, W) fact.
• for each inbound link, a single neighbor-pagerank(A, B, V, Iter) fact.
• for each !outbound(A, B, W), a single neighbor-pagerank(B, A, V, Iter).

Proof. All initial facts validate the 3 conditions of the variant. Note that the third condition is
also validated by the initial facts, although not all facts are shown in the code.

In relation to rule application:
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• Rule 1: inbound link re-derived.
• Rule 2: inbound link re-derived.
• Rule 3: pagerank re-derived.
• Rule 4: Nothing happens.
• Rule 5: inbound links re-derived in the comprehension.

Lemma F.1.1 (Neighbor rank lemma)
Given a fact neighbor-pagerank(A, B, V, Iter) and a set of facts new-neighbor-pagerank(A,
B, New, Iter2), we end up with a single neighbor-pagerank(A, B, V’, Iter’), where
Iter is the greater of Iter and Iter2’.

Proof. By induction on the number of new-neighbor-pagerank facts.
Base case: neighbor-pagerank remains.
Inductive case: given one new-neighbor-pagerank fact:

• Rule 1: the new iteration is older and thus neighbor-pagerank is replaced. By applying
induction, we know that we will select either the new best iteration or a better iteration
from the remaining set of new-neighbor-pagerank facts.

• Rule 2: the new iteration is not older and we keep the old neighbor-pagerank fact. By
induction, we select the best from either the current iteration or some other (from the set).

Lemma F.1.2 (Update lemma)
Given a new update fact, rule 5 will run.

Proof. By induction on the number of update facts.
Base case: rule 5 will run for the first update fact.
Inductive case: rule 4 runs first because it has a higher priority, reducing the number of

update facts by one. By induction, we know that by using the remaining update facts, rule 5
will run.

Lemma F.1.3 (Pagerank update lemma)
(1) Given at least one update fact, the pagerank(A, VI, I) fact will be updated to become
pagerank(A, VI+1, I + 1), where VI+1 = damping/P+(1.0−damping)

∑
B,I V alI,BWB.

with WB = 1.0/T (where T is the number of outbound links of B) and V alI,B from
neighbor-pagerank(A, B, V alI,B, I).
(2) For all B outbound nodes (from !outbound(A, B, W), a new-neighbor-pagerank(B,
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A, VI+1, I + 1) is generated.
(3) For all B outbound nodes (from !outbound(A, B, W)), a update(B) is generated if
fabs(VI+1 − VI)W > bound.

Proof. Using the Update lemma, rule 5 will necessarily run, which will derive sum-ranks(A,∑
B,I(V alI,BWB)) and fulfills (3).
Fact sum-ranks will necessarily activate rule 4, computing VI+1 and updating pagerank. (2)

and (3) are fulfilled through the comprehension of rule 4.

Invariant F.1.2 (New neighbor rank equality)
All new-neighbor-pagerank(A, B, V, I) facts are generated from a corresponding
pagerank(B, V, I) fact, therefore the iteration of any new-neighbor-pagerank is at
least the same or less than the iteration of the current PageRank.

Proof. No initial facts to prove.

• Rule 3: true, new fact is generated.
• Rule 4: the fact is kept.

Invariant F.1.3 (Neighbor rank equality)
All neighbor-pagerank(A, B, V, I) facts have one corresponding pagerank(B, V, I)
fact and the iteration of the neighbor-pagerank is the same or less than the current iteration
of the corresponding pagerank.

Proof. By analyzing initial facts and rules.
Axioms: true.
Rule cases:

• Rule 1: uses new-neighbor-pagerank fact (use new neighbor rank equality invariant).
• Rule 2: same fact is re-derived.
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Theorem F.1.1 (Pagerank convergence)
The program will compute the PageRank of all nodes that is within bound error of an asyn-
chronous PageRank computation.

Proof. Using the program initial facts, we start with the same PageRank value for all nodes. The
!outbound(A, B, W) fact forms the n × n square matrix (number of nodes) and is the Google
Matrix. All the initial PageRank values can be seen as a vector that adds up to 1.

The PageRank computation from the ”Pagerank update lemma” computes VI+1 = damping/P+
(1.0− damping)

∑
B,I′(WBV alI′,B), where I ′ ≤ I (from Neighbor rank equality invariant).

