
Beyond unique decoding:
topics in error-correcting codes

Carol Wang

CMU-CS-15-136

September 2015

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Venkatesan Guruswami, Chair

Ryan O’Donnell
Bernhard Haeupler

Po-Shen Loh
Madhu Sudan, Microsoft Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2015 Carol Wang

This research was sponsored by the National Science Foundation under grant numbers CCF-0953155, CFF-
0963975, CCF-1016799, CFF-1115525, DGE-0750271, DGE-1252522; United States-Israel Binational Sci-
ence Foundation under grant number 2008293; and Microsoft.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Error-correcting codes, algebraic coding, list decoding

For my parents.

iv

Abstract

Error-correcting codes give efficient ways to store and recover informa-
tion, even when the information has been corrupted. They have seen wide
applicability in areas like software and communication, where they allow for
improvements in both redundancy and resilience.

This thesis covers various areas in the field of error-correcting codes, ad-
dressing problems which arise in different applications and error models. One
such area is that of list-decoding, a model in which the decoder may output
multiple possible decodings, allowing for correction from a larger number of
errors. We give an explicit construction of good codes which are efficiently
list-decodable up to an information theoretically optimal fraction of errors.
The framework we have developed for decoding, the linear-algebraic method,
has proven to be a powerful tool for designing and decoding codes.

We extend our techniques to construct the first nontrivially list-decodable
codes with high rate for the rank metric, a model which has applications in
wireless network communication. We also construct the first explicit deletion
codes correcting a constant fraction of deletions with rate approaching one,
and correcting a fraction of deletions approaching one with constant rate. The
central theme of this thesis is that effective communication is possible, even
for these very different models.

vi

Acknowledgements

Many thanks to my advisor, Venkat, who has always been helpful and patient, who has
tolerated all of my research whims with good humor. In these years of imposing on his
time, I have learned a lot about how to do research, and maybe (in direct opposition to his
sensible guidance) how not to do research.

Thanks are due as well to my thesis committee, and to all of the researchers who have
given me their time and expertise, most notably: Anupam Gupta, who advised me in my
first year; Suguru Tamaki, my mentor during a research fellowship at Kyoto University;
and Sergey Yekhanin, my mentor during an internship at Microsoft Research. I also owe
a lot to my co-authors: Venkat, Srivatsan, Madhu, Ameya, and Chaoping.

In life beyond research, I am grateful to my enabler friends (you know who you are).
Without these friends, I would have gotten a lot more work done, but these past years
would not have been nearly as fun. Of course my biggest enablers are actually my parents,
who have provided unconditional support even as my work becomes less and less compre-
hensible. And a close contender for biggest enabler is Luke, an always reliable source of
moral support and sugar.

vii

viii

Contents

1 Introduction 1

1.1 Contributions of this thesis . 2

1.1.1 List-decodable codes . 2

1.1.2 Deletion codes . 3

1.1.3 Rank-metric and subspace codes 4

1.2 Organization . 4

2 Preliminaries 5

2.1 Coding basics . 5

2.1.1 Basic bounds on codes . 7

2.1.2 Unique decoding . 9

2.2 List-decoding . 10

2.3 A few code constructions . 11

2.3.1 Reed-Solomon codes . 12

2.3.2 Folded Reed-Solomon codes . 13

2.4 Deletion codes . 16

2.4.1 Previous work on deletions . 17

2.4.2 Concatenated codes . 17

2.4.3 A code construction . 19

3 Linear-algebraic list-decoding 21

ix

3.1 List-decoding folded Reed-Solomon codes 21

3.1.1 A Welch-Berlekamp style interpolation 22

3.1.2 Retrieving candidate polynomials f 24

3.1.3 Some remarks . 27

3.2 List-decoding derivative codes . 28

3.2.1 List decoding derivative codes 29

3.2.2 Some remarks . 34

3.3 Improved list size via subspace-evasive sets 36

3.3.1 Pseudorandom construction of subspace-evasive subsets 38

3.4 Epilogue: Subsequent work . 40

4 Deletion codes 41

4.1 Existential bounds for deletion codes . 42

4.2 Coding against 1− ε deletions . 44

4.3 Binary codes against ε deletions . 47

4.3.1 Construction overview . 47

4.3.2 Our construction . 47

4.4 List-decoding binary deletion codes . 51

4.4.1 List-decodable binary deletion codes (existential) 51

4.4.2 List-decodable binary deletion codes (explicit) 51

4.5 Omitted proofs . 53

5 Rank-metric and subspace codes 59

5.1 Linear network coding . 59

5.2 Subspace codes and the operator channel 61

5.2.1 The Kötter-Kschischang code 63

5.3 Rank-metric codes . 64

5.4 List-decoding subspace and rank-metric codes 65

5.4.1 List-decodability of random codes 66

x

5.4.2 Previous list-decodable constructions 67

6 List-decodable rank-metric codes 69
6.1 List-decoding Gabidulin codes . 70

6.2 List size reduction via subspace designs 74

6.2.1 Existential bounds . 75

6.2.2 Constructive bounds . 76

6.2.3 Explicit list-decodable rank-metric codes 78

6.3 Explicit list-decodable subspace codes 79

6.3.1 Linear algebraic list-decoding for subspace codes 80

6.3.2 Explicit list-decodable subcodes 81

6.4 Application to low-order folding of Reed-Solomon codes 82

6.4.1 Interpolation . 83

6.4.2 Decoding . 84

6.4.3 Constructing high-degree irreducibles 86

6.4.4 Relationship to Reed-Solomon list-decoding 87

7 Conclusion and open questions 89
7.1 Summary . 89

7.2 Next steps . 90

7.2.1 List-decoding . 90

7.2.2 Deletion coding . 91

7.2.3 Rank-metric coding . 92

Bibliography 95

xi

xii

List of Figures

2.1 The unique decoding radius . 10

2.2 A concatenated codeword . 18

5.1 The butterfly network . 60

5.2 The butterfly network revisited . 61

xiii

xiv

List of Tables

6.1 Parameters used in this chapter . 70

xv

xvi

Chapter 1

Introduction

In which we meet Alice and Bob • Mallory is malicious • Coding theory
comes to the rescue

This thesis is concerned with the following scenario: Alice has a message which she
fervently wishes to communicate to Bob. Between them stands Mallory, who aims to
foil Alice by tampering with whatever she sends. Alice’s goal is somehow to protect her
message so that Bob can recover useful information, even after Mallory has introduced
errors into the transmission. One way she can do this is by adding redundancy; that is, by
sending some extra helpful information. On the opposing side, in the interests of economy,
she would like to use as little redundancy as possible.

The theory of error-correcting codes seeks to understand what Alice and Bob (or, in
another life, the sender and receiver or encoder and decoder) can hope to achieve. We
are interested not only in the kinds of errors from which we can recover, but also in how
each step of the process can be done efficiently, in polynomial time. Aside from the natural
applications in communication and data storage, advances in coding theory have played an
important role in developments in areas such as pseudorandomness and complexity theory.

One of the most common settings studied in coding theory is one in which the adver-
sary, Mallory, can corrupt a fixed number of letters or symbols in what is being transmitted,
and the receiver must recover the original message, no matter which symbols have been
corrupted. For example, one easy way for Alice to protect, or encode, her message, is to
send three copies of the message. Although she has to send three times as many symbols,
Bob can determine the original message even if one transmitted symbol has been changed.
He can do this simply by checking every symbol against its two redundant copies. On
the other hand, if Mallory is allowed to corrupt two symbols, this strategy will not always

1

work, and the original message may not be recoverable.

Thus far, we have two possibilities for Alice. If she has a message of n symbols, she
can send those symbols to Bob, but if any errors occur, he may not be able to decode the
message. We’ve seen that she can send more symbols (3n symbols) in exchange for being
able to handle a single error. This naturally leads us to wonder: Can Alice do better? In
other words, if she needs to handle a single error, can she send fewer than 3n symbols?
What if she expects a growing number of errors, say n/10? Does the answer change if
Alice’s encoding and Bob’s decoding both have to be efficient?

As it turns out, the affairs of Alice and Bob have been of interest to coding theorists for
a long time, and we know quite a bit about the answers to these questions. In this thesis, we
will consider how these answers change in new settings where the definitions of “error”
and “decoding” can be quite different. These definitions arise in different applications,
but the fundamental goal of efficient communication remains the same. In each of these
settings, we study new ways of protecting information from errors, and show how this can
be done efficiently.

1.1 Contributions of this thesis

We outline the models we study and our results on coding for these models; more detailed
exposition appears in Chapter 2.

1.1.1 List-decodable codes

One drawback of insisting that Bob decodes Alice’s original message is that there is no
way to handle extremely high error rates. If the adversary is allowed to introduce errors
in over half of the symbols, then they can change half of the symbols in whatever Alice
sends to match some completely different string, making it impossible for Bob to be certain
which was originally sent. It may seem that all is lost, but it turns out even as the error rate
approaches 1 (that is, nearly every symbol corrupted), it is still possible for Bob to extract
meaningful information about Alice’s message, with only a constant-factor increase in
transmission length. Our notion of “meaningful information” is captured by the model of
list-decoding.

Informally, list-decoding allows Bob to output a list of possible decodings. We con-
sider his decoding to be successful if the list is short (polynomial in the message length),
and contains Alice’s original message. In other words, even if too much information has

2

been lost to pinpoint the exact message Alice meant to send, Bob should be able to narrow
down the possibilities to a manageable number.

As we will see in Chapter 2, not only does this relaxation allow decoding from up to
twice as many errors, but the encoding and decoding can be done efficiently. The first
efficient construction to achieve the optimal trade-off between redundancy and correctable
error rate was the folded Reed-Solomon code, a variant of the classical Reed-Solomon
code. These codes, with the relaxed model of list-decoding, allow us to handle arbitrarily
high error rates.

In this thesis, we give a new construction of list-decodable codes, also based on Reed-
Solomon codes. These codes, known as derivative codes, also achieve the optimal trade-
off between redundancy and error rate while admitting efficient algorithms. In fact, we are
able to adapt our algorithms to list-decode folded Reed-Solomon codes as well. An advan-
tage of our approach is that it gives a nice structure to the decoded list, leading to explicit
constructions of codes which can guarantee a constant (rather than merely polynomial) list
size.

1.1.2 Deletion codes

In the deletion model, rather than having individual symbols be changed, we allow Mallory
to remove (delete) some fraction of symbols from the transmission, so that Bob receives a
substring of what was originally sent. One could think of Alice having typed up a text file,
and Mallory being given access to the backspace key — the resulting text shows no sign
of which symbols are missing. Under this model, Mallory can easily turn “I don’t trust
Mallory” into “I trust Mallory” without anyone being the wiser. Even if Bob detects from
the brevity of the message that something is amiss, the absent symbols could just as easily
belong at the end, perhaps “I trust Mallory a lot.”

As this example shows, a major difficulty in handling deletions is that the receiver
not only loses the information in the deleted symbols, but information about where they
came from; that is, which position in the message they occupied. As it stands, Bob has no
(coding-theoretic) reason for disbelieving the second possibility. This turns out to be quite
challenging when we are using a small alphabet of symbols, and there are still many basic
questions to which we do not know the answers.

In this thesis, we initiate a systematic study of codes against worst-case deletions,
showing bounds on what can be achieved combinatorially, and then giving efficient codes
which are not far from these bounds. Our codes focus on the cases when we want to handle
arbitrarily high deletion fractions, and when we want very low redundancy.

3

1.1.3 Rank-metric and subspace codes

The worst-case model gives the adversary, Mallory, the ability to corrupt what is being sent
in the most confusing way possible. In order to allow us to be able to perform meaningful
communication, we must constrain the errors in some other fashion. One way to think of
these constraints is as imposing structure on the errors Mallory may introduce, making our
task tractable.

Thus far, we have touched on the case when we restrict the number of symbols which
can be affected. In many applications, the kind of errors which occur might be quite
different, and the codes we use must change accordingly. For example, one simple class
of error patterns is one where Mallory shifts every symbol by a fixed offset (say, a → c,
b→ d, c→ e, etc). These patterns can corrupt every symbol, ruling out algorithms which
rely on receiving some number of correct symbols, but their rigid structure means that they
are still easy to correct.

It turns out that this kind of error pattern arises in communication over linear networks.
In this model, we think of the network as a directed graph, and messages as being passed
along outgoing edges. The key difficulty is that if a single message is corrupted early
on, it may propagate through the network, corrupting everything which the receiver sees.
However, we will see that this kind of error (defined more formally in Chapter 5) can
be corrected using subspace codes and the related rank-metric codes. Although the two
models are different in many ways, we will see that we can achieve many of the same
guarantees in the rank-metric case as in the Hamming metric.

In this thesis, we give the first explicit construction of rank-metric codes and subspace
which are efficiently list-decodable with constant redundancy. In fact, as with derivative
codes, we obtain the optimal trade-off between redundancy and correctable error rate.
Previously constructed codes for this regime had an exponential list size or required a
polynomial blow-up in message length.

1.2 Organization

In Chapter 2, we introduce the basics of error-correcting codes and survey some results
in this area, in addition to introducing deletion codes. Our results on list-decodable codes
appear in Chapter 3, and results on deletion codes appear in Chapter 4. Chapter 5 in-
troduces rank-metric and subspace codes, and Chapter 6 gives our construction of good
list-decodable codes for these models. We conclude in Chapter 7 with some open ques-
tions.

4

Chapter 2

Preliminaries

An abbreviated survey of coding theory • Polynomial codes come to stay

In this chapter, we will develop some of the necessary background on error-correcting
codes and the various settings which we consider. For clarity, we will defer discussion of
rank-metric codes until Chapter 5. The reader is assumed to have some familiarity with
some basic algebra (polynomials over finite fields, etc.) and linear algebra.

Some standard notation before we begin. Let q = pn for some prime p and integer n.
We denote by Fq the finite field of q elements. The prime p is the characteristic of Fq. The
notation Fq[X] refers to the ring of univariate polynomials in X with coefficients in the
field Fq.

For functions f, g, the notation g = O(f) means that there is some constant C such
that g(n) ≤ Cf(n) for sufficiently large n. In this case we may also write f = Ω(g). All
logs will be base 2 unless specified.

For a set Σ, we write Σn to denote all n-tuples over Σ; that is, Σn = {(x1, . . . , xn) |
xi ∈ Σ}. We will often refer to elements of Σn as strings over Σ.

2.1 Coding basics

At a high level, a good code is simply a set of strings which are difficult to confuse.
This section will inject some rigor into this idea, and allow us to begin investigating the
possibilities of error correction.

5

Definition 2.1. A code C of block length n over an alphabet Σ is a subset of Σn, together
with a one-to-one encoding map which maps a message set M (say, {1, 2, . . . , |C|}) to
C.

In other words, a code takes messages and encodes them as strings of n symbols, or
codewords. Our goal for this encoding is to increase the resilience of the messages to
errors.

For the rest of this thesis, we will implicitly assume that the alphabet Σ is finite. In
fact, most commonly, rather than being an arbitrary set, Σ will be some finite field Fq, or
a subspace over Fq. We will make good use of the algebraic structure of the field. For
example, we can define the notion of linearity for a code.

Definition 2.2. If Σ is a field, and C ⊆ Σn is a subspace of Σn over Σ, then C is a linear
code.

As alluded to in the previous chapter, the fundamental challenge which drives coding
theory is understanding the relationship between the correctable error rate and the redun-
dancy required. We now define these notions more formally, as the rate and distance of a
code.

Definition 2.3. Let Σ have size q. The rate of a code C ⊆ Σn is

R(C) :=
logq|C|
n

.

For example, when the message set is Σk, or all strings of k symbols, the rate is simply
k/n. Thus the rate measures the efficiency of the encoding, with higher rate being more
desirable. Note that the rate is always between 0 and 1, with rate 1 indicating no redundant
symbols.

Definition 2.4. The (Hamming) distance between two strings (x1, . . . , xn) and (y1, . . . , yn)
in Σn is

dH(x, y) := |{i | xi 6= yi}|.

That is, the Hamming distance counts how many coordinates differ between the two
strings.

Definition 2.5. The (relative) distance of a code C ⊆ Σn is

δH(C) := min
x 6=y∈C

dH(x, y)

n
.

6

The Hamming distance between two strings tells us how many errors must be intro-
duced to transform one string into the other. Thus the distance of a code is a good measure
of its error resilience. As with rate, the distance of a code is between 0 and 1, and higher
distance is better.

Because we are interested in being able to encode messages of any length, when we
refer to codes, we will actually be referring to families of codes of growing block length.
More specifically, a family of codes is an infinite sequence C = {Ci} of codes Ci over
increasing block lengths ni. We can define rate and distance for families of codes: the rate
is R(C) = lim infiR(Ci), and the relative distance is δH(C) = lim infi δH(Ci).

Throughout this thesis, we will often abuse terminology by referring to a family of
codes simply as a code. If the rate and distance of a family of codes are both bounded
away from zero, we will call the family (asymptotically) good, and we will use the term
positive or constant rate to refer to rates which are bounded away from zero.

Example. One basic class of codes is the repetition codes mentioned in Chapter 1. For
any positive integer r, let us define the r-repetition code, which maps any vector in Σk to
r copies of itself in Σrk. This gives a family of codes {Ci} which is defined for any block
length ni which is a multiple of r.

The rate of the r-repetition code of block length n is 1/r, and its relative distance is
r/n. In particular, for constant r, this family of codes is not asymptotically good; it has
positive rate, but the distance goes to zero as block length increases.

As this example suggests, there is a trade-off between the rate and distance of a code.
For repetition codes, as we increase r, the rate decreases, but the distance goes up. Thus, it
makes sense not only to ask whether asymptotically good codes exist, but also to ask how
good they can be. We explore this in the next section.

2.1.1 Basic bounds on codes

We ease into investigating the rate-distance trade-off with the classical Singleton bound.

Theorem 2.6 (Singleton bound). Let C be a code of block length n and relative distance
δ over an alphabet of size q. Then |C| ≤ q(1−δ)n+1. In particular, the rate R of C satisfies

R ≤ 1− δ + 1/n.

Proof. We argue that any two codewords c1, c2 in C cannot agree in the first (1− δ)n+ 1
coordinates. If they do, the Hamming distance between c1 and c2 is at most δn− 1, which

7

contradicts the minimum distance property of C. Thus, as each codeword is identified by
its first (1− δ)n+ 1 coordinates, |C| ≤ q(1−δ)n+1.

Despite its simplicity, it turns out that the Singleton bound is tight; we will see in
Section 2.3 that the Reed-Solomon code meets this bound.

On the other hand, if we are only looking for asymptotically good codes, it turns out
that we need not look very hard. One way we can construct fairly large codes is via a
greedy algorithm: For a target distance of δ, we begin with an arbitrary codeword in Σn.
Choosing this codeword excludes all strings within Hamming distance δn− 1 from being
in our code, but we can add any other string to our code. We then continue adding strings
which are at distance at least δn from all previously chosen strings.

It is easy to check that the number of strings at distance d from any fixed string is

Vq(n, d) :=
d∑
i=0

(
n

i

)
(q − 1)i.

(This is the volume of a Hamming ball of radius d.)

As each codeword we add excludes at most Vq(n, δn − 1) additional codewords, our
greedy procedure terminates only when we run out of possible strings to add to C, or when
the final code C satisfies

|C| · Vq(n, δn− 1) ≥ qn.

This gives us the following.

Theorem 2.7 (Gilbert-Varshamov bound). There exist codes of block length n, relative
distance δ, and alphabet size q satisfying:

|C| ≥ qn

Vq(n, δn− 1)
.

We can also state an asymptotic version of the Gilbert-Varshamov bound using the
following:

Definition 2.8. Let q ≥ 2 be a positive integer. The q-ary entropy function hq : [0, 1]→
R is

hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

As it turns out, the entropy gives us a fairly good estimate for the volume Vq(n, δn).

8

Lemma 2.9. For q ≥ 2 and δ ∈ (0, 1− 1/q),

q(hq(δ)−o(1))n ≤ Vq(n, δn) ≤ q(hq(δ))n.

Combined with Theorem 2.7, we have the following:

Theorem 2.10 (Asymptotic Gilbert-Varshamov bound). For q ≥ 2 and δ ∈ (0, 1 − 1/q),
there exists a family of codes C with alphabet size q, distance δ, and rate

R(C) ≥ 1− hq(δ)− o(1).

This gives us asymptotically good families of positive rate≈ 1−hq(δ) and distance δ.

In fact, it turns out that a random linear code will meet the Gilbert-Varshamov bound.
The greedy construction does, however, have the advantage that it is guaranteed to work,
and we will see a version of this construction in Chapter 4 when we investigate bounds on
deletion codes.

2.1.2 Unique decoding

Now that we have some idea of what to expect from the rate and distance of our code
families, we will formalize our assertion that the distance of a code measures its error
resilience.

We will say that a code C ⊆ Σn is uniquely decodable from a τ fraction of errors if it
is possible to correct all codewords in C from any pattern of τn symbol errors.

Notice that this is a worst-case guarantee; we make no assumptions on how the errors
are distributed. There are many lines of work for when errors occur at random, but all
of the codes constructed in this thesis will be against the stronger model of adversarial
errors. In this setting, it is easy to see that the following characterizes which errors can be
corrected.

Fact. A code C ⊆ Σn can be uniquely decoded from a τ fraction of errors if and only if
C has distance greater than 2τ .

A pictorial representation of this fact can be seen in Figure 2.1.2.

One corollary of this fact is that no code with more than one codeword can be uniquely
decoded from a 1/2 fraction of errors. However, in practice we may expect to see higher
error rates, and it turns out that even over a 1/2 error rate, we can still transmit meaningful
information. What we mean by “meaningful” is captured by the model of list-decoding,
defined in the next section.

9

codeword

codeword

received

Figure 2.1: The unique decoding radius: For two strings at distance d, the adversary can
use d/2 errors to turn them into the same received word, so the receiver will not be able to
determine which was originally sent.

2.2 List-decoding

The model of list-decoding is a relaxation of unique decoding in which the decoder is
allowed to output a list of candidate messages, one of which must be the correct message.
By weakening the decoding requirement, we are able to correct a larger fraction of errors.
In fact, although unique decoding cannot correct more than a 1/2 fraction of errors, with
list-decoding we will be able to correct an error fraction approaching 1.

More formally, we have the following definition.

Definition 2.11. A code C ⊆ Σn is (p, L) list-decodable if for all y ∈ Fnq , |{c ∈ C |
dH(c, y) ≤ pn}| ≤ L.

If this holds, we call L the list size of the code for error fraction p.

This says that there are only L codewords within distance pn of any possible received
word. In other words, although the original message might not be uniquely identifiable,
we can still narrow the possibilities down to a list of size L. We will often refer to a code
as being list-decodable from some fraction p of errors; in this case, the list size will be
understood to be bounded by some polynomial in the block length.

It turns out that under the Hamming metric, all codes are list-decodable from an error
fraction which is larger than half their minimum distance, a fact which is captured by the
Johnson bound.

Theorem 2.12 (Johnson bound). Let Σ have size q, and let C ⊆ Σn have relative distance
δ. Then C is

(
Jq(δ), O(n)

)
list-decodable, where

Jq(δ) =

(
1−

√
1− q

q − 1
δ

)(
1− 1

q

)
.

10

In other words, up to the “Johnson radius” Jq(δ), although unique decoding will not
always be possible, there will only be a linear number of possible messages, compared to
the exponential number of messages in any positive-rate code.

The list-decodable codes in this thesis will be over alphabets which grow with block
length, so we also record an “alphabet-oblivious” version of the Johnson bound below.

Theorem 2.13 (Johnson bound again). Let C ⊆ Σn have relative distance δ. Then C is(
J(n, δ), O(n|Σ|)

)
list-decodable, where

J(n, δ) = 1−
√

1− δ.

Notice that although this result shows that the list of nearby codewords will be short,
it does not give an efficient way to actually compute the list, and the fraction of errors for
which it guarantees decoding is not necessarily tight for a given code. It turns out that
there are certain families of codes for which we can decode from a much higher fraction
of errors. Indeed, this holds for most codes. As before, hq(·) is the q-ary entropy function.

Theorem 2.14. Let 0 < p < 1 − 1/q, where |Σ| = q. Then with high probability, a
random code C ⊆ Σn of rateR = 1−hq(p)−1/L is list-decodable from a p error fraction
with list size L.

On the other hand, for γ > 0, any code C ⊆ Σn of rate R = 1 − hq(p) + γ is not
list-decodable from a p fraction of errors with polynomial list size.

