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Abstract

Predicting human behavior from a small amount of training examples is a challenging machine
learning problem. In this thesis, we introduce the principle of maximum causal entropy, a gen-
eral technique for applying information theory to decision-theoretic, game-theoretic, and control
settings where relevant information is sequentially revealed over time. This approach guaran-
tees decision-theoretic performance by matching purposeful measures of behavior (Abbeel & Ng,
2004), and/or enforces game-theoretic rationality constraints (Aumann, 1974), while otherwise be-
ing as uncertain as possible, which minimizes worst-case predictive log-loss (Grünwald & Dawid,
2003).

We derive probabilistic models for decision, control, and multi-player game settings using this
approach. We then develop corresponding algorithms for efficient inference that include relax-
ations of the Bellman equation (Bellman, 1957), and simple learning algorithms based on con-
vex optimization. We apply the models and algorithms to a number of behavior prediction tasks.
Specifically, we present empirical evaluations of the approach in the domains of vehicle route
preference modeling using over 100,000 miles of collected taxi driving data, pedestrian motion
modeling from weeks of indoor movement data, and robust prediction of game play in stochastic
multi-player games.
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Chapter 1

Introduction

“The future influences the present just as much as the past.”
— Friedrich Nietzsche (Philosopher, 1844–1900).

As humans, we are able to reason about the future consequences of our actions and their re-
lationships to our goals and objectives—even in the presence of uncertainty. This ability shapes
most of our high-level behavior. Our actions are typically purposeful and sensitive to the reve-
lation of new information in the future; we are able to anticipate the possible outcomes of our
potential actions and intelligently select appropriate actions that lead to desirable results. In fact,
some psychologists have defined intelligence itself as “goal-directed adaptive behavior” (Sternberg
& Salter, 1982). This reasoning is needed not only as a basis for intelligently choosing our own
behaviors, but also for being able to infer the intentions of others, their probable reactions to our
own behaviors, and rational possibilities for group behavior.

We posit that to realize the long-standing objective of artificial intelligence—the creation of
computational automata capable of reasoning with “human-like” intelligence—, those automata
will need to possess similar goal-directed, adaptive reasoning capabilities. This reasoning is nec-
essary for enabling a robot to intelligently choose its behaviors, and, even more importantly, to
allow the robot to infer and understand, by observation, the underlying reasons guiding intelligent
behavior in humans. The focus of our work is on constructing predictive models of goal-directed
adaptive behaviors that enable computational inference of a person’s future behavior and long-
term intentions. Importantly, prediction techniques must be robust to differences in context and
should support the transfer of learned behavior knowledge across similar settings. We argue that
just as goal-directedness and adaptive reasoning are critical components of intelligent behaviors,
they must similarly be central components of our predictive models for those behaviors.

For prescriptive models (i.e., those that provide optimal decisions), rich planning and decision-
making frameworks that incorporate both goals and adaptive reasoning exist. For example, in a
Markov decision process (Puterman, 1994), both goal-directedness and adaptive reasoning are in-
corporated by an optimal controller, which selects actions that maximize the expected utility over
future random outcomes. Though these models are useful for control purposes where the provided
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optimal action can simply be executed, they are often not useful for predictive purposes because ob-
served behavior is rarely absolutely and consistently optimal1. Similarly, game-theoretic solution
concepts specify joint rationality requirements on multi-player behavior but lack the uniqueness to
be able to predict what strategy players will employ.

Instead, predictive models capable of forecasting future behavior by estimating the probabil-
ities of future actions are needed. Unfortunately, many existing probabilistic models of behavior
have very little connection to planning and decision-making frameworks. They instead consider
behavior as a sequence of random variables without considering the context in which the behavior
is situated, and how it relates to the available options for efficiently satisfying the objectives of the
behavior. Thus, the existing approaches lack the crucial goal-directedness and adaptive reasoning
that is characteristic of high-level human behavior. These existing models can still be employed
to predict goal-directed adaptive behavior despite being neither inherently goal-directed nor incor-
porating adaptive reasoning themselves. However, the mismatch with the properties of high-level
behavior comes at a cost: slower rates of learning, poorer predictive accuracy, and worse general-
ization to novel behaviors and decision settings.

Figure 1.1: A Venn diagram representing probabilistic models, decision-theoretic models and their inter-
section, where our maximum causal entropy approach for forecasting behavior resides.

In this thesis, we develop predictive models of goal-directed adaptive behavior by explicitly
incorporating goals and adaptive reasoning into our formulations. We introduce the principle of
maximum causal entropy, our extension to the maximum entropy principle that addresses settings
where side information (from e.g., nature, random processes, or other external uncertain influences)
is sequentially revealed. We apply this principle to existing decision-theoretic and strategic reason-
ing frameworks to obtain predictive probabilistic models of behavior that possess goal-directed and
adaptive properties. From one perspective, this work generalizes existing probabilistic graphical
model techniques to the sequentially revealed information settings common in decision-theoretic
and game-theoretic settings. From a second perspective, this work generalizing existing optimal

1A notable exception is the duality of control and estimation in the linear quadratic setting established by Kalman
(1960).
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control techniques in decision-theoretic and strategic frameworks from prescribing optimal actions
to making predictions about behavior with predictive guarantees. This high-level combination of
probabilistic graphical models and decision theory is depicted in Figure 1.1.

We now make the central claim of this thesis explicit:

The principle of maximum causal entropy creates probabilistic models of decision
making that are purposeful, adaptive, and/or rational, providing more accurate
prediction of human behavior.

To validate this claim, we introduce the principle of maximum causal entropy, employ it to derive
probabilistic models that are inherently purposeful and adaptive, develop efficient algorithms for
inference and learning to make those models computationally tractable, and apply those models
and algorithms to behavior modeling tasks.

1.1 Contributions to the Theory of Behavior Prediction
The main contributions of this thesis to the support of the theory of behavior prediction in support
of the central thesis statement are as follows:

• The principle of maximum causal entropy (Ziebart et al., 2010b) extends the maximum
entropy framework (Jaynes, 1957) to settings with information revelation and feedback,
providing a general approach for modeling observed behavior that is purposeful, adaptive,
and/or rational.

• Maximum causal entropy inverse optimal control (Ziebart et al., 2010b) resolves ambi-
guities in the problem of recovering an agent’s reward function from demonstrated behavior
(Ng & Russell, 2000; Abbeel & Ng, 2004), and generalizes conditional random fields (Laf-
ferty et al., 2001) to settings with dynamically-revealed side information.

• Maximum causal entropy inverse linear-quadratic regulation (Ziebart et al., 2010b) re-
solves the special case of recovering the quadratic utility function that best explains se-
quences of continuous controls in linear dynamics settings.

• Maximum entropy inverse optimal control (Ziebart et al., 2008b) is the special case of
the maximum causal entropy approach applied to settings with deterministic state transition
dynamics.

• Maximum causal entropy influence diagrams (Ziebart et al., 2010b) expand the maximum
causal entropy approach to settings with addition uncertainty over side information, such
as learning to model diagnostic decision making. This approach resolves the question of
recovering reward for influence diagrams that explain demonstrated behavior.
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• Maximum causal entropy correlated equilibria Ziebart et al. (2010a) extend maximum
entropy correlated equilibria (Ortiz et al., 2007) for normal-form games (i.e., single-shot),
which provide predictive guarantees for jointly rational multi-player settings, to the dynamic,
sequential game setting.

1.2 Motivation
If technological trends hold, we will see a growing number of increasingly powerful computa-
tional resources available in our everyday lives. Embedded computers will provide richer access
to streams of information and robots will be afforded a greater level of control over our environ-
ments, while personal and pervasive networked devices will always make this information and
control available at our fingertips.

In our view, whether these technologies become a consistent source of distraction or a natural
extension of our own abilities (Weiser, 1991) depends largely on their algorithmic ability to un-
derstand our behavior, predict our future actions and infer our intentions and goals. Only then will
our computational devices and systems be best able to augment our own natural capabilities. The
possible benefits of technologies for behavior prediction are numerous and include:

• Accurate predictive models of the ways we interact with and control our surrounding com-
putational resources can be employed to automate those interactions on our behalf, reducing
our interaction burden.

• A knowledge of our current intentions and goals can be used to filter irrelevant, distracting
information out, so that our computational systems only provide information that is pertinent
to our current activities and intentions.

