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ABSTRACT

Human intelligence is magni�cent. One of its most impressive aspects is how humans
always seem able to learn new skills quickly and without much supervision by utilizing
previously learned skills and forming connections between them. More speci�cally,
human learning is o en not about learning a single skill in isolation, but rather
about learning collections of skills and utilizing relationships between them to learn
more e�ciently. Furthermore, these relationships may either be explicitly provided
or implicitly learned, indicating high levels of abstraction in the learned abilities.
On the other hand, even though machine learning has witnessed growing success
across a multitude of applications over the past years, current systems are each highly
specialized to solve one or just a handful of problems.
In this thesis, we argue that a computer system that learns to perform multiple

tasks jointly and that is aware of the relationships between these tasks, will be able to
learn more e�ciently and e�ectively than a system that learns to perform each task
in isolation. Moreover, the relationships between the tasks may either be explicitly
provided through supervision or implicitly learned by the system itself, and will allow
the system to self-re�ect and evaluate itself without any task-speci�c supervision.
¿is includes learning relationships in the form of higher-order functions—namely
functions that compose, transform, or otherwise manipulate other functions—that
can enable trulymulti-task and zero-shot learning.
In the �rst part, we present a method that allows learning systems to evaluate

themselves in an unsupervised manner by leveraging explicitly provided relationships
between multiple learned functions. We refer to this ability as self-re�ection and show
how it addresses an important limitation of existing never-ending learning systems like
the never-ending language learner (Mitchell et al., 2018). We then propose multiple
extensions that improve upon this method, resulting in several robust algorithms
for estimating the accuracy of classi�ers from unlabeled data. In the second part, we
consider more general multi-task learning settings and propose an abstract frame-
work called contextual parameter generation (CPG), which allows systems to generate
functions for solving di�erent kinds of tasks without necessarily having been shown
any training data for these tasks. ¿is framework generalizes existing approaches in
multi-task learning, transfer learning, and meta-learning, and it further allows for
learning arbitrary higher-order functions. It does so by formalizing the notion of a
function representation and what it means for functions to operate on other functions
or even on themselves. ¿is new type of learning, which we refer to as higher-order
learning, enables learning relationships between multiple functions in the form of
higher-order functions, and is inspired by functional programming and category
theory. Finally, we propose the jelly bean world (JBW), a novel evaluation framework
for never-ending learning systems.
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1INTRODUCTION

Deep learning systems have become the de facto standard for solving prediction prob-
lems in a multitude of application areas including computer vision, natural language
processing, and robotics. Driven by progress in deep learning, the machine learning
community is now able to tackle increasingly more complex problems—ranging from
multi-modal reasoning (Hu et al., 2017) to dexterous robotic manipulation (OpenAI
et al., 2020)—many of which typically involve solving combinations of tasks. How-
ever, many real-world problems require integrating multiple, distinct modalities of
information (e.g., image, audio, language) in ways that machine learning models
cannot currently handle well. Most of these approaches are also limited in utilizing
information learned from solving one problem to directly help in solving another—
something at which human intelligence excels. ¿ere have been a few attempts to
train a single model that solves multiple problems jointly (e.g., Kaiser et al., 2017), but
the resulting systems generally underperform compared to those trained separately
for each problem. Moreover, most of the existing approaches are also not capable
of never-ending learning (NEL); namely a machine learning paradigm in which an
algorithm learns from examples continuously over time, in a largely self-supervised
fashion, and where its experience from past examples can be leveraged to learn future
examples (Mitchell et al., 2018). Current machine learning systems typically underper-
form when the problems that need to be learned are not �xed a priori, but are rather
dynamic and keep changing as part of the environment where the learning agents
operate. For example, humans do not just learn to solve a �xed set of problems, but
they rather adapt and by solving one problem, they become better able to tackle new
problems that they may even have been previously unaware of. For example, a er
humans managed to build heart monitoring devices, new unsolved problems became
available, such as discovering the relationship between heart rate or blood pressure
and speci�c health problems. Furthermore, humans are capable of creating problems
to learn, on their own, something that most current machine learning systems are
not designed to achieve. Never-ending learning is thus something at which human
intelligence excels, but machine learning is lacking. Due to the dynamic nature of the
real world, to achieve true intelligence, a learning agent that interacts with it needs
to be able to adapt in such a continuous fashion. In fact, such an ability is crucial for
never-ending learning, because learning forever only really makes sense if the learning
objectives are ever-evolving.
One of the most impressive aspects of human learning is how humans o en seem

able to learn new skills quickly and without much supervision, by utilizing previously
learned skills and forming connections between them. For example, when humans
learn to read they �rst learn to convert written language to spoken language by reading
out loud.¿ey then use their previously learned ability to understand spoken language
in order to understand what they are reading. Eventually, the need to read out loud

1
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vanishes and humans can understand written language directly (arguably, the human
brainmight simulate howwords sound but there is no need for speech to be produced).
¿is indicates that human learning is o en not about learning a single skill in isolation,
but rather about learning collections of skills and utilizing relationships between them
to learn more e�ciently. Furthermore, these relationships may either be explicitly
provided or implicitly learned, indicating high levels of abstraction in the learned
abilities. In this thesis, we argue that in order for computer systems to become capable
of general intelligence they need to �rst become able to jointly learnmultiple functions
and account for relationships between them, that are either explicitly provided through
supervision or implicitly learned. ¿is includes learning relationships in the form
of higher-order functions—namely functions that operate on other functions (e.g.,
compose, transform, or otherwise manipulate other functions)—that can enable truly
multi-task and zero-shot learning. Intuitively, this can be attributed to the fact that a
natural and human-inspired way to perform zero-shot learning is to take previously
learned skills and combine them to form functions for solving new, previously unseen
tasks. ¿us, we aim to test the following hypothesis:

thesis statement: A computer system that learns to performmultiple tasks jointly
and that is aware of the relationships between these tasks, will be able to learnmore
e�ciently and e�ectively than a system that learns to perform each task in isolation.
Moreover, the relationships between the tasks may either be explicitly provided
through supervision or implicitly learned by the system itself, and will allow the
system to self-re�ect and evaluate itself without any task-speci�c supervision.

¿erefore, our goal is to show that learning collections of functions is more e�ective
than learning single functions in isolation, and can also enable unsupervised evalua-
tionwhichwe call self-re�ection.¿is is inspired by human learning and alsomotivated
by our earlier work on never-ending learning. In the next section, we provide further
insight into our motivation for this thesis. ¿en, we propose a de�nition for never-
ending learning before describing the never-ending language learner (NELL), a system
that we have been developing for multiple years and that also formed our original
motivation for this work. Finally, we present the outline of this thesis in Section 1.4, as
well as advice on how to read it in Section 1.5.

1.1 motivation

A long-standing goal in the �elds of arti�cial intelligence and machine learning has
been to develop algorithms that can be applied across domains and that can e�ciently
handle multiple problems, just like the human mind does. Even though research in
this area, o en calledmulti-task learning, has a long history (Caruana, 1997), there
has recently been a resurgence of interest in fundamental questions related to:

(i) algorithmic frameworks for multi-task learning, such as learning-to-learn or
meta-learning (¿run and Pratt, 1998; Finn et al., 2017; Franceschi et al., 2018)
and never-ending or lifelong learning (Carlson et al., 2010; Mitchell et al., 2018),

(ii) establishing best practices for building reliable systems that can handle multiple
tasks at scale, such as federated learning for model personalization (Smith et al.,
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2017) or multi-agent coordination (Cao et al., 2013; Samarakoon et al., 2018),
and, last but not least,

(iii) learning deep representations (Bengio et al., 2013) that support multi-tasking
and enable transfer learning inmultiple domains, such as computer vision (Yosin-
ski et al., 2014) or natural language processing (Collobert and Weston, 2008;
Peters et al., 2018; Devlin et al., 2019).

However, the notion of a task remains ill-de�ned and in fact, most existing machine
learning systems that are branded as performing multi-task learning share an impor-
tant common characteristic: all tasks share the same input space and are all being
tackled using the same model (with a few exceptions; Ruder (2017) provides an ex-
tensive review). Furthermore, models that are pre-trained on large datasets and then
�ne-tuned in a task-speci�c manner, do not allow for information learned from one
task to in�uence the learning of other tasks. ¿ese are all limitations that motivate
this thesis and that we hope to address.
Our interest in these questions started while working on the never-ending language

learner (NELL; Carlson et al., 2010; Mitchell et al., 2018). NELL is a system that learns
to read the web and extract knowledge from websites, in a never-ending fashion.
One of the core mechanisms employed in NELL is co-training, which was originally
proposed by Blum and Mitchell (1998). Co-training is a semi-supervised learning
algorithmwheremultiple models are being trained together and eachmodel can use as
training examples the most con�dent predictions made by the other models. If any of
themodels produces wrong but con�dent predictions, these can propagate to the other
models and eventually hinder learning.¿ismotivated us to develop several algorithms
for estimating the accuracy of classi�ers using only unlabeled data (Platanios et al.,
2014, 2016, 2017b, 2020a). ¿e key idea behind all these methods is that agreement
among multiple models implies that the agreed upon prediction is more likely correct
than wrong. However, we also observed that once we have multiple interacting tasks
that are being learned jointly, we can perform accuracy estimation in a more robust
manner by also accounting for inconsistencies between the tasks. For example, if one
classi�er predicts that “Pittsburgh” is a city and another one predicts that it is an
animal, and we know that something cannot be both a city and an animal at the
same time, then we can infer that at least one of these two classi�ers must be wrong.
Finally, this work pointed out an important pattern in how current machine learning
systems are being trained. Training data is o en obtained by collecting multiple noisy
labels for samples through crowdsourcing which are then aggregated to produce a
single “denoised” label per sample. To this end, we adapted our accuracy estimation
methods resulting in a learning framework for general machine learning systems, that
enables training frommultiple imperfect labels directly—without requiring an explicit
label aggregation step (Platanios et al., 2020a). ¿rough this and other experiences we
accumulated while working on NELL, we observed that: (i) learning multiple tasks
jointly while also accounting for their interactions, and (ii) learning from multiple
noisy sources of supervision, are both crucial to building successful never-ending
learning systems. Given that NELL is so central to our motivation for this thesis, we
provide a high-level overview of the system, in the next section.
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1.2 the never-ending language learner

¿e never-ending language learner (NELL; Carlson et al., 2010; Mitchell et al., 2015,
2018) is a system that learns to read the web and extract knowledge from websites,
in a never-ending fashion. As mentioned in the previous section, one of the core
mechanisms employed in NELL is co-training, which is a semi-supervised learning
algorithm where multiple models are being trained together and each model can use
as training examples the most con�dent predictions made by the other models. ¿is
allows us to utilize unlabeled data as the learning process is mostly self-supervised,
thus enabling never-ending learning. At a high level, the NELL learning algorithm
consists of the following steps:

1. NELL is initially provided a few facts that are known to be true (e.g., “New York”
is a city)—the initial knowledge base (KB). It also has access to the world wide
web—in practice, a large crawl of the web collected by Callan and Hoy (2009)
and Callan (2012).

2. NELL consists of multiple classi�ers, each one of which is targeted at modeling
di�erent kinds of information (e.g., context of noun phrases—if a phrase appears
a er the words “lives in,” then it is likely a city—or morphology of words—if
a word ends with “-burgh,” then it is likely a city). During this step, these
classi�ers are all trained using the current version of the KB.

3. ¿e classi�ers are forced to make predictions over unlabeled data that NELL
obtains from the world wide web. We refer to these predictions as candidate
beliefs and they are known to be noisy. Especially early on in training, the
classi�ers will be far from perfect and thus many of these candidate beliefs are
expected to be wrong.

4. NELL integrates the candidate beliefs into a small con�dent subset of beliefs
that are treated as correct facts and are added back to the KB.

5. ¿is process is repeated, starting at step 2, using the newly constructed KB as
the source of training data for the classi�ers.

¿is learning process is illustrated in Figure 1.1. ¿e most crucial step in this process
is step 4, which we refer to as knowledge integration, because adding wrong beliefs to
the KB can result in degraded performance over time for the system. ¿is is because
these wrong predictions will be treated as ground truth in the next iteration and will
be provided as training data to the classi�ers. NELL is using multiple types of side
information to reduce the likelihood of errors (e.g., logical constraints between the KB
categories and relations). However, it relies on a set of manually curated heuristics for
integrating this information and is thus not very robust. ¿is motivated us to work on
methods for estimating the accuracy of classi�ers from unlabeled data and eventually,
for directly learning from imperfect labels. ¿is work forms Part i of this thesis and,
as we explain in Chapter 2, the proposed algorithms for tackling this limitation of
NELL have signi�cant implications for several application areas of machine learning,
beyond never-ending learning.
A er having spent multiple years working on NELL and having gained a better

understanding ofwhat themain challenges are andwhat de�nes never-ending learning,
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Figure 1.1: Overview of the NELL learning algorithm. CPL and CML refer to di�erent classi�ers
used by NELL. A detailed description is provided in Section 1.2.

we are now in a position to provide a more formal description of what we hope to
achieve. In the next section, we present our de�nition of never-ending learning.

1.3 never-ending learning

As mentioned earlier, machine learning has witnessed growing success across a mul-
titude of applications over the past years. However, despite these successes, current
machine learning systems are each highly specialized to solve one or a small handful
of problems. ¿ey have much narrower learning capabilities as compared to hu-
mans, o en learning just a single function or model based on statistical analysis
of a single dataset. One reason for this is that current machine learning paradigms
are restricted and specialized to a particular problem and/or dataset. An alternative
learning paradigm that more closely resembles the generality, diversity, competence,
and cumulative nature of human learning is never-ending learning (Mitchell et al.,
2018). ¿e core thesis of never-ending learning is that we will never truly understand
machine learning until we can build computer programs that, like people: (i) learn many
di�erent types of knowledge or functions, (ii) from years of diverse, mostly self-supervised
experience, (iii) in a staged curricular fashion, where previously learned knowledge
enables learning further types of knowledge, and (iv) where self-re�ection and the ability
to formulate new representations and new learning tasks enable the learner to avoid
stagnation and performance plateaus.
Let us consider never-ending learning in the context of reinforcement learning,

and let st ∈ S denote the state of the environment at time t, at ∈ A denote the
action performed by the learning agent at time t,ωt ∈ Ω denote the observation of
the world that the learning agent receives at time t, and rt ∈ R denote the reward
provided to the learning agent at time t. ¿e distribution of the next state of the world
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st ∼ T(st−1, at−1) has the Markov property (i.e., it depends only on the previous
state and action) and the initial state of the world is given by a distribution s0 ∼W.
¿e observationωt ∼ O(st) depends only on the current state of the world (perhaps
deterministically). ¿e reward rt is given by a function R(st−1, at−1, st) of the cur-
rent state, the previous state, and the previous action taken. ¿e environment is a
tuple containing all these elements E , (W,T,O, R). ¿en, the goal of reinforcement
learning is to �nd a learning algorithm π that, given the history of previous obser-
vations, actions, and rewards, outputs the next action so that the obtained reward is
maximized. We deliberately blur the distinction between the policy and the algorithm
that learns the policy, which is why we call π a “learning algorithm.” As an example, if
our goal is to maximize discounted future returns with discount factor γ, we want to
�nd a π such that E

[∑∞
t=0 γ

trt
]
is maximized, where the actions taken by the agent

are provided by π, at = π(a0, . . . , at−1,ω0, . . . ,ωt), and where the expectation
is taken over the randomness in E.
¿is formalism does not distinguish between learning algorithms that are highly

specialized to a single task and learning algorithms that are capable of learning a wide
variety of tasks and adapting to richer and more complex environments, which are
hypothesized to be the hallmarks of general intelligence (see e.g., Lake et al., 2017).
In order to more formally describe general intelligence, we posit that there exists an
underlyingmeasure of complexity of the environmentE such that: (i) highly specialized
and non-general learning algorithms can perform well in environments with low
complexity, but (ii) environments with high complexity require successful learning
agents to possess more general learning capabilities. It is in these more complex
environments where we can characterize never-ending learning. We can formalize
this notion of complexity by letting π∗ be the (computable) learning algorithm that
maximizes expected reward in an environment E. ¿en, we de�ne the complexity of
E to be the length of the shortest program (i.e., Turing machine) that implements π∗:

exhibits specialized intelligence exhibits generalized intelligence
complexity( )

complexity( ) = min{ is a Turing machine that implements }

We can equivalently de�ne complexity(E) = K(π∗), where K(·) is the Kolmogorov
complexity and is related to theminimum description length andminimum message
length (Kolmogorov, 1963; Nannen, 2010). As shown in the next page, the complexity
of the environmentK(E) is bounded below byK(π∗)minus a constant. Note here that
we distinguish between complexity(E) and K(E) in order to handle cases where we
can have very complex environments in terms of Kolmogorov complexity, but whose
optimal agents are very simple.
Never-ending learning is in many respects similar to lifelong learning, also called

continual learning (Chen and Liu, 2018). Like never-ending learning, lifelong learning
is distinguished from multi-task learning by the never-ending nature of the learning
problem. However, in never-ending learning, and unlike multi-task learning and
lifelong learning, a well-de�ned set of tasks is not assumed a priori. Rather, never-
ending learning is more similar to real-world settings in this respect, where the notion
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kolmogorov complexity lower bound
We show thatK(E)must be at leastK(π∗) up to a constant.We canwrite an algorithm π̂ that
enumerates all possible sequences of environment states, observations, actions, and rewards
from time t up to time T : (st,ωt, at, rt), . . . , (sT ,ωT , aT , rT ). ¿en π̂ computes the ac-
tion that maximizes the expected reward E[R({rk}Tk=t)]. Since the images im(π̂) ⊆ A and
im(π∗) are discrete, and limT→∞ argmaxat

E[R({rk}Tk=t)] = argmaxat
E[R({rk}∞k=t)],

there is a su�ciently large �nite T such that the action computed by π̂ is the same as that
computed by π∗. Note that π̂ relies on a subroutine that simulates the environment E in
order to �rst enumerate the environment states, and the subroutine to perform the optimiza-
tion is independent of E, and so K(π̂) = K(E) + c for a constant c. Since K(π∗) 6 K(π̂),
we have that K(E) > K(π∗) − c.

of a task or subtask naturally emerges from the complexity of the environment, and
the distinction between tasks is not always so sharp. More speci�cally, in contrast
to most popular reinforcement learning settings, never-ending learning focuses on
environments with high complexity. In never-ending learning, agents can only exist in
a single reset-free environment (i.e., we explicitly disallow the agent π from learning
across multiple episodes or in multiple environments, which is closer to human
learning). We require π to only have access to a single episode. During its lifetime,
π can only use the information provided by its past observations {ωt} and actions
{at} in a single world. ¿us, never-ending learning explicitly removes the distinction
between training and testing that is common to many other classical machine learning
paradigms. Additionally, note that in the general reinforcement learning formalism,
st can contain information about t, and the reward function R can be time-varying,
thus rendering the environment non-stationary. In never-ending learning, we are
interested in the full generality of non-stationary environments, as the stationarity
assumption is not realistic in even simple adversarial and multi-agent settings. In
Part iii we describe how to design and build environments that allow us to test for
never-ending learning properties.

1.4 thesis outline

¿is thesis is divided into three parts:

Self-Reflection (Part i):We design algorithms that enable learning systems
to evaluate themselves in an unsupervised manner by leveraging explicitly
provided relationships between multiple learned functions. We refer to this
ability as self-re�ection and show how it addresses the critical NELL limitation
discussed in the previous section. In Chapter 2, we design a method for estimat-
ing the accuracy of classi�ers from unlabeled data that is based on an explicit
relationship between the agreement rates of these classi�ers and their error
rates. ¿is work also attempts to answer the question of whether consistency
implies correctness and if so, under what conditions. ¿en, in Chapter 3 we
provide another method to solve the same problem that is also able to account
for dependencies among the classi�ers, and that is based on a probabilistic
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graphical model. In Chapter 4, we propose a method that is further able to
account for logical constraints between the labels that the classi�ers predict (e.g.,
a NP that refers to a city cannot also refer to an animal at the same time and
therefore, if a classi�er predicts that a given NP refers to a city and another one
predicts that it refers to an animal, then at least one of them has to be wrong). In
Chapter 5, we propose yet another method for tackling this problem that o�ers a
highly robust algorithmwhich further allows for learning directly frommultiple
noisy sources of supervision combined with self-supervision in an end-to-end
fashion. Learning from imperfect labels is crucial to never-ending learning, as
it is unreasonable to assume that a system will constantly have access to newly
labeled training examples.¿is would be both very expensive and unreasonably
demanding in terms of human labor.¿erefore, a never-ending learning system
will need to rely mostly on self-supervision and weak and potentially noisy
supervision, similar to humans. Finally, in Chapter 6, we show how this method
and the underlying idea can also be used to tackle other problems that may at
�rst seem completely disconnected from the original setting that motivated
this work. Speci�cally, we show that it can be used for robust graph-based
semi-supervised learning.
Higher-Order Learning (Part ii):We design algorithms that enable con-
tinuous learning of multiple problems that can grow in number over time. In
Chapter 7, we �rst provide some background on multi-task learning along with
a brief history of the �eld, pointing out the most signi�cant current limitations.
¿en, we propose an abstract framework called contextual parameter generation
(CPG), which allows systems to generate functions for solving di�erent kinds of
tasks without necessarily having been shown any training data for these tasks.
¿is framework not only generalizes existing approaches in multi-task learning,
transfer learning, and meta-learning, but it also allows for learning arbitrary
higher-order functions. It does so by formalizing the notion of a function rep-
resentation and what it means for functions to operate on other functions or
even on themselves.¿is new type of learning, which we refer to as higher-order
learning, enables learning relationships between multiple functions in the form
of higher-order functions, and is inspired by functional programming. ¿en,
in Chapter 8 we present strong empirical evidence for the power of CPG on a
few di�erent multi-task learning problems structured as a set of case studies
with each one aimed at evaluating di�erent aspects of CPG. ¿e case studies
we consider are focused on the following problems: (i) computing the parity
function for sequences of arbitrary lengths (Section 8.1), (ii) machine transla-
tion (Section 8.2), (iii) knowledge graph link prediction (Section 8.3), and (iv)
the jelly bean world (Section 8.4), which is proposed in Part iii. In the last case
study, we also provide the �rst instance of a neural cognitive architecture that is
later used to motivate some of the future work we propose in Chapter 10 and
Appendix C.
Evaluation (Part iii): Building never-ending learning systems necessitates
well-de�ned and robust ways to evaluate whether a system is indeed capable
of never-ending learning. However, there are currently no ways to achieve
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Figure 1.2: Overview of the work done as part of this thesis and of how the di�erent parts relate
to each other. Arrows indicate the in�uence andmotivation for each project and dotted arrows
indicate motivation alone without necessarily transferring parts of the proposed methods.

this. In Chapter 9, we present the jelly bean world (JBW), a novel framework
that we designed for evaluating never-ending learning systems, and which
allows us to control the kinds of problems the learning agents need to solve,
and their interactions. We have designed the JBW in a way that renders never-
ending learning necessary, and that allows us to test all parts of the never-
ending learning thesis, in a controllable manner. We also use this framework to
showcase the e�ectiveness of contextual parameter generation in settings where
there exists a compositional structure over the tasks that are being learned.

An overview of thework done as part of this thesis and of how the di�erent parts related
to each other is shown in Figure 1.2. Also, each chapter starts with an introductory
paragraph and illustration that positions the content of that chapter relative to the rest
of the work we present in this thesis. Finally, in Chapter 10 we present a conclusion
that summarizes the key results of this thesis. We also present the next steps we see in
this line of work and the opportunities that this thesis opens up. Speci�cally, as the
main next step we propose a novel family of architectures for never-ending learning,
which we call neural cognitive architectures andwhich are inspired by human cognition.
¿ese architectures are presented in detail in Appendix C. ¿ey are inspired from the
Hub-and-Spoke model of human cognition (Rogers et al., 2004; Ralph et al., 2017)
and account for human goal-priming (Custers and Aarts, 2005; Aarts et al., 2008;
Takarada and Nozaki, 2018), by using CPG to emulate it. ¿ey contain perception and
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action spokes (i.e., modules), and a common reasoning hub for all problems, that is
independent of data modalities and which enables human-inspired capabilities such
as associative memory (Fanselow and Poulos, 2005; Ranganath and Ritchey, 2012)
and world simulation. Note that the design of a single universal neural cognitive
architecture forms the most open-ended part of this thesis and it is meant to describe
our way of thinking about the design space as a whole. Our main goal is provide some
interesting research directions for which this thesis paves the way.

1.5 how to read this thesis

¿is introduction provides an overview of the three parts that comprise this thesis.
Each part is largely self-contained and mostly independent of the others. ¿e same
is generally true about each chapter except for the motivation that led to some of
the work presented (e.g., the limitations of the work presented in Chapter 2 motivate
our work in Chapters 3, 4, and 5). ¿e only exception to this is Chapter 8, which we
recommend reading a er Chapter 7, and Section 8.4, which we recommend reading
a er Chapter 9. Finally, the reader is not assumed to have detailed knowledge of
machine learning or of the topics that are presented; we try to provide the necessary
background, making this thesis accessible to graduate students.



Part I

SELF-REFLECTION

In Chapter 2, we design amethod for estimating the accuracy of classi�ers
from unlabeled data. ¿is method is used to address a critical NELL
limitation related to do with error propagation due to the co-training
algorithm, which could degrade the long-term performance of the system
and which was discussed in detail in Chapter 1. ¿en, in Chapters 3,
4, and 5, we propose three extensions that improve upon this method,
resulting in several reliable algorithms for estimating the accuracy of
classi�ers from unlabeled data. ¿e method described in Chapter 5 o�ers
a robust algorithm which also allows for learning directly from imperfect
labels in an end-to-end fashion. Finally, in Chapter 6, we show how
this method and the underlying idea can also be used to tackle other
problems that are very di�erent from the original setting that motivated
this work. Speci�cally, we show how it can be used for robust graph-based
semi-supervised learning.
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Figure 2.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

In Chapter 1, we showed how never-ending learning forms the main motivation for
this thesis. We also provided a high-level overview of the Never-Ending Language
Learning (NELL) system, which is learning collections of functions jointly through
co-training (a form of self-labeling). Self-labeling algorithms are highly prone to
error propagation and that could ruin their long-term performance. ¿erefore, it is
important to be able to estimate the accuracies of the functions they are learning
using only unlabeled data; especially so in the case of NELL, which in some cases only
has access to unlabeled data, and is learning continually in a never-ending fashion.
Note that, although estimating accuracy without any labeled data may seem like an
impossible task, we argue that humans do have a way of doing exactly that. In fact,
in this chapter we present a direct approach to do this based on intuition about how
we, as humans, would approach this problem. Our method showcases that learning
collections of functions could allow us to perform completely unsupervised evaluation,
which may at �rst sound impossible. Perhaps most importantly, we also show that
under some independence assumptions, consistency among the learned functions
(i.e., agreement in their predictions) implies correctness of their predictions.

13
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2.1 introduction

Estimating the accuracy of classi�ers is central to machine learning and many other
�elds. Accuracy is de�ned as the probability of a system’s output agreeing with the true
underlying output, and thus is ameasure of the system’s performance.Most existing ap-
proaches to estimating accuracy are supervised, meaning that a set of labeled examples
is required for the estimation. Being able to estimate the accuracies of classi�ers using
only unlabeled data is important for many applications, including: (i) any autonomous
learning system that operates under no supervision (being able to perform this eval-
uation without supervision is also important for never-ending learning systems in
general, because it o�ers a mechanism for ensuring that their performance does not
deteriorate—or even plateau—with time), as well as (ii) crowdsourcing applications,
where multiple workers provide answers to questions, for which the correct answer is
unknown. ¿e rising popularity and recent success of deep learning has resulted in
machine learning systems that rely on large amounts of annotated training data (Le-
Cun et al., 2015; Gulshan et al., 2016; Wu et al., 2016a; Esteva et al., 2017). ¿e most
common and scalable way to collect such large amounts of training data is through
crowdsourcing (Howe, 2006). Crowdsourcing works well in simple settings where
annotation tasks do not require domain expertise—for example, in object detection
and recognition tasks in natural images and videos (e.g., Deng et al., 2009; Kovashka
et al., 2016). However, annotation in specialized domains such as medical pathology
requires a certain level of competency and expertise from the annotators which makes
annotation expensive. Moreover, o en times there is high rate of disagreement even
between experts, which results in increasingly subjective and inconsistent labels (El-
more et al., 2015; Hutson et al., 2019). ¿e two-sided motivation for this tackling this
problem is illustrated in Figure 2.2.
A typical approach to dealing with subjectivity is to treat each annotation as simply

noisy, collect multiple redundant labels per example (e.g., from di�erent annota-
tors), and then aggregate them using majority voting or other more advanced tech-
niques (e.g., Dawid and Skene, 1979; Carpenter, 2008; Liu et al., 2012; Platanios, 2012;
Zhou et al., 2015; Zhou and He, 2016) to obtain a single “ground truth” label. At the
expense of redundancy, this results in better data quality and more accurate estimates
of the ground truth. More recently, emerging systems for data programming and weak
supervision also internally rely on label aggregation techniques similar to methods
used for solving the crowdsourcing problem. For example, Snorkel (Ratner et al., 2017;
Bach et al., 2019) is a popular data programming system that was designed for e�cient
and low-cost creation of large-scale labeled datasets using programmatically gener-
ated so-called weak labels. However, none of these systems solve label aggregation
e�ectively in the presence of high subjectivity.
Given our initial motivation in the context of NELL, let us start by considering the

problem of estimating the accuracy of classi�ers using unlabeled data. Traditionally,
one estimates accuracy of a function based on its performance over a set of labeled
test examples. ¿is chapter considers the question of under what conditions is it
possible to estimate accuracy based instead on unlabeled data. We show that accuracy
can be estimated exactly from unlabeled data in the case that at least three di�erent



2.2 problem formulation 15
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Example Task: Determine whether a noun phrase refers to a city or not.
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Figure 2.2: Illustration of the ways in which aggregating imperfect labels is an important
problem. ¿e le side shows the knowledge integration component of NELL, which was
presented in Chapter 1. ¿e right side shows the two main ways in which training data can be
collected for training large scale machine learning models.

approximations to the same function are available, so long as these functions make
independent errors and have better than chance accuracy. More interestingly, we
show that even if one does not assume independent errors, one can still estimate
accuracy given a su�cient number of competing approximations to the same function,
by viewing the degree of independence of these approximations as an optimization
criterion. We also present experimental results demonstrating the success of this
approach in estimating classi�cation accuracies to within a few percentage points of
their true value, in two diverse domains.

2.2 problem formulation

We consider a “multiple approximations” problem setting in which we have several
di�erent approximations, f̂1, . . . , f̂N, to some target boolean classi�cation function,
f : X → {0, 1}, and we wish to know the true accuracies of each of these di�erent
approximations, using only unlabeled data. ¿e multiple functions can be from any
source—learned ormanually constructed. One example of this setting that we consider
here is taken from the Never Ending Language Learner (NELL; Mitchell et al., 2018).
Out of NELL’s over 4,100 learning tasks, many involve learning classi�ers that map
noun phrases (NPs) to boolean categories such as fruit, food, and vehicle. For each
such boolean classi�cation function, NELL learns several di�erent approximations
based on di�erent views of the NP. One approximation is based on the orthographic
features of the NP (e.g., if the NP ends with the letter string “-burgh,” it may be a
city), whereas another uses phrases surrounding the NP (e.g., if the NP follows the
word sequence “lives in,” it may be a city). Our aim in this chapter is to �nd a way
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to estimate the error rates of each of the competing approximations to f, using only
unlabeled data (e.g., in the case of NELL, many unlabeled NPs).
Other researchers have considered variants of this “multiple approximations” set-

ting. For example, Blum and Mitchell (1998) introduced the co-training algorithm
which uses unlabeled data to train competing approximations to a target function by
forcing them to agree on classi�cations of unlabeled examples. Others have used the
disagreement rate between competing approximations as a distance metric to perform
model selection and regularization (Bengio and Chapados, 2003; Schuurmans et al.,
2006). Balcan et al., 2013 used disagreement along with an ontology to estimate the
error of the prediction vector for multi-class prediction, from unlabeled data, under an
assumption of independence of the input features given the labeling. Parisi et al., 2014
proposed a spectral method used to rank classi�ers based on accuracy and combine
their outputs to produce one �nal label, also under an assumption of independence of
the input features given the labeling. Moreover, there has been work at developing
more robust semi-supervised learning algorithms by using the concept of agreement
rates (Collins and Singer, 1999) or some task speci�c constraints (Chang et al., 2007)
to decide what should be added to the training dataset. However, very few have tried
to directly estimate actual per function error rates using agreement rates. Dasgupta
et al. (2001) PAC-bound the error rates using the pairwise agreement rates only, under
the assumption that the functions make independent errors, and Madani et al. (2004)
estimate the average error of two predictors using their disagreements. Donmez et al.
(2010) are among the few to estimate per-function error rates from unlabeled data.
Here, the authors estimate the prediction risk for each function under the assumption
that the true probability distribution of the output labels is known.Much of the empha-
sis of their work is on methods that use the known label distribution to estimate the
error rate even of a single classi�er, but agreements are used as well, especially under
the assumption of conditional independence. In contrast, we propose here a method
for estimating actual function error rates from agreement rates, without making these
assumptions. Finally, Collins and Huynh (2014) review many methods that have been
proposed for estimating the accuracy of medical tests in the absence of a gold standard.
¿is is e�ectively the same problem that we are considering, applied to the domains
of medicine and biostatistics. ¿ey start by presenting a method for estimating the
accuracy of tests, where the tests are applied in multiple di�erent populations (i.e.,
di�erent input data), while assuming that the accuracies of the tests are the same
across the populations, and that the test results are independent conditional on the
true “output label.” ¿ese are similar assumptions to the ones made by prior work, but
the idea of applying the tests to multiple populations is new.
¿e main contributions of this chapter include: (1) formulating the problem of

estimating the error rate of each of several approximations to the same function, based
on their agreement rates over unlabeled data, as an optimization problem, (2) providing
two di�erent analytical methods that estimate error rates from agreement rates in this
setting, one based on a set of simultaneous equations relating accuracies, agreements,
and error dependencies, and a second, based on maximizing data likelihood, and
(3) demonstrating the success of these two methods in two very di�erent real-world
problems. We consider the proposed methods a �rst step towards developing a self-
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Figure 2.3: Illustration of a motivating example on whether consistency among multiple
functions (in this case humans) is related to their true accuracies.

re�ection framework for autonomous learning systems. Finally, we list three key
limitations of the proposed methods that are addressed in the following chapters.

2.3 what would a human do?

It can be observed from the previous section that most of the related work on estimat-
ing classi�er accuracies with only unlabeled data is trying to relate agreement rates
between di�erent classi�ers (which can be observed) with the accuracies of those clas-
si�ers. In fact, this is also the approach we take in this chapter. More speci�cally, one
of our goals is to shed light on the more general question of how the consistency among
multiple functions is related to their true accuracies. We are now going to present an
example that will provide some intuition behind why onemight want to use agreement
rates as indicators of correctness, and what issues might arise if one does that.
Given that this thesis is largely inspired by human cognition and intelligence, let

us think about a human would do in this situation. Let us consider a case where a
person asks 10 di�erent people a question that is related to politics and 8 of those
people agree on an answer. One might immediately think that, since we have such a
strong majority, the answer must be the correct one. However, one has to be careful.
Let us assume that those 8 people that agree belong to the same political party and that
the 2 people that gave a di�erent answer belong to some other party. In this case, we
might want to reconsider whether that answer is correct and the extent to which we
trust it. Now, if 7 of the people from that party were in agreement and 1 person from
the other party had also agreed with them, then maybe we should trust that answer
even more. We therefore see that the answer to the question of whether consistency
implies correctness may have to do with how dependent the functions that agree with
each other are. One trivial example that reinforces this argument is when our multiple
functions are in fact copies of the same function and thus fully dependent. In this
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case, consistency among the functions gives us no information about their correctness
(i.e., they are always consistent with each other in their responses). An illustration of
an equivalent example to the one presented in this paragraph is shown in Figure 2.3
(using a question related to quantum physics instead of politics).
One last thing to note about the example of the previous paragraph is that it raises a

new question: if functions that are highly dependent disagree, then what does that imply
about the question being asked, or about the functions themselves? In the case of asking
people questions, such as in the example, it might imply that the question asked was
subjective. We can extend this interpretation to classi�ers by saying that maybe the
provided classi�cation problem is too hard, or the classi�ers are too uncertain about
their answers. ¿is may be an interesting question to explore, but it is outside the
scope of this thesis.

2.4 a direct approach

Based on the intuition gained from the example presented in the previous section, we
now propose a direct method for estimating accuracies of classi�ers from unlabeled
data.1 ¿is method consists of matching the sample agreement rates of the functions
with the exact formulas of these agreement rates written in terms of the functions’
error rates, and it estimates the individual error rates for each function, as well as
the joint error rates of all possible subsets of the functions, based on predictions they
make over a sample of unlabeled instances x1, . . . , xN.
Let us denote the input data by x = {x1, . . . , xN} and the true binary output

labels by y = {y1, . . . , yN}. We assume that the input data x are sampled from some
unknown distribution p(x) = D, and yi ∈ {0, 1}, for i = 1, . . . ,N. We consider
M functions, f̂1, . . . , f̂M which attempt to model the mapping from xi to yi, for
i = 1, . . . ,N. For example, each function may be the result of a di�erent learning
algorithm, or might use a di�erent subset of the features of xi as input. Furthermore,
for convenience we also sometimes use the notation ŷij = f̂j(xi).

error rates. We de�ne the error event EA of a set of functionsA as the event inNote that, in this case, the
error event is de�ned as a
function of some input x.

which every function inAmakes a mistake:

EA(x) =
⋂
j∈A

[
f̂j(x) 6= f(x)

]
, (2.1)

where ∩ denotes the set intersection operator and whereA contains the indices of the
functions. We de�ne the error rate of a set of functionsA (i.e., the probability that all
functions inAmake an error together) as:

eA = px∼D (EA(x)) , (2.2)

where px∼D (·) denotes the probability of an event that depends on x where x is
drawn from distributionD.

1 ¿is work has been published in (Platanios et al., 2014).
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agreement rates. We de�ne the agreement rate aA, for a set of functionsA as
the probability that all of the functions’ outputs are the same:

aA = px∼D
({
f̂j(x) = f̂k(x), ∀i, j ∈ A : j 6= k

})
. (2.3)

In contrast to the function error rates, this quantity can be directly estimated using
only unlabeled data, by computing the following sample estimate:

âA =
1

N

N∑
i=1

1{ŷij=ŷik,∀j,k∈A:j6=k}, (2.4)

where 1{·} is the indicator function and has value 1 when the subscript condition is
satis�ed, and 0 otherwise. ¿is is an unbiased estimate of the true agreement rate.

2.4.1 Key Idea

¿e key idea here is to notice that the agreement rate can be de�ned in terms of
the error rates of the functions in A. In order to understand how we can write the
agreement rate in terms of error rates let us consider a simple examplewhereA = {j, k}

(i.e., consider only the pairwise agreement rate between functions fj and fk). ¿e
probability that two functions agree is equal to the probability that both make an error,
plus the probability that neither makes an error (this is because these two events are
mutually exclusive):

a{j,k} = px∼D
(
E{j}(x) ∩ E{k}(x)

)
+ px∼D

(
E{j}(x) ∩ E{k}(x)

)
, (2.5)

where · denotes the complement of a set. By using De Morgan’s laws and the inclusion-
exclusion principle we obtain an expression for the agreement rate between the two
functions in terms of their individual error rates and their joint error rate (using the
notation de�ned in Equation 2.2):

a{j,k} = 1− e{j} − e{k} + 2e{j,k}. (2.6)

In the same way we can obtain the following general result for the agreement rate of a
set of functionsA of arbitrary size:

aA = px∼D

( ⋂
j∈A

E{j}(x)

)
+ px∼D

( ⋂
j∈A

E{j}(x)

)
, MUTUAL EXCLUSION (2.7)

= eA + 1− px∼D

( ⋃
j∈A

E{j}(x)

)
, DE MORGAN’S LAWS (2.8)

= eA + 1+

|A|∑
k=1

[
(−1)k

∑
I⊆A
|I|=k

eI

]
, INCLUSION-EXCLUSION (2.9)
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where ∪ denotes the set union operator and |·| denotes the set cardinality. In the next
section we examine the most basic case, assuming that the functions make indepen-
dent errors and have error rates below 0.5. We show that in this case we can solve
for the error rates exactly, provided that we have at least 3 di�erent functions. In
the subsequent section we examine the most general case, assuming that we haveN
functions that make errors with unknown inter-dependencies, and show that we can
formulate this as a constrained numerical optimization problem whose objective func-
tion re�ects a so prior assumption regarding the error dependencies. Experimental
results presented in Section 2.5 demonstrate the practical utility of this approach,
producing estimated error rates that are within a few percentage points of the true
error rates, using only unlabeled data.

2.4.1.1 3 Functions ¿at Make Independent Errors

When we have 3 functions that make independent errors we can replace the e{j,k}
term in Equation 2.6 with the term e{j}e{k}, for each pair, f̂j and f̂k, of functions.
In this case we have only 3 unknown variables (i.e., the individual function error
rates) and we have (32) = 3 equations (i.e., Equation 2.6 de�ned for 1 6 i < j 6 3).
¿erefore, we can directly solve for each error rate in terms of the three observed
agreement rates:

e{j} =
c±

(
1− 2a{k,l}

)
±2
(
1− 2a{k,l}

) , (2.10)

key idea
¿e signi�cance of Equations 2.6 and 2.9 is that they relate the di�erent agreement rates aA,
which are easily estimated from unlabeled data, to the true error rates eA of the functions,
which are di�cult to estimate without labeled data. Note that if we have a system of such
equations with rank equal to the number of error rates mentioned, then we can solve
exactly for these error rates in terms of the observed agreement rates. ¿is is not the case in
general because, given a set of functions, f̂1, . . . , f̂M, we obtain 2M −M− 1 agreement
rate equations (one for each subset of two or more functions) expressed in terms of 2N − 1
error rates (one for each none-empty subset of functions). However, if we assume that the
errors made by theM individual functions are independent, then we can express all of
the 2M − 1 error rates in terms ofM single-function error rates (e.g., e{j,k} = e{j}e{k})
and we can then solve exactly for all error rates (given the additional assumption that
error rates are better than chance). Furthermore, if we are unwilling to make the strong
assumption that errors of individual functions are independent, then we can instead solve
for the set of error rates that minimize the dependence among errors. For example, among
the in�nite solutions to the underdetermined set of equations, we choose the solution that
minimizes

∑
j,k(e{j,k} − e{j}e{k})

2 (this idea can be easily extended to larger subsets than
simply pairs of functions). ¿e key idea in this paper is that the correspondence between
easily-observed agreement rates and hard-to-observe error rates given by these equations
can be used as a practical basis for estimating error rates from unlabeled data.



2.4 a direct approach 21

where j ∈ {1, 2, 3}, k, l ∈ {1, 2, 3} \j with k < l and:

c =
√(
2a{1,2} − 1

) (
2a{1,3} − 1

) (
2a{2,3} − 1

)
, (2.11)

where, for a set B and an element of that set b, the notation B\b denotes the set
containing all elements in B except b. In most practical applications the compet-
ing functions do not make independent errors. We now consider the more di�cult
problem of estimating the error rates from agreement rates, but without assuming
independence of the function error events.

2.4.1.2 N Functions ¿at Make Dependent Errors

When we have N functions that make dependent errors we rely on the agreement
rate de�ned in Equation 2.9. We consider the agreement rates for all setsA = {A ⊆
{1, . . . ,N} : |A| > 2} of functions (the agreement rate is uninformative for less than
two functions) and we obtain 2N −N− 1 equations by matching Equation 2.9 to the
sample agreement rate for each possible subset of functions. Moreover, the unknown
variables are all the individual function error rates along with all of the possible joint
function error rates (let us denote the vector containing all those variables by e). ¿is
is a total of 2N − 1 unknown variables. ¿e set of 2N −N− 1 equations involving
2N − 1 unknown variables yields an underdetermined system of equations with an
in�nite number of possible solutions. We therefore cast this problem as a constrained
optimization problem where the agreement equations form constraints that must be
satis�ed and where we seek the solution that minimizes the following objective:

c(e) =
∑

A:|A|>2

(
eA −

∏
j∈A

e{j}

)2
. (2.12)

We are e�ectively trying to minimize the dependence between the error events, while ¿is can be seen from the
fact that when the error
events are independent
we have eA=

∏
j∈A e{j}.

satisfying all of the agreement rates constraints.We already saw in Section 2.4.1.1 that, if
we assume that the error events are independent, then we can obtain an exact solution.
By de�ning our optimization problem in this way we are e�ectively relaxing this
constraint by saying that we want to �nd the error rates that satisfy our constraints and
that are, at the same time, as independent as possible (i.e., a measure of dependence is
now used as a regularizer). Most existing methods trying to estimate function error
rates using only unlabeled data assume that the error events are independent; the
main novelty of this method lies in the fact that we relax all these assumptions and
thus make no hard assumptions about our functions.
Note that we could also de�ne di�erent objective functions based on information

we might have about our function approximations or based on di�erent assumptions
wemight want to make. For example, one could try minimizing the sum of the squares
of all the error rates (i.e., the `2 norm of e) in order to obtain the most optimistic error
rates that satisfy the agreement rates constraints. ¿e novelty of our method partly lies
in the formulation of the error rates estimation problem using only unlabeled data as
a constrained optimization problem.
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In this section we de�ned the model we are using for this method and the optimiza-
tion problem we wish to solve. We refer to this method as the DIRECTmethod, due to
its direct derivation from a simple observation on the relationship between agreement
rates and error rates. In Section 2.4.2 we de�ne additional constraints that both this
method and the maximum likelihood method (described in the next section) use.

2.4.1.3 Maximum Likelihood Formulation

We now consider an alternative formulation of the same ideas that we described in the
previous section. We de�ne a probabilistic model of the consistency in the functions’
outputs, considering themost general case of havingM functions thatmake potentially
dependent errors. Let us denote the outputs of the functions on an independent
and identically distributed sample of data, x1, . . . , xN, by ŷi = [ŷi1, . . . , ŷiM],
for i ∈ {1, . . . ,N}. ¿e ŷi’s are independent and therefore, we can de�ne the data
likelihood as:

L (e) = pD (ŷ1, . . . , ŷN | e) =

N∏
i=1

pD (ŷi | e), (2.13)

where the parameter vector e contains all possible error event probabilities. More
speci�cally, it contains all the eI, for all I ⊆ {1, . . . ,M} and |I| ∈ {1, . . . ,M}. ŷi
contains all the function outputs given the data sample xi. Note that, for simplicity,
we remove the explicit xi ∼ D notation in this section, and subscript p using only the
data distributionD. In order to compute pD(ŷi|e) we need to consider two cases:

1. All functions agree with each other (i.e., ŷi is a vector of all 1’s or all 0’s).
2. ¿e functions can be split in two non-empty groups: those that output 1 and

those that output 0.

¿e groups of functions with the same output can also be viewed as maximal cliques
in a graph whose nodes correspond to the functions and whose edges correspond to
agreement between function pairs (i.e., when there is agreement between two functions
there is an edge connecting their corresponding nodes in the graph, and when there
is no agreement between them there is no edge). By using this representation we call
the �rst case the “one clique case” and the second case the “two cliques case.” We are
now going to consider these two cases separately.

one clique case. Let us denote the set of all function indices in the clique by C
(i.e., C = {1, . . . ,M}). In this case, either all functions make an error or none of them
does. ¿erefore, for the probability of the current sample we have that:

pxi∼D(ŷi | e) = pxi∼D

( ⋂
j∈C

E{j}(xi)

)
+ pxi∼D

( ⋂
j∈C

E{j}(xi)

)
, (2.14)

= eC + 1− pxi∼D

( ⋃
j∈C

E{j}(xi)

)
, (2.15)



2.4 a direct approach 23

= eC + 1+

|C|∑
k=1

[
(−1)k

∑
I⊆C
|I|=k

eI

]
, (2.16)

following a similar derivation to the one we used when de�ning the agreement rates
in Equation 2.9.

two cliques case. Let us denote the set of function indices in the �rst clique by
C1 and those in the second clique by C2. ¿en, we have two possible events:

1. All functions in C1 make an error and none of those in C2 make an error.
2. All functions in C2 make an error and none of those in C1 make an error.

Let p1xi∼D(ŷi | e) denote the probability of ŷi given that the �rst event occurs, and
let p2xi∼D(ŷI | e) denote the probability of ŷi given that the second event occurs. It
can be easily seen that these two events are mutually exclusive and so we have that:

pxi∼D(Ŷs | e) = p
1
xiD

(ŷi|e) + p
2
xiD

(ŷi | e). (2.17)

Once again, following a similar derivation to the one we used when de�ning the
agreement rates in Equation 2.9, we have that:

p1xi∼D(ŷi | e) = pxi∼D

([ ⋂
j∈C1

E{j}(xi)

]
∩
[ ⋂
k∈C2

E{k}(xi)

])
, (2.18)

= pxi∼D

([ ⋂
j∈C1

E{j}(xi)

]
∩
[ ⋃
k∈C2

E{k}(xi)

])
, (2.19)

= eC1 +

|C2|∑
k=1

[
(−1)k

∑
I⊆C2
|I|=k

e{I∪C1}

]
. (2.20)

For the second line we used one of De Morgan’s laws and for the last line we used a
modi�ed form of the inclusion-exclusion principle. To understand the step we used
to obtain the last equation, let us consider a simple case with example eventsA, B1
and B2. It is clear from the Venn diagram in Figure 2.4 that:

p(A ∩ [B1 ∪ B2]) = p (A)−p (A ∩ B1)−p (A ∩ B2)+p (A ∩ B1 ∩ B2) . (2.21)

Figure 2.4: Illustra-
tion of Equation 2.21.

¿e shaded blue part in the diagram corresponds to this prob-
ability. ¿e last step in Equation 2.20 follows from extending
this result using the inclusion-exclusion principle. Similarly, we
derive the following expression for the second case:

p2xi∼D (ŷi | e) = eC2 +

|C1|∑
k=1

[
(−1)k

∑
I⊆C1
|I|=k

e{I∪C2}

]
. (2.22)
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Having de�ned the likelihood function it remains to describe the optimization prob-
lem that we need to solve to obtain the maximum likelihood estimate of e. We use
the negative logarithm of the likelihood as the objective function that we want to
minimize. ¿e details of how we solve this optimization problem are provided in
Section 2.4.2. We refer to this method asMLE.

2.4.1.4 Regularization

We now de�ne a method which is a slight modi�cation of the aforementionedMLE
method, in that it uses a modi�ed objective function. ¿e objective function we
considered in the MLE method is non-convex and hence may have multiple local
maxima. In order to avoid getting stuck into one of these local maxima—or at least
help with avoiding it—we add a regularization term. Following the same argument
we used in constructing the objective function of the DIRECTmethod, we de�ne the
new objective function:

c(e) = − logL (e) + λ
∑

A:|A|>2

(
eA −

∏
j∈A

e{j}

)2
, (2.23)

where λ is a hyperparameter whose value can be chosen arbitrarily. We call thisλ can be interpreted as a
function of the variance

of this prior.
the maximum a posteriori (MAP) method because the added term is equivalent to
adding a Gaussian prior to the error rate estimates. As we shall see in Section 2.5 the
performance of this method depends heavily on the value of λ.

2.4.2 Optimization

In the previous sections we de�ned optimization problems that correspond to each
of our methods. We use the TOMLAB Base Module v.7.7 “conSolve” solver for all
methods. More details about this solver can be found at https://tomopt.com/tomlab.
In the following sections we discuss: (i) some additional constraints that apply to
all proposed methods, (ii) extensions of our approach to the case where multiple
approximations are learned for each of several di�erent target functions, and (iii) an
approximation that can make our methods much more computationally e�cient and
in some cases even more accurate.

2.4.2.1 Error Rates Constraints

Our unknown variables include both the individual function error rates and the
joint function error rates. We need to impose constraints on the values that the joint
function error rates are allowed to take. ¿ese constraints follow from basic rules of
probability and set theory; they represent bounding joint event probabilities using the
corresponding marginal event probabilities. ¿ey are described by:

eA 6 min
j∈A

eA\j, (2.24)

https://tomopt.com/tomlab
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for |A| > 2. Furthermore, regarding the individual function error rates, it is easy to
see that if we transform all ej, for j = 1, . . . ,M, to 1− ej, the agreement rates remain
unchanged. A similar result holds for the likelihood function. In order to make our In order for our methods

to work in the �rst place,
this constraint must hold
for most functions.

models identi�able we add the constraint that ej ∈ [0, 0.5), for j = 1, . . . ,M, which
simply means that our functions perform better than chance, rendering it a reasonable
constraint. Note that this identi�ability issue can also be resolved by adding the slightly
weaker constraint that the majority of the functions perform better than chance.

2.4.2.2 Dealing With Multiple Classi�cation Problems

Up to this point we have assumed that there is a single target function and multiple
approximations to this function. More generally though, we might have multiple
target functions or problem settings, and a common set of learning algorithms used
for learning each one. For example, this is the case in NELL where the di�erent target
functions correspond to di�erent boolean classi�cation problems (e.g., classifying aNP
as a city, as a location, etc.). Multiple learning methods are utilized to approximate
each target function (e.g., a classi�er based on the NP orthography, a second classi�er
based on the NP contexts, etc.), so that each such classi�cation problem or target
function corresponds to an instance of our “multiple approximations” problem setting.
Of course we can apply our DIRECTmethod or our MLEmethod to estimate accura-

cies separately for each target classi�cation problem (and that is what we actually did
for our experiments in Section 2.5). However, when we have multiple target functions
and multiple learning methods shared across each of them, there is an interesting
opportunity to further couple the error rate estimates across these di�erent target
functions. In Equations 2.12 and 2.23 we introduced terms to minimize the depen-
dency between the error rates of competing approximations. In the case where we have
multiple target functions, we can introduce additional terms to capture other relevant
assumptions. For example, we could introduce a term to minimize the di�erence
in error dependencies between two learning methods across multiple classi�cation
problems (e.g., we could minimize the di�erence in error dependencies between
orthography-based and context-based classi�ers trained for di�erent classi�cation
problems). In fact, these interesting settings form the motivation for some of our work
presented in Chapter 3, as discussed in Section 2.6.

2.4.2.3 Approximating High Order Error Rates

Once the agreement rate estimates (number of occurrences of each clique formation in
the case of theMLE and theMAPmethods) have been calculated, the execution time of
the optimization procedure for all proposed methods does not depend on the number
of available data samples,N. Even the execution time of the optimization procedure
for the MLEmethod, which may at �rst sight seem to depend onN, does not actually
depend on it because there is only a �xed number of possible clique combinations
one can obtain for a given number of functions,M. ¿is number is equal to 2M−1.
In a large data sample we will have a lot of repeated samples in terms of the maximal
cliques that they result in. We can compute the log-likelihood term for each one of
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these cliques once and multiply it by the number of samples in which they each appear.
¿us, the execution time depends only on the number of functions,M. ¿is can be
easily seen by considering the number of unknown variables we have which is equal
to 2M − 1. As will be shown in Section 2.5, the performance of all methods, in terms
how good the obtained function error rate estimates are, increases with an increasing
number of functions,M. It is therefore not a good idea to try and reduceM.¿erefore,
we instead propose a way to reduce the execution time of the optimization procedure
by approximating high order error rate terms, instead of estimating them directly.
We can estimate high order joint function error rates using low order function error

rates by using the following formula:

eA =
1

|A|

∑
j∈A

eA\je{j}, (2.25)

for |A| > Me, whereMe is chosen arbitrarily. With a high value ofMe we obtain
better estimates but execution time is larger, and vice-versa. ¿is estimate is based
on the fact that the higher the order of the function error rates, the less signi�cant
the impact of an independence assumption between them is. Furthermore, the only¿e “order” of an error

rate, eA, or agreement
rate, aA, refers to the

size/cardinality of setA,
or simply |A|.

available information regarding high order error rates comes from high order sample
agreement rates, âA, which will likely be very noisy estimates of the true agreement
rates. ¿at is because there will be very few data samples where all of the functions in
A agree and therefore the sample agreement rate will be computed using only a small
number of data samples resulting in a noisy estimate of the true agreement rate. ¿is
motivates us to approximate high order error rates using low order error rates, instead
of directly estimating them. In fact, in the case where the sample agreement rates are
too noisy, this approximation might even increase the quality of the obtained error
rate estimates. By approximating high order error rates as we described earlier, we are
e�ectively ignoring the corresponding high order sample agreement rates (i.e., they
are not used in our estimation) for the DIRECTmethod.

2.5 experiments

We perform experiments using two very di�erent datasets, in order to explore the
ability of our methods to estimate error rates in realistic settings without requiring
any domain-speci�c tuning. For both datasets, we use a set of labeled data examples
to perform our experiments. We use the data samples without their labels to estimate
agreement rates, and subsequently estimate error rates using our methods. We then
use the same examples with their labels to estimate each function’s true error rate,
which we refer to as the “true error rate” of the function.

nell dataset. ¿is dataset consists of data samples where we use four binary
logistic regression (LR) classi�ers to predict whether aNP belongs to a speci�c category
in the NELL knowledge base (e.g., is “Monongahela” a river?). ¿e domain in this
case is de�ned by the category (e.g., beverage and river are two di�erent domains)
and the four classi�ers we use are the following:
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1. ADJ: A LR classi�er that uses as features the adjectives that occur with the NP
over millions of web pages.

2. CMC: A LR classi�er that considers orthographic features of the NP (e.g., does
the NP end with the letter string “-burgh”?).

3. CPL: A LR classi�er that uses as features words and phrases that frquently appear
together with the NP.

4. VERB: A LR classi�er that uses as features verbs that appear with the NP.

Category # Examples
animal 20,733
beverage 18,932
bird 19,263

bodypart 21,840
city 21,778

disease 21,827
drug 20,452
food 19,566
fruit 18,911
muscle 21,606
person 21,700
protein 21,811
river 21,723

vegetable 18,826

Table 2.1:¿eNELL categories
used in our experiments.

We provide more details for these classi�ers in our pub-
lication about NELL (Mitchell et al., 2018). Table 2.1 lists
the NELL categories that we used as the domains in our
experiments, along with the number of labeled examples
available per category. Note that the NP features used by
these four classi�ers are somewhat independent given
the correct classi�cation label, and thus the classi�ers
should make make somewhat independent errors.

brain dataset. Functional Magnetic Resonance
Imaging (fMRI) data were collected while 8 subjects
read a chapter from “Harry Potter and the Philosopher’s
Stone”—a popular novel (Rowling, 2012)—one word at
a time. ¿e classi�cation task is to �nd which of two
40-second long story passages correspond to an unla-
beled 40 second time series of fMRI neural activity. For
this binary classi�cation task, we use eleven classi�ers.
A er the classi�ers are trained on a portion of the data, each classi�er uses di�erent
types of annotations of the text to predict the brain activity related to the two story
passages. ¿e held out 40-second fMRI segment is assigned the label of the story
passage with the closest predicted activity. Each classi�er uses a di�erent type of word
annotations in the text: (i) corpus derived semantic features borrowed fromMurphy
et al. (2012), (ii) occurrence or absence of dialog, (iii) motion actions, (iv) emotions,
(v) non-motion actions, (vi) presence of di�erent story characters, (vii) word length,
(viii) local variance of word length, (ix) number of words in the sentence, (x) word
part-of-speech tag, and (xi) grammatical role of a word in the sentence (computed
automatically using a dependency parser). We run the classi�cation using all 11 classi-
�ers and distinct subsets of the data corresponding to 11 di�erent brain regions (these
regions represent our domains in this case). Note that we combine the data collected
from the 8 subjects in a single dataset, and end up with 924 labeled examples per
location. Di�erent brain regions encode di�erent types of information and thus, we
expect the performance of the 11 classi�ers to be di�erent for each region. Estimating
the classi�ers’ error rates for each region should thus also help us determine where
di�erent types of information are encoded in the brain. Additional details about this
dataset can be found in (Wehbe et al., 2014).

More details can be found at our code repository: https://github.com/eaplatanios/
makina. Our experimental results for both datasets are presented and discussed in the

https://github.com/eaplatanios/makina
https://github.com/eaplatanios/makina
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following two sections. As the performance metric we use the mean absolute deviation
(MAD) between the true function error rates and the function error rates estimated
from unlabeled data (i.e., we sum the absolute values of the element-wise di�erences
of the true error rates vector and the estimated error rates vector). We compute the
MAD for the individual function error rates alone, for the pairwise function error
rates (i.e., for |A| = 2) alone and for all function error rates together. Note the higher
order error rates are quite small, because it is rare for every one of the competing
functions to simultaneously make an error. ¿erefore, we consider the individual and
pairwise error rates to be most diagnostic of how well our approach is working.