For large alphabets q ≈ 21/ε, the case we are interested in, the achievable rate promised
by this theorem for error rate p is at least 1−p−ε, the so-called list-decoding capacity. In
the next section, and in Chapter 3, we will see two efficient constructions of codes which
achieve list-decoding capacity.

2.3 A few code constructions

We have seen already that choosing a code at random is often enough to achieve the trade-
offs we are looking for. However, the primary drawback of these codes is that they are
unwieldy objects; if we choose a random code of constant rate, it will have exponential
size and we may not be able to perform encoding and decoding efficiently. We now give a
few constructions of codes which can be handled efficiently.

11

2.3.1 Reed-Solomon codes

Reed-Solomon codes are the first of a series of codes we will see which are based on
polynomial evaluation. These codes are defined over some finite field Fq, and encode
messages by identifying vectors (f0, f1, . . . , fk−1) ∈ (Fq)k with the associated polynomial
f(X) =

∑k−1
i=0 fiX

i over Fq.

Definition 2.15. Let a1, a2, . . . , an ∈ Fq be distinct, and let k ≤ n be the degree parame-
ter.

The Reed-Solomon code RS[n, k] is a code over Fq which encodes a polynomial f ∈
Fq[X] of degree at most k − 1 by1

f(X) 7→
(
f(a1), f(a2), . . . , f(an)

)
.

This is a code of block length n and rate k/n.

The key fact that makes Reed-Solomon codes useful for error correction is that two
polynomials of degree k−1 over a field Fq can have the same evaluations on at most k−1
points. This means that any k evaluations can be used to determine the polynomial (for
example, two points determine a line). Not only does this give RS[n, k] a distance of at
least n− (k − 1), meeting the Singleton bound, but as each coordinate is (in some sense)
equally helpful, these codes are well suited for handling worst-case errors.

The following algorithm, due to Welch and Berlekamp, gives an efficient way to correct
Reed-Solomon codes from any number of errors up to half the distance. As this will form
the starting point of our later algorithms, we present it here.

Proposition 2.16. The Reed-Solomon code RS[n, k] can be uniquely decoded in polyno-
mial time from up to bn−k

2
c errors.

Proof. Suppose that we have encoded a polynomial f(X) =
∑k−1

i=0 fiX
i, and received a

vector (y1, . . . , yn) such that yi 6= f(ai) for at most D := bn−k
2
c values of i.

The algorithm proceeds in two steps: first, we use the erroneous received word to find
a condition that any nearby codeword must satisfy. Then we solve the condition to find the
original codeword.

Step one (Interpolation): We interpolate a nonzero, bivariate polynomial Q(X, Y) of the
form Q(X, Y) = A0(X) + A1(X)Y . We will require the following:

1To be more precise, the code depends on the choice of the evaluation points. As this does not affect our
results, here and in later code definitions, we will suppress the dependence on the ai’s.

12

- A0 andA1 are univariate polynomials with deg(A0) ≤ D+k−1, and deg(A1) ≤ D.

- Q(ai, yi) = 0 for all 1 ≤ i ≤ n.

The polynomial Q can be found in polynomial time by solving a homogeneous linear
system in 2D+k+1 variables with n constraints. We know that a nonzero solution exists;
it is easy to check that A1(X) =

∏
yi 6=f(ai)

(X − ai) and A0(X) = A1(X)f(X) satisfies
the constraints.

The key observation is the following.

Lemma 2.17. If f is a polynomial of degree at most k − 1 satisfying yi 6= f(ai) for at
most D values of i, then Q

(
X, f(X)

)
= 0.

Proof. The degree of Q
(
X, f(X)

)
is at most D + k − 1. By our interpolation conditions,

for each correctly received coordinate i with yi = f(ai), we have Q
(
ai, f(ai)

)
= 0.

As this holds for at least n − D ≥ D + k values of i, Q(
(
X, f(X)

)
must be the zero

polynomial.

Step two (Root finding): By the above claim, we have A0(X) +A1(X)f(X) = 0. Thus,
as long as fewer thanD errors have occurred, we can uniquely decode the original message
as f(X) = −A0(X)/A1(X). (This is well-defined as Q(X, Y) was nonzero.)

This theorem shows that we can uniquely decode Reed-Solomon codes from up to the
optimal error rate of half the code distance. In fact, it turns out that we can efficiently
list-decode Reed-Solomon codes up to the Johnson bound (see [GS99]). List-decoding
beyond the Johnson bound, however, has been a challenging open problem. It was shown
in [BSKR10] that for Reed-Solomon codes where the evaluation points are the whole field
Fq, then one cannot hope to do much better than the Johnson bound. On the other hand,
the authors of [RW14] show that this is (in some sense) a pathological example, and most
random choices of the set of evaluation points yields a code which is combinatorially list-
decodable beyond the Johnson bound; indeed, nearly achieving list-decoding capacity.

Unfortunately, the results of [RW14] do not give an efficient way to find a good choice
of evaluation points, nor to perform the actual list-decoding. For efficient list-decoding up
to capacity, we turn to folded Reed-Solomon codes.

2.3.2 Folded Reed-Solomon codes

Folded Reed-Solomon codes, introduced in [GR08a], provided the first explicit family of
rate-R codes which could be list-decoded from a 1−R−ε error fraction for anyR, ε. (We

13

will see an alternative construction in Chapter 3.)

We saw in the Reed-Solomon unique decoding algorithm that every correctly received
coordinate f(ai) gave us information about the function Q

(
X, f(X)

)
; namely, that it has

a root at ai. The idea behind folding is to make each coordinate not a single evaluation, but
a “bundle” (tuple) of related evaluations. This way, instead of receiving an arbitrary set of
correct evaluations, we get evaluations with some algebraic structure. This will allow us
to find multiple roots for every correctly received coordinate.

Definition 2.18 (m-folded Reed-Solomon code). Let γ ∈ Fq be a primitive element of Fq.
Let n ≤ q − 1 be a multiple of m, and let 1 ≤ k < n be the degree parameter.

The folded Reed-Solomon (FRS) code FRS(m)
q [n, k] is a code over alphabet Fmq which

encodes a polynomial f ∈ Fq[X] of degree at most k − 1 as


f(1)
f(γ)
...

f(γm−1)

 ,


f(γm)
f(γm+1)

...
f(γ2m−1)

 , . . . ,


f(γn−m)
f(γn−m+1)

...
f(γn−1)


 . (2.1)

The block length of FRS(m)
q [n, k] is N = n/m, and its rate is R = k/n.

As this definition shows, a correctly received coordinate now does not merely contain
some evaluation f(ai), but f(ai) together with f(γai), f(γ2ai), and so on. This allows
for a more involved interpolation step in the decoding, allowing us to reach list-decoding
capacity. This result is summarized in the following theorem from [GR08a].

Theorem 2.19 ([GR08a]). For every ε > 0 and 0 < R < 1, there is a family of folded
Reed-Solomon codes which have rate at least R and which can be list-decoded up to a
fraction 1−R− ε of errors in time (N/ε2)O(log(1/R)/ε), where N is the block length of the
code.

More specifically, for rateR and an integer parameter s ≤ m, they show list-decodability
from an error fraction of

1− (1 + δ)

(
mR

m− s+ 1

)s/(s+1)

(2.2)

in time
(
Oδ(q)

)O(s). By picking δ ≈ ε, s ≈ 1/ε and m ≈ 1/ε2, the above quantity is at
least 1−R− ε, and the decoding complexity and list size are ≈ qO(1/ε).

14

We now sketch a variant of their decoding algorithm due to Vadhan, which can be
found in his monograph [Vad11, Chap. 5]. This algorithm will correct a smaller fraction
of errors, but it is simpler to describe, and is still sufficient to reach list-decoding capacity.
This algorithm will form the basis for our algorithm in Chapter 3.

As in the Reed-Solomon case, the decoding algorithm has two steps, interpolation and
root-finding. The details of the interpolation step can be found in Chapter 3.

Write the received word as an m×N matrix over Fq:
y0 ym · · · yn−m+1

y1 ym+1 · · · yn−m+2

y2 ym+2 · · · yn−m+3

...
...

. . .
...

ym−1 y2m−1 · · · yn−1


Step one (Interpolation): We would like to interpolate a nonzero, (s+ 1)-variate polyno-
mial Q(X, Y1, Y2, . . . , Ys) of the form

Q(X, Y1, Y2, . . . , Ys) = A0(X) + A1(X)Y1 + A2(X)Y2 + · · ·+ As(X)Ys.

We will require the following:

- deg(Ai) ≤ D for i = 1, 2, . . . , s and deg(A0) ≤ D + k − 1 for some degree
parameter D, and

- Q(γim+j, yim+j, yim+j+1, · · · , yim+j+s−1) = 0 for i = 0, 1, . . . , N − 1 and j =
0, 1, . . . ,m− s.

The degree parameter can be chosen such that a nonzero Q exists, and we have the
following analogue of Lemma 2.17, whose proof appears in Chapter 3.

Lemma 2.20. If f ∈ F[X] is a polynomial of degree at most k − 1 whose FRS encoding
(2.1) agrees with the received word y in at least t columns for t > D+k−1

m−s+1
, then

Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 . (2.3)

Step two (Root finding): To solve the functional equation 2.3, we observe that f(γX) =
f(X)q (mod E(X)), where E(X) = Xq−1 − γ. Thus f (mod E)(X) can be found by
finding the roots of the univariate polynomial

T (Y) = Q(X, Y, Y q, . . . , Y qs−1

) mod E(X)

15

with coefficients from L = Fq[X]/(E(X)). The polynomial E(X) is irreducible over Fq
and therefore L is an extension field. The parameter choices ensure that T 6= 0, and thus
T cannot have more than qs−1 roots, and these roots may all be found in polynomial time.

Remark. It is easy to see that the algorithm given above can be implemented in polyno-
mial time, so we have constructed list-decodable codes which achieve the optimal rate-
distance trade-off efficiently. However, a comparison with our existential list-decoding
results shows that the list size of qO(1/ε) is larger than the best possible. It is unknown
whether we can prove a tighter list size bound for FRS codes themselves, but in Chapter 3
we will show how to modify our codes to improve the list size.

2.4 Deletion codes

In the deletion model, we transmit a string c ∈ Σn, and rather than receiving another string
r ∈ Σn which differs in some number of coordinates, we receive a string r′ ∈ Σt, where
t ≤ n, which is a substring of c. In other words, some of the coordinates of c have been
deleted. (This stands in contrast to the well-studied model of erasures, where the affected
symbol is not removed, but replaced with a “blank” placeholder.)

Recovering from deletions is particularly challenging because we have not only lost
the information in the deleted coordinates, but we have lost the positional information in
the remaining coordinates. To see why this might be tricky, recall that the Reed-Solomon
decoding algorithm presented earlier depended on knowing which evaluation point each
received coordinate corresponded to.

There is an easy way around that particular difficulty; simply augment the alphabet
of the code so that each coordinate consists of an ordered pair, representing

(
a, f(a)

)
.

However, this requires the alphabet size to grow with the block length. In this thesis,
we will be focusing on understanding deletion codes when the alphabet size is a fixed
constant, and we expect a constant fraction of (adversarial) deletions. For example, if
deletions happen at the bit level (alphabet size 2), what fraction of deletions could we
hope to correct with positive rate? Interestingly, we don’t know the answer.

Definition 2.21. Let C ⊆ Σn be a code. We say that C is correctable from t deletions
if the longest common subsequence (LCS) between any two distinct codewords in C has
length less than n− t.

As in the standard Hamming distance model, we would like to understand the achiev-
able trade-off between the rate of a code and its correctable deletion fraction. More am-
bitiously, we would also like to construct codes for which encoding and decoding can

16

be performed efficiently. Our results in these directions are given in Chapter 4; we now
outline some of the previous work on deletions.

2.4.1 Previous work on deletions

The problem of communicating over the binary deletion channel, in which each trans-
mitted bit is deleted independently with a fixed probability p, has been a subject of much
study (see the excellent survey by Mitzenmacher [Mit09] for more background and refer-
ences). However, even this easier case is not well-understood. In particular, the capacity
of the binary deletion channel remains open, although it is known to approach 1 − h(p)
as p goes to 0, where h(p) is the binary entropy function (see [DG06, Gal61, Zig69] for
lower bounds and [KMS10, KM13] for upper bounds), and it is known to be positive (at
least (1− p)/9) [MD06]) even as p→ 1.

The more difficult problem of correcting from adversarial rather than random dele-
tions has also been studied, but with a focus on correcting a constant number (rather than
fraction) of deletions [Lev66]. Codes that can correct a single deletion have received a
fair bit of attention (see the survey [Slo02]), but it turns out that even correcting two dele-
tions poses significant challenges and is not well understood, with efficient codes with low
redundancy discovered only very recently [BGZ15].

Coding for a constant fraction of adversarial deletions, which is the focus of the results
in this thesis, has been considered previously by Schulman and Zuckerman in [SZ99].
They construct constant-rate binary codes which are efficiently decodable from a small
constant fraction of worst-case deletions and insertions, and can also handle a small frac-
tion of transpositions. The rate of these codes are bounded away from 1, whereas exis-
tentially one can hope to achieve a rate approaching 1 for a small deletion fraction. In the
following sections, we will sketch their construction in the deletion case.

2.4.2 Concatenated codes

As we mentioned, it is fairly easy to give codes over growing alphabets which can cor-
rect a constant fraction of deletions, with a simple modification to Reed-Solomon codes.
Concatenation is a simple but powerful tool which allows us to convert a code over a large
alphabet into a “concatenated code” over a smaller alphabet, while preserving most of its
rate and distance.

Definition 2.22. If Cout ⊆ Σn
out is an “outer” code, and Cin ⊆ Σm

in is an “inner” code with
encoding function Enc : Σout → Σm

in , the concatenated code Cout ◦ Cin ⊆ Σnm
in is a code

17

B1 B2 B3
. . . Bm (outer code)

Enc(B1)Enc(B2)Enc(B3). . .Enc(Bm) (inner code)

Figure 2.2: A concatenated codeword: We begin with a codeword B1B2 · · ·Bm ∈ Cout,
and map each symbol Bi to its inner encoding Enc(Bi).

whose codewords are obtained by applying the inner encoder Enc to each symbol of a
fixed codeword in Cout, then concatenating the results.

The encoding of a concatenated codeword is illustrated in Figure 2.4.2.

The following simple observation shows that if both the outer and inner codes have
good rate, then so does their concatenation.

Lemma 2.23. The rate of a concatenated code Cout ◦ Cin is R(Cout) ·R(Cin).

In the Hamming case, with symbol errors, we also have the following bound.

Lemma 2.24. The Hamming distance δ of the concatenated code Cout ◦ Cin satisfies

δ ≥ δ(Cout) · δ(Cin).

Proof. Any two outer codewords c1 and c2 differ on a δ(Cout) fraction of coordinates. For
each of these coordinates, the inner encoding differs on a δ(Cin) fraction of coordinates.

Concatenated codes come with a natural decoding algorithm from less than δ(Cout) ·
δ(Cin)/4 symbol errors — attempt to decode each inner codeword, then use the suc-
cessfully decoded coordinates to decode the outer codeword. If there are fewer than
δ(Cout) · δ(Cin)/4 erroneous coordinates, then fewer than a δ(Cout)/2 fraction of inner
codewords can have δ(Cin)/2 errors, so a 1 − δ(Cout)/2 fraction of outer codeword sym-
bols are correctly decoded, and the outer decoder will succeed. (It is possible to improve
the decoding radius to δ(Cout) · δ(Cin)/2 efficiently, but this idea will be sufficient for our
purposes.)

18

The problem with trying to apply this strategy directly to deletion codes is that we
don’t know which symbols belong to which inner codeword. In particular, once deletions
have occurred, we don’t know how long the first inner codeword is. It could have no
deletions, or be completely deleted, or anywhere in between, and as we have stated the
construction, there is no way to know. Trying every possible codeword length is quite
costly, and so using these codes for deletions requires additional tricks to try to distinguish
different inner codewords from each other.

One more remark on concatenation: An extremely useful property of these concate-
nated codes is that the block length of the inner code is quite small, roughly log|Σout|.
This means that we do not necessarily need the inner code to be efficient; even algorithms
which are exponential in the block length will run in polynomial time.

In other words, concatenation allows us to combine a good, efficient code over a large
alphabet with a good, not necessarily efficient code over a small alphabet, and get out a
good, efficient code over a small alphabet — the best of both worlds. This observation will
be useful both in the construction of the next section, and in our constructions in Chapter 4.

2.4.3 A code construction

We now give a high-level view of the concatenated construction of good binary deletion
codes, due to Schulman and Zuckerman ([SZ99]). Our construction of high-rate binary
deletion codes in Chapter 4 is based on a refinement of this construction which keeps the
rate of the code high. The code constructed in [SZ99] is actually proven to correct from a
certain number of insertions and transpositions as well, but we will only discuss deletions.

Theorem 2.25 ([SZ99]). There exists a binary explicit code of positive rate which can
correct a constant fraction of deletions. Moreover, this code can be encoded and decoded
in polynomial time.

The outer code for the concatenation will be a so-called Indexed Reed-Solomon code,
where we fix a set of distinct evaluation points a1, . . . , an in Fq, and encode a polynomial
f by the string in

(
{1, . . . , n}×Fq

)n whose ith coordinate is
(
i, f(i)

)
. The addition of the

index decreases the rate, but we can still take the rate to be constant. This code can correct
from a constant fraction of errors and deletions.

The inner code will be a greedily constructed code (similar to the way we proved the
Gilbert-Varshamov bound earlier). They show that the greedy algorithm can construct a
binary code of constant rate and constant deletion distance.

19

Concatenating these two codes gives a code of constant rate. In order to help distin-
guish the inner codewords, they insert a 1 after every symbol of the inner code, then insert
a “buffer” of 0’s whose length is comparable to (big-O of) the block length of the inner
code. This decreases the rate by only a constant factor.

The decoding then proceeds by looking for long runs of 0’s and marking those as
buffers. The symbols between the buffers are decoded using the inner decoder, and the
results are passed to the outer decoder.

The analysis proceeds by observing that if the allowed deletion fraction is sufficiently
small, then most buffers will survive and be marked by the decoder, allowing the decoder to
locate many blocks correctly. As the inner code can handle a constant fraction of deletions,
enough of the correctly located blocks will survive to be correctly decoded, and the outer
decoder will succeed.

20

Chapter 3

Linear-algebraic list-decoding

In which we revisit folded Reed-Solomon codes • Linear algebra comes
in handy • Folding with derivatives works • Subspaces are easy to avoid

In Chapter 2, we saw a “Welch-Berlekamp style” list-decoding algorithm for folded
Reed-Solomon codes which interpolates a polynomial Q(X, Y1, Y2, . . . , Ys), then solves
the functional equation Q

(
X, f(X), f(γX), f(γ2X), . . . , f(γs−1X)

)
= 0 to obtain a list

of possible message polynomials f .

In this chapter, we make a simple observation about this list (namely, that it’s contained
in an small affine subspace), and use this to give a streamlined decoding algorithm. We
also define a new family of codes, known as derivative codes, which can be list-decoded
in the same framework. Finally, we explore how the structure of the list can be used to
construct subcodes with an improved list size guarantee.

The results in this chapter, based on joint work with Guruswami, appeared in [GW13].

3.1 List-decoding folded Reed-Solomon codes

Recall (Definition 2.18) that for a fixed γ generating Fq, the folded Reed-Solomon (FRS)
code FRS(m)

q [n, k] encodes a polynomial f of degree k − 1 as

21




f(1)
f(γ)
...

f(γm−1)

 ,


f(γm)
f(γm+1)

...
f(γ2m−1)

 , . . . ,


f(γn−m)
f(γn−m+1)

...
f(γn−1)


 .

Suppose a codeword of them-folded RS code was transmitted and we received a string
y ∈ (Fmq)N which we view as an m×N matrix over Fq (recall N = n/m):

y0 ym · · · yn−m+1

y1 ym+1 · · · yn−m+2

y2 ym+2 · · · yn−m+3

...
...

. . .
...

ym−1 y2m−1 · · · yn−1

 (3.1)

We would like to recover a list of all polynomials f ∈ Fq[X] of degree k − 1 whose
FRS encoding (2.1) agrees with y in at least N − e columns, for some error bound e. Note
that an agreement in some column means that all m values in that column match.

3.1.1 A Welch-Berlekamp style interpolation

Given a received word as in (3.1) we will interpolate a nonzero polynomial of the form

Q(X, Y1, Y2, . . . , Ys) = A0(X) + A1(X)Y1 + A2(X)Y2 + · · ·+ As(X)Ys (3.2)

over Fq with the degree restrictions deg(Ai) ≤ D for i = 1, 2, . . . , s and deg(A0) ≤
D + k − 1, where the degree parameter D is chosen to be

D =

⌊
N · (m− s+ 1)− k + 1

s+ 1

⌋
. (3.3)

The number of monomials in a polynomial Q with these degree restrictions equals

(D + 1)s+D + k = (D + 1)(s+ 1) + k − 1 > N(m− s+ 1) (3.4)

for the above choice (3.3) of D. The interpolation requirements on Q ∈ Fq[X, Y1, . . . , Ys]
are the following:

Q(γim+j, yim+j, yim+j+1, · · · , yim+j+s−1) = 0

for i = 0, 1, . . . , N − 1, j = 0, 1, . . . ,m− s . (3.5)

(Again, N = n/m.) We then have the following.

22

Lemma 3.1. Let

D =

⌊
N · (m− s+ 1)− k + 1

s+ 1

⌋
. (3.6)

A nonzero Q ∈ Fq[X, Y1, . . . , Ys] of the form (3.2) satisfying the interpolation conditions
(3.5) with deg(A0) ≤ D+ k− 1 and deg(Aj) ≤ D for 1 ≤ j ≤ s exists and can be found
by solving a homogeneous linear system over Fq with at most n constraints and variables.
Further, this interpolation can be performed in O(n log2 n log log n) operations over Fq.

Proof. This holds since the number of interpolation conditions N · (m − s + 1) is less
than the number of degrees of freedom (monomials) in Q. Regarding the claimed runtime,
even though the best known algorithms for solving a general n × n linear system take
time nω where ω is the exponent of matrix multiplication (currently≈ 2.37 . . .), the above
linear system has a special structure (involving evaluations at powers of γ). This can be
exploited to solve the system in near-linear runtime as shown in [Bra10] (see Proposition
5.11 in Chapter 5).

The following lemma shows that any such polynomial Q gives an algebraic condition
that the message polynomials f(X) we are interested in list decoding must satisfy.

Lemma 3.2. Let Q satisfy the conclusion of Lemma 3.1. If f ∈ F[X] is a polynomial of
degree at most k−1 whose FRS encoding (2.1) agrees with the received word y in at least
t columns for t > D+k−1

m−s+1
, then

Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 . (3.7)

Proof. Define Λ(X) to be the polynomial Q(X, f(X), f(γX), . . . , f(γs−1X)). Due to
the degree restrictions on Q, the degree of Λ(X) is easily seen to be at most D+ k− 1. If
the FRS encoding of f agrees with y in the i’th column (for some i ∈ {0, 1, . . . , N − 1}),
we have

f(γim) = yim, f(γim+1) = yim+1, . . . , f(γim+m−1) = yim+m−1 .

Together with the interpolation conditions (3.5), this implies Λ(γim+j) = 0 for j =
0, 1, . . . ,m − s. In other words, Λ has at least m − s + 1 distinct roots for each such
column i. Thus Λ must have at least t(m− s+ 1) roots in all. Since deg(Λ) ≤ D+ k− 1,
if t > (D + k − 1)/(m− s+ 1), we must have Λ = 0.

23

For the choice of D in (3.3), the requirement on t in Lemma 3.2 is met if t · (m− s+ 1) >
N ·(m−s+1)+s(k−1)

s+1
, and hence if the fractional agreement t/N satisfies

t

N
≥ 1

s+ 1
+

s

s+ 1

k

N(m− s+ 1)

=
1

s+ 1
+

s

s+ 1

mR

m− s+ 1
. (3.8)

In other words, the fractional agreement needed is 1
s+1

+ s
s+1

mR
m−s+1

. (Recall that R =
k/n is the rate of the code.) Note that by the AM-GM inequality, this agreement is always
higher than the agreement fraction

(
mR

m−s+1

)s/(s+1) needed in [GR08a].1 Thus this variant
corrects a smaller fraction of errors, although the fraction of errors corrected can still
exceed 1−R−ε, with the choice s ≈ 1/ε and m ≈ 1/ε2. Further, as we see next, it offers
some advantages when it comes to retrieving the solutions f to (3.7).

