
SPECTRAL PROBABILISTIC MODELING AND
APPLICATIONS TO NATURAL LANGUAGE PROCESSING

Ankur Parikh

August 2015
CMU-ML-15-102

SPECTRAL PROBABILISTIC MODELING AND
APPLICATIONS TO NATURAL LANGUAGE PROCESSING

Ankur Parikh

August 2015
CMU-ML-15-102

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee
Eric Xing, Chair
Geoff Gordon

John Platt (Google)
Noah Smith

Le Song (GeorgiaTech)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright cO Ankur Parikh, 2015

This research was sponsored by: the National Science Foundation Graduate Research Fellowship Program
under grant numbers DGE0750271, 0946825, DGE1252522; National Science Foundation grant numbers

IIS0713379 and IIS1218282; National Institutes of Health grant numbers R01GM093156 and P30DA035778;
Defense Advanced Research Projects Agency grant number NBCH1080007; and the Pittsburgh Life

Sciences Greenhouse.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of any sponsoring institution, the U.S. government, or any

other entity.

Keywords: probabilistic graphical models, spectral methods, kernels, unsupervised parsing,
language modeling

Acknowledgements

This thesis would not have been possible without the help of a great number of people. I would first
like to thank my undergraduate advisors Profs. Sharad Malik and Rob Schapire for introducing
me to the world of research and inspiring me to commit several years of my life to being a PhD
student. It was definitely worth it.

I am very grateful to have Prof. Eric Xing as my thesis advisor, who played an instrumental
role in helping me to pick impactful problems and construct a long term vision for my thesis that
spanned both theory and application. With his guidance and the breadth of expertise represented
by the SAILING lab, I had the opportunity to be able to do research in a diverse range of fields
spanning machine learning, natural language processing, and computational biology.

I’m also very thankful to my other thesis committee members Le Song, Noah Smith, Geoff

Gordon, John Platt, and previously Ben Taskar for their time and feedback that have helped to
improve many parts of this thesis. Le’s mentorship taught me how to tackle technically challenging
problems and introduced me to the field of spectral learning. Noah has always made time to listen
to my practice talks and give honest and useful feedback. Geoff and John have been really great
to discuss machine learning ideas with, and Ben gave me some key suggestions on how to keep
my thesis more focused.

In natural language processing (NLP), I have been fortunate to collaborate with and have learned
a lot from Chris Dyer, Shay Cohen, Hoifung Poon, and Kristina Toutanova. Their guidance exposed
me to an amazing area that I’ve become very passionate about. I’m also grateful to Avneesh Saluja
who has been great to collaborate and discuss ideas with, and Brendan O’Connor who first sparked
my interest in NLP by inviting me to Noah’s reading group.

Although not part of my thesis, I have benefited greatly from my computational biology col-
laborations with Prof. Wei Wu and Micol Marchetti-Bowick. I’m also grateful to Mladen Kolar
who helped me write my first publication and my other collaborators Mariya Ishteva, Qirong Ho,
Asela Gunawardana, and Chris Meek.

The Machine Learning Department has been an awesome experience, and I’m very thankful to
Diane Stidle, Mallory Deptola, and Michelle Martin for all their help, support, and patience in the
many years I’ve been here.

Lastly, I’m very grateful to my parents, Prashant and Manjari Parikh, whose unwavering support
for me to pursue my passion has been crucial to being able to complete this thesis. Without their
advice and support, it would have been difficult to navigate the ups and downs of a PhD.

1

Abstract

Probabilistic modeling with latent variables is a powerful paradigm that has led to key advances in many
applications such natural language processing, text mining, and computational biology. Unfortunately,
while introducing latent variables substantially increases representation power, learning and modeling can
become considerably more complicated. Most existing solutions largely ignore non-identifiability issues in
modeling and formulate learning as a nonconvex optimization problem, where convergence to the optimal
solution is not guaranteed due to local minima.

In this thesis, we propose to tackle these problems through the lens of linear/multi-linear algebra. Viewing la-
tent variable models from this perspective allows us to approach key problems such as structure learning and
parameter learning using tools such as matrix/tensor decompositions, inversion, and additive metrics. These
new tools enable us to develop novel solutions to learning in latent variable models with theoretical and prac-
tical advantages. For example, our spectral parameter learning methods for latent trees and junction trees
are provably consistent, local-optima-free, and 1-2 orders of magnitude faster than EM for large sample sizes.

In addition, we focus on applications in Natural Language Processing, using our insights to not only
devise new algorithms, but also to propose new models. Our method for unsupervised parsing is the first
algorithm that has both theoretical guarantees and is also practical, performing favorably to the CCM method
of Klein and Manning. We also developed power low rank ensembles, a framework for language modeling
that generalizes existing n-gram techniques to non-integer n. It consistently outperforms state-of-the-art
Kneser Ney baselines and can train on billion-word datasets in a few hours.

2

Contents

1 Introduction 7

1.1 Challenges . 8

1.2 A Linear Algebra Approach To Graphical Models . 9

1.3 Applications to Natural Language Processing . 9

1.4 Thesis Statement . 11

1.5 Related Work . 12

1.6 Outline . 12

2 Background: Modeling with Probabilistic Graphical Models 13

2.1 Tasks in a graphical model . 16

2.2 Latent Variable Graphical Models . 20

2.3 Review of Hilbert Space Embedding of Distributions 24

3 A Linear Algebra View of Latent Variable Models 33

3.1 Tensor Notation . 33

3.2 The Spectral View . 35

I Spectral Learning Algorithms for Graphical Models 38

4 A Spectral Algorithm for Latent Tree Graphical Models 39

4.1 Intuition . 40

3

4.2 Notation for Latent Tree Graphical Models . 41

4.3 Derivation of Spectral Algorithm . 42

4.4 Dealing with SH , SO . 48

4.5 Sample Complexity Analysis . 51

4.6 Empirical Results . 51

4.7 Connections with Tensor Decomposition . 52

4.8 Conclusion . 55

5 A Spectral Algorithm for Latent Junction Trees 56

5.1 Additional Tensor Notation . 57

5.2 Latent Junction Trees . 58

5.3 Tensor Representation for Message Passing . 59

5.4 Transformed Representation . 62

5.5 Observable Representation . 63

5.6 Discussion . 65

5.7 Sample Complexity . 66

5.8 Experiments . 66

5.9 Conclusion . 68

5.10 Appendix . 69

6 Nonparametric Latent Trees with Kernel Embeddings 83

6.1 Notation . 84

6.2 Kernel Density Estimation . 85

6.3 Connection to Hilbert Space Embeddings . 86

6.4 Deriving the Spectral Algorithm . 87

6.5 Structure Learning of Latent Tree Graphical Models 90

6.6 Experiments . 94

6.7 Conclusion . 97

4

6.8 Appendix . 98

7 Alternative Spectral Representation of Latent Tree Graphical Models 101

7.1 Intuition . 102

7.2 Notation . 103

7.3 Derivation of Alternate Spectral Algorithm . 103

7.4 Observable Representation . 105

7.5 Sample Complexity . 107

7.6 Experiments . 109

7.7 Discussion . 112

7.8 Appendix . 112

7.9 Eigenvalue Bounds . 115

7.10 Putting it all together . 123

II Spectral Models for Natural Language Processing 125

8 Spectral Unsupervised Parsing with Additive Tree Metrics 126

8.1 Introduction . 126

8.2 Learning Setting and Model . 128

8.3 Spectral Learning Algorithm based on Additive Tree Metrics 131

8.4 Experiments . 139

8.5 Conclusion . 143

8.6 Appendix . 143

9 Language Modeling via Power Low Rank Ensembles 155

9.1 Introduction . 155

9.2 Discount-based Smoothing . 157

9.3 Power Low Rank Ensembles . 158

5

9.4 Creating the Ensemble . 161

9.5 Experiments . 167

9.6 Machine Translation Task . 170

9.7 Related Work . 170

9.8 Conclusion . 171

9.9 Appendix . 171

10 Conclusion 177

6

Chapter 1

Introduction

Probabilistic graphical models have become an indispensable framework in artificial intelligence
(Pearl, 1988; Koller and Friedman, 2009; Murphy, 2012). Their ability to model and reason about
complex uncertainty among large sets of variables has been an important driving force behind
advances in many applications such as natural language processing(Manning and Schütze, 1999)
and computational biology(Baldi et al., 2001) in the last two decades.

Four central themes in graphical models are:

1. Structure Learning: How do we determine the structural dependencies among a set of
random variables?

2. Parameter Learning: Once the model structure has been determined, how can the parameters
be learned from the data?

3. Inference: How can we reason or make predictions about a set of variables conditioned on
the values of other variables?

4. Modeling: How to leverage these tools to construct effective models for real world phenom-
ena?

For graphical models where all variables are observed in the data, many of the solutions to these
algorithmic challenges are well studied. Often for simple structures, many of these problems have
tractable solutions e.g. the Chow-Liu algorithm for structure learning of tree graphical models,
maximum likelihood estimation with fully observed data for parameter learning, max-product for
inference on trees. For more complex graphical models, structure learning, parameter learning,
and inference are generally NP-hard but approximate solutions have been developed (Wainwright
and Jordan, 2008; Koller and Friedman, 2009).

However, limiting ourselves to only using observed variables can be quite restrictive from the
perspective of modeling. This is because, in many cases, the observed variables alone may not
suffice to provide a concise explanation of the data. Consider the machine translation example
shown in Figure 1.1. Here the goal is to translate the simple English sentence “spectral learning
is awesome ” into Spanish, which is “aprendizaje espectral es impresionante”. At first this task can

7

seem daunting since the ith word in the English sentence does not necessarily correspond to
the ith word in the Spanish sentence. For example, here “spectral”, the first word in the English
sentence corresponds to “espectral”, the second word in the Spanish sentence. For more complicated
sentences, whole phrases may be moved/inserted when translating to another language. Therefore,
strictly modeling with only the observed variables, as informally shown in Figure 1.1(a), can
produce very complicated dependencies.

spectral learning is awesome

aprendizaje espectral es impresionante

(a)

spectral learning is awesome

aprendizaje espectral es impresionante

ALIGNMENT

(b)

Figure 1.1: Translation example of how latent variables can provide simpler solutions to problems

Intuitively, the problem would be much simpler if we knew which English word mapped to each
Spanish word i.e. the word alignment, as (informally) shown in Figure 1.1(b). Given the alignment
function a, translation becomes much easier, since to get the ith spanish word, we can simply look
up the Spanish translation of the a(i)th english word. However, the alignment is not provided in
the training data (which generally just consists of English/Spanish sentence pairs), and therefore
is a latent (or hidden) variable.

1.1 Challenges

Unfortunately, while latent variables provide advantages for model design, they pose substantial
challenges for structure learning, parameter learning, and modeling. There exist many problems
that are easy for fully observed models but are considerably more difficult for latent variable mod-
els. For example, maximum likelihood estimation with latent variables for structure/parameter
learning is generally NP-hard. Similarly, while observed models are always identifiable, the same
is generally not true for latent variable models, making evaluation and interpretation complicated.

The vast majority of existing approaches addressing these challenges rely on local-search heuris-
tics based on either greedy search or non-convex optimization. While in many cases these methods
work well in practice, they often require careful initialization and problem-specific heuristics to
yield good results. For example, unsupervised parsing performance with random initializations
can vary greatly, making carefully crafted initializers essential to reliable results. In addition, the
sequential nature of these existing methods can often make parallelization challenging and thus
scalability non-trivial in today’s distributed computing paradigm.

From the theoretical perspective, these approaches often do not shed light into the nature and
complexity of latent models making it difficult to ascertain what makes the problem difficult, and
whether certain relaxations can lead to tractable solutions.

8

1.2 A Linear Algebra Approach To Graphical Models

In this thesis, we tackle these challenges from a different perspective revolving around linear
algebra. From the linear algebra point of view, latent variables induce low rank dependencies
among the observed variables. The rank of the latent space can then be theoretically used to
quantify the complexity/hardness of learning in the latent variable model. As we will see, when
the rank becomes very large, the problem will become intractable, and we will be forced to resort
to heuristic search methods. However, in the low rank scenario, which we will argue occurs more
often in practice, we can leverage tools from linear algebra to provide provably consistent solutions
in many cases.

Our work is inspired by recent theoretical results from different communities such as dynami-
cal systems (Katayama, 2005), theoretical computer science (Dasgupta, 1999), statistical machine
learning (Hsu et al., 2009; Bailly et al., 2009), and phylogenetics (Mossel and Roch, 2005). Before
this thesis however, the majority of spectral learning methods were limited to hidden Markov
models (Hsu et al., 2009; Bailly et al., 2009; Siddiqi et al., 2010; Song et al., 2010a).

In this dissertation, we take a more general view, proposing not just to leverage low rank
matrix factorization (although that is certainly a major component), but also higher order tensor
operations, additive tree metrics, and other tools to present theoretically principled and practical
spectral solutions to a broad class of problems. In particular, we seek to focus on parameter
learning, structure learning, and modeling with latent variables from the linear algebra point of
view.

1.3 Applications to Natural Language Processing

From the application standpoint, we seek to use these theoretical insights to develop new models
and algorithms for Natural Language Processing (NLP) tasks. We focus on unsupervised pars-
ing and language modeling, two probabilistic modeling problems which we believe can benefit
substantially from the linear algebra perspective.

1.3.1 Unsupervised Parsing

Unsupervised parsing (also known as grammar induction) is the problem of discovering syntactic
structure in sentences without the help of annotated training examples marked with syntactic trees.
Solutions to the problem of grammar induction have been long sought after since the early days
of computational linguistics and are interesting both from cognitive and engineering perspectives.
Cognitively, it is more plausible to assume that children obtain only terminal strings of parse trees
and not the actual parse trees, which means the unsupervised setting may be a better model for
studying language acquisition.

From the engineering perspective, training data for unsupervised parsing exists in abundance
(i.e. sentences and part-of-speech tags), and is much cheaper than data required for supervised
training, which requires manual syntactic annotation.

9

Most of the solutions suggested treat the problem of unsupervised parsing by assuming a
parametric model, which is then estimated by identifying a local maximum of an objective function
such as the likelihood (Klein and Manning, 2004) or a variant of it (Cohen and Smith, 2009;
Headden et al., 2009; Spitkovsky et al., 2010b; Gillenwater et al., 2010; Golland and DeNero, 2012).
Unfortunately, finding the global maximum for these objective functions is usually intractable
(Cohen and Smith, 2010). As a result, many of these methods suffer from severe local-optima and
initializers are crafted to obtain good solutions.

In this thesis, we take a very different approach to unsupervised parsing. We propose to
formulate unsupervised parsing as a latent structure learning problem where the latent structure
(parse tree) varies for each example. Our goal is to then leverage linear algebra tools to derive a
provably correct learning algorithm that also works empirically well in practice.

1.3.2 Language Modeling

Language modeling - the task of assigning probabilities to sequences of words, is an important
component of many NLP and speech systems. It is a seemingly simple, yet actually very chal-
lenging problem that is useful in a number of applications e.g. machine translation (Koehn, 2010)
since it allows one to determine which candidate sequences are more likely than others. The
predominant approach to language modeling is the n-gram language model, wherein the proba-
bility of a word sequence P(w1, . . . ,wm) is first factored and then approximated (with the Markov
assumption) as:

P(w1, . . . ,wm) =

m∏
i=1

P(wi|w1, . . . ,wi−1) ≈
m∏

i=1

P(wi|wi−1
i−n+1)

In other words, one only needs to take into account the previous n− 1 words when computing the
probability of a word wi given its word history. This assumption reduces parameters significantly,
but it is not enough. Due to the large vocabulary space, maximum likelihood approaches will
often assign zero probability to word sequences that were unseen in the training data (but can be
in the test data).

A rich literature in language model (LM) smoothing has thus arisen in response to this core
issue, with the basic idea behind most approaches being to interpolate with or back off to lower
order n-gram models (which are less sparse) as the need arises (Chen and Goodman, 1999). While
surprisingly simple, these techniques, in particular Kneser-Ney smoothing (Kneser and Ney, 1995)
and variants, have often been the state of the art for more than a decade. However, these approaches
fail to exploit the semantic/syntactic relatedness among words that can intuitively be exploited to
help alleviate the data sparsity problem in a more efficient manner.

As part of this dissertation, we examine how ensembles of specially constructed low rank
matrices/tensors can be leveraged to provide a novel solution to the language modeling problem.
Our proposed solution contains Absolute Discounting(Ney et al., 1994) and Kneser Ney (Kneser
and Ney, 1995) as special cases of our general framework. Our approach can take incorporate
semantic relatedness among words to improve performance while preserving scalability to large
datasets.

10

1.4 Thesis Statement

The central theme of this thesis revolves around the following statement:

Viewing latent variable models through the lens of linear/multi-linear algebra allows us to approach key
problems such as structure and parameter learning using tools such as matrix/tensor decompositions, in-
version, and hilbert space operators. These new tools enable us to develop novel solutions for learning and
inference in latent variable models that have both theoretical and practical advantages. In addition, these
insights aid us in designing new models and algorithms for language modeling and unsupervised parsing
in Natural Language Processing.

Key Contributions

1. Chapter 4: A Spectral Algorithm for Latent Tree Graphical Models - We leverage tensor
algebra to derive a provably consistent parameter learning algorithm for latent trees. Our
approach gives comparable or better accuracy to Expectation Maximization, while being 10-
100x faster in a variety of settings (Key theme: parameter learning). Preliminary version: Parikh
et al. (2011).

2. Chapter 5: A Spectral Algorithm for Latent Junction Trees - We generalize the work from the
previous chapter to low-treewidth graphical models via junction trees (Key theme: parameter
learning). Preliminary version: Parikh et al. (2012)

3. Chapter 6:Kernel Embeddings of Latent Tree Graphical Models - Using Hilbert Space
Embeddings (Smola et al., 2007), we develop algorithms for latent variable parameter and
structure learning in latent tree graphical models with continuous, non-Gaussian variables
(Key themes: parameter and structure learning). Preliminary version: Song et al. (2011b).

4. Chapter 7: Alternate Spectral Algorithm for Latent Tree Models - We show that the spectral
algorithm derived in Chapter 4 is not unique and there exists another spectral representation
that only requires tensors of order 3 regardless of the tree topology. Both factorizations
are compared empirically in different settings (Key theme: parameter learning). Preliminary
version: Parikh et al. (2011)

5. Chapter 8: Spectral Unsupervised Parsing with Additive Tree Metrics - We propose a novel
model for unsupervised parsing that revolves around structure learning of projective latent
trees where the latent structure changes for each example. Unlike existing approaches, our
method has provable guarantees on structure recovery and also performs well empirically
(Key themes: structure learning and modeling). Preliminary version: Parikh et al. (2014a)

6. Chapter 9: Language Modeling with Power Low Rank Ensembles - We develop a novel
low rank framework of n-gram language models where existing methods such as Absolute
Discounting and Kneser Ney are special cases. Our approach allows n-grams of non-integer
n i.e. 2.5-grams, 1.5-grams etc. and consistently outperforms state-of-the-art Kneser Ney
baselines without sacrificing the computational advantages of n-gram based methods (Key
theme: modeling). Preliminary version: Parikh et al. (2014b)

.

11

1.5 Related Work

As mentioned previously, the basis for this dissertation is built on work from many different com-
munities such as dynamical systems, (Katayama, 2005), theoretical computer science (Dasgupta,
1999), statistical machine learning (Hsu et al., 2009; Bailly et al., 2009), and phylogenetics (Mossel
and Roch, 2005). Before this thesis however, the majority of spectral learning methods were limited
to hidden Markov models (Hsu et al., 2009; Bailly et al., 2009; Siddiqi et al., 2010; Song et al., 2010a).

In this work we take a more general graphical models point of view, leveraging tensor algebra
to show that spectral approaches can lead to principled and practical solutions for a wide class of
problems in graphical models and Natural Language Processing. Our approach allows us to gain
a deeper understanding of spectral learning and its connections to tensor algebra. Furthermore, it
allows us to use these insights to develop novel models and solutions for new domains.

Concurrently with this thesis, other researchers have also developed spectral learning methods
for other problems such as predictive state representations (Boots et al., 2010), topic models (Anand-
kumar et al., 2012, 2013), latent probabilistic context free grammars (Cohen et al., 2012; Cohen and
Collins, 2012) and other models (Bailly et al., 2010; Balle et al., 2011; Luque et al., 2012; Dhillon
et al., 2012a; Balle et al., 2012; Boots and Gordon, 2013; Zhang et al., 2014; Chaganty and Liang,
2014; Quattoni et al., 2014; Wang and Zhu, 2014; Subakan et al., 2014; Saluja et al., 2014).

In particular, the works of Cohen et al. (2012); Cohen and Collins (2012) and Dhillon et al. (2012a);
Melnyk and Banerjee (2014) leverage the tensor formulation we developed in this thesis.

Another line of work that seeks to develop alternative learning methods for latent variable
models is that of anchor-based methods, first proposed by Arora et al. (2012b), and followed up
by Arora et al. (2012a); Ding et al. (2013); Cohen and Collins (2014); Nguyen et al. (2014). Compared
to spectral approaches, these methods make a rather different set of assumptions, assuming that
for each latent state there exists a feature that can only be generated by that state. While it would
be very interesting to compare these approaches directly with spectral methods, it is beyond the
scope of the thesis.

1.6 Outline

Before describing the primary contributions of this thesis in more detail, some background on
graphical models and kernel methods is presented in Chapter 2. We then discuss a linear algebra
perspective on latent variable models in Chapter 3 which serves as a foundation for our work.
Chapters 4, 5, 6, 7, 8, and 9 then present the main contributions of the thesis.

12

Chapter 2

Background: Modeling with
Probabilistic Graphical Models

This chapter largely serves to give a brief background of probabilistic graphical models (Pearl,
1988; Koller and Friedman, 2009; Murphy, 2012), a popular and elegant paradigm for modeling
random variables, that is the basis for this thesis. We also give a brief tutorial on Hilbert space
embeddings (Smola et al., 2007), a concept central to Chapter 6.

2.0.1 Motivation

Consider p random variables X = {X1, ...,Xp}, where each variable is allowed to take on m states
i.e. Xi ∈ {0, ...,m− 1} ∀Xi ∈ X. Then there are mp different settings of the random variables, each of
which can be assigned a different probability.

First consider making no assumptions on the underlying distribution p(X1, ...,Xp) so that there
are no constraints among the probabilities of different assignments (with the exception that they
must sum to one). For example, for p = 3,m = 2 we would have:

P(X1 = 0,X2 = 0,X3 = 0) = θ000

P(X1 = 0,X2 = 0,X3 = 1) = θ001

P(X1 = 0,X2 = 1,X3 = 0) = θ010

P(X1 = 0,X2 = 1,X3 = 1) = θ011

P(X1 = 1,X2 = 0,X3 = 0) = θ100

P(X1 = 1,X2 = 0,X3 = 1) = θ101

P(X1 = 1,X2 = 1,X3 = 0) = θ110

P(X1 = 1,X2 = 1,X3 = 1) = θ111

(2.1)

where the parameters θ000, ...θ111 must be estimated from data. Note that all but one of the
parameters can be set arbitrarily, since the only constraints are that the parameters are non-negative
and that the distribution must sum to one.

13

However, in this scenario, statistical estimation of parameters (learning) becomes very challeng-
ing. Consider the following lemma from (Roy, 2011):

Lemma 1. Let pθ be a multinomial distribution with B bins and parameters θ i.e. bin i is associated with
probability θi. Let θ̂ be the maximum likelihood estimate (MLE) of the multinomial parameters from N iid
samples from pθ. Then,

E[KL(pθ|pθ̂)] ≤
B − 1

N
(2.2)

Since B = mp, Lemma 1 implies that N ∈ Ω(mp) for E[KL(pθ|pθ̂)] → 0, making statistical
estimation challenging for more than a handful of variables.

Similarly, this approach also leads to severe computational problems when attempting to do
inference, e.g. computing lower order marginals. Let S and T be two sets of variables XS,XT ⊆ X

s.t. XS ∪ XT = X and let xS, xT indicate a possible set of instantiations.

P(XS = xS) =
∑
xT

P(XS = xS, xT) (2.3)

where the summation would have computational complexity Θ(m|XT |) i.e. exponential with respect
to the number of variables being summed out.

As a result, the brute force representation of probability distributions, while very expressive
from the modeling point of view, is statistically and computationally prohibitive.

2.0.2 Leveraging Independencies

Let us now consider the other extreme, showing that we can severely restrict modeling power to
increase computational and statistical efficiency.

Assume that all X1, ...,Xp are mutually independent, implying that the factorization below:

P(X1, ...,Xp) =

p∏
i=1

P(Xi) (2.4)

14

Considering our m = 2, p = 3 example again we have that:

p(X1 = 0,X2 = 0,X3 = 0) = θX1=0θX2=0θX3=0

p(X1 = 0,X2 = 0,X3 = 1) = θX1=0θX2=0θX3=1

p(X1 = 0,X2 = 1,X3 = 0) = θX1=0θX2=1θX3=0

p(X1 = 0,X2 = 1,X3 = 1) = θX1=0θX2=1θX3=1

p(X1 = 1,X2 = 0,X3 = 0) = θX1=1θX2=0θX3=0

p(X1 = 1,X2 = 0,X3 = 1) = θX1=1θX2=0θX3=1

p(X1 = 1,X2 = 1,X3 = 0) = θX1=1θX2=1θX3=0

p(X1 = 1,X2 = 1,X3 = 1) = θX1=1θX2=1θX3=1

(2.5)

where we have 3 constraints (in addition to non-negativity):

θX1=0 + θX1=1 = 1
θX2=0 + θX2=1 = 1
θX3=0 + θX3=1 = 1

(2.6)

Generally, p independent variables mean O(pm) parameters which is much fewer than the O(mp)
required previously. This results in statistical and computational tractability. Statistically, Lemma
1 means N = Ω(mp) is sufficient for E[KL(pθ|pθ̂)]→ 0.

Computationally, marginalization can be computed efficiently since the sum can be distributed
inside the factors. Again let S and T be two sets of variables XS,XT ⊆ X s.t. XS ∪ XT = X and let
xS, xT indicate a possible set of instantiations. Then,

P(XS = xS) =
∑

xT∈XT

P(XS = xS, xT) =
∏
s∈S

P(Xs = xs)
∏
t∈T

∑
xt

P(Xt = xt) (2.7)

2.0.3 Probabilistic Graphical Models

Graphical models provide a formal framework for trading off model expressivity with statisti-
cal/computational tractability of learning and inference.

A graphical model is a graphG = (V,E) where the vertices (V) correspond to random variables
and the edges (E) indicate dependencies. For this work we will assume that the graph is directed
and acyclic (a DAG) and thus is also known as a Bayesian network.

The connectivity of the graph indicates the independence assumptions made by the graph. No
edges as shown in Figure 2.1(a) indicates that all the variables are independent while a clique (all
edges present) as shown in Figure 2.1(b) implies no conditional independences.

Most of the rest of the thesis (with the exception of Chapter 5) is focused on graphical models
where G is a tree. In tree-shaped graphical models, two nodes Xi and X j become conditionally
independent conditioned on any variable in the path between Xi and X j. The rigorous definition

15

X1

X4

X5

X2

X3

X1

X4

X5

X2

X3

X1

X4

X5

X2

X3

X1

X4

X5

X2

X3

H

(a) (b) (c) (d)

Figure 2.1: Example graphical model structures

is provided below:

Definition 1. Given a tree graphical modelG = (V,E), let Xi,X j ∈ V and letZ denote the set of variables
on the (unique) path between Xi and X j. Let A be some subset of V. Then Xi ⊥ X j|A if and only if
A ∩Z , ∅.

Note that the independences implied by the structure are unrelated to the direction of the edges
in a tree graphical model. (For conditional independencies induced by more complex graph
structures such as v-structures, please see Koller and Friedman (2009)). This gives the following
corollary:

Corollary 1. Let G = (V,E) be a tree graphical model directed via an arbitrary root Xr. A particular
distribution p respects the independences in G if and only if:

P(X1, ...,Xp) =

p∏
i=1

P(Xi|Xπ(i)) (2.8)

where Xπ(i) denotes the parent of Xi and Xπ(r) = ∅ for notational convenience.

For example, consider the tree in Figure 2.1(c). Choosing X1 as the root gives the following
factorization:

P(X1,X2,X3,X4,X5) =

p∏
i=1

P(Xi|Xπ(i))

= P(X1)P(X2|X1)P(X3|X1)P(X5|X1)P(X4|X5) (2.9)

2.1 Tasks in a graphical model

Structure learning, parameter learning, and inference are the three main algorithmic tasks in
graphical models. As we will show below, when X1, ..,Xp are all observed in the training data,
these tasks have elegant and principled solutions (atleast for tree-shaped models).

16

2.1.1 Parameter Learning

Typically parameter learning is done via maximum likelihood estimation i.e. finding the set of
parameters that maximize the log-likelihood of the data:

θ̂MLE = argmax
θ

N∑
n=1

log p(x(n)
|θ) (2.10)

where n = 1, ..,N indexes the N data points and x(n) = {x(n)
1 , ..., x(n)

p } is the nth sample. Depending
on the graph structure, p(x(n),θ) factorizes into local probabilities, making the problem statistically
tractable. For instance, for tree shaped models, the log-likelihood decomposes as follows:

θ̂MLE = argmax
θ

N∑
n=1

∑
i∈V

log P(x(n)
i |x

(n)
π(i),θ)

θ̂MLE = argmax
θ

N∑
n=1

∑
i∈V

m∑
a=1

m∑
b=1

I[x(n)
i = a ∧ x(n)

π(i) = b] logθXi=a|Xπ(i)=b (2.11)

with the constraints that θ is non-negative and that
∑

a θXi=a|Xπ(i)=b = 1∀i, b. Taking the deriva-
tive and setting equal to zero will show that this reduces to simply computing the conditional
probability estimates from the data:

θ̂Xi=a|Xπ(i)=b = P̂(Xi = a|Xπ(i) = b) =
count(Xi = a,Xπ(i) = b)

count(Xπ(i) = b)
(2.12)

where P̂ denotes the empirical probability estimate and count(·) returns the number of data in-
stances for which the argument · holds true.

2.1.2 Structure Learning

Given N samples of p variables X1, ...,Xp the goal of structure learning is to find the structure (set of
edges E) that maximizes the log-likelihood of the dataD. This problem is in NP-hard if arbitrary
structures are permitted (Koller and Friedman, 2009).

However, if we limit the class of structures considered to trees, then a provably optimal algo-
rithm, typically called the Chow-Liu algorithm, exists (Edmonds, 1967; Chow and Liu, 1968a). The

17

key to the algorithm is the following likelihood decomposition:

log P(D|θ̂,G) =

N∑
n=1

p∑
i=1

log P̂(x(n)
i |x

(n)
π(i))

∝

∑
xi,xπ(i)

p∑
i=1

P̂(xi, xπ(i)) log P̂(xi|xπ(i))

=

p∑
i=1

∑
xi,xπ(i)

P̂(xi, xπ(i)) log

 P̂(xi, xπ(i))

P̂(xπ(i))


=

p∑
i=1

∑
xi,xπ(i)

P̂(xi, xπ(i)) log

 P̂(xi, xπ(i))P̂(xi)

P̂(xπ(i))P̂(xi)


=

p∑
i=1

∑
xi,xπ(i)

P̂(xi, xπ(i)) log

 P̂(xi, xπ(i))

P̂(xπ(i))P̂(xi)

 +

p∑
i=1

∑
xi,xπ(i)

P̂(xi, xπ(i)) log P̂(xi)

=

p∑
i=1

MI(xi, xπ(i)) −
p∑

i=1

H(xi) (2.13)

where H(·) denotes entropy and MI(·) denotes mutual information. Since H(xi) does not depend
on the graph structure, the best structure is the one that maximizes

∑p
i=1 MI(Xi,Xπ(i)). This can be

done using a maximum spanning tree algorithm since we are limiting the structure to a tree. The
resulting method is shown in Algorithm 1.

Algorithm 1 Calculate most likely tree structure G given data (Edmonds, 1967; Chow and Liu,
1968a)

In: N samples of p discrete variables: D = {x(n)
1 , ..., x(n)

p }
N
n=1

Out: tree structure Gwith p nodes
for each (Xi,X j) s.t. 1 ≤ i, j ≤ p and i , j do

Compute mutual information estimate MI(Xi,X j) =
∑

xi,x j
P̂(xi, x j) log

(
P̂(xi,x j)

P̂(xi)P̂(x j)

)
end for
Let G f ull be the complete undirected graph where each node i corresponds to variable Xi and
the weight of each edge (i, j) equals MI(Xi,X j)
Return G, a maximum spanning tree of G f ull

2.1.3 Inference

Mathematically, the goal of inference is to compute the probabilities a subset of variables con-
ditioned on the values of other variables. As mentioned earlier, attempting to brute force this
summation can result in exponential computational complexity.

However, for trees the inference problem is tractable and can be solved exactly via message
passing / belief propagation (Pearl, 1988). The key insight is to use the conditional independence
statements of the model to push some of the factors outside certain summations that they do

18

X1

X2

X5

X3

X6X4 A DCB

(a) (b)

Figure 2.2: Example graphical models for belief propagation.

not depend on. For simplicity, let us focus on the graphical model in Figure 2.2(a) and consider
computing the marginal probability of all the leaf nodes fixed to certain evidence values while
summing out all the internal variables.

The algorithm works bottom up from the leafs, with each node gathering all the messages from
its children and passing a new message to its parent. The message at the root equals the desired
probability.

The outgoing message from the leaf to its parent is:

mi→π(i)(xπ(i)) = P(x̄i|Xπ) =
∑

xi

P(Xi|Xπ(i))I[xi = x̄i] (2.14)

where the I[xi = x̄i] (indicator) function is 1 if and only if xi equals the corresponding evidence
value x̄i.

Example: Assume all the leaf nodes in Figure 2.2(a) are evidence variables gives:

m4→2(x2) = P(x̄4|x2)
m5→3(x3) = P(x̄5|x3)
m6→3(x3) = P(x̄6|x3) (2.15)

At internal nodes, the outgoing message is:

mi→π(i)(xπ(i)) = P(x̄`(i)|Xπ) =
∑

xi

P(Xi|Xπ(i))
∏
j∈c(i)

m j→i(xi) (2.16)

where c(i) is the set of the children of i and x`(i) is the set of leaves in the subtree rooted at Xi. Note
that the message from node Xi to its parent Xπ(i) can only be computed after all the messages of its
children have been computed.

Example: Assuming the internal non-root nodes in Figure 2.2(a) are non-evidence variables

19

gives:

m2→1(x1) =
∑
x2

P(x2|x1)m4→2(x2) =
∑
x2

P(x2, x̄4|x1)

m3→1(x1) =
∑
x3

P(x3|x1)m5→3(x3)m6→3(x3) =
∑
x3

P(x3, x̄5, x̄6|x1) (2.17)

Finally at the root,

P(xE = x̄E) =
∑

xi

P(Xi)
∏
j∈c(i)

m j→i(xi) (2.18)

where E denotes the set of evidence variables (assumed to be all the leaves in this case for
simplicity).

Example: For the root node in Figure 2.2(a) we have:

P(x̄4, x̄5, x̄6) =
∑
x1

P(x1)m2→1(x1)m3→1(x1) =
∑
x1

P(x1, x̄4x̄5, x̄6) (2.19)

Note here that each message can be computed in polynomial time: O(m2) if all the variables take
on m states.

2.1.4 Consistency

The procedures we have described above have a very desirable statistical property called consis-
tency. In particular, if the data is generated by assumed model, then structure learning, parameter
learning, and inference (as described in the previous sections for trees) will return the correct
structures/parameters/probabilities respectively as the training data size goes to infinity. This can
be mathematically expressed as follows:

Lemma 2. Assume that underlying distribution p(x) is generated by a tree graphical model with graph
structureG = (V,E) and parameters θ. Given N samples generated from p(x), we learn Ĝ from the method
in 2.1.2, θ̂ from 2.1.1, and estimate the probability P̂(x) from message passing from 2.1.3. Then,

Ĝ → G as N→∞

θ̂→ θ as N→∞

P̂(x)→ P(x) ∀x as N→∞ (2.20)

2.2 Latent Variable Graphical Models

Let us now attempt to model a real world scenario using these techniques. Assume that there
are patients entering a doctor’s office with various symptoms e.g. sneezing, coughing etc. These

20

symptoms can be modeled as observed variables since they are easily measured. Consider reason-
ing about these variables under the graphical model structures shown in Figure 2.1(a)-(c) where we
let each of the Xi’s indicate a different symptom. The model in Figure 2.1(a) is clearly unreasonable
since it assumes all the symptoms are independent. Figure 2.1(b) doesn’t make any modeling
assumptions, but its computationally and statistically intractable. Figure 2.1(c) also seems subop-
timal since in reality all the variables are quite dependent even if we know what a few of them
are.

However, there is intuitively a simple explanation underlying the data. In particular if we
know the the underlying illness the patient has then it is reasonable to assume the symptoms are
conditionally independent given this illness. This ”illness” is a latent (hidden) variable since it is
not something that appears in the data but something we assume to exist.

Incorporating this latent variable leads to the graphical model in Figure 2.1(d) where the orange
node H intuitively represents the illness, and all the symptoms are conditionally independent
given H. Note that the model is rather compact since the number of edges is linear in the number
of variables.

More generally, latent variables offer expressive modeling power without sacrificing statistical
efficiency since they can model complicated dependencies with a compact number of edges. How-
ever, as we will see below, the cost usually comes in the form of computational efficiency. While
learning in observed variables is often based on strong theoretical foundations (e.g. consistency),
learning in latent variable models is challenging and largely tackled with local search methods
that do generally have any guarantees on consistency.

2.2.1 Parameter Learning

The challenge in learning is most easily apparent in parameter learning of latent variable models.
Since a subset of the variables are no longer observed, the goal in parameter learning is now to
learn the set of parameters that maximizes the marginal log-likelihood:

θ̂MLE = max
θ

N∑
n=1

log p(x(n),θ)

= max
θ

N∑
n=1

log
∑

h

p(x(n),h,θ) (2.21)

where x denotes the observed variables and h denotes the latent variables. Unlike fully observed
models, the function above is non-concave due to the summation inside the logarithm, which
makes the optimization problem NP-hard. Existing optimization strategies mostly revolve around
local search and are therefore prone to being trapped in a local optima. One popular approach is
Expectation Maximization (EM) (Dempster et al., 1977).

EM aims to maximize a surrogate objective function that is a lower bound on the original
objective. Let Q(h|x(n)) be some probability distribution. Then the surrogate function can be

21

derived via Jensen’s Inequality:

N∑
n=1

log
∑

h

p(x(n),h,θ) =

N∑
n=1

log
∑

h

Q(h|x(n))
p(x(n),h,θ)

Q(t+1)(h|x(n))

≥

N∑
n=1

∑
h

Q(h|x(n)) log
p(x(n),h,θ)
Q(h|x(n))

(using Jensen’s Inequality)

=

N∑
n=1

∑
h

Q(h|x(n)) log p(x(n),h,θ) −
N∑

n=1

∑
h

Q(h|x(n)) log Q(h|x(n)) (2.22)

EM performs coordinate descent on Eq. 2.22, alternatively maximizing θ where Q is fixed (called
the M-step) and maximizing Q when θ is fixed (called the E-step).

M-step (optimize in terms of θ): The second term in Eq. 2.22 is fixed as a function of θ so we
are left with only optimizing the first term, which is essentially a weighted log-likelihood that is
concave:

θ̂MLE ← max
θ

N∑
n=1

∑
h

Q(h|x(n)) log p(x(n),h,θ) (2.23)

E-step (optimize in terms of Q): Eq. 2.22 can be rewritten as

N∑
n=1

∑
h

Q(h|x(n)) log
p(x(n),h,θ)
Q(h|x(n))

=

N∑
n=1

∑
h

Q(h|x(n)) log
p(h|x(n), θ)p(x(n),θ)

Q(h|x(n))

=

N∑
n=1

∑
h

Q(h|x(n)) log p(x(n),θ) −
N∑

n=1

∑
h

Q(h|x(n)) log
p(h|x(n),θ)
Q(h|x(n))

=

N∑
n=1

log p(x(n),θ) −
N∑

n=1

KL
(
Q(h|x(n))||p(h|x(n),θ)

)
(2.24)

where KL indicates KL divergence. Thus, maximizing Eq. 2.24 in terms of Q means setting Q(h|x(n))
to p(h|x(n),θ). The latter term requires performing inference (e.g. message passing) to compute.

Advantages/Shortcomings: It can be shown that EM never decreases the objective function, and
thus will eventually converge to a local optimum. Moreover, it was recently shown that given a
proper initialization, EM will converge to the maximum likelihood estimate (Balakrishnan et al.,
2014). This makes EM highly statistically efficient since it aims to find the maximum likelihood
solution, which is the most statistically efficient estimator (Casella and Berger, 2002).

Unfortunately since the search space typically contains many local optima, and thus often EM
will get trapped in sub-optimal solutions as with any other local search method. With arbitrary
initialization, there is no guarantee that EM will reach the optimal (or even a good) solution, and
therefore is not consistent.

Moreover, EM can be quite slow since the E-step requires performing inference over all the
training examples which can become very computationally expensive for large datasets. While

22

there do exist methods to speed up EM such as online EM, these approaches introduce additional
parameters such as the learning rate, that performance is often sensitive to.

2.2.2 Structure Learning

Structure learning of latent variable models is also considerably more challenging than the fully
observed case. Recall from the previous section that when learning observed trees we can write
the likelihood as a sum of mutual information and entropy (Eq. 2.13).

Unfortunately when doing structure learning with latent variable models it is difficult to compute
mutual information among pairs of variables when atleast one is not observed. Thus it has largely
been tackled by heuristics that do not have any consistency guarantees. Examples from the phylo-
genetic community include maximum parisinomius and maximum likelihood methods (Semple
and Steel, 2003). In the machine learning community, Zhang (2004) proposed a search heuristic
for hierarchical latent class models by defining a series of local search operations and using EM
to compute the likelihood of candidate structures. Harmeling and Williams (2011) proposed a
greedy algorithm to learn binary trees by joining two nodes with a high mutual information and
iteratively performing EM to compute the mutual information among newly added hidden nodes.
Alternatively, Bayesian hierarchical clustering (Heller and Ghahramani, 2005) is an agglomerative
clustering technique that merges clusters based on a statistical hypothesis test.

There do exist a class of methods called distance-based approaches (Saitou and Nei, 1987; Semple
and Steel, 2003; Choi et al., 2010; Anandkumar et al., 2011) that leverage the concept of additive tree
metrics (Buneman, 1971; Erdõs et al., 1999) from the phylogenetics community to give structure
learning algorithms with theoretical guarantees. We will be using these ideas in Chapters 6 and 8.

2.2.3 Inference

Once the latent variable model has been learned, then inference can proceed as described in 2.1.3.
There are some interesting variants like marginal MAP (Jiang et al., 2011; Liu and Ihler, 2013) that
are more challenging but they are outside the scope of this thesis.

2.2.4 Motivation for Linear Algebra Point of View

The previous subsections demonstrate that while latent variable models provide expensive mod-
eling power, existing learning methods, in an attempt to match the statistical efficiency of learning
in observed models (i.e. maximum likelihood estimation), suffer from severe computational prob-
lems and do not guarantee statistical consistency. By formulating the problem using linear algebra,
we will show in this thesis that it is possible to trade-off statistical and computational complexity
while preserving modeling power, thus providing a different approach to latent variable learning.

23

2.3 Review of Hilbert Space Embedding of Distributions

So far the focus has been on modeling discrete variables. However, in Chapter 6 we will discuss
generalizing some of our proposed approaches to continuous, non-Gaussian settings where the
variables do not easily fit into a parametric family. For example, demographics data is highly
skewed while image data often is multimodal.

To do this, we will leverage a recent idea called Hilbert space embeddings of distributions (Smola
et al., 2007; Song et al., 2009) and its applications to kernel graphical models (Song et al., 2010c,b,
2011a). These techniques provide an elegant way to do probabilistic inference for continuous,
nonparametric distributions. We give a brief review of these ideas below.

2.3.1 Intuition

For intuition, consider the Gaussian distribution, which is one continuous distribution that is easily
handled by conventional probabilistic modeling methods. Gaussians are easy to model for two
reasons:

1. They have a compact set of sufficient statistics: the mean and variance (µ, σ2)

2. It is easy to perform marginalization / sum-product (probabilistic inference) with gaussian
distributions since marginals/conditionals of a multivariate Gaussian distribution are also
Gaussian.

Hilbert space embeddings provide a means to do the same for a variable X from an arbitrary
(smooth) distribution D, by constructing a sufficient statistic µX for this distribution that allows
for efficient probabilistic inference.

One strategy would be to take just the mean or the first order moment of the distribution:

µ1
x =

(
E[X]

)
(2.25)

However, this statistic is not sufficient since there are many distributions that can have the same
mean. We could also take more moments e.g.

µ2
x =

(
E[X]
E[X2]

)
µ3

x =


E[X]
E[X2]
E[X3]

 (2.26)

This allows us to distinguish among a wider range of distributions. For example if distribution D1
and D2 do not share the same mean, variance, or skewness then µ3

x , µ
3
x.

Note that we can keep adding moments, possibly even constructing an infinite dimensional
statistic µ∞x that would enable us to distinguish among a large class of distributions. But how will
we perform computations with this statistic! This is where kernels come in. While µ∞x may be
infinite dimensional it can be constructed so that taking inner products is easy to compute (i.e. the

24

RKHS term (informal) analog in vector space of p-dimensional vectors in Rp

function vector
operator matrix
adjoint transpose

reproducing property dot product with indicator vector

Table 2.1: Summary of general notation convention used throughout the thesis

“kernel trick”) 1.

Before formally defining Hilbert space embeddings, we review relevant concepts in functional
analysis and reproducing kernel Hilbert spaces that are key to the exposition. Table 2.1 provides
some informal notation analogs for easier understanding.

2.3.2 Hilbert Spaces

Vector space: A vector space is a set of objects V that are closed under linear operations i.e.
v,w ∈ V → αv + βw ∈ V. In elementary linear algebra V is typically Rp and each element is a
p-dimensional real valued vector. However, when discussing Hilbert space embeddings we will
take a more general point of view andVmay be a space of functions (which can be informally be
thought of as infinite dimensional vectors).

Hilbert space: A Hilbert space is a complete vector space endowed with an inner product 〈·, ·〉.
This inner product 〈 f , g〉 satisfies the following properties:

• Symmetry: 〈 f , g〉 = 〈g, f 〉

• Linearity 〈α1 f1 + α2 f2, g〉 = α1〈 f1, g〉 + α2〈 f2, g〉

• Nonnegativity 〈 f , f 〉 ≥ 0

• Zero 〈 f , f 〉 = 0 =⇒ f = 0

Some examples of inner products are the the vector dot product 〈v,w〉 = v>w, or the integral
〈 f , g〉 =

∫
f (x)g(x) dx.

Operator: An operator C : F → Gmaps a a function f ∈ F in one Hilbert Space to a function g
in another i.e. g = C f . For the special case when F is the space of p dimensional vectors inRp and
G is the space of q dimensional vectors in Rq, an operator would be a p × q matrix.

Adjoint: The adjoint C> : G → F of an operator C : F → G is defined such that 〈g,C f 〉 =
〈C>g, f 〉∀ f ∈ F , g ∈ G. This is the generalization of transpose/conjugate transpose for matrices i.e.
w>Mv = (M>w)>v.

Outer product: f ⊗ g is defined implicitly such that f ⊗ g(h) = 〈g,h〉 f . It is the generalization of
the traditional vector outer product v ⊗w = vw> .

1Hilbert space embeddings actually do not use the moments to construct sufficient statistics. This is merely an
example for intuition

25

Reproducing Kernel Hilbert Space: A reproducing kernel Hilbert space is a special type of
Hilbert space that is characterized using a mercer kernel. A mercer kernel K(x, y) is a function of
two variables such that ∫ ∫

K(x, y) f (x) f (y) dx dy > 0 ∀ f ∈ F (2.27)

Note that this a generalization of a positive definite matrix. The most common kernel we will use
is the Gaussian RBF kernel:

K(x, y) = exp
(
‖x − y‖2

σ2

)
(2.28)

Consider holding one element of the kernel fixed i.e. φx = K(x, :), which is a function of one
variable that we call the feature function. The collection of feature functions is called the feature
map.

For a Gaussian kernel, the feature functions are unnormalized Gaussians:

φ1(y) = exp
(
‖1 − y‖2

σ2

)
φ1.5(y) = exp

(
‖1.5 − y‖2

σ2

)
(2.29)

and the inner product is defined as 〈φx,φy〉 = 〈K(x, :),K(y, :)〉 := K(x, y). Note that φx(y) = φy(x) =
K(x, y).

Consider the set of functions that can be formed with linear combinations of these feature
functions:

F0 =

 f (z) :
∑
j=1

kα jφx j(z),∀k ∈N+ and ∀x j ∈ X

 (2.30)

The RKHS F is defined as the completion of F0
2. Intuitively one can think of the feature

functions as an overcomplete basis for F .

Reproducing Property: An RKHS has the key property that taking the inner product of a
function f with φx evaluates f at point x.

〈 f ,φx〉 = 〈
∑

j

α jφx j ,φx〉 =
∑

j

α j〈φx j ,φx〉 =
∑

j

α jK(x j, x) = f (x) (2.31)

This is the generalization for v(i) = v>δi in the vector space of p-dimensional vectors in Rp where
δi is an indicator vector that has a 1 in position i and 0 in all other positions.

2A metric space F is complete if for any cauchy sequence of elements in F the limit of this sequence is also in F

26

2.3.3 Hilbert Space Embeddings

Given a kernel K and associated feature map φ and RKHS F , the Hilbert space embedding of a
univariate random variable X is defined as (Smola et al., 2007):

µX(·) = EX[φX] =

∫
P(x)φx(·) dx (2.32)

If the kernel is universal then the map from distributions to embeddings is one-to-one. Examples
of universal kernels include the Gaussian RBF Kernel and the Laplace Kernel.

The empirical estimate is defined as

µ̂X =
1
N

N∑
n=1

φx(n) (2.33)

However, note that since φ is infinite dimensional, it is not possible to directly compute this
estimate from data (this will be handled in 2.3.5).

Example (discrete): Let us show how this reduces to the traditional probability vector in the
discrete case. Consider a random variable X that takes the values in the set {1, 2, 3, 4}. We want to
embed it into an RKHS of 4 dimensional vectors in R4. The feature functions in this RKHS are:

φ1 =


1
0
0
0

 φ2 =


0
1
0
0

 φ3 =


0
0
1
0

 φ4 =


0
0
0
1

 (2.34)

Thus,

µX = EX[φX] =

4∑
i

P(X = i)φi =


P(X = 1)
P(X = 2)
P(X = 3)
P(X = 4)

 (2.35)

Evaluating the embedding: µX is a function in F that characterizes the distribution of X. But how
do we obtain probability estimates from µX? Consider again the discrete example above. In this
case, we can obtain P(X = i) by taking the inner product of µX with φi in Eq. 2.34 (the indicator
vector) i.e.

P(X = i) = µX(i) = 〈µX,φi〉 (2.36)

For the general case, we follow the same strategy leveraging the reproducing property:

µX(i) = 〈µX,φi〉 = E[〈φX,φi〉] = E[K(X, i)] (2.37)

27

For a gaussian RBF kernel, this is equal to:

E

[
exp

(
‖i − X‖2

σ2

)]
≈

1
N

N∑
n=1

exp
(
‖i − x(n)

‖
2

σ2

)
(2.38)

Note this is exactly equal to the (unnormalized) kernel density estimate under a gaussian RBF
kernel! Thus, in one dimension the Hilbert space embedding of a distribution is equivalent to
kernel density estimation. Now let us consider embedding multiple variables.

Cross-covariance operator: CYX = EYX[ψY ⊗ φX] for φ ∈ F ,ψ ∈ G. This is the embedding
of the joint distribution among two variables. Just like with the one dimensional case, we can
evaluate this operator at (i, j) using ψi,φ j to give the the unormalized (2-dimensional) kernel
density estimate of P(Y = i,X = j):

〈ψi,CYXφ j〉 = EYX[KG(Y, i)KF (X, j)]

≈
1
N

N∑
n=1

exp
(
‖i − y(n)

‖
2

σ2

)
exp

(
‖ j − x(n)

‖
2

σ2

)
(empirical estimate under gaussian RBF kernels)

(2.39)

Note that we could represent p variables using a huge cross-covariance operator C1...p =
EX1...Xp[φX1 ⊗ ... ⊗ φXp]. This would be analogous to p-dimensional kernel density estimation.
Consequently, this would be pointless since due to the curse of dimensionality, kernel density
estimation works poorly when p is even moderately large.

However, the key advantage of Hilbert space embeddings over kernel density estimation in high
dimensions is that we will be able to “factorize” the joint cross-covariance operator into smaller
operators analogous to how a large discrete probability table can be factorized into smaller factors
based on conditional independence assumptions. To do this, we need to define the conditional
embedding operator.

Conditional embedding operator (Song et al., 2009): The conditional embedding operator is
defined as

CX|Y = CXYC−1
YY (2.40)

and has the following property:

EX|y[φX|y] = CX|Yφy (2.41)

This is analogous to “slicing” the conditional probability table in the discrete case i.e. PX|Y=1 =
PX|Yδ1 where PX|Y is the conditional probability matrix of X|Y and δi is the indicator vector.
Furthermore, using this property it is possible to derive two key operations that are essential to
probabilistic inference:

Lemma 3. The sum rule: CYX = CY|XµX

28

Proof. We first show the proof for the discrete case in terms of expectations since it directly
generalizes to the kernel scenario. Let PX|Y be the conditional probability matrix of X|Y i.e.
PX|Y(i, j) = P(X = i|Y = j) and PY be the marginal probability vector of Y i.e. PY(i) = P(Y = i).
Then,

PX|YPY = PX|YEY[δY]
= EY[PX|YδY]
= EY[EX|Y[δX]]
= EXY[δX]
= PX (2.42)

Now the kernel case follows analogously:

CX|YµY = CX|YEY[φY] (definition of µY)
= EY[CX|YφY]
= EY[EX|Y[φX]] (property of conditional embedding operator)
= EXY[φX]
= µX (2.43)

�

Lemma 4. Product rule: CYX = CY|XCXX. (The proof follows similarly to the one for the sum rule so is
not shown)

2.3.4 Kernel Graphical Models

The tools from the previous section allow us to factorize arbitrary multivariate continuous distri-
butions in an analogous manner to discrete probability tables, thus generalizing graphical models
to the continuous case as done by (Song et al., 2010c,b, 2011a).

Consider the graphical model in Figure 2.2(b) with 4 variables, A,B,C,D. We represent the
conditional probability distributions as follows:

CAA marginal distribution of A
CB|A conditional distribution of B|A
CC|B conditional distribution of C|B
CD|C conditional distribution of D|C

Now by applying the sum and product rules we obtain:

CA,D = CAAC>B|AC>C|BC>D|C (2.44)

(Song et al., 2010c, 2011a) generalized this strategy to derive kernel message passing algorithms
to perform nonparametric inference in tree and non-tree models.