2.5.1 Results on Error Estimation

nell dataset. We initially apply the DIRECTmethod using only the ADJ, the CPL
and the VERB classi�ers, while assuming that they make independent errors. ¿e
method for estimating error rates in this context is described in Section 2.4.1.1. In
this case, we estimate only the individual function error rates. ¿e resulting MAD
is 2.82× 10−2; that is, the average error estimate is within a few percent of the true
error. Although encouraging, this MAD is poor in comparison to our less restricted
methods described below, and indicates that the assumption that the classi�ers make
independent errors is incorrect in this case (and in most other cases as a matter of
fact). Some of the obtained error rates are not even within the interval [0, 0.5] and
are thus obviously incorrect, since we know that the true error rates must lie in this
interval. From now on, we consider only the more general case ofN functions that
make dependent errors, thus making no explicit independence assumptions.
Table 2.2 presents results for all three of our methods used with the entire NELL

dataset. It includes the results obtained when using all available data samples (i.e., the
numbers shown in Table 2.1) and when using only 50 data samples per category. It
is clear from this table that the more data samples we have the better our methods
perform, presumably due to the more accurate estimates of the true agreement rates
for the DIRECTmethod, and to the larger volume of evidence we have to incorporate
into our likelihood, for the other two methods. Furthermore, we see that the DIRECT
method performs signi�cantly better than the other two methods. ¿is could possibly
be attributed to the fact that for this method we solve an easier optimization problem,
whereas for the other two we solve a highly non-convex problem and we likely get
stuck in local minima. Better numerical optimization solvers could potentially help
with that. Finally, theMAPmethod performs better than theMLEmethod, presumably
re�ecting the correctness of our prior which attempts to minimize error dependencies
across competing approximations. We did discover that the performance of theMAP
method depends strongly on the choice of the λ parameter. In this case, we use λ = 10
simply because this value gives the regularization term the same order of magnitude
as the log-likelihood term in the objective function. Moreover, now it becomes clear
why the 2.82× 10−2 MAD that we obtained when we assumed independent error
events is quite a bad result. ¿e DIRECTmethod manages to achieve an MAD that is
almost 6 times better than that.
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Figure 2.5: True errors (blue bars) versus errors estimated from unlabeled data using the
DIRECTmethod (red bars), for four competing function approximations (ADJ, CMC, CPL,
and VERB), to �ve di�erent target function domains (i.e., bodypart, beverage, bird, person,
and protein) using the NELL dataset. Note that each plot uses a di�erent vertical scale to
make it easier to observe the accuracy of the error rates estimates.

×10−2
All Data Samples 50 Data Samples

Individual Pairwise All Individual Pairwise All
DIRECT 0.49 0.31 0.29 0.82 0.39 0.40

MLE 2.77 2.19 1.84 20.06 19.96 15.42
MAP 1.54 1.30 1.08 13.11 15.17 11.14

Table 2.2: Mean absolute deviation (MAD) of individual, pairwise, and all function error rates
for the NELL dataset, for all three proposed methods and for the cases where we use all of the
available data samples and only 50 data samples per domain. ¿e best score in each case is
underlined and shown in red.

We also run an experiment using the approximation described in Section 2.4.2.3
and settingMe = 2 (i.e., considering only pairwise agreement rates). ¿e individual
functions MAD in this case is 0.52 × 10−2, the pairwise one is 0.35 × 10−2 and
the overall one is 0.31 × 10−2. ¿ese results are worse than the ones we obtained
without using this approximation, as expected, but they are still very good. ¿is is
important because it shows that this proposed approximation method is useful (there
was a signi�cant speedup as well—it takes 3 times less time).
From these results it is clear that the DIRECTmethod, which also happens to be the

simplest and fastest of the three proposed methods, performs best for this dataset,
without requiring any parameter tuning (as opposed to theMAPmethod). Figure 2.5
shows a plot of the estimated error rates for the DIRECTmethod, along with the true
error rates for �ve randomly selected NELL classi�cation problems. ¿is plot gives us
an idea of how good the DIRECT estimates are, and helps us make sense of the reported
MAD values. As seen in this plot, the DIRECTmethod is able to recover the ranking
of the competing function approximations based on error rate exactly, irrespective of
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the exact error estimate. ¿is is in fact true for each of the 15 NELL target function
classi�cation problems that we used (i.e., not only for the �ve shown in this �gure).

brain dataset. Table 2.3 presents results for the brain dataset, obtained when using
4 of the 11 competing function approximations (randomly selected to be classi�ers 1, 3,
4, and 5) and when using all 11 of them.We observe that the more competing classi�ers
we use, the better the quality of the resulting estimates is. When using all 11 classi�ers
the DIRECT method performs signi�cantly better than the other two methods. We
have also included a plot of the estimated error rates for the DIRECTmethod, along
with the true error rates, for three randomly selected brain regions (i.e., domains),
in Figure 2.6. In this �gure, we observe that we can also recover the ranking of the
classi�ers based on their error rates, using the DIRECTmethod, for this dataset.
Furthermore, we observe that for the case when we use 8 classi�ers, theMLEmethod

and theMAPmethod both perform poorly. ¿is can probably be attributed to the opti-
mization algorithm not being able to deal with these problems very well, due to their
high dimensionality and non-convexity. ¿ese results could probably be improved
by choosing a di�erent optimization algorithm better suited for these problems. It is
interesting to note that when we use only 4 classi�ers, the MLE and the MAPmethods
perform slightly better than the DIRECTmethod in estimating the individual function
error rates. However, they perform signi�cantly worse when dealing with higher order
error rates and so, overall, the DIRECTmethod still dominates. Note that, for the MAP
method we selected λ = 10 for the same reasons as for the NELL dataset.
We also run an experiment using the approximation described in Section 2.4.2.3

and settingMe = 2 (i.e., considering only pairwise agreement rates). ¿e MAD
for the individual function error rates in this case is 4.40× 10−2, the pairwise one
is 4.06 × 10−2 and the overall one is 1.90 × 10−2. ¿ese results are only slightly
better than the ones we obtained without using this approximation. ¿is is important
because it shows once again that this approximation method is useful (there was a

independence assumption weakness
In order to make it more clear that the independence assumption is not very appropriate
even in the case of NELL where a signi�cant amount of e�ort has been put into having the
NELL classi�ers make independent errors, we provide here a measure of that dependence.
We compute the following quantity for each domain:

1

Z

∑
j,k

∣∣∣∣ e{j,k}e{j}e{k}
− 1

∣∣∣∣ , (2.26)

where Z is the total number of terms in the sum, and we average over all domains. ¿is
quantity gives us a measure of the average dependence of the function error rates across all
domains. If the functions make independent errors, then this quantity should be equal to 0.
We computed this quantity for the NELL dataset using the sample error rates, which are an
estimate of the true error rates, and we obtained a value of 8.1770, which is far from 0. ¿is
indicates why our methods—and especially the DIRECTmethod—do so much better than
the exact solution when assuming independent errors.
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Figure 2.6: True errors (blue bars) versus errors estimated from unlabeled data using the
DIRECTmethod (red bars), for eight competing function approximations (based on di�erent
story features), and three di�erent target function domains (using neural activity from three
di�erent brain regions) using the brain dataset. Note that our error rate estimates from
unlabeled data are quite close to the true error rates.

×10−2
4 Classifiers 11 Classifiers

Individual Pairwise All Individual Pairwise All
DIRECT 10.97 6.60 6.50 4.36 4.14 2.01

MLE 10.60 8.34 7.64 32.02 12.33 4.50
MAP 9.61 18.19 11.16 27.95 18.60 7.26

Table 2.3: Mean absolute deviation (MAD) of individual, pairwise, and all function error
rates for the brain dataset, for all three proposed methods, and for the cases where we use 4
classi�ers and 11 classi�ers. ¿e best score in each case is underlined and shown in red.

signi�cant speedup as well—it takes 8 times less time). ¿e better accuracy could
possibly be attributed to two factors: (i) the problem is of much lower dimensionality
and so the optimization algorithm might be dealing better with it, and (ii) the high
order sample agreement rates might have been bad estimates of the true agreement
rates due to insu�cient data and so they might have a�ected our methods negatively.
Given the signi�cant speedup and slight performance gain, this is the method that we
shall refer to as DIRECT, in the following chapters.

2.5.2 Results on Ground Truth Estimation

A natural question to ask at this point is whether or not our method can also be
used to estimate the ground truth labels directly, instead of just the error rates. As
mentioned in the introduction of this chapter, a common approach to estimating
ground truth labels from multiple imperfect labels is to perform a majority vote
for each instance. We can use our estimated error rates to make the majority vote
more robust by assigning more weight to functions that have lower error rates. ¿e
results obtained when doing this are shown in Figure 2.7. Our method helps boost
the performance of majority voting. ¿e gains are much smaller for the brain dataset,
as opposed to the NELL dataset. ¿is is most likely due to the fact that the brain
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Figure 2.7: Accuracy of plain majority vote (MAJ) and majority vote weighted by the error rate
estimates provided by the DIRECTmethod, for the two datasets we used in our experiments.
A larger value corresponds to better performance.

dataset functions are very dependent and so modeling the function dependencies in
some way may be crucial to improving performance. ¿is is discussed further in the
next section, and an improved method that is able to better handle this case will be
introduced in the next chapter.

2.6 limitations

¿e DIRECT approach presented in this chapter has three key limitations:

1. Dependencies: We are currently directly modeling the relationship between
agreement rates and error rates and we are e�ectively relaxing a strong inde-
pendence assumption using the objective function shown in Equation 2.12.
However, as we saw in Section 2.5.2 this may not be su�cient to do well in
cases where the functions are highly dependent. ¿is is also evident from the
fact that our method performs worse for the brain dataset than for the NELL
dataset. ¿erefore, it is important to �nd ways to better model dependencies
between the functions. It is also important to be able to model dependencies
between the di�erent domains (i.e., classi�cation problems). ¿is is because,
for some of them we may have a lot of data and for others very little, but it may
also be easy to �gure out which ones are similar to each other, so that we can
share information across them. Modeling all these kinds of dependencies could
therefore prove useful to further improving the performance and robustness of
our method. ¿is limitation is addressed in Chapter 3.

2. Logical Constraints: In the case of NELL, we have a lot of side information
about the domains in the form of logical constrains (i.e., the KB ontology is
�xed and known a priori). Such constraints could prove very useful for accuracy
estimation. For example, if we know that the categories athlete and country

are mutually exclusive, then we also know that if two functions say that a
speci�c NP refers to both an athlete and a country, then at least one of the
two functions has to be wrong. In fact, the pre-existing knowledge integrator in
NELL made use of such constraints using heuristic rules and this resulted in
improved performance. ¿erefore, the main question here is whether we can
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Figure 2.8: Illustration of the three key limitations of the DIRECT approach. A detailed discus-
sion of these limitations is provided in Section 2.6.
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use such constraints in the context of our agreement-based accuracy estimation
methods. ¿is question is addressed in Chapter 4.

3. Representations: So far we have treated the input instances, xi, as indicator
variables and the DIRECTmethod has no way of using any information that may
be available about them (e.g., in the case of NPs, it would be easy to construct
feature vectors using neural word embedding approaches). ¿e same is true
about the function approximations. In some cases, these function approxima-
tionsmay even be human annotators (e.g., in AmazonMechanical Turk). Ideally
we should be able to use information about them to infer dependencies and
become better able to share information e�ectively. Deep learning o�ers very
powerful representation learning methods and so, in Chapter 5, we propose an
approach that makes use of such methods and addresses the limitations listed
in this section. Furthermore, it makes it possible to merge the label integration
phase with the model training phase, resulting in a single end-to-end approach
for learning from imperfect labels.

2.7 key takeaways

In this chapter, we introduced the concept of estimating the error rate of each of several
approximations to the same function, based on their agreement rates over unlabeled
data and we provided three di�erent analytical methods to do so. Our experimental
results are encouraging and suggest that function agreement rates are indeed very
useful in estimating function error rates and thus, answer our motivating question
on whether consistency implies correctness: consistency does imply correctness, under
certain independence assumptions. We consider this work to be a �rst step towards
developing a self-re�ection framework for autonomous learning systems. However, we
also identi�ed three key limitations of the proposed methods that will be addressed
in the following chapters.
Moreover, in this chapter, we considered a setting where we only have access to

unlabeled data. Even though this is useful for NELL, it is also important to be able to
handle labeled data that may be available. It is unclear how such information could be
incorporated to the proposed DIRECTmethod (it could possibly be done by adding a
regularizer forcing the estimated error rates to be close to the sample error rates we
compute using the labeled data). However, all methods presented in the following
chapters have been designed such that they can be used directly in semi-supervised
settings, as well as in unsupervised settings.
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Figure 3.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

In the previous chapter, we showed that learning collections of functions allows us
to perform completely unsupervised evaluation. Speci�cally, we proposed a method
inspired by how we, as humans, would approach this problem. Even though the pro-
posed method performs reasonably well in practice, we also identi�ed and discussed
some of its limitations in Section 2.6. In this chapter, we propose a method that ad-
dresses the �rst one of these limitations; namely, the inability of the direct approach
to directly model the dependencies between the learned functions. As we shall show,
this method is based on Bayesian modeling and it manages to successfully address
this limitation.

3.1 introduction

¿edirect approach of Chapter 2 relaxes the independence assumption for the function
approximations. However, we observed that this may not be su�cient to do well in
cases where the functions are highly dependent. In such cases, it is important to better
model dependencies between the functions. Furthermore, it is important to model

35
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dependencies between the di�erent domains (i.e., classi�cation problems). ¿is is
because, for some of them we may have a lot of data and for others very little, but it
may be easy to �gure out which ones are similar to each other and share information
between them.Modeling these kinds of dependencies could prove useful to improving
the performance and robustness of our methods.
In this chapter, we �rst propose to model the problem using a simple and elegant

probabilistic graphical model that allows us to encode assumptions wemake about our
data in an intuitive manner, and can be extended to encode additional assumptions.1
¿e proposed approach allows us to infer the posterior distribution of a single label
for each data sample jointly with the accuracies of our classi�ers (thus also removing
the need for the separate weighted majority vote step that we used in Section 2.5.2),
and it is also able to handle missing data, which are data samples for which a classi�er
might not have predicted any label. ¿is can happen when the classi�er does not have
any features for those data samples, for example, and is not uncommon in practice. In
fact, it happens quite frequently in the case of NELL. In order to model dependencies
between the functions and the domains, we propose two nonparametric extensions of
the simple model that allow sharing information among the di�erent functions and
domains, and that are especially useful in the case of limited data. Finally, we present
experimental results demonstrating the success of the new approaches in the same
experimental setting we considered in Chapter 2.
Dawid and Skene (1979) were the �rst to formulate this problem in terms of a

graphical model andMoreno et al. (2015) proposed a nonparametric extension applied
to crowdsourcing. ¿e state-of-the-art approach before the work presented in this
chapter, is the work of Tian and Zhu (2015) and it also comes from the area of crowd-
sourcing. ¿e authors proposed an interesting max-margin majority voting scheme
for combining classi�er outputs. As we show in Section 3.5, the methods presented
in this chapter are able to outperform their approach. ¿e goal of this chapter is to
present novel methods for estimating the error rate of each function approximation
using only unlabeled data, while also jointly inferring the posterior distribution of the
response of function f while accounting for these error rates.

3.2 a simple bayesian model

We consider the “multiple approximations” problem setting that was described in Sec-
tion 2.2. We have several di�erent approximations, f̂1, . . . , f̂N, to some target boolean
classi�cation function, f : X→ {0, 1}, and we wish to know the true accuracies of each
of these di�erent approximations, using only unlabeled data. We also wish to know
the most likely single label, meaning the most likely response of the true underlying
function f. For convenience, we sometimes use the notation ŷij = f̂j(xi). We de�ne
the following generative process describing how our data samples were generated:

1. Let us make the assumption that there is an underlying distribution from which
the labels of all the data instances are sampled. We �rst draw p ∼ Beta(αp, βp),
representing the prior probability for the true label being equal to 1.

1 ¿is work has been published in (Platanios et al., 2016).
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Figure 3.2: Simple probabilistic model for error rate estimation using only unlabeled data.

2. For each data example,xiwhere i = 1, . . . ,N, we draw a labelyi ∼ Bernoulli(p).
¿is label is the true label that corresponds to f(xi).

3. Let us further assume that there is another underlying distribution from which
the error rates of our function approximations are sampled. For each function ap-
proximation, f̂j where j = 1, . . . ,M, we draw an error rate ej ∼ Beta(αe, βe).

4. Finally, we can assume that each function approximation takes the sampled
label for each example and �ips it with probability equal to its error rate (thus
making an error). It then outputs the resulting label.¿us, for each data instance
xi, and function approximation f̂j, we draw an output label ŷij, according to
the following distribution:

ŷij =

{
yi with probability 1− ej,
1− yi otherwise.

(3.1)

¿is output label corresponds to f̂j(xi).

We emphasize the last step in the generative process, where with probability equal to
the function error rate, the correct label is �ipped and the function approximation
makes an error. An illustration of this model is shown in Figure 3.2. Note that, at
inference time we are only provided a set of unlabeled data instances x1, . . . , xN and
the function approximations f̂1, . . . , f̂M.

inference. In order to perform inference for this simple model we use Gibbs sam-
pling, a well-known Markov chain Monte Carlo (MCMC) sampling method (Geman
and Geman, 1984). ¿e conditional probabilities we use during sampling are de�ned
as follows:

P(p | ·) = Beta(αp + σy, βp +N− σy), (3.2)

P(yi | ·) ∝ pyi(1− p)1−yiπi, (3.3)
P(ej | ·) = Beta(αe + σj, βe + S− σj), (3.4)
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where:

σy =

S∑
i=1

yi, (3.5)

σj =

N∑
i=1

1{ŷij 6=yi}, (3.6)

πi =

M∏
j=1

e
1{ŷij 6=yi}

j (1− ej)
1{ŷij=yi} , (3.7)

and 1{·} evaluates to one if its subscript statement is true and to zero otherwise. We
sequentially sample from these three distributions, by sampling each random variable
while keeping the others �xed to their last sampled values. ¿e distribution of the
samples we obtain is guaranteed to converge to the true posterior distribution of our
random variables, given that we obtain a large enough number of samples.
Note that it is easy to handle missing data when using this model (in contrast to

prior work), as we can model the missing data as latent variables which themselves
can be inferred in the Gibbs sampling algorithm. ¿e conditional probability for ŷij,
in case it needs to be sampled, is as follows:

P(ŷij | ·) ∝ e
1{ŷij 6=yi}

j (1− ej)
1{ŷij=yi} . (3.8)

3.3 a coupled bayesian model

Up to this point we have assumed that there is a single target function and multiple
approximations to that function. More generally though, we might have multiple
target functions or problem settings and a common set of learning algorithms used for
learning each of them. For example, this is the case in NELL, where the di�erent target
functions correspond to di�erent boolean classi�cation problems (e.g., classifying a
NP as a city, as a location, etc.). ¿e same is true for crowdsourcing when we may
be asking multiple questions to human annotators. Multiple learning methods are
utilized to approximate each one of these target functions (e.g., a classi�er based on
the NP morphology, a second classi�er based on the context in which an NP appears

implicit use of agreement rates
Most of the prior work proposes using agreement rates between the function approxima-
tions in order to estimate the error rates of these functions. By looking at Equations 3.3,
3.4, 3.5, 3.6, and 3.7, we can see that our method is also implicitly using agreement rates in
order to estimate the function error rates. We are using the agreement between the function
outputs and the true underlying labels in order to infer both the error rates of our functions
and these labels. ¿is fundamental connection further supports the argument made in
Chapter 2 relating agreement and correctness, in that under certain conditions, agreement
of several functions implies correctness of these functions.
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in, etc.), so that each such classi�cation problem corresponds to an instance of our
“multiple approximations” problem setting.
It is reasonable to assume that there are some structural dependencies between

our function approximations that could result in similar behavior (i.e., similar error
rate across multiple domains). ¿is is not an unreasonable assumption because the
classi�ers use the same set of features across all domains. If this is indeed the case,
then sharing information across domains might prove useful. ¿is forms the main
motivation for the extension to the model proposed earlier, that we present in this
section.¿emain idea is that we want to cluster the domains based on the distribution
of the error rates of the function approximations. However, we do not know the
number of clusters needed and this is why we resort to Bayesian non-parametrics; we
want to infer the necessary number of clusters “automatically.” More speci�cally, we
are going to use a Dirichlet process (DP) prior. Note that, Moreno et al. (2015) propose
clustering the classi�ers while only considering a single domain, instead of clustering
the domains as we do. In the following paragraphs we provide an introduction to DPs
and introduce our new and improved model.

dirichlet process. ¿e Dirichlet process is a distribution over discrete probabil-
ity measures (i.e., atoms):

G =

∞∑
k=1

πkδθk , (3.9)

with countably in�nite support, where the �nite-dimensionalmarginals are distributed
according to a �nite Dirichlet distribution (Ferguson, 1973). It is parametrized by a
base probability measureH, which determines the distribution of the atom locations,
and a concentration parameter α > 0 that is proportional to the inverse variance of
the atom locations. ¿e DP can be used as the distribution over mixing measures in a
nonparametric mixture model. In the DP mixture model (Antoniak, 1974), the data
samples {xi}Ni=1 are assumed to be generated according to the following process:

G ∼ DP(α,H) , θi ∼ G , xi ∼ f(θi) . (3.10)

While the DP allows for an in�nite number of clusters a priori, any �nite dataset will
be modeled using a �nite, but random, number of clusters.

model. For the de�nition of our model we are going to use the Chinese restaurant
process (CRP) representation of the DP (Blackwell andMacQueen, 1973), because this
form is most appropriate for deriving the Gibbs sampling equations we use to perform
inference. Following from the intuition provided in the beginning of Section 3.3, we
now have a problem setting in which we have several di�erent domains, d = 1, . . . , D,
where for each domain d, we have a set of function approximations, f̂d1 , . . . , f̂

d
M, to

some target boolean classi�cation function, fd : X → {0, 1}. We wish to know the
true accuracies of each of these di�erent approximations, using only unlabeled data,
as well as the most likely single label, meaning the most likely response of the true
underlying function f. To this end, we de�ne the following generative process:
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1. Draw an in�nite number of potential error rates, φl, for our function ap-
proximations. For eachφl and for j = 1, . . . ,M, draw an error rate [φl]j ∼
Beta(αe, βe).

2. For each domain d = 1, . . . , D:

i. Draw pd ∼ Beta(αp, βp), representing the prior probability for the true
underlying function output being equal to 1 for domain d.

ii. For each data instance xdi , where i = 1, . . . ,Nd, draw a label ydi ∼

Bernoulli(pd). ¿is corresponds to the true label fd(xdi ).
iii. Draw a cluster assignment, zd ∼ CRP(α).
iv. For each function approximation, f̂dj , de�ne the error rate as e

d
j = [φzd ]j.

v. For each data instance xdi and function approximation f̂
d
j , draw an output

label ŷdij from the following distribution:

ŷdij =

{
ydi with probability 1− edj ,
1− ydi otherwise.

(3.11)

¿is output label corresponds to f̂dj (x
d
i ).

An illustration of this model is shown in Figure 3.3. Note that, at inference time we
are only providedD sets of unlabeled data {xd1 , . . . , x

d
Nd

}Dd=1, one for each domain,
along with the function approximations {f̂d1 , . . . , f̂

d
M}Dd=1.

inference. In order to perform inference for thismodel we also use Gibbs sampling.
For sampling from the DP we use the approach described by Neal (2000). In order
to get fast convergence, we �rst marginalize out of the conditional probabilitiesφl

and sample the rest of the variables sequentially for a few iterations (i.e., we perform
collapsed Gibbs sampling). We then start sampling theφl along with the other random
variables, using the original conditional probabilities.

collapsed gibbs sampling. ¿e conditional probabilities we use during the
collapsed sampling phase are as follows:

P(pd | ·) = Beta(αp + σdy, βp +Nd − σdy), (3.12)

P(ydi | ·) ∝ (pd)y
d
i (1− pd)1−y

d
i B(Adi , B

d
i ), (3.13)

P(zd = k | ·) ∝

{
ZdkP

d
k if Zdk > 0,

αPdnew otherwise,
(3.14)

where:

Adi = αdzd +

N∑
î=1

M∑
j=1

1{ŷd
îj
6=yd

î
}, (3.15)

Bdi = βdzd +

N∑
î=1

M∑
j=1

1{ŷd
îj
=yd

î
}, (3.16)
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Figure 3.3: Graphical model for coupled error rate estimation using only unlabeled data. ¿e
coupling comes from the use of a Dirichlet process prior to group problem domains and share
information within each group. Note that, CRP(α) denotes the Chinese restaurant process
(CRP) with concentration parameter α.

αdk = αe +

D∑
d̂=1
d̂6=d

1
{zd̂=k}

σd̂, (3.17)

βdk = βe +

D∑
d̂=1
d̂6=d

1
{zd̂=k}

(Nd̂ − σd̂), (3.18)

σdy =

Nd∑
i=1

ydi , (3.19)

σdj =

Nd∑
i=1

1{ŷdij 6=ydi }
, (3.20)

σd =

M∑
j=1

σdj , (3.21)

Zdk =

D∑
d̂=1
d̂6=d

1
{zd̂=k}

, (3.22)
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Pdk =
B(αdk + σd, βdk +Nd − σd)

B(αe + αdk , βe + β
d
k)

, (3.23)

Pdnew =
B(αe + σ

d, βe +N
d − σd)

B(αe, βe)
, (3.24)

andB(·, ·) is the Beta function.

uncollapsed gibbs sampling. A er the �rst phase, we start sampling the error
rates along with the rest of the variables and store the samples we obtain. During this
phase, we use the following conditional probabilities:

P(pd | ·) = Beta(αp + σdy, βp +Nd − σdy), (3.25)

P(ydi | ·) ∝ (pd)y
d
i (1− pd)1−y

d
i πdi (3.26)

P(zd = k | ·) ∝

{
ZdkR

d
k , if Zdk > 0,

αPdnew , otherwise,
(3.27)

P([φk]j | ·) = Beta(Φαj , Φ
β
j ), (3.28)

where:

πdi =

N∏
j=1

(edj )
1
{ŷd
ij
6=ld
i
}(1− edj )

1
{ŷd
ij
=ld
i
}
, (3.29)

Rdk =

N∏
j=1

(edj )
σdj (1− edj )

Nd−σdj , (3.30)

Φαj = αe +

D∑
d=1

1{zd=k}σ
d
j , (3.31)

Φ
β
j = βe +

D∑
d=1

1{zd=k}(N
d − σdj ), (3.32)

and the remaining quantities are de�ned in the same way as for the collapsed sampling
phase. In the case of missing data we use Equation 3.8.

3.4 a hierarchically coupled bayesian model

As mentioned in Section 2.6, the dependencies between our function approximations
can be important for estimating error rates using unlabeled data. So far in our models
we share little information across these functions when estimating their error rates.
One natural extension to our coupled error estimation model, which allows sharing
more information across functions, is to use a hierarchical Dirichlet process (HDP)
prior, originally proposed by Teh et al. (2006). ¿is prior would allow us to �rst
cluster the domain (i.e., as we are doing in the DP model) and then, for each domain
cluster, to also cluster the classi�ers, and share the classi�er clusters between di�erent
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domain clusters. In the following paragraphs we provide an introduction to HDPs
and introduce our hierarchical coupled error estimation model.

hierarchical dirichlet process. Hierarchical Dirichlet processes, originally
proposed by Teh et al. (2006), extend DPs to be able to model grouped data. ¿e
HDP is a distribution over probability distributions Gm, m = 1, . . . ,M, each of
which is conditionally distributed according to a DP. ¿ese distributions are coupled
using a discrete common base measure, which is also distributed according to a DP.
Each distributionGm can be used to model a collection of observations {xmi }Nmi=1, as
follows:

G ∼ DP(γ,H) , Gm ∼ DP(α,G) ,
θmi ∼ Gm , xmi ∼ f(θmi ) .

(3.33)

Each observation within a group is a draw from a mixture model, and mixture com-
ponents can be shared between groups. ¿e intuition behind this property of the
HDP is that, due to the base measure of the child DPs being discrete, they necessarily
share atoms. ¿us, the mixture models in the di�erent groups may share mixture
components, as desired.

model. To extend our model for coupled error rate estimation and allow sharing
of information across functions by using an HDP, as described at the beginning of
Section 3.4, we de�ne the following generative process:

1. Draw an in�nite number of potential error rates, φl ∼ Beta(αe, βe), for our
function approximations.

2. For each domain d = 1, . . . , D:

i. Draw pd ∼ Beta(αp, βp), as in the coupled error estimation model.
ii. For each data example, xdi where i = 1, . . . ,Nd, draw a label ydi ∼

Bernoulli(pd), as in the coupled error estimationmodel.¿is corresponds
to the true label fd(xdi ).

iii. Draw an in�nite number of potential cluster assignments for each function
approximation, kdm ∼ CRP(γ).

iv. For each function approximation, j = 1, . . . ,M:
a. Draw a cluster assignment, zdj ∼ CRPd(α), from the CRP corre-

sponding to the current domain.
b. De�ne the error rate as edj = φtdj

, where tdj = kd
zdj
.

c. For each data example, xdi , draw an output label, ŷdij, according to
the following distribution:

ŷdij =

{
ydi with probability 1− edj ,
1− ydi otherwise.

(3.34)

¿is output label corresponds to f̂dj (x
d
i ).

An illustration of this model is shown in Figure 3.4.



44 a bayesian approach to estimating accuracy

Instances Predictors

ERROR
RATE

Domains

ATOMATOM

CLUSTERTRUE
LABEL

LABEL
PRIOR

PREDICTION

Figure 3.4: Graphical model for hierarchical coupled error rate estimation using only unlabeled
data. ¿e hierarchical coupling comes from the use of a hierarchical Dirichlet process prior
to cluster problem domains and functions and share information within each cluster. Note
that, CRPd(α) denotes a separate Chinese restaurant process (CRP) per domain d, with
concentration parameter α.

inference. In order to perform inference for thismodel we also use Gibbs sampling.
For sampling from the HDP we use the approach described by Teh et al., 2006. Similar
to the coupled model, for the initial sampling phase we use collapsed Gibbs sampling.

collapsed gibbs sampling. ¿e conditional probabilities we use during the
collapsed sampling phase are as follows:

P(pd | ·) = Beta(αp + σdy, βp +Nd − σdy), (3.35)

P(ydi | ·) ∝ (pd)y
d
i (1− pd)1−y

d
i Ldi , (3.36)

P(zdj = t | kdt = k, ·) ∝ ZdktPdjk, (3.37)

P(kdt = k | ·) ∝ ZdkPdkt, (3.38)

where:

Ldi =

K∏
k=1

B(Adik, B
d
ik), (3.39)

Adik = αdk +

M∑
j=1

N∑
î=1

1{kd
zd
j

=k}1{ŷd
îj
6=yd

î
}, (3.40)
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Bdik = βdk +

N∑
î=1

M∑
j=1

1{kd
zd
j

=k}1{ŷd
îj
=yd

î
}, (3.41)

αdk = αe +

D∑
d̂=1
d̂6=d

N∑
ĵ=1

1
{kd̂
zd̂
ĵ

=k}
σd̂
ĵ
, (3.42)

βdk = βe +

D∑
d̂=1
d̂6=d

N∑
ĵ=1

1
{kd̂
zd̂
ĵ

=k}
(Nd̂ − σd̂

ĵ
), (3.43)

αdjk = αdk +

N∑
ĵ=1
ĵ6=j

1{kd
zd
ĵ

=k}σ
d
ĵ
, (3.44)

βdjk = βdk +

N∑
ĵ=1
ĵ6=j

1{kd
zd
ĵ

=k}(N
d − σd

ĵ
), (3.45)

Zdkt =



∑N
ĵ=1
ĵ6=j

1{zd
ĵ
=t} if t occupied,

α
∑D
d̂=1
d̂6=d

∑
t̂ 1{kd̂

t̂
=k}

if t unoccupied and k exists,

αγ if t unoccupied and k is new,

(3.46)

Pdjk =
B(αdjk + σ

d
j , β

d
jk +N

d − σdj )

B(αdjk, β
d
jk)

, (3.47)

Zdk =


∑D
d̂=1
d̂6=d

∑
t̂ 1{kd̂

t̂
=k}

, if k exists,

γ , if k is new,
(3.48)

where, noting that our previous de�nitions for αdjk and β
d
jk also apply to sets over

functions, J, in the following way:

αdJk = αdk +

N∑
ĵ=1
ĵ/∈J

1{kd
zd
ĵ

=k}σ
d
ĵ
, (3.49)

βdJk = βdk +

N∑
ĵ=1
ĵ/∈J

1{kd
zd
ĵ

=k}(N
d − σd

ĵ
), (3.50)

we have:

Pdkt =
B(αdJk +

∑
j∈J σ

d
j , β

d
jk +

∑
j∈J (N

d − σdj )

B(αdJk, β
d
Jk)

, (3.51)
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where J = {j : zdj = t}.

uncollapsed gibbs sampling. A er the �rst phase, we start sampling the error
rates along with the rest of the variables and store the samples we obtain. During this
phase, we use the following conditional probabilities:

P(pd | ·) = Beta(αp + σdy, βp +Nd − σdy), (3.52)

P(ydi | ·) ∝ (pd)y
d
i (1− pd)1−y

d
i πdi (3.53)

P(zdj = t | kdt = k, ·) ∝ ZdktRdjk, (3.54)

P(φk | ·) = Beta(Φα, Φβ), (3.55)

P(kdt = k | ·) ∝ ZdkRdkt, (3.56)

where:

πdi =

N∏
j=1

(edj )
1
{ŷd
ij
6=ld
i
}(1− edj )

1
{ŷd
ij
=ld
i
}
, (3.57)

Rdjk = (edj )
σdj (1− edj )

Nd−σdj , (3.58)

Rdkt =
∏
j∈J

(edj )
σdj (1− edj )

Nd−σdj , (3.59)

Φα = αe +

D∑
d=1

N∑
j=1

1{kd
zd
j

=k}σ
d
j , (3.60)

Φβ = βe +

D∑
d=1

N∑
j=1

1{kd
zd
j

=k}(N
d − σdj ), (3.61)

where J = {j : zdj = t} and the remaining quantities are de�ned in the same way as
for the collapsed sampling phase. In the case of missing data we use Equation 3.8.

3.5 experiments

For our experiments, we use the same datasets that we used in Section 2.5. However,
we now compare to more baseline methods:

1. MAJ: ¿is method consists of simply taking the most common label among the
classi�er outputs (i.e., the majority vote) as the combined label.

2. DW: ¿is method was proposed by Dawid and Skene (1979). Results for this
method have been omitted from our �gures because they are several orders of
magnitude worse than the ones that we have included.

3. GIBBS-SVM and GD-SVM: ¿ese methods were proposed by Tian and Zhu (2015).
4. DIRECT: ¿is is the method we presented in Chapter 2.
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5. cBCC: ¿is method was proposed by Moreno et al. (2015) and we adapted it to
model error rates instead of the full confusion matrix.

Some of these methods do not explicitly estimate error rates, but rather combine the
classi�er outputs to produce a single label. For them we produce an estimate of the
error rate by comparing the predicted labels to the ground truth labels. Also, we now
report the mean squared error (MSE) of the error rate estimates when compared to the
true error rates, rather than the mean absolute deviation (MAD). ¿is is because this
metric better emphasizes di�erences in cases when the di�erences are small. Lower
MSE indicates better performance.
For all experiments and all three models, we use the following Gibbs sampling

inference procedure: (i) we sample 4,000 samples that we throw away (i.e., burn-
in samples), (ii) we sample 2,000 samples and keep every 10th sample in order to
reduce the dependencies between the collected samples that are introduced by the
sequential nature of the sampling procedure, and (iii) we obtain our error rate and
label estimates by averaging over the collected samples. We repeat each experiment 10
times and report the mean of the evaluation metrics. We also compute the standard
deviation of these metrics but we decided to omit it from the result �gures because
it is about 2 orders of magnitude smaller than the mean value. We use the following
hyperparameters:

– Labels Prior: αp and βp are both set to 1 (uniform and uninformative prior).
– Error Rates Prior:αe is set to 1 andβe is set to 10. We have chosen these values
in order to “avoid” the identi�ability problem that was described in Chapter 2.
¿is prior encodes our assumption that more than half of our classi�ers have
error rate lower than 0.5.

– DP and HDP Concentration Parameters: We carry out several experiments ¿e held-out dataset
consists of a random
sample that contains 10%
of the available data.

with many logarithmically spaced values for α and γ (all combinations of pairs
of values were considered for the HDP) and we compute the log-likelihood
for a held-out dataset, for each experiment. ¿e results that we report for the
DP and HDP models correspond to the experiment that results in the highest
log-likelihood value for the held-out dataset.

More details can be found at our code repository: https://github.com/eaplatanios/
makina. ¿e results for all experiments are summarized in Figure 3.5 and are discussed
in the following sections. In what follows, we use the following abbreviations: BAYES
refers to our error estimation model of Section 3.2, C-BAYES refers to our coupled error
estimation model of Section 3.3, and �nally, HC-BAYES refers to our hierarchically
coupled error estimation model of Section 3.4.

3.5.1 Results on Error Estimation

Our results on error rate estimation are shown in Figure 3.5. It is clear that HC-BAYES
consistently outperforms the competingmethods. In the presence of dependencies across
domains and classi�ers, we expect that C-BAYES and HC-BAYES perform better than
BAYES when we have a small amount of data. ¿is is because that is when sharing

https://github.com/eaplatanios/makina
https://github.com/eaplatanios/makina
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Figure 3.5: Mean squared error (MSE) of the estimated error rates for our methods (shown in
red color) and the methods that we are competing against (shown in blue and green color).
¿e lower the MSE (i.e., the shorter the bar), the better the result is. It is clear from these
plots that our methods outperform the competing methods in all cases. Error bars have been
omitted from these plots because they are negligibly small (∼2 orders of magnitude smaller
than the reported values). Note that these plots use a logarithmic scale.

information becomes useful. When we have a large amount of data, we expect that
the performance of the simple BAYESmodel will be similar to its extensions, since for
C-BAYES and HC-BAYES, the atoms may not be clustered as there may be enough data
per atom to render information sharing unnecessary. ¿ese expectations are evidently
met in our results.
For all experiments where we use all data samples we see that the three proposed

methods perform equivalently well and always beat the competing methods. ¿e
fact that the coupling introduced by the nonparametric extensions does not o�er
an improvement in performance can be attributed to the fact that for all these ex-
periments we have enough data for each error rate to be modeled independently
(i.e., without being clustered). ¿e three proposed models do not perform identically.
¿is is probably due to the fact that they use di�erent priors, thus enabling di�erent
levels of information sharing. In the case of limited data samples (i.e., 10% of the data
samples), HC-BAYES performs best, followed by C-BAYES. ¿is supports our argument
that coupled error estimation methods are more powerful in cases where there is only
a limited amount of available data. Despite the fact that this is not really the case with
the full NELL dataset—or other web-scale projects—it is a common scenario that is
encountered with other types of data, such as data in neuroscience and biology. Note
that, in such cases, even unlabeled data can be very hard and expensive to obtain.
Finally, note that cBCC is the closest method to ours and also beats competingmethods
in most cases. However, our methods are always able to outperform cBCC. ¿is is
probably due to the fact that this model only allows for information sharing among
di�erent classi�ers (i.e., it clusters the classi�ers), but none of our datasets involves a
high number of classi�ers.
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Figure 3.6: Accuracy for ground truth estimation for our methods (shown in red color) and
the methods that we are competing against (shown in blue and green color). Higher numbers
imply better performance.

3.5.2 Results on Ground Truth Estimation

Our methods are also able to directly estimate the most likely ground truth labels.
¿erefore, it is natural to also perform the experiment of Section 2.5.2. Our results for
this experiment are shown in Figure 3.6. It is interesting to see that DIRECTmanages to Note that we only use the

simple BAYESmodel
here because it performs
similarly to C-BAYES
and HC-BAYES when
using the full datasets.

still outperform the other baselines. Most importantly though, BAYES is able to provide
a further boost over DIRECT; especially so for the brain dataset. ¿is is important
because, as discussed in Section 2.6, the highly dependent classi�ers in the brain
dataset formed the main motivation for the models presented in this chapter.

3.6 key takeaways

In this chapter, we presented a way to address one of the key limitations of our DIRECT
approach for estimating accuracies from unlabeled data. ¿e core idea behind the
newly proposed methods can also be extended to model the full confusion matrix
for general discrete labels (i.e., instead of just binary labels that we consider in this
chapter). ¿is can be useful in several applications where one needs to know how the
error rates decompose into precision and recall, for example. In fact, in Chapter 5 we
shall return to the BAYESmethod and extend it to model the full confusion matrix
and also address another limitation of the DIRECT approach. ¿e resulting method
outperforms the current state-of-the-art for this problem, while also having multiple
applications beyond accuracy estimation and learning from imperfect labels.
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Figure 4.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

In Chapter 2, we showed that learning collections of functions allows us to perform
completely unsupervised evaluation, by proposing a direct approach to do this based
on intuition about how we, as humans, would approach this problem. However, in
Section 2.6, we also identi�ed and discussed some limitations of this approach. In the
previous chapter we addressed the �rst one of these limitations: the direct approach
cannot directly model the dependencies between the learned functions. In this chapter,
we propose a method that addresses the second limitation: the previously proposed
approaches cannot use a weak form of supervision in the form of logical constraints
between the function predictions, which is o en already available or easy to obtain. As
we shall show, the proposed method is based on probabilistic logic and it successfully
addresses this limitation.

4.1 introduction

In the previous chapters we established why estimating the accuracy of classi�ers is
central to machine learning and many other �elds.¿e twomain motivating examples
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in our case have been never-ending learning systems like NELL, and the use of crowd-
sourcing for collecting training data for machine learning systems, at scale. In both
these cases it is common to encounter tasks which involve making several predictions
that are tied together by logical constraints. In fact, such learning tasks are abundant in
machine learning and multi-task learning, which forms one of the focus areas of this
thesis. As an example, we may have two classi�ers in NELL which predict whether
noun phrases represent animals or cities, respectively, and we know that something
cannot be both an animal and a city at the same time (i.e., the two categories are
mutually exclusive). In such cases, we observe that if the predictions of the system
violate at least one of the constraints, then at least one of the system’s components must
be wrong. ¿is chapter extends this intuition and presents an unsupervised approach
(i.e., only unlabeled data are needed) for estimating accuracies of classi�ers, that is able
to use information provided by such logical constraints. Furthermore, the proposed
approach is also able to use any available labeled data, thus also being applicable to
semi-supervised settings. Most importantly, this chapter addresses a key limitation of
the DIRECT approach, that was described in Section 2.6.
We once again consider the “multiple approximations” problem setting that was

described in Section 2.2. We have several di�erent approximations, f̂d1 , . . . , f̂
d
Md , to

a set of target boolean classi�cation functions, fd : X 7→ {0, 1} for d = 1, . . . , D,
and we wish to know the true accuracies of each of these di�erent approximations,
using only unlabeled data, as well as the response of the true underlying functions,
fd. For convenience we sometimes use the notation ŷdij = f̂dj (xi). Each value of
d characterizes a di�erent domain (or problem setting) and each domain can be
interpreted as a class or category of objects. Similarly, the function approximations
can be interpreted as classifying inputs as belonging to these categories or not. We
consider the case where we may have a set of logical constraints de�ned over the
domains. In contrast to prior work, we allow the function approximations to provide
so responses in the interval [0, 1] (as opposed to only allowing binary responses—i.e.,
they can now return the probability for the response being 1), thus allowing modeling
their “certainty.” As an example of this setting, to which we will o en refer throughout
this chapter, let us consider a part of NELL, where the input space of our functions
X is the space of all possible noun phrases (NPs). Each target function fd returns a
boolean value indicating whether the input NP belongs to a category, such as city
or animal, and these categories correspond to our domains. ¿ere also exist logical
constraints between these categories that may be hard (i.e., strongly enforced) or
so (i.e., enforced in a probabilistic manner). For example, city and animalmay be
mutually exclusive (i.e., if an object belongs to the category city, then it is unlikely
that it also belongs to the category animal). In this case, the function approximations
correspond to di�erent classi�ers (potentially using a di�erent set of features / di�erent
views of the input data), which may return a probability for a NP belonging to a class,
instead of a binary value. Our goal is to estimate the accuracies of these classi�ers
using only unlabeled data. In order to quantify accuracy, we de�ne the error rate
of classi�er j in domain d as edj , px∼D(f̂dj (x) 6= fd(x)), for the binary case, for
j = 1, . . . ,Md, whereD is the true underlying distribution of the input data. Note
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that accuracy is equal to one minus error rate. ¿is de�nition may be relaxed for the
case where f̂dj (x) ∈ [0, 1] represents a probability:

edj , f̂dj (x)p∼D(fd(x) 6= 1) + (1− f̂dj (x))px∼D(fd(x) 6= 0), (4.1)

which resembles the expected probability of error. Even though our work is motivated
by the use of logical constraints de�ned over the domains, we also consider the setting
where there are no such constraints.1 ¿e proposed method consists of:

1. de�ning a set of logic rules for modeling the logical constraints between fd and
f̂dj , in terms of the error rates e

d
j and the known logical constraints, and

2. performing probabilistic inference using these rules as priors, in order to obtain
the most likely values of the edj and the f

d, which are not observed.

¿e key intuition behind our method is that, if the constraints are violated for the
function approximation outputs, then at least one of these function approximations
has to be making an error. For example, in the case of NELL, if two function approxi-
mations respond that a NP belongs to the city and the animal categories, respectively,
then at least one of them has to be making an error. We de�ne the form of the logic
rules in Section 4.3 and then describe how to perform probabilistic inference over
them in Section 4.4. An overview of the proposed method is shown in Figure 4.2. In
the next section we introduce the notion of probabilistic logic, which fuses classical
logic with probabilistic reasoning and forms the backbone of our method.

4.2 probabilistic logic

In classical logic, we have a set of predicates (e.g., mammal(x) indicating whether x is a
mammal, where x is a variable) and a set of rules de�ned in terms of these predicates
(e.g., mammal(x)→ animal(x), where “→” can be interpreted as “IMPLIES”). We refer
to predicates and rules de�ned for a particular instantiation of their variables as ground
predicates and ground rules, respectively (e.g., mammal(whale) and mammal(whale)→
animal(whale)).¿ese ground predicates and rules take boolean values (i.e., are either
true or false—for rules, the value is true if the rule holds). Our goal is to infer the
most likely values for a set of unobserved ground predicates, given a set of observed
ground predicate values and logic rules. In probabilistic logic, we are instead interested
in inferring the probabilities of these ground predicates and rules being true, given a
set of observed ground predicates and rules. Furthermore, the truth values of ground
predicates and rules may be continuous and lie in the interval [0, 1], instead of being
boolean, representing the probability that the corresponding ground predicate or
rule is true. In this case, boolean logic operators, such as AND (∧), OR (∨), NOT (¬),
and IMPLIES (→), need to be rede�ned. In the next section we assume their classical
logical interpretation.

1 ¿is work has been published in (Platanios et al., 2017b).
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Figure 4.2: Proposed method overview. ¿e classi�er outputs and the logical constraints make
up the system inputs. ¿e representation of the logical constraints in terms of the function
approximation error rates is described in Section 4.3. In the logical constraints box, blue
arrows represent subsumption constraints and red dashed lines represent mutually exclusion
constraints. Given the inputs, the �rst step is grounding (i.e., computing all feasible ground
predicates and rules that the system will need to perform inference over) and it is described
in Section 4.4.2. In the ground rules box,∧, ¬, and→ correspond to the logical AND, OR, and
IMPLIES operators, respectively. ¿en, inference is performed in order to infer the most likely
truth values of the unobserved ground predicates, given the observed ones and the ground
rules (described in detail in Section 4.4). ¿e results include: (i) the estimated error rates, and
(ii) the most likely target function outputs (i.e., combined predictions).
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4.3 proposed logic rules

As described earlier, our goal is to estimate the true accuracies of each of the function
approximations, f̂d1 , . . . , f̂

d
Md for d = 1, . . . , D, using only unlabeled data, as well as

the response of the true underlying functions, fd. We now de�ne the logic rules that
we perform inference over in order to achieve this goal. ¿e rules are de�ned in terms
of the following predicates, for d = 1, . . . , D:

– Function Approximation Outputs: f̂dj (x), de�ned over all approximations j =
1, . . . ,Md, and inputs x ∈ X, for which the corresponding function approxi-
mation has provided a response. Note that the values of these ground predicates
lie in [0, 1] due to their probabilistic nature (i.e., they do not have to be binary,
as in related work), and some of them are observed.

– Target Function Outputs: fd(x), de�ned over all inputs x ∈ X. Note that in
contrast to the semi-supervised setting, in the purely unsupervised setting,
none of these ground predicate values are observed.

– Function Approximation Error Rates: edj , de�ned over all approximations j =
1, . . . ,Md. Note that none of these ground predicate values are observed. ¿e
primary goal of the proposed method is to infer their values.

¿e goal of the logic rules we de�ne is two-fold: (i) combine the function approxi-
mation outputs in a single output value, and (ii) account for the logical constraints
between the domains. We aim to achieve both goals while accounting for the error
rates of the function approximations. We �rst de�ne a set of rules that relate the
function approximation outputs to the true underlying function outputs. We call this
set of rules the ensemble rules and we describe them in the following section. We then
discuss how to account for logical constraints between the domains.

4.3.1 Ensemble Rules

¿e �rst set of rules speci�es a relation between the target function outputs fd(x) and
the function approximation outputs f̂dj (x), independent of the logical constraints:

f̂dj (x)∧ ¬edj → fd(x), ¬f̂dj (x)∧ ¬edj → ¬fd(x), (4.2)

f̂dj (x)∧ e
d
j → ¬fd(x), and ¬f̂dj (x)∧ e

d
j → fd(x), (4.3)

for d = 1, . . . , D, j = 1, . . . ,Md, and x ∈ X. In words, the �rst set of rules state
that if a function approximation is not making an error, then its output should match
the output of the target function. ¿e second set of rules state that if a function
approximation is making an error, then its output should not match the output of the
target function.
It is interesting to note that the ensemble rules e�ectively constitute a weighted

majority vote for combining the function approximation outputs, where the weights
are determined by the error rates of the approximations.¿ese error rates are implicitly
computed based on agreement between the function approximations. ¿is is related
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the DIRECTmethod we presented in Chapter 2. ¿ere we tried to answer the question
of whether consistency in the outputs of the approximations implies correctness, and
directly used the agreement rates of the approximations in order to estimate their
error rates. ¿us, there exists an interesting connection between DIRECT and this
logic-based approach in that here we also implicitly use agreement rates to estimate
error rates, and, as we show in Section 4.5, our results—even though signi�cantly
improving upon DIRECT—reinforce our earlier claim.

4.3.2 Constraint Rules

¿e space of possible logical constraints is huge; we do not deal with every possible
constraint in this chapter. Instead, we focus our attention on two types of constraints
that are abundant in structured prediction problems in machine learning, and which
are motivated by the use of our method in the context of NELL:

– Mutual Exclusion: If domains d1 and d2 are mutually exclusive, then fd1 = 1
implies that fd2 = 0. For example, in the NELL setting, if a NP belongs to the
city category, then it cannot also belong to the animal category.

– Subsumption: If d1 subsumes d2, then if fd2 = 1, we must have that fd1 = 1.
For example, in the NELL setting, if a NP belongs to the cat category, then it
must also belong to the animal category.

¿is set of constraints is su�cient to model most ontology constraints between cate-
gories in NELL, as well as a big subset of the constraints generally used in practice.

mutual exclusion rule. We �rst de�ne the predicate ME(d1, d2), indicatingA set of ME domains can
be reduced to pairwise
ME constraints for all

pairs in that set.

that domains d1 and d2 are mutually exclusive. ¿is predicate has value 1 if domains
d1 and d2 are mutually exclusive and value 0 otherwise, and its truth value is assumed

identifiability
Let us consider �ipping the values of all error rates (i.e., setting them to one minus their
value) and the target function responses. ¿en, the ensemble logic rules would evaluate
to the same value as before (i.e., satis�ed or unsatis�ed). ¿erefore, the error rates and
the target function values are not identi�able when there are no logical constraints. As
we will see in the next section, the constraints may sometimes help resolve this issue as
the corresponding logic rules o en do not exhibit this kind of symmetry. However, for
cases where this symmetry exists we can resolve it by assuming that most of the function
approximations have error rates better than chance (i.e., < 0.5). ¿is can be done by
considering the following two rules: f̂dj (x) → fd(x), and ¬f̂dj (x) → ¬fd(x), for d =

1, . . . , D, j = 1, . . . ,Md, and x ∈ X. Note that all these rules imply is that f̂dj (x) = fd(x);
that is, they represent the prior belief that the function approximations are correct. As will
be discussed in Section 4.4, in probabilistic frameworks where rules are weighted with a
real value in [0, 1], these rules will be given a weight that represents their signi�cance (or
strength). In such a framework, we can consider using a smaller weight for these prior
belief rules compared to the remainder of the rules, which would simply correspond to a
regularization weight. Note that this weight can be a tunable or even a learnable parameter.
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to be observed for all values of d1 and d2. Furthermore, note that it is symmetric,
meaning that if ME(d1, d2) is true, then ME(d2, d1) is also true. We de�ne the
mutual exclusion logic rule as follows:

ME(d1, d2)∧ f̂d1j (x)∧ fd2(x)→ ed1j , (4.4)

for d1 6= d2 = 1, . . . , D, j = 1, . . . ,Md1 , and x ∈ X. In words, this rule says that
if fd2(x) = 1 and domains d1 and d2 are mutually exclusive, then f̂d1j (x)must be
equal to 0, as it is an approximation to fd1(x) and ideally we want f̂d1j (x) = fd1(x).
If that is not the case, then f̂d1j must be making an error.

subsumption rule. We �rst de�ne the predicate SUB(d1, d2), indicating that
domain d1 subsumes domain d2. ¿is predicate has value 1 if domain d1 subsumes
domain d2, and 0 otherwise, and its truth value is always observed. Note that, unlike
mutual exclusion, this predicate is not symmetric. We de�ne the subsumption logic
rule as follows:

SUB(d1, d2)∧ ¬f̂d1j (x)∧ fd2(x)→ ed1j , (4.5)

for d1, d2 = 1, . . . , D, j = 1, . . . ,Md1 , and x ∈ X. In words, this rule says that if
fd2(x) = 1 and d1 subsumes d2, then f̂d1j (x)must be equal to 1, as it is an approxi-
mation to fd1(x) and ideally we want f̂d1j (x) = fd1(x). If that is not the case, then
f̂d1j must be making an error.

Having de�ned all of the logic rules that comprise our model, in the next section
we describe how to perform inference. Inference in this case comprises determining
the most likely truth values of the unobserved ground predicates, given the observed
predicates and the set of rules that comprise our model.

4.4 inference

In Section 4.2 we introduced the notion of probabilistic logic and de�ned ourmodel in
terms of probabilistic predicates and rules. In this section we discuss in more detail the
implications of using probabilistic logic, and the way in which we perform inference.
¿ere exist various probabilistic logic frameworks, each making di�erent assumptions.
In what is arguably the most popular such framework,Markov logic networks (MLNs)
which were proposed by Richardson and Domingos (2006), inference is performed
over a constructedMarkov random �eld (MRF; Hammersley and Cli�ord, 1971) based
on the model logic rules. Each potential function in the MRF corresponds to a ground
rule and takes an arbitrary positive valuewhen the ground rule is satis�ed and the value
0 otherwise (the positive values are o en called rule weights and can be either �xed
or learned). Each variable is boolean-valued and corresponds to a ground predicate.
MLNs are thus a direct probabilistic extension to boolean logic. It turns out that due
to the discrete nature of the variables in MLNs, inference is NP-hard and can thus be
very ine�cient. Part of our goal in this chapter is for our method to be applicable at a
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very large scale (e.g., for systems like NELL). We thus resort to probabilistic so logic
(PSL; Bröcheler et al., 2010; Pujara et al., 2013), which can be thought of as a convex
relaxation of MLNs. Note that the model proposed in the previous section be used
with various probabilistic logic frameworks. Our decision to use PSL is motivated by
scalability. One could just as easily perform inference for our model using MLNs, or
any other such framework.

4.4.1 Probabilistic So Logic

In PSL, models, which are composed of a set of logic rules, are represented using hinge-
lossMarkov random �elds (HL-MRFs; Bach et al., 2013). In this case, inference amounts
to solving a convex optimization problem. Variables of the HL-MRF correspond
to so truth values of ground predicates. Speci�cally, a HL-MRF f is a probability
density over m random variables, Y = {Y1, . . . , Ym} with domain D = [0, 1]m,
corresponding to the unobserved ground predicate values. Let X = {X1, . . . , Xn} be
an additional set of variables with known values in the domain [0, 1]n, corresponding
to observed ground predicate values. Let φ = {φ1, . . . , φk} be a �nite set of k
continuous potential functions of the form φj(X,Y) = (max {`j(X,Y), 0})pj , where
`j is a linear function of X and Y , and pj ∈ {1, 2}. We will see how these functions
relate to the ground rules of the model. Given the above, for a set of non-negative free
parameters λ = {λ1, . . . , λk} (i.e., the equivalent of MLN rule weights), the HL-MRF
density is de�ned as:

f(Y) =
1

Z
exp
{
−

k∑
j=1

λjφj(X,Y)

}
, (4.6)

where Z is a normalizing constant so that f is a proper probability density function.
Our goal is to infer the most probable explanation (MPE), which consists of the
values of Y that maximize the likelihood of our data (as opposed to performing
marginal inference which aims to infer the marginal distribution of these values). ¿is
is equivalent to solving the following convex problem:

min
Y∈[0,1]m

k∑
j=1

λjφj(X,Y). (4.7)

Each variable Xi or Yi corresponds to a so truth value (i.e., Yi ∈ [0, 1]) of a ground
predicate. Each function `j corresponds to a measure of the distance to satis�ability
of a logic rule. ¿e set of rules we use is what characterizes a particular PSL model.
¿e rules represent prior knowledge we have about the problem we are trying to solve.
For our model, these rules were de�ned in Section 4.3. As mentioned above, variables
are allowed to take values in the interval [0, 1]. We thus need to de�ne what we mean
by the truth value of a rule and its distance to satis�ability. For the logical operators
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AND (∧), OR (∨), NOT (¬), and IMPLIES (→), we use the de�nitions from Łukasiewicz
Logic (Klir and Yuan, 1995):

P ∧Q , max {P +Q− 1, 0}, (4.8)

P ∨Q , min {P +Q, 1}, (4.9)

¬P , 1− P, and (4.10)

P → Q , min{1− P +Q, 1}. (4.11)

Note that these operators are a continuous relaxation of the corresponding boolean
operators, in that for boolean-valued variables, with 0 corresponding to FALSE and 1
to TRUE, they are equivalent. By writing all logic rules in the form:

B1 ∧ B2 ∧ · · ·∧ Bs → H1 ∨H2 ∨ · · ·∨Ht, (4.12)

it is easy to observe that the distance to satis�ability (i.e., 1minus its truth value) of a
rule evaluates to:

max {0,
s∑
i=1

Bi −

t∑
j=1

Ht + 1− s}. (4.13)

Note that any set of rules of �rst-order predicate logic can be represented in this form
(Bröcheler et al., 2010), and that minimizing this quantity amounts to making the rule
“more satis�ed.”
In order to complete our method description it remains to describe: (i) how to

obtain a set of ground rules and predicates from a set of logic rules of the form
presented in section Section 4.3 and a set of observed ground predicates, and de�ne
the objective function of Equation 4.7, and (ii) how to solve the optimization problem
of this equation to obtain the most likely truth values for the unobserved ground
predicates. ¿ese two steps are described in the following two sections.

4.4.2 Grounding

Grounding is the process of computing all possible groundings of each logic rule
to construct the inference problem variables and the objective function. As already
described in Section 4.4.1, the variablesX and Y correspond to ground predicates and
the functions `j correspond to ground rules. ¿e easiest way to ground a set of logic
rules would be to go through each one and create a ground rule instance of it, for
each possible value of its arguments. However, if a rule depends on n variables and
each variable can takem possible values, thenmn ground rules would be generated.
For example, the mutual exclusion rule of Equation 4.4 depends on d1, d2, j, and X,
meaning thatD2 ×Md1 × |X| ground rule instances would be generated, where |X|
denotes the number of values that X can take. ¿e same applies to predicates. f̂d1j (X)
would result inD×Md1 × |X| ground instances, which would become variables in
our optimization problem.¿is approach would thus result in a huge optimization
problem rendering it impractical when dealing with large scale problems such as
NELL. ¿e key to scaling up the grounding procedure is to notice that many of the
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Algorithm 4.1: Grounding algorithm.
Inputs : f̂dj (x), for d = 1, . . . , D, and j = 1, . . . ,Md, which are observed.

Set of pairwise mutual-exclusion constraintsME = {di1, d
i
2}
Cm
i=1.

Set of subsumption constraints SUB = {di1, d
i
2}
Cs
i=1.

1 Create empty setGp of ground predicates.
2 Create empty setGl of ground rules.
3 foreach observed f̂dj (x) do
4 Add f̂dj (x), e

d
j , and f

d(x) toGp.
5 Add f̂dj (x)∧ ¬edj → fd(X) and ¬f̂dj (x)∧ ¬edj → ¬fd(x) toGl.
6 Add f̂dj (x)∧ e

d
j → ¬fd(x) and ¬f̂dj (x)∧ e

d
j → fd(x)toGl.

7 Add f̂dj (x)→ fd(x) and ¬f̂dj (x)→ ¬fd(x) toGl.
8 foreach (d1, d2) ∈ ME do
9 if d1 = d then
10 Add fd2(x) toGp.
11 AddME(d1, d2)∧ f̂d1j (x)∧ fd2(x)→ ed1j toGl.
12 else if d2 = d then
13 Add fd1(x) toGp.
14 AddME(d2, d1)∧ f̂d2j (x)∧ fd1(x)→ ed2j toGl.
15 foreach (d1, d2) ∈ SUB do
16 if d1 = d then
17 Add fd2(x) toGp.
18 Add SUB(d1, d2)∧ ¬f̂d1j (x)∧ fd2(x)→ ed1j toGl.