• Systems that can understand our intentions can help guide us in achieving them if we begin
to err or are uncertain, essentially compensating for our imperfect control or lack of detailed
information that our computational systems may possess.

While systems with improved abilities to reason about human behavior have applicability
across a wide range of domains for the whole spectrum of users, we are particularly motivated
by the problem of assisting older people in their daily lives. We envision a wealth of assistive tech-
nologies that augment human abilities and assist users in living longer, more independent lives.

1.3 Purposefulness, Adaptation, and Rationality
Part of the central claim of this thesis is that by designing probabilistic models that inherently
possess the same high-level properties as intelligent behavior, we can achieve more accurate pre-
dictions of that behavior. Identifying and defining all the properties that characterize intelligent
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behavior is an important task that has previously been investigated. We now review the previously
identified characteristics of behavior and use them to motivate the perspective of this thesis.

Figure 1.2: Rosenblueth et al. (1943)’s hierarchy of types of behavior. Categories at greater depth in this
hierarchy are considered to be related to reasoning capabilities associated with greater intelligence.

Rosenblueth et al. (1943) provide a hierarchy of different classes of behavior (Figure 1.2).
They distinguish between active and passive behavior based on whether the actor or agent is a
source of energy. Active behavior is either directed towards some target (purposeful) or undi-
rected (random). Our first formal definition adopts Taylor (1950)’s broader conceptualization of
purposefulness, which incorporates both means and ends.

Definition 1.1 (Taylor, 1950). Purposefulness is defined as follows:

There must be, on the part of the behaving entity, i.e., the agent: (a) a desire, whether
actually felt or not, for some object, event, or state of affairs as yet future; (b) the
belief, whether tacit or explicit, that a given behavioral sequence will be efficacious as
a means to the realization of that object, event, or state of affairs; and (c) the behavior
pattern in question. Less precisely, this means that to say of a given behavior pattern
that it is purposeful, is to say that the entity exhibiting that behavior desires some goal
and is behaving in a manner it believes appropriate to the attainment of it. (Taylor,
1950)

This definition captures many of the characteristics that one might associate with intelligent
behavior (Sternberg & Salter, 1982). Namely, that it is based on an ability to reason about the
effects that the combination of current and future actions have towards achieving a long-term goal
or set of objectives. Actions that are counter-productive or very inefficient in realizing those long-
term goals are avoided in favor of actions that efficiently lead to the accomplishment of intended
objectives. Similarly, myopic actions that provide immediate gratification are avoided if they do
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not provide future benefits across a longer horizon of time. Note that behavior sequences must
be efficacious in realizing a goal rather than optimal. We argue the theoretic, algorithmic, and
empirical benefits of incorporating purposefulness into predictive models of behavior throughout
this thesis.

Rosenblueth et al. (1943) further divide purposeful behavior into three categories:

• Non-feedback, which is not influenced by any feedback;

• Non-predictive feedback, which responds to feedback when it is provided; and

• Predictive feedback, which incorporates beliefs about anticipated future feedback.

We provide broader definitions than those shaped by the dominant problem of focus for those
authors (automatic weapon targeting).

Definition 1.2. Non-predictive feedback-based behavior is characterized by the influence of feed-
back of any type received while the behavior is executed.

This definition better matches our employed definition of purposefulness (Definition 1.1) by
allowing for feedback relating both to the agent’s goal and to changes in the “appropriateness” of
manners for attaining it.

Definition 1.3. Predictive feedback-based behavior is characterized by the influence of antici-
pated feedback to be received in the future on current behavior.

Consider the example of a cat pursuing a mouse to differentiate predictive and non-predictive
feedback-based behavior (Rosenblueth et al., 1943). Rather than moving directly towards the
mouse’s present location (non-predictive), the cat will move to a position based on its belief of
where the mouse will move (predictive). In this thesis we will narrowly define adaptive behavior
to be synonymous with predictive feedback-based behavior. We will restrict our consideration to
the anticipatory setting in this thesis, but we note that the simpler non-anticipatory setting can be
viewed as a sequence of non-feedback-based behaviors with varying inputs.

We illustrate the differences relating to adaptation by using the following example shown in
Figure 1.3. There are three routes that lead to one’s home (Point C). The two shortest routes share
a common path up until a point (B). A trusted source knows that there has been an accident on one
of the two shortest routes. Any driver that attempts to take that particular route will be ensnared in
traffic delays lasting for hours. Depending on the information provided and the problem setting,
the side information about traffic congestion falls into each of the three settings:

1. Complete availability. The trusted source reveals exactly which bridge is congested. One
should then choose to take the other (non-congested) short route home.
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Figure 1.3: An example decision problem with three routes crossing a river to connect a starting location
(A) to a destination (C). One of the two rightmost routes, which are components of the fastest routes, is
known to be congested. Choosing a route depends crucially on whether the congested route can be detected
at a shared vantage point (B) before having to commit to the possibly congested point.

2. Complete latency. The trusted source can only reveal that the traffic accident occurred
on one of the two shorter routes. Based on the road network topology, it is impossible to
determine which bridge is congested before committing to a route. Choosing the third route
that is known to be delay-free is likely to be preferable in this setting.

3. Information revelation. The trusted source again can only reveal that the traffic accident
occurred on one of the two shorter routes. However, there is a vantage point at B that allows
one to observe both bridges. In this case, taking the shared route to point B and then deciding
which route to take based on available observations is likely to be preferable.

The key distinction between these settings is when the relevant information about the congested
bridge becomes available, and specifically whether it is known before all decisions are made (Set-
ting 1), after all decisions are made (Setting 2), or in-between decisions (Setting 3). The last setting,
which we refer to as information revelation, provides the opportunity for adaptive behavior pri-
mary concern in this thesis. High-level behavior and our models of it should not only respond to
revealed information, but also anticipate what might be revealed when choosing preceding actions.
In addition to being simply revealed over time, what side information is revealed can be a function
of the behavior executed up to that point, and the value of that side information can potentially be
influenced by that behavior as well.

The sophistication of the observed behavior goes far deeper than the first-order and second-
order dynamics models originally considered by Rosenblueth et al. (1943). Adversarial situations
exist where the acting agent is aware of being observed and acts in accordance to this knowledge
using his, her, or its own model of the observer’s capabilities and intentions. When the awareness of
observer and observee’s knowledge and intentions is common, behavior takes the form of a game,
and in the limit of infinitely recursive rationality, game-theoretic equilibrium solution concepts can
be employed. These concepts provide criteria for assessing the rationality of players’ strategies.
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1.4 Prescriptive Versus Predictive Models

Frameworks for planning and decision making provide the necessary formalisms for representing
purposeful, adaptive behavior. However, these frameworks are generally employed for prescrip-
tive applications where, given the costs of states and actions (or some parameters characterizing
those costs), the optimal future cost-minimizing action for every situation is computed. Impor-
tantly, for predictive applications, any decision framework should be viewed as an approximation
to the true motives and mechanics of observed behavior. With this in mind, observed behavior is
typically not consistently optimal for any fixed prescriptive model parameters for many reasons:

• Discrepancies between the features employed by the observer modeling behavior, and the
observed generating behavior may exist.

• Observed behavior may be subject to varying amounts of control error that make generating
perfectly optimal behavior impossible.

• Additional factors that are either unobservable or difficult to accurately model may influence
observed behavior.

As a result, the “best” actions according to an optimal controller often do not perfectly predict
actual behavior. Instead, probabilistic models that allow for sub-optimal behavior and uncertainty
in the costs of states and actions are needed to appropriately predict purposeful behavior. We create
such probabilistic, predictive models from prescriptive planning and decision frameworks in this
thesis.

1.5 Maximum Causal Entropy

The principle of maximum entropy (Jaynes, 1957) is a powerful tool for constructing probability
distributions that match known properties of observed phenomena, while not committing those
distributions to any additional properties not implied by existing knowledge. This property is
assured by maximizing Shannon’s information entropy of the probability distribution subject to
constraints on the distribution corresponding to existing knowledge.