29

2.3.5 Empirical computation of Hilbert space embeddings

Note that empirical estimates require

µ̂X =
1
N

N∑
n=1

φx(n)

ĈYX =
1
N

N∑
n=1

φy(n) ⊗φx(n) (2.45)

These empirical estimates are difficult to directly compute since φ is not required to be a finite
dimensional vector. However, note that because of the kernel trick it is possible to evaluate these
operators at specific points:

µ̂X(x̄) = 〈µ̂X,φx̄〉 =
1
N

N∑
n=1

K(x(n), x̄)

ĈYX(ȳ, x̄) = 〈φȳ, ĈYXφx̄〉 =
1
N

N∑
n=1

K(y(n), ȳ)K(x(n), x̄) (2.46)

However, we will find this unwieldy and slow in practice because performing the sum/chain
rule will require manipulation using the kernel matrix K which is N ×N. Below we will show it is
possible to build a low rank approximation of the kernel matrix and build approximate features φ̂
that are much smaller than N × 1.

Approximate feature maps using incomplete cholesky decomposition3: It is more common
(and more computationally efficient) to construct an finite dimensional feature map via incomplete
cholesky decomposition (Fine and Scheinberg, 2002; Bach and Jordan, 2003). Note that using QR
decomposition,

K = Φ>Φ = R>Q>QR = R>R (2.47)

where Φ := {φx(1) , ...,φx(N)} is the feature map, Q = {q1, ..., qn} is an orthogonal matrix and R =
{r1, ..., rn} is a matrix of coordinates in the new basis. Note that each qi may be infinite-dimensional,
but each ri is N × 1.

Interestingly, R presents an alternate feature map (just transformed to be in the basis of Q). In
particular we can set φ̂x(i) := ri. While the original φx(i) was infinite dimensional ri must be finite
because the kernel matrix K is N ×N and therefore has at most rank N.

Thus, our goal will be to compute R. A first strategy would just be to use standard QR

3We follow the exposition in http://www.gatsby.ucl.ac.uk/∼gretton/coursefiles/incompleteCholesky.pdf

30

decomposition. In this procedure, q1 :=
φx(1)

‖φx(1)‖
and then each subsequent qi is updated as follows:

q̃ j = φx(j) −

j−1∑
t=1

〈qt,φx(t)〉qt (2.48)

followed by setting q j =
q̃ j

‖q̃ j‖2
. This can be rewritten as:

q j =
1
ν j

φx(j) −

j−1∑
t=1

〈qt,φx(t)〉qt

 (2.49)

where ν j is the normalization constant. R can then be recovered by noting that R(j, i) = 〈q j,φx(i)〉.
However, this procedure is not feasible to run since the feature function φx(j) (and subsequently q)
can be infinite dimensional.

Below we show one can recover R directly without Q! By definition of R(j, i) we can recover it
by taking the inner product with φx(i) on both sides:

R(j, i) = 〈q j,φxi〉 =
1
ν j

〈φx j ,φxi〉 −

j−1∑
t=1

〈qt,φxt〉〈qt,φxi〉


R(j, i) =

1
ν j

K(j, i) −
j−1∑
t=1

R(t, j)R(t, i)

 , i = j + 1, ...,N (2.50)

Since t < j, R(t, j) and R(t, i) have already been computed. The only question is how to compute
ν j. To do this recall that di := K(i, i) = 〈φx(i) ,φx(i)〉 = ‖φx(i)‖

2
2. If we interpret di to be the residual

norm squared, then at each step we update di by subtracting R(j, i) = 〈q j,φxi〉 i.e.:

di ← di − R(j, i)2 (2.51)

Then we set ν j =
√

d j.

Note that when ‖d‖2 ≤ ε, then all the data points are approximately represented by the existing
basis, suggesting that this criterion presents a principled way to find an approximate solution that
can result in considerable computational gains. In particular it can reduce the dimension φ̂ to
be considerably smaller than N. This strategy is called the incomplete cholesky decomposition
and is shown in Algorithm 2. Using this approximate feature map, we can directly compute the
embedding operators:

µ̂X =
1
N

N∑
n=1

φ̂x(n)

ĈYX =
1
N

N∑
n=1

φ̂y(n) ⊗ φ̂x(n) (2.52)

Note that this is much more efficient for inference since µX will have length smaller much for N if
the value of ε in Algorithm 2 is chosen wisely.

31

Algorithm 2 Calculate approximate feature map Φ̂ via incomplete cholesky decomposition of K
In: Kernel matrix K (assumed to be N ×N), tolerance ε
Out: approximate feature map Φ̂ := {φ̂x(1) ,φ̂x(N)}

d← diag(K)
j← 1
while ‖d‖2 ≤ ε do
ν j =

√
d(j)

for i = j + 1; i ≤ N; i + + do
R(j, i) = 1

ν j

(
K(j, i) −

∑ j−1
t=1 R(t, j)R(t, i)

)
di ← di − R(j, i)2

end for
j← j + 1

end while
Φ̂← R

32

Chapter 3

A Linear Algebra View of Latent Variable
Models

Before, delving into the rest of the thesis, we describe latent variable models from the point of view
of linear algebra, a formulation that is key to the rest of the thesis.

3.1 Tensor Notation

We first give an introduction to the tensor notation tailored to this thesis.

An Nth order tensor is a multiway array with N “modes”, i.e., N indices {i1, i2, . . . , iN} are needed
to access its entries. Subarrays of a tensor are formed when a subset of the indices is fixed,
and we use a colon to denote all elements of a mode. For instance, A(i1, . . . , in−1, :, in+1, . . . , iN)
are all elements in the nth mode of a tensor A with indices from the other N − 1 modes
fixed to {i1, . . . , in−1, in+1, . . . , iN} respectively. Furthermore, we also use the shorthand ip:q =
{ip, ip+1, . . . , iq−1, iq} for consecutive indices, e.g.,A(i1, . . . , in−1, :, in+1, . . . , iN) =A(i1:n−1, :, in+1:N).

Furthermore, let P(X) denote probability vectors/matrices/tensors. For example P(X) is the
marginal probability vector of X i.e. P(X)i = P(X = i). Similarly P(X,Y|Z) encodes the con-
ditional probability tensor of X, Y given Z i.e. P(X,Y|Z)i, j,k = P(X = i,Y = j|Z = k).

Mode-specific diagonal matrices/tensors. We use δ to denote an N-way relation: its entry δ(i1:N)
at position i1:N equals 1 when all indexes are the same (i1 = i2 = . . . = iN), and 0 otherwise. We will
use �d to denote repetition of an index d times. For instance, we use P(�dX) to denote a dth order
tensor where its entries at (i1:d)th position are specified by δ(i1:d)P(X = xi1). A diagonal matrix with
its diagonal equal to P(X) is then denoted as P(�2X). Similarly, we can define a (d + d′)th order
tensor P(�dX| �d′ Y) where its (i1:d j1:d′)th entry corresponds to δ(i1:d)δ(j1:d′)P(X = xi1 |Y = y j1). By
default � is equivalent to �2.

Matrix Sum Rule: Note that P(Y) = P(Y|X)P(X) since the matrix multiplication marginalizes
out X. This is the matrix formulation of P(Y) =

∑
X P(Y|X)P(X).

33

Matrix Chain Rule: If we put X on the diagonal i.e. P(�2X) then X will not be marginalized out.
This gives us P(Y,X) = P(Y|X)P(�2X), which is the matrix formulation of P(Y,X) = P(Y|X)P(X).

Matricization: Sometimes we will find it more convenient to rearrange a tensor into a matrix
by placing a set of modes on the rows and the rest on the columns. For example, consider the
probability tensor P(X1,X2,X3,X4) where each of the Xi take on n states. Then one matricization
may be the n2

× n2 matrix P({X1,X2}, {X3,X4}) where X1,X2 are on the rows and X3,X4 are on the
columns. Other possible matricizations include P({X1,X3}, {X2,X4}) and P({X1}, {X2,X3,X4}).

Labeled Tensors: In contrast to the conventional tensor notation such as the one described in
Kolda and Bader (2009a), the ordering of the modes of a tensors will generally not be essential in
this thesis. We define labeled tensors to be tensors such that the modes of the tensor are labeled
with random variables. Each mode will correspond to a random variable and what is important
is to keep track of this correspondence. Therefore, two labeled tensors are equivalent if they have
the same set of labels and they can be obtained from each other by a permutation of the modes for
which the labels are aligned.

In the matrix case this translates to A and A> being equivalent in the sense that A> carries the
same information as A, as long as we remember that the rows of A> are the columns of A and vice
versa. We will use the following notation to denote this equivalence

A � A> (3.1)

Under this notation, the dimension (or the size) of a mode labeled by variable X will be the
same as the number of possible values for variable X. Furthermore, when we multiply two labeled
tensors together, we will always carry out the operation along (a set of) modes with matching labels.

Tensor multiplication for labeled tensors. Let A ∈ RI1×I2×···×IN be an Nth order tensor and
B ∈ RJ1×J2×···×JM be an Mth order tensor. If X is a common mode label for bothA and B (w.l.o.g.
we assume that this is the first mode, implying also that I1 = J1), multiplying along this mode will
give

C =A ×X B ∈ RI2×···×IN×J2×···×JM , (3.2)

where the entries of C is defined as

C(i2:N, j2:M) =
∑I1

i=1
A(i, i2:N)B(i, j2:M)

Further notation/operations for labeled tensors such as multi-mode multiplication and tensor
inversion will be introduced in Chapter 5. Table 3.1 gives provides a quick reference for the
notation conventions.

34

Symbol De f inition
P(·) probability
p(·) probability mass/density function

P(X1, ...,Xn) probability vector/matrix/tensor
P({X1,X2,X4}, {X3,X5}) matricization of probability tensor

�i diagonal on i modes

Table 3.1: Summary of general notation convention used throughout the thesis

X1 X2 X3 X4

HG

(a)

X1

X2

X3

X4

(b)

X1

X2

X3

X4

(c)

Figure 3.1: Different ways of modeling 4 observed variables X1,X2,X3,X4. G and H are latent
variables.

3.2 The Spectral View

Consider Figure 3.1(a) where there are four observed variables X1, X2, X3, and X4 (indicated in
blue) and two latent variables G and H (in yellow). Let SO be the number of observed states (i.e.
the number of states each of X1,X2,X3,X4 take on) and SH be the number of latent states (i.e. the
number of states that each of G,H can take on).

Consider the problem of structure learning: recovering the structural relationship among these
variables given only samples of X1,X2,X3,X4. One strategy may be to greedily merge the observed
variables (Harmeling and Williams, 2011). While this may work sometimes, it will not lead to a
consistent solution in general. Similarly, once the structure is known, learning parameters (i.e.
the conditional probability tables) is commonly done with the Expectation Maximization (EM)
algorithm. EM is essentially coordinate descent on a nonconvex objective and is therefore not
guaranteed to return the optimal answer.

However, are these problems really intractable, or are they simply difficult from the likelihood
optimization from the point of view? For intuition, let us first examine parameter learning.
Consider setting SG = SH = 1. In this case, X1, X2, X3, and X4 are independent as shown in
Figure 3.1(b), since no information can travel through the latent variables. The learning problem
becomes trivial in this scenario.

On the other side of the spectrum, let SH = S4
O. In this case the problem becomes equivalent

to learning the clique model in Figure 3.1(c) which has O(S4
O) parameters. In general, if we had p

observed variables all connected to one latent variable, then setting SH = Sp
O would be equivalent

to p-way clique. This leads to an exponential increase in parameters and defeats the point of a
graphical model since there are no conditional independence statements.

However, what about 1 < SH < Sp
O. From the optimization point of view these values of SH lead

35

=

𝒓𝒂𝒏𝒌 = 𝑺𝑯 𝒓𝒂𝒏𝒌 = 𝑺𝑯

𝒓𝒂𝒏𝒌 = 𝑺𝑯

P {𝑋1, 𝑋2}|𝐺 P 𝐺,𝐻 P {𝑋3, 𝑋4}|𝐻
TP {𝑋1, 𝑋2}, {𝑋3, 𝑋4}

𝒓𝒂𝒏𝒌 = 𝑺𝑯

Figure 3.2: Depiction of one low rank relationship encoded in Figure 3.1(a).

to nonconvex objectives and therefore are difficult. However, how much harder is SH = Sp
O − 1

than SH = 2? These are the types of questions that likelihood optimization cannot quantify.

Now, let us approach the problem from a linear algebra point of view. First, consider two
variables X1 and X2. In Figure 3.1(c) there is in general nothing we can say is special about the
matrix P(X1,X2). However, in the case of Figure 3.1(b), P(X1,X2) = P(X1)P(X2)>. Therefore
P(X1,X2) is rank one.

More generally, for Figure 3.1(a), P(X1,X2) = P(X1|G)P(�G)P(X2|G)>. Assuming all the matri-
ces on the right hand side are full rank, this implies that P(X1,X2) has rank SH, implying that our
factorization is a low rank factorization.

Lets now extend this logic to all 4 variables in Figure 3.1(a). Let P({X1,X2}, {X3,X4}) be the
S2

O × S2
O joint probability matrix of X1,X2,X3,X4 where the values of X1,X2 are on the rows and

X3,X4 is on the columns. This matrix has the following low rank factorization:

P({X1,X2}, {X3,X4}) = P({X1,X2}|G)P(G,H)P({X3,X4}|H)>

A graphical depiction is shown in Figure 3.2. Moreover, different matricizations lead to different
factorizations i.e.

P({X1}, {X2,X3,X4}) = P(X1|G)P(�G)P({X2,X3,X4}|G)>

P({X1,X2,X3}, {X4}) = P({X1,X2,X3|H)P(�H)P(X4|H)>

However, note all these low rank factorizations still have rank SH. Thus, while connections
among observed variables in a graphical model specify “hard” conditional independences/dependencies,
latent variables induce low rank dependencies among observed variables. Small SH translates into
small rank, implying simple dependencies among observed variables. As SH gets larger, the rank
of the model increases and the dependencies become more complicated. As we will see later, the
cardinality of SH plays a key role in determining the difficulty of learning with latent variables.

While this linear algebra point of view may seem to be just a simple reformulation, it leads to
an interesting perspective that inspires solutions to a variety of problems that we will explore in
later chapters:

• Parameter Learning: The particular low rank factorization we showed above is special in

36

that it is composed of conditional probability matrices. However, low rank factorizations
are in general not unique. For any matrix factorization M = LR, M = LS−1SR is also a low
rank factorization where S can be any invertible matrix. Thus, a natural question to ask is do
there exist other factorizations that only depend on observed variables and therefore do not
require EM to learn?

• Structure Learning: The fact that P({X1,X2}, {X3,X4}) is low rank but P({X1,X3}, {X2,X4})
is not reveals aspects about the latent structure of the model. How can this intuition be
used to learn the latent structure underlying a set of continuous, non-Gaussian variables?
In particular, we will leverage the notion of additive tree metrics (Saitou and Nei, 1987; Lake,
1994; Choi et al., 2011).

• Modeling: Can this connection between linear algebra and probabilistic modeling motivate
new models and solutions for language modeling and unsupervised parsing? For example,
in language modeling can we create n-grams for non-integer values of n i.e. 1.5-grams,
2.5-grams etc.?

37

Part I

Spectral Learning Algorithms for
Graphical Models

38

Chapter 4

A Spectral Algorithm for Latent Tree
Graphical Models

Using the insights from the previous chapter, we first tackle parameter learning in latent variable
models. As mentioned earlier, conventional approaches have primarily relied on likelihood maxi-
mization and local search heuristics such as expectation maximization (EM) (Dempster et al., 1977).
In addition to the problem of local optima, EM can require many iterations to reach a prescribed
training precision, and high dimensional problems can dramatically slow down EM.

While EM tries to recover the full set of parameters in latent variable models, in many applica-
tions it is the inference task that is most interesting. For instance, in speech classification, we are
interested in estimating the likelihood of a test sequence under different models; in quantitative
finance, we are interested in predicting the price of one stock given the prices of other stocks; or in
biological analysis, we are interested in forecasting the expression of one gene given perturbations
to other genes. In all these examples, the inference task involves estimating either the joint or
conditional distribution of a set of observed variables. Ideally, we want to avoid explicitly recover-
ing the parameters related to latent variables (which leads to non-convex problems), and proceed
directly to the quantities of interest.

Recently, Hsu et al. (2009) and Bailly et al. (2009) proposed spectral algorithms for learning
hidden Markov models (HMM) which directly estimates the joint distribution of the observed
variables without recovering the HMM model parameters. The major computation of the al-
gorithms involves a singular value decomposition (SVD) of small marginal probability matrices
involving pairs of observed variables. Compared to EM, this spectral algorithm does not have
the problem of local optima, and one can formally study its statistical properties. However, this
spectral algorithm is specific to HMMs, and it is not clear whether their techniques can be extend
to latent variable models with other topologies. Mossel and Roch (2006) also proposed a spectral
algorithm for latent variable models which applies to arbitrary tree topologies, but they made very
restrictive assumptions: all variables (observed and latent) have exactly the same number of states,
and all conditional probability tables (CPT) are invertible. Under these conditions, they derived
a spectral algorithm that can explicitly recover all CPTs from marginals of triples of observed
variables. In many applications, however, latent variables can represent factors simpler than the
noisy observations, and the number of hidden states can be smaller than that of the observed

39

states. In these cases, the CPTs are no longer invertible, which renders this spectral algorithm no
longer applicable. Moreover, as we show in Chapter 7 even when in settings when this method is
applicable it performs poorly in practice.

Contribution of this chapter: In this chapter, we propose a novel spectral algorithm for latent
variable models with arbitrary tree topologies that allows the number of hidden states to be smaller
or larger than the number of observed states. Instead of learning the original conditional probability
tables (like Mossel and Roch (2006) do), we learn a linear transformation of these parameters that
still enables efficient inference. This enables a provably consistent and local-optima-free learning
algorithm with sample complexity analysis. Empirical results indicate that our spectral approach
performs comparably or better than EM, while being 1-2 orders of magnitude faster.

Key to approach is our extensive use of tensor algebra that enables generalization of spectral
learning to models beyond HMMs. Later works such as Cohen et al. (2012); Cohen and Collins
(2012); Dhillon et al. (2012a) have leveraged our tensor formulation for supervised parsing with
latent variables. Our work is also closely related with tensor decomposition (Kolda and Bader,
2009b), that we discuss at the end of the chapter.

Outline: Some intuition is presented using a small example. We then establish a tensor message
passing scheme for latent tree graphical models. Subsequently the spectral representation is
derived and different aspects are discussed including sample complexity analysis and practical
considerations. Finally, empirical results are presented.

Prerequisites: This chapter assumes a general understanding of latent variable models as
presented in 2.2, the connection between latent variable models and low rank factorization in
Chapter 3, and the tensor notation in 3.1.

4.1 Intuition

Recall that in Chapter 3 we had established that latent variables introduce low rank factorizations,
i.e. M = LR, over the marginal probability of the observed variables. For the example in Figure 3.1
we can set,

M := P({X1,X2}, {X3,X4})
L := P({X1,X2}|H)P(�2H) = P({X1,X2},H)

R := P({X3,X4}|H) (4.1)

However, low rank factorizations are in general not unique. For any matrix factorization, M = LR,
we also have that

M = LS︸︷︷︸
L̃

S−1R︸︷︷︸
R̃

(4.2)

and thus an alternate factorization M = L̃R̃. However, note that while L and R may be probability
tables, while L̃ and R̃ can may have negative values (since even if S is non-negative, S−1 may have
negative entries).

40

G H

C

I J

D

E F

B

A

Figure 4.1: Example of a latent tree model with six observed nodes

The natural question to ask is that does there exist a low rank factorization that is only a function
of the observed variables X1,X2,X3,X4? Interestingly, the answer is yes!

To see why, consider the following expansions:

P({X1,X2},X3) = P({X1,X2}|H)P(�2H)P(X3|H)>

P(X2, {X3,X4}) = P(X2|H)P(�2H)P({X3,X4}|H)> (4.3)

The product of the green terms (underlined), in some order, is P({X1,X2}, {X3,X4}) (what we
want!). The product of the red terms (not underlined), in some order, is P(X2,X3) (what we need
to eliminate). This leads us the following alternate factorization that only depends on observed
variables:

P({X1,X2}, {X3,X4}) = P({X1,X2},X3)P(X2,X3)−1
P(X2, {X3,X4}) (4.4)

Note that while the original (CPT) factorization was a product of conditional probability matrices,
the alternate factorization is a product of marginal probability matrices and their inverses.

How does this relate to our original factorization? Consider setting S = P(X3|H). Then we can
prove that

LS = P({X1,X2},X3)
S−1R = P(X2,X3)−1

P(X2, {X3,X4}) (4.5)

4.2 Notation for Latent Tree Graphical Models

We now generalize this intuition to arbitrary latent tree graphical models. A latent tree model
defines a joint probability distribution over a set of O observed variables O = {X1, . . . ,XO} and
a set of H hidden variables H = {XO+1, . . . ,XO+H}. The complete set of variables is denoted by
X = O ∪H . For simplicity, we assume that all observed variables have SO states and all hidden
variables have SH states. For now assume SH = SO and all conditional probability tables have full
rank (we address the more general case later).

The joint distribution of X in a latent tree model is fully characterized by a set of conditional
probability tables (CPTs). More specifically, we can select an arbitrary node in the tree as the
root, and sort the nodes in the tree in topological order. Then the set of CPTs between nodes and
their parents P(Xi|Xπ(i)) are sufficient to characterize the joint distribution (the root node Xr has no

41

parent, i.e., P(Xr|Xπ(r)) = P(Xr)),

P(x1, . . . , xO+H) =
∏O+H

i=1
P(xi|xπ(i)) (4.6)

Compared to tree models which are defined solely on observed variables (e.g., models obtained
from the (Chow and Liu, 1968b) algorithm), latent tree models encompass a much larger classes of
models, allowing more flexibility in modeling observed variables. This is evident if we compute
the marginal distribution of the observed variables by summing out the latent ones, which gives
us a clique over the observed nodes:

P(x1, . . . , xO) =
∑
xO+1

. . .
∑
xO+H

∏O+H

i=1
P(xi|xπ(i)) (4.7)

For simplicity, assume that all leaves are observed variables and all internal nodes are latent. For
further notation, let Xi∗ be some leaf in the subtree rooted at Xi, and let Ti denote the set of all such
leaves. and X−i∗ be a leaf not in the subtree rooted at Xi and let T−i denote the set of all those leaves.
Let c j(i) denote the jth child of node Xi, and where Xi has αi children.

4.3 Derivation of Spectral Algorithm

Our spectral derivation has three main components:

1. Showing how the marginal probability tensorP(X1, . . . ,XO) can be factorized into a collection
of lower order tensors where the maximum tensor order is equal to the maximum degree of
the tree. This can be shown to be equivalent to a tensor message passing scheme.

2. Inserting the invertible transformations F and F−1 into the message passing scheme to define
an alternate low rank factorization that still yields the same marginal probabilities as the
original representation.

3. Setting F such that the factors in this alternate factorization only depend on small groups of
observed variables.

For simplicity of exposition, we assume all internal nodes have exactly three neighbors. The
factorization generalizes to trees of arbitrary topology, but this comes at the cost of memory since
the maximum order of the tensor in the factorization is equal to the maximum degree of a node
in the tree. However, we show that in Chapter 7 that there exists a representation where the
maximum tensor order is 3 regardless of the order of the tree 1

1While it is possible to binarize a tree while adding additional latent variables and setting the factors to enforce
certain constraints, these constraints are difficult to enforce in the spectral algorithm.

42

4.3.1 Factorizing the Marginal Probability Tensor

Consider Figure 4.1. First let us exploit the low rank structure implied by the root A. We can get
the following factorizations of the marginal probability tensor P(E,F,G,H, I, J):

P(E,F,G,H, I, J) = P(E,F|A)P(�2A)P(G,H, I, J|A)>

P(E,F,G,H, I, J) = P(E,F,G,H|A)P(�2A)P(I, J|A)>

P(E,F,G,H, I, J) = P(E,F, I, J|A)P(�2A)P(G,H|A)>

But how to combine all of these into one factorization? With tensors! Let the root probability
P(A) be embedded in a third order labeled tensor: P(�3A). One can see that by using (labeled)
tensor-matrix multiplication,

P(E,F,G,H, I, J) = P(�3A) ×A P(E,F|A) ×A P(G,H|A) ×A P(I, J|A) (4.8)

We then proceed to factorize recursively e.g. P(E,F|A) = P(�2B|A) ×B P(E|B) ×B P(F|B).

4.3.2 Tensor Message Passing

The recursive factorization procedure described above can be expressed as message passing, a form
that will more be notationally convenient for our subsequent derivation. Instead of attempting to
reconstruct the entire marginal probability tensor let us simply focus on a single element of this
tensor (e.g. P(ē, f̄ , ḡ, ~, ī, j̄)). Again Figure 4.1 will be used as a running example. Associate each
node with the following labeled tensor (which are essentially the original conditional probability
tables (CPTs) embedded into higher-order tensors):

• root: R := P(�3Xr)

• internal node: T i := P(�2Xi|Xπ(i))

• leaf : Li = P(Xi|Xπ(i))

Assuming the leaf node is an evidence variable, the message it passes to its parent is the following
vector:

mi = Li ×i δx̄i (4.9)

Example: ME = P(ē|B) = P(E|B) ×E δē

Similarly, the message from a non-root internal node sends to its parent is:

mi = T i ×i mc1(i) ×i mc2(i) (4.10)

Example: mB = P(�2B|A) ×B mE ×B mF

and finally the root agglomerates the messages to give the final probability:

P(x̄1,, x̄O) = R ×r mc1(r) ×r mc2(r) ×r mc3(r) (4.11)

43

Example: P(ē, f̄ , ḡ, ~, ī, j̄) = P(�3A) ×A mB ×A mC ×A mD.

4.3.3 Transformed Representation

Next, note we do not need to recover the tensor representation explicitly if our focus is to perform
inference using the message passing algorithm as in (7.6)–(7.8). As long as we can recover the
tensor representation up to some invertible transformation, we can still obtain the correct marginal
probability P(x̄1,, x̄O). More specifically, we can insert (labeled) identity matrices I with mode
labels {A,A} into the message update equations without changing the final probability. Continuing
the running example in Figure 4.1,

P(ē, f̄ , ḡ, ~, ī, j̄) = P(�3A) ×A mB ×A mC ×A mD

= P(�3A) ×A I ×A mB ×A I ×A mC ×A I ×A mD

Next, expand I as a matrix inversion pair F and F−1 and regroup the terms:

P(ē, f̄ , ḡ, ~, ī, j̄) = (P(�3A) ×A FB ×A FC ×A FD)

×ωB

(
mB ×A F−1

B

)
×ωC

(
mC ×A F−1

C

)
×ωD

(
mD ×A F−1

D

)
where ωB, ωC, ωD are mode labels that depend on the definitions of FB,FC,FD respectively and are
defined in the next section. This proceeds recursively e.g.

mD = P(ī, j̄|A) =
(
P(�2D|A) ×D FI ×D FJ

)
×ωI

(
P(ī|D) ×D F−1

I

)
×ωJ

(
P(j̄|D) ×D F−1

J

)
In general, we can define the following transformed tensor representation:

• root: R̃ = P(�3Xr) ×r Fc1(r) ×r Fc2(r) ×r Fc3(r)

• internal: T̃ i = P(�2Xi|Xπ(i)) ×π(i) F−1
i ×i Fc1(i) ×i Fc2(i)

• leaf: L̃i = P(Xi|Xπ(i)) ×π(i) F−1
i

4.3.4 Observable Representation

We now derive the observable representation by choosing F and F−1 systematically, so that we
can recover each transformed parameter using the marginal probability of a small set of observed
variables. This is summarized by the lemma below, generalizing our intuition from Section 4.1.

Lemma 5. For each Xi, set Fi = P(Xi∗ |Xπ(i)) with mode labels {ωi = Xi∗ ,Xπ(i)}. Then we have the following:

• R̃ = P(Xc1(r)∗ ,Xc2(r)∗ ,Xc3(r)∗)

44

Original Tensor Observable(Spectral)
P(A) P(�3A) P(E,G, I)

P(B|A) P(�2B|A) P(E,F,G) ×G P(G,E)−1

P(E|B) P(E|B) P(E,G) ×G P(G,E)−1 = I

Table 4.1: Original, tensor, and observable parameters for nodes A, B, and E in the example in
Figure 4.1 for the case where SH = SO. Note that the observable parameters are not unique, but
this is one valid set.

• T i = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×−i∗ P(X−i∗ ,Xi∗)−1

• Li = P(Xi,X−i∗) ×−i∗ P(X−i∗ ,Xi∗)−1 = I

Proof. Below is the derivation for internal nodes (the root and leaf are just special cases). Recall
that Xi∗ is some leaf in the subtree rooted at Xi and X−i∗ is a leaf not in the subtree rooted at Xi. First
note that,

T̃ i = P(�2Xi|Xπ(i)) ×π(i) F−1
i ×i Fc1(i) ×i Fc2(i)

= P(�2Xi|Xπ(i)) ×π(i) P(Xi∗ |Xπ(i))−1
×i P(Xc1(i)∗ |Xi) ×i P(Xc2(i)∗ |Xi)

= P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×π(i) P(Xi∗ |Xπ(i))−1 (4.12)

We now prove the following relation:

T̃ i ×i∗ P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) (4.13)

Note that P(Xi∗ ,X−i∗) = P(Xi∗ |Xπ(i))P(�Xπ(i))P(X−i∗ |Xπ(i))>. Thus,

T̃ i ×i∗ P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×π(i) P(Xi∗ |Xπ(i))−1
×i∗ (P(Xi∗ |Xπ(i))P(�Xπ(i))P(X−i∗ |Xπ(i))>)

= P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×π(i) P(�Xπ(i)) ×π(i) P(X−i∗ |Xπ(i))>

= P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗)

From here, one can conclude that

T̃ i = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×−i∗ P(X−i∗ ,Xi∗)−1 (4.14)

�

Example: In the example in Figure 4.1, one possible value of T̃ B is P(E,F,G) ×G P(G,E)−1.
Table 4.1 shows a table comparing the original, tensor, and observable (spectral) parameters, and
Figure 4.2 shows a graphical illustration of the observable representation.

4.3.5 Training and Test

Training: In training, we compute the observable (spectral) parameters as shown in Algorithm 4.
We will describe the purpose of Ui and the thin SVD in the next section. A high level flowchart

45

P 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽 P 𝐸, 𝐺, 𝐼 P 𝐸, 𝐹, 𝐺 ×𝐺 P 𝐸, 𝐺 −1

P 𝐺, 𝐻, 𝐼 ×𝐼 P 𝐺, 𝐼 −1 P 𝐼, 𝐽, 𝐸 ×𝐸 P 𝐼, 𝐸 −1

Figure 4.2: Illustration of spectral decomposition of example in Figure 4.1.

Input: latent tree
topology, samples of
observed variables

Compute probability
tensors of certain
groups of observed
variables

Use SVD to compute
𝑼𝒊 for each 𝑿𝒊 from
pairwise probability
matrices

Output: Estimate
observable
parameters based on
Alg 4

Figure 4.3: Flowchart that gives an overview of Algorithm 4

is shown in Figure 4.3 and an algorithm box tailored for the example in Figure 4.1 is shown in
Algorithm 3.

Test: In test time, the goal is that given a set of evidence variables E = {x̄e1 , ..., x̄e|E|} to compute the
probability P(x̄e1 , ..., x̄|E|). We can do this using the tensor message passing scheme shown before
except with the transformed parameters instead of the original parameters. The only difference is
that depending on if x̄i is an evidence variable or not the leaf message changes.

Algorithm 3 Spectral learning algorithm for example in Figure 4.1 when SH = SO

In: Tree topology and N i.i.d. samples of E, F, G, H, I, J
Out: Estimated observable root, internal, and leaf parameters: R̂A, T̂ B, T̂ C, T̂ D, L̂E, L̂F, L̂G, L̂H, L̂I, L̂J

1: Compute the following triple/pairwise probability tensors:

P̂(E,G, I), P̂(E,F,G), P̂(G,H, I), P̂(I, J,E),

P̂(E,G), P̂(G, I), P̂(I,E)
2: Compute observable parameters as:

R̂A = P̂(E,G, I)
T̂ B = P̂(E,F,G) ×G (P(E,G))−1

T̂ C = P̂(G,H, I) ×I (P(G, I))−1

T̂ D = P̂(I, J,E) ×E (P(I,E))−1

L̂E = I, L̂F = I, L̂G = I, L̂H = I, L̂I = I, L̂J = I

46

If leaf is an evidence variable multiply by the indicator vector to select the appropriate row:

mi = L̃i ×i δx̄i (4.15)

If leaf is not an evidence variable sum over Xi:

mi = L̃i ×i 1 (4.16)

The general algorithm is in given in Algorithm 5.

4.3.6 Expectation Form

We will find it useful later in this chapter, as well as in Chapter 6 to consider an equivalent form of
the spectral algorithm in terms of expectations. We simply give the algorithm below again in this
form for future use. As noted in 2.3, probability matrices can be written in expectation form:

R = P(�3Xr) = EXr[δXr ⊗ δXr ⊗ δXr]
T i = P(�2Xi|Xπ(i)) = EXi|Xπ(i)[δXi ⊗ δXi |Xπ(i)]

Li = P(Xi|Xπ(i)) = EXi|Xπ(i)[δXi |Xπ(i)]

where δXi is the indicator vector with a one in the position of the value of Xi.

Algorithm 4 Spectral learning algorithm for latent tree graphical models

In: Tree topology and N i.i.d. samples
{
xn

1 , . . . , x
n
|O|

}N

n=1

Out: Estimated observable root, internal, and leaf parameters, R̂, T̂ i for each internal node, L̂i for each leaf node,
1: For each node Xi, perform a “thin” singular value decomposition of P̂(Xi∗ ,X−i∗) = UΣV>; let Ûi = U(:, 1 : SH) be the

the first SH principal left singular vectors.
2: Compute observable parameters as:

R̂ = P̂(Xc1(r)∗ ,Xc2(r)∗ ,Xc3(r)∗) ×c1(r) Ûc1(r) ×c2(r) Ûc2(r) ×c3(r) Ûc3(r)

T̂ i = P̂(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×−i∗ (P̂(X−i∗ ,Xi∗) ×i∗ Ûi)
†

×c1(r) Ûc1(r) ×c2(r) Ûc2(r)

L̂i = P̂(Xi,X−i∗) ×−i∗ (P̂(X−i∗ ,Xi∗) ×i∗ Ûi)
†

= Ûi

Algorithm 5 Inference with Spectral Parameters

In: Tree topology, set of spectral parameters R̂, T̂ i f oreachinternalnode, L̂i for each leaf node, and set of evidence
E = {x̄e1 , ..., x̄e|E| }

Out: estimated probability P(x̄e1 , ..., x̄|E|)

1: In reverse topological order, each node accumulates at message at leaf and sends to parent

• Evidence Leaf: m̂i = L̂i ×i δx̄i

• Non-Evidence Leaf: m̂i = L̂i ×i 1

• Internal Node: m̂i = T̂ i ×i m̂c1(i) ×i m̂c2(i)

• Root: P̂(x̄e1 , ..., x̄|E|) = R̂ ×i mc1(i) ×i m̂c2(i) ×i m̂c3(i)

47

Setting Fi = P(Xi|H) = E[δXi |H] gives the expectation forms of the observable representation:

• R̃ = E[δXc1(i)∗ ⊗ δXc2(i)∗ ⊗ δXc3(i)∗]

• T i = E[δXc1(i)∗ ⊗ δXc2(i)∗ ⊗ δX−i∗] ×−i∗ E[δX−i∗ ⊗ δXi∗]
−1

• Li = E[δX−i∗ ⊗ δXi∗] ×−i∗ E[δX−i∗ ⊗ δXi∗]
−1

4.4 Dealing with SH , SO

In the above derivations we have assumed SH = SO and all underlying probability tables are full
rank. This guarantees that the inverse of P(X∗i ,X−i∗) exists and that:

P(Xi∗ ,X−i∗)−1 = (P(X−i∗ |Xπ(i))−1)
>
P(�Xπ(i))−1

P(Xi∗ |Xπ(i))−1 (4.17)

which is essential for the correctness of the algorithm (Lemma 5). However, in general, SH , SO
causing either the inverse to not exist or the above equality to not hold. We detail these two cases
below.

4.4.1 What if SH < SO?

Based on our intuition in Chapter 3, rank (equivalent to the number of latent states if we assume
full rank CPTs) is a measure of the amount of long range dependency in a latent model. Thus,
SH < SO actually means shorter range dependencies and should be easier to solve than the
SH = SO case. However, the algorithm described in the previous section does not directly apply
sinceP(X∗i ,X−i∗) is no longer invertible. The solution is to simply project all the matrices/tensors to
the SH dimensional space where the inverse exists. As a result, instead of choosing F = P(Xi∗ |Xπ(i))
we choose Fi = U>i P(Xi∗ |Xπ(i)) where Ui is the top SH left singular vectors of P(X∗i ,X−i∗) and
replacing F−1 with F† where † indicates pseudo-inverse. We show why this works below using
the derivation of the internal node (root and leaf are special cases):

T̃ i = P(�2Xi|Xπ(i)) ×π(i) F†i ×i Fc1(i) ×i Fc2(i)

= P(�2Xi|Xπ(i)) ×π(i)

(
U>i P(Xi∗ |Xπ(i))

)†
×i U>c1(i)P(Xc1(i)∗ |Xi) ×i U>c2(i)P(Xc2(i)∗ |Xi)

= P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×π(i)

(
U>i P(Xi∗ |Xπ(i))

)†
×c1(i)∗ U>c1(i) ×c2(i)∗ U>c2(i) (4.18)

Again we prove the following relation:

T̃ i ×i∗ UT
i P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×c1(i)∗ U>c1(i) ×c2(i)∗ U>c2(i) (4.19)

where again, X−i∗ is an observed leaf that is not a descendant of Xi.

48

The proof follow similarly as before by expanding P(Xi∗ ,X−i∗):

T̃ i ×i∗ UT
i P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×π(i)

(
UT

i P(Xi∗ |Xπ(i))
)†

×i∗ (UT
i P(Xi∗ |Xπ(i))P(�Xπ(i))P(X−i∗ |Xπ(i))>) ×c1(i)∗ U>c1(i) ×c2(i)∗ U>c2(i)

= P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×π(i) P(�Xπ(i)) ×π(i) P(X−i∗ |Xπ(i))> ×c1(i)∗ U>c1(i) ×c2(i)∗ U>c2(i)

= P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×c1(i)∗ U>c1(i) ×c2(i)∗ U>c2(i) (4.20)

From here, one can conclude that

T̃ i = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×−i∗
(
UT

i P(Xi∗ ,X−i∗)
)†
×c1(i)∗ U>c1(i) ×c2(i)∗ U>c2(i) (4.21)

This explains the presence of Ui in Algorithm 4.

4.4.2 What if SH > SO?

On the other hand, when SH > SO, P(X∗i ,X−i∗) is full rank but the relation P(Xi∗ ,X−i∗)−1 =

(P(X−i∗ |Xπ(i))−1)>P(�Xπ(i))−1P(Xi∗ |Xπ(i))−1 no longer holds. This scenario indicates longer range
dependencies and therefore a more challenging learning scenario. For intuition on why this is the
case, consider the following generative process:

1. With probability 0.5, let S = X, and with probability 0.5 let S = Y.

2. Print A m times.

3. Print S

4. Go back to step (2)

With m = 1 we either generate AXAXAXA or AYAYAYA... With m = 2 we either generate
AAXAAXAA.. or AAYAAYAA..

Note that an HMM, which is a natural way to model this generative process, needs 2m states
to be able to correctly capture the long range dynamics. This is because it needs to remember the
count as well as whether we picked S = X or S = Y in Step 1. However, the number of observed
states m does not change, so spectral learning as we have described it so far, will break for m > 2.
How to deal with this in the spectral framework?

Siddiqi et al. (2010) and Cohen et al. (2012) proposed solutions to this problem by constructing
features out of groups of observations. In our case, this would mean constructing features out of
all the observed descendants in the subtree rooted at Xi (denoted as Ti) instead of using just one
descendant X∗i .

This can be accomplished using the expectation form we derived in 4.3.6 and setting Fi =
E[φTi |Xπ(i)] where φTi is an arbitrary feature vector that can be a function of any of the variables in
Ti. Note that Ui would now be the SVD of E[φTi ⊗ φT−i] instead of E[δX∗i

⊗ δX∗
−i

]. For the example
in Figure 4.1, we could set FB = E[φTB |A] whereφTB := [δE;δF] (; represents vertical concatenation)
and φT−B = [δG;δH;δI;δJ]. This would give the following observable representation:

49

• R̃ = E[φTc1(i) ⊗φTc1(i) ⊗φTc1(i)] ×Tc1(i) Uc1(i) ×Tc2(i) Uc2(i) ×Tc3(i) Uc3(i)

• T i = E[φTc1(i) ⊗φTc2(i) ⊗φT−i∗] ×T−i∗

(
U>i E[φTi∗ ⊗φT−i∗]

)−†
×Tc1(i) Uc1(i) ×Tc2(i) Uc2(i)

• Li = E[φT−i∗ ⊗φTi∗] ×T−i∗

(
U>i E[φTi∗ ⊗φT−i∗]

)†
4.4.3 Linear Systems to Improve Stability

There is another technique we can use to improve performance in practice. Consider the below
relation for non-root internal nodes, which is key to the derivation of the algorithm (same as
Eq. 4.13):

T̃ i ×i∗ P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) (4.22)

which then implies that

T̃ i = P(Xc1(i),Xc2(i),X−i∗) ×−i∗ P(X−i∗ ,Xi∗)−1 (4.23)

However, there may be many choices of X−i∗ (which we denote with X(1)
−i∗ , ...,X

(Z)
−i∗) for which the

above equality is true:

T̃ i ×i∗ P(Xi∗ ,X
(1)
−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X

(1)
−i∗)

T̃ i ×i∗ P(Xi∗ ,X
(2)
−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X

(2)
−i∗)

...

T̃ i ×i∗ P(Xi∗ ,X
(Z
−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X

(Z)
−i∗)

This defines an over-constrained linear system, and we can solve for T̃ i using least squares. In the
case where SO > SH, and the projection matrix Ui is needed, our system of equations becomes:

T̃ i ×i∗ (U>i P(Xi∗ ,X
(1)
−i∗)) = P(Xc1(i)∗ ,Xc2(i)∗ ,X

(1)
−i∗) ×c1(i)∗ Uc1(i) ×c2(i)∗ Uc2(i)

T̃ i ×i∗ (U>i P(Xi∗ ,X
(2)
−i∗)) = P(Xc1(i)∗ ,Xc2(i)∗ ,X

(1)
−i∗) ×c1(i)∗ Uc1(i) ×c2(i)∗ Uc2(i)

...

T̃ i ×i∗ (U>i P(Xi∗ ,X
(Z)
−i∗)) = P(Xc1(i)∗ ,Xc2(i)∗ ,X

(1)
−i∗) ×c1(i)∗ Uc1(i) ×c2(i)∗ Uc2(i)

In this case, one good choice of Ui is the top singular vectors of the matrix formed by the horizontal
concatenation of P(Xi∗ ,X

(1)
−i∗), ...,P(Xi∗ ,X

(Z)
−i∗).

This linear system method allows for more robust estimation, especially in smaller sample sizes
(at the cost of more computation). It can be applied to the leaf nodes as well. One does not need
to set up the linear system with all the valid choices; a subset is also acceptable.

50

4.5 Sample Complexity Analysis

We analyze the sample complexity of Algorithm 4 and show that it depends on the tree topology
and the spectral properties of the true model. Let di be the degree of node i in the tree.

Theorem 1. Let dmax = maxi di. Then, for any ε > 0, 0 < δ < 1, if

N ≥ O


4S2

H

3β2

dmax SO ln |O+H|
δ |O + H|2

ε2α4


where στ(∗) returns the τth largest singular value and

α = mini σSH (P(Xi∗ ,X−i∗)), β = mini σSH (Fi)

Then with probability 1 − δ,∑
x1,...,xO

∣∣∣∣P̂spectral(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣ ≤ ε, where P̂spectral indicates the probability returned by the

spectral algorithm.

Proof. The proof is a special case of Theorem 3 in Chapter 5 for latent junction trees. �

Note the dependence on the singular values of certain probability tensors. In fully observed
models, the accuracy of the learned parameters depends only on how close the empirical estimates
of the factors are to the true factors. However, our spectral algorithm also depends on how close
the inverses of these empirical estimates are to the true inverses, which depends on the spectral
properties of the matrices (Stewart and Sun, 1990).

4.6 Empirical Results

We present a set of synthetic experiments to evaluate our method in a variety of settings. We
compare our method to the Expectation Maximization (EM) algorithm (Dempster et al., 1977).
Convergence of EM is determined by measuring the change in the log likelihood at iteration t
(denoted by f (t)) over the average: | f (t)− f (t−1)|

avg(f (t), f (t−1)) ≤ γ. To explore the computational / accuracy
trade-off we consider a variety of choices of γ. We denote EM− to indicate convergence threshold
γ = 1e−3 (low precision EM), EM to indicate convergence threshold γ = 1e−4 (standard precision
as used in Murphy (2005)), and EM+ to indicate convergence threshold γ = 1e − 5 (high precision
EM). All variants given 5 restarts by default, and our method is given a linear system size of 10 (as
discussed in 4.4.3) unless specified otherwise.

We compare the methods on both accuracy and training time (All approaches have similar test

runtime). For accuracy, we measure the performance of joint estimation using ε =
|P̂(x1,...,xO)−P(x1,...,xO)

P(x1,...,xO)
averaged over 1000 test points randomly drawn from the underlying model. For runtime, the
training time of each method is reported in seconds. Results are reported as the training set size
size is varied from 100 to 100,000.

51

The first set of experiments demonstrates performance as a function of tree depth (Figure 4.4).
All trees generated were binary, and we experimented with depths 4,5,6, and 7. SO was set to 4
and SH was set to 2. In terms of accuracy, we generally observe 3 distinct regions, low-sample size,
mid-sample size, and large sample size. In the low sample size region, EM and EM+ tend to overfit
to the training data, and our spectral algorithm and EM- perform the best. In the mid-sample size
region, EM− does poorly since it does not converge to a high enough precision. Our method does
well but EM and EM+ tend to do better since they benefit from a smaller number of parameters and
lack of dependence on singular values. However, once a certain sample size is reached (the large
sample size region), our spectral algorithm consistently outperforms all the EM variants which
suffer from local minima and convergence issues. From the perspective of runtime our method is
considerably faster than all the variants, and is almost two orders of magnitude faster than EM+.

The second set of experiments (Figure 4.5) evaluates the effect of the number of restarts on
EM. The tree structure used is a binary tree with depth 6 (64 total nodes), and as in the previous
experiment SO was set to 4 and SH was set to 2. The results are as expected. More restarts tends to
improve the performance of EM while also increasing runtime. However, we see that the effect of
restarts is considerably smaller than the effect of the precision threshold for this family of models.

Lastly we evaluate the effect of the linear system size on the spectral algorithm as shown in
Figure 4.6. In some sense this is the parameter that trades off accuracy and runtime for our method
analogous to how the convergence threshold / number of restarts trade off accuracy and speed for
EM. We fix the tree topology to a binary tree of depth 6 (64 nodes) and fix SO = 5. SH is varied from
2 to 5 and we compare linear system sizes of 1,2,5, and 10. When SH = 2 all the variants perform
similarly, but as the number of hidden states is increased, increasing the size of the linear system
produces a considerably more accurate solution. Runtime is not considerably different across the
different variants due to the efficiacy of MATLAB linear algebra libraries (although of course a
larger linear system involves more computational cost).

It should also be noted that while all the implementations in this chapter are single core, spectral
learning easily parallelizes and can be run on very large datasets. Note that the only part of
Algorithm 4 that explicitly depends on the data is computation of the probability / feature tensors,
which can be done in parallel. After that, the SVD is the dominant step and can be done efficiently
using randomized methods e.g. Halko et al. (2011).

4.7 Connections with Tensor Decomposition

Before moving on to the next chapter, we briefly discuss how spectral learning and EM are related
to tensor decomposition methods in the applied mathematics community.

PARAFAC Decomposition (Harshman, 1970): Given an nth order tensor T of dimensions
D1 ×Dn, PARAFAC decomposition of rank K consists of one K × 1 vector z, and n matrices
M1, ...,Mn, each of dimension Di × K. T is then approximated as:

T para f ac(i1, ..., in) =

K∑
k=1

z(k)M1(i1, k)....Mn(in, k) (4.24)

52

0.10.20.5 1 2 5 10 20 50100

0.05

0.1

0.2

0.4

0.6

Training Sample Size (x10
3
)

E
rr

o
r

EM−

EM

EM+

Spectral

0.10.20.5 1 2 5 10 20 50100

0.05

0.1

0.2

0.4

0.6
0.8

Training Sample Size (x10
3
)

E
rr

o
r

EM−

EM

Spectral

EM+

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.2

0.4

0.6
0.8

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral
EM+

EM

EM−

0.1 0.2 0.5 1 2 5 10 20 50 100

0.2

0.4

0.6
0.8

1

Training Sample Size (x10
3
)

E
rr

o
r

EM−

Spectral
EM+

EM

0.1 0.2 0.5 1 2 5 10 20 50 100
1

10

100

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spectral

EM+

EM

EM−

0.10.20.5 1 2 5 10 20 50100

1

10

100

1000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

EM+

EM

EM−

Spectral

0.10.20.5 1 2 5 10 20 50100

10

100

1000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spectral
EM−

EM
EM+

0.10.20.5 1 2 5 10 20 50100

10

100

1000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spectral

EM−

EM

EM+

(a) Depth 4 (b) Depth 5 (c) Depth 6 (d) Depth 7

Figure 4.4: Comparison of our spectral algorithm (blue) to standard EM with convergence set at
1e − 4 (red), low precision EM with convergence set at 1e − 3 (green) and high precision EM with
converge set at 1e − 5 (magenta) for binary trees of various depth. All variants of EM are given
5 random restarts and we use a max linear system size of 10 for the spectral algorithm. Number
of observed states (SO) is fixed to 4 and number of latent states (SH) is fixed to 2. Both errors and
runtimes in log scale.

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.2

0.4

0.6
0.8

1

Training Sample Size (x10
3
)

E
rr

o
r

EM−

EM

EM+

Spectral

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.2

0.4

0.6
0.8

1

Training Sample Size (x10
3
)

E
rr

o
r

EM−

EM

EM+
Spectral

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.2

0.4

0.6
0.8

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral
EM+

EM

EM−

0.1 0.2 0.5 1 2 5 10 20 50 100

1

10

100

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

EM+

EM

Spectral
EM−

0.10.20.5 1 2 5 10 20 50100
1

10

100

1000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spectral
EM−

EM+

EM

0.10.20.5 1 2 5 10 20 50100

10

100

1000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spectral
EM−

EM
EM+

(a) 1 restart (b) 3 restarts (c) 5 restarts

Figure 4.5: Comparison of our spectral algorithm (blue) to standard EM with convergence set at
1e − 4 (red), low precision EM with convergence set at 1e − 3 (green) and high precision EM with
converge set at 1e− 5 (magenta) for different numbers of restarts provided given to EM. The latent
tree structure is a binary tree with depth 6 (64 total nodes). Number of observed states (SO) is fixed
to 4 and number of latent states (SH) is fixed to 2. For the spectral algorithm we use a max linear
system size of 10. Both errors and runtimes in log scale.

53

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec1

Spec5

Spec10
Spec2

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec1

Spec2

Spec5
Spec10

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1
0.5

1
5

10

Training Sample Size (x10
3
)

E
rr

o
r Spec1

Spec2

Spec5
Spec10

0.1 0.2 0.5 1 2 5 10 20 50 100
0.51

510

Training Sample Size (x10
3
)

E
rr

o
r

Spec1

Spec2

Spec5
Spec10

0.1 0.2 0.5 1 2 5 10 20 50 100

5

10

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spec10

Spec5
Spec2

Spec1

0.1 0.2 0.5 1 2 5 10 20 50 100

5

10

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
) Spec10

Spec5

Spec2

Spec1

0.1 0.2 0.5 1 2 5 10 20 50 100

5

10

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

Spec10

Spec5Spec2

Spec1

0.1 0.2 0.5 1 2 5 10 20 50 100

5

10

20

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
) Spec10

Spec5

Spec2

Spec1

(a) Ko = 5,Kh = 2 (b) Ko = 5,Kh = 3 (c) Ko = 5,Kh = 4 (d) Ko = 5,Kh = 5

Figure 4.6: Evaluation of the spectral algorithm for different values of the max linear system size:
1-blue, 2-red, 5-green, 10-magenta. The latent tree structure is a binary tree with depth 6 (64 total
nodes). Number of observed states (SO) is fixed to 5 and number of latent states (SH) is varied
from 2 to 5 across (a), (b), (c), (d). Both errors and runtimes in log scale.

B C

H

A

Figure 4.7: Example of a latent tree model with three observed nodes

z, M1, ...,Mk are found by attempting to minimize a certain loss (traditional PARAFAC decomposi-
tion uses the `2 loss). This is non-convex, and is thus done typically with alternating minimization.
But this makes it easy to constrain the probability tables to sum to one. Moreover, if the KL-
divergence is used for the loss it is equivalent to using EM to learn the graphical model shown in
Figure 4.7.

Tucker Decomposition (Hitchcock, 1927; Tucker, 1966): We have seen that PARAFAC decom-
position is related to EM. We now describe a tensor decomposition that is related to spectral
learning.

Given an nth order tensorT of dimensions D1×Dn, TUCKER decomposition of rank K consists
of one K × K × ... × K core tensor Z, and n matrices M1, ...,Mn, each of dimension Di × K. T is then
approximated as:

T tucker(i1, ..., in) =

K∑
k1=1

...
K∑

kn=1

Z(k1, ..., kn)M1(i1, k1)....Mn(in, kn) (4.25)

Note that unlike the PARAFAC Decomposition, the Tucker decomposition has a provably consis-

54

tent learning algorithm using SVD. Recall that T {A},{B} is the unfolding of T such that the modes in
the set A are on the rows and the modes of set B are on the columns. Then the following algorithm
recovers the Tucker decomposition:

• Set Mi to the top k singular vectors of T {i},{1,...,i−1,i+1,...,n} for each i

• DefineZ := T ×1 M1... ×n Mn

Note that this is equivalent to the spectral algorithm for the graphical model shown in Figure 4.7.

4.8 Conclusion

This chapter presents a spectral learning algorithm for latent tree graphical models that is provably
consistent unlike traditional methods. Empirical results show the algorithm gives a favorable
statistical/computational trade-off to the EM algorithm across a variety of settings often giving a
1-2 order of magnitude speed up.

This chapter also serves a foundation for the rest of Part I of this thesis. The following 3 chapters
will extend this work in a variety of ways.

55

Chapter 5

A Spectral Algorithm for Latent Junction
Trees

The previous chapter proposed a provably consistent spectral learning algorithm for latent tree
models. However, latent structures beyond trees, such as higher order HMMs (Kundu et al.,
1989), factorial HMMs (Ghahramani and Jordan, 1997) and Dynamic Bayesian Networks (Murphy,
2002), are needed and have been proven useful in many real world problems. The challenges
for generalizing spectral algorithms to general latent structured models include the larger factors,
more complicated conditional independence structures, and the need to sum out multiple variables
simultaneously.