Consider that each node contains a column Gi of the Google matrix. The PageRank compu-
tation can then be represented as:

VI+1 = Gifix([V alI1,B1 , ..., V alIp,Bp ]) (1)

Where p is the number of inbound links and V alIj ,Bj is the value of the neighbor-pagerank(A,
Bj, V alIj ,Bj, Ij). The fix() function takes the neighbor vector and expands it with zeros
corresponding to nodes that are not inbound links. This is the expected formulation for the asyn-
chronous PageRank computation [KGS06] as shown in F.1.

From [KGS06, LM86] we know that equation (1) will improve (converge) the PageRank
value, given that some new neighbor PageRank values are sent to node i and by the fact that Gi

is a nonnegative matrix of unit spectral radius. Let’s use induction by assuming that there is at
least one update fact that schedules a node to improve its PageRank. We want to prove that such
fact will not only improve the node’s PageRank but also the PageRank vector. If the PageRank
vector is now close enough (within bound), then the program will terminate.

• Base case: since we have an update fact as an axiom, rule 5 will compute a new PageRank
(Pagerank update lemma) for all nodes that is improved (from equation (1)). From these
updates, a new update fact is generated that correspond to nodes that have inbound links
from the source node and need to update their PageRank. These update facts may not be
generated if the PageRank vector is close enough to its real value.

• The induction hypothesis tells us that there is at least one node that has an update fact.
From PagePank update lemma, this generates new-neighbor-pagerank facts if the new
value differs significantly from the older value. When this happens and using the “Neigh-
bor rank lemma”, the target node will update its neighbor-pagerank fact with the newest
iteration and then execute a valid PageRank computation that brings the PageRank vector
close to its solution.
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Appendix G

Program Proofs

G.1 Single Source Shortest Path
The most interesting property of the SSSP program presented in Fig. 7.8 is that it remains prov-
ably correct, although it applies rules using a different ordering. We now show the complete
proof of correctness.

Invariant G.1.1 (Distance)
relax(A,D, P ) represents a valid distance D and a valid path P from node @1 to node A.
If the shortest distance to @1 is D′, then D ≥ D′.
shortest(A,D, P ) represents a valid distance D and a valid path P from node @1 to node
A. If the shortest distance to @1 is D′, then D ≥ D′. The shortest fact may also represent
an invalid distance if D =∞, where P = [].

Proof. By mutual induction. All the initial facts are valid and the first (lines 7-11) and second
rules (lines 13-14) of the program validate the invariant using the inductive hypothesis.

Lemma G.1.1 (Relaxation)
Shorter distances are propagated to the neighbor nodes exactly once.

Proof. By the first rule, we know that for a new shorter distance, we keep the shorter distance
and propagate it. By the second rule, longer distances are ignored.

Theorem G.1.1 (Correctness)
Assume a graph G = (V,E) where w(a, b) ≥ 0 and (a, b) ∈ E (positive weights). Consider
that there is a set of nodes S ∈ V where the shortest distance has been computed and a set
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U ∈ V where the shortest distance has not been computed yet. Sets are S and U are disjoint.
At any given point, Σ is the sum of all current distances. For the distance∞ we assign the
value Σ′ + 1, where Σ′ is the largest shortest distance of any node reachable from @1. Every
rule inference will either:

• Maintain the size of S and reduce the total number of facts in the database.
• Increase the size of S, reduce Σ and potentially increase the number of facts in the

database.
• Maintain the size of S, reduce Σ and potentially increase the number of facts in the

database.

Eventually, set S = V and every shortest(A,D, P ) will represent the shortest distance
from A to @1 and P is its corresponding path.

Proof. By nested induction on Σ and on the number of facts in the database.
In the base case, we have relax(@1, 0, [@1]) that will give us the shortest distance for

node @1, therefore S = {@1} and Σ is reduced.
In the inductive case, we have a set S ′ where the shortest distance was reached and relax

distances may have been propagated (Relaxation Lemma).
Now consider the two rules of the program:

• The first rule will only apply at nodes in U . If the shortest relax is selected, then the node
is added to S, otherwise it stays in U but improves the shortest path, reduces Σ and relax
facts are generated (Relaxation Lemma).