3.1.2 Retrieving candidate polynomials f

By the preceding section, to complete the list decoding we need to find all polynomials
f ∈ Fq[X] of degree at most k − 1 that satisfy

A0(X) + A1(X)f(X) + A2(X)f(γX) + · · ·+ As(X)f(γs−1X) = 0 . (3.9)

We note the following simple but very useful fact:

Observation. The above forms a system of linear equations over Fq in the coefficients
f0, f1, · · · , fk−1 of the polynomial f(X) = f0 + f1X + · · ·+ fk−1X

k−1. Thus, the set of
solutions (f0, f1, . . . , fk−1) of (3.9) form an affine subspace of Fkq .

In particular, the above immediately gives an efficient algorithm to find a compact
representation of all the solutions to (3.9) — simply solve the linear system! This simple
observation is the starting point driving our analysis.

We next prove that when γ is primitive, the space of solutions has dimension at most
s − 1. Note that we already knew this by the earlier argument in Chapter 2 over the
extension field Fq[X]/(Xq−1−γ). But it is instructive to give a direct proof of this working
only over Fq. The proof in fact works when the order of γ is at least k. Further, it exposes

1Recall that for Reed-Solomon codes (m = 1) this was also exactly the case: the classical algorithms
unique decoded the codeword when the agreement fraction was at least 1+R

2 , and the list decoding algorithm
in [GS99] list decoded from agreement fraction

√
R.

24

the simple structure of the linear system, which can be used to find a basis for the solutions
in quadratic time.

Lemma 3.3. If the order of γ is at least k (in particular when γ is primitive), the affine
space of solutions to (3.9) has dimension d at most s− 1.

Further, one can compute using O
(
sk2
)

field operations over Fq a lower-triangular
matrix H ∈ Fk×kq of rank at least k − s + 1 and a vector z ∈ Fkq , such that the coefficient
(column) vectors f = (f0, f1, . . . , fk−1)T of solutions to (3.9) are contained in the affine
space Hf = z.

Proof. First, by factoring out the common powers of X which divide each of the poly-
nomials A0(X), A1(X), . . . , As(X), we can assume that at least one Ai∗(X) for some
i∗ ∈ {0, 1, . . . , s} is not divisible by X , and has nonzero constant term. Furthermore, if
A1(X), . . . , As(X) are all divisible by X , then so is A0(X), so we can take i∗ > 0.

Let us denote Ai(X) =
∑D+k−1

`=0 ai,`X
` for 0 ≤ i ≤ s. (We know that the degree of

Ai(X) for i ≥ 1 is at most D, so ai,` = 0 when i ≥ 1 and ` > D, but for notational ease
let us introduce these coefficients.) For j = 0, 1, 2, . . . , k − 1, define the polynomial

Bj(X) = a1,j + a2,jX + a3,jX
2 + · · ·+ as,jX

s−1 . (3.10)

We know that ai∗,0 6= 0, and therefore B0 6= 0.

By Condition (3.9), for each r = 0, 1, 2, . . . , the coefficient of Xr in the polynomial

Λ(X) = A0(X) + A1(X)f(X) + A2(X)f(γX) + · · ·+ As(X)f(γs−1X)

equals 0.

The constant term of Λ(X) equals a0,0 +a1,0f0 +a2,0f0 + · · ·+as,0f0 = a0,0 +B(1)f0.
Thus if B(1) 6= 0, then f0 is uniquely determined as −a0,0/B(1). If B(1) = 0, then
a0,0 = 0 or else there will be no solutions to (3.9) and in that case f0 can take an arbitrary
value in Fq.

The coefficient of Xr of Λ(X), for 0 ≤ r < k, equals

a0,r + fr · (a1,0 + a2,0γ
r + · · ·+ as,0γ

(s−1)r)

+ fr−1 · (a1,1 + a2,1γ
r−1 + · · ·+ as,1γ

(s−1)(r−1))

+ · · ·+ f1 · (a1,r−1 + a2,r−1γ + · · ·+ as,r−1γ
s−1)

+ f0 · (a1,r + · · ·+ as,r)

= B0(γr)fr +
(∑r

j=1
Bj(γ

r−j)fr−j

)
+ a0,r, (3.11)

25

recalling the definition (3.10) of the polynomials Bj . The linear form (3.11) must thus
equal 0. The key point is that if B0(γr) 6= 0, then this implies that fr is an affine
combination of f0, f1, . . . , fr−1 and in particular is uniquely determined given values of
f0, f1, . . . , fr−1.

Thus the dimension of the space of solutions is at most the number of r, 0 ≤ r < k,
for which B0(γr) = 0. Since γ has order at least k, the powers γr for 0 ≤ r < k are all
distinct. Also we know that B0 is a nonzero polynomial of degree at most s − 1. Thus
B0(γr) = 0 for at most s− 1 values of r.

We have thus proved that the solution space has dimension at most s − 1. To justify
the claim about the decoding complexity and structure of solution space, note that the
linear system satisfied by candidate solutions f = (f0, f1, . . . , fk−1)T is Hf = z, where
z = (−a0,0,−a0,1, . . . ,−a0,k−1)T and the (r, j)-th entry of H equals Br−j(γ

j) for j ≤ r
and 0 otherwise. The computation of H amounts to evaluating the polynomials Bj , 0 ≤
j < k, each of which has degree less than s, at the points {1, γ, . . . , γk−1}. This can be
accomplished in O(sk2) operations over Fq.

Combining Lemmas 3.1 and 3.3 and the decoding bound (3.8), we can conclude the
following.

Theorem 3.4. For the folded Reed-Solomon code FRS(m)
q [n, k] of block lengthN = n/m

and rate R = k/n, the following holds for all integers s, 1 ≤ s ≤ m. Given a received
word y ∈ (Fmq)N , using O(n2 + sk2) operations over Fq, one can find a subspace of
dimension at most s − 1 that contains all message polynomials f ∈ Fq[X] of degree less
than k whose FRS encoding (2.1) differs from y in at most a fraction

s

s+ 1

(
1− mR

m− s+ 1

)
of the N codeword positions.

Remark. When s = m = 1, the above just reduces to a unique decoding algorithm up to a
fraction (1−R)/2 of errors.

Choosing s ≈ 1/ε and m ≈ 1/ε2 suffices to ensure decoding from a 1 − R − ε
fraction of errors, summarized in the following theorem. Note that the decoding guarantee
of Theorem 3.4 improves with s and as m increases relative to s. However, as s increases,
so does our worst-case list size guarantee of qs−1. For fixed parameters k and n, as m
increases, the absolute number of errors which can be corrected decreases.

26

Theorem 3.5. For every ε > 0 and 0 < R < 1, there is a family of folded Reed-Solomon
codes which have rate at least R and which can be list-decoded up to a fraction 1−R− ε
of errors in time poly(N), where N is the block length of the code.

3.1.3 Some remarks

We now make some salient remarks about the above linear-algebra based method for list
decoding folded Reed-Solomon codes..

List size and runtime. To get the actual list of close-by codewords, one can prune the
solution subspace, which unfortunately may take qs > ns time in the worst-case. This
quantity is about nO(1/ε) for the parameter choice s ≈ 1/ε which achieves a list decoding
radius of 1−R− ε. The next remark shows that we may not be able to improve the worst-
case list size bound of ≈ n1/ε in this regime. This motivates our results in Section 3.3
where we show that using a carefully chosen subset of all possible degree at most k − 1
polynomials as messages, one can ensure that the list-size is much smaller while losing
only a tiny amount in the rate.

Except for final step of pruning the subspace of candidate solutions, the decoding
takes only quadratic time (and is perhaps even practical, as it just involves solving two
structured linear systems). If some side information about the true message f is available
that disambiguates the true message in the list [Gur03], that might also be useful to speed
up the pruning.

Tightness of qs−1 bound. For folded Reed-Solomon codes, the upper bound of qs−1 on
the number of solutions f to the Equation (3.9) cannot be improved in general. Indeed, let
A0 = 0, and Ai for 1 ≤ i ≤ s be the coefficient of Y i−1 in the polynomial (Y − 1)(Y −
γ) · · · (Y − γs−2). Then for 0 ≤ ` ≤ s− 2, we have

A1 ·X` + A2 · (γX)` + · · ·+ As · (γs−1X)`

= X` ·
(
A1 + A2 · γ` + A3 · (γ`)2 + · · ·+ As · (γ`)s−1

)
= 0 .

By linearity, every polynomial f ∈ Fq[X] of degree at most s− 2 satisfies (3.9).

We should add that this does not lead to any non-trivial list-size lower bound for decod-
ing, as we do not know if such bad polynomials can occur as the output of the interpolation
step, and moreover the pruning step could potentially reduce the size of the list further.

Requirement on γ. The argument in Lemma 3.3 only required that the order of γ is at
least k, and not that γ is primitive. In particular, Theorem 3.4 holds as long as the order

27

of γ is at least k. The polynomial Xq−1 − γ is irreducible if and only if γ is primitive,
and therefore the approach based on extension fields discussed in Chapter 2 requires γ
to be primitive. Usually in constructions of Reed-Solomon codes, one takes the block
length n ≈ q and therefore the dimension k is linear in q (for constant rate codes). So this
weakened requirement on γ does not buy much flexibility in this case. However, in settings
where one uses RS codes of small (say sub-constant) rate, for example in complexity-
theoretic applications of list decoding, the new argument applies to a broader set of choices
of evaluation points for the RS codes.

In Chapter 6, we will investigate list-decoding of folded Reed-Solomon codes when
the order of the folding parameter γ is as small as constant. Although we are not able
to prove a polynomial list size bound in this case, we will show how to construct a large
subcode which guarantees a polynomial list size.

3.2 List-decoding derivative codes

We saw how the algebraic structure of folded Reed-Solomon codes gave enough power to
allow for list-decoding up to the optimal error rate. In this section, we show that folding
using derivatives allows us to achieve the same guarantee.

For a polynomial f ∈ Fq[X], we denote by f ′ its formal derivative, i.e. if f(X) =

f0 +f1X+ . . .+f`X
`, then f ′(X) =

∑`
i=1 ifiX

i−1, where the coefficient i is 1 + · · ·+ 1︸ ︷︷ ︸
i times

.

We denote by f (i) the i’th formal derivative of f .

Definition 3.6 (m’th order derivative code). Let 0 ≤ m ∈ Z. Let a1, . . . , aN ∈ Fq be
distinct, let n = Nm, and let the parameters satisfy m ≤ k < n ≤ q. Further assume that
char(Fq) > k.

The derivative code Der(m)
q [n, k] over the alphabet Fmq encodes a polynomial f ∈

Fq[X] of degree at most k − 1 by


f(a1)
f ′(a1)
...

f (m−1)(a1)

 ,


f(a2)
f ′(a2)
...

f (m−1)(a2)

 , . . . ,


f(aN)
f ′(aN)
...

f (m−1)(aN)


 . (3.12)

Remark. This code has block length N and rate R = k/n. The minimum distance is
N − bk−1

m
c ≈ (1−R)N .

28

Note that, as with FRS codes, the case m = 1 is a Reed-Solomon code. These are also
the univariate version of the multiplicity codes of [KSY14], where they were analyzed in
the context of local decoding.

3.2.1 List decoding derivative codes

Suppose we have received the corrupted version of a codeword from the derivative code
Der(m)

q [n, k] as a string y ∈ (Fmq)N , which we will, as in the folded Reed-Solomon case,
consider as an m×N matrix over Fq (recall N = n/m):


y11 y12 . . . y1N

y21 y22 . . . y2N

...
...

. . .
...

ym1 ym2 . . . ymN

 . (3.13)

The goal is to recover all polynomials f of degree at most k − 1 whose derivative
encoding (3.12) agrees with y in at least t columns. This corresponds to decoding from
N − t symbol errors for the derivative code Der(m)

q [n, k]. When t > (N + k/m)/2, the
polynomial f , if it exists, is unique, and in this regime an efficient decoding algorithm
was given in [KSY14] by adapting the Welch-Berlekamp algorithm for Reed-Solomon
codes [WB86, GS92].

We adapt the algebraic list-decoding method of Theorem 3.4 to the derivative code
setting. As in the folded Reed-Solomon setting, the algorithm is a higher-dimensional
analog of the Welch-Berlekamp algorithm consisting of two steps — (i) interpolation of
an algebraic condition (that must be obeyed by all candidate polynomials f), and (ii)
retrieving the list of candidate solutions f (from the algebraic condition found by the
interpolation step). For the same settings of parameters as in Section 3.1, we achieve the
same decoding radius, but the runtime bound we show for the interpolation and retrieval
steps is a larger polynomial.

Recently, a different list decoding algorithm for derivative codes was given in [Kop12].
Similar to the relationship between the algorithms in Theorem 2.19 and Theorem 3.4, this
algorithm uses multiplicities to achieve a higher decoding radius than our algorithm for a
fixed setting of parameters, at the cost of a more complicated algorithm and analysis.

29

Interpolation

LetW denote the Fq-linear subspace of Fq[X, Y1, . . . , Ym] consisting of polynomials that
have total degree at most 1 in the Yi’s, i.e,W contains polynomials of the form B0(X) +
B1(X)Y1 +B2(X)Y2 + · · ·+Bm(X)Ym for some polynomials Bi ∈ Fq[X].

Let ∆ be the Fq-linear map onW defined as follows: For p ∈ Fq[X], and 1 ≤ i ≤ m,

∆(p)(X, Y1, . . . , Ym) = p′(X) (3.14)

and
∆(pYi)(X, Y1, . . . , Ym) = p′(X)Yi + p(X)Yi+1. (3.15)

where we take Ym+1 = 0 for definitiveness.

It is not a coincidence that this map is reminiscent of the chain rule for derivatives, and
the following lemma shows why ∆ is useful to us.

Lemma 3.7. Suppose P (X, Y1, . . . , Ym) ∈ Fq[X, Y1, . . . , Ym] has degree at most 1 in
Y1, . . . , Yi for some i < m and degree 0 in Yi+1, . . . , Ym. Then

1. d
dx
P
(
X, f(X), f ′(X), f (2)(X), . . . , f (m)(X)

)
=

(∆P)
(
X, f(X), f ′(X), . . . , f (m)(X)

)
, and

2. ∆P has degree at most 1 in Y1, . . . , Yi+1 and degree 0 in Yi+2, . . . , Ym.

Proof. By linearity, for p(X) ∈ Fq[X], it suffices to check this for p(X) and p(X)Yj for
j ≤ i.

We have ∆p = p′, and ∆(pYj) = p′Yj + pYj+1, which both have degree at most 1 in
Y1, . . . , Yi+1 and degree 0 in Yi+2, . . . , Ym. Moreover,

∆(pYj)
(
X, f(X), f ′(X), . . . , f (m)(X)

)
= p′f (j−1) + pf (j) =

d

dx
pf (j−1),

as desired.

Let s, 1 ≤ s ≤ m, be an integer parameter in the decoding algorithm. The goal in the
interpolation step is to interpolate a nonzero polynomial Q ∈ Fq[X, Y1, Y2, . . . , Ym] of the
form

A0(X) + A1(X)Y1 + A2(X)Y2 + · · ·+ As(X)Ys (3.16)

30

satisfying the following conditions for each i, 1 ≤ i ≤ N :

Q(ai, y1i, . . . , ysi) = 0 and (∆jQ)(ai, y1i, . . . , ymi) = 0

for j = 1, . . . ,m− s, (3.17)

where ∆j denotes the j-fold composition of the map ∆.

Observation. For each i, the conditions (3.17) are a collection of (m−s+1) homogeneous
linear constraints on the coefficients of the polynomial Q.

Lemma 3.7 gives us the following.

Corollary 3.8. SupposeQ of the form (3.16) satisfies the conditions (3.17). If the received
word (3.13) agrees with the encoding of f at location i, that is, f (j)(ai) = yj+1,i for
0 ≤ j < m, then the univariate polynomial Λ(X) := Q(X, f(X), . . . , f (s−1)(X)) satisfies
Λ(ai) = 0 as well as Λ(k)(ai) = 0 for k = 1, . . . ,m − s, where Λ(k)(X) is the k’th
derivative of Λ.

We next argue, similarly to Lemma 3.1 in the folded Reed-Solomon case, that a
nonzero interpolation polynomial Q exists and can be found efficiently. In this case, we
only claim cubic runtime for solving the linear system (although we can also state a run-
time of O(nω) using faster matrix multiplication).

Lemma 3.9. Let

D =

⌊
N(m− s+ 1)− k + 1

s+ 1

⌋
. (3.18)

Then a nonzero Q of the form (3.16) satisfying the interpolation conditions (3.17) with
deg(A0) ≤ D + k − 1 and deg(Aj) ≤ D for 1 ≤ j ≤ s exists and can be found in O

(
n3
)

field operations over Fq by solving a homogeneous linear system over Fq with at most n
constraints and variables.

Proof. Under the stated degree restrictions, the number of monomials in Q is

(D + 1)s+D + k = (D + 1)(s+ 1) + k − 1 > N(m− s+ 1). (3.19)

where the last inequality follows from the choice (3.18) of D. The number of homoge-
neous linear equations imposed on the coefficients of Q in order to meet the interpolation
conditions (3.17) is N · (m − s + 1). As this is less than the number of monomials in Q,
the existence of a nonzero Q follows, and it can be found by solving a linear system over
Fq with at most Nm = n constraints and at most N · (m− s + 1) + (s + 1) < Nm = n
variables.

31

Suppose we have a polynomial Q(X, Y1, . . . , Ys) satisfying the interpolation condi-
tions (3.17). The following lemma gives an identity satisfied by any f which has good
agreement with the received word.

Lemma 3.10. Let Q satisfy the conclusion of Lemma 3.9. If f ∈ Fq[X] is a polynomial
of degree at most k− 1 whose derivative encoding (3.12) agrees with the received word y
in at least t columns for t > D+k−1

m−s+1
, then

Q
(
X, f(X), f ′(X), . . . , f (s−1)(X)

)
= 0.

Proof. Let Λ(X) = Q(X, f(X), . . . , f (s−1)(X)). By Corollary 3.8, an agreement in col-
umn i means that Λ(X) satisfies Λ(ai) = 0 and that the kth derivative Λ(k)(ai) is also zero
for k = 1, . . . ,m− s. In particular, t column agreements yield at least t · (m− s+ 1) roots
(counting multiplicities) for Λ.

The degree of Λ is at most D + k − 1, as f and each of its derivatives has degree at
most k− 1. Then as Λ is univariate of degree at most D+ k− 1, Λ has at most D+ k− 1
roots if it is nonzero. Thus if t > (D+ k− 1)/(m− s+ 1), it must be that Λ(X) = 0.

Retrieving candidate polynomials

With our chosen value of D from (3.18), the preceding section implies that any f which
agrees with y on at least

N

s+ 1
+

s

s+ 1

k

m− s+ 1
(3.20)

columns satisfies Q
(
X, f(X), f ′(X), . . . , f (s−1)(X)

)
= 0. So in the second step, our goal

is to find all polynomials f of degree at most k − 1 such that

A0(X) + A1(X)f(X) + A2(X)f ′(X) + . . .+ As(X)f (s−1)(X) = 0. (3.21)

Let Ai(X) =
∑deg(Ai)

j=0 ai,jX
j for each i. Note that the above constraint (3.21) gives a

linear system over F in the coefficients of f = f0 + f1X + · · ·+ fk−1X
k−1. In particular,

the set of solutions (f0, f1, . . . , fk−1) is an affine space, and we can find it by solving
the linear system. Our goal now is to bound the dimension of the space of solutions by
exposing its special structure and also use this to efficiently find an explicit basis for the
space.

Lemma 3.11. It suffices to give an algorithm in the case that the constant term as0 of As
is nonzero.

32

Proof. If As(X) 6≡ 0, then since deg(As) ≤ D < Nm ≤ q, there is some α ∈ Fq such
that As(α) 6= 0. This means that we can consider a “translate” of this problem by α; that
is, As(X + α) has nonzero constant term, so we can solve the system with the translated
polynomial Q(X + α, Y1, . . . , Ym) and recover candidate messages by translating each
solution g(X) to f(X) = g(X − α).

If As(X) = 0, we simply reduce the problem to a smaller one with s rather than s+ 1
interpolation variables. Note that this must terminate since Q is nonzero and so there is at
least one Ai for i ≥ 1 which is nonzero.

We can now show the following analogue of Lemma 3.3:

Lemma 3.12. Assume that char(Fq) > k. If as,0 6= 0, the solution space to (3.21) has
dimension at most s − 1. Furthermore, a basis for this subspace can be found in O(sk2)
operations over Fq.

Proof. For each powerX i, the coefficient ofX i in the polynomialA0(X)+A1(X)f(X)+
· · ·+ As(X)f (s−1)(X) is

a0,i +
(
a1,0fi + a1,1fi−1 + · · ·+ a1,if0

)
+
(
a2,0(i+ 1)fi+1 + a2,1ifi + · · ·+ a2,if1

)
+ · · ·+

(
as,0(i+ s− 1)(i+ s− 2) · · · (i+ 1)fi+s−1

+ · · ·+ as,i(s− 1)!fs−1

)
=a0,i +

s∑
j=1

i∑
`=0

(`+ j − 1)!

`!
aj,i−`f`+j−1 . (3.22)

If (f0, . . . , fk−1) is a solution to (3.21), then this coefficient must be zero for every i.

Our expression for the coefficient of X i for each i depends only on fj for j < i + s.
Furthermore, the coefficient of fi+s−1 in this expression is as,0 ·(i+s−1)(i+s−2) · · · (i+
1), which is nonzero when i+ s ≤ k since char(Fq) > k. Thus, if we fix f0, f1, . . . , fs−2,
the rest of the message symbols fs−1, . . . , fk−1 are uniquely determined. In particular, the
dimension of the solution space is at most s − 1. Also, by (3.22), each fl, l ≥ s − 1, is
specified as a linear combination of fi for i < l, and implies that we can compute a basis
of the solution space (f0, . . . , fk−1) using O(sk2) field operations.

Combining Lemmas 3.10 and 3.12, and recalling the bound (3.20) on the number of
agreements for successful decoding, we have our result on list-decoding derivative codes.

33

Theorem 3.13. For the derivative code Der(m)
q [n, k] (where char(Fq) > k) of block length

N = n/m and rate R = k/n, the following holds for all integers s, 1 ≤ s ≤ m. Given a
received word y ∈ Fm×Nq , in O

(
n3 + sk2) operations over Fq, one can find a basis for a

subspace of dimension at most s− 1 that contains all message polynomials f ∈ Fq[X] of
degree less than k whose derivative encoding (3.12)differs from y in at most a fraction

s

s+ 1

(
N − k

(m− s+ 1)

)
of the N codeword positions.

Now by setting s ≈ 1/ε and m ≈ 1/ε2, and recalling that the rate of Der(m)
q [n, k] is

k/n = k/(Nm), we can conclude the following.

Corollary 3.14. For all R ∈ (0, 1) and all ε > 0, for a suitable choice of parameters,
there are derivative codes Der(m)

q [n, k] of rate at least R which can be list decoded from a
fraction 1−R− ε of errors with a list-size of qO(1/ε).

3.2.2 Some remarks

Tightness of qs−1 bound. As in the folded Reed-Solomon case, the bound of Lemma 3.12
is tight for arbitrary linear systems. Indeed, if

Q(X, Y1, . . . , Ys) =
s−1∑
i=0

(−1)i

i!
X iYi+1,

then any polynomial f(X) of degree less than s with zero constant term satisfies the iden-
tity Q(X, f(X), . . . , f (s−1)(X)) = 0. This is because any monomial f(X) = Xj for
0 < j ≤ s − 1 is a solution, and our solution space is linear. Again as in the FRS case,
we do not know if such a bad polynomial can occur as the output of the interpolation step
when decoding a noisy codeword of the derivative code.

Connection with the Wronskian. Lemma 3.12 can also be justified by appealing to
the Wronskian criterion for linear independence.2 The Wronskian W (g1, g2, . . . , gs) of s
polynomials g1, g2, . . . , gs ∈ F[X] which have order s− 1 derivatives is defined to be the

2We thank Swastik Kopparty for pointing this out.

34

determinant ∣∣∣∣∣∣∣∣∣
g1(X) g2(X) · · · gs(X)
g′1(X) g′2(X) · · · g′s(X)
...

...
. . .