Contribution of this chapter: In this thesis, we take one step toward developing spectral
methods for more general graphical models by proposing a spectral algorithm for latent junction
trees. The key idea of our approach is to embed the clique potentials of the junction tree into higher
order tensors such that the computation of the marginal probability of observed variables can be
carried out via tensor operations. While this novel representation leads only to a moderate increase
in the number parameters for junction trees of low treewidth, it allows us to design an algorithm
that can recover a transformed version of the tensor parameterization and ensure that the joint
probability of observed variables are computed correctly and consistently. As with the spectral
algorithm described in the previous chapter, the main computation of the algorithm involves only
tensor operations and singular value decompositions which can be orders of magnitude faster than
EM algorithms for large datasets. To our knowledge, this is the first provably consistent parameter
learning technique for latent variable models beyond trees. In our experiments, we show that our
spectral algorithm can be almost 2 orders of magnitude faster than EM while at the same achieving
comparable or better accuracy. Our spectral algorithm also achieves comparable accuracy to EM
on real data.

Outline: A high level overview of our approach is given in Figure 5.1. We first provide some
additional notation and background on latent junction trees. We then derive the spectral algorithm
by representing junction tree message passing with tensor operations, and then transform this
representation into one that only depends on observed variables. Finally, we analyze the sample
complexity of our method and evaluate it on synthetic and real datasets.

56

𝐶1 𝐶2 𝐶3

𝐶7

𝐶4 𝐶5 𝐶6

𝐶8 𝐶9

𝐶10

ℙ(𝑅1|𝑆1)

ℙ(𝑅2|𝑆2)

ℙ(𝑅3|𝑆3)

ℙ(𝑅4|𝑆4)

ℙ(𝑅5|𝑆5)

ℙ(𝑅6|𝑆6)

ℙ(𝑅7|𝑆7) ℙ(𝑅8|𝑆8)
ℙ(𝐶10)

ℙ(𝑅9|𝑆9)

𝐶1 𝐶2 𝐶3

𝐶7

𝓣 7 ⇐ ℙ 𝑂1, 𝑂2, 𝑂3 , ℙ(𝑂3, 𝑂1)

𝓣7

𝓣 7

ℙ(𝑅1|𝑆1)

ℙ(𝑅2|𝑆2)

ℙ(𝑅3|𝑆3)

ℙ(𝑅4|𝑆4)

ℙ(𝑅5|𝑆5)

ℙ(𝑅9|𝑆9)

ℙ(𝑅7|𝑆7) ℙ(𝑅8|𝑆8) ℙ(𝐶10)

ℙ(𝑅6|𝑆6)

Transformed matrix and tensor representation

Transformation
Inverse Transformation

𝓣7

Latent Junction Tree Tensor Representation Transformed Tensor Representation Estimation

𝐴

𝐵 𝐶

𝐷 𝐸

𝐺 𝐻 𝐼 𝐽

𝐾 𝐿

𝐹

Latent Variable Model

Figure 5.1: Our algorithm for local-minimum-free learning of latent variable models consist of
four major steps. (1) First, we transform a model into a junction tree, such that each node in the
junction tree corresponds to a maximal clique of variables in the triangulated graph of the original
model. (2) Then we embed the clique potentials of the junction tree into higher order tensors and
express the marginal distribution of the observed variables as a tensor-tensor/matrix multiplication
according to the message passing algorithm. (3) Next we transform the tensor representation by
inserting a pair of transformations between those tensor-tensor/matrix operations. Each pair of
transformations is chosen so that they are inversions of each other. (4) Lastly, we show that each
transformed representation is a function of only observed variables. Thus, we can estimate each
individual transformed tensor quantity using samples from observed variables.

Prerequisites: This chapter assumes a general understanding of latent variable models as
presented in 2.2, the connection between latent variable models and low rank factorization in
Chapter 3, and the tensor notation in 3.1. It is also recommended to read Chapter 4 first.

5.1 Additional Tensor Notation

In addition to the notation in 3.1 we define some additional operations that are unique to this
chapter.

Tensor multi-mode multiplication for labeled tensors Let σ = {X1, . . . ,Xk} be an arbitrary set of
k modes (k variables) shared byA and B (w.l.o.g. we assume these labels correspond to the first
k modes, and I1 = J1, . . . , Ik = Jk holds for the corresponding dimensions). Then multiplying two
labeled tensorsA andB along σ results in

D =A ×σ B ∈ RIk+1×...×IN×Jk+1×...×JM , (5.1)

where the entries ofD are defined as

D(ik+1:N, jk+1:M) =
∑
i1:k

A(i1:k, ik+1:N)B(i1:k, jk+1:M).

Multi-mode multiplication can also be interpreted as reshaping the σ modes of A and B into
a single mode and doing single-mode tensor multiplication. Furthermore, tensor multiplication
with labels is symmetric in its arguments, i.e.,A ×σ B � B ×σA.

Mode-specific labeled identity tensor. We now define our notion of identity tensor with respect
to a set of modes σ = {X1, . . . ,XK}. LetA be a labeled tensor with mode labels containing σ, and
Iσ be a tensor with 2K modes with mode labels {X1, . . . ,XK,X1, . . . ,XK}. Then Iσ is an identity

57

tensor with respect to modes σ if

A ×σ Iσ �A. (5.2)

One can also understand Iσ using its matrix representation: flattening Iσ with respect to σ (the
first σ modes mapped to rows and the second σ modes mapped to columns) results in an identity
matrix.

Mode-specific labeled tensor inversion. Let F ,F−1
∈ Rc1(i)×···×IK×IK+1×···×IK+K′ be labeled tensors

of order K + K′, and both have two sets of mode labels σ = {X1, . . . ,XK} andω′ = {XK+1, . . . ,XK+K′}.
Then F−1 is the inverse of F w.r.t. modes ω if and only if

F ×ω F
−1 � Iσ. (5.3)

Multimode inversion can also be interpreted as reshapingF with respect toω into a matrix of size
(c1(i) . . . IK) × (IK+1 . . . IK+K′), taking the inverse, and then rearranging back into a tensor. Thus the
existence and uniqueness of this inverse can be characterized by the rank of the matricized version
of F .

5.2 Latent Junction Trees

In this chapter, we will focus on discrete latent variable models where the number of states, SH, for
each hidden variable is much smaller than the number of states, SO, for each observed variable. A
latent variable model defines a joint probability distribution over a set of variables X = O ∪H .
Let O := |O | and H := |H |. Here, O denotes the set of observed variables, {X1, . . . ,XO} and H
denotes the set of hidden variables, {XO+1, . . . ,XO+H}

We will focus on latent variable models where the structure of the model is a junction tree of low
treewidth (Cowell et al., 1999). Each node Ci in a junction tree corresponds to a subset (clique) of
variables from the original graphical model. We will also use Ci to denote the collection of variables
contained in the node, i.e. Ci ⊂ X . Let C denote the set of all clique nodes. The treewidth is then
the size of a largest clique in a junction tree minus one, that is t = maxCi∈C |Ci| −1. Furthermore, we
associate each edge in a junction tree with a separator set Si j := Ci∩C j which contains the common
variables of the two cliques Ci and C j it is connected to. If we condition on all variables in any Si j,
the variables on different sides of Si j will become independent.

As in the previous chapter, without loss of generality, we assume that each internal clique node
in the junction tree has exactly 3 neighbors.1 Then we can pick a clique Cr as the root of the tree
and reorient all edges away from the root to induce a topological ordering of the clique nodes.
Given the ordering, the root node will have 3 children nodes, denoted as Cc1(r),Cc2(r) and Cc3(r).
Each other internal node Ci will have a unique parent node, denoted as Cπ(i), and 2 children nodes
denoted as Cc1(i) and Cc2(i). Each leaf node Cl is only connected with its unique parent node Cπ(l).
Furthermore, we can simplify the notation for the separator set between a node Ci and its parent
Cπ(i) as Si = Ci ∩ Cπ(i), omitting the index for the parent node. Then the remainder set of a node is
defined as Ri = Ci \ Si. We also assume w.l.o.g. that if Ci is a leaf in the junction tree, Ri consists of

1If this is not the case, the derivation is similar but notationally much heavier.

58

only observed variables. We will use ri to denote an instantiation of the set of variables in Ri. See
Figure 5.2 for an illustration of notation.

Given a root and a topological ordering of the nodes in a junction tree, the joint distribution of
all variables X can be factorized according to

P(X) =
∏
|X |

i=1
P(Ri|Si), (5.4)

where each CPT P(Ri|Si), also called a clique potential, corresponds to a node Ci. The number of
parameters needed to specify the model is O(|C|St

O), linear in the number of cliques but exponential
in the tree width t. Then the marginal distribution of the observed variables can be obtained by
summing over the latent variables,

P(x1, ..., xO) =
∑
XO+1

. . .
∑

XO+H

 |X |∏
i=1

P(Ri|Si)

 , (5.5)

Note that each (non-leaf) remainder set Ri contains a small subset of all latent variables. The
presence of latent variables introduces complicated dependency between observed variables, while
at the same time only a small number of parameters corresponding to the entries in the CPTs are
needed to specify the model.

The process of eliminating the latent variables in (5.5) can be carried out efficiently via message
passing. Each node only needs to sum out a small number of variables and then the intermediate
result, called the message, is passed to its parent for further processing. In the end the root node
incorporates all messages from its children and produces the final result P(x1, ..., xO). The local
summation step, called the message update, can be generically written as2

M(Si) =
∑

Ri
P(Ri|Si)M(Sc1(i))M(Sc2(i)) (5.6)

where we useM(Si) to denote the intermediate results of eliminating variables in the remainder
set Ri. This message update is then carried out recursively according the reverse topological order
of the junction tree until we reach the root node. The local summation step for the leaf nodes and
root node can be viewed as special cases of (5.6). For a leaf node Cl, there is no incoming message
from children nodes, and hence M(Sl) = P(rl|Sl); for the root node Cr, Sr = ∅ and Ri = Ci, and
hence P(x1, ..., xO) =M(∅) =

∑
∀X∈Cr

P(Cr)M(Sc1(r))M(Sc2(r))M(Sc3(r)).

Example. The message update at the internal node CBCDE in Figure 5.2 is

M({C,E}) =
∑

B,D
P(B,D|C,E)P(f |B,C)P(g|B,D).

5.3 Tensor Representation for Message Passing

Although the parametrization of latent junction trees using CPTs is very compact and inference
(message passing) can be carried out efficiently, parameters in this representation can be difficult
to learn. Since the likelihood of the observed data is no longer concave in the latent parameters,

2For simplicity of notation, assume Ci = Si ∪ Sc1(i) ∪ Sc2(i).

59

𝐶𝑖1 𝐶𝑖2

𝐶𝑖

𝐶𝑖0

𝑆𝑖1 𝑆𝑖2

𝑆𝑖

𝑆𝑖0

𝑅𝑖 =
𝐶𝑖 ∖ 𝑆𝑖

𝐴

𝐵

𝐶 𝐷

𝐸

𝐺

𝐻

𝐼

𝐹 𝐵𝐶𝐹 𝐵𝐷𝐺

𝐵𝐶𝐷𝐸

𝐴𝐶𝐸

𝐵𝐶 𝐵𝐷

𝐶𝐸

𝐴𝐶𝐻 𝐶𝑗

𝐺 ∈ 𝒪𝑖1

𝐹 ∈ 𝒪𝑖2

𝐹, 𝐺 ∈ 𝒪𝑖

𝐻 ∈ 𝒪𝑖−

Figure 5.2: Example latent variable models with variables X = {A,B,C,D,E,F,G,H, I, . . .}, the observed
variables are O = {F,G,H, . . .} (only partially drawn). Its corresponding junction tree is shown in the middle
panel. Corresponding to this junction tree, we also show the general notation for it in the rightmost panel.

local search heuristics, such as EM, are often employed to learning the parameters. Therefore, our
goal is to design a new representation for latent junction trees, such that subsequent learning can
be carried out in a local-optima-free fashion.

In this section, we will develop a new representation for the message update in (5.6) by embed-
ding each CPT P(Ri|Si) into a higher order tensor P(Ci) . This form is a strict generalization of the
tensor representation proposed in Chapter 4.

5.3.1 Embed CPTs to higher order tensors

As we can see from (7.4), the joint probability distribution of all variables can be represented
by a set of conditional distributions over just subsets of variables. Each one of this conditionals
is a low order tensor. For example in Figure 5.2, the CPT corresponding to the clique node
CBCDE would be a 4th order tensor P(B,D|C,E) where each variable corresponds to a different
mode of the tensor. However, this representation is not suitable for deriving the observable
representation since message passing cannot be defined easily using the tensor multiplication/sum
connection shown above. Instead we will embed these tensors into even higher order tensors to
facilitate the computation. The key idea is to introduce duplicate indexes using the mode-specific
identity tensors, such that the sum-product steps in message updates can be expressed as tensor
multiplications.

More specifically, the number of times a mode of the tensor is duplicated will depend on how
many times the corresponding variable in the clique Ci appears in the separator sets incident to Ci.
We can define the count for a variable X j ∈ Ci as

d j,i = I[X j ∈ Si] + I[X j ∈ Sc1(i)] + I[X j ∈ Sc2(i)], (5.7)

where I[·] is an indicator function taking value 1 if its argument is true and 0 otherwise. Then the

60

labeled tensor representation of the node Ci is

P(Ci) :=
P(. . . , (�d j,iX j), . . .︸ ︷︷ ︸

∀X j∈Ri

| . . . , (�d j′ ,i
X j′), . . .︸ ︷︷ ︸

∀X j′∈Si

), (5.8)

where the labels for the modes of the tensor are the combined labels of the separator sets, i.e., {Si,Sc1(i),Sc2(i)}.
The number of times a variable is repeated in the label set is exactly equal to d j,i.

Essentially, the labeled tensor P(Ci) contains exactly the same information as the original CPT
P(Ri|Si). Furthermore, P(Ci) has a lot of zero entries, and the entries from P(Ri|Si) are simply
embedded in the higher order tensor P(Ci). Suppose all variables in node Ci are latent variables
each taking SH values. Then the number of entries needed to specify P(Ri|Si) is S|Ci|

H , while the high
order tensorP(Ci) has Sdi

H entries where di :=
∑

j:X j∈Ci
d j,i which is never smaller than S|Ci|

H . In a sense,
the parametrization using higher order tensorP(Ci) is less compact than the parametrization using
the original CPTs. However, constructing the tensor P this way allows us to express the junction
tree message update step in (5.6) as tensor multiplications (more details in the next section), and
then we can leverage tools from tensor analysis to design a local-minimum-free learning algorithm.

The tensor representation for the leaf nodes and the root node are special cases of the represen-
tation in (5.8). The tensor representation at a leaf node Cl is simply equal to P(Cl) = P(Rl|Sl). The
root node Cr has no parent, so P(Cr) = P(. . . , (�d j,rX j), . . .), ∀X j ∈ Cr. Furthermore, since d j,i is
simply a count of how many times a variable in Ci appears in each of the incident separators, the
size of each tensor does not depend on which clique node was selected as the root.

Example. In Figure 5.2, node CBCDE corresponds to CPT P(B,D|C,E). Its high order tensor
representation is P(CBCDE) = P(�2B,D| �2 C,E), since both B and C occur twice in the separator
sets incident to CBCDE. Therefore the tensor P({B,C,D,E}) is a 6th order tensor with mode labels
{B,B,D,C,C,E}.

5.3.2 Tensor message passing

With the higher order tensor representation for clique potentials in the junction tree as in (5.8),
we can express the message update step in (5.6) as tensor multiplications. Consequently, we can
compute the marginal distribution of the observed variables O in equation (5.5) recursively using
a sequence of tensor multiplications. More specifically the general message update equation for a
node in a junction tree can be expressed as

M(Si) = P(Ci) ×Sc1(i) M(Sc1(i)) ×Sc2(i) M(Sc2(i)). (5.9)

Here the modes of the tensor P(Ci) are labeled by the variables, and the mode labels are used to
carry out tensor multiplications as explained in Section 5.1.

The tensor message passing steps in leaf nodes and the root node are special cases of the tensor
message update in equation (5.9). The outgoing messageM(Sl) at a leaf node Cl can be computed
by simply setting all variables in Rl to the actual observed values rl, i.e.,

M(Sl) = P(Cl)Rl=rl = P(Rl = rl|Sl). (5.10)

61

At the root, we obtain the marginal probability of the observed variables by aggregating all
incoming messages from its 3 children, i.e.,

P(x1, ..., xO) = P(Cr) ×Sc1(r) M(Sc1(r)) ×Sc2(r) M(Sc2(r)) ×Sc3(r) M(Sc3(r)) (5.11)

Example. For Figure 5.2, using the following tensors

P({B,C,D,E}) = P(�2B,D | �2 C,E)
M({B,C}) = P(f |B,C)
M({B,D}) = P(g|B,D),

we can write the message update for node CBCDE in the form of equation (5.9) as

M({C,E}) = P({B,C,D,E}) ×{B,C}M({B,C})
×{B,D}M({B,D}).

Note how the tensor multiplication sums out B and D: P({B,C,D,E}) has two B labels, and it
appears in the subscripts of tensor multiplication twice; D appears once in the label and in the
subscript of tensor multiplication respectively. Similarly, C is not summed out since there are two
C labels but it appears only once in the subscript of tensor multiplication.

5.4 Transformed Representation

Explicitly learning the tensor representation in (5.8) is still an intractable problem. Our key
observation, as that in Chapter 4 is that we do not need to recover the tensor representation
explicitly if our focus is to perform inference using the message passing algorithm as in (5.9)–
(5.11). As long as we can recover the tensor representation up to some invertible transformation,
we can still obtain the correct marginal probability P(x1, ..., xO).

More specifically, we can insert a mode-specific identity tensor Iσ into the message update
equation in (5.9) without changing the outgoing message. Subsequently, we can then replace the
mode-specific identity tensor by a pair of labeled tensors, F and F−1, which are mode-specific
inversions of each other (F ×ω F

−1 � Iσ). Then we can group these inserted tensors with
the representation P(C) from (5.8), and obtain a transformed version P̃(C) (also see Figure 5.1).
Furthermore, we have the freedom in choosing these collections of tensor inversion pairs. We will
show that if we choose them systematically, we will be able to estimate each transformed tensor
P̃(C) using the marginal probability of a small set of observed variables (observable representation).
In this section, we will first explain the transformed tensor representation.

Let us first consider a node Ci and its parent node Cπ(i). Then the outgoing message of Cπ(i) can
be computed recursively as

M(Sπ(i)) = P(Cπ(i)) ×Si M(Si)︸ ︷︷ ︸
P(Ci)×Sc1(i)M(Sc1(i))×Sc2(i)M(Sc2(i))

× . . .

Inserting a mode specific identity tensor ISi with labels {Si,Si} and similarly defined mode specific

62

identity tensors ISc1(i) and ISc2(i) into the above two message updates, we obtain

M(Sπ(i)) = P(Cπ(i)) ×Si (ISi ×Si M(Si)︸ ︷︷ ︸
P(Ci)×Sc1(i) (ISc1(i)×Sc1(i)M(Sc1(i)))×Sc2(i) (ISc2(i)×Sc2(i)M(Sc1(i)))

) × . . .

Then we can further expand ISi using tensor inversion pairs F i, F
−1
i , i.e., ISi = F i ×ωi F

−1
i . Note

that both F and F−1 have two set of mode labels, Si and another set ωi which is related to the
observable representation and explained in the next section. Similarly, we expand ISc1(i) and ISc2(i)

using their corresponding tensor inversion pairs.

After expanding tensor identities I , we can regroup terms, and at node Ci we have

M(Si) = (P(Ci) ×Sc1(i) F c1(i) ×Sc2(i) F c2(i)) ×ωc1(i) (F−1
c1(i) ×Sc1(i) M(Sc1(i))) ×ωc2(i) (F−1

c2(i) ×Sc2(i) M(Sc2(i)))
(5.12)

and at the parent node Cπ(i) of Ci

M(Sπ(i)) =(P(Cπ(i)) ×Si F i × . . .) (5.13)

×ωi (F−1
i ×Si M(Si)) × . . .

Now we can define the transformed tensor representation for P(Ci) as

P̃(Ci) := P(Ci) ×Sc1(i) F c1(i) ×Sc2(i) F c2(i) ×Si F
−1
i , (5.14)

where the two transformations F c1(i) and F c2(i) are obtained from the children side and the trans-
formation F−1

i is obtained from the parent side. Similarly, we can define the transformed repre-
sentation for a leaf node and for the root node as

P̃(Cl) = P(Cl) ×Sl F
−1
l (5.15)

P̃(Cr) = P(Cr) ×Sc1(r) F c1(r) ×Sc2(r) F c2(r) ×Sc3(r) F c3(r) (5.16)

Applying these definitions of the transformed representation recursively, we can perform message
passing based purely on these transformed representations

M̃(Sπ(i)) = P̃(Cπ(i)) ×ωi M̃(Si)︸ ︷︷ ︸
P̃(Ci)×ωc1(i)M̃(Sc1(i))×ωc2(i)M̃(Sc2(i))

× . . . (5.17)

5.5 Observable Representation

We now derive the observable representation by choosing the collection of tensor pairsF andF−1

systematically, so that we can recover each transformed tensor P̃(C) using the marginal probability
of a small set of observed variables.

We will focus on the transformed tensor representation in (5.14) for an internal node Ci (other
cases follow as special cases). Generalizing the idea in Chapter 4, we choose F i = P(Oi|Si) where

63

Oi is a set of observed variables in the subtree rooted at Ci. Plugging this in gives,

P̃(Ci) = P(Ci) ×Sc1(i) P(Oc1(i)|Sc1(i)) ×Sc2(i) P(Oc2(i)|Sc2(i)) ×Si P(Oi|Si)−1 (5.18)

where the first two tensor multiplications essentially eliminate the latent variables in Sc1(i) and
Sc2(i).3 With these choices, we also fix the mode labelsωi,ωc1(i) andωc2(i) in (5.12) (5.13) and (5.17).
That is ωi = Oi, ωc1(i) = Oc1(i) and ωc2(i) = Oc2(i).

To remove all dependencies on latent variables in P̃(Ci) and relate it to observed variables, we
need to eliminate the latent variables in Si and the tensor P(Oi|Si)−1. For this, we multiply the
transformed tensor P̃(Ci) by P(Oi,O−i), where O−i denotes some set of observed variables which
do not belong to the subtree rooted at node Ci. Furthermore, P(Oi,O−i) can be re-expressed using
the conditional distribution of Oi and O−i respectively, conditioning on the separator set Si, i.e.,

P(Oi,O−i) = P(Oi|Si) ×Si P(�2Si) ×Si P(O−i|Si).

Therefore, we have

P(Oi|Si)−1
×Oi P(Oi,O−i) = P(�2Si) ×Si P(O−i|Si),

and plugging this into (5.18), we have

P̃(Ci) ×Oi P(Oi,O−i) = P(Ci) ×Sc1(i) P(Oc1(i)|Sc1(i)) ×Sc2(i) P(Oc2(i)|Sc2(i)) ×Si P(�2Si) ×Si P(O−i|Si)

= P(Oc1(i),Oc2(i),O−i) (5.19)

where P̃(Ci) is now related to only marginal probabilities of observed variables. From the equiva-
lent relation, we can inverting P(Oi,O−i), and obtain the observable representation for P̃(Ci)

P̃(Ci) = P(Oc1(i),Oc2(i),O−i) ×O−i P(Oi,O−i)−1. (5.20)

Example. For node CBCDE in Figure 5.2, the choices of Oi,Oc1(i),Oc2(i) and O−i are {F,G}, G, F and H
respectively.

There are many valid choices of O−i. As in Chapter 4 these different choices can be combined
via a linear system using Eq. 5.19. This can substantially increase performance.

For the leaf nodes and the root node, the derivation for their observable representations can be
viewed as special cases of that for the internal nodes. We provide the results for their observable
representation below:

P̃(Cr) = P(Oc1(r),Oc2(r),Oc3(r)), (5.21)

P̃(Cl) = P(Ol,Ol−) ×Ol− P(Ol,Ol−)−1. (5.22)

IfP(Ol,Ol−) is invertible, then P̃(Cl) = IOl .Otherwise we need to projectP(Oi,O−i) using a tensor
Ui to make it invertible, as discussed in the next section. The overall training and test algorithms
are given in Algorithms 6 and 7. Given N i.i.d. samples of the observed nodes, we simply replace
P(·) by the empirical estimate P̂(·). A high level flowchart of the training procedure is given in

3If a latent variable in Sc1(i) ∪ Sc2(i) is also in Si, it is not eliminated in this step but in another step.

64

Input: junction tree
topology, samples of
observed variables

Compute probability
tensors of certain
groups of observed
variables

Use SVD to compute
𝑼𝒊 for each 𝑿𝒊

Output: Estimate
observable
parameters based on
Alg 6

Figure 5.3: Flowchart that gives an overview of Algorithm 6

Figure 5.3.

5.6 Discussion

The observable representation exists only if there exist tensor inversion pairs F i = P(Oi|Si), and
F
−1
i . This is equivalent to requiring that the rank of the matricized version ofF i (rows corresponds

to modes Oi and column to modes Si) has rank τi := SH × |Si|. Similarly. the matricized version of
P(O−i|Si) also needs to have rank τi, so that the matricized version of P(Oi,O−i) has rank τi and is
invertible. Thus, it is required that #states(Oi) ≥ #states(Si). This can be achieved by either making
Oi consist of a few high dimensional observations, or of many smaller dimensional ones. In the case
when #states(Oi) > #states(Si), we need to projectF i to a lower dimensional space using a tensorUi
so that it can be inverted. In this case, we defineF i := P(Oi|Si)×OiUi. For example, following this
through the computation for the leaf gives us that P̃(Cl) = P(Ol,Ol−) ×Ol− (P(Ol,Ol−) ×Ol Ul)−1. A
good choice ofUi can be obtained by performing a singular value decomposition of the matricized
version of P(Oi,O−i) (variables in Oi are arranged to rows and those in O−i to columns).

For HMMs and latent trees, this rank condition can be expressed simply as requiring the condi-

Algorithm 6 Spectral learning algorithm for latent junction trees

In: Junction tree topology and N i.i.d. samples
{
x(n)

1 , . . . , x
(n)
O

}N

n=1

Out: Spectral parameters P̂(Cr), P̂(Cl) for all leaves, P̂(Ci) for all non-root internal nodes

1: For each node Ci, perform a “thin” singular value decomposition of P̂(Oi,O−i) = UΣV>; let Ûi = U(:, 1 : Sτi
H) be

the the first Sτi
H principal left singular vectors where τi = |Si|.

2: Estimate P̂(Ci) for the root, leaf and internal nodes

P̂(Cr) = P̂(Oc1(r),Oc2(r),Oc3(r)) ×Oc1(r) Ûc1(r) ×Oc2(r) Ûc2(r) ×Oc3(r) Ûc3(r)

P̂(Cl) = P̂(Ol,Ol−) ×Ol− (P̂(Ol,Ol−) ×Ol Ûl)−1

P̂(Ci) = P̂(Oc1(i),Oc2(i),O−i) ×Oc1(i) Ûc1(i) ×Oc2(i) Ûc2(i)

×O−i (P̂(Oi,O−i) ×Oi Ûi)−1

Algorithm 7 Inference with spectral parameters for latent junction trees

In: Spectral parameters P̂(Cr), P̂(Cl) for all leaves, P̂(Ci) for all non-root internal nodes and evidence {x̄1, . . . , x̄O}

Out: Estimated marginal P̂(x̄1, . . . , x̄O)
1: In reverse topological order, leaf and internal nodes send messages

M̂(Sl) = P̂(Cl)Ol=ōl

M̂(Si) = P̂(Ci) ×Oc1(i) M̂(Sc1(i)) ×Oc2(i) M̂(Sc2(i))

2: At the root, obtain P̂(x̄1, . . . , x̄O) by

P̂(Cr) ×Oc1(r) M̂(Sc1(r)) ×Oc2(r) M̂(Sc2(r)) ×Oc3(r) M̂(Sc3(r))

65

tional probability tables of the underlying model to not be rank-deficient. However, junction trees
encode more complex latent structures that introduce subtle considerations. A general characteri-
zation of the existence condition for observable representation with respect to the graph topology
will be our future work.

The other practical aspects of spectral learning such as features, the expectation form, and linear
systems as discussed in Chapter 4 also apply to our junction tree algorithm.

5.7 Sample Complexity

We analyze the sample complexity of Algorithm 6 and show that it depends on the junction tree
topology and the spectral properties of the true model. Let di be the order of P(Ci) and ei be the
number of modes of P(Ci) that correspond to observed variables.

Theorem 2. Let τi = SH × |Si|, dmax = maxi di, and emax = maxi ei. Then, for any ε > 0, 0 < δ < 1, if

N ≥ O


4S2

H

3β2

dmax Semax
O ln |C|δ |C|

2

ε2α4


where στ(∗) returns the τth largest singular value and

α = mini στi(P(Oi,O−i)), β = mini στi(F i)

Then with probability 1 − δ,∑
x1,...,x|O|

∣∣∣∣P̂(x1, . . . , x|O |) − P(x1, . . . , x|O |)
∣∣∣∣ ≤ ε .

See the Appendix (5.10) for a proof. The result implies that the estimation problem depends
exponentially on dmax and emax, but note that emax ≤ dmax. Furthermore, dmax is always greater
than or equal to the treewidth. Note the dependence on the singular values of certain probability
tensors. In fully observed models, the accuracy of the learned parameters depends only on how
close the empirical estimates of the factors are to the true factors. However, our spectral algorithm
also depends on how close the inverses of these empirical estimates are to the true inverses, which
depends on the spectral properties of the matrices (Stewart and Sun, 1990).

5.8 Experiments

We now evaluate our method on synthetic and real data and compare it with both standard
EM (Dempster et al., 1977) and stepwise online EM (Liang and Klein, 2009). All methods were im-
plemented in C++, and the matrix library Eigen (Guennebaud et al., 2010) was used for computing
SVDs and solving linear systems. For all experiments, standard EM is given 5 random restarts.
Online EM tends to be sensitive to the learning rate, so it is given one restart for each of 5 choices
of the learning rate {0.6, 0.7, 0.8, 0.9, 1} (the one with highest likelihood is selected). Convergence
is determined by measuring the change in the log likelihood at iteration t (denoted by f (t)) over
the average: | f (t)− f (t−1)|

avg(f (t), f (t−1)) ≤ 10−4 (the same precision as used in (Murphy, 2005)).

For large sample sizes our method is almost two orders of magnitude faster than both EM
and online EM. This is because EM is iterative and every iteration requires inference over all the

66

training examples which can become expensive. On the other hand, the computational cost of
our method is dominated by the SVD/linear system. Thus, it is primarily dependent only on the
number of observed states and maximum tensor order, and can easily scale to larger sample sizes.

In terms of accuracy, we generally observe 3 distinct regions, low-sample size, mid-sample size,
and large sample size. In the low sample size region, EM/online EM tend to overfit to the training
data and our spectral algorithm usually performs better. In the mid-sample size region EM/online
EM tend to perform better since they benefit from a smaller number of parameters. However, once
a certain sample size is reached (the large sample size region), our spectral algorithm consistently
outperforms EM/online EM which suffer from local minima and convergence issues.

5.8.1 Synthetic Evaluation

We first perform a synthetic evaluation. 4 different latent structures are used (see Figure 5.4): a
second order nonhomogenous (NH) HMM, a third order NH HMM, a 2 level NH factorial HMM,
and a complicated synthetic junction tree. The second/third order HMMs have SH = 2 and SO = 4,
while the factorial HMM and synthetic junction tree have SH = 2, and SO = 16. For each latent
structure, we generate 10 sets of model parameters, and then sample N training points and 1000
test points from each set, where N is varied from 100 to 100, 000. For evaluation, we measure the

accuracy of joint estimation using error =
|P̂(x1,...,xO)−P(x1,...,xO)|

P(x1,...,xO) . We also measure the training time of
both methods.

Figure 5.4 shows the results. As discussed earlier, our algorithm is between one and two orders
of magnitude faster than both EM and online EM for all the latent structures. EM is actually slower
for very small sample sizes than for mid-range sample sizes because of overfitting. Also, in all
cases, the spectral algorithm has the lowest error for large sample sizes. Moreover, critical sample
size at which spectral overtakes EM/online EM is largely dependent on the number of parameters
in the observable representation compared to that in the original parameterization of the model.
In higher order/factorial HMM models, this increase is small, while in the synthetic junction tree
it is larger.

5.8.2 Splice dataset

We next consider the task of determining splicing sites in DNA sequences (Asuncion and New-
man, 2007). Each example consists of a DNA sequence of length 60, where each position in the
sequence is either an A, T, C, or G. The goal is to classify whether the sequence is an Intron/Exon
site, Exon/Intron site, or neither. During training, for each class a different second order nonho-
mogeneous HMM with SH = 2 and SO = 4 is trained. At test, the probability of the test sequence
is computed for each model, and the one with the highest probability is selected (which we found
to perform better than a homogeneous one).

Figure 5.5, shows our results, which are consistent with our synthetic evaluation. Spectral
performs the best in low sample sizes, while EM/online EM perform a little better in the mid-
sample size range. The dataset is not large enough to explore the large sample size regime.
Moreover, we note that spectral algorithm is much faster for all the sample sizes.

67

...

Length = 40

...

Length = 40

...

...

Length = 15

0.1 0.2 0.5 1 2 5 10 20 50 75 100

0.1

0.2

0.3
0.4
0.5

1

2nd Order NonHomogeneous HMM

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100

0.2

0.3

0.4
0.5

1

3rd Order NonHomogeneous HMM

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100
0.2

0.3

0.4
0.5

1

2 Level Factorial HMM

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100

0.1

0.2

0.3
0.4
0.5

1

Synthetic Junction Tree

Training Sample Size (x103)

E
rr

or Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100

10

100

1000

2nd Order NonHomogeneous HMM

Training Sample Size (x103)

R
un

tim
e

(s
)

online−EM

EM

Spectral

0.1 0.2 0.5 1 2 5 10 20 50 75 100

100

1000

10000

3rd Order NonHomogeneous HMM

Training Sample Size (x103)

R
un

tim
e

(s
) online−EM

EM

Spectral

0.1 0.2 0.5 1 2 5 10 20 50 75 100

10

100

1000

10000
2 Level Factorial HMM

Training Sample Size (x103)

R
un

tim
e

(s
)

Spectral

EM

online−EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100
1

10

100

1000

10000

Synthetic Junction Tree

Training Sample Size (x103)

R
un

tim
e

(s
)

EM

online−EM

Spectral

(a) 2nd Order HMM (b) 3rd Order HMM (c) 2 Level Factorial HMM (d) Synthetic Junction Tree

Figure 5.4: Comparison of our spectral algorithm (blue) to EM (red) and online EM (green) for
various latent structures. Both errors and runtimes in log scale.

0.1 0.2 0.5 1 2 2.675

0.1

0.2

0.3

0.4

Splice

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 2.675

100

1000

Splice

Training Sample Size (x103)

R
un

tim
e

(s
)

online−EM

EM

Spectral

Figure 5.5: Results on Splice dataset

5.9 Conclusion

We have developed an alternative parameterization that allows fast, local minima free, and con-
sistent parameter learning of latent junction trees that generalizes the algorithm we presented in
Chapter 4. Our approach generalizes spectral algorithms to a much wider range of structures
such as higher order, factorial, and semi-hidden Markov models. Unlike traditional nonconvex
optimization formulations, spectral algorithms allow us to theoretically explore latent variable
models in more depth. The spectral algorithm depends not only on the junction tree topology
but also on the spectral properties of the parameters. Thus, two models with the same struc-
ture may pose different degrees of difficulty based on the underlying singular values. This is
very different from learning fully observed junction trees, which is primarily dependent on only
the topology/treewidth. Future directions include learning discriminative models and structure

68

learning.

5.10 Appendix

We prove the sample complexity theorem.

Notation

For simplicity, the main text describes the algorithm in the context of a binary tree. However, in the
sample complexity proof, we adopt a more general notation. Let Ci be a clique, and Cc1(i),...,Ccαi (i)
denote its αi children. Let C denote the set of all the cliques in the junction tree, and |C| denote its
size. Define dmax to be maximum degree of a tensor in the observable representation and emax to
be maximum number of observed variables in any tensor. Furthermore, let τi = |SH| × |Si| (i.e. the
number of states associated with the separator).

We can now write the transformed representation for junction trees with more than 3 neighbors
as:

Root:

P̃(Ci) = P(Ci) ×Sc1(i) F c1(i) × . . . ×Scαi (i) F cαi (i)

Internal nodes:

P̃(Ci) = P(Ci) ×Si F
†

i ×Sc1(i) F c1(i) × . . . ×Scαi (i) F cαi (i)

Leaf:

P̃(Ci) = P(Ci) ×Si F
†

i

and the observable representation as:

root: P(Ci) = P(Oc1(i), . . . ,Ocαi (i)
) ×Oc1(i) Uc1(i) × . . . ×Ocαi (i) Ucαi (i)

internal: P(Ci) = P(Oc1(i), . . . ,Ocαi (i)
,O−i) ×O−i (P(Oi,O−i) ×Oi Ui)† ×Oc1(i) Uc1(i) × . . . ×Ocαi (i) Ucαi (i)

leaf: P(Ci) = P̂(Ri,O−i) ×O−i (P̂(Oi,O−i) ×Oi Ui)†

Sometimes when the multiplication indices are clear, we will omit it to make things simpler.

Rearranged version:
We will often find it convenient to rearrange the tensors into lower order tensors for the purpose
of taking some norms (such as the spectral norm). We define R(·) as the “rearranging” operation.
For example, R(P̂(Oi,O−i)) is the matricized version of P̂(Oi,O−i) with Oi being mapped to the
rows and O−i being mapped to the columns.
More generally, ifP(Ci) (which has order di) then R(P(Ci)) is a rearrangement of ofP(Ci) such that
it has order equal to the number of neighbors of Ci. The set of modes of P(Ci) corresponding to a
single separator of Ci get mapped to a single mode in R(P(Ci)). We let R(Sαi(j)) denote the mode

69

that Sαi(j) maps to in R(P(Ci)).

In the case of the root, R(P(Ci)) rearrangesP(Ci) into a tensor of order αi. For other clique nodes,
R(P(Ci)) rearranges P(Ci) into a tensor of order αi + 1.

Example: In Figure 5.2 P(CBCDE) = P(�2B,D| �2 C,E). CBCDE has 3 neighbors and so R(P(CBCDE))
is of order 3 where each of the modes correspond to {B,C}, {B,D}, {C,E} respectively.

This rearrangement can be applied to the other quantities. For example, R(P(Oc1(i), . . . ,Ocαi (i)
))

is a rearranging ofP(Oc1(i), . . . ,Ocαi (i)
) into a tensor of order αi where the Oc1(i), . . . ,Ocαi (i)

correspond

to one mode each. R(P̂(Oi,O−i)) is the matricized version of P̂(Oi,O−i) with Oi being mapped to
the rows and O−i being mapped to the columns. Similarly, R(F i) is the matricized version of F i
and R(Ui) is the matricized version ofUi.

Thus, we can define the rearranged quantities:

Root:

R(P̃(Ci)) = R(P(Ci)) ×R(Sc1(i)) R(F c1(i)) × . . . ×R(Scαi (i)) R(F cαi (i)
)

R(P̃(Ci)) = R(P(Ci)) ×R(Si) R(F †i) ×R(Sc1(i)) F c1(i) × . . . ×R(Scαi (i)) R(F αi)

Leaf:

R(P̃(Ci)) = R(P(Ci)) ×R(Si) R(F †i)

and the observable representation as:

root: R(P(Ci)) = R(P(Oc1(i), . . . ,Ocαi (i)
)) ×R(Sc1(i)) R(Uc1(i)) × . . . ×R(Scαi (i)) R(Ucαi (i)

)

internal: R(P(Ci)) = R(P(OSc1(i) , . . . ,Ocαi (i)
,O−i)) ×R(S−i) R((P(Oi,O−i) ×Si Ui)†) (5.23)

×R(Sc1(i)) R(Uc1(i)) × . . . ×R(Scαi (i)) R(Ucαi (i)
)

leaf: R(P(Ci)) = R(P̂(Ri,O−i)) ×R(O−i) R((P̂(Oi,O−i) ×Oi Ui)†)

Furthermore define the following:

α = minCi∈C στi(P[Oi,O−i]) (5.24)
β = minCi∈C στi(F i) (5.25)

The proof is based on the technique of HKZ (Hsu et al., 2009) but has differences due to the
junction tree topology and higher order tensors.

Tensor Norms

We briefly define several tensor norms that are a generalization of matrix norms. For more
information about matrix norms see (Horn and Johnson, 1990).

70

Frobenius Norm: Just like for matrices, the frobenius norm of a tensor of order N is defined as:

‖T‖F =

√ ∑
c1(i),...,iN

T(c1(i), ..., iN)2 (5.26)

Elementwise One Norm: Similarly, the elementwise one norm of a tensor of order N is defined
as:

‖T‖1 =
∑

c1(i),...,iN

|T(c1(i), ..., iN)| (5.27)

Spectral Norm: For tensors of order N the spectral norm (Nguyen et al., 2010) can be defined
as as

|||T|||2 = sup
vi s.t. ‖vi‖2≤1∀1≤i≤N

T ×N vN, ...,×2v2 ×1 v1 (5.28)

In our case, we will find it more convenient to use the rearranged spectral norm, which we
define as:

|||T|||2R = |||R(T)|||2 (5.29)

where R(·) was defined in the previous section.

Induced One Norm: For matrices the induced one norm is defined as the max column sum of
the matrix: |||M|||1 = supv s.t. ‖v‖1≤1 ‖Mv‖1. We can generalize this to be the max slice sum of a tensor
on a tensor where some modes are fixed and others are summed over. Let σ denote the modes that
will be maxed over. Then:

|||T|||σ1 = sup
vi s.t. ‖vi‖1≤1,∀1≤i≤|σ|

‖T ×σ1 v1, ...,×σ|σ|v|σ|‖1 (5.30)

In the Appendix, we prove several lemmas regarding these tensor norms.

Concentration Bounds

ε(O1,,Od) =
∣∣∣∣∣∣∣∣P̂(O1,,Od) −P(O1,,Od)

∣∣∣∣∣∣∣∣
F

(5.31)

ε(O1,,Od−e,od−e+1, ...,od) =
∣∣∣∣∣∣∣∣P̂(O1,,Od−e,od−e+1, ...,od) −P(O1,,Od−e,od−e+1, ...,od)

∣∣∣∣∣∣∣∣
F

(5.32)

1, ..., d − e denote the d−e non-evidence variables while d−e+1, ..., d denote the e evidence variables.
d indicates the total number of modes of the tensor. As the number of samples N gets large, we
expect these quantities to be small.

Lemma 6 (variant of HKZ (Hsu et al., 2009)). If the algorithm independently samples N of the observa-

71

tions, then with probability at least 1 − δ.

ε(O1,,Od) ≤

√
1
N

ln
2|C|
δ

+

√
1
N

(5.33)

∑
od−e+1,...,od

ε(O1,,Od−e,od−e+1, ...,od) ≤

√
Semax

O

N
ln

2|C|
δ

+

√
Semax

O

N
(5.34)

for all tuples (O1,,Od) that are used in the spectral algorithm.

The proof is the same as that of HKZ (Hsu et al., 2009) except the union bound is taken over 2|C|
instead of 3 (since each transformed quantity in the spectral algorithm is composed of at most two
such terms). The last bound can be made tighter, identical to HKZ, but for simplicity we do not
pursue that approach here.

Singular Value Bounds

Basically this is the generalized version of Lemma 9 in HKZ (Hsu et al., 2009), which is stated
below for completeness:

Lemma 7 (variant of HKZ (Hsu et al., 2009)). Suppose ε(Oi,O−i) ≤ ε×στi(P(Oi,O−i)) for some ε < 1/2.
Let ε0 = ε(Oi,O−i)2/((1 − ε)στi(P(Oi,O−i))2. Then:

1. ε0 < 1

2. στi(P̂(Oi,O−i) ×Oi Ûi) ≥ (1 − ε0)στi(P(Oi,O−i))

3. στi(P(Oi,O−i) ×Oi Ûi) ≥
√

1 − ε0στi(P(Oi,O−i))

4. στi(P̂(Oi|Si) ×Oi Ûi) ≥
√

1 − ε0στi(P(Oi|Si)))

It follows that if ε(Oi,O−i) ≤ στi(P(Oi,O−i))/3 then this implies that ε0 ≤
1/9
4/9 = 1

4 . It then follows
that,

1. στi(P̂(Oi,O−i) ×Oi Ûi) ≥ 3
4στi(P(Oi,O−i))

2. στi(P(Oi,O−i) ×Oi Ûi) ≥
√

3
2 στi(P(Oi,O−i))

3. στi(P̂(Oi|Si) ×Oi Ûi) ≥
√

3
2 στi(P(Oi|Si))

Bounding the Transformed Quantities

Define,

72

1. root: P̆(Ci) := P(Oc1(i), . . . ,Ocαi (i)
) ×Oc1(i) Ûc1(i) . . . ×Ocαi (i) Ûcαi (i)

2. leaf: P̆ri(Ci) = P(Ri = ri,O−i) ×O−i (P
Û

(Oi,O−i))†

3. internal: P̆(Ci) = P(OSc1(i) , . . . ,Ocαi (i)
,O−i) ×O−i (P

Û
(Oi,O−i))† ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

(which are the observable quantities with the true probabilities, but empirical Û’s). Similarly, we
can define F̆ i = P[Oi|Si] ×Oi Ûi. We have also abbreviated P(Oi,O−i) ×Oi Ûi with P

Û
(Oi,O−i).

We seek to bound the following three quantities:

δroot
i := ‖(P̂(Ci) − P̆(Ci)) ×Oαi(1) F̆

−1
c1(i), ...,×Oαi(αi)

F̆
−1
cαi (i)
‖1 (5.35)

δinternal
i :=

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ci) − P̆(Ci)) ×O−i F̆ i ×Oc1(i) F̆
−1
i , ...,×Oαi(αi)

F̆
−1
cαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣Si

1
(5.36)

ξ
lea f
i :=

∑
ri

‖(P̂ri(Ci) − P̆ri(Ci)) ×O−i F̆ i‖1 (5.37)

Lemma 8. If ε(Oi,O−i) ≤ στi(P(Oi,O−i))/3 then

δroot
i ≤

2dmaxSdmax
H ε(Oc1(i), . . . ,Ocαi (i)

)

3d/2βd
(5.38)

δinternal
i ≤

2dmax+3Sdmax
H

3
√

3dβd

ε(Oc1(i), . . . ,Ocαi (i)
,O−i)

στi(P(Oi,O−i))
+

ε(Oi,O−i)

(στi(P(Oi,O−i)))2

 (5.39)

ξ
lea f
i ≤

8Sdmax
H

3

 ε(Oi,O−i)

στi(P(Oi,O−i))2 +

∑
ri
ε(Ri = ri,O−i)

στi(PÛ(Oi,O−i))

 (5.40)

We define 4 = max(δroot
i , δinternal

i , ξ
lea f
i) (over all i).

Proof.

Case δroot
i :

For the root, P̂(Ci) = P̂(Oc1(i), . . . ,Ocαi (i)
) ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

and similarly P̆(Ci) =

P(Oc1(i), . . . ,Ocαi (i)
) ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

.

73

δroot =

∣∣∣∣∣∣∣∣∣∣(P̂(Oc1(i), . . . ,Ocαi (i)
) ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

−P(Oc1(i), . . . ,Ocαi (i)
) ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

)
×Oαi(1) F̆

−1
c1(i),,×Oαi(αi)

F̆
−1
αi(1)

∣∣∣∣∣∣∣∣∣∣
1

≤ Sdmax
H

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Oc1(i), . . . ,Ocαi (i)
) −P(Oc1(i), . . . ,Ocαi (i)

)) ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

×

∣∣∣∣∣∣∣∣∣∣∣∣F̆−1
c1(i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R
....

∣∣∣∣∣∣∣∣∣F̆ c1(i))−1
∣∣∣∣∣∣∣∣∣

2R

≤
Sdmax

H∏αi
j=1 σταi(j)(F̆ αi(j))

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Oc1(i), . . . ,Ocαi (i)
) −P(Oc1(i), . . . ,Ocαi (i)

)) ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

≤
Sdmax

H∏αi
j=1 σταi(j)(F̆ αi(j))

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Oc1(i), . . . ,Ocαi (i)
) −P(Oc1(i), . . . ,Ocαi (i)

))
∣∣∣∣∣∣∣∣∣∣∣∣

2R
×∣∣∣∣∣∣∣∣∣∣∣∣Ûc1(i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

∣∣∣∣∣∣∣∣∣∣∣∣Ûαi(2)

∣∣∣∣∣∣∣∣∣∣∣∣
2R
...

∣∣∣∣∣∣∣∣∣∣∣∣Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

=
Sdmax

H∏αi
j=1 σταi(j)(F̆ αi(j))

ε(Oc1(i), . . . ,Ocαi (i)
)

Between the first and second line we use Lemma 13 to convert from elementwise one norm to
spectral norm, and Lemma 11 (submultiplicativity). Lemma 11 (submultiplicativity) is applied

again to get to the second-to-last line. We also use the fact that
∣∣∣∣∣∣∣∣∣∣∣∣Ûc1(i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

= 1.

Thus, by Lemma 7

δroot
i ≤

2dmaxSdmax
H ε(Oc1(i), . . . ,Ocαi (i)

)

3dmax/2βdmax
(5.41)

Case ξlea f
i :

We note that P̂ri(Ci) = P̂(Ri = ri,O−i)×O−i (P̂
Û

(Oi,O−i))† and similarly P̆ri(Ci) = P(Ri = ri,O−i)×O−i

(P
Û

(Oi,O−i))†.

Again, we use Lemma 13 to convert from the one norm to the spectral norm, and Lemma 11 for
submultiplicativity.

ξ
lea f
i =

∑
ri

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Ci) − P̆ri(Ci)) ×O−i F̆ i

∣∣∣∣∣∣∣∣∣∣∣∣Si

1

=
∑

ri

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Ci) − P̆ri(Ci)) ×O−i Ûi

∣∣∣∣∣∣∣∣∣∣∣∣Si

1
|||P[Oi|Si]|||

Si
1

≤

∑
ri

Sdmax
H

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Ci) − P̆ri(Ci))
∣∣∣∣∣∣∣∣∣∣∣∣

2R

∣∣∣∣∣∣∣∣∣∣∣∣Ûi

∣∣∣∣∣∣∣∣∣∣∣∣
2R

≤

∑
ri

Sdmax
H

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Ci) − P̆ri(Ci))
∣∣∣∣∣∣∣∣∣∣∣∣

2R
(5.42)

74

Note that |||P[Oi|Si]|||
Si
1 = 1, and

∣∣∣∣∣∣∣∣∣∣∣∣Ûi

∣∣∣∣∣∣∣∣∣∣∣∣
2R

= 1.

∣∣∣∣∣∣∣∣∣∣∣∣P̂ri(Ci) − P̆ri(Ci)
∣∣∣∣∣∣∣∣∣∣∣∣

2R
=

∣∣∣∣∣∣∣∣∣∣∣∣P̂(Ri = ri,O−i) ×O−i (P̂
Û

(Oi,O−i))† − P(Ri = ri,O−i) ×O−i (P
Û

(Oi,O−i))†
∣∣∣∣∣∣∣∣∣∣∣∣

2R

≤

∣∣∣∣∣∣∣∣∣∣∣∣P(Ri = ri,O−i) ×O−i (P̂
Û

(Oi,O−i)† −PÛ(Oi,O−i)†)
∣∣∣∣∣∣∣∣∣∣∣∣

2R
+∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ri = ri,O−i) −P(Ri = ri,O−i)) ×O−i PÛ

(Oi,O−i)†
∣∣∣∣∣∣∣∣∣∣∣∣

2R

≤ |||P(Ri = ri,O−i)|||2R

∣∣∣∣∣∣∣∣∣∣∣∣(P̂Û(Oi,O−i)† −PÛ(Oi,O−i)†)
∣∣∣∣∣∣∣∣∣∣∣∣

2R
+∣∣∣∣∣∣∣∣∣P

Û
(Oi,O−i)†

∣∣∣∣∣∣∣∣∣
2R

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ri = ri,O−i) −P(Ri = ri,O−i))
∣∣∣∣∣∣∣∣∣∣∣∣

2R

≤ P(Ri = ri)
1 +
√

5
2

ε(Oi,O−i)

min(στi(P̂Û(Oi,O−i)), στi j(PÛ(Oi,O−i)))
2

+
ε(Ri = ri,O−i)
στi(PÛ(Oi,O−i))

The last line follows from Eq. 5.55. We have also used the fact that
|||P(Ri = ri,O−i)|||2R ≤ ‖P(Ri = ri,O−i)‖F ≤ P(Ri = r) by Lemma 12. Thus, using Lemma 7,

ξ
lea f
i ≤

∑
ri

Sdmax
H

P(Ri = ri)
1 +
√

5
2

ε(Oi,O−i)

min(στi(P̂Û(Oi,O−i)), στi(PÛ(Oi,O−i)))
2 +

ε(Ri = ri,O−i)
στi(PÛ(Oi,O−i))

(5.43)

ξ
lea f
i ≤

∑
ri

Sdmax
H

1 +
√

5
2

16P(Ri = ri)ε(Oi,O−i)
9στi(PÛ(Oi,O−i))2 +

2ε(Ri = ri,O−i)
√

3στi(PÛ(Oi,O−i))


≤

8Sdmax
H

3

(
ε(Oi,O−i)

στi(P(Oi,O−i))2 +

∑
ri
ε(Ri = ri,O−i)

στi(PÛ(Oi,O−i))

)
(5.44)

δinternal
i

P̆(Ci) = P(Oc1(i), . . . ,Ocαi (i)
,O−i) ×O−i (P

Û
(Oi,O−i))† ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

.

Similarly, P̂(Ci) = P̂(Oc1(i), . . . ,Ocαi (i)
,O−i) ×O−i (P̂

Û
(Oi,O−i))

†

×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)
.

Again, we use Lemma 13 to convert from one norm to spectral norm and Lemma 11 for submul-

75

tiplicativity.

δinternal
i =

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ci) − P̆(Ci)) ×O−i F̆ i ×Oαi(1) F̆
−1
αi(1), ...,×Oαi(αi)

F̆
−1
cαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣Si

1

≤

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ci) − P̆(Ci)) ×O−i Ûi ×Oαi(1) F̆
−1
αi(1), ...,×Oαi(αi)

F̆
−1
cαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣Si

1
|||P[Oi|Si]|||

Si
1

≤ Sdmax
H

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ci) − P̆(Ci))
∣∣∣∣∣∣∣∣∣∣∣∣

2R

∣∣∣∣∣∣∣∣∣∣∣∣Ûi

∣∣∣∣∣∣∣∣∣∣∣∣
2R

∣∣∣∣∣∣∣∣∣∣∣∣F̆−1
c1(i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R
...

∣∣∣∣∣∣∣∣∣∣∣∣F̆−1
cαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

≤
Sdmax

H∏αi
j=1 σταi(j)(F̆ αi(j))

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Ci) − P̆(Ci))
∣∣∣∣∣∣∣∣∣∣∣∣

2R
(5.45)

Note that |||P[Oi|Si]|||
Si
1 = 1, and

∣∣∣∣∣∣∣∣∣∣∣∣Ûi

∣∣∣∣∣∣∣∣∣∣∣∣
2R

= 1.