Output: SetGp of ground predicates and setGl of ground rules.

possible ground rules are always satis�ed (i.e., have distance to satis�ability equal to
0), irrespective of the values of the unobserved ground predicates that they depend on.
¿ese ground rules would therefore not in�uence the optimization problem solution
and can be safely ignored. Since in our model we are only dealing with a small set
of prede�ned logic rule forms, we devised a heuristic grounding procedure that
only generates ground rules and predicates that may in�uence the optimization. Our
grounding algorithm is shown in Algorithm 4.1 and is based on the idea that a ground
rule is only useful if the function approximation predicate that appears in its body is
observed. It turns out that this approach is orders of magnitude faster than existing
state-of-the-art solutions such as the grounding solution used by Niu et al. (2011).

4.4.3 Optimization

For large problems, the objective function of Equation 4.7 will be a sum of potentially
millions of terms, each one of which only involving a small set of variables. In PSL, the
method used to solve this optimization problem is based on the consensus alternating
directions method of multipliers (ADMM; Boyd et al., 2011). ¿e approach consists
of handling each term in that sum as a separate optimization problem using copies



4.5 experiments 61

Algorithm 4.2: PSL consensus ADMM inference algorithm.
Inputs :Observed ground predicate values X.

Objective terms ` and p.
Rule weights λ.
Parameter ρ.
Mapping G from variable copy indices to consensus indices.

1 Initialize all Y (consensus variables) and αj (Lagrange multipliers) for
j = 1, . . . , k, randomly.

2 Initialize the variable copies yj for j = 1, . . . , k, corresponding to each
subproblem, randomly.

3 while not converged do
4 for i = 1, . . . , k do
5 αj ← αj + ρ(yj − YG(j,:)).
6 yj ← argminyj

[
λj[max{`j(X,yj)}]pj + ρ

2‖yj − YG(j,:) +
1
ραj‖

2
2

]
.

7 for i = 1, . . . , length(Y) do

8 Yi ←
∑

G(j,d)=i([yj]d+ 1
ρ [αj]d)∑

G(j,d)=i 1
.

9 Project Yi on the interval [0, 1].

Output: Inferred ground predicate values Y .

of the corresponding variables, while adding the constraint that all copies of each
variable must be equal. ¿is allows for solving the subproblems completely in parallel
and is thus scalable. ¿e algorithm is summarized in Algorithm 4.2. More details on
this algorithm and on its convergence properties can be found in the latest PSL paper
by Bach et al. (2017). We propose a stochastic variation of this consensus ADMM
method that is much more scalable and can be used for systems like NELL.
During each iteration, instead of solving all subproblems and aggregating their

solutions in the consensus variables, we sample K << k subproblems to solve. ¿e
probability of sampling each subproblem is proportional to the distance of its variable
copies from the respective consensus variables. ¿e intuition and motivation behind
this approach is that at the solution of the optimization problem, all variable copies
should be in agreement with the consensus variables. ¿erefore, prioritizing subprob-
lems whose variables are in greater disagreement with the consensus variables might
facilitate faster convergence. Indeed, this modi�cation to the inference algorithm
allowed us to apply our method to the NELL dataset and obtain results within minutes
instead of hours.

4.5 experiments

We initially perform experiments with exactly the same setup as in the previous chapter
(described in Section 3.5), except that we now use more evaluation metrics than we
did before. We refer to the logic-based method that was introduced in this chapter as
LOGIC for the remainder of this section. Same as before, our implementation as well
as the experiment datasets are available at https://github.com/eaplatanios/makina.

https://github.com/eaplatanios/makina
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Figure 4.3: Results on the NELL dataset where no logical constraints are provided. For the �rst
two rows, lower numbers imply better performance, but the opposite is true for the last row.

4.5.1 Evaluation Metrics

– Error Rank MAD: We rank the function approximations by our error rate
estimates and by their true error rates to produce two vectors containing the
ranks. We then compute the mean absolute deviation (MAD) between the two
vectors, where by MAD we mean the `1 norm of the vectors’ di�erence (same
as in Section 2.5).

– Error MAD:MAD between the vector of our error rate estimates and the vector
of the true error rates, where each vector is indexed by the function approxima-
tion index (same as in Section 2.5).

– Target AUC: Area under the precision-recall curve for the inferred target func-
tion values relative to the ground truth labels.

We compute these metrics for each domain and then average across domains to
eventually obtain a single score for each method.

4.5.2 Results without Logical Constraints

¿e results for the NELL dataset are shown in Figure 4.3 and the results for the brain
dataset are shown in Figure 4.4.MAJ performs well when a lot of data is available. How-
ever, LOGICmanages to outperform all alternative approaches in almost all cases. ¿is
makes it clear that our method can also be used e�ectively in cases where there are no
logical constraints. In order to also provide results that are more comparable to those
of the previous chapters, we also perform the experiment described in Sections 2.5.2
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and 3.5.2. Our results for this experiment are shown in Figure 4.5. It is interesting
to see how LOGIC is able to outperform all our previous methods even in the case
where no logical constraints are provided. However, our goal when developing LOGIC
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Figure 4.6: Illustration of the categories used in the two NELL datasets and the constraints
between them. Each blue arrow represents a subsumption constraint, and each set of labels
connected by a red dashed line represents a mutually exclusive set of labels. For example,
animal subsumes vertebrate and bird, fish, and mammal are mutually exclusive.

was to be able to bene�t from the information provided by such constraints. ¿is is
addressed in further experiments that are described in the following section.

4.5.3 Results with Logical Constraints

Given that our method can now handle logical constraints between domains (i.e., as
opposed toDIRECT and BAYES), we also put together two larger datasets than previously.
¿e goal in both datasets is to classify whether noun phrases (NPs) belong to certain
categories (which correspond to domains in this case).¿e logical constraints used for
each one are shown in Figure 4.6. For both of the datasets, we have a total of 553,940
NPs and 6 classi�ers, which act as our function approximations and are described by
Mitchell et al. (2015). Note that not all of the classi�ers provide a response every input
NP and thus we only evaluate against methods that are able to handle missing labels.
¿e results for these experiments are shown in Figure 4.7. It is clear that our method

outperforms all existing methods, including the state-of-the-art, by a signi�cant mar-
gin. Both the MADs of the error rates and the AUCs of the label prediction are
signi�cantly better. ¿is is the desirable behavior for our method as it indicates that it
is able to e�ectively use the additional information provided by the logical constraints.
Note also that the largest execution time of our method among all datasets was about
10 minutes when using a 2013 15-inch MacBook Pro. ¿e second best performing
method, which is the hierarchically coupled Bayesian model of Chapter 3, required
about 100 minutes. ¿is highlights the scalability of this approach.

4.6 key takeaways

In this chapter, we introduced a new approach to estimate accuracy from unlabeled
data of several function approximations to several underlying true functions. In
contrast to previous e�orts, our approach is able to use the information provided by
logical constraints that may exist between the outputs of the underlying functions.¿e
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proposed method also enables inference of the most likely outputs of the underlying
true functions. Furthermore, it is capable of scaling to cases with many functions and
millions of observations, due to the use of the e�cient PSL framework for performing
inference combined with a heuristic grounding algorithm and a stochastic variation
of consensus ADMM. In order to explore the ability of the proposed approach to
estimate error rates in realistic settings without domain-speci�c tuning, we performed
an extensive experimental evaluation using four di�erent datasets. Our methods were
shown to outperform the current state-of-the-art, in both the tasks of estimating
error rates and inferring the most likely single label, using only unlabeled data. ¿e
logic-based approach presented in this chapter also inspired us to design an active
learning algorithm for cases where we have similar logical constraints between labels.
¿is algorithm, along with some theoretical guarantees is presented in Appendix B.
In the following chapter we present a method that addresses the last remaining

remaining limitation of the DIRECT approach and further improves performance
by learning representations of the data instances that are being labeled and of the
predictors which provide imperfect annotations. ¿e new method enables end-to-end
learning of machine learning models directly from imperfect labels (i.e., without the
need for a separate label aggregation phase).¿is is also important for most large-scale
machine learning systems since they are o en trained using crowdsourced data.
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In Chapter 2, we showed that learning collections of functions allows us to perform
completely unsupervised evaluation, by proposing a direct approach to do this based
on intuition about how we, as humans, would approach this problem. We then im-
proved upon this method in Chapters 3 and 4 by addressing some of its limitations,
that we identi�ed in Section 2.6. In this chapter, we propose a method that addresses
the last limitation: the inability of our previous approaches to learn and use powerful
representations for the functions that are being learned. As we shall show, the pro-
posed method is based on combining our ideas from Chapter 3 with the power of
neural networks in learning abstract representations over arbitrary data modalities,
and it manages to successfully address this last limitation. We also show how it can
be applied to the crowdsourcing setting, that we brie�y discussed in Chapter 1, and
outperform current state-of-the-art methods for aggregating crowdsourced data.

67
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5.1 introduction

In the previous chapters we focused on never-ending learning and proposed multiple
methods for estimating the accuracy of classi�ers from unlabeled data.We have shown
why this problem is central to machine learning and many other �elds. Another
motivating use case for the methods we proposed is that of crowdsourcing. ¿e rising
popularity and recent success of deep learning has resulted in machine learning
systems that rely on large amounts of annotated training data (LeCun et al., 2015;
Gulshan et al., 2016; Wu et al., 2016a; Esteva et al., 2017) and the most common and
scalable way to collect such large amounts of training data is through crowdsourcing
(Howe, 2006). Crowdsourcing works well in settings where annotation tasks do not
require domain expertise—for example, in object detection and recognition tasks in
natural images and videos (e.g., Deng et al., 2009; Kovashka et al., 2016). However,
annotation in specialized domains such as medical pathology requires a certain level
of competency and expertise which makes annotation expensive. Moreover, o en
times there is a high rate of disagreement even between experts, which results in
increasingly subjective and inconsistent labels (Elmore et al., 2015; Hutson et al., 2019).
A typical approach to dealing with subjectivity is to treat each annotation as simply

noisy, collect multiple redundant labels per example (e.g., from di�erent annota-
tors), and then aggregate them using majority voting or other more advanced tech-
niques (e.g., the methods we proposed in the previous chapters or other related work
such that of Dawid and Skene, 1979; Carpenter, 2008; Liu et al., 2012; Platanios, 2012;
Zhou et al., 2015; Zhou and He, 2016) to obtain a single “ground truth” label. At the
expense of redundancy, this results in better data quality and more accurate estimates
of the ground truth. More recently, emerging systems for data programming and weak
supervision also rely internally on label aggregation techniques similar to methods
used for solving the crowdsourcing problem. Snorkel (Ratner et al., 2017; Bach et al.,
2019) is one popular such system that was designed for e�cient and low-cost creation
of large-scale labeled datasets using programmatically generated, so-calledweak labels.
However, as we show in our empirical evaluation in Section 5.3, none of these systems
solve label aggregation e�ectively in the presence of high subjectivity. We argue that
to become more e�ective, these methods need to make use of meta-data and other
types of information that may be available about the data instances and the annotators
labeling them. ¿is is also the main limitation of the methods we proposed in the
previous chapters that we aim to address.
To this end, we propose a novel approach that allows us to train accurate predictive

models of the ground truth directly on the non-aggregated imperfectly labeled data.1
Our method merges the two steps of: (i) aggregating subjective, weak, or noisy annota-
tions, and (ii) training machine learning models. At training time, along with learning
a model that predicts the ground truth, we also learn models of the di�culty of each
example and the competence of each annotator in a generalizable manner (i.e., these
models can make predictions for previously unseen examples and annotators). ¿is
can also enable us to more e�ectively assign annotators to examples, thus driving the

1 ¿e work we present in this chapter has been published in (Platanios et al., 2020a).
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cost of crowdsourcing down while improving the quality of the resulting datasets. ¿e
proposed approach can be e�ectively used for training on crowdsourced data as well as
on weakly labeled data, and can also be used within frameworks such as Snorkel (Rat-
ner et al., 2017; Bach et al., 2019) to signi�cantly improve their performance. More
speci�cally, it can:

1. Learn truth estimators: Learn functions that represent the underlying ground
truth, while imposing almost no constraints (as opposed to prior work). In
fact, we are able to leverage the capacity of deep neural networks along with
the interpretability provided by Bayesian models, in order to obtain highly
expressive estimators of the underlying truth.

2. Learn quality estimators: Learn functions that estimate the quality of each an-
notator. When annotators can be described by some features (e.g., age, gender,
location, etc. of an Amazon Mechanical Turk annotator, instead of just an inte-
ger identi�er), our quality estimators are able to generalize to new, previously
unseen, predictors. In the case where the predictors can be described using
features (instead of just an indicator—e.g., the age and location of an Amazon
Mechanical Turk annotator), we are even able to generalize our quality esti-
mators to new, previously unseen, predictors. Previous work only considered
estimating accuracies of a �xed set of predictors, without being able to leverage
any information we might have about them. Furthermore, in contrast to previ-
ous work, we are also able to predict the per-instance-predictor pair qualities
(i.e., the probability that a speci�c observation from a predictor, is corrupted),
by learning dependencies between the instances and the predictors (e.g., our
method can determine whether a human annotator is an expert for a subset of
queries, instead of just estimating his/her overall accuracy). Furthermore, in
contrast to previous work, we are also able to predict the per-instance predictor
comptencies (i.e., our method can determine whether a human annotator is

interesting connections
¿e problems of ensemble learning, aggregating and denoising crowdsourced data, and
estimating accuracy from unlabeled data, all share the same underlying core problem:
learning from imperfect labels. More speci�cally, there is a common setting among all these
problems where: (i) there exists an underlying ground truth, (ii) we only get to observe
multiple, possibly overlapping, noisy views of that truth, and (iii) we want to be able to
estimate that truth.¿enoisy views can have arbitrary form, such as: (i) human annotators in
a crowdsourcing platform, that may make mistakes (e.g., Zhou et al., 2015), or (ii) classi�ers
that have already been trained (e.g., Platanios et al., 2014, 2016, 2017b) like the settings we
considered in the previous chapters. To give a concrete example, consider the problem of
medical pathology diagnostics, where learning-based models are becoming increasingly
popular (e.g., Gulshan et al., 2016). Training models by imitating expert decisions is not
as straightforward in such a scenario: the true diagnosis is unknown a priori, while the
diagnostic concordance between experts is o en far from perfect (Elmore et al., 2015). If
we assume that the expert decisions are the ground truth, the model may over�t to their
mistakes.¿erefore, this practical setup requires a principled learning framework that takes
into account potential discrepancies or disagreements in the observations.
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Figure 5.2: Overview of the proposed inference algorithm and probabilistic model.

an expert for a subset of queries, instead of just estimating his/her overall accu-
racy), which is done by learning dependencies between the instances and the
annotators. Finally, our approach is able to distinguish between di�erent types
of errors by estimating the full confusion matrix for each pair of instances and
predictors.

3. Be easily extended: ¿e truth and quality estimators can take arbitrary func-
tional forms and fully leverage the expressivity of deep neural networks.

Both human annotators and machine learning classi�ers may sometimes be unable
to make predictions about certain aspects of the ground truth (e.g., human annota-
tors may be unsure about what the correct answer to a question is). ¿e proposed
method is formulated in a way that allows it to be extended such that it can also learn
decision function estimators for the annotators (i.e., estimators that predict whether
an annotator will be able to provide a prediction for a given data instance). ¿ese
estimators can have signi�cant implications for data annotation systems where the
cost of querying annotators is high (e.g., when the annotators are highly quali�ed,
such as doctors or other kinds of domain experts). ¿is is because it allows for better
matching annotators to instances, thus reducing the required amount of annotation
redundancy. An overview of the proposed approach and model is shown in Figure 5.2.
¿e proposed method generalizes the approaches of Zhou et al. (2015) and Khetan¿e idea of modeling

instance di�culties and
annotator competencies
has been studied before

by Carpenter (2008) and
Platanios (2012), among

others.

et al. (2018), as well as the approaches we presented in the previous three chapters.
Similar to Chapter 3, we de�ne a generative process for our observations. However,
our model is able to handle categorical labels, as opposed to just binary. Similar to
Zhou et al. (2015), we de�ne the confusion matrix for each instance-predictor pair
as a function of instance di�culty and predictor competence. However, we explicitly
learn the di�culty and competence as functions, which allows us to generalize to
previously unseen instances and annotators. Interestingly, the inference algorithm we
propose for our generative probabilistic model has a similar form to that of Zhou et al.
(2015), except for the explicit learning of the ground truth, di�culty, and competence
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functions.¿us, we also show that the algorithm of Zhou et al. (2015) can be re-derived
as an expectation-maximization (EM; Dempster et al., 1977) inference algorithm for
a generative model, simplifying the argument of the original paper. Finally, similar
to Khetan et al. (2018), we use a parametric function to model the ground truth, and
go a step further by proposing to use parametric functions to model the instance
di�culties and predictor competences. ¿us, our approach enables estimation of
which annotators are likely to perform better on which instances, potentially enabling
more e�ective allocation of annotators and thus annotation cost reductions.
In contrast to prior work, our method also allows for end-to-end learning. Prior

methods do not allow for this as they implicitly separate ground truth inference (i.e.,
label aggregation) from model training. More speci�cally, previously one would have
to train a machine learning model in two stages: (i) infer the ground truth labels from
the provided annotations, and (ii) train a machine learning model on the inferred
labels. Our approach merges these two stages and allows us to train machine learning
models directly on the imperfect annotations. In Section 5.3.3, we conduct an ablation
study that showcases the performance gains resulting from end-to-end learning.

5.2 combining bayesian models and deep learning

We denote the observed data byD = {xi, Ŷi}
N
i=1, where Ŷi = {Mi, {ŷij}j∈Mi

},Mi

is the set of predictors that made predictions for instance xi, and ŷij is the output of
predictor f̂j for instance xi. Our goal is to learn functions that represent the underlying
ground truth and predictor qualities, given our observationsD. Note that, predictor
qualities generalize the notion of error rates from Chapter 3.

ground truth. We de�ne the ground truth as a function hθ(xi) that is parameter-
ized by θ and that approximates the true distribution of a label given xi. In our setting,
hθ(xi) ∈ RC>0 and

∑
j[hθ(xi)]j = 1, where C is number of values the label can

take (i.e., assuming categorical labels). More speci�cally, [hθ(xi)]k , p(yi = k | xi),
where we use square brackets and subscripts to denote indexing of vectors, matrices,
and tensors. For example, hθ could be a deep neural network that would normally be
trained in isolation using, for example, the cross-entropy loss function. In our method
the network is trained using the EM algorithm, as described in the following section.

predictor qualities. We de�ne the predictor qualities as confusion matrices We also perform a
normalization step such
that all elements of Qij
are non-negative and
such that each row sums
to 1 (thus making each
row a valid probability
distribution).

Qij ∈ RC×C>0 , for each instance xi and predictor f̂j, where
∑
l[Qij]kl = 1, for all

k ∈ {1, . . . , C}. [Qij]kl represents the probability that predictor f̂j outputs label l
given that the true label of instance xi is k. We de�ne these confusion matrices in a
way that generalizes the successful approach of Zhou et al. (2015):

Qij = Di •3 Cj, (5.1)

where •i represents an inner product along the ith dimension of the two tensors, and:

– Di = dφ(xi) represents the di�culty tensor for instance xi, where d is a
function parameterized by φ,Di ∈ RC×C×L, and L is a latent dimension (it
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is a hyperparameter of our model). [Di]kl− is an L-dimensional embedding
representing the likelihood of confusing xi as having label l instead of k, when
k is its true label.

– Cj = cψ(rj) represents the competence tensor for predictor f̂j, where c is a
function parameterized byψ, rj is some representation of f̂j (e.g., could be a one-
hot encoding of the predictor, in the simplest case), andCj ∈ RC×C×L. [Cj]kl−
is an L-dimensional embedding representing the likelihood that predictor f̂j
confuses label k for l, when k is the true label.

tensor
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Figure 5.3: Illustration of our tensor factoriza-
tion approach, modeling the interaction of in-
stance di�culties with predictor competences.

Using L > 1 allows the instance di�-
culties and predictor competences to en-
codemore information. An intuitive way
to think about this is that we are em-
bedding di�culties and competencies
in a common latent space, which can
be thought of as jointly clustering them.
¿is is very similar to how matrix factor-
ization methods are used for collabora-
tive �ltering in recommender systems.
Our goal is to learn the functions

hθ, dφ, and cψ, given the observa-
tions D. In order to do this, we pro-
pose the following generative process for
our observations. For i = 1, . . . ,N, weA potentially interesting

extension would be to
also learn the predictors’

decision making
functions, so that we can
explicitly model missing

observations.

�rst sample the true label for xi, yi ∼

Categorical(hθ(xi)). ¿en, for j ∈ Mi,
we sample the predictor output ŷij ∼

Categorical([Qij]yi−), where [Qij]yi− represents the yith row of Qij. In the next
section, we propose an algorithm for learning the parameters θ, φ, and ψ.

5.2.1 Learning

A widespread approach for performing learning with probabilistic generative models,
is tomaximize the likelihood of the observed datawith respect to themodel parameters.
Lety = {yi}

N
i=1. ¿e likelihood of a single observation, ŷij, can be derived as follows:

p(D,y) =

N∏
i=1

p(yi)
∏
j∈Mi

p(ŷij | yi), (5.2)

where p(ŷij | yi) depends onQij. ¿ere are two main approaches in which we can
maximize the likelihood function of Equation 5.2: (i) marginalize out the yi latent¿e marginalization

approach also
consistently

underperformed EM in
our experiments.

variables and then maximize the resulting function with respect to θ, φ, and ψ, or
(ii) use the EM algorithm which was originally proposed by Dempster et al. (1977). It
has previously been observed that the EM algorithm can perform much better than
approach (i) for mixture models (Bishop, 2006). ¿is is because the latter tends to get
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stuck in bad local optima. Since our model resembles a Bernoulli mixture model with
the latent assignments being de�ned by the yis, we decided to use the EM algorithm.
We derive the EM algorithm steps for our model, as follows:

e-step. We need to compute the expectation of yi givenD and y\i (which denotes
all of y except for yi), for all i = 1, . . . ,N, and we know that:

p(yi | D,y\i) ∝ p(D,y) =
N∏
s=1

p(ys)
∏
j∈Ms

p(ŷsj | ys). (5.3)

¿erefore, by removing all terms that do not depend on yi and normalizing, we obtain
the following expectation, which we compute during this step, while keeping θ, φ,
and ψ �xed:

Ey|D

{
1{yi=k}

}
=

λki∑C
l=1 λ

l
i

, (5.4)

where 1{·} evaluates to one if its subscript statement is true and to zero otherwise,
and:

λki = [hθ(xi)]k
∏
j∈Mi

[Qij]kŷij . (5.5)

Note that Qij is a function of both φ and ψ. For brevity, in what follows we use the
following notation: ỹki =Ey|D{1{yi=k}}.

m-step. We maximize the following log-likelihood function with respect to θ, φ,
and ψ, while using the values of ỹki computed in the last E-step:

L =

N∏
i=1

p(ỹi)
∏
j∈Mi

p(ŷij | ỹi)⇒ (5.6)

logL =

N∑
i=1

logp(yi = ỹi) +
N∑
i=1

∑
j∈Mi

logp(ŷij | yi = ỹi)⇒ (5.7)

logL =

N∑
i=1

C∑
k=1

ỹki log[hθ(xi)]k +
N∑
i=1

∑
j∈Mi

C∑
k=1

ỹki log[Qij]kŷij . (5.8)

¿e training procedure for learning the parameters θ, φ, andψ consists of iterating
over the E-step and the M-step shown above, until convergence, where convergence
can be measured by computing the change in the parameter values across learning
iterations. It is important to note that EM �nds local optima of the likelihood function,
and so the starting pointmay play an important role. Also, as we explained in Chapter 3,
there exists an inherent symmetry in our model that can be problematic, if le unhan-
dled. ¿e likelihood of the observed data is the same if we �ip the true underlying
labels and the predictor qualities (i.e., set y�ippedi = 1− yi and Q�ipped

ij = 1−Qij).
We would like to somehow encode the prior assumption that most of the predictors
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are correct most of the time. One way to do this is by choosing the starting point of
the EM algorithm carefully.

initialization. In the E-step shown in Equation 5.4, we compute the expected
values of the true underlying labels, yi. We can encode the symmetry-breaking as-
sumption by replacing the �rst E-step with a majority vote among the predictors:

Ẽy|D

{
1{yi=k}

}
=

∑
j∈Mi

1{ŷij=k}

|Mi|
, (5.9)

where |Mi| denotes the size of the setMi. We initialize the EM algorithm by replacing
the �rst E-step with this majority vote approximation. As we show in our experiments,
this helps us avoid the aforementioned symmetry, and thuswe refer to this initialization
scheme as symmetry-breaking initialization. In the case where the predictors provide us
with p(ŷij = k) instead of a single categorical value, we can still use this initialization
scheme by replacing 1{ŷij=k} with p(ŷij = k), in Equation 5.9.

regularization. Similar to Zhou et al. (2015) we propose to regularize our model
by maximizing the following regularized objective function:

logL− α
1

2

∑
j

C∑
k=1

C∑
l=1

L∑
m=1

[Cj]2klm − β
1

2

∑
i

C∑
k=1

C∑
l=1

L∑
m=1

[Di]2klm, (5.10)

where α and β are de�ned as follows:

α = γC2, (5.11)

β = α
#{labels per predictor}
#{labels per instance}

, (5.12)

and γ is a hyper-parameter, set to 0.25 in our experiments (same as Zhou et al. (2015)).

marginal likelihood fine-tuning. In our experiments we found that maxi-
mizing the marginal likelihood function a er EM converges tends to improve perfor-
mance. We refer to this step asmarginal likelihood �ne-tuning. More speci�cally, a er
the values of the parameters θ, φ, andψ, converge to �xed values across multiple EM
steps, we solve the following maximization problem using these �xed values as the
initial point:

max
θ,φ,ψ

∑
y

p(D,y) ⇔ max
θ,φ,ψ

N∑
i=1

∑
j∈Mi

log
C∑
k=1

[hθ(xi)]k[Qij]kŷij . (5.13)

5.2.2 Instance and Predictor Representations

Amajor advantage of the proposed approach over prior work is that we learnmodels of
the ground truth and the predictor qualities as functions of some representations (i.e.,
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representations of the data instances, xi, and of the annotators, rj). It is thus important
to de�ne these representations. For many problems, the representations of the data
instances can be de�ned in the samemanner as was previously done when performing
supervised learning (e.g., we can directly use raw pixel values to represent images).
However, predictor representations are introduced here for the �rst time. A simple
approach would be to use a one-hot encoding of the predictors. However, this would
not allow for any amount of information sharing across predictor (e.g., what if two
predictors are very similar).We already know fromour previous work in Chapter 3 that
modeling the dependencies between predictors can be crucial to performance. One
way to allow for this is to learn vector embedding representations for the predictors,
which would be implicitly equivalent to clustering them. Ideally, one would want to
use any available information about these predictors (e.g., Amazon Mechanical Turk
annotators could be described by their age, location, etc.). Unfortunately, we could not
�nd any public datasets that provide such information about the predictors/annotators,
and hence in our empirical study we use embedding representations.

5.2.3 Discussion

¿e approach we have proposed in this chapter can be thought of as introducing a new
loss function for training the model hθ using multiple imperfect labels per training
instance, each coming from a di�erent source. ¿is new loss function introduces
latent variables that represent the ground truth labels, as well as a couple of auxiliary
models that are learned, and which represent the instance di�culties and predictor
competences. We also proposed an EM-based algorithm to minimize this new loss
function as well as an initialization scheme and a regularization scheme to help prevent
over�tting. Perhaps most interestingly, a key di�erence between this approach and
previous work is that we are able to explicitly learn functions that output the likelihood
that a predictor will label a speci�c instance correctly. ¿is enables using our method
to perform crowdsourcing more actively by assigning annotators to instances they are
more likely to label correctly, thus helping reduce redundancy and drive costs down.

5.2.4 Extending to Multi-Label Settings

Our method can be easily extended to handle settings where we have multiple cate-
gorical labels that may be assigned to each instance. In this case, the model per label
is de�ned in the same way as previously, except that now the functions hθ, dφ, and
cψ also take as input a representation for the label (e.g., a label embedding). ¿is
allows us to share information across labels and can be thought of as a generalization
of our BAYESmethod from Chapter 3, where information is shared by clustering the
labels. Furthermore, it allows us to use the proposed method in extreme classi�cation
settings (e.g., Prabhu and Varma, 2014) or settings where the number of labels is not
�xed and known a priori and can keep increasing (e.g., face recognition; Weinberger
and Saul, 2009; Liu et al., 2016).¿is is made possible by learning label representations
and then letting the di�culty and competence functions also receive as input pairs of
labels and return a vector instead of a three-dimensional tensor. In the next section,
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we show how learning label representations can signi�cantly enhance the robustness
and performance of our approach.

5.3 experiments

Unfortunately, the datasets we used for our experiments in Chapters 2, 3, and 4 are
quite old and it is impossible to obtain features for the data instances. ¿is is because
we only have access to integer identi�ers of the data instances but no information about
which instances the numbers refer to (e.g., which noun phrases). For this reason, we
evaluate the newly proposed approach on multiple datasets from the crowdsourcing
domain, all of which have ground truth labels, (multiple) subjective annotations
for each example, as well as information on who provided each annotation (i.e., an
annotator integer identi�er):

1. Blue Birds (BB) (Welinder et al., 2010): Classify whether a bird in a photo is an
“Indigo Bunting” or a “Blue Grosbeak.”

2. Word Similarity (WS) (Snow et al., 2008): Classify whether a pair of words is
similar or dissimilar.

3. RTE (Snow et al., 2008): Classify whether a sentence entails another sentence.
4. Medical Causes (MC) (Dumitrache et al., 2018): Classify whether a medical term

causes another medical term, given a sentence that contains the two terms (e.g.,
“pancreatic adenocarcinoma causes weight loss”).

5. Medical Treats (MT) (Dumitrache et al., 2018): Classify whether a medical term
treats another medical term, given a sentence that contains the two terms (e.g.,
“aspirin treats pain”).

¿e last two datasets are in fact part of a single dataset on medical relations, and we
are thus able to perform experiments using both the single task formulation of our
algorithm and the multi-task formulation. As we discuss in the end of this section, this
allows us to show how our approach can be used to share information across labels and
improve the quality of the learned models. Statistics for these datasets are provided in
Table 5.1. Note that, no associated features for the annotator identi�ers were provided
and thus we are unable to evaluate the usefulness of annotator features (we instead
learn embeddings for the annotators). Unfortunately we were unable to obtain any
crowdsourcing datasets with associated annotator meta-data. ¿is is probably due to
the fact that no prior method is able to make use of such information. However, we
do make use of instance features for all the datasets. In cases where such features are
not readily available, we compute them manually using pre-trained machine learning
models. We are making all the features and annotator identi�cation information
publicly available in a standardized format. More details are provided in our code and
data repository which is available at https://github.com/eaplatanios/noisy-labels.

5.3.1 Experimental Setup

We perform experiments using the following two variants of our approach:

https://github.com/eaplatanios/noisy-labels
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Dataset #Instances #Predictors Average
Redundancy

Average
Accuracy (%)

Blue Birds (Welinder et al., 2010) 108 39 39 63.56
Word Similarity (Snow et al., 2008) 30 10 10 81.33
RTE (Snow et al., 2008) 800 164 10 84.13
Medical Causes (Dumitrache et al., 2018) 3,984 408 15 32.40
Medical Treats (Dumitrache et al., 2018) 3,984 408 15 38.88

Table 5.1: Statistics for the datasets we use in our experiments. “#Predictors” refers to the
number of predictors in the dataset, “Average Redundancy” refers to the average number of
predictions provided for each instance, “Average Accuracy” refers to the average predictor
accuracy, and “Random Accuracy” refers to the accuracy obtained of a completely random
predictor.

– LIA: A version of our method which uses instance and predictor features speci�c
to each dataset. When features are not available for the instances and/or the
predictors, we learn embeddings of size 16 which are initialized randomly
and optimized along with the other model parameters during the M-step (see
Section 5.2.1).

– LIA-ML: A multi-label variant of the aforementioned method. ¿is method is
only used with the medical relations datasets. In this case, we consider all 14
medical relations included in the dataset jointly and only evaluate on the two
for which the ground truth labels are provided (i.e., “causes” and “treats”). We
use this method variant in order to show how our approach can e�ectively share
information across labels.

In both instances of LIA, hθ and dφ are multi-layer perceptrons (MLPs) with 4 layers
of 16 hidden units each, with the only exception being the medical relations dataset
where we use 32 units for each layer. cψ is always modeled as a linear function. Note
that for both the embedding sizes and the MLP sizes, we did not perform an extensive
search to choose these values; we rather performed a small grid search and selected
the number that resulted in the highest validation data likelihood.We compare against
the following baselines for ground truth estimation:

– MAJ: Simple majority voting. We use so majority voting whenever possible.
¿at is, we use so labels (probabilities or con�dence scores) whenever the
predictors provide them, instead of always thresholding them to obtain discrete
labels.

– MMCE: Regularized minimax conditional entropy by Zhou et al. (2015), which
has been shown to outperform alternatives. We consider it the current state-of-
the-art for crowdsourcing.

– Snorkel: A method originally designed for aggregating annotations of program-
matic weak predictors proposed by Ratner et al. (2017), which is part of a popular
so ware package that also allows for subsequent training of machine learning
models on the aggregated data.

– MeTaL: Successor to Snorkel, proposed by Ratner et al. (2018). For both this
method and for Snorkel we use the original implementation provided by the
authors, which can be found at https://github.com/HazyResearch/snorkel.

https://github.com/HazyResearch/snorkel
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Aside from these baselines, we also perform experiments using the following custom
methods that we designed for the purpose of performing an ablation study (the study
is presented in Section 5.3.3):

– LIA-E: In order to evaluate the usefulness of instance features, we learn embed-
dings of size 16 for the instances instead of using their features.

– MAJ?-E: A two-step method that resembles how machine learning models
are currently being trained when using crowdsourced data. First, we estimate
ground truth using MAJ. Next, we train the hθ model used in LIA-E directly on
the aggregated labels.

– MAJ?: Same as MAJ?-E, except that we use the model hθ of LIA (i.e., one that
makes use of instance features instead of learning instance embeddings).

– MMCE?-E: Same asMAJ?-E, but withMMCE used for label aggregation.
– MMCE?: Same asMAJ?, but withMMCE used for label aggregation.

During each M-step we use the AMSGrad optimizer (Reddi et al., 2018) to maximize
the log-likelihood function with the learning rate set to 0.001. We perform 1,000
optimization iterations using a batch size of 1,024.Overall, we perform 10 EM iterations
(all models converged within that limit) with warm starting (i.e., themodel parameters
are always initialized to the values obtained during the previous M-step). When using
LIA with image instances, we use as image features the activations of the last layer of a
pre-trained ResNet-101 Convolutional Neural Network (CNN). Similarly, for all text
instances we use as text features the representations provided by a pre-trained BERT
model (Devlin et al., 2019).
We evaluate all methods by computing the accuracy of the predicted instance

labels. ¿is is a common metric for evaluating crowdsourcing methods and it also
implicitly measures the quality of the confusion matrices predicted by our model.
¿is is because these confusion matrices heavily in�uence the supervision provided to
the ground truth model hθ, while training. Furthermore, instead of just computing
accuracy over the full datasets, we also measure how performance varies as a function
of redundancy—the maximum number of annotations provided per instance. In order
to limit redundancy for existing datasets we randomly sample subsets of the provided
annotations. Performing well in low redundancy settings is important because it can
result in signi�cantly reduced crowdsourcing costs.

5.3.2 Results

Our results are presented in Table 5.2. LIAmethods consistently outperform alternative
approaches. In certain cases (e.g., in Blue Birds) we are able to boost accuracy over
the best alternative method by 14%, thus establishing a new state-of-the-art for this
dataset. In the multi-task setting, where we train the LIA-ML model to jointly infer
the ground truth labels for both Medical Causes (MC) and Medical Treats (MT) while
sharing the representations of instance di�culties and annotator competencies. We
observe that multi-task training boosts performance with more than 8% absolute
gain (or over 20% relative gain) over its single task counterpart, outperforming the
baselines with over 25% relative gain. Finally, our approach can obtain the performance
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Accuracy (%)
MAJ MAJ?-E MAJ? MMCE MMCE?-E MMCE? Snorkel MeTaL LIA-E LIA LIA-ML

D
at
as
et

&
Re

du
nd

an
cy

BB
2 63.9 64.4 65.1 66.9 63.2 63.2 63.8 63.0 65.1 71.5 —
5 71.1 70.9 70.9 73.9 74.2 73.2 72.4 71.5 73.0 76.2 —
10 74.4 75.9 75.4 76.5 76.9 77.0 76.0 83.0 78.1 83.1 —
20 76.4 76.2 76.1 78.5 77.7 77.7 76.0 87.0 77.2 90.0 —
39 75.9 78.4 78.4 79.6 78.8 78.8 76.0 89.0 78.9 93.0 —

W
S

2 82.8 87.2 87.7 80.1 79.3 80.0 76.2 76.0 87.7 88.7 —
5 87.1 91.4 91.3 87.0 84.4 84.0 76.3 85.1 87.7 92.7 —
10 88.6 93.3 93.3 90.2 80.0 80.0 76.3 93.1 87.7 96.3 —

RT
E

2 72.8 72.8 74.5 75.3 77.3 73.2 65.2 61.0 76.7 78.0 —
5 84.8 84.0 84.8 88.5 88.9 85.3 79.1 72.4 84.3 89.1 —
10 90.0 90.4 89.9 92.7 92.7 87.1 90.0 78.0 91.6 93.1 —

M
C

2 26.8 24.2 26.5 29.1 29.3 22.0 27.1 25.3 25.0 29.5 30.1
5 24.1 23.6 24.2 24.5 24.6 21.3 24.0 21.0 24.0 30.9 36.4
10 24.1 23.6 24.1 24.4 24.6 20.1 24.0 20.0 23.6 30.5 34.1

M
T

2 33.8 35.7 34.2 35.3 38.6 34.2 33.3 22.1 34.0 38.6 40.8
5 34.2 34.1 33.6 36.8 37.0 35.0 34.0 21.0 33.0 38.3 46.1
10 34.2 34.3 35.2 38.5 38.3 36.3 35.0 03.1 33.8 42.1 45.4

Table 5.2: Accuracy across varying levels of redundancy, for all datasets we used in our experi-
ments. For each experiment, we report mean accuracy over 50 runs with di�erent random
initializations. We also compute standard error but it is generally too low and so it is not
included in the table. ¿e best results are underlined and shown in red color. ¿e methods
marked with a “?” are used for the ablation study of Section 5.3.3.

of the best alternative method using up to 4 times less redundancy, which can have
signi�cant implications for the cost of crowdsourcing, especially when the annotations
require domain expertise (e.g., in healthcare). We note that Snorkel and MeTaL tend
to perform well overall, but sometimes fail entirely (o en performing on par with
or worse than majority voting, which has also been observed by others, e.g., https:
//github.com/HazyResearch/snorkel/issues/1073).MeTaL also su�ers from calibration
issues, as it o en achieves very low accuracy while having reasonable mean average
precision. Data programming systems could thus bene�t signi�cantly by integrating
our method in their pipeline, tying together the label aggregation and model training
phases.

5.3.3 Ablation Study

Our main contributions are: (i) end-to-end learning by fusing the label aggregation
and model training phases, and (ii) allowing for instance and annotator features to
inform label aggregation.2 In this section, we show how each one of these contributions
is important in its own right by performing experiments where we introduce each
one on their own, while keeping everything else constant.

2 As mentioned in the beginning of this section, we were unable to obtain any crowdsourcing datasets
with associated annotator meta-data and thus in our experiments we only use instance features.

https://github.com/HazyResearch/snorkel/issues/1073
https://github.com/HazyResearch/snorkel/issues/1073
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Accuracy (%)

D
at
as
et

&
Re

du
nd

an
cy

BB

2 71.9±0.9
5 74.9±0.4
10 76.9±0.5
20 77.5±0.4
39 79.1±0.2

W
S

2 88.7±0.8
5 91.0±0.6
10 93.3±0.0

RT
E

2 63.8±0.1
5 67.5±0.1
10 69.6±0.1

M
C

2 24.0±0.2
5 23.9±0.2
10 23.0±0.2

M
T

2 38.1±0.3
5 38.5±0.2
10 39.2±0.1

Table 5.3: Results for LIA
without marginal likeli-
hood �ne-tuning.

end-to-end learning. ¿e best way to test the e�ec-
tiveness of end-to-end learning is to compare end-to-end ap-
proaches with two-stage approaches where: (i) we �rst aggre-
gate labels, and (ii) we then train machine learning models
using the aggregated labels. To this end, we introduced the
baseline methods marked with a “?” in Table 5.2. ¿e results
indicate that the two-stage approach underperforms the base
label aggregation method for both MAJ and MMCE. ¿is is
most likely due to the fact that in both these cases the model
being learned cannot inform the label aggregation stage. In
contrast, LIA is able to outperform all two-stage approaches
because it allows for exactly this. Note thatMMCEmodels in-
stance di�culty and annotator competence similar to LIA, with
the exception that it does not use instance features and it does
not allow for end-to-end learning of ground truth predictors.
Also note that LIA-E does not use instance features, but is still
able to outperformMAJ?-E andMMCE?-E in many cases, indi-
cating that end-to-end learning is e�ective and accounts for at
least part of the performance gains achieved by LIA. Finally, we
also observe thatMMCE? completely fails in some cases (e.g.,
in the Medical Causes (MC) and Medical Treats (MT) datasets). We do not have a good
understanding as to why this happens, but the fact that LIA does not su�er in these
cases indicates that end-to-end learning is more robust to low quality annotations.

instance features. ¿emethods which use instance features are LIA, MAJ?, and
MMCE?. To test for the usefulness of these features, we provide variants of these meth-
ods (labeled LIA-E, MAJ?-E, and MMCE?-E, respectively, in Table 5.2) that use indicator
features instead and learn instance embeddings. We observe that forMAJ andMMCE
the results are inconclusive (the feature-based methods outperform the alternative in
about half of the experiments). However, in the context of end-to-end learning, we
observe that LIA consistently outperforms LIA-E by a signi�cant margin. ¿is indicates
that instance features are indeed useful—especially so in the context of end-to-end
learning where they can inform the label aggregation phase.

It is important to also mention that results pertinent to this ablation study for the
Word Similarity (WS) dataset were a bit unstable with many models e�ectively failing
to learn anything meaningful (speci�callyMMCE?-E,MMCE?-M, and LIA-E). Our best
explanation for this is that theWord Similarity (WS) dataset is very small with only 30
instances and is thus highly prone to over�tting.

Finally, in order to evaluate the e�ect of the marginal likelihood �ne-tuning approach
presented in Section 5.2.1, we also perform experiments using LIA without this �ne-
tuning phase. ¿e results are shown in Table 5.3 and it is clear that marginal likelihood
�ne-tuning results in better performance. Also, in order to sanity check that LIA is
able to predict the qualities of the predictors accurately, we also perform a synthetic



5.3 experiments 81

FALSE POSITIVE RATEMISTAKES
Bl
ue

Bi
rd
s

W
or
d
Si
m
ila
rit
y

FALSE NEGATIVE RATE

HighLowCluster #1 Cluster #2
Cluster #3 Cluster #4

Figure 5.4: Visualization of the learned predictor embeddings. Each dot in the plots represents
a predictor projected on the 2D plane using UMAP (McInnes et al., 2018). In the le , the
predictors are �rst clustered based on which instances theymakemistakes on and then colored
and shaped based on which cluster they belong to (in the embedding space, predictors that
make similar mistakes tend to cluster together). In the middle, the predictors are colored
based on their false positive rate. In the right, the predictors are colored based on their false
negative rate.

experiment. More speci�cally, we added an “always correct” and an “always wrong”
oracle to all datasets used in our experiments. It turns out the predicted qualities for
the two oracles are the highest and lowest among all predictors, respectively. ¿is
indicates that our model is indeed capable of uncovering such highly competent and
incompetent predictors.

5.3.4 Predictor Embeddings Visualization

To evaluate whether the learned predictor embeddings are meaningful in some way,
we perform dimensionality reduction using UMAP (McInnes et al., 2018), plot them in
Figure 5.4, and color predictors in three di�erent ways, which can help us understand
the information captured by the manifold:

1. Mistakes Cluster: To cluster predictors, we represent each with a one-hot vector
that indicates the instances it made mistakes on, and then run agglomerative
clustering using `1 distance as the distance metric. On the plot, each cluster is
associated with a unique shape.

2. False Positive Rate: Each predictor is colored based on its false positive rate.
3. False Negative Rate: Each predictor is colored based on its false negative rate.

We have provided �gures for the Blue Birds andWord Similarity datasets which are the
only ones for which all predictors provide annotations for all instances (it is unclear
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how to properly compute the mistakes clustering distance metric when some or most
of the annotations are missing). From these plots, it is clear that the learned predictor
embeddings encode both the expertise of the corresponding predictor as well as the
likelihood of making a false positive or false negative mistake.

5.4 key takeaways

In this chapter, we have introduced a learning framework for: (i) training deep models
directly on data with imperfect annotations, and (ii) modeling the processes that
produced the labels. Our approach improves upon the classical and widely used two-
stage setup (�rst aggregate and denoise the labels and then train themodel) bymerging
the two stages. As a result, we are able to train models end-to-end using multiple
noisy labels, while estimating the di�culties of the examples and learning accurate
representations for the annotators that produced the labels. Experimental results on
multiple small and large scale publicly available crowdsourcing datasets indicate that
our method results in signi�cant gains in accuracy (up to 25% relative gain over the
current state-of-the-art approaches for aggregating noisy labels). Moreover, it turns
out that training the model to predict multiple related labels simultaneously improves
the learned representations and results in further gains in the predictive performance
of the model. Finally, we performed an ablation study to evaluate the e�ect of both
end-to-end learning and instance features and showed that both contribute to the
performance gains achieved by the proposed method.
Perhaps most interestingly, the proposed learning framework more closely resem-

bles the human learning process, than the classical semi-supervised learning paradigm.
Humans are extremely good at learning from imperfect supervision. ¿ere are a few
future directions of interest for this work that are outside the scope of this thesis. It
would be interesting to explore generalizations of our models to non-boolean, discrete-
valued functions, or even to real-valued functions, as humans also seem very capable
of handling such cases. Furthermore, this work could form the �rst step towards
developing a self-re�ection framework for autonomous learning systems—de�ned as
the ability of a system to re�ect on its own learning process and improve—and also
enabling more e�ective active learning.
Note that, the methods presented in this part of the thesis are not limited to crowd-

sourcing or estimating accuracies of classi�ers fromunlabeled data. In fact, the underly-
ing ideas can be usedmore generally in the context of unsupervised or semi-supervised
learning. For example, based on the method presented in this chapter we developed a
method for performing graph node classi�cation in a graph-based semi-supervised
learning setting, that we present in the following chapter.
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Figure 6.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

In the previous three chapters, we showed that learning collections of functions allows
us to perform completely unsupervised evaluation. Speci�cally, we focused on never-
ending learning and crowdsourcing and proposed multiple methods for estimating
the accuracy of classi�ers from unlabeled data and for aggregating crowdsourced
annotations. As previously mentioned, these methods rely on a common idea that is
central to machine learning and many other �elds. ¿is implies that our algorithms
should also be applicable to other areas of machine learning. In this chapter, we show
how we can adapt the algorithm presented in Chapter 5 to solve the problem of graph-
based node classi�cation, which may at �rst seem to be completely di�erent than the
previous problems we considered.1
Graph-based algorithms have gained popularity due to their success in solving

semi-supervised learning problems. ¿ey o en rely, either implicitly (e.g., graph
convolutional networks [GCNs]) or explicitly (e.g., label propagation methods), on the
assumption that a graph node is in some sense similar to its neighbors. However, this

1 ¿e work we present in this chapter has been published in (Platanios et al., 2020b).
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assumption is o en too strong for real-world graphs. Inspired by our earlier work, we
propose to treat the labels of a node’s neighbors as multiple noisy predictors of its own
label. To this end, in this chapter we propose a probabilistic model which allows us to
learn two functions: (i) a node label predictor for each node, and (ii) a model which,
given a node and its neighbor, learns to predict how their labels are related in the
form of a confusion matrix. We propose an inference algorithm for performing joint
end-to-end learning of these two functions, called GEM. We conduct experimental
evaluation of GEM on 4 graph node classi�cation datasets of varied di�culty and
show gains of up to 55% relative improvement in accuracy over the baseline methods.
Moreover, GEM is able to boost the performance of multi-layer perceptrons (MLPs) to
match that of GCNs, despite the fact that MLPs ignore all graph structure information,
and are signi�cantly more computationally and memory e�cient than GCNs. GEM is
inspired and is a direct application of the ideas presented in the preceding chapters.

6.1 introduction to graph node classification

Arti�cial Intelligence has witnessed an impressive leap in the last decade. ¿ese ad-
vances were made possible by increases in computing power and also, importantly,
via the availability of large amounts of data. However, labeled examples are di�cult or
impractically expensive to obtain in real-world settings. On the other hand, unlabeled
data is o en easy and cheap to obtain. Semi-supervised learning is a paradigm that
aims to take advantage of both labeled and unlabeled data in order to train models
with better generalization capabilities. Moreover, real-world data is o en structured
(e.g., data samples are interconnected), and this structure can be leveraged to further
improve our prediction models. In many cases, this structure can be represented using
graphs as their �exibility allows us to represent various kinds of relationships, such
as knowledge graphs, social networks, protein interactions networks, chemical bond
networks, citation networks, etc. In this chapter, we propose GEM, an e�cient graph-
based semi-supervised learning algorithm inspired from our earlier work presented in
Chapters 2, 3, 4, and 5, that improves the generalization capabilities of learned models
by leveraging both unlabeled data and the graph structure, and that can be used to
enhance any baseline model as a blackbox component, whether or not it leverages
graph structure information itself.
We focus on the problem of graph node classi�cation. ¿is problem has received

signi�cant attention over the years andmany di�erent approaches have been developed
to solve it, ranging from the earlier label propagation methods (e.g., Zhu et al., 2003;
Zhou et al., 2004;Hein andMaier, 2006) to themore recent graph neural networks (e.g.,
Kipf and Welling, 2016; Gilmer et al., 2017; Hamilton et al., 2017). We provide a more
complete review of thesemethods in Section 6.1.1.¿e current state-of-the-artmethods
for this problem are graph-based neural networks (Kipf and Welling, 2016; Veličković
et al., 2018) combined with variants of label propagation (e.g., our work in Stretcu et al.,
2019), because they are able to utilize information provided by the graph structure and
the unlabeled nodes. ¿ese methods rely, either implicitly (e.g., graph convolutional
networks [GCNs]) or explicitly (e.g., label propagation methods), on the assumption
that a graph node is in some sense similar to its neighbors. However, we previously
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Figure 6.2: Overview of GEM, an e�cient graph-based semi-supervised learning algorithm.

showed that this assumption is o en too strong for real-world graphs (Stretcu et al.,
2019). In fact, it is false for about 20%-30% of all node pairs in some of the most
frequently used benchmark datasets. Rather, we make the weaker assumption that
the labels of a node’s neighbors can provide information about that node’s label, even
when their labels di�er.
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Our method is inspired by the observation that this setting bears a striking resem-
blance to that of crowdsourcing where multiple annotators provide “noisy” labels for
an instance, and methods are developed to aggregate these labels into a single estimate
of the underlying ground truth (see e.g., Zhou et al., 2015; Platanios et al., 2016; Khetan
et al., 2018; Platanios et al., 2020a). For this reason, we posit that the neighbors of a
node act as multiple noisy predictors of the node’s label, and we design a method for
aggregating these labels into a single estimate of the underlying true label. To do so, we
propose a generative approach that models the distribution of the node labels based
on their features and their neighbors’ labels and features. Unlike existing methods,
which learn attention over neighbors (Veličković et al., 2018) or agreement between
node labels and their neighbors’ labels (Stretcu et al., 2019), we learn the full confusion
matrix between node labels and their neighbors’ labels. More concretely, instead of
learning a single score in [0, 1] that speci�es the probability that the label of a node i
agrees with the label of its neighbor j like we did in our previous work (Stretcu et al.,
2019), or the attention node i should put on its neighbor j like Veličković et al. (2018),
we learn a probability distribution over node i’s labels conditioned on the label of its
neighbor j. ¿is formulation is more expressive because when the neighbors’ labels
disagree with the node label, we can estimate how the two labels depend on each other.
In contrast to most prior work, our method also models the joint distribution of labels
over all nodes in a graph, enabling it to capture more complex dependencies between
the node labels.
We formulate our generative model as aMarkov random �eld (MRF; Hammersley

and Cli�ord, 1971) and propose a variational inference (Jordan et al., 1999) algorithm
for learning the model parameters and inferring the missing node labels. We perform
an extensive empirical analysis showing that our method, GEM, is able to improve the
state-of-the-art accuracy on several established graph node classi�cation datasets, and
is also robust to graphs with “noisy” edges (i.e., edges between nodes with di�erent
labels), while popular existing methods such as GCNs are not. In summary, GEM has
the following properties:

1. It can enhance any graph node classi�cation model as a blackbox component,
including neural networks, so long as it is trainable via continuous optimization
(e.g., gradient descent methods).

2. It is robust to “noisy” edges, improving the performance of baseline models
even when most of the graph edges connect nodes with di�erent labels.

3. It incurs no additional cost when making predictions, as opposed to GCNs, for
example, which have high computational and memory cost at inference time.
More speci�cally, we show that GEM can be used to train a simple multi-layer
perceptron to obtain better generalization accuracy than GCN.

4. It obtains state-of-the-art results on several benchmark datasets.

A high-level overview of GEM is shown in Figure 6.2.
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6.1.1 Related Work

Graph-based semi-supervised learning has been an active research area for more than
two decades. Blum and Chawla (2001) were among the early proponents of the idea
that graph nodes which are connected by an edge should have the same label, and
proposed a solution based on themin-cut algorithm. Several approaches extended this
label propagation idea (e.g., Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2006; Hein
and Maier, 2006), by propagating labels along graph edges, such that the �nal label
of a node will e�ectively be a majority vote over its neighbors’ labels. ¿ese methods
are o en implemented by regularizing the predicted labels using the graph Laplacian
without taking advantage of any node features that may be available (e.g., in the form
of meta-data). Chapelle et al. (2009) and Bengio et al. (2006) provide an extensive
review of such methods.
Recent approaches have focused on combining graph-based methods with the

power of neural networks in learning abstract representations. Graph neural networks
learn node representations as a function of their neighbors’ representations, which
are aggregated using some form of a convolution operation (e.g., Bruna et al., 2014;
Duvenaud et al., 2015; Kipf and Welling, 2016; Ying et al., 2018), message-passing (e.g.,
Gilmer et al., 2017), or trainable aggregation functions (e.g., Hamilton et al., 2017; Gao
and Ji, 2019). Veličković et al. (2018) and¿ekumparampil et al. (2018) extended these
approaches by using attention over the graph edges. Another line of work uses the
graph as a formof regularizationwhen training a neural network over the node features.
For example, Bui et al. (2018) combine label propagation and deep learning by using a
loss function that encourages neighboring nodes to have similar representations—as
encoded by a neural network. We previously extended this approach by also learning
which pairs of neighbors should have the same label, thus being able to handle graphs
with “noisy” edges (Stretcu et al., 2019). Other graph-based regularization approaches
include the work of Yang et al. (2016), Verma et al. (2019), Weston et al. (2008), and
Weston et al. (2012). ¿e work of He et al. (2007) and Ma et al. (2019) is similar to the
approach we present in this chapter, in that they model the joint distribution of the
labels of all nodes in the graph. Similarly, Qu et al. (2019) model the joint distribution
of the node labels using a conditional random�eld.¿eir approach, termed the “Graph
Markov Neural Network,” is also trained using a form of variational inference, but the
variational family of distributions they consider is de�ned by a separate graph neural
network. As described in the following section, our approach is signi�cantly di�erent
in that we explicitly model the relationship of the labels of neighboring nodes and use
a mean �eld approximation when performing variational inference.

6.2 proposed algorithm

Let G = (V,E) be a graph where V is a set of nodes (or vertices) and E is a set of
edges represented as pairs of node indices. Each node i in the graph is associated
with a feature vector vi ∈ RM and a label yi ∈ {1, . . . , C} that may or may not be
observed. Furthermore, let VL ⊂ V be a subset of the graph nodes for which yi is
observed. Our task is to learn a function that maps all nodes to their corresponding



88 learning when to trust your neighbors

labels. Note that we consider a setting in which every node has a single label yi, but
our method can easily be extended to multi-label settings. For simplicity we also
initially assume a transductive setting where we are given the whole graph at training
time with some of the labels missing. However, as we shall show, the proposed method
is also directly applicable to inductive settings where the learned node classi�cation
function is evaluated on nodes not seen at training time. We propose a probabilistic
model which allows us to learn two functions:

label prior. We de�ne the ground truth prior as a function hθ(vi) that is param-
eterized by θ and that approximates the true distribution of the label given a represen-
tation of the ith node, vi. In our setting, hθ(vi) ∈ RC>0 and

∑
j[hθ(vi)]j = 1, where

C is the number of values the label can take (i.e., assuming categorical labels). More
speci�cally, [hθ(vi)]k can be interpreted as the probability that yi = k given the node
features vi, where we use square brackets and subscripts to denote indexing of vectors,
matrices, and tensors. As an example, hθ could be a GCN that would normally be
trained in isolation using the cross-entropy loss function. In our method, hθ is trained
jointly with the confusion network (described in the next paragraph) by performing
probabilistic inference over the latent variable model that we propose in Section 6.2.1.

confusion prior. Wede�ne the node pair confusion prior as thematrixgφ(vi, vj)
∈ RC×C>0 for each pair of neighboring nodes (i, j) ∈ E, where

∑
k[gφ(vi, vj)]kl = 1,

for all l ∈ {1, . . . , C}. [gφ(vi, vj)]kl can be interpreted as the probability that node i
has label k given that its neighbor j has label l.

Our goal is to learn the functions hθ and gφ given the provided graph G and the
labeled nodes VL, and to more accurately infer the labels of the unlabeled nodes. To
this end, we propose a new probabilistic latent variable model in Section 6.2.1, along
with an e�cient inference algorithm in Section 6.2.2. ¿is model does not depend on
the speci�c functional forms ofhθ andgφ and so, in Section 6.2.3 we present the actual
parametric function forms for hθ and gφ that we used in our experiments. In order
to simplify notation, in what follows we assume that hθ and gφ both convert their
outputs to log space, and we use the following shorthand notation: hik = [hθ(vi)]k
and gijkl = [gφ(vi, vj)]kl.

6.2.1 Model

¿e label prior function, hθ, e�ectively gives us a prior over node labels, while the
confusion function, gφ, describes how the labels of neighboring nodes are related.
Since these functions only allow us to model pairwise interactions between the labels
of neighboring nodes, a natural way to de�ne a probability distribution over the node
labels is using aMarkov random �eld (MRF; Hammersley and Cli�ord, 1971; Murphy,
2012). ¿erefore, we propose the model:

p(y | θ,φ) ∝ exp
{ |V|∑
i=1

hiyi +
1

|Ni|

∑
j∈Ni

gijyiyj

}
, (6.1)
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where Ni is the set of neighbors of node i. A standard approach for performing
inference with probabilistic generative models is to maximize the likelihood of the ob-
served data with respect to the model parameters. However, the normalizing constant
of this distribution is intractable and thus, even if all node labels were observed, we
would still need to use an approximate inference method to learn the values of θ and
φ that maximize the likelihood. Moreover, in real-world semi-supervised learning
settings most of the labeled nodes are unobserved, and have to be treated as latent
variables which would require another inference method to estimate them. In the next
section, we propose an e�cient approximate inference method for learning θ, φ, and
the unlabeled nodes. We then provide considerable empirical evidence demonstrating
the strength of our method.

6.2.2 Inference

One approach for learning θ and φ is to marginalize out the unobserved yi variables
and then maximize the likelihood function de�ned in Equation 6.1 with respect to
θ and φ. However, this approach is computationally intractable due to the combi-
natorial sums that would need to be computed. An alternative approach that avoids
this marginalization would be to use the expectation maximization (EM) algorithm
originally proposed by Dempster et al. (1977). In fact, it was previously observed that
in many cases the EM algorithm can perform much better than the marginalization
approach (Bishop, 2006), as the latter tends to get stuck in bad local optima. However,
the likelihood function de�ned in Equation 6.1 does not factorize with respect to each
node’s label (due to the confusion terms that “tie” the labels of neighboring nodes
in the graph together), and this makes a naive application of the EM algorithm also
intractable. For this reason, we use variational inference instead, which is a generaliza-
tion of the EM algorithm and allows us to obtain an e�cient approximate inference
algorithm (Jordan et al., 1999). In the rest of this section, we derive our inference
algorithm in detailed steps. A summary of the algorithm, which ends up being simple
and intuitive, is shown in Algorithm 6.2.