In settings with information revelation, future revealed information should not causally influ-
ence behavior occurring earlier in time. Doing so would imply a knowledge of the future that
violates the temporal revelation of information imposed by the problem setting. Instead, the dis-
tribution over the revealed information rather than the particular instantiation of the revealed in-
formation can and should influence behavior occurring earlier in time. For example, in hindsight
a person’s decision to carry an umbrella may seem strange if it did not rain during the day, but
given a forecast with a 60% chance of rain when the decision was made, the decision would be
reasonable.
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Based on the distinction between belief of future information variables and their actual instanti-
ation values, we present the principle of maximum causal entropy as an extension of the general
principle of maximum entropy to the information revelation setting. It enables the principle of
maximum entropy to be applicable in problems with partial observability, feedback, and stochastic
influences from nature (i.e., stochastic dynamics), as well as imperfect recall (e.g., information
upon which past decisions were based is forgotten) and game theoretic settings.

1.6 Applications and Empirical Evaluations
We validate our approach by evaluating it on a number of sequential decision prediction tasks using
models we develop in this thesis based on the principle of maximum causal entropy:

• Inverse optimal control models that recover the reward or utility function that explains
observed behavior.

• Maximum causal entropy influence diagrams that extend the approach to settings with
additional imperfect information about the current state of the world.

• Maximum causal entropy correlated equilibria that extend the approach of the thesis
to sequential, multi-player settings where deviation regrets constrain behavior to be jointly
rational.

We apply these models to a number of prediction tasks.

Figure 1.4: A portion of the Pittsburgh road network representing the routing decision space (left) and
collected positioning data from Yellow Cab Pittsburgh taxi drivers (right).

In our first application, we learn the preferences of drivers navigating through a road network
from GPS data (Figure 1.4). We employ the learned model for personalized route recommendations
and for future route predictions using Bayesian inference methods. These resulting predictions
enable systems to provide relevant information to drivers.
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Figure 1.5: A portion of the Intel Pittsburgh laboratory (left) and future trajectory predictions within that
environment (right).

In our second application, we learn to predict the trajectories of moving people within an
environment from LADAR data (Figure 1.5). These prediction enable robots to generate more
complementary motion trajectories that reduce the amount of hindrance to people.

Finally, we present a set of smaller experiments to demonstrate the range of applications for
the approach. We apply maximum causal entropy correlated equilibria for multi-agent robust strat-
egy prediction. We employ maximum causal entropy influence diagrams to predict actions in a
partially observed, inverse diagnostics application. Lastly, we demonstrate inverse linear quadratic
regulation for helicopter control.

1.7 Thesis Organization and Reader’s Guide
This thesis is organized into five parts: Preliminaries, Theory, Algorithms, Applications, and Con-
clusions. Descriptions of each part and chapter of the thesis are as follows:
Part I, Preliminaries: Motivations and related work for the behavior forecasting task and
review of the background material of techniques that are employed in the thesis
Chapter 1 Motivations for the behavior prediction task and discussion of its purposeful and

adaptive characteristics, which are leveraged in this thesis to make useful predic-
tions of behavior based on small amounts of training data

Chapter 2 Review of the decision making frameworks that pose behavior as a utility-
maximizing interaction with a stochastic process; Review of probabilistic graphical
models

Chapter 3 Review of inference and learning for decision making from the perspectives of
probabilistic graphical models, optimal control theory, and discrete choice theory;
Discussion of limitations of those approaches
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Part II, Theory: The principle of maximum causal entropy for decision-theoretic and game-
theoretic settings
Chapter 4 Review of information theory for quantifying uncertainty, and the introduction of

causal information theory—the extension of information theory to settings with
interaction and feedback—and its existing results and applications

Chapter 5 Review of the principle of maximum entropy as a tool for constructing probabil-
ity distributions that provide predictive guarantees; Introduction of the principle of
maximum causal entropy, which extends those predictive guarantees to the inter-
active setting

Chapter 6 Application of the maximum causal entropy principle to the problem of inverse
optimal control where a “softened” Markov decision problem’s reward function is
learned that best explains observed behavior

Chapter 7 Introduction of the maximum entropy influence diagram, a general-purpose frame-
work for approximating conditional distributions with sequentially revealed side
information

Chapter 8 Extension of the maximum causal entropy approach to multi-player, non-
cooperative, sequential game settings with the jointly rational maximum causal
entropy correlated equilibria

Part III, Algorithms: Probabilistic inference, convexity-based learning, and Bayesian latent
variable inference
Chapter 9 Efficient algorithms for inference in maximum causal entropy models based pri-

marily on a “softened” interpretation of the Bellman equations and analogs to ef-
ficient planning techniques

Chapter 10 Gradient-based learning algorithms for maximum causal entropy models that
leverage the convexity properties of the optimization formulation

Chapter 11 Efficient algorithms for inferring goals and other latent variables within maximum
causal entropy models from partial behavior traces
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Part IV, Applications: Behavior learning and prediction tasks
Chapter 12 Learning route selection decisions of drivers in road networks to support prediction

and personalization tasks; Comparisons to inverse optimal control and directed
graphical model approaches

Chapter 13 Forecasting motions of pedestrians to more intelligently plan complementary robot
routes that are sensitive to hindering those pedestrians; Comparisons to particle-
based simulation approaches

Chapter 14 Multi-player strategy prediction for Markov games; Modeling of behavior in par-
tially observable settings for inverse diagnostics application; Predicting continuous
control for helicopter hovering

Part V, Conclusions: Open questions and concluding thoughts
Chapter 15 A set of possible future extensions incorporating models of perception, learning

pay-offs from demonstrated multi-player strategies, and interactive prediction-
based applications

Chapter 16 A concluding summary of the thesis and some final thoughts

Additionally, proofs of the theorems from throughout the thesis are presented in Appendix A.
A sequential reading of the thesis provides detailed motivation, exploration of background

concepts, theory development from general to specific formulations, and, lastly, algorithms and
empirical justifications in the form of applications. However, the central contributions of the thesis
can be understood by the following main points:

• Frameworks for decision making processes, such as the Markov decision process (Section
2.2.1), view behavior as the interaction of an agent with a stochastic process. Purposeful-
ness and adaption are incorporated into “solutions” to problems in these frameworks that
prescribe the optimal action to take in each state (i.e., a policy) that maximizes an expected
reward based on possible random future states.

• Existing approaches to the behavior forecasting task either learn the policy rather than the
much more generalizable reward function (Section 3.1), or do not appropriately incorporate
uncertainty when learning the reward (Section 3.2.1).

• The principle of maximum entropy (Section 5.1) is a general approach for learning that
has a number of intuitive justifications and it provides important predictive guarantees (e.g.,
Theorem 5.2) based on information theory (Section 4.1). From it, modern graphical models
(e.g., Markov random fields and conditional random fields (Section 2.1.2)) for estimating
probability distributions are obtained (Section 5.1.3).
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• Extension of the maximum entropy approach using causal information theory (Section 4.2)
in the form of the principle of maximum causal entropy (Section 5.2) is required for the
maximum entropy approach to be applicable to the sequential interaction setting.

The remainder of the thesis develops the principle of maximum causal entropy approach for a
number of settings, formulates algorithms for inference and learning in those settings, and applies
the developed approach on prediction tasks. Portions of the thesis may be of greater interest based
on the background knowledge of reader. We highlight some of interesting themes to possibly
follow:

• For those already familiar with inverse optimal control, Section 3.2 reviews existing inverse
optimal control approaches and criticisms of those approaches. Section 6.2 establishes the
properties of the maximum causal entropy that address those criticisms. A comparison of
inverse optimal control techniques on a navigation prediction task is presented in Section
12.6.2.

• For machine learning theorists desiring to understand the relationship of maximum causal
entropy to conditional random fields (CRFs): Section 4.1 and Section 5.1 up to 5.1.3 provide
a derivation of CRFs using the principle of maximum entropy. Section 5.2 then provides
the generalization to information revelation settings, and Chapter 6 focuses on the model-
ing setting that is the natural parallel to chain CRFs where side information is sequentially
revealed.

• For those with an optimal control background: Section 6.2.2 provides a key interpretation of
maximum causal entropy inference (Chapter 9) as a softened version of the Bellman equation
for a parametric Markov decision process (Definition 2.10 in Section 2.2.1). The learning
problem (Theorem 6.4 and Chapter 10) is that of finding the parameters that best explain
observed behavior.

