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Abstract

We propose abstractions for designing and implementing concurrent interactive applications, such
as graphical user interfaces, games and simulations, that interact with the external world in complex
ways. The abstractions enable the programmer to write software that interacts with external agents
(e.g., mouse, keyboard, network, the operating system) both synchronously and asynchronously in
a uniform manner by means of several simple (concurrent) primitives. We specify the semantics
of the primitives and provide an implementation as an OCaml library. We develop a software
framework for assessing the responsiveness of interactive applications and evaluate our techniques
by considering a range of applications including games, physics simulations, a music-streaming
server, and a Unix shell, as well as microbenchmarks that enable quantitative analysis. Our results
show the proposed abstractions to be expressive and performant.





1 Introduction
Some of the most interesting and complex software involves interaction with an external agent such
as a user, another software system, or a device such as a sensor. Such programs, called interactive
or sometimes reactive, can be challenging to design, implement, and reason about because they are
usually designed to run forever, and because their semantics and runtime behavior depend on their
interaction with the environment.

As an example, consider a multiplayer online arcade-style game (inspired by “Breakout”) that
allows two players connected via a network to collaborate in knocking out several rows of bricks
displayed on the screen; Figure 1 shows a snapshot from our mock-up implementation of such
a game. To play the game, each player starts the game on his or her computer, which displays
a graphics window and a chat window and updates them based on the input from both users by
communicating via the network as necessary. The users can communicate via the chat window, for
example to determine a strategy.

To develop an efficient and responsive interactive system, such as the multiplayer game, the
programmer needs a programming language and system that guarantee the following three effec-
tiveness criteria:

• Expressiveness. Interactive applications can interact with many sources of input and also
perform complex computation. For example, a realistic multiplayer game may interact with
multiple users via mouse, keyboard, and network and manipulate 3D objects. The language
therefore must be as general-purpose as possible.

• Control over sampling/polling. Interactive systems must sample (poll) input sources and
update output sources at periodic intervals. For correctness and responsiveness, it is critical
for the programmer to be able to control the frequency of sampling. In the multiplayer game
example, each input source has its own natural sampling rate: game-control keys should be
sampled more frequently than the network connection used for infrequent chat messages. It
may also be important to change the frequency of sampling dynamically. For example, when
objects move quickly, the calculations should be updated more frequently to avoid missing
collisions.

• Concurrency. Reducing sampling frequency can reduce unnecessary work but only up to
a limit, because it increases response time and can decrease accuracy of calculations. It
should therefore be possible to sample asynchronously, i.e., be notified when data becomes
available and compute a response concurrently. In the multiplayer game, it is more respon-
sive and more efficient to receive the occasional chat message asynchronously, rather than
periodically sampling the network.

Interactive programs can be written using event-driven programming, where an event loop
waits for events and handles them by scheduling for execution the appropriate callback functions
or event handlers. Event-driven programming meets the effectiveness criteria described above but
unfortunately, for well-documented reasons (e.g., [12, 16, 9]), writing event-driven programs is
notoriously difficult. Perhaps the most important difficulties stem from the fact that event-driven
programs break key programming abstractions such as the function-call abstraction. For example,
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Figure 1: Screenshots of a simplified multiplayer game: the main window (top) and the terminal
chat window (bottom).

callbacks don’t always return to their caller and they can be scheduled by interactive events or
by other callbacks. In addition, these programs rely on side-effects for communication between
callbacks. Due to this complexity, event-driven programs are sometimes described by colorful
terms such as “callback hell” [12].

To raise the level of abstraction for writing interactive programs, prior research proposed Func-
tional Reactive Programming (FRP) [13]. While theoretically appealing, FRP proved to be chal-
lenging to implement. Based on the work of Wan and Hudak [41], existing implementations of FRP
adopt a synchronous evaluation strategy [19, 6, 4], which limits control over sampling frequency
of interactive inputs [35, 11]. Such implementations can also suffer from difficult performance
problems called time and space leaks [35, 31, 30]. Finally, although there has been recent interest
in adding some concurrency support to FRP with the Elm language [1, 11], the implementation
of Elm supports very limited forms of concurrency. These limitations can lead functional reac-
tive programs to fail to perform as expected. For example, in Section 4, we empirically show
how a functional reactive program (written in Elm) can fail to count the number of mouse clicks
responsively.

Thus, on the one hand, we have event-driven programming, which satisfies the aforementioned
effectiveness criteria but requires writing programs at a low level of abstraction. On the other
hand, we have Functional Reactive Programming, which offers a very high level of abstraction but
leads to limited expressiveness, limited control over sampling, and limited or no support for con-
currency. In addition, empirical work on the performance and efficiency properties of interactivity
abstractions is quite scarce.

In this paper, we present high-level linguistic abstractions for interaction that meet the effec-
tiveness criteria as well as empirical techniques for evaluating the effectiveness of interactive pro-
grams. Our approach revolves around the following goal: develop primitives that encapsulate the
essence of interaction—i.e., information exchange—in a single data structure and make it possible
for this data structure to be used as a first-class value in a higher-order language. The data struc-
ture should be powerful enough to support implicit concurrency, similar to implicit parallelism
techniques such as fork-join parallelism and futures [20, 15, 18, 27, 5, 24, 17, 28, 8] that enable
expressing concurrency at a high level, dramatically simplifying developing concurrent programs.
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At a high level, our goal is to make interaction just an ordinary operation, rather than a special
form of computation.

To achieve this goal, we propose a first-class data structure which we call a factor, which can be
dynamically created and can be queried both synchronously and asynchronously. A synchronous
query supplies the factor with a value, called a prompt, and waits for the factor to respond, returning
the response as the result of the query. An asynchronous query supplies the prompt to the factor but
may not always return a response: it returns a response if one is available immediately, or starts a
concurrent computation for computing the response and returns a future factor that can be queried
later to obtain the response (synchronously or asynchronously).

Based on the idea of factors, we present a set of primitives that can be used to extend an existing
higher-order language such as ML and specify the semantics of these primitives using Concurrent
ML-style pseudo-code. We then implement these primitives as an OCaml library and evaluate their
effectiveness by considering both expressiveness and efficiency. The library enables the expression
of interactive programs within the OCaml language in a natural and structured style, allowing full
use of OCaml features such as references and the foreign function interface.

To evaluate the expressiveness of the proposed techniques, we developed a reasonably broad
range of applications ranging from games to a Unix shell, which involve, for example, complex
interactions with the user and operating system. In addition, we used our library to implement the
abstraction of futures, as well as previously proposed FRP techniques, namely Arrowized FRP [35]
and Elm [11], as well as several accompanying examples. In fact, for Elm, we were able to imple-
ment the original concurrent model, which the existing Elm implementation does not support.