6.2.2.1 Variational Inference

¿e basic idea of variational inference is to posit a family of tractable distributions
q(y, θ, φ) called the variational family, and to �nd the distribution within this family
that is closest to the distribution of interest, which in our case is the likelihood function
p(y | θ,φ) of Equation 6.1. ¿e measure of closeness that variational inference
minimizes is the Kullback-Leibler divergence between the q(y, θ, φ) and p(y | θ,φ):

KL(q || p) , Eq
{
log

q(y, θ, φ)

p(y | θ,φ)

}
,

= Eq{logq(y, θ, φ)}− Eq{logp(y | θ,φ)} , L, (6.2)
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where the expectation is taken with respect to q(y, θ, φ).2 In order to make inference
tractable we propose to use the commonmean �eld approximation for the node labels,
while keeping θ and φ together:

q(y, θ, φ) = q(θ,φ)

|V|∏
i=1

q(yi), (6.3)

where q(θ,φ) = 1{θ = θ̃, φ = φ̃} is a delta function where all probability mass is
placed at (θ̃, φ̃), and q(yi) is a categorical distribution with parameters ỹi.
Variational inference is a coordinate descent algorithm, where at every iteration,

we consider each variational distribution (i.e., q(yi) and q(θ,φ)) in isolation while
keeping all other variational distributions �xed, and minimize the KL divergence
with respect to the isolated variational distribution. To minimize the KL divergence
with respect to q(yi), we write the variational derivative of L (which de�ned in
Equation 6.2) with respect to q(yi) and solve for q(yi) such that the variational
derivative is zero:

dL

dq(yi)
= − logq(yi) − 1+ Eq(y−i,θ,φ){logp(y | θ,φ)} = 0. (6.4)

Solving for q(yi) we �nd the distribution q∗(yi) that minimizes the KL divergence:

q∗(yi) ∝ exp
{
Eq(y−i,θ,φ){logp(y | θ,φ)}

}
. (6.5)

We use this equation to derive the variational updates for each variable. Letting
ỹik = q∗(yi = k), we have that:

log ỹik = Eq
{
logp(y | θ,φ)

}
,

= hik +
1

|Ni|

∑
j∈Ni

Eq
{
g
ij
kyj

+ gjiyjk
}
+ K,

= hik +
1

|Ni|

∑
j∈Ni

C∑
l=1

[
g
ij
kl + g

ji
lk

]
ỹ
j
l + K⇒

ỹik ∝ exp
{
hik +

1

|Ni|

∑
j∈Ni

C∑
l=1

[
g
ij
kl + g

ji
lk

]
ỹ
j
l

}
, (6.6)

where the expectations are taken with respect to q(y−i, θ, φ), and K is a constant.
In the case where the variational distribution is a delta function, such as q(θ,φ) in

our model, the entropy term Eq{logq(θ,φ)} in the objective function is zero. ¿us,
the distribution that optimizes L with respect to q(θ,φ), while keeping all other
variational distributions �xed is:

q∗(θ,φ) = 1{θ=θ̃,φ=φ̃}, (6.7)

2 We deviate from the standard de�nition of L in that the variational objective is normally de�ned as the
negation of that quantity.
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where 1{·} is the indicator function and has value 1 when the subscript condition is
satis�ed, and 0 otherwise, and:

θ̃, φ̃ = argmax
θ,φ

Eq(y){logp(y | θ,φ)}, (6.8)

and where the expectation is taken with respect to q(y), and p(y | θ,φ) is de�ned
in Equation 6.1. As mentioned earlier, this quantity is intractable to compute due to
its normalizing constant. We could potentially approximate it usingMarkov chain
Monte Carlo (MCMC)methods (Gelfand and Smith, 1990), but this would result in a
very expensive update for θ and φ. ¿erefore, we chose to use the pseudolikelihood
approximation that has o en been previously used successfully for inference in MRFs
(e.g., Hyvärinen, 2006; Vishwanathan et al., 2006; Sutton and McCallum, 2007):

p(y | θ,φ) ≈
|V|∏
i=1

p(yi | yNi , θ, φ), (6.9)

where:

p(yi | yNi , θ, φ) ∝ exp
{
hiyi +

1

|Ni|

∑
j∈Ni

[
gijyiyj + g

ji
yjyi

]}
. (6.10)

¿erefore, we have that:

Eq
{
logp(y | θ,φ)

}
≈

|V|∑
i=1

C∑
k=1

hikỹ
i
k +

1

|Ni|

∑
j∈Ni

C∑
l=1

[
g
ij
kl + g

ji
lk

]
ỹikỹ

j
l − Eq{logZi}, (6.11)

where:

Zi =

C∑
k=1

exp
{
hik +

1

|Ni|

∑
j∈Ni

C∑
l=1

[
g
ij
kl + g

ji
lk

]
y
j
l

}
, (6.12)

and we approximate its expectation with respect to q(yNi) using sampling:

Eq(yNi
){logZi} ≈

1

Nsamples

∑
yNi

∼q(yNi
)

logZi. (6.13)

SinceZi is speci�c to each node, it is e�cient to compute, taking timeO(δiC2)where
δi is the degree of node i in G. We compute the variational update for θ and φ by
plugging this approximation into Equation 6.8 and using an o�-the-shelf gradient
ascent algorithm.
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6.2.2.2 Initialization

It is important to note that variational inference �nds local optima of the likelihood
function, and so the initial point can play an important role.¿erefore, having de�ned
the variational updates for y, θ, and φ, it remains to describe how they are initialized.
Aswe discuss in the next section,hθ andgφ are neural networks in all our experiments.
We thus initialize θ̃ and φ̃ randomly, using the popular variance scaling initialization
method proposed by Glorot and Bengio (2010). For the initialization of ỹ, we use
a simple form of label propagation (Zhu et al., 2003), since it is e�cient and tends
to perform well in practice. ¿e exact initialization algorithm for ỹ is shown in
Algorithm 6.1.

Algorithm 6.1: Initialization of the variational labels ỹ
Inputs :Graph G that contains some labeled nodes and some unlabeled nodes.

1 Initialize ỹ as a |V|× Cmatrix �lled with zeros.
2 labeled← Empty set of nodes.
3 nodesToLabel← Empty set of nodes.

// Start with the labeled nodes.

4 foreach node i ∈ G.labeledNodes do
5 ỹi

G.labelOf(i) ← 1

6 labeled.add(i); nodesToLabel.remove(i)

7 foreach j ∈ G.neighborsOf(i) s.t. j /∈ labeled do
8 nodesToLabel.add(j)

// Proceed with the unlabeled nodes.

9 while nodesToLabel is not empty do
10 foreach node i ∈ nodesToLabel do
11 scores← Zero-initialized array of size C.
12 foreach j ∈ G.neighborsOf(i) s.t. j ∈ labeled do
13 for k ∈ {1, . . . , C} do
14 scores[k] += ỹ

j
k

15 for k ∈ {1, . . . , C} do
16 ỹik = scores[k] / scores.sum()

17 foreach node i ∈ nodesToLabel do
18 labeled.add(i); nodesToLabel.remove(i)

19 foreach j ∈ G.neighborsOf(i) s.t. j /∈ labeled do
20 nodesToLabel.add(j)

Output: ỹ.

6.2.2.3 Complete Algorithm

¿e complete inference algorithm that allows us to learn θ and φ, as well as infer any
missing node labels, is shown in Algorithm 6.2. We refer to our algorithm as GEM in
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Algorithm 6.2: GEM inference algorithm.
Inputs :Graph G that contains some labeled nodes and some unlabeled nodes.

1 Initialize θ̃ and φ̃ using the variance scaling initialization method proposed by
Glorot and Bengio (2010).

2 Initialize ỹ using Algorithm 6.1.
3 while not converged do
4 foreach node i ∈ shuffle(G.unlabeledNodes) do
5 for k ∈ {1, . . . , C} do

// Use the most up-to-date ỹ’s for the following update.

6 Update ỹik using Equation 6.6.

// Use an off-the-shelf gradient ascent algorithm for this step.

7 Update θ̃ and φ̃ using Equations 6.8 and 6.11.
8 Check for early stopping and terminate if necessary.
Output: ỹ, θ̃, and φ̃.

the subsequent sections. It terminates when either: (i) the change in the parameter
values across learning iterations becomes negligible, or (ii) an early stopping condition
is satis�ed. ¿e speci�c early stopping condition we used in our experiments is when
the accuracy of ŷi = argmax ỹi, when compared to the true node labels over a
validation dataset, has not improved over the last 10 iterations. A similar early stopping
condition is used when updating θ̃ and φ̃ using gradient ascent. Intuitively, what this
algorithm does is that in each iteration: (i) we estimate the expected values of the
unobserved node labels given our current model parameters, and (ii) we update our
model parameters to maximize the likelihood of these expected values. ¿ese two
steps are analogous to the E and M steps of the EM algorithm. Note that this is a form
of a coordinate ascent method for maximizing the likelihood function of Equation 6.1.

6.2.3 Label and Confusion Priors

¿e inference algorithm we derived in the previous section is valid regardless of the
functional form we choose for hθ and gφ. We evaluate the algorithm using a number
of functional forms, each motivated empirically as well as to facilitate fair comparison
with existing methods. For all forms, we consider a decomposition of gφ that is
inspired from the decomposition presented in Chapter 5:

gφ(vi, vj) = Di • Cj, (6.14)

where • here represents an inner product along the last dimension of the two tensors.
Di = dφ0(vi) represents the latent representation of the contribution of node i
to the confusion matrix, where d is a function parameterized by φ0. Di is a real-
valued tensor with shape C × C × L, where L is a latent dimension as well as a
hyperparameter of our model. [Di]kl− is an L-dimensional embedding representing
the likelihood of confusing node i as having label l instead of k, when k is its true
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label.3 Cj = cφ1(vj) is de�ned similarly for neighbor j of node i. Under this de�nition,
we haveφ = {φ0, φ1}. Note that we intentionally allow for the case wheredφ0 6= cφ1
so that our model can represent asymmetric relationships between the node labels.4
Using L > 1 allows the model to represent more complex relationships. An intuitive
way to think about this is that we are embedding nodes and their neighbors into a
common latent space and jointly clustering them. In fact, this is very similar to the
manner in which matrix factorization methods behave in collaborative �ltering for
recommender systems. To de�ne hθ, dφ0 , and cφ1 , we consider two variants:

– Coupled GEM: We de�ne hθ, dφ0 , and cφ1 such that they share most of their
parameters. Given a baseline model fψ that learns feature representations over
graph nodes, we de�ne:

hθ(v) = hdense(fψ(v)), (6.15)
dφ0(v) = ddense(fψ(v)), (6.16)
cφ1(v) = cdense(fψ(v)), (6.17)

wherehdense is a densely connected layer that outputs a distribution over classes;
ddense and cdense are densely connected layers that output C× C× L tensors.
Note that the parametersψ are shared across bothhθ and gφ. Also, note that we
use di�erent dense layers for mapping nodes and their neighbors to confusion
matrices and thus gφ is not necessarily symmetric. We refer to this variant as
GEM in Section 6.3.

– Decoupled GEM: We de�ne hθ, dφ0 , and cφ1 such that they do not share any of
their parameters. As with the coupled GEM approach, given a baseline model
fψ that learns feature representations over graph nodes, we de�ne:

hθ(v) = hdense(fψh(v)), (6.18)
dφ0(v) = ddense(fψg(v)), (6.19)
cφ1(v) = cdense(fψg(v)), (6.20)

where in this case hθ and gφ uses di�erent instances of fψ. In our experiments,
we typically �x the hyperparameters and architecture of fψh in order to make
our results comparable to previously reported numbers. We train with multiple
sizes for fψg and select the one that results in the highest validation dataset
accuracy. In Section 6.3.2, we explore how fψg a�ects performance, given a
�xed fψh . We refer to this variant as GEM* in Section 6.3.

Both of the aforementioned variants rely on a baseline model, fψ, that learns feature
representations over graph nodes. In our experiments we consider two such models:

– MLP: A simple multi-layer perceptron that receives as input the features of a
node and outputs a distribution over the labels. Note that this model does not

3 ¿e “−” subscript represents taking all elements of a tensor along the corresponding dimension.
4 ¿e model is able to learn graphs in which ga,b and g>b,a are not necessarily equal.
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Dataset #Nodes #Edges #Classes #Features #Train #Validation #Test
Cora 2,708 5,429 7 1,433 140 500 1,000
CiteSeer 3,327 4,732 6 3,703 120 500 1,000
PubMed 19,717 44,338 3 500 60 500 1,000
Disease 1,044 1,043 2 1,000 748 42 254

Table 6.1: Dataset statistics. We obtained Cora from Lu and Getoor (2003), CiteSeer from Sen
et al. (2008), PubMed from Namata et al. (2012), and Disease from Chami et al. (2019). We
use dataset train, validation, and tests splits provided by Yang et al. (2016). We decided to use
these splits so that our results are comparable with numbers that were previously reported for
existing methods.

use any graph structure information. We will demonstrate that training it as
part of the larger model in GEM can bring its performance on par with methods
that exploit information about the graph structure. When reporting results, we
use a subscript a er the method name (e.g., MLP8). ¿is simply denotes the
number of hidden units used for the correspondingMLP.

– GCN: A graph convolutional network, originally proposed by Kipf and Welling
(2016). In contrast to theMLP, this model does exploit information about the
graph structure and signi�cantly bene�ts from doing so. However, it is much
more computationally expensive, since in order to produce a prediction, it
needs to process both the features of a node and those of its neighbors (and
potentially even more hops if it has multiple layers). Furthermore, even though
GCNs can exploit information about the graph structure, we will show that their
performance can also be further enhanced with GEM. GCNs have gained a lot of
popularity in recent years, but as we show in Section 6.3, their performance can
be matched—or even outmatched in certain cases—byMLPs that were trained
using GEM.

6.3 experiments

In order to evaluate the proposed approach we perform two case studies. First, we run
experiments using multiple baseline methods along with the same methods enhanced
by GEM. We show that GEM consistently improves the performance of all baselines, in
some cases by up to 55% relative accuracy, and outperforms the existing state-of-the-art
methods for graph node classi�cation. As part of this case study we also demonstrate:
(i) models that do not incorporate information about the graph structure (e.g., a
simple multi-layer perceptron) can be enhanced to perform as well as models that
do (e.g., graph convolutional networks), by using GEM to train them, and (ii) the
relationship between the choice of the confusion model, gφ, and the performance
of GEM. In the second case study, we evaluate how robust GEM and other methods
are to random noise added to the graph (where “noise” here corresponds to edges
connecting nodes with di�erent labels), and discuss some interesting observations.
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Model Dataset
Cora CiteSeer PubMed Disease

MLP

MLP8 53.1 47.7 70.8 50.3
x+ GEM 68.9 53.2 76.3 50.8
x+ GEM* 77.9 68.2 73.2 63.0

MLP16 55.3 50.3 71.7 51.2
x+ GEM 75.8 63.6 74.9 57.1
x+ GEM* 75.1 69.1 74.3 63.0

MLP128 56.6 51.5 71.8 59.1
x+ GEM 79.7 74.5 79.1 81.1
x+ GEM* 82.6 74.6 82.9 81.5

MLP1024 53.1 52.2 70.2 57.1
x+ GEM 76.9 70.4 80.9 82.3
x+ GEM* 82.7 72.0 81.9 83.5

Varying the size of gφ

MLP128 56.6 51.5 71.8 59.1
x+ GEM*16 78.7 61.2 70.0 68.5
x+ GEM*32 79.7 71.5 74.7 70.1
x+ GEM*64 81.9 71.5 79.6 74.4
x+ GEM*128 82.6 74.6 82.9 78.7
x+ GEM*256 81.8 70.9 76.8 81.5

GCN

GCN8 77.2 60.0 76.5 50.8
x+ GEM 78.3 60.5 80.2 57.5
x+ GEM* 81.2 69.5 79.1 60.6

GCN16 79.8 62.2 75.1 52.8
x+ GEM 81.7 66.2 77.8 57.5
x+ GEM* 82.2 70.8 79.3 77.2

GCN128 77.7 67.1 74.7 61.1
x+ GEM 78.4 67.2 78.4 87.0
x+ GEM* 84.4 74.5 81.2 81.9

GCN1024 78.4 65.8 76.8 72.8
x+ GEM 82.1 73.3 79.9 90.6
x+ GEM* 85.1 72.4 81.8 89.8

Varying the size of gφ

GCN128 77.7 67.1 74.7 61.1
x+ GEM*16 80.7 63.2 75.4 63.4
x+ GEM*32 81.8 71.8 81.2 72.3
x+ GEM*64 82.3 73.0 80.3 78.6
x+ GEM*128 84.4 74.5 77.8 81.9
x+ GEM*256 80.7 71.2 76.3 77.5

Table 6.2: Test set accuracy for two baseline model architectures (discussed in Section 6.3.2).
Shaded rows correspond to our method. ¿e best result per row group is shown in bold red
font and the best result across all rows is underlined.



6.3 experiments 97

Model

Dataset
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ManiReg (Belkin et al., 2006) 59.4 60.1 70.7 —
SemiEmb (Weston et al., 2012) 59.0 59.6 71.7 —
LP (Zhu et al., 2003) 68.0 45.3 63.0 —
DeepWalk (Perozzi et al., 2014) 67.2 43.2 65.3 —
ICA (Lu and Getoor, 2003) 75.1 69.1 73.9 —
Planetoid (Yang et al., 2016) 75.7 64.7 77.2 —
Chebyshev (Defferrard et al., 2016) 81.2 69.8 74.4 —
MLP[250,100]+NGM (Bui et al., 2018) — — 75.9 —
MoNet (Monti et al., 2017) 81.7 — 78.8 —
GCN16 (Kipf and Welling, 2016) 81.5 70.3 79.0 69.7
GAT8 (Veličković et al., 2018) 83.0 72.5 79.0 70.4
HGCN (Chami et al., 2019) 79.9 — 80.3 74.5
GCN16+O-BVAT (Deng et al., 2019) 83.6 74.0 79.9 —
GMNN (Qu et al., 2019) 83.7 73.1 81.8 —
G-U-Net (Gao and Ji, 2019) 84.4 73.2 79.6 —
MLP128 56.6 51.5 71.8 59.1
x+ NGM 77.7 67.8 73.6 —
x+ VAT 56.5 56.1 73.1 —
x+ VATENT 24.1 46.7 70.1 —
x+ GAM 80.7 73.0 82.8 —
x+ GAM* 70.7 70.3 71.9 —
x+ GEM 79.7 74.5 79.1 81.1
x+ GEM* 82.6 74.6 82.9 81.5

GCN128 77.7 67.1 74.7 61.1
x+ NGM 81.4 68.9 76.2 —
x+ VAT 79.0 69.5 76.8 —
x+ VATENT 83.4 69.8 75.0 —
x+ GAM 86.2 73.5 86.0 —
x+ GAM* 84.2 71.3 77.0 —
x+ GEM 78.4 67.2 74.7 61.1
x+ GEM* 84.4 74.5 81.2 81.9

GCN1,024 78.4 65.8 76.8 72.8
x+ NGM 82.0 70.5 68.9 —
x+ VAT 81.8 69.3 76.3 —
x+ VATENT 64.0 50.5 72.1 —
x+ GAM 86.0 73.6 81.6 —
x+ GAM* 82.4 71.9 81.2 —
x+ GEM 82.1 73.3 79.9 90.6
x+ GEM* 85.1 72.4 81.8 89.8

Table 6.3: Test set accuracy formultiple existingmethods, including the current state-of-the-art
(discussed in Section 6.3.2). NGM was proposed by Bui et al. (2018), VAT and VATENT were
proposed by Miyato et al. (2018), and we also previously proposed GAM (Stretcu et al., 2019).
Shaded rows correspond to our method. ¿e best result per row group is shown in bold red
font and the best result across all rows is underlined.

6.3.1 Experimental Setup

For both case studies we use three datasets that have become the de facto standard
for evaluating graph node classi�cation algorithms (for details, refer to our previous
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work, Stretcu et al., 2019) which we obtained from Yang et al. (2016), as well as one
dataset recently used by Chami et al. (2019). ¿e datasets are listed in Table 6.1 along
with some statistics. For Cora, CiteSeer, and PubMed, the node features are normalized
word frequency vectors representing scienti�c articles, the graph edges correspond
to citations between these articles, and the node labels indicate the research area of
the article. For Disease, the node features indicate susceptibility of a human subject to
a disease, the graph edges correspond to a disease spreading between two subjects,
and the node labels correspond to whether or not the subject is infected. During each
θ and φ update step we use the Adam optimizer (Kingma and Ba, 2015) to solve the
maximization problem shown in Equation 6.8, with the learning rate set to 0.001, a
maximum of 1,000 optimization iterations, and a batch size of 128. We evaluate all
methods by computing the accuracy of the inferred node labels. We provide more
details in our code repository (available at https://github.com/eaplatanios/gem).

6.3.2 Case Study #1: Enhancing Baselines

We present results for multiple con�gurations of the baseline methods and their GEM
variants in Table 6.2. For GEM*we performed experiments using the following sizes for
fψg : 16, 32, 64, 128, and 256. Table 6.2 shows the results obtained with the model that
produces the highest validation accuracy, as well as all results for two con�gurations
(MLP128 and GCN128, where we use a subscript on GEM* to denote the size of fψg).
We observe that in all cases GEM is able to enhance the underlying baseline method,
achieving relative improvements of up to 55% for MLP1024. We also observe that the
baseline GCN models consistently outperform the baseline MLP models, which is
expected given that they are able to exploit information about the graph structure.
However, and perhaps most interestingly, some of theMLPmodels trained with GEM
are able to outperform the baseline GCNmodels. ¿is is interesting because it shows
that the graph structure information is indeed very valuable when training ourmodels,
but may not be necessary when performing inference, as we may be able to learn a
relationship between the graph structure and the node features. ¿is is very important
in practice becauseMLPs are both signi�cantly more computationally and memory
e�cient than GCNs. Another interesting observation is that unboundedly increasing
the size of the baseline model causes performance to deteriorate beyond some point.
However, GEM is able to mitigate this deterioration, resulting in increased robustness
to the choice of hyperparameters. Finally, we observe that varying the size of fψg
has a signi�cant impact on the performance of GEM. GEM is still able to consistently
improve the performance of the baseline method (except for a couple instances when
the confusion model size is too small). However, choosing the right size for fψg
can result in further gains. Table 6.2 also shows that, if tuned properly, GEM* always
outperforms the coupled GEMmodel.
In Table 6.3, we also present results comparing our GEM-enhanced baselines to

previously proposed methods for graph node classi�cation, including the current
state-of-the-art. We see that in most cases GEM establishes a new state-of-the-art for
this problem. It is only outperformed in a couple of instances by GAM (Stretcu et al.,
2019), which was designed with a motivation similar to ours.

https://github.com/eaplatanios/gem
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6.3.3 Case Study #2: Robustness Analysis

We developed GEM such that it can better handle graph edges between nodes that
have di�ering labels, as opposed to other existing methods, such as label propagation
(Zhu et al., 2003). In this section, we demonstrate this empirically. In this case study
we �x the model size and study how performance varies as we introduce “disagreeing”
edges to the graph. For each graph, we use uniform rejection sampling to add random
“disagreeing” edges and we take snapshots of these “noisy” graphs at multiple ratios of
the number of “disagreeing” edges to the total number of edges. ¿e results are shown
in Figure 6.3. We use a model size of 128 for both theMLP and the GCN, and we report
results averaged across 5 runs using di�erent random seeds. We make the following
important observations from Figure 6.3:

1. ¿e GEM-enhanced models consistently outperform the baseline models, across
all proportions of “disagreeing” edges.

2. ¿e GCN performance degrades dramatically as we increase the proportion of
“disagreeing” edges, eventually converging to random predictions. ¿is behavior is
expected since GCN assumes that all edges are equally important and averages the
contributions obtained from the neighbors of a node. ¿is means that, in complete
graphs (fully-connected), GCNs will predict the same label for all nodes. GEM helps
make GCNs a bit more robust early on, but as the graph gets more connected it is
unable to correct for GCN’s behavior, due to the aforementioned issue.

3. MLPs are completely robust to the proportion of “disagreeing” edges, which is also
expected since they do not consider the edges of the graph. However, GEM takes the
graph structure into account, and so, when enhancingMLPs with GEM, we notice
that we consistently get a performance improvement, but that the improvement is
sometimes smaller as the proportion of “disagreeing” edges increases.

4. ¿e Disease dataset exhibits a very interesting e�ect: we see that the performance of
GEM-enhanced models increases when increasing the proportion of “disagreeing”
edges, eventually reaching 100% accuracy. Investigating this further revealed that
this is due to the fact that in the Disease dataset, ∼72% of the nodes are labeled
(i.e., the majority of them) and so increasing graph connectivity has the following
e�ects: (i)GEM is able to learn amore accurate confusion predictor, gφ, and (ii) this
confusion predictor can be used to more robustly infer the labels of the unlabeled
nodes, since now they are connected to more labeled nodes. ¿is observation
highlights that GEM may also be very useful for settings where there is a small
number of unlabeled nodes and a large number of labeled nodes.We do not observe
the same behavior in the other datasets, most likely because the number of labeled
nodes in those datasets is very small and so the newly added graph edges rarely
connect to any of the labeled nodes.
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Figure 6.3: Plots of accuracy at multiple ratios of the number of “disagreeing” edges to the
total number of graph edges. ¿ese results are discussed in Section 6.3.3.

6.4 key takeaways

We have proposed GEM, a new algorithm for graph-based semi-supervised learning.
¿e speci�c problemwe considered is graph node classi�cation. Existing algorithms for
solving this problem o en rely on the assumption that a node is in some sense similar
to its neighbors. However, this assumption is o en too strong for real-world graphs.
GEM addresses this problem by borrowing intuition from the area of crowdsourcing
and from the work we presented in Chapter 5. ¿e key underlying idea is that we
considered the labels of a node’s neighbors as noisy predictors of the node’s label. To
this end, we introduced a probabilistic model which allows us to learn two functions:
(i) a label predictor for each node, and (ii) amodel which, given a node and its neighbor,
learns to predict how their labels are related in the form of a confusion matrix. We
also proposed a scalable variational inference algorithm for learning both of these
functions in an end-to-end manner. Experimental results on multiple graph node
classi�cation datasets indicate that GEM results in signi�cant gains in accuracy (up
to 55% relative gain over baseline methods), thus establishing new state-of-the-art
performance for the graph node classi�cation problem. Furthermore, we performed a
robustness analysis to examine how GEM performs when dealing with graphs where
multiple or even most of the edges connect nodes with di�erent labels. GEM was able
to slow down the performance degradation of GCNs and to consistently enhance the
performance ofMLPs, even under large amounts of noise.
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Most importantly, the main reason we ventured into this problem of graph node
classi�cation was so that we can showcase the usefulness and applicability of the ideas
and methods we presented in the previous chapters, beyond the areas of never-ending
learning and crowdsourcing. GEM provides evidence that the algorithms presented
in Part i of this thesis are indeed useful and applicable in areas beyond never-ending
learning and crowdsourcing.





Part II

HIGHER-ORDER LEARNING

In Chapter 7, we provide some background on multi-task learning along
with a brief history of the �eld, pointing out what the current limitations
are. ¿en, we propose a novel abstraction, contextual parameter gener-
ation, that allows us to address these limitations. Finally, in Chapter 8,
we present results on a few di�erent multi-task learning problems that
include machine translation and knowledge graph link prediction, and
showcase the power and usefulness of contextual parameter generation.
We also provide a novel neural cognitive architecture that is later used to
motivate the future work we propose in Chapter 10 and Appendix C.
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Figure 7.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

In the �rst part of this thesis, we focused on self-re�ection in the context of learning
collections of functions.¿emethods we proposed revolvedmainly around estimating
accuracies of classi�ers from unlabeled data. However, learning collections of func-
tions is also inherently related tomulti-task learning. In fact, as discussed in Chapter 1,
multi-task learning is an an important aspect of general learning and intelligence.
To this end, in this chapter we propose a novel abstraction, contextual parameter
generation, that enables large-scale multi-task learning and is able to signi�cantly
outperform existing methods for multi-task learning. Before we present our approach,
we provide a short introduction to multi-task learning along with a brief history that
aims to help better position andmotivate our work.We also describe its relationship to
other areas likemeta-learning and transfer learning. Empirical evidence for the power
and usefulness of contextual parameter generation is provided in the next chapter
through a series of case studies.
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7.1 multi-task learning

Machine learning has witnessed growing success across a multitude of applications
over the past years.However, despite these successes, currentmachine learning systems
are each highly specialized to solve one or a small handful of problems. ¿ey have
much narrower learning capabilities as compared to humans, o en learning just a
single function or model based on statistical analysis of a single dataset. One reason
for this is that current machine learning paradigms are restricted and specialized to a
particular problem and/or dataset, motivated by the fact that we typically care about
optimizing for a particular application-speci�c metric. While these paradigms o en
allow us to achieve acceptable performance, they also fail in cases where we may have
very limited amounts of training data and where the tasks that are being learned are
complex (e.g., consisting of multiple sub-tasks). Furthermore, there may be multiple
auxiliary training signals available that we are simply ignoring by being focused on a
single metric. ¿ese signals can be thought of as other related tasks and by sharing
information among them we can potentially enable our models to generalize better
on the original task. Moreover, we can even go a step further and design models that
learn to perform multiple tasks using the same shared representations, and where
by learning one task they become better at learning others. ¿is general approach is
calledmulti-task learning (MTL) and it has been of interest to the machine learning
community formany years (e.g., Caruana, 1997), mainly due to its multi-faceted nature
and signi�cance.

general intelligence. One of the goals of this thesis is to take us a step closer
to arti�cial general intelligence and in Chapter 1 we argued that agents with this
capability should not learn how to perform a single task repetitively, but rather how to
perform a general variety of tasks, and how to switch between them and/or combine
them to better perform other tasks (e.g., by composing them). We posited that, at a
su�ciently high level of task complexity, optimal learning agents will be required—
either explicitly or implicitly—to perform abstract reasoning over concepts and make
informed decisions about the environment in which they are deployed. ¿erefore,
MTL is likely an integral step towards generally intelligent systems.

human intelligence. When we, as humans, learn new tasks, we o en apply
knowledge that we have acquired by learning other tasks to learn faster (e.g., curricu-
lum in school—from a pedagogical perspective we o en �rst learn tasks that provide
us with the necessary skills and background to learn more complex tasks later). ¿is
motivates research in MTL because: (i) it seems like an e�ective way to learn and
may thus be useful to imitate, and (ii) being able to reproduce this aspect of human
learning in machine learning may help us better understand human learning. ¿is
also points out that multi-task learning is related to curriculum learning which can
be traced back to the work of Elman (1993) and Krueger and Dayan (2009). ¿is
connection also motivated us to do some work in curriculum learning, part of which
is presented in Appendix A.¿e two curriculum learning methods we developed were
published in (Platanios et al., 2019) and (Stretcu et al., 2020).
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machine learning. MTL can be viewed as a form of inductive transfer, which
aims to improve a machine learning model by introducing an inductive biasmaking
it prefer certain hypotheses over others (Caruana, 1997). For example, `1 and `2
regularization—which are o en used when training machine learning models—are
both common forms of inductive bias, the �rst one leading to a preference for sparse
solutions and the second one to a preference for smooth models (Ruder, 2017). In the
case of MTL, learning to perform auxiliary tasks can provide a useful inductive bias
for when learning to solve a speci�c target task.

7.1.1 A Brief History of Multi-Task Learning1

NETtalk by Sejnowski (1987) is perhaps the earliest instance of multi-task learning.
¿e authors built a neural network for reading English text.¿eir mainmotivation was
to reduce computational cost by using a single neural network to learn 26 distinct tasks
(mainly due to the computational constraints of the time). Most of the network hidden
layers were shared among all tasks, but separate output layers were used for each task.
¿e authors may well have not been aware that they published the �rst system using
what would later be called multi-task learning. A few years later, Dietterich et al.
(1990) noticed that they could not get decision trees to match the performance of the
NETtalk neural network. According to them, one of the most likely explanations was
that NETtalk was being trained on all tasks at the same time, while the same was not
true for their decision tree approach. In fact, one of the systems that gathered a lot of
attention at the time, ALVINN—one of the �rst autonomous land vehicle projects by
Pomerleau (1989)—was also getting signi�cant accuracy improvements by having a
single neural network produce multiple outputs.
Around the same time, Suddarth and Kergosien (1990) tried injecting logical rules

in neural networks and Abu-Mostafa (1990) tried providing hints in terms of what ¿ese are some of the �rst
instances of transfer
learning, which is a type
of multi-task learning.

the network outputs should look like (e.g., the invariance hint which stated that the
network output must be the same for certain input pairs). Both approaches resulted
in performance improvements. One year later Pratt et al. (1991) showed how neural
network training times can be signi�cantly reduced by pre-training networks to solve
one task and then �ne-tuning on others. Dietterich and Bakiri (1994) proposed using
error correcting output codes for what can also be e�ectively considered a multi-task
learning problem. Silver and Mercer (1996) investigated the question of how we can
transfer task knowledge between models learning to solve di�erent problems, based
on a measure of task relatedness. Caruana (1995, 1997) then extended these ideas
by showing that a network learning multiple related tasks at the same time can use
these tasks as an inductive bias for each other and thus learn faster. Caruana also
identi�ed various mechanisms by which multi-task learning improves generalization
and showed that many of them apply to other machine learning methods too, beyond
neural networks (e.g., k-nearest-neighbors and decision trees). Meanwhile, Breiman
and Friedman (1997) proposed the “Curds &Whey” method for multivariate linear
regression, a simple multi-task learning problem. A few years earlier, Mitchell and

1 ¿is section is mostly borrowed from a talk Rich Caruana gave during the “Adaptive and Multi-Task
Learning” workshop at the International Conference on Machine Learning (ICML), 2019.
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¿run (1993) started exploring directions in explanation-based neural networks which,
similar to the previous ideas, also exhibited a form of inductive transfer. Also, de Sa
(1993) was looking into minimizing disagreement among di�erent model outputs as
an auxiliary task; in many ways similar to the ideas we presented in (Platanios, 2018a).
Notably, this was also the time when the idea of meta-learning (i.e., learning-to-learn)
�rst appeared with the heavily in�uential work of ¿run and Mitchell (1994)—which
has recently become more popular than it has ever been—and Schmidhuber (1995).
¿run (1996) went on to defend his thesis focused on meta-learning and lifelong
learning and to also propose methods for clustering tasks in order to perform selective
cross-task transfer of knowledge (¿run and O’Sullivan, 1998). Meanwhile, Baxter
(1995) also defended his PhD thesis on learning internal representations that can be
used across multiple tasks, as part of which he also developed some initial theory
around multi-task learning. ¿en, Munro and Parmanto (1997) started looking into
combining multi-task learning and ensemble learning, and Ring (1997) did some
of the earliest work in continual learning—arguably yet another form of multi-task
learning—which he de�ned as “the constant development of increasingly complex
behaviors; the process of building more complicated skills on top of those already
developed.” Later on, Blum and Mitchell (1998) published their work on co-training
which was very in�uential in the development of never-ending learning by Mitchell
et al. (2018) and in turn in the writing of this thesis.
Further progress was made during the following decade. Ben-David et al. (2002)

proposed a theoretical framework for learning from a pool of disparate data sources.
As Bayesian models were getting popular in machine learning, Bakker and Heskes
(2003) proposed a Bayesian framework formulti-task learning, and similarly for kernel
methods (e.g., Jebara, 2004; Lawrence and Platt, 2004; Evgeniou et al., 2005; Yu et al.,
2005). Finally, since 2008 there has been a resurgence of neural network approaches
which has enabled possibilities that were previously completely unattainable. Most of
the core ideas behind multi-task learning however have remained the same, with the
main things changing being the scale and scope of the problems being tackled. A brief
overview of what we like to call the current landscape of multi-task learning is presented
in Figure 7.2 and a more detailed discussion is provided in the following section. ¿is
recent work has served to provide evidence for the importance and usefulness of these
ideas stemming from novel research work over the past few decades.

7.1.2 ¿e Current Landscape of Multi-Task Learning

Most—if not all—of the existing work on multi-task learning can be classi�ed in two
main categories (Ruder, 2017):

hard parameter sharing. ¿is dates back to the work of Caruana (1995) and
is arguably the most common approach used for multi-task learning to this day. ¿e
key idea is that some of the model parameters are shared entirely by all tasks. A
simple example is that of a neural network with some shared hidden layers followed
by task-speci�c output layers (e.g., Ramsundar et al., 2015). Note that this simple
example assumes that the input features are the same across all tasks, but that does
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Figure 7.2: ¿e current landscape of multi-task learning. ¿e big red circle with the ques-
tion mark on the top right represents what we hope to achieve with contextual parameter
generation.

not need to be the case in general. ¿ere has been a lot of in�uential work in hard
parameter sharing and even though we cannot include it all in this paragraph, we have
included some of the most in�uential examples. Baxter (1997) was the �rst to provide
theoretical results showing how hard parameter sharing greatly reduces the risk of
over�tting. Hashimoto et al. (2016) proposed an approach that also takes into account
a pre-de�ned hierarchical structure over the tasks they consider. Andreas et al. (2016)
proposed sharing various low-level modules that are “wired together” di�erently
for each task. Kaiser et al. (2017) used separate encoder and decoder networks for
di�erent data modalities that are shared across all tasks that utilize these modalities.
¿is allowed them to handle tasks with di�erent input modalities. Hard parameter
sharing also includes methods where a single model is supervised with multiple
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objectives in order to improve generalization (e.g., Girshick, 2015). Finally, other
examples of hard parameter sharing include the work of Collobert andWeston (2008),
Deng et al. (2013), Dong et al. (2015a), Firat et al. (2016a), Luong et al. (2016), and
Johnson et al. (2017).

soft parameter sharing. ¿e key idea in so parameter sharing is that we
use a separate model per task, but the parameters of these models are constrained to
be similar to each other, to some extent. For example, Argyriou et al. (2007) assume
that the models for each task share a small set of features. To this end, they propose
a method for �nding this common set of features by using a speci�c regularization
term on the model parameters. Assuming all models have the same number of pa-
rameters, we can take their parameter vectors and stack them side-by-side to form
a matrix so that each row corresponds to a feature and each column corresponds
to a task. ¿e authors then use the `1 norm of the per-row `2 norm of this matrix
as their regularization term. Yuan and Lin (2006) replace the `2 norm with an `∞
norm. ¿ese approaches can be classi�ed as a form of so parameter sharing as each
model ends up with its own set of parameters, but these parameters are constrained
to be similar in some way. ¿ere also exist some theoretical results on the bene�ts
of these block-sparse regularization methods (e.g., Lounici et al., 2009). However,
there is evidence to suggest that these methods o en underperform simpler per-task
regularization approaches (e.g., Negahban and Wainwright, 2011). Jalali et al. (2010)
propose a slightly modi�ed version of these regularization schemes that attempts to
avoid the aforementioned underperformance issues by mixing block-sparse regular-
ization with per-task regularization. Other work employing similar methods includes
the approaches of Duong et al. (2015) and Yang and Hospedales (2016). However,
so parameter sharing is an abstract idea that comes in many alternative forms. Ev-
geniou and Pontil (2004), Evgeniou et al. (2005), and Jacob et al. (2009) relax the
constraint that some features are shared across all tasks by instead imposing a clus-
tering constraint on the parameter vectors. In fact, multiple methods followed in the
same direction, some even imposing Bayesian clustering priors, including work by
¿run and O’Sullivan (1996), Heskes (2000), Bakker and Heskes (2003), Lawrence
and Platt (2004), Yu et al. (2005), Ando and Zhang (2005), Xue et al. (2007), Daumé
(2009), Kim and Xing (2009), and Zhang and Yeung (2010). Online variants of some
of these approaches were also proposed by Cavallanti et al. (2008) and Saha et al.
(2011). Furthermore, so parameter sharing has recently proven to be very successful
in deep learning (e.g., Ruder et al., 2019). Pre-training and �ne-tuning is one such
example. Devlin et al. (2019) propose BERT, a large-scale natural language processing
model that was pre-trained as a language model on a massive text corpus and then
separately �ne-tuned on a multitude tasks, achieving state-of-the-art performance
in all of them. ¿is is a form of so parameter sharing as a single massive model is
pre-trained and then copies of this model are instantiated and �ne-tuned for each task.
¿is common initialization has a large impact on performance and serves as a strong
prior for the parameters of all task-speci�c models. A similar argument can be made
for a lot of the recently successful meta-learning methods like the model-agnostic
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meta-learning (MAML) algorithm by Finn et al., 2017. ¿is algorithm also learns a
common initialization for all task-speci�c models.
In Section 7.2, we introduce contextual parameter generation (CPG)which is inspired

by all this work and o�ers a generalized framework under which we can obtain both
hard and so parameter sharing. However, before that we provide some insight as to
when, how, and why multi-task learning works, in order to better motivate our work
on CPG and better explain how it addresses several of the limitations of current work
in multi-task learning.

7.1.3 When, How, and Why Does Multi-Task Learning Work?

Intuitively, we expect multi-task learning to help in settings where we have tasks that
are somehow related and we have su�cient training data for some of them, but little
or no training data at all for others. In such cases, we expect that we may be able to
leverage the task relationships in order to share information between the “data-rich”
and the “data-poor” tasks. A practical example for this setting is that of low-resource
machine translation that is discussed in detail in the following chapter. On the other
hand, in situations where we have an abundance of training data for all tasks it may
be more bene�cial to train separate models in isolation because multi-task learning
always involves making assumptions about the task relationships that may not be
true, and may thus hurt performance. In order to better understand when multi-task
learning can help, we now discuss several empirical observations that Caruana (1995,
1997) made while tackling multiple real-world problems:

– Pooling versus Isolation: It has been observed that o entimes, training using
multiple objective functions together can help improve performance over train-
ing on each objective separately. Intuitively, one way to explain this is that some
tasks can act as regularizers for other tasks, helping machine learning models
achieve better generalization capabilities.

– Inputs versusOutputs: It has been observed that sometimes itmay be interesting
to convert certain quantities from being inputs to a machine learning model, to
being target outputs. For example, let us consider amodel that predicts how long
a patient will stay in a hospital. We could use some of the patients test results
as inputs to the model, but Caruana (1997) observed that it sometimes may be
bene�cial to convert these results to outputs that the model is trying to predict,
along with the hospital stay duration. ¿is is a very interesting observation
and shows how converting a single-task problem to a multi-task problem may
sometimes be bene�cial in unexpected ways.

– Task Interference: Tasks may interfere in both positive and negative ways. We
say that tasks interfere positively when models trained to perform them jointly
do better than when trained to perform each one in isolation. However, the
opposite e�ect has also been observed. Sometimes training models to perform
multiple tasks jointly hurts their performance. We refer to this e�ect as negative
transfer or catastrophic interference and it was �rst described by Sharkey and
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Sharkey (1995). In fact, it is also one of the biggest challenges related to multi-
task learning and we argue that it is the result of excessive parameter sharing. In
order to resolve this issue we need methods that are able to trade-o� between
hard parameter sharing, so parameter sharing, and no parameter sharing at
all; the latter being useful for cases where the tasks may not be related at all. ¿e
method we describe in the next section tackles this issue directly.

– Task Decomposition: When learning complex tasks it may be bene�cial to
break them down into sub-tasks that can be directly supervised and learn
all subtasks in a multi-task manner. Our work on coarse-to-�ne curriculum
learning (Stretcu et al., 2020) is a related example, as is the work by Abu-Mostafa
(1990) on hints for neural networks.

– Attention Focusing: Multi-task learning can o en help teach models where to
focus their attention. Let us consider an example by Caruana (1997) to showcase
this. Consider an autonomous vehicle. When learning to steer, models may
o en ignore lane markings because they are usually a small part of the input
image. However, if amodel learning to steer is also required to learn to recognize
the lane markings, then it will learn to attend to that part of the input image.
¿is may in turn help the model learn the steering task better.

– Task Learning Rates: When training a model on multiple tasks it is o en the
case that for some tasks training converges faster than for other tasks. ¿is can
result in over�tting as it is unclear how to stop training early for some tasks
but not all, and this is necessary because we are training a single model for all
of the tasks. Even though there have been some domain-speci�c attempts to
tackle this problem (e.g., the work of Kendall et al., 2018, which also applies to
the next paragraph), there are no elegant general-purpose workarounds. Most
o en researchers will either: (i) tune the learning rate for each task such that
the objective for all tasks converge at around the same rate (although this can
be computationally expensive as multiple training runs are needed), or (ii) save
“snapshots” of the model when each task converges and then use a di�erent
“snapshot” for each task at inference time.

– Multiple Metrics: A common instance of hard parameter sharing is when we
have a single model but we care about multiple performance metrics and can
actually supervise this model with multiple signals. In this case, we may be
optimizing multiple loss functions with respect to a single model.¿is can o en
help in practice, but care must be taken with respect to how we “balance” the
di�erent loss terms, as they may be at completely di�erent scales and some may
be more dominant than others during the di�erent phases of training.

– Training Data Size: As mentioned in the beginning of this section, the amount
of training data available for each task can signi�cantly a�ect the bene�ts o�ered
by multi-task learning approaches. ¿e more training data that is available, the
less signi�cant the bene�ts of multi-task learning are.
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From these observations and the discussion in the previous section, it is evident
that a key challenge of multi-task learning is controlling how much information
is shared between the tasks. For example, when tasks are very similar we want to
transfer information from well-supervised tasks to the ones for which we have very
limited or no supervision at all. However, when tasks are very dissimilar we want
to avoid transferring information between them, as this could result in catastrophic
interference. ¿is is the trade-o� that hard parameter sharing and so parameter
sharing methods face. In that case, information sharing is done through parameter
sharing. In the next section, we present a novel approach to multi-task learning that
is a generalization of both hard and so parameter sharing and aims to enable better
learning of this trade-o�. Furthermore, this new approach is designed such that if we
know a priori how some tasks are related, we can encode that information as part of
the model that is being learned to solve them.

7.2 contextual parameter generation

Let us refer to parameterized functions as networks. Let us also denote a network by
a lowercase English letter with a lowercase Greek letter subscript (e.g., fθ), where
the Greek letter refers to the network parameters. ¿erefore, given some input x, the
network output is simply de�ned as:

y = fθ(x). (7.1)

Most deep learning models can be seen as networks. For example, we can have a con-
volutional neural network (CNN) that takes images as input, transforms them using
convolutional �lters (i.e., parameters), and produces distributions over labels (e.g.,
cat or dog). Research in deep learning has resulted in multiple network architectures
that can successfully learn to solve various problems, and that each make di�erent
assumptions about its input space. For example, CNNs assume that there is some
periodical structure in the input space and are translation invariant, whereas recurrent
neural networks (RNNs) assume that each part of an input sequence can be processed
using the same network parameters.
Never-ending learning requires a system to be able to perform multiple tasks; per-

haps even previously unseen tasks that can be formulated in terms of other previously
learned tasks. ¿is means that traditional multi-task neural network architectures that
use a di�erent output layer for each task (e.g., Caruana, 1997) cannot be used in this
context. ¿at is because the set of tasks the system is learning to perform is not known
a priori, when the neural network architecture is chosen. ¿is motivates us to treat
tasks as separate inputs. More speci�cally, we assume that a description of the task the
system is performing at each time is provided as an additional input to the system.
An additional bene�t of feeding the task as an additional input to the system is

that it enables zero-shot learning. Let us clarify this with a simple example. Consider a
multi-task learning setting where the objective is to learn to convert between di�erent
temperature units. Speci�cally, we want our model to be able to convert temperature
values from °C to °F and between any other combinations of °C, °F, and °K. In this
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case, a task can be described as a pair of temperature units: the source temperature
unit and the target temperature unit. If a typical multi-task learning system gets
to observe training examples for the tasks (°C, °F) and (°K, °F), then it will not be
able to generalize well for the (°C, °K) task. However, if the system is able to learn
embeddings for the three separate temperature units and represent a task using a pair
of such embeddings that is fed to the system as an additional input, then it is much
more likely that it will be able to generalize well. As we shall show in the following
paragraphs, feeding the task representation as an additional input to the system also
has some disadvantages that led us to propose contextual parameter generation. In
Section 8.2 we present an extensive case study on the problem of multilingual machine
translation, which generalizes the simple example of this paragraph.
We argue that, for most existing neural network architectures, it is hard or even

impossible to encode assumptions about the contexts (e.g., tasks) in which they are
used, to share information across these contexts, and to “personalize” them for each
context, when that context is simply provided as an additional model input. As we
discuss in the end of this section, this limitation could be attributed to the fact thatmost
existing architectures are only able to represent additive interactions between their
inputs. Previously, there has been some success in encoding this kind of assumptions
using probabilistic graphical models (PGMs). When working with PGMs, researchers
typically �rst de�ne a prior probabilistic model over how the data observations are
generated and then perform inference to obtain a posterior distribution over the
model parameters and possibly also latent variables. ¿ese generative models are
o en hierarchical, meaning that the parameters of the distribution from which the
observations are sampled, are also o en sampled themselves from a higher-level
distribution. ¿is results in an interesting type of information sharing across all the
di�erent distributions, and has been behind many successful models, such as latent
Dirichlet allocation (Blei et al., 2003) and hierarchical Dirichlet processes (Teh et al.,
2006). ¿ere have been e�orts to combine such approaches with neural networks
(e.g., Tran et al., 2019), but they are o en expensive and impractical for large scale
problems. Furthermore, in order to make probabilistic inference tractable they o en
limit model expressivity.
¿ismotivated us to develop amethod called contextual parameter generation (CPG;

Platanios et al., 2018). ¿e core idea behind this method is that, given a network fθ,
instead of learning θ directly while training, we de�ne it as:

θ = gφ(c), (7.2)

where c is a description of the context in which we are applying the model. For
example, if we are encoding text written in English as part of a multilingual machine
translation model, the context could simply be a one-hot encoding of the English
language.¿e parameters we learn during training are just those of gφ, which we refer
to as the parameter generation network. ¿is allows us to share information across
instances of fθ used in di�erent contexts. While we previously had to learn and use
di�erent parameters for each context in which fθ is used, they are now all generated
as a function of the context. For example, instead of using di�erent encoders for text
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written in English and text written in German, we can now use one encoder and simply
generate its parameters as a function of their language. Note that we can simply de�ne
gφ as a lookup table over di�erent contexts, and this would reduce to the previous
setting in which there is no information sharing. However, the CPG formulation
allows us to impose arbitrary information sharing structures by manipulating the
functional form of the parameter generation network, gφ. For example, we could learn
embeddings for all language families and have all Romance language embeddings
be de�ned as linear transforms of the corresponding Romance family embedding.
When performing multi-task learning, we can think of each task as a context in
which a network processes its inputs. Given a representation of this context, we can
generate the parameters of a single universal network that is used for all tasks. ¿e
way in which contexts are de�ned and processed to generate parameters can thus
allow for controlled information sharing across multiple tasks. We refer to networks
that employ CPG as contextualized networks, and we let them optionally have some of
their parameters be generated by a CPG component, and some be directly learned
(e.g., we may not want to generate the parameters of a batch normalization layer using
CPG). Contextualized networks also have better generalization properties than plain
networks because they can be used with previously unseen contexts, as long as the
new contexts can be composed out of previously seen contexts.

7.2.1 Feeding Context as an Additional Input

A natural question to ask is why could we not just feed the context as another network
input. Here, we provide a few reasons to justify contextual parameter generation as a
better alternative to this.

1. Structured Information Sharing: Similar to the motivation for PGMs described
earlier in this section, CPG provides a structured way to share information
across contexts. We shall see practical examples of this in the following chapter.

2. Additive Interactions: Without loss of generality, let us split the input x to a
neural network in two parts, x0 and x1. For example, assuming x is a vector,
then x0 and x1 are vectors such that when concatenated, they form x. Most
neural network architectures currently in use only allow for interactions of the
following form:

y = fθ(h
0
φ0

(x0) + h
1
φ1

(x1)), (7.3)

where f, h0, and h1 are arbitrary functions, and y is the output of the neural
network. For example, consider the following function types:

– Element-wise Operations: Functions that are applied to each element of
a given tensor x, independently. Neural network activation functions are
a common example (e.g., f(x) = tanh(x)).

– Linear Transforms: Functions of the form f(x) =Wx+ b, where x is a
vector andW and b are parameters that are learned.

– Convolution Neural Networks (CNNs): Functions that are compositions
of convolutions, element-wise operations, and linear transformations.
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Note that convolutions are also linear transformations with a parameter
sharing structure that is informed by an invariance assumption.

– Recurrent Neural Networks (RNNs): Functions that slice an input tensor
along some dimension and then apply the same, o en stateful, function
on each slice. ¿is function is most o en de�ned as a composition of
convolutions, element-wise operations, and linear transformations.

¿is form is very restrictive. For example, it cannot be used to represent simple
if-then-else rules such as “if x0 = 2,then 2x1 else 5x1.” ¿is is especially
important for multi-task learning because we can think of x0 as the description
of some task and we might want to condition on this task while processing the
rest of the model inputs. ¿is would be the case for a mixture of experts model,
for example. In order to represent this kind of interaction we have to explicitly
encode them in the neural network architecture. Ideally, we want the model to
be able to learn these interactions on its own—if they are necessary—instead
of having them be hardcoded as part of the model architecture. CPG in fact
allows for multiplicative or even polynomial interactions between h0φ0(x0)
and h1φ1(x1), which would allows us to represent if-then-else rules. Multi-
plicative interactions have also been shown to be useful in other settings (e.g.,
Lengerich et al., 2020). In fact, self-attentionmethods (Vaswani et al., 2017) have
been very successful recently and they rely on a simple form of multiplicative
interactions which can also be seen as a special instance of contextual parameter
generation (the queries and the keys in self-attention determine the weights
that will be used to multiply with the values).

3. Deployment: CPG allows us to generate a context-speci�c model and later use it
without involving the parameter generation network. ¿is can be bene�cial for
deployment. For example, if we only care about English-to-German translation
due to an upcoming vacation trip, we could have Google Translate generate a
translation model for this language pair and then store that model on a mobile
device for o�ine use.

4. Modeling Assumptions: Di�erent neural network architectures make di�erent
assumptions. For example, CNNs assume spatial invariance for the inputs (mean-
ing that they contain repeating patterns in di�erent locations). ¿is assumption
is unlikely to hold for an arbitrary context vector and so it is unreasonable to
just concatenate an arbitrary context vector with an image and feed the result
to a CNN. CPG avoids this problem because the architecture modi�cation it
entails does not a�ect the assumptions made by a network about the input data.

7.2.2 Related Work

Ha et al. (2018) are probably the �rst to introduce a similar idea to that of having one
network (called a hypernetwork) generate the parameters of another. However, in their
work, the input to the hypernetwork are structural features of the original network
(e.g., layer size and index). Al-Shedivat et al. (2017) propose a related method where
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a neural network generates the parameters of a linear model. ¿eir focus is mostly
on interpretability (i.e., knowing which features the network considers important).
Dumoulin et al. (2018) provide a comprehensive review of some more related work
from other �elds, such as computer vision, that was published concurrently to our
work. Furthermore, CPG is generic enough so that many existing methods can be
formulated as CPG variants. One such example is model-agnostic meta-learning
(MAML) by Finn et al. (2017), where a model is pre-trained over a large number of
tasks and then �ne-tuned on new tasks drawn from the same task distribution. In this
case, the parameter generation network consists of taking a gradient descent step, using
only the new task’s data. Along a slightly di�erent direction, Kang et al. (2011) propose
clustering the tasks and learning a single shared model per task cluster. However,
this approach is a bit too constraining as rarely can two tasks ever be considered
exactly identical. Kumar and Daumé (2012) extend this approach by proposing a
simple version with the parameter vectors being a linear combination of a small set of
basis task vectors.

7.2.3 Another Perspective on Parameter Generation

Recently, neural architecture search (NAS; Elsken et al., 2019) has enabled machine
learning practitioners to automate the tuning of neural network architectures. Em-
pirically, there is strong evidence that a neural network’s architecture strongly a�ects
its generalization performance. However, designing architectures is most o en done
manually and doing it well requires a lot of experience.¿erefore, NAS is an important
area of research as it aims to automate this process. Interestingly, CPG can directly
be used for architecture search. Consider a setting where we have an extremely high-
capacity fully connected network, along with a parameter generator for this network
that always generates sparse parameters (i.e., most of the neural network weights are
set to zero). ¿e parameter generator in this case can be thought of as an architecture
generator and learning a good generator for a given problem amounts to solving
a NAS problem. More generally, CPG is not just about parameter generation, but
rather about function generation. Considering a large parametric function class and
generating parameters for functions in this class, which is what CPG does, is a special
instance of function generation which is, in its own right, very powerful.

In the following chapter, we present several empirical case studies showcasing the
strengths of the CPG abstraction. ¿en, in Section 10.2 we present some remaining
open questions related to CPG that are outside the scope of this thesis.





8CASE STUDIES FOR CONTEXTUAL PARAMETER GENERATION

GEM

Direct Approach

Never-Ending
Learning

Machine Translation

Parity Function Jelly Bean World

Competence-based Curriculum Learning

Coarse-to-Fine Curriculum Learning

Active Learning Link Prediction

Bayesian Approach Logic Approach

Deep Learning Approach

Graph-Agreement Models

Self-Reflection Multi-Task Learning

EvaluationSemi-Supervised Learning

Figure 8.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

In the previous chapter we proposed a novel abstraction, contextual parameter genera-
tion, that enables large-scale multi-task learning. In this chapter, we present multiple
diverse case studies that showcase the power and usefulness of contextual parameter
generation. ¿e �rst case study is aimed at providing some insight into the increased
expressive power of contextual parameter generation (discussed in Section 7.2.1). ¿e
rest of the case studies in this chapter are focused on multi-task learning and show
how contextual parameter generation establishes new state-of-the-art performance
for multiple problems.

8.1 case study #1: parity function

¿e n-variable parity function is de�ned as the Boolean function pn : {0, 1}n 7→ 0, 1

with the property that pn(x) = 1 if and only if the number of ones in the vector
x ∈ {0, 1}n is odd. Formally, we de�ne the parity function as:

pn(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn, (8.1)

119



120 case studies for contextual parameter generation

where ⊕ denotes the “exclusive-or” logical operator (also known as XOR). We refer¿e “exclusive-or” logical
operator evaluates to 1
when its two arguments
have di�erent values (i.e.,
one of them is equal to 0
and the other to 1), and

to 0 otherwise.

to the problem of learning the parity function as the parity problem. Learning the
XOR function is the simplest possible parity problem (i.e., where n = 2) and we
shall refer to it as the XOR problem. In fact, this problem was used by Minsky and
Papert (1969) to test some of the �rst learning algorithms. It was also later shown by
Rumelhart et al. (1985) that it can be solved by a simple feed-forward neural network
with a single hidden layer containing 2 units. Rumelhart et al. (1985) also showed
that the parity problem for a �xed value of n can be solved by a similar network
containing n units. We consider the harder problem of learning the parity function
for bit sequences of arbitrary lengths (i.e., n is not �xed), while training only on short
sequences. ¿is will allow us to test the generalization capabilities of our models. In
order for our models to be able to handle sequences of arbitrary lengths, we shall
only consider recurrent neural networks (RNNs) for this case study. In the following
sections, we provide some background on RNNs, discuss their limitations, and show
how contextual parameter generation can address some of these limitations. We also
provide some interesting relationships between contextual parameter generation and
existing work inmultiplicative RNNs and even hidden Markov models (HMMs).