• For game theorists, Chapter 8 employs maximum causal entropy to provide unique corre-
lated equilibria for Markov games with strong predictive guarantees. Chapter 5 provides
the general formulation of the principle of maximum causal entropy this approach is based
upon. Section 14.1 studies the predictive benefits of these equilibria on randomly generated
games.

Portions of this thesis have previously appeared as workshop publications: Ziebart et al. (2007),
Ziebart et al. (2009a), Ziebart et al. (2010a); and as conference publications: Ziebart et al. (2008b),
Ziebart et al. (2008c), Ziebart et al. (2008a), Ratliff et al. (2009), Ziebart et al. (2009b) Ziebart
et al. (2010b).



Chapter 2

Background and Notation

“No sensible decision can be made any longer without taking into account not only the world as
it is, but the world as it will be.”

— Isaac Asimov, (Writer, 1920–1992).

Behavior sequence forecasting with the principle of maximum causal entropy relies upon many
existing concepts and ideas from information theory and artificial intelligence. Specifically, the
major theoretical contribution of this thesis is the extension of the principle of maximum entropy to
sequential information settings commonly represented using decision-theoretic frameworks. This
extension also generalizes existing graphical models. We review existing probabilistic graphical
models, which are also commonly employed for prediction tasks, and the decision-theoretic models
of planning and decision making that we rely upon in this thesis. Lastly, we introduce some of the
notations and summarize the terminology that we employ throughout this thesis.

2.1 Probabilistic Graphical Models
We now review existing techniques for modeling random variables using probabilistic graphical
models. We develop comparison approaches and baseline evaluations for our applications using
these techniques throughout this thesis.

2.1.1 Bayesian Networks
Bayesian networks are a framework for representing the probabilistic relationships between ran-
dom variables.

Definition 2.1. A Bayesian network, BN = (G,P ), is defined by:

• A directed acyclic graph, G, that expresses the structural (conditional) independence rela-
tionships between variables, X ∈ X ; and

15
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• Conditional probability distributions that form the joint probability distribution, P(X), based
on the parent variables of each variable in the graph, parents(X), as follows:

P(X) =
∏
i

P(Xi|parents(Xi)). (2.1)

A great deal of research has been conducted on efficient methods for inferring the probability
distribution of a set of variables in the Bayesian network given a set of observed variables.

One of the most attractive properties of Bayesian networks is the simplicity of learning model
parameters. Given fully observed data, the maximum likelihood conditional probability distribu-
tions are obtained by simply counting the joint occurrences of different combinations of variables.
Overfitting to a small amount of observed data can be avoided by adding a Dirichlet (i.e., pseudo-
count) prior to these counts so that unobserved combinations will have non-zero probability.

Bayesian networks are typically extended to temporal settings as dynamic Bayesian networks
(Definition 2.2) by assuming that the structure and conditional probabilities are stationary over
time.

Definition 2.2. A dynamic Bayesian network (Murphy, 2002), DBN = (G,P ) is defined by:

• A template directed graphical structure, G; and

• A set of conditional probability distributions defining the relationship for P (Xt+1|Xt) (where
Xt = {Xt,1, ..., Xt,N} and Xt+1 = {Xt+1,1, ..., Xt+1,N}).

The joint probability for a time sequence of variables is obtained by repeating this structure over
a fixed time horizon, T : X1:T =

∏T
t=1 P (Xt+1|Xt).

Conceptually, a Bayesian network is obtained by “unrolling” the DBN to a specific time-step
size. We will leverage this same concept of abstractly representing a model over a few timesteps.

2.1.2 Markov and Conditional Random Fields

Markov random fields (MRFs) (Kindermann et al., 1980) represent the synergy between combina-
tions of variable values rather than their conditional probability distributions.

Definition 2.3. A Markov random field for variables X, MRF = (G,F, θ), is defined by:

• An undirected graph, G, that specifies cliques, Cj , over variables;

• Feature functions (F = {f → RK}) and model parameters (θ ∈ RK) that specify potential
functions, θ>Cj fCj(XCj), over variable cliques.
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The corresponding probability distribution is of the form:

P(X) ∝ e
∑
j θ
>
Cj
fCj (XCj )

,

where Cj are all cliques of variables in G.

Parameters of a MRF, {θCj}, are generally obtained through convex optimization to maximize the
probability of observed data, rather than being obtained from a closed-form solution.

The conditional generalization of the MRF is the conditional random field (CRF) (Lafferty
et al., 2001). It estimates the probability of a set of variables conditioned on another set of side
information variables.

Definition 2.4. A conditional random field, CRF = (G,F, θ) is defined by:

• An undirected graph, G, of cliques between conditioned variables, Y, and side information
variables, X;

• Feature functions (f → RK) and model parameters (θ ∈ RK) that specify potential func-
tions, θ>Cj fCj(YCj , XCj), over variable cliques.

The conditional probability distribution with feature functions over cliques of X and Y values is
of the form:

P(Y|X) ∝ e
∑
j

(
θ>Cj

fj(XCj ,YCj )
)
. (2.2)

Generally, any graph structure can be employed for a CRF. However, chain models (Definition
2.5) are commonly employed for temporal or sequence data.

Definition 2.5. A chain conditional random field is a conditional random field over time-indexed
variables where the cliques are:

• Over consecutive label variables, Cj(Yt, Yt+1); or

• Over intra-timestep variables, Cj(Xt, Yt).

The conditional probability distribution is of the form:

P(Y|X) ∝ e
∑
t

∑
k(θkfk(Xt,Yt)+φkgk(Yt,Yt+1)). (2.3)

In a number of recognition tasks, the additional variables of a conditional random field are
observational data, and the CRF is employed to recognize underlying structured properties from
these observations. This approach has been successfully applied to recognition problems for text
(Lafferty et al., 2001), vision (Kumar & Hebert, 2006), and activities (Liao et al., 2007a; Vail et al.,
2007).

Conditional random fields generalize Markov random fields to conditional probability settings
where a set of side information data is available. The contribution of this thesis can be viewed as
the generalization of conditional random fields to settings where the side information variables are
not immediately available. Instead, those variables are assumed to be revealed dynamically over
time.
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2.2 Decision-Theoretic Models
A number of frameworks for representing decision-making situations have been developed with
the goal of appropriately representing the factors that influence a decision and then enabling the
optimal decision to be efficiently ascertained. Here we review a few common ones. Importantly,
all of these frameworks pose behavior as a sequence of interactions with a stochastic process
that maximize expected utility. We leverage these prescriptive decision-theoretic frameworks to
create predictive decision models later in this thesis. The principle of maximum causal entropy
is what enables the appropriate application of probabilistic estimation techniques to the sequential
interaction setting.

2.2.1 Markov Decision Processes
One common model for discrete planning and decision making is the Markov decision process
(MDP), which represents a decision process in terms of a graph structure of states and actions
(Figure 2.1a and Figure 2.1c), rewards associated with those graph elements, and stochastic tran-
sitions between states.

Figure 2.1: (a) The transition dynamics of a Markov decision process with only deterministic state transi-
tions. (b) The tree of possible states and actions after executing two actions (starting in s1) for this determin-
istic MDP. (c) The transition dynamics of a Markov decision process with stochastic state transitions. (d)
The tree of possible states and actions after executing two actions (starting in s1) for this stochastic MDP.

Definition 2.6. A Markov decision process (MDP) is a tuple,MMDP = (S,A,P(s′|s, a), R(s, a)),
of:

• A set of states (s ∈ S);
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• A set of actions (a ∈ A) associated with states;

• Action-dependent state transition dynamics probability distributions (P(s′|s, a)) specifying
a next state (s′); and

• A reward function (R(s, a)→ R).

At each timestep t, the state (St) is generated from the transition probability distribution (based on
St−1 and At−1) and observed before the next action (At) is selected.

A trajectory through the MDP consists of sequences of states and actions such as those shown
in bold in Figure 2.1b and 2.1d. We denote the trajectory as ζ = {s1:T , a1:T}. It has an associated
cumulative rewardR(ζ) =

∑
t:st,at∈ζ γ

tR(st, at). The optional discount factor, 1 ≥ γ > 0, makes
the reward contribution of future states and actions to the cumulative reward less significant than
the current one. It can be interpreted as modifying the transition dynamics of the MDP to have a
1 − γ probability of terminating after each time step. The remaining transition probabilities are
scaled by a complementary factor of γ.