Evaluating the responsiveness of our techniques was much less straightforward: there is rela-
tively little prior work on empirical studies of interactivity abstractions, primarily because of the
technical difficulties of doing so (discussed in more detail in Section 4). For example, since its
introduction in 1997, researchers have implemented a handful of different FRP systems [42, 43,
35, 31, 30, 26, 11], but, to the best of our knowledge, there are no empirical comparative studies of
these systems. We developed a software framework for generating interactive inputs and evaluated
the responsiveness of our techniques by developing several benchmarks and comparing respon-
siveness with respect to event-driven implementations. Our measurements show that the proposed
techniques perform competitively with event-driven programming.

2 Language Design and Semantics
We present the interface for the abstractions that we propose. We describe their semantics infor-
mally, then algorithmically, and briefly describe how they are formalized. Throughout the pre-
sentation, we use simple examples, many of which are drawn from our implementation of the
multiplayer game example of Section 1. To specify the interface, the semantics and the examples,
we use OCaml-like syntax. For simplicity in presentation, we allow a form of overloading by using
an operation at different types. OCaml does not support this form of overloading, but we are able
to implement this behavior in our library using polymorphism. We use the term λi (“lambda-i”,
where “i” stands for “interactive”) to refer to a functional language extended with the proposed
primitives.
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1 module type Interactive = sig
2 type (’p,’r) ftr
3 type (’p,’r) fftr
4 type (’p,’r) aview = Now of ’r * (’p,’r) ftr
5 | Later of (’p,’r) fftr
6
7 (∗ Create a new factor from a generator. ∗)
8 val ftr: (’p → ’r * (’p,’r) ftr) → (’p,’r) ftr
9

10 (∗ Synchronously query a factor. ∗)
11 val query: (’p,’r) ftr → ’p → ’r * (’p,’r) ftr
12 val query: (’p,’r) fftr → unit → ’r * (’p,’r) ftr
13
14 (∗ Asynchronously query a factor. ∗)
15 val aquery: (’p,’r) ftr → ’p → (’p,’r) aview
16 val aquery: (’p,’r) fftr → unit → (’p,’r) aview
17
18 (∗ Split an I/O factor into two. ∗)
19 val split : (’p,’r) ftr → (’p,’r) ftr * (’p,’r) ftr
20 end

Figure 2: The λi core interface

2.1 The Primitives
Figure 2 shows the core of the interface for our interaction library, in a style similar to an ML
module definition.

Factors. Our approach revolves around an interactivity abstraction that we call a factor. The type
of a factor, (’p, ’r) ftr, is parametrized by two types, the prompt type ’p and the response
type ’r. Factors are first-class values, and thus can, for example, be created dynamically, passed
to functions as arguments, and stored in other data structures. The primary operation over factors
is querying. A factor is queried with a prompt of type ’p and returns a response (of type ’r) and
a new factor, the continuation.

The prompt-response model for querying abstracts interaction as a two-way information ex-
change. Since, when queried, a factor returns a continuation factor, which enables future interac-
tion, factors can effectively maintain internal state, passing information from now into the future.
The primitive split simply creates a duplicate handle—an alias—for a factor, allowing it to be
used multiple times.

To represent concurrently running computations, we define future factors, which have the type
(’p, ’r) fftr, where, as with factors, the type is parametrized by prompt and response. As
we will see, future factors can only be created as a result of asynchronous queries. As concurrently
running computations, future factors can only be prompted by a unit value when querying and
cannot be split.

We rely on a linear type system (Section 2.3) to ensure that a queried (future) factor is never
used again after it is queried, requiring instead the use of the continuation returned by the query.
When paired with split, which creates a new alias for a factor, the linear type system causes no
loss of generality but enables reasoning about interactive programs at a high level of abstraction,
preserving, for example, referential transparency. Since it is restricted only to factors, linear use of
factors is quite lightweight, leading to no noticeable cost in programming. In fact, it can be viewed
as nothing more than witnessing/marking the use and sharing of factors.
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Generators and defining factors. Programmers can create a factor by supplying a generator to
the function ftr. A generator is a function that takes a prompt and produces a response and a
continuation. Since factors can be defined rather liberally from any generator function, they can
represent many different kinds of interactive computations. We distinguish between I/O factors
that directly interact with the external world by performing I/O (through a system call or other
effectful behavior) and internal factors or simply factors that that do not perform I/O directly but
can indirectly perform I/O by querying an I/O factor.

Example 1 (I/O Factors: std in, network resp). An implementation of λi will typically
provide a standard library that defines I/O factors, allowing the programmers to work only with
internal factors. However, for the purpose of illustration, we show here the definitions of some I/O
factors used in the multiplayer game.

The I/O factor std in, when prompted with a unit value, returns a line from standard input. It
is defined using a generator that calls the OCaml function read line and returns its result along
with a continuation created by a recursive use of the generator.

1 let std_in : (unit, string) ftr =
2 let rec std_in_gen () = (read_line (), ftr std_in_gen)
3 in ftr std_in_gen

We can similarly define network resp, a function which, when given a network socket,
produces an I/O factor that, when queried with a prompt consisting of a string msg and an integer
n, sends msg over the network and listens for n bytes in response, which it returns.

1 let rec network_resp sock =
2 ftr (fun (msg, n) →
3 ignore (sock_send sock msg);
4 (sock_recv sock n, network_resp sock))

Querying factors. The synchronous query function queries a factor with a given prompt, waits
for the response and continuation, and returns them when they become available.

Example 2 (Synchronous query). In our multiplayer game, the main loop uses the I/O fac-
tor network resp to inform the other player of this player’s actions. To this end, it sends a byte
to the other player indicating the key currently pressed and waits for a byte in response. Since it is
important for both players to operate in synchrony, we use query (rather than the asynchronous
query discussed later).

1 let (my_key, key_presses’) = (∗ get currently pressed key ∗) in
2 let (other_key, network_resp’) =
3 query network_resp (String.make 1 my_key, 1)
4 in
5 ...

Example 3 (Internal factor: map). As first-class values, factors can be defined to operate on other
factors, which enables the programmer to compose complex interactive computations from simpler
ones. For example, we can define the function map as a function that yields a new (internal) factor,
whose responses are generated by mapping a specified function over another factor as follows.