8.1.1 Recurrent Neural Networks

A recurrent neural network is an adaptation of feed-forward neural networks that
enables modeling sequential data. ¿e core idea behind RNNs can be traced back
to the work of Rumelhart et al. (1986). ¿e input to an RNN is typically a sequence
of data points, x = {x1, . . . , xT }, and the RNN goes through each element in that
sequence, processes it, and updates some hidden state. ¿is hidden state can then
be used to make predictions for downstream tasks. ¿e hidden state is typically a
high-dimensional vector and the function that updates it is non-linear (o en a feed-
forward network), resulting in RNNs being able to learn powerful representations. For
example, given a sequence of input vectors {x1, . . . , xT }, the standard RNN computes
a sequence of hidden states {h1, . . . , hT } and a sequence of outputs {o1, . . . , oT }, by
iterating over the following equations for t = 1, . . . , T :

ht = tanh(Whxt +Uhht−1 + bh), (8.2)
ot =Woht + bo, (8.3)

where h0 is initialized to a pre-speci�ed value (e.g., zeros), andWh, Uh, bh,Wo,
and bo are model parameters that are learned during training. Even though it may
initially seem trivial to train RNNs using gradient descent methods, it has been shown
that training over long sequences is in fact hard (see e.g., Bengio et al., 1994). ¿e
gradients of the model parameters tend to explode or vanish numerically thus o en
making training impossible. Furthermore, the standard RNNmodel is generally not
able to “remember” information over long spans of the input sequences.1 ¿ere have
been multiple proposals on how to address this issue (e.g., echo state networks by

1 ¿is can sometimes be avoided by usingmore expensive Hessian-free optimizers (Martens and Sutskever,
2011) to train RNNs.
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Jaeger and Haas, 2004), but the most successful and dominant one is arguably that of
Hochreiter and Schmidhuber (1997), who proposed long short-term memory (LSTM)
networks.
LSTMs are perhaps the most popular RNN variant and have been used successfully

in a multitude of applications (e.g., Graves and Schmidhuber, 2009; Ha et al., 2016;
Luong et al., 2016; Johnson et al., 2017; Ha et al., 2018). In contrast to the standard
RNN, the hidden state of an LSTM consists of two components: (i) ht, similar to the
standard RNN, and (ii) ct, a cell that operates as a longer term memory. Formally, it
is de�ned by the following equations:

ft = σ(Wfxt +Ufht−1 + bf), FORGET GATE (8.4)
it = σ(Wixt +Uiht−1 + bi), INPUT GATE (8.5)
ut = tanh(Wuxt +Uuht−1 + bu), UPDATE GATE (8.6)
ot = σ(Woxt +Uoht−1 + bo), OUTPUT GATE (8.7)
ct = ft � ct−1 + it � ut, CELL STATE (8.8)
ht = ot � tanh(ct), HIDDEN STATE (8.9)

where� represents the Hadamard (i.e., element-wise) product, andWf,Uf, bf,Wi,
Ui, bi,Wu,Uu, bu,Wo,Uo, and bo are model parameters that are learned during
training. At a high level, the forget gate decides what to “erase” from the cell state and
the update gate decides how to update the cell state based on the current input that
has been processed by the input gate. LSTMs have been shown to be highly successful
in multiple applications and researchers have also proposed multiple variations to
the standard LSTM formulation (e.g., Gers and Schmidhuber, 2000; Cho et al., 2014;
Koutnik et al., 2014; Yao et al., 2015). However, multiple comparisons have shown that
all variants perform pretty much equivalently (see e.g., Jozefowicz et al., 2015; Gre�
et al., 2016). ¿erefore, the rest of this section will focus on standard LSTMs.
Even though LSTMs have been used successfully for many applications, they still

su�er from certain problems. As we show in Section 8.1.4, LSTMs can sometimes
fail to learn even very simple functions such as the parity function. ¿e main issue
is that by increasing the number of hidden units in an LSTM we can make it able to
train on long sequences, but the resulting network will o en not be able to generalize
to longer sequences than what it was trained on. We already showed in Section 7.2.1
that most current neural network architectures are only able to represent additive
interactions between their inputs. LSTMs are not di�erent in that they can only
represent additive interactions between their hidden states and input vectors. In
addition to this, it has been previously observed by Sutskever et al. (2011) that the
performance of recurrent neural networks can be signi�cantly improved by allowing
for multiplicative interactions between the hidden states and input vectors.
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8.1.2 Multiplicative Recurrent Neural Networks

In order to address the limitation discussed in the previous section, Sutskever et al.
(2011) proposed factorizing the standard RNN of Equations 8.2 and 8.3 as follows:

mt =Wmxt �Umht−1, (8.10)
ht = tanh(Whxt +Uhmt + bh), (8.11)
ot =Woht + bo. (8.12)

¿is is called themultiplicative RNN as the hidden state and input vector now interact
multiplicatively, as shown in Equation 8.10. Multiplicative RNNs were able to improve
the performance of standard RNNs on the character-level language modeling task
(Sutskever et al., 2011; Mikolov et al., 2012). However, Cooijmans et al. (2016) showed
that they still fall short of the more popular LSTM networks. To this end, Krause et al.
(2016) proposed to apply the same modi�cation on the standard LSTM (shown in
Equations 8.4 to 8.9) resulting in themultiplicative LSTM formulation:

mt =Wmxt �Umht−1, MULTIPLICATIVE TERM (8.13)
ft = σ(Wfxt +Ufmt + bf), FORGET GATE (8.14)
it = σ(Wixt +Uimt + bi), INPUT GATE (8.15)
ut = tanh(Wuxt +Uumt + bu), UPDATE GATE (8.16)
ot = σ(Woxt +Uomt + bo), OUTPUT GATE (8.17)
ct = ft � ct−1 + it � ut, CELL STATE (8.18)
ht = ot � tanh(ct). HIDDEN STATE (8.19)

On a similar note, Wu et al. (2016b) proposedmultiplicative integration, which can be
thought of as an alternative formulation of multiplicative RNNs. ¿e core idea relies
on the fact that the standard RNN and the standard LSTM have a common aspect:
the input xt and the hidden state ht−1 are always combined using additive functions
of the formWxt +Uht−1 + b. In fact, most existing RNN designs rely on update
functions of this form. Wu et al. (2016b) proposed using the Hadamard (i.e., element-
wise) product instead of the addition operation,Wxt�Uht−1+b, and showed how
this simple change helps alleviate the exploding and vanishing gradients problem.¿e
authors applied this modi�cation to both the standard RNN and the standard LSTM
networks, and they show how, under certain conditions, their standard RNN variant
can be seen as a nonlinear extension of hidden Markov models (Rabiner, 1986).

8.1.3 Contextual Recurrent Neural Networks

A recurrent neural network update function should be “specializable” based on the
current hidden state. Ideally, we imagine a setting where we can generate a di�erent
update function for di�erent hidden states. ¿is would allow representing arbitrary
ways of conditioning on the current hidden state of the recurrent network. Contextual
parameter generation (CPG) seems like a natural �t to this situation as we can see how
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Figure 8.2: Illustration of the LSTM variants that we use in our parity function case study.

generating the parameters of the update function using the current hidden state as the
context is equivalent to the ideal setting we just described. Making the connection to
probabilistic graphical models, contextual RNNs can be thought of as an analogue to
hidden Markov models (HMMs; Rabiner, 1986). We now present a contextual variant
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of LSTMs, as a special instance of contextual RNNs. In the following section we
show how a contextual LSTM can learn the parity function with signi�cantly better
generalization accuracy than both plain LSTMs and multiplicative LSTMs.
Let us consider an LSTM and stack all its parameters,Wf,Uf, bf,Wi,Ui, bi,Wu,

Uu, bu,Wo,Uo, and bo, in a single vector θ. ¿e contextual LSTM considers these
parameters a function of ht−1 instead of making them directly learnable. Here we
shall simply consider a linear function:

θ =Wgeneratorht−1. (8.20)

We refer to this model as the contextual LSTM. An illustration of the di�erent kinds
of RNNs that we have presented in this section is shown in Figure 8.2.

8.1.4 Experiments

In order to evaluate the power of contextual LSTMs, we perform an experimental
study using the parity function problem that was described in the beginning of this
section. Speci�cally, during training all networks are presented with bit sequences of
length 1, 2, or 3, sampled uniformly at random, along with the parity value for each
sequence. A er training, the networks are evaluated by computing their accuracy on
random bit sequences of length 1 to 100. For each model we use three instances, each
with a di�erent number of parameters, so we can better evaluate the generalization
capabilities of each one, as we make them increasingly more prone to over�tting.
Speci�cally, we evaluate on models with 100, 1,000, and 16,000 parameters, where the
number of parameters is controlled by setting the hidden state size appropriately.
Our results are shown in Figure 8.3. ¿e �rst observation we make is that the plain

LSTMmodel is completely unable to generalize to sequences of length larger than 3,
which is the length of the longest training sequence. Furthermore, we observe that
increasing the model size (i.e., the number of parameters) generally results in worse
generalization performance, which is expected. ¿e multiplicative LSTM is able to
improve the generalization performance of the plain LSTM by a big margin, but the
contextual LSTM outperforms all alternative methods by a signi�cant margin. In
fact, we observe that over all model sizes the contextual LSTM is able to generalize
reasonably well and achieve very good performance even when tested on bit sequences
with 100 bits. In summary, the addition of multiplicative units makes the parity
function learnable and contextualization makes our learners better able to generalize.
¿e latter is also partially true because the functional form of the contextual LSTM is
closer to the functional form of the true underlying function (i.e., the parity function).

8.1.5 Key Takeaways

¿is case study o�ers some initial evidence for the strength of the CPG abstraction.
An interesting byproduct of this section is a new RNN cell, the contextual LSTM cell,
that could prove very powerful in practice. However, evaluating this cell extensively
is beyond the scope of this thesis. Next, we focus on two large scale case studies on
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Figure 8.3: Results for the parity function experiments.

real world data which showcase how CPG can be used to perform multi-task learning
more e�ectively than alternative approaches.

8.2 case study #2: machine translation

An interesting and challenging multi-task learning problem is that of multilingual
machine translation. ¿is is because the tasks of translating between di�erent pairs
of languages are not independent and a lot of information can be shared between
them. However, as we shall see, using a single model to translate between arbitrary
pairs of languages does not perform well in practice.¿is makes multilingual machine
translation a great setting in which to try and apply our contextual parameter gener-
ation abstraction. It is also the �rst setting in which we actually applied contextual
parameter generation, and one in which we obtained some very encouraging results.
We �rst present some background on multilingual machine translation. We then
propose a simple modi�cation to existing neural machine translation (NMT) models
that enables using a single universalmodel to translate between multiple languages
while allowing for language speci�c parameterization, and that can also be used for
domain adaptation. Our approach requires no changes to the model architecture of
a standard NMT system, but instead introduces a new component, the contextual
parameter generator (CPG), that generates the parameters of the system (e.g., weights
of a neural network). ¿is parameter generator accepts source and target language
embeddings as input, and generates the parameters for the encoder and the decoder,
respectively. ¿e rest of the model remains unchanged and is shared across all lan-
guages. We show how this simple modi�cation enables the system to use monolingual
data for training and also perform zero-shot translation. We further show it is able to
surpass state-of-the-art performance for both the IWSLT-15 and IWSLT-17 datasets and
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that the learned language embeddings are able to uncover interesting relationships
between languages.2

8.2.1 Neural Machine Translation

Neural Machine Translation (NMT) directly models the mapping of a source language
to a target language without any need for training or tuning any component of the
system separately. ¿is has led to a rapid progress in NMT and its successful adoption
inmany large-scale settings (Crego et al., 2016;Wu et al., 2016a). A typical NMT system
comprises of an encoder, a decoder, and an attention mechanism (Bahdanau et al.,
2015).¿e encodermaps the source sentence to a �xed-size vector representation in the
case of the basic encoder-decoder framework (Sutskever et al., 2014), or a set of vectors
in the attention-based variants. ¿e decoder then uses the encoded representation to
generate the target sentence word-by-word.¿e encoder-decoder abstraction makes it
conceptually feasible to build a system thatmaps any source sentence in any language to
a vector representation, and then decodes this representation into any target language.
¿us, various approaches have been proposed to extend this abstraction tomultilingual
MT (Dong et al., 2015b; Firat et al., 2016a; Ha et al., 2016; Luong et al., 2016; Johnson
et al., 2017).
Prior work in multilingual NMT can be broadly categorized into two paradigms.

¿e �rst, universal NMT (Ha et al., 2016; Johnson et al., 2017), uses a single model for
all languages. Universal NMT lacks any language-speci�c parameterization, which
is an oversimpli�cation and detrimental when we have very di�erent languages and
limited amounts of training data. As veri�ed by our experiments, the method of
Johnson et al. (2017) su�ers from high sample complexity and thus underperforms in
limited data settings. ¿e universal model proposed by Ha et al. (2016) requires a new
coding scheme for the input sentences which results in large vocabulary sizes that
are di�cult to scale. ¿e second paradigm, per-language encoder-decoder (Firat et al.,
2016a; Luong et al., 2016), uses separate encoders and decoders for each language.
¿is does not allow for sharing of information across languages, which can result in
overparameterization and can be detrimental when the languages are similar.
In this section, we strike a balance between these two approaches, proposing amodel

that has the ability to learn parameters separately for each language, but also share
information between similar languages. We propose using a new contextual parameter
generator (CPG) which (a) generalizes all of these methods, and (b) mitigates the
aforementioned issues of universal and per-language encoder-decoder systems. It learns
language embeddings as a context for translation and uses them to generate the
parameters of a shared translation model for all language pairs. ¿us, it provides these
models the ability to learn parameters separately for each language, but also share
information between similar languages.¿e parameter generator is general and allows
any existing NMT model to be enhanced in this way. In addition, it has the following
desirable features:

2 ¿e work we present in this section has been published in (Platanios et al., 2018).
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1. Simple: Similar to the methods of Johnson et al. (2017) and Ha et al. (2016),
and in contrast to those of Luong et al. (2016) and Firat et al. (2016a), it can be
applied to most existing NMT systems with a minor modi�cation, and it is able
to accommodate attention layers seamlessly.

2. Multilingual: It enables multilingual translation using the same single model as
before (i.e., the pairwise translation model).

3. Semi-supervised: It can use monolingual data.
4. Scalable: It reduces the number of parameters by employing extensive, yet con-

trollable, sharing across languages, thus mitigating the need for large amounts
of training data, similar to the method of Johnson et al. (2017). It also allows for
the decoupling of languages, avoiding the need for a large shared vocabulary,
same as for the method of Ha et al. (2016).

5. Adaptable: It can adapt to support new languages, without complete retraining.
6. State-of-the-art: It achieves better performance than pairwise NMT models

as well as the universal model of Johnson et al. (2017). In fact, it surpasses
state-of-the-art performance.

In order to provide the necessary background, we now de�ne the multi-lingual NMT
setting and then introduce a modular framework that can be used to de�ne and
describe most existing NMT systems. ¿is will help us distill previous contributions
and introduce ours.

8.2.1.1 Setting

We assume that we have a set of source languages S and a set of target languages T . ¿e
total number of languages is L = |S∪T |. We also assume we have a set ofC 6 |S|× |T |

pairwise parallel corpora, {P1, . . . , PC}, each of which contains a set of sentence pairs
for a single source-target language combination. ¿e goal of multilingual NMT is to
build a model that, when trained using the provided parallel corpora, can learn to
translate well between any pair of languages in S× T . ¿e majority of related work
only considers pairwise NMT where |S| = |T | = 1.

8.2.1.2 NMTModules

Most NMT systems can be decomposed to the following modules, which are also
illustrated in Figure 8.4:

preprocessing pipeline. ¿e data preprocessing pipeline handles tokenization,
cleaning, normalizing the text data and building a vocabulary, i.e., a two-way mapping
between preprocessed sentences and sequences of word indices that will be used for
the translation. A commonly used approach for de�ning the vocabulary is to use
byte-pair encoding (BPE) which generates subword unit vocabularies (Sennrich et al.,
2016b) and eliminates out-of-vocabulary words, o en resulting in better translation
quality.

encoder/decoder. ¿e encoder takes in indexed source language sentences and
produces an intermediate representation that can later be used by a decoder to generate
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sentences in a target language. Generally, we can think of the encoder as a function
f(enc) parameterized by θ(enc). Similarly, we can think of the decoder as another func-
tion f(dec) parameterized by θ(dec).¿e goal of learning to translate can then be de�ned
as �nding the values of θ(enc) and θ(dec) that result in the best translations. A large
amount of previous work proposes novel designs for the encoder/decoder module.
For example, using attention over the input sequence while decoding (Bahdanau et al.,
2015; Luong et al., 2015) provides signi�cant gains in translation performance.3

parameter generator. All modules de�ned so far have previously been used
when describing NMT systems and are thus easy to conceptualize. However, in pre-
vious work, most models are trained for a given language pair and it is not trivial to
extend them to work for multiple pairs of languages. We introduce here the concept
of a parameter generator for machine translation, which makes it easy to de�ne and
describe multilingual NMT systems. ¿is module is responsible for generating θ(enc)
and θ(dec) for any given source and target language. Di�erent parameter generators
result in di�erent numbers of learnable parameters and can thus be used to control
information sharing between languages. Next, we describe related work in terms of
our parameter generator (an illustration is also shown in Figure 8.5):

– Pairwise: In the simple and commonly used pairwise NMT setting (Crego et
al., 2016; Wu et al., 2016a), the parameter generator would generate separate

3 Note that depending on the vocabulary that is used and on whether it is one shared vocabulary across
all languages, or one vocabulary per language, the output projection layer of the decoder (which pro-
duces probabilities over words) may be language dependent, or common across all languages. In our
experiments we use separate vocabularies and thus this layer is language-dependent.
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parameters, θ(enc) and θ(dec), for each pair of source-target languages. ¿is
results in no parameter sharing across languages and thus O(ST) parameters.

– Per-Language: In the case ofDong et al. (2015a), Luong et al. (2016) andFirat et al.
(2016a), the parameter generator would generate separate encoder parameters
θ(enc), for each source language, and separate decoder parametersθ(dec), for each
target language.¿is leads to a reduction in the number of learnable parameters
for multilingual NMT from O(ST) to O(S + T). Dong et al. (2015b) train
multiple models as a one-to-many multilingual NMT system that translates
from one source language to multiple target languages. On the other hand,
Luong et al. (2016) and Firat et al. (2016a) perform many-to-many translation.
However, Luong et al. (2016) only report results for a single language pair and
do not attempt multilingual translation. Firat et al. (2016a) propose an attention
mechanism that is shared across all language pairs. We generalize these ideas
with the parameter generator network which is described later.

– Universal: Ha et al. (2016) and Johnson et al. (2017) propose using a single
common set of encoder-decoder parameters for all language pairs. While Ha et
al. (2016) embed words in a common semantic space across languages, Johnson
et al. (2017) learn language embeddings that are in the same space as the word
embeddings. Here, the parameter generator would provide the same parameters
θ(enc) and θ(dec) for all language pairs. It would also create and keep track of
learnable variables representing language embeddings that are prepended to
the encoder input sequence. As we observe in our experiments (discussed in
Section 8.2.3), this system fails to perform well when the training data is limited.
Finally, we believe that embedding languages in the same space as words is not
intuitive. In our approach, languages are embedded in a separate space.

In contrast to all these related systems, we provide a simple, e�cient, yet e�ective
alternative—aparameter generator formultilingualNMT that enables semi-supervised
and zero-shot learning. We also learn language embeddings, similar to Johnson et al.
(2017), but in our case they are separate from the word embeddings and are treated as
a context for the translation.¿is notion of context is used to de�ne parameter sharing
across various encoders and decoders, as discussed in the previous chapter.

8.2.2 Contextual Parameter Generation

We propose to use contextual parameter generators as a new way to share information
across di�erent languages and control the amount of sharing. Let us denote the source
language for a given sentence pair by `s and the target language by `t. ¿en, when
using the contextual parameter generator, the parameters of the encoder are de�ned
as θ(enc) = g(enc)(ls), for some function g(enc), where ls denotes an embedding
for the source language `s. Similarly, the parameters of the decoder are de�ned as
θ(dec) = g(dec)(lt) for some function g(dec), where lt denotes an embedding for
the target language `t. Our generic formulation does not impose any constraints
on the functional form of g(enc) and g(dec). In this case, we can think of the source
language `s as a context for the encoder. ¿e parameters of the encoder depend on
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Figure 8.5: Illustration of the existing approaches to multilingual NMT.

its context, but its architecture is common across all contexts. We can make a similar
argument for the decoder, and that is where the name of this parameter generator
comes from. We can even go a step further and have a parameter generator that
de�nes θ(enc) = g(enc)(ls, lt) and θ(dec) = g(dec)(ls, lt), thus coupling the encoding
and decoding stages for a given language pair. In our experiments we stick to the
previous decoupled form, because unlike the method of Johnson et al. (2017), it has
the potential to lead to a common interlingua. Concretely, because the encoding and
decoding stages are decoupled, the encoder is not aware of the target language while
encoding sentences. ¿us, we can take an encoded intermediate representation of
a sentence and translate it to any target language. ¿is is because, in this case, the
intermediate representation is independent of any target language. ¿is makes for
a stronger argument that the intermediate representation produced by our encoder



8.2 case study #2: machine translation 131

could be approaching a universal interlingua, more so than methods that are aware of
the target language when they encode sentences.

8.2.2.1 Parameter Generator Network

We refer to the functions g(enc) and g(dec) as parameter generator networks. Even
though our proposed NMT framework does not rely on a speci�c choice for g(enc) and
g(dec), here we describe the functional form we use in our experiments. Our goal is to
provide a simple form that works, and for which we can reason about. For this reason,
we decided to de�ne the parameter generator networks as simple linear transforms,
similar to the factored adaptation model of Michel and Neubig (2018), which was only
applied to the bias terms of the output so max:

g(enc)(ls) =W
(enc)ls, (8.21)

g(dec)(lt) =W
(dec)lt, (8.22)

where ls, lt ∈ RM,W(enc) ∈ RP(enc)×M,W(dec) ∈ RP(dec)×M,M is the language
embedding size, P(enc) is the number of parameters of the encoder, and P(dec) is the
number of parameters of the decoder. Another way to interpret this model is that it
imposes a low-rank constraint on the parameters. As opposed to our approach, in the
base case of using multiple pairwise models to perform multilingual translation, each
model has P = P(enc)+P(dec) learnable parameters for its encoder and decoder. Given
that the models are pairwise, for L languages we have a total of L(L − 1) learnable
parameter vectors of size P. On the other hand, using our contextual parameter
generator we have a total of L vectors of sizeM (one for each language), and a single
matrix of size P ×M. ¿en, the parameters of the encoder and the decoder, for a
single language pair, are de�ned as a linear combination of the matrix columns.

controlled parameter sharing. We can further control parameter sharing
by observing that the encoder/decoder parameters o en have some “natural grouping.”
For example, in the case of recurrent neural networks we may have multiple weight
matrices, one for each layer, as well as attention-related parameters. Based on this
observation we now propose a way to control how much information is shared across
languages. ¿e language embeddings need to represent all of the language-speci�c
information and thus may need to be large. However, when computing the parameters
of each group, only a small part of that information is relevant. Let θ(enc) = {θ(enc)j }Gj=1
and θ(enc)j ∈ RP

(enc)
j , whereG denotes the number of groups. ¿en, we de�ne:

θ(enc)j ,W(enc)
j P(enc)j ls, (8.23)

whereW(enc)
j ∈ RP

(enc)
j ×M ′

and P(enc)j ∈ RM ′×M, withM ′ < M, and similarly for
the decoder parameters. We can see now that P(enc)j is used to extract the relevant
information (sizeM ′) for parameter group j, from the larger language embedding
(sizeM).¿is allows us to control parameter sharing across languages in the following
way: if we want to increase the number of per-language parameters (i.e., the language
embedding size) we can increaseM while keepingM ′ small enough so that the total
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number of parameters does not explode. ¿is would not have been possible without
the proposed low-rank approximation forW(enc), that uses the parameter grouping
information.

alternative options. Given that our proposed approach does not depend on
the speci�c choice of the parameter generator network, it might be interesting to
design models that use side-information about the languages that are being used (such
as linguistic information about language families and hierarchies). ¿is is outside the
scope of this thesis, but may be an interesting future direction.

8.2.2.2 Semi-Supervised and Zero-Shot Learning

¿e proposed parameter generator also enables semi-supervised learning via back-
translation. Concretely, monolingual data can be used to train the shared encoder/de-
coder networks to translate a sentence from some language to itself.4 ¿is is possible
and can help learning because of the fact that many of the learnable parameters are
shared across languages. Furthermore, zero-shot translation, where the model trans-
lates between language pairs for which it has seen no explicit training data, is also
possible. ¿is is because the same per-language parameters are used to translate to
and from a given language, irrespective of the language at the other end. ¿erefore, as
long as we train our model using some language pairs that involve a given language, it
is possible to learn to translate in any direction involving that language.

8.2.2.3 Domain Adaptation

Let us assume that we have trained a model using data for some set of languages,
`1, `2, . . . , `m. If we obtain data for some new language `n, we do not have to retrain
the whole model from scratch. In fact, we can �x the parameters that are shared
across all languages and only learn the embedding for the new language (along with
the relevant word embeddings if not using a shared vocabulary). Assuming that we
had a su�cient number of languages in the beginning, this may allow us to obtain
reasonable translation performance for the new language, with a minimal amount of
training.5 Furthermore, other types of “domain” information can be encoded as part
of the context as well. For example, the context can also contain information about
the person speaking or writing, which can be used to perform extreme adaptation for
personalized translation (Michel and Neubig, 2018).

8.2.2.4 Number of Parameters

For the base case of usingmultiple pairwisemodels to performmultilingual translation,
each model has P + 2WV parameters, where P = P(enc) + P(dec),W is the word
embedding size, and V is the vocabulary size per language (assumed to be the same
across languages, without loss of generality). Given that the models are pairwise, for

4 ¿is is similar to the idea of auto-encoders by Vincent et al. (2008).
5 ¿is is due to the small number of parameters that need to be learned in this case. To put this into
perspective, in most of our experiments we used language embeddings of size 8.
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L languages, we have a total of L(L− 1)(P + 2WV) = O(L2P + 2L2WV) learnable
parameters. For our approach, using the linear parameter generator network presented
in Section 8.2.2.1, we have a total of O(PM+ LWV) learnable parameters. Note that
the number of encoder/decoder parameters has no dependence on L now, meaning
that our model can easily scale to a large number of languages. In Table 8.1 we show
the number of learnable parameters, per model, for one of our experiments.

8.2.3 Experiments

In this section, we describe our experimental setup along with our results and key
observations. For all our experiments we use as the base NMT model an encoder-
decoder network which uses a bidirectional LSTM for the encoder, and a two-layer
LSTM with the attention model of Bahdanau et al. (2015) for the decoder. ¿e word
embedding size is set to 512.¿is is a common baseline model that achieves reasonable
performance and we decided to use it as-is, without tuning any of its parameters, as
extensive hyperparameter search is outside the scope of this chapter. During training,
we use a label smoothing factor of 0.1 (Wu et al., 2016a) along with the AMSGrad
optimizer (Reddi et al., 2018) with its default parameters in TensorFlow and a batch
size of 128 (due to GPU memory constraints). Optimization is stopped when the
validation set BLEU score was maximized. ¿e order in which language pairs are
used while training is as follows: we �rst sample a language pair uniformly at random,
and then sample a batch for this pair uniformly at random.6 During inference, we
employ beam search with a beam of size 10 and the length normalization scheme of
Wu et al. (2016a). We want to emphasize that we did not run experiments with other
architectures or con�gurations, and thus this architecture was not chosen because
it was favorable to our method, but rather because it was a frequently mentioned
baseline in existing literature. All experiments are run on a machine with a single
Nvidia V100 GPU and 24 GBs of system memory. Our most expensive experiment
took about 10 hours to complete, which would cost about $25 on a cloud computing
service such as Google Cloud or Amazon Web Services, thus making our results
reproducible even by independent researchers.
¿e goal of our experiments is to show how, by using a simple modi�cation of this

model: (i) we can achieve signi�cant improvements in performance while at the same
time (ii) being more data and computation e�cient and (iii) enabling support for
zero-shot translation. To this end, we perform three types of experiments:

1. Supervised: In this experiment, we use full parallel corpora to train our models.
Plain pairwise NMTmodels (PNMT) are compared to the samemodelsmodi�ed
to use our proposed decoupled parameter generator.We use two variants: (i) one
which does not use auto-encoding of monolingual data while training (CPG*),
and (ii) one which does (CPG). More details can be found in Section 8.2.2.2.

6 We did not observe any “forgetting” e�ect, because we keep “revisiting” all language pairs throughout
training. It may be interesting to explore other sampling schemes, but it is outside the scope of this
chapter.



134 case studies for contextual parameter generation

PNMT GML CPG8 CPG8
C4 CPG8

C2 CPG8
C1 CPG64

C8 CPG512
C8

#Params 832M 113M 199M 156M 135M 124M 199M 199M

Table 8.1: Number of learnable parameters for each model, for the IWSLT-17 experiments. “M”
corresponds to “millions.”

2. Low-Resource: Similar to the supervised experiments except that we limit the
size of the parallel corpora used in training. However, for GML and CPG the full
monolingual corpus is used for auto-encoding training.

3. Zero-Shot: In this experiment, our goal is to evaluate how well a model can
learn to translate between language pairs that it has not seen while training. For
example, a model trained using parallel corpora between English and German,
and English and French, will be evaluated in translating fromGerman to French.
PNMT can perform zero-shot translation in this setting using pivoting. ¿is
means that, in the previous example, we would �rst translate from German to
English and then from English to French (using two pairwisemodels for a single
translation). However, pivoting is prone to error propagation incurred when
chaining multiple imperfect translations. ¿e proposed CPGmodels inherently
support zero-shot translation and require no pivoting.

For the experiments using the CPGmodel without controlled parameter sharing, we
use language embeddings of size 8. ¿is is based merely on the fact that this is the
largest model size we could �t on one GPU. Whenever possible, we compare against
PNMT, GML by Johnson et al. (2017),7 and other state-of-the-art results.

8.2.3.1 Datasets

We use the following datasets:

– IWSLT-15: Used for supervised and low-resource experiments only (this dataset
does not support zero-shot learning). We report results for Czech (Ch), English
(En), French (Fr), German (De), ¿ai (Th), and Vietnamese (Vi). ¿is dataset
contains ~90,000-220,000 training sentence pairs (depending on the language
pair), ~500-900 validation pairs, and ~1,000-1,300 test pairs.

– IWSLT-17: Used for supervised and zero-shot experiments. We report results for
Dutch (Nl), English (En), German (De), Italian (It), and Romanian (Ro). ¿is
dataset contains ~220,000 training sentence pairs (for all language pairs except
for the zero-shot ones), ~900 validation pairs, and ~1,100 test pairs.

We preprocess the data using a modi�ed version of the Moses tokenizer by Koehn
et al. (2007) that correctly handles escaped HTML characters. We also perform some
Unicode character normalization and cleaning. While training, we only consider
sentences up to length 50. For both datasets, we generate a per-language vocabulary
that consists of the 20,000 most frequently occurring words while ignoring words
that appear less than 5 times in the whole corpus.

7 We use our own implementation ofGML in order to obtain a fair comparison, in terms of the whole MT
pipeline. We have modi�ed it to use the same per-language vocabularies that we use for our approaches,
as the proposed shared BPE vocabulary fails to perform well for the datasets we use.
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BLEU Meteor
PNMT GML CPG* CPG PNMT GML CPG* CPG

En )Cs 14.89 15.92 16.88 17.22 19.72 20.93 21.51 21.72
Cs )En 24.43 25.25 26.44 27.37 27.29 27.46 28.16 28.52
En )De 25.99 15.92 26.41 26.77 44.72 42.97 45.97 46.30
De )En 30.93 29.60 31.24 31.77 30.73 29.90 30.95 31.13
En )Fr 38.25 34.40 38.10 38.32 57.43 53.86 57.42 57.68
Fr )En 37.40 35.14 37.11 37.89 34.83 33.14 34.34 34.89
En )Th 23.62 22.22 26.03 26.33 — — — —
Th )En 15.54 14.03 16.54 26.77 21.58 21.02 22.78 23.05
En )Vi 27.47 25.54 28.33 29.03 — — — —
Vi )En 24.03 23.19 25.91 26.38 27.59 26.96 28.23 28.79

10
0%

Pa
ra
lle
lD

at
a

Mean 26.26 24.12 27.30 27.80 32.98 32.03 33.67 34.01
En )Cs 5.71 8.18 8.40 9.49 12.18 14.97 15.25 15.90
Cs )En 6.64 14.56 14.81 15.38 13.02 20.04 19.98 20.87
En )De 11.70 14.60 15.09 16.03 29.98 33.74 34.88 36.19
De )En 18.10 19.02 19.77 20.25 22.57 23.27 23.65 24.40
En )Fr 24.47 25.15 24.00 25.79 44.10 44.84 44.95 46.22
Fr )En 23.79 25.02 24.55 27.12 26.28 26.61 26.20 28.18
En )Th 7.86 15.58 18.41 17.65 — — — —
Th )En 7.13 9.11 10.19 10.14 13.91 16.32 16.78 16.92
En )Vi 18.01 17.51 18.92 18.90 — — — —
Vi )En 6.69 16.00 16.28 16.86 13.39 21.01 21.34 22.28

10
%
Pa

ra
lle
lD

at
a

Mean 13.01 16.47 17.04 17.76 21.93 25.10 25.38 26.37
En )Cs 0.49 1.25 1.57 2.38 4.60 6.24 6.28 8.38
Cs )En 1.10 1.76 1.87 4.60 6.29 7.13 7.08 11.15
En )De 1.22 4.13 4.06 6.46 12.23 18.29 17.61 23.83
De )En 1.46 3.42 3.86 7.49 7.58 8.79 8.95 13.73
En )Fr 2.88 7.74 7.41 12.45 13.88 21.29 21.80 30.36
Fr )En 4.05 5.22 5.06 11.39 9.58 9.86 9.83 16.34
En )Th 1.22 5.72 8.01 9.26 — — — —
Th )En 1.42 1.66 1.65 3.37 6.08 7.22 5.89 8.74
En )Vi 5.35 5.61 5.48 8.00 — — — —
Vi )En 2.01 3.57 3.64 6.43 7.86 8.76 8.48 12.04

1%
Pa

ra
lle
lD

at
a

Mean 2.12 4.01 4.26 7.18 8.51 10.95 10.74 15.58

Table 8.2: Comparison of the proposed approach (shaded rows) with the base pairwise NMT
model (PNMT) and the Google multilingual NMTmodel (GML) for the IWSLT-15 dataset.¿e
Percent Parallel row shows what portion of the parallel corpus is used while training; the rest
is being used only as monolingual data. Results are shown for the BLEU and Meteor metrics.
CPG* represents the same model as CPG, but trained without using auto-encoding training
examples. ¿e best score in each case is underlined and shown in red.

8.2.3.2 Results

Our results for the IWSLT-15 experiments are shown in Table 8.2. It is clear that our
approach consistently outperforms both the corresponding pairwise model, PNMT,
and GML. Furthermore, its advantage grows larger in the low-resource setting (up
to 5.06 BLEU score di�erence, or a 2.4× increase), which is expected due to the
extensive parameter sharing in our model. For this dataset, there exist some additional
published state-of-the-art results not shown in Tables 8.2 and 8.3. Huang et al. (2018)
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BLEU
PNMT GML CPG8 CPG8

C4 CPG8
C2 CPG8

C1 CPG64
C8 CPG512

C8

Su
pe

rv
ise

d

De )En 21.78 21.25 22.56 20.78 22.09 21.23 21.50 22.38
De )It 13.16 13.84 14.73 14.34 14.43 13.84 14.34 14.11
De )Ro 10.85 11.95 12.24 12.37 12.72 10.37 11.32 11.94
En )De 19.75 17.06 19.41 19.04 18.42 17.04 17.46 19.29
En )It 27.70 25.74 27.57 27.11 28.21 26.26 27.26 27.48
En )Nl 24.41 22.46 24.47 25.15 24.64 23.94 24.48 24.50
En )Ro 19.23 18.60 20.83 20.96 18.69 17.23 20.20 20.86
It )De 14.39 12.76 14.61 15.06 14.15 13.12 14.18 14.69
It )En 29.84 27.96 30.62 30.10 29.44 29.22 29.56 30.18
It )Nl 16.74 16.27 17.99 18.11 18.05 17.13 17.71 17.99
Nl )En 26.30 24.78 26.31 26.17 25.74 26.15 26.33 26.20
Nl )It 16.03 16.10 16.81 17.50 17.03 16.81 16.89 17.09
Nl )Ro 12.84 12.48 14.01 14.44 12.56 11.79 12.38 13.66
Ro )De 12.75 12.21 13.58 13.66 13.02 12.62 12.96 13.63
Ro )En 24.33 22.88 23.83 23.88 24.20 23.58 24.65 23.57
Ro )Nl 13.70 14.11 15.34 15.51 15.11 14.65 15.29 15.19
Mean 18.99 18.15 19.68 19.75 19.28 18.44 19.16 19.74

Ze
ro
-S
ho

t

De )Nl 12.75 12.50 12.74 12.80 11.65 12.41 12.67 12.75
It )Ro 9.97 9.57 10.57 10.17 10.42 9.65 10.69 10.32
Nl )De 11.32 10.47 11.52 11.20 11.28 10.89 11.63 11.45
Ro )It 11.69 10.82 11.51 11.40 11.66 11.42 11.78 11.27
Mean 11.43 10.84 11.59 11.39 11.25 11.09 11.69 11.44

Table 8.3: Comparison of our proposed approach (shaded rows) with the base pairwise NMT
model (PNMT) and the Google multilingual NMT model (GML) for the IWSLT-17 dataset.
Results are shown for the BLEU metric only because Meteor does not support It, Nl, and Ro.
CPG8 represents CPG using language embeddings of size 8. ¿e “C4” subscript represents the
low-rank version of CPG for controlled parameter sharing (see Section 8.2.2.1), using rank 4,
etc. ¿e best score in each case is underlined and shown in red.

report a BLEU score of 28.07 for the En)Vi task, while our model is able to achieve aWe were unable to �nd
reported state-of-the-art
results for the rest of the

language pairs.

score of 29.03. Furthermore, Ha et al. (2016) report a BLEU score of 25.87 for the En)De
task, while our model is able to achieve a score of 26.77. Our results for the IWSLT-17
experiments are shown in Table 8.3.8 Again, our method consistently outperforms
both PNMT and GML, in both the supervised and the zero-shot settings. Furthermore,
the results indicate that our model performance is robust to di�erent sizes of the
language embeddings and the choice ofM ′ for controllable parameter sharing. It only
underperforms in the degenerate case whereM ′ = 1. It is also worth noting that,
in the fully supervised setting, GML—the current state-of-the-art in the multilingual
setting—underperforms the pairwise models. ¿e presented results provide evidence
that our proposed approach is able to signi�cantly improve performance, without
requiring extensive hyperparameter tuning.

8 Note that, our results for IWSLT-17 are not comparable to those of the o�cial challenge report (Cettolo
et al., 2017) as we use less training data, a smaller baseline model, and our evaluation pipeline potentially
di�ers. However, the numbers presented for all methods in this paper are comparable, as they are all
obtained using the same baseline model and evaluation pipeline.
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8.2.3.3 Language Embeddings

An important aspect of our model is that it learns language embeddings. In Figure 8.6
we show pairwise cosine distances between the learned language embeddings for
our fully supervised experiments. ¿ere are some interesting patterns which indicate
that the learned language embeddings are reasonable. For example, we observe that
German (De) and Dutch (Nl) are most similar for the IWSLT-17 dataset, with Italian
(It) and Romanian (Ro) coming second. Furthermore, Romanian and German are
the furthest apart for that dataset. ¿ese relationships agree with linguistic knowledge
about these languages and the families in which they belong. We see similar patterns
in the IWSLT-15 results but we focus on IWSLT-17 here, because it is a larger, better
quality, dataset with more supervised language pairs. ¿ese results are encouraging
for analyzing such embeddings to discover relationships between languages that were
previously unknown. For example, perhaps surprisingly, French (Fr) and Vietnamese
(Vi) appear to be signi�cantly related for the IWSLT-15 dataset results.¿is is likely due
to French in�uence in Vietnamese because to the occupation of Vietnam by France
during the 19th and 20th centuries (Marr, 1981).

8.2.4 Related Work

Interlingual translation (Richens, 1958) has been the object of many research e�orts.
For a long time, before the move to NMT, most practical machine translation systems
only focused on individual language pairs. Since the success of end-to-end NMT
approaches such as the encoder-decoder framework (Cho et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2015), recent work has tried to extend the framework to multi-
lingual translation. An early approach was Dong et al. (2015a) who performed one-to-
many translation with a separate attention mechanism for each decoder. Luong et al.
(2016) extended this idea with a focus on multi-task learning and multiple encoders
and decoders, operating in a single shared vector space.¿e same architecturewas used
by Caglayan et al. (2016) for translation across multiple modalities. Zoph and Knight
(2016) �ipped this idea with a many-to-one translation model, however requiring the
presence of a multi-way parallel corpus between all the languages, which is di�cult to
obtain. Lee et al. (2017) used a single character-level encoder across multiple languages
by training a model on a many-to-one translation task. Closest to our work are more
recent approaches, already described in the beginning of this section (Firat et al.,
2016a; Ha et al., 2016; Johnson et al., 2017), that attempt to enforce di�erent kinds of
parameter sharing across languages.
Parameter sharing in multilingual NMT naturally enables semi-supervised and

zero-shot learning. Unsupervised learning has been previously explored with key
ideas such as back-translation (Sennrich et al., 2016a), dual learning (He et al., 2016a),
common latent space learning (Lample et al., 2018), etc. In the vein of multilingual
NMT, Artetxe et al. (2018) proposed a model that uses a shared encoder and multiple
decoders with a focus on unsupervised translation. ¿e entire system uses cross-
lingual embeddings and is trained to reconstruct its input using only monolingual
data. Zero-shot translation was �rst attempted by Firat et al. (2016b) who performed
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Figure 8.6: Pairwise cosine distance for all language pairs in the IWSLT-15 and IWSLT-17
datasets. Darker colors represent more similar languages.

zero-zhot translation using their pre-trained multi-way multilingual model, �ne-
tuning it with pseudo-parallel data generated by the model itself. ¿is was recently
extended using a teacher-student framework by Chen et al. (2017). Later, zero-shot
translation without any additional steps was attempted in (Johnson et al., 2017) using
their shared encoder-decoder network. An iterative training procedure that leverages
the duality of translations directly generated by the system for zero-shot learning
was proposed by Lakew et al. (2017). For extremely low resource languages, Gu et al.
(2018) proposed sharing lexical and sentence-level representations across multiple
source languages with a single target language, and Cheng et al. (2016) proposed joint
training of the source-to-pivot and pivot-to-target NMT models.

8.2.5 Key Takeaways

We have presented here a novel contextual parameter generation approach to neural
machine translation. Our resulting system, which outperforms other state-of-the-art
systems, uses a standard pairwise encoder-decoder architecture. However, it di�ers
from earlier approaches by incorporating a component that generates the parameters
to be used by the encoder and the decoder for the current sentence, based on the
source and target languages, respectively. We refer to this component as the contextual
parameter generator. ¿e bene�t of this approach is that it dramatically improves the
ratio of the number of parameters to be learned, to the number of training examples
available, by leveraging shared structure across di�erent languages.¿us, our approach
does not require any extra machinery such as back-translation, dual learning, pivoting,
ormultilingual word embeddings. It rather relies on the simple idea of treating language
as a context within which to encode/decode.We also showed that the proposed approach
is able to achieve state-of-the-art performance without requiring any tuning. Finally,
we performed a basic analysis of the learned language embeddings, which showed
that cosine distances between the learned language embeddings re�ect well known
similarities among language pairs such as German and Dutch. In the next section we
present yet another application of this idea in an entirely di�erent domain.
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8.3 case study #3: knowledge graph link prediction

Another interesting and challenging multi-task learning problem is that of knowledge
graph link prediction. Given a question that consists of a source entity and a relation
(e.g., Shakespeare and BornIn), the goal is to predict the most likely answer entity
(e.g., England). ¿is can be viewed as an interesting multi-task learning problem
where di�erent relations are treated as di�erent tasks. Recent approaches tackle this
problem by learning entity and relation embeddings. However, they o en constrain the
interaction between these embeddings to be additive, as opposed to multiplicative (i.e.,
the embeddings are concatenated and then processed by a sequence of linear functions
and element-wise non-linearities). We show that this type of interaction signi�cantly
limits representational power. For example, such models cannot handle cases where a
di�erent projection of the source entity is used for each relation. We propose to use
contextual parameter generation to address this limitation. More speci�cally, we treat
relations as the context in which source entities are processed to produce predictions
by using relation embeddings to generate the parameters of a model operating over
source entity embeddings. ¿is allows models to represent more complex interactions
between entities and relations. Note that this also goes back to our argument about
additive and multiplicative interactions in Section 7.2.1. We apply our method on two
existing link prediction methods, including the current state-of-the-art, resulting in
signi�cant performance gains and establishing a new state-of-the-art for this task.
¿ese gains are achieved while also reducing training time by up to 28 times.9

8.3.1 Knowledge Graph Link Prediction

Many real-world applications ranging from search engines to conversational agents
such as Amazon’s Alexa and Apple’s Siri rely on the ability to infer new facts from ex-
isting knowledge. A common means of representing such knowledge is via knowledge
graphs (KGs). In KGs, facts are represented by entity-relation-entity triples, (es, r, et),
which encode factual relationships between graph nodes. An example triple of this
form could be (Shakespeare, BornIn, England), which speci�es that Shakespeare was
born in England. For each triple, we refer to es and et as the source and target entities,
respectively, and we refer to r as the relation between es and et. A collection of triples
is called a knowledge graph because the triples implicitly form a graph where entities
correspond to graph nodes and relations to graph edges.¿ere are many existing large-
scale KGs, both automatically generated—e.g., the never-ending language learner that
was discussed in Section 1.2—and human-curated—e.g., Freebase by Bollacker et al.
(2008). However, an important limitation is that they are o en incomplete. For exam-
ple, Freebase is missing the place of birth for 71% of the people that exist in its graph
(West et al., 2014). Despite this de�ciency, many missing links are inferrable from
existing knowledge in the KG. For instance, knowing who Shakespeare’s parents were

9 ¿e work we present in this chapter has been published in (Platanios* et al., 2020b). ¿e link prediction
problem is very relevant to the Never-Ending Language Learner (NELL) that was introduced in Sec-
tion 1.2. However, this section assumes no prior knowledge and can be read independently of the thesis
introduction.
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and where they lived could be used to infer the most likely place where Shakespeare
was born. ¿is motivates the task of link prediction, which is typically formulated as
either question answering—inferring answers to questions of the form (es, r, ?)—or
fact checking—evaluating the validity for statements of the form (es, r, et). While
each formulation o�ers a di�erent approach to link prediction, question answering
can be thought of as a generalization of fact checking. ¿is is because, in the worst
case, answers can be produced by enumerating all possible entities and applying a fact
checking model on each one of them. ¿us, in this paper we propose a novel method
to tackle link prediction using the question answering formulation, although our core
contribution can also be applied to fact-checking methods. ¿e proposed method
consistently outperforms the current state-of-the-art across multiple datasets.
¿e study of link prediction has gathered substantial attention in the past years, and

many methods have been proposed to solve it. A signi�cant boost in performance was
observed when recent methods such as ConvE (Dettmers et al., 2018),MINERVA (Das et
al., 2018), and MultiHop-KG (Lin et al., 2018) combined KGs with the expressive power
of neural networks. All these approaches consist of: (i) learning �nite dimensional
continuous vector representations (i.e., embeddings) for both the entities and the
relations in the KG, and then (ii) processing them (e.g., using a neural network) in
order to infer missing links in the KG. Di�erent models process these embeddings
through potentially very di�erent types of architectures (e.g., convolutional networks
or recurrent neural networks). However, they all have something in common: entity
and relation representations are combined in a way that only allows for additive
interactions between them (e.g., they may be concatenated and then projected using a
linear transformation). In this work, we show how this type of interaction between
entities and relations signi�cantly limits expressive power, and we propose a novel
method to address this limitation. More speci�cally, we propose to treat the relations
as the context in which source entities are interpreted and transformed to produce
target entities. Concretely, we use the relation embeddings to generate the parameters
of a model operating over entities, which outputs a distribution over correct answers.
¿e proposed method, CoPER (Contextual Parameters from Embedded Relations), has
the following properties:

1. Abstract: It can be used to enhance the representational power of several existing
link prediction methods.

2. Simple: It can be formulated as a simple transformation for qualifying models,
that can be implemented with only about 10 lines of code.

3. Scalable: It speeds up convergence by up to 28 times.
4. State-of-the-Art: It outperforms competing methods by a signi�cant margin

on several established datasets.

Figure 8.7 shows an illustration of the proposed method. Existing approaches to
perform link prediction can be classi�ed in two categories: single-hop andmulti-hop
methods.

single-hop methods. Given a question, single-hop methods predict answers
by learning source entity and relation embeddings, and then jointly transforming
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Figure 8.7: Overview of how our approach di�ers from prior work. Rather than stacking the
relation with the source entity and transforming them jointly, the relation is used to generate
the parameters of the model that is used to transform the source entity.

them to answer entities using a �xed amount of computation. TransE by Bordes et al.
(2013) produces answer entity embeddings by adding the source entity and relation
embeddings together. DistMult by Yang et al. (2015) extends TransE by instead multiply-
ing the source entity and relation embeddings element-wise. ComplEx by Trouillon
et al. (2016) boosts DistMult’s performance by extending the model to use complex
numbers instead of real numbers (while retaining DistMult’s original architecture),
allowing for more expressive relationships between entities and relations. TransR by
Lin et al. (2015) infers answer entity embeddings by �rst projecting the source and
potential answer entity embeddings to relation space via the query relation, and then
applying TransE on the result. CTransR, by the same authors, extends TransR by clustering
distinct source and target entity pairs from triples into groups, and learning distinct
relation vectors for each group, thereby sharing information between group-correlated
relations. TransD by Ji et al. (2015) develops on CTransR by accounting for entity types,
resulting in greater method �exibility. ITransF by Xie et al. (2017) improves upon TransE
by encouraging the sharing of statistic regularities between the projection matrices of
relations using a sparse attention mechanism. DistMult, TransR, CTransR, and ITransF
empirically illustrate the bene�ts of multiplicative interactions between entities and
relations over additive ones, and serve as an inspiration for our work. Furthermore, as
shall become clear by the end of this chapter, they all form special cases of the general
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formulation that we propose. ¿e current state-of-the-art model, ConvE by Dettmers
et al. (2018), estimates a distribution over possible answers by �rst concatenating the
source entity and relation embeddings and then feeding them through a convolutional
neural network. Similar to TransE, the concatenation of entity and relation embeddings
only allows for an additive interaction between the two. As we describe in Section 8.3.3
and brie�y mentioned in Section 7.2.1, this signi�cantly limits expressive power.

multi-hop methods. Multi-hop approaches determine answers by �nding paths
connecting source entities to target entities, and consist mostly of path ranking meth-
ods (Lao et al., 2011; Gardner et al., 2013) and neural models (Guu et al., 2015; Nee-
lakantan et al., 2015; Toutanova et al., 2016; Das et al., 2018; Lin et al., 2018). Given a
question of the form (es, r, ?), these methods aim to �nd sequences of relations that
start at es and when composed, are semantically equivalent to r. NeuralLP by Yang
et al. (2017) learns end-to-end di�erentiable relation paths between source entities
and targets. Similarly, NTP-λ by Rocktäschel and Riedel (2017) proposes an end-to-end
di�erentiable backward chaining model to learn e�ective sequences between source
entities and answers. MINERVA by Das et al. (2018) proposes a history-dependent rein-
forcement learning approach to KG link prediction.MultiHop-KG by Lin et al. (2018)
extends MINERVA by employing a pretrained single-hop method to shape the rewards
used by MINERVA, which allows the model to use a more granular and informative
reward policy when traversing paths. Both of these approaches process entities and
relations additively by concatenating and transforming them to obtain the next path
entity. Similar to their single-hop counterparts, this limits their expressivity.

8.3.2 Problem Formulation

Before describing our method, we introduce the notation that we will be using for the
remainder of this case study. Let es, r, and et denote one-hot encoded representations
of the source entity, relation, and target entity of a KG triple. A common approach
to learning abstract representations of entities and relations is to learn vector embed-
dings. ¿is provides for a simple yet e�ective method of sharing information. ¿e
transformation from one-hot encodings to vector embeddings is modeled as follows.
LetNe andNr denote the total number of distinct entities and relations in the KG,
respectively. Given a set of entities, E = {ei}

Ne
i=1, and a set of relations R = {ri}

Nr
i=1,

we de�ne the following embedding matrices: E ∈ RDe×Ne and R ∈ RDr×Nr , where
De and Dr correspond to the entity and relation embedding sizes, respectively. E
and R are both trainable parameters. Given a question of the form (es, r, ?), the corre-
sponding source entity and relation embeddings are es = Ees and r = Rr, where
es ∈ RDe and r ∈ RDr , respectively. Multiple existing single-hop link prediction
methods (as well as a single hop in multi-hop methods) can be described in terms of
the following abstract model:

es = Ees, ENTITY EMBEDDING (8.24)
r = Rr, RELATION EMBEDDING (8.25)
z = hφ(es, r, . . .), MERGE (8.26)
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a = fθ(z, . . .), PREDICTION (8.27)

where z is a latent representation of the merged entity and relation embeddings. ¿e
merge is performed using themerge function h, parameterized byφ. ¿en, the answer
a is predicted from z using the prediction function f, which is parameterized by θ.
Depending on the model, a can be the embedding of the target entity êt, a probability
distribution over target entities, or the probability that the fact (es, r, et) is true. Note
that the functions hφ and fθ may also take other model-dependent arguments, such
as et, which we represent using “. . ..” In fact, in recent methods that have shown
improved link prediction accuracies (Das et al., 2018; Dettmers et al., 2018; Lin et al.,
2018), fθ and hφ are neural networks that consist of convolution and/or recurrent
layers. ¿e top part of Figure 8.7 shows an illustration of this formulation.
While multiple existing link prediction methods �t under this formulation, we use

ConvE (Dettmers et al., 2018) as a running example, since it was both the state-of-the-
art at the time of writing this chapter, and one of the baseline methods used in our
experiments in Section 8.3.5. In ConvE, we have:

z = Conv2D(Reshape([es; r])), MERGE (8.28)
êt = fθ(z), PREDICTION (8.29)

where [es; r] ∈ RDe+Dr represents the result of stacking the entity and relation
embeddings together, followed by a reshape into aW ×H rectangular matrix, where
W andH are model hyperparameters such thatWH = De +Dr. ¿is matrix is then
passed through a 2D convolution layer to obtain the merged representation z. ¿e
prediction function fθ is de�ned as a linear layer, where θ denotes its weight matrix
and bias vector combined, followed by a dropout layer. An illustration of the ConvE
model is shown in the top part of Figure 8.9. For further details, we refer the reader to
the work of Dettmers et al. (2018). Given thathφmay also include other entity-relation
merge operations, more complex models such asMINERVA orMultiHop-KG can also be
expressed in terms of this abstraction.

8.3.3 Limited Expressive Power

Most existing neural methods consist of the following steps: (i) learn entity and
relation embeddings, (ii) concatenate the source entity and relation embeddings,
and (iii) perform a sequence of linear transformations and element-wise non-linear
operations on them (as shown in Equations 8.24, 8.25, 8.26, and 8.27), in order to
obtain the target entities. We now use an example to explain why this only explicitly
allows for additive interactions between the source entity and relation, and why this
is signi�cantly limiting the model’s expressive power. Consider a simple merging
function where the source entity and relation are �rst concatenated into a single vector
as [es; r], and then projected through a linear layer:

hφ(es, r) = φ · [es; r], (8.30)
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where φ ∈ RDz×(De+Dr) andDz is the size of z. If we refer to the �rstDe columns
of φ as φe, and the last Dr columns as φr (i.e., φ = [φe;φr]), then we can write
hφ(es, r) = φses+φrr. Note that, in this case the elements of the entity embedding
es and the relation embedding r only interact in an additive way (i.e., the output z
is a linear combination of the elements in es and r and it does not support more
complex interactions, such as multiplicative or polynomial interactions). ¿e same is
true for the merging function in ConvE through the convolution operation (only some
of the elements of φ are shared), as well as the merging functions of MINERVA and
Multihop-KG (further explained in Section 8.3.4.3). ¿e main implication of this is that
relations cannot in�uence the projection matrices used to transform the entities.

Figure 8.8: Toy example that
cannot be modeled by addi-
tive interactions between en-
tities and relations.

Let us demonstrate this important limitation by consid-
ering the example shown in Figure 8.8, illustrating 4 KG
facts: (e0, r0, e2), (e0, r1, e3), (e1, r0, e3), (e1, r1, e2).
Suppose we want to encode these facts using a model in
the form of Equation 8.30:

e2 = φee0 + φrr0, (8.31)
e3 = φee0 + φrr1, (8.32)
e3 = φee1 + φrr0, (8.33)
e2 = φee1 + φrr1. (8.34)

Subtracting Equation 8.32 from Equation 8.31, and Equation 8.34 from Equation 8.33,
we have that:

(e2 − e3) = φr(r0 − r1), (8.35)
(e3 − e2) = φr(r0 − r1), (8.36)

which leads to a degenerate solution where: (i) e3 = e2, and (ii) φr = 0 or r0 = r1.
If we instead subtract Equation 8.33 from Equation 8.31, and Equation 8.34 from
Equation 8.32, we achieve similar degenerate solutions where: (i) e2 = e3, and (ii)
φe = 0 or e1 = e0. ¿erefore, additive models are unable to handle this toy example.
While this is a toy example, it illustrates a more general problem. For instance,

consider a case where we want to learn a di�erent expert model for each relation.
¿is means that given a source entity and relation, the relation determines which
expert to use when processing the source entity. ¿is example is important because
related work in other areas has shown that mixtures of experts (our toy example is in
fact a very simple form of a mixture of experts) can result in signi�cant performance
gains (Lengerich et al., 2018). Methods that combine entities and relations additively
cannot learn such a mixtures of experts. Ideally, we want our model to be expressive
enough such that it can learn functions that are conditioned on the relation, such as
the above mixture of experts example. ¿is example is important because learning a
separate model for each relation may sometimes be impossible. A common pattern
for certain KGs is that for some relations we have a lot of training data, but for most
we have very little. In such cases, we want to be able to leverage the fact that many
relations are similar by sharing information between them. Note also that increased



8.3 case study #3: knowledge graph link prediction 145

expressive power alone is not su�cient as it can result in over�tting. We propose to
use contextual parameter generation which allows us to increase expressive power in
a manner that, as we show using an extensive empirical evaluation in Section 8.3.5, is
useful to the link prediction problem. Importantly, as we show in Section 8.3.4.2 the
proposed approach is able to handle the aforementioned toy example as well as more
general mixtures of experts.

8.3.4 Contextual Parameter Generation

We now present a new approach that addresses the limitations regarding additive
interactions raised in the previous section. Our method, termed CoPER—Contextual
Parameters from Embedded Relations—can be used to enhance multiple existing addi-
tive link prediction methods by enabling them to learn more expressive relationships
between entities and relations. At the core of CoPER lies the key idea that relations de-
�ne how source entities are processed in order to produce answer entities. Speci�cally,
when answering a question (es, r, ?), the target entity et can be obtained through a
transformation of the source entity es and the parameters of this transformation are
determined by the relation r.
In Figure 8.7, we show how a baseline model, expressed using Equations 8.24, 8.25,

8.26, and 8.27, can be transformed using CoPER. In this baseline model, the embed-
dings of es and r are merged through the additive operation h (e.g., concatenation
followed by convolution), and then transformed using f (e.g., a neural network) whose
parameters are learned (e.g., through backpropagation). In CoPER, operationh is only
applied to es, while r is used to generate the parameters of f. ¿us, the parameters of
f are no longer learned directly, but are rather the output of a new model component,
the contextual parameter generator (CPG). In the following section, we propose and
compare di�erent potential architectures for the CPG module. We then explain how
the proposed modi�cation can have a large impact in the kinds of KG relationships
our models can represent.

8.3.4.1 Parameter Generator Network

¿e contextual parameter generation (CPG) module is a function that takes as input a
relation r and outputs the parametersθ of someother function f. Letg : {1, 2, ..., Nr} 7→
RDθ be our parameter generation function, whereNr is the number of relations in
the KG and θ ∈ RDθ . We now present three simple functional forms for g that we
also use for our experiments.

parameter lookup table. ¿e simplest approach is to output an entirely di�er-
ent set of parameters θ for each relation. ¿is results in the following form:

glookup(r) =Wlookupr, (8.37)

where r here is a one-hot encoded vector representation of the relation, andWlookup ∈
RDθ×Nr is the only learnable parameter of glookup. Interestingly, this is comparable
to DistMult and TransR, as each of these methods also uses relations to de�ne distinct
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mappings over entity embeddings. However, the problemwith this simple formulation
is that information sharing across relations can only happen through the shared entity
embeddings. ¿is makes the model prone to over�tting, especially for relations for
which we have limited training data. Moreover, in certain KGs, many of the relations
may be similar (e.g., bornIn and livesIn), and it may be bene�cial for them to share
information. ¿is motivates a di�erent approach for generating parameters.

linear projection. Instead of using one-hot representations for the relations,
we can instead learn embeddings:

glinear(r) =WlinearRr+ b, (8.38)

where we use the embedding lookup equation,Wlinear ∈ RDθ×Dr , bias term b ∈
RDθ ,Dr is the relation embedding size, and bothWlinear and R, are trainable model
parameters. Intuitively, the learned relation embeddings represent a linear combi-
nation of Dr di�erent values for θ, allowing for sharing information between the
relations.

multi-layer perceptron. Most of our experiments are performed using glinear,
with which we achieve state-of-the-art results. However, we observed that glinear some-
times underperforms when using small datasets. We argue that the most likely reason
is due toWlinear becoming too big relative to the original number of parameters.¿is is
because, if we originally hadDθ trainable variables, glinear now hasDθ×Dr parame-
ters, which is signi�cantly larger. Limiting the value ofDr is not necessarily a solution
as a small Dr can signi�cantly constrain the capacity of our model. We therefore
propose a third variant of the generator network using a multi-layer perceptron:

gMLP(r) = MLP(Rr). (8.39)

¿is can be thought of as a low-rank approximation to glinear.

¿ese are only three proposals for the parameter generator network and, as we show
next, even a simple network such as glinear already signi�cantly increases representa-
tional power. Note however that the idea behind CoPER is more general and can be
extended to more complex architectures. Moreover, in contrast to CTransR and TransD
which also learn correlations between relations, CPG learns unrestricted relationships
between them: based on the choice of CPG module, the network can learn arbitrary
relation interactions. Furthermore, its abstract design enables it to fully bene�t from
the expressive power of neural networks.