...

g
(s−1)
1 (X) g

(s−1)
2 (X) · · · g

(s−1)
s (X)

∣∣∣∣∣∣∣∣∣ .
If the polynomials g1, g2, . . . , gs are linearly dependent over F, then the Wronskian is
clearly 0. Conversely, for finite fields, it can be shown that if the characteristic is bigger
than the degree and g1, g2, . . . , gs are linearly independent over F, then the Wronskian is
not zero. If g1, g2, . . . , gs are all solutions to

A1(X)f(X) + A2(X)f ′(X) + · · ·+ As(X)f (s−1)(X) = 0

(the linear system underlying (3.21)), then the rows of the matrix defining the Wron-
skian are linearly dependent (over the rational function field F(X)), which implies that
the Wronskian is zero. Thus we cannot have s linearly independent solutions to the above
system, and therefore the rank of the affine space of solutions to (3.21) is at most s− 1.

Decoding derivative codes with side information. The decoding described in the previ-
ous section consists of trying all choices for the coefficients f0, . . . , fs−2 and using each
to uniquely determine a candidate for f . Note however that for each i, the fi is essentially
the ith derivative of f evaluated at 0, and can be recovered as f (i)(0)/i!. Thus if the de-
coder somehow knew the correct values of f and its first s− 1 derivatives at 0, f could be
recovered uniquely (as long as As(0) 6= 0).

Now, suppose the encoder could send a small amount of information along a noiseless
side channel in addition to sending the (much longer) codeword on the original chan-
nel. In such a case, the encoder could choose α ∈ Fq uniformly at random and trans-
mit f(α), f ′(α), . . . , f (s−1)(α) on the noiseless channel. The decoding then fails only if
Ai(α) = 0 for i which is the largest index such that Ai(X) 6= 0. As the Ai(X) have
bounded degree, by increasing the field size q, f can be uniquely recovered with probabil-
ity arbitrarily close to 1. More precisely, we have the following claim.

Theorem 3.15. Given a uniformly random α ∈ Fq and the values f(α), f ′(α), . . . , f (s−1)(α)
of the message polynomial f , the derivative code Der(m)

q [n, k] can be uniquely decoded
from up to

s

s+ 1

(
N − k

m− s+ 1

)
errors with probability at least 1− n/(sq) over the choice of α.

35

Proof. As in the proof of Lemma 3.11, as long as As(α) 6= 0, we may translate the
problem by α and use the values f(α), f ′(α), . . . , f (s−1)(α) to uniquely determine the
shifted coefficients g0, . . . , gs−1.

As As 6= 0, and As is univariate of degree at most D, As has at most D roots, and so
the probability that As(α) 6= 0 is at least 1 − D/q ≥ 1 − n

sq
, where the last inequality

follows from our choice of D ≤ n/s in (3.18).

Remark. In the context of communicating with side information, there is a generic, black-
box solution combining list-decodable codes with hashing to guarantee unique recovery of
the correct message with high probability [Gur03]. In such a scheme, the side information
consists of a random hash function h and its value h(f) on the message f . The advantage
of the solution in Theorem 3.15 is that there is no need to compute the full list (which is
the computationally expensive step, since the list size bound depends exponentially on s)
and then prune it to the unique solution. Rather, we can uniquely identify the first (s− 1)
coefficients of the polynomial f(X+α) in the linear system (3.21), after applying the shift
X 7→ X + α, as f(α), f ′(α), . . . , f (s−2)(α). Then, as argued in the proof of Lemma 3.12,
the remaining coefficients are determined as linear combinations of these s−1 coefficients.
So the whole algorithm can be implemented in cubic time.

Note that we do not know how to apply the approach of Theorem 3.15 to the case of
folded Reed-Solomon codes. The key difference is that in the derivative code case, it is
known that the decoder will need the first s− 1 message coefficients. In the folded Reed-
Solomon case, the required coefficients could depend on the interpolated polynomial Q,
which would mean that the correct values could not be sent ahead of time.

Remark. The decoder could use the columns of the received word y as a guess for the
side information f(ai), f

′(ai), . . . , f
(s−2)(ai) for i = 1, 2, . . . , N . Since f agrees with y

on more than t > RN positions, as long as As(ai) = 0 for less than t of the evaluation
points ai, we will recover every solution f this way. This would lead to a list size bound
of at most N − t < N . Unfortunately, however, there seems to be no way to ensure that
As does not vanish at most (or even all) of the points ai used for encoding. But perhaps
some additional ideas can be used to make the list size polynomial in both q, s, or at least
exp
(
O(s)

)
qc for some absolute constant c.

3.3 Improved list size via subspace-evasive sets

Based on Theorems 3.4 and 3.13, in this section we pursue one possible approach to
improve the provable worst-case list size bound for list decoding up to a fraction 1−R−ε

36

of errors. Instead of allowing all polynomials f0 + f1X + · · · + fk−1X
k−1 of degree less

than k as messages, the idea is to restrict the coefficient vector (f0, f1, . . . , fk−1) to belong
to some special subset V ⊆ Fkq , satisfying the following two conflicting demands:

Largeness: The set V must be large, say |V| ≥ q(1−ε)k, so that the rate is reduced by at
most a (1− ε) factor.

Low intersection with subspaces: For every subspace S ⊂ Fkq of dimension s, |S ∩ V|
is small.

If V satisfies this property, we will say that V is (s, L)-subspace-evasive. The field
Fq and the ambient dimension k will be fixed in our discussion.

Using such a set V will ensure that after pruning an affine subspace output by the algo-
rithms of Theorem 3.4 and 3.13, the number of codewords will be at most L. (Note that
an affine subspace of dimension s − 1 is contained in a subspace of dimension s.) Thus
the list size will go down from qs−1 to L.

Subspace-evasive subsets were used in [PR04] to construct bipartite Ramsey graphs,
and in fact we borrowed the term evasive from that work. In their work, the underlying
field was F2 and the subsets had to be evasive for dimension s ≈ k/2. Our interest is in a
different regime — we can work over large fields, and are interested in evasiveness with
respect to s-dimensional subspaces for constant s.

A random large subset of Fkq meets the low subspace intersection requirement very
well, as shown below. The argument is straightforward; a similar bound appears in [BK03]
in the geometric context of point-subspace incidences.

Lemma 3.16. Let k be a large enough positive integer, and let s < k/4 be a positive
integer. For some α with 0 < α < k/4, let W be a random subset of Fkq chosen by
including each x ∈ Fkq inW with probability q−s−α. Then with probability at least 1−q−k,
W satisfies both the following conditions: (i) |W| ≥ qk−s−α/2, and (ii)W is (s, 2sk/α)-
subspace-evasive.

Proof. The first part follows by a standard Chernoff bound calculation: the expected value
of |W| equals qk−s−α, and thus the probability that it is less than half the expected value is
at most exp(−qk−s−α/8) ≤ q−k.

For the second part, fix a subspace S ⊆ Fkq of dimension s, and a subset T ⊆ S of size
t = d2ks/αe. The probability thatW ⊇ T equals q−(s+α)t. By a union bound over the at
most qks choices for the s-dimensional subspace S, and the at most qst choices of t-element
subsets T of S, we get that the probability thatW is not (s, t − 1)-subspace-evasive is at
most qks+st · q−(s+α)t ≤ q−ks since t ≥ 2ks/α.

37

Picking α ≈ εk, the above guarantees the existence of subsets W of Fkq of size
q(1−ε)k−s−1 which are

(
s,O(s/ε)

)
-subspace-evasive. Restricting the coefficient vector

(f0, f1, . . . , fk−1) of the message polynomial to belong to such a subset will guarantee
a list-size upper bound of O(s/ε) in Theorem 3.4 or Theorem 3.13. This list-size bound
is independent of q, and for the choice s ≈ 1/ε which enables list decoding a fraction
1− R− ε of errors, it is O(1/ε2). This is quite close to the bound of O(1/ε) achieved by
random codes in [GHSZ02].

Unfortunately, an explicit construction of subspace-evasive subsets approaching the
trade-off guaranteed by the probabilistic construction of Lemma 3.16 is not known. This
appears to be a challenging and extremely interesting question. One natural choice for
such a subset would be some variety V ⊆ Fkq defined by a collection of polynomial equa-
tions, i.e., V = {a ∈ Fkq | g1(a) = g2(a) = · · · = gl(a) = 0} for some polynomials
g1, g2, . . . , gl ∈ Fq[Z1, Z2, . . . , Zk]. Indeed for s = 1 and s = k − 1, varieties in Fkq
(the modular moment surface and modular moment curve) with low intersection with s-
dimensional affine subspaces are known [BK03]. In Section 3.4, we discuss a construction,
due to Dvir and Lovett, of subspace-evasive sets based on varieties which, though far from
the probabilistic bounds, are sufficient to reduce the list size to constant in our case.

3.3.1 Pseudorandom construction of subspace-evasive subsets

The construction of Lemma 3.16 takes exponential time and produces a random unstruc-
tured set that takes exponential space to store. In this section, we show that a subset with
similar guarantees can be constructed in probabilistic polynomial time, producing a poly-
nomial size representation of the constructed subspace-evasive set. The idea is to note that
the probabilistic argument to argue about (s, t)-subspace-evasiveness only needed t-wise
independence and not complete independence of different elements of Fkq landing in the
random subsetW . We now describe such a pseudorandom construction.

For some parameter ζ ∈ (0, 1/2), let k′ = (1− ζ)k. Let K be the extension field Fqk′ ,
and fix an arbitrary basis B of K over Fq.

We will define a subspace-evasive embedding of Fk′q into Fkq as follows. Because we
have fixed the basis B, we can consider any v ∈ Fk′q as an element of K = Fqk′ . Let
P ∈ K[X] be a polynomial of degree at most t, and let Q(v) be the first ζk coordinates of
P (v) with respect to the basis B.

Then we will map v ∈ Fk′q to
(
v,Q(v)

)
∈ Fkq . LetWζ,k(P) be the image of Fk′q under

this map. As the map is injective, |Wζ,k(P)| = qk
′
= q(1−ζ)k.

38

Lemma 3.17. Let k ≥ 1 be an integer. Let ζ ∈ (0, 1/2), and let s be an integer satisfying
1 ≤ s ≤ ζk/2. Let t ≥ d4s/ζe be a positive integer and P ∈ K[X] be a random
polynomial of degree at most t.

DefineW = Wζ,k(P). Then with probability at least 1 − q−ks over the choice of P ,
W is a (s, 4s/ζ)-subspace-evasive subset of Fkq of size q(1−ζ)k.

Proof. We already argued that |W| = q(1−ζ)k. For each x ∈ Fkq , the probability that x is
in W is the probability that the last ζk coordinates are Q evaluated at the first (1 − ζ)k
coordinates. As P was random, this is q−ζk.

Since the values of P at any t distinct points in K are independent, the events x ∈ W
are t-wise independent as long as no two share the same initial k′ coordinates.

Now fix a subspace S ⊆ Fkq of dimension s, and a subset T ⊆ S of size t. Let
us compute the probability that T ⊆ W . As W contains exactly one element for each
setting of the initial k′ coordinates, we may assume no two elements in T share the same
initial k′ coordinates. The t events β ∈ W for various β ∈ T are independent due to the
above t-wise independence property. Thus the probability that T ⊆ W equals q−ζkt. The
remaining calculation is as in Lemma 3.16 and involves a union bound over the at most qks

choices for the s-dimensional subspace S, and the at most qst choices of t-element subsets
T of S.

Note that the setW has a compact representation, and given P of degree t ≤ O(s/ζ),
the bijection from Fqk′ to W can be computed using poly(k, s, 1/ζ) Fq-operations, and
membership inW can be checked in the same time. This implies that we can efficiently
encode any v ∈ Fk′q by computing its representative in W and then applying either the
folded Reed-Solomon or derivative encoding. Combining this with Theorems 3.4 and
3.13, we can conclude the following final result.

Theorem 3.18. For any ζ , 0 < ζ < 1/2, there is a Monte Carlo construction of a subcode
C of FRS(m)

q [n, k] or Der(m)
q [n, k] of rate(1−ζ)RwhereR = k/n, consisting of encodings

of polynomials whose coefficients belong to a subspace-evasive subsetW ⊂ Fkq , such that

(i) there is a efficient encoder computing a bijection F(1−ζ)k
q → C using poly(n,m, 1/ζ)

Fq-operations, and

(ii) with high probability C can be list decoded from error fraction s
s+1

(
1− mR

m−s+1

)
for

any 1 ≤ s ≤ m in qO(s) time with an output list size of at most O(s/ζ).

39

In particular, picking ζ = Θ(ε), s = Θ(1/ε) and m = Θ(1/ε2), for any desired
R′ ∈ (0, 1), the construction yields codes of rate R′ which can be list decoded from a
fraction 1−R′− ε of errors in qO(1/ε) time, with at most O(1/ε2) codewords output in the
list.

3.4 Epilogue: Subsequent work

Explicit subspace-evasive sets. Following the work in this chapter, the authors of [DL12]
gave an explicit construction of a set S ⊆ Fnq of size at least q(1−ε)n which is

(
s, (s/ε)s

)
-

subspace-evasive. Their construction uses so-called everywhere-finite varieties, and has
the nice property that encoding can be done efficiently. Additionally, the intersection of S
with any s-dimensional subspace can be computed in time which is polynomial in the size
of the intersection which avoids the qs time search in the pruning step of the decoding.
Using this construction, they are able to show the following.

Theorem 3.19 ([DL12]). For every R and ε, there exists an explicit family of codes C ⊂
Σn with rate R that can be list-decoded from a fraction 1 − R − ε of errors in quadratic
time and with list size (1/ε)O(1/ε).

However, it is not known how to improve the list size bound to match the existential
O(s/ε) bound of Lemma 3.17.

This construction will come up again in Chapter 6, where we use them as an ingredient
to construct different subspace-evasive objects. The details of the construction can be
found there, as Theorem 6.11.

Folded algebraic-geometric codes. The linear-algebraic approach given in this work was
refined in [GX12] to list-decode certain folded algebraic-geometric codes. One advantage
of using algebraic-geometric codes is that the alphabet size can be kept small. Note that
the alphabet size for both folded Reed-Solomon codes and derivative codes grows with the
block length of the code.

The authors of [GX12] use an extension of subspace-evasive sets called hierarchi-
cal subspace-evasive sets to prune the subspace of candidate messages. Instantiated with
one of the optimal function field towers due to Garcia and Stichtenoth, this enables list-
decoding up to a fraction (1−R−ε) of errors with a list size ofO(1/ε) over an alphabet of
size (1/ε)O(1/ε2), almost matching the random coding bound in all aspects simultaneously.

40

Chapter 4

Deletion codes

In which Mallory hits backspace • Greedy codes work • Concatenated
codes are efficient

This chapter begins a study of the trade-off between the rate of a code and its cor-
rectable deletion fraction, for constant alphabet size. As mentioned in Chapter 2, this is
an area about which we know surprisingly little. For example, we still do not know the
largest deletion fraction which is correctable by a positive-rate binary code.

The results in this chapter make some progress towards our goal of understanding the
optimal trade-off. We first analyze what is possible existentially, giving some basic combi-
natorial constructions of deletion codes. Then we use these constructions to give deletion
codes which can be encoded and decoded efficiently. Our codes achieve the following
qualitative goals for small ε:

- We give efficient codes of positive rate which can correct an error fraction of 1− ε,
and

- we give efficient binary codes of rate 1 − ε which can correct a positive fraction of
deletions.

Our explicit constructions exploit the idea of code concatenation, introduced in Chap-
ter 2, which allows us to combine the positive aspects of two kinds of deletion codes,
obtaining constant-alphabet codes with good rate and deletion correction ability.

The results in this chapter appear in joint work with Guruswami in [GW14].

41

4.1 Existential bounds for deletion codes

In this section, we show the existence of deletion codes in certain ranges of parameters,
without the requirement of efficient encoding or decoding. The proofs (found in Sec-
tion 4.5) follow from standard probabilistic arguments, but to the best of our knowledge,
these bounds were not known previously. The codes of Theorem 4.4 will be used as inner
codes in our final concatenated constructions.

Throughout, we will write [k] for the set {1, . . . , k}. We will also use the binary
entropy function, defined for δ ∈ [0, 1] as h(δ) = δ log 1

δ
+ (1− δ) log 1

1−δ .

Recall that constructing a large code in [k]m which can correct from a δ fraction of
deletions is equivalent to constructing a large set of strings such that for each pair, their
longest common subsequence (LCS) has length less than (1− δ)m.

We first consider how well a random code performs, using the following theorem
from [KLM04], which upper bounds the probability that a pair of randomly chosen strings
has a long LCS.

Theorem 4.1 ([KLM04], Theorem 1). For every γ > 0, there exists c > 0 such that if k
and m/

√
k are sufficiently large, and u, v are chosen independently and uniformly from

[k]m, then

Pr

[∣∣LCS(u, v)− 2m/
√
k
∣∣ ≥ γm√

k

]
≤ e−cm/

√
k.

Fixing γ to be 1, we obtain the following.

Proposition 4.2. Let ε > 0 be sufficiently small and let k = (4/ε)2. There exists a code
C ⊆ [k]m of rate R = Ω

(
ε/ log(1/ε)

)
which can correct a 1− ε = 1− 4/

√
k fraction of

deletions.

The following results, and in particular Corollary 4.6, show that we can nearly match
the performance of random codes using a simple greedy algorithm.

We first bound the number of strings which can have a fixed string s as a subsequence.

Lemma 4.3. Let δ ∈ (0, 1/k), set ` = (1 − δ)m, and let s ∈ [k]`. The number of strings
s′ ∈ [k]m containing s as a subsequence is at most

m∑
t=`

(
t− 1

`− 1

)
km−t(k − 1)t−` ≤ km−`

(
m

`

)
.

42

When k = 2, we have the estimate

m∑
t=`

(
t− 1

`− 1

)
2m−t ≤ δm

(
m

`

)
.

Theorem 4.4. Let δ, γ > 0. Then for every m, there exists a code C ⊆ [k]m of rate
R = 1− δ − γ such that:

• C can be corrected from a δ fraction of worst-case deletions, provided k ≥ 22h(δ)/γ .

• C can be found, encoded, and decoded in time kO(m).

Moreover, when k = 2, we may take R = 1− 2h(δ)− log(δm)/m.

Remark. The authors of [KMTU11] show a similar result for the binary case, but use the
weaker bound in Lemma 4.3 to get a rate of 1− δ − 2h(δ).

With a slight modification to the proof of Theorem 4.4, we obtain the following con-
struction, which will be used in Section 4.3. The so-called “β-dense” property will help us
to distinguish codewords, which have high Hamming weight, from long strings of zeroes.

Proposition 4.5. Let δ, β ∈ (0, 1). Then for every m, there exists a code C ⊆ {0, 1}m of
rate R = 1− 2h(δ)−O(log(δm)/m)− 2−Ω(βm)/m such that:

• For every string s ∈ C, s is “β-dense”: every interval of length βm in s contains at
least βm/10 ones,

• C can be corrected from a δ fraction of worst-case deletions, and

• C can be found, encoded, and decoded in time 2O(m).

In the high-deletion regime, we have the following corollary to Theorem 4.4, obtained
by setting δ = 1 − ε and γ = (1 − θ)ε, and noting that h(ε) ≤ ε log(1/ε) + 2ε when
ε < 1/2.

Corollary 4.6. Let 1/2 > ε > 0 and θ ∈ (0, 1/3]. There for every m, there exists a code
C ⊆ [k]m of rate R = ε · θ which can correct a 1 − ε fraction of deletions in time kO(m),
provided k ≥ 64/ε

2
1−θ .

43

4.2 Coding against 1− ε deletions

In this section, we construct codes for the high-deletion regime. We will use a concate-
nated coding approach, with an enlarged alphabet to help us determine the location of inner
codewords. By choosing the parameters carefully, we are able to correct a large fraction
of deletions. More precisely, we have the following theorem.

Theorem 4.7. Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε2) and alphabet size
poly(1/ε) which can be corrected from a 1− ε fraction of worst-case deletions.

Moreover, this code can be constructed, encoded, and decoded in time Npoly(1/ε),
where N is the block length of the code.

We first define the code. Theorem 4.7 is then a direct corollary of Lemmas 4.8 and 4.9.

The code: Our code will be over the alphabet {0, 1, . . . , D − 1} × [k], where D = 8/ε
and k = O(1/ε3).

We first define a code C ′ over the alphabet [k] by concatenating a Reed-Solomon code
with an inner code over [k] which can correct a slightly higher fraction of deletions.

More specifically, let Fq be a finite field. For any n′ ≤ n ≤ q, the Reed-Solomon code
of length n ≤ q and dimension n′ is a subset of Fnq which admits an efficient algorithm
to uniquely decode from t errors and r erasures, provided r + 2t < n − n′ (see, for
example, [WB86]).

In our construction, we will take n = q = 2n′/ε. We first encode our message to a
codeword c = (c1, . . . , cn) of the Reed-Solomon code. For each i, we then encode the pair
(i, ci) using an inner code over some alphabet [k] which can correct a 1 − ε/2 fraction of
deletions.

To obtain our final code C, we replace every symbol s in C ′ which encodes the ith RS
coordinate by the pair

(
i (mod D), s

)
∈ {0, 1, . . . , D − 1} × [k]. The first coordinate, i

(mod D), contains the location of the codeword symbol modulo D, and we will refer to it
as a header.

In order to obtain the parameters stated in Theorem 4.7, we will instantiate the inner
code using Corollary 4.6, setting θ = 1/3. This gives an inner code C1 : [n]× Fq → [k]m,
where m = 12 log q/ε and k = O(1/ε3), which can correct a 1−ε/2 fraction of deletions.

Lemma 4.8. For an inner code of rate Rin, the rate of C is Ω(εRin). In particular, the rate
of C can be taken to be Ω(ε2).

44

Proof. The rate of the outer Reed-Solomon code, labeled with indices, is at least ε/4.
Finally, the alphabet increase in transforming C ′ to C decreases the rate by a factor of

log(k)
log(Dk)

= Ω(1).

By Corollary 4.6, the rate of the inner code can be taken to be Ω(ε).This gives us a
final rate of Ω(ε2).

Lemma 4.9. Let the inner code have block length m and be decodable from a 1 − ε/2
fraction of worst-case deletions in time T (m). Then the concatenated code C can be
decoded from a 1 − ε fraction of worst-case deletions in time poly(N) · T (m), where N
is the block length of C.

In particular, the concatenated code using the inner code of Corollary 4.6 can be de-
coded in time NO(poly 1/ε).

Proof. We apply the following algorithm to decode C.

- We partition the received word into blocks as follows: The first block begins at
the first coordinate, and each subsequent block begins at the next coordinate whose
header differs from its predecessor. This takes time poly(N).

- We begin with an empty set L.

For each block which is of length between εm/2 and m, we remove the headers
by replacing each symbol (a, b) with the second coordinate b. We then apply the
decoder from Corollary 4.6 to the block. If this succeeds, outputting a pair (i, ri),
then we add (i, ri) to L. This takes time poly(N) · T (m).

- If for any i, L contains multiple pairs with first coordinate i, we remove all such
pairs from L. L thus contains at most one pair (i, ri) for each index i. We apply
the Reed-Solomon decoding algorithm to the string r whose ith coordinate is ri if
(i, ri) ∈ L and erased otherwise. This takes time poly(N).

Analysis: For any i, we will decode a correct coordinate
(
i, ci
)

if there is a block of
length at least εm/2 which is a subsequence of C1(i, ci). (Here and in what follows we
abuse notation by disregarding headers on codeword symbols.)

Thus, the Reed-Solomon decoder will receive the correct value of the ith coordinate
unless one of the following occurs:

1. (Erasure) The adversary deletes a ≥ 1− ε/2 fraction of C1(i, ci).

45

2. (Merge) The block containing (part of) C1(i, ci) also contains symbols from other
codewords ofC1, because the adversary has erased the codewords separatingC1(i, ci)
from its neighbors with the same header.

3. (Conflict) Another block decodes to (i, r) for some r. Note that an erasure cannot
cause a coordinate to decode incorrectly, so a conflict can only occur from a merge.

We would now like to bound the number of errors and erasures the adversary can cause.

- If the adversary causes an erasure without causing a merge, this requires at least
(1−ε/2)m deletions within the block which is erased, and no other block is affected.