1 let rec map (f: ’b → ’c) (i: (’a, ’b) ftr) =
2 ftr (fun (p: ’a) →
3 let (h, i’) = query i p in (f h, map f i’))
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In the multiplayer game, this ability to create new factors in terms of others is used liberally. For
example, simply but crucially, when communicating with the other user, we use the map function
to append a newline character to the end of lines read from the std in factor:

1 map (fun s → s ˆ "\n") std_in

Note that the internal factor performs I/O indirectly by querying an I/O factor.

The above two examples considered synchronous queries, which block until the queried factor
returns. Such behavior can be desirable—even necessary—in many cases. But sometimes it can
be important to proceed without waiting for a response. For example, in Example 2, we wish to
proceed executing the game loop even if the user does not press a key to be assigned to my key,
but we have access only to key presses, an I/O factor that blocks until a key is pressed.

We therefore provide an asynchronous query operation, aquery, which takes the same argu-
ments as query. This operation spawns a lightweight thread in which the factor is queried with
the prompt. If the response is not available immediately, a future factor is returned. A future factor
is a handle on the concurrently running computation. Like factors, future factors can be queried
synchronously or asynchronously. However, since a future factor represents a running computa-
tion that has already been given a prompt, it cannot accept a new prompt. Thus, both query
and aquery on future factors accept only unit prompts. Calling query on a future factor blocks
until the original response is ready. Calling aquery on a future factor polls the computation. It
will return the response and continuation if available, or the original future factor otherwise.

Example 4 (Asynchronous query). The current key of Example 2 can be obtained by asyn-
chronously querying key presses, which will return immediately even if no key is pressed
(indicated by the constructor Later), in which case we fill in a space and continue.

1 let (my_key, key_presses’) =
2 match aquery key_presses () with
3 | Now (k, key_presses’) →
4 (∗ key k is pressed ∗) (k, key_presses’)
5 | Later key_presses’ →
6 (∗ no key is pressed ∗) (’ ’, key_presses’)
7 in ...

Asynchronously joining factors. The primitives described so far turn out to be sufficiently pow-
erful to express a rich class of interactive computations. In our empirical evaluation, we found a
particular operation for asynchronously joining (merging) two factors into one, interleaving re-
sponses as they are available, to be very helpful. When queried, the joined factor asynchronously
queries the two component factors and returns the first of the two responses. Even though such
an operation is expressible based on the primitives described thus far, the resulting implementa-
tion is rather inefficient. We therefore include the primitive ajoin for joining two factors asyn-
chronously.

Example 5 (Asynchronous join). In the multiplayer game, we create a factor for running the
game loop, another, shown in Example 3 for writing chat messages from standard input over the
network, and yet another to listen for incoming chat messages. Since these three operations should
be performed concurrently, the implementation joins them asynchronously as follows:
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1 ajoin gameloop
2 (ajoin (output_on_network
3 (map (fun s → sˆ"\n") std_in))
4 (output_on_stdout
5 (map (fun s → "[other player] "ˆsˆ"\n")
6 (input_lines in_channel))))

Splitting streams. Concurrency, as introduced by asynchronous joins, interacts poorly with the
linearity requirement that factors be used only once. Suppose that, in our game, both the game
loop and the outgoing chat thread depend on std in.

1 ajoin (gameloop std_in) (map ... std_in)

We allow multiple uses of factors by permitting them to be split, which creates two handles to
the underlying state or form of interaction. The above code can then be written as follows.

1 let (s1, s2) = split std_in in
2 ajoin (gameloop s1) (map ... s2)

2.2 Algorithmic Semantics
We specify the semantics of the primitives algorithmically by using a pseudo-code notation based
on Concurrent ML (CML) [39], which enables us to express the concurrent semantics.

In Concurrent ML, threads communicate by passing messages over channels. The call spawn f
creates a new thread running the thunk f. A new channel is created using channel (). Call-
ing send c v will send value v over channel c and return unit. Calling recv c will receive
a value on channel c and return it. Both functions are synchronous; sending on a channel will
block until the value is received and receiving will block until a value is available. Non-blocking
versions, sendPoll and recvPoll, exist as well, which return None if the corresponding
blocking call would block. Finally, the calls sendEvt c v and recvEvt c do not perform
message passing but return an abstract type of event. Events can be combined using select,
which takes a list of events and blocks until the first of the events fires.

Figure 3 specifies the core primitives described in Section 2.1. The underlying data for non-
future factors is a generator. Querying such a factor consists of simply applying the generator to
the prompt. As implied by the informal description, a future factor need only be a handle to the
concurrently running computation; in fact, it is a channel over which the response and continuation
(type (’p,’r) view) will be sent when finished. A synchronous query on a future factor is
simply a (blocking) receive on this channel.

Asynchronous queries, like synchronous queries, apply the generator to the prompt. However,
we do not wish to block while this call takes place. Thus, asynchronously querying a normal
(non-future) factor spawns a new thread to complete the application. When gen p evaluates, the
result will be sent along a new channel c. After the thread is spawned, it is immediately queried.
(A small delay may be inserted here if desired to give the thread more time to be scheduled and
complete.) If the function call returned immediately, the result is simply returned. Otherwise,
a future factor is returned. A future factor can be asynchronously queried by again polling the
channel. As described earlier, split is primarily a marker for the creation of aliases to factors. It
just makes two new factors by duplicating the generator.
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1 module I: Interactive = struct
2 type (’p, ’r) view = ’r * (’p, ’r) ftr
3 and (’p, ’r) ftr = ’p → (’p, ’r) view
4 and (’p, ’r) fftr = ((’p, ’r) view) channel
5 type (’p, ’r) aview = Now of ’r * (’p, ’r) ftr
6 | Later of (’p, ’r) fftr
7
8 let ftr gen = gen
9

10 let query (gen: (’p, ’r) ftr) p = gen p
11 let query (chan: (’p, ’r) fftr) () = recv chan
12
13 let aquery (gen: (’p, ’r) ftr) p =
14 let c = channel () in
15 let _ = spawn (fun () → send c (gen p)) in
16 aquery c
17 let aquery (chan: (’p, ’r) fftr) () =
18 match recvPoll c with
19 | Some v → Now v
20 | None → Later c
21
22 let split (ft: (’p, ’r) ftr) = (ft, ft)
23

24 type (’a, ’b) sum = Left of ’a | Right of ’b
25 let ajoin f1 f2 =
26 let (ic1, ic2) = (channel (), channel ()) in
27 let (oc1, oc2) = (channel (), channel ()) in
28 let rec f ic oc inj ft =
29 let p = recv ic in
30 let (r, c) = query ft p in
31 send oc (inj r); f ic oc inj c
32 in
33 let _ = spawn (fun () → f ic1 oc1 Left f1) in
34 let _ = spawn (fun () → f ic2 oc2 Right f2) in
35 let rec gen is_comp1 is_comp2 (p1, p2) =
36 let _ = if not is_comp1 then send ic1 p1 in
37 let _ = if not is_comp2 then send ic2 p2 in
38 match select [recvEvt oc1; recvEvt oc2] with
39 | Left r → (Left r, ftr (gen false is_comp2))
40 | Right r → (Right r, ftr (gen is_comp1 false))
41 in
42 ftr (gen false false)
43 end

Figure 3: CML specification of the core primitives of λi.