• The second rule is applied in either nodes of S or U . For both sets, the rule retracts the
relax fact.

The case where the first rule derives the shortest relax distance to node t ∈ U happens when
some node s ∈ S which minimizes argmint d(s) +w(s, t) is selected, where d(s) is the shortest
distance to node @1 and w(s, t) the weight of the edge between (s, t). Using set-priority
increases the probability of that node being selected, but it does not matter since the program
always makes progress and the shortest distances will be eventually computed.

G.2 MiniMax
To prove that the MiniMax code shown in Fig. 7.12 computes the best score along with the best
possible move that the root-player can make, we have to generalize the proof and inductively
prove that each node selects the best score depending if its a minimizing or a maximizing node.
We start with several useful lemmas.

Lemma G.2.1 (Play Lemma)
If a fact expand(A,F irstGame,RestGame,ND,NextP layer, P lay,Depth) exists then
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∃n where n is the number of available plays that NextP layer can make on the remaining
game state RestGame. The initial expand fact is retracted and generates n children B with
facts play(B,Game′, OP layer, P lay′, Depth+ 1) and parent(B,A), where OPlayer =
next− player(NextP layer), Play′ is the index of an empty position in RestGame plus
the length of FirstGame, and Game′ represents the concatenation of FirstGame and
RestGame where an empty position has been modified. The initial expand fact eventu-
ally derives either the maximize(A,ND + Empty,−∞, 0) fact (if NextP layer = root−
player) or the minimize(A,ND + Empty,∞, 0) (otherwise). The value Empty indicates
the number of empty positions in the state RestGame.

Proof. By induction on the size of the list RestGame. There are 5 possible rules.
Rule 1 (lines 22-23: RestGame = [] thus a maximize fact is derived as expected.
Rule 2 (lines 25-26: RestGame = [] thus a minimize fact is derived as expected.
Rule 3 (lines 28-32: in this case we have a non-null RestGame and an empty position on

index 0. As expected, we create a new B node with the expected facts and a new expand fact
with a smaller RestGame. Apply the induction hypothesis to get the remaining n− 1 potential
plays for NextP layer.

Rule 4 (lines 34-37: same reasoning as rule 3. Note that the presence of coordination facts
do not change the proof because they are not used in the rule’s LHS.

Rule 5 (lines 39-40: no free space on the first position of RestGame. We derive another
expand fact with a reduced RestGame and use the induction hypothesis.

Lemma G.2.2 (Children Lemma)
The fact play(A,Game,NextP layer, LastP lay,Depth) is consumed by the program’s
rule to realize one of the following scenarios:

• A new fact score(A, Score, LastP lay) is derived.
• There exists a number n of available plays for NextP layer in Game, which generate
n new childrenB where eachB will have facts play(B,Game′, OP layer, P lay,Depth+
1) and parent(B,A). Furthermore, from the use of the initial play fact, one of the
following facts is derived:

maximize(A,N,−∞, 0) is derived (if NextP layer = root− player);
minimize(A,N,∞, 0) (otherwise).

Note that Game′ is an updated Game state where an empty position is played by
NextP layer.

Proof. A linear fact play(A,Game,NextP layer, LastP lay,Depth) can only be used in either
the first or second rules. If the rule in lines 14-16 executes, (minimax score returns a score) it
means thatGame is a final game state and there’s no available plays forNextP layer. Otherwise,
the second rule in lines 18-20 will apply and the Play lemma is used to complete the proof.
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We now prove that the minimization and maximization rules work given the right amount of
scores available.

Lemma G.2.3 (Maximize Lemma)
Given a fact maximize(A,N,BScore, BP lay) andN facts new-score(A,OScore,OP lay),
the program’s rule will retract them all and generate a single score(A,BScore′, BP lay′)
fact where BScore′ is the highest score from BScore or OScore′ and BPlay′ is the corre-
sponding play.

Proof. By induction on the number of new-score facts.
Case 1 (N = 0): trivial by applying the rule in line 58.
Case 2 (N > 0): by picking an arbitrary new-score(A,OScore,OP lay) fact.

• Sub case 2.1 (lines 52-53)
If BScore < OScore then we derive maximize(A,N − 1, OScore, OP lay). Use induc-
tion to get the final score fact.