8.3.4.2 Enhanced Expressive Power

¿rough the parameter generation component, CoPER enables link prediction meth-
ods to directly model more complex interactions between the entity and relation
embeddings. A CPG module as simple as glinear combined with any typical neural
network architecture for fθ (from a single linear layer to many complex layers fol-
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lowed by element-wise non-linearities) allows the model to represent multiplicative
interactions between source entities and relations. For ease of explanation, we will
illustrate this increase in representational power with a simple form for hφ and fθ.
However, it is easy to extend our example to more complex architectures. According
to the CoPER formulation, hφ now only operates on es, preprocessing the source
entity embedding before passing it to the predictor function fθ. For simplicity, we
can assume that no preprocessing is necessary and so hφ(es) = es. We can further
assume that f is a simple linear projection, fθ(x) = θx. ¿e parameters θ are given
by θ = glinear(r) =WRr+ b =Wr+ b. ¿erefore, we have that:

êt = fθ(hφ(es)) = fθ(es) = θes = (Wr+ b)es. (8.40)

¿is result shows that the relation and entity embeddings now interact in a multi-
plicative way, which means the relation itself can a�ect the weights with which we
multiply the entity embedding.¿is is more expressive than an additive interaction, as
it now allows us to represent dependencies such as conditionals (i.e., “if ” statements),
mixtures of experts, and even the toy example we present in Figure 8.8.

toy example. Going back to our toy example for which additive interactions are
not su�cient, we now show that a CPG module as simple as glinear or glookup can
handle that example. Applying the predictor derived in Equation 8.40 to the KG in
Figure 8.8, the following equations must hold for the toy example to be representable
by the model:

e2 = (Wr0 + b)e0, (8.41)
e3 = (Wr0 + b)e1, (8.42)
e2 = (Wr1 + b)e1, (8.43)
e3 = (Wr1 + b)e0. (8.44)

Subtracting Equation 8.41 from Equation 8.42, and Equation 8.43 from Equation 8.44,
we have that:

e3 − e2 = (Wr0 + b)(e1 − e0), (8.45)
e3 − e2 = (Wr1 + b)(e0 − e1). (8.46)

Avoiding the degenerate solution where e0 = e1, we have:

W(e1 − e0)(r0 + r1) + 2b(e1 − e0) = 0. (8.47)

¿is equation has an in�nite number of solutions. Note that although we showed here
that CPG leads to multiplicative interactions between es and r for a particular choice
of fθ(x) = θx, our conclusions will stand for most neural network architectures,
frommultilayer perceptrons to convolutional to recurrent neural networks, since they
usually involve such a projection step on the inputs.
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8.3.4.3 CoPER and Existing State-of-the-Art Models

We discussed how CoPER can generally be used to extend link prediction models
that only allow for additive interactions. We will now show how it can be applied to
two speci�c models, ConvE andMINERVA, which are representative of the two main
lines of recent neural link prediction methods: single-hop and multi-hop methods.
While these models may have distinct complex architectures with multiple types
of neural network layers, each integrates entities and relations additively in several
key components of their networks. We substitute each of these interactions with our
CPG module to alleviate the aforementioned limitations. Figure 8.9 shows a parallel
between the original ConvE model and its CoPER-enhanced version, CoPER-ConvE.
Figure 8.10 shows the same comparison forMINERVA.

conve. ¿e original ConvEmodel can be described in terms of our abstract frame-
work, as shown in Equations 8.28 and 8.29. In CoPER-ConvE, the �rst preprocessing
steps in the pipeline (reshape and convolution) are only applied to the entity embed-
ding, while the relation is used to generate the parameters of the projection layer:

z = Conv2D(Reshape(es)), (8.48)
θ = g(r), (8.49)
êt = fθ(z) = θ1 + θ2:Dθz, (8.50)

where θ = [θ1; θ2] is the parameter vector produced by the parameter generator, with
its �rst element θ1 used as the bias in the projection layer of fθ, and the otherDθ− 1
elements used as the weight matrix.

minerva. MINERVA is a deterministic multi-hop question-answering model that
answers questions of the form (es, r, ?) by �nding paths in the graph that connect
es to the predicted answer êt. ¿e model de�nes states as the entities in the KG,
and actions as tuples (r, e) that consist of an outgoing relation and its destination
entity, specifying a hop to a neighboring node in the KG. Given a question (es, rq, et),
MINERVA traverses the KG along its relations from es to the most likely target entity
et. Each step along the graph path iteratively accumulates a history of entities and
relations visited, which is aggregated and then stored in the hidden state of a long short-
term memory (LSTM) network (Hochreiter and Schmidhuber, 1997), as illustrated in
Figure 8.10. ¿e hidden state of the LSTM is updated as follows:

hi = LSTM(hi−1, [ei; ri−1]), MERGE (8.51)

where hi denotes the accumulated history representation at the ith time step, hi−1
is the hidden state of the LSTM (i.e., the history representation) at the previous step,
ri−1 denotes the embedding representation of the relation taken in the previous
step leading to state ei (represented by an entity embedding), and [·; ·] represents
vector concatenation. Additionally, [ei; ri−1] denotes the LSTM input. Because the
LSTM module consists of a series of input projections, ei and ri−1 are additively
incorporated into the agent’s history.
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Figure 8.9: Overview of ConvE (top) and CoPER-ConvE (bottom).

At every time step, once the traversal history has been accumulated, the agent next
determines the subsequent action to take as follows:

oi = MLP([hi;ei; rq]), MERGE (8.52)
aj = Categorical(Aioi), PREDICTION (8.53)

whereAi denotes the embedding representations of each available action from ei, oi
represents the multi-layer perception (MLP) output, Categorical denotes a categorical
distribution decision function—such as a network policy—which operates over action
distribution logits given byAioi—and aj is the selected action. Since each action is a
tuple (r, e), as explained above, we represent aj as the concatenation of the respective
relation embedding and an entity embedding.Ai denotes then the matrix containing
vector representations of all available actions from each state. Importantly, we observe
that the entity and relation embeddings are concatenated as input to the MLP, which
also induces an additive interaction between them in this component. ¿us, in both
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Figure 8.10: Overview ofMINERVA (top) and CoPER-MINERVA (bottom).

components where entity and relation information is processed inMINERVA, it is done
additively. As illustrated by our toy example, this limits expressive power.
In CoPER-MINERVA, we replace these additive steps with parameter generators, as

illustrated in the bottom of Figure 8.10. In the �st case, the embedding of the previous
relation in a step, ri−1, is used as input to a parameter generator that outputs the
parameters of the LSTM component. In the second case, the query relation embedding,
r, is used to generate the parameters of the MLP, which operates over the step history
and the current entity representations. ¿e rest of the model remains unchanged.

8.3.5 Experiments

In this section, we empirically evaluate the performance ofCoPER on several established
link-prediction datasets.
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Dataset #Train Ne Nr Na d

UMLS 5,216 135 46 7.83 26.59
Kinship 8,544 104 25 6.14 82.15
FB15k237 272,115 14,541 237 3.03 17.87
WN18RR 86,835 40,945 11 1.41 2.19
NELL-995 154,213 75,492 200 3.57 4.07

Table 8.4: Dataset statistics. “#Train” denotes the number of questions used for training,Ne
the number of distinct entities,Nr the number of distinct relations,Na the average number
of answers per question, and d the average degree of the graph nodes in the dataset.

8.3.5.1 Datasets

We adopt the following datasets used in prior literature:

1. UMLS: Uni�ed medical language systems was proposed by Kok and Domingos
(2007) and it contains links between various entities from the medical domain.

2. Kinship: Alyawarra Kinship contains kinship relationships between members of
the Alyawarra tribe from Central Australia.

3. WN18RR: A subset of WordNet (Fellbaum, 1998) which contains lexical and se-
mantic relationships between lexical entries, and that was provided by Dettmers
et al. (2018).

4. FB15k-237: A subset of FreeBase (Bollacker et al., 2008) that contains entity-
relation type links between data parsed fromWikipedia, and that was provided
by (Toutanova and Chen, 2015).

5. NELL-995: A subset of NELL (Mitchell et al., 2015) that contains factual infor-
mation extracted from the web, and that was provided by Xiong et al. (2017).

Table 8.4 displays summary statistics for each dataset. We keep our train, validation,
and test dataset partitions consistent with those of prior literature to ensure fair
comparisons. Speci�cally, we use the published datasets from Das et al. (2018) and
Lin et al. (2018). Similar to prior work, we augment our training data with inverse
relations (i.e., for each example, (es, r, et), we introduce (et, r−1, es)).

8.3.5.2 Metrics

We report results using two metrics: Hits@k and mean reciprocal rank (MRR). Both
assess how a model ranks the correct answer compared to all other possible answers.
Hits@k, also known as recall-at-k, is de�ned as the proportion of times the correct
answer is ranked among the top-k answers, according to the probabilities predicted by
the model. Similar to prior work, we report the average Hits@1 and Hits@10 over the
test dataset. MRR is de�ned as the average value of the reciprocated rank of the correct
answer for each test instance. ¿erefore, MRR is a measure of the overall quality of a
model’s predictions. Note that, these evaluation metrics were also previously used for
ConvE,MINERVA, andMultiHop-KG.
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8.3.5.3 Baselines

We evaluate CoPER-ConvE and CoPER-MINERVA against their base models, ConvE and
MINERVA, and multiple other link prediction methods. To ensure a fair comparison
between CoPER-ConvE and its unaltered baseline, we reimplemented ConvE in our setup,
and retained the hyperparameters originally reported by Dettmers et al. (2018). Our
implementation either matches or improves upon the previously published results
(possibly due to the use of negative sampling which is described in the following
paragraph). For CoPER-MINERVA, we construct our CoPER framework within the
MINERVA implementation provided by Lin et al. (2018). For both our CoPER extensions,
we vary the relation embedding size (originally set to 200) based on the number
of relations in each dataset, which stems from our observation that datasets with
few relations (e.g., Kinship orWN18RR) perform better with smaller embeddings. We
choose the dropout parameters by performing a grid search in the interval [0,1] based
on the validation set Hits@1 score. Regarding the parameter generation module, we
perform experiments using both glinear and gMLP, which are de�ned in Equation 8.38
and Equation 8.39, respectively. For the MLP, we use a single hidden layer with a
recti�ed linear unit (ReLU) activation and choose the number of hidden units by also
performing a grid search. We train our models using the binary cross-entropy loss
function. For each positive training example, we sample 10 negatives as described in
the following paragraph, and use a label smoothing factor of 0.1. We use the AMSGrad
optimizer by Reddi et al. (2018) for all experiments, with a learning rate of 0.001 and
a batch size of 512. All our experiments were performed on a machine with a single
Nvidia Titan X GPU. All hyperparameter values and CPG architectures utilized in our
experiments can be found in our repository at https://github.com/otiliastr/coper.

negative sampling. We train CoPER by minimizing the binary cross-entropy
between the predicted distribution over answer entities, and the true answer entities.
However, one challenge is that the training data only contains triples of the form
(es, r, et) and there is no clear way to obtain negative examples of the form “this
entity is not a correct answer to this question.” A common approach to address this
challenge is to consider all answers that appear in the training set as correct answers
and all other entities in the KG as wrong answers. However, this approach su�ers
from two main problems. First, it can become very expensive for large KGs as all
the entities are involved in the computation of the loss function for each training
example. Furthermore, it is not necessarily correct because some of the entities treated
as incorrect answers during training are the very answers we are asked to infer at test
time. To alleviate these two issues, we use an alternative approach based on that of
Bordes et al. (2013) and Yang et al. (2015). Instead of considering all possible alternative
answers as wrong, we uniformly sample a �xed number of alternative entities, for
each positive triple, and use them as negative training examples. Our experiments
indicate that this negative sampling approach boosts performance and signi�cantly
improves computational e�ciency.

https://github.com/otiliastr/coper
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UMLS
Hits@1 82.1 82.3 64.3 84.3 75.3 90.2 92.89 77.76† 95.46‡
Hits@10 96.7 99.5 96.2 100.0 96.7 99.2 99.70 97.43† 99.70‡

MRR 86.8 89.4 77.8 91.2 84.1 94.0 95.35 85.44† 97.08‡

Kinship
Hits@1 48.7 75.4 47.5 75.9 60.5 78.9 74.21 66.20† 83.62†
Hits@10 90.4 98.0 91.2 87.8 92.4 98.2 97.86 94.23† 98.42†
MRR 61.4 83.8 61.9 79.3 72.0 86.5 83.04 76.00† 89.52†

WN18RR
Hits@1 43.1 41.0 37.6 — 41.3 41.8 41.86 42.66† 44.05†
Hits@10 52.4 51.0 65.7 — 51.3 51.7 52.17 50.99† 56.12†

MRR 46.2 44.0 46.3 — 44.8 45.0 45.19 46.51† 48.33†

FB15k237
Hits@1 32.4 15.8 16.6 — 22.3 32.7 30.30 29.49† 32.18†

Hits@10 60.0 42.8 34.8 — 44.9 56.4 60.83 50.39† 62.92†
MRR 41.7 24.7 22.7 — 29.2 40.7 40.51 36.51† 42.56†

NELL-995
Hits@1 55.2 64.3 — — 63.96 65.6 67.04 65.52† 72.15†
Hits@10 78.3 86.0 — — 82.35 84.4 87.96 83.24† 88.35†
MRR 64.1 72.6 — — 70.97 72.7 75.42 72.46† 78.68†

Table 8.5: Results for multiple link predictionmodels.¿e results for ConvE,MINERVA, CoPER-
ConvE, and CoPER-MINERVA are reported according to our own experiments. ¿e rest of
the results are taken from Das et al. (2018). All numbers are expressed as percentages. †
denotes experiments performed using glinear, and ‡ denotes those performed using gMLP.
“—” denotes missing results from the respective publications. Note that forMINERVA, we use
the implementation provided by Lin et al. (2018), and report our results with the provided
implementation for fair comparison with our CoPER extension. ¿e best score in each case is
underlined and shown in red.

8.3.5.4 Results

Our experiment results are shown in Table 8.5. We observe that CoPER-ConvE outper-
forms ConvE on all datasets, with up to 9.41% Hits@1 performance gain over ConvE
on Kinship. Moreover, we �nd that CoPER-ConvE achieves superior performance over
all other existing methods on these datasets, o en by a signi�cant margin. Notably,
we observe a 4.7% Hits@1 gain for Kinship over the best existing method and a 4.09%
Hits@1 gain for NELL-995. To the best of our knowledge, CoPER-ConvE establishes a
new state-of-the-art for this problem.
We also examine the e�ect of CoPER on training time. Since CoPER-ConvE is the

variant with the best results across all datasets, we perform this analysis for ConvE
and CoPER-ConvE. Given that CoPER-ConvE consistently outperforms ConvE in terms
of Hits@1 we compare the number of iterations that each method requires to reach
the best Hits@1 value that ConvE achieves (e.g., when both ConvE and CoPER reach
92.89% Hits@1 on UMLS). ¿en, we calculate the ratio: #iterations CoPER#iterations ConvE . For instance, if
a baseline model requires 10,000 steps to attain its best performance while its CoPER
variant takes 3,000 steps to achieve identical performance, then our metric would



154 case studies for contextual parameter generation

Figure 8.11: Time required for CoPER-ConvE to obtain its best performance on each dataset,
as a fraction of the time it takes ConvE to achieve equivalent performance.

be: 3,00010,000 = 0.3. Analogously, this would correspond to a 1
0.3 = 3.33 factor of

training speed gain. Our results, illustrated in Figure 8.11, show that CoPER-ConvE
always requires much fewer training iterations to achieve its best performance than
ConvE, yielding a speedup of between 2.9 to 28.6 times.
Recall that, in Section 8.3.4.1 we proposed to use glinear and gMLP for the parameter

generation network, instead of the arguably more straightforward parameter lookup
table. ¿is was motivated by suggesting that using glookup would more likely result in
over�tting, especially in cases where there is too little training data per relation. To
examine the impact of relation information sharing through the contextual parameter
generator, we conduct an experiment comparing our best performing glookup CoPER
models against our best performing glinear or gMLP models. As glookup does not enable
this kind of information sharing, pitting it against the other generators enables us to
explicitly analyze the importance of information sharing through the generator across
our benchmark datasets. Table 8.6 illustrates our results from these experiments, with
the addition of ConvE, for reference. In the table, CoPER-PL refers to glookup, while
CoPER refers to the best performing glinear or gMLP model. Models using glinear are
marked with “†,” while models using gMLP aremarked with “‡.” Note also that, training
CoPER-PL-ConvE on NELL-995 is infeasible with our resource capabilities due to the
memory required to store the parameter lookup table and entity embeddings. Based
on these experiments, we observe a strong correlation with performance disparity
between CoPER-PL and CoPER and dataset size and sparsity (please refer to Table 8.4
for the dataset statistics). ¿ese results suggest that as datasets become smaller and
denser, generator functions such as glinear and gMLP become crucial to maintaining
strong performance. Moreover, while the performance discrepancy between CoPER-PL
and CoPER is less prominent for larger and sparser datasets, we observe that sharing
information through the generator remains highly important. Finally, we also compare
CoPER with TransR and TransD, which are simple models that allow for multiplicative
interactions, and CoPER consistently outperforms the other methods.
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UMLS
Hits@1 92.89 73.82 95.46‡
Hits@10 99.70 99.09 99.70‡
MRR 95.35 85.17 97.08‡

Kinship
Hits@1 74.21 74.90 83.62†
Hits@10 97.86 96.63 98.42†
MRR 83.04 83.22 89.52†

WN18RR
Hits@1 41.86 44.10 44.05†

Hits@10 52.17 51.20 56.12†
MRR 45.19 46.63 48.33†

FB15k237
Hits@1 30.30 30.72 32.18†
Hits@10 60.83 60.04 62.92†
MRR 40.51 40.52 42.56†

NELL-995
Hits@1 67.04 — 72.15†
Hits@10 87.96 — 88.34†
MRR 75.42 — 78.68†

Table 8.6: Results comparing di�erent parameter generator networks. ¿e results for ConvE,
CoPER-PL-ConvE (using a parameter lookup generator function), and CoPER-ConvE are
reported according to our own experiments. All numbers are expressed as percentages. †
refers to the glinear generator, while ‡ refers to the gMLP generator. “—” denotes experiments
outside our computational resource capabilities. ¿e best score in each case is underlined and
shown in red.

8.3.5.5 Relation Embeddings

One of our purported bene�ts of the contextual parameter generators described in
Section 8.3.4.1 is that relation information can be shared through parameter generators
using models such as glinear, enabling relations to leverage knowledge from their
similar counterparts. To illustrate this, we analyze the resulting relation embeddings
a er training CoPER-ConvE with glinear on the NELL-995 dataset. In Figure 8.12 we
provide a visualization of the pairwise cosine distances between the learned relation
embeddings. Speci�cally, the plot illustrates the pairwise cosine similarities between
each of the 200 relations in the NELL-995 dataset. Prior to plotting, the relations are
manually grouped based on the types of entities they are de�ned over. We observe
a clear block-diagonal structure in the resulting heatmap, which indicates that the
learned relation embeddings re�ect similarities that are indeed meaningful. For ease
of understanding, we have labeled several blocks with their respective relation group
“type.” All material relevant to our “type” assignment and code for this visualization
can be found in our code repository at https://github.com/otiliastr/coper.

https://github.com/otiliastr/coper
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Figure 8.12: Heatmap showing the pairwise cosine distances between relation embeddings
in NELL-995. Relations are grouped according to manually de�ned “types” which we have
collected by manually annotating the dataset relations. Each block corresponds to a section
denoted by these groups.

8.3.6 Key Takeaways

We proposed CoPER, a novel framework that improves upon the current state-of-the-
art methods for the task of knowledge graph link prediction. CoPER treats relations as
the context in which source entities are processed to predict target entities. We showed
how this signi�cantly increases the expressive power of link prediction models by
allowing them to represent multiplicative interactions between entities and relations.
We also exhibited the �exibility of our approach by extending both a single-hop and a
multi-hop link prediction model, achieving new state-of-the-art performance for this
task, while signi�cantly speeding up convergence time over unaltered methods by up
to 28×. ¿is case study thus provides further evidence on the usefulness of contextual
parameter generation for multi-task learning. In the next section, we present another
case study that instead focuses more on using CPG for never-ending learning where
there exists some compositional structure over the tasks that are being learned.

8.4 case study #4: jelly bean world

¿is case study is based on the evaluation framework we describe in Chapter 9 and
so we recommend reading that chapter �rst. However, we shall try to make this
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section relatively self-contained. Our main goal is to show how contextual parameter
generation can be used to handle multi-task settings where the task being learned
changes with time. More speci�cally, we consider a reinforcement learning function
with a non-stationary reward function.

8.4.1 Problem Setting

¿e jelly bean world (JBW) is an in�nite two-dimensional grid world where a learning
agent can navigate around and collect items of di�erent types. Each grid cell may
contain up to one item of a speci�c type and the item types determine how the items are
distributed around the world (e.g., there may be multiple onions distributed uniformly
and few jelly beans and bananas that tend to appear in clusters). A simpli�ed example
illustration is shown in Figure 8.13. ¿e learning agent has two perception modalities:

– Vision: Each agent has a visual range property that speci�es how far they can
see. Vision is represented as a three-dimensional tensor, where the �rst two
dimensions correspond to the width and the height of the agent’s visual �eld,
and the third dimension corresponds to the color dimensionality. ¿e visual
�eld is always centered at the agent’s current position and the color observed at
each cell within the visual �eld is the sum of the color vectors of all items and
agents positioned at that map location.

– Scent: Scent is represented as a �xed-dimensional vector, where each dimension
can be used tomodel orthogonal/unrelated scents. Each agent and each item has
a pre-speci�ed scent vector that is provided as part of the world con�guration
(similar to their colors). At each time step, agents can perceive the scent at their
current grid position. ¿e physics of scent are described by a simple di�usion
di�erence equation on the world grid.

More details about both modalities are provided in Section 9.2.1. In the simpli�ed
setting of this case study, at each time step the learning agent decides whether to turn
right, turn le , or move forward. When an agent steps into a grid cell that contains
an item, it automatically collects that item. ¿e JBW con�guration we use for the
experiments of this case study is the same one that is used in Section 9.4 and is
summarized in Tables 9.2 and 9.3.

8.4.2 Reward Function

Our goal in this case study revolves around non-stationary reward functions and thus
we decided to use a composite reward function that alternates between the following
two reward functions every 100,000 steps:

1. Collect[JellyBean] ∧ Avoid[Onion]: ¿e agent receives 1 reward point for
each JellyBean it collects and loses 1 reward point for each Onion it collects.

2. Avoid[JellyBean] ∧ Collect[Onion]: ¿e agent loses 1 reward point for each
JellyBean it collects and receives 1 reward point for each Onion it collects.
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Figure 8.13: Example illustration of the jelly beanworld.More details can be found in Chapter 9.

We refer to this as a cyclical or periodic reward function schedule and it is also used in
Section 9.4 for further experiments.¿e non-stationary nature of this reward function
renders this a hard learning problem as the learning agent will need to be able to
adapt to a changing reward function every 100,000 steps. ¿is is not something that
“traditional” reinforcement learning models and training algorithms are generally able
to handle as they o en relying on using a decaying learning rate when learning which
makes adaptation to changing rewards impossible. At the same time, as discussed in
Chapter 1, non-stationarity is o en encountered in real world learning problems that
humans encounter.

8.4.3 Models

We de�ne a simple baseline model as follows:

1. ¿e agent’s visual �eld is processed by a convolutional neural network (CNN)
to produce a �xed-size vector. We refer to this network as the vision sensor.

2. ¿e scent at the current cell is processed by a multi-layer perceptron (MLP) to
produce a �xed-size vector. We refer to this network as the scent sensor.

3. ¿e outputs of the vision sensor and the scent sensor are concatenated and fed
to a long short-term memory (LSTM) network (Hochreiter and Schmidhuber,
1997) that produces another �xed-size vector. We refer to this network as the
reasoning module.

4. ¿e output of the reasoning module is processed by two separate linear layers
to produce: (i) a distribution over actions for the agent to take in this step, and
(ii) a score (or value for the current state. ¿e latter is necessary because, as we
explain in the next paragraph, we are using an actor-critic algorithm to train all
our models. We refer to the last two linear layers as the action networks.
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Figure 8.14: Overview of the models we use in this case study. ¿e gray blocks and arrows
correspond to modules that are common across all models. ¿e blue blocks and arrows
correspond to modules that are only used by the REWARD AWAREmodel. ¿e red blocks and
arrows correspond to modules that are only used by the REWARD CONTEXTUALmodel. ¿e
blocks and arrows that have red and blue stripes correspond to modules that used by both
the REWARD AWARE and the REWARD CONTEXTUAL model. Arrows merging together
correspond to concatenation of the respective tensors. All models are described in Section 8.4.3.
Note that, gelu refers to the Gaussian error linear units (GELUs; Hendrycks and Gimpel,
2016) activation function.

Note that this model is not aware at all of the current reward function and thus, it
can only adapt to a changing reward function by noticing how its collected rewards
change with time. In the following sections, we refer to this model as PLAIN.
One way to improve upon this model is to make it aware of the reward function by

feeding it as an additional input. ¿is can be achieved by compiling the current reward
function to a single vector embedding that is then concatenated with the outputs of
the vision and scent sensors before being fed to the reasoning module. Our reward
compiler component is described in Section 8.4.3.1. We refer to this variant of the
baseline model as the REWARD AWAREmodel.
Given our discussion in Section 7.2.1, a natural way to employ contextual parameter

generation in this setting would be to use the compiled reward function embedding
as a context based on which the parameters of the reasoning module are generated.
Note that, we decided not to have the agent use the reward function to generate the
parameters of the perception (i.e., vision and scent sensors) and the action modules
because, intuitively, we expect these modules to perform the same transformations
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irrespective of which reward function is being used. In fact, there is a lot more underly-
ing motivation for this decision, as well as for the grouping into perception, reasoning,
and action modules. ¿is motivation is described in detail in Appendix C, where we
propose neural cognitive architectures; a new type of neural network architectures that
are inspired by human cognition and by the �ndings of this thesis. As we shall see in
Appendix C, the reward compiler that is described in the following section is also an
integral part of neural cognitive architectures. In the following sections, we refer to
this CPG-based model as the REWARD CONTEXTUALmodel.
All models are trained using proximal policy optimization (PPO); a popular on-

policy reinforcement learning algorithm proposed by Schulman et al. (2017).

8.4.3.1 Reward Compiler

We compile the reward function into a function that, when evaluated, produces a
single vector embedding that encodes the current reward function. For the purposes
of this case study, we use a very simple compiler:

– Item types are encoded in learnable embeddings of size 8.
– ¿e Collect predicate is compiled to a learnable linear transformation that can
be applied to item type embeddings.¿e output size of this linear transformation
is also 8. ¿e output of the compiled function is, on its own, a valid reward
function embedding.

– ¿e Avoid predicate is compiled to the same function as the Collect predicate,
with its output negated.

– ¿e conjuction of two predicates is compiled to a function that �rst compiles
the two predicates and then adds the resulting reward function embeddings.
We chose to use this simple functional form because it is invariant to the order
in which the two predicates are speci�ed. ¿is is desirable because the reward
function conjunction operation is also invariant to the order in which the two
reward functions are speci�ed.

For example, consider the reward function “Collect[JellyBean] ∧ Avoid[Onion],”
which is also used as an example in Figure 8.14. ¿is reward function would be
compiled to the following vector value:

gCollect(cJellyBean) − gCollect(cOnion), (8.54)

where cJellyBean and cOnion are embeddings of the jelly bean and onion items,
respectively, and gCollect is a linear transformation. More details on the topic of
reward compilation are provided in Section C.6.

8.4.4 Experiments

For all experiments we evaluate performance using the reward ratemetric, which is
de�ned as the amount of reward obtained per step, computed over a moving win-
dow. ¿e size of this window is 50,000 steps. ¿is is an appropriate metric for this
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Figure 8.15: Experiment results along with key observations. ¿e shaded vertical bars corre-
spond to the two alternating reward functions that we use. ¿e reward rate is computed using
a 50-step window and the shaded bands correspond to standard error over 20 runs.

task as we want to measure the improvement in the ability of an agent to learn
(i.e., the gradient of the reward rate), while also making sure the agent does not
get stuck (i.e., the reward rate goes to zero). We also report the cumulative reward
obtained by each agent as it helps better visualize the performance di�erences between
the di�erent models. Furthermore, we let the agents interact with the environment
for a total of 2.5 million steps and perform 20 separate experiment runs for each
agent, each one using a di�erent random seed. We report the mean of the evaluation
metrics over these runs, as well as the standard error. ¿e experiments are imple-
mented using Swi for TensorFlow10 and the code to reproduce them is available at
https://github.com/eaplatanios/jelly-bean-world.
Our results are shown in Figure 8.15. In summary, we observe that the PLAINmodel

is unable to e�ciently alternate between di�erent learning problems and is e�ectively
learning each problem from scratch whenever the reward function changes. ¿is
matches our expectations, given that this model does not observe the current reward
function. REWARD AWARE is able to improve signi�cantly upon PLAIN and we observe
that it learns to avoid the right items when the reward function switches (i.e., its reward

10 https://www.tensorflow.org/swift.

https://github.com/eaplatanios/jelly-bean-world
https://www.tensorflow.org/swift
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rate does not become negative each time the reward function changes). However, it is
still slow to switch to the correct behavior and maximize its reward rate. On the other
hand, we observe that REWARD CONTEXTUAL learns to e�ciently switch between tasks
and consistently outperforms both PLAIN and REWARD AWARE. More speci�cally, it
manages to obtain about 20× higher cumulative reward than PLAIN and 2× higher
cumulative reward than REWARD AWARE.

8.4.5 Key Takeaways

¿is case study provides further evidence that contextual parameter generation is
an e�ective way to perform multi-task learning. Speci�cally, it shows that it is better
able to condition on the current task than methods that simply receive the current
task as an additional input. ¿is veri�es the intuition and concrete arguments we
provided in Section 7.2.1. ¿e contextualized architecture we proposed for this case
study is also a simple instance of type of neural network architectures—neural cognitive
architectures—that we propose in Appendix C.¿erefore, the results we obtained here
provide additional support for that proposal.



Part III

EVALUATION

In Parts i and ii we proposed methods that enable and better support
never-ending learning systems. However, building computer programs
with these properties necessitates well-de�ned and robust ways to evalu-
ate whether they are indeed capable of never-ending learning, and there
are currently no ways to achieve this. To this end, in this part we propose a
novel evaluation framework—the jelly bean world (JBW; Chapter 9)—that
can enable and facilitate research towards the goal never-ending learning.
We have designed the JBW to be highly versatile, enabling evaluation
of systems that have any number of the never-ending learning abilities
mentioned in Chapter 1.
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Figure 9.1: Illustration of how this chapter is positioned with respect to the rest of this thesis.
¿e content of this chapter is shown in color, while the rest of the outline is shown in gray.
¿e full outline is discussed in detail in Section 1.4.

¿roughout this thesis so far we have focused on proposing novel methods to tackle
various problems related to learning collections of functions. As mentioned in Chap-
ter 1, this workwasmainlymotivated by never-ending learning, and building computer
programs that are capable of never-ending learning necessitates well-de�ned and ro-
bust ways to evaluate for the desired properties. However, there are currently no ways
to achieve that. ¿ere only exists one large-scale case study on never-ending learning
with the Never-Ending Language Learner (NELL) by Mitchell et al. (2018), which
uses the internet as the environment with which the system interacts (more details
are provided in Section 1.2). While the internet does have signi�cant complexity, it
is unwieldy to use as a testbed. It is very di�cult to focus on a particular aspect of
the system or the environment, or to tweak the algorithm and restart experiments to
observe the e�ects of changes. Furthermore, o entimes tasks require manual anno-
tation which can be very expensive. ¿us, a good testbed for never-ending learning
(and machine learning more generally) needs to provide the experimenter with a
high degree of control. To this end, in this chapter we present a novel framework

165



166 the jelly bean world

for evaluating never-ending learning systems, and more generally systems aimed at
learning collections of functions.

9.1 introduction

We propose a novel evaluation framework—the Jelly Bean World (JBW)—that can
enable and facilitate research towards the goal never-ending learning.1 Before intro-
ducing the JBW, we summarize the properties that a testbed for never-ending learning
should have:

1. Non-Episodic: It should disallow learning agents from resetting the environ-
ment and “retrying.” ¿e testbed should also force them to only learn within a
single environment (i.e., not transfer information across environments). ¿is is
in contrast with most popular reinforcement learning environments and, as we
show in Section 9.4, poses signi�cant challenges to existing algorithms.

2. Non-Stationary: ¿e testbed should allow for easy experimentation with non-
stationary environments, where the reward can depend on time. Such reward
functions are an easy way to increase the complexity of the world (for more
details on our de�nition of world complexity please refer to Section 1.3).

3. Multi-Task: It should support settings in which reward is maximized not by
learning how to perform a single task repetitively, but by learning how to
perform a general variety of tasks, and learning how to switch between them
and/or combine them to better perform other tasks (e.g., by composing them).
We posit that, at a su�ciently high level of task complexity, optimal learning
agents will be required—either explicitly or implicitly—to perform abstract
reasoning and make informed decisions about actions in the environment.

4. Multi-Modal: It should support multiple data modalities that agents receive as
input. ¿ese modalities should not contain the same information, but rather be
complementary to each other so that the agents are forced to learn from diverse
types of experiences. Multi-modality provides yet another way to increase the
complexity of the world.

5. Controllable: It should be easy for experimenters to modify the complexity and
richness of the learning problems in the testbed, make changes to it, and restart
it (e.g., as opposed to NELL).

6. E�cient: It should run on readily available hardware and allow for quick exper-
imentation. Ideally, we should not have to wait for days, weeks, or months (e.g.,
NELL) to obtain results.

7. Reproducible: It should make it easy to reproduce results and experiments,
which would facilitate scienti�c research. ¿is also requires that it allows for
seamlessly saving and loading state and for reproducing results outside the
environment in which they were �rst obtained. ¿e testbed should also not
require access to specialized hardware, which can be expensive.

Many of these properties are means to increase the complexity of the world. ¿ese
properties are in fact very closely related to the characteristics of “AGI Environments,

1 ¿is chapter has been published in (Platanios* et al., 2020a).
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Environment Non-Episodic Non-Stationary Multi-Task Multi-Modal Controllable Efficient

Atari (Bellemare
et al., 2013) and
Retro Games
(Pfau et al., 2018)

7 7 7 7 7 ∼

Games end
when the

player wins or
loses

The game
mechanics are
stationary

Each game has
a single fixed

reward
function

Agents only
observe the
game video
frames

Modifying the
task complexi-
ty/richness is
not possible

Can run on
small machines
but models are
slow to train

Continuous
Control
(Duan et al., 2016),
(Todorov et al.,
2012)

3 7 3 7 7 ∼

Some tasks are
non-episodic
(e.g., swimmer)

Stationary
rewards and
environments
(i.e., physics)

Some of the
tasks have
interesting
hierarchical
structures

Agents only
observe
positional
information

and joint angles

The tasks and
environments

are non-
configurable

Efficiency
varies widely
across tasks

Evolutionary
Robotics
(Mouret and
Doncieux, 2012)

7 7 7 3 3 3

Episodic in a
finite world

Stationary
environments
(i.e., physics)

Only navigation
goals

Multiple
different kinds
of sensors

Configurable
using XML

Fast 2D
simulation

written in C++

BabyAI
(Chevalier-Boisvert
et al., 2018)

7 7 3 3 7 3

Episodic in a
finite world

Fixed set of
levels and
rewards

Handful of
tasks to
perform

Agents given
visual input and
instructions

Existing levels
are not

configurable

Built on fast
MiniGrid
simulator

Adversarial Games
like Go (Silver et al.,
2017), StarCraft
(Vinyals et al., 2019),
and Dota (OpenAI,
2019)

7 3 7 3 ∼ 7

Games end
when the

player wins or
loses

Non-stationary
(without

assumptions
about the
adversaries)

Each game has
a single fixed

reward
function

Agents observe
the game video
frames and the
game state

There is limited
control over
things like the
adversary’s
competence

Experiments
are typically

extremely com-
putationally
expensive

DeepMind Lab
(Beattie et al., 2016)

7 ∼ ∼ 7 7 ∼

Levels have a
time limit

Levels have
different

rewards but
same physics

Levels have
predefined
rewards

Agents only
observe the
game video
frames

The complexity
of each level is

fixed

Requires
rendering of a
3D world

Malmö (Johnson
et al., 2016) and
MineRL (Guss et al.,
2019)

∼ 7 3 3 7 7

Tasks have a
pre-specified
time limit but
that is typically

very long

Stationary
rewards and

map generation
is based on
Perlin noise

Supports 6
complex tasks
but also allows
for new ones

Agents observe
the game video
frames and the
game state

Modifying the
task complexi-
ty/richness is
difficult and
expensive

Requires
rendering of a
3D world and
slow training of
large models

Jelly Bean World
(Proposed Here)

3 3 3 3 3 3

Agents live
“forever” in an
infinite open

world

The rewards
and the world
can both be

non-stationary

Composable
and dynamic
tasks are
supported

Vision and
scent are

designed to be
complementary

Modifying the
task complexi-
ty/richness is
very easy

Experiments
can run

efficiently on
small machines

Table 9.1: Existing reinforcement learning environments positioned relative to our desired
never-ending learning properties.

Tasks, and Agents” outlined by Laird and Wray III (2010) and later re�ned by Adams
et al. (2012). ¿e proposed JBW has all of these properties. It aims to provide an easy
way to create su�ciently complex environments allowing researchers to experiment
with never-ending learning, while remaining simple enough to control the problem
and enable rapid prototyping. ¿e JBW is a two-dimensional grid world with simple
physics, but is extensible enough to admit a wide variety of complex and inter-related
tasks. We present a comparison with related work in Table 9.1, showcasing the ways
in which the JBW is a novel and highly versatile evaluation framework. ¿e JBW
is written in C++ and we provide C, Python, and Swi APIs. ¿e source code is
available at https://github.com/eaplatanios/jelly-bean-world. It is also worth noting
that the JBW has already been used as the primary testbed for the instruction of the
“Deep Reinforcement Learning” and the “Never-Ending Learning” graduate courses
at Carnegie Mellon University.

https://github.com/eaplatanios/jelly-bean-world
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MAP
Manages the infinite world map.

AGENTS
Manages agents and handles their
interaction with the simulator.

SCENT
Simulates the diffusion of scent
in the world.

Represented as a vector.

VISION
Simulates the visual field of all
managed agents.

Field of View

Occlusion
Represented
as a 3D tensor.

Advances time after all managed agents have acted, invoking modules as needed.

Simulator
Interface for reinforcement learning.

Environment

REWARD
Specifies the reward given to the agent
for each possible state transition.
Collect[JellyBean] ∧ Avoid[Onion]

REWARD SCHEDULE
Specifies the reward for each time step.

Fixed / Periodic / Random

Asynchronous
simulation
visualizer.

Visualizer

Distributed simulations are also supported using MPI.

Figure 9.2: Overview of the modules comprising the Jelly Bean World.

9.2 design

¿e Jelly Bean World (JBW) consists of the following main modules, which are also
illustrated in Figure 9.2:

1. Simulator: Comprises the central component of the Jelly Bean World. ¿e rest
of the modules only interact with the simulator.

2. Environment: Provides a simple interface for performing reinforcement learn-
ing experiments in the never-ending learning setting as well as utilities for
evaluating never-ending learning systems.

3. Visualizer: Provides the ability to visualize and debug the behavior of learning
agents. ¿e visualizer is completely asynchronous and can be attached, reat-
tached, and detached to and from existing simulator instances, without a�ecting
the simulations.

9.2.1 Simulator

¿e simulator manages amap and a set of agents. At a high-level, the map is an in�nite
two-dimensional grid where each grid cell can contain items (e.g., jelly beans and
onions) and/or agents. Each item has a color and a scent that agents can perceive.
Each agent has a direction and a position, and can navigate the world map and collect
or drop items. ¿e action space of each agent is to: turn, move, collect items, drop
items, or do nothing, and it is con�gurable and can be constrained by the user. ¿ese
constraints are described later in this section. Time in the simulator is discrete, and
all agent-map interactions are turn-based, meaning that the simulator will �rst wait
for all managed agents to request an action and will then simultaneously execute all
actions and advance the current time. ¿us, the simulator also controls the passage of
time. In the following paragraphs, we describe each simulator component in detail.
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map. In order to truly support never-ending learning, we have designed the JBW
map to be in�nite, meaning that it has no boundaries and agents can keep exploring it
forever. To achieve this, the map is a procedurally-generated two-dimensional grid.
We simulate it by dividing it into a collection of disjoint (P × P)-sized patches and
only generating patches when an agent moves su�ciently close to them. ¿e map
also contains items of various types which are distributed according to a pairwise-
interaction point process over the two-dimensional grid (Baddeley and Turner, 2000).
Speci�cally, for a collection of items I , {I0, . . . , Im}, where Ii = (xi, ti), xi ∈ Z2
is the position of the ith item, ti ∈ T is its type, and T is the set of all item types:

p(I) ∝ exp
{ m∑
i=0

f(Ii) +

m∑
j=0

g(Ii, Ij)

}
, (9.1)

where f(Ii) is the intensity of item Ii andg(Ii, Ij) is an interaction term between Ii and
Ij, which are provided as part of the item’s type. ¿e intensity function characterizes
the (log) probability of the existence of an item Ii independent of other items in
the world. ¿e interaction function can be understood as a description of the log
probability of the existence of an item Ii given the existence of all other items Ij. For
example, the interaction function can be used to increase the log probability of an
item when it appears near other items, producing a clustering e�ect. Since the world is
subdivided into (P × P)-sized patches, the maximum distance of interaction between
items is P (this allows for e�ciently generating map patches).

item types. Each item type t ∈ T de�nes the following con�gurable properties:

– Color: Fixed-size vector specifying the item color.
– Scent: Fixed-size vector specifying the item scent.
– Occlusion: Occlusion of an item, which is relevant to the vision modality that
is described later in this section.

– Intensity Function: Maps from item locations to real values, where a higher
value implies a higher probability of an item appearing in that location (i.e.,
corresponds to f(Ii) in Equation 9.1).

– Interaction Functions: Collection of functions that map from pairs of item
locations to real values, where a higher value implies a higher probability of
that item pair appearing in those two locations (i.e., corresponds to g(Ii, Ij) in
Equation 9.1). ¿e collection contains one function for each item type.

¿e number of item types and their properties are con�gurable. Note that each item
type also speci�es additional properties that are described later in this section. ¿e
JBW currently only supports a small number of implemented intensity and interac-
tion functions to control the distribution of items in the world. However, it is very
straightforward to implement new customized intensity and interaction functions.
Let (x, y) ∈ Z2 be a position and t ∈ T be an item type. Intensity functions are
indexed by item type, and so each item type is assigned its own intensity function:
f((x, y), t) , ft(x, y). ¿e JBW currently supports the following intensity functions:
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Intensity Functions
Zero ft(x,y) = 0

Constant[v] ft(x,y) = v

RadialHash[∆,s,c,k]

ft(x,y) = c− k · M̂(
√
x2 + y2/s+∆), where M̂ : R 7→ [0,1] is the

linear interpolation ofM(btc)/(232 − 1) andM(bt+ 1c)/(232 − 1), and
M : Z 7→ Z is the last mixing step of the 32-bit MurmurHash function
(Appleby, 2008). This provides pseudorandomness to the intensity function.

For interaction functions, let (x1, y1) be the input position of the �rst item, t1 be
the type of the �rst item, (x2, y2) be the position of the second item, and t2 be the
type of the second item. Interaction functions are indexed by pairs of item types:
g(((x1, y1), t1), ((x2, y2), t2)) , gt1,t2((x1, y1), (x2, y2)). ¿e JBW currently
supports the following interaction functions:

Interaction Functions
Zero gt1,t2((x1, y1), (x2, y2)) = 0

PiecewiseBox[U,V,u,v]
gt1,t2((x1, y1), (x2, y2)) =


u, if d < U,
v, ifU 6 d < V,

0, otherwise,
where d = (x1 − x2)

2 + (y1 − y2)
2.

Cross[U,V,u,v,α,β]
gt1,t2((x1, y1), (x2, y2)) =



u, if d = 0,D 6U,

α, if d 6= 0,D 6U,

v, if d = 0,U < D 6 V,

β, if d 6= 0,U < D 6 V,

0, otherwise,
where d = min{|x1 − x2|, |y1 − y2|} and
D = max{|x1 − x2|, |y1 − y2|}.

CrossHash[s,c,k,δ,u,v,α,β]

Same as Cross[U,V,u,v,α,β] except for the fact that
U = c+ k · M̂(x1/s) and V =U+ δ, where M̂(·) is defined as
in the RadialHash intensity function.

Even though this is a small set of intensity and interaction functions it allows for
creating worlds with many interesting features (e.g., we use the Cross interaction func-
tion to create contiguous wall segments that are axis-aligned, and the PiecewiseBox
interaction function to create irregularly shaped clusters of trees forming forests).

procedural generation. When the simulator is instantiated the map is empty
(i.e., no patches have been generated).Whenever a new agent is added to the simulator,
a patch centered at its location is generated. In addition, whenever an existing agent
moves su�ciently close to a region where no patch exists, a new patch is generated.¿e
patch generation process consists of twomain steps: (i) add a new empty (P×P)-sized
patch to the collection of map patches (note that the new patch will be neighboring at
least one existing patch and that all patches are disjoint), and (ii) �ll the new patch with
items. ¿e second step is performed by using Metropolis-Hastings (MH) (Robert and
Casella, 2010) to sample the items that the new patch contains, from the distribution
de�ned in Equation 9.1. ¿e proposal density we use is de�ned as follows:

(i) add a new item Im+1 = (xm+1, tm+1) with probability 1/(2P2 · |T|) (i.e.,
uniform in position and type), and

(ii) remove an existing item Ii with probability 1/2m where m is the current
number of items in the patch.
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New
patches
that need
to be
sampled

Non-final
patches that
need to be
sampled to
avoid boundary
effects

Figure 9.3: Illustration of the procedu-
ral generation algorithm for the in�-
nite world map. ¿e 32× 32 patches
shown in white have already been
sampled and those in gray have been
sampled but not �xed in order to
avoid boundary e�ects. ¿e red line
corresponds to an example path fol-
lowed by an agent. Once the agent en-
ters a patch that is not �xed, then that
patch is sampled, along with its non-
�xed neighboring patches in order to
avoid boundary e�ects. For simplicity,
no items are shown in this map.

Occlusion

Field-of-View Mask

Agent

Visual Field

Scent Diffusion

Figure 9.4: Rendering of an agent’s
perspective from the JBW visualizer.

Before sampling, the patch is initialized by ran-
domly selecting an existing patch and copy-
ing its items into the new patch. ¿is is in-
tended to facilitate rapid mixing of the Markov
chain, and reduce the number of MH iter-
ations. Note that if we use small patches
and only sample new patches as the agents
visit them, boundary e�ects may be observed
due to the missing neighboring patches fur-
ther away from the agent. For this reason,
while sampling each new patch, we actually
also sample all missing neighboring patches,
but do not �nalize them (i.e., they are still
considered missing and may be resampled
later on). ¿is helps prevent boundary ef-
fects during the procedural generation pro-
cess. An example illustration is shown in Fig-
ure 9.3.

Each item has a color and a scent that is speci-
�ed by its type and can be perceived by agents.
¿e JBW thus supports two perception modali-
ties, vision and scent. ¿ese modalities are com-
plementary and agents can bene�t by learning to
combine them, as we explain at the end of this
section.

vision. Each agent has a visual range property
that speci�es how far they can see. Vision is rep-
resented as a three-dimensional tensor, where
the �rst two dimensions correspond to the width
and the height of the agent’s visual �eld, and the
third dimension corresponds to the color dimen-
sionality. ¿e visual �eld is always centered at the
agent’s current position and the color observed at
each cell within the visual �eld is the sum of the
color vectors of all items and agents positioned at
that map location. Agents also have a �eld of view
property that speci�es their �eld of view angle
(i.e., 180◦ denotes that the agent can only see the forward-facing half of the visual �eld,
whereas 360◦ denotes that the agent can see the whole visual �eld). ¿e part of the
visual �eld that is outside an agent’s �eld of view is masked out and appears black to the
agent. Another important aspect of vision is that items also have an occlusion property
as part of their type. ¿is is used to simulate partial or complete visual occlusion. If an
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item with occlusion 1 is in an agent’s visual �eld, then the colors behind that item are
not visible to the agent. An example is shown in Figure 9.4.
Speci�cally, to compute the color of a cell with respect to the agent’s �eld of view, let

the cell position be (x, y) and consider a circle of radius 12 centered at (x, y). Project
this circle onto the circle of radius 1 centered at the agent position. Let θ denote this
projection (an arc). Let θfov be the arc on the agent’s circle centered on a point in the
current agent direction. ¿e length of θfov is speci�ed by the �eld of view parameter
in the con�guration. ¿e color of cell cx,y is then computed as:

cx,y = ĉx,y ·
|θfov ∩ θ|

|θ|
, (9.2)

where ĉx,y is the original color of the cell. In order to compute how much a cell at
position (x, y) is occluded, we consider a circle of radius 12 centered at (x, y), and
project this circle onto the circle of radius 1 centered at the agent position. Let θ denote
this projection (an arc). Each item in the agent’s visual �eld is similarly projected onto
the agent’s circle, each producing an arc θi. ¿e color cell cx,y is then computed as:

cx,y = ĉx,y ·max

{
1−
∑
i

oi
|θi ∩ θ|

|θ|
, 0

}
, (9.3)

where ĉx,y is the original color of the cell, and oi is the occlusion parameter of the
ith item, as speci�ed by the item’s type. If a cell is a�ected by both the �eld of view
and visual occlusion, the above e�ects are composed (both multiplicative factors are
applied to the original color).

scent. Scent is represented as a �xed-dimensional vector, where each dimension
can be used to model orthogonal/unrelated scents. Each agent and each item has a
pre-speci�ed scent vector that is provided as part of the world con�guration (similar
to their colors). At each time step, agents can perceive the scent at their current grid
position. ¿e physics of scent are described by a simple di�usion di�erence equation
on the world grid. We de�ne the scent at location (x, y) at time t as:

Stx,y = Ctx,y︸︷︷︸
current scent

+ λ St−1x,y︸ ︷︷ ︸
previous scent

+ α
(
St−1x−1,y + St−1x+1,y + St−1x,y−1 + S

t−1
x,y+1

)
︸ ︷︷ ︸

neighboring cells di�used scent

, (9.4)

where λ is the rate of decay of the scent at each location, α is the rate of di�usion of
the scent from neighboring grid cells, and:

Ctx,y =
∑
I∈Itx,y

scent(I) +
∑

A∈Atx,y

scent(A), (9.5)

where Itx,y is the set of all items at time t and location (x, y), and Atx,y is the set
of all agents at time t and location (x, y). Our simulator ensures that the scent (or
lack thereof) di�uses correctly, even as items are created, collected, dropped, and
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destroyed. It does so by keeping track of the creation, collection, drop, and destruction
times of each item in the world. Note also that, while simulating this di�usion, we
also take into account the non-�xed patches that have been sampled in order to avoid
boundary e�ects.

vision-scent complementarity. Vision and scent are complementary. Vision
has high precision, in the sense that the agent can see the actual color of each grid cell
in its visual �eld and can thus relatively accurately determine what items may exist in
that cell. However, it has low recall—the agent can only see as far as its visual range
allows and it has no visual information about the rest of the map. On the other hand,
scent has low precision—the scent at the current cell is a linear combination of the
scents of all items in the world and it may be very di�cult to learn to interpret it and
use it e�ectively. However, scent has high recall—the scent at the current cell contains
information about items in a much larger range. ¿us, learning to use both modalities
will be bene�cial to agents. In Sections 9.4 and 9.4.3, we provide some experimental
results supporting this argument.

constraints. ¿e simulator enforces multiple constraints on the actions that
agents are allowed to take.We have designed the following small set of constraints with
the goal of providing a computationally e�cient way to support arbitrarily complex
tasks and learning problems:

– Agent Collision:¿is occurs when multiple agents attempt to move to the same
location at the same time. ¿is con�ict can be resolved in one of three ways: (i)
allow multiple agents to occupy the same location, (ii) �rst-come-�rst-serve
(only allow the �rst agent who made a move request for that location to actually
move—this is the current default), or (iii) randomly choose one of the agents
and satisfy their request (ignoring the requested action of the others).

– Item Blocking Movement: Item types may specify that they block agent move-
ment (e.g., a Wall item type). ¿is means that agents are not allowed to move
to locations with items of that type.

– Item Collection Requirements: Item types may specify that in order to collect
items of that type, an agent has to have �rst collected a number of other items
(e.g., collecting Woodmay be allowed only if an Axe has already been collected).

– Item Collection Costs: Similar to the collection requirements, item types may
specify that in order to collect items of that type, an agent has to drop or destroy
a speci�c number of other items (e.g., collecting an Axemay require destroying
a piece of Metal and a piece of Wood that the agent has previously collected).

interface. Users interact with the simulator programmatically. ¿e JBW provides
functions to add or remove agents from the world, query the current vision and scent
perception of each agent, and to direct agents to perform actions. Users can choose
to add multiple agents to the world, thus enabling experimentation with multi-agent
settings. Multi-agent interactions provide another controllable source of complexity
in the JBW. Users can then request actions for each agent in the simulation (i.e., turn,
move, do nothing, etc.). Once all agents have requested actions, the simulator executes
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these actions and advances time, appropriately updating the state of the world. Users
can also specify callback functions which are invoked when time is advanced.

server/client support. ¿e JBW also provides a TCP server-client interface
where the simulator can be setup to run as a server. Users (i.e., clients) can then
connect to the server, and interact with the simulator by sending messages to the
server. ¿is allows use cases such as a class setting where students can each control an
agent in a common simulated world, or perhaps a hackathon where participants can
compete in a common world. It also allows debugging and visualization tools to be
attached and detached to and from running simulator instances, without a�ecting the
simulations. In fact, this is how our visualizer, which is described in the end of this
section, communicates with the simulator.

persistence. Simulations in the JBW can be saved to and loaded from �les, which
can then be distributed across platforms. ¿is facilitates reproducibility. ¿e simulator
guarantees uniform random number generation behavior across all platforms and ma-
chines (e.g., in distributed settings). ¿e state of the pseudorandom number generator
is also saved and loaded along with the simulation.

performance. ¿e JBW is implemented in optimized C++, with performance
being highly prioritized in both its design and its implementation. ¿is allows for less
time and hardware resources to be spent simulating the world and more time and
resources to be allocated for machine learning algorithms. Additionally, the JBW is
perceptually quite simple, being a two-dimensional grid world with limited vision
and scent inputs. ¿is allows machine learning algorithms to focus less on perceptual
information processing and more on abstract information processing, which we think
is a hallmark of never-ending learning. As a rough indication of performance, on
a single core of an Intel Core i7 5820K (released in 2014) at 3.5 GHz, the JBW can
generate 8.56 patches per second, each of size 64× 64 (i.e., 35, 062 grid cells), using
the con�guration presented in Section 9.4.

visualization. Visualization can be instrumental when developing, debugging,
and evaluating never-ending learning systems. To this end, we have implemented a
real-time visualizer using Vulkan2 in which the user can see any part of the simulated
JBW, at any scale and simulation rate.¿e visualizer utilizes the simulator server-client
interface to visualize simulations running in di�erent processes or on remote servers,
in a fully asynchronous manner. Rendering is multithreaded to provide a smooth and
responsive user interface. Finally, the visualizer can be attached to and detached from
existing simulation server instances, without a�ecting the running simulations.

9.2.2 Environment

Environments manage simulator instances and provide an interface for performing
reinforcement learning experiments using the JBW. We provide implementations of

2 Information on Vulkan can be found at https://www.khronos.org/vulkan/.

https://www.khronos.org/vulkan/


9.3 learning tasks 175

the JBW environments for OpenAI Gym (Brockman et al., 2016) in Python and for
Swi RL (Platanios, 2019) in Swi . JBW environments support batching by design,
with support for parallel execution of the multiple simulator instances being managed
(i.e., one simulator for each batch entry). Perhaps the most important aspect of JBW
environments is that they require the user to specify a reward schedule to use for each
experiment. ¿is schedule e�ectively de�nes the tasks that the agents are learning to
perform. A reward schedule provides a function that, given a simulation time, returns
a reward function to use at that time. A reward function returns a scalar reward value,
given the current and previous states of the agent and the world (e.g., the world map).
For example, a simple reward function could be one that gives the agent one reward
point for each JellyBean it collects. We provide a simple domain-speci�c language
(DSL) for composing and combining multiple reward functions in arbitrary ways, to
allow for the design of composable learning tasks. ¿is enables endless possibilities
in the realms of multi-task learning, curriculum learning, and more generally never-
ending learning. Currently environments are limited to single agent reinforcement
learning settings, but we plan to support multi-agent settings in the future (this is easy
because the JBW simulator already supports multiple agents for each simulation).

9.3 learning tasks

Learning tasks can be de�ned in terms of reward functions and reward schedules,
which were de�ned in Section 9.2.2. ¿e JBW allows researchers to easily de�ne
their own reward functions and schedules, but it also provides a few primitives and
ways to compose them in order to e�ortlessly allow for quick experimentation and
prototyping. In fact, all learning tasks used in our experiments were de�ned using
these primitives. ¿e currently supported primitives are:

Reward Function Compositions
r1 ∧ r2 Applies both r1 and r2 and returns the sum of their rewards.

Reward Functions
Action[v] Give v to agents when they take an action (i.e., not a no-op).
Collect[i,v] Give v to agents for each item of type i that they collect.
Avoid[i,v] Give−v to agents for each item of type i that they collect.
Explore[v] Give v to agents each time they move further away from their starting position in the

world map.

Reward Schedules
Fixed[r] The reward function is always fixed to r, and is thus stationary.
Curriculum[{ri, ti}

R
i=1] Use reward function r1 for the first t1 steps, then r2 for t2 steps, ..., and

keep using rR after the list of reward functions is exhausted.
Cyclical[{ri, ti}

R
i=1] Use reward function r1 for the first t1 steps, then r2 for t2 steps, ..., and

then repeat after the list of reward functions is exhausted.

We note that Collect is a sparse reward function, whereas Action and Explore are
not. For conciseness, we omit the v argument in reward functions when it is set to 1.
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9.4 experiments

M
ap

Scent Dimensionality 3

Color Dimensionality 3

Patch Size 64× 64
MH Sampling Iterations 10,000
Scent Decay (λ) 0.4

Scent Diffusion (α) 0.14

Ag
en

t

Color [0.00, 0.00, 0.00]

Scent [0.00, 0.00, 0.00]

MoveForward

TurnLeftAction Space
TurnRight

Visual Range 8

Field-of-View experiment-specific

Table 9.2: Simulator con�guration used in our
experiments.

¿e goal of this section is to show how
the non-episodic, non-stationary, multi-
modal, and multi-task aspects of the
JBWmake it a challenging environment
for existingmachine learning algorithms,
through a few example case studies. For
all experiments we use the simulator con-
�guration and item types shown in Ta-
bles 9.2 and 9.3. Due to space, the case
studies focus on the single-agent setting.
We use di�erent agent models depend-
ing on which modalities are used in each
experiment. If vision is used, then the
visual �eld is passed through a convolu-
tion layer with stride 2, 3× 3 �lters, and
16 channels, and another one with stride 1, 2×2 �lters, and 16 channels.¿e resulting
tensor is �attened and passed through a dense layer with size 512. If scent is used,
then the scent vector is passed through two dense layers: one with size 32, and one
with size 512. If both modalities are being used, the two hidden representations are
concatenated. In all cases, we use the Gaussian error linear units (GELUs; Hendrycks
and Gimpel, 2016) as the nonlinearities. Finally, the result is processed by a long short-
term memory (LSTM) network (Hochreiter and Schmidhuber, 1997) which outputs a
value for the agent’s current state, along with a distribution over actions. Learning is
performed using proximal policy optimization (PPO); a popular on-policy reinforce-
ment learning algorithm proposed by Schulman et al. (2017). ¿e experiments are
implemented using Swi for TensorFlow.3

9.4.1 Case Studies

For all experiments we evaluate performance using the reward ratemetric, which is
de�ned as the amount of reward obtained per step, computed over a moving window.
¿e size of that window varies per experiment and is reported together with the results.
¿is is an appropriate metric for this task as we want to measure the improvement
in the ability of an agent to learn (i.e., the gradient of the reward rate), while also
making sure the agent does not get stuck (i.e., the reward rate goes to zero). Whenever
possible, we also report the results obtained by the greedy vision-based agent described
in Section 9.4.2. ¿e greedy agent makes additional assumptions about the world, and
thus, doesn’t generalize to more complex environments, it provides a lower bound on
the optimal reward rate. Note that a perfect upper bound cannot be obtained as that
would require solving an NP-hard discrete optimization problem.