- If the adversary merges t inner codewords with the same label, this requires at least
(t− 1)(D − 1)m deletions, of the intervening codewords with different labels. The
merge causes the fully deleted inner codewords to be erased, and causes the tmerged
codewords to resolve into at most one (possibly incorrect) value. This value, if
incorrect, could also cause one conflict.

In summary, in order to cause one error and r ≤ (t−1)D+2 erasures, the adversary
must introduce at least (t− 1)(D − 1)m ≥ (2 + r)(1− ε/2)m deletions.

In particular, if the adversary causes s errors and r1 erasures by merging, and r2 era-
sures without merging, this requires at least

≥ (2s+ r1)(1− ε/2)m+ r2(1− ε/2)m = (2s+ r)(1− ε/2)m

deletions. Thus, when the adversary deletes at most a (1−ε) fraction of codeword symbols,
we have that 2s + r is at most (1 − ε)mn/(1 − ε/2)m < n(1 − ε/2). Recalling that the
Reed-Solomon decoder in the final step will succeed as long as 2s + r < n(1− ε/2), we
conclude that the decoding algorithm will output the correct message.

Remark (Improving the encoding and decoding complexity). Our decoding algorithm re-
quires only that the inner code C1 be correctable from a 1− ε/2 fraction of deletions. By
using the concatenated code of Theorem 4.7 as the inner code in our construction (that is,
with two levels of concatenation), we can reduce the time complexity significantly, at the
cost of a polynomial reduction in other parameters of the code. This is summarized in the
following theorem.

Theorem 4.10. Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε3) and alphabet size
poly(1/ε) which can be corrected from a 1−ε fraction of worst-case deletions. Moreover,
this code can be constructed, encoded, and decoded in time poly(N) · (logN)poly(1/ε),
where N is the block length of the code.

46

4.3 Binary codes against ε deletions

4.3.1 Construction overview

The goal in our constructions is to allow the decoder to approximately locate the bound-
aries between codewords of the inner code, in order to recover the symbols of the outer
code. In the previous section, we were able to achieve this by augmenting the alphabet
and letting each symbol encode some information about the block to which it belongs. In
the binary case, we no longer have this luxury.

The basic idea of our code is to insert long runs of zeros, or “buffers,” between adjacent
inner codewords. The buffers are long enough that the adversary cannot destroy many of
them. If we then choose the inner code to be dense (in the sense of Proposition 4.5), it is
also difficult for a long interval in any codeword to be confused for a buffer. This approach
optimizes the construction of [SZ99] described in Section 2.4.3, which uses an inner code
of rate 1/2 and thus has final rate bounded away from 1.

The balance of buffer length and inner codeword density seems to make buffered codes
unsuited for high deletion fractions, and indeed our results only hold as the deletion frac-
tion goes to zero.

4.3.2 Our construction

We now give the details of our construction. For simplicity, we will not optimize constants
in the analysis.

Theorem 4.11. Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is decod-
able from an ε fraction of deletions with rate 1− Õ(

√
ε) in time Npoly(1/ε).

Moreover, C can be constructed and encoded in time Npoly(1/ε).

The code: We again use a concatenated construction with a Reed-Solomon code as
the outer code, choosing one which can correct a 12

√
ε fraction of errors and erasures.

For each i, we replace the ith coordinate ci with the pair (i, ci). In order to ensure that the
rate stays high, we use a RS code over Fqh , with block length n = q, where we will take
h = 1/ε.

The inner code will be a good binary deletion code C1 of block length m correcting a
δ = 40

√
ε fraction of deletions. We will also require the codewords of C1 to be β-dense,

47

for β = δ/4. Recall that a string of length m is β-dense if any interval of length βm
contains at least βm/10 1’s. We will assume each codeword begins and ends with a 1.

Now, between each pair of adjacent inner codewords of C1, we insert a buffer of δm
zeros. This gives us our final code C.

In order to obtain the final parameters stated in Theorem 4.11, we will construct the
inner code C1 using Proposition 4.5. This gives a code of rate 1− 2h(δ)− o(1) satisfying
the requirements of our construction.

Lemma 4.12. For an inner code of rate Rin, the rate of the concatenated code C is Rin ·
(1−O(

√
ε).

In particular, the rate of the concatenated code using Proposition 4.5 is 1− Õ(
√
ε)).

Proof. The rate of the outer (labeled) Reed-Solomon code is (1 − 24
√
ε) · h

h+1
. Finally,

adding buffers reduces the rate by a factor of 1
1+δ

.

Combining these with our choice of δ, we get that the rate of C is Ri(1− Õ(
√
ε)).

The rate of the inner code C1 can be taken to be 1− 2h(δ)− o(1), by Proposition 4.5,
giving a final rate of 1− Õ(

√
ε).

Lemma 4.13. Let the inner code have block length m and be decodable from a δ fraction
of worst-case deletions in time T (m). Then the concatenated code C can be decoded from
a ε fraction of worst-case deletions in time poly(N) · T (m), where N is the block length
of C.

In particular, the concatenated code with inner code constructed using Proposition 4.5
can be decoded in time NO(poly 1/ε).

The algorithm:

- The decoder first locates all runs of at least δm/2 contiguous zeroes in the received
word. These runs (“buffers”) are removed, dividing the codeword into blocks of
contiguous symbols which we will call decoding windows. Any leading zeroes of
the first decoding window and trailing zeroes of the last decoding window are also
removed. This takes time poly(N).

- We begin with an empty set L.

For each decoding window, we apply the decoder from Proposition 4.5 to attempt
to recover a pair (i, ri). If we succeed, this pair is added to L. This takes time
poly(N) · T (m).

48

- If for any i, L contains multiple pairs with first coordinate i, we remove all such
pairs from L. L thus contains at most one pair (i, ri) for each index i. We apply
the Reed-Solomon decoding algorithm to the string r whose ith coordinate is ri if
(i, ri) ∈ L and erased otherwise, attempting to recover from a 12

√
ε fraction of

errors and erasures. This takes time poly(N).

Analysis: Notice that if no deletions occur, the decoding windows will all be code-
words of the inner code C1, which will be correctly decoded. At a high level, we will
show that the adversary cannot corrupt many of these decoding windows, even with an ε
fraction of deletions.

We first show that the number of decoding windows considered by our algorithm is
close to n, the number of windows if there are no deletions.

Lemma 4.14. If an ε fraction of deletions have occurred, then the number of decoding
windows considered by our algorithm is between (1− 2

√
ε)n and (1 + 2

√
ε)n.

Proof. Recall that the adversary can cause at most εnm(1 + δ) ≤ 2εnm deletions.

Upper bound: The adversary can increase the number of decoding windows only by
creating new runs of δm/2 zeroes (that are not contained within a buffer). Such a new
run must be contained entirely within an inner codeword w ∈ C1. However, as w is δ/4-
dense, in order to create a run of zeroes of length δm/2, at least δm/20 = 2

√
ε 1’s must

be deleted for each such run. In particular, at most
√
εn blocks can be added.

Lower bound: The adversary can decrease the number of decoding windows only by
decreasing the number of buffers. He can achieve this either by removing a buffer, or by
merging two buffers. Removing a buffer requires deleting δm/2 = 20

√
εm zeroes from

the original buffer. Merging two buffers requires deleting all 1’s in the inner codewords
between them. As inner codewords are δ/4-dense, this requires at least

√
εm deletions for

each merged buffer. In particular, at most 2
√
εn buffers can be removed.

We now show that almost all of the decoding windows being considered are decoded
correctly by the inner decoder.

Lemma 4.15. The number of decoding windows which are incorrectly decoded is at most
4
√
εn.

Proof. The inner decoder will succeed on each decoding window which is a subsequence
of a valid inner codeword w ∈ C1 of length at least (1− δ)m. This will happen unless:

49

1. The window is too short:

(a) a subsequence of w has been marked as a (new) buffer, or

(b) a ρ fraction of w has been marked as part of the adjacent buffers, combined
with a δ − ρ fraction of deletions within w.

2. The window is not a subsequence of a valid inner codeword: the window contains
buffer symbols and/or a subsequence of multiple inner codewords.

We first show that (1) holds for at most 3
√
εn windows.

From the proof of Lemma 4.14, there can be at most
√
εn new buffers introduced, thus

handling Case 1(a). In Case 1(b), if ρ < δ/2, then there must be δ/2 deletions within w.
On the other hand, if ρ ≥ δ/2, one of two buffers adjacent to w must have absorbed at
least δm/4 symbols of w, so as w is δ/4-dense, this requires δm/40 =

√
εm deletions, so

can occur in at most 2
√
εn windows.

We also have that (2) holds for at most
√
εn windows, as at least δm/2 symbols must

be deleted from a buffer in order to prevent the algorithm from marking it as a buffer. As
in Lemma 4.14, this requires 20

√
ε deletions for each merged window, and so there are at

most
√
εn windows satisfying case (2).

We now have that the inner decoder outputs (1−6
√
ε)n correct values. After removing

possible conflicts in the last step of the algorithm, we have at least (1 − 12
√
ε)n correct

values, so that the Reed-Solomon decoder will succeed and output the correct message.

Remark (Improving the encoding and decoding efficiency). Our decoding algorithm suc-
ceeds as long as the inner code can correct a δ fraction of deletions, and consists of code-
words which are δ/4-dense. As in the high deletion case, the time complexity of Theo-
rem 4.11 can be improved using a more efficient inner code, at the cost of a reduction in
rate.

Because of the addition of buffers, the code of Theorem 4.11 may not be dense enough
to use as an inner code. However, we can modify the construction to obtain a dense inner
code (details can be found in Section 4.5). In particular, these modifications give us the
following.

Theorem 4.16. Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is decod-
able from an ε fraction of deletions with rate 1− Õ(4

√
ε) in time poly(N) · (logN)poly(1/ε).

Moreover, C can be constructed and encoded in time poly(N) · (logN)poly(1/ε).

50

4.4 List-decoding binary deletion codes

The results of Section 4.3 show that we can have good explicit binary codes when the
deletion fraction is low. In this section, we address the opposite regime, of high deletion
fraction. As a first step, notice that in any reasonable model, including list-decoding, we
cannot hope to efficiently decode from a 1/2 deletion fraction with a polynomial list size
and constant rate. With block length n and n/2 deletions, the adversary can ensure that
what is received is either n/2 1’s or n/2 0’s.

Thus, for binary codes and ε > 0, we will consider the question of whether it is
possible to list decode from a fraction 1/2− ε of deletions.

Definition 4.17. We say that a code C ⊆ {0, 1}m is list-decodable from a δ deletion
fraction with list size L if every sequence of length (1− δ)m is a subsequence of at most
L codewords. If this is the case, we will call C (δ, L) list-decodable from deletions.

Remark. Although the results of this section are proven in the setting of list-decoding, it
is not known that we cannot have unique decoding of binary codes up to deletion fraction
1/2− ε.

4.4.1 List-decodable binary deletion codes (existential)

In this section, we show that good list-decodable codes exist. This construction will be
the basis of our explicit construction of list-decodable binary codes. The proof appears in
Section 4.5.

Theorem 4.18. Let δ, L > 0. Let C ⊆ {0, 1}m consist of 2Rm independently, uniformly
chosen strings, where R ≤ 1−h(δ)−3/L. Then C is

(
δ, L
)

list-decodable from deletions
with probability at least 1− 2−m.

Moreover, such a code can be constructed and decoded in time 2poly(mL).

In particular, when δ = 1/2− ε, we can construct and decode in time 2poly(m/ε) a code
C ⊆ {0, 1}m of rate Ω(ε2) which is

(
δ, O(1/ε2)

)
list-decodable from deletions.

4.4.2 List-decodable binary deletion codes (explicit)

We now use the existential construction of Theorem 4.18 to give an explicit construction
of constant-rate list-decodable binary codes. Our code construction uses Parvaresh-Vardy
codes ([PV05]) as outer codes, and an inner code constructed using Section 4.4.1.

51

The idea is to list-decode “enough” windows and then apply the list recovery algorithm
of Theorem 4.20.

Theorem 4.19. Let 0 < ε < 1/2. There is an explicit binary code C ⊆ {0, 1}N of
rate Ω̃(ε3) which is list-decodable from a 1/2 − ε fraction of deletions with list size
(1/ε)O(log log ε).

This code can be constructed, encoded, and list-decoded in time Npoly(1/ε).

We will appeal in our analysis to the following theorem, which can be found in [GR08b].

Theorem 4.20 ([GR08b], Corollary 5). For all integers s ≥ 1, for all prime powers r,
every pair of integers 1 < K ≤ N ≤ q, there is an explicit Fr-linear map E : FKq → FNqs
whose image C ′ is a code satisfying:

- There is an algorithm which, given a collection of subsets Si ⊆ Fqs for i ∈ [N] with∑
i|Si| ≤ N`, runs in poly

(
(rs)s, q, `

)
time, and outputs a list of sizeO

(
(rs)sN`/K

)
that includes precisely the set of codewords (c1, . . . , cN) ∈ C ′ that satisfy ci ∈ Si
for at least αN values of i, provided

α > (s+ 1)(K/N)s/(s+1)`1/(s+1).

The code: We set s = O(log 1/ε), r = O(1), and N = K poly
(
log(1/ε)

)
/ε in The-

orem 4.20 in order to obtain a code C ′ ⊆ FNqs . We modify the code, replacing the ith
coordinate ci with the pair (i, ci) for each i, in order to obtain a code C ′′. This latter step
only reduces the rate by a constant factor.

Recall that we are trying to recover from a 1/2 − ε fraction of deletions. We use
Theorem 4.18 to construct an inner code C1 : [N] × Fsq → {0, 1}m of rate Ω(ε2) which
recovers from a 1/2− δ deletion fraction (where we will set δ = ε/4). Our final code C is
a concatenation of C ′′ with C1, which has rate Ω̃(ε3).

Theorem 4.21. C is list-decodable from a 1/2− ε fraction of deletions in time Npoly(1/ε).

Proof. Our algorithm first defines a set of “decoding windows”. These are intervals of
length (1/2 + δ)m in the received codeword which start at positions 1 + tδm for t =
0, 1, . . . , N/δ − (1/2 + δ)/δ, in addition to one interval consisting of the last (1/2 + δ)m
symbols in the received codeword.

We use the algorithm of Theorem 4.18 to list-decode each decoding window, and let L
be the union of the lists for each window. Finally, we apply the algorithm of Theorem 4.20
to L to obtain a list containing the original message.

52

Correctness: Let c = (c1, . . . , cN) be the originally transmitted codeword of C ′. If
an inner codeword C1(i, ci) has suffered fewer than a 1/2− 2δ fraction of deletions, then
one of the decoding windows is a substring of C1(i, ci), and L will contain the correct pair
(i, ci).

When δ = ε/4, by a simple averaging argument, we have that an ε fraction of inner
codewords have at most 1/2−2δ fraction of positions deleted. For these inner codewords,
L contains a correct decoding of the corresponding symbol of c.

In summary, we have list-decoded at most N/δ windows, with a list size of O(1/δ2)
each. We also have that an ε fraction of symbols in the outer codeword of C ′ is correct.
Setting ` = O(1/δ3) in the algorithm of Theorem 4.20, we can take α = ε. Theorem 4.20
then guarantees that the decoder will output a list of poly(1/ε) codewords, including the
correct codeword c.

4.5 Omitted proofs

Existential bounds on deletion codes

In this section, we give the omitted proofs of Sections 4.1 and 4.4.

Proof of Lemma 4.3. We will give a way to generate all strings s′ containing s as a sub-
sequence, and bound the number of possible outcomes. We do this by considering the
lexicographically first occurrence of s in t.

First choose ` locations n1 < · · · < n` in [m], which will be the locations of the `
symbols of s. If the ith symbol of s is a, we allow all symbols between locations ni−1 and
ni to take any value but a. This ensures that the locations ni are the earliest occurrence of
s as a subsequence. The rest of the symbols after n` are filled in arbitrarily.

It is clear that this process generates any string having s as a subsequence, so we will
bound the number of ways this can happen. Fix n` = t. There are

•
(
t−1
`−1

)
ways to choose n1, . . . , n`−1,

• (k − 1)t−` ways to fill in symbols between the ni’s,

• and km−t ways to fill in the last m− t symbols.

53

Summing over all possible values of t, the total number of strings with s as a subse-
quence is at most

m∑
t=`

(
t− 1

`− 1

)
km−t(k − 1)t−`.

As
∑m

t=`

(
t−1
`−1

)
=
(
m
`

)
, the claimed bound follows.

When ` > m/k, the term
(
t−1
`−1

)
km−t(k − 1)t−` increases with t, so the sum is at most

δm ·
(
m− 1

`− 1

)
(k − 1)m−`,

giving us our bound for k = 2.

Proof of Theorem 4.4. We construct such a code using a greedy algorithm. We begin with
an arbitrary string in [k]m, and then iteratively add strings whose LCS with all previously
chosen strings has length less than (1 − δ)m. The LCS of two length m strings can be
computed in time poly(m), so this takes time kO(m).

It remains to show that we can choose kRm strings.

For a fixed string u ∈ [k]m, it has at most
(

m
(1−δ)m

)
subsequences of length (1 − δ)m,

so by Lemma 4.3, the number of strings whose LCS with u has length at least (1 − δ)m,
and which therefore cannot be chosen, is at most(

m

(1− δ)m

)2

kδm.

Thus if the target rate is R, we will succeed if(
m

δm

)2

kδm · kRm ≤ km. (*)

It suffices to have

2mh(δ) + δm log k +Rm log k ≤ m log k.

Setting R = 1− δ − γ, we have

2h(δ) + (1− γ) log k ≤ log k ⇔ 2h(δ) ≤ γ log k,

54

so we can choose kRm strings as long as the alphabet size k satisfies

k ≥ 22h(δ)/γ.

In the case of k = 2, we may use the tighter estimate from Lemma 4.3 in Equation (*)
to obtain the claimed bound.

Proof of Proposition 4.5. The greedy algorithm of Theorem 4.4 applies, but now we must
choose strings from the set of β-dense strings. We first bound the number of strings which
are not β-dense. The number of strings of length βm with less than βm/10 1’s is

βm/10−1∑
j=0

(
βm

j

)
≤ 2h(1/10)βm.

Since there are at most m intervals of length βm in a string, the probability that a
randomly chosen string of length m is not β-dense is at most

m · 2h(1/10)βm

2βm
≤ 2−Ω(βm).

The algorithm of Theorem 4.4 then succeeds if(
m

δm

)2

· δm · 2Rm ≤ 2m
(
1− 2−Ω(βm)

)
,

or R ≤ 1− 2h(δ)−O(log(δm)/m)− 2−Ω(βm)/m.

Proof of Theorem 4.18. By Lemma 4.3, the probability that a set of L independent, uni-
form strings all share a common substring of length ` is at most

2` ·

(
m∑
t=`

(
t− 1

`− 1

)
2−t

)L

≤ 2`

[
mL · 2−mL ·

(
m− 1

`− 1

)L]
.

For a random code C of rate R, we union bound over all possible subsets of L code-
words to upper bound the probability that C is not (δ, L) list-decodable from deletions.

Pr[C fails] < 2RmL · 2` · 2L logm · 2−mL · 2Lmh(1−δ).

55

This is at most 2−m, provided

R ≤ 1− h(δ)− 2− δ
L
− logm

m
,

which holds for our choice of R.

When δ = 1/2− ε, we can set R = Ω(ε2) to see that

L >
3/2 + ε

2ε2/ ln 2−R−O(ε3)

so we can take L to be O(1/ε2).

Similarly to Theorem 4.4, this argument shows that we can construct a
(
δ, O(1/ε2)

)
list-decodable code using a greedy algorithm, which successively adds strings who do not
share a common subsequence of length ` with L− 1 previously chosen strings.

Obtaining dense inner codes

In this section, we show how the code construction of Section 4.3 can be modified to obtain
a code which is also dense, allowing it to be used as an inner code. More precisely, we
will show:

Proposition 4.22. For every block length n and δ ∈ (0, 1), there is a binary code C ⊆
{0, 1}n of rate 1 − Õ(

√
δ) which is decodable from an δ fraction of deletions in time

npoly(1/δ).

Moreover, C can be constructed and encoded in time npoly(1/δ), and consists of strings
which are δ/4-dense, in the sense of Proposition 4.5.

Proof. The proof of Proposition 4.5 works, with a lower rate guarantee, for strings of
length m which have at least βm/5 1’s in every interval of length βm. This allows us
to construct, encode, and decode in time 2O(m) a code of rate 1 − 2h(δ) − o(1) which
can correct a δ fraction of deletions, and which consists of strings satisfying the stronger
density property.

Using this as the inner code in the construction of Section 4.3, for any δ ∈ (0, 1) we
obtain a binary code of block length n and rate 1 − Õ(δ) which is decodable from a δ
fraction of deletions in time npoly(1/δ).

56

It remains to show that this code is δ/4-dense, in the sense of Proposition 4.5. Re-
call that each codeword is the concatenation of log n inner codewords of block length m,
separated by buffers of length δm.

We need to show that any interval of length δN/4 contains at least δN/40 1’s. By
construction, each inner codeword has Hamming weight at least m/5.

An interval of length δn/4 consists of at least (δn/4)/(m(1 + δ))− 2 inner codewords
with buffers. As each inner codeword has at least m/5 1’s, this gives a total of δn

20(1+δ)
−

2m/5 1’s. Recalling that m ≈ log n, this is at least δn/40 for large enough N .

57

58

Chapter 5

Rank-metric and subspace codes

In which linear network coding debuts • The operator channel and
rank-metric appear • Reed-Solomon goes linearized

In this chapter, we present motivation and basic background for the two closely-related
models of rank-metric and subspace codes, as a prelude to our construction of high-rate
list-decodable codes in Chapter 6. These models are interesting both for their unusual
notion of errors, and because the codes themselves are so different. For example, although
every code for the Hamming metric is list-decodable past half the distance, this is not true
in the rank-metric case.

Some of the results on subspace codes in this chapter appeared in joint work with
Guruswami and Narayanan in [GNW12].

5.1 Linear network coding

We now present an abbreviated overview of noncoherent linear network coding, which
motivates the definition of the operator channel in Section 5.2.

We model a network as a directed flow graph with some number of sources and sinks.
Each source will have some message (packet) in Fth for some field Fh, and the goal is
for each sink to receive a copy of every message (the multicast setting). The edges only
have the capacity to transmit one packet’s worth of information. It is easy to see that
this is not always possible, for example if the minimum cut separating any sink from the
sources is smaller than the number of sources. This is not always tight, however, if the

59

m1

m2

m1

m1

m1

m1

m2

m2

m1

m1

m1

m2

Figure 5.1: The butterfly network ([ACLY00]). When the intermediate nodes must pick a
packet to forward, one of the sinks receives two copies of the same packet and so only one
packet is successfully transmitted. On the other hand, the minimum cut in this graph has
size 2.

intermediate nodes in the network can only forward packets. This fact can be seen in
the famous butterfly network of [ACLY00] (Figure 5.1), where only one packet can be
transmitted, even though the network’s minimum cut has size 2.

On the other hand, the same authors note that if we allow the intermediate nodes to
perform basic operations on the messages (in this case, addition), then it is possible for the
sinks to recover both packets (Figure 5.1).

It turns out that not much more power is required in general: if we allow intermediate
nodes to transmit linear combinations of packets, then we can achieve the minimum cut ca-
pacity of the network, and indeed this works even if we send random linear combinations,
with probability of success increasing as we increase the size of the field Fh ([HKM+03]).

Random linear network coding turns out to be an extremely useful solution to this
problem. It imposes very few requirements on the nodes in the network, as they only
have to apply linear operations, and it’s easy to adapt if the network topology changes.
In fact, if each message packet is given a “header” (say, the ith packet appends the ith
unit vector ei to its packet), then the packets will record which linear operations have been
performed, and the decoder can recover the original packets without needing to know the
exact behavior of the network.

One drawback of this approach, however, is that it is not resilient to errors in the
network. For example, if a package is forwarded incorrectly, then as it propagates through
the network, it could get added to every packet which reaches each sink, preventing the
receivers from recovering the information. Another concern is that random network coding

60

m1

m2

m1

m1

m1 +m2

m2

m2

m1

m1 +m2

m2

m1 +m2

Figure 5.2: The butterfly network revisited. If intermediate nodes can add packets, then the
sinks each receive one packet and the sum of two packets, which they can use to recover
the missing packet.

only works with high probability; if it fails, not all packets may make it to the sinks.

As we did in the case of symbol errors in strings, we would like to add redundancy to
our packets in some way, so that we can ensure recovery from errors in the network. More
specifically, we will encode our information packets by a slightly larger set of (redun-
dant) packets, with the guarantee that the information packets are decodable after passing
through the faulty network. This idea is captured by the notion of subspace codes.