∣∣∣∣∣∣∣∣∣∣∣∣P̂(Ci) − P̆(Ci)
∣∣∣∣∣∣∣∣∣∣∣∣

2R

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣P̂(Oc1(i), . . . ,Ocαi (i)
,O−i) ×O−i (P̂

Û
(Oi,O−i))

†

×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)
−

P(Oc1(i), . . . ,Ocαi (i)
,O−i) ×O−i (P

Û
(Oi,O−i))† ×Oc1(i) Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

≤

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Oc1(i), . . . ,Ocαi (i)
,O−i) − P(Oc1(i), . . . ,Ocαi (i)

,O−i)) ×O−i PÛ
(Oi,O−i))†

×Oc1(i)Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣P(Oc1(i), . . . ,Ocαi (i)
,O−i) ×O−i ((P̂

Û
(Oi,O−i))

†

− (P
Û

(Oi,O−i))†)

×Oc1(i)Ûc1(i) × . . . ×Ocαi (i) Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

≤

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Oc1(i), . . . ,Ocαi (i)
,O−i) − P(Oc1(i), . . . ,Ocαi (i)

,O−i))
∣∣∣∣∣∣∣∣∣∣∣∣

2R

∣∣∣∣∣∣∣∣∣P
Û

(Oi,O−i))†
∣∣∣∣∣∣∣∣∣

2R

∣∣∣∣∣∣∣∣∣∣∣∣Ûc1(i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R
...

∣∣∣∣∣∣∣∣∣∣∣∣Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

+
∣∣∣∣∣∣∣∣∣∣∣∣P(Oc1(i), . . . ,Ocαi (i)

,O−i)
∣∣∣∣∣∣∣∣∣∣∣∣

2R

∣∣∣∣∣∣∣∣∣∣∣∣P̂Û(Oi,O−i))† −PÛ(Oi,O−i))†
∣∣∣∣∣∣∣∣∣∣∣∣

2R

∣∣∣∣∣∣∣∣∣∣∣∣Ûc1(i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R
...

∣∣∣∣∣∣∣∣∣∣∣∣Ûcαi (i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R

≤

ε(Oc1(i), . . . ,Ocαi (i)
,O−i)

στi(PÛ(Oi,O−i))
+

1 +
√

5
2

ε(Oi,O−i)

min(στi(PÛ(Oi,O−i)), στi(P̂Û(Oi,O−i)))
2

The last line follows from Eq. 5.55. We have also used the fact that∣∣∣∣∣∣∣∣∣∣∣∣P(Oc1(i), . . . ,Ocαi (i)
,O−i)

∣∣∣∣∣∣∣∣∣∣∣∣
2R
≤ ‖P(Oc1(i), . . . ,Ocαi (i)

,O−i))‖F ≤ 1 via Lemma 12. Using Lemma 7,

δinternal
i ≤

(2SH)dmax

(β
√

3)
dmax

ε(Oc1(i), . . . ,Ocαi (i)
,O−i)

στi(PÛ(Oi,O−i))
+

1 +
√

5
2

ε(Oi,O−i)

min(στi(PÛ(Oi,O−i)), στi(P̂Û(Oi,O−i)))
2

(5.46)

76

δinternal
i ≤

(2SH)dmax

(β
√

3)
dmax

2ε(Oc1(i), . . . ,Ocαi (i)
,O−i)

√
3στi(P(Oi,O−i))

+
8ε(Oi,O−i)

3(στi(P(Oi,O−i)))2


≤

8(2SH)dmax

3(β
√

3)
dmax

ε(Oc1(i), . . . ,Ocαi (i)
,O−i)

στi(P(Oi,O−i))
+

ε(Oi,O−i)

(στi(P(Oi,O−i)))2

 (5.47)

�

Bounding the Propagation of Error

We now show all these errors propagate on the junction tree. For this section, assume the clique
nodes are numbered 1, 2, ..., |C| in breadth first order (such that 1 is the root). Moreover let Φ1:c(C)
be the transformed factors accumulated so far if we computed the joint probability from the root
down (instead of the bottom up). For example,

Φ1:1(C) = P(C1) (5.48)
Φ1:2(C) = P(C1) ×S2 P(C2) (5.49)
Φ1:2(C) = P(C1) ×S2 P(C2) ×S3 P(C3) (5.50)

(Note how this is very computationally inefficient: the tensors get very large. However, it is useful
for proving statistical properties). Then the modes of Φ1:c can be partitioned into mode groups,
M1,..., Mdc (where each mode group consists of the variables on the corresponding separator edge).
We now prove the following lemma,

Lemma 9. Define 4 = max(δroot
i , δinternal

i , ξ
lea f
i). Then,∑

x1:c

‖(Φ̆1:c(C) − Φ̂1:c(C)) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1 ≤ (1 + 4)c−1δroot

i + (1 + 4)c−1
− 1 (5.51)

x1:c is all the observed variables in cliques 1 through c. Note that when c = |C| then this implies
that Φ̂1:c(C) = P̂[x1, ..., xO] and thus,∑

x

|P̂(x1, ..., xO) − P(x1, ..., xO)| ≤ (1 + 4)|C|−1δroot
i + (1 + 4)|C|−1

− 1 (5.52)

Proof. The proof is by induction on c. The base case follows trivially from the definition of δroot
i .

For the induction step, assume the claim holds for c ≥ 1. Then we prove it holds for c + 1.

77

∑
x1:c+1

‖(Φ̆1:c+1(C) − Φ̂1:c+1(C)) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc+1
‖1

=
∑
x1:c+1

∣∣∣∣∣∣∣∣(Φ̆1:c(C) × (P̂(Cc+1) − P̆(Cc+1)) + (Φ̆1:c(C) − Φ̂1:c(C)) × (P̂(Cc+1) − P̆(Cc+1)) + (Φ̆1:c(C) − Φ̂1:c(C)) × P̆(Cc+1)
)

×M1F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1

∣∣∣∣∣∣∣∣
1

≤

∑
x1:c+1

‖(Φ̆1:c(C) × (P̂(Cc+1) − P̆(Cc+1))) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1 +∑

x1:c+1

‖((Φ̆1:c(C) − Φ̂1:c(C)) × (P̂(Cc+1) − P̆(Cc+1))) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1 +∑

x1:c+1

‖((Φ̆1:c(C) − Φ̂1:c(C) × P̆(Cc+1)) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

Now we consider two cases, when c + 1 is a leaf clique and when it is an internal clique.

Case 1: Internal Clique

Note here the summation over x1:c+1 is irrelevant since there is no evidence. We use Lemma 10 to
break up the three terms:

The first term,

‖(Φ̆1:c(C) × (P̂(Cc+1) − P̆(Cc+1))) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

≤

∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Cc+1) − P̆(Cc+1)) ×O−(c+1) F̆ c+1 ×Oαc+1(1) F̆
−1
αc+1(1), ...,×Oαc+1(γc+1)F̆

−1
αc+1(γc+1)

∣∣∣∣∣∣∣∣∣∣∣∣Si

1

× ‖Φ̆1:c(C) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1

≤ 4 × 1

The first term above is simply δinternal
i ≤ 4while the second equals one since it is a joint distribution.

Now for the second term,

‖(Φ̆1:c(C) − Φ̂1:c(C)) × (P̂(Cc+1) − P̆(Cc+1))) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

≤ ‖(Φ̆1:c(C) − Φ̂1:c(C)) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1 ×∣∣∣∣∣∣∣∣∣∣∣∣(P̂(Cc+1) − P̆(Cc+1)) ×O−(c+1) F̆ c+1 ×Oαc+1(1) F̆

−1
αc+1(1), ...,×Oαc+1(γc+1)F̆

−1
αc+1(γc+1)

∣∣∣∣∣∣∣∣∣∣∣∣Sc+1

1

≤ ((1 + 4)c−1δroot + (1 + 4)c−1
− 1) × δinternal

c+1 (via induction hypothesis)

≤ ((1 + 4)c−1δroot + (1 + 4)c−1
− 1) × 4

78

The third term,

‖((Φ̆1:c(C) − Φ̂1:c(C)) × P̆(Cc+1)) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

≤ ‖(Φ̆1:c(C) − Φ̂1:c(C)) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1×∣∣∣∣∣∣∣∣∣∣∣∣P̆(Cc+1) ×O−(c+1) F̆ c+1 ×Oαc+1(1) F̆

−1
αc+1(1), ...,×Oαc+1(γc+1)F̆

−1
αc+1(γc+1)

∣∣∣∣∣∣∣∣∣∣∣∣Sc+1

1

≤ ((1 + 4)c−1δroot + (1 + 4)c−1
− 1) × 1

Case 2: Leaf Clique
Again we use Lemma 10 to break up the three terms:

The first term,∑
x1:c+1

‖(Φ̆1:c(C) × (P̂ri(Cc+1) − P̆ri(Cc+1))) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

≤

∑
x1:c+1

‖Φ̆1:c(C) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Cc+1) − P̆ri(Cc+1)) ×O−(c+1) F̆ c+1

∣∣∣∣∣∣∣∣∣∣∣∣Sc+1

1

≤

∑
x1:c

‖Φ̆1:c(C) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1

∑
xc+1

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Cc+1) − P̆ri(Cc+1)) ×O−(c+1) F̆ c+1

∣∣∣∣∣∣∣∣∣∣∣∣Sc+1

1

≤ 1 × 4

The first term above equals 1 because it is a joint distribution and the second is the bound on the
transformed quantity we had proved earlier (since ri = xc+1).

The second term,∑
x1:c+1

‖(Φ̆1:c(C) − Φ̂1:c(C)) × (P̂ri(Cc+1) − P̆ri(Cc+1))) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

≤

∑
x1:c

‖(Φ̆1:c(C) − Φ̂1:c(C)) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1

∑
xc+1

∣∣∣∣∣∣∣∣∣∣∣∣(P̂ri(Cc+1) − P̆ri(Cc+1)) ×O−(c+1) F̆ c+1

∣∣∣∣∣∣∣∣∣∣∣∣
1

≤ ((1 + 4)c−1δroot + (1 + 4)c−1
− 1) × ξlea f

c+1

≤ ((1 + 4)c−1δroot + (1 + 4)c−1
− 1) × 4

The third term,∑
x1:c+1

‖((Φ̆1:c(C) − Φ̂1:c(C) × P̆ri(Cc+1)) ×M1 F̆
−1
1 , ...,×Mdc+1

F̆
−1
dc+1
‖1

≤

∑
x1:c

‖(Φ̆1:c(C) − Φ̂1:c(C)) ×M1 F̆
−1
1 , ...,×Mdc

F̆
−1
dc
‖1

∑
xc+1

∣∣∣∣∣∣∣∣∣P̆ri(Cc+1) ×O−(c+1) F̆ c+1

∣∣∣∣∣∣∣∣∣Sc+1

1

≤ ((1 + 4)c−1δroot + (1 + 4)c−1
− 1) × 1

Combining these terms proves the induction step. �

79

Putting it all together

We use the fact from HKZ (Hsu et al., 2009) that (1 + a/t)t
≤ 1 + 2a for a ≤ 1/2. Now 4 is the main

source of error. We set 4 ≤ O(εtotal/|C|).

Note that

4 ≤
2dmax+3Sdmax

H

3
√

3dmaxβdmax

(∑
od−e+1,...,od

ε(O1,,Od−e,od−e+1, ...,od)

α
+

∑
od−e+1,...,od

ε(O1,,Od−e,od−e+1, ...,od)

α2

)

This gives,

2dmax+3Sdmax
H

3
√

3dmaxβdmax

(∑
od−e+1,...,od

ε(O1,,Od−e,od−e+1, ...,od)

α
+

∑
od−e+1,...,od

ε(O1,,Od−e,od−e+1, ...,od)

α2

)
≤ Kεtotal/|C|

where K is some constant.

This implies,

∑
od−e+1,...,od

ε(O1,,Od−e,od−e+1, ...,od) ≤ K
3dmax/2+1εtotalα

2βdmax

2dmax+3Sdmax
H |C|

(5.53)

Now using the concentration bound (Lemma 6) will give,

K
3dmax/2+1εtotalα

2βdmax

2dmax+3Sdmax
H |C|

≤

√
Semax

O

N
ln

2|C|
δ

+

√
Semax

O

N

Solving for N:

N ≥ O


4S2

H

3β2

dmax Semax
O ln |C|δ |C|

2

ε2
totalα

4

 (5.54)

and this completes the proof.

Matrix Perturbation Bounds

This is Theorem 3.8 from pg. 143 in Stewart and Sun, 1990 (Stewart and Sun, 1990). Let A ∈ Rm×n,
with m ≥ n and let Ã = A + E. Then∣∣∣∣∣∣∣∣Ã+

− A+
∣∣∣∣∣∣∣∣

2
≤

1 +
√

5
2

max(
∣∣∣∣∣∣A+

∣∣∣∣∣∣2
2 ,

∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣2
2
) ||E||2 (5.55)

80

Tensor Norm Bounds

For matrices it is true that ‖Mv‖1 ≤ |||M|||1 ‖v‖1. We prove the generalization to tensors.

Lemma 10. Let T1 and T2 be tensors σ a set of (labeled) modes.

||T1 ×σ T2||1 ≤ |||T2|||
σ
1 ‖T1‖1 (5.56)

Proof.

||T1 ×σ T2||1 =
∑

i1:N\σ

∑
j1:M\σ

∑
x

T1(i1:N \ σ,σ = x)T2(j1:N \ σ,σ = x)

=
∑

i1:N\σ

∑
x

∑
j1:M\σ

T1(i1:N \ σ,σ = x)T2(j1:N \ σ,σ = x)

=
∑

i1:N\σ

∑
σ

T1(i1:N \ σ,σ = x)
∑
j1:M\σ

T2(j1:N \ σ,σ = x)

≤ max
x

 ∑
j1:M\σ

T2(j1:N \ σ,σ = x)

 ‖T1‖1

= |||T2|||
σ
1 ‖T1‖1

�

We prove a restricted analog of the fact that spectral norm is submultiplicative for matrices i.e.
|||AB|||2 ≤ |||A|||2 |||B|||2.

Lemma 11. Let T be a tensor of order N and let M be a matrix. Then,

|||T ×1 M|||2 ≤ |||T|||2 |||M|||2 (5.57)

Proof.

|||T ×1 M|||2 = sup
vm,v2,...,vN

∑
c1(i),...,iN ,m

T(c1(i), c2(i), ..., iN)M(c1(i),m)vm(m)vc2(i)(c2(i))vi3(i3)....vin(in)

= sup
vm,v2,...,vN

∑
c2(i),....,iN

∑
c1(i)

T(c1(i), c2(i), ..., iN)
∑

m
M(c1(i),m)vm(m)

≤ sup
vm,v2,...,vN

sup
c1(i)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑m

M(c1(i),m)vm(m)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

 ×∑
c1(i),....,iN

T(c1(i), c2(i), ..., iN)
1∣∣∣∣∣∣∑m M(c1(i),m)vm(m)

∣∣∣∣∣∣
2

∑
m

M(c1(i),m)vm(m)

 vc2(i)(c2(i))vi3(i3)....vin(in)

≤ |||M|||2 |||T|||2

�

81

Lemma 12. Let T be a tensor of order N. Then,

|||T|||2 ≤ ||T ×1 v1,,×n−1vn−1||F ≤ ||T ×1 v1, ...,×n−2vn−2||F ≤ ... ≤ ||T||F (5.58)

Proof. It suffices to show that supv s.t. ||v||≤1 ||T ×1 v||F ≤ ||T||F. By submultiplicativity of the frobenius
norm: ||T ×1 v||F ≤ ||T||F ||v||F ≤ ||T||, since ||v||F = ||v||2 ≤ 1. �

Lemma 13. Let T be a tensor of order N, where each mode is of dimension k. Then,

|||T|||σ1 ≤ kN
|||T|||2 (5.59)

For any σ.

Proof. We simply prove this for σ = ∅ (which corresponds to elementwise one norm) since |||T|||σ1
1 ≤

|||T|||σ2
1 if σ2 ⊆ σ1. Note that ‖T‖1 ≤ kN max(|T|) (where max(T) is the maximum element of |T|).

Similarly, max(|T|) ≤ |||T|||2 which implies that ‖T‖1 ≤ kN
|||T|||2. �

82

Chapter 6

Nonparametric Latent Trees with Kernel
Embeddings

In Chapter 4, we proposed linear-algebra based solutions to parameter learning in latent tree
graphical models where the variables are discrete. However, in many real world scenarios, the
variables under study take on continuous values. One example is demographics where variables
like income, crime rate, and age are highly skewed and rarely follow bell curves. For example,
Figure 6.1 shows the age distributions of two countries, Egypt, and Japan neither of which follow
Gaussian distributions.

It is often difficult to apply traditional approaches to these datasets, since most algorithms for
probabilistic modeling assume that the marginal/conditional distributions easily fit into a para-
metric family. Discretizing the data is often suboptimal, since it achieves a weaker convergence
rate than kernel density estimation. For example for one-dimensional density estimation, the in-
tegrated square error of a histogram estimator decreases at a rate of O(N−2/3) while the integrated
square error of kernel density estimation decreases at a rate of O(N−4/5)(Shalizi, 2015). Unfortu-
nately, kernel density estimation and other conventional nonparametric techniques severely suffer
from the curse of dimensionality, making them impractical for modeling more than a handful of
variables.

As a result, typical parameter learning and inference methods approximate the underlying
distributions with Gaussians (or mixtures of Gaussians) so that traditional learning methods like

Figure 6.1: Examples of real world non-Gaussian distributions: Age distributions of Egypt (left)
and Japan (right). (Photo Source : www.census.gov)

83

Expectation Maximization can be used (Dempster et al., 1977). Structure learning of latent trees is
even more challenging and has largely been tackled by heuristics since the search space of structures
is intractable. Examples from the phylogenetic community include maximum parisinomius and
maximum likelihood methods (Semple and Steel, 2003). In the machine learning community,Zhang
(2004) proposed a search heuristic for hierarchical latent class models by defining a series of local
search operations and using EM to compute the likelihood of candidate structures. Harmeling
and Williams (2011) proposed a greedy algorithm to learn binary trees by joining two nodes with
a high mutual information and iteratively performing EM to compute the mutual information
among newly added hidden nodes. Alternatively, Bayesian hierarchical clustering (Heller and
Ghahramani, 2005) is an agglomerative clustering technique that merges clusters based on a
statistical hypothesis test. In addition to lacking theoretical guarantees, these methods do not
apply to non-Gaussian continuous distributions.

Contributions of this chapter: In this work, we propose a method for latent tree models
with continuous and non-Gaussian observations based on the concept of kernel embedding of
distributions (Smola et al., 2007). Kernel embeddings enable efficient representation of large
multivariate continuous distributions avoiding the curse of dimensionality inherent in naive kernel
density estimation. We present principled methods for parameter learning/inference as well as
structure learning:

• Parameter learning/inference: We generalize the spectral algorithm from Chapter 4 to the
continuous scenario using kernel embeddings. Previous work on nonparametric latent
models was limited to hidden Markov models (Song et al., 2010a).

• Structure learning: We define a distance measure between variables based on the singular
value decomposition of covariance operators. This allows us to generalize some of the
distance based latent tree learning procedures from the phylogenetics community such as
neighbor joining (Saitou and Nei, 1987) and recursive grouping methods (Choi et al., 2010)
to the nonparametric setting. These distance based methods come with strong statistical
guarantees, but have previously been unexplored in the nonparametric setting.

Outline: We first review multivariate kernel density estimation to motivate our approach. We
then assume the latent structure is known and propose a spectral algorithm for parameter learning
(and inference), followed by a structure learning algorithm. Lastly, we demonstrate the efficacy of
our approach on synthetic and real datasets.

Prerequisites: This chapter assumes a general understanding of latent variable models as
presented in 2.2, knowledge of Hilbert space embeddings as discussed in 2.3, the connection
between latent variable models and low rank factorization in Chapter 3, and the tensor notation
in 3.1.

6.1 Notation

So that the chapter is standalone, we briefly review notation although it is the same as that in
Chapter 4. A latent tree model defines a joint probability distribution over a set of O observed
variables O = {X1, . . . ,XO} and a set of H hidden variables H = {XO+1, . . . ,XO+H}. The complete

84

B C

H

A

Figure 6.2: 4-node graphical model example

set of variables is denoted by X = O ∪H . We assume that all hidden variables have dimension
SH (the observed variables are continuous). The joint distribution of X in a latent tree model is
fully characterized by the following equation:

P(x1, . . . , xO+H) =
∏O+H

s=1
P(xs|xπ(s)). (6.1)

where Xπ(s) denotes the parent of Xs. For simplicity, assume that all leaves are observed variables
and all internal nodes are latent. For further notation, let Xs∗ be some observed node in the subtree
rooted at Xs. Let c j(s) denote the jth child of node Xs where Xs has αs children. For ease of exposition
we will assume that all internal nodes have exactly 3 neighbors and that all internal nodes are
latent while all leaf nodes are observed.

6.2 Kernel Density Estimation

To motivate our approach we first discuss how kernel density estimation(KDE) could be used to
tackle our problem. KDE is a nonparametric way of fitting the density of continuous random
variables with non-Gaussian statistical features such as multi-modality and skewness. Given a set

of N i.i.d. samples
{
(x(n)

1 , . . . , x(n)
O)

}N

i=1
from p(X1, . . . ,XO), KDE estimates the density via

P̂(x̄1, . . . , x̄O) ∝ br := EX1,...,XO

[∏O

j=1
k(x̄ j,X j)

]
≈

1
N

∑N

n=1

∏O

j=1
k(x̄ j, x

(n)
j) (6.2)

where k(x, x′) = 〈φx,φx′〉 is a kernel function and φx ∈ F where F is the underlying reproducing
kernel hilbert space (RKHS). A commonly used kernel function, which we will focus on, is the
Gaussian RBF kernel k(x, x′) = 1

√
2πσ

exp(−‖x − x′‖2/2σ2). However, traditional KDE cannot model
the underlying latent dependency structure among X1, ...,XO, and therefore scales poorly to beyond
a handful of variables due to the curse of dimensionality 1.

However, incorporating latent structure into KDE could greatly increase its statistical feasibility
in high dimensions. In the example in Figure 6.2 consider computing the marginal probability

1In particular the integrated square error of traditional KDE goes to zero at a rate of O(N
−4

4+O) (Casella and Berger,
2002)

85

P(A = ā,B = b̄,C = c̄):

P̂(ā, b̄, c̄) ∝ br := EA,B,C,H

[
k(ā,A)k(b̄,B)k(c̄,C)

]
= EH[EA,B,C|H[k(ā,A)k(b̄,B)k(c̄,C)]]
= EH[EA|H[k(ā,A)]EB|H[k(b̄,B)]EC|H[k(c̄,C)] (6.3)

where in the last line we have used the conditional independence implied by the graphical model
structure. For general latent tree models, this immediately suggests a message passing scheme to
compute the marginal probability of the evidence (x̄1, ..., x̄O) at the leaf nodes:

• A leaf node Xs passes the following message to its parent: ms(xπ(s)) = EXs|xπ(s)[k(x̄s,Xs)].

• An internal latent node Xs aggregates incoming messages from its two children and then
sends an outgoing message to its own parent ms(xπ(s)) = EXs|xπ(s)[mc1(s)(Xs)mc2(s)(Xs)].

• Finally, at the root node Xr, all incoming messages are multiplied together and the root
variable is integrated out br := EO∪H

[∏O
j=1 k(x̄ j,X j)

]
= EXr[mc1(r)(Xr)mc2(r)(Xr)mc3(r)(Xr)]

Unfortunately, under the conventional KDE formulation it is difficult to define or manipulate
these messages in practice. This motivates us to use Hilbert Space Embeddings, which provide us
with the representation power we need (Smola et al., 2007).

6.3 Connection to Hilbert Space Embeddings

Consider Eq. 6.2 again. Products of kernels are also kernels, which allow us to rewrite
∏O

j=1 k(x̄ j,X j)

as a single inner product
〈
⊗

O
j=1φ(x̄ j),⊗O

j=1φ(X j)
〉
. Here⊗O

j=1?denotes the tensor product of O feature

vectors which results in a rank-1 tensor of order O.

Now from the background in Chapter 2.3, CX1,...,XO := EO

[
⊗

O
j=1φ(X j)

]
is the cross-covariance

operator that serves as the Hilbert space embedding of distribution p(X1, ...,XO) with tensor features
⊗

O
j=1φ(X j). Moreover, br is simply evaluating this operator using φx̄1 , ...,φx̄O :

br := EX1,...,XO

[∏O

j=1
k(x̄ j,X j)

]
= CX1,..,XO ×1 φx̄1 ... ×O φx̄O (6.4)

Thus the message passing scheme in Section 6.2 also serves to evaluate the cross covariance
operator CX1,..,XO at a particular value. Furthermore, following Song et al. (2010c), we can recast
this message passing scheme in terms of (smaller) cross-covariance and conditional operators.
Define the following parameters for each node in the latent tree:

• root (Xr): Crrr := E[φr ⊗φr ⊗φr] (embedding of Xr into the RKHS F ⊗ F ⊗ F)

• internal node (Xs): Css|π(s) := Cssπ(s)C
−1
π(s)π(s) = E[φs ⊗φs ⊗φπ(s)]E[φπ(s) ⊗φπ(s)]−1 (conditional

embedding of Xs|Xπ(s) into the RKHS F ⊗ F ⊗ F)

86

• leaf (Xs): Cs|π(s) (standard conditional embedding of Xs|Xπ(s))

Then, we can reformulate the message passing scheme. First at the leaf:

ms(xπ(s)) = EXs|xπ(s)[k(x̄s,Xs)]

= EXs|xπ(s)[〈φx̄s ,φXs〉]

= 〈φx̄s ,EXs|xπ(s)[φXs]〉

= Cs|π(s) ×s φx̄s ×π(s) φxπ(s) (6.5)

where in the last line we have used Eq. 2.41. Thus, since ms(xπ(s)) = 〈ms(·),φxπ(s)〉via the reproducing
property, we can conclude that ms(·) = Cs|π(s) ×s φx̄s .

For the internal node,

ms(xπ(s)) = EXs|xπ(s)[mc1(s)(Xs)mc2(s)(Xs)]

= EXs|xπ(s)[〈mc1(s),φXs〉〈mc2(s),φXs〉]

= EXs|xπ(s)[φXs ⊗φXs] ×s mc1(s) ×s mc2(s)

= Css|π(s) ×s mc1(s) ×s mc2(s) ×π(s) φxπ(s) (6.6)

Thus, ms(·) = Css|π(s) ×s mc1(s) ×s mc2(s). Similarly for the root, we have that

br = Crrr ×r mc1(r) ×r mc2(r) ×r mc3(r) (6.7)

Note this shows how hilbert space embeddings enable us to factorize a kernel density estimate
according to a conditional independence structure analogous to conditional probability tables in
discrete graphical models.

6.4 Deriving the Spectral Algorithm

The drawback of the representations in (6.5), (6.6) and (6.7) is that they require exact knowledge of
conditional embedding operators associated with latent variables, but none of these are available in
training. Next we will show that we can still make use of the tensor decomposition representation
without the need for recovering the latent variables explicitly.

To derive our alternate factorization, we now insert invertible transformations F. At the root,

br = Crrr ×r I ×r mc1(s) ×r I ×r mc2(s) ×r I ×r mc3(s)

= Crrr ×r (Fc1(s) ×ωc1(s) F†c1(s)) ×r mc1(s) ×r (Fc2(s) ×ωc2(s) F†c2(s)) ×r mc2(s) ×r (Fc3(s) ×ωc3(s) F†c3(s)) ×r mc3(s)

= (Crrr ×r Fc1(s) ×r Fc2(s) ×r Fc3(s)) ×ωc1(s) (mc1(s) ×r F†c1(s)) ×ωc2(s) (mc2(s) ×r F†c2(s)) ×ωc3(s) (mc3(s) ×ωc3(s) F†c3(s))

87

This continues recursively e.g.

mc1 = Css|π(s) ×s (Fc1 ×ωc1
F†c1

) ×s mc1(s) ×s (Fc2 ×ωc2
F†c2

) ×s mc2(s)

= (Css|π(s) ×s Fc1(s) ×s Fc2(s))

×ωc1(s) (mc1(s) ×s F†c1(s)) ×ωc2(s) (mc2(s) ×s Fc2(s))†)

where ωc1(s), ωc2(s), ωc3(s) depend on the definition of F and will be defined in the section. This leads
to the transformed representation:

• root: R̃ = Crrr ×r Fc1(s) ×r Fc2(s) ×r Fc3(s)

• internal: T̃ s = Css|π(s) ×s Fc1(s) ×s Fc2(s) ×π(s) F†s

• leaf: L̃s = Cs|π(s) ×π(s) F†s

6.4.1 Observable Representation

Lemma 14. If we set Fs = U>Cs∗|π(s) where Us are the top left singular vectors of Cs∗,−s∗ and Us has mode
labels {s, ωs} then we have that

• R̃ = Cc1(s)∗c2(s)∗c3(s)∗ ×c1(s)∗ Uc1(s) ×c2(s)∗ Uc2(s) ×c3(s)∗ Uc3(s)

• T̃ s = Cc1(s)∗c2(s)∗−s∗ ×−s∗ (U>s Cs∗,−s∗)† ×c1(s)∗ Uc1(s) ×c2(s)∗ Uc2(s)

• L̃s = Cs,−s∗ ×−s∗ (U>s Cs,−s∗)† = Us

Proof. Root: We first prove that Crrr ×r Cc1(r)∗|r ×r Cc2(r)∗|r ×r Cc3(r)∗|r = Cc1(r)∗c2(r)∗c3(r)∗ : Consider any
f , g,h ∈ F . Then,

Crrr ×r Cc1(r)∗|r ×r Cc2(r)∗|r ×r Cc3(r)∗|r ×c3(r)∗ h ×c2(r)∗ g ×c1(r)∗ f

=
〈

f ⊗ g ⊗ h,Crrr ×r Cc1(r)∗|r ×r Cc2(r)∗|r ×r Cc3(r)∗|r

〉
= EXr

[〈
C
>

c1(r)∗|r f ,φ(Xr)
〉 〈
C
>

c2(r)∗|rg,φ(Xr)
〉 〈
C
>

c3(r)∗|rh,φ(Xr)
〉]

= EXr

[〈
f ,Cc1(r)∗|rφ(Xr)

〉 〈
g,Cc2(r)∗|rφ(Xr)

〉 〈
h,Cc3(r)∗|rφ(Xr)

〉]
= EXr

[
EXc1(r)∗ |Xr

[
f (Xc1(r)∗)

]
EXc2(r)∗ |Xr

[
g(Xc2(r)∗)

]
EXc3(r)∗ |Xr

[
h(Xc3(r)∗)

]]
= EXc1(r)∗ ,Xc2(r)∗ ,Xc3(r)∗

[
f (Xc1(r)∗)g(Xc2(r)∗)h(Xc3(r)∗)

]
=

〈
f ⊗ g ⊗ h,EXc1(r)∗ ,Xc2(r)∗ ,Xc3(r)∗

[
φ(Xc1(r)∗) ⊗φ(Xc2(r)∗) ⊗φ(Xc3(r)∗)

]〉
= Cc1(r)∗c2(r)∗c3(r)∗ ×c3(r)∗ h ×c2(r)∗ g ×c1(r)∗ f (6.8)

We can thus conclude that

R̃ = Cc1(s)∗c2(s)∗c3(s)∗ ×c1(s)∗ Uc1(s) ×c2(s)∗ Uc2(s) ×c3(s)∗ Uc3(s) (6.9)

88

Leaf: Consider expanding the related quantity L̃s(U>s Csπ(s)∗):

L̃s(U>s Csπ(s)∗) = Cs|π(s)(U>s Cs|π(s))
†(U>s Csπ(s)∗)

= Cs|π(s)(U>s Cs|π(s))
†(U>s Cs|π(s)Cπ(s)π(s)C

>

π(s)∗|π(s))

= Cs|π(s)Cπ(s)π(s)C
>

π(s)∗|π(s)

= Csπ(s)∗ (6.10)

where we have used the fact that Cs|π(s)Cπ(s)2C
>

π(s)∗|π(s) = Csπ(s)∗ (which is proved using the same
technique as used for the proof of the root).

This implies that L̃s = (Cπ(s)∗sUs)†Cπ(s)∗s = Us.

Intermediate Node: Consider expanding the quantity T̃ s ×ωs (Cπ(s)∗s∗Us):

T̃ s ×ωs (Cπ(s)∗s∗Us)

= Css|π(s) ×s U>c1(s)Cc1(s)∗|s ×s U>c2(s)Cc2(s)∗|s ×π(s) (C>s∗|π(s)Us)
†
×ωs (Cπ(s)∗s∗Us)

= Css|π(s) ×s Cc1(s)∗|s ×s Cc2(s)∗|s ×π(s) (Cπ(s)∗s∗Us)(C>s∗|π(s)Us)
†
×c1(s)∗ U>c1(s) ×c2(s)∗ U>c2(s)

= Css|π(s) ×s Cc1(s)∗|s ×s Cc2(s)∗|s ×π(s) (Cπ(s)∗|π(s)Cπ(s)π(s))(C>s∗|π(s)Us)(C>s∗|π(s)Us)
†
×c1(s)∗ U>c1(s) ×c2(s)∗ U>c2(s)

= Cc1(s)∗c2(s)∗π(s)∗ ×c1(s)∗ U>c1(s)∗ ×c2(s)∗ U>c2(s)∗ (6.11)

where in the last line we have claimed that Cc1(s)∗c2(s)∗π(s)∗ = Css|π(s) ×s Cc1(s)∗|s ×s Cc2(s)∗|s ×π(s)
Cπ(s)∗|π(s)Cπ(s)π(s). To prove this assertion, first consider the Css|π(s) ×s Cc1(s)∗|s ×s Cc2(s)∗|s part. For any
f , g ∈ F :

〈
f ⊗ g,Css|π(s) ×s Cc1(s)∗|s ×s Cc2(s)∗|s ×π(s) φ(xπ(s))

〉
=

〈
(C>c1(s)∗|s f) ⊗ (C>c2(s)∗|sg),Css|π(s) ×π(s) φ(xπ(s))

〉
=

〈
(C>c1(s)∗|s f) ⊗ (C>c2(s)∗|sg),EXs|xπ(s)

[
φ(Xs) ⊗φ(Xs)

]〉
= EXs|xπ(s)

[〈
(C>c1(s)∗|s f) ⊗ (C>c2(s)∗|sg),φ(Xs) ⊗φ(Xs)

〉]
= EXs|xπ(s)

[〈
f ,Cc1(s)∗|sφ(Xs)

〉 〈
g,Cc2(s)∗|sφ(Xs)

〉]
= EXs|xπ(s)

[
EXc1(s)∗ |Xs[f (Xc1(s)∗)]EXc2(s)∗ |Xs[g(Xc2(s)∗)]

]
= Ec1(s)∗,c2(s)∗|xπ(s)

[
f (Xc1(s)∗)g(Xc2(s)∗)

]
=

〈
f ⊗ g,Cc1(s)∗,c2(s)∗|π(s) ×π(s) φ(xπ(s))

〉
(6.12)

Thus, Cc1(s)∗c2(s)∗|π(s) = Css|π(s)×sCc1(s)∗∗|s×sCc2(s)∗|s. We can then conclude (using a similar derivation
to that for the root) that Cc1(s)∗,c2(s)∗,π(s)∗ = Cc1(s)∗∗c2(s)∗|π(s) ×π(s) Cπ(s)∗|π(s)Cπ(s)π(s). Thus,

Cc1(s)∗,c2(s)∗,π(s)∗ = Css|π(s) ×s Cc1(s)∗|s ×s Cc2(s)∗|s ×π(s) Cπ(s)∗|π(s)Cπ(s)π(s) (6.13)

89

Input: latent tree
topology, samples of
observed variables

Compute kernel and
approximate feature
map for each

Compute covariance
operators of certain
groups of observed
variables

Output: Estimate
observable
parameters based on
Alg 8

Use SVD to compute
for each from

pairwise covariance
operators

Figure 6.3: Flowchart that gives an overview of Algorithm 8

Now, returning to Eq. 6.11 we get that

T̃ s = Cc1(s)∗∗c2(s)∗π(s)∗ ×c1(s)∗ U>c1(s) ×c2(s)∗ U>c2(s) ×π(s)∗ (Cπ(s)∗s∗Us)† (6.14)

where one valid choice for s∗ is c1(s)∗. �

6.4.2 Training and Test

Empirically, during training, our method needs to compute estimates of the following cross-
covariance operators:

Ĉs,t,u =
1
N

N∑
n=1

φx(n)
s
⊗φx(n)

t
⊗φx(n)

u

Ĉs,t =
1
N

N∑
n=1

φx(n)
s
⊗φx(n)

t
(6.15)

Please see 2.3.5 for how to do this efficiently using incomplete cholesky decompositions.

The training and test algorithms are shown in Algorithms 8 and 9. A high level flowchart
of training is given in Figure 6.3. As one can see, although the derivation is different, the end
result is very similar to Algorithms 4 and Algorithms 5 in Chapter 4 (the only difference being the
probability tensors are replaced with hilbert space operators). Thus, spectral approaches elegantly
generalize to nonparametric settings unlike traditional nonconvex-optimization based methods.

6.5 Structure Learning of Latent Tree Graphical Models

The last section focused on parameter learning and inference where the structure of the latent
tree is known. In this section, we focus on learning the structure of the latent tree. Structure
learning of latent trees is a challenging problem that has largely been tackled by heuristics since
the search space of structures is intractable. The additional challenge in our case is that the observed
variables are continuous and non-Gaussian, which we are not aware of any existing methods for
this problem.

90

6.5.1 Kernel Tree Metric

We develop a distance based method for constructing latent trees of continuous, non-Gaussian
variables. The idea is that if we have a tree metric (distance) between distributions on observed
nodes, we can use the property of the tree metric to reconstruct the latent tree structure using algo-
rithms such as neighbor joining (Saitou and Nei, 1987) and the recursive grouping algorithm (Choi
et al., 2010). These methods take a distance matrix among all pairs of observed variables as input
and output a tree by iteratively adding hidden nodes. While these methods are iterative, they
have strong theoretical guarantees on structure recovery when the true distance matrix forms an
additive tree metric. However, most previously known tree metrics are defined for discrete and
Gaussian variables. The additional challenge in our case is that the observed variables are continu-
ous and non-Gaussian. We propose a tree metric below which works for continuous non-Gaussian
cases.

Algorithm 8 Kernel spectral learning algorithm for latent tree graphical model

In: Tree topology and N i.i.d. samples
{
x(n)

1 , . . . , x
(n)
O

}N

n=1

Out: Estimated observable root, internal, and leaf parameters, R̂, T̂ s for each non-root internal node, L̂s for each leaf
node
1: For each node Xs, compute the kernel matrix Ks where Ks(m,n) = 1

√
2πσ

exp(−‖x(m)
s − x(n)

s ‖
2/2σ2).

2: For each node Xs, recover the approximate feature map
{
φ̂x(1)

s
, ..., φ̂x(N)

s

}
via incomplete cholesky decomposition on

Ks.
3: Compute empirical estimates of covariance operators for all observed pairs and triples:

Ĉstu =
1
N

N∑
n=1

φ̂x(n)
s
⊗ φ̂x(n)

t
⊗ φ̂x(n)

u

Ĉst =
1
N

N∑
n=1

φ̂x(n)
s
⊗ φ̂x(n)

t
(6.16)

4: For each node Xs, perform a “thin” singular value decomposition of Cs∗−s∗ = UΣV>; let Ûi = U(:, 1 : SH) be the the
first SH principal left singular vectors.

5: Compute observable parameters as:̂̃
R = Ĉc1(s)∗c2(s)∗c3(s)∗ ×c1(s)∗ Ûc1(s) ×c2(s)∗ Ûc2(s) ×c3(s)∗ Ûc3(s)

T̂ s = Ĉc1(s)∗c2(s)∗−s∗ ×−s∗ (Û>s Ĉs∗ ,−s∗)† ×c1(s)∗ Ûc1(s) ×c2(s)∗ Ûc2(s)

L̂s = Ĉs,−s∗ ×−s∗ (Û>s Ĉs,−s∗)† = Ûs

Algorithm 9 Inference with Kernel Spectral Parameters

In: Tree topology, set of spectral parameters R̂, T̂ s for all non-root internal nodes, L̂s for all leaf nodes, evidence
{x̄1, ..., x̄O}, and associated feature functions {φ̂x̄1 ,, φ̂x̄O }

Out: estimated unnormalized probability br ∝ P̂(x̄1, ..., x̄O)

1: In reverse topological order, each node accumulates at message at leaf and sends to parent

• Leaf: m̂s = L̂s ×s φx̄s

• Internal Node: m̂s = T̂ s ×s m̂c1(s) ×s m̂c2(s)

• Root: br = R̂ ×i mc1(r) ×r m̂c2(r) ×r m̂c3(r)

91

Tree metric and pseudo-determinant We will first explain some basic concepts of a tree metric.
If the joint probability distribution P(X) has a latent tree structure, then a distance measure d(s, t)
between an arbitrary variables pairs Xs and Xt are called tree metric if it satisfies the following path
additive condition: d(s, t) =

∑
(u,v)∈Path(s,t) d(u, v). For discrete and Gaussian variables, tree metric

can be defined via the determinant | · | (Choi et al., 2010)

d(s, t) = − 1
2 log |P(Xs,Xt)P(Xs,Xt)>| + 1

4 log |P(�2Xs)P(�2Xs)>| + 1
4 log |P(�2Xt)P(�2Xt)>| (6.17)

However, this definition of tree metric is restricted in the sense that it requires all discrete variables
to have the same number of states and all Gaussian variables have the same dimension. This is
because determinant is only defined (and non-zero) for square and non-singular matrices. For our
more general scenario, where the observed variables are continuous non-Gaussian but the hidden
variables have dimension SH, we will define a tree metric based on pseudo-determinant which
works for our operators.

Nonparametric tree metric The pseudo-determinant is defined as the product of non-zero
singular values of an operator |C|? =

∏SH
i=1 σi(C). In our case, since we assume that the dimension

of the hidden variables is SH, the pseudo-determinant is simply the product of top SH singular
values. Then we define the distance metric between as two continuous non-Gaussian variables Xs
and Xt as follows:

d(s, t) = −1
2 log

∣∣∣CstC
>

st

∣∣∣
?

+ 1
4 log |CssC

>

ss|? + 1
4 log |CttC

>

tt |?. (6.18)

Lemma 15. The distance measure in Eq. 6.18 is an additive tree metric.

Proof. Here we just show why the lemma holds for the simple path s ← u → t where u is latent
and s and t are observed. The full proof is in the Appendix. Note that

Cst = Cs|uCuuC
>

t|u (6.19)

Thus,

CstC
>

st = Cs|uCuuC
>

t|uCt|uCuuC
>

s|u (6.20)

Combining this definition with Sylvester’s Determinant Theorem (Akritas et al., 1996), gives us
that:

|CstC
>

st |+ = |Cs|uCuuC
>

t|uCt|uCuuC
>

s|u|+

= |C>s|uCs|uCuuC
>

t|uCt|uCuu|+ (6.21)

(i.e. we can move C>s|u the to the front).

Now C>s|uCs|uCuuC
>

t|uCt|uCuu has rank SH so the pseudo-determinant equals the normal determi-
nant in this case. Using the fact that |AB| = |A||B| if A and B are square, we get

92

Input: samples of
observed variables

Compute kernel and
approximate feature
map for each 𝑿𝒔

Compute kernel
distance metric for
each observed pair

Output: Run neighbor
joining with distances
and return latent tree
structure

Figure 6.4: Flowchart that gives an overview of Algorithm 10

|CstC
>

st |+ = |C
>

s|uCs|uCuuC
>

t|uCt|uCuu|

= |C
>

s|uCs|uCuu||C
>

t|uCt|uCuu|

=
|Cuu||C

>

s|uCs|uCuu|

|Cuu|
×

|Cuu||C
>

t|uCt|uCuu|

|Cuu|

=
|CuuC

>

s|uCs|uCuu|

|Cuu|
×

|CuuC
>

t|uCt|uCuu|

|Cuu|
(6.22)

Furthermore, note that

|CuuC
>

s|uCs|uCuu| = |Cs|uCuuCuuC
>

s|u|+ = |CsuC
>

su|+ (6.23)

This gives,

|CstC
>

st |+ =
|CsuC

>

su|+

|Cuu|
×
|CtuC

>

tu|+

|Cuu|
(6.24)

Substituting back into Eq. (6.18) proves that

d(s, t) = −
1
2

log |CsuC
>

su|+ −
1
2

log |CutC
>

ut|+ +
1
2

log |CuuC
>

uu|+

+ 1
4 log |CssC

>

ss|+ + 1
4 log |CttC

>

tt |+

= d(s,u) + d(u, t) (6.25)

�

6.5.2 Structure learning algorithm

Our structure learning algorithm, shown in Algorithm 10 with a high level flowchart in Figure 6.4,
works by first computing a kernel and approximate feature map (via incomplete cholesky decom-
position) for each variable Xs. Then for each pair of variances (Xs,Xt), the empirical covariance
operators Ĉst, Ĉss, and Ĉtt are computed, and d(s, t) is computed using Eq. 6.18. The distances are
then used as input to the neighbor joining algorithm in Algorithm 11 described in the Appendix.

93

6.6 Experiments

We evaluate our method on synthetic data as well as a real-world crime/communities dataset
(Asuncion and Newman, 2007; Redmond and Baveja, 2002). We primarily compare to 2 existing
approaches. The first is to assume the data is multivariate Gaussian and use the tree metric
defined in Choi et al. (2010) (which is essentially a function of the correlation coefficient). The
second existing approach we compare to is the Nonparanormal (NPN) (Liu et al., 2009) which
assumes that there exist marginal transformations f1, . . . , fp such that f (X1), . . . , f (Xp) ∼ N(µ,Σ).
If the data comes from a Nonparanormal distribution, then the transformed data are assumed
to be multivariate Gaussian and the same tree metric as the Gaussian case can be used on the
transformed data. Our approach makes much fewer assumptions about the data than either of
these two methods which can be more favorable in practice.

To perform inference in our approach, we use the spectral algorithm described earlier in the
paper. For inference in the Gaussian (and nonparanormal) cases, we use the technique in Choi et al.
(2010) to learn the model parameters (covariance matrix). Once the covariance matrix has been
estimated, marginalization in a Gaussian graphical model reduces to solving a linear equation of
one variable if we are only computing the marginal of one variable given a set of evidence (Bickson,
2008).

6.6.1 Synthetic data: density estimation

Before moving on to larger experiments, we first show that our model assumptions can result in
more accurate density estimation of non-Gaussian distributions. The underlying data is generated
as a two dimensional mixture of exponentials:

P(x1, x2) ∝ exp(‖x1 − µ1‖ + ‖x2 − µ2‖) + exp(‖x1 + µ1‖ + ‖x2 + µ2‖) (6.26)

Note that the first component has mean (µ1, µ2) while the second component has mean (−µ1,−µ2).
We experiment with the different values (µ1, µ2) = (2, 2), (µ1, µ2) = (4, 4), and (µ1, µ2) = (6, 6). For
all methods we evaluate the density on a grid G of evenly spaced points in [−2µ1, 2µ1]×[−2µ2, 2µ2].

Algorithm 10 Kernel structure learning algorithm for latent tree graphical model

In: N i.i.d. samples
{
x(n)

1 , . . . , x
(n)
O

}N

n=1
Out: estimated tree topology T

1: For each node Xs, compute the kernel matrix Ks where Ks(m,n) = 1
√

2πσ
exp(−‖x(m)

s − x(n)
s ‖

2/2σ2).

2: For each node Xs, recover the approximate feature map
{
φ̂x(1)

s
, ..., φ̂x(N)

s

}
via incomplete cholesky decomposition on

Ks.
3: for each (Xs,Xt) s.t. 1 ≤ s, t ≤ O and s , t do
4: Compute Ĉst = 1

N

∑N
n=1 φ̂x(n)

s
⊗ φ̂x(n)

t

5: Compute Ĉss = 1
N

∑N
n=1 φ̂x(n)

s
⊗ φ̂x(n)

s

6: Compute Ĉtt = 1
N

∑N
n=1 φ̂x(n)

t
⊗ φ̂x(n)

t
7: Compute d(s, t) according to Eq. 6.18
8: end for
9: Call Neighbor Joining (Algorithm 11) with distances d(s, t) and return resulting tree T

94

0.1 0.2 0.3 0.4 0.5 0.6
0.04
0.05

0.1

Training Sample Size (x10
3
)

E
rr

o
r

Gaussian

Discrete

Gaussian−Mixture
Kernel

0.1 0.2 0.3 0.4 0.5 0.6
0.02

0.03

0.04

0.05

Training Sample Size (x10
3
)

E
rr

o
r

Gaussian−Mixture

Kernel

Discrete

Gaussian

0.1 0.2 0.3 0.4 0.5 0.6
0.01

0.02

0.03

0.04

Training Sample Size (x10
3
)

E
rr

o
r

Gaussian

Discrete

Gaussian−Mixture
Kernel

(a) (µ1, µ2) = (2, 2) (b) (µ1, µ2) = (4, 4) (c) (µ1, µ2) = (6, 6)

Figure 6.5: Density estimation of 2-dimensional mixture of laplace distributions.

The total error is measured as: err =

√∑
(x1,x2)∈G ‖P(x1, x2) − P̂(x1, x2)‖

2
.

Figure 6.5, shows the results where we compare our approach with the Gaussian and Gaussian
mixture distributions as well as a histogram-based approach (called “Discrete”). As expected, the
problem is more difficult when the components are closer together. Our method performs the best
for all the cases.

6.6.2 Synthetic data: structure recovery.

The second experiment is to demonstrate how our method compares to the Gaussian and Non-
paranormal methods in terms of structure recovery for larger trees. We experiment with 3 different
tree types (each with 64 leaves or observed variables): a balanced binary tree, a completely binary
skewed tree (like an HMM), and randomly generated binary trees. Furthermore we explore with
two types of underlying distributions: (1) A multivariate Gaussian with mean zero and inverse
covariance matrix that respects the tree structure. (2) A highly non-Gaussian distribution that uses
the following generative process to generate the n-th sample from a node s in the tree (denoted
x(n)

s): If s is the root, sample from a mixture of 2 Gaussians. Else, with probability 1
2 sample from a

Gaussian with mean −x(n)
πs and with probability 1

2 sample from a Gaussian with mean x(n)
πs .

We vary the training sample size from 200 to 100,000. Once we have computed the empirical
tree distance matrix for each algorithm, we use the neighbor joining algorithm (Saitou and Nei,
1987) to learn the trees. For evaluation we compare the number of hops between each pair of
leaves in the true tree to the estimated tree. For a pair of leaves i, j the error is defined as:

error(i, j) =
|hops∗(i, j)−ĥops(i, j)|

hops∗(i, j) +
|hops∗(i, j)−ĥops(i, j)|

ĥops(i, j)
, where hops∗ is the true number of hops and ĥops is the

estimated number of hops. The total error is then computed by adding the error for each pair of
leaves.

The performance of our method depends on the number of singular values chosen and we
experimented with 2, 5 and 8 singular values. Furthermore, we choose the bandwidth σ for the
Gaussian RBF kernel needed for the covariance operators using median distance between pairs of
training points.

95

0.2 0.5 1 2 5 10 20 50 100
0

5

10

Training Sample Size (x103)

E
rr

or

Kernel−8
Kernel−5

Kernel−2

NPN
Gaussian

0.2 0.5 1 2 5 10 20 50 100

50

100

Training Sample Size (x103)

E
rr

or

Gaussian
NPN

Kernel−2

Kernel−8
Kernel−5

0.2 0.5 1 2 5 10 20 50 100
0

5

10

20

Training Sample Size (x103)

E
rr

or

NPN

Gaussian

Kernel−8
Kernel−5

Kernel−2

(a) balanced binary tree (b) skewed HMM-like tree (c) random trees

0.2 0.5 1 2 5 10 20 50 100
0

20

40

60

80

Training Sample Size (x103)

E
rr

or Kernel−8
Kernel−5

Kernel−2

NPNGaussian

0.2 0.5 1 2 5 10 20 50 100

50

100

150

Training Sample Size (x103)

E
rr

or

Kernel−8
Kernel−5

NPNGaussian

Kernel−2

0.2 0.5 1 2 5 10 20 50 100

20

40

60

80

Training Sample Size (x103)

E
rr

or

NPN Gaussian

Kernel−8 Kernel−5
Kernel−2

Figure 6.6: Comparison of our kernel structure learning method to the Gaussian and Nonpara-
normal methods on different tree structures. Top row: data points are generated from Gaussian
distributions with latent variables connected by a tree structure. Bottom row: data points are
generated from mixture of Gaussian distributions with latent variables connected by a tree struc-
ture. Especially in the latter case, our kernel structure learning method is able to adapt the data
distributions and recover the structure in a much more accurate way.

When the underlying distribution is not Gaussian, our method performs better than the Gaussian
and Nonparanormal methods for all the tree structures. This is to be expected, since the non-
Gaussian data we generated is neither Gaussian or Nonparanormal, yet our method is able to
learn the structure correctly. We also note that balanced binary trees are the easiest to learn while
the skewed trees are the hardest (Figure 6.6).

Even when the underlying distribution is Gaussian, our method still performs very well com-
pared to the Gaussian and NPN approaches and outperforms them for the binary and balanced
trees. It performs worse for the skewed case likely due to the fact that the eigenvalues (dependence)
decay along the length of the tree leading to larger errors in the empirical distance matrix.

Although it would be interesting to compare to the pouch latent tree model (Poon et al., 2010),
their model assumes multiple observed variables can exist in the same leaf of the latent tree (unlike
our approach) which makes a direct structure comparison difficult.

6.6.3 Crime Dataset.

Finally, we explore the performance of our method on a communities and crime dataset from the
UCI repository (Asuncion and Newman, 2007; Redmond and Baveja, 2002). In this dataset several

96

real valued attributes are collected for several communities, such as ethnicity proportions, income,
poverty rate, divorce rate etc., and the goal is to predict the number of violent crimes (proportional
to size of community) that occur based on these attributes. In general these attributes are highly
skewed and therefore not well characterized by a Gaussian model.

We divide the data into 1400 samples for training, 300 samples for model selection (held-
out likelihood), and 300 samples for testing. We pick the first 50 of these attributes, plus the
violent crime variable and construct a latent tree using our tree metric and neighbor joining
algorithm (Saitou and Nei, 1987). We depict the tree in Figure 6.7 and highlight a few coherent
groupings. For example, the “elderly” group attributes are those related to retirement and social
security (and thus correlated). The large clustering in the center is where the class variable (violent
crimes) is located next to the poverty rate, and the divorce rate among other relevant variables.
Other groupings include type of occupation and education level as well as ethnic proportions.
Thus, overall our method is able to capture sensible relationships.

For a more quantitative evaluation, we condition on a set of E evidence variables where |E| = 30
and predict the violent crimes class label. We experiment with a varying number of sizes of the
training set from 200 to 1400. At test, we evaluate on all the 300 test examples for 10 randomly
chosen evidence sets of evidence variables. Since the crime variable is a number between 0 and 1,
our error measure is simply err(̂c) = |̂c− c∗| (where ĉ is the predicted value and c∗ is the true value).