Optimal policies

The MDP is “solved” by finding a deterministic policy (π(s)→ A) specifying the action for each
state that yields the highest expected cumulative reward, EP(s1:T ,a1:T )[

∑T
t=0 γ

tR(st, at)|π] over a
finite time horizon, T, or an infinite time horizon (Bellman, 1957).

Theorem 2.7. The optimal action policy can be obtained by solving the Bellman equation,

π(s) = argmax
a

{
R(s, a) + γ

∑
s′

P(s′|s, a)V (s′)

}
(2.4)

V ∗(s) = max
a

{
R(s, a) + γ

∑
s′

P(s′|s, π(s))V ∗(s′)

}
. (2.5)

Alternately, the optimal state value function, V ∗(s) can be defined in terms of the optimal
action value function, Q∗(s, a):

V ∗(s) = max
a
{R(s, a) +Q∗(s, a)}

Q∗(s, a) = γ
∑
s′

P(s′|s, a)V ∗(s′).

This definition will be useful for understanding the differences of the maximum causal entropy
approach and its algorithms for obtaining a stochastic policy.

The Bellman equations can be recursively solved by updating the V ∗(s) values (and policies,
π(s)) iteratively using dynamic programming. The value iteration algorithm (Bellman, 1957)
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iteratively updates V ∗(s) by expanding its definition to be in terms of V ∗(s′) terms, V ∗(s) =
maxaR(s, a) + γ

∑
s′ P(s′|s, a)V ∗(s′), rather than separately obtaining a policy. The policy iter-

ation algorithm applies Equation 2.4 to obtain a policy and then repeatedly applies the updates of
Equation 2.5 until convergence, and then repeats these two steps until no change in policy occurs.
We refer the reader to Puterman (1994)’s overview of MDPs for a broader understanding of their
properties and relevant algorithms.

Stochastic and mixed policies

Optimal control methods tend to focus on deterministic policies, π(s), that are Markovian (i.e.,
conditionally independent of past states and actions given the current state). This is sensible since
there always exists a deterministic policy that maximizes the expected reward. However, more
general classes of policies exist that are of interest in this thesis. In a stochastic policy, each action
is chosen according to a probability distribution, π(a|s) ∈ [0, 1], rather than deterministically. Both
stationary (time-independent) and non-stationary (time-dependent) policies exist that depend on
the state (and timestep if non-stationary) but no additional variables. More generally, a class of
mixed policies require additional memory. For example, in a mixture of deterministic policies,
a distribution over different deterministic policies, {π(s)i}, is weighted by a set of probabilities,
{λi}. One of these policies is sampled and then actions from it are (deterministically) executed to
create a trajectory of actions and states.

Theorem 2.8 (Special case of Feinberg & Shwartz (2002), Theorem 6.1). Let π(1), π(2), ... be
an arbitrary sequence of policies and λ1, λ2, ... be a sequence of scalars such that λi ≥ 0 and∑

i λi = 1. The randomized Markov policy π defined by

πt(a|s) ,
∑∞

i=1 λi P(At = a, St = s|π(i))∑∞
i=1 λi P(St = s|π(i))

, t ≥ 0 (2.6)

whenever the denominator in Equation 2.6 is not equal to 0. Then, for all t ≥ 0, s, and a,

P(At = a, St = s|π) =
∞∑
i=1

λi P(At = a, St = s|π(i)). (2.7)

As a consequence of Theorem 2.8, any mixed policy has a stochastic policy that, in expectation,
has the same number of state-action occurrences. If the policies being mixed, π(1), π(2), ..., are
stationary, the resulting stochastic policy, π, will be as well. This result is often used to argue that,
at least in the sense of expected state-action executions, mixed policies afford no greater generality
than stochastic policies (Feinberg & Shwartz, 2002).

Partial observability

An important extension of the MDP is to settings with uncertain states. In many domains, the
full state, S, of the decision problem may only partially be known. Partially observable Markov
decision processes (POMDP) allow for planning in this uncertain setting (Drake, 1962).
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Definition 2.9. A partially observable Markov decision process (POMDP) is a tuple,MPOMDP =
(S,A,O,P(s′|s, a),P(o|s), R(s, a)), of states (s ∈ S), actions (a ∈ A), observations (o ∈ O),
action-dependent state transition dynamics probability distributions (P(s′|s, a)) specifying a next
state (s′), state-dependent observation dynamics (P(o|s)) and a reward function (R(s, a) → R).
At each timestep t, the state (St) is generated from the transition probability distribution (based
on St−1 and At−1), but only the observation variable, Ot, distributed according to the state is
observed before the next action (At) is selected.

The POMDP (Definition 2.9) can be viewed as a MDP that is augmented with observation
variables and state-dependent observation variable dynamics. Instead of the state being revealed to
the agent before each action is selected, as in the MDP, only the observation variable is revealed.
Thus, the agent must operate with only partial knowledge of its current state.

Parametric reward functions

In this thesis, we are often be concerned with the setting where the rewards of the Markov decision
process are linearly parameterized according to some parameters, θ. Though we do not explicitly
assume this formulation, it follows as a consequence of the principle of maximum causal entropy.
Specifically, we assume that each state-action pair (or state depending on the type of reward) has
an associated vector of features and the reward that it provides is a linear function of those features
as shown in Equation 2.8.

Rθ(s, a) = θ>fs,a (2.8)

Definition 2.10. A parametric-reward Markov decision process (PRMDP) is defined as a tuple:

MPRMDP = (S,A,P(s′|s, a), {fs,a}, θ). (2.9)

The rewards of states and actions in this setting are defined according to Equation 2.8 based on
parameter vector θ.

When all of the parameters of a PRMDP (Definition 2.10) are known, it can be readily in-
terpreted as a standard Markov decision process (Definition 2.6). The main advantage of this
formulation is experienced when the parameter vector is much smaller than the sets of states and
actions. In that case, the parameter vector transfers very easily to other PRMDPs that have the
same space of features. Much of the focus of this thesis is the setting where the reward parameters
are unknown. This setting of an PRMDP without reward function is denoted asMPRMDP/θ.

2.2.2 Linear-Quadratic Control
Tractable extension of optimal control frameworks to continuous state and continuous action set-
tings is often difficult. This is because integration over continuous variables is required and those
integrations rarely admit closed-form solutions. A notable and important class of exceptions for
problems of control is the linear-quadratic setting of Definition 2.11.
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Definition 2.11. A linear quadratic regulation setting is characterized by state dynamics that
are distributed according to a linear function of past state and action variables with Gaussian
noise. Cost functions are quadratic and linear in the state variables1 parameterized by Q and R
respectively, as shown in Equation 2.10:

st+1 = Ast +Bat + εt (2.10)
εt ∼ N(0,Σ)

Cost(s1:T , a1:T ) =
T∑
t=1

s>t Qst + s>t R,

where Q is a symmetric, positive semi-definite matrix. More formally, the linear-quadratic control
setting is described as a tuple of values,MLQ = {A,B,Σ, Q,R}, containing all of the previously
described transition dynamic and cost parameters.

The optimal state-dependent control for this setting, π∗(s) → a ∈ A, can be solved in closed
form. A similar linear-quadratic control formulation exists for continuous-time settings (also with
closed-form solution), but we shall only consider the discrete time setting in this thesis. We will
also consider the setting with an LQ model with unknown cost parameters, denotedMLQ/{Q,R}.

2.2.3 Influence Diagrams
Influence diagrams (IDs) (Miller et al., 1976; Howard & Matheson, 1984) are a graphical repre-
sentation of uncertainty. They can be viewed as a generalization of the more familiar Bayesian
networks that includes decision making and value assessments in addition to the uncertainty nodes
of Bayes nets. Structurally, an influence diagram is a directed acyclic graph with three types of
nodes:

• Uncertainty nodes that represent random variables with probability distributions that are
conditioned on their parent variables.

• Decision nodes that represent decision outcomes that are made with the knowledge of the
values of the node’s parent variables.

• Value nodes that represent additive utility functions that are dependent on the node’s parent
variables.

Together the interaction of these variables can be used to represent decision processes with varying
amounts of information availability. Note that a Bayesian network is simply the special case of an
influence diagram consisting only of uncertainty nodes.