• Sub case 2.2 (lines 55-56)
If BScore ≥ OScore then we derive maximize(A,N − 1, BScore, BP lay). Use induc-
tion to get the final score fact.

Lemma G.2.4 (Minimize Lemma)
Given a fact minimize(A,N,BScore, BP lay) andN new-score(A,OScore,OP lay) facts,
the program’s rules will retract all those facts and derive a single score(A,BScore′, BP lay′)
fact where BScore′ is the lowest score from either BScore or the N OScore and BPlay′

is the corresponding play.

Finally, we are in a position to prove that a play fact is retracted and then eventually produces
a score fact that indicates the best score and best play for the player playing at the given node.

Theorem G.2.1 (Score Theorem)
For every play(A,Game,NextP layer, LastP lay,Depth) fact, we either get a score fact
(leaf case) or a recursive alternate maximization or minimization (depending if NextPlayer
= root-player or otherwise) of the children nodes. This max/minimization also results
in a score(A, Score, BP lay) fact where Score is the max/minimum and BPlay is the
corresponding play for that score.
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Proof. By applying the Children Lemma and using induction on the number of free positions on
the state Game.

Case 1 (no free positions or game is final): direct score.
Case 2 (available positions): n children nodes B are created with two facts: parent(B,A)

and play(B,Game′, next-player(NextP layer), X, P lay,Depth+1), whereGame′ has posi-
tionX filled up. We apply induction on the play fact of each childB to get a score(B, Score, P lay)
fact. Since we also derived a parent(B,A) fact, rule in line 42 eventually executes, deriving
new− score(A, Score, P lay).

We also derived maximize(A,N,−∞, 0) fact (or minimize) and n new-score facts from the
n children nodes, from which we apply the Maximize Lemma to get score(A,BScore, BP lay).

Corollary G.2.1 (MiniMax)
Starting from a play(@0, initial−game, root−player, 0, 1) fact, the fact score(A,BScore, BP lay)
is eventually derived, where BPlay represents the best play which player root− player is able
to make that minimizes the possible loss for a worst case scenario given initial − game.

G.3 N-Queens
We prove that the N-Queens program finds all the distinct solutions for the puzzle. In the follow-
ing lemmas, we assume that (X0, Y0) is the coordinate of square/node A.

Lemma G.3.1 (test-y lemma)
From a fact test-y(A, Y, State, OrigState), there are two possible scenarios:

• The test-y fact and everything derived from it is retracted and there is a Y ∈ State.
• The test-y fact is retracted and is used to derive a test-diag-left(A,X0− 1, Y0−

1, OrigState, OrigState) fact since there is no such Y ∈ State.

Proof. Induction on the size of State.
First rule: immediately the second scenario.
Second rule: immediately the first scenario.
Third rule: by induction.

Lemma G.3.2 (test-diag-left lemma)
From a fact test-diag-left(A,X, Y, State, OrigState), there are two possible scenarios:

• The test-diag-left fact and everything derived from it is retracted and there is a
y′ ∈ State, where y′ = Y − a and a is non-negative number representing the index of
y′ in State.

• The test-diag-left is retracted and is used to derive a test-diag-right(A,X0 −
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1, Y0 + 1, OrigState, OrigState) fact since there is no y′ ∈ State as specified above.

Proof. Induction on the size of State.
First rule: immediately the second scenario.
Second rule: immediately the first scenario.
Third rule: by induction.

Lemma G.3.3 (test-diag-right lemma)
From a fact test-diag-right(A,X, Y, State, OrigState), there are two possible scenar-
ios:

• The test-diag-right fact and everything derived from it is retracted and there is a
y′ ∈ State, where y′ = Y + a and a is a non-negative number representing the index
of y′ in State.

• The test-diag-right fact is retracted and the fact send-down(A, [Y0|OrigState]) is
derived.

Proof. Induction on the size of State.
First rule: immediately the second scenario.
Second rule: immediately the first scenario.
Third rule: by induction.

Theorem G.3.1 (State validation)
From a fact test-y(A, Y0, State, State), where (X0, Y0) is the coordinate of A and the
length of State is X0, there are two possible scenarios:

• The test-y fact and anything derived from it is retracted.
• The test-y fact is retracted and a send-down(A, [Y0|State]) fact is derived, where

[Y0|State] is a valid board state.