The function ajoin can be implemented in a straightforward way using repeated calls to aquery,
but is a separate primitive in our library for improved efficiency. The primitive implementation,
shown in Figure 3, spawns two threads, each with its own input and output channels. Each thread
runs a loop that reads a prompt on its input channel, uses it to query the generator of one of the
factors, sends the response over the output channel, and loops on the continuation. The body
of ajoin then makes a new factor from a generator that sends its prompts to the two threads
(if they are not already computing, as tracked by is comp1 and is comp2), and then waits
for a response on either output channel. This response is returned along with a continuation that
recursively calls the generator, updating the is comp flags.

8



2.3 Formal Semantics
While it is not a focus of this paper, we have formalized the type system and the dynamic semantics
of the sequential core of λi and proved several metatheoretic results including type safety and the
consistency of λi programs with pure functional programming up to non-determinism. This work
includes “on paper” formalization and proofs as well as a sizable full formalization in the Coq
proof assistant. Details of this work are included in a separate technical report [34].

Statics. The type system for λi enforces the single-use property of factors by using linear types [40,
7]. In the type system, I/O factors and variables that may be bound to I/O factors are held in sep-
arate contexts from standard (persistent) variables. In these linear contexts, contraction is not
permitted and so each I/O factor or corresponding variable may be used at most once in a valid
typing derivation1. Expressions that are closed under the linear contexts, and can therefore not
refer to I/O factors, may be promoted to the persistent context and used without restriction.

Dynamics. The dynamic semantics of λi follows the broad outlines of lambda calculus but mod-
els the interaction with the external world by using execution traces and user strategies [36]. Infor-
mally, a trace keeps a record of the program’s interaction with the outside world by listing queries
and splits. The user strategy models the stateful, non-deterministic behavior of the outside world
by factoring out all effects using a deterministic function of the query and the current execution
trace, which allows dependence on history.

Metatheory. We have used this formalism to prove several results. First, we established a type-
safety theorem that proves that well-typed programs “don’t go wrong.” Second, we establish a
correspondence between the imperative programs of λi and purely functional programs. To this
end, we convert λi programs to purely functional programs by factoring out the non-determinism
of interaction into a functional data structure provided as an input at the start of the program, and
replacing queries to I/O factors with uses of this data structure. We show that the resulting program
is equivalent to the original λi program, and thus well-typed λi programs may sensibly be viewed
under a functional interpretation. We then use this result to show that, under some assumptions
about the results of interaction, two λi programs are equivalent if their functional conversions,
described above, are equivalent. This shows that many of the same reasoning techniques one
would apply to functional programs are applicable to well-typed λi programs.

3 Implementation and Applications

3.1 OCaml Implementation
We have developed an implementation of the interface of Section 2 as an OCaml library. The
implementation is built on top of OCaml’s CML-style Event library and quite closely reflects the

1Because such variables are allowed to be used zero times, the type system may more precisely be called affine,
but the use of the term linear for this sort of type system is common in the literature.
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CML translation shown in Section 2. Since OCaml does not have a linear type system, however,
our implementation cannot statically enforce the restriction that factors be used only once. We
therefore check this property dynamically by furnishing the runtime representations of I/O factors
with additional facilities that raise an exception when they are used more than once.

In addition to the small core language, our implementation includes a set of standard libraries
with built-in I/O factors for interacting with the console and network as well as graphics and media
libraries. The standard library also includes many useful functions, such as map, for building
factors.

3.2 Applications
We describe some of the more interesting applications that we have implemented using the OCaml
library, along with the features employed. All of these examples use concurrency in a non-trivial
way, and many demonstrate the compatibility of factors with the full range of OCaml features,
such as mutable references and foreign function interface (FFI).

Multiplayer Game. We implemented the motivating example of a multiplayer arcade game as
described earlier. This code uses the graphics and network factors of our standard library to display
and react to GUI events, and communicate between players over the network. The features of λi,
for example using asynchronous queries to control polling and blocking, and using asynchronous
join to create separate game and chat threads, are useful for this example. The game consists of
259 lines of OCaml code.

Figure 4: A
simple GUI
calculator

GUI Calculator. To test how well asynchronous join scales to many factors,
we developed a simple GUI calculator, where each button consists of two factors,
one which determines if the mouse is hovering over the button and one which
determines if the mouse is clicking on the button, resulting in 38 factors to handle
button events, all joined asynchronously. The arithmetic logic of the calculator
is a factor which combines the values of the button-click factors and changes its
state according to which buttons are pressed, producing numbers to be displayed
on the screen. A separate factor draws the buttons, using information from the
mouse-hover factors to shade a button if the mouse is over it. A screenshot is
shown in Figure 4. The calculator involves 214 lines of code.

Physics Simulation. To test how well our techniques handle continuous cal-
culations combined with user interaction, we developed a physics simulation in-
volving two balls moving in a bounded 2D space on 2D trajectories. Each ball
can be “free” or “caught.” In the “free” mode, the balls move according to the laws of physics
under gravitational force, bouncing off of the walls of the box and each other. For increased accu-
racy and efficiency, we vary the sampling frequency of the system time roughly linearly with the
velocity of the balls (higher velocities lead to more sampling). By sampling infrequently when the
balls are moving slowly, this policy ensures efficiency. By sampling frequently when the balls are
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moving quickly, the policy ensures accuracy. We further increase accuracy by predicting collision
times (based on velocity and acceleration) and perform an update exactly at the time of a collision,
ensuring that no collisions are missed. This example demonstrates the power of allowing sampling
frequency to be determined dynamically at run time.

The user can “catch” a ball with the mouse and drag it. As a ball is dragged, its factor samples
the mouse position in order to update the position of the ball, and also computes the velocity
by continually taking the derivative of the mouse position, so that when the ball is released, the
simulation can resume with the ball moving with the velocity at which it was released, allowing
users to toss the balls around the screen. While a ball is caught, its integral computation suspends,
and while both balls are free, the mouse position is not polled. Demanding input values only when
they are needed reduces unnecessary polling and computation.