1Quadratic and linear costs for the action variables are also possible, but, without loss of generality, the past action
can be added to the state and any action costs represented as state-based costs.
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Definition 2.12. Formally, an influence diagram is specified by a tupleMID = {U,D, V,E, PU :
par(U), U → [0, 1], fV : par(V ) → R} of the three different types of nodes (U, D, V), directed
edges (E), conditional probability distributions for all uncertainty nodes (PU ), and value functions
for all value nodes (fV ).

Figure 2.2: An illustrative influence diagram representation (Shachter, 2007) of making vacation decisions
based on weather, which can only be indirectly observed through a noisy weather forecast.

A canonical influence diagram is shown in Figure 2.2 to illustrate the relationships of variables
within a vacation decision task. In this decision problem, the future weather conditions are known
only indirectly to the decision maker through a weather forecast. The decision maker must select
a vacation activity with a satisfaction utility that depends on the actual weather conditions and the
vacation activity selected.

Influence diagram optimal policies

The general decision task in an influence diagram is to select conditional value assignments for the
decision nodes (i.e., deterministic policies) so that the expected combined value of all value nodes
is maximized:

π∗D(par(D)) , argmax
πD(par(D))

ED,U

[∑
V

fV (par(V ))|π(par(D))

]
. (2.11)

A number of methods for obtaining this optimal policy exist. Influence diagrams were origi-
nally solved by unrolling the graphical structure into decision trees and computing expectations of
value nodes over the uncertainty nodes, while maximizing decision nodes upward from the leafs of
the tree (Howard & Matheson, 1984). Shachter (1986) provides a variable elimination technique
that iteratively removes nodes by marginalizing over uncertainty nodes and collapsing individual
decision nodes.
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Relationship to Markov decision processes

Influence diagrams are quite powerful at representing a whole range of decision-making tasks.
They can be used to represent Markov decision processes (Shachter & Peot, 1992), as shown in
Figure 2.3.

Figure 2.3: An influence diagram representation of a Markov decision process.

At each timestep t, there is an uncertainty node for the state (St) that is observed, a decision
node that represents the action (At) to be selected, and a value node for the MDP’s reward (Rt)
that is received. The edges of the influence diagram indicate the influences on each node. Each
next state is determined by the previous state and action’s values. The reward is based on the state
and action (or more simply just the state in some MDPs). Finally, the action is determined based
only on the current state.

Influence diagrams can similarly be employed to represent partially-observable Markov deci-
sion processes, but only by using a significantly more complex structure to represent the influences
on each action, as shown in Figure 2.4.

Figure 2.4: An influence diagram representation of a partially-observable Markov decision process.

An uncertainty node for an observation at each timestep is added to the model. The state is
now unobserved and must be inferred based on these observations and the previous actions. This is
denoted by each action’s parents being all of the available observations and previous actions rather
than the current state.
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2.3 Notation and Terminology
We now introduce some of the notations employed frequently throughout this thesis. We usually
employ the most compact notation possible, often suppressing information that can be understood
from context (e.g., the dimensions of vectors, the domains of probability distributions).

Variables, values, sets, and vectors of each:

• Random variables: X, Y, Z or X1, X2, ..., Xn

• Variable values: x or x1, x2, ..., xn

• Sets of variables: {X, Y, Z} or {Xi}i=1:n = {Xi}1:n = {Xi} = {X1, X2, ..., Xn}

• Sets of values: {xi}i=1:n = {xi}1:n = {xi} = {x1, x2, ..., xn}

• Vectors of variables: X1:n = X = (X1 X2 ... Xn)>

• Vectors of values: x1:n = x = (x1 x2 ... xn)>

• Double-indexed vectors (matrices): X1:t
1:n = (X1

1:n X2
1:n ... Xt

1:n)

Probability distributions, expectations, and entropies:

• Probability distribution: P(X = x) = PX(x) = P(x)

• Conditional probability distribution: P(Y = y|X = x) = PY |X(y|x) = P(y|x)

• Causally conditioned probability distribution: P (Y||X) =
∏

i P (Yi|X1:i,Y1:i−1)

• Expectation of function f : EP (x)[f(x)] = E[f(x)] =
∑

x P(x)f(x) (or
∫
x

P(x) f(x) dx)

• Entropy: HP (X) = H(X) = E[− logP (x)] = −
∑

x P (x) logP (x)

• Causal entropy: HP (Y||X) = H(Y||X) = E[− logP (Y||X)]

Note on “value” terminology

It is inevitable when drawing upon ideas from a number of different areas of research for conflicts
in terminology to arise. We note one of these conflicts here in an attempt to avoid confusion.

In graphical models, a random variables takes on a value (i.e., a particular instantiation). In
optimal control problems, a state has a value (i.e., an expected cumulative reward). Thus, when
discussing random state variables, the value of the state variable can be ambiguous and confusing.
We have attempted to refer to instantiations when we mean the former, and to value functions when
we mean the latter.
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Relative and causal entropy notation

Traditionally, the relative entropy is denoted as: H(Y ||X). However, this notation conflicts with
the established causal entropy notation. Instead, we employ H(Y//X) to denote the relative en-
tropy.

2.4 Summary
In this chapter, we have provided an overview of the decision frameworks to which we will apply
the developed principle of maximum causal entropy. Within these frameworks, behavior can be
viewed as a utility-maximizing interaction with a stochastic process. This utility measure captures
the purposefulness of behavior, while reasoning correctly about stochastic interaction is inherently
adaptive. However, these frameworks (and algorithms for “solving them”) are designed for pre-
scribing behavior rather than predicting it.

Additionally, we have described existing directed and undirected probabilistic graphical mod-
els. Those graphical models have been previously employed for predicting sequences of behavior.
A familiarity with them is therefore important for understanding the distinctions between the ap-
proach of this thesis and past approaches for predicting sequential data. In Chapter 5, we revisit
the probabilistic graphical models from a maximum entropy perspective and from that perspective
create a more general approach for settings with sequential information revelation. In Chapters 6
and 7 we apply this new approach to Markov decision processes and influence diagrams.



Chapter 3

Related Work

“One’s first step in wisdom is to question everything -
and one’s last step is to come to terms with everything.”

— Georg Christoph Lichtenberg (Physicist, 1742–1799).

In this chapter, we review existing approaches for approximating and forecasting behavior de-
veloped under a variety of different names (e.g., imitation learning, apprenticeship learning) and
with a variety of specific techniques (e.g., inverse optimal control, inverse reinforcement learning,
robust KL control, Boltzmann action value distributions, and conditional logit models). These ap-
proaches have been shaped primarily by three general perspectives: probabilistic graphical models
(Section 3.1), optimal control (Section 3.2), and discrete choice theory (Section 3.3) for three pri-
mary purposes: as a method of robust or efficient approximate inference, as a method for learning
how to behave using demonstrated behavior (Argall et al., 2009), and as a tool for forecasting future
behavior from past observed behavior. We discuss the similarities and differences between these
existing approaches and our maximum causal entropy-based models at a high-level in Section 3.4
and in more detail throughout later chapters of this thesis.

3.1 Probabilistic Graphical Models for Decision Making
The development of inference and learning techniques for probabilistic graphical models has re-
ceived a large amount of attention from the machine learning community over the past twenty
years. Though influence diagrams (Section 2.2.3) generalize Bayesian networks (2.1.1), many of
the advances in inference were developed specifically for Bayesian networks and not their more
general decision-based counterpart. A steady line of research has attempted to apply efficient ap-
proximate inference techniques in non-decision-based probabilistic graphical models to influence
diagrams, Markov decision processes, and other decision modeling frameworks (Cooper, 1988;
Shachter & Peot, 1992; Jensen et al., 1994; Zhang, 1998; Attias, 2003; Toussaint & Storkey, 2006;
Ardis & Brown, 2009; Kappen et al., 2010).

27
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Recently, probabilistic graphical model approaches have been applied for learning, reasoning
about, and predicting behavior. Most of these approaches have been concerned with the activity
recognition problem of recognizing underlying activity sequences from noisy sensor data (Bao &
Intille, 2004). However, some recent work has focused on the prediction of future decision making
without the aid of noisy observations. The underlying probabilistic graphical model techniques
employed are similar regardless of the availability of sensor data.

We review probabilistic graphical model approaches for both inference of optimal decision
policies and learning to model demonstrated behavior to highlight the similarities and differences
with our approach. We focus more heavily on models for learning as they better match our primary
motivation in this thesis.