5.2 Subspace codes and the operator channel

Let us return to the butterfly network of Figure 5.1. Notice that the top sink, who was
hoping to receive the two packets m1 and m2, has in fact received m1 and m1 + m2. The
key observation is that, either through foreknowledge of the network or through the use of
headers, receivingm1 andm1 +m2 is just as good as receivingm1 andm2. The reason for
this is that the two pairs of vectors are bases for the same vector space, span(m1,m2). That
is, given one basis for the space, it is easy enough to recover the original basis of interest,
so we are only interested in making sure that the correct vector space is transmitted.

With this in mind, we now define subspace codes.

For a vector space W , let P(W) denote the set of all subspaces of W , and Pn(W) the
set of all n-dimensional subspaces of W (often called the Grassmannian).

Definition 5.1. A subspace code C is a subset of Pn(Fth) for some n. We define the rate

61

of a subspace code to be

R(C) =
logh|C|
nt

.

The distance measure we will use is the number of basis elements which must be
removed or added to transform one vector space into another, defined formally below. It
is easy to check (see [KK08]) that this is in fact a metric on P(W).

Definition 5.2. The subspace distance between two subspaces U and V is

dS(U, V) := dim(U) + dim(V)− 2 dim(U ∩ V).

The minimum distance of a subspace code C is dS(C) := minU 6=V ∈c dS(U, V), and
the relative distance of C is dS(C)

2n
.

To model the kinds of errors we expect in a linear network, we now define the operator
channel, which was first introduced in [KK08].

Definition 5.3. An operator channel C associated with the ambient space W is a channel
with input and output alphabet P(W). The channel input V and output U are related by

U = Hk(V) + E,

where k = dim(U∩V), E is an error subspace (without loss of generality, E may be taken
such that E ∩ V = {0}), and Hk(V) is an operator returning an arbitrary k-dimensional
subspace of V .

In transforming V to U , we say that operator channel commits µ = dim(V) − k
deletions and ρ = dim(E) insertions.

Remark. Deletions and insertions were called erasures and errors, respectively, in [KK08].
We have chosen different terminology which we feel better reflects the nature of the
changes introduced.

Note that a deletion corresponds to the removal of some basis vector from the input
space V , and an insertion introduces a new basis vector.

This model makes no assumptions on the structure of the network being used, and any
behavior arising from linear combinations at intermediate nodes is captured in this notion
of error. The relationship between the operator channel and subspace codes is shown in
the following theorem.

62

Theorem 5.4 ([KK08]). Let C be a subspace code of minimum distance d. Let V ∈ C be
transmitted, and let

U = Hk(V) + E

be received, where dim(E) = µ. Let ρ be the number of deletions induced by the channel.
If

2(µ+ ρ) < d,

then V can be uniquely decoded from the received subspace U .

5.2.1 The Kötter-Kschischang code

In [KK08], the authors define a subspace code, which we will call the Kötter-Kschischang
(or KK) code, which can be thought of as a “linearized” variant of Reed-Solomon codes.

Definition 5.5. A linearized polynomial over Fhm is a polynomial f of the form

f(X) =
k∑
i=0

fiX
hi ,

where fi ∈ Fhm . The integer k is the h-degree of f .

These polynomials are called linearized polynomials because they are linear functions
over the base field Fh; that is, if f is a linearized polynomial, then f(aX+bY) = af(X)+
bf(Y) for any a, b ∈ Fh.

As with Reed-Solomon codes, the KK code is defined using polynomial evaluation,
but we evaluate linearized polynomials of low h-degree, rather than arbitrary polynomials
of low (standard) degree.

Definition 5.6. Let Fht be an extension of Fh, and let α1, α2, . . . , αn ∈ Fth be linearly
independent over Fh. The KK code KK[n, k, t] encodes a linearized polynomial f(X) ∈
Fht [X] of h-degree at most k − 1 by

f(X) 7→ span{(αi, f(αi))}ni=1.

Lemma 5.7. When k < n, this code has distance 2(n− k + 1) and rate

logh q
mk

n(n+ t)
=
k

n

(
1

1 + n/t

)
≈ k

n
(when n� t). (5.1)

63

Proof. The rate computation is immediate from the definition. To see the distance prop-
erty, we will show that two distinct h-linearized polynomials f and g of h-degree d can
agree on at most d linearly independent points.

Suppose that f and g agree on d + 1 linearly independent points. Recall that f and g
are linear over Fh, so they must also agree on the d+ 1-dimensional subspace spanned by
these linearly independent points. In particular, they agree on at least hd+1 points. As f
and g have (standard) degree at most hd, they must be the same polynomial.

By using a suitable adaptation of a Reed-Solomon decoder, the authors of [KK08]
are able to decode KK codes from the optimal number of errors, as summarized in this
theorem.

Theorem 5.8 ([KK08]). The Kötter-Kschischang code KK[n, k, t] can be uniquely de-
coded in polynomial time from ρ deletions and µ insertions, provided that

ρ+ µ < n− k + 1.

5.3 Rank-metric codes

Rank-metric codes are a kind of error-correcting code in which the distance measure is
not the Hamming metric, but the rank-metric. These codes are of interest in cryptography,
and as finite-field analogues of space-time codes. The fact of most interest to us is that any
rank-metric code can be “lifted” into a subspace code, essentially by adding “headers” to
its rows (see [SKK08]).

Definition 5.9. A rank-metric code is a set of matrices M ∈ Fn×th over a finite field Fh
for fixed n, t.

The rate of a rank-metric code is logh|C|/(nt), and the distance measure between two
codewords is the rank over Fh of their difference; that is, dist(M1,M2) = rankFh(M1 −
M2).

Definition 5.10. We say that a rank-metric code C can be decoded from e rank errors if
any codeword M ∈ C can be recovered from M +E whenever E ∈ Fn×th has rank at most
e.

Note that this model of error, like the subspace distance, is very different from the
standard model using Hamming distance. For example, if the error matrix E is the all-1’s

64

matrix, only one rank error has occurred, but for any codeword M , M + E and M differ
in every coordinate.

One rank-metric code which has been studied extensively is an adaptation of the Reed-
Solomon code for the rank distance, known as the Gabidulin code ([Gab85]). Similar
to the Kötter-Kschischang codes, the Gabidulin code is defined by evaluating linearized
polynomials with low h-degree. In fact, the KK code can be thought of as a lift of a
Gabidulin code, in the sense of [SKK08].

Definition 5.11. A Gabidulin code (denoted CG(h;n, t, k)) encodes h-linearized polyno-
mials over Fht of h-degree less than k by(

f(α1), . . . , f(αn)
)T
,

where the αi ∈ Fht are linearly independent over Fh, and f(αj) is thought of as a column
vector in Fth under a fixed basis of Fht over Fh.

This is a rank-metric code of rate k/n and minimum distance n− k + 1.

The distance property can be shown for Gabidulin codes in the same way that we
showed it for KK codes.

Many of the algorithms for uniquely decoding Reed-Solomon codes can be adapted
to decode Gabidulin codes (see, for example, [Loi05]). In particular, like KK codes,
Gabidulin codes can be decoded up to half of their minimum distance in polynomial time.

5.4 List-decoding subspace and rank-metric codes

Although Reed-Solomon codes adapt nicely to the settings of subspace and rank-metric
codes, it turns out that the case of list-decoding is quite different. As mentioned at the
beginning of this chapter, there is no analogue of the Johnson bound for rank-metric codes.
In fact, not even all Gabidulin codes can be list-decoded from a number of errors which is
more than half the minimum distance.

Theorem 5.12 ([RWZ15]). Let g, s, and n be integers such that g ≥ 2 and sg | n, and let
C be a Gabidulin code over Fnq with d = 2sg and evaluation points α1, . . . , αn ∈ Fnq . Then
there is an explicit word cR ∈ Fnqn \ C such that the number of codewords of C within
distance τ = bd−1

2
c+ 1 of cR is at least

qn − 1

qsg − 1
.

65

5.4.1 List-decodability of random codes

Although we saw in the previous theorem that one of the most natural explicit code con-
structions cannot be list-decoded, it still turns out that there exist good list-decodable codes
in these models. Indeed, as in the Hamming case, random codes will work with high prob-
ability.

We show this result first in the subspace codes case. This theorem first appeared in
joint work with Guruswami and Narayanan in [GNW12].

Theorem 5.13. For every L ≥ 1, for all large enough integers t, n with n ≤ t/2, a random
subspace code C ⊆ Pn(Ftq) of rate R (obtained by picking qRnt subspaces uniformly and
independently at random), is list decodable with high probability from µ deletions and ρ
insertions with list size L, provided

ρ

n
+ (L+ 1)

µ

n
< L− (L+ 1)R .

(The ratios ρ/n and µ/n are the fraction of insertions and deletions, respectively.)

Proof. Fix a subspace T of dimension d, where n−µ ≤ d ≤ n+ρ (the range of dimensions
possible when there are up to t insertions and r deletions). Fix a subset S of (L + 1)
codewords from the random code C. The probability that each subspace in S differs from
T by at most ρ insertions and µ deletions is at most

ρ∑
ρ′=0

µ∑
µ′=0

(qd)n−µ
′
q(n−t)(n−µ′) ≤ O(ρµ)qdn+n2

q−t(n−µ) .

Further this event is independent for different codewords in S by the random choice of
C. By a union bound over all choices of T and S, the probability that C fails to be list-
decodable is at most

qRtn(L+1)qt(n+ρ)
(
qO((n+ρ)2)q−t(n−µ)

)L+1

.

For large enough t, this quantity is q−Ω(t) provided R(L+ 1) + (n+ ρ) < (n−µ)(L+ 1),
or equivalently if ρ

n
+ (L+ 1)µ

n
< L− (L+ 1)R.

It was shown in [Din15] that random codes achieve the best possible list-decoding
radius for the rank-metric case as well.

66

Theorem 5.14 ([Din15]). For every 0 < ε < 1 and 0 < R < 1, let n and t be sufficiently
large positive integers satisfying n/t ≤ ε. Then with high probability, a random rank-
metric code C ⊆ Fnht with rate R is list-decodable from a 1−R− ε fraction of rank errors
with a list size of O(1/ε).

In particular, good list-decodable codes exist, and the challenge is to construct them
efficiently.

5.4.2 Previous list-decodable constructions

List-decoding of a folded variant of the Kötter-Kschischang code was considered inde-
pendently in [GNW12] and [MV12] (the latter also considered a folded Gabidulin code).
However, both of these papers could only guarantee a polynomial list size when the rate
of the code was polynomially small.

Let us briefly sketch our construction of list-decodable subspace codes from [GNW12].

We will write X [i] for the function Xhi . Let γ generate a normal basis for Fht (that is,
the set {1, γ, γ[1], . . . , γ[t−1]} forms a basis).

Definition 5.15 (Linearized FRS codes). Let αi ∈ Fht for i = 1, . . . , n be linearly in-
dependent over Fh. The linearized folded Reed-Solomon code lFRSn,t,s encodes f ∈
Fht [X] by

V = 〈{(αi, f(γαi), f(γ[1]αi), . . . , f(γ[s−1]αi)}ni=1〉

for some parameter s.

By adapting the linear-algebraic decoding algorithm used in Chapter 3, we were able to
give an efficient list-decoding algorithm for the low-rate subcode of the linearized folded
Reed-Solomon code where the polynomial coefficients come from the base field Fh. Al-
though our algorithm also applied to list-decode in the case of general f ∈ Fht [X], the
output list was a subspace over Fht , which is a field of exponential size. This difficulty
also arose in [MV12], as they used the same algorithm.

Note that this sort of dependence is necessary. To see this, consider the case µ = 0
of no deletions. Then if g1, . . . , gn+1 are linearly independent (as coefficient vectors) and
agree with the received subspace, any combination

∑
λigi with

∑
λi = 1 also agrees with

the received subspace, giving a list size of (ht)n.

Thus, constructing an explicit rank-metric or subspace code which achieves both pos-
itive rate and polynomial list size has been a challenge. In the next chapter, we will see

67

a construction of list-decodable subcodes of the Gabidulin and KK codes which not only
meet the goals of positive rate and polynomial list size, but also have the optimal trade-off
between rate and correctable error fraction for any desired rate.

68

Chapter 6

List-decodable rank-metric codes

In which we list-decode Gabidulin codes • Periodic subspaces come in
handy • Linear subcodes reduce list size

In this chapter, we return to the linear-algebraic decoding of Chapter 3 and adapt that
technique to the case of rank-metric codes. Specifically, we give an algorithm to decode
Gabidulin codes whose output list is potentially exponential in size. We then show how
to construct subcodes which reduce this list size to polynomial, using a refinement of the
subspace-evasive sets which we used in Chapter 3. We also show how to apply these
techniques to subspace codes and so-called low-order folded Reed-Solomon codes.

Recall that the linear-algebraic method is broken up into two steps: interpolation,
where we find a condition satisfied by nearby messages, and root-finding, where we solve
for these messages. In most cases when applying this method, there is a natural choice for
the interpolated polynomial, and the difficulty lies in the root-finding step, where we must
ensure that the output list is short. In Chapter 3, we bounded the list size by showing that
the dimension of the solution space was constant.

As alluded to in Chapter 5, the difficulty in applying this type of analysis to Gabidulin
codes (and rank-metric codes in general), is that for a polynomial of degree k − 1, we
require n ≥ k evaluation points which are linearly independent over the base field Fh.
This means that we are working in a field of size at least hn, so any nontrivial subspace
over this field has exponential size in the codeword dimensions. That is, merely bounding
the dimension of the output list is not sufficient to give a polynomial list size.

To improve the list size guarantee, we prove that the list output by the linear-algebraic
decoder has a more rigid structure than simply being a subspace of some dimension, and

69

Table 6.1: Parameters used in this chapter
Parameter Meaning Value

R target code rate constant in (0, 1)

ε gap to capacity (error rate 1−R− ε) constant in (0, 1)

Fh base field (codes will be Fh-linear) h arbitrary

k degree of polynomial being encoded growing

Fhn := Fq extension spanned by evaluation points n = Ω(k), growing

Fqm = Fht field of polynomial coefficients m ≈ 1/ε2 is constant

s folding parameter of algorithm (see Section 6.1) s ≈ 1/ε is constant

hO(ms/ε) final output list size hpoly(1/ε) (polynomial)

we use this fact to construct pseudorandom subsets which evade this structure, similar to
the way we used subspace-evasive sets in Chapter 3.

As there is a lot of notation in this chapter, we summarize the main parameters in
Table 6.1. We will work with polynomial evaluation codes over Fht where the evaluation
points come from a subfield Fhn , and our goal is to list-decode rateR codes from a 1−R−ε
error fraction.

The results in this chapter appear in joint work with Guruswami and Xing in [GWX15].

6.1 List-decoding Gabidulin codes

In this section, we show how to apply linear-algebraic list-decoding to the special case of
Gabidulin codes over Fqm where the evaluation points span the subfield Fq of Fqm . This
restriction helps us to simulate the algebraic folding used in Chapter 3: if α is in Fq, then
we can use f(α) to compute fσ(α) = f(α)q, where σ is the Frobenius automorphism of
Fqm over Fq (precise details below).

Although we will not be able to prove a polynomial list size bound for Gabidulin codes
themselves, our goal is to show that the list output by our algorithm is highly structured, a
fact we will then use in the next section.

Let us first introduce the notion of periodic subspaces, the structured sets which we
will be using. Below, for a string x = (x1, x2, . . . , x`), we denote by proj[a,b](x) the

70

substring (xa, xa+1, . . . , xb).

Definition 6.1 (Periodic subspaces). For positive integers s,m, k and κ := mk, an affine
subspace H ⊂ Fκq is said to be (s,m, k)-periodic if there exists a subspace W ⊆ Fmq of
dimension at most s such that for every j = 1, 2, . . . , k, and every prefix a ∈ F(j−1)m

q , the
projected affine subspace of Fmq defined by

{proj[(j−1)m+1,jm](x) | x ∈ H and proj[1,(j−1)m](x) = a}

is contained in an affine subspace of Fmq given by W + va for some vector va ∈ Fmq
dependent on a.

Definition 6.2 (Representing periodic affine subspaces). The canonical representation of
an (r,Λ, b)-periodic subspace H consists of a matrix B ∈ FΛ×Λ

q such that ker(B) has
dimension at most r, and vectors ai ∈ FΛ

q and matrices Ai,j ∈ FΛ×Λ
q for 1 ≤ i ≤ b and

1 ≤ j < i, such that x ∈ H if and only if for every i = 1, 2, . . . , b the following holds:

ai +
(i−1∑
j=1

Ai,j · proj[(j−1)Λ+1,jΛ](x)
)

+B · proj[(i−1)Λ+1,iΛ](x) = 0 .

Very loosely, a periodic subspace can be broken up into blocks of length m which
“look like” shifts of the same low-dimensional subspace. We will give a list-decoding
algorithm whose output is a periodic subspace.

Recall the Gabidulin codes from Definition 5.11. We will choose n evaluations points
α1, α2, . . . , αn that are linearly independent over Fh from the subfield Fhn . Put q = hn

and m = t
n

, so that Fhn = Fq and Fht = Fqm . In this case, we also denote CG(h;n, t, k) by
CG(q;n,m, k). Suppose that a codeword Mf = (f(α1), f(α2), . . . , f(αn))T is transmitted
and Y = (y1, y2, . . . , yn)T is received with at most e rank errors (note that we identify
every row vector in Y with an element yi in Fht = Fqm).

We will need the following fact:

Lemma 6.3. Let X, Y ∈ Mn×t(Fh) with rank(X − Y) ≤ e. Then dimFh(〈X〉 ∩ 〈Y 〉) ≥
dimFh(〈X〉)− e.

Proof. First we observe that the two Fh-spaces 〈X〉+ 〈Y 〉 and 〈X − Y 〉+ 〈Y 〉 are equal.
Thus,

dimFh(〈X〉) + dimFh(〈Y 〉)− dimFh(〈X〉 ∩ 〈Y 〉)
= dimFh(〈X − Y 〉) + dimFh(〈Y 〉)− dimFh(〈X − Y 〉 ∩ 〈Y 〉).

71

This gives

dimFh(〈X〉 ∩ 〈Y 〉) = dimFh(〈X〉)− dimFh(〈X − Y 〉) + dimFh(〈X − Y 〉 ∩ 〈Y 〉)
≥ dimFh(〈X〉)− e ,

completing the proof.

We now adapt the linear-algebraic decoding of Chapter 3 to the case of Gabidulin
codes. As always, the algorithm is broken up into the two steps of interpolation and root-
finding.

Interpolation step. Let 1 ≤ s ≤ m be an integer parameter of the algorithm. Choose the
“degree parameter” D =

⌊
n−k+1
s+1

⌋
.

Definition 6.4. Let L be the space of polynomialsQ ∈ Fqm [X,Z1, Z2, . . . , Zs] of the form
Q(X,Z1, Z2, . . . , Zs) = A0(X)+A1(Z1)+A2(Z2)+· · ·+As(Zs), with eachAi ∈ Fqm [X]
being an h-linearized polynomial and degh(A0) ≤ D + k − 1 and degh(Ai) ≤ D for
i = 1, 2, . . . , s.

The following lemma shows that we can find a nonzero polynomial satisfying certain
interpolation conditions.

Lemma 6.5. There exists a nonzero polynomial Q ∈ L such that

Q(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i) = 0

for i = 1, 2, . . . , n. Further such a Q can be found using O(n3) operations over Fqm .

Proof. Note that L is an Fqm-vector space of dimension (D + k) + s(D + 1) = (D +
1)(s + 1) + k − 1. This dimension is bigger than n by our choice of D. The conditions
imposed by the Lemma amount to n homogeneous linear conditions on Q. Since this is
smaller than the Fqm-dimension of L, there must exist a nonzero Q ∈ L that meets the
interpolation conditions Q(αi, yi, y

q
i , y

q2

i , · · · , y
qs−1

i) = 0 for i = 1, 2, . . . , n. Finding such
a Q amounts to solving a homogeneous linear system over Fqm with n constraints and at
most dimFqm (L) ≤ n+ s+ 2 unknowns, which can be done in O(n3) time using Gaussian
elimination.

Lemma 6.6 below shows that any polynomial Q given by Lemma 6.5 yields an alge-
braic condition that the message functions f we are interested in list decoding must satisfy.
For a polynomial f(X) = f0 + f1X + · · · + fk−1X

k−1, we will write fσ to denote the
polynomial fσ(X) = f q0 + f q1X + · · ·+ f qk−1X

k−1, and fσi for
(
fσ

i−1)σ. (In other words,
σ is the Frobenius automorphism of Fqm over Fq.)

72

Lemma 6.6. Let f ∈ Fqm [X] be a h-linearized polynomial with h-degree at most k −
1. Suppose that a codeword Mf = (f(α1), f(α2), . . . , f(αn))T is transmitted and Y =
(y1, y2, . . . , yn)T is received with at most e rank errors. If e ≤ s(n − k)/(s + 1), then
Q(X, f(X), fσ(X), fσ

2
(X), · · · , fσs−1

(X)) = 0.

Proof. The polynomial f(X) defines an Fh-linear map from Fhn = Fq to Fqm . Denote by
A and B the n× 2t matrices ((α1, α2, . . . , αn)T ,Mf) and ((α1, α2, . . . , αn)T , Y), respec-
tively. It is clear that rank(A − B) = rank(Mf − Y) ≤ e and rank(A) = n. Thus, it
follows from Lemma 6.3 that dimFh(〈A〉 ∩ 〈B〉) ≥ n− e. This implies that there exists an
Fh-subspace U of span{α1, α2, . . . , αn} of dimension at least n − e such that, for every
α =

∑n
i=1 ciαi ∈ U with ci ∈ Fh, one has

∑n
i=1 cif(αi) =

∑n
i=1 ciyi. Hence,

0 =
n∑
i=1

ciQ(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i)

= Q(α, f(α), f(α)q, . . . , f(α)q
s−1

)

= Q(X, f, fσ, . . . , fσ
s−1

)(α) .

As the h-degree of Q(X, f, fσ, . . . , fσ
s−1

) is at most D + k − 1, under the condition

D + k − 1 < n− e, (6.1)

we have

Q(X, f, fσ, . . . , fσ
s−1

) = A0(X) + A1(f(X)) + A2(fσ(X)) + · · ·+ As(f
σs−1

(X)) = 0.
(6.2)

This completes the proof since (6.1) is indeed satisfied by our given condition on e and
choice of D = bn−k+1

s+1
c.

Finding candidate solutions. We want to study the structure of a linearized polynomial
f satisfying the condition of Lemma 6.6.

Lemma 6.7. The set of solutions f =
∑k−1

i=0 fiX
hi ∈ Fqm [X] to the equation

A0(X) + A1(f(X)) + A2(fσ(X)) + · · ·+ As(f
σs−1

(X)) = 0 (6.3)

when at least one of {A0, A1, . . . , As} is nonzero is an (s− 1,m, k)-periodic subspace. A
canonical representation of this periodic subspace (in the sense of Definition 6.2) can be
computed in poly(k,m, log q) time.

73

Proof. If f, g are two solutions to (6.3), then so is αf + βg for any α, β ∈ Fq with
α + β = 1. So the solutions to (6.3) form an affine Fq-subspace. We now proceed to
analyze the structure of the subspace.

First, replacing eachA0, A1, . . . , As withAhj0 , A
hj

1 , . . . , A
hj

s for some j, we can assume
that at least one Ai∗(X) for some i∗ ∈ {0, 1, . . . , s} has a nonzero coefficient on X .
Further, if each of A1(X), . . . , As(X) has zero coefficient on X , then so does A0(X), so
we can take i∗ > 0.

Let us denote Aι(X) = aι,0X + aι,1X
h + aι,2X

h2 + · · · for ι = 0, 1, 2, . . . , s. For
l = 0, 1, 2, . . . , k − 1, define the linearized polynomial

Bl(X) = a1,lX + a2,lX
q + a3,lX

q2 + · · ·+ as,lX
qs−1

. (6.4)

We know that ai∗,0 6= 0, and therefore B0 6= 0. This implies that the solutions β ∈ Fqm to
B0(β) = 0 is a subspace, say W , of Fqm of dimension at most s− 1.