An asynchronously joined factor allows the user to change the color of the balls by pressing
certain keys. This factor synchronously queries key presses, which eliminates unnecessary
polling and does not block other portions of the program because of the asynchronous join. This
example totals 224 lines of code.

Streaming Music. We demonstrate the versatility of I/O factors by using them to encapsulate
mutable state rather than I/O effects. In the process, we implement a streaming music server and
client. The server opens a music file stored locally and streams it over the network using the
network factors of our standard library. The client reads bytes from the network and plays the
music, but to ensure that temporary network delays will not affect playback, a fixed amount of
data is buffered on the client side. To make this work, two factors work asynchronously, sharing
a mutable buffer whose implementation will be described below. One factor requests bytes from
the network and writes them onto the end of the buffer. The other takes a number n as a prompt,
removes n bytes from the start of the buffer and returns them. A third factor reads console input.
These three factors are asynchronously joined into a factor that continuously fills the buffer, pauses
and resumes playback based on commands typed into the console, and returns requested bytes from
the buffer when the music is playing. This factor is then passed to a foreign function that allows
the Simple and Fast Multimedia Library2 to use the factor as an input stream to play the music.

We use I/O factors to manipulate the shared mutable buffer at a high level without the need for
explicit synchronization. We use OCaml references to define a function ref ftrwhich creates an
I/O factor wrapping a new reference, initialized to a given value. Querying the factor performs an
atomic read and update on the reference, as directed by a function passed as the prompt. Locking
is handled by the code of the I/O factor. Splitting this factor corresponds to sharing the underlying
mutable state, which can be done safely because operations are atomic. Operations performed
concurrently may be interleaved arbitrarily, but the shared state will never be corrupted by partial
reads or writes.

The (combined) OCaml code for the server and client consists of 163 lines of code. The
function ref ftr is an additional 11 lines of code, and the λi sound libraries developed for this
example consist of 160 lines of C++ code and 5 lines of OCaml code to perform the FFI.

2http://sfml-dev.org/
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Unix Shell. As an example of a real-world program with many low-level interactions, we im-
plemented fsh, a Unix shell that handles foreground and background jobs and supports history,
command line editing and tab completion. If a foreground job is running, fsh periodically queries
the factor signals to poll for signals from the operating system. Otherwise, fsh performs
interaction with the user. To make sure that keystrokes will be captured while simultaneously
monitoring for signals indicating that background processes have terminated, we asynchronously
join standard input with the factor of signals and query this in a loop:

1 let rec inploop ... children input_and_signals =
2 match query input_and_signals ((), ()) with
3 | (Left c, is’) → process_char c ... is’
4 | (Right s, is’) →
5 let c’ =
6 if s = Sys.sigchld then reap children
7 else children in
8 (None, ftr (inploop ... c’ aj’))

Low-level system operations are encapsulated within separate functions, while much of the
code handles high-level operations, such as command line processing, operations on the data struc-
tures that store job status and command line history, and functions to support tab completion. These
tasks are programmed quite naturally in the functional style of our library. The shell consists of
approximately 500 lines of OCaml code, including extensive comments.

4 Evaluation

4.1 Expressiveness
The relatively broad range of applications that we implemented and described in Section 3 give
empirical evidence about the practical expressiveness of the proposed approach. To establish the
expressiveness with respect to prior work, we note that due to their inherent use of concurrency,
the applications described in Section 3 would be difficult, if not impossible, to implement (without
sequentializing) in existing implementations of FRP. But does that mean that our techniques are
strictly more powerful? To answer this question in the affirmative, we implemented two existing
FRP languages from prior work—Arrowized FRP and Elm—using our implementation of λi, in
addition to futures, a powerful mechanism for concurrency (e.g., [20, 15]). We will briefly describe
each embedding below and we present the full details of the embeddings in Appendix A.

Yampa. Yampa is a Haskell library based on Arrowized FRP [35], in which interactive programs
are built up by combining signal functions, functions that transform signals. We have embedded a
substantial subset of Yampa in λi, and used the embedding to implement the tailgating detection
example of Nilsson et al. [35]. Our implementations of Yampa and of the tailgating example
consist of approximately 300 and 120 lines of code respectively. We also directly implemented the
same example in our λi library in approximately 75 lines of code.

Elm. Our second implementation concerns the calculus called FElm that constitutes the core of
Elm [11], which supports functional reactive programming. Unlike other FRP languages, FElm
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allows a form of asynchrony in which long-running signal-processing functions can be run asyn-
chronously at the top level. The widely available Elm implementation, a compiler that targets
Javascript, does not implement fully the asynchronous features of FElm because Javascript has
limited concurrency support. We are able to implement all features of FElm directly using our
library implementation of λi. The FElm embedding consists of approximately 70 lines of code
(not including a custom queue implementation.)

Futures. As further evidence for the expressiveness of the concurrency features we propose, we
show that futures can be encoded in λi, and thus the concurrency features of λi are at least as
powerful as futures. Creation of a future maps to creation of a factor (with unit prompt type)
followed by an asynchronous query, and forcing a future maps to a blocking query. To represent
futures faithfully, the representation also holds an already-computed value in the event that the
asynchronous query returns a value immediately.

4.2 Performance
We have extensively tested each of the applications discussed in Section 3 and qualitatively evalu-
ated their responsiveness. For example, the first author has used fsh as a primary shell for entire
days without noticing a degradation in responsiveness, and two of the authors have demonstrated
the multiplayer game by playing it together over the Internet from different locations.

Such tests and experiments, however, do not give quantitative information about the quality of
interaction offered by an interactive application. Unfortunately, there is relatively little prior work
on such quantitative performance evaluation. The primary reason appears to be that interactive
programs can perform very small computations that are difficult to measure individually and reli-
ably, especially in the context of a large number of interactions that must be tried out in order to
obtain reliable measurements [14]. For example, Endo et al. [14] propose some techniques to per-
form such careful measurements but these techniques are fairly platform-specific, using features
of Windows and Pentium hardware counters.

To quantitatively evaluate our proposed techniques in comparison with other possible ap-
proaches, we have developed an experimental framework for measuring the average responsiveness
of an interactive program, as measured by its latency in responding to an interaction. Figure 5 il-
lustrates the components of this framework, which enables generating a sequence of events, stored
in a trace file, simulating an interaction between a program and its environment, and running an
interactive program against this trace. Because a trace file, which consists of a (possibly very
long) sequence of primitive actions (e.g. move the mouse, click, press a key, sleep), can be te-
dious to generate, we also developed a small domain-specific language for generating traces and
implemented it as an OCaml library called makeTrace. Our top level script “runScript” takes a
description of the trace, generates it, and runs a “driver” program with this trace, which replays the
trace events in order to test interactive programs. The driver, a C program, takes as input a binary
to evaluate and a trace file and forks a new process (with which it shares a pipe so the driver can
mimic standard input), starts executing the target binary and performs the events from the trace file
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Figure 5: The components of the experimental setup.

in order, simulating mouse and keyboard actions through the X Window System using libxdo3.
When finished with the trace, the driver kills the target program with a signal.