3.1.1 Directed Graphical Model Approaches

Policy learning for Markov decision processes

Directed graphical models have been employed to create probability distributions that represent
behavior in Markov decision processes by directly estimating an observed policy, π(a|s).

Figure 3.1: A simple two-slice dynamic Bayesian network model of decision making in a Markov decision
process incorporating state (s) and action (a) variables.

A simple dynamic Bayesian network representation for a Markov decision process is shown
in Figure 3.1. The distribution of actions for each state can be learned from empirical data, with
the option of incorporating knowledge about these probabilities using a prior distribution. The
state transition dynamics of the model, P(st+1|st, at), are typically assumed to be known from
the Markov decision process. Often when using this model with different specified goal states
(sg ∈ Sg), sT (for some large T) is fixed to sg, and inference over the remaining latent actions is
performed to obtain the distribution of the next action.

In practice, the basic model is often augmented with additional variables (Verma & Rao, 2006)
as shown in Figure 3.2. This augmented model enables behavior for differing goal states to be
learned by incorporating a goal variable (g). Additional variables indicate whether the goal is
reached (r) and represent observations (o) for partially-observable Markov decision processes.
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Figure 3.2: A more complex two-slice dynamic Bayesian network model of decision making in a Markov
decision process. It incorporates variables for the goal (g), variables indicating whether the goal has been
reached (r) and observation variables (o).

Verma & Rao (2006) employ this probabilistic model to infer the posterior probability of a latent
goal from a partial sequence of actions and states.

Dynamic Bayesian networks are also often employed for activity recognition tasks (Bui et al.,
2002; Tapia et al., 2004). Those models focus on the relationship between state variables and ob-
servations and often do not have explicit reward and activity variables. In theory, future observation
variables can be marginalized over to provide predictions of future state. However, activity recog-
nition techniques focus heavily on estimating the conditional relationships between observations
and state, and not necessarily on accurately predicting future states without those observations.
Thus, they should not be expected to predict future decision making data more accurately than
those purposed for that task.

The main disadvantage of these dynamic Bayesian network approaches is their disconnect
from the reward function of the MDP. The reward function provides a level of abstraction beyond
the policy, explaining behavior not in terms of what is happening, but in terms of the underlying
reasons why it is happening. For example, given the reward function, the optimal policy for any
goal state can easily be obtained from the Bellman equation. By contrast, in this directed model,
a goal-dependent policy must be learned for each possible goal. Therefore, the naı̈ve directed
approach does not easily provide the transfer of learned knowledge between the learned policies
for different goals.

Toussaint & Storkey (2006) reduce this disconnect between dynamic Bayesian network models
of decision making and reward-based Markov decision processes by formulating a reward-based
model as a mixture of different length Markov chains of states and actions (Figure 3.3) with a re-
ward variable conditioned on the final state and action of each chain: P(rt|at, st) , reward(at, st).
They show that arbitrary MDPs can be embedded within this graphical model representation and
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Figure 3.3: The Markov chains with terminal rewards that are mixed together to obtain a probabilistic
graphical model inference procedure for a MDP’s optimal policy.

that maximizing a conditional probability in that model equates to finding the maximum expected
value policy of the corresponding (PO)MDP. This model, however, is only suitable for inference
given known reward values, as no procedure is suggested for learning reward functions from
demonstrated behavior.

Variable-length Markov models and memory-based approaches

The variable-length Markov model (VLMM) (Galata et al., 2001) is a higher-order dynamic Bayes-
ian network built on the assumption that future intentions are captured by a longer-term history of
states and actions. The distribution of next actions in the VLMM is conditioned on a sequence of
previous actions where the length of the sequence depends on the availability of similar previously
observed data:

P(at|a1:t−1, s1:t) = P̃
(
at|a(t−k(a1:t−1,s1:t)):(t−1), s(t−k(a1:t−1,s1:t):t

)
, (3.1)

where k(a1:t−1, s1:t−1) → Z ≥ 0. More generally, memory-based and analogical approaches to
planning (Veloso, 1994) stitch together sequences of previously observed behavior in an attempt
to reasonably accomplish a new objective.

The main limitation of the VLMM and memory-based approaches is their dependence on a
large amount of similar previously-observed behavior. In the absence of similar previous data,
the VLMM degrades into a random walk with poor performance. Similarly, if previously em-
ployed plans with similar origin and goal states as a desired new plan are unavailable, the resulting
“stitched-together” plan of a memory-based approach will tend to be biased away from direct plans
to the goal and towards portions of the state spaces that have been frequently observed previously.
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3.1.2 Undirected Graphical Approaches

Undirected graphical models (Section 2.1.2), and, specifically, the conditional random field (Laf-
ferty et al., 2001), have experienced remarkable success in recognition tasks for text (Lafferty et al.,
2001), machine vision (Kumar & Hebert, 2006), and activities. For activity recognition tasks, side
information corresponds to observed characteristics (Liao et al., 2007a; Vail et al., 2007). Under
this approach, a potential function is learned for consecutive states, Yt and Yt+1, but these sequen-
tial state potentials are only learned to the degree that they are needed to compensate for when
state-observation prediction power alone is insufficient.

Ardis & Brown (2009) propose a conditional random field approach to decision inference
where the optimal response Y∗X to any outcome of nature, X ∼ P(X), is obtained. Toussaint
(2009) arrives at a model that requires a negative reward function, but is otherwise identical, using
a directed graphical model approach where all behavior is conditioned on an additional set of vari-
ables, z = 1, where P(zt|yt, xt) = e−cost(yt,xt). Ziebart et al. (2008b) propose this same distribution
as an approximation to a maximum entropy formulation of modeling decision making in a Markov
decision process with stochastic dynamics. The joint distribution of responses is obtained using
the MDP’s state transition dynamics, and nature’s outcomes are marginalized over to find the “op-
timal” conditional probability when X is latent. Expanding this model to the predictive setting, we
have:

P(Yt|X1:t,Y1:t−1) ∝
∑

Xt+1:T ,Yt+1:T

e−
∑
t cost(yt,xt) P(Xt+1:T |X1:t,Y1:t−1). (3.2)

For some simple problems with stochastic state-transition dynamics, this approach yields a policy
with optimal expected reward (Ardis & Brown, 2009). However, this is only guaranteed in the
special case of state-transition dynamics that are deterministic. We investigate the discrepancy for
inference in stochastic dynamics in more detail in Section 6.3 where we provide further insight
into the underlying reason for this difference.

3.2 Optimal Control Approaches

Early control approaches to imitation learning directly model the (presumably near-optimal) policy
for future execution in similar situations. Perhaps the most successful application of this approach
is ALVINN (Pomerleau, 1989), a neural network model that learns a direct mapping from camera
input to vehicle control for autonomous vehicle navigation on roadways. This approach is well-
suited for predicting immediate stimulus-response behavior, like keeping a vehicle on the roadway.
However, it is more difficult for predicting purposeful long-term decision making, like planning a
route between two cities. More recent approaches, including that of this thesis, attempt to learn an
underlying reward function to explain goal-directed, adaptive behavior rather than directly learning
the policy.
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3.2.1 Inverse Optimal Control
Inverse optimal control (Boyd et al., 1994; Ng & Russell, 2000), originally posed by Kalman
(1964), describes the problem of recovering an agent’s reward function, R(s,a), given a controller
or policy, when the remainder of the PRMDP,M/R, is known. We assume the PRMDP setting
(Definition 2.10). Vectors of reward factors fs,a describe each available action, and the reward
function is assumed to be a linear function of those factors, R(s, a) = θ>fs,a parameterized by
reward weights, θ. Ng & Russell (2000) formulate inverse optimal control as the recovery of
reward weights, θ, that make demonstrated behavior optimal. Unfortunately this formulation is
ill-posed in general.

Remark 3.1 (Ng & Russell (2000)). Demonstrated behavior may be optimal for many different
reward weights, including degeneracies (e.g., the vector of all zeros).

Ng & Russell (2000) propose a heuristic for preferring solutions that discourage deviation from
demonstrated behavior and simple rewards (small L1 norm). However, many other heuristics can
be employed and the justification for choosing this particular heuristic is unclear. Chajewska et al.
(2001) maintain a Bayesian distribution over the utility weights that are consistent with demon-
strated behavior being optimal. They employ a prior that discourages degenerate weights. An
expensive Markov chain Monte Carlo sampling procedure is required to maintain this distribution.
For both of these approaches, a very serious problem still remains when modeling demonstrated
behavior.