3 https://www.tensorflow.org/swift.

https://www.tensorflow.org/swift
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JellyBean: Jelly beans appear close to bananas.
Scent [1.64, 0.54, 0.40]

Color [0.82, 0.27, 0.20]

Occlusion 0.0
Blocks Agents False

Intensity Constant[1.5]

Interactions
JellyBean : PiecewiseBox[10,100,0,-6]
Banana : PiecewiseBox[10,100,2,-100]
Wall : PiecewiseBox[50,100,-100,-100]

Banana: Bananas appear close to jelly beans and away from walls.
Scent [1.92, 1.76, 0.40]

Color [0.96, 0.88, 0.20]

Occlusion 0.0
Blocks Agents False

Intensity Constant[1.5]

Interactions
JellyBean : PiecewiseBox[10,100,2,-100]
Banana : PiecewiseBox[10,100,0,-6]
Wall : PiecewiseBox[50,100,-100,-100]

Onion: Onions appear scattered all over the world.
Scent [0.68, 0.01, 0.99]

Color [0.68, 0.01, 0.99]

Occlusion 0.0
Blocks Agents False

Intensity Constant[1.5]

Interactions None
Wall: Walls tend to be contiguous and axis-aligned.
Scent [0.00, 0.00, 0.00]

Color [0.20, 0.47, 0.67]

Occlusion 1.0 in experiments with occlusion, 0.0 otherwise
Blocks Agents True

Intensity Constant[-12]

Interactions Wall : Cross[20,40,8,-1000,-1000,-1]
Tree: Trees cluster together in irregular shapes.
Scent [0.00, 0.47, 0.06]

Color [0.00, 0.47, 0.06]

Occlusion 0.1 in experiments with occlusion, 0.0 otherwise
Blocks Agents True

Intensity Constant[2]

Interactions Tree : PiecewiseBox[100,500,0,-0.1]
Truffle: Truffles appear in forests and are very rare.
Scent [8.40, 4.80, 2.60]

Color [0.42, 0.24, 0.13]

Occlusion 0.0
Blocks Agents False

Intensity Constant[0]

Interactions Truffle : PiecewiseBox[30,1000,-0.3,-1]
Tree : PiecewiseBox[4,200,2,0]

Table 9.3: Item types used in our experiments.
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Figure 9.5: Non-episodic experiment result.
¿e reward rate is computed using a 100,000-
step window and the shaded bands correspond
to standard error over 20 runs. “Greedy Visual”
refers to the reward rate obtained by the greedy
visual agent described in Section 9.4.2.

case study #1: non-episodic.
¿e goal of this case study is to show
that the JBW allows for experimenting
with never-ending learning agents and
to also show how current machine learn-
ing methods—e.g., PPO (Schulman et
al., 2017) used to train an LSTM-based
agent—are failing to e�ectively perform
never-ending learning. For this experi-
ment we reward the agent for collecting
JellyBeans and avoiding Onions. We let
agents interact with the JBW for 10 mil-
lion steps. Our results are shown in Fig-
ure 9.5. ¿e agents seem to be learning
e�ectively for the �rst 1 million steps, but
start to underperform later on, eventu-
ally getting stuck and being unable to collect any reward. ¿is is the case for multiple
di�erent learning agents that we experimented with; both using di�erent models and
using di�erent learning algorithms, such as Deep Q-Networks (DQNs) proposed by
Mnih et al. (2013). A er connecting the visualizer to observe what happens we see that
all agents either: (i) get stuck in an area of the map that they have already explored and
exhausted of jelly beans, or (ii) get stuck constantly rotating and not moving to new
grid cells at all. ¿is indicates that the JBW is indeed challenging for current machine
learning methods when it comes to never-ending learning.

case study #2: non-stationary. ¿e goal of this case study is to demonstrate
that the JBW allows for experimenting with non-stationary and multi-task learning
problems. To this end, we perform two experiments: (i) one using a cyclical/peri-
odic reward function schedule where every 100,000 steps we alternate between the
Collect[JellyBean] ∧ Avoid[Onion] and Avoid[JellyBean] ∧ Collect[Onion]

reward functions, and (ii) one testing a couple of curriculum reward schedules for
eventually learning to Collect[JellyBean] ∧ Avoid[Onion]. ¿e results are shown
in Figure 9.6 and we observe that current standard machine learning approaches are
not able to e�ciently alternate between di�erent learning problems and are e�ectively
learning each problem from scratch whenever they switch, eventually ending up un-
able to learn either one. We also observe that agents who �rst learn to collect jelly
beans and then switch to the full reward function are able to learn to collect jelly beans
and avoid onions faster than agents that �rst learn to avoid onions or face the �nal
learning problem directly from the beginning. Eventually all agents perform similarly,
but this case study showcases how the JBW enables research in curriculum learning.

case study #3: multi-modal. ¿e goal of this case study is to: (i) show how
computationally e�cient features, such as the �eld of view mask and visual occlusion,
allow for increasing the learning problem complexity in a controllable manner and,
perhaps most importantly, (ii) show how the perception modalities of the JBW are
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Collect[JellyBean]∧ Avoid[Onion]

No curriculum
The reward function is
always set to the final one.

Curriculum Length
The reward rates
are not comparable
before this point

Collect[Onion]∧ Avoid[JellyBean]

Curriculum #1
For the first 100,000 steps
the reward function is set to
Avoid[Onion]

Curriculum #2
For the first 100,000 steps
the reward function is set to
Collect[JellyBean]

Final Reward Function
Collect[JellyBean]
∧ Avoid[Onion]

Figure 9.6: Non-stationary experiment results. ¿e reward rate is computed using a 100,000-
step window and the shaded bands correspond to standard error over 20 runs.

complementary. We thus perform three experiments. For the �rst two we use the �xed
reward function Collect[JellyBean] and for the last one we use Collect[Onion].
We change the reward function in order to show how easy it is to experiment using
di�erent tasks in the JBW. In the �rst experiment, we vary the �eld of view of the
agents. ¿e results are shown in the top plot of Figure 9.7. We see that decreasing
the �eld of view allows us to make the learning task harder, while maintaining the
same computational cost for the environment. Similarly, in the second experiment we
measure the e�ect that visual occlusion has on performance. ¿e results are shown in
the middle plot of Figure 9.7 and we observe that enabling visual occlusion makes
the learning task harder. Finally, with the third experiment our goal is to show that
vision and scent are complementary. ¿e results are shown in the bottom plot of
Figure 9.7. We see that “vision” agents do better than “scent” agents, indicating that
vision is perhaps an easier perception modality to use in the context of this learning
task. Surprisingly though, the “vision” agents also do better than the “vision+scent”
agents. ¿is indicates a limitation of the model because, even though scent contains
useful information that vision does not, the agents seem to get confused by it and
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Figure 9.7:Multi-modal experiment results.¿e braces on the right specify the reward function
used in each case. ¿e reward rate is computed using a 100,000-step window and the shaded
bands correspond to standard error over 20 runs. “Greedy Visual” refers to the reward rate
obtained by the greedy visual agent baseline described in Section 9.4.2 (which, as explained in
that section, is not able to handle visual occlusion).

do not seem able to use it properly. It also shows the need for better multi-modal
algorithms and the utility of the JBW in testing such algorithms. ¿e relative utility of
scent and vision depends on the environment and the agent model. We demonstrate
this in Section 9.4.3 by providing a di�erent con�guration where “scent” agents are
able to outperform both “vision” and “vision+scent” agents.
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9.4.2 Greedy Visual Agent

As a benchmark and for the sake of comparison, we also implemented a simple greedy
agent that searches its visual �eld for cells of a particular color and then computes
the shortest path to those cells. ¿is algorithm makes the assumption that reward is
maximized simply by collecting items of a single color, ad in�nitum. It also assumes
that this color is known a priori. Additionally, it assumes the color of obstacles (items
that block agent movement or that should be avoided as part of the reward function)
is known a priori, and is distinct from the color of items that provide reward. ¿e
shortest path it computes is such that it never goes through any such obstacles. ¿e
algorithm is shown in pseudocode in Algorithm 9.1.

Algorithm 9.1: Pseudocode for the greedy vision-based algorithm.
Inputs :Color of rewarding items cr and color of obstacles cw.

Visual �eldωt.
1 bestPath← null.
2 shortestPath← ShortestPath(ωt, cr, cw).
3 if bestPath = null or |shortestPath| < |bestPath| then
4 bestPath← shortestPath

5 if bestPath = null then
6 if the cell in front of the agent has color γcw for some γ > 0 then
7 return MoveForward

8 else
9 return one of {TurnLeft, TurnRight} sampled at random
10 else
11 nextAction← DequeueFrom(bestPath)

12 if bestPath has no further actions then
13 bestPath← null

14 return nextAction

Output: Next action to take.

¿e function ShortestPath is simply Dijkstra’s algorithm on a directed graph where
each vertex corresponds to a unique agent position and direction within its visual �eld
ωt, and each edge corresponds to a possible action that transitions between agent
states (Dijkstra, 1959). Let cr be the color of items that provide reward, and cw be
the color of items that block agent movement. ¿e algorithm returns a shortest path
from the agent’s current position and direction to a cell that has a color γcr for any
γ > 0, while avoiding cells that have color γcw for any γ > 0 (we match any color in
the direction of the vectors cr and cw in order to detect partially occluded items). If
no such path exists, ShortestPath returns null. In the case where the agent’s �eld of
view is limited, ShortestPath only returns paths that pass through cells within the
agent’s �eld of view. Also, in the experiment where the agent must additionally avoid
Onion items, ShortestPath avoids them in the same way that it avoids obstacles: it
avoids cells that have color γco for any γ > 0, where co is the color of Onions.
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In environments with visual occlusion, if items with high occlusion are arranged in
a line (such as a wall), and the agent is adjacent to the wall and facing it, the portions
of the wall further from the agent will be occluded by the portion of the wall closer to
the agent. Since we currently do not distinguish between empty cells and completely
occluded cells, ShortestPath will return paths that may pass through the wall. If no
other paths are returned, the agent will continuously try to move through the wall
and make no progress.

9.4.3 Relative Utility of Scent and Vision

Scent passes through
walls and so the agent
needs to learn that even
though it can smell an
item being close, that
does not mean the
shortest path is feasible
and needs to combine
the scent informa�on
with the visual
informa�on.

Figure 9.8: Example showing one of the chal-
lenges the scent modality poses for agents.

¿e relative di�culty of utilizing scent or
vision to e�ectively navigate in the JBW en-
vironments depends on the environment
con�guration as well as the method used
by the learning agent. For example, if the
learning agent does not possess memory,
it cannot remember the scent of any previ-
ously visited tile, and thus it will not be able
to determine the direction from which the
scent is di�using.¿erefore, suchmethods
will not bene�t from the information provided by the scent modality. In addition,
scent is not necessarily blocked by items that block movement (e.g., walls). ¿us,
in environments with such items, scent is more di�cult to utilize, since the simple
strategy of following paths of monotonically increasing scent could lead to a wall. ¿e
agent could be fooled to believe an item is nearby when, in fact, it is behind a wall.¿is
is illustrated in Figure 9.8 and is possibly one of the main reasons the “vision+scent”
agent underperforms the “vision” agent in Figure 9.7. In the future, we would also
like to support items that can block or re�ect scent, which can result in interesting
dynamics and make it potentially easier for agents to avoid this challenge.

M
ap

Scent Dimensionality 3

Color Dimensionality 3

Patch Size 32× 32
MH Sampling Iterations 4,000
Scent Decay (λ) 0.4

Scent Diffusion (α) 0.14

Ag
en

t

Color [0.00, 0.00, 0.00]

Scent [0.00, 0.00, 0.00]

MoveForward

TurnLeftAction Space
TurnRight

Visual Range 5

Field-of-View 60◦

Table 9.4: Simulator con�guration used for
showing the relative utility of scent and vision.

In order to showcase how scent can
provide useful information, we also de-
signed a simpler environment con�gura-
tion that does not contain any walls. ¿e
con�guration for this world is shown in
Tables 9.4 and 9.5. Given the task of col-
lecting JellyBeans, we expect the scent
modality to be very useful as long as the
agent has some sort of memory. ¿e re-
sults of using an LSTM-based agent are
shown in Figure 9.9. We observe that the
“scent” agent outperforms both the “vi-
sion” and the “vision+scent” agents. ¿is
is the opposite pattern of what we ob-
serve in Figure 9.7. Also, note that since the con�gurations di�er, the reward rates
between the two �gures are not directly comparable. ¿is can partly be explained
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Figure 9.9: Results of experiments showcasing the relative utility of scent and vision.

JellyBean: Jelly beans appear close to bananas.
Scent [0.0, 0.0, 1.0]

Color [0.0, 0.0, 1.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5.3]

Interactions
JellyBean : PiecewiseBox[10,200,0,-6]
Banana : PiecewiseBox[10,200,2,-100]
Onion : PiecewiseBox[200,0,-100,-100]

Banana: Bananas appear close to jelly beans.
Scent [0.0, 1.0, 0.0]

Color [0.0, 1.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5.3]

Interactions
JellyBean : PiecewiseBox[10,100,2,-100]
Banana : PiecewiseBox[10,200,0,-6]
Onion : PiecewiseBox[200,0,-6,-6]

Onion: Onions appear scattered, away from jellybeans and bananas.
Scent [1.0, 0.0, 0.0]

Color [1.0, 0.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5]

Interactions JellyBean : PiecewiseBox[200,0,-100,-100]
Banana : PiecewiseBox[200,0,-6,-6]

Table 9.5: Item types for the simple environment where the scent modality dominates the
vision modality.

by the fact that, in this case, the visual �eld of the agent is more restricted, thereby
limiting the agent’s reliance on vision in its learning. Ideally agents should be able to
use each perception modality optimally and not be “confused” by the fact that one of
them may be harder to utilize than the other. ¿ese experiments showcase how the
JBW can be used to evaluate multi-modal machine learning algorithms.
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Figure 9.10: Visualization of an example environment with spatial non-stationarity. Each tile is
colored according to its scent. JellyBeans are shown in blue, Bananas in green, and Onions
in red. Walls are depicted as grey squares.

9.4.4 Example of Spatial Non-Stationarity

M
ap

Scent Dimensionality 3

Color Dimensionality 3

Patch Size 32× 32
MH Sampling Iterations 4,000
Scent Decay (λ) 0.4

Scent Diffusion (α) 0.14

Ag
en

t

Color [0.00, 0.00, 0.00]

Scent [0.00, 0.00, 0.00]

MoveForward

TurnLeftAction Space
TurnRight

Visual Range 5

Field-of-View experiment-specific

Table 9.6: Simulator con�guration used for
our non-strationary environment.

To demonstrate the ability to generate spa-
tially non-stationary worlds in JBW, we pro-
vide a con�guration that makes use of non-
stationary intensity and interaction func-
tions. ¿e con�guration is shown in Ta-
bles 9.6 and 9.7, and a visualization is pro-
vided in Figure 9.10. JellyBeans and Onions
appear together in clusters and, since this con-
�guration uses the non-stationary intensity
function RadialHash, these clusters are ar-
ranged in concentric circles around the ori-
gin that are irregularly spaced. RadialHash
uses a hash function to induce a pseudoran-
dom relationship between the distance to the
origin and the likelihood of �nding such clus-
ters. Walls in this environment also have a non-stationary distribution. In some re-
gions, they are smaller and more frequent, whereas in other regions they are longer
and appear more sporadically.
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JellyBean: Jelly beans appear close to bananas.
Scent [0.0, 0.0, 1.0]

Color [0.0, 0.0, 1.0]

Occlusion 0.0
Blocks Agents False

Intensity RadialHash[500,60,-3.0,14]

Interactions
JellyBean : PiecewiseBox[10,200,0,-6]
Banana : PiecewiseBox[10,200,2,-100]
Onion : PiecewiseBox[200,0,-100,-100]

Banana: Bananas appear close to jelly beans.
Scent [0.0, 1.0, 0.0]

Color [0.0, 1.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity RadialHash[500,60,-3.0,14]

Interactions
JellyBean : PiecewiseBox[10,100,2,-100]
Banana : PiecewiseBox[10,200,0,-6]
Onion : PiecewiseBox[200,0,-6,-6]

Onion: Onions appear scattered, away from jellybeans and bananas.
Scent [1.0, 0.0, 0.0]

Color [1.0, 0.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5]

Interactions JellyBean : PiecewiseBox[200,0,-100,-100]
Banana : PiecewiseBox[200,0,-6,-6]

Wall: Walls tend to be contiguous and axis-aligned.
Scent [0.0, 0.0, 0.0]

Color [0.5, 0.5, 0.5]

Occlusion 1.0 in experiments with occlusion, 0.0 otherwise
Blocks Agents True

Intensity Constant[0]

Interactions Wall : CrossHash[60,4,25,2,20,-200,-20,1]

Table 9.7: Item types for the non-stationary environment.





10CONCLUSION

In the introduction of this thesis we set out to test the following hypothesis:

thesis statement: A computer system that learns to performmultiple tasks jointly
and that is aware of the relationships between these tasks, will be able to learnmore
e�ciently and e�ectively than a system that learns to perform each task in isolation.
Moreover, the relationships between the tasks may either be explicitly provided
through supervision or implicitly learned by the system itself, and will allow the
system to self-re�ect and evaluate itself without any task-speci�c supervision.

In the following section we summarize our key results, discuss how they relate to this
hypothesis, and provide evidence to support it. ¿en, we propose multiple avenues
of research that this thesis opens up and that we consider interesting and potentially
highly in�uential for future work.

10.1 key results

In Chapter 2, we introduced the concept of estimating the error rate of each of several
approximations to the same function, based on their agreement rates over unlabeled
data and we provided three di�erent analytical methods to do so. Our experimental
results are encouraging and suggest that function agreement rates are indeed very
useful in estimating function error rates and thus, answer our motivating question:
consistency does imply correctness, under certain independence assumptions. We con-
sider this work to be a �rst step towards developing a self-re�ection framework for
autonomous learning systems. However, in Chapter 2 we also identi�ed three key
limitations of the proposed methods that were addressed in the following chapters.
In Chapter 3, we presented a method that is able to account for dependencies among
the classi�ers, and that is based on a probabilistic graphical model. In Chapter 4, we
proposed a method that is further able to account for logical constraints between
the labels that the classi�ers predict (e.g., a NP that refers to a city cannot also refer
to an animal at the same time and therefore, if a classi�er predicts that a given NP
refers to a city and another one predicts that it refers to an animal, then at least
one of them has to be wrong). In Chapter 5, we proposed yet another method for
tackling this problem that o�ers a highly robust algorithm and allows for learning
directly from multiple noisy sources of supervision combined with self-supervision
in an end-to-end fashion. Interestingly, the last method also achieves state-of-the-art
performance among existing methods for aggregating crowdsourced labels. ¿en, in
Chapter 6, we showed how this method and the underlying idea can also be used
to tackle other problems that may at �rst seem completely disconnected from the
original setting that motivated this work. Speci�cally, we showed that it can be used
for robust graph-based semi-supervised learning, and achieve state-of-the-art results
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in this setting as well. ¿is concluded Part i of this thesis and provided evidence that
relationships between multiple functions that a system is learning can allow it to
self-re�ect and evaluate itself without any task-speci�c supervision, thus validating
the second clause of our thesis statement.
In Chapter 7, we provided a brief history of multi-task learning along with the

current landscape of multi-task learning, and then proposed contextual parameter
generation (CPG) as an e�ective abstraction for sharing information among multiple
tasks that are being learned jointly. CPG also allows us to explicitly encode relation-
ships between the tasks being learned. ¿en, in Chapter 8 we presented multiple case
studies for evaluating the e�ectiveness and usefulness of CPG. ¿ese case studies
provided evidence that, when using CPG, learning to perform multiple tasks jointly
while being aware of the relationships between these tasks, results in faster training
and signi�cantly improved performance, thus validating the �rst clause of our thesis
statement and concluding Part ii of this thesis.
Finally, in Chapter 9 we presented the jelly bean world (JBW), a novel framework

that we designed for evaluating never-ending learning systems, and which allows us to
control the kinds of problems the learning agents need to solve, and their interactions.
We have designed the JBW in a way that renders never-ending learning necessary,
and that allows us to test all parts of the never-ending learning thesis, in a controllable
manner. In Section 8.4, we also used this framework to showcase the e�ectiveness
of contextual parameter generation in settings where there exists a compositional
structure over the tasks that are being learned.
We have thus not only veri�ed that our thesis statement holds true in multiple

settings, but we have also proposed a novel evaluation framework that ought to allow
researchers to evaluate other new approaches related to our thesis statement. However,
multiple questions remain unanswered and, perhaps most importantly, our work has
resulted in manymore new questions that we hope will help stimulate further research
in this direction. In the next section, we discuss some of these questions along with
some related directions for future work.

10.2 future work

In our opinion, successful research should pave the way for further progress and
research. To this end, we now present some future directions for the work presented
in this thesis:

In Part i we provided strong empirical evidence that consistency does imply
correctness under certain conditions. However, we only have strong theoretical
guarantees for the case when we have multiple noisy function approximations
that make conditionally independent errors and where the majority of them
have accuracies that are better than random guessing. We have no theoretical
guarantees that this is true in general and no theoretical understanding of when
it is true, other than the fact that it should work when the function approxima-
tionsmake conditionally independent errors.¿erefore, an interesting direction
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for future work would be to provide a theory that underlies the methods we
proposed in Part i of this thesis.
Similarly, in Part ii we proposed contextual parameter generation and obtained
strong empirical evidence that it works well in practice. However, we have no
good theoretical understanding as to why this happens. We only know that it
has to do with how we share information across the di�erent tasks. ¿erefore,
understanding contextual parameter generation better, including when and
why it works or does not work, is an interesting direction for future work.
In Part ii we also brie�y discussed that o entimes there exists a compositional
structure among the tasks being learned. In fact, composition lies at the core of
category theory, a �eld that attempts to unify all ofmathematics. It even attempts
to unify mathematics with other �elds. ¿erefore, understanding composition
and how to e�ciently learn composable functions could be of great interest to
the machine learning and arti�cial intelligence communities.
In Section 7.2.3 we brie�y described how contextual parameter generation could
be used as a method for neural architecture search. Exploring this question
would be an interesting direction for future work.
Our work in this thesis has inspired us to propose a novel type of neural architec-
tures for never-ending learning that we refer to as neural cognitive architectures.
In fact, the model we proposed in Section 8.4 is a simple instance of a neural
cognitive architecture. We have brie�y explored the design space of neural
cognitive architectures based on our �ndings from this thesis and we present
an extensive proposal in Appendix C. Implementing and evaluating neural
cognitive architectures as a step towards arti�cial general intelligence is of great
interest to us, but it is outside the scope of this thesis.

10.3 key takeaways

¿ere are a few key takeaways from this thesis. First of all, our work in Part i shows
that consistency among multiple function approximations is directly related to the
correctness of these approximations.¿is relationship is governed by the dependencies
that exist among these function approximations. ¿e self-re�ection methods we
proposed enable using unlabeled data for training machine learning systems in ways
that it was not possible before. In Chapter 5 we presented a setting where we train a
deep learningmodel using only noisy labels, and in Chapter 6 we showed how a similar
method can be used to train models in a semi-supervised graph node classi�cation
setting. Similarly, in Part ii we proposed a novel abstract framework for multi-task
learning called contextual parameter generation (CPG).We showedhow it signi�cantly
outperforms existing methods for multi-task learning and provided some intuition as
to why this happens. As we discussed in Chapter 1, multi-task learning is a natural
big next step for the machine learning community and we believe that CPG may play
an important role in making it possible. Speci�cally, we believe that designing neural
cognitive architectures and compositional multi-task learning methods will move the
community in the right direction. Finally, we hope that the questions raised by this
thesis and that remain unanswered will lead to impactful research in the future.
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ACOMPETENCE-BASED CURRICULUM LEARNING

A system that is capable of large-scale multi-task learning must be capable of learning
to perform a potentially very large number of tasks, some of which may be related.
For example, a common pattern that we encounter in human learning is that some
of the tasks that humans perform can be broken down into smaller sub-tasks that
they have previously learned to perform. We refer to this kind of structure as task
compositionality. In order to be able to learn large numbers of tasks humans tend to
use various forms of curriculum learning, meaning that they learn tasks in a particular
order that helps accelerate learning. ¿is turns out to be especially important for
certain kinds of tasks (e.g., solving math problems). Inspired by this characteristic of
human learning we propose competence-based curriculum learning, a new curriculum
learning paradigm that can be used to enable accelerate learning for computer systems.
For this chapter, we use machine translation as the example target application for

curriculum learning. ¿is is motivated by the fact that machine translation o�ers
good and established benchmarking tasks for evaluating models, while at the same
time o�ering di�cult and active research problems. Moreover, as we explain in the
following section, the current state-of-the-art models for machine translation are
notoriously hard to train, which makes them an ideal target for curriculum learning
approaches. Aswe shall see, it is also quite easy to de�ne heuristics for judging howhard
di�erent sentences are to translate, and this can be used in the context of curriculum
learning. Note that, machine translation is also especially convenient for us because
of the infrastructure we developed for our earlier machine translation work that was
presented in Section 8.2. In the next section, we provide some background onmachine
translation and prior work attempting to apply curriculum learning in this domain.We
then present our general-purpose curriculum learning framework, before concluding
with an extensive experimental evaluation of the proposed framework in the context
of machine translation.1

a.1 neural machine translation and curriculum learning

Neural Machine Translation (NMT; Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015) now represents the state-of-the-art approach adopted in most machine
translation systems (Crego et al., 2016; Wu et al., 2016a; Bojar et al., 2017), largely
due to its ability to bene�t from end-to-end training on massive amounts of data.
In particular, the recently-introduced self-attentional Transformer architectures by
Vaswani et al. (2017) are rapidly becoming the de-facto standard in NMT, having
demonstrated both superior performance and training speed compared to previous
architectures using recurrent neural networks (RNNs; Kalchbrenner and Blunsom,

1 ¿e work presented in this chapter has been previously published in (Platanios et al., 2019).
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Figure A.1: Overview of the competence-based curriculum learning framework. During
training, di�culty of each training example is estimated and a decision on whether to use it is
made based on the current competence of the model.

2013; Sutskever et al., 2014). However, large scale NMT systems are o en hard to train,
requiring complicated heuristics which can be both time-consuming and expensive to
tune. ¿is is especially true for Transformers which have been shown to consistently
outperform RNNs (Popel and Bojar, 2018), but they do so while relying on a number
of heuristics such as specialized learning rates and large-batch training.
In this chapter, we tackle this problem by proposing a curriculum learning frame-

work for training NMT systems that reduces training time, reduces the need for
specialized heuristics or large batch sizes, and results in overall better performance.
It allows us to train both RNNs and, perhaps more importantly, Transformers, with
relative ease. ¿e proposed approach is based on the idea of teaching algorithms in a
similar manner to humans, stating with easy concepts and moving to more di�cult
ones later on. ¿is idea can be traced back to the work of Elman (1993) and Krueger
and Dayan (2009). ¿e main motivation is that training algorithms can perform
better if training data is presented in a speci�c order, starting from easy examples and
moving on to more di�cult ones, as the learner becomes more competent. In the case
of machine learning, it can also be thought of as a means to avoid getting stuck in bad
local optima early on in training. An overview of the proposed framework is shown
in Figure A.1.
Notably, we are not the �rst to examine curriculum learning for NMT, although

other related works have been met with mixed success. Kocmi and Bojar (2017)
explore the impact of several curriculum heuristics on training a translation system
for a single epoch, presenting the training examples in an easy-to-hard order based
on sentence length and vocabulary frequency. However, their strategy introduces all
training examples during the �rst epoch and it is not clear how this a�ects learning
in the following epochs with o�cial evaluation results (Bojar et al., 2017) indicating
that the �nal performance may be hurt when using this strategy. Contemporaneously
to our work, Zhang et al. (2018) further propose to split the training examples into a
prede�ned number of bins (5, in their case), based on various di�culty metrics. A
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manually designed curriculum schedule then speci�es the bins from which the model
samples training examples. Experiments demonstrate that bene�ts of curriculum
learning are highly sensitive to several hyperparameters (e.g., learning rate, number
of iterations spent in each phase, etc.), and largely provide bene�ts in convergence
speed as opposed to �nal model accuracy.
In contrast to these previous approaches, we de�ne a continuous curriculum learn-

ing method—instead of a discretized regime—with only one tunable hyperparameter
(the duration of curriculum learning). Furthermore, as opposed to previous work
which only focuses on RNNs, we also experiment with Transformers which are noto-
riously hard to train (Popel and Bojar, 2018). Finally, unlike any of the previous work,
we show that our curriculum approach helps not only in terms of convergence speed,
but also in terms of the learned model performance. In summary, our method has the
following desirable properties:

1. Abstract: It is a novel, generic, and extensible formulation of curriculum learn-
ing. A number of previous heuristic-based approaches, such as that of Kocmi
and Bojar (2017), can be formulated as special cases of our framework.

2. Simple: It can be applied to existingNMTsystemswith only a smallmodi�cation
to their training data pipelines.

3. Automatic: It does not require any tuning other than picking the value of a
single parameter, which is the length of the curriculum (i.e., for howmany steps
to use curriculum learning, before easing into normal training).

4. E�cient: It reduces training time by up to 70%, whereas contemporaneous work
of Zhang et al. (2018) reports reductions of up to 46%.

5. Improved Performance: It improves the performance of the learned models by
up to 2.2 BLEU points, where the best setting reported by Zhang et al. (2018)
achieves gains of up 1.55 BLEU a er careful tuning.

a.2 competence-based curriculum learning

We propose competence-based curriculum learning, a training framework based on
the idea that training algorithms can perform better if training data is presented in a
way that aligns with the model’s current competence. More speci�cally, we de�ne the
following two concepts that are central to our framework:

difficulty. A value that represents the di�culty of a training example and that
may depend on the current state of the learner. For example, sentence length is an
intuitive di�culty metric for natural language processing tasks. ¿e only constraint
is that di�culty scores are comparable across di�erent training examples (i.e., the
training examples can be ranked according to their di�culty).

competence. A value between 0 and 1 that represents the progress of a learner
during its training. It is de�ned as a function of the learner’s state. More speci�cally,
we de�ne the competence c(t) at time t (measured in terms of training steps) of a
learner as the proportion of training data it is allowed to use at that time. ¿e training
examples are ranked according to their di�culty and the learner is only allowed to
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Thank you very much! 4
Barack Obama loves ... 13
My name is ... 6
What did she say ... 123

Sentence Length

Thank you very much! 0.01
Barack Obama loves ... 0.15
My name is ... 0.03
What did she say ... 0.95

Sentence Difficulty

Figure A.2: Example illustration of the preprocessing sequence used in the proposed algorithm.
¿e histogram on the top is that of sentence lengths from the WMT-16 En)De dataset used in
our experiments. Here sentence lengths represent an example di�culty scoring function, d.
“CDF” stands for the empirical “cumulative density function” obtained from the histogram in
the top plot.

use the top c(t) portion of them at time t.

Using these two concepts, we propose the algorithm shown in Algorithm A.1. A
high-level overview is shown in Figure A.1, an example visualization of the �rst two
steps is shown in Figure A.2, and an example of the interaction between di�culty
and competence is shown in Figure A.3. Note that, at each training step, we are
not changing the relative probability of each training example under the input data
distribution, but we are rather constraining the domain of that distribution based on
the current competence of the learner. Eventually, once the competence becomes 1,
the training process becomes equivalent to the one that does not use a curriculum,
with the main di�erence that the learner should now be more capable to learn from
the more di�cult examples. Given the dependence of this algorithm on the speci�c
choices of the di�culty scoring function d and the competence function c, we now
describe our instantiations for training NMT models.

a.2.1 Di�culty Metrics

¿ere are many possible ways to de�ne the di�culty of translating a sentence. We
consider two heuristics inspired by what we, as humans, may consider di�cult when
translating, and by factors which can negatively impact the optimization algorithms
used when training NMT models. In the rest of this section, we denote our training
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Algorithm A.1: Competence-based curriculum learning algorithm.
Inputs :Dataset,D = {si}

M
i=1, consisting ofM examples.

Model trainer, T, that uses batches of training data for each update.
Di�culty scoring function, d.
Competence function, c.

1 Compute the di�culty, d(si), for each si ∈ D.
2 Compute the cumulative density function of the di�culty scores. ¿is results

in one di�culty score per example, d(si) ∈ [0, 1]. Illustrated in Figure A.2.
3 for training step t = 1, . . . do
4 Compute the model competence, c(t).
5 Sample a data batch Bt uniformly from all si ∈ D, such that d(si) 6 c(t).

Illustrated in Figure A.3.
6 Invoke the trainer, T, using Bt as input.
Output: Trained model.

corpus as a collection ofM sentences, {si}Mi=1, where each sentence is a sequence of
words: si = {wi0, . . . , w

i
Ni

}.

sentence length. We argue that it is harder to translate longer sentences, as
longer sentences require being able to translate their component parts, which o en
consist of short sentences. Furthermore, longer sentences are intuitively harder to
translate due to the propagation of errors made early on when generating sentences
in the target language. ¿erefore, a simple way to de�ne the di�culty of a sentence
si = {wi0, . . . , w

i
Ni

} is as follows:

dlength(si) , Ni. (A.1)

Note that, we can compute this di�culty metric on either the source language sentence
or the target language sentence. We only consider the source sentence in this chapter.2

word rarity. Another aspect of language that can a�ect the di�culty of translation
is the frequency with which words appear. For example, humans may �nd rare words
hard to translate because we rarely ever see them and it may be hard to recall their
meaning. ¿e same can be true for NMT models where: (i) the statistical strength
of the training examples that contain rare words is low and thus the model needs
to keep revisiting such words in order to learn robust representations for them, and
(ii) the gradients of the rare word embeddings tend to have high variance; they are
overestimates of the true gradients in the few occasions where they are non-zero,
and underestimates otherwise. ¿is suggests that using word frequencies may be a

2 NMT models typically �rst pick up information about producing sentences with the correct length.
It can be argued that presenting only short sentences �rst may lead to learning a strong bias for the
sentence lengths. In our experiments, we did not observe this to be an issue as the models kept improving
and predicting sentences of the correct length, throughout training.
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Difficulty
Step 1,000

Competence

Competence at current stepSample uniformly from
blue region

Step 10,000

Figure A.3: Example illustration of the training data “�ltering” performed by our curriculum
learning algorithm. At each training step: (i) the current competence of the model is computed,
and (ii) a batch of training examples is sampled uniformly from all training examples whose
di�culty is lower than that competence. In this example, we are using the sentence length
di�culty heuristic shown in Equation A.1, along with the square root competence model
shown in Equation A.8.

helpful di�culty heuristic. Given a corpus of sentences, {si}Mi=1, we de�ne relative
word frequencies as:

p̂(wj) ,
1

Ntotal

M∑
i=1

Ni∑
k=1

1{wik=wj}
, (A.2)

where j = 1, . . . , #{unique words in corpus} and 1{·} evaluates to one if its subscript
statement is true and to zero otherwise. Next, we need to decide on how to aggregate
the relative word frequencies of all words in a sentence to obtain a single di�culty
score for the sentence. Previous research has proposed various pooling operations,
such as minimum, maximum, and average (Zhang et al., 2018), but they show that they
do not work well in practice. We propose a di�erent approach. Ultimately, what may
be most important is the overall likelihood of a sentence as it contains information
about both word frequency and, implicitly, about sentence length. An approximation
to this likelihood is the product of the unigram probabilities, which is related to
previous work in the area of active learning (Settles and Craven, 2008). ¿is product
can be thought of as an approximate language model (assuming words are sampled
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independently) and also implicitly incorporates information about the sentence length
that was proposed earlier (longer sentence scores are products over more terms in
[0, 1] and are thus likely to be smaller). We thus propose the following di�culty
heuristic:

drarity(si) , −

Ni∑
k=1

log p̂(wik), (A.3)

where we use logarithms of probabilities to prevent numerical errors. Note that nega-
tion is used because we de�ne less likely (i.e., more rare) sentences as more di�cult.

¿ese are just two example di�culty metrics and it is easy to conceive others, such as
the occurrence of homographs (Liu et al., 2018) or context-sensitive words (Bawden
et al., 2018), the examination of which we leave for future work.

a.2.2 Competence Functions

For the purposes of this chapter, we propose two simple functional forms for c(t) and
justify them with some intuition. More sophisticated strategies that depend on the
loss function, the loss gradient, or on the learner’s performance on held-out data, are
possible, but we do not consider them in this chapter.

linear. ¿is is a simple way to de�ne c(t). Given an initial value c0 , c(0) > 0

and a slope parameter r, we de�ne:

c(t) , min (1, tr+ c0) . (A.4)

In this case, new training examples are constantly being introduced during the training
process, with a constant rate r (as a proportion of the total number of available training
examples). Note that we can also de�ne r = (1 − c0)/T , where T denotes the time
a er which the learner is fully competent, which results in:

clinear(t) , min
(
1, t
1− c0
T

+ c0

)
. (A.5)

root. In the case of the linear form, the same number of new and more di�cult
examples are added to the training set at all times t. However, as the training data
grows in size, it gets less likely that any single example will be sampled in a training
batch. ¿us, given that the newly added examples are less likely to be sampled, we
propose to reduce the number of new training examples per unit time as training
progresses in order to give the learner su�cient time to assimilate their information
content. More speci�cally, we de�ne the rate in which new examples are added as
inversely proportional to the current training data size:

dc(t)

dt
=

P

c(t)
, (A.6)
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Figure A.4: Plots of various competence functions with c0 = 0.01 (initial competence value)
and T = 1, 000 (total duration of the curriculum learning phase).

for some constant P > 0. Solving this simple di�erential equation, we obtain:∫
c(t)dc(t) =

∫
Pdt⇒ c(t) =

√
2Pt+D, (A.7)

for some constants P andD. ¿en, we consider the following constraint: c0 , c(0) =√
D⇒ D = c20. We also have that c(T) = 1⇒ P = (1− c20)/2T , where T denotes

the time a er which the learner is fully competent. ¿is, along with the constraint
that c(t) ∈ [0, 1] for all t > 0, results in the following de�nition:

csqrt(t) , min

1,
√
t
1− c20
T

+ c20

 . (A.8)

In our experiments, we refer to this speci�c formulation as the “square root” com-
petence model. If we want to make the curve sharper, meaning that even more time
is spent per example added later on in training, then we can consider the following
more general form:

croot-p(t) , min

1, p
√
t
1− cp0
T

+ cp0

 , (A.9)

for p > 1. We observed that best performance is obtained when p = 2 and then, as
we increase p, the performance converges to that obtained when training without
using any curriculum. Plots of the competence functions discussed in this section are
shown in Figure A.4.
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a.2.3 Scalability

Our method can be easily used to train large-scale NMT systems. ¿is is because it
mainly consists of a preprocessing step of the training data that computes the di�culty
scores. ¿e implementation we are releasing with this thesis computes these scores
in an e�cient manner by building a graph describing their dependencies, as well as
whether they are sentence-level scores (e.g., sentence length), or corpus-level (e.g.,
CDF), and using this graph to optimize their execution. Using only 8GB of memory,
we can process up to 20k sentences per second when computing sentence rarity scores,
and up to 150k sentences per second when computing sentence length scores.

a.3 experiments

For our experiments we use three of the most commonly used datasets in NMT,
that range from a small benchmark dataset to a large-scale dataset with millions
of sentences. Statistics about these datasets are shown in Table A.1. We perform
experiments using both RNNs and Transformers. For the RNN experiments we use
a bidirectional LSTM for the encoder, and an LSTM with the attention model of
Bahdanau et al. (2015) for the decoder. ¿e number of layers of the encoder and the
decoder are equal. We use a 2-layer encoder and a 2-layer decoder for all experiments
on the IWSLT datasets, and a 4-layer encoder and a 4-layer decoder for all experiments
on theWMT dataset, due to this dataset’s signi�cantly larger size. For the Transformer
experiments we use the “Base” model proposed by Vaswani et al. (2017). It consists
of a 6-layer encoder and decoder, using 8 attention heads and 2,048 units for the
feed-forward layers. ¿e multi-head attention keys and values depth is set equal
to the word embedding size. ¿e word embedding size is 512 for all experiments.
Furthermore, for the Transformer experiments on the two smaller datasets we do not
use any learning rate schedule, and for the experiments on the largest dataset we use
the default Transformer schedule. A detailed discussion on learning rate schedules
for Transformers is provided towards the end of this section. All of our experiments
are conducted on a machine with a single Nvidia V100 GPU, and 24 GBs of system
memory.

a.3.1 Setup

During training, we use a label smoothing factor of 0.1 (Wu et al., 2016a) along with
the AMSGrad optimizer (Reddi et al., 2018) using its default parameters in TensorFlow
and a batch size of 5,120 tokens (due to GPU memory constraints). During inference,
we employ beam search with a beam size of 10 and the length normalization scheme
of Wu et al. (2016a).3

3 We emphasize that we did not run experiments with other architectures or con�gurations, and thus our
baseline architectures were not chosen because they were favorable to our method, but rather because
they were frequently mentioned in existing literature.
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Dataset # Train # Dev # Test
IWSLT-15 En )Vi 133k 768 1268
IWSLT-16 Fr )En 224k 1080 1133
WMT-16 En )De 4.5M 3003 2999

Table A.1: Number of parallel sentences in each dataset. “k” stands for “thousand” and “M”
stands for “million.”

curriculum hyperparameters. We set the initial competence c0 to 0.01, in
all experiments. ¿is means that all models start training using the 1% easiest training
examples. ¿e curriculum length T is e�ectively the only hyperparameter that we
need to set for our curriculum learning methods. In each experiment, we set T in the
following manner: we train the baseline model without using any curriculum and we
compute the number of training steps it takes to reach approximately 90% of its �nal
BLEU score.We then set T to this value.¿is results in T being set to 5,000 for the RNN
experiments on the IWSLT datasets, and 20,000 for the corresponding Transformer
experiments. ForWMT, we set T to 20,000 and 50,000 for RNNs and Transformers,
respectively. Furthermore, we use the following notation and abbreviations when
presenting our results:

– Plain: Trained without using any curriculum.
– SL: Curriculum with sentence length di�culty.
– SR: Curriculum with sentence rarity di�culty.
– Linear: Curriculum with the linear competence shown in Equation A.5.
– Sqrt: Curriculum with the square root competence shown in Equation A.8.

data preprocessing. Our experiments are performed using the machine transla-
tion library we developed for our work presented in Section 8.2 (Platanios, 2018b).
We also use the same data preprocessing approach as we did for Section 8.2. While
training, we consider sentences up to length 200. Similar to Section 8.2, for the IWSLT-
15 experiments we use a per-language vocabulary which contains the 20,000 most
frequently occurring words while ignoring words that appear less than 5 times in the
corpus. For the IWSLT-16 andWMT-16 experiments we use a byte-pair encoding (BPE)
vocabulary (Sennrich et al., 2016b) trained using 32,000 merge operations, similar to
the original Transformer paper by Vaswani et al. (2017).

a.3.2 Results

We present a summary of our results in Table A.2 and we also show complete learning
curves for all methods in Figure A.5. ¿e evaluation metrics we use are the test set
BLEU score and the time it takes for the models using curriculum learning to obtain
the BLEU score that the baseline models attain at convergence. We observe that Trans-
formers consistently bene�t from our curriculum learning approach, achieving gains
of up to 2 BLEU, and reductions in training time of up to 70%. RNNs also bene�t, but
to a lesser extent. ¿is is consistent with our initial motivation, which stems from the
observation that training RNNs is easier and more robust than training Transformers.
Furthermore, the square root competence model consistently outperforms the linear
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RNN Transformer

Plain SL Curriculum SR Curriculum Plain Plain* SL Curriculum SR Curriculum
clinear csqrt clinear csqrt clinear csqrt clinear csqrt

BL
EU

En )Vi 26.27 26.57 27.23 26.72 26.87 28.06 29.77 29.14 29.57 29.03 29.81
Fr )En 31.15 31.88 31.92 31.39 31.57 34.05 34.88 34.98 35.47 35.30 35.83
En )De 26.53 26.55 26.54 26.62 26.62 – 27.95 28.71 29.28 29.93 30.16

Ti
m
e En )Vi 1.00 0.64 0.61 0.71 0.57 1.00 1.00 0.44 0.33 0.35 0.31

Fr )En 1.00 1.00 0.93 1.10 0.73 1.00 1.00 0.49 0.44 0.42 0.39
En )De 1.00 0.86 0.89 1.00 0.83 – 1.00 0.58 0.55 0.55 0.55

Table A.2: Summary of experimental results. For each method and dataset, we present the
test set BLEU score of the best model based on validation set performance. We also show the
relative time required to obtain the BLEU score of the best performing baseline model. For
example, if an RNN gets to 26.27 BLEU in 10,000 steps and the SL curriculum gets to the same
BLEU in 3,000 steps, then the plain model gets a score of 1.0 and the SL curriculum receives a
score of 3, 000/10, 000 = 0.3. Plain stands for the model trained without a curriculum and,
for Transformers, Plain* stands for the model trained using the learning rate schedule shown
in Equation A.10.

model, which �ts well with our intuition and motivation for introducing it. Regarding
the di�culty heuristics, sentence length and sentence rarity both result in similar
performance. For the two small datasets, RNNs converge faster than Transformers in
terms of both the number of training iterations and the overall training time. ¿is
is contrary to other results in the machine translation community (e.g., Vaswani et
al., 2017), but could be explained by the fact that we are not using any learning rate
schedule for training Transformers. However, RNNs never manage to outperform
Transformers in terms of test BLEU score of the �nal model. Furthermore, to the best
of our knowledge, for IWSLT-15 we achieve state-of-the-art performance. ¿e highest
previously reported result was 29.03 BLEU (which is in fact obtained by our method,
presented in Section 8.2), in a multi-lingual setting. Using our curriculum learning
approach we are able to achieve a BLEU score of 29.81 for this dataset. Overall, we
have shown that our curriculum learning approach consistently outperforms models
trained without any curriculum, in both limited data settings and large-scale settings.

a.3.3 Learning Rate Schedule

In all of our IWSLT experiments so far, we have used the default AMSGrad learning
rate of 0.001 and intentionally avoid using any learning rate schedules. However,
Transformers are not generally trainedwithout a learning rate schedule. Such schedules
typically use a warm-up phase, which means that the learning rate starts at a very low
value and keeps increasing until the end of the warm-up period, a er which a decay
rate is typically used. In order to show that our curriculum learning approach can
act as a principled alternative to such highly tuned learning rate schedules, we now
present the results we obtain when training our Transformers using the following
learning rate schedule:

lr(t) , d−0.5embeddingmin
(
t−0.5, t · T−1.5warmup

)
, (A.10)
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Figure A.5: Plots illustrating the performance of various models on the test set, as training
progresses. Blue lines represent the baselinemethods when no curriculum is used and red lines
represent the same models when di�erent versions of our curriculum learning framework are
used to train them. ¿e vertical lines represent the step in which the models attain the BLEU
score that the baseline models attain at convergence.

where t is the current training step,dembedding is the word embedding size, and Twarmup
is the number of warmup steps and is set to 10,000 in these experiments.¿is schedule
was proposed in the original Transformer paper (Vaswani et al., 2017), and was tuned
for the WMT dataset. ¿e results obtained when using this learning rate schedule are
also shown in Table A.2, under the name Plain*. In both cases, our curriculum learning
approach obtains a better model in about 70% less training time. ¿is is very important,
especially when applying Transformers in new datasets, because such learning rate
heuristics o en require careful tuning. ¿is tuning can be both very expensive and
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time consuming, o en resulting in very complex mathematical expressions, with no
clear motivation or intuitive explanation (Chen et al., 2018). Our curriculum learning
approach achieves better results in signi�cantly less time, while only requiring one
parameter (the length of the curriculum). Note that even without using any learning
rate schedule, our curriculum methods were able to achieve performance comparable
to the Plain* in about twice as many training steps. Plain was not able to achieve a
BLEU score above 2.00 even a er �ves times as many training steps, at which point
we stopped these experiments.

a.3.4 Implementation and Reproducibility

We are releasing an implementation of our proposedmethod and experiments built on
top of the machine translation library we developed as part of our work in Section 8.2
(Platanios, 2018b), using TensorFlow Scala (Platanios, 2018c). ¿e implementation
is available at https://github.com/eaplatanios/symphony-mt. Furthermore, all experi-
ments were run on a machine with a single Nvidia V100 GPU, and 24 GBs of system
memory. Our most expensive experiments—the ones using Transformers on the
WMT-16 dataset—take about 2 days to complete, which would cost about $125 on a
cloud computing service such as Google Cloud or AmazonWeb Services, thus making
our results reproducible, even by independent researchers.

a.4 related work

¿e idea of teaching algorithms in a similar manner as humans, from easy concepts to
more di�cult ones, has existed for a long time (Elman, 1993; Krause et al., 2016). Ma-
chine learning models are typically trained using stochastic gradient descent methods,
by uniformly sampling mini-batches from the pool of training examples, and using
them to compute updates for the model parameters. Deep neural networks, such as
RNNs and Transformers, have highly non-convex loss functions. ¿is makes them
prone to getting stuck in saddle points or bad local minima during training, o en
resulting in long training times and bad generalization performance. Bengio et al.
(2009) propose a curriculum learning approach that aims to address these issues by
changing the mini-batch sampling strategy. ¿ey propose starting with a distribution
that puts more weight on easy examples, and gradually increase the probability of
more di�cult examples as training progresses, eventually converging to a uniform dis-
tribution. ¿ey demonstrate empirically that such curriculum approaches do indeed
help decrease training times and sometimes even improve generalization.
Perhaps the earliest attempt to apply curriculum learning in MT was made by Zou

et al. (2013). ¿e authors employed a curriculum learning method to learn Chinese-
English bilingual word embeddings, which were subsequently used in the context
of phrase-based machine translation. ¿ey split the word vocabulary in 5 separate
groups based on word frequency, and learned separate word embeddings for each
of these groups in parallel. ¿en, they merged the 5 di�erent learned embeddings
and continued training using the full vocabulary. While this approach makes use of
some of the ideas behind curriculum learning, it does not directly follow the original

https://github.com/eaplatanios/symphony-mt
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de�nition introduced by Bengio et al. (2009). Moreover, their model required 19 days
to train. ¿ere have also been a couple of attempts to apply curriculum learning in
NMT that were discussed in the beginning of this chapter.
¿ere also exists some relevant work in areas other than curriculum learning. Zhang

et al. (2016) propose training neural networks for NMT by focusing on hard examples
rather than easy ones. ¿ey report improvements in BLEU score, while only using
the hardest 80% training examples in their corpus. ¿is approach is more similar to
boosting by Schapire (1999), rather than curriculum learning, and it does not help
speed up the training process; it rather focuses on improving the performance of the
trained model. ¿e fact that hard examples are used instead of easy ones is interesting
because it is somewhat contradictory to that of curriculum learning. Also, in contrast
to curriculum learning, no ordering of the training examples is considered.
Perhaps another related area is that of active learning where the goal is to develop

methods that request for speci�c training examples. Ha�ari et al. (2009), Bloodgood
and Callison-Burch (2010), and Ambati (2012) all propose methods that can be used
to solicit training examples for MT systems, based on the occurrence frequency of
n-grams in the training corpus. ¿e main idea is that if an n-gram is very rare in the
training corpus, then it is di�cult to learn to translate sentences in which it appears.
¿is is related to our sentence rarity di�culty metric and points out an interesting
connection between curriculum learning and active learning.
Regarding training Transformer networks, Shazeer and Stern (2018) perform a

thorough experimental evaluation of Transformers, when using di�erent optimization
con�gurations. ¿ey show that a signi�cantly higher level of performance can be
reached by not using momentum during optimization, as long as a carefully chosen
learning rate schedule is used. Such learning rate schedules are o en hard to tune
because of the multiple seemingly arbitrary terms they o en contain. Furthermore,
Popel and Bojar (2018) show that, when using Transformers, increasing the batch size
results in a better model at convergence. We believe this is indicative of very noisy
gradients when starting to train Transformers and that higher batch sizes help increase
the signal-to-noise ratio. We show that our proposed curriculum learning method
o�ers a more principled and robust way to tackle this problem allowing us to train
Transformers to state-of-the-art performance, using small batch sizes and without the
need for peculiar learning rate schedules, which are typically necessary.

a.5 key takeaways

We have presented a novel competence-based curriculum learning approach for train-
ing neural machine translation models. Our resulting framework is able to boost the
performance of existing NMT systems, while at the same time signi�cantly reducing
their training time. It di�ers from previous approaches in that it does not depend
on multiple hyperparameters that can be hard to tune, and it does not depend on a
manually designed discretized training regime. We de�ne the notions of competence,
for a learner, and di�culty, for the training examples, and propose a way to �lter
training data based on these two quantities. Interestingly, we show that our method
makes training Transformers faster and more reliable, but has a much smaller e�ect
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in training RNNs. Perhaps most importantly though, the curriculum learning frame-
work we presented in this chapter is not speci�c to machine translation, but is rather
more generally applicable to machine learning. Our main goal was to show how a
curriculum learning framework—that is inspired by human learning—can result in
faster training for machine learning systems. Ultimately, we hope that this framework
will become an integral part of the machine learning work�ow.





BACTIVE LEARNING AMIDST LOGICAL KNOWLEDGE

Tasks which involve learning several classi�ers whose outputs are tied together by
logical constraints are abundant in machine learning. As an example, we may have
two classi�ers in the Never Ending Language Learning (NELL) project (Carlson et
al., 2010; Mitchell et al., 2015, 2018) which predict whether noun phrases represent
animals or cities, respectively. In this case, the outputs of the two classi�ers are mutu-
ally exclusive. In Chapter 4 we presented a method which allows us to evaluate such
classi�ers using only unlabeled data, by leveraging the information provided by these
logical constraints. In this chapter, we address the issue that many such tasks hinge
on the training of a large number of classi�ers in situations where obtaining labeled
data is expensive. ¿e di�culty of acquiring labels leads to the common approach
(highlighted in Figure B.1) of performing an initial training of classi�ers with a small
number of labeled examples, and then iteratively identifying the most valuable addi-
tional labels to acquire, followed by re-training of the classi�ers. We seek methods
that are capable of performing such active learning (Settles, 2012)—an instance of
semi-supervised learning. To this end, we propose methods for active learning that
share a common underlying goal: e�cient identi�cation of the most valuable labels
to acquire in the presence of logical constraints among the outputs of the classi�ers
being trained. Examples of such constraints include mutual exclusion (e.g., in multi-
class/one-vs-all classi�cation) and subsumption (e.g., in hierarchical classi�cation)
among target variables, which were also discussed in Chapter 4. In active learning for
mutual exclusion and subsumption, we need to consider the complexities of behavior
arising in the interactions among the linked classi�ers. We shall provide theoretical
justi�cation for the proposed methods that resonates with intuition. As we shall show,
our results challenge the core idea behind uncertainty guided sampling, a method
commonly used in practice.1

b.1 motivation

Wemotivate our work with challenges in information extraction, where noun phrases
are mapped to various categories (e.g., animal, and bird) and relations between them.
It is easy to see how these categories and relations can be tied through logical con-
straints. For example, one might say that animal and location are mutually exclusive,
and animal subsumes bird. We consider examples highlighted by our work on the
NELL project (Mitchell et al., 2018). NELL currently performs over 4,100 learning
tasks and it is thus too expensive to obtain enough labeled data for each task separately.
¿e ability to rank examples by the utility of discovering their labels would enable the
system to more e�ciently allocate and use resources available for labeling. Our goal

1 ¿e work presented in this chapter has been previously published in (Platanios et al., 2017a).
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Figure B.1: Illustration of active learning in an interdependent multiple classi�er setting.

in this chapter is to provide systems such as NELL with this ability, such that their
learning rate would be signi�cantly increased with respect to the resources available
for labeling.

b.2 related work

¿e literature covers many projects in the realms of active learning (Settles, 2012;
Ruvolo and Eaton, 2013) and decision theory (e.g., the core concept of value of informa-
tion and its use in guiding the collection of examples; Kapoor et al., 2007; Krause and
Guestrin, 2009). Related work on computing the value of information for inference
that leverages structural information includes an e�ort showing how the topology of
in�uence diagrams could be used to assert an ordering over the value of information
for variables (Poh and Horvitz, 1996). However, most existing approaches to active
information gathering for machine learning are directed at collecting single labels
for one classi�er. Furthermore, even approaches that deal with settings involving
multiple labels do not make use of logical constraints that may exist among labels
(Reichart et al., 2008; Zhao et al., 2015). Work in the area of semi-supervised learning
makes it clear that such constraints are present in many practical settings and that
they can indeed prove useful if used appropriately (Chang et al., 2007; Chang et al.,
2008; Mitchell et al., 2015, 2018). ¿ere have been a few approaches that make use
of such constraints. First, we note that query-by-committee (QBC) can be viewed
as a special case of our framework, where the logical constraint is that committee
members must agree. Settles and Craven (2008) propose approaches to perform active
learning for sequence labeling tasks, including uncertainty sampling andQBC. Culotta
and McCallum (2005) consider adding constraints to such tasks. To the best of our
knowledge, they are the �rst to consider general constraints. In distinction to this
prior work, we do not focus on the di�culty of each labeling task. We consider a wider
range of tasks. Culotta and McCallum present only one instantiation of our more
general formulation. Luo et al. (2013) use uncertainty sampling, where probabilities
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are computed using classi�ers that account for constraints. Roth and Small (2008)
score instances using the margin of learned classi�ers and in the case of binary classi�-
cation, margin-based active learning is equivalent to uncertainty sampling. Bilgic et al.
(2010) consider dependencies among input instances and their labels. ¿ey cluster
instances and look at disagreements of two kinds of classi�ers over the clusters. Other
methods that use “side” information in active learning include those of Kapoor and
Baker (2009), Wallace et al. (2010), and Angeli et al. (2014).
Our method considers the important and common case where there are logical

constraints over the output space, such as mutual exclusion and subsumption. ¿e
ubiquitous nature of such logic relationships creates a need for them to be addressed
“head on.” ¿e previously mentioned related work only deals with other kinds of
probabilistic constraints. Harpale (2012) and Zhang (2010) have considered this set-
ting, but they fail to provide theoretical justi�cations or deep experimental support.
Furthermore, both approaches can be seen as separate instantiations of our more gen-
eral framework, for which we also provide a formal analysis along with an extensive
experimental evaluation.

b.3 proposed methods

We now provide a description of our methods for performing active learning. ¿e
methods select examples to be labeled before each re-training step (i.e., the red box in
Figure B.1). Let us consider a setting where we have a set of binary labels Yik ∈ {0, 1},
for k = 1, . . . , K and i = 1, . . . ,N, for a provided set of instances X1, . . . , XN. Yik
denotes whether instance Xi belongs to class k. For example, Xi could represent a
particular noun phrase (NP) and Yik a label for that NP, indicating whether it is a city
or not. ¿ere exists a set of logical constraints among the K labels which determine
whether an assignment of values to these labels, for each instance, is valid or not. Let
the marginal probability of each label being positive be de�ned as:

pik , PXi∼D(Yik = 1), (B.1)

for k = 1, . . . , K and i = 1, . . . ,N, where D is the distribution of the instances
X1, . . . , XN, and P(·) denotes the probability of some event. Given a set of observed
labels (which could be empty) and these marginal probabilities, we want to determine
which label2 to request in the active learning process in order to gain the most in-
formation. ¿us, we use a scoring function to score each unobserved label based on
how much information is gained by observing it, and we then pick the label with the
highest score. We note that information gain can be de�ned in many ways depending
on the task at hand and the evaluation metric that is being used. Our approach is
initially motivated by the loose and possibly naïve de�nition of information gain as
the expected number of labels one obtains a er asking for a single label.

2 Note that the word “label” here refers to a particular label-instance pair (i.e., we ask for a single label of a
single instance at a time). ¿is is the convention we use throughout this chapter.
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We note that the common strategy of uncertainty guided sampling for allocating
labeling e�ort uses the entropy of a label as its scoring function. ¿at is:

Sentropy(Y
i
k) , −pik logp

i
k − (1− pik) log(1− p

i
k). (B.2)

¿is function can be thought of as scoring each label based only on its own uncertainty
ignoring any dependencies among the labels. ¿e proposed methods make use of
logical constraints among the labels, thus considering key dependencies. We therefore
expect them to perform better in practice.

b.3.1 A Simple Constraint: Mutual Exclusion

Let us �rst consider a simple, yet powerful and common logical constraint among
labels:mutual exclusion. We consider a setting where, for each value of i (i.e., instance),
all labels (i.e., Yi1, . . . , Y

i
K) are mutually exclusive with each other. ¿is means that,

for each instance, at most one label can be positive. It is easy to see that, if we discover
that a label for a speci�c instance is positive, then all other labels must be negative for
that instance. However, if the answer is negative, then we cannot infer the value of
any other label. ¿us, intuitively we see that it might make sense to ask for the label
with the highest marginal probability of being equal to 1 (i.e., the Yik with the highest
probability pik). We now discuss this approach and provide theoretical justi�cation
for this intuition. We start by suggesting the following scoring function:

Sprobability(Y
i
k) , p

i
k. (B.3)

For our theoretical justi�cation, we shall ignore the instance superscript, i, and con-
sider the case where we only have a single instance X. We shall propose a theorem
related to this scoring function, but we �rst state a lemma that will be used in the
forthcoming proof.

LemmaB.1. Let x ∈ [0, 1], and c ∈ [0, 1−x].¿en, the following function ismonotonic
with respect to x: f(x) = (1− x− c) log (1− x− c) − (1− x) log (1− x).

Proof. ∂f(x)/∂x = log (1− x) − log (1− x− c) and since the logarithm is a mono-
tonic function, we know that ∂f(x)/∂x > 0. ¿us, f(x) is monotonic.

We now propose a theorem which demonstrates that the scoring function of Equa-
tion B.3 is indeed the optimal choice when dealing with a set of mutually exclusive
labels and when using the de�nition of information-theoretic information gain.

¿eorem B.1. Given a set of mutually exclusive labels, the scoring function of Equa-
tion B.3 induces the same ranking of labels as that induced by the information-theoretic
information gain.