4.2.1 Benchmarks and Empirical Measurements

We developed a set of three (micro)benchmarks, each isolating a particular form of interaction.
We consider and compare at least two implementations for each benchmark: one using our OCaml
library and one written in OCaml with an event-driven style using effectful functions. For our
first benchmark, we also implemented a version in Elm. Since Elm programs run inside the
browser, precise quantitative comparisons between it and OCaml implementations are not par-
ticularly meaningful, but Elm is included in the first benchmark to exemplify our discussion of
asynchrony. We choose Elm because it is widely considered to be the state of the art in usable FRP
languages.

We performed all experiments on a commodity desktop with a 3.4GHz quad-core Intel R© CoreTM

i7 processor and 8GB of memory, running Linux. OCaml’s threads library works by time-sharing
on one processor, rather than multi-processor execution [29], so only one core was utilized. For our
experiments involving Elm, we used the Elm Javascript compiler version 0.12.3. To account for the
fact that the compiled Javascript must run inside a browser, we ran the Elm trials in both Mozilla
Firefox version 33.0 and Google Chrome 38.0.2125.122. We used the pbench benchmarking
toolkit 4 to run experiments and collect data.

Counting clicks. This goal of this benchmark is to determine the responsiveness and correct-
ness of an interactive computation that includes an interaction running concurrently with a slow
computation. The benchmark creates two factors and processes them concurrently. Using the
exponential-time recursive algorithm, the first factor computes the sequence of Fibonacci num-
bers, starting at fib(0), with each element of the sequence initiated by a query. The second
factor counts the number of (observed) mouse clicks. The benchmark asynchronously queries
each factor and prints on screen the latest value of each factor. The aim is to count the mouse
clicks correctly (without missing any) and responsively, while also performing the slow Fibonacci
computation. The event-driven implementation creates separate threads for each computation. The

3http://www.semicomplete.com/projects/xdotool/
4https://github.com/deepsea-inria/pbench

14



10 50 100 250

Lambda−I
Event−driven
Elm−Firefox
Elm−Chrome

Interval between clicks (msec)

C
lic

ks
 r

ec
or

de
d

0

5

10

15

20

25

30

35

Figure 6: Number of clicks counted by each implementation versus click interval. The correct
number is 20.

Elm implementation employs a single thread due to lack of concurrency support in the Javascript
implementation of Elm. We will discuss the effect of this below.

In our experiment, we generate four traces, each of which simulates 20 mouse clicks, varying
the interval between clicks from 10ms to 250ms. In each click, the mouse button is held for 100ms,
resulting in a range of three to nine clicks per second. This range approximates the frequency at
which a human might be able to repeatedly click the mouse. Figure 6 shows the average results
over 5-10 runs of each trace. Each group of plots shows the number of clicks counted by the three
implementations (λi, event-driven and Elm, in both of the browsers) on a particular trace. The
x-axis label is the interval between clicks. Both the event-driven and λi implementations perform
poorly when mouse clicks are very fast. On all other traces, the event-driven implementation
reliably responds to all clicks. By the time the frequency has dropped to 5 clicks per second, the λi

implementation also responds to all clicks. On traces where one or both implementations missed
clicks, the two implementations performed similarly, differing by no more than one or two clicks
on average.

The values for Elm show the effect that a lack of concurrency has on this benchmark. The
Elm implementation is quite reliable on the faster traces, but appears to miss clicks on the slower
traces. This is because, with slower traces, the long-running Fibonacci computations prevent Elm
from processing the mouse clicks until a Fibonacci calculation ends. Thus, when the trace ends
(and the experiment is stopped), any clicks done since the last Fibonacci calculation began are not
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recorded. If the Elm program is allowed to run longer, it eventually responds to all clicks. This
example shows that, in the presence of possibly long-running computations, concurrency is vital
to responsiveness.

Tracking mouse motion. The goal of this benchmark is to determine the precision at which con-
tinuous motion can be tracked while also performing some computation. The benchmark accom-
plishes both goals by computing the total distance traveled by the mouse using a standard numeric
integration computation technique that approximates the integral by using rectangles. Since the ac-
curacy of the integral improves by using smaller rectangles and since this happens only with quick
reads of the mouse, we expect that the quality of the approximation quantifies the responsiveness
of the computation.

To evaluate this benchmark, we generated four traces which moved the mouse in circles of
radius 140 pixels with the period varying from 0.5 to 5 seconds. Each test was run for 5 seconds.

The results, averaged over 10 runs of each trace are shown in Figure 7. The rightmost bar of
each group shows the correct distance for the number of circles the pointer will make at that speed
in 5 seconds 5. As expected, all implementations become less accurate at higher mouse speed.
The performance of the λi implementation is good, remaining within approximately 5% of the
event-driven implementation.

Anagrams. The goal of this benchmark is to evaluate the case in which multiple sources of
inputs (mouse and keyboard) are mixed with a relatively variable and potentially expensive com-
putation. The benchmark displays the current mouse position as a pair of integers while finding
English-language anagrams of words read from standard input (this was inspired by an example by
Czaplicki and Chong [11], which involved translating words from English to French). For quality
interaction, the mouse position should be updated frequently and standard input should be read and
written promptly. To run both computations (mouse position and anagrams) concurrently, the λi

implementation uses two asynchronously-joined factors and the event-driven implementation uses
two separate lightweight OCaml threads.

To quantify the responsiveness of the interaction, we measure the average number of times per
second at which the mouse position is updated throughout a five-second run of the program. To
prevent the mouse update thread from starving other threads and processes, including the anagram
thread, the implementations place a delay of 0.0005 seconds between mouse updates. Thus the
number of frames per second is limited to 2,000.

In our measurements, we performed 10 runs with each of four traces. Each trace supplied
a single word on standard input, between six and nine letters, and then allowed the program to
run for five seconds, with no additional words entered even if the anagram computation finished
early. For the longest word, most of the program’s run is spent computing the anagram, while
the shorter words finished almost immediately. The results, plotted in Figure 8, show that the two

5This is calculated by summing the discrete distances moved by each command in the trace. We note that the correct
distance cannot be computed by using a closed form formula (based on the circumference of the circle) because the
travel distance is itself a rectangular approximation, where the rectangles are determined by discrete pixels on the
screen
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Figure 7: Total distance measured by each implementation versus mouse speed.

implementations are able to operate at similar frame rates, though both operate at only 60-70% of
the maximum frame rate, even when taking the anagrams of short words. On the longest word,
where the slow anagram computation uses CPU resources for most of the run of the program, both
implementations achieve lower frame rates, though neither is affected disproportionately. The
results also show that when the anagram computation requires time close to the allocated run time,
the frame rate reduces by a factor of two, indicating that the two concurrent threads are able to
time-share relatively fairly and efficiently.