Proof. Use the previous three lemmas.

Lemma G.3.4 (Propagate left lemma)
If a propagate-left(A, State) fact exists then every cell to the left, including A will derive
new-state(A, State). The original propagate-left fact and any other fact derived from
it (except new-state) are retracted.
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Proof. By induction on the number of cells to the left of A and using the only rule that uses
propagate-left.

Lemma G.3.5 (Propagate right lemma)
If a propagate-right(A, State) fact exists then every cell to the left, including A will derive
new-state(A, State). The original propagate-right fact and any other fact derived from
it (except new-state) are retracted.

Proof. By induction on the number of cells to the left of A and using the only rule that uses
propagate-right.

Theorem G.3.2 (States theorem)
For a given row, we compute several send-down(A, State) facts that represent valid states
that include that row and the rows above.

Proof. By induction on the number of rows.
For row 0, we use the initial fact propagate-right(@0, []), that will be propagated to all

nodes in row 0 (propagate right lemma). By using the state validation theorem, we know that
every node will derive send-down(A, [Y]), which are all the valid states.

By induction, we know that row X ′ has derived every send-down fact possible. Such facts
will be sent downwards to row X = X ′ + 1 using the last rule in the program, deriving
propagate-right or propagate-left that, in turn, will derive a new-state fact at each right
or left square. Nothing is derived at the square below or the diagonal cells since they are not
valid. From the new-state fact, a test-y fact is derived, which will be checked using the state
validation theorem, filtering all new valid states and then finally deriving a new send-down fact.

G.4 Binary Search Tree
In this section, we prove several properties of the Binary Search Tree (BST) as presented in
Fig. 8.7. First, we assume that the initial facts of the program represent a valid binary search
tree, therefore, for every node with a given key k, the left branch contains keys that are lesser or
equal than k, and the right branch contains keys that are greater than k.

Invariant G.4.1 (Immutable keys)
Every node has a value(A,Key, V alue) fact and the Key never changes.
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Proof. By induction. In the base case, every node has a value initial fact. In the inductive case,
each rule that uses a value fact also re-derives it and the Key argument never changes.

Invariant G.4.2 (Thread state)
Every thread T in the program has a cache-size(T, Total) fact that represents the number
of valid cache items in the form of cache(T,Node,Key) facts. Furthermore, there are no
two cache(T,Node1, Key1) and cache(T,Node2, Key2) facts where Node1 = Node2.

Proof. By induction on each rule application.
In the base case, all threads start with a cache-size(T, 0) fact and no cache(T,Node,Key)

facts.
In the inductive case, we must analyze each rule separately.

• Rule 1: the cache(T,A,Key) fact is kept in the database.
• Rule 2: this rule adds a new valid cache(T,A,Key) fact and correctly increments the
cache-size counter. However, we must ensure that the cache item is unique. For that, we
know that this rule uses the same replace and a value facts of rule 1, therefore, if there
was already a cache item in the database, rule 1 would run before rule 2 since rule 1 has a
higher priority. In a nutshell, rule 1 deals with cases where there is already a cache item,
while rule 2 adds a new item if it does not exist.

• Rule 3: the cache(T, TargetNode,RKey) fact is kept in the database.
• Rules 4 and 5: they do not derive or consume any cache related facts.

Theorem G.4.1 (Valid replace)
Assume a valid BST and a set of threads with a valid cache. Given a replace(A,RKey,RV alue)
fact at node A, the node N with key RKey will replace its value(N,RKey, V alue) fact to
value(N,RKey,RV alue).

Proof. First consider that node A makes up a BST and then use induction on the size of that
smaller BST.

In the base case, where A = N , rule 1 and 2 will apply. Rule 1 is applied if the executing
thread has node N already in the cache. Rule 2 applies when the executing thread does not have
the node N in the cache.

In the inductive case, there are two sub-cases:

• The executing thread has a valid cache item for key RKey (from Variant G.4.2), therefore
rule 3 is applied and a replace fact is derived at node N .
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• Without a valid cache item, rules 4 or 5 are applied. Rule 4 applies if the key is in the left
branch and rule 5 applies if the key is in the right branch. Use the induction hypothesis on
the selected branch.
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