Fix an i ∈ {0, 1, . . . , k−1}. Expanding the equation (6.3) and equating the coefficient
of X i to be 0, we get

a0,i +Bi(f
hi

0) +Bi−1(fh
i−1

1) + · · ·+B1(fhi−1) +B0(fi) = 0 . (6.5)

This implies fi ∈ W + θi for some θi ∈ Fqm that is determined by f0, f1, . . . , fi−1. There-
fore, for each choice of f0, f1, . . . , fi−1, fi must belong to a fixed coset of the subspace W
of dimension at most s − 1. Thus, the solutions belong to an (s − 1,m, k)-periodic sub-
space. Also, it is clear from (6.5) that a canonical representation of the periodic subspace
can be computed in poly(k,m, log q) time.

Combining Lemmas 6.6 and 6.7, we see that one can find an (s − 1,m, k)-periodic
subspace that contains the coefficients of all polynomials whose encodings differ from the
input (y1, . . . , yn) by a matrix of rank at most s

s+1
(1 − R)n (where R is the rate). When

s � m, this dimension is much smaller than the dimension of the message space of the
Gabidulin code CG(q;n,m, k) over Fq, which is km.

6.2 List size reduction via subspace designs

We now turn our attention to constructing sets which will “evade” periodic subspaces. As
before, we will think of subspaces W ⊆ Fmq as Fh-subspaces of Fmnh via some fixed basis
embedding.

74

Definition 6.8. A collection S of Fh-subspaces H1, . . . , HM ⊆ Fmnh is called an (s, A, n)
Fh-subspace design if for every Fhn-linear space W ⊂ Fmhn of dimension s,

M∑
i=1

dimFh(Hi ∩W) ≤ A.

Note that in the above definition the dimension of the input W is measured as a subspace
over Fhn whereas for the intersection, which is an Fh-subspace, the dimension is over Fh.
Remark. When n = 1, these are the (strong) subspace designs of [GK13]. We will be
interested in settings where n is super-constant, so that considering W as a subspace of
dimension sn over Fh will generally not give strong enough bounds.

The motivation for this definition is the following, which shows that such designs yield
sets which have low intersection with periodic subspaces.

Proposition 6.9. Let H be an (s,m, k)-periodic affine subspace of Fmkq (in the sense of
Definition 6.1), and let H1, H2, . . . , Hk ⊆ Fmnh be distinct subspaces from an (s, A, n) Fh-
subspace design. Then H ∩ (H1 × · · · ×Hk) is an affine subspace over Fh of dimension
at most A.

Proof. It is clear that H ∩ (H1 × · · · × Hk) is an affine subspace over Fh. Let W
be the subspace associated to H as in Definition 6.1. We will show by induction that
|proj[1,im](H) ∩ (H1 × · · · ×Hi)| ≤ h

∑i
j=1 dimFh (W∩Hj).

In the base case, since H1 is a subspace, proj[1,m](H) ∩ H1 = (W + v0) ∩ H1 is an
affine subspace whose underlying subspace lies inW ∩H1. In particular, its size is at most
hdim(W∩H1).

Continuing, fix an element a ∈ proj[1,im](H)∩ (H1×· · ·×Hi). BecauseH is periodic
and Hi+1 is linear, the possible extensions of a in proj[im+1,(i+1)m](H) ∩ Hi+1 are given
by a coset of W ∩ Hi+1. Thus, there are at most hdim(W∩Hi+1) such extensions. Since by
induction there were h

∑i
j=1 dimFh (W∩Hj) possibilities for the prefix a, the result follows.

In particular, the dimension of H ∩ (H1×· · ·×Hk) over Fh is at most
∑k

i=1 dim(W ∩
Hi) ≤ A, by the subspace design property.

6.2.1 Existential bounds

The following proposition shows that good subspace designs exist; indeed, a random col-
lection of subspaces works with high probability. The case n = 1 was established in
[GK13].

75

Proposition 6.10. Let ε > 0. Let S consist of M = hεmn/8 Fh-subspaces of codimension
εmn in Fmnh , chosen independently at random. Then for any s < mε/2, with probability
at least 1− q−ms, S is an (s, 8s/ε, n) Fh-subspace design. (Here q = hn.)

Proof. Set ` = 8s/ε, and let S = {H1, . . . , HM}. For a fixed Fhn subspace W of dimen-
sion s and any j, the probability that dimFh(W ∩Hj) ≥ a is at most qsa ·q−εma ≤ q−εma/2,
by assumption on s.

Since the Hi are independent, for a fixed tuple (a1, . . . , aM) of nonnegative integers
summing to ` = 8s/ε, the probability that dim(W ∩ Hj) ≥ aj for each j is at most
q−εm`/2 = q−4ms. Union bounding over the at most qms choices of W and

(
`+M
`

)
≤ M2`

choices of (a1, . . . , aM), the probability S is not an (s, 8s/ε, t) Fh-subspace design is at
most

qmsM2` · q−4ms = qms · q2ms · q−4ms ≤ q−ms .

6.2.2 Constructive bounds

In this section, we show how to construct an explicit large
(
s, 2(m−1)s/ε, n

)
Fh-subspace

design consisting of Fh-subspaces of Fmnh of codimension 2εmn.

The idea, which is natural in hindsight, is to first use a subspace design over Fhn to
ensure that the intersection with any Fhn-subspace of dimension s has low dimension over
Fhn , and then to use a subspace-evasive set to reduce the dimension further over Fh. The
final construction appears as Theorem 6.14.

Explicit subspace-evasive sets

We first describe the construction of explicit subspace-evasive sets which we will be using.
Recall that we first defined subspace-evasive sets in Chapter 3, where they were used to
construct list-decodable codes with small list size.

Let q > hm−1, and let γ1, . . . , γm be distinct nonzero elements of Fq. Then Dvir and
Lovett [DL12] showed the following:

Theorem 6.11 ([DL12]). Let 1 ≤ s ≤ m. Let d1 > d2 > · · · > dm ≥ 1 be integers.
Define f1, . . . , fs ∈ Fq[X1, . . . , Xm] as follows:

fi(x1, . . . , xm) =
m∑
j=1

γijx
dj
j . (6.6)

76

Then:

• The variety V = {x ∈ Fm

q | f1(x) = · · · = fs(x) = 0} satisfies |V ∩ H| ≤ (d1)s

for all s-dimensional affine subspaces H ⊂ Fmq .

• If at least s of the degrees di are relatively prime to q − 1, then |V ∩ Fmq | = qm−s.

Additionally, the product set (V ∩ Fmq)n/m ⊆ Fnq is (k, (d1)k)-subspace evasive for all
k ≤ s.

The below statement follows immediately from Theorem 6.11 and the fact that when
the dj’s are powers of h, the polynomials fi defined in (6.6) are Fh-linear functions on Fmq .

Corollary 6.12. Setting d1 = hm−1, d2 = hm−2, . . . , dm = 1, we obtain an explicit Fh-
linear set S of size q(m−s)n/m over Fnq which is (k, h(m−1)k) subspace-evasive for all 1 ≤
k ≤ s.

Remark. One can improve on the degree bounds and therefore the final intersection size
via a standard subspace-evasive set without the Fh-linearity requirement. For example,
[DL12] gives a construction of a (non-linear)

(
s, (s/ε)s

)
subspace-evasive set over Fnq of

size q(1−ε)n.

However, especially in applications for rank-metric codes, linearity is a property which
is desirable and often necessary.

Combining with subspace designs

The following theorem shows how to achieve our initial goal of ensuring small intersection
dimension over the larger field Fhn .

Theorem 6.13 ([GK13]). For ε ∈ (0, 1), positive integers s,m with s ≤ εm/4, and q >
m, there is an explicit collection of M = qΩ(εm/s) subspaces in Fmq , each of codimension
at most εm, which form an (s, 2s/ε, 1) Fq-subspace design.

Moreover, bases for N ≤ M elements of this collection can be computed in time
poly

(
char(Fq),m,N

)
.

Remark. The runtime stated in [GK13] is polynomial in the field size q, dominated by the
cost of computing a representation of an extension Fqr of the field Fq. It has been shown
(see Theorem 4.1 in [Sho88]) that this representation can be found in the faster runtime
claimed above.

77

Combined with Corollary 6.12, we now have a construction of a (s, 2(m − 1)s/ε, n)
Fh-subspace design, summarized in the following statement.

Theorem 6.14. For integers s ≤ εm/4 and q = hn > m, there exists an explicit set of
qΩ(εm/s) Fh-subspaces in Fmnh of codimension at most 2εmn forming an (s, 2(m−1)s/ε, n)
Fh-subspace design.

Proof. Let V1, . . . , VM ⊆ Fmq be the elements of the (s, 2s/ε, 1) Fq-subspace design of
Theorem 6.13. For each i, defineHi = Vi∩S, where S ⊆ Fmq is the (s, h(m−1)s) subspace-
evasive set of Corollary 6.12. As S and the Vi’s are Fh-linear subspaces, Hi is as well. We
claim that the Hi’s form the desired Fh-subspace design.

Recall that q = hn. For each i, Vi has Fh-codimension εmn, and S has Fh-codimension
sn ≤ εmn/4, so the codimension of Hi is at most 2εmn over Fh.

Now let W be an Fq-subspace of dimension s. By the Fq-subspace design property of
the Vi’s we have

M∑
i=1

dimFq(Vi ∩W) ≤ 2s/ε . (6.7)

For each i, we also have that dimFq(W ∩ Vi) = si ≤ s, so by the subsace evasive property
of S from Corollary 6.12, W ∩ Hi = (W ∩ Vi) ∩ S has at most h(m−1)si elements. As
W ∩Hi is Fh-linear, we have

dimFh(W ∩Hi) ≤ (m− 1) dimFq(W ∩ Vi) . (6.8)

Combining (6.7) and (6.8) we have∑
i

dimFh(W ∩Hi) ≤
∑
i

(m− 1) dimFq(W ∩ Vi) ≤ (m− 1) · 2s/ε .

6.2.3 Explicit list-decodable rank-metric codes

We now apply the subspace designs of Theorem 6.14 to give explicit list-decodable sub-
codes of the Gabidulin code when the evaluation points span a subfield. By Lemma 6.7,
the linear-algebraic decoding outputs a periodic subspace containing the original message.

By Proposition 6.9, by restricting the message polynomials f =
∑

i fiX
hi to have

coefficients fi ∈ Hi+1 for 0 ≤ i < k, where H1, H2, . . . , Hk are distinct elements of the
subspace design in Theorem 6.14, we obtain a fully explicit Fh-linear code. In particular,

78

this code admits an efficient (linear) encoding function. The dimension of the code is at
least kt− 2εknm, by Theorem 6.14. Recalling that t = nm, the final rate of the code is at
least (1− 2ε)k/n.

Because our linear-algebraic decoding algorithm outputs a periodic subspace, the final
list of candidate messages, which is the intersection of this periodic subspace with our
code, will have dimension at most 2(m−1)s/ε over Fh. In addition, as both sets are linear,
this intersection can be computed efficiently in terms of t, log h, and the intersection size
hO(ms/ε).

As one can take m = O(s/ε) for the necessary subspace design guaranteed by Theo-
rem 6.14, we can conclude the following theorem.

Theorem 6.15. For every ε ∈ (0, 1) and integer s > 0, there exists an explicit Fh-linear
subcode of the Gabidulin code CG(h;n, t, k) with evaluation points spanning Fhn of rate
(1 − 2ε)k/n which is list-decodable in polynomial time from up to s

s+1
· (n − k) rank

errors. The final list is contained in an Fh-subspace of dimension at most O(s2/ε2), and
thus has size at most hO(s2/ε2).

By setting s to be O(1/ε), we obtain a code of rate R = (1 − 2ε)k/n which is list-
decodable from up to (1−R− ε)n rank errors, with a list size of hpoly(1/ε).

Remark. It is possible to obtain an improved list size of O(1/ε) using a Monte Carlo
construction of the list-decodable subcode. For details, see [GX13].

Remark. The authors of [MV12] use a “folded” variant of Gabidulin codes to obtain an
explicit code with a similar trade-off between rate and correctable error radius as in Theo-
rem 6.15. However, the output list size for this folded variant is exponential in the dimen-
sion of the code when the rate is constant (see the discussion in Chapter 5).

6.3 Explicit list-decodable subspace codes

In this section, we show that a similar approach to that of the previous section also gives
explicit list-decodable subspace codes. These codes are obtained by taking subcodes of
the Kötter-Kschischang (KK) codes defined in Chapter 5.

Our results, as in the Gabidulin case, will only hold when the evaluation points are
chosen to span a subfield, rather than being arbitrary linearly independent points. To fix
the notation, let us recall the definition of the KK codes in this context below.

For n dividing t, let Fht extend Fh, and let α1, . . . , αn ∈ Fht generate the subfield
Fhn := Fq.

79

Set m = t/n. Then the (n, k, t) KK code encodes an Fh-linearized polynomial over
Fqm = Fht of h-degree < k by

f(X) 7→ span{(αi, f(αi))}ni=1.

6.3.1 Linear algebraic list-decoding for subspace codes

We now present a list decoding algorithm for the above KK codes. The algorithm follows
the earlier linear-algebraic list decoding algorithm for Gabidulin codes.

As in Chapter 5, the error level will be quantified by two integer parameters: (i) ρ,
the maximum number of insertions allowed, and (ii) µ, the maximum number of deletions
allowed.

Suppose a codeword Vf encoded from f is transmitted. In the above error model, the
subspace Vf is received as U = W ⊕ E, where dimFh(E) ≤ ρ and W is a subspace of Vf
with dimFh(Vf)− dimFh(W) := ν ≤ µ. Assume that dimFq(U) = d.

Consider a nonzero polynomial in Fqm [X, Y1, Y2, . . . , Ys] with 1 ≤ s ≤ m

Q(X, Y1, Y2, . . . , Ys) = A0(X) + A1(Y1) + A2(Y2) + · · ·+ As(Ys), (6.9)

where every Ai ∈ Fqm [X] is a h-linearized polynomial with degh(A0) ≤ D + k − 1 and
degh(Ai) ≤ D for i = 1, . . . , s; and D is chosen to be

D =

⌊
d− k − s+ 1

s+ 1

⌋
. (6.10)

Choose an Fh-basis {(ai, bi)}di=1 of U (where ai ∈ Fq and bi ∈ Fqm) and we interpolate a
polynomial Q of the above form satisfying

Q(ai, bi, b
q
i , . . . , b

qs−1

i) = 0 for i = 1, 2, . . . , d .

There are d equations, but D + k + s(D + 1) = (s+ 1)D + k + s freedoms in Q. Hence,
such a nonzero polynomial Q exists since d < (s + 1)D + k + s. It is clear that for all
(α, f(α)) ∈ W , we have

0 = Q(α, f(α), f(α)q, . . . , f(α)q
s−1

) = Q(X, f, fσ, . . . , fσ
s−1

)(α),

where σ is the Frobenius automorphism of Fqm over Fq, i.e., σ sends every element α in
Fqm to αq.

80

As the h-degree of Q(X, f, fσ, . . . , fσ
s−1

) is at most D + k − 1, under the condition

D + k − 1 < n− ν, (6.11)

we have

Q(X, f, fσ, . . . , fσ
s−1

) = A0(X) + A1(f(X)) + A2(fσ(X)) + · · ·+ As(f
σs−1

(X)) = 0.
(6.12)

Note that we have

ρ < s(n−µ−k+1)⇒ ρ < s(n−ν−k+1)⇒ d−n+ν < s(n−ν−k+1)⇒ D+k−1 < n−ν.

Thus, Condition (6.11) is met if

sµ+ ρ < s(n− k + 1). (6.13)

The above analysis shows that we can list decode up to ρ insertions and µ deletions as
long as ρ and ν satisfy (6.13).

The equation (6.12) satisfied by f is identical to (6.3), and therefore one can pin down
f to an affine space of solutions exactly as in Lemma 6.7.

6.3.2 Explicit list-decodable subcodes

The result of the previous section shows that the linear algebraic list-decoder outputs a
periodic subspace.

As in the rank-metric case, we can improve the list size using subspace designs. By
restricting the coefficients of the message polynomial f to come from distinct H1, . . . , Hk

from the
(
s, 2(m− 1)s/ε, t

)
-subspace design of Theorem 6.14, and setting m ≈ s/ε, we

can prune this list down to a Fh-subspace of dimension O(s2/ε2).

Notice that the Hi’s are Fh-linear subspaces, so the restricted subcode is linear. In
summary, we have:

Theorem 6.16. For every ε ∈ (0, 1) and integer s > 0, there exists an explicit linear sub-
code of the

(
n, k, sn/ε

)
KK code of rate (1−ε)k/n which is list-decodable in polynomial

time from up to ρ insertions and µ deletions, provided ρ+ sµ < s(n− k + 1).

Moreover, the output list is contained in an Fh-subspace of dimension O(s2/ε2), and
thus has size hO(s2/ε2).

81

We conclude by commenting on the quality of our condition (6.13) for successful de-
coding, which is implied by the condition

µ+
ρ

s
< n

(
1−R− t

n

)
, (6.14)

where R is the rate (5.1) of the code. For comparison, the condition for successful decod-
ing for the folded KK codes in [GNW12] is (essentially)

µ+
ρ

s
< n(1−Rt)

which necessitates a sub-constant rate for the code (a similar situation holds for [MV12]).

Recall that in Theorem 5.13, we showed the existence of subspace codes that can be
list decoded with list size L when

µ+
ρ

L+ 1
< n

(
1−R− 1

L+ 1

)
, (6.15)

whereR is the rate of the code. To compare this with our result for KK codes, we note that
after the combination with Theorem 6.14, we can take s = Θ(1/ε), m = t/n = Θ(1/ε2),
and have a list decodable subspace code that can correct µ deletions and ρ insertions pro-
vided

µ+ ερ < n(1−R− ε) ,
with a worst-case output list size of hpoly(1/ε). This essentially matches the existential
trade-off (6.15), with a larger (but still polynomial) list size.

The correctable error radius shown in this work matches that shown in [MV12], allow-
ing for decoding up to the Singleton bound. However, we are able to prove a polynomial
list size for our code, whereas the size of the list output by the decoder of [MV12] must
be exponential in the dimension of the codewords, as discussed in Chapter 5.

6.4 Application to low-order folding of Reed-Solomon codes

In this section, we show how the idea of only evading subspaces over an extension field
can be used to give an algorithm for list-decoding (subcodes of) folded Reed-Solomon
codes in the case when the folding parameter has low (O(1)) order.

As in the case of KK codes, our decoding algorithm follows the framework of inter-
polating a linear polynomial and then solving a linear system for candidate polynomials.

82

Let ` be an integer dividing q − 1, and fix γ generating F∗q . Let N = q−1
`

, and let
ζ = γN , which has order ` in Fq. Then the low-order folded Reed-Solomon code encodes
a polynomial f of degree < k by

f 7→


f(1) f(γ) · · · f(γN−1)
f(ζ) f(ζγ) . . . f(ζγN−1)
...

...
. . .

...
f(ζ`−1) f(ζ`−1γ) . . . f(ζ`−1γN−1)

 .
Similarly to folded Reed-Solomon codes (as seen in Chapter 3), this is a code of rate

R = k
`N

and distance N − (k − 1)/`. Whereas the results of Chapter 3 show how to list-
decode these codes when the order of ζ is at least k, we are now interested in the case when
ζ has constant order. This setting of parameters, when the order of the folding parameter
is independent of the code size, is of interest because of its relationship to Reed-Solomon
list-decoding (see Section 6.4.4). However, we will only be able to list-decode subcodes
of these codes.

In what follows, we give a list-decoding algorithm for low-order folded Reed-Solomon
codes and show that we can give explicit subcodes of rate R which are efficiently list-
decodable up to a 1−R− ε fraction of errors.

6.4.1 Interpolation

Given a received word 
y00 y01 . . . y0(N−1)

y10 y11 . . . y1(N−1)

...
...

. . .
...

y(`−1)0 y(`−1)1 . . . y(`−1)(N−1)

 ,

and an integer parameter s, we would like to interpolate a (nonzero) polynomial

Q(X, Y1, . . . , Ys) = A0(X) + A1(X)Y1 + · · ·+ As(X)Ys

such that

Q
(
γiN+j, yij, y(i+1)j, . . . , y(i+s−1)j

)
= 0 i ∈ {0, . . . , `− 1}, j ∈ {0, . . . , N − 1},

(6.16)
where all indices are taken modulo `.

We will require deg(A0) ≤ D + k − 1, and deg(Ai) ≤ D for i > 0.

83

Lemma 6.17. Let

D =

⌊
`N − k + 1

s+ 1

⌋
.

Then a nonzero polynomialQ satisfying (6.16) exists (and can be found by solving a linear
system).

Proof. The number of interpolation conditions is `N . The quantity (D + 1)(s+ 1) + k −
1 > `N is the number of degrees of freedom for the interpolation, and the conditions are
homogeneous, so a nonzero solution exists.

Lemma 6.18. If the number of agreements t is greater than D+k−1
`

, then

Q
(
X, f(X), f(ζX), . . . , f(ζs−1X)

)
= 0. (6.17)

Proof. Q
(
X, f(x), . . . , f(ζs−1X)

)
is a univariate polynomial of degree D + k − 1, and

each correct column j yields ` distinct roots γiN+j for i ∈ {0, . . . , ` − 1}. Thus if t` >
D + k − 1 ≥ degQ, Q is the zero polynomial.

For our choice of D, the requirement on t in Lemma 6.18 is met if t satisfies

t

N
≥ 1

s+ 1
+

s

s+ 1
R. (6.18)

Remark. In ordinary folded Reed-Solomon codes, where the folding parameter is primitive
of order q − 1, the agreement fraction required to satisfy (6.17) is

t

N
≥ 1

s+ 1
+

s

s+ 1

`R

`− s+ 1
,

which is higher than (6.18). In our case, because ζ has low order, we are able to use inter-
polation conditions that “wrap around,” allowing us to impose ` conditions per coordinate
rather than `− s+ 1. Therefore we can satisfy Equation (6.17) with lower agreement. On
the other hand, it is known how to list-decode folded Reed-Solomon codes themselves,
whereas we are only able to list-decode a subcode.

6.4.2 Decoding

In this section, we describe how to solve the system

Q
(
X, f(X), f(ζX), . . . , f(ζs−1X)

)
= 0 (6.17)

for candidate polynomials f .

84

Proposition 6.19. Let P (X) ∈ Fq[X] be an irreducible polynomial such that

• degP ≥ k, and

• for some a, ζX ≡ Xqa (mod P).

Then the set of f of degree < k satisfying (6.17) is an Fqa-affine subspace of dimension at
most s− 1.

Proof. The condition (6.17) says

0 = A0(X) + A1(X)f(X) + A2(X)f(ζX) + · · ·+ As(X)f(ζs−1X).

Then we have

A0(X) + A1(X)f(X) + A2(X)f(X)q
a

+ · · ·+ As(X)f(X)q
(s−1)a ≡ 0 (mod P).

By dividing out the highest power of P which divides every Ai, Equation (6.17) is still
satisfied and we may assume that this equation is nonzero mod P .

In particular, this equation has at most q(s−1)a solutions for f mod P . When deg f <
k ≤ degP , f is uniquely determined by its residue mod P and there are at most q(s−1)a

solutions for f .

The fact that the solution space is Fqa-affine follows from the fact that the terms in
which f(X) appears all have degree qai for some i.

Because the output space is a subspace (over the large field Fqa), by picking the mes-
sage polynomials f to come from a subspace-evasive set, we can reduce the list size bound.
More specifically, if ` is at least s/ε, [DL12] gives a construction of a (s, (s/ε)s) subspace-
evasive set S over (Fqa)k/a of size q(1−ε)k. By precoding the messages to come from this
set S, we are able to both encode and compute the intersection of the code with the output
subspace of Proposition 6.19 in polynomial time.

Setting s = O(1/ε) and ` = O(s/ε), we obtain the following.

Corollary 6.20. For every ε > 0 and R ∈ (0, 1), there is an explicit rate R subcode of a
low-order folded Reed-Solomon code which is list-decodable from a 1−R− ε fraction of
errors with list size (1/ε)O(1/ε), given an irreducible polynomial satisfying the conditions
of Proposition 6.19.

85

Remark. By using Corollary 6.12 instead of the results of [DL12], we can give a similar
guarantee which yields a linear subcode, but with a larger list size guarantee of qpoly(1/ε).

The techniques of [GX13] using subspace designs could also be applied directly to the
case of low-order folding, with a resulting list size of npoly(1/ε). We are able to get an im-
provement using the observation that the space of candidates is actually a low-dimensional
subspace over a much larger field.