5 Related Work
We discuss the most closely related work in the relevant sections of the paper. Here, we present a
broader review of related work and its relation to this paper.

5.1 Event Driven Programming
Event-driven programming can lead to responsive interactive programs, but, as documented in the
literature, this efficiency comes at the cost of a very low-level style of programming (e.g., [12,
16, 9]). Some prior research therefore proposed improvements to event-driven programming that
can alleviate some of the complexities [16, 9]. Notably, the responders of Chin and Millstein [9]
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Figure 8: Average frames per second for mouse updates with different words.

share the idea of providing an abstraction that combines two-way communication with state. Chin
and Millstein, however, do not consider concurrency, which is central to our work. In addition,
our factors also differ from responders in that they are first-class values in a higher-order lan-
guage (responders are class methods in an object oriented languages, Java). The query-response-
continuation mechanisms of factors are in some ways similar to co-routines [25] but they are also
different from co-routines, because the call structure is not symmetric.

5.2 Process Calculi and Concurrency
Process and concurrency calculi such as CSP [23], π-calculus [32, 33], and actors [22], have been
proposed to model computations involving interaction between many processes via some form of
communication medium, typically called “channels.” Many variants of these calculi have been
studied (e.g., several surveys exist [3, 21]), and several programming languages such as Concur-
rent ML [39] and Pict [37] have been designed based on these calculi. Our factors have some
similarities to Plotkin’s resumptions [38], which have an isomorphic type, but are used to model
processes and non-determinism.

Unlike prior work on concurrency calculi, we consider the problem of programming a single
process interacting with an external world, rather than modeling the interactions among many
processes. This enables us to develop abstractions tailored to the interaction problem and avoid
the full power and the complexity of concurrent programming. Specifically, we permit a process
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to use a specific, restricted form of concurrency related to implicit parallelism (described below)
and can extend lambda calculus rather than concurrent calculi with our primitives. As we show,
our approach can thus be used in the context of existing conventional multithreaded languages.

As it offers a restricted form of concurrency, our concurrency primitives are related to many
others proposed in the past, including, for example, I-Vars [2], which allow separating computa-
tions into concurrent threads that can communicate synchronously.

5.3 Parallel Programming
As with popular parallelism abstractions such as fork-join [18, 27, 5, 24, 17, 28, 8] and fu-
tures [20, 15], our approach provides support for concurrency via a specific abstraction (asyn-
chronous query), which is similar to futures in the sense that computations that do not complete
immediately can be run in parallel. The key difference between futures and our concurrency con-
structs is that we allow concurrently running computations to be polled either synchronously or
asynchronously, whereas futures can be polled only synchronously. In fact, as we show (Sec-
tion 4.1), futures can be encoded in terms of our factors. We don’t know if the converse is true but
it appears difficult if not impossible because of the ability to poll asynchronously.

5.4 Functional Reactive Programming
We discussed the most closely related work on Functional Reactive Programming (FRP) in Sec-
tion 1. More details and citations on FRP can be found in recent papers (e.g., [11, 26]), which
span a broader scope than we can here. Our work is similar to FRP in the sense that our approach
proposes abstractions for interaction that can be used as first-class values in a higher-order pro-
gramming language. Specifically, use of functional programming languages is common to both
approaches.

There are several differences between our work and FRP. First, our techniques are fundamen-
tally concurrent, whereas nearly all work on FRP considers sequential programming. The only
significant exception is Elm [11, 10]. While the theory of Elm includes a certain form of concur-
rency, its implementation is essentially non-concurrent. Second, while FRP abstractions are purely
functional, ours are imperative (they can request input at run time), which we believe to be crucial
to correctness, efficiency, and responsiveness of interactive programs. The third difference con-
cerns expressiveness and generality: to avoid difficult efficiency problems called time and space
leaks, nearly all FRP implementations—including Elm—restrict the set of allowable programs via
language restrictions. Our approach does not suffer these problems and so does not need to im-
pose these limits. Finally, the synchronous evaluation strategy adopted by FRP implementations
leads to a range of previously recognized issues [11, 10] including the requirement to determine
a clock rate for sampling that can guarantee correctness and responsiveness, which is technically
impossible, because it requires computing tight upper bounds on run time. Our work allows the
programmer to control the frequency of sampling, including sampling fully asynchronously.
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6 Discussion
It is possible to give an imperative interface to factors by allowing them to maintain destructively-
updated internal state instead of returning a continuation. This approach would somewhat simplify
the language by eliminating the need for continuations, the split primitive and the linear type
system. We avoid this approach for two reasons. First, the imperative interface complicates reason-
ing about interactive programs. Second, the continuation-based interface and linear type system
make explicit the sharing (aliasing) of effectful computations, enabling the programmer to interpret
the program purely functionally up to non-determinism (Section 2.3).

7 Conclusion
A important problem in language design and implementation has been the design of linguistic ab-
stractions for expressing high-level and performant interactive programs. This paper presents a
solution to this problem based on three ideas: 1) a single first-class data structure called a factor
that abstracts interaction as exchange of information and internal change, 2) a synchronous and
asynchronous query model for performing interaction, 3) a higher-order programming model that
enables the programmer to write correct and responsive interactive programs at a high level. Our
implementation and the examples considered show the techniques to be practically expressive and
responsive. As part of our evaluation methodology, we developed techniques and software for
evaluating interactive programs quantitatively, which may be of independent interest, and which
we hope will lead to further empirical quantitative analysis of interactive programs and the devel-
opment of other benchmarks and techniques.
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A Embeddings and Comparisons

A.1 Arrowized FRP

We show how to encode AFRP signal functions as factors in λi, allowing an AFRP library similar
to Yampa to be implemented within λi. One implementation of AFRP [35] implements a signal
function in approximately the following way.

1 type (’a, ’b) sf = time → ’a → ’b * (’a, ’b) sf

In this implementation, a signal function is a concrete function whose arguments are the amount
of time that has passed since the last time the signal was sampled, and the current value of the input
signal. The result is the new value of the output signal and the continuation of the signal function,
which is ready to be used at the next time step. This type can be directly implemented using λi

factors.
1 type (’a, ’b) sf = (’b, time * ’a) ftr

Under this encoding, however, signal functions may only be used once, a restriction that doesn’t
exist in AFRP. To allow multiple uses, a signal function in our implementation must be a function
that produces a signal function of the type above. This leads to the following implementation.