In this experiment, in addition to comparing with the Gaussian and the Nonparanormal, we also
compare with two standard classifiers, (Gaussian) Naive Bayes and Linear Regression. Although
Naive Bayes can easily handle missing values, linear regression cannot. To deal with this problem,
we simply use the mean value of a variable if it is not in E (this performed much better than setting
it to zero).

As one can see in Figure 6.7 our method outperforms all the other approaches. We find that
our method performs similarly for different choices of E. Moreover, the accuracy of the Gaussian
and nonparanormal vary widely for different evidence sets (and thus the more erratic overall
performance). Thus, in this case our method is better able to capture the skewed distributions of
the variables than the other methods.

6.7 Conclusion

We present a distribution embedding framework for nonparametric latent tree graphical models.
Our approach be used to recover the latent tree structures, and perform local-mininum-free spectral
learning and inference for continuous and non-Gaussian variables. Both simulation and results
on real datasets show the advantage of our proposed approach for non-Gaussian data.

97

elderly

Urban/rural

Education/job

Divorce/crime/poverty

race

200 400 600 800 100012001400

0.15

0.2

0.25

training size

E
rr

or

Kernel

Gaussian

NPN

Linear−Reg

NBayes

(a) (b)
Figure 6.7: (a) visualization of kernel latent tree learned from crime data (b) Comparison of our
method to Gaussian and NPN in predictive task.

6.8 Appendix

6.8.1 Proof of Lemma 15

Proof. For conciseness, we simply prove the property for paths of length 2. The proof for more
general cases follows similarly (e.g. see (Anandkumar et al., 2011)). For paths of length 2, s− u− t,
there are three cases2:

• s← u→ t

• s← u← t

• s→ u→ t

Case 1 was already shown in the main text so we just show Cases 2 and 3 here.

Case 2: s← u← t Since only leaf nodes can be observed,u and t must be latent but s can be either
observed or latent. We assume it is observed, the latent case follows similarly.

Using the conditional independence relationship,

Cst = Cs|uCu|tCtt (6.27)

2although the additive distance metric is undirected, the conditional embedding operators are defined with respect
to parent-child relationships, so we must consider direction

98

Thus, via Sylvester’s Determinant Theorem (Akritas et al., 1996) as before,

|CstC
>

st |+ = |Cs|uCu|tCttCttC
>

u|tC
>

s|u|+

= |C
>

s|uCs|uCu|tCttCttC
>

u|t|+ (6.28)

Now C>s|uCs|uCu|tCttCttC
>

u|t has rank SH, the pseudo-determinant equals the normal determinant
in this case. Using the fact that |AB| = |A||B| if A and B are square, we get

|CstC
>

st |+ = |C
>

s|uCs|uCu|tCttCttC
>

u|t|

= |C
>

s|uCs|u||Cu|tCttCttC
>

u|t|

= |C
>

s|uCs|u||CutC
>

ut|

=
|Cuu||C

>

s|uCs|u||Cuu|

|Cuu||Cuu|
× |CutC

>

ut|

=
|CuuC

>

s|uCs|uCuu|

|Cuu||Cuu|
× |CutC

>

ut| (6.29)

Furthermore, note that

|CuuC
>

s|uCs|uCuu| = |Cs|uCuuCuuC
>

s|u|+ = |CsuC
>

su|+ (6.30)

This gives,

|CstC
>

st |+ =
|CsuC

>

su|+

|Cuu||Cuu|
× |CutC

>

ut|+ (6.31)

Substituting back into Eq. (6.18) proves that

d(s, t) = −
1
2

log |CsuC
>

su|+ −
1
2

log |CutC
>

ut|+ +
1
2

log |CuuC
>

uu|+ + 1
4 log |CssC

>

ss|+ + 1
4 log |CttC

>

tt |+

= d(s,u) + d(u, t) (6.32)

Case 3: s→ u→ t The same argument as case 2 holds here.

�

6.8.2 Neighbor Joining Algorithm

Neighbor joining (Saitou and Nei, 1987) is a distance based algorithm that given a distance matrix
among pairs of observed (leaf) nodes, returns a binary latent tree. Although it is greedy, if the dis-
tance matrix satisfies the tree additivity property, neighbor joining is provably consistent (Atteson,

99

Algorithm 11 Neighbor Joining Algorithm (Saitou and Nei, 1987)

Input: Pairwise distances d(s, t) between observed variables in O
Output: Latent tree structure T = (V,E)

Initialize the latent tree structure: W = {1, ...,O} ,E = ∅
Define a working set: W = {1, ...,O}
u = |O | + 1
while |W| ≥ 2 do

Create Q matrix according to Eq. 6.33
(f ∗, g∗) = argmin(f ,g)∈W, f,g Q(f , g)
Create a new node with index u to join node f ∗ and g∗

Update distances to the new node u according to Eqs. 6.36
W←W\ { f ∗, g∗} ∪ {u}
V ← V ∪ {u}
E ← E ∪

{
(u, f ∗), (u, g∗)

}
u← u + 1

end while

1997). We describe it below3:

Let W be the active working set. Initially W = {X1, ...,XO}. To decide which two nodes to
merge, neighbor joining creates a Q matrix defined as follows:

Q(i, j) = (|W| − 2)d(i, j) −
∑
k∈W

d(i, k) −
∑
k∈W

d(j, k) (6.33)

It then selects the pair of nodes f ∗, g∗ such that Q(f ∗, g∗) is the lowest.

If f ∗ and g∗ are joined to a parent u, compute the distances to u as follows.

d(f ∗,u) =
1
2

d(f ∗, g∗) +
1

2(|W| − 2)

∑
k∈W

d(f ∗, k) −
∑
k∈W

d(g∗, k)

 (6.34)

d(g∗,u) = d(f ∗, g∗) − d(f ∗,u) (6.35)

d(k,u) =
1
2

[d(f ∗, k) + d(g∗, k) − d(f ∗, g∗)] ∀k ∈ W \ { f ∗, g∗} (6.36)

After these distances are computed, f ∗ and g∗ are merged into a node u. f ∗, g∗ are removed from
W and u is added toW. Q is then recomputed and the algorithm picks another pair of nodes to
merge until the tree is complete. The algorithm is shown in Algorithm 11.

3We follow the exposition in http://en.wikipedia.org/wiki/Neighbor joining

100

Chapter 7

Alternative Spectral Representation of
Latent Tree Graphical Models

The spectral representation that we presented in Chapter 4 is not suitable for trees where certain
nodes have large numbers of children, because the order of the parameter tensor required is equal
to the degree of the associated node. This limits the applicability of this method in practice, a
problem that conventional learning methods such as Expectation Maximization (EM) (Dempster
et al., 1977) do not face.

Moreover, Mossel and Roch (Mossel and Roch, 2006) also proposed a spectral algorithm for
latent variable models which applies to arbitrary tree topologies and only requires tensors of
order 3. While they made very restrictive assumptions, and their method does not perform well
empirically, it still hints that a more efficient observable representation may be possible.

Contribution of this chapter: We derive an alternate spectral learning algorithm for latent
tree graphical models that only requires tensors of order 3 regardless of the topology of the tree.
Key to our derivation is the use of an alternate representation for tensor message passing that
is more compact. Sample complexity results are provided and empirically we show that this
new representation performs favorably than the representation in Chapter 4, especially for trees
with larger degree. We also compare with the algorithm of Mossel and Roch (2006) showing our
method gives considerably more stable results across a variety of tree topologies. Unfortunately,
this representation doesn’t extend easily to junction trees or kernel embeddings in Chapters 5
and 6.

Outline: We first provide an example for intuition and then derive the spectral algorithm by
representing message passing in a compact tensor form, followed by transforming this representa-
tion into one that only depends on observed variables. Finally, we analyze the sample complexity
of our method and compare it empirically to the spectral algorithm derived in Chapter 4 and that
of Mossel and Roch (2006).

Prerequisites: This chapter assumes a general understanding of latent variable models as
presented in 2.2, the connection between latent variable models and low rank factorization in
Chapter 3, and the tensor notation in 3.1. It is also recommended to read Chapter 4 first.

101

7.1 Intuition

X1

X4

X5

X2

X3

H

Figure 7.1: Example latent variable model

We first present a small example for intuition. Consider the graphical model in Figure 7.1. The
original spectral algorithm in Chapter 4 first proposes the following factorization of the marginal
probability tensor P(X1,X2,X3,X4,X5):

P(X1,X2,X3,X4,X5) = P(�5H) ×H P(X1|H) ×H P(X2|H) ×H P(X3|H) ×H P(X4|H) ×H P(X5|H)

Although P(�5H) is a fifth order tensor, it is diagonal, and therefore very compact. However, the
observable representation is:

P(X1,X2,X3,X4,X5) = P(X1,X2,X3,X4,X5) ×X1 UT
1 ×X2 UT

2 ×X3 UT
3 ×X4 UT

4 ×X5 UT
5

Now the fifth order tensor is fully dense, which is the central cause of the parameter explosion in
the original spectral algorithm.

Let us consider an alternate factorization of the marginal probability tensor. Associate the
conditional probability table of each child Xi with the 3rd order labeled tensorP(Xi| �2 H). Instead
of directly multiplying each of these tensors with the root tensor that is a function of H, we will
instead first agglomerate them:

P(X1,X2,X3,X4,X5| �2 H) = P(X1| �2 H) ×H P(X2| �2 H) ×H P(X3| �2 H) ×H P(X4| �2 H) ×H P(X5| �2 H)
(7.1)

The �2H prevents H from being marginalized out while the tensors are multiplied. We then let the
root be associated with a vector P(H) and recover the marginal probability tensor as follows :

P(H) ×H (P(X1,X2,X3,X4,X5| �2 H) ×H 1) (7.2)

This gives us the following tensor representation for the graphical model in Figure 7.1.

P(X1,X2,X3,X4,X5) = P(H) ×H
(
P(X1| �2 H) ×H P(X2| �2 H)

×H P(X3| �2 H) ×H P(X4| �2 H)

×H P(X5| �2 H) ×H 1
)

(7.3)

Note that the maximum tensor order of the right hand side is 3 since P(H) is a vector. Moreover,
in the following sections we will demonstrate that it is possible to transform this representation so
that it only depends on observed variables.

102

Notation Definition Example(from Figure 7.3)
Xi∗ some observed node in subtree rooted at Xi X∗B = E, X∗E = E
Ti set of observed nodes in subtree rooted at Xi TB = {E,F}, TE = {E}

Xρ(i) right sibling of Xi (cyclic) Xρ(B) = C, Xρ(C) = D, Xρ(D) = B
Xλ(i) left sibling of Xi (cyclic)1 Xλ(B) = D, Xλ(C) = B, Xλ(D) = C

Figure 7.2: Notation for this chapter

7.2 Notation

G H

C

I J

D

E F

B

A

Figure 7.3: Latent tree model with six observed nodes

Before proceeding to present the spectral algorithm, we briefly discuss notation. A latent tree
model defines a joint probability distribution over a set of O observed variables O = {X1, . . . ,XO}

and a set of H hidden variables H = {XO+1, . . . ,XO+H}. The complete set of variables is denoted
by X = O ∪H . For simplicity, we assume that all hidden variables have SH states and observed
variables have SO states. The joint distribution of X in a latent tree model is fully characterized
by the following equation:

P(x1, . . . , xO+H) =
∏O+H

i=1
P(xi|xπ(i)). (7.4)

where Xπ(i) denotes the parent of Xi. For simplicity, assume that all leaves are observed variables
and all internal nodes are latent. For further notation, let Xi∗ be some observed node in the subtree
rooted at Xi. Let c j(i) denote the jth child of node Xi where Xi has αi children. For ease of exposition
we will assume that all internal nodes have exactly 3 neighbors.

Furthermore, let X∗i denote some observed node in the subtree rooted at Xi and Ti denote the
set of all observed nodes in the subtree rooted at Xi. Let λ(i) be the left sibling of Xi and ρ(i) be
the right sibling of Xi where the order is cyclic. If Xi only has two children than it can pretend its
”uncle” is its left sibling (e.g. set λ(i) to a sibling of Xπ(i)). A summary of notation is provided in
Table 7.2.

7.3 Derivation of Alternate Spectral Algorithm

Our spectral derivation has three main components. First we show how the marginal probability
tensorP(X1, . . . ,XO) can be factorized into a collection of lower order tensors where the maximum

1if Xi only has one sibling then set to sibling of Xπ(i)

103

tensor order is 3 regardless of the tree topology. This can be shown to be equivalent to a tensor
message passing scheme. Secondly, we transform this representation by inserting the invertible
transformations F and F−1 to define an alternate low rank factorization that still returns the same
probability. Finally, we choose F carefully so that the factors in the transformed representation
only depend on observed variables. Figure 7.3 is used as a running example.

7.3.1 Factorizing the Marginal Probability Tensor

In this representation, we associate the root node Xr with the marginal probability (labeled) vector
P(Xr) and non root nodes with third order labeled tensorsP(Xi| �2 Xπ(i)). Consider Figure 7.3. We
have that

P(E,F,G,H, I, J) = P(A) ×A (P(E,F| �2 A) ×A P(G,H| �2 A) ×A P(I, J| �2 A) ×A 1)

Decomposing recursively gives

P(E,F| �2 A) = P(B| �2 A) ×B (P(E| �2 B) ×B P(F| �2 B) ×B 1)

P(G,H| �2 C) = P(C| �2 A) ×C (P(G| �2 C) ×C P(H| �2 C) ×C 1)

P(I, J| �2 |D) = P(D| �2 A) ×D (P(I| �2 D) ×B P(J| �2 D) ×D 1) (7.5)

7.3.2 Tensor Message Passing

As in Chapter 4, the recursive factorization procedure described above can be expressed as message
passing, a form that will more be notationally convenient for our subsequent derivation. Instead
of attempting to reconstruct the entire marginal probability tensor let us simply focus on a single
element of this tensor (e.g. P(ē, f̄ , ḡ, ~, ī, j̄)). We will associate each leaf with the labeled tensor
Li = P(Xi| �2 Xπ(i)). Then, the message that the leaf passes to its parent is:

Mi = Li ×i δx̄i (7.6)

Example: ME = P(ē| �2 B) = P(E| �2 B) ×E δē

The internal node, associated with the labeled tensor T i = P(Xi| �2 Xπ(i)) agglomerates the
messages from its children and passes the resulting (diagonal) matrix to its parent (where 1i is a
SH dimensional vector of ones):

Mi = T i ×i

(
Mc1(i)Mc2(i)1i

)
(7.7)

Example: MB = P(ē, f̄ | �2 A) = P(B| �2 A) ×B (MEMF1B)

Finally the root parameter is represented as a labeled vector: r := P(Xr). Combining this with
the messages from the children gives the probability estimate:

P(x̄1,, x̄O) = r>
(
Mc1(r)Mc2(r)Mc3(r)1r

)
(7.8)

Example: P(ē, f̄ , ḡ, ~, ī, j̄) = r>MBMCMD1.

104

Note that unlike the tensor representation in Chapter 4, the message now takes the form of
a matrix Mi instead of a vector mi. Furthermore, the 1i is needed unlike in the original tensor
representation.

7.3.3 Transformed Representation

Next, as in Chapter 4, note we do not need to recover the tensor representation explicitly if our
focus is to perform inference using the message passing algorithm as in (7.6)–(7.8). As long as we
can recover the tensor representation up to some invertible transformation, we can still obtain the
correct marginal probability P(x̄1,, x̄O).

More specifically, we can insert a identity matrix I into the message update equation in (7.8)
without changing the final probability.

P(ē, f̄ , ḡ, ~, ī, j̄) = r>MBMCMD1A

= r> × I ×MB × I ×MC × I ×MD × I × 1

where I is the SH × SH identity matrix.

Subsequently, we can then replace this matrix with a pair of matrices F and F−1, that are inverses
of each other, and then regroup the terms:

P(ē, f̄ , ḡ, ~, ī, j̄) = r>FA,E ×ωA

(
(F−1

A,B ×MB × FA,C) × (F−1
A,CMCFA,D) × (F−1

A,DMDFA,B) × (F−1
A,B1A)

)
(7.9)

where ωA is a mode label that will be defined in the next section since it depends on the definition
of F. These process proceeds recursively e.g.

MB = P(B| �2 A) ×B FB,E ×ωB

(
(F−1

B,EMEFB,F) × (F−1
B,FMFFB,E) × (F−1

B,E1B)
)

In general, we can define the following transformed tensor representation:

• root: F>i,c1(i)r

• internal: T̃ i = T i ×i Fi,c1(i) ×π(i) F−1
π(i),i ×π(i) Fπ(i),ρ(i)

• leaf: L̃i = Li ×π(i) F−1
π(i),i ×π(i) Fπ(i),ρ(i)

• one: 1̃i = F−1
i,c1(i)1i

7.4 Observable Representation

We now derive the observable representation by choosing F and F−1 systematically, so that we
can recover each transformed parameter using the marginal probability of a small set of observed
variables. This is summarized by the lemma below:

Lemma 16. Define Fi, j = P(X j∗ |Xi)> with mode labels {Xi, ωi := X j∗}.

105

• root: r̃ = P(Xc1(r)∗)

• internal: T̃ i = P(Xc1(i)∗ ,Xλ(i)∗ ,Xρ(i)∗) ×λ(i)∗ P(Xi∗ ,Xλ(i)∗)−1

• leaf: L̃i = P(Xi,Xλ(i)∗ ,Xρ(i)∗) ×λ(i)∗ P(Xi,Xλ(i)∗)−1

• one: 1̃ = P(Xλ(c1(i))∗ ,Xc1(i)∗)−1P(Xλ(c1(i))∗)

Proof. The derivation for the root is straightforward:

r̃ = P(Xi) ×i Fi,c1(r) = P(Xi) ×i P(Xc1(r)∗ |Xi) = P(Xc1(r)∗)

Example (Figure 7.3): X∗c1(r) ∈ {E,F} so one possibility is r̃ = P(E).

For the internal node, first consider the quantity, P(Xi∗ ,Xλ(i)∗). This can be expanded into,

P(Xi∗ ,Xλ(i)∗) = P(X∗i |Xπ(i))P(�2Xπ(i))P(Xλ(i)∗ |Xπ(i))> (7.10)

Combining this with the definition of T̃ i gives

T̃ i ×λ(i)∗ P(Xi∗ ,Xλ(i)∗)

= T̃ i ×λ(i)∗
(
P(Xi∗ |Xπ(i))P(�2Xπ(i))P(Xλ(i)∗ |Xπ(i))>

)
= P(Xi| �2 Xπ(i)) ×i P(Xc1(i)∗ |Xi) ×π(i) P(Xρ(i)∗ |Xπ(i)) ×Xπ(i)

(
P(�2Xπ(i))P(Xλ(i)∗ |Xπ(i))>

)
= P(Xc1(i)∗ ,Xρ(i)∗ ,Xλ(i)∗) (7.11)

We can thus conclude that

T̃ i = P(Xc1(i)∗ ,Xρ(i)∗ ,Xλ(i)∗) ×λ(i)∗ P(Xi∗ ,Xλ(i)∗)−1 (7.12)

Example (Figure 7.3): For the internal node B, we can set X∗i = Xc1(i)∗ ∈ {E,F}, Xρ(i)∗ = {G,H},
Xλ(i)∗ = {I, J}. This would give T̃ i = P(E,G, I) ×λ(i)∗ P(E, I)−1.

The leaf is just a special case of the internal node. For the 1̃i term, multiply byP(Xc1(i)∗ ,Xλ(c1(i))∗):

1̃>i P(Xc1(i)∗ ,Xλ(c1(i))∗) = 1̃>i
(
P(Xc1(i)∗ |Xi)P(�2Xi)P(Xλ(c1(i))∗ |Xi)>

)
= 1>

(
P(�2Xi)P(Xλ(c1(i))∗ |Xi)>

)
= P(Xλ(c1(i))∗)(>) (7.13)

leading us to conclude that

1̃ = P(Xλ(c1(i))∗ ,Xc1(i)∗)−1
P(Xλ(c1(i))∗) (7.14)

Example (Figure 7.3): For 1̃A, Xc1(i)∗ ∈ {E,F}, Xλ(c1(i))∗ ∈ {I, J}, so 1̃ = P(I,E)−1P(I). �

Algorithm 12 shows the algorithm for training for the example in Figure 7.3 when SH = SO.

Akin to the algorithm in Chapter 4, if SO > SH then Fi, j = U>j P(X j∗ |Xi) instead of Fi, j = P(X j∗ |Xi)

106

Input: latent tree
topology, samples of
observed variables

Compute certain
probability tensors of
groups of 1-3
observed variables

Use SVD to compute
𝑼𝒊 for each 𝑿𝒊 from
pairwise probability
matrices

Output: Estimate
observable
parameters based on
Alg 13

Figure 7.4: Flowchart that gives an overview of Algorithm 13

where U j is set to the top SH left singular vectors ofP(X j∗ ,Xλ(j)∗). The more general algorithms for
training and testing are given in Algorithms 13 and 14. Figure 7.4 gives a high level flowchart for
the general training procedure.

7.5 Sample Complexity

We analyze the sample complexity of Algorithm 13 and find that it depends on the tree topology
and the spectral properties of the true model. See the Appendix for a proof.

Algorithm 12 Spectral learning algorithm for example in Figure 7.3 when SH = SO

In: Tree topology and N i.i.d. samples of E, F, G, H, I, J
Out: Estimated observable root, internal, leaf, and 1 parameters, R̂A, T̂ B, T̂ C, T̂ D, L̂E, L̂F, L̂G, L̂H, L̂I, L̂J, 1̂A, 1̂B, 1̂C, 1̂D

1: Compute the following probability tensors:

P̂(E), P̂(G), P̂(I),
P̂(E, I,G), P̂(G,E, I), P̂(I,G,E), P̂(E,G,F), P̂(G, I,H), P̂(I,E, J),
P̂(E, I), P̂(E,G), P̂(I,G),

P̂(F,G), P̂(H, I), P̂(J,E)
2: Compute observable parameters as:

R̂A = P̂(E)

T̂ B = P̂(E, I,G) ×I (P̂(E, I))−1

T̂ C = P̂(G,E, I) ×E (P̂(G,E))−1

T̂ D = P̂(I,G,E) ×G (P̂(I,G))−1

L̂E = P̂(E,G,F) ×G (P̂(E,G))−1

L̂F = P̂(F,G,E) ×G (P̂(F,G))−1

L̂G = P̂(G, I,H) ×I (P̂(G, I))−1

L̂H = P̂(H, I,G) ×I (P̂(H, I))−1

L̂I = P̂(I,E, J) ×E (P̂(I,E))−1

L̂J = P̂(J,E, I) ×E (P̂(J,E))−1

1̂A = (P̂(I,E))−1
P(I)

1̂B = (P̂(G,E))−1
P(G)

1̂C = (P̂(I,G))−1
P(I)

1̂D = (P̂(E, I))−1
P(E)

107

Algorithm 13 Alternate spectral learning algorithm for latent tree graphical model

In: Tree topology and N i.i.d. samples
{
x(1)

1 , . . . , x
(n)
O

}N

n=1

Out: Estimated observable parameters r̂ for root, T̂ i for each non-root internal node, L̂i for each leaf, 1̂i for each
internal node

1: For each node X j, perform a “thin” singular value decomposition of P̂(X∗j,Xλ(j)∗) = UΣV>; let Û j = U(:, 1 : SH) be
the the first SH principal left singular vectors.

2: Estimate r̃, and each T̃ i, L̂i, 1̃i via

r̂ = Û>r P̂(Xc1(r)∗) (7.15)

T̂ i = P̂(Xc1(i)∗ ,Xλ(i)∗ ,Xρ(i)∗) ×λ(i)∗
(
Û>i P̂(Xi∗ ,Xλ(i)∗)

)†
×c1(i)∗ Ûc1(i) ×ρ(i)∗ Ûρ(i) (7.16)

L̂i = P̂(Xi,Xλ(i)∗ ,Xρ(i)∗) ×λ(i)∗
(
Û>i P̂(Xi∗ ,Xλ(i)∗)

)†
×ρ(i)∗ Ûρ(i) (7.17)

1̂i =
(
P̂(Xλ(c1(i))∗ ,Xc1(i)∗)Ûc1(i)

)†
P̂(Xλ(c1(i))∗) (7.18)

Theorem 3. For any ε > 0, 0 < δ < 1, let

N ≥ O
(

(αmaxSH)2`+1

γβε2

)
log
|O |

δ

where αmax = maxi αi, σSH (∗) returns the Sth
H largest singular value and

γ = mini, j,i, j∈O σSH (P(Xi,X j))4

β = mini∈O σSH (P(Xi|Xπ(i)))2

Then
∑

x1,...,xO

∣∣∣∣P̂(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣ ≤ ε with probability 1 − δ.

This result implies that the estimation problem gets harder as the maximum degree αmax of the
hidden nodes, the number SH of the hidden states, and the length ` of the chain of hidden variables
increase. Furthermore, the sample complexity depends exponentially in `, which suggests that
we should choose the root of the tree to make ` small. However, we believe that such adverse
dependence on ` is due to the artifact of our analysis.

A special case of latent tree models is hidden Markov models (HMMs). Recently, (Hsu et al., 2009)

Algorithm 14 Inference with Alternate Spectral Parameters

In: Tree topology, set of spectral parameters r̂, T̂ i for each non-root internal node, L̂i for each leaf node, 1̂i for each
internal node, and set of evidence E = {x̄e1 , ..., x̄e|E| }

Out: estimated probability P̂(x̄e1 , ..., x̄|E|)

1: In reverse topological order, each node accumulates at message at leaf and sends to parent

• Evidence Leaf: M̂i = L̂i ×i δx̄i

• Non-Evidence Leaf: M̂i = L̂i ×i 1

• Internal Node: M̂i = T̂ i ×i

(
M̂c1(i)M̂c2(i) 1̂i

)
• Root: P̂(x̄e1 , ..., x̄|E|) = r̂>

(
M̂c1(i)M̂c2(i)M̂c3(i) 1̂i

)

108

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

(a) NumChildren=3, Depth=3 (b) NumChildren=3, Depth=4 (c) NumChildren=4, Depth=3 (d) NumChildren=4, Depth=4

Figure 7.5: Comparison of original spectral algorithm (green) to alternate spectral algorithm (blue)
as a function of degree and depth

derived a spectral algorithm specific to HMMs. Their reasoning relies heavily on a single connected
chain of hidden variables and each hidden variable has an observed variable attached. Although
this excludes many interesting tree topologies, they obtained a tighter sample complexity bound
which is O(SH`2

γβε2) (polynomial in `). This also suggests that our analysis can be further improved.

7.6 Experiments

In this section, we empirically evaluate this new algorithm. We first empirically compare to the
traditional spectral algorithm described in Chapter 4. For both methods we use a linear system
size of 1. Since both methods have similar runtime, we only focus on accuracy, particularly as the
topology of the tree and nature of the parameters are changed. We measure the performance of

joint estimation using ε =
|P̂(x1,...,xO)−P(x1,...,xO)|

P(x1,...,xO) averaged over 1000 test points randomly drawn from
the underlying model. Spec-Orig or original spectral algorithm denotes the spectral method from
Chapter 4 while Spec-Alt or alternate spectral algorithm denotes the spectral method presented in
this chapter.

The first set of experiments (Figure 7.5) shows the performance of the methods as the topology
of the tree is varied. SO and SH are set to 6 and 2 respectively. In all cases the tree is balanced and
NumChildren refers to the number of children each internal node has, and Depth indicates the
depth of the tree. As one can see for lower sample sizes, the original spectral algorithm is more
robust, while as the sample size increases, the alternate algorithm consistently performs better.

The next two sets of experiments measure performance as positive values are added to the
diagonals of the conditional probability tables (before normalization) thus increasing the singular
values of the resulting conditional probability tables after normalization. For these experiments
SO is set to 4 and SH is set to 3. Figure 7.6 shows the effect of this for a tree with NumChildren set
to 3 (every internal node has 3 children) and depth also fixed to 3 while Figure 7.7 shows the effect
of increasing diagonals for NumChildren=4 and Depth=3 (every internal node has 4 children). In
both cases, it appears both methods benefit similarly from the increased singular values.

7.6.1 Comparison with Mossel and Roch Algorithm

We now make a separate comparison with the spectral algorithm by (Mossel and Roch, 2006), since
it only applies to case where the number of observed states SO is the same as the number of hidden

109

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Orig

Spec−Alt

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

(a) DiagAdd = 0 (b) DiagAdd = 1 (c) DiagAdd = 2 (d) DiagAdd = 5 (e) DiagAdd = 10

Figure 7.6: Comparison of original spectral algorithm (green) to alternate spectral algorithm (blue)
for NumChildren=3, Depth=3 for increasingly diagonally dominant conditional probability tables
(DiagAdd indicates how much was added to the diagonal before normalization)

0.1 0.2 0.5 1 2 5 10 20 50 100

0.5

1

5

10

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100

0.5

1

5

10

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

5

10

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

0.1 0.2 0.5 1 2 5 10 20 50 100
0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spec−Alt

Spec−Orig

(a) DiagAdd = 0 (b) DiagAdd = 1 (c) DiagAdd = 2 (d) DiagAdd = 5 (e) DiagAdd = 10

Figure 7.7: Comparison of original spectral algorithm (green) to alternate spectral algorithm (blue)
for NumChildren=4, Depth=3 for increasingly diagonally dominant conditional probability tables
(DiagAdd indicates how much was added to the diagonal before normalization)

0.20.5 1 2 5 10 20 50100

0.05

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

0.2 0.5 1 2 5 10 20 50 100

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

0.20.5 1 2 5 10 20 50100

0.05

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

0.20.5 1 2 5 10 20 50100
0.05

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

(a) broad4 (b) broad9 (c) deep4 (d) deep5

Figure 7.8: Comparison of our alternate spectral algorithm (Spectral) with the Mossel and Roch
algorithm (MR) for 4 different latent tree topologies. The errors are plotted in log scale.

states SH. We set SO = SH = 2 and use a variety of topologies shown in Figure 7.8. Although this
method is theoretically interesting, it can perform poorly in practice.

The results are shown in Figure 7.8 (the runtime of both methods are similar, and thus not
reported). Our spectral algorithm significantly outperforms the MR algorithm on all trees for
practically all sample sizes. This is because our method does not explicitly recover the CPTs, and is
thus more robust. We also note that our approach is more general: it can allow for the observation
state space to be larger than the hidden state space, which may be preferable in many applications

110

5 10 20 30 50

0.35

0.4

number of query variables
E

rr
o

r

Spectral
EM+

EM−

CL

Figure 7.9: Comparison of our spectral algorithm (Spectral, blue line) with EMs (EM+ and EM-,
red lines) and Chow-Liu based algorithm (CL, green line) on stock dataset.

where the observation space can be large (e.g., quantization of a continuous variable), but the
hidden factors are simple and have lower dimensions.

7.6.2 Stock Trend Prediction

Finally, we evaluate our algorithm on a stock trend prediction problem. Our goal is to predict
whether a stock Xi will go up or down on a particular day given the trends of a set E of other
stocks. We acquired closing prices of 59 stocks from 1984 to 2011, which provides us 6800 samples.2

We randomly partition these samples to 6300 training points and 500 test points. Since we are
only predicting whether a stock goes up or down, the data are binarized. From the training data,
we learn the latent tree topology using an algorithm by (Choi et al., 2010), and a fully observable
Chow-Liu tree (Chow and Liu, 1968b).

We compare our spectral algorithm to EM+ (high precision EM) and EM− (low precision
EM) using the latent tree, and with inference over the Chow-Liu tree (CL). For the prediction
task, we need to estimate the conditional, i.e., P(Xi|x j1 , . . . , x j|E |) and j1, . . . , j|E | ∈ E . This can be
achieved by estimating P(xi, x j1 , . . . , x j|E |) for each instantiation xi. Then we make prediction by
x̂i = argmaxxi

P(xi, x j1 , . . . , x j|E |). We measure the prediction error using ε = |x̂i − x?i |where x?i is the
true label.

We experiment with a varying number of query sizes. For each query size Q, we randomly pick
Q stocks and predict the value of one stock conditioned on the other Q − 1, (and repeat for 50
trials). The results are shown in Figure 7.9. In general, all methods get better as we increase the
number of evidence. Over the entire range of query sizes, the advantage of latent tree approaches
(Spectral, EM+/-) is clear over the Chow-Liu tree. Thus, the latent factors help better model the
stock data in this case. Due to the small training sample size, the distinction between our method
and EM is less clear.

2www.finance.yahoo.com

111

7.7 Discussion

In this chapter an alternate observable representation for latent tree graphical models. This repre-
sentation is considerably different than the one in Chapter 4 and doesn’t reduce to it even when
the tree is binary. The distinct characteristic of this representation is that the internal/leaf nodes
are associated with a 3rd order tensor where the parent variable is on the diagonal. This feature
makes it challenging to generalize this factorization to the kernel case where the analogous opera-
tor is challenging to define. Similarly, since different children of a clique in a junction tree may be
associated with different variables in the parent clique, it also makes it difficult to generalize this
approach to the junction tree scenario.

Empirically we show that while this new representation performs slightly worse than the rep-
resentation in Chapter 4 for small sample sizes, it does considerably better in mid/large sample
sizes, especially for trees with larger degree.

7.8 Appendix

The purpose of this section is to prove Theorem 3. In general, for simplicity of exposition, we
assume that all internal nodes in the tree are unobserved, and all leaves are observed (since this is
the hardest case). The proof generally follows the technique of HKZ (Hsu et al., 2009), but has key
differences due to the tree topology instead of the HMM.

7.8.1 Notation for Proof

To make the notation less cumbersome, the notation for the proof will differ from that of the
main chapter in a few ways. In particular, for the sample complexity result it doesn’t matter the
exact variables that are used to construct the observable representation. For example, recall the
observable representation estimates:

r̂ = Û>r P̂(Xc1(r)∗)

T̂ i = P̂(Xc1(i)∗ ,Xλ(i)∗ ,Xρ(i)∗) ×λ(i)∗
(
Û>i P̂(Xi∗ ,Xλ(i)∗)

)†
×c1(i)∗ Ûc1(i) ×ρ(i)∗ Ûρ(i)

L̂i = P̂(Xi,Xλ(i)∗ ,Xρ(i)∗) ×λ(i)∗
(
Û>i P̂(Xi∗ ,Xλ(i)∗)

)†
×ρ(i)∗ Ûρ(i)

1̂i =
(
P̂(Xc1(i)∗ ,Xλ(c1(i))∗)Ûc1(i)

)†
P̂(Xλ(c1(i))∗)

112

For the proof, we will instead be using the simpler notation:

r̂ = Û>P̂ j

T̂ i = P̂ j,k,l ×k

(
Û>2 P̂m,k

)†
× j Û1 ×l Û3

L̂i = P̂ j,k,l ×k

(
Û>2 P̂m,k

)†
×l Û3

1̂i =
(
P̂ j,kÛ

)†
P̂ j

Here the j, k, l,m refer to variable indices and the U’s are just arbitrarily numbered to distinguish
them within the same equation. For ease of exposition, multiplying by U does not change the
mode label, so for example T̂ i has mode labels { j,m, l}.

Furthermore, recall in Section 7.4 we defined Fi, j = P(X j∗ |Xi)>U. This will simply become F =
O>U where O = P(X j∗ |Xi). Thus using this notation, we can rewrite the transformed representation
in Section 7.3.3 as:

• root: r̃ = (U>O)r

• internal: T̃ i = T i ×i (O>1 U1) ×π(i) (O>2 U2)−1
×π(i) (O>3 U3)

• leaf: L̃i = Li ×k (O>2 U2)−1
×l (O>3 U3)

• one: 1̃i = (O>U)−11i

Again note the U’s and O’s are arbitrarily numbered to distinguish them within the same equation.
Here (O>1 U1) has mode label i for the rows, and mode label j for the columns. Similarly (O>2 U2)
has mode label π(i) for the rows, and mode label k for the columns and (O>3 U3) has mode label π(i)
for the rows, and mode label l for the columns (Again for clarity, multiplying by U does not affect
the mode label).

Recall that Mi be the outgoing message from node Xi to its parent i.e.

• Evidence Leaf: Mi = Li ×i δx̄i

• Non-Evidence Leaf: Mi = Li ×i 1

• Internal Node: Mi = T i ×i

(
Mc1(i)...Mcαi (i)

1i

)
• Root: P(x̄e1 , ..., x̄|E|) = r>

(
Mc1(i)...Mcαi (i)

1i

)
Similarly, let M̃i indicate the transformed outgoing message i.e.

• Evidence Leaf: M̃i = L̃i ×i δx̄i

• Non-Evidence Leaf: M̃i = L̃i ×i 1̃

• Internal Node: M̃i = T̃ i ×i

(
M̃c1(i)...M̃cαi (i)

1̃i

)
• Root: P(x̄e1 , ..., x̄|E|) = r̃>

(
M̃c1(i)...M̃cαi (i)

1̃i

)
113

Note Mi and M̃i are matrices and thus M̃ = F−1MiF = (O>U)−1Mi(O>U). Let M̂i indicate the
empirical estimate of M̃i.

Furthermore, ||·||2 refers to spectral norm for matrices and tensors (but normal euclidean norm
for vectors). ||·||1 refers to induced 1 norm for matrices and tensors (max column sum), (but normal
l1 norm for vectors). ||·||F refers to Frobenius norm.

The tensor spectral norm (for 3 dimensions) is defined in (Nguyen et al., 2010):

‖T ‖2 = sup
‖vi‖2≤1

T ×3 v3 ×2 v2 ×1 v1 (7.19)

where {1, 2, 3} indicate the mode labels of T and v1 has mode label 1, v2 has mode label 2, and v3
has mode label 3.

We will define the induced 1-norm of a tensor as

‖T ‖1,1 = sup
‖v‖1≤1

‖T ×̄1 v‖1 (7.20)

using the `1 norm of a matrix (i.e., ‖A‖1 = sup
‖v‖1≤1 ‖Av‖1).

For more information about matrix norms see (Horn and Johnson, 1990).

7.8.2 Concentration Bounds

ε j =
∣∣∣∣∣∣∣∣P̂ j −P j

∣∣∣∣∣∣∣∣
F

(7.21)

ε j,k =
∣∣∣∣∣∣∣∣P̂ j,k −P j,k

∣∣∣∣∣∣∣∣
F

(7.22)

ε j=x̄,k,l =
∣∣∣∣∣∣∣∣P̂ j=x̄,k,l −P j=x̄,k,l

∣∣∣∣∣∣∣∣
F

(7.23)

ε j,k,l =
∣∣∣∣∣∣∣∣P̂ j,k,l −P j,k,l

∣∣∣∣∣∣∣∣
F

(7.24)

j = x̄ denotes that the mode indicated by j is fixed to the evidence value x̄ i.e. P j=x̄,k,l is created by
taking a slice of P j,k,l by fixing the first mode to x̄.

As the number of samples N gets large, we expect these quantities to be small.

Lemma 17 (variant of HKZ (Hsu et al., 2009)). If the algorithm independently samples N observation

114

triples from the tree, then with probability at least 1 − δ:

ε j ≤

√
C
N

ln
|O |

δ
+

√
1
N

(7.25)

ε j,k ≤

√
C
N

ln
|O |

δ
+

√
1
N

(7.26)

ε j,k,l ≤

√
C
N

ln
|O |

δ
+

√
1
N

(7.27)

max
x
ε j,k=x,l ≤

√
C
N

ln
|O |

δ
+

√
1
N

(7.28)

max
x
ε j=x,k,l ≤

√
SO

N
ln
|O |

δ
+

√
SO

N
(7.29)

where C is some constant (from the union bound over O(V3)). (V is the total number of observed
variables in the tree). The proof is the same as that of HKZ (Hsu et al., 2009) except the union
bound is larger. The last bound can be made tighter, identical to HKZ, but for simplicity we do
not pursue that approach here.

7.9 Eigenvalue Bounds

Basically this is Lemma 9 in HKZ (Hsu et al., 2009), which is stated below for completeness:

Lemma 18. Suppose ε j,k ≤ ε × σSH (P j,k) for some ε < 1/2. Let ε0 = ε2
j,k/((1 − ε)σSH (P j,k))2. Then:

1. ε0 < 1

2. σSH (Û>P̂ j,k) ≥ (1 − ε)σSH (P j,k)

3. σSH (Û>P j,k) ≥
√

1 − ε0σSH (P j,k)

4. σSH (O>Û) ≥
√

1 − εσSH (O)

The proof is in HKZ (Hsu et al., 2009).

7.9.1 Bounding the Transformed Quantities

If Lemma 18 holds then (O>Û) is invertible. Thus, if we define M̃i = (O>Û)−1Mi(O>Û). Then
clearly, (O>Û)−1M̃i(O>Û) = Mi. (We admit this is a slight abuse of notation, since M̃i is previously
defined to be (O>U)−1Mi(O>U), but as long as (O>Û) is invertible it doesn’t really matter whether
it equals (O>U) or not for the purposes of this proof). The other quantities are defined similarly.

115

We seek to bound the following four quantities:

δi
one = ‖(O>Û)(̂1i − 1̃i)‖1 (7.30)

γi = ‖(T̂ i − T̃ i) × j (O>1 Û1)
−1
×m (O>2 Û2) ×l (O>3 Û3)

−1
‖2 (7.31)

δroot = ‖(̂r − r̃)T(O>Û)
−1
‖∞ (7.32)

4i =
∑

xi

‖(O>2 Û2)(M̂i − M̃i)(O>3 Û3)
−1
‖1 (7.33)

Here xi denotes all observations that are in the subtree of node i (since i may be hidden or ob-
served). Sometimes we like to distinguish between when i is observed and when i is hidden.Thus,
we sometimes refer to the quantity 4obs

i and 4hidden
i for when i is observed or hidden respectively.

Note that we don’t need to explicitly have a bound for ‖L̂i − L̃i‖ since if i is a leaf then M̃i is just a
slice of L̃i.

Lemma 19. Assume ε j,k ≤ σSH (P j,k)/3 for all j , k. Then

δroot ≤
2ε j

√
3σSH (O)

(7.34)

δi
one ≤ 4

√
SH

 ε j,k

σSH (P j,k)2 +
ε j

√
3σSH (P j,k)

 (7.35)

γi ≤
4
√

SH

σSH (O)

 ε j,k

σSH (P j,k)2 +
ε j,k,l

√
3σSH (P j,k)

 (7.36)

4
hidden
i ≤

(1 + γi)
αi∏

a=1

(1 + 4ca(i))δi
one + (1 + γi)m

αi∏
a=1

(1 + 4ca(i)) −m

 (7.37)

4
obs
i ≤ ≤ 4

√
SH

σSH (O)

 ε j,k

(σSH (P j,k))2 +

∑
xi
ε j,k=xi,l

√
3σSH (P j,k)

 (7.38)

The main challenge in this part is 4i and γhidden
i . The rest are similar to HKZ. However, we go

through the other bounds to be more explicit about some of the properties used, since sometimes
we have used different norms etc.

δroot

We note that r̂ = Û>P̂ j and similarly r̃ = Û>P j.

δroot = ‖(̂r − r̃)>(O>Û)
−1
‖∞ ≤ ‖P̂

>

j −P
>

j ‖2‖Û j‖2‖(O>Û)
−1
‖2 (7.39)

≤ ‖P̂
>

j −P
>

j ‖2‖(O
>Û)

−1
‖2 ≤

ε j

σSH (O>Û)
(7.40)

116

The first inequality follows from the relationship between `∞ and `2 norm and submultiplicativity.
The second follows from a matrix perturbation bound given in Lemma 7.94. We also use the fact
that since Û is orthonormal it has spectral norm 1.

Assuming that ε j,k ≤ σSH (P j,k)/3 gives δroot ≤
2εr

√
3σSH (O)

by Lemma 18.

δi
one

δi
one = ‖(O>Û)(̂1i − 1̃i)‖1 ≤

√
SH ||O||2

∣∣∣∣∣∣Û∣∣∣∣∣∣
2

∣∣∣∣∣∣̂1i − 1̃
∣∣∣∣∣∣

2 (7.41)

=
√

SH
∣∣∣∣∣∣̂1i − 1̃i

∣∣∣∣∣∣
2 =

√
SH

∣∣∣∣∣∣̂1i − 1̃i
∣∣∣∣∣∣

2 (7.42)

Here we have converted `1 norm to `2 norm, used submultiplicativity, the fact that Û is orthonormal
so has spectral norm 1, and that O is a conditional probability matrix and therefore also has spectral
norm 1.

We note that 1̂i = (P̂ j,kÛ)
+
P̂ j and similarly 1̃i = (P j,kÛ)

+
P j, where j and k are a particular pair

of observations described in the main paper.

‖̂1i − 1̃i‖2 = ‖(P̂ j,kÛ)
+
P̂ j − (P j,kÛ)

+
P j‖2 (7.43)

= ‖(P̂ j,kÛ)
+
P̂ j − (P j,kÛ)

+
P̂ j + (P j,kÛ)

+
P̂ j − (P>j,kÛ)

+
P j‖2 (7.44)

≤ ‖(P̂ j,kÛ)
+
P̂ j − (P j,kÛ)

+
P̂ j‖2 + ‖(P̂ j,kÛ)

+
P̂ j − (P j,kÛ)

+
P j‖2 (7.45)

≤ ‖(P̂ j,kÛ)
+
− (P j,kÛ)

+
‖2‖P̂ j‖1 + ‖(P̂ j,kÛ)

+
− (P j,kÛ)

+
‖2‖P̂ j −P j‖2 (7.46)

≤
1 +
√

5
2

×
εm, j

min(σSH (P̂ j,k), σSH (P>j,kÛ))
2 +

ε j

σSH (P>j,kÛ)
(7.47)

where we have used the triangle inequality in the first inequality and the submultiplicative prop-
erty of matrix norms in the second. The last inequality follows by matrix perturbation bounds.
Thus using the assumption that ε j,k ≤ σSH (P j,k)/3, we get that

δone ≤ 4
√

SH

 ε j,k

σSH (P j,k)2 +
ε j

√
3σSH (P j,k)

 (7.48)

Tensor

Recall that T̃ i = T i×i (O>1 Û1)×π(i) (O>2 Û2)
−1
×π(i) (O>3 Û3) = P j,k,l× j Û1×k (Pm,kÛ2)

†

×l Û3. Similarly,

T̂ i = P j,k,l × j Û1 ×k (Pm,kÛ2)
†

×l Û3.

117

‖(T̂ i − T̃ i) × j (O>1 Û1)
−1
×m (O>2 Û2) ×l (O>3 Û3)

−1
‖1,1 ≤

√
SH

σSH (O)

∣∣∣∣∣∣∣∣T̂ i − T̃ i

∣∣∣∣∣∣∣∣
2

(7.49)

This is because both Û and O have spectral norm one and the
√

SH factor is the cost of converting
from 1 norm to spectral norm.

∣∣∣∣∣∣∣∣T̂ i − T̃ i

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣P̂ j,k,l × j Û1 ×k (P̂m,kÛ2)
†

×l Û3 −P j,k,l × j Û1 ×k (Pm,kÛ2)
†

×l Û3

∣∣∣∣∣∣∣∣∣∣
2

(7.50)

=

∣∣∣∣∣∣∣∣∣∣P̂ j,k,l × j Û>1 ×k (P̂m,kÛ2)
†

×l Û3 − P̂ j,k,l × j Û1 ×k (Pm,kÛ2)
†

×l Û3

∣∣∣∣∣∣∣∣∣∣
2

(7.51)

+
∣∣∣∣∣∣∣∣P̂ j,k,l × j Û>1 ×k (Pm,kÛ2)

†

×l Û3 −P j,k,l × j Û1 ×k (Pm,kÛ2)
†

×l Û3

∣∣∣∣∣∣∣∣
2

(7.52)

=

∣∣∣∣∣∣∣∣∣∣P̂ j,k,l × j Û1 ×k ((P̂m,kÛ2)
†

− (Pm,kÛ2)
†

) ×l Û3

∣∣∣∣∣∣∣∣∣∣
2

(7.53)

+
∣∣∣∣∣∣∣∣(P̂ j,k,l × j Û1 ×l Û3 −P j,k,l × j Û1 ×l Û3) ×k (Pm,kÛ2)

†
∣∣∣∣∣∣∣∣

2
(7.54)

=
∣∣∣∣∣∣∣∣P̂ j,k,l

∣∣∣∣∣∣∣∣
2

1 +
√

5
2

εl, j

min (σSH (P̂m,k), σSH (Pm,kÛ))2
+

ε j,k,l

σSH (Pm,kÛ)
(7.55)

It is clear that
∣∣∣∣∣∣∣∣P̂ j,k,l

∣∣∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣∣∣P̂ j,k,l

∣∣∣∣∣∣∣∣
F
≤ 1.

Using the fact that ε j,k ≤ σSH (P j,k)/3 gives us the following bound:

γv ≤
4
√

SH

σSH (O)

 ε j,k

σSH (P j,k)
+

ε j,k,l
√

3σSH (P j,k)

 (7.56)

Bounding 4i

We now seek to bound 4i =
∑

xi
‖(O>2 Û2)(M̂i− M̃i)(Û>3 O3)

−1
‖1. There are two cases: either i is a leaf

or it is not.

i is leaf node
In this case our proof simply follows from HKZ (Hsu et al., 2009) and is repeated here for conve-
nience.

‖(O>2 Û2)(M̂ − M̃)(O>3 Û3)
−1
‖1 ≤

√
SH‖O2‖1

∣∣∣∣∣∣∣∣(M̂i − M̃i)(O>3 Û3)
−1

∣∣∣∣∣∣∣∣
2

(7.57)

≤

√
SH

∣∣∣∣∣∣M̂i − M̃i
∣∣∣∣∣∣

2

σSH (O>Û)
(7.58)

118

Note that M̂i = (P̂k,mÛ1)
†

P̂ j=xi,k,lÛ2 and M̃i = (P̂k,mÛ1)
†

P j=xi,k,lÛ2 .∣∣∣∣∣∣M̂i − M̃i
∣∣∣∣∣∣

2 =

∣∣∣∣∣∣∣∣∣∣(P̂k,mÛ1)
−1
P̂ j=xi,k,lÛ2 − (P̂k,mÛ1)

†

P j=xi,k,lÛ2

∣∣∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣(P̂k,mÛ1)
†

P̂ j=xi,k,lÛ2 − (P̂k,mÛ1)
†

P̂ j=xi,k,lÛ2 + (P̂k,mÛ1)
†

P̂ j=xi,k,lÛ2 − Û>1 P j=xi,k,l(Û
>

2 P̂k,m)
†
∣∣∣∣∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣∣∣∣∣((P̂k,mÛ1)
†

− (P̂k,mÛ1)
†

)P̂ j=xi,k,lÛ2

∣∣∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∣∣(P̂k,mÛ1)
†

(P̂ j=xi,k,lÛ2 −P j=xi,k,lÛ2)
∣∣∣∣∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣∣∣P̂ j=xi,k,l

∣∣∣∣∣∣∣∣
2

1 +
√

5
2

εk,m

min (σSH (P̂k,m), σSH (P̂k,mÛ))
+

ε j=xi,k,l

σSH (P̂k,m)Û

≤ P(xi = x)
1 +
√

5
2

εk,m

min (σSH (P̂k,m), σSH (P̂k,mÛ))2
+

ε j=xi,k,l

σSH (P̂k,mÛ)
(7.59)

where the first inequality follows from the triangle inequality, and the second uses matrix pertur-
bation bounds (and the fact that spectral norm of Û is 1).

The final inequality follows from the fact that spectral norm is less than frobenius norm which
is less than l1 norm:∣∣∣∣∣∣∣∣P̂ j=xi,k,l

∣∣∣∣∣∣∣∣ ≤ √∑
a,b

[P̂ j=xi,k,l]
2
a,b ≤

∑
a,b

[P j=xi,k,l]a,b ≤ P(xi = x) (7.60)

The first inequality follows from relation between 1 operator norm and 2 operator norm. Because
O is a conditional probability matrix ||O||1 = 1 (i.e. the max column sum is 1).

Using the fact that ε j,k ≤ σSH (P j,k)/3 gives us the following bound:

4i,x ≤ 4
√

SH

σSH (O)

P(xi = x)
ε j,k=xi,l

(σSH (Pl,m))2 +
ε j,k=xi,l

√
3σSH (Pl,m)

 (7.61)

Summing over x would give

4i ≤ 4
√

SH

σSH (O)

 εl,m

(σSH (Pl,m))2 +

∑
xi
ε j,k=xi,l

√
3σSH (Pl,m)

 (7.62)

i is not a leaf node

119

Let m̂αi:1 = M̂cαi (i)
...M̂1̂1i and m̃αi:1 = M̃cαi (i)

...M̃11̃i∑
xi

‖(O>2 Û2)(M̂i − M̃i)(O>3 Û3)
−1
‖1

=
∑

xi

∣∣∣∣∣∣∣∣(O>2 Û2)(T̂ i × j M̂cαi (i)
...M̂1̂1i − T̃ i × j M̃cαi (i)

...M̃11̃i)(O>3 Û3)
−1

∣∣∣∣∣∣∣∣
1

=
∑

xi

∣∣∣∣∣∣∣∣(O>2 Û2)(T̂ i × j m̂αi:1 − T̃ i × j m̃αi:1)(O>3 Û3)
−1

∣∣∣∣∣∣∣∣
1

=
∑

xi

∣∣∣∣∣∣∣∣(O>2 Û2)
(
(T̂ i − T̃ i) × j m̃αi:1 + (T̂ i − T̃ i) × j (m̂αi:1 − m̃αi:1) + T̃ i × j (m̂αi:1 − m̃αi:1)

)
(O>3 Û3)

−1
∣∣∣∣∣∣∣∣

1

≤

∑
xi

∣∣∣∣∣∣∣∣(T̂ i − T̃ i) × j (O>1 Û1)
−1
×m (O>2 Û2) ×l (O>3 Û3)

−1
∣∣∣∣∣∣∣∣

1,1

∥∥∥(O>1 Û1)m̃αi:1

∥∥∥
1

+
∑

xi

∣∣∣∣∣∣(O>1 Û1)(m̂αi:1 − m̃αi:1)
∣∣∣∣∣∣

1

∣∣∣∣∣∣∣∣(T̂ i − T̃ i) × j (O>1 Û1)
−1
×m (O>2 Û2) ×l (O>3 Û3)

−1
∣∣∣∣∣∣∣∣

1,1

+
∑

xi

∣∣∣∣∣∣∣∣T̃ i × j (O>Û1)
−1
×m (Û>2 O2) ×l (O>3 Û3)

−1
∣∣∣∣∣∣∣∣

1,1

∥∥∥(O>1 Û1)(m̂αi:1 − m̃αi:1)
∥∥∥

1 (7.63)

First term is bounded by:∥∥∥∥(T̂ i − T̃ i) × j (O>1 Û1)
−1
×m (Û>2 O2) ×l (O>3 Û3)

−1
∥∥∥∥

1,1
SH ≤ SHγi (7.64)

Second term is bounded by:∑
xi

∣∣∣∣∣∣(O>1 Û1)(m̂αi:1 − m̃αi:1)
∣∣∣∣∣∣

1

∣∣∣∣∣∣∣∣(T̂ i − T̃ i) × j (O>1 Û1)
−1
×m (O>2 Û2) ×l (O>3 Û3)

−1
∣∣∣∣∣∣∣∣

1,1
(7.65)

≤ γi

∑
xi

∣∣∣∣∣∣(O>1 Û1)(m̂αi:1 − m̃αi:1)
∣∣∣∣∣∣

1 (7.66)

Third Term is bounded by:∣∣∣∣∣∣∣∣T̃ i × j (O>1 Û1)
−1
×m (O>2 Û2) ×l (O>3 Û3)

−1
∣∣∣∣∣∣∣∣

1,1

∑
xi

∥∥∥(O>1 Û1)(m̂αi:1 − m̃αi:1)
∥∥∥

1 ≤
∑

xi

∥∥∥(O>1 Û1)(m̂αi:1 − m̃αi:1)
∥∥∥

1

(7.67)

In the next section, we will see that

∑
xi

∣∣∣∣∣∣(O>Û)(m̂αi:1 − m̃αi:1)
∣∣∣∣∣∣

1 ≤

 αi∏
a=1

(1 + ∆ca(i))δi
one + SH

αi∏
a=1

(1 + 4ca(i)) − SH

 (7.68)

So the overall bound is

4i ≤

(1 + γi)
αi∏

a=1

(1 + ∆ca(i))δi
one + (1 + γi)SH

αi∏
a=1

(1 + ∆ca(i)) − SH

 . (7.69)

120

Bounding
∑

xi

∣∣∣∣∣∣(O>Û)(m̂αi:1 − m̃αi:1)
∣∣∣∣∣∣

1

Lemma 20. ∑
xi

∣∣∣∣∣∣(O>Û)(m̂αi:1 − m̃αi:1)
∣∣∣∣∣∣

1 ≤

αi∏
a=1

(1 + 4ca(i))δi
one + SH

αi∏
a=1

(1 + 4ca(i)) − SH (7.70)

The proof is by induction. Base case:
∣∣∣∣∣∣(O>Û)(̂1i − 1̃i)

∣∣∣∣∣∣
1 ≤ δ

i
one, by definition of δi

one.