6.4.3 Constructing high-degree irreducibles

The decoding algorithm of the previous section relied on working modulo a high-degree
irreducible factor of Xqa − ζX . In what follows, we consider the problem of finding such
a factor efficiently.

Proposition 6.21. For ζ ∈ Fq of order `, the irreducible factors over Fq[X] of

Xqa−1 − ζ

have degree dividing a`. In particular, all roots of Xqa−1 − ζ lie in Fqa` .

Proof. AsX(qa−1)` ≡ 1 (mod Xqa−1−ζ), it is enough to see that (qa−1)` divides qa`−1.
This implies that Xqa−1 − ζ , and thus all of its irreducible factors, divides Xqa` −X .

Consider
qa` − 1

qa − 1
= qa(`−1) + qa(`−2) + · · ·+ qa + 1.

As ` | q−1, and there are ` terms on the right-hand side, the entire quantity is equivalent
to 0 (mod `), and so (qa − 1)` divides qa` − 1, as desired.

Corollary 6.22. If a and ` with a > 2` are distinct primes, at least half of the roots of
Xqa−1 − ζ have minimal polynomials of degree a`.

Proof. By Proposition 6.21, all irreducible factors of Xqa−1 − ζ have degrees in the set
{1, a, `, a`}. No irreducible factor has degree 1 or a, because any irreducible of degree 1
or a divides Xqa−1 − 1 and therefore does not divide Xqa−1 − ζ for ζ 6= 1.

Because Xqa−1− ζ has no repeated factors, it has at most q` roots which lie in Fq` (and
hence have minimal polynomials of degree `.

Thus, under the assumptions on a and `, Xqa−1 − ζ has at least (qa − q` − 1) ≥ q`

roots of degree a`. Thus at least half of of Xqa−1− ζ’s roots have minimal polynomials of
degree a`.

86

In particular, by choosing a to be a prime in the range [k/`, 2k/`], we have k ≤ a` ≤
2k, so that an irreducible factor ofXqa−1−ζ will satisfy the conditions of Proposition 6.19.
The next section will show that we cannot hope to improve much on the value of a.

Given a value for a for which Xqa−1 − ζ has many degree a` factors, the problem
remains to compute one. In what follows, we describe one randomized approach.

Recall that a and ` are primes, and that we are trying to find a degree a` factor of
Xqa−1−ζ . The idea is to sample a root ofX(qa−1)`−1. Consider the following procedure:

1. Sample β ∈ (Fqa)∗ uniformly at random.

2. Compute the roots ρ1, . . . , ρ` of X` − β, which lie in Fqa` by Proposition 6.21. This
can be done in time Õ(n2 log(qa) log−1 ε) with failure probability ε using a variant
of Berlekamp’s algorithm (see, for example, [Kal92]).

3. Compute ρq
a−1
i for each i and output the minimal polynomial of ρi over Fq if ρq

a−1
i =

ζ .

First note that steps 1–2 sample each root ofX(qa−1)`−1 uniformly. Each ρi computed
in step 2 satisfies ρ`i ∈ (Fqa)∗, so ρi is a root of X(qa−1)` − 1. Conversely, each nonzero β
yields ` distinct roots of X`− β, which are distinct for distinct β, yielding (qa− 1)` roots.

Therefore, with probability 1/`, we will find a root ρ of Xqa−1− ζ . By Corollary 6.22,
ρ’s minimal polynomial has degree a` with probability at least 1/2.

We can thus conclude that, with probability at least 1
2`
−ε, we find an irreducible factor

of Xqa−1 − ζ of degree a`.

6.4.4 Relationship to Reed-Solomon list-decoding

The original motivation for studying low-order folding was the following reduction from
Reed-Solomon codes.

Given a polynomial f of degree < k/` evaluated at distinct points 1, γ`, γ2`, . . . , γN`,
we can think of it as a degree < k polynomial g(X) = f(X`). For ζ of order `, we
have that g(ζ iX) = g(X) for every i. In particular, the associated low-order folded Reed-
Solomon codeword encoding g(X) is simply

f(1) f(γ`) . . . f(γN`)
f(1) f(γ`) . . . f(γN`)
...

...
. . .

...
f(1) f(γ`) . . . f(γN`)

 . (6.19)

87

Notice that if f(γi`) is correct, then the entire ith column is correct, so an algorithm to
list-decode the low-order folded RS code from an η fraction of errors will also list-decode
the Reed-Solomon code with evaluation points (1, γ`, . . . , γN`) from the same error frac-
tion.

This reduction also helps to show that the precoding used to conclude Corollary 6.20 is
necessary for a polynomial list size. To see this, consider the behavior of the algorithm on
a transmitted codeword as in Equation (6.19). If there is enough agreement, the algorithm
will interpolate polynomials Ai(X) satisfying

0 = A0 + A1(X)g(X) + A2(X)g(ζX) + · · ·+ As(X)g(ζs−1X) (6.20)

= A0(X) + g(X)
s∑
i=1

Ai(X). (6.21)

If
∑

i>0Ai(X) is nonzero, then g(X), and thus f(X), can be recovered uniquely as
A0(X)/

∑
i>0Ai(X); however, this will not be possible in general outside of the unique

decoding radius. If
∑

i>0Ai(X) is 0, then A0(X) = 0 as well and any function which is a
polynomial of X` satisfies Equation (6.21), and in particular the output list must have size
at least qk/`. Recall that ` is a constant in our application.

This implies that without precoding, the dimension of the list output by Proposi-
tion 6.19 over Fq must be Ω(k/`). Note that for the value a = θ(k/`) found in Sec-
tion 6.4.3, the list size before precoding would be O(ks/`).

88

Chapter 7

Conclusion and open questions

In which we wrap up this thesis • Alice and Bob look to the future

7.1 Summary

The central question of coding theory is always:

How can we communicate efficiently in the presence of errors?

In this thesis, we have seen how the tools of algebraic coding can be adapted to new
settings, where they allow us to construct good codes for different models. We have stud-
ied:

Efficient coding for high error rates. In the model of list-decoding, we saw the power of
algebraic folding, whether using shifted evaluation points or derivatives. We also saw the
power of finding structure within our algorithms, and devising ways to evade this structure.

Our techniques give new algorithms for old codes, the folded Reed-Solomon codes,
and new algorithms for new codes, the derivative codes. Our algorithms are simple, but
they allow us to list-decode up to capacity, giving codes of rate R which can be decoded
from a 1−R− ε error rate for any positive ε.

We also observe that our algorithm outputs affine subspaces, which leads to construc-
tions of subspace-evasive sets and improved list sizes.

Low-redundancy coding for deletions. In the model of deletions, we saw that even when
our algebraic codes are not quite enough, we can combine them with better, if unwieldy

89

codes to obtain codes which achieve good trade-offs.

Using these ideas, we are able to construct efficient deletion codes which come close to
the best known existential parameters in the extremal cases of high deletion fractions and
high rate. Our work represents the first steps in a systematic study of what is achievable
against adversarial deletions.

Efficient coding for network errors. In the models of subspace and rank-metric coding,
we continued the theme of discovering structure, then avoiding it. We showed that for these
models, our list-decoding techniques output subspaces which satisfy the strong property
of being periodic, and we showed how to evade such subspaces.

Our work gives the first explicit constructions of subspace and rank-metric codes,
based on algebraic codes, which are efficiently list-decodable with a constant rate. In
fact, we are able to go even further, constructing such codes with the optimal trade-off
between rate and correctable error fraction.

7.2 Next steps

Of course, coding theory is far from solved, and there are always new models and new
questions. In this section, we focus on presenting some open directions which arise from
the results presented in this thesis.

7.2.1 List-decoding

We saw in Chapter 3 that optimal-rate list-decoding can be achieved by “folding” together
related Reed-Solomon evaluations. However, we know thanks to [RW14] that folding
may not be necessary: there exist Reed-Solomon codes which can nearly achieve the same
trade-offs. As in many such results, it turns out that a random code will work, and it is up
to us to derandomize the result.

Question. Can we construct an explicit family of Reed-Solomon codes which is list-
decodable beyond the Johnson bound?

On the subject of improving known code constructions, we can return to the (under-
whelming) list sizes resulting from our FRS and derivative decoding algorithms.

Question. Can we improve the upper bounds on the list size for folded Reed-Solomon or
derivative codes?

90

Recalling that we sidestepped this question in Chapter 3 by defining subspace-evasive
sets, which remove some codewords from the code in order to improve the list size, we
can aim to improve the parameters here as well.

Question. Can we give better explicit constructions of subspace-evasive sets? In particular,
can we remove the exponential dependence of the intersection size on the dimension being
evaded?

Note that we already showed this is possible using a random set; the difficulty is, as
always, in making the construction efficient. Such a construction could also be useful in
improving our constructions of rank-metric and subspace codes, where we constructed
sets evading periodic subspaces.

Speaking of matching random parameters, we can also ask whether we can construct
small-alphabet codes matching the parameters of Theorem 2.14.

Question. Can we give an explicit construction of codes of rateR which are list-decodable
from a 1−R− ε error fraction with list size O(1/ε) and alphabet size 2O(1/ε)?

As we have mentioned, the construction of [GX12] comes tantalizingly close to achiev-
ing this goal by adapting the techniques presented in Chapter 3 to certain algebraic-
geometric codes.

7.2.2 Deletion coding

There are still many things we don’t know about deletions, both adversarial and random,
and here we highlight some of the questions remaining for the adversarial case.

One of the most basic questions which is still open concerns the limits of binary dele-
tion codes.

Question. For binary codes, what is the supremum p∗ of all fractions p of adversarial
deletions which are correctable with positive rate? Clearly p∗ ≤ 1/2; could it be that
p∗ = 1/2 and this trivial limit can be matched? Or is it the case that p∗ is strictly less than
1/2?

We showed in Chapter 4 that p∗ = 1/2 if we allow list-decoding. Recent work
in [BG15] shows that p∗ is at least 1/3, leaving a noticeable gap. Notice that this question
is open even without requiring efficient encoding and decoding, although the constructions
in Chapter 4 and [BG15] are both efficient.

It is also reasonable to ask whether our constructions of codes for high deletions and
high rate can be improved. Recall that our construction suffered in parameters because of

91

the concatenation step.

Question. Can we construct codes of rate 1 − p − γ to efficiently correct a fraction p of
deletions over an alphabet size that only depends on γ?

Note that this requires a relative distance of p, and currently we only know algebraic-
geometric and expander-based codes which achieve such a trade-off between rate and
relative distance.

Question. Can one improve the rate of the binary code construction to correct a frac-
tion ε of deletions to 1 − ε poly(log(1/ε)), approaching more closely the existential 1 −
O(ε log(1/ε)) bound?

In the case of errors, an approach using expander graphs gives the analogous tradeoff
(see [Gur04] and references therein). Could such an approach be adapted to the setting of
deletions? The loss of positional information inherent in the deletion model seems to be
particularly challenging in these expander-based constructions.

7.2.3 Rank-metric coding

As mentioned in Chapter 5, list-decoding for rank-metric codes poses unique challenges,
not least of which is the existence of rank-metric codes which are not list-decodable at any
radius beyond the unique decoding radius. Considering that even Gabidulin codes are not
exempt from this strange behavior, we can only do our best to salvage the situation.

Question. Can we construct a family of Gabidulin codes which are list-decodable beyond
half their minimum distance?

The negative results of [RWZ15] apply only in certain ranges of parameters, and there
is some hope for codes outside of these parameters, for examples codes with very low rate.
Given this, there is no harm in being ambitious.

Question. Can we construct a family of Gabidulin codes which are efficiently list-decodable
beyond half their minimum distance?

Although we did give an algorithm which attempts to list-decode Gabidulin codes in
Chapter 6, this approach has several drawbacks. Firstly, it only applies to codes where the
evaluation points are drawn from a subfield, and secondly, the output list has exponential
size. This means that a naı̈ve pruning step would be too computationally expensive, and if
we wanted to use this algorithm, we would also need a better way to prune the list down
to polynomial size.

And, of course, we can seek to improve upon our old adversary, the list size.

92

Question. Can we give explicit codes of rate R which are list-decodable from a 1−R− ε
fraction of rank errors with list size poly(1/ε)?

One possible approach, as mentioned in the Hamming metric case, would be to im-
prove our constructions of subspace-evasive sets. These could then be applied to construct
Gabidulin subcodes in a black-box manner. Note that, again, we know randomized con-
structions which achieve these parameters.

93

94

Bibliography

[ACLY00] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information
flow. Information Theory, IEEE Transactions on, 46(4):1204–1216, Jul 2000.
5.1, 5.1

[BG15] Boris Bukh and Venkatesan Guruswami. An improved bound on the fraction
of correctable deletions. Electronic Colloquium on Computational Complex-
ity (ECCC), 2015. 7.2.2

[BGZ15] J. Brakensiek, V. Guruswami, and S. Zbarsky. Efficient low-redundancy codes
for correcting multiple deletions, 2015. In preparation. 2.4.1

[BK03] Peter Braß and Christian Knauer. On counting point-hyperplane incidences.
Comput. Geom., 25(1-2):13–20, 2003. 3.3, 3.3

[Bra10] Kristian Brander. Interpolation and list decoding of algebraic codes. PhD
thesis, Technical University of Denmark, 2010. 3.1.1

[BSKR10] E. Ben-Sasson, S. Kopparty, and J. Radhakrishnan. Subspace polynomials
and limits to list decoding of reed-solomon codes. Information Theory, IEEE
Transactions on, 56(1):113–120, Jan 2010. 2.3.1

[DG06] S. Diggavi and Matthias Grossglauser. On information transmission over a
finite buffer channel. Information Theory, IEEE Transactions on, 52(3):1226–
1237, March 2006. 2.4.1

[Din15] Yang Ding. On list-decodability of random rank metric codes and subspace
codes. Information Theory, IEEE Transactions on, 61(1):51–59, Jan 2015.
5.4.1, 5.14

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the
44th ACM Symposium on Theory of Computing, pages 351–358, 2012. 3.4,
3.19, 6.2.2, 6.11, 6.2.2, 6.4.2, 6.4.2

95

[Gab85] E. M. Gabidulin. Theory of codes with maximal rank distance. Problems of
Information Transmission, 21(7):1–12, 1985. 5.3

[Gal61] R.G. Gallager. Sequential decoding for binary channels with noise and syn-
chronization errors, October 1961. Lincoln Lab. Group Report. 2.4.1

[GHSZ02] V. Guruswami, J. Håstad, M. Sudan, and D. Zuckerman. Combinato-
rial bounds for list decoding. IEEE Transactions on Information Theory,
48(5):1021–1035, 2002. 3.3

[GK13] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 608–617, 2013. 6.2,
6.2.1, 6.13, 6.2.2

[GNW12] Venkatesan Guruswami, Srivatsan Narayanan, and Carol Wang. List decoding
subspace codes from insertions and deletions. In Proceedings of ITCS 2012,
pages 183–189, January 2012. 5, 5.4.1, 5.4.2, 6.3.2

[GR08a] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information
Theory, 54(1):135–150, 2008. 2.3.2, 2.3.2, 2.19, 3.1.1

[GR08b] Venkatesan Guruswami and Atri Rudra. Soft decoding, dual bch codes, and
better list-decodable e-biased codes. In Proceedings of the 2008 IEEE 23rd
Annual Conference on Computational Complexity, CCC ’08, pages 163–174,
Washington, DC, USA, 2008. IEEE Computer Society. 4.4.2, 4.20

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for multivariate
polynomials. Information Processing Letters, 43(4):169–174, 1992. 3.2.1

[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and
Algebraic-geometric codes. IEEE Transactions on Information Theory,
45(6):1757–1767, 1999. 2.3.1, 1

[Gur03] V. Guruswami. List decoding with side information. In Proceedings of the
18th IEEE Conference on Computational Complexity (CCC), pages 300–309,
2003. 3.1.3, 3.2.2

[Gur04] Venkatesan Guruswami. Guest column: error-correcting codes and expander
graphs. SIGACT News, 35(3):25–41, 2004. 7.2.2

96

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for
variants of Reed-Solomon codes. IEEE Transactions on Information Theory,
59(6):3257–3268, 2013. 3

[GW14] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise
and high-rate regimes. CoRR, abs/1411.6667, 2014. 4

[GWX15] Venkatesan Guruswami, Carol Wang, and Chaoping Xing. List-decodable
rank-metric and subspace codes via subspace designs, 2015. IEEE Transac-
tions on Information Theory, submitted. 6

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field
towers and improved optimal rate list decoding. In Proceedings of the 44th
ACM Symposium on Theory of Computing, pages 339–350, 2012. 3.4, 7.2.1

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon,
Algebraic-Geometric, and Gabidulin subcodes up to the Singleton bound.
Electronic Colloquium on Computational Complexity (ECCC), 19:146, 2013.
Extended abstract appeared in the Proceedings of the 44th ACM Symposium
on Theory of Computing (STOC’13). 6.2.3, 6.4.2

[HKM+03] Tracey Ho, R. Koetter, M. Medard, D.R. Karger, and M. Effros. The benefits
of coding over routing in a randomized setting. In Information Theory, 2003.
Proceedings. IEEE International Symposium on, pages 442–, June 2003. 5.1

[Kal92] Erich Kaltofen. Polynomial factorization 1987–1991. Proceedings of LATIN
’92, LNCS, 583:294–313, 1992. 2

[KK08] Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in ran-
dom network coding. IEEE Transactions on Information Theory, 54(8):3579–
3591, 2008. 5.2, 5.2, 5.2, 5.4, 5.2.1, 5.2.1, 5.8

[KLM04] Marcos Kiwi, Martin Loebl, and Jir̆ı́ Matous̆ek. Expected length of the
longest common subsequence for large alphabets. Advances in Mathemat-
ics, 197:480–498, November 2004. 4.1, 4.1

[KM13] Y. Kanoria and A. Montanari. Optimal coding for the binary deletion channel
with small deletion probability. Information Theory, IEEE Transactions on,
59(10):6192–6219, Oct 2013. 2.4.1

97

[KMS10] Adam Kalai, Michael Mitzenmacher, and Madhu Sudan. Tight asymptotic
bounds for the deletion channel with small deletion probabilities. In ISIT,
pages 997–1001, 2010. 2.4.1

[KMTU11] I.A. Kash, M. Mitzenmacher, J. Thaler, and J. Ullman. On the zero-error
capacity threshold for deletion channels. In Information Theory and Applica-
tions Workshop (ITA), 2011, pages 1–5, Feb 2011. 4.1

[Kop12] Swastik Kopparty. List-decoding multiplicity codes. Electronic Colloquium
on Computational Complexity, TR12-044, 2012. 3.2.1

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes
with sublinear-time decoding. J. ACM, 61(5):28, 2014. 3.2, 3.2.1

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Dokl. (English Translation), 10(8):707–710, 1966.
2.4.1

[Loi05] Pierre Loidreau. A Welch-Berlekamp like algorithm for decoding Gabidulin
codes. In Øyvind Ytrehus, editor, WCC, volume 3969 of Lecture Notes in
Computer Science, pages 36–45. Springer, 2005. 5.3

[MD06] Michael Mitzenmacher and Eleni Drinea. A simple lower bound for the ca-
pacity of the deletion channel. IEEE Transactions on Information Theory,
52(10):4657–4660, 2006. 2.4.1

[Mit09] Michael Mitzenmacher. A survey of results for deletion channels and related
synchronization channels. Probability Surveys, 6:1–33, 2009. 2.4.1

[MV12] Hessam Mahdavifar and Alexander Vardy. List-decoding of subspace codes
and rank-metric codes up to Singleton bound. CoRR, abs/1202.0866, 2012.
5.4.2, 5.4.2, 6.2.3, 6.3.2, 6.3.2

[PR04] Pavel Pudlák and Vojtech Rödl. Pseudorandom sets and explicit constructions
of Ramsey graphs. In Complexity of Computations and Proofs. Quad. Mat.,
13, Dept. Math., Seconda Univ. Napoli, Caserta, pages 327–346, 2004. 3.3

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the
Guruswami-Sudan radius in polynomial time. In Proceedings of the 46th An-
nual IEEE Symposium on Foundations of Computer Science, pages 285–294,
2005. 4.4.2

98

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has
abundant near-optimal rate puncturings. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 764–773, New
York, NY, USA, 2014. ACM. 2.3.1, 7.2.1

[RWZ15] Netanel Raviv and Antonia Wachter-Zeh. Some Gabidulin codes cannot be
list decoded efficiently at any radius. CoRR, abs/1501.04272, 2015. 5.12,
7.2.3

[Sho88] V. Shoup. New algorithms for finding irreducible polynomials over finite
fields. In Proceedings of the 29th Annual Symposium on Foundations of Com-
puter Science, pages 283–290, 1988. 6.2.2

[SKK08] Danilo Silva, Frank R. Kschischang, and Ralf Koetter. A rank-metric ap-
proach to error control in random network coding. IEEE Transactions on
Information Theory, 54(9):3951–3967, 2008. 5.3, 5.3

[Slo02] Neil J. A. Sloane. On single-deletion-correcting codes. CoRR,
arxiv.org/abs/math/0207197, 2002. 2.4.1

[SZ99] Leonard Schulman and David Zuckerman. Asymptotically good codes cor-
recting insertions, deletions, and transpositions. IEEE Transactions on Infor-
mation Theory, 45(7):2552–2557, November 1999. 2.4.1, 2.4.3, 2.25, 4.3.1

[Vad11] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(13):1–336, 2011. 2.3.2

[WB86] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction of algebraic block
codes. US Patent Number 4,633,470, December 1986. 3.2.1, 4.2

[Zig69] Kamil’Shamil’evich Zigangirov. Sequential decoding for a binary channel
with drop-outs and insertions. Problemy Peredachi Informatsii, 5(2):23–30,
1969. 2.4.1

99

	1 Introduction
	1.1 Contributions of this thesis
	1.1.1 List-decodable codes
	1.1.2 Deletion codes
	1.1.3 Rank-metric and subspace codes

	1.2 Organization

	2 Preliminaries
	2.1 Coding basics
	2.1.1 Basic bounds on codes
	2.1.2 Unique decoding

	2.2 List-decoding
	2.3 A few code constructions
	2.3.1 Reed-Solomon codes
	2.3.2 Folded Reed-Solomon codes

	2.4 Deletion codes
	2.4.1 Previous work on deletions
	2.4.2 Concatenated codes
	2.4.3 A code construction

	3 Linear-algebraic list-decoding
	3.1 List-decoding folded Reed-Solomon codes
	3.1.1 A Welch-Berlekamp style interpolation
	3.1.2 Retrieving candidate polynomials f
	3.1.3 Some remarks

	3.2 List-decoding derivative codes
	3.2.1 List decoding derivative codes
	3.2.2 Some remarks

	3.3 Improved list size via subspace-evasive sets
	3.3.1 Pseudorandom construction of subspace-evasive subsets

	3.4 Epilogue: Subsequent work

	4 Deletion codes
	4.1 Existential bounds for deletion codes
	4.2 Coding against 1- deletions
	4.3 Binary codes against deletions
	4.3.1 Construction overview
	4.3.2 Our construction

	4.4 List-decoding binary deletion codes
	4.4.1 List-decodable binary deletion codes (existential)
	4.4.2 List-decodable binary deletion codes (explicit)

	4.5 Omitted proofs

	5 Rank-metric and subspace codes
	5.1 Linear network coding
	5.2 Subspace codes and the operator channel
	5.2.1 The Kötter-Kschischang code

	5.3 Rank-metric codes
	5.4 List-decoding subspace and rank-metric codes
	5.4.1 List-decodability of random codes
	5.4.2 Previous list-decodable constructions

	6 List-decodable rank-metric codes
	6.1 List-decoding Gabidulin codes
	6.2 List size reduction via subspace designs
	6.2.1 Existential bounds
	6.2.2 Constructive bounds
	6.2.3 Explicit list-decodable rank-metric codes

	6.3 Explicit list-decodable subspace codes
	6.3.1 Linear algebraic list-decoding for subspace codes
	6.3.2 Explicit list-decodable subcodes

	6.4 Application to low-order folding of Reed-Solomon codes
	6.4.1 Interpolation
	6.4.2 Decoding
	6.4.3 Constructing high-degree irreducibles
	6.4.4 Relationship to Reed-Solomon list-decoding

	7 Conclusion and open questions
	7.1 Summary
	7.2 Next steps
	7.2.1 List-decoding
	7.2.2 Deletion coding
	7.2.3 Rank-metric coding

	Bibliography