Proof. Due to the mutual exclusion constraint, we have that:

PX∼D({Yk = 0 for k = 1, . . . , K}) = 1−

K∑
k=1

pk. (B.4)
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For notational convenience, let us henceforth denote this quantity by p0 and also
omit the X ∼ D subscript from the probability operator notation. Now, note that:

P(y−k) = P(y−k ∪ Yk = 1) + P(y−k ∪ Yk = 0), (B.5)

P(y−k) =


0, if y−k has more than one 1s,
pl, if yl = 1 for l 6= k,
pk + p0, otherwise,

(B.6)

where y−k refers to an assignment of values to all labels Yl, where l = 1, . . . , K,
and l 6= k, and yl refers to an assignment of Yl. Let us also denote the information-
theoretic information gain of variable Yk by I(Yk). We then have that, if pk > pl for
some k 6= l, then:

I(Yk) − I(Yl) = H(Y−k) −H(Y−k | Yk) −H(Y−l) +H(Y−l | Yl), (B.7)
I(Yk) − I(Yl) = H(Y−k) +H(Yk) −H(Y−l) −H(Yl), (B.8)

whereH(Yk) corresponds to the entropy of the Yk variable,H(Y−k) corresponds
to the entropy of all variables Yl, where l = 1, . . . , K and l 6= k, and H(p) ,
−p logp− (1− p) log (1− p). From Equation B.6, we have that:

H(Y−k) = −
∑
y−k

P(y−k) logP(y−k), (B.9)

H(Y−k) = −
∑
l6=k

pl logpl − (pk + p0) log (pk + p0), (B.10)

where the �rst sum is over all possible assignments of the corresponding variables.
Given that k 6= l in Equation B.8, we have that:

H(Y−k) −H(Y−l) = pk logpk − pl logpl, (B.11)
+ (pl + p0) log (pl + p0), (B.12)
− (pk + p0) log (pk + p0). (B.13)

¿us, it follows that:

I(Yk) − I(Yl) = (pl + p0) log (pl + p0) − (1− pk) log (1− pk), (B.14)
− (pk + p0) log (pk + p0) + (1− pl) log (1− pl), (B.15)

I(Yk) − I(Yl) = (1− pk − c) log (1− pk − c) − (1− pk) log (1− pk), (B.16)
− (1− pl − c) log (1− pl − c) + (1− pl) log (1− pl), (B.17)

and due to Lemma B.1 with:

c =

K∑
m=1,
m 6=k,l

pm, (B.18)
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we have that I(Yk) − I(Yl) > 0. ¿is inequality implies that the ranking of labels
induced by the information gain I(Yk) is the same as the ranking induced by using
the scoring function Sprobability(Y

i
k). ¿e proof is thus complete.

One of the most interesting consequences of ¿eorem B.1 is that we now have a very
e�cient way to rank labels based on their information gain. Also note that, more o en
than not, classi�cation systems are evaluated based on the area under the precision-
recall curve (AUC). Intuitively, the AUC increases with the number of “gold” labels
(i.e., labels that are guaranteed to be correct). We highlight the fact that the probability
scoring function of Equation B.3 is motivated by picking the label that is most likely
to provide the greatest number of “gold” labels (i.e., labels that are �xed to 0).
We want to emphasize the relationship between using Equation B.3 as the scoring

function, as proposed in¿eorem B.1, and using entropy (i.e., Equation B.2) as the
scoring function, as is done in uncertainty guided sampling.¿e following proposition
and corollary of ¿eorem B.1 describe this relationship more precisely.

Proposition B.1. When:

argmax
k=1,...,K,
i=1,...,N

pik = argmin
k=1,...,K,
i=1,...,N

|pik − 0.5|, (B.19)

the probability scoring function of Equation B.3 is equivalent to the entropy scoring
function of Equation B.2, which is used in uncertainty guided sampling.

Proof. Equation B.19 follows directly by noticing that, for pik ∈ [0, 1]:

argmax
k=1,...,K,
i=1,...,N

Sentropy(Y
i
k) ≡ argmin

k=1,...,K,
i=1,...,N

|pik − 0.5|. (B.20)

Corollary B.1. In the case of a single instance X the probability scoring function of
Equation B.3 and the entropy scoring function of Equation B.2 are equivalent.

Proof. ¿emutual exclusion constraint,
∑K
k=1 pk 6 1, implies that the condition of

Proposition B.1 is always satis�ed. ¿e corollary follows.

It is easy to observe that when we have several instances X1, . . . , XN and we compare
the scores of each label-instance pair, then the two scoring functions are no longer
necessarily equivalent. Also note that, as the number of labels grows, the marginals
are more likely to have smaller magnitudes and thus the condition of Proposition B.1
is more likely to be satis�ed.

interesting fact

¿e scoring function Sprobability(Yik) assigns a higher score to labels that are more certainly
positive than to more uncertain labels. ¿is is in contrast to uncertainty guided sampling
and thus highlights the importance of ¿eorem B.1. It also demonstrates that positive
examples can, in some cases, be much more useful and informative than negative examples.
Sharma and Bilgic (2013) discuss the sources of uncertainty and reinforce our argument
about the ine�ectiveness of uncertainty sampling for some kinds of logical constraints.
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a different approach. We now introduce a new concept that, when combined
with the earlier motivation, gives rise to a new scoring function. ¿e key intuition
lies in the scenario where the discovery of a label being positive implies that all other
labels are negative. ¿is discovery may not be as valuable if the negative labels are
already inferred to have low marginal probability. Instead, we propose to consider
the degree of surprise of discovering that these labels are negative. For a label with
marginal probability of being positive pk, the amount of surprise can be de�ned in
several ways. A functionS : [0, 1] 7→ R is called a surprise function if it is decreasing
andS (1) = 0. A couple examples of such surprise functions are shown here:

– Logarithmic: Slog(pk) , − logpk. ¿is is equivalent to the self-information
of event Yk = 1 and was �rst referred to as a surprise measure by Tribus (1961).

– Linear:Slinear(pk) , 1−pk.¿is is related to the 0-1 loss which was originally
proposed by Roy and McCallum (2001).

Using this de�nition of a surprise function we de�ne a new scoring function for the
mutual exclusion case as follows:

SME(Yk) , pk

K∑
c=1

S (pc)
1{c=k}S (1− pc)

1{c6=k}

︸ ︷︷ ︸
Surprise of setting Yk=1

+(1− pk)S (1− pk)︸ ︷︷ ︸
Surprise of setting Yk=0

, (B.21)

whereS (·) is an arbitrary surprise function and 1{·} evaluates to one if its subscript
statement is true and to zero otherwise. Note that the �rst term is the product of the
probability of Yk being equal to 1 and the sum of surprise “experienced” by �xing the
value of Yk to 1 (i.e., a er propagating the mutual exclusion constraint, we sum over
the surprises of all other labels being set to 0 and Yk being set to 1). ¿e second term
is similarly de�ned as the product of the probability of Yk being equal to 0 and the
surprise of �xing Yk to that value. No other variables are considered in this surprise
value as no other label value is �xed, because of the mutual exclusion constraint.
Note that this is substantially di�erent than the entropy scoring function in that it is
measuring “surprise” rather than uncertainty.

b.3.2 More General Logical Constraints

¿e scoring function of Equation B.21 and the underlying intuition can be easily
extended to more general logical constraints than mutual exclusion. An example of
a more general logical constraint is subsumption. In this case, each label can have
a set of parent and child labels, and a label being set to 1 implies that its parent
label is also set to 1. To extend the method introduced in the previous section, we
need a function for propagating a �xed label-value pair through the constraints.
Let this function be de�ned as F(Yk = v) , {(Yci , vi) : if Yk = v, then Yci = vi},
where ci ∈ {1, . . . , K} is a label index, and vi ∈ {0, 1} is the value of Yci �xed by
propagating the �xed label-value pair (Yk, v) through the constraints. We can now
de�ne our scoring function for general logical constraints as follows:
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Sconstraints(Yk) , pk
∑

(Yci ,vi)∈F(Yk=1)

S(Yci , vi)︸ ︷︷ ︸
Surprise of setting Yk=1

+ (1− pk)
∑

(Yci ,vi)∈F(Yk=0)

S(Yci , vi)︸ ︷︷ ︸
Surprise of setting Yk=0

, (B.22)

where S(Yci , vi) = S (pci)
1{vi=1}S (1− pci)

1{vi=0} .

formal justification. We have not derived a result for the general scoring
function similar to that of¿eoremB.1. However, we can use the information-theoretic
information gain to generate an interesting result, akin to our justi�cation for using
the scoring function of Equation B.3 in the setting of mutual exclusion. We note that
the information gain for the case with general logical constraints can be de�ned as
a sum.¿e �rst term of this sum is the entropy of the label whose information gain
is being computed. When the logarithmic surprise function is used with the scoring
function of Equation B.22, then our scoring function contains this entropy term, as
well as an approximation of some other terms (but not all) of the complete information
gain sum. More speci�cally, we have that (note that, in this derivation we ignore terms
that are constant across all label variables because they do not a�ect the ranking of
the labels induced by the information gain):

I(Yk) = H(Y−k) −H(Y−k | Hk),

= H(Y−k) +H(Yk) −H(Y),

= H(Yk) −H(Yk | Y−k),

= H(Yk) +
∑
yk

[∑
y−k

P(y−k)P(yk | y−k) logP(yk | y−k)

]
,

= H(Yk) +
∑
yk

[∑
y−k

[
P(y) logP(y)︸ ︷︷ ︸

Constant

−P(yk,y−k) logP(y−k)
]]
,

= H(Yk) −
∑
yk

P(yk)
∑
y−k

P(y−k | yk) logP(y−k),

= H(Yk) −
∑
yk

P(yk)
∑
y−f,

yf=F(yk)

P(y−f,yf\k | yk)︸ ︷︷ ︸
P(y−f|yf)

logP(y−f,yf\k),

= H(Yk) −
∑
yk

P(yk)
∑
y−f,

yf=F(yk)

[
P(y−f | yf)︸ ︷︷ ︸

Sums to 1

logP(yf) +

P(y−f | yf) logP(y−f | yf\k)

]
,

= H(Yk)︸ ︷︷ ︸
Entropy

−
∑
yk

P(yk)

[
logP(yf)︸ ︷︷ ︸
Constraints

+
∑
y−f,

yf=F(yk)

P(y−f | yf) logP(y−f | yf\k)︸ ︷︷ ︸
Remainder

]
,
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where f \ k is the set of label indices in f excluding k. Note that the entropy scoring
function of Equation B.2 only considers the term denoted by “Entropy” in this sum.
When the logarithmic surprise function is used, the general scoring function of
Equation B.22 contains an approximation to the terms denoted by “Constraints,”
where the joint is written as the product of the marginals. ¿is result shows that the
general scoring function is, in some sense, a better heuristic than the entropy scoring
function.

b.3.3 Computational Complexity

We now consider the real-world use of an active learning system, where a request is
made for a label of a particular instance. Note that if we were to use the information-
theoretic information gain as our scoring function, then the cost of computing it
would be linear inN and exponential in K. Our proposed scoring functions reduce
this cost. ¿e entropy scoring function of Equation B.2 has a computational cost
linear in the number of labels and the number of instances (i.e., because we need
to compute it for all labels); its cost is O(NK). ¿e probability scoring function
of Equation B.3 has the same cost. ¿e mutual exclusion scoring function has cost
O(NK2). Finally, ignoring the cost of the constraint propagation function, the general
scoring function of Equation B.22 has a computational cost ofO(NK2), because the
highest number of labels that can be �xed is K. Note that the constraint propagation
function can have a cost exponential in K in the worst case. However, there are special
cases where the cost is not as high. For example, with either the mutual exclusion
or the subsumption constraint the cost is linear in K. When mutual exclusion is
combined with subsumption, we can alternate between all our constraints, one by
one, and keep propagating them, until no �xed label can be further propagated. If the
number of constraints is C, the cost of this propagation operation isO(CK). ¿is is
the most complex scenario that we consider in our experiments and it covers most of
the practical use cases in multi-task applications that motivated this work.

b.4 experiments

In the following paragraphs, we describe the setup of our experiments, including
the datasets and the evaluation metrics that we use, and our results along with cor-
responding analyses. All the datasets and code for the experiments are available at
https://github.com/eaplatanios/makina. We �rst de�ne the names that we use to refer
to di�erent methods when plotting the results:

– RANDOM: Uses a random scoring function (i.e., it generates a random number
between 0 and 1 each time it is invoked).

– Entropy: Uses the entropy scoring function of Equation B.2.
– RANDOM-CP: RANDOM which also propagates labels through the constraints.
– ENTROPY-CP: ENTROPY which also propagates labels through the constraints.
– PROBABILITY-CP: Uses the probability scoring function of Equation B.3 and also
propagates labels through the constraints.

https://github.com/eaplatanios/makina
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Dataset #Classes #Features Balanced #Training #Testing #New/Iteration
SatImage 6 36 × 3,104 1,331 100
Shuttle 7 9 × 30,450 13,050 1,000
Segment 7 19 √ 400 1,910 100
PenDigits 10 16 √ 7,494 3,498 100
Letter 26 16 √ 15,000 5,000 1,000
NELL-7 7 180,878 × 214 14,693 500
NELL-11 11 180,878 × 242 14,693 1,000
NELL-15 15 180,878 × 2,656 18,016 2,000

Table B.1: Datasets used in our active learning experiments.
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Figure B.2: Illustration of the categories used in the NELL datasets and the constraints between
them. Each blue arrow represents a subsumption constraint, and each set of labels connected by
a red dashed line represents a mutually exclusive set of labels. For example, animal subsumes
vertebrate and bird, fish, and mammal are mutually exclusive.

– LOG-CP: Uses the constraints scoring function of Equation B.22 with the loga-
rithm surprise function and also propagates labels through the constraints.

– LINEAR-CP: Same as LOG-CP, but usesSlinear instead of theSlog.

We apply the same experimental setup to all datasets. Each dataset consists of a set of
positive examples for each label. For each experiment, we split the dataset into train
and test subsets. For each label, we train a binary logistic regression classi�er using
the AdaGrad optimization algorithm of Duchi et al. (2011), with a batch size of 100
samples. Our experimental pipeline consists of the following steps:

1. We initially train a classi�er for each label independently using the train por-
tion of the dataset. We consider all positive examples for the corresponding
label, along with a set of negative examples of the same size, sampled from the
remaining set of examples in the train dataset that are not labeled as positive
for this label.

2. We repeat the following steps until all test examples have been labeled:
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i. Request a set ofM examples from the test dataset to be manually labeled,3
sequentially. For all the methods that include CP in their name, a er each
example is obtained, we propagate all logical constraints. ¿e examples
�xed by this process are considered manually labeled. Note that, since
the datasets di�er in size,M can vary across each dataset. Please refer to
Table B.1 for the values ofM used for each dataset (labeled as “#New/It-
eration”). Each method’s scoring function determines which examples
are selected for labeling. ¿e label-instance pair with the highest score is
selected for labeling.

ii. Move all the labeled examples from the test to the train dataset.
iii. Re-train the classi�ers for all labels using the updated train dataset. Train-

ing for the classi�ers is initialized at the previously learned classi�ers to
reduce convergence time.

iv. Evaluate progress using a set of metrics over the full dataset (i.e., the train
and test parts of the dataset, combined). Note that even though it may
seem unorthodox to evaluate on the full dataset, it is actually meaningful
for settings like NELL. In fact, that is how NELL is evaluated as we care
about the accuracy of its whole knowledge-base, irrespective of how the
label of each instance was obtained.

a note on marginal probabilities. Note that all the methods and results
presented in Section B.3 rely on marginal probabilities. In our experiments, we use
classi�ers to estimate these marginals and sometimes they may not be very accurate.
¿is is the main reason we subsample a number of negative examples equal to the
number of positive examples. Otherwise, our logistic regression classi�ers would be
biased towards low estimates of the probabilities, which would cause the entropy and
our proposed scoring functions to perform very similarly, as shown in Section B.3.1.
¿is was indeed the case when we ran experiments without subsampling the negative
examples, to test this hypothesis. ¿is problem can also be alleviated by using better
calibrated classi�cation models.

b.4.1 Datasets

We now provide the list of datasets used in our experiments:

– SatImage: Classify a satellite image region (Feng et al., 1993).
– Shuttle: Classify a space shuttle in one of seven classes (Feng et al., 1993).
– Segment: Classify a small outdoor image region (Feng et al., 1993).
– PenDigits: Classify a handwritten digit (Alimoglu and Alpaydin, 1996).
– Letter: Classify an image as a letter of the English alphabet (Frey and Slate, 1991).
– NELL-7: Classify noun phrases as belonging to a certain category or not. ¿e
categories considered in this dataset are Bird, Fish, Mammal, City, Country, Lake,
and River (i.e., the category represents the label in this case).¿e only constraint

3 Note that by “example” we mean a label-instance pair and so, all possible label instance pairs from the
test dataset are considered at this stage.
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considered in this case is that all these categories are mutually exclusive. We
use the same set of features as that used by the coupled pattern learner (CPL)
in NELL.

– NELL-11: Perform the same task as NELL-7, but additionally consider the cate-
gories Animal, Location, Artificial Location, and Natural Location. Also
include the subsumption constraints shown in Figure B.2, while ignoring the
categories not included in this dataset.

– NELL-15: Perform the same task asNELL-7, but with the categories and constraints
illustrated in Figure B.2.

Table B.1 provides details on the statistics and experimental setup for each dataset.¿e
NELL datasets were obtained from https://rtw.ml.cmu.edu/rtw/resources and the rest
of the datasets were obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/multiclass.html. Note that, for all datasets except for NELL-11 and NELL-15,
the only constraint used is a mutual exclusion constraint between all labels.

b.4.2 Evaluation Metrics

Central to our evaluation is the average area under the curve (average AUC)metric. At
each iteration and for each label, we compute the AUC over the whole dataset (i.e.,
the train dataset and test dataset combined). ¿en, we compute a weighted average of
the AUCs for each label, where each label’s contribution is weighted by the number
of positive examples for that label. ¿is weighted average is what we refer to as the
average AUC. It is easy to see that the average AUC is a non-decreasing function
with respect to iteration number.4 We use the following three metrics to evaluate the
proposed methods:

– Iterations until Average AUC=1: Number of iterations until the average AUC
reaches value 0.999.

– Average AUC: Average AUC value across active learning iterations.
– Number of Fixed Labels: Number of labels that are e�ectively �xed (i.e., added
to the train dataset), a er each iteration. ¿is measure is not always equal to
the requested number of labels because of the constraint propagation step.

b.4.3 Results Analysis

Our results are shown in Figure B.3. We �rst note that the proposed methods con-
sistently outperform the other methods by a signi�cant margin, for all datasets and all
evaluation metrics. For the datasets that only consider a single mutual exclusion con-
straint, PROBABILITY-CP always performs best with respect to the number of iterations
until the average AUC reaches a value of 1. ¿is is not unexpected; as we showed
in Section B.3, this method can be considered optimal. Furthermore, an interesting
observation is that for the average AUC plots, in all cases where we only have a single
mutual exclusion constraint, despite seeing underperformance in early iterations,

4 ¿is nice property is the reason we use the combined dataset as opposed to using just the test dataset.

https://rtw.ml.cmu.edu/rtw/resources
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Figure B.3: Results. ¿e red colored plots correspond to the proposed methods and the blue
colored plots correspond to existing methods (apart from the constraint propagation step that
we optionally added to all existing methods to enable a more fair comparison, and which is
denoted by a -CP appended to the method name). For the �rst plot, the lower the bar, the
better the result. For the rest of the plots, the higher the value of the curve per iteration, the
better the result. We thus observe that the proposed methods outperform all existing methods
for all of the experiments performed.

PROBABILITY-CP still reaches AUC = 1 faster. ¿is may be based on the fact that
this method �rst selects label-instance pairs with probability very close to 1, which
ultimately turn out to be positive. However, a er a few iterations, the method experi-
ences a boost and outperforms all other methods. As for the number of �xed labels
per iteration, PROBABILITY-CP also signi�cantly outperforms the competing methods.
¿is provides validation for our intuition discussed in Section B.3, that the method
would “�x” more labels when the mutual exclusion constraint is propagated. As for
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the two datasets where we also have subsumption constraints and multiple mutual
exclusion constraints, we observe that the proposed methods consistently outperform
all other methods, as expected. However, we did not expect for PROBABILITY-CP to be
performing as well as LOG-CP and LINEAR-CP. We do not yet have an understanding
about this �nding, but we consider it an interesting and encouraging result for the
proposed methods. We note that there are a few datasets with only a single mutual
exclusion constraint, where PROBABILITY-CP is actually slower than the other two
proposedmethods, early on in the average AUC curve.¿us in some scenarios, there is
some value in using these twomethods. Finally, it is also interesting that the constraint
propagation step alone provides a signi�cant performance boost to all methods.

b.5 key takeaways

We have proposed methods for performing active learning e�ciently in the presence
of logical constraints between the outputs of multiple classi�ers. Our approaches
resonate with underlying intuitions and challenge the core idea behind uncertainty
guided sampling. Furthermore, we provided a theoretical justi�cation for using the
proposed methods. In a set of experiments, we found that the methods consistently
outperformed competing approaches across eight diverse datasets and thus appear
to be promising for practical applications. Moreover, our experiments showed that
the proposed methods can be used to speed up the learning process in NELL. Per
our knowledge, this is the �rst attempt to describe and carefully study methods
for performing active learning when there are logical constraints among outputs of
multiple classi�ers. We are excited about numerous future directions for this work.
Our �rst priority is to pursue additional theoretical results for the general setting with
arbitrary logical constraints. We want to also explore methods for a setting where all
labels for a particular data instance are requested at each iteration; this use case is
useful to systems like NELLwhere the label space is extremely sparse. Furthermore, we
want to explore ways inwhichwe can use accuracy estimates for the trained classi�ers—
such as those proposed in Part i—in order to make the active learning procedures
more robust. Implementing e�cient computation of the value of information for
multiple interdependent classi�ers would be a step towards autonomous learning
systems with the ability to re�ect more deeply about their pursuit of information.



CNEURAL COGNITIVE ARCHITECTURES

Cognitive architectures were �rst introduced by Newell (1990) who argued that the
human mind functions as a single system, and proposed the notion of a uni�ed theory
of cognition (UTC). ¿ey o en consist of constructs that re�ect assumptions about
human cognition and that are based on facts derived from psychology experiments
(e.g., problem solving, decision making, routine action, memory, learning, skill, per-
ception, motor behavior, language, motivation, emotion, imagination, and dreaming).
In fact, Newell believed that cognitive architectures are the way to answer one of
the ultimate scienti�c questions: “How can the human mind occur in the physical
universe?”. Most existing work on UTCs has focused on symbolic approaches, such
as the Soar architecture (Laird, 2012) and the ACT-R (Anderson et al., 2004) system.
However, such approaches limit a system’s ability to perceive information of arbitrary
modalities, require a signi�cant amount of human input, and are restrictive in terms of
the learningmechanisms they support (supervised learning, semi-supervised learning,
reinforcement learning, etc.). For this reason, researchers in machine learning have
shi ed their focus towards methods like deep learning.
Deep learning systems have become the de facto standard for solving prediction

problems in a multitude of application areas including computer vision, natural lan-
guage processing, and robotics. Driven by progress in deep learning, the machine
learning community is now able to tackle increasingly more complex problems—
ranging from multi-modal reasoning (Hu et al., 2017) to dexterous robotic manipula-
tion (OpenAI et al., 2020)—many of which typically involve solving combinations
of tasks. However, many real-world problems require integrating multiple, distinct
modalities of information (e.g., image, audio, language) in ways that machine learn-
ing models cannot currently handle well. Most of these approaches are also not able
to utilize information learned from solving one problem to directly help in solving
another—something at which human intelligence excels. ¿ere have been some lim-
ited attempts to train a single model that solves multiple problems jointly (e.g., Kaiser
et al., 2017), but the resulting systems generally underperform those trained separately
for each problem. Moreover, most of the existing approaches are also not capable
of never-ending learning (NEL); namely a machine learning paradigm in which an
algorithm learns from examples continuously over time, in a largely self-supervised
fashion, and where its experience from past examples can be leveraged to learn future
examples (Mitchell et al., 2018). Current machine learning systems fail when the prob-
lems that need to be learned are not �xed a priori, but are rather dynamic and keep
changing as part of the environment where the learning agents operate. For example,
humans do not just learn to solve a �xed set of problems, but they rather adapt and
by solving one problem, they become better able to tackle new problems that they
may even have been previously unaware of. For example, a er humans managed to
build heart monitoring devices, new unsolved problems became available, such as

223
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discovering the relationship between heart rate or blood pressure and speci�c health
problems. Furthermore, humans are capable of creating problems to learn, on their
own, something that current machine learning systems are not designed to achieve.
Never-ending learning is thus also something at which human intelligence excels. Due
to the real world’s dynamic nature, to achieve true intelligence, a learning agent that
interacts with the real world needs to be able to adapt in such a continuous fashion.
In fact, such an ability is crucial for never-ending learning, because learning forever
only really makes sense if the learning objectives are ever-evolving.
¿e work presented in this thesis enables us to bridge the gap between UTCs, deep

learning, and never-ending learning. To this end, we propose a neural cognitive archi-
tecture that allows for a tighter coupling between problems, as well as a higher-level of
abstraction over distinct modalities of information. In this section, we only provide
a proposed design for such an architecture that utilizes the methods and ideas that
were presented in this thesis. ¿is proposal is meant to describe our way of thinking
about the design space for this problem as a whole. We provide no implementation or
experimental evaluation as that is outside the scope of this thesis.

c.1 cognitive architectures

Cognitive architectures can be broadly divided in symbolic, subsymbolic, and hybrid
architectures. Symbolic systems rely on sets of rules and reason over discrete spaces
(e.g., using �rst-order logic). Subsymbolic systems specify no such rules a priori
and rely instead on emergent properties of several distinct processing units (e.g.,
neural networks). Hybrid approaches are a combination of symbolic and subsymbolic
approaches. Symbolic processingmakes reasoning interpretable,meaning that humans
can see and understand how the system reasons about di�erent problems, and it also
o en results in better generalization ability due to the constraints imposed by the
symbolic language being used. However, it also limits the models’ ability to perceive
information of arbitrarymodalities and further requires a signi�cant amount of human
input. Most past work on UTCs has focused on symbolic systems. In the following
paragraphs, we describe two such successful systems.

soar. Laird (2012) designed Soar, a general cognitive architecture for developing
systems that exhibit intelligent behavior, that has been in use since 1983. ¿e design of
Soar can be seen as an investigation of an approximation to complete rationality, which
would imply the ability to use all available knowledge for every task that the system
encounters. ¿e primary principle at the base of Soar’s design is that “all decisions
are made through the combination of relevant knowledge at runtime. In Soar, every
decision is based on the current interpretation of sensory data, the contents of working
memory created by prior problem solving, and any relevant knowledge retrieved from
long-term memory.” Soar relies on multiple learning mechanisms (chunking, and
reinforcement, episodic, and semantic learning), and on many representations of
long-term knowledge (procedural knowledge productions, semantic memory, and
episodic memory).
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Figure C.1: ¿e original Hub-and-Spoke model (Rogers et al., 2004).

act-r. Anderson et al. (2004) propose an alternative cognitive architecture, ACT-R,
aimed at simulating and understanding human cognition. ACT-R consists of con-
structs that re�ect assumptions about human cognition and that are based on facts
derived from psychology experiments. An important feature of ACT-R that distin-
guishes it from other UTCs is that it directly allows researchers to compare the system’s
performance to that of human participants.

In this section, we propose a novel cognitive architecture that also re�ects assumptions
about human cognition—inspired from the high-level design of the aforementioned
systems—but that is subsymbolic and enables the use of neural networks and end-to-
end training. It contains components that correspond to perception, action, reasoning,
memory, world simulation, and learning.

c.2 the hub-and-spoke theory

Rogers et al. (2004) proposed the Hub-and-Spoke theory of human cognition, which
assimilates two important ideas: (i) multi-modal experiences provide the main “ingre-
dients” for constructing concepts and they are encoded in modality-speci�c cortices,
or spokes, that are distributed across the brain, and (ii) cross-modal interactions be-
tween the modality speci�c spokes are mediated by a single trans-modal hub that
is located bilaterally in the anterior temporal lobes (ATLs) of the human brain. A
visualization is shown in Figure C.1. ¿is model of the human brain serves as one of
the main inspirations for the high-level design of the proposed architecture.
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c.3 proposed architecture

We propose a novel neural cognitive architecture (NCA) for general learning and
intelligence. ¿e proposed architecture is inspired from the Hub-and-Spokemodel for
human cognition (Rogers et al., 2004; Ralph et al., 2017), as well as human goal priming
(Custers and Aarts, 2005; Aarts et al., 2008; Papies, 2016; Takarada and Nozaki, 2018).
It consists of the following parts:

Perception and Action Spokes: Sensing input data consists of converting them
to a common reasoning space, that is independent of the data modality. Much
of the complexity of models like BERT1 (Devlin et al., 2019), lies in percep-
tion, rather than reasoning. In fact, for BERT, reasoning o en consists of a
single linear layer, while perception consists of a Transformer (Vaswani et al.,
2017). Similarly, taking an action consists of converting a common reasoning
representation to some output data. ¿is can include taking actions in some en-
vironment, or generating data of some structure (e.g., probabilistic distribution
over labels).
Reasoning Hub: Reasoning is performed in a latent space that is independent
of the data modalities and the problem being solved. We argue that this is nec-
essary for general learning and intelligence, as it allows for �exible sharing of
information across di�erent modalities and problems. Moreover, memory and
simulations of the external world are all de�ned over the same latent space, ab-
stracting away details about the perceived data that are not relevant to reasoning.
Reasoning is described in detail in Section C.5.
Goal Contextualization: ¿e problems that the system is learning to solve are
processed such that they can contextualize any part of the neural cognitive
architecture. ¿is allows for the behavior of the system to vary across di�erent
problems, while still sharing information between them. ¿e contextualization
mechanism we propose to use was described in Chapter 7 and was evaluated
on multiple case studies in Chapter 8. It further allows the system to generate
its own target problems that it learns to solve. ¿is is perhaps the most novel
aspect of the proposed architecture and, as shown in the following paragraphs,
derives its inspiration from human goal priming in psychology, and is described
in more detail in Section C.6.

An overview of the architecture is shown in Figure C.2. ¿is neural cognitive archi-
tecture is inspired from our work in this thesis, as well as work in multiple other
areas:

deep learning. Deep neural networks are very e�ective at learning abstract repre-
sentations for arbitrary data modalities, that can then be used to perform multiple
diverse tasks (e.g., Simonyan and Zisserman, 2015; He et al., 2016b; Peters et al., 2018;
Devlin et al., 2019). ¿e typical deep learning work�ow is that for each problem re-
searchers build large deep neural models that pool together information from di�erent

1 BERT is the current state-of-the-art model for a multitude of natural language processing tasks.
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Figure C.2: Overview of the proposed neural cognitive architecture.
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sources and that are trained independently of each other. An alternative approach
is to pre-train large models in a problem-independent manner and then �ne-tune
them for each problem (e.g., Finn et al., 2017; Peters et al., 2018; Devlin et al., 2019).
However, most of these approaches do not allow for information learned from solving
one problem to directly help solve another—something at which human intelligence
excels. For example, BERT (Devlin et al., 2019) is pre-trained as a language model and
is then �ne-tuned separately for problems such as question answering and textual
entailment. ¿erefore, learning to answer questions well does not a�ect how well
BERT reasons about textual entailment. ¿is motivates us to �nd ways to couple the
learning of multiple problems in a way that results in constructive interference between
the di�erent problems, meaning that learning to solve one well, helps the system learn
to solve others. It further motivates us to treat perception (i.e., learning informative
representations of the input data) and reasoning (i.e., learning to solve each task in the
latent space of learned representations) separately, as most deep neural networks that
are trained end-to-end to solve multiple tasks e�ectively do that, and most of their
complexity is o en related to perception (e.g., in BERT problem-speci�c reasoning is
performed by a linear layer).

kernel methods. Before deep learning was popular, some of the most success-
ful machine learning methods were making use of kernels (Hofmann et al., 2008),
by formulating learning problems in a reproducing kernel Hilbert space (RKHS) of
functions de�ned on the data domain, expanded in terms of a kernel. ¿ese kernels
e�ectively project the data to a space where reasoning is modeled as a linear transfor-
mation. Such a projection can be thought of as a perception module, in terms of our
formulation. Given the success of kernel methods, this further motivates separating
the treatment of perception and reasoning.

neuroscience. Neuroscientists have also observed that information processing
in the human brain goes from low-level (i.e., sensory input processing) to high-level
(i.e., reasoning). ¿ere is ample evidence to support this both for both auditory (Kaas
and Hackett, 1998; Rauschecker, 1998; Romanski et al., 1999; Wessinger et al., 2001;
Zatorre and Belin, 2001; Warren and Gri�ths, 2003; Zatorre et al., 2004) and visual
information (Mishkin et al., 1983; Felleman and Van, 1991). Furthermore, there has
been evidence that the development of primary visual cortical networks is more
rapid than the development of primary motor networks in humans (Gervan et al.,
2011). ¿is motivates the idea that perception is a low-level functionality that is not
necessarily problem-speci�c and that can be learned before learning to reason and
take actions. In addition to this, there is evidence that the brain relies on a set of
canonical neural computations that are reused for di�erent problems (Carandini and
Heeger, 2012). For example, normalization of neural responses is one such operation
that is thought to underlie multiple other operations such as the representation of
odours, the modulatory e�ects of visual attention, the encoding of value, and the
integration of multi-sensory information. ¿is also supports the idea of abstracting
over reasoning, by making the operations used to perform various tasks common
across all tasks and �nding other ways to specialize them.
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psychology. ¿ere has been signi�cant evidence that priming is characteristic of
human behavior (Tulving et al., 1982; Bargh and Chartrand, 2014; Weingarten et al.,
2016). Priming is a technique where exposure to one stimulus in�uences the brain’s
response to a subsequent stimulus. For example, the word “dog” is recognized more
quickly a er having seen the word “animal.” Priming can be perceptual, semantic,
and conceptual. Perhaps most importantly for this thesis is goal priming (Custers and
Aarts, 2005; Aarts et al., 2008; Papies, 2016; Takarada and Nozaki, 2018). Goal primes
are cues that trigger goal-directed cognition and behaviour. Here, a goal refers to a
state or behaviour that has reward value and therefore motivates a person to pursue
it. For example, priming the concept of drinking can increase soda consumption
(Veltkamp et al., 2008), or priming the goal of impression formation leads to better
memory organization and recall compared to a mere memorization goal (Chartrand
and Bargh, 1996). Goal contextualization in our architecture is the computational
equivalent of goal priming, in that having speci�c goals changes the way in which the
di�erent architecture parts function.

benefits of modularity. An important outcome of the Hub-and-Spoke archi-
tecture design is reducing the per-problem sample complexity. ¿is means reducing
the amount of training data required to learn to solve each problem. ¿is is because,
for multiple existing machine learning models, most of the model complexity lies
in perception (e.g., BERT). ¿is becomes more prevalent in reinforcement learning
systems playing video games where they receive as input the raw pixel values of video
frames as they are being rendered while playing, and they are tasked with learning
to extract information from these raw values (Bellemare:2013:arcade; e.g., Bhonker
et al., 2016; Vinyals et al., 2018). Such systems require massive amounts of training
data to learn and we argue that this is mostly due to their perception components. If
these components were shared across multiple problems then their e�ective per-task
sample complexity would be reduced signi�cantly. In fact, Parisotto et al. (2015) show
that pre-training agents on some arcade games, o entimes helps them learn faster
when deployed to play other, new, arcade games. ¿us, assuming we can share the per-
ception component across di�erent problems, we only need problem-speci�c training
data for the reasoning component. Moreover, due to the shared reasoning hub, the
per-problem sample complexity can be further reduced, because the same reasoning
component is used for solving all problems. An interesting setting is one where the
perception component can be trained using supervised tasks with di�erentiable loss
functions, and, at the same time, be shared with reinforcement learning (RL) tasks
where the reward function is unknown and certainly not di�erentiable. We believe
that this would signi�cantly reduce the sample complexity of the RL tasks. ¿e jelly
bean world of Chapter 9 o�ers a great testbed for testing this hypothesis.
¿e proposed architecture components re�ect assumptions about human cognition

that are based on facts derived from psychology experiments, thus rendering this
architecture, a cognitive architecture. In the following sectionswe describe the di�erent
architecture components in more detail. Finally, in Section C.7, we describe how
learning is performed. Note that, not all architectural components that we describe
in the following sections are necessary for all learning problems. ¿erefore, for some
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Modality Examples
Data Type Sensor Network Effector Network Description
String BERT Encoder RNN Decoder Text
Image CNN Deep Convolutional GAN Image
Scalar[0,1] — MLP→Sigmoid Binary Distribution
Vector[0,1] — MLP→Softmax Categorical Distribution

Table C.1: Example modalities. RNN stands for Recurrent Neural Network, CNN for Convo-
lutional Neural Network, GAN for Generative Adversarial Network, MLP for Multi-Layer
Perceptron, Scalar[0,1] for a single number in the interval [0, 1], and Vector[0,1] for a
vector containing numbers in the interval [0, 1].

problems, some of the components may be ignored (e.g., a world simulator may not
be relevant for a text classi�cation task).

c.4 perception and action spokes

We de�ne perception and action spokes using two kinds of data modalities: (i) per-
ception modalities that represent data types that a model can receive as input, and (ii)
action modalities that represent data types that a model can produce as output. Each
kind of modality has a di�erent speci�cation:

Perception Modalities: Input space modalities are de�ned as tuples (DataType,
SensorNetwork), where DataType is the type of data supported by this modality
(e.g., String), SensorNetwork is a contextualized network that takes inputs of
type DataType and produces vectors of size Ls, and Ls is the reasoning input
representation size. Given somedata of type DataType (e.g., a string of characters
with type String), and optionally, a context (described in the next section), the
SensorNetwork produces a vector of size Ls, that the reasoning module can
understand.
Action Modalities: Output space modalities are de�ned as tuples (DataType,
EffectorNetwork), where DataType is the type of data supported by this modal-
ity (e.g., scalar number in the interval [0, 1]), EffectorNetwork is a contextu-
alized network that takes as input vectors of size Le and produces outputs of
type DataType (e.g., a linear transformation followed by a sigmoid activation
function), and Le is the reasoning output representation size.

Note that a modality can act as both a perception and an action modality, as long
as both a sensor and an e�ector network are provided. In this case, we also allow the
sensor and the e�ector networks to optionally share some or all of their parameters.
Examples of various modalities are shown in Table C.1. Modalities are de�ned such
that, for any given input (or output) data type, there is a single matching perception
(or action) modality that will be used.
Due to their generic de�nition, modalities can be composed. For example, given

perception modalities P1 and P2, we can construct a pair modality Pair[P1,P2],
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whose data type is a pair ofP1.DataType andP2.DataType, andwhose sensor network
is a function of the two modalities’ sensor networks. For example:

x 7→ Pool(P1.SensorNetwork(x[0]),P2.SensorNetwork(x[1])). (C.1)

Compositionality gives the proposed NCA high expressive power with respect to the
kinds of data it can handle. Compositionality, more generally (e.g., also at the problem
space), is a core aspect of the proposed architecture and is discussed in more detail
in Section C.6. At the core of how compositionality is being handled lies contextual
parameter generation, an abstraction that was described in Chapter 7.

communication and language. An interesting direction that we also wish to
explore in the long term is to add support for a modality that corresponds to commu-
nication with other agents (i.e., an arti�cial learned language). ¿is modality would
act as both a perception and an action modality and we could de�ne its data type as a
�xed-size vector that contains numeric values, for example. We can test for the ability
of agents to learn a language and communicate e�ectively by conducting experiments
in a multi-agent setting where solving certain problems requires coordination and
collaboration. ¿is is related to the work of Sukhbaatar et al. (2016) and Andreas et al.
(2017).

c.5 reasoning hub

¿e reasoning component of the proposed architecture consists of a few parts. At the
core lies the reasoning unit. ¿is unit transforms the perception component output to
an input for the action component and is represented as a contextualized network.
It is generally accepted that not all problems require the same amount of reasoning
(Kahneman and Egan, 2011). For example, solving an algebra problem requires more
thinking than recalling your own name. ¿erefore, we argue that the ability to reason
for arbitrary amounts of time, depending on the problem being solved, is an important
aspect of general learning and intelligence.Most existingmachine learning approaches
do not allow for a variable amount of reasoning, as the amount of computation is
prede�ned and �xed as part of the network architecture. ¿e few attempts that do
allow for this have been limited to very speci�c problems and have only shown small
gains over preexisting �xed computation time approaches (Graves, 2016; Dehghani
et al., 2019). In order to enable this capability in the proposed neural cognitive archi-
tecture, we decided to make the reasoning unit recursive, meaning that its output can
optionally be fed back as input again, to recurse over the reasoning transformation.
Each application of the reasoning transformation can be thought of as a reasoning
step. ¿e reasoning unit also outputs a decision on whether or not to stop, so that it
can stop reasoning and produce an output at some point. ¿e recursive nature of this
unit introduces several challenges with respect to how it should be trained. Our initial
plan is to incur a pondering cost, which is proportional to the number of reasoning
steps used, and add that cost to the loss function used to train the reasoning unit.
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recursion. More formally, at each time step t, the reasoning unit performs the¿is is not equivalent to
using a recurrent neural

network because the
number of recursion steps

is not predetermined.

following transformation:

[at+1, st+1, STOPt+1] = R(pt, at, st), (C.2)

where R represents the reasoning unit transformation, at represents the reasoning
unit output at time t, st represents the internal state of the unit at time t, pt represents
the reasoning unit input at time t which comes from the perception component (note
that if the system operates in a real-time environment, this may be di�erent across
di�erent reasoning steps), and STOPt is a boolean �ag representing the decision of the
reasoning unit about whether or not to stop reasoning at time t. Finally, aT is fed to
the action component, where T is such that STOPT = True. Enhancing the reasoning
unit with a state signi�cantly increases its modeling capacity. For example, it could
even perform a search with backtracking support (e.g., dynamic programming). ¿is
initial approach is inspired by the work of Graves (2016).

memory. In designing general learning architectures, we need to allow for an explicit
way for learning systems to remember experiences.¿is can happen implicitly, through
the learned model parameters (assuming high capacity networks), but it can also be
modeled explicitly by equipping the agent with a memory component. Cognitive
architectures o en use some form of memory that is symbolic, such as a knowledge-
base (KB) that contains learned facts. We propose to add a memory component to our
architecture, where all memories are represented in the latent reasoning space, rather
than being grounded in the perception or action modality data types. ¿is allows the
memory to abstract away details about the data that are not relevant to the reasoning
process. ¿e way memory is added to our architecture is through the reasoning unit,
which is enhanced such that it can read from and write to memory, while performing
the reasoning transformation. More formally, we de�ne the memory component in
terms of two functions,MREAD : K 7→ V andMWRITE : (K,V) 7→ (), where K and V
correspond to the memory key and value types, respectively, “ 7→” is used to denote
the function input and output types, and “()” represents the “void” type, meaning that
the function returns no values, and is only used for its side e�ects. Possible design
choices for the memory include memory networks (Sukhbaatar et al., 2015), or even
KBs de�ned over the latent reasoning space.
We propose to start with a simple, yet novel,2 attention-based memory mechanism.

In this case, the memory is de�ned as a pair of matrices,Mk ∈ RM×Dk , andMv ∈
RM×Dv , whereM is thememory size,Dk is the dimensionality of the keys, andDv is
the dimensionality of the values stored in the memory.Mk contains the memory keys
andMv contains the correspondingmemory values. Let us refer to theK-valued input
ofMREAD andMWRITE as the query. Queries are de�ned as vectors of sizeDk. WhenNote that, the querying

mechanisms are also
learned, similar to the
indexing mechanism.

a component wants to access a value stored in memory, it needs to provide a query
“describing” that value. We also de�ne an indexing function, I : K 7→ ∆M, where
∆M denotes theM-simplex, which contains all vectors of sizeM whose elements
are in [0, 1] and sum to 1. Intuitively, the indexing function maps from a query to a

2 Novel because we are not aware of prior work that learns a memory indexing mechanism.
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distribution over memory locations.3 ¿e indexing function that we propose to use
initially is the scaled dot-product attention by Vaswani et al. (2017):

I(q) = So max
(
qMT

k√
Dk

)
, (C.3)

which e�ectively measures the similarity between the query and all the memory keys.
¿en, the memory read function is de�ned as (in pseudocode):

MREAD(q) : return I(q)Mv, (C.4)

which returns a convex combination of all stored values, based on the computed index.
¿e memory write function is similarly de�ned as:

MWRITE(q, v) :Mv : = λI(q)v+ (1− λI(q))Mv, (C.5)

where “:=” is used to denote assignment, and λ is anM-sized vector with values in
[0, 1] that denotes the strength of the write operation. If λ is closer to 1, then old
values are forgotten faster. λ can be set adaptively, based on how o en each value is
being read. For example, it can be set closer to 1 for values that are rarely read. ¿e
learnable parameters of this learning mechanism consist of the parameters of I, and
the memory keys,Mk. We propose to initializeMv with zeros.
Allowing the memory indexing mechanism to be learnable by using separate keys

and values4 enables associative learning and memories, which have been shown to
be important aspects of human cognition (Fanselow and Poulos, 2005; Ranganath
and Ritchey, 2012). In psychology, associative memory is de�ned as the ability to
learn and remember the relationship between unrelated items (e.g., remembering
the name of someone or the aroma of a particular perfume). ¿is is enabled by our
indexing mechanism because it allows for two unrelated values to have similar keys.
¿is is mainly because we learn keys separately from the values they correspond
to. Furthermore, the proposed memory mechanism also allows for a natural way of
forgetting, where the keys of unused values change while learning to the point where
they may be used for storing other unrelated values instead.
We also allow for the sensor and e�ector networks to optionally read from this

memory.¿is can be important in cases where perception depends on past experiences.
Tulving et al. (1982) provides some evidence supporting that this has been observed
to be true of human perception (it is known as priming in psychology literature).

world simulator. An important aspect of human reasoning is simulating the
external world. JayWright Forrester, the father of system dynamics, described amental
model as: “¿e image of the world around us, which we carry in our head, is just a
model. Nobody in his head imagines all the world, government or country. He has only
selected concepts, and relationships between them, and uses those to represent the real
system.” (Forrester, 1971). ¿ere is signi�cant evidence of the importance of simulation

3 ¿is can be thought of as a so , probabilistic, version of memory indexing.
4 As opposed to indexing by comparing queries to values as done in memory networks.
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in neuroscience (Singer et al., 2018). For example, Nijhawan (1994) shows that to
strike a cricket ball one must estimate its future location, rather than where it is now.
Bialek et al. (2001) show that prediction has the fundamental theoretical advantage
that a system which parsimoniously predicts future inputs from their past, and that
generalizes well to new inputs, is likely to contain representations that re�ect their
underlying causes. Furthermore, they show that much of sensory processing involves
discarding irrelevant information, such as that which is not predictive of the future,
to arrive at a representation of what is important in the environment for guiding
action. Another related line of work is in the importance of auditory feedback (i.e.,
when we hear ourselves speaking). ¿e study of neural mechanisms underlying audio-
vocal integration has shown that auditory feedback may be used for updating internal
representations of mappings between voice feedback and speech motor control. One
of the earliest demonstrations of the role of auditory feedback in voice control is the
Lombard e�ect, where people raise their voice amplitude to overcome environmental
noise (Lombard, 1911; Lane and Tranel, 1971). A related phenomenon is side-tone
ampli�cation, in which people increase their voice loudness when their self-perceived
loudness is too quiet to achieve a communication goal, and vice versa (Lane and Tranel,
1971). Given this strong evidence from neuroscience, we argue that in an interactive
setting, where the learning agent keeps interacting with an outside world—which may
also include other agents—being able to simulate that world can be very important.
For example, this ability could enable a search over the potential implications its
decisions can have on that outside world.
We thus propose to add a world simulator component to our neural cognitive

architecture. Formally, the simulator S performs the following prediction:

p̂t+1 = S(pt, at+1), (C.6)

where p̂t+1 is a prediction estimate of pt+1. Furthermore, we allow the world sim-
ulator to read from memory (as de�ned in the previous paragraph), but not write
to it. Intuitively, the world simulator is trying to predict the next perception input,
given the current perception input and action output, while operating only in the
latent reasoning space. Similar to the memory component, this allows the simulator to
abstract away information that is not relevant to the problems the system is learning
to solve. ¿is type of world simulation in a latent reasoning space is also supported by
neuroscienti�c evidence (e.g., Keller et al., 2012).
Recently, Ha and Schmidhuber (2018) proposed using an RNN-based world simu-

lator for playing games in an RL setting. ¿ey use a variational auto-encoder (VAE) to
compress the input images to a smaller vector representation and then learn a model
that simulates the environment in this vector space. ¿is di�ers from our proposal in
that, we are simulating the world in the latent reasoning space that our system learns.
¿is should help us obtain a representation, that has higher information content that
is relevant for the reasoner.
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c.6 goal contextualization

Even though deep learning methods are very e�ective at learning representations for
arbitrary data modalities, they are o en treated as black-box methods o�ering little
control over how information is shared across di�erent tasks, and over what exactly
the networks are learning. For example, we can rarely guarantee that a network will
generalize well to new tasks, and we o en also have to keep training the network
with new problem-speci�c data, in order for it to generalize better. Furthermore,
deep learning approaches o en render generalizing to new tasks, for which we might
have no data at all, impossible. However, most real-world problems can be de�ned
in terms of simpler problems (e.g., translating sentences relies on �rst being able to
translate single words). ¿erefore, we argue that the ability to represent problems in a
way such that they can be transformed and composed out of other problems, is an
important aspect of general learning and intelligence. As discussed in Chapter 7, this
motivated our work on contextual parameter generation (CPG), and forms the basis
of contextualization. In the proposed neural cognitive architecture, contextualization
plays the important role of emulating the goal primingmechanism that is inherent in
human intelligence and learning. We now describe how this is achieved, in three parts:
(i) we �rst describe how problems (or goals) are speci�ed through some language, (ii)
we then de�ne an architectural component that compiles the problem speci�cation to
a representation that can be used to contextualize other parts of the NCA by using
CPG, and (iii) we describe how this allows for the learning system to generate its own
target problems (or goals) that it aims to learn.
As shown in Figure C.2, we also allow the sensor and e�ector networks to be con-

textualized because perception and action are o en not independent of the problem
being solved. ¿is is motivated by the fact that priming in humans can be perceptual,
semantic, and conceptual (Bargh and Chartrand, 2014). From a machine learning
perspective, we have also shown the usefulness of contextualizing equivalents of
perception and action modules, when we proposed using CPG for universal neural
machine translation in Section 8.2.

problem specification. We�rst need a representation for problems.Wepropose
to use a �xed language for this representation, which could take multiple forms:

Fixed-Size Vector: Problems could be represented as continuous-valued, �xed-
size, vectors (e.g., Snell et al., 2017; Wang et al., 2017b; Grover et al., 2018). For
example, given a �xed number of pre-speci�ed problems the system may learn
vector embeddings to represent them. ¿e main disadvantage of this approach
is that the vector representations of learning problems may not be interpretable.
Natural Language: ¿is could be a problem description that is provided as
input to the system (e.g., “Identify human faces in the input image.”). ¿is is the
approach taken, for example, by McCann et al. (2018).
StructuredLanguage:¿is could be �rst-order logic (e.g., “Collect[JellyBean]
∧ ¬ Collect[Onion]”), or more general (e.g., “If[JellyBean] Then[Collect]
Else[Avoid]”, or even a Python program).
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Problem Compiler Examples
Specification Compiled Form Explanation
Classify[City] gClassify(cCity) Predict if the input (e.g.,

“Washington”) is a city.
Classify[City∧¬Person] gClassify(g∧(cCity, g¬(cPerson))) Predict if the input is a city

and not a person.
Caption[Image,English] gCaption(cEnglish) Generate a short English

sentence describing the
input (e.g., generate captions
for images).

Translate[English,German] gTranslate(cEnglish, cGerman) Translate the input from
English to German. This is
interesting because the
modularity of our
architecture means that this
problem specification could
even be used to translate
images containing text, for
example.

Table C.2: Example uses of the problem compiler. We use c with di�erent subscripts to denote
context vectors representing primitives in the problem speci�cation language, and g with
di�erent subscripts to denote transformation functions for context vectors (which could be
de�ned as learnable neural networks, for example).

problem compilation. Given a problem speci�cation, we need to de�ne a
compiler that takes it as input and produces a composition of learnable functions that,
when evaluated, results in a single structured representation for the problem (e.g., a set
of vectors). ¿is representation can then be used to contextualize di�erent parts of the
proposed architecture (e.g., sensor or e�ector networks, or parts of the reasoner that
are discussed in the next section). Given that the representation can potentially be a set
of vectors, we could use di�erent parts of that structure to contextualize di�erent parts
of the architecture. For example, text sensor networks could be contextualized using
an embedding of the language in which the text is written. Note that, contextualizing
networks is optional as it is sometimes not necessary.
¿e choice of the problem compiler is important. For �xed-size vectors and natural

language speci�cations the compiler could be as simple as just a neural network (e.g.,
a multi-layer perceptron, a recurrent neural network, or a Transformer network).
However, for other structured languages the compiler would be something more
similar to programming languages compilers. Some examples of representations and
their corresponding compiled forms are shown in Table C.2. Following from the
previous section examples, given a problem speci�cation that is written as a Python
program, we could also compile it into a composition of learnable functions.
¿is de�nition of problem speci�cations and problem compilers allows us to make

the contextualizationmechanism very �exible and extensible by introducing operators
that compose compiled forms in arbitrary ways. For example, we could have two
problem speci�cations, each with their own compiler, and a separate operator that
allows us to merge the two compiled forms, resulting in a single �nal context vector.
A simple form of a problem compiler was used in Section 8.4.
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problem generation. An important aspect of human learning is that, even
though nature provides us some reward signals for our actions (e.g., eating resolves
hunger), we o en “invent” new problems that we learn to solve. We could argue
that this is a way of structuring much larger overarching problems into multiple
subproblems. ¿is human behavior aspect is very interesting and, at the same time,
not really tackled by current machine learning systems. ¿erefore, we propose to let
our learning system “invent” problems on its own. For this paragraph, we will use
a reinforcement learning setting where a learning agent can perceive certain things
about the environment in which it “lives” and take actions. O entimes, the agent
receives a reward, but it may not know why. ¿us, in such a setting, it would make
sense for the agent to try and “invent” problems to solve, that would result in higher In this case, we assume

that no problem
speci�cation is provided
to the agent as input.

collected rewards. We propose to introduce an additional action modality that allows
the agent to generate problem speci�cations, which are then directly fed in the problem
compiler, and can contextualize multiple parts of the architecture.
For the �xed-size vector speci�cation format, this could be implemented by having

the e�ector network output a vector representing the problem. Perhaps more interest-
ingly though, we could de�ne a structured language that only depends on the agent’s
perception and action modalities. ¿is would allow the agent to generate arbitrary
problem speci�cations that only depend on what it is able to perceive and how it can
act. For example, given a perception modality that identi�es the types of items in
the environment, and an action modality that can collect items, we could de�ne the
problem speci�cation language to be:

(¬)Collect[<Item>](∧(¬)Collect[<Item>])*,

where ¬ denotes the logical NOT operation, ∧ the logical AND operation, parenthesis
denote optional parts, <Item> denotes any item type that can be sensed by the item
identi�cation perception modality, and * denotes that the term in parenthesis preced-
ing it can be repeated zero ormore times. Note that Collect[·] acts as a logic predicate
that can be applied on any item type. An example speci�cation in this language that
was used in Section 8.4 and Chapter 9, is Collect[JellyBean]∧¬Collect[Onion].
We propose to formalize this problem generation mechanism and allow learning
systems to decide on the problems they are learning to solve.

c.7 learning mechanisms

¿e architecture components presented so far depend on parameters that need to be
learned (e.g., the weights of the neural network layers that are used). Learning consists
of setting the values of these parameters so that the system as a whole can solve the
target problems. We assume that all components are formulated as functions that are
di�erentiable with respect to their parameters.5 Under this assumption, we de�ne our
learning mechanism as follows:

5 Note that this is a very general assumption that holds for most deep learningmodels, and a lot of machine
learning models, more generally.
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1. Each action modality can optionally provide a feedback mechanism. Let us
denote the output of themodality’s e�ector network as a function fθ(x), where x
represents all inputs that it depends on. In this case, f represents the composition
of all architecture modules that participated in producing this output (i.e., this
includes the reasoning module, the goal contextualization module, and the
relevant perception sensor networks). ¿en, we de�ne the feedback mechanism
as a function h of fθ(x) and the external environment. For example, if fθ(x) is
producing a distribution over classes (for a multi-class classi�cation problem),
h could be de�ned as:

h(fθ(x), y) = fθ(x) − y, (C.7)

where y represents a one-hot representation of the true class assignment pro-
vided by the environment. ¿e main constraint on h is that it should produce
an output that can be multiplied with∇θfθ(x).

2. Whenever an actionmodality produces an output and a corresponding feedback
signal is returned from the environment, a gradient-based parameter update is
performed along the following direction:

Dθ , h(fθ(x),E)
↓

External

∇θfθ(x)
↓

Internal

, (C.8)

where E represents the external environment. Note that the �rst part—shown
in blue—is provided from the external environment, whereas the second part—
shown in red—can be computed internally from the learning system itself.
¿is separation is interesting from a human cognition perspective because,
intuitively: (i) a human would know how to tweak their brain to move their
hand further forward (internal update), while (ii) the external environment
could tell them that to achieve a particular goal they would need to move
their hand forward (external update). ¿e model update could be a stochastic
gradient descent step:

θt+1 = θt + λtDθt , (C.9)

where λt represents the learning rate. ¿is update could also be more elaborate
by using the Adam (Kingma and Ba, 2015) or AMSGrad (Reddi et al., 2018)
optimizer, for example.

Equation C.8 is interesting because it can be used to uni�ed multiple di�erent learning
paradigms, such as supervised, semi-supervised, unsupervised, and reinforcement
learning, under one formulation. For example:

Supervised Learning: In this case, the gradient-based updates are computed
by di�erentiating a loss function, L(fθ(x),E). ¿is �ts in our formulation by
de�ning the feedback mechanism using the chain rule of di�erentiation:

h(fθ(x),E) =
∂L(fθ(x),E)

∂fθ(x)
. (C.10)
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For example, for the `2 loss we have h(fθ(x), y) = fθ(x) − y, and for the
cross-entropy classi�cation loss we have h(fθ(x), y) = y/fθ(x).
Semi-Supervised Learning: Can o en also be formulated in terms of minimiz-
ing a di�erentiable loss function and thus Equation C.10 also applies here.
Unsupervised Learning: In this case, h(fθ(x),E) does not depend on E at all
and could be de�ned internally as well. More speci�cally, h could be used to
perform some sort of self-re�ection, as discussed in Part i.
Reinforcement Learning: In the case of Q-learning (Watkins and Dayan, 1992),
we can have an action modality that predicts the Q-function value (Mnih et al.,
2013) and then the learning mechanism can use a supervised learning feedback
function h to learn it using the rewards provided by the environment. In the
case of policy gradient methods (Sutton et al., 2000), h can be de�ned as the
advantage function being used, or even as some function of the advantage for
more complex methods (Mnih et al., 2016; Schulman et al., 2017; Wang et al.,
2017a). More interestingly, if we want to use experience replay as done by (Mnih
et al., 2013), we could develop a variant where: (i) the perception and action
modality parameters are �xed and we are training only the problem compiler
and the reasoning modules, and (ii) the stored experiences that are replayed are
not represented in the original data space, but rather in the more abstract and
compact reasoning space. ¿is has the signi�cant advantage of being able to
store a lot more experiences, as memory is typically the bottleneck when using
experience replay. Furthermore, we would only be storing information that is
relevant to reasoning.

Our learning mechanism manages all feedback mechanisms and determines how to
apply the corresponding updates and what learning rate to use for each one. Initially,
we plan to use the same learning rate for all parameters and feedback mechanisms
with exponential decay over time. However, our de�nition allows us to use potentially
di�erent learning rates for each parameter and for each learning goal (de�ned by
corresponding feedback mechanisms). Next, we plan to integrate the ideas presented
in Part i to this learning mechanism. In the long term, we would like to explore other
interesting directions such as staged learning.

staged learning. ¿e aforementioned reinforcement learning example on expe-
rience replay demonstrates the idea of staged learning. In staged learning, we freeze
the learning of the perception and action modalities early on during training (e.g.,
by signi�cantly lowering the corresponding learning rate), and then focus more on
training the reasoning module. As discussed in the beginning of this appendix, this
would be more similar to how human learning works. Assuming that the perception
and action modality networks have already been trained using a diverse set of learning
goals, freezing them should allow for the reasoning module to tackle new learning
goals in a �xed latent space. determined by these pretrained networks. We believe that
this will result in signi�cantly faster training times.

mixed-paradigm learning. As shown earlier, our learning mechanism is a
generalization of multiple existing learning paradigms thus allowing us to mix them
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together by simply intertwining their gradient-based updates. For example, we can take
a gradient descent step towards minimizing a supervised cross-entropy classi�cation
loss, and then take a gradient descent step that improves the current Q-function
estimate, in a reinforcement learning setting. ¿is introduces multiple challenges that
we will have to overcome, including, but not limited to:

– How do we balance the gradient contribution from each learning problem?
– How do we set the per-learning-goal and per-parameter learning rates?
– How do we make the learning mechanism scale?
– How do we properly batch the training data?

Other learning paradigms, such as active learning and curriculum learning, can also
be supported by designing appropriate perception and action modalities.

c.8 next steps

A never-ending learning system must be highly modular and allow for the addition
and removal of modules without requiring a complete retraining from scratch. For
this reason, we propose to implement the architecture in a highly modular manner,
with each module being completely independent of the rest and having a �xed, well-
de�ned, and generic interface. ¿is will allow for adding and removing perception
and action modalities and for extending the problem speci�cation language, without
requiring a complete retraining from scratch every time such a modi�cation is made.
Furthermore, each module will be solely responsible for persisting its state, so that
we can keep extending the architecture and avoiding training restarts, as much as
possible. ¿e next steps in this work would be to implement simple variants of this
architecture and test them on the jelly bean world of Chapter 9 as well as some real-
world problems.¿e goal of these evaluationswould be to provide convincing evidence
for the never-ending learning capabilities of the proposed architecture. Moreover,
unlike NELL (Mitchell et al., 2018), we aim for this system to fully avoid complete
training restarts throughout its lifetime. Finally, as an even longer term goal, we want
to explore directions where the latent reasoning representation is also extensible
without requiring complete training restarts.
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