Inductive step: Let us say claim holds up until u − 1. We show it holds for u. Thus

∑
xi

∣∣∣∣∣∣(O>Û)(m̂(u−1):1 − m̃(u−1):1)
∣∣∣∣∣∣

1 ≤

u−1∏
a=1

(1 + 4ca(i))δi
one + SH

u−1∏
a=1

(1 + 4ca(i)) − SH (7.71)

We now decompose the sum over x as∑
xu:1

∣∣∣∣∣∣(O>Û)(m̂u:1 − m̃u:1)
∣∣∣∣∣∣

1 (7.72)

=
∑
xu:1

∣∣∣∣∣∣∣∣(O>Û)
(
(M̂cu(i) − M̃cu(i))m̃(u−1):1 + (M̂cu(i) − M̃cu(i))(m̂(u−1):1 − m̃(u−1):1) + (m̂(u−1):1 − m̃(u−1):1)

)∣∣∣∣∣∣∣∣
1

Using the triangle inequality, we get∑
xu:1

∣∣∣∣∣∣∣∣(O>2 Û2)(M̂cu(i) − M̃cu(i))(O>3 Û3)
−1

∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣(O>3 Û3)m̃(u−1):1

∣∣∣∣∣∣
1 (7.73)

+
∑
xu:1

∣∣∣∣∣∣∣∣(O>2 Û2)(M̂cu(i) − M̃u)(O>3 Û3)
−1

∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣(O>3 Û3)(m̂(u−1):1 − m̃(u−1):1)
∣∣∣∣∣∣

1 (7.74)

+
∑
xu:1

∣∣∣∣∣∣∣∣(O>Û)M̃cu(i)(O>Û)
−1

∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣(O>Û)(m̂(u−1):1 − m̃(u−1):1)
∣∣∣∣∣∣

1 (7.75)

Again we are just numbering the U’s and O’s for clarity to see which corresponds with which.
They are omitted in the actual theorem statements since we will take minimums etc. at the end.

We now must bound these terms. First term:∑
xu

∣∣∣∣∣∣∣∣(O>2 Û2)(M̂cu(i) − M̃cu(i))(O>2 Û2)
−1

∣∣∣∣∣∣∣∣
1

∑
x1:u−1

∣∣∣∣∣∣(O>1 Û1)m̃(u−1):1

∣∣∣∣∣∣
1 ≤ 4u

∑
x(u−1):1

∣∣∣∣∣∣m̃(u−1):1(O>Û)
∣∣∣∣∣∣

1 ≤ SH4u

since 4u =
∣∣∣∣∣∣∣∣(O>2 Û2)(M̂cu(i) − M̃cu(i))(O>1 Û1)

−1
∣∣∣∣∣∣∣∣

1
. Second term can be bounded by inductive hy-

pothesis:

121

∑
xu:1

∣∣∣∣∣∣∣∣(O>2 Û2)(M̂cu(i) − M̃cu(i))(O>1 Û1)
−1

∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣(O>1 Û1)(m̂(u−1):1 − m̃(u−1):1)
∣∣∣∣∣∣

1

≤ 4u

u−1∏
a=1

(1 + 4ca(i))δi
one + SH

u−1∏
a=1

(1 + 4ca(i)) − SH

 (7.76)

The third term is bounded by observing that (O>Û)M̃cu(i)(O>Û)
−1

= diag(Pxu|Parent]). Thus it
is diagonal, and P(x|Parent) has max row or column sum as 1. This means that the third term is
bounded by the inductive hypothesis as well:∑

xu:1

∣∣∣∣∣∣∣∣(O>Û)M̃cu(i)(O>Û)
−1

∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣(O>Û)(m̂(u−1):1 − m̃(u−1):1)
∣∣∣∣∣∣

1

≤

u−1∏
a=1

(1 + 4ca(i))δi
one + SH

u−1∏
a=1

(1 + 4cu(i)) − SH

 (7.77)

7.9.2 Bounding the propagation of error in tree

We now wrap up the proof based on the approach of HKZ(Hsu et al., 2009).

Lemma 21. ∑
x1,...,xO

∣∣∣∣P̂(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣

≤ SHδroot + (1 + δroot)

 αi∏
a=1

(1 + 4ca(i))δr
one + SH

αi∏
a=1

(1 + 4ca(i)) − SH

 (7.78)

∑
x1,...,xO

∣∣∣∣P̂(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣ =

∑
x1,...,xO

∣∣∣̂r>M̂c1(r)...M̂cαr (r)̂1r − r̃>M̃c1(r)...M̃cαr (r)1̃r
∣∣∣ (7.79)

≤

∑
x1,...,xO

∣∣∣∣(̂r − r̃)>(O>Û)
−1

(O>Û)(M̃αr:11̃)
∣∣∣∣ (7.80)

+
∑

x1,...,xO

∣∣∣∣(̂r − r̃)>(O>Û)
−1

(O>Û)(M̂αr:1̂1r − M̃αr:11̃r)
∣∣∣∣(7.81)

+
∑

x1,...,xO

∣∣∣∣r̃>(O>Û)
−1

(O>Û)(M̂αr:1̂1i − M̃αr:11̃)
∣∣∣∣ (7.82)

The first sum is bounded using Holder inequality and noting that the first term is a conditional

122

probability (of all observed variables conditioned on the root)∑
x1,...,xO

∣∣∣∣(̂r − r̃)>(O>Û)
−1

(O>Û)(M̃αr:11̃)
∣∣∣∣ (7.83)

≤

∑
x1,...,xO

∣∣∣∣∣∣∣∣(̂r − r̃)>(O>Û)
−1

∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣(O>Û)(M̃αr:11̃)
∣∣∣∣∣∣

1 ≤ SHδroot (7.84)

The second sum is bounded by another application of Holder’s inequality (and the previous
lemma): ∑

x1,...,xO

∣∣∣∣(̂r − r̃)>(O>Û)
−1

(O>Û)(M̂αr:1̂1r − M̃αr:11̃r)
∣∣∣∣ (7.85)

≤

∑
x1,...,xO

∣∣∣∣∣∣∣∣(̂r − r̃)>(O>Û)
−1

∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣(O>Û)(M̂αr:1̂1r − M̃αr:11̃r)
∣∣∣∣∣∣

1 (7.86)

≤ δroot

 αi∏
a=1

(1 + 4ca(r))δr
one + SH

αr∏
a=1

(1 + 4ca(r)) − SH

 (7.87)

The third sum is also bounded by Holder’s Inequality and previous lemmas and noting that
r̃>(O>U)−1 = P(R = r): ∑

x1,...,xO

∣∣∣∣r̃>(O>Û)
−1

(O>Û)(M̂αr:1̂1i − M̃αr:11̃)
∣∣∣∣ (7.88)

≤

∑
x1,...,xO

∣∣∣∣∣∣∣∣r̃>(O>Û)
−1

∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣(O>Û)(M̂αr:1̂1r − M̃αr:11̃r)
∣∣∣∣∣∣

1 (7.89)

≤

 αr∏
a=1

(1 + 4ca(r))δr
one + SH

αr∏
a=1

(1 + 4ca(r)) − SH

 (7.90)

Combining these bounds gives us the desired solution.

7.10 Putting it all together

We seek for ∑
x1,...,xO

∣∣∣∣P̂(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣ ≤ ε (7.91)

Using the fact that for a < .5, (1 + a/t)> ≤ 1 + 2a, we get that 4 jk ≤ O(ε/(SH J)). However, 4 j
is defined recursively, and thus the error accumulates exponential in the longest path of hidden
nodes. For example, 4obs

i ≤ O(ε
(dmaxSH)`

) where ` is the longest path of hidden nodes. Tracing this
back through will gives the result:

123

Pick any ε > 0, δ < 1. Let

N ≥ O

 1
ε2

 (dmaxSH)2`+1SO

min j,k σSH (O j,k)2 mini, j σSH (P j,k)4

 log
O

δ
(7.92)

Then with probability 1 − δ ∑
x1,...,xO

∣∣∣∣P̂(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣ ≤ ε (7.93)

In many cases, if the frequency of the observation symbols follow certain distributions, than the
dependence on SO can be removed as showed in HKZ (Hsu et al., 2009).

7.10.1 Matrix Perturbation Bounds

This is Theorem 3.8 from pg. 143 in Stewart and Sun, 1990 (Stewart and Sun, 1990). Let A ∈ Rm×n,
with m ≥ n and let Ã = A + E. Then∣∣∣∣∣∣∣∣Ã† − A†

∣∣∣∣∣∣∣∣
2
≤

1 +
√

5
2

max(
∣∣∣∣∣∣A†∣∣∣∣∣∣22 , ∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣2

2
) ||E||2 (7.94)

124

Part II

Spectral Models for Natural Language
Processing

125

Chapter 8

Spectral Unsupervised Parsing with
Additive Tree Metrics

In this chapter we tackle unsupervised syntactic parsing, an important problem in NLP where
existing methods are very sensitive to local optima and therefore require careful initialization.
Although traditionally formulated as a parameter learning problem, we take a different approach
that revolves around structure learning. Thus, some of the key ideas of this chapter are closely
related to the structure learning algorithms discussed in Chapter 6. We discuss this relationship
further in 8.5.

Contribution of this chapter: We propose a spectral approach for unsupervised constituent
parsing that comes with theoretical guarantees on latent structure recovery. The main algorithm
is based on lifting the concept of additive tree metrics for structure learning of latent trees in
the phylogenetic and machine learning communities to the case where the tree structure varies
across examples. Although finding the “minimal” latent tree is NP-hard in general, for the case of
projective trees we find that it can be found using bilexical parsing algorithms. Empirically, our
algorithm performs favorably compared to the constituent context model of Klein and Manning
(2002) without the need for careful initialization.

Outline: An introduction is first presented, followed by a description of our conditional la-
tent tree model. We then propose a provably consistent learning algorithm and finally present
experiments.

Prerequisites: This chapter assumes a general understanding of latent variable models as
presented in 2.2, and the connection between latent variable models and low rank factorization in
Chapter 3.

8.1 Introduction

Solutions to the problem of grammar induction have been long sought after since the early days
of computational linguistics and are interesting both from cognitive and engineering perspectives.

126

Cognitively, it is more plausible to assume that children obtain only terminal strings of parse
trees and not the actual parse trees. This means the unsupervised setting is a better model for
studying language acquisition. From the engineering perspective, training data for unsupervised
parsing exists in abundance (i.e. sentences and part-of-speech tags), and is much cheaper than the
syntactically annotated data required for supervised training.

Most existing solutions treat the problem of unsupervised parsing by assuming a generative
process over parse trees e.g. probabilistic context free grammars (Jelinek et al., 1992), and the
constituent context model (Klein and Manning, 2002). Learning then reduces to finding a set
of parameters that are estimated by identifying a local maximum of an objective function such
as the likelihood (Klein and Manning, 2002) or a variant of it (Smith and Eisner, 2005; Cohen
and Smith, 2009; Headden et al., 2009; Spitkovsky et al., 2010b; Gillenwater et al., 2010; Golland
and DeNero, 2012). Unfortunately, finding the global maximum for these objective functions is
usually intractable (Cohen and Smith, 2012) which often leads to severe local optima problems
(but see Gormley and Eisner, 2013). Thus, strong experimental results are often achieved by
initialization techniques (Klein and Manning, 2002; Gimpel and Smith, 2012), incremental dataset
use (Spitkovsky et al., 2010a) and other specialized techniques to avoid local optima such as count
transforms (Spitkovsky et al., 2013). These approaches, while empirically promising, generally
lack theoretical justification.

On the other hand, recently proposed spectral methods approach the problem via restriction
of the PCFG model (Hsu et al., 2012) or matrix completion (Bailly et al., 2013). These novel per-
spectives offer strong theoretical guarantees but are not designed to achieve competitive empirical
results.

In this chapter, we suggest a different approach, to provide a first step to bridging this theory-
experiment gap. More specifically, we approach unsupervised constituent parsing from the per-
spective of structure learning as opposed to parameter learning. We associate each sentence with
an undirected latent tree graphical model, which is a tree consisting of both observed variables
(corresponding to the words in the sentence) and an additional set of latent variables that are
unobserved in the data. This undirected latent tree is then directed via a direction mapping to give
the final constituent parse.

In our framework, parsing reduces to finding the best latent structure for a given sentence. How-
ever, due to the presence of latent variables, structure learning of latent trees is substantially more
complicated than in observed models. As before, one solution would be local search heuristics.

Intuitively, however, latent tree models encode low rank dependencies among the observed
variables permitting the development of “spectral” methods that can lead to provably correct
solutions. In particular we leverage the concept of additive tree metrics (Buneman, 1971, 1974) in
phylogenetics and machine learning that can create a special distance metric among the observed
variables as a function of the underlying spectral dependencies (Choi et al., 2011; Song et al.,
2011b; Anandkumar et al., 2011; Ishteva et al., 2012). Additive tree metrics can be leveraged by
“meta-algorithms” such as neighbor-joining (Saitou and Nei, 1987) and recursive grouping (Choi
et al., 2011) to provide consistent learning algorithms for latent trees.

Moreover, we show that it is desirable to learn the “minimal” latent tree based on the tree metric
(“minimum evolution” in phylogenetics). While this criterion is in general NP-hard (Desper and
Gascuel, 2005), for projective trees we find that a bilexical parsing algorithm can be used to find

127

The bear ate the fish

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 , 𝑧1, 𝑧2, 𝑧3

𝒙 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷, 𝐷𝑇,𝑁𝑁)

𝑢(𝒙)

((DT NN) (VBD (DT NN)))

w1 w2 w3

z3

z1

w4 w5

z2

w1 w2 w3

z3z1

w4 w5

z2

Figure 8.1: Example for the tag sequence (DT, NN, VBD, DT, NN) showing the overview of our approach.
We first learn a undirected latent tree for the sequence (left). We then apply a direction mapping
hdir to direct the latent tree (center). This can then easily be converted into a bracketing (right).

VBD DT NN VBD DT NN

Figure 8.2: Candidate constituent parses for x = (VBD, DT, NN) (left-correct, right -incorrect)

an exact solution efficiently (Eisner and Satta, 1999).

Unlike in phylogenetics and graphical models, where a single latent tree is constructed for all the
data, in our case, each part of speech sequence is associated with its own parse tree. This leads to a
severe data sparsity problem even for moderately long sentences. To handle this issue, we present
a strategy that is inspired by ideas from kernel smoothing in the statistics community (Zhou et al.,
2010; Kolar et al., 2010b,a). This allows principled sharing of samples from different but similar
underlying distributions.

We provide theoretical guarantees on the recovery of the correct underlying latent tree and
characterize the associated sample complexity under our technique. Empirically we evaluate our
method on data in English, German and Chinese. Our algorithm performs favorably to Klein and
Manning’s (2002) constituent-context model (CCM), without the need for careful initialization. In
addition, we also analyze CCM’s sensitivity to initialization, and compare our results to Seginer’s
algorithm (Seginer, 2007).

8.2 Learning Setting and Model

In this section, we detail the learning setting and a conditional tree model we learn the structure
for.

8.2.1 Learning Setting

Let w = (w1, ...,w`) be a vector of words corresponding to a sentence of length `. Each wi is
represented by a vector in Rp for p ∈ N. The vector is an embedding of the word in some space,

128

chosen from a fixed dictionary that maps word types to Rp. In addition, let x = (x1, ..., x`) be the
associated vector of part-of-speech (POS) tags (i.e. xi is the POS tag of wi).

In our learning algorithm, we assume that examples of the form (w(i), x(i)) for i ∈ [N] = {1, . . . ,N}
are given, and the goal is to predict a bracketing parse tree for each of these examples. The word
embeddings are used during the learning process, but the final decoder that the learning algorithm
outputs maps a POS tag sequence x to a parse tree. While ideally we would want to use the word
information in decoding as well, much of the syntax of a sentence is determined by the POS tags,
and relatively high level of accuracy can be achieved by learning, for example, a supervised parser
from POS tag sequences.

Just like our decoder, our model assumes that the bracketing of a given sentence is a function
of its POS tags. The POS tags are generated from some distribution, followed by a deterministic
generation of the bracketing parse tree. Then, latent states are generated for each bracket, and
finally, the latent states at the yield of the bracketing parse tree generate the words of the sentence
(in the form of embeddings). The latent states are represented by vectors z ∈ Rm where m < p.

8.2.2 Intuition

For intuition, consider the simple tag sequence x = (VBD, DT, NN). Two candidate constituent parse
structures are shown in Figure 8.2 and the correct one is boxed in green (the other in red). Recall that
our training data contains word phrases that have the tag sequence x e.g. w(1) = (hit, the, ball),
w(2) = (ate, an, apple).

Intuitively, the words in the above phrases exhibit dependencies that can reveal the parse
structure. The determiner (w2) and the direct object (w3) are correlated in that the choice of
determiner depends on the plurality of w3. However, the choice of verb (w1) is mostly independent
of the determiner. We could thus conclude that w2 and w3 should be closer in the parse tree than w1
and w2, giving us the correct structure. Informally, the latent state z corresponding to the (w2,w3)
bracket would store information about the plurality of z, the key to the dependence between w2
and w3. It would then be reasonable to assume that w2 and w3 are independent given z.

8.2.3 A Conditional Latent Tree Model

Following this intuition, we propose to model the distribution over the latent bracketing states
and words for each tag sequence x as a latent tree graphical model, which encodes conditional
independences among the words given the latent states.

Let V := {w1, ...,w`, z1, ..., zH}, with wi representing the word embeddings, and zi representing
the latent states of the bracketings. Then, according to our base model it holds that:

129

P(w, z|x) =

H∏
i=1

P(zi|πx(zi), θ(x))

×

`(x)∏
i=1

P(wi|πx(wi), θ(x)) (8.1)

where πx(·) returns the parent node index of the argument in the latent tree corresponding to tag
sequence x.1 If z is the root, then πx(z) = ∅. All the wi are assumed to be leaves while all the zi are
internal (i.e. non-leaf) nodes. The parameters θ(x) control the conditional probability tables. We
do not commit to a certain parametric family, but see more about the assumptions we make about
θ in §8.3.2. The parameter space is denoted Θ. The model assumes a factorization according to a
latent-variable tree. The latent variables can incorporate various linguistic properties, such as head
information, valence of dependency being generated, and so on. This information is expected to
be learned automatically from data.

Our generative model deterministically maps a POS sequence to a bracketing via an undirected
latent-variable tree. The orientation of the tree is determined by a direction mapping hdir(u), which is
fixed during learning and decoding. This means our decoder first identifies (given a POS sequence)
an undirected tree, and then orients it by applying hdir on the resulting tree (see below).

Define U to be the set of undirected latent trees where all internal nodes have degree exactly
3 (i.e. they correspond to binary bracketing), and in addition hdir(u) for any u ∈ U is projective
(explained in the hdir section). In addition, let T be the set of binary bracketings. The complete
generative model that we follow is then:

• Generate a tag sequence x = (x1, . . . , x`)

• Decide on u(x) ∈ U, the undirected latent tree that x maps to.

• Set t ∈ T by computing t = hdir(u).

• Set θ ∈ Θ by computing θ = θ(x).

• Generate a tuple v = (w1, . . . ,w`, z1, ..., zH) where wi ∈ R
p, z j ∈ R

m according to Eq. 8.1.

See Figure 1 (left) for an example.

The Direction Mapping hdir. Generating a bracketing via an undirected tree enables us to build
on existing methods for structure learning of latent-tree graphical models (Choi et al., 2011; Anand-
kumar et al., 2011). Our learning algorithm focuses on recovering the undirected tree based for
the generative model that was described above. This undirected tree is converted into a directed
tree by applying hdir. The mapping hdir works in three steps:

• It first chooses a top bracket ([1, f − 1], [f , `]) where R is the mid-point of the bracket and ` is
the length of the sentence.

1At this point, π refers to an arbitrary direction of the undirected tree u(x).

130

• It marks the edge ei, j that splits the tree according to the top bracket as the “root edge”
(marked in red in Figure 8.1(center))

• It then creates t from u by directing the tree outward from ei, j as shown in Figure 8.1(center)

The resulting t is a binary bracketing parse tree. As implied by the above definition of hdir,
selecting which edge is the root can be interpreted as determining the top bracket of the constituent
parse. For example, in Figure 8.1, the top bracket is ([1, 2], [3, 5]) = ([DT, NN], [VBD, DT, NN]). Note that
the “root” edge ez1,z2 partitions the leaves into precisely this bracketing. As indicated in the above
section, we restrict the set of undirected trees to be those such that after applying hdir the resulting
t is projective i.e. there are no crossing brackets. In §8.4.1, we discuss an effective heuristic to find
the top bracket without supervision.

8.3 Spectral Learning Algorithm based on Additive Tree Metrics

Our goal is to recover t ∈ T for tag sequence x using the dataD = [(w(i), x(i))]N
i=1. To get an intuition

about the algorithm, consider a partition of the set of examplesD intoD(x) = {(w(i), x(i)) ∈ D|x(i) =
x}, i.e. each section in the partition has an identical sequence of part of speech tags. Assume for
this section |D(x)| is large (we address the data sparsity issue in §8.3.4).

We can then proceed by learning how to map a POS sequence x to a tree t ∈ T (through u ∈U)
by focusing only on examples inD(x).

Directly attempting to maximize the likelihood unfortunately results in an intractable optimiza-
tion problem and greedy heuristics are often employed (Harmeling and Williams, 2011). Instead
we propose a method that is provably consistent and returns a tree that can be mapped to a
bracketing using hdir.

If all the variables were observed, then the Chow-Liu algorithm (Chow and Liu, 1968c) could be
used to find the most likely tree structure u ∈ U. The Chow-Liu algorithm essentially computes
the distances among all pairs of variables (the negative of the mutual information) and then finds
the minimum cost tree. However, the fact that the zi are latent variables makes this strategy
substantially more complicated. In particular, it becomes challenging to compute the distances
among pairs of latent variables. What is needed is a “special” distance function that allows us to
reverse engineer the distances among the latent variables given the distances among the observed
variables. This is the key idea behind additive tree metrics that are the basis of our approach.

In the following sections, we describe the key steps to our method. §3.1 and §3.2 largely describe
existing background on additive tree metrics and latent tree structure learning, while §3.3 and §3.4
discuss novel aspects that are unique to our problem.

8.3.1 Additive Tree Metrics

Let u(x) be the true undirected tree of sentence x and assume the nodes V to be indexed by
[M] = {1, . . . ,M} such that M = |V| = H + `. Furthermore, let v ∈ V refer to a node in the

131

vj

viei,j

(a)

vi
ei,j

vj

(b)

Figure 8.3: Two types of edges in general undirected latent trees. (a) leaf edge, (b) internal edge

undirected tree (either observed or latent). We assume the existence of a distance function that
allows us to compute distances between pairs of nodes. For example, as we see in §8.3.2 we will
define the distance d(i, j) to be a function of the covariance matrix E[viv>j |u(x), θ(x)]. Thus if vi and
v j are both observed variables, the distance can be directly computed from the data.

Moreover, the metrics we construct are such that they are tree additive, defined below:

Definition 2. A function du(x) : [M] × [M] → R is an additive tree metric (Erdõs et al., 1999) for the
undirected tree u(x) if it is a distance metric,2 and furthermore, ∀i, j ∈ [M] the following relation holds:

du(x)(i, j) =
∑

(a,b)∈pathu(x)(i, j)

du(x)(a, b) (8.2)

where pathu(x)(i, j) is the set of all the edges in the (undirected) path from i to j in the tree u(x).

As we describe below, given the tree structure, the additive tree metric property allows us
to compute “backwards” the distances among the latent variables as a function of the distances
among the observed variables.

Define D to be the M ×M distance matrix among the M variables, i.e. Di j = du(x)(i, j). Let DWW,
DZW (equal to D>WZ), and DZZ indicate the word-word, latent-word and latent-latent sub-blocks of
D respectively. In addition, since u(x) is assumed to be known from context, we denote du(x)(i, j)
just by d(i, j).

Given the fact that the distance between a pair of nodes is a function of the random variables
they represent (according to the true model), only DWW can be empirically estimated from data.
However, if the underlying tree structure is known, then Definition 2 can be leveraged to compute
DZZ and DZW as we show below.

We first show how to compute d(i, j) for all i, j such that i and j are adjacent to each other in u(x),
based only on observed nodes. It then follows that the other elements of the distance matrix can
be computed based on Definition 2. To show how to compute distances between adjacent nodes,
consider the two cases: (1) (i, j) is a leaf edge; (2) (i, j) is an internal edge.

2This means that it satisfies d(i, j) = 0 if and only if i = j, the triangle inequality and is also symmetric.

132

Case 1 (leaf edge, figure 8.3(a)) Assume without loss of generality that j is the leaf and i is an
internal latent node. Then i must have exactly two other neighbors a ∈ [M] and b ∈ [M]. Let A
denote the set of nodes that are closer to a than i and similarly let B denote the set of nodes that are
closer to b than i. Let A∗ and B∗ denote all the leaves (word nodes) in A and B respectively. Then
using path additivity (Definition 2), it can be shown that for any a∗ ∈ A∗, b∗ ∈ B∗ it holds that:

d(i, j) =
1
2
(
d(j, a∗) + d(j, b∗) − d(a∗, b∗)

)
(8.3)

Note that the right-hand side only depends on distances between observed random variables.

Case 2 (internal edge, figure 8.3(b)) Both i and j are internal nodes. In this case, i has exactly
two other neighbors a ∈ [M] and b ∈ [M], and similarly, j has exactly other two neighbors g ∈ [M]
and h ∈ [M]. Let A denote the set of nodes closer to a than i, and analogously for B, G, and H. Let
A∗, B∗, G∗, and H∗ refer to the leaves in A,B,G, and H respectively. Then for any a∗ ∈ A∗, b∗ ∈ B∗,
g∗ ∈ G∗, and h∗ ∈ H∗ it can be shown that:

d(i, j) = 1
4

(
d(a∗, g∗) + d(a∗, h∗) + d(b∗, g∗) + d(b∗, h∗) − 2d(a∗, b∗) − 2d(g∗, h∗)

)
(8.4)

Empirically, one can obtain a more robust empirical estimate d̂(i, j) by averaging over all valid
choices of a∗, b∗ in Eq. 8.3 and all valid choices of a∗, b∗, g∗, h∗ in Eq. 8.4 (Desper and Gascuel, 2005).

8.3.2 Constructing a Spectral Additive Metric

In constructing our distance metric, we begin with the following assumption on the distribution
in Eq. 8.1 (analogous to the assumptions made in Anandkumar et al., 2011).

Assumption 1 (Linear, Rank m, Means).

E[zi|πx(zi), x] = A(zi|zπx(zi),x)πx(zi) ∀i ∈ [H]

where A(zi|πx(zi),x) ∈ R
m×m has rank m.

E[wi|πx(wi), x] = C(wi|πx(wi),x)πx(wi) ∀i ∈ [`(x)]

where C(wi|πx(wi),x) ∈ R
p×m has rank m.

Also assume that E[ziz>i |x] has rank m ∀i ∈ [H].

Note that the matrices A and C are a direct function of θ(x), but we do not specify a model
family for θ(x). The only restriction is in the form of the above assumption. If wi and zi were
discrete, represented as binary vectors, the above assumption would correspond to requiring all
conditional probability tables in the latent tree to have rank m. Assumption 1 allows for the wi to
be high dimensional features, as long as the expectation requirement above is satisfied. Similar

133

assumptions are made with spectral parameter learning methods e.g. (Hsu et al., 2009), (Bailly
et al., 2009), (Parikh et al., 2011), and (Cohen et al., 2012).

Furthermore, Assumption 1 makes it explicit that regardless of the size of p, the relationships
among the variables in the latent tree are restricted to be of rank m, and are thus low rank since
p > m. To leverage this low rank structure, we propose using the following additive metric, a
normalized variant of that in Anandkumar et al. (2011):

dspectral(i, j) = − log Λm(Σx(i, j)) + 1
2 log Λm(Σx(i, i)) + 1

2 log Λm(Σx(j, j)) (8.5)

where Λm(A) denotes the product of the top m singular values of A and Σx(i, j) := E[viv>j |x], i.e. the
uncentered cross-covariance matrix.+

We can then show that this metric is additive:

Lemma 22. If Assumption 1 holds then, dspectral is an additive tree metric (Definition 2).

A proof is in the appendix for completeness. From here, we use d to denote dspectral, since that is
the metric we use for our learning algorithm.

8.3.3 Recovering the Minimal Projective Latent Tree

It has been shown (Rzhetsky and Nei, 1993) that for any additive tree metric, u(x) can be recovered
by solving arg minu∈U c(u) for c(u):

c(u) =
∑

(i, j)∈Eu

d(i, j). (8.6)

where Eu is the set of pairs of nodes which are adjacent to each other in u and d(i, j) is computed
using Eq. 8.3 and Eq. 8.4.

Note that the metric d we use in defining c(u) is based on the expectations from the true
distribution. In practice, the true distribution is unknown, and therefore we use an approximation
for the distance metric d̂. As we discussed in §8.3.1 all elements of the distance matrix are functions
of observable quantities if the underlying tree u is known. However, only the word-word sub-block
DWW can be directly estimated from the data without knowledge of the tree structure.

This subtlety makes solving the minimization problem in Eq. 8.6 NP-hard (Desper and Gascuel,
2005) if u is allowed to be an arbitrary undirected tree. However, if we restrict u to be inU, as we
do in the above, then maximizing ĉ(u) overU can be solved using the bilexical parsing algorithm
from Eisner and Satta (1999) in O(`(x)4). This is because the computation of the other sub-blocks
of the distance matrix only depend on the partitions of the nodes shown in Figure 8.3 into A, B,
G, and H, and not on the entire tree structure. For simplicity of implementation, we use a O(`(x)5)
CKY-like dynamic programming algorithm described in more detail in §8.6.1.

Summary. We first defined a generative model that describes how a sentence, its sequence of
POS tags, and its bracketing is generated (§8.2.3). First an undirected u ∈ U is generated (only
as a function of the POS tags), and then u is mapped to a bracketing using a direction mapping

134

hdir. We then showed that we can define a distance metric between nodes in the undirected tree,
such that minimizing it leads to a recovery of u. This distance metric can be computed based only
on the text, without needing to identify the latent information (§8.3.2). If the true distance metric
is known, with respect to the true distribution that generates the words in a sentence, then u can
be fully recovered by optimizing the cost function c(u). However, in practice the distance metric
must be estimated from data, as discussed below.

8.3.4 Estimation of d from Sparse Data

We now address the data sparsity problem, in particular thatD(x) can be very small, and therefore
estimating d for each POS sequence separately can be problematic.3

In order to estimate d from data, we need to estimate the covariance matrices Σx(i, j) (for i, j ∈
{1, . . . , `(x)}) from Eq. 8.5.

To give some motivation to our solution, consider estimating the covariance matrix Σx(1, 2) for
the tag sequence x = (DT1, NN2, VBD3, DT4, NN5). D(x) may be insufficient for an accurate empirical
estimate. However, consider another sequence x′ = (RB1, DT2, NN3, VBD4, DT5, ADJ6, NN7). Although
x and x′ are not identical, it is likely that Σx′(2, 3) is similar to Σx(1, 2) because the determiner and
the noun appear in similar syntactic context. Σx′(5, 7) also may be somewhat similar, but Σx′(2, 7)
should not be very similar to Σx(1, 2) because the noun and the determiner appear in a different
syntactic context.

The observation that the covariance matrices depend on local syntactic context is the main
driving force behind our solution. The local syntactic context acts as an “anchor,” which enhances
or replaces a word index in a sentence with local syntactic context. More formally, an anchor is
a function G that maps a word index j and a sequence of POS tags x to a local context G(j, x).
The anchor we use is G(j, x) = (j, x j). Then, the covariance matrices Σx are estimated using kernel
smoothing (Hastie et al., 2009), where the smoother tests similarity between the different anchors
G(j, x).

Choice of kernel For our experiments, we use the kernel

Kγ(j, k, j′, k′|x, x′) = max
{

0, 1 −
κ(j, k, j′, k′|x, x′)

γ

}
(8.7)

where γ denotes the user-specified bandwidth, and κ(j, k, j′, k′|x, x′) =
| j − k| − | j′ − k′|
| j − k| + | j′ − k′|

if x(j) = x(j′)

and x(k′) = x(k), and sign(j − k) = sign(j′ − k′) (and∞ otherwise).

The kernel is non-zero if and only if the tags at position j and k in x are identical to the ones
in position j′ and k′ in x′, and if the direction between j and k is identical to the one between j′

and k′. Note that the kernel is not binary, as opposed to the theoretical kernel in the §8.3.6. Our
experiments show that using a non-zero value different than 1 that is a function of the distance

3This data sparsity problem is quite severe – for example, the Penn treebank (Marcus et al., 1993) has a total number
of 43,498 sentences, with 42,246 unique POS tag sequences, averaging |D(x)| to be 1.04.

135

Input: sentence and
POS tags

Compute distance
matrix from
training set

Find min-cost latent
tree 𝒖 with dynamic
programming

Output: Obtain parse
tree with heuristic:
 𝒕 = 𝒉𝒅𝒊𝒓(𝒖)

Figure 8.4: Flowchart that gives an overview of Algorithm 15

between j and k compared to the distance between j′ and k′ does better in practice. Moreover, we
experimented with more complicated kernels that take into account larger context, but empirically
these did not affect performance much while increasing computational complexity significantly.

Example: Consider the following tag sequences with associated sentences.

x = (DT1, NN2, VBD3, DT4, NN5)
(1) The bear ate the fish
(2) An elephant drank the water

x′ = (RB1, DT2, NN3, VBD4, DT5, ADJ6, NN7)
(3) Slowly, a tortoise ran the rainy race

Let Γ̂x(i, j) := 1∑N
n=1 I[x(n)=x]

∑N
n=1 I[x

(n) = x]w(n)
i (w(n)

j)>. This is the empirical estimate without any

kernel smoothing. For example, Γ̂x(1, 2) = 1
2 w(1)

1 (w(1)
2)(>) + 1

2 w(2)
1 (w(2)

2)(>)

Now consider the kernel in Eq. 8.7. This kernel only has a non-zero value for pairs (i, j) s.t. i < j
where the tag at position i is DT and the tag at position j is NN. This leaves us with the terms x(1, 2),
x(1, 5), x(4, 5), x′(2, 3), x′(2, 7), x′(5, 7):

Σ̂x(1, 2) = Kγ(1, 2, 1, 2|x, x)̂Γx(1, 2) + Kγ(1, 2, 1, 5|x, x)̂Γx(1, 5)

+ Kγ(1, 2, 4, 5|x, x)̂Γx(4, 5) + Kγ(1, 2, 2, 3|x, x′)̂Γx′(2, 3)

+ Kγ(1, 2, 2, 7|x, x′)̂Γx′(2, 7) + Kγ(1, 2, 5, 7|x, x′)̂Γx′(5, 7) (8.8)

8.3.5 Overall algorithm

The full learning algorithm is given in Algorithm 15 and a high-level flow chart is given in
Figure 8.4. The first step in the algorithm is to estimate distances d̂spectral(j, k) for all position pairs
j, k. This involves estimating the covariance matrix block Σ̂x(i)(j, k) for each training example x(i) and
each pair of preterminal positions (j, k) in x(i). Instead of computing this block by computing the
empirical covariance matrix for positions (j, k) in the dataD(x), the algorithm uses all of the pairs
(j′, k′) from all of N training examples using kernel smoothing with bandwidth γ to obtain a more
robust estimate. Then, the minimum cost latent tree is computed using dynamic programming
and directed into a parse tree using the heuristic hdir. The dynamic programming algorithm is
described in more detail in §8.6.1.

136

Algorithm 15 The learning algorithm for finding the latent structure from a set of examples
(w(i), x(i)), i ∈ [N].
Inputs: Set of examples (w(i), x(i)) for i ∈ [N], a kernel Kγ(j, k, j′, k′|x, x′), an integer m
Data structures: For each i ∈ [N], j, k ∈ `(x(i)) there is a (uncentered) covariance matrix Σ̂x(i)(j, k) ∈
Rp×p, and a distance d̂spectral(j, k).
Algorithm:
(Distance matrix estimation) ∀i ∈ [N], j, k ∈ `(x(i))

• Let C j′,k′|i′ = w(i′)
j′ (w(i′)

k′)>, k j,k, j′,k′,i,i′ = Kγ(j, k, j′, k′|x(i), x(i′)) and `i′ = `(x(i′)), and estimate each
p × p covariance matrix as:

Σ̂x(j, k) =∑N
i′=1

∑`i′

j′=1

∑`i′

k′=1 k j,k, j′,k′,i,i′C j′,k′|i′∑N
i′=1

∑`i′

j′=1

∑`i′

k′=1 k j,k, j′,k′,i,i′

• Compute d̂spectral(j, k) ∀ j, k ∈ `(x(i)) using Eq. 8.5.

(Uncover structure) ∀i ∈ [N] Find û(i) = arg minu∈U ĉ(u), and for the ith example, return the
structure hdir(û(i)). (This step is described in more detail in Algorithm 17 and Algorithm 18 in
§8.6.1)

8.3.6 Theoretical Guarantees

Our main theoretical guarantee is that under the model assumptions, the learning Algorithm 15
will recover the correct undirected tree u ∈ U with high probability, if the given top bracket is
correct and if we obtain a sufficient number of examples (w(i), x(i)) being generated from the model
in §2. Note if the top bracket is correct this also implies that the algorithm recovers the correct
directed tree t ∈ T .

Our kernel is controlled by its “bandwidth” γ, a typical kernel parameter that appears when
using kernel smoothing. The larger this positive number is, the more inclusive the kernel will be
with respect to examples inD in order to estimate a given covariance matrix.

In order for the learning algorithm to be consistent the kernel must be able to effectively manage
the bias-variance trade-off with the bandwidth parameter. Intuitively, if the sample size is small,
then the bandwidth should be relatively large to control the variance. As the sample size increases,
the bandwidth should be decreased at a certain rate to reduce the bias.

In kernel density estimation in Rp, one can put smoothness assumptions on the density being
estimated, such as bounded second derivatives. With these conditions, it can be shown that setting
γ = O(N−1/5) will optimally trade-off the bias and the variance in a way that leads to a consistent
estimator.

However, our space of possible sequences is discrete and thus it is much more difficult to define
these analogous smoothness conditions. Therefore, giving an asymptotic rate to set the bandwidth

137

as a function of the sample size is difficult. To solve this issue, we consider a specific theoretical
kernel where the bandwidth directly relates to the bias of the estimator. Define the following γ-ball

B j,k,x(γ) = {(j′, k′, x′) : ‖Σx′(j′, k′) − Σx(j, k)‖F ≤ γ} (8.9)

where ‖A‖F for a matrix A is the Frobenius norm of that matrix, i.e.: ‖A‖F =
√∑

j,k A2
jk.

We then define the following “theoretical” kernel:

Kγ(j, k, j′, k′|x, x′) =

{
1 : (j′, k′, x′) ∈ B(j,k,x)(γ)
0 : (j′, k′, x′) < B(j,k,x)(γ) (8.10)

Note that this kernel is for theoretical purposes only and is not the same kernel that is used in our
experiments. It remains unclear how to generalize our theory to encompass our empirical kernel.

Furthermore, to quantify the expected effective sample size using kernel smoothing we define
the following quantity:

ν j,k,x(γ) =

∑
x′∈T∗

p(x′)
`(x′)2

∑
j′,k′∈[`(x′)]

Kγ(j, k, j′, k′|x, x′)

 (8.11)

where p(x) the prior distribution over tag sequences. Let νx(γ) = min j,k ν j,k,x(γ). Intuitively, ν j,k,x(γ)
represents the probability of finding contexts that are “similar” to (j, k, x) as defined by the kernel.
Consequently, Nνx(γ) represents a lower bound on the expected effective sample size for tag
sequence x.

Denote σx(j, k)(r) as the rth singular value of Σx(j, k). Let σ∗(x) := min j,k∈`(x) min
(
σx(j, k)(m)

)
. Finally,

define φ as the difference of the maximum possible entry in w and the minimum possible entry in
w (i.e. we assume that the embeddings are bounded vectors).

Using the above definitions and leveraging the proof technique in Zhou et al. (2010), we establish
that our strategy will result in a consistent estimation of the word-word distance subblock DWW.

Lemma 23. Assume the kernel used is that in Eq. (8.10) with bandwidth γ =
C1εσ∗(x)

m and that

N ≥
m2φ2

C3ε2σ∗(x)2νx(γ)2 log
(

C2p2`(x)2

δ

)
(8.12)

Then, for a fixed tag sequence x, and any ε < σ∗(x)
2 :

|
ˆdspectral(j, k) − dspectral(j, k)| ≤ ε ∀ j , k ∈ `(x) (8.13)

with probability 1 − δ.

The proof is in §8.6.3. We then have the following theorem.

138

Theorem 4. Define

4(x) :=
minu′∈U:u′,u(x)(c(u(x)) − c(u′))

8|`(x)|
(8.14)

where u(x) is the correct tree and u′ is any other tree.

Let û be the estimated tree for tag sequence x. Assume that the kernel in Eq. (8.10) is used with bandwidth
γ =

4(x)σ∗(x)
C4m and that

N ≥
C5m2φ2 log

(
C2p2`(x)2

δ

)
min(σ∗(x)24(x)2, σ∗(x)2)νx(γ)2 (8.15)

Then with probability 1 − δ, û = u(x). (If the top bracket is correct, this also implies that t̂ = t(x))

Proof. By Lemma 23, and this choice of N and γ,

|dspectral(j, k) − dspectral(j, k)| ≤ 4(x) ∀ j , k ∈ `(x) (8.16)

Now for any tree u ∈ U, we can compute c(u) by summing over the distances d(i, j) where i and
j are adjacent in u.

Using Eqs. 8.3 and 8.4, Eq. (8.16) implies that

|d̂(i, j) − d(i, j)| ≤ 24(x) ∀ j , k ∈ [M] (8.17)

Since there are ≤ 2|`(x)| edges in the tree, this is sufficient to guarantee that |ĉ(u) − c(u)| ≤
4|`(x)|4(x) ∀u ∈ U. Thus,

ĉ(u(x)) − ĉ(u′) < 0 ∀u′ ∈ U : u′ , u(x) (8.18)

Thus, the correct tree is the one with minimum estimated cost and Algorithm 15 will return the
correct tree. �

8.4 Experiments

We report results on three different languages: English, German, and Chinese. For English we
use the Penn treebank (Marcus et al., 1993), with sections 2–21 for training and section 23 for final
testing. For German and Chinese we use the Negra treebank and the Chinese treebank respectively
and the first 80% of the sentences are used for training and the last 20% for testing. All punctuation
from the data is removed.4

We primarily compare our method to the constituent-context model (CCM) of Klein and Man-
ning (2002). We also compare our method to the algorithm of Seginer (2007).

4We make brief use of punctuation for our top bracket heuristic detailed below before removing it.

139

Length CCM CCM-U CCM-OB CCM-UB
≤ 10 72.5 57.1 58.2 62.9
≤ 15 54.1 36 24 23.7
≤ 20 50 34.7 19.3 19.1
≤ 25 47.2 30.7 16.8 16.6
≤ 30 44.8 29.6 15.3 15.2
≤ 40 26.3 13.5 13.9 13.8

Table 8.1: Comparison of different CCM variants on English (training). U stands for universal
POS tagset, OB stands for conjoining original POS tags with Brown clusters and UB stands for
conjoining universal POS tags with Brown clusters. The best setting is just the vanilla setting,
CCM.

8.4.1 Experimental Settings

Top bracket heuristic Our algorithm requires the top bracket in order to direct the latent tree. In
practice, we employ the following heuristic to find the bracket using the following three steps:

• If there exists a comma/semicolon/colon at index i that has at least a verb before i and both
a noun followed by a verb after i, then return ([0, i − 1], [i, `(x)]) as the top bracket. (Pick the
rightmost comma/semicolon/colon if multiple satisfy the criterion).

• Otherwise find the first non-participle verb (say at index j) and return ([0, j − 1], [j, `(x)]).

• If no verb exists, return ([0, 1], [1, `(x)]).

Word embeddings As mentioned earlier, each wi can be an arbitrary feature vector. For all
languages we use Brown clustering (Brown et al., 1992) to construct a log(C) + C feature vector
where the first log(C) elements indicate which mergable cluster the word belongs to, and the last
C elements indicate the cluster identity. For English, more sophisticated word embeddings are
easily obtainable, and we experiment with neural word embeddings (Turian et al., 2010) of length
50. We also explored two types of CCA embeddings: OSCCA and TSCCA, given in Dhillon et al.
(2012b). The OSCCA embeddings behaved better on the English the dataset, so we only report
their results5.

Choice of data For CCM, we found that if the full dataset (all sentence lengths) is used in training,
then performance degrades when evaluating on sentences of length ≤ 10. We therefore restrict
the data used with CCM to sentences of length ≤ `, where ` is the maximal sentence length
being evaluated. This does not happen with our algorithm, which manages to leverage lexical
information whenever more data is available. We therefore use the full data for our method for all
lengths.

We also experimented with the original POS tags and the universal POS tags of Petrov et al.
(2011). Here, we found out that our method does better with the universal part of speech tags. For

5The brown clusters and neural word embeddings were obtained from http://metaoptimize.com/projects/wordreprs/.
Unfortunately this website is no longer online. The CCA embeddings were obtained from Paramveer Dhillon.

140

` English German Chinese
NN-O NN CC-O CC BC-O BC CCM BC-O BC CCM BC-O BC CCM

tr
ai

n ≤ 10 70.9 69.2 70.4 68.7 71.1 69.3 72.5 64.6 59.9 62.6 64.9 57.3 46.1
≤ 20 55.1 53.5 53.2 51.6 53.0 51.5 50 52.7 48.7 47.9 51.4 46 22.4
≤ 40 46.1 44.5 43.6 41.9 43.3 41.8 26.3 46.7 43.6 19.8 42.6 38.6 15

te
st

≤ 10 69.2 66.7 68.3 65.5 68.9 66.1 70.5 66.4 61.6 64.7 58.0 53.2 40.7
≤ 15 60.3 58.3 58.6 56.4 58.6 56.5 53.8 57.5 53.5 49.6 54.3 49.4 35.9
≤ 20 54.1 52.3 52.3 50.3 51.9 50.2 50.4 52.8 49.2 48.9 49.7 45.5 20.1
≤ 25 50.8 49.0 48.6 46.6 48.3 46.6 47.4 50.0 46.8 45.6 46.7 42.7 17.8
≤ 30 48.1 46.3 45.6 43.7 45.4 43.8 44.9 48.3 45.4 21.9 44.6 40.7 16.1
≤ 40 45.5 43.8 43.0 41.1 42.7 41.1 26.1 46.9 44.1 20.1 42.2 38.6 14.3

Table 8.2: F1 bracketing measure for the test sets and train sets in three languages. NN, CC, and
BC indicate the performance of our method for neural embeddings, CCA embeddings, and Brown
clustering respectively, using the heuristic for hdir described in § 8.4.1. NN-O, CC-O, and BC-O
indicate that the oracle (i.e. true top bracket) was used for hdir.

CCM, we also experimented with the original parts of speech, universal tags (CCM-U), the cross-
product of the original parts of speech with the Brown clusters (CCM-OB), and the cross-product
of the universal tags with the Brown clusters (CCM-UB). The results in Table 8.1 indicate that the
vanilla setting is the best for CCM.

Thus, for all results, we use universal tags for our method and the original POS tags for CCM.
We believe that our approach substitutes the need for fine-grained POS tags with the lexical
information. CCM, on the other hand, is fully unlexicalized.

Parameter Selection Our method requires two parameters, the latent dimension m and the
bandwidth γ. CCM also has two parameters, the number of extra constituent/distituent counts
used for smoothing. For both methods we chose the best parameters for sentences of length ` ≤ 10
on the English Penn Treebank (training) and used this set for all other experiments. This resulted
in m = 7, γ = 0.4 for our method and 2, 8 for CCM’s extra constituent/distituent counts respectively.
We also tried letting CCM choose different hyperparameters for different sentence lengths based
on dev-set likelihood, but this gave worse results than holding them fixed.

8.4.2 Results

Test I: Accuracy Table 8.2 summarizes our results. CCM is used with the initializer proposed
in Klein and Manning (2002).6 NN, CC, and BC indicate the performance of our method for neural
embeddings, CCA embeddings, and Brown clustering respectively, using the heuristic for hdir
described in § 8.4.1. NN-O, CC-O, and BC-O indicate that the oracle (i.e. true top bracket) was
used for hdir. For our method, test set results can be obtained by using Algorithm 15 (except the
distances are computed using the training data).

For English, while CCM behaves better for short sentences (` ≤ 10), our algorithm is more robust

6We used the implementation available at http://tinyurl.com/lhwk5n6.

141

0

5

10

15

20

25

30

35

20-30 31-40 41-50 51-60 61-70 71-80
Fr

e
q

u
e

n
cy

Bracketing F1

CCM Random Restarts (Length <= 10)

Figure 8.5: Histogram showing performance of CCM across 100 random restarts for sentences of
length ≤ 10.

with longer sentences. This is especially noticeable for length ≤ 40, where CCM breaks down and
our algorithm is more stable. We find that the neural embeddings modestly outperform the CCA
and Brown cluster embeddings.

The results for German are similar, except CCM breaks down earlier at sentences of ` ≤ 30. For
Chinese, our method substantially outperforms CCM for all lengths. Note that CCM performs
very poorly, obtaining only around 20% accuracy even for sentences of ` ≤ 20. We didn’t have
neural embeddings for German and Chinese (which worked best for English) and thus only used
Brown cluster embeddings.

For English, the disparity between NN-O (oracle top bracket) and NN (heuristic top bracket) is
rather low suggesting that our top bracket heuristic is rather effective. However, for German and
Chinese note that the “BC-O” performs substantially better, suggesting that if we had a better top
bracket heuristic our performance would increase.

Test II: Sensitivity to initialization The EM algorithm with the CCM requires very careful
initialization, which is described in Klein and Manning (2002). If, on the other hand, random
initialization is used, the variance of the performance of the CCM varies greatly. Figure 8.5 shows
a histogram of the performance level for sentences of length ≤ 10 for different random initializers.
As one can see, for some restarts, CCM obtains accuracies lower than 30% due to local optima.
Our method does not suffer from local optima and thus does not require careful initialization.

Test III: Comparison to Seginer’s algorithm Our approach is not directly comparable to Seginer’s
because he uses punctuation, while we use POS tags. Using Seginer’s parser we were able to get
results on the training sets. On English: 75.2% (` ≤ 10), 64.2% (` ≤ 20), 56.7% (` ≤ 40). On German:
57.8% (` ≤ 10), 45.0% (` ≤ 20), and 39.9% (` ≤ 40). On Chinese: 56.6% (` ≤ 10), 45.1% (` ≤ 20), and
38.9% (` ≤ 40).

Thus, while Seginer’s method performs better on English, our approach performs 2-3 points
better on German, and both methods give similar performance on Chinese.

142

8.5 Conclusion

We described a spectral approach for unsupervised constituent parsing that comes with theoretical
guarantees on latent structure recovery. Empirically, our algorithm performs favorably to the CCM
of Klein and Manning (2002) without the need for careful initialization.

The tree metric used in this work is closely related to that used in Chapter 6 except it is finite
dimensional. However, the meta-algorithm used to learn the tree structure is rather different.
Because of the domain, we are able to restrict the space of tree structures to those that are projective,
thus enabling us to find the minimum cost tree. In Chapter 6, however, we did not have any
restrictions on the tree structure, and thus solving for the minimum cost tree is NP-hard. Therefore
in Chapter 6, we resorted to using neighbor joining (Saitou and Nei, 1987), which is consistent but
does not have any guarantees when the model assumptions do not hold (since it is greedy). On
the other hand, our meta-algorithm will find the minimum cost tree regardless of whether the data
was generated by the assumed model or not.

In the future, it would be interesting to explore dependency parsing with these ideas. There has
been considerably more existing work on dependency parsing methods (Cohen and Smith, 2009;
Headden et al., 2009; Spitkovsky et al., 2010b,a; Gillenwater et al., 2010; Golland and DeNero, 2012),
and it would be interesting to see how our approach compares to these. As an initial attempt,
we tried learning dependency trees using the Chow Liu algorithm for fully observed trees (see
Algorithm 1 in Chapter 2), instead of the latent trees / additive metrics, but performance was not
great.

8.6 Appendix

8.6.1 Details on recovering minimum cost latent tree

In this section we give more details on the dynamic programming algorithm used to recover the
projective latent tree. We describe a computational algorithm with O(`(x)5) complexity based on
the CKY algorithm (Manning and Schütze, 1999). A faster algorithm (O(`(x)4) is possible based on
bilexical parsing algorithms (Eisner and Satta, 1999) but more difficult to implement.

Note that the distance function d is invariant to the direction of the tree. However, since we are
restricting u ∈ U (set of projective trees with respect to hdir) we must perform the optimization
directly over directed trees t ∈ T since projectivity is only a property of a directed tree.

Define copt([i, f − 1], [f , j]) to be the optimal cost for a subtree that spans [i, j] with the top split
[f − 1, f], and topt([i, f − 1], [f , j]) be the associated tree. Similarly let t([i, f − 1], [f , j]) denote some
tree (not necessarily optimal) that spans [i, j] with the top split [f − 1, f]. A tree is considered
complete if it spans [1, `] where ` is the length of the sentence. Otherwise it is considered to be
incomplete.