1 type (’a, ’b) raw_sf = (’b, time * ’a) ftr
2 type (’a, ’b) sf = unit → (’a, ’b) raw_sf

Standard AFRP signal functions and combinators can be programmed using this type. For ex-
ample, integral, which in AFRP is simply a signal function that transforms real-valued signals6

to their integrals, can be implemented as follows.
1 let integral () =
2 let rec integral_gen a (dt, h) =
3 let v = a +. dt *. h in
4 (v, ftr (integral_gen v))
5 in
6 ftr (integral_gen 0.)

Note that integral is a function taking a unit argument, as required by our signal function
type. To run top-level signal functions, we provide an outer loop that applies the given signal
function to produce the underlying factor and then queries it continuously, calling a function f to
handle each value in turn (f is likely an effectful function that, for example, prints the value to the
screen.)

1 let run (f: ’a → unit) (sf: (unit, ’a) sf) =
2 let rec run_rec s =
3 let (h, t) = query s (delta, ()) in
4 (f h; run_rec t)
5 in
6 run_rec (sf ())

Note that a refresh rate (delta above) must be specified and cannot be viewed or set by the
program, though it could be varied dynamically by the runtime.

6In fact, the integral function allows integration of more complicated types, but we do not implement this here.
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A.2 Elm
In Elm [11], programs are built from input signals and a small core of combinators. We represent
Elm signals (and thus programs) as factors and have a toplevel loop that repeatedly queries the
factor representing the program. To make this possible, the factors representing signals need a
uniform prompt type. One idea would be the following:

1 type ’a signal = (unit, ’a) ftr

This leaves the question of how to handle input signals. If the same input signal is used in
multiple parts of the embedded Elm program, the corresponding factor would need to be split and
Elm has no notion of splitting. Furthermore, if two nodes of the signal graph request the value of
an input signal on the same time step, for example if two buttons both request the mouse position,
Elm’s mostly synchronous semantics require that they get the same value, which the λi semantics
forbids. We thus pass all inputs as the prompt to all signals. The toplevel run loop accepts a factor
which packages together all necessary I/O factors. This input factor is queried at each timestep,
and the factor representing the Elm program is prompted with the input package, which the signal
combinators then propagate to all signals in the signal graph.

1 type ’a signal = (input, ’a) ftr
2 val run : output signal → (unit, input) ftr → unit

Our implementation is a functor with the types input and output as parameters, along
with a function display : output -> unit that prints or displays the output. In an Elm
program, output would be a representation of the Elm type Element, which stands for an
HTML document, and input would be a record containing all of the relevant input values (e.g.
mouse position, keys pressed, time, etc.)

The toplevel loop is quite simple:
1 let rec run (p : output signal) (input : (unit, input) ftr) =
2 let (inputs, input’) = query input () in
3 let (newval, c) = query p inputs in
4 display newval;
5 run c input’

With this representation in mind, the basic Elm combinators lift and foldp are easily
expressed:

1 let lift (f : ’a → ’b) (s : ’a signal) : ’b signal =
2 let rec lift_gen s inputs =
3 let (h, s’) = query s inputs in
4 let h’ = f h in
5 (h’, ftr (lift_gen s’)
6 in
7 ftr (lift_gen s)

The function lift produces a factor that, when queried, passes the inputs to its argument
factor, calls f on the response and responds with this value. The family of functions liftn for
n = 2, 3, ... are defined similarly.

1 let foldp (f : ’a → ’b → ’b) (e : ’b) (s : ’a signal) : ’b signal =
2 let rec fold_gen s a inputs =
3 let (h, s’) = query s inputs in
4 let a’ = f h a in
5 (a’, ftr (fold_gen s’ a’))
6 in
7 ftr (fold_gen s e)
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The function foldp maintains an accumulator. When queried, it again queries its argument,
passes the response and current accumulator to the functional argument, and responds with the new
accumulator.

Elm’s async combinator, which creates a new, asynchronous, branch of the signal graph, is
somewhat more complicated and uses the concurrency primitives of λi.

1 let async d (s : ’a signal) : ’a signal =
2 let rec gen s q cur input =
3 let q’ = Queue.push q input in
4 match Queue.pop q’ with
5 | (Some input’, q’’) →
6 (match aquery s input’ with
7 | Now (v, s’) → (v, ftr (gen s’ q’’ v))
8 | Later s’ → (cur, ftr (genf s’ q’’ cur)))
9 | (None, _) → failwith "Impossible"

10 and genf s q cur input =
11 let q’ = Queue.push q input in
12 match aquery s () with
13 | Now (v, s’) → (v, ftr (gen s’ q’ v))
14 | Later s’ → (cur, ftr (genf s’ q’ cur))
15 in
16 ftr (gen s (Queue.empty ()) d)

In Elm, all signals have a default value. In our embedding, the default value is only needed by
async, which takes it as an explicit argument. The factor is defined using two mutually recursive
generators. Both maintain the most recent value of the signal s as well as a queue of stored input
values. The queue ensures that, even if s takes longer than a time step to compute, it will be passed
the input values in sequence. One generator, gen, is used when the factor s representing the signal
is a factor, and genf is used when it is a future factor. As such, gen retrieves the next set of input
values from the queue and uses it as the prompt to s, and genf does not. Both asynchronously
query s. If a value is available, it is returned and gen is called with an updated queue and current
value. Otherwise, the maintained current value is returned and genf is called with the future
factor.

A.3 Encoding of Futures
As described in Section 4.1, our representation of a future is either a future factor or an already-
computed value.

1 type ’a future = Done of ’a | Fut of (unit, ’a) fftr

Creating a future from a thunk f involves defining a factor whose generator calls f (the contin-
uation will not be used, and so is defined to simply be a recursive instance of the factor itself.) The
factor is then asynchronously queried and the result, either a value or a future factor, is returned as
the future.

1 let future (f: unit → ’a) : ’a future =
2 let rec f’ () = (f (), ftr f’) in
3 let i = ftr f’ in
4 match aquery i () with
5 | Now (v, _) → Done v
6 | Later i’ → Fut i’

Forcing a future involves either returning the aleady computed value or synchronously querying
(i.e. blocking on) the future factor.

26



1 let force (fut: ’a future) : ’a =
2 match fut with
3 | Done v → v
4 | Fut i → let (v, _) = query i () in v
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