If a tree t([i, f − 1], [f , j]) is incomplete, then it has a root node that we denote as r[i, f−1],[f , j]
7.

7note that the complete tree does not have a root node, but rather a root edge

143

V2

z2

V1

z1

i a-1 a f-1

z3

(a)

V4

z5

V3

z4

f b-1

b j

z6

(b)

V2

z2

V1

z1

i a-1 a f-1

z3

z7

V4

z5

V3

z4

f b-1

b j

z6

(c)

V2

z2

V1

z1

i a-1 a f-1

z3

V4

z5

V3

z4

f b-1

b j

z6

(d)

Figure 8.6: Example of merging: (a) tree 1: t([i, a − 1], [a, f − 1]), (b) tree 2: t([f , b − 1], [b, j]) (c)
resulting tree from merging tree 1 and tree 2 (incomplete case): t([i, f − 1], [f , j]) (d) merged tree
from merging tree 1 and tree 2 (complete case): t([i, f − 1], [f , j])

Algorithm 16 Merge two latent trees

In: tag sequence x, and two trees to merge: t([i, a − 1, [a, f − 1]) and t([f , b − 1], [b, j])
Out: merged tree t([i, f − 1], [f , j])

1: if i = 1 and j = `(x) then
2: Add edge (r[i,a−1],[a, f], r[f ,b−1],[b, j])
3: else
4: Add node r[i, f−1],[f , j]
5: Add edges (r[i,a−1],[a, f], r[i, f−1],[f , j]) and (r[f ,b−1],[b, j], r[i, f−1],[f , j])
6: end if

An example of two incomplete trees are shown Figure 8.6(a) and Figure 8.6(b). In Figure 8.6(a),
r[i,a−1],[a, f] = z3 and r[f ,b−1],[b, j] = z6

Two trees with adjacent spans, e.g. t([i, a − 1, [a, f − 1]) and t([f , b − 1], [b, j]), can be merged
into one tree t([i, f − 1], [f , j]). The merging process is slightly different depending on whether
t([i, f − 1], [f , j]) is an incomplete or a complete tree. If t([i, f − 1], [f , j]) is incomplete then a new
root node r[i, f−1],[f , j] is added and then connected to the subtrees. For example in Figure 8.6(c), z7
is the new root and the edges (z3, z7) and (z6, z7) have been added.

On the other hand, if t([i, f − 1], [f , j]) then a new root node is not added. Instead we simply add
an edge between the two roots of the subtrees being merged. For example in Figure 8.6(d), the
edge (z3, z6) is added8.

We now decompose the cost function recursively in order to reach the dynamic programming

8The reason for this is technical: in a graphical model all internal nodes with less than 3 neighbors are redundant,
since they can be marginalized out and the resulting model will still be a tree.

144

solution. If i = 1 and j = `(x), then we can see that copt([i, f − 1], [f , j]) can be recursively written as:

copt([i, f − 1], [f , j]) = min
a,b

(
d(r[i,a−1],[a, f−1], r[f ,b−1],[b, j]) + copt([i, a − 1], [a, f − 1]) + copt([f , b − 1], [b, j])

)
(8.19)

Note that because of Eq. 8.4, d(r[i,a−1],[a, f−1], r[f ,b−1],[f , j]) is only a function of the partition of the
leaves into the sets A∗,B∗,G∗ and H∗. In this case the four sets are A∗ = [i, a − 1], B∗ = [a, f − 1],
G∗ = [f , b − 1], and H∗ = [b, j]. In Figure 8.6(d), A∗ = V∗1, B∗ = V∗2, G∗ = V∗3, H∗ = V∗4.

Decomposing recursively gives

copt([i, f − 1], [f , j]) = min
a,b

(
d(r[i,a−1],[a, f−1], r[i, f−1],[f , j]) + d(r[i, f−1],[f , j], r[f ,b−1],[b, j])

+ copt([i, a − 1], [a, f − 1]) + copt([f , b − 1], [b, j])
)

(8.20)

Based on Eq. 8.4, d(r[i,a−1],[a, f−1], r[i, f−1],[f , j]) depends on the partitions A∗ = [i, a − 1],B∗ = [a, f − 1],
G∗ = [f , j], and H∗ = {x1, ..., x`} \ {[i, j]}. Similarly, using Eq. 8.4, d(r[i, f−1],[f , j], r[f ,b−1],[b, j]) is a function
of the partitions A∗ = [f , b − 1],B∗ = [b, j], G∗ = [i, f − 1], and H∗ = {x1, ..., x`} \ {[i, j]}.

In the base case copt([i, i], [j, j]) = d(i, j) where both i and j are leaves and adjacent words in the
sentence.

Reformulating this recursion into a dynamic program gives Algorithm 17. Note that unlike the
traditional CKY algorithm that only stores the cost for a span c(i, j), here we are storing the cost for
c([i, f − 1], [f , j]). As a result the computational algorithm is O(`(x)5). A faster algorithm (O(`(x)4)
is possible based on bilexical parsing algorithms (Eisner and Satta, 1999) but more difficult to
implement.

To aid implementation, a more detailed version of Algorithm 15 is provided in Algorithm 18.

8.6.2 Proof of Lemma 22

In this section, we prove that our proposed tree metric is path additive based on the proof technique
of Lemma 15 in Chapter 6.

Proof. For conciseness, we simply prove the property for paths of length 2. The proof for more
general cases follows similarly (e.g. see (Anandkumar et al., 2011)).

First note that the relationship between eigenvalues and singular values allows us to rewrite the
distance metric as

dspectral(i, j) = −
1
2

log Λm(Σx(i, j)Σx(i, j)>) + 1
4 log Λm(Σx(i, i)Σx(i, i)>) + 1

4 log Λm(Σx(j, j)Σx(j, j)>)

(8.21)

Furthermore, Σx(i, j)Σx(i, j)> is rank m by Assumption 1 and the conditional independence

145

Algorithm 17 Compute minimum cost projective parse tree

In: sentence/tag sequence (w, x), distances d̂spectral(j, k) ∀ j, k ∈ `(x), top bracket [(1, f top
−1), (f top, `)]

Out: parse tree t ∈ T

1: Initialize topt([i, i], [j, j]) = Merge(x, [wi], [w j]) (via Algorithm 16) and set cost values
copt([i, i], [j, j]) = d̂spectral(i, j)∀i, j

2: for (k = 2; k < `; k + +) do
3: for each pair (i, j) s.t. j = i + k and i, j > 0 do
4: for f ∈ {i + 1, j} do
5: if i = 1 and j = `(x) then
6: if f = f top then
7: Compute optimal cost copt([i, f − 1], [f , j]) according to Eq. 8.19 and let amin, bmin be

the values of a, b that achieve the minimum.
8: else
9: Continue

10: end if
11: else
12: Compute optimal cost copt([i, f − 1], [f , j]) according to Eq. 8.20 and let amin, bmin be the

values of a, b that achieve the minimum.
13: end if
14: Set topt([i, f − 1], [f , j]) = Merge(x, topt([i, amin

− 1], [amin, f − 1]), topt([f , bmin
− 1], [bmin, j]))

(via Algorithm 16)
15: end for
16: end for
17: end for
18: return topt([(1, f top

− 1), (f top, `)])

statements implied by the latent tree model. Thus Λm(Σx(i, j)Σx(i, j)>) is equivalent to taking the
pseudo-determinant | · |+ of (Σx(i, j)Σx(i, j)>), which is the product of the non-zero eigenvalues. The
pseudo-determinant can be alternatively defined in the following limit form:

|B|+ = lim
α→0

|B + αI|
αp−m (8.22)

where B is a p×p matrix of rank m and I is the p×p identity and | · | equals the standard determinant.
Note that if m = p then |B|+ = |B|.

Thus, our distance metric can be further rewritten as:

dspectral(i, j) = −
1
2

log |Σx(i, j)Σx(i, j)>|+ + 1
4 log |Σx(i, i)Σx(i, i)>|+ + 1

4 log |Σx(j, j)Σx(j, j)>|+ (8.23)

We now proceed with the proof. For paths of length 2, i − j − k, there are three cases9:

• i← j→ k

9although the additive distance metric is undirected, A and C in Assumption 1 are defined with respect to parent-
child relationships, so we must consider direction

146

Algorithm 18 The learning algorithm for finding the latent structure from a set of examples
(w(i), x(i)), i ∈ [N].
Inputs: Set of examples (w(i), x(i)) for i ∈ [N], a kernel Kγ(j, k, j′, k′|x, x′), an integer m
Data structures: For each i ∈ [N], j, k ∈ `(x(i)) there is a (uncentered) covariance matrix Σ̂x(i)(j, k) ∈
Rp×p, and a distance d̂spectral(j, k).
Algorithm:
(Covariance estimation) ∀i ∈ [N], j, k ∈ `(x(i))

• Let C j′,k′|i′ = w(i′)
j′ (w(i′)

k′)>, k j,k, j′,k′,i,i′ = Kγ(j, k, j′, k′|x(i), x(i′)) and `i′ = `(x(i′)), and estimate each
p × p covariance matrix as:

Σ̂x(j, k) =∑N
i′=1

∑`i′

j′=1

∑`i′

k′=1 k j,k, j′,k′,i,i′C j′,k′|i′∑N
i′=1

∑`i′

j′=1

∑`i′

k′=1 k j,k, j′,k′,i,i′

• Compute d̂spectral(j, k) ∀ j, k ∈ `(x(i)) using Eq. 8.5.

(Uncover structure) ∀i ∈ [N]

• Select top bracket [(1, f top
− 1), (f top, `)] via the heuristic described in Section 8.4.1.

• Find t̂(i) by calling Algorithm 17 with arguments (w(i), x(i)), distances d̂spectral(j, k) ∀ j, k ∈ `(x(i)),
and top bracket [(1, f top

− 1), (f top, `)] (Let û(i) is the undirected version of t̂(i))

• i← j← k

• i→ j→ k

Case 1: (i ← j → k) Note that in this case j must be latent but i and k can be either observed or
latent. We assume below that both i and k are observed. The same proof strategy works for the
other cases.

Due to Assumption 1,

Σx(i, k) = E[viv>k |x] = Ci| j,xΣx(j, j)C>k| j,x (8.24)

Thus,

Σx(i, k)Σx(i, k)> = Ci| j,xΣx(j, j)C>k| j,xCk| j,xΣx(j, j)C>i| j,x (8.25)

Combining this definition with Sylvester’s Determinant Theorem (Akritas et al., 1996), gives us
that:

147

|Σx(i, k)Σx(i, k)>|+ = |Ci| j,xΣx(j, j)C>k| j,xCk| j,xΣx(j, j)C>i| j,x|+

= |C>i| j,xCi| j,xΣx(j, j)C>k| j,xCk| j,xΣx(j, j)|+ (8.26)

(i.e. we can move C>i| j,x the to the front).

Now C>i| j,xCi| j,xΣx(j, j)C>k| j,xCk| j,xΣx(j, j) is m × m and has rank m. Thus, the pseudo-determinant
equals the normal determinant in this case. Using the fact that |AB| = |A||B| if A and B are square,
we get

|Σx(i, k)Σx(i, k)>|+ = |C>i| j,xCi| j,xΣx(j, j)C>k| j,xCk| j,xΣx(j, j)|

= |C>i| j,xCi| j,xΣx(j, j)||C>k| j,xCk| j,xΣx(j, j)|

=
|Σx(j, j)||C>i| j,xCi| j,xΣx(j, j)|

|Σx(j, j)|
×

|Σx(j, j)||C>k| j,xCk| j,xΣx(j, j)|

|Σx(j, j)|

=
|Σx(j, j)C>i| j,xCi| j,xΣx(j, j)|

|Σx(j, j)|
×

|Σx(j, j)C>k| j,xCk| j,xΣx(j, j)|

|Σx(j, j)|
(8.27)

Furthermore, note that

|Σx(j, j)C>i| j,xCi| j,xΣx(j, j)| = |Ci| j,xΣx(j, j)Σx(j, j)C>i| j,x|+

= |Σx(i, j)Σx(i, j)>|+ (8.28)

This gives,

|Σx(i, k)Σx(i, k)>|+ =
|Σx(i, j)Σx(i, j)>|+
|Σx(j, j)|

×
|Σx(k, j)Σx(k, j)>|+

|Σx(j, j)|
(8.29)

Substituting back into Eq. (8.23) proves that

dspectral(i, k) = −
1
2

log |Σx(i, j)Σx(i, j)>|+ −
1
2

log |Σx(j, k)Σx(j, k)>|+ +
1
2

log |Σx(j, j)Σx(j, j)>|+

+ 1
4 log |Σx(i, i)Σx(i, i)>|+ + 1

4 log |Σx(k, k)Σx(k, k)>|+
= dspectral(i, j) + dspectral(j, k) (8.30)

Case 2: i ← j ← k The proof is similar to above. Here since only leaf nodes can be observed, j
and k must be latent but i can be either observed or latent. We assume it is observed, the latent
case follows similarly.

148

Due to Assumption 1,

Σx(i, k) = E[viv>k |x] = Ci| j,xA j|k,xΣx(k, k) (8.31)

Thus, via Sylvester’s Determinant Theorem as before,

|Σx(i, k)Σx(i, k)>|+ = |Ci| j,xA j|k,xΣx(k, k)Σx(k, k)A>j|k,xC>i| j,x|+

= |C>i| j,xCi| j,xA j|k,xΣx(k, k)Σx(k, k)A>j|k,x|+ (8.32)

Now C>i| j,xCi| j,xA j|k,xΣx(k, k)Σx(k, k)A>j|k,x is m × m and has rank m. Thus, the pseudo-determinant
equals the normal determinant in this case. Using the fact that |AB| = |A||B| if A and B are square,
we get

|Σx(i, k)Σx(i, k)>|+ = |C>i| j,xCi| j,xA j|k,xΣx(k, k)Σx(k, k)A>j|k,x|

= |C>i| j,xCi| j,x||A j|k,xΣx(k, k)Σx(k, k)A>j|k,x|

= |C>i| j,xCi| j,x||Σx(j, k)Σx(j, k)>|

=
|Σx(j, j)||C>i| j,xCi| j,x||Σx(j, j)|

|Σx(j, j)||Σx(j, j)|
× |Σx(j, k)Σx(j, k)>|

=
|Σx(j, j)C>i| j,xCi| j,xΣx(j, j)|

|Σx(j, j)||Σx(j, j)|
× |Σx(j, k)Σx(j, k)>| (8.33)

Furthermore, note that

|Σx(j, j)C>i| j,xCi| j,xΣx(j, j)| = |Ci| j,xΣx(j, j)Σx(j, j)C>i| j,x)|+ (8.34)

= |Σx(i, j)Σx(i, j)>|+ (8.35)

This gives,

|Σx(i, k)Σx(i, k)>|+ =
|Σx(i, j)Σx(i, j)>|+
|Σx(j, j)||Σx(j, j)|

× |Σx(j, k)Σx(j, k)>|+ (8.36)

Substituting back into Eq. (8.23) proves that

dspectral(i, k) = −
1
2

log |Σx(i, j)Σx(i, j)>|+ −
1
2

log |Σx(j, k)Σx(j, k)>|+ +
1
2

log |Σx(j, j)Σx(j, j)>|+(8.37)

+ 1
4 log |Σx(i, i)Σx(i, i)>|+ + 1

4 log |Σx(k, k)Σx(k, k)>|+ (8.38)

= dspectral(i, j) + dspectral(j, k) (8.39)

Case 3: i→ j→ k The same argument as case 2 holds here.

149

�

8.6.3 Proof of Lemma 23

Instead of proving Lemma 23 directly, we divide it into two stages. First, we show that our
strategy yields consistent estimation of the covariance matrices (Lemma 24). We then show that a
concentration bound on the covariance matrices implies that the empirical distance is close to the
true distance (Lemma 25). Putting the results together proves Lemma 23.

Lemma 24. Assume the kernel used is that in Eq. (8.10) with bandwidth γ = ε/2 and that

N ≥
log(C1p2`(x)2

δ)φ2

C2ε2νx(ε/2)2 (8.40)

Then for a fixed tag sequence x and ∀ j, k ∈ `(x),

‖Σ̂x(j, k) − Σ̂x(j, k)‖F ≤ ε (8.41)

with probability 1 − δ.

Proof. Define the quantity,

Σ̃x(j, k) =

∑M
i=1

∑
j′,k′∈[`(xi)]Kγ(j, k, j′, k′|x, xi)Σxi(j′, k′)∑N

i=1
∑

j′,k′∈[`(xi)] Kγ(j, k, j′, k′|x, xi)
(8.42)

Note that via triangle inequality,

‖Σ̂x(j, k) − Σ̂x(j, k)‖F ≤ ‖Σx(j, k) − Σ̃x(j, k)‖F + ‖Σ̂x(j, k) − Σ̃x(j, k)‖F (8.43)

The first term (the bias) is bounded by ε/2 using the definition of the kernel in Eq. (8.10) with
bandwidth ε/2. The proof for bound for the second term (the variance) can be derived using the
technique of (Zhou et al., 2010) and is in Utility Lemma 1. �

Lemma 24 can then be used to prove that with high probability the estimated mutual information
is close to the true mutual information.

Lemma 25. Assume that

‖Σ̂x(j, k) − Σx(j, k)‖F ≤ ε ≤
σ∗(x)

2
∀ j, k ∈ [`(x)] (8.44)

Then,

|dspectral(j, k) − dspectral(j, k)| ≤
C3mε
σ∗(x)

∀ j , k ∈ [`(x)] (8.45)

150

Proof. By triangle inequality,

|dspectral(j, k) − dspectral(j, k)|

≤ | log Λm(Σx(j, k)) − log Λm(Σ̂x(j, k))|

+
1
2
| log Λm(Σx(j, j)) − log Λm(Σ̂x(j, j))|

+
1
2
| log Λm(Σ̂x(k, k)) − log Λm(Σ̂x(k, k))| (8.46)

We show the bound on | log Λm(Σx(j, j)) − log Λm(Σ̂x(j, j))|, the others follow similarly. By defini-
tion of Λm(·), and triangle inequality we have that,

| log Λm(Σx(j, j)) − log Λm(Σ̂x(j, j))| ≤
m∑

r=1

| log(σx(j, j)(r)) − log(̂σx(j, j)(r))|

To translate our concentration bounds on Frobenius norm to concentration of eigenvalues, we
apply Weyl’s Theorem. Assume first that σ̂x(j, j)(r)

≥ σx(j, j)(r). Then,

| log(σx(j, j)(r)) − log(̂σx(j, j)(r))| ≤ | log(σx(j, j)(r)) − log(σx(j, j)(r) + ε)|

= | log(σx(j, j)(r)) − log(σx(j, j)(r)(1 +
ε

σx(j, j)(r)
))|

≤ log(1 +
ε

σx(j, j)(r)
) ≤

ε

σx(j, j)(r)
(8.47)

Similarly, when σ̂x(j, j)(r) < σx(j, j)(r), then

| log(σx(j, j)(r)) − log(̂σx(j, j)(r))| ≤
ε

σ̂x(j, j)(r)
=

ε

σx(j, j)(r) − ε
(8.48)

Using the fact that ε ≤ σ∗(x)
2 we obtain that,

| log(σx(j, j)(r)) − log(̂σx(j, j)(r))| ≤
2ε

σx(j, j)(r)
(8.49)

As a result,

| log Λm(Σx(j, j)) − log Λm(Σ̂x(j, j))| ≤ m
2ε

σx(j, j)(m)
(8.50)

Repeating this for the other terms in Eq. (8.46) gives the bound. �

Utility Lemma 1.

P(‖Σ̂x(j, k) − Σ̃x(j, k)‖F ≥ ξ) ≤ C1p2`(x)2 exp
(
−

CNνx(γ)2ξ2

φ2

)
∀ j, k ∈ [`(x)] (8.51)

151

Proof. The proof uses the technique of (Zhou et al., 2010).

Define, Nx; j,k(γ) =
∑N

i=1
∑

j′,k′∈[`(xi)] Kγ(j, k, j′, k′|x, xi) which is the empirical effective sample size
under the smoothing kernel.

We first show that the Nx; j,k(γ) is close to the expected effective sample size Nνx(γ).

Using Hoeffding’s Inequality, we obtain that

P
(
|Nx; j,k(γ) −Nνx(γ)| ≥ Nνx(γ)/2

)
≤ C exp(−Nνx(γ)2/2) (8.52)

Note that

‖Σ̂x(j, k) − Σ̃x(j, k)‖F ≤ p2 max
a,b
|̂ςx(j, k; a, b) − ς̃x(j, k; a, b)| (8.53)

where ς̂x(j, k; a, b) is the element on the ath row and bth column of Σ̂x(j, k). Thus, it suffices to bound
|̂ςx(j, k; a, b) − ς̃x(j, k; a, b)|.

Define the boolean variable E = I[Nx; j,k(γ) > Nνx(γ)/2]. Then,

P(‖ς̂x(j, k; a, b) − ς̃x(j, k; a, b)‖F ≥ ξ) =

P(‖ς̂x(j, k; a, b) − ς̃x(j, k; a, b)‖F ≥ ξ|E = 1)P(E = 1)
+ P(‖ς̂x(j, k; a, b) − ς̃x(j, k; a, b)‖F ≥ ξ|E = 0)P(E = 0)

≤ P(‖ς̂x(j, k; a, b) − ς̃x(j, k; a, b)‖F ≥ ξ|E = 1) + P(E = 0) (8.54)

The second term is bounded by Eq. (8.52). We prove the first term below.

For shorthand, refer to P(‖ς̂x(j, k; a, b) − ς̃x(j, k; a, b)‖F ≥ ξ|E = 1) as
PE(‖ς̂x(j, k; a, b) − ς̃x(j, k; a, b)‖F ≥ ξ|E = 1). Define the following quantities:

For convenience define the following quantity, where w(i)
j,a is the ath element of the vector w(i)

j

δx(i)(j, k; a, b) = w(i)
j,a(w(i)

k,b)
>

− ςx(i)(j, k; a, b) (8.55)

152

For every κ > 0, by Markov’s inequality,

PE

∑
i∈[N]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b) > Nx; j,k(γ)ξ


= PE

exp

κ ∑
i∈[N]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b)

 > exp
(
κNx; j,k(γ)ξ

)
≤

E
[
exp

(
κ
∑

i∈[N]
∑

j′,k′∈`(x(i)) Kγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b)
)]

exp
(
κNx; j,k(γ)ξ

) (8.56)

We now bound the numerator. Using the fact that the samples are independent, we have that

E

exp

κ ∑
i∈[N]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b)


 (8.57)

=
∏
i∈[N]

∏
j′,k′∈`(x(i))

E
[
exp

(
κKγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b)

)]
(8.58)

=
∏
i∈[N]

∏
j′,k′∈`(x(i))

I[(j′, k′, x(i)) ∈ Bγ(j, k, x)]E
[
exp(κδx(i)(j, k; a, b))

]
(8.59)

(8.60)

From Utility Lemma 2, we can conclude that∏
i∈[N]

∏
j′,k′∈`(x(i))

I[(j′, k′, x(i)) ∈ Bγ(j, k, x)]E
[
exp(κδx(i)(j, k; a, b))

]
(8.61)

≤

∏
i∈[N]

∏
j′,k′∈`(x(i))

I[(j′, k′, x(i)) ∈ Bγ(j, k, x)] exp(κ2φ2/8) (8.62)

≤ exp(Nx; j,k(γ)κ2φ2/8) (8.63)

PE

∑
i∈[N]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b) > Nx, j,k(γ)ξ

 (8.64)

≤ exp(−κNx; j,k(γ)ξ) exp(Nx; j,k(γ)κ2φ2/8) (8.65)

153

Setting κ = 4ξ
φ2 , gives us that

PE

∑
i∈[N]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x, x(i))δx(i)(j, k; a, b) > Nx, j,k(γ)ξ

 (8.66)

≤ exp(−2Nx; j,k(γ)ξ2/φ2) (8.67)

≤ exp(−Nνx(γ)ξ2/φ2) (8.68)

Combining the above with Eq. (8.52) and taking some union bounds over a, b, j, k proves the
lemma. �

Helper Lemmas

We make use of the following helper lemma that is standard in the proof of Hoeffding’s Inequality,
e.g. (Casella and Berger, 1990).

Utility Lemma 2. Suppose that E(X) = 0 and that a ≤ X ≤ b. Then

E[etX] ≤ et2(b−a)2/8 (8.69)

154

Chapter 9

Language Modeling via Power Low Rank
Ensembles

Finally, we propose to use the linear algebra point of view of probabilistic modeling to tackle
language modeling, a classic challenge in NLP with many applications such as machine translation
and speech recognition.

Contribution of this chapter: We present power low rank ensembles (PLRE), a flexible frame-
work for n-gram language modeling consisting of ensembles of low rank matrices and tensors.
Our method can be understood as a generalization of n-gram modeling to non-integer n, and
includes standard techniques such as absolute discounting and Kneser-Ney smoothing as special
cases. PLRE training is efficient and our approach outperforms state-of-the-art modified Kneser
Ney baselines in terms of perplexity on large corpora as well as on BLEU score in a downstream
machine translation task.

Outline: We first present an introduction (§9.1) and then review existing n-gram smoothing
methods (§9.2). We then present the intuition behind the key components of our technique: rank
(§9.3.1) and power (§9.3.2). We then show how these can be interpolated into an ensemble (§9.4).
An experimental evaluation on English and Russian corpora (§9.5) is then presented.

Prerequisites: This chapter assumes a general understanding of the connection between latent
variable models and low rank factorization in Chapter 3.

9.1 Introduction

Language modeling is the task of estimating the probability of sequences of words in a lan-
guage and is an important component in, among other applications, automatic speech recog-
nition (Rabiner and Juang, 1993) and machine translation (Koehn, 2010). The predominant
approach to language modeling is the n-gram model, wherein the probability of a word se-
quence P(w1, . . . ,w`) is decomposed using the chain rule, and then a Markov assumption is made:
P(w1, . . . ,w`) ≈

∏`
i=1 P(wi|wi−1

i−n+1). While this assumption substantially reduces the modeling com-

155

plexity, parameter estimation remains a major challenge. Due to the power-law nature of language
(Zipf, 1949), the maximum likelihood estimator massively overestimates the probability of rare
events and assigns zero probability to legitimate word sequences that happen not to have been
observed in the training data (Manning and Schütze, 1999).

Many smoothing techniques have been proposed to address the estimation challenge. These
reassign probability mass (generally from over-estimated events) to unseen word sequences, whose
probabilities are estimated by interpolating with or backing off to lower order n-gram models (Chen
and Goodman, 1999).

Somewhat surprisingly, these widely used smoothing techniques differ substantially from tech-
niques for coping with data sparsity in other domains, such as collaborative filtering (Koren et al.,
2009; Su and Khoshgoftaar, 2009) or matrix completion (Candès and Recht, 2009; Cai et al., 2010).
In these areas, low rank approaches based on matrix factorization play a central role (Lee and
Seung, 2001; Salakhutdinov and Mnih, 2008; Mackey et al., 2011). For example, in recommender
systems, a key challenge is dealing with the sparsity of ratings from a single user, since typical
users will have rated only a few items. By projecting the low rank representation of a user’s
(sparse) preferences into the original space, an estimate of ratings for new items is obtained. These
methods are attractive due to their computational efficiency and mathematical well-foundedness.

In this chapter, we introduce power low rank ensembles (PLRE), in which low rank tensors are
used to produce smoothed estimates for n-gram probabilities. Ideally, we would like the low rank
structures to discover semantic and syntactic relatedness among words and n-grams, which are
used to produce smoothed estimates for word sequence probabilities.

In contrast to the few previous low rank language modeling approaches, PLRE is not orthogonal
to n-gram models, but rather a general framework where existing n-gram smoothing methods such
as Kneser-Ney smoothing are special cases. A key insight is that PLRE does not compute low rank
approximations of the original joint count matrices (in the case of bigrams) or tensors i.e. multi-
way arrays (in the case of 3-grams and above), but instead altered quantities of these counts based
on an element-wise power operation, similar to how some smoothing methods modify their lower
order distributions.

Moreover, PLRE has two key aspects that lead to easy scalability for large corpora and vocabu-
laries. First, since it utilizes the original n-grams, the ranks required for the low rank matrices and
tensors tend to be remain tractable (e.g. around 100 for a vocabulary size V ≈ 1×106) leading to fast
training times. This differentiates our approach over other methods that leverage an underlying
latent space such as neural networks (Bengio et al., 2003; Mnih and Hinton, 2007; Mikolov et al.,
2010) or soft-class models (Saul and Pereira, 1997) where the underlying dimension is required to
be quite large to obtain good performance. Moreover, at test time, the probability of a sequence
can be queried in time O(κmax) where κmax is the maximum rank of the low rank matrices/tensors
used. While this is larger than Kneser Ney’s virtually constant query time, it is substantially faster
than conditional exponential family models (Chen and Rosenfeld, 2000; Chen, 2009; Nelakanti
et al., 2013) and neural networks which require O(V) for exact computation of the normalization
constant. See Section 9.7 for a more detailed discussion of related work.

156

9.2 Discount-based Smoothing

We first provide background on absolute discounting (Ney et al., 1994) and Kneser-Ney smooth-
ing (Kneser and Ney, 1995), two common n-gram smoothing methods. Both methods can be
formulated as back-off or interpolated models; we describe the latter here since that is the basis of
our low rank approach.

9.2.1 Notation

Let c(w) be the count of word w, and similarly c(w,wi−1) for the joint count of words w and wi−1.
For shorthand we will define w j

i to denote the word sequence {wi,wi+1, ...,w j−1,w j}. Let P̂(wi) refer
to the maximum likelihood estimate (MLE) of the probability of word wi, and similarly P̂(wi|wi−1)
for the probability conditioned on a history, or more generally, P̂(wi|wi−1

i−n+1).

Let N−(wi) := |{w : c(wi,w) > 0}| be the number of distinct words that appear before wi. More
generally, let N−(wi

i−n+1) = |{w : c(wi
i−n+1,w) > 0}|. Similarly, let N+(wi−1

i−n+1) = |{w : c(w,wi−1
i−n+1) > 0}|.

V denotes the vocabulary size.

9.2.2 Absolute Discounting

Absolute discounting works on the idea of interpolating higher order n-gram models with lower-
order n-gram models. However, first some probability mass must be “subtracted” from the higher
order n-grams so that the leftover probability can be allocated to the lower order n-grams. More
specifically, define the following discounted conditional probability:

P̂D(wi|wi−1
i−n+1) =

max{c(wi,wi−1
i−n+1) −D, 0}

c(wi−1
i−n+1)

(9.1)

Then absolute discounting Pabs(·) uses the following (recursive) equation:

Pabs(wi|wi−1
i−n+1) = P̂D(wi|wi−1

i−n+1) + γ(wi−1
i−n+1)Pabs(wi|wi−1

i−n+2) (9.2)

where γ(wi−1
i−n+1) is the leftover weight (due to the discounting) that is chosen so that the conditional

distribution sums to one: γ(wi−1
i−n+1) = D

c(wi−1
i−n+1)

N+(wi−1
i−n+1). For the base case, we set Pabs(wi) = P̂(wi).

Discontinuity: Note that if c(wi−1
i−n+1) = 0, then γ(wi−1

i−n+1) = 0
0 , in which case γ(wi−1

i−n+1) is set to 1. We
will see that this discontinuity appears in PLRE as well.

157

9.2.3 Kneser Ney Smoothing

Ideally, the smoothed probability should preserve the observed unigram distribution:

P̂(wi) =
∑

wi−1
i−n+1

Psm(wi|wi−1
i−n+1)P̂(wi−1

i−n+1) (9.3)

where Psm(wi|wi−1
i−n+1) is the smoothed conditional probability that a model outputs. Unfortunately,

absolute discounting does not satisfy this property, since it exclusively uses the unaltered MLE
unigram model as its lower order model. In practice, the lower order distribution is only utilized
when we are unsure about the higher order distribution (i.e., when γ(·) is large). Therefore, the
unigram model should be altered to condition on this fact.

This is the inspiration behind Kneser-Ney (KN) smoothing, an elegant algorithm with robust
performance in n-gram language modeling. KN smoothing defines alternate probabilities Palt(·):

Palt
D (wi|wi−1

i−n′+1) =


P̂D(wi|wi−1

i−n′+1), if n′ = n

max{N−(wi
i−n′+1)−D,0}∑

wi
N−(wi

i−n′+1
)

, if n′ < n
(9.4)

The base case for unigrams reduces to Palt(wi) =
N−(wi)∑
wi

N−(wi)
. Intuitively Palt(wi) is proportional to

the number of unique words that precede wi. Thus, words that appear in many different contexts
will be given higher weight than words that consistently appear after only a few contexts. These
alternate distributions are then used with absolute discounting:

Pkn(wi|wi−1
i−n+1) = Palt

D (wi|wi−1
i−n+1) + γ(wi−1

i−n+1)Pkn(wi|wi−1
i−n+2) (9.5)

where we set Pkn(wi) = Palt(wi). By definition, KN smoothing satisfies the marginal constraint in
Eq. 9.3 (Kneser and Ney, 1995).

9.3 Power Low Rank Ensembles

In n-gram smoothing methods, if a bigram count c(wi,wi−1) is zero, the unigram probabilities are
used, which is equivalent to assuming that wi and wi−1 are independent (and similarly for general
n). However, in this situation, instead of backing off to a 1-gram, we may like to back off to a
“1.5-gram” or more generally an order between 1 and 2 that captures a coarser level of dependence
between wi and wi−1 and does not assume full independence.

Inspired by this intuition, our strategy is to construct an ensemble of matrices and tensors that
not only consists of MLE-based count information, but also contains quantities that represent levels
of dependence in-between the various orders in the model. We call these combinations power low
rank ensembles (PLRE), and they can be thought of as n-gram models with non-integer n. Our
approach can be recursively formulated as:

158

Pplre(wi|wi−1
i−n+1) = Palt

D0
(wi|wi−1

i−n+1)

+ γ0(wi−1
i−n+1)

(
ZD1(wi|wi−1

i−n+1) + + γη−1(wi−1
i−n+1)

(
ZDη(wi|wi−1

i−n+1) + γη(wi−1
i−n+1)

(
Pplre(wi|wi−1

i−n+2)
))
...
)

(9.6)

where Z1, ...,Zη are conditional probability matrices that represent the intermediate n-gram orders1

and D is a discount function (specified in §9.4).

This formulation begs answers to a few critical questions. How to construct matrices that
represent conditional probabilities for intermediate n? How to transform them in a way that
generalizes the altered lower order distributions in KN smoothing? How to combine these matrices
such that the marginal constraint in Eq. 9.3 still holds? The following propose solutions to these
three queries:

1. Rank (Section 9.3.1): Rank gives us a concrete measurement of the dependence between wi
and wi−1. By constructing low rank approximations of the bigram count matrix and higher-
order count tensors, we obtain matrices that represent coarser dependencies, with a rank one
approximation implying that the variables are independent.

2. Power (Section 9.3.2): In KN smoothing, the lower order distributions are not the original
counts but rather altered estimates. We propose a continuous generalization of this alteration
by taking the element-wise power of the counts.

3. Creating the Ensemble (Section 9.4): Lastly, PLRE also defines a way to interpolate the
specifically constructed intermediate n-gram matrices. Unfortunately a constant discount,
as presented in Section 9.2, will not in general preserve the lower order marginal constraint
(Eq. 9.3). We propose a generalized discounting scheme to ensure the constraint holds.

9.3.1 Rank

We first show how rank can be utilized to construct quantities between an n-gram and an n − 1-
gram. In general, we think of an n-gram as an nth order tensor i.e. a multi-way array with n
indices {i1, ..., in}. (A vector is a tensor of order 1, a matrix is a tensor of order 2 etc.) Computing
a special rank one approximation of slices of this tensor produces the n − 1-gram. Thus, taking
rank κ approximations in this fashion allows us to represent dependencies between an n-gram and
n − 1-gram.

Consider the bigram count matrix B with N counts which has rank V. Note that P̂(wi|wi−1) =
B(wi,wi−1)∑
w B(w,wi−1) . Additionally, B can be considered a random variable that is the result of sampling

N tuples of (wi,wi−1) and agglomerating them into a count matrix. Assuming wi and wi−1 are
independent, the expected value (with respect to the empirical distribution)E[B] = NP(wi)P(wi−1),
which can be rewritten as being proportional to the outer product of the unigram probability vector
with itself, and is thus rank one.

1with a slight abuse of notation, let ZD j be shorthand for Z j,D j

159

This observation extends to higher order n-grams as well. Let Cn be the nth order tensor where
Cn(wi,,wi−n+1) = c(wi, ...,wi−n+1). Furthermore denote Cn(:, w̃i−1

i−n+2, :) to be the V × V matrix slice
of Cn where wi−n+2, ...,wi−1 are held fixed to a particular sequence w̃i−n+2, ..., w̃i−1. Then if wi is
conditionally independent of wi−n+1 given wi−1

i−n+2, then E[Cn(:, w̃i−1
i−n+2, :)] is rank one ∀w̃i−1

i−n+2.

However, it is rare that these matrices are actually rank one, either due to sampling variance
or the fact that wi and wi−1 are not independent. What we would really like to say is that the
best rank one approximation B(1) (under some norm) of B is ∝ P̂(wi)P̂(wi−1). While this statement
is not true under the `2 norm, it is true under generalized KL divergence (Lee and Seung, 2001):

gKL(A||B) =
∑

i j

(
Ai j log(

Ai j

Bi j
) − Ai j + Bi j)

)
.

In particular, generalized KL divergence preserves row and column sums: if M(κ) is the best rank
κ approximation of M under gKL then the row sums and column sums of M(κ) and M are equal (Ho and
Van Dooren, 2008). Leveraging this property, it is straightforward to prove the following lemma:

Lemma 26. Let B(κ) be the best rank κ approximation of B under gKL. Then B(1)
∝ P̂(wi)P̂(wi−1) and

∀wi−1 s.t. c(wi−1) , 0:

P̂(wi) =
B(1)(wi,wi−1)∑
w B(1)(w,wi−1)

(9.7)

For more general n, let Cn,(κ)
i−1,...,i−n+2 be the best rank κ approximation of Cn(:, w̃i−1

i−n+2, :) under gKL. Then
similarly, ∀wi−1

i−n+1 s.t. c(wi−1
i−n+1) > 0:

P̂(wi|wi−1, ...,wi−n+2) =
Cn,(1)

i−1,...,i−n+2(wi,wi−1
i−n+1)∑

w Cn,(1)
i−1,...,i−n+2(w,wi−1

i−n+1)
(9.8)

Thus, by selecting 1 < κ < V, we obtain count matrices and tensors between n and n − 1-grams.
The condition that c(wi−1

i−n+1) > 0 corresponds to the discontinuity discussed in §9.2.2.

9.3.2 Power

Since KN smoothing alters the lower order distributions instead of simply using the MLE, varying
the rank is not sufficient in order to generalize this suite of techniques. Thus, PLRE computes low
rank approximations of altered count matrices. Consider taking the elementwise power ρ of the
bigram count matrix, which is denoted by B·ρ. For example, the observed bigram count matrix
and associated row sum:

B·1 =

 1.0 2.0 1.0
0 5.0 0

2.0 0 0

 row sum
→

 4.0
5.0
2.0


As expected the row sum is equal to the unigram counts (which we denote as u). Now consider

160

B·0.5:

B·0.5 =

 1.0 1.4 1.0
0 2.2 0

1.4 0 0

 row sum
→

 3.4
2.2
1.4


Note how the row sum vector has been altered. In particular since w1 (corresponding to the first
row) has a more diverse history than w2, it has a higher row sum (compared to in u where w2 has
the higher row sum). Lastly, consider the case when p = 0:

B·0 =

 1.0 1.0 1.0
0 1.0 0

1.0 0 0

 row sum
→

 3.0
1.0
1.0


The row sum is now the number of unique words that precede wi (since B0 is binary) and is
thus equal to the (unnormalized) Kneser Ney unigram. This idea also generalizes to higher order
n-grams and leads us to the following lemma:

Lemma 27. Let B(ρ,κ) be the best rank κ approximation of B·ρ under gKL. Then ∀wi−1 s.t. c(wi−1) , 0:

Palt(wi) =
B(0,1)(wi,wi−1)∑
w B(0,1)(w,wi−1)

For more general n, let Cn,(ρ,κ)
i−1,...,i−n+2 be the best rank κ approximation of Cn,(ρ)(:, w̃i−1

i−n+2, :) under gKL.
Similarly, ∀wi−1

i−n+1 s.t. c(wi−1
i−n+1) > 0:

Palt(wi|wi−1, ...,wi−n+2) =
Cn,(0,1)

i−1,...,i−n+2(wi,wi−1
i−n+1)∑

w Cn,(0,1)
i−1,...,i−n+2(w,wi−1

i−n+1)
(9.9)

9.4 Creating the Ensemble

Recall our overall formulation in Eq. 9.6; a naive solution would be to set Z1, ...,Zη to low rank
approximations of the count matrices/tensors under varying powers, and then interpolate through
constant absolute discounting. Unfortunately, the marginal constraint in Eq. 9.3 will generally
not hold if this strategy is used. Therefore, we propose a generalized discounting scheme where
each non-zero n-gram count is associated with a different discount D j(wi,wi−1

i−n′+1). The low rank
approximations are then computed on the discounted matrices, leaving the marginal constraint
intact.

For clarity of exposition, we focus on the special case where n = 2 with only one low rank matrix
before stating our general algorithm:

Pplre(wi|wi−1) = P̂D0(wi|wi−1)

+ γ0(wi−1)
(
ZD1(wi|wi−1) + γ1(wi−1)Palt(wi)

)
(9.10)

161

Our goal is to compute D0,D1 and Z1 so that the following lower order marginal constraint
holds:

P̂(wi) =
∑
wi−1

Pplre(wi|wi−1)P̂(wi−1) (9.11)

Our solution can be thought of as a two-step procedure where we compute the discounts D0,D1
(and the γ(wi−1) weights as a by-product), followed by the low rank quantity Z1. First, we construct
the following intermediate ensemble of powered, but full rank terms. Let Yρ j be the matrix such
that Yρ j(wi,wi−1) := c(wi,wi−1)ρ j . Then define

Ppwr(wi|wi−1) := Y(ρ0=1)
D0

(wi|wi−1) + γ0(wi−1)
(
Y(ρ1)

D1
(wi|wi−1) + γ1(wi−1)Y(ρ2=0)(wi|wi−1)

)
(9.12)

where with a little abuse of notation:

Y
ρ j
D j

(wi|wi−1) =
c(wi,wi−1)ρ j −D j(wi,wi−1)∑

wi
c(wi,wi−1)ρ j

Note that Palt(wi) has been replaced with Y(ρ2=0)(wi|wi−1), based on Lemma 27, and will equal
Palt(wi) once the low rank approximation is taken as discussed in § 9.4.2).

Since we have only combined terms of different power (but all full rank), it is natural choose the
discounts so that the result remains unchanged i.e., Ppwr(wi|wi−1) = P̂(wi|wi−1), since the low rank
approximation (not the power) will implement smoothing. Enforcing this constraint gives rise to a
set of linear equations that can be solved (in closed form) to obtain the discounts as we now show
below.

9.4.1 Step 1: Computing the Discounts

To ensure the constraint that Ppwr(wi|wi−1) = P̂(wi|wi−1), it is sufficient to enforce the following two
local constraints:

Y(ρ j)(wi|wi−1) = Y
(ρ j)
D j

(wi|wi−1) + γ j(wi−1)Y(ρ j+1)(wi|wi−1) for j = 0, 1 (9.13)

This allows each D j to be solved for independently of the other {D j′} j′, j. Let ci,i−1 = c(wi,wi−1),
c j

i,i−1 = c(wi,wi−1)ρ j , and d j
i,i−1 = D j(wi,wi−1). Expanding Eq. 9.13 yields that ∀wi,wi−1:

c j
i,i−1∑

i c j
i,i−1

=
c j

i,i−1 − d j
i,i−1∑

i c j
i,i−1

+


∑

i d j
i,i−1∑

i c j
i,i−1

 c j+1
i,i−1∑

i c j+1
i,i−1

(9.14)

which can be rewritten as:

−d j
i,i−1 +

∑
i

d j
i,i−1

 c j+1
i,i−1∑

i c j+1
i,i−1

= 0 (9.15)

162

Algorithm 19 Compute D
In: Count tensor Cn, powers ρ j, ρ j+1 such that ρ j ≥ ρ j+1, and parameter d∗.
Out: Discount D j for powered counts Cn,(ρ j) and associated leftover weight γ j

1: Set D j(wi,wi−1
i−n+1) = d∗c(wi,wi−1

i−n+1)ρ j+1 .
2:

γ j(wi,wi−1
i−n+1) =

d∗
∑

wi
c(wi,wi−1

i−n+1)ρ j+1∑
wi

c(wi,wi−1
i−n+1)ρ j

Note that Eq. 9.15 decouples across wi−1 since the only d j
i,i−1 terms that are dependent are the ones

that share the preceding context wi−1.

It is straightforward to see that setting d j
i,i−1 proportional to c j+1

i,i−1 satisfies Eq. 9.15. Furthermore
it can be shown that all solutions are of this form (i.e., the linear system has a null space of exactly
one). Moreover, we are interested in a particular subset of solutions where a single parameter d∗
(independent of wi−1) controls the scaling as indicated by the following lemma:

Lemma 28. Assume that ρ j ≥ ρ j+1. Choose any 0 ≤ d∗ ≤ 1. Set d j
i,i−1 = d∗c

j+1
i,i−1 ∀i, j. The resulting

discounts satisfy Eq. 9.15 as well as the inequality constraints 0 ≤ d j
i,i−1 ≤ c j

i,i−1. Furthermore, the leftover
weight γ j takes the form:

γ j(wi−1) =

∑
i d j

i,i−1∑
i c j

i,i−1

=
d∗

∑
i c j+1

i,i−1∑
i c j

i,i−1

(9.16)

Proof. Clearly this choice of d j
i,i−1 satisfies Eq. 9.15. The largest possible value of d j

i,i−1 is c j+1
i,i−1.

ρ j ≥ ρ j+1, implies c j
i,i−1 ≥ c j+1

i,i−1. Thus the inequality constraints are met. It is then easy to verify that
γ takes the above form. �

The above lemma generalizes to longer contexts (i.e. n > 2) as shown in Algorithm 19. Note that
if ρ j = ρ j+1 then Algorithm 19 is equivalent to scaling the counts e.g. deleted-interpolation/Jelinek
Mercer smoothing (Jelinek and Mercer, 1980). On the other hand, when ρ j+1 = 0, Algorithm 19
is equal to the absolute discounting that is used in Kneser-Ney. Thus, depending on ρ j+1, our
method generalizes different types of interpolation schemes to construct an ensemble so that the
marginal constraint is satisfied.

9.4.2 Step 2: Computing Low Rank Quantities

The next step is to compute low rank approximations of Y
(ρ j)
D j

to obtain ZD j such that the
intermediate marginal constraint in Eq. 9.11 is preserved. This constraint trivially holds for the
intermediate ensemble Ppwr(wi|wi−1) due to how the discounts were derived in § 9.4.1. For our

running bigram example, define Z
(ρ j,κ j)
D j

to be the best rank κ j approximation to Y
(ρ j,κ j)
D j

according

163

Algorithm 20 Compute Z
In: Count tensor Cn, power ρ, discounts D, rank κ
Out: Discounted low rank conditional probability table Z(ρ,κ)

D (wi|wi−1
i−n+1) (represented implicitly)

1: Compute powered counts Cn,(·ρ).
2: Compute denominators

∑
wi

c(wi,wi−1
i−n+1)ρ ∀wi−1

i−n+1 s.t. c(wi−1
i−n+1) > 0.

3: Compute discounted powered counts Cn,(·ρ)
D = Cn,(·ρ)

−D.

4: For each slice Mw̃i−1
i−n+2

:= Cn,(·ρ)
D (:, w̃i−1

i−n+2, :) compute

M(κ) := min
A≥0:rank(A)=κ

‖Mw̃i−1
i−n+2
− A‖KL

(stored implicitly as M(κ) = LR)

Set Z(ρ,κ)
D (:, w̃i−1

i−n+2, :) = M(κ)

5: Note that

Z(ρ,κ)
D (wi|wi−1

i−n+1) =
Z(ρ,κ)

D (wi,wi−1
i−n+1)∑

wi
c(wi,wi−1

i−n+1)ρ

to gKL and let

Z
ρ j,κ j

D j
(wi|wi−1) =

Z
ρ j,κ j

D j
(wi,wi−1)∑

wi
c(wi,wi−1)ρ j

(9.17)

Note that Z
ρ j,κ j

D j
(wi|wi−1) is a valid (discounted) conditional probability since gKL preserves row/column

sums so the denominator remains unchanged under the low rank approximation. Then using the
fact that Z(0,1)(wi|wi−1) = Palt(wi) (Lemma 27) we can embellish Eq. 9.10 as

Pplre(wi|wi−1) = PD0(wi|wi−1) + γ0(wi−1)
(
Z(ρ1,κ1)

D1
(wi|wi−1) + γ1(wi−1)Palt(wi)

)
(9.18)

Leveraging the form of the discounts and row/column sum preserving property of gKL, we then
have the following lemma (the proof is in the Appendix):

Lemma 29. Let Pplre(wi|wi−1) indicate the PLRE smoothed conditional probability as computed by Eq. 9.10
and Algorithms 19 and 20. Then, the marginal constraint in Eq. 9.11 holds i.e.:

P̂(w) =
∑
wi−1

Pplre(wi|wi−1)P̂(wi−1) (9.19)

To summarize, we show the training and testing algorithms for the bigram power low rank
ensemble in Algorithms 21 and 22 respectively. In training, our method first computes discounts
and leftover weights using Algorithm 19 and then Algorithm 20 to compute the low rank matrices.
Testing simply corresponds to looking up the value for the qury (wi,wi−1) in each element of the
ensemble and combining the terms scaled by the leftover weights.

Figure 9.1 gives a high level overview of training a power low rank ensemble and Algorithms 21
and 22 describe training and testing for a bigram PLRE.

164

9.4.3 More general algorithm

In general, the principles outlined in the previous sections hold for higher order n-grams. Assume

that the discounts are computed according to Algorithm 19 with parameter d∗ and Z
(ρ j,κ j)
D j

is
computed according to Algorithm 20. Note that, as shown in Algorithm 20, for higher order

n-grams, the Z
(ρ j,κ j)
D j

are created by taking low rank approximations of slices of the (powered) count
tensors (see Lemma 27 for intuition). Eq. 9.6 can now be embellished:

Pplre(wi|wi−1
i−n+1) = Palt

D0
(wi|wi−1

i−n+1)

+ γ0(wi−1
i−n+1)

(
Z(ρ1,κ1)

D1
(wi|wi−1

i−n+1) + + γη−1(wi−1
i−n+1)

(
Z(ρη,κη)

Dη
(wi|wi−1

i−n+1) + γη(wi−1
i−n+1)

(
Pplre(wi|wi−1

i−n+2)
))
...
)

(9.20)

Lemma 29 also applies in this case and is proved in the Appendix.

9.4.4 Links with KN Smoothing

In this section, we explicitly show the relationship between PLRE and KN smoothing. Rewriting
Eq. 9.31 in the following form:

Pplre(wi|wi−1
i−n+1) = Pterms

plre (wi|wi−1
i−n+1) + γ0:η(wi−1

i−n+1)Pplre(wi|wi−1
i−n+2) (9.21)

where Pterms
plre (wi|wi−1

i−n+1) contains the terms in Eq. 9.31 except the last, andγ0:η(wi−1
i−n+1) =

∏η
h=0 γh(wi−1

i−n+1),

we can leverage the form of the discount, and using the fact that ρη+1 = 02:

γ0:η(wi−1
i−n−1) =

d∗η+1N+(wi−1
i−n+1)

c(wi−1
i−n+1)

(9.22)

With this form of γ(·), Eq. 9.21 is remarkably similar to KN smoothing (Eq. 9.5) if KN’s discount
parameter D is chosen to equal (d∗)η+1.

The difference is that Palt(·) has been replaced with the alternate estimate Pterms
plre (wi|wi−1

i−n+1), which
have been enriched via the low rank structure. Since these alternate estimates were constructed
via our ensemble strategy they contain both very fine-grained dependencies (the original n-grams)
as well as coarser dependencies (the lower rank n-grams) and is thus fundamentally different than
simply taking a single matrix/tensor decomposition of the trigram/bigram matrices.

Moreover, it provides a natural way of setting d∗ based on the Good-Turing (GT) estimates
employed by KN smoothing. In particular, we can set d∗ to be the (η + 1)th root of the KN discount
D that can be estimated via the GT estimates.

2for derivation see proof of Lemma 29 in the Appendixl

165

Input: rank, power,
and discount
parameters, and
dataset

Compute
counts/powered
counts from dataset

Compute discounts
and leftover weights
using Alg 19

Compute low rank
matrices/tensors
using Alg 20

Output: collection of
full, low, and rank one
tensors, and leftover
weights

Figure 9.1: Flowchart that gives an overview of training a power low rank ensemble

Algorithm 21 Train (Bigram) Power Low Rank Ensemble (PLRE)

In: DatasetD, discount parameter d∗, rank κ∗, power ρ∗

Out: Full, low, and rank one bigrams {PD0(wi|wi−1), Z(ρ∗,κ∗)
D1

(wi|wi−1), Palt(wi)}, leftover weights
{γ0, γ1}

1: Compute bigram counts B from datasetD
2: Compute discount D0 and leftover weightγ0 using Algorithm 19 with arguments Cn := B, ρ0 :=

1, ρ1 := ρ∗, d∗. Set

PD0(wi|wi−1) =
B(wi,wi−1) −D0(wi,wi−1)∑

w B(w,wi−1)

3: Compute discount D1, and leftover weight γ1 using Algorithm 19 with arguments Cn :=
B, ρ1 := ρ∗, ρ2 := 0, d∗

4: Compute Z(ρ∗,κ∗)
D1

(wi|wi−1) using Algorithm 20 with arguments Cn := B, ρ∗, D1, κ∗

5: Compute Palt(wi) using Eq. 9.4 from datasetD

Algorithm 22 Test (Bigram) Power Low Rank Ensemble (PLRE)
In: current/previous words (wi,wi−1), full, low, and rank one bigrams
{PD0(wi|wi−1), Z(ρ∗,κ∗)

D1
(wi|wi−1), Palt(wi)}, leftover weights {γ0, γ1}

Out: conditional probability estimate Pplre(wi|wi−1)
1: Compute

Pplre(wi|wi−1) = PD0(wi|wi−1) + γ0(wi−1)
(
Z(ρ∗,κ∗)

D1
(wi|wi−1) + γ1(wi−1)Palt(wi)

)
(9.23)

2: Return Pplre(wi|wi−1)

9.4.5 Computational Considerations

PLRE scales well even as the order n increases. To compute a low rank bigram, one low rank
approximation of a V ×V matrix is required. For the low rank trigram, we need to compute a low
rank approximation of each slice Cn,(·p)

D (:, w̃i−1, :) ∀w̃i−1. While this may seem daunting at first, in
practice the size of each slice (number of non-zero rows/columns) is usually much, much smaller
than V, keeping the computation tractable.

Similarly, PLRE also evaluates conditional probabilities at evaluation time efficiently. As shown
in Algorithm 20, the normalizer can be precomputed on the sparse powered matrix/tensor. As a
result our test complexity is O(

∑ηtotal
i=1 κi) where ηtotal is the total number of matrices/tensors in the

ensemble. While this is larger than Kneser Ney’s practically constant complexity ofO(n), it is much
faster than other recent methods for language modeling such as neural networks and conditional
exponential family models where exact computation of the normalizing constant costs O(V).

166

Dataset class-1024(3) BO-KN(3) int-KN(3) BO-MKN(3) int-MKN(3) PLRE(3)
Small-English Dev 115.64 99.20 99.73 99.95 95.63 91.18
Small-English Test 119.70 103.86 104.56 104.55 100.07 95.15
Small-Russian Dev 286.38 281.29 265.71 287.19 263.25 241.66
Small-Russian Test 284.09 277.74 262.02 283.70 260.19 238.96

Table 9.1: Perplexity results on small corpora for all methods.

9.5 Experiments

To evaluate PLRE, we compared its performance on English and Russian corpora with several
variants of KN smoothing, class-based models, and the log-bilinear neural language model (Mnih
and Hinton, 2007). We evaluated with perplexity in most of our experiments, but also provide
results evaluated with BLEU (Papineni et al., 2002) on a downstream machine translation (MT)
task. We have made the code for our approach publicly available 3.

To build the hard class-based LMs, we utilized mkcls4, a tool to train word classes that uses
the maximum likelihood criterion (Och, 1995) for classing. We subsequently trained trigram class
language models on these classes (corresponding to 2nd-order HMMs) using SRILM (Stolcke, 2002),
with KN-smoothing for the class transition probabilities. SRILM was also used for the baseline
KN-smoothed models.

For our MT evaluation, we built a hierarchical phrase translation (Chiang, 2007) system using
cdec (Dyer et al., 2010). The KN-smoothed models in the MT experiments were compiled using
KenLM (Heafield, 2011).

9.5.1 Datasets

For the perplexity experiments, we evaluated our proposed approach on 4 datasets, 2 in English
and 2 in Russian. In all cases, the singletons were replaced with “<unk>” tokens in the training
corpus, and any word not in the vocabulary was replaced with this token during evaluation. There
is a general dearth of evaluation on large-scale corpora in morphologically rich languages such as
Russian, and thus we have made the processed Large-Russian corpus available for comparison 3.

• Small-English: APNews corpus (Bengio et al., 2003): Train - 14 million words, Dev - 963,000,
Test - 963,000. Vocabulary- 18,000 types.

• Small-Russian: Subset of Russian news commentary data from 2013 WMT translation task5:
Train- 3.5 million words, Dev - 400,000 Test - 400,000. Vocabulary - 77,000 types.

• Large-English: English Gigaword, Training - 837 million words, Dev - 8.7 million, Test - 8.7
million. Vocabulary- 836,980 types.

• Large-Russian: Monolingual data from WMT 2013 task. Training - 521 million words,
Validation - 50,000, Test - 50,000. Vocabulary- 1.3 million types.

3http://www.cs.cmu.edu/∼apparikh/plre.html
4http://code.google.com/p/giza-pp/
5http://www.statmt.org/wmt13/training-monolingual-nc-v8.tgz

167

For the MT evaluation, we used the parallel data from the WMT 2013 shared task, excluding the
Common Crawl corpus data. The newstest2012 and newstest2013 evaluation sets were used as
the development and test sets respectively.

9.5.2 Small Corpora

For the class-based baseline LMs, the number of classes was selected from {32, 64, 128, 256, 512, 1024}
(Small-English) and {512, 1024} (Small-Russian). We could not go higher due to the computation-
ally laborious process of hard clustering. For Kneser-Ney, we explore four different variants:
back-off (BO-KN) interpolated (int-KN), modified back-off (BO-MKN), and modified interpolated
(int-MKN). Good-Turing estimates were used for discounts. All models trained on the small
corpora are of order 3 (trigrams).

For PLRE, we used one low rank bigram and one low rank trigram in addition to the MLE
n-gram estimates. The powers of the intermediate matrices/tensors were fixed to be 0.5 and the
discounts were set to be square roots of the Good Turing estimates (as explained in § 9.4.4). The
ranks were tuned on the development set. For Small-English, the ranges were {1e − 3, 5e − 3} (as
a fraction of the vocabulary size) for both the low rank bigram and low rank trigram models.
For Small-Russian the ranges were {5e − 4, 1e − 3} for both the low rank bigram and the low rank
trigram models.

The results are shown in Table 9.1. The best class-based LM is reported, but is not competitive
with the KN baselines. PLRE outperforms all of the baselines comfortably. Moreover, PLRE’s
performance over the baselines is highlighted in Russian. With larger vocabulary sizes, the low
rank approach is more effective as it can capture linguistic similarities between rare and common
words.

Next we discuss how the maximum n-gram order affects performance. Figure 9.2 shows the
relative percentage improvement of our approach over int-MKN as the order is increased from 2
to 4 for both methods. The Small-English dataset has a rather small vocabulary compared to the
number of tokens, leading to lower data sparsity in the bigram. Thus the PLRE improvement is
small for order = 2, but more substantial for order = 3. On the other hand, for the Small-Russian
dataset, the vocabulary size is much larger and consequently the bigram counts are sparser. This
leads to similar improvements for all orders (which are larger than that for Small-English).

On both these datasets, we also experimented with tuning the discounts for int-MKN to see if
the baseline could be improved with more careful choices of discounts. However, this achieved
only marginal gains (reducing the perplexity to 98.94 on the Small-English test set and 259.0 on
the Small-Russian test set).

Comparison to neural language models: Although not the focus of this work, we also briefly
compare our method to neural language models. Note that neural networks generally have a
test complexity of O(k

√
V) using word-classing (Goodman, 2001; Mikolov et al., 2011) which is

considerably larger than the test complexity O(kn) of our approach (The test complexity of Kneser-
Ney is O(n)).

Mnih and Hinton (2007) evaluate on the Small-English dataset (but remove end markers and
concatenate the sentences). They obtain perplexities 117.0 and 107.8 using contexts of size 5 and

168

Small-Russian

Small-English

Figure 9.2: Relative percentage improvement of PLRE over int-MKN as the maximum n-gram
order for both methods is increased.

Dataset int-MKN(4) PLRE(4)
Large-English Dev 73.21 71.21
Large-English Test 77.90 ± 0.203 75.66 ± 0.189
Large-Russian Dev 326.9 297.11
Large-Russian Test 289.63 ± 6.82 264.59 ± 5.839

Table 9.2: Mean perplexity results on large corpora, with standard deviation.

10 respectively. With this preprocessing, a 4-gram (context 3) PLRE achieves 108.4 perplexity.
We also obtained results for a recurrent neural network (RNN) model (Mikolov et al., 2010) on
the Small-English dataset using the RNNLM toolkit (Mikolov, 2012), and the RNN-ME variant
obtains a perplexity of 82.1 (infinite context). Understanding the intuition behind the empirical
performance of RNN-ME is the primary inspiration for the future work described in Chapter 10.

9.5.3 Large Corpora

Results on the larger corpora for the top 2 performing methods “PLRE” and “int-MKN” are
presented in Table 9.2. Due to the larger training size, we use 4-gram models in these experiments.
However, including the low rank 4-gram tensor provided little gain and therefore, the 4-gram
PLRE only has additional low rank bigram and low rank trigram matrices/tensors. As above,
ranks were tuned on the development set. For Large-English, the ranges were {1e−4, 5e−4, 1e−3}
(as a fraction of the vocabulary size) for both the low rank bigram and low rank trigram models.
For Small-Russian the ranges were {1e − 5, 5e − 5, 1e − 4} for both the low rank bigram and the
low rank trigram models. For statistical validity, 10 test sets of size equal to the original test set
were generated by randomly sampling sentences with replacement from the original test set. Our
method outperforms “int-MKN” with gains similar to that on the smaller datasets. As shown in
Table 9.3, our method obtains fast training times even for large datasets.

169

Dataset PLRE Training Time
Small-English 3.96 min (order 3) / 8.3 min (order 4)
Small-Russian 4.0 min (order 3) / 4.75 min (order 4)
Large-English 3.2 hrs (order 4)
Large-Russian 8.3 hrs (order 4)

Table 9.3: PLRE training times for a fixed parameter setting. 8 Intel Xeon CPUs were used.

Method BLEU
int-MKN(4) 17.63 ± 0.11

PLRE(4) 17.79 ± 0.07
Smallest Diff PLRE+0.05
Largest Diff PLRE+0.29

Table 9.4: Results on English-Russian translation task (mean ± stdev). See text for details.

9.6 Machine Translation Task

Table 9.4 presents results for the MT task, translating from English to Russian6. We used MIRA (Chi-
ang et al., 2008) to learn the feature weights. To control for the randomness in MIRA, we avoid
retuning when switching LMs - the set of feature weights obtained using int-MKN is the same,
only the language model changes. The procedure is repeated 10 times to control for optimizer
instability (Clark et al., 2011). Unlike other recent approaches where an additional feature weight
is tuned for the proposed model and used in conjunction with KN smoothing (Vaswani et al., 2013),
our aim is to show the improvements that PLRE provides as a substitute for KN. On average, PLRE
outperforms the KN baseline by 0.16 BLEU, and this improvement is consistent in that PLRE never
gets a worse BLEU score.

9.7 Related Work

Recent attempts to revisit the language modeling problem have largely come from two directions:
Bayesian nonparametrics and neural networks. Teh (2006) and Goldwater et al. (2006) discovered
the connection between interpolated Kneser Ney and the hierarchical Pitman-Yor process. These
have led to generalizations that account for domain effects (Wood and Teh, 2009) and unbounded
contexts (Wood et al., 2009).

The idea of using neural networks for language modeling is not new (Miikkulainen and Dyer,
1991), but recent efforts (Mnih and Hinton, 2007; Mikolov et al., 2010) have achieved impressive
performance. These methods can be quite expensive to train and query (especially as the vocab-
ulary size increases). Techniques such as noise contrastive estimation (Gutmann and Hyvärinen,
2012; Mnih and Teh, 2012; Vaswani et al., 2013), subsampling (Xu et al., 2011), or careful engineer-
ing approaches for maximum entropy LMs (which can also be applied to neural networks) (Wu

5As described earlier, only the ranks need to be tuned, so only 2-3 low rank bigrams and 2-3 low rank trigrams need
to be computed (and combined depending on the setting).

6the best score at WMT 2013 was 19.9 (Bojar et al., 2013)

170

and Khudanpur, 2000) have improved training of these models, but querying the probability of
the next word given still requires explicitly normalizing over the vocabulary, which is expensive
for big corpora or in languages with a large number of word types. Mnih and Teh (2012) and
Vaswani et al. (2013) propose setting the normalization constant to 1, but this is approximate and
thus can only be used for downstream evaluation, not for perplexity computation. An alternate
technique is to use word-classing (Goodman, 2001; Mikolov et al., 2011), which can reduce the
cost of exact normalization to O(

√
V). In contrast, our approach is much more scalable, since it is

trivially parallelized in training and does not require explicit normalization during evaluation.

There are a few low rank approaches (Saul and Pereira, 1997; Bellegarda, 2000; Hutchinson
et al., 2011), but they are only effective in restricted settings (e.g. small training sets, or corpora
divided into documents) and do not generally perform comparably to state-of-the-art models.
Roark et al. (2013) also use the idea of marginal constraints for re-estimating back-off parameters
for heavily-pruned language models, whereas we use this concept to estimate n-gram specific
discounts.

9.8 Conclusion

We presented power low rank ensembles, a technique that generalizes existing n-gram smoothing
techniques to non-integer n. By using ensembles of sparse as well as low rank matrices and
tensors, our method captures both the fine-grained and coarse structures in word sequences. Our
discounting strategy preserves the marginal constraint and thus generalizes Kneser Ney, and under
slight changes can also extend other smoothing methods such as deleted-interpolation/Jelinek-
Mercer smoothing. Experimentally, PLRE convincingly outperforms Kneser-Ney smoothing as
well as class-based baselines.

9.9 Appendix

The primary purpose of this section is to provide a proof of Lemma 29. We also show that Lemma 29
extends to n > 2.

9.9.1 Proof of Lemma 29

Proof. Assume the following more general form where multiple low rank matrices can be used i.e.:

Pplre(wi|wi−1) = Palt
D0

(wi|wi−1) + γ0(wi−1)
(
Z(ρ1,κ1)

D1
(wi|wi−1) +

+ γη−1(wi−1)
(
Z(ρη,κη)

Dη
(wi|wi−1) + γη(wi−1)

(
Z(ρη+1=0,κη+1=1)(wi|wi−1)

))
...
)

(9.24)

171

where we note that Z(ρη+1=0,κη+1=1)(wi|wi−1) is equivalent to Palt(wi). It is assumed that 1 ≥ ρ0 ≥

....ρη+1 = 0.

First unroll the recursion and rewrite Pplre(wi|wi−1) as:

Pplre(wi|wi−1) =

η+1∑
j=0

γ0: j−1(wi−1)Z
(ρ j,κ j)
D j

(wi|wi−1)

where γ0: j−1(wi−1) =
∏ j−1

h=0 γh(wi−1) and γ0:−1(wi−1) = 1. Note that Ppwr(wi|wi−1) can be written in
the same way.

Ppwr(wi|wi−1) =

η∑
j=0

γ0: j(wi−1)Y
(ρ j)
D j

(wi|wi−1) (9.25)

Note that Ppwr(wi|wi−1) already satisfies the marginal constraint i.e.

P̂(w) =
∑
wi−1

Ppwr(wi|wi−1)P̂(wi−1) (9.26)

because the discounts were chosen such that Ppwr(wi|wi−1) = P̂(wi|wi−1)

Thus it suffices to show that for all j = 0, ..., η + 1:∑
wi−1

P̂(wi−1)γ0: j−1(wi−1)Y
(ρ j)
D j

(wi|wi−1) =
∑
wi−1

P̂(wi−1)γ0: j−1(wi−1)Z
(ρ j,κ j)
D j

(wi|wi−1) (9.27)

The statement above is trivially true when j = 0. For all other cases, note that due to the way we
have set the discounts, γ0: j−1 takes a special form:

j−1∏
h=0

γh(wi−1) =
d∗

∑
i cρ1

i,i−1∑
i cρ0

i,i−1

d∗
∑

i cρ2

i,i−1∑
i cρ1

i,i−1

...
d∗

∑
i c
ρ j

i,i−1∑
i c
ρ j−1

i,i−1

=
(d∗) j ∑

i c
ρ j

i,i−1∑
i ci,i−1

(9.28)

Using this form in Eq. 5 and simplifying yields:∑
wi−1

(∑
i c
ρ j

i,i−1

)
Y

(ρ j)
D j

(wi|wi−1) =
∑

wi−1

(∑
i c
ρ j

i,i−1

)
Z

(ρ j,κ j)
D j

(wi|wi−1)

which is equivalent to requiring that∑
wi−1

Y
(ρ j)
D j

(wi,wi−1) =
∑
wi−1

Z
(ρ j,κ j)
D j

(wi,wi−1) (9.29)

172

which holds because rank minimization under gKL preserves row and column sums. �

9.9.2 Generalization to n > 2

Theorem 5. Let Pplre(wi|wi−1
i−n+1) indicate the PLRE smoothed conditional probability and P̂(w) indicate the

MLE probability of w. Then,

P̂(w) =
∑

wi−1
i−n+1

Pplre(wi|wi−1
i−n+1)P̂(wi−1

i−n+1) (9.30)

Proof. Recall that,

Pplre(wi|wi−1
i−n+1) = Palt

D0
(wi|wi−1

i−n+1)

+ γ0(wi−1
i−n+1)

(
Z(ρ1,κ1)

D1
(wi|wi−1

i−n+1) +

+ γη−1(wi−1
i−n+1)

(
Z(ρη,κη)

Dη
(wi|wi−1

i−n+1)

+ γη(wi−1
i−n+1)

(
Pplre(wi|wi−1

i−n+2)
))
...
)

(9.31)

Define,

Ppwr(wi|wi−1
i−n+1) = Palt

D0
(wi|wi−1

i−n+1)

+ γ0(wi−1
i−n+1)

(
Y(ρ1,κ1)

D1
(wi|wi−1

i−n+1) +

+ γη−1(wi−1
i−n+1)

(
Y(ρη,κη)

Dη
(wi|wi−1

i−n+1)

+ γη(wi−1
i−n+1)

(
Ppwr(wi|wi−1

i−n+2)
))
...
)

(9.32)

where with a little abuse of notation

Y
ρ j

D j
(wi|wi−1

i−n′+1) =
c̃(wi,wi−1

i−n′+1)ρ j −D j(wi,wi−1
i−n′+1)∑

wi
c̃(wi,wi−1

i−n′+1)ρ j
(9.33)

and

c̃(wi,wi−1
i−n′+1) =


c(wi,wi−1

i−n′+1), if n′ = n

N−(wi
i−n′+1) if n′ < n

173

Furthermore, define

Pterms
pwr (wi|wi−1

i−n′+1) = Palt
D0

(wi|wi−1
i−n′+1)

+ γ0(wi−1
i−n′+1)

(
Y(ρ1,κ1)

D1
(wi|wi−1

i−n′+1) +

+ γη−1(wi−1
i−n′+1)

(
Y(ρη,κη)(wi|wi−1

i−n′+1)
)
...
)

(9.34)

Note that because of the way the discounts are computed in Algorithm 19,

Pterms
pwr (wi|wi−1

i−n′+1) = Palt(wi|wi−1
i−n′+1) (9.35)

for all n′ ≤ n.

As a result, (for some choice of discount)

Ppwr(wi|wi−1
i−n+1) = Pkn(wi|wi−1

i−n+1) (9.36)

Since, we know that Kneser Ney satisfies the marginal constraint (Chen and Goodman, 1999)
this implies that,

P̂(w) =
∑

wi−1
i−n+1

Ppwr(wi|wi−1
i−n+1)P̂(wi−1

i−n+1) (9.37)

Thus, all we have to do is prove that∑
wi−1

i−n+1

Ppwr(wi|wi−1
i−n+1)P̂(wi−1

i−n+1) =
∑

wi−1
i−n+1

Pplre(wi|wi−1
i−n+1)P̂(wi−1

i−n+1) (9.38)

Now, we follow the same argument as with n = 2 (i.e. unrolling the recursion and applying the
fact that gKL preserves row/column sums).

For notational simplicity assume that n = 3. Then, we can write Ppwr(wi|wi−1
i−n+1) as:

Ppwr(wi|wi−1
i−2) =

η∑
j=0

γ0: j−1(wi−1
i−2)Y

(ρ j,κ j)
D j

(wi|wi−1
i−2) +

η+1∑
j=0

γ0:η(wi−1
i−2)γ0: j−1(wi−1)Y

(ρ j,κ j)
D j

(wi|wi−1) (9.39)

174

where γ0:−1(wi−1
i−2) = 1 and

γ0: j−1(wi−1
i−2) =

j−1∏
h=0

γh(wi−1
i−2) =

d∗
∑

i c̃ρ1
i,i−1,i−2∑

i c̃ρ0

i,i−1,i−2

d∗
∑

i c̃ρ2

i,i−1,i−2∑
i c̃ρ1

i,i−1,i−2

...
d∗

∑
i c̃
ρ j

i,i−1,i−2∑
i c̃
ρ j−1

i,i−1,i−2

=
(d∗) j ∑

i c̃
ρ j

i,i−1,i−2∑
i c̃i,i−1,i−2

(9.40)

Here c̃i,i−1,i−2 is shorthand for c̃(wi,wi−1
i−2).

Similarly, γ0:−1(wi−1) = 1 and

γ0: j−1(wi−1) =

j−1∏
h=0

γh(wi−1) =
d∗

∑
i c̃ρ1

i,i−1∑
i c̃ρ0

i,i−1

d∗
∑

i c̃ρ2

i,i−1∑
i c̃ρ1

i,i−1

...
d∗

∑
i c̃
ρ j

i,i−1∑
i c̃
ρ j−1

i,i−1

=
(d∗) j ∑

i c̃
ρ j

i,i−1∑
i c̃i,i−1

(9.41)

(Again, it is assumed that 1 ≥ ρ0 ≥ρη+1 = 0.)

Analogously,

Pplre(wi|wi−1
i−2) =

η∑
j=0

γ0: j−1(wi−1
i−2)Z

(ρ j,κ j)
D j

(wi|wi−1
i−2) +

η+1∑
j=0

γ0:η(wi−1
i−2)γ0: j−1(wi−1)Z

(ρh,κ j)
D j

(wi|wi−1) (9.42)

Now for any trigram term we prove that∑
wi−1

i−2

γ0: j−1(wi−1
i−2)Y

(ρ j,κ j)
D j

(wi|wi−1
i−2)P̂(wi−1

i−2) =
∑
wi−1

i−2

γ0: j−1(wi−1
i−2)Z

(ρ j,κ j)
D j

(wi|wi−1
i−2)P̂(wi−1

i−2) (9.43)

Plugging in the definition of γ0: j−1 and simplifying gives

∑
wi−1

i−2

(
∑

i

c̃
ρ j

i,i−1,i−2)Y
(ρ j,κ j)
D j

(wi|wi−1
i−2) =

∑
wi−1

i−2

(
∑

i

c̃
ρ j

i,i−1,i−2)Z
(ρ j,κ j)
D j

(wi|wi−1
i−2) (9.44)

which is equivalent to ∑
wi−1

i−2

Y
(ρ j,κ j)
D j

(wi,wi−1
i−2) =

∑
wi−1

i−2

Z
(ρ j,κ j)
D j

(wi,wi−1
i−2) (9.45)

which holds because of the definition of Z and the fact that rank minimization under gKL preserves
row/column sums.

175

Now consider any bigram term. We seek to show that:∑
wi−1

i−2

γ0:η(wi−1
i−2)γ0: j−1(wi−1)Y

(ρ j,κ j)
D j

(wi|wi−1)P̂(wi−1
i−2)

=
∑
wi−1

i−2

γ0:η(wi−1
i−2)γ0: j−1(wi−1)Z

(ρ j,κ j)
D j

(wi|wi−1)P̂(wi−1
i−2) (9.46)

Substituting definition of γ0:η(wi−1
i−2) gives

∑
wi−1

i−2

(d∗)η+1 ∑
i c̃
ρη+1

i,i−1,i−2∑
i c̃i,i−1,i−2

γ0: j−1(wi−1)Y
(ρ j,κ j)
D j

(wi|wi−1)P̂(wi−1
i−2)

=
∑
wi−1

i−2

(d∗)η+1 ∑
i c̃
ρη+1

i,i−1,i−2∑
i c̃i,i−1,i−2

γ0: j−1(wi−1)Z
(ρ j,κ j)
D j

(wi|wi−1)P̂(wi−1
i−2) (9.47)

Simplifying and pushing in the sum over wi−2 gives,∑
wi−1

(
∑
i,i−2

c̃
ρη+1

i,i−1,i−2)γ0: j−1(wi−1)Y
(ρ j,κ j)
D j

(wi|wi−1) =
∑
wi−1

(
∑
i,i−2

c̃
ρη+1

i,i−1,i−2)γ0: j−1(wi−1)Z
(ρ j,κ j)
D j

(wi|wi−1) (9.48)

Note that since ρη+1 = 0,
∑

i,i−2 c̃
ρη+1=0
i,i−1,i−2 =

∑
i c̃i,i−1 (by definition of c̃).

Using this fact and substituting definition of γ0: j−1(wi−1) gives

∑
wi−1

(
∑

i

c̃i,i−1)
(d∗) j ∑

i c̃
ρ j

i,i−1∑
i c̃i,i−1

Y
(ρ j,κ j)
D j

(wi|wi−1) =
∑
wi−1

(
∑

i

c̃i,i−1)
(d∗) j ∑

i c̃
ρ j

i,i−1∑
i c̃i,i−1

Z
(ρ j,κ j)
D j

(wi|wi−1) (9.49)

Simplifying gives, ∑
wi−1

Y
(ρ j)
D j

(wi,wi−1) =
∑
wi−1

Z
(ρ j,κ j)
D j

(wi,wi−1) (9.50)

which holds because rank minimization under KL divergence preserves row and column sums.
�

176

Chapter 10

Conclusion

In this thesis, we have approached probabilistic modeling through the lens of linear and tensor
algebra. Viewing latent variable models from this perspective allowed us to leverage tools such as
matrix/tensor decomposition, inversion, and additive metrics to propose many novel solutions to
parameter and structure learning as well as modeling with latent variables.

In particular, Part I proposed spectral learning algorithms for latent tree graphical models
(Chapter 4 and 7) and latent junction trees (Chapter 5). Unlike traditional methods, our algorithms
are provably consistent, local-optima-free, and 1-2 orders of magnitude faster than EM for large
sample sizes. They also easily generalize to the continuous, nonparametric setting (Chapter 6).

In Part II, we used these insights to approach latent variable modeling for NLP from a linear
algebra perspective. Our method for unsupervised parsing (Chapter 8) is the first algorithm that
has both theoretical guarantees and is also practical, performing favorably to the CCM method of
Klein and Manning. We also developed power low rank ensembles (Chapter 9), a framework for
language modeling that generalizes existing n-gram techniques to non-integer n. It consistently
outperforms state-of-the-art Kneser Ney baselines and can train on billion-word datasets in a few
hours.

Finally, this thesis also leaves open many directions for future work, two of which are described
below.

Discriminative spectral learning methods: Spectral learning methods have been developed
primarily for generative latent variable modeling. However, in many cases, discriminative tech-
niques lead to better predictive power. A natural question to ask is can spectral learning be
integrated with discriminative training?

This is an exciting problem that has recently been of interest in the spectral learning commu-
nity (Chaganty and Liang, 2013; Quattoni et al., 2014) and is challenging since most discriminative
methods (even for fully observed models) rely on optimization that can be difficult to integrate
with spectral estimation. One promising idea is to discriminatively learn the projection matrix Ui
that would learn a subspace that is more optimal for the prediction problem (an idea suggested
by Quattoni et al. (2014) for sequence models). There has been work along these lines in context
of oriented PCA (Platt et al., 2010) for translingual document representations.

177

Connecting Neural Networks and Latent Variable Models: This thesis has sought to develop
connections between low rank decomposition and latent variable modeling, two different formu-
lations of a similar intuition: that there exists an underlying “simpler” explanation of the data that
is unobserved. However, neural networks are another popular technique that exploit a similar
insight. Can these approaches be related to either linear algebra methods and/or latent variable
models?

For example, let us consider recurrent neural networks for language modeling (Mikolov et al.,
2010) that model sequences of words. Let wt denote the V × 1 indicator vector representation
for wt (the tth word in the sequence) and wt(j) indicate its jth index. Let st denote the K × 1
dimensional state vector at position t and yt be the V × 1 dimensional output vector that will
represent the estimated probability P̂(wt+1|w1, ...,wt). Then, a recurrent neural network is defined
by the following equations:

st(j) = f

 V∑
i=1

wt(i)µ ji +

K∑
l=1

st−1(l)κ jl

 (10.1)

yt(m) = g

 K∑
j=1

st(j)νmj

 (10.2)

where µ ji, κ jl, νmj are weights to be learned. Typically f and g are set to:

f (z) =
1

1 + exp(−z)
(10.3)

g(zm) =
exp(zm)∑
k exp(zk)

(10.4)

Therefore in a recurrent neural net, yt only depends on the state vector st. st+1 depends on wt
and st. As a result, the RNN requires O(K2 + KV) parameters where K is the size of the latent
dimension and V is the vocabulary size.

Note that the dependencies in an RNN are different from a traditional hidden Markov model
(HMM) in one aspect, namely that st+1 depends on both st and wt. This is different from a
traditional HMM where the state at time t only depends on the state t− 1 via the transition matrix.

However, it is easy to alter the HMM so that it can also have the same dependences as the
RNN with the same number of parameters. In particular we can have define the following model
parameters for the prior, transition, and observation probabilities respectively:

π(i) := P(ht = i) (10.5)

T(i, j,m) := P(ht+1 = i|ht = j,wt = m) :=
exp(αi, j + βi,m)∑
n exp(αnj + βnm)

(10.6)

O(m, i) := P(wt = m|ht = i) (10.7)

Note that here we have denoted the state by h instead of s as with the RNN since both models don’t
have the same definition of state. A state in an HMM is a discrete valued variable (although the
probability distribution over it is a real-valued vector) while the RNN state s is itself a real-valued

178

(non-probabilistic) vector. Moreover the transition tensor T is now parameterized using log-linear
models so that the number of parameters is still O(K2 + KV).

However, despite their similarity, there have been no theoretical or empirical comparisons be-
tween these two models. Such a comparison could shed light into the differences in representation
power between these two classes of approaches.

These are just two possible future directions of this thesis. Spectral probabilistic modeling is still
a nascent field with many open questions. Its strong mathematical foundation make it a natural
framework for studying theoretical questions, and its natural scalability make it very practical for
large scale data analysis. Thus, it has the potential to continue to have an impact on machine
learning and natural language processing for many years to come.

179

Bibliography

Akritas, A. G., Akritas, E. K., and Malaschonok, G. I. (1996). Various proofs of sylvester’s (deter-
minant) identity. Mathematics and Computers in Simulation, 42(4):585–593.

Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S. M., Song, L., and Zhang, T. (2011). Spectral
methods for learning multivariate latent tree structure. arXiv preprint arXiv:1107.1283.

Anandkumar, A., Foster, D. P., Hsu, D., Kakade, S. M., and Liu, Y.-K. (2012). Two svds suffice:
Spectral decompositions for probabilistic topic modeling and latent dirichlet allocation. arXiv
preprint arXiv:1204.6703.

Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. M. (2013). A tensor spectral approach to learning
mixed membership community models. arXiv preprint arXiv:1302.2684.

Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y., and Zhu, M. (2012a). A
practical algorithm for topic modeling with provable guarantees. arXiv preprint arXiv:1212.4777.

Arora, S., Ge, R., and Moitra, A. (2012b). Learning topic models–going beyond svd. In Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 1–10. IEEE.

Asuncion, A. and Newman, D. (2007). Uci machine learning repository.

Atteson, K. (1997). The performance of neighbor-joining algorithms of phylogeny reconstruction.
In Computing and Combinatorics, pages 101–110. Springer.

Bach, F. R. and Jordan, M. I. (2003). Kernel independent component analysis. The Journal of Machine
Learning Research, 3:1–48.

Bailly, R., Carreras, X., Luque, F. M., and Quattoni, A. (2013). Unsupervised spectral learning of
WCFG as low-rank matrix completion. In Proceedings of EMNLP.

Bailly, R., Denis, F., and Ralaivola, L. (2009). Grammatical inference as a principal component
analysis problem. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 33–40. ACM.

Bailly, R., Habrard, A., and Denis, F. (2010). A spectral approach for probabilistic grammatical
inference on trees. In Algorithmic Learning Theory, pages 74–88. Springer.

Balakrishnan, S., Wainwright, M. J., and Yu, B. (2014). Statistical guarantees for the em algorithm:
From population to sample-based analysis. arXiv preprint arXiv:1408.2156.

Baldi, P. et al. (2001). Bioinformatics: the machine learning approach. The MIT Press.

180

Balle, B., Quattoni, A., and Carreras, X. (2011). A spectral learning algorithm for finite state
transducers. In Machine Learning and Knowledge Discovery in Databases, pages 156–171. Springer.

Balle, B., Quattoni, A., and Carreras, X. (2012). Local loss optimization in operator models: A new
insight into spectral learning. arXiv preprint arXiv:1206.6393.

Bellegarda, J. R. (2000). Large vocabulary speech recognition with multispan statistical language
models. IEEE Transactions on Speech and Audio Processing, 8(1):76–84.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language model.
J. Mach. Learn. Res., 3:1137–1155.

Bickson, D. (2008). Gaussian belief propagation: Theory and application. Arxiv preprint
arXiv:0811.2518.

Bojar, O., Buck, C., Callison-Burch, C., Federmann, C., Haddow, B., Koehn, P., Monz, C., Post,
M., Soricut, R., and Specia, L. (2013). Findings of the 2013 Workshop on Statistical Machine
Translation. In Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 1–44,
Sofia, Bulgaria. Association for Computational Linguistics.

Boots, B. and Gordon, G. (2013). A spectral learning approach to range-only slam. In Proc. 30th
Intl. Conf. on Machine Learning (ICML).

Boots, B., Siddiqi, S. M., and Gordon, G. J. (2010). Closing the learning-planning loop with
predictive state representations. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, pages 1369–1370. International Foundation
for Autonomous Agents and Multiagent Systems.

Brown, P., Desouza, P., Mercer, R., Pietra, V., and Lai, J. (1992). Class-based n-gram models of
natural language. Computational linguistics, 18(4):467–479.

Buneman, O. P. (1971). The recovery of trees from measures of dissimilarity. Mathematics in the
archaeological and historical sciences.

Buneman, P. (1974). A note on the metric properties of trees. Journal of Combinatorial Theory, Series
B, 17(1):48–50.

Cai, J.-F., Candès, E. J., and Shen, Z. (2010). A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982.

Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Foundations
of Computational mathematics, 9(6):717–772.

Casella, G. and Berger, R. L. (1990). Statistical inference, volume 70. Duxbury Press Belmont, CA.

Casella, G. and Berger, R. L. (2002). Statistical inference, volume 2. Duxbury Pacific Grove, CA.

Chaganty, A. T. and Liang, P. (2013). Spectral experts for estimating mixtures of linear regressions.
arXiv preprint arXiv:1306.3729.

Chaganty, A. T. and Liang, P. (2014). Estimating latent-variable graphical models using moments
and likelihoods. In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1872–1880.

181

Chen, S. F. (2009). Shrinking exponential language models. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, NAACL ’09, pages 468–476, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–393.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothing techniques for me models. Speech and
Audio Processing, IEEE Transactions on, 8(1):37–50.

Chiang, D. (2007). Hierarchical phrase-based translation. Comput. Linguist., 33(2):201–228.

Chiang, D., Marton, Y., and Resnik, P. (2008). Online large-margin training of syntactic and
structural translation features. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 224–233. Association for Computational Linguistics.

Choi, M. J., Tan, V. Y., Anandkumar, A., and Willsky, A. S. (2010). Learning latent tree graphical
models. In arXiv:1009.2722v1.

Choi, M. J., Tan, V. Y., Anandkumar, A., and Willsky, A. S. (2011). Learning latent tree graphical
models. The Journal of Machine Learning Research, 12:1771–1812.

Chow, C. and Liu, C. (1968a). Approximating discrete probability distributions with dependence
trees. Information Theory, IEEE Transactions on, 14(3):462–467.

Chow, C. and Liu, C. (1968b). Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467.

Chow, C. K. and Liu, C. N. (1968c). Approximating Discrete Probability Distributions With De-
pendence Trees. IEEE Transactions on Information Theory, IT-14:462–467.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for statistical
machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers
- Volume 2, HLT ’11, pages 176–181.

Cohen, S. and Collins, M. (2012). Tensor decomposition for fast parsing with latent-variable pcfgs.
In Advances in Neural Information Processing Systems 25, pages 2528–2536.

Cohen, S., Stratos, K., Collins, M., Foster, D., and Ungar, L. (2012). Spectral learning of latent-
variable pcfgs. In Association of Computational Linguistics (ACL), volume 50.

Cohen, S. B. and Collins, M. (2014). A provably correct learning algorithm for latent-variable pcfgs.

Cohen, S. B. and Smith, N. A. (2009). Shared logistic normal distributions for soft parameter tying
in unsupervised grammar induction. In Proceedings of HLT-NAACL.

Cohen, S. B. and Smith, N. A. (2010). Viterbi training for PCFGs: Hardness results and competi-
tiveness of uniform initialization. In Proceedings of ACL.

Cohen, S. B. and Smith, N. A. (2012). Empirical risk minimization for probabilistic grammars:
Sample complexity and hardness of learning. Computational Linguistics, 38(3):479–526.

182

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. (1999). Probabilistic Networks and Expert
Sytems. Springer, New York.

Dasgupta, S. (1999). Learning mixtures of gaussians. In Foundations of Computer Science, 1999. 40th
Annual Symposium on, pages 634–644. IEEE.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39(1):1–22.

Desper, R. and Gascuel, O. (2005). The minimum evolution distance-based approach to phyloge-
netic inference. Mathematics of evolution and phylogeny, pages 1–32.

Dhillon, P. S., Rodu, J., Collins, M., Foster, D. P., and Ungar, L. H. (2012a). Spectral dependency pars-
ing with latent variables. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages 205–213. Association for
Computational Linguistics.

Dhillon, P. S., Rodu, J., Foster, D. P., and Ungar, L. H. (2012b). Two step cca: A new spectral
method for estimating vector models of words. In Proceedings of the 29th International Conference
on Machine learning, ICML’12.

Ding, W., Rohban, M. H., Ishwar, P., and Saligrama, V. (2013). Topic discovery through data
dependent and random projections. arXiv preprint arXiv:1303.3664.

Dyer, C., Weese, J., Setiawan, H., Lopez, A., Ture, F., Eidelman, V., Ganitkevitch, J., Blunsom, P.,
and Resnik, P. (2010). cdec: A decoder, alignment, and learning framework for finite-state and
context-free translation models. In Proceedings of the ACL 2010 System Demonstrations, pages
7–12. Association for Computational Linguistics.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau of Standards B,
71(4):233–240.

Eisner, J. and Satta, G. (1999). Efficient parsing for bilexical context-free grammars and head
automaton grammars. In Proceedings of ACL.

Erdõs, P. L., Steel, M. A., Székely, L., and Warnow, T. J. (1999). A few logs suffice to build (almost)
all trees: Part ii. Theoretical Computer Science, 221(1):77–118.

Fine, S. and Scheinberg, K. (2002). Efficient svm training using low-rank kernel representations.
The Journal of Machine Learning Research, 2:243–264.

Ghahramani, Z. and Jordan, M. (1997). Factorial hidden Markov models. Machine learning,
29(2):245–273.

Gillenwater, J., Ganchev, K., Graça, J., Pereira, F., and Taskar, B. (2010). Sparsity in dependency
grammar induction. In Proceedings of ACL.

Gimpel, K. and Smith, N. (2012). Concavity and initialization for unsupervised dependency
parsing. In Proceedings of NAACL.

Goldwater, S., Griffiths, T., and Johnson, M. (2006). Interpolating between types and tokens by es-
timating power-law generators. In Advances in Neural Information Processing Systems, volume 18.

183

Golland, D. and DeNero, J. (2012). A feature-rich constituent context model for grammar induction.
In Proceedings of ACL.

Goodman, J. (2001). Classes for fast maximum entropy training. In Acoustics, Speech, and Signal
Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on, volume 1, pages
561–564. IEEE.

Gormley, M. and Eisner, J. (2013). Nonconvex global optimization for latent-variable models. In
Proceedings of ACL.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

Gutmann, M. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. Journal of Machine Learning Research, 13:307–
361.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–
288.

Harmeling, S. and Williams, C. K. (2011). Greedy learning of binary latent trees. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 33(6):1087–1097.

Harshman, R. A. (1970). Foundations of the parafac procedure: Models and conditions for an”
explanatory” multi-modal factor analysis.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics. Springer Verlag.

Headden, W. P., Johnson, M., and McClosky, D. (2009). Improving unsupervised dependency
parsing with richer contexts and smoothing. In Proc. of NAACL-HLT.

Heafield, K. (2011). KenLM: faster and smaller language model queries. In Proceedings of the EMNLP
2011 Sixth Workshop on Statistical Machine Translation, pages 187–197, Edinburgh, Scotland, United
Kingdom.

Heller, K. A. and Ghahramani, Z. (2005). Bayesian hierarchical clustering. In Proceedings of the 22nd
international conference on Machine learning, pages 297–304. ACM.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. sn.

Ho, N.-D. and Van Dooren, P. (2008). Non-negative matrix factorization with fixed row and column
sums. Linear Algebra and its Applications, 429(5):1020–1025.

Horn, R. and Johnson, C. (1990). Matrix analysis. Cambridge Univ Pr.

Hsu, D., Kakade, S., and Zhang, T. (2009). A spectral algorithm for learning hidden Markov
models. In Proc. Annual Conf. Computational Learning Theory.

Hsu, D., Kakade, S. M., and Liang, P. (2012). Identifiability and unmixing of latent parse trees. In
Advances in NIPS.

Hutchinson, B., Ostendorf, M., and Fazel, M. (2011). Low rank language models for small training
sets. Signal Processing Letters, IEEE, 18(9):489–492.

184

Ishteva, M., Park, H., and Song, L. (2012). Unfolding latent tree structures using 4th order tensors.
arXiv preprint arXiv:1210.1258.

Jelinek, F., Lafferty, J. D., and Mercer, R. L. (1992). Basic methods of probabilistic context free grammars.
Springer.

Jelinek, F. and Mercer, R. (1980). Interpolated estimation of markov source parameters from sparse
data. Pattern recognition in practice.

Jiang, J., Rai, P., and Iii, H. D. (2011). Message-passing for approximate map inference with latent
variables. In Advances in Neural Information Processing Systems, pages 1197–1205.

Katayama, T. (2005). Subspace methods for system identification. Springer.

Klein, D. and Manning, C. D. (2002). A generative constituent-context model for improved gram-
mar induction. In Proceedings of ACL.

Klein, D. and Manning, C. D. (2004). Corpus-based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of ACL.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on, volume 1, pages
181–184. IEEE.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY, USA,
1st edition.

Kolar, M., Parikh, A. P., and Xing, E. P. (2010a). On sparse nonparametric conditional covariance
selection. In Proceedings of ICML.

Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010b). Estimating time-varying networks. The
Annals of Applied Statistics, 4(1):94–123.

Kolda, T. and Bader, B. (2009a). Tensor decompositions and applications. SIAM Review, 51(3):455–
500.

Kolda, T. G. and Bader, B. W. (2009b). Tensor decompositions and applications. SIAM review,
51(3):455–500.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. The MIT
Press.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37.

Kundu, A., He, Y., and Bahl, P. (1989). Recognition of handwritten word: first and second order
hidden Markov model based approach. Pattern recognition, 22(3):283–297.

Lake, J. A. (1994). Reconstructing evolutionary trees from dna and protein sequences: paralinear
distances. Proceedings of the National Academy of Sciences, 91(4):1455–1459.

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. Advances in
Neural Information Processing Systems, 13:556–562.

185

Liang, P. and Klein, D. (2009). Online em for unsupervised models. In Proceedings of human
language technologies: The 2009 annual conference of the North American chapter of the association for
computational linguistics, pages 611–619. Association for Computational Linguistics.

Liu, H., Lafferty, J., and Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of
high dimensional undirected graphs. The Journal of Machine Learning Research, 10:2295–2328.

Liu, Q. and Ihler, A. (2013). Variational algorithms for marginal map. arXiv preprint arXiv:1302.6584.

Luque, F. M., Quattoni, A., Balle, B., and Carreras, X. (2012). Spectral learning for non-deterministic
dependency parsing. In Proceedings of the 13th Conference of the European Chapter of the Association
for Computational Linguistics, pages 409–419. Association for Computational Linguistics.

Mackey, L., Talwalkar, A., and Jordan, M. I. (2011). Divide-and-conquer matrix factorization. arXiv
preprint arXiv:1107.0789.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language processing, volume
999. MIT Press.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus
of English: The Penn treebank. Computational Linguistics, 19:313–330.

Melnyk, I. and Banerjee, A. (2014). A spectral algorithm for inference in hidden semi-markov
models. arXiv preprint arXiv:1407.3422.

Miikkulainen, R. and Dyer, M. G. (1991). Natural language processing with modular pdp networks
and distributed lexicon. Cognitive Science, 15:343–399.

Mikolov, T. (2012). Rnnlm toolkit.

Mikolov, T., Karafit, M., Burget, L., ?ernock?, J., and Khudanpur, S. (2010). Recurrent neural net-
work based language model. In Proceedings of the 11th Annual Conference of the International Speech
Communication Association (INTERSPEECH 2010), volume 2010, pages 1045–1048. International
Speech Communication Association.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., and Khudanpur, S. (2011). Extensions of
recurrent neural network language model. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages 5528–5531. IEEE.

Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical language modelling.
In Proceedings of the 24th international conference on Machine learning, pages 641–648. ACM.

Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic
language models. In Proceedings of the International Conference on Machine Learning.

Mossel, E. and Roch, S. (2005). Learning nonsingular phylogenies and hidden markov models.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 366–375.
ACM.

Mossel, E. and Roch, S. (2006). Learning nonsingular phylogenies and hidden Markov models.
AOAP, 16(2):583–614.

Murphy, K. (2002). Dynamic bayesian networks: representation, inference and learning. PhD thesis,
University of California.

186

Murphy, K. (2005). Hidden Markov model (HMM) toolbox for matlab
http://www.cs.ubc.ca/murphyk/software/.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. The MIT Press.

Nelakanti, A. K., Archambeau, C., Mairal, J., Bach, F., and Bouchard, G. (2013). Structured penalties
for log-linear language models. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 233–243, Seattle, Washington, USA. Association for Computational
Linguistics.

Ney, H., Essen, U., and Kneser, R. (1994). On Structuring Probabilistic Dependencies in Stochastic
Language Modelling. Computer Speech and Language, 8:1–38.

Nguyen, N., Drineas, P., and Tran, T. (2010). Tensor sparsification via a bound on the spectral norm
of random tensors. Arxiv preprint arXiv:1005.4732.

Nguyen, T., Hu, Y., and Boyd-Graber, J. (2014). Anchors regularized: Adding robustness and
extensibility to scalable topic-modeling algorithms. In Association for Computational Linguistics.

Och, F. J. (1995). Maximum-likelihood-schätzung von wortkategorien mit verfahren der kombina-
torischen optimierung. Bachelor’s thesis (Studienarbeit), University of Erlangen.

Papineni, K., Roukos, S., Ward, T., and jing Zhu, W. (2002). Bleu: a method for automatic evaluation
of machine translation. pages 311–318.

Parikh, A., Song, L., and Xing, E. (2011). A spectral algorithm for latent tree graphical models. In
Proceedings of the 28th International Conference on Machine Learning, pages 1065–1072. ACM.

Parikh, A. P., Cohen, S. B., and Xing, E. P. (2014a). Spectral unsupervised parsing with additive tree
metrics. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:
Long Papers. Association for Computational Linguistics, volume 2, page 1.

Parikh, A. P., Cohen, S. B., and Xing, E. P. (2014b). Spectral unsupervised parsing with additive tree
metrics. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:
Long Papers. Association for Computational Linguistics, volume 2, page 1.

Parikh, A. P., Song, L., Ishteva, M., Teodoru, G., and Xing, E. P. (2012). A spectral algorithm for
latent junction trees. arXiv preprint arXiv:1210.4884.

Pearl, J. (1988). Probabilistic inference in intelligent systems.

Petrov, S., Das, D., and McDonald, R. (2011). A universal part-of-speech tagset. ArXiv:1104.2086.

Platt, J. C., Toutanova, K., and Yih, W.-t. (2010). Translingual document representations from
discriminative projections. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 251–261. Association for Computational Linguistics.

Poon, L., Zhang, N. L., Chen, T., and Wang, Y. (2010). Variable selection in model-based clustering:
To do or to facilitate. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 887–894.

Quattoni, A., Balle, B., Carreras, X., and Globerson, A. (2014). Spectral regularization for max-
margin sequence tagging. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1710–1718.

187

Rabiner, L. and Juang, B.-H. (1993). Fundamentals of speech recognition.

Redmond, M. and Baveja, A. (2002). A data-driven software tool for enabling cooperative informa-
tion sharing among police departments. European Journal of Operational Research, 141(3):660–678.

Roark, B., Allauzen, C., and Riley, M. (2013). Smoothed marginal distribution constraints for
language modeling. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (ACL), pages 43–52.

Roy, B. (2011). Bounds on the expected entropy and kl-divergence of sampled multinomial distri-
butions.

Rzhetsky, A. and Nei, M. (1993). Theoretical foundation of the minimum-evolution method of
phylogenetic inference. Molecular Biology and Evolution, 10(5):1073–1095.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular biology and evolution, 4(4):406–425.

Salakhutdinov, R. and Mnih, A. (2008). Bayesian probabilistic matrix factorization using Markov
chain Monte Carlo. In Proceedings of the 25th international conference on Machine learning, pages
880–887. ACM.

Saluja, A., Dyer, C., and Cohen, S. B. (2014). Latent-variable synchronous cfgs for hierarchical
translation. In Proceedings of EMNLP.

Saul, L. and Pereira, F. (1997). Aggregate and mixed-order markov models for statistical language
processing. In Proceedings of the second conference on empirical methods in natural language processing,
pages 81–89. Somerset, New Jersey: Association for Computational Linguistics.

Seginer, Y. (2007). Fast unsupervised incremental parsing. In Proceedings of ACL.

Semple, C. and Steel, M. A. (2003). Phylogenetics, volume 24. Oxford University Press.

Shalizi, C. R. (2015). Advanced Data Analysis from an Elementary Point of View. Cambridge University
Press, in progress, http://www.stat.cmu.edu/∼cshalizi/ADAfaEPoV/.

Siddiqi, S., Boots, B., and Gordon, G. J. (2010). Reduced-rank hidden Markov models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS-2010).

Smith, N. A. and Eisner, J. (2005). Contrastive estimation: Training log-linear models on unlabeled
data. In Proc. of ACL, pages 354–362.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A hilbert space embedding for distribu-
tions. In Algorithmic Learning Theory, pages 13–31. Springer.

Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A. (2010a). Hilbert space embeddings of
hidden Markov models. In Proceedings of the 27th International Conference on Machine Learning,
pages 991–998. ACM.

Song, L., Boots, B., Siddiqi, S. M., Gordon, G. J., and Smola, A. J. (2010b). Hilbert space embeddings
of hidden markov models. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 991–998.

188

Song, L., Gretton, A., Bickson, D., Low, Y., and Guestrin, C. (2011a). Kernel belief propagation.
arXiv preprint arXiv:1105.5592.

Song, L., Gretton, A., and Guestrin, C. (2010c). Nonparametric tree graphical models via kernel
embeddings. In International Conference on Artificial Intelligence and Statistics, pages 765–772.

Song, L., Huang, J., Smola, A., and Fukumizu, K. (2009). Hilbert space embeddings of condi-
tional distributions with applications to dynamical systems. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 961–968. ACM.

Song, L., Parikh, A., and Xing, E. (2011b). Kernel embeddings of latent tree graphical models. In
Advances in Neural Information Processing Systems (NIPS), volume 24, pages 2708–2716.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2010a). From baby steps to leapfrog: how less is
more in unsupervised dependency parsing. In Proceedings of NAACL.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2013). Breaking out of local optima with count
transforms and model recombination: A study in grammar induction. In Proceedings of EMNLP.

Spitkovsky, V. I., Alshawi, H., Jurafsky, D., and Manning, C. D. (2010b). Viterbi training improves
unsupervised dependency parsing. In Proceedings of CoNLL.

Stewart, G. and Sun, J. (1990). Matrix perturbation theory, volume 175. Academic press New York.

Stolcke, A. (2002). SRILM - An Extensible Language Modeling Toolkit. In Proceedings of the
International Conference in Spoken Language Processing.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in
artificial intelligence, 2009:4.

Subakan, C., Traa, J., and Smaragdis, P. (2014). Spectral learning of mixture of hidden markov
models. In Advances in Neural Information Processing Systems, pages 2249–2257.

Teh, Y. W. (2006). A hierarchical bayesian language model based on pitman-yor processes. In Pro-
ceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, pages 985–992. Association for Computational
Linguistics.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311.

Turian, J. P., Ratinov, L.-A., and Bengio, Y. (2010). Word representations: A simple and general
method for semi-supervised learning. In Proceedings of ACL.

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. (2013). Decoding with large-scale neural
language models improves translation. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1387–1392, Seattle, Washington, USA. Association for
Computational Linguistics.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305.

Wang, Y. and Zhu, J. (2014). Spectral methods for supervised topic models. In Advances in Neural
Information Processing Systems, pages 1511–1519.

189

Wood, F., Archambeau, C., Gasthaus, J., James, L., and Teh, Y. W. (2009). A stochastic memoizer
for sequence data. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 1129–1136. ACM.

Wood, F. and Teh, Y. W. (2009). A hierarchical nonparametric Bayesian approach to statistical
language model domain adaptation. In Artificial Intelligence and Statistics, pages 607–614.

Wu, J. and Khudanpur, S. (2000). Efficient training methods for maximum entropy language
modeling. In Interspeech, pages 114–118.

Xu, P., Gunawardana, A., and Khudanpur, S. (2011). Efficient subsampling for training complex
language models. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’11, pages 1128–1136, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Zhang, N. L. (2004). Hierarchical latent class models for cluster analysis. The Journal of Machine
Learning Research, 5:697–723.

Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. (2014). Spectral methods meet em: A provably
optimal algorithm for crowdsourcing. In Advances in Neural Information Processing Systems, pages
1260–1268.

Zhou, S., Lafferty, J., and Wasserman, L. (2010). Time varying undirected graphs. Machine Learning,
80(2-3):295–319.

Zipf, G. (1949). Human behaviour and the principle of least-effort. Addison-Wesley, Cambridge,
MA.

190

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
www.ml.cmu.edu

	Introduction
	Challenges
	A Linear Algebra Approach To Graphical Models
	Applications to Natural Language Processing
	Thesis Statement
	Related Work
	Outline

	Background: Modeling with Probabilistic Graphical Models
	Tasks in a graphical model
	Latent Variable Graphical Models
	Review of Hilbert Space Embedding of Distributions

	A Linear Algebra View of Latent Variable Models
	Tensor Notation
	The Spectral View

	I Spectral Learning Algorithms for Graphical Models
	A Spectral Algorithm for Latent Tree Graphical Models
	Intuition
	Notation for Latent Tree Graphical Models
	Derivation of Spectral Algorithm
	Dealing with SH SO
	Sample Complexity Analysis
	Empirical Results
	Connections with Tensor Decomposition
	Conclusion

	A Spectral Algorithm for Latent Junction Trees
	Additional Tensor Notation
	Latent Junction Trees
	Tensor Representation for Message Passing
	Transformed Representation
	Observable Representation
	Discussion
	Sample Complexity
	Experiments
	Conclusion
	Appendix

	Nonparametric Latent Trees with Kernel Embeddings
	Notation
	Kernel Density Estimation
	Connection to Hilbert Space Embeddings
	Deriving the Spectral Algorithm
	Structure Learning of Latent Tree Graphical Models
	Experiments
	Conclusion
	Appendix

	Alternative Spectral Representation of Latent Tree Graphical Models
	Intuition
	Notation
	Derivation of Alternate Spectral Algorithm
	Observable Representation
	Sample Complexity
	Experiments
	Discussion
	Appendix
	Eigenvalue Bounds
	Putting it all together

	II Spectral Models for Natural Language Processing
	Spectral Unsupervised Parsing with Additive Tree Metrics
	Introduction
	Learning Setting and Model
	Spectral Learning Algorithm based on Additive Tree Metrics
	Experiments
	Conclusion
	Appendix

	Language Modeling via Power Low Rank Ensembles
	Introduction
	Discount-based Smoothing
	Power Low Rank Ensembles
	Creating the Ensemble
	Experiments
	Machine Translation Task
	Related Work
	Conclusion
	Appendix

	Conclusion