Remark 3.2. There may be no feasible utility weight apart from degeneracies for which demon-
strated behavior is optimal.

Demonstrated behavior may be inherently sub-optimal for a variety of reasons (discussed in
Section 1.4) due to the fact that the Markov decision process is only an approximation of reality
and decisions may be based on information that is difficult to observe or model. Allowing sub-
optimality and uncertainty of behavior in the model of demonstrated behavior is needed to address
this problem. Models based on the assumption of optimality without robustness to noisy (i.e.,
sub-optimal) behavior are inappropriate as a result (Remark 3.2).

3.2.2 Feature Matching Optimal Policy Mixtures
Abbeel & Ng (2004) propose recovering reward weights so that a planner based on those reward
weights and the demonstrated trajectories have equal reward (in expectation) for any choice of
parameters. This formulation reduces to matching the planner and demonstrated trajectories’ ex-
pected feature counts, fζ =

∑
s,a∈ζ fs,a:∑

ζ

Pplanner(ζ)fζ =
∑
ζ

P̃(ζ)fζ . (3.3)
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This feature-matching constraint guarantees that the model’s expected performance will be equiv-
alent to the demonstrated behavior’s realized performance for any unknown linear reward function
parameterized by θ∗, as ∑

ζ

Pplanner(ζ) (θ∗>fζ) = (θ∗>fζ̃). (3.4)

Abbeel & Ng (2004) employ a series of deterministic policies obtained from “solving” the optimal
MDP for the distribution over trajectories. When sub-optimal behavior is demonstrated (due to the
agent’s imperfection or unobserved reward factors), mixtures of those optimal policies are required
to match feature counts:

Eplanner[f] =
∑
i

P(θi)

(∑
ζ

P(ζ|π∗(s|θi)) fζ

)
. (3.5)

The proposed approach for generating a series of candidate policies is shown as Algorithm 3.1

Algorithm 3.1 Policy mixture learning algorithm

Require: State-based features f, Example MDPM, Example feature counts Ẽ[f],
Ensure: A sequences of policies {π(i)}Ni=0 such that the empirical feature counts, Ẽ[f ], are

matched by a mixture of {π(i)}Ni=0 within ε.
1: Randomly pick π(0) and compute E[f|π(0)].
2: while for i = 1 to∞ do
3: Compute t(i) = maxθ:||θ||2=1 minj∈{0..(i−1)} θ

>(Ẽ[f]−E[f|π(j)]) and let θ(i) be the parameter
values obtained by this maximum

4: if t(i) ≤ ε then
5: return {π(i)}Ni=0

6: end if
7: Compute optimal policy π(i) for θ(i) in MDPM
8: Compute E[f|π(i)] in MDPM
9: end while

The algorithm returns a series of policies that define a convex hull of expected feature counts
that contains the demonstrated feature counts. Proposed selection criteria for a single policy from
those returned either involve expert intervention (and evaluation) or discard the performance guar-
antees of the approach relative to demonstrated behavior. Alternately, a mixture of policies can be
obtained from the convex hull that will match feature counts.

While this approach resolves some of the ambiguity of the original inverse optimal control
problem (Remarks 3.1 and 3.2), it does not resolve it entirely. Many mixtures of policies that match
feature counts can be obtained from the set of policies returned by the algorithm and from other
policies obtained using different randomly-chosen initial policies for the algorithm. Additionally,
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in the special case that only a single policy rather than a policy mixture is required to match feature
counts, there are still many choices of parameters weights that will realize that policy.

Remark 3.3. When demonstrated behavior is optimal for a single choice of reward parameters,
infinitely many other choices of parameters will also make it optimal.

While Remark 3.3 is trivially true due to the invariance of the optimal policy to positively
scaling reward parameters, it is more generally also true since a policy is optimal within some
polytope of utility parameters in the reward parameter simplex and often not for only a single
point.

Even ignoring these unresolved ambiguities, mixing optimal policies has undesirable properties
for any selection criteria. The resulting behavior obtained by first sampling parameters, θi, and then
the optimal policy in Equation 3.5 varies drastically depending on which parameters are sampled.
This can be alleviated by replacing the mixture of optimal policies with a stationary stochastic
policy as suggested by Syed et al. (2008) (following Theorem 2.8). However, whether mixing
optimal policies or employing a corresponding stochastic policy, the model can still have very
poor predictive capabilities.

Remark 3.4. A learned policy mixture of optimal policies (or the corresponding single stochastic
policy) can assign zero probability for demonstrated behavior if that behavior is sub-optimal for
any choice of cost weights.

Figure 3.4: A simple example with three action choices where the mixture of optimal policies can have zero
probability for demonstrated behavior if path 2 is demonstrated.

Consider the simplified example in Figure 3.4 with three action choices corresponding to Paths
1, 2, and 3, and one feature characterizing each action choice. For sake of argument, assume that
demonstrated behavior consists solely of selecting path 2. There are only two non-degenerate op-
timal policies: for π1, θ < 0 implies path 1 should be selected, and for π2, θ2 > 0 implies path 3
should be selected1. These can be appropriately mixed with α1 = 0.4 and α2 = 0.6 so that demon-
strated feature counts and the feature counts expected under the optimal policy mixture match,
however note that there is zero probability of the demonstrated action (path 2) in this solution.

1For parameters θ = 0, ties are typically broken according to an arbitrarily chosen secondary tie-breaking criteria.
For example, if the order of consideration were employed, Path 1 would be selected for θ = 0.
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3.2.3 Maximum Margin Planning
Ratliff et al. (2006) resolve the ambiguity of choosing a single set of parameter weights to make
demonstrated behavior optimal (Remark 3.3) by posing inverse optimal control as a maximum
margin problem. They reduce a quadratic program for solving this problem into the following
convex objective:

Cq(θ) =
1

n

n∑
i=1

βi

(
max
µ∈Gi

(
θ>Fi + l>i

)
µ− θ>Fiµi

)q
+
λ

2
||θ||2, (3.6)

where µ are expected state visitation counts constrained by the MDP’s structure (G), µi are the
empirical visitation counts for example i, and li is an augmented state loss, li : S → R, that
assigns higher loss to states visited in example i.

Algorithm 3.2 Maximum margin planning

Require: State-based features f, Example MDPs {Mi}, Example feature counts {Ẽ[f]i}, Example
loss augmentation {li}, Learning rate r, Regularization parameter C, Iterations T

Ensure: Parameters, θ, that (approximately) optimize the maximum margin objective.
1: θ ← 0
2: for t = 1 to T do
3: Compute optimal π∗(s) for each loss-augmented cost map θ>fi + l>i in MDPMi

4: Compute E[f|π∗(s)]i in MDPMi

5: Compute sub-gradient g = θ + C(
∑

i(E[f|π∗(s)]i − Ẽ[f]i))
6: θ ← θ − r

t
g

7: end for
8: return θ

The sub-gradient algorithm (Algorithm 3.2) for optimizing the maximum margin planning ob-
jective (Equation 3.6) operates by effectively lowering the costs of actions that are away from the
demonstrated trajectory and finding cost weights making the cost-augmented demonstrated trajec-
tory optimal. While the approach yields a unique solution, it suffers from significant drawbacks
when no single reward function makes demonstrated behavior both optimal and significantly better
than any alternate behavior. This arises quite frequently when, for instance, the behavior demon-
strated by the agent is imperfect, or the planning algorithm only captures a part of the relevant
state-space and cannot perfectly describe the observed behavior.

A feature boosting approach (Ratliff et al., 2007) partially addresses this sub-optimal behavior
problem by creating a larger (non-linear) class of features to explain demonstrated behavior as
optimal. While this may succeed, it also runs the risk of crafting features that overfit to the training
data. The methods presented in this thesis differ from maximum margin planning in the explicit
treatment of uncertainty under the maximum causal entropy approach. This uncertainty is needed
to address suboptimal behavior.
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3.2.4 Game-Theoretic Criteria
Syed & Schapire (2007) employ a game-theoretic approach that maximizes performance relative
to the demonstrated behavior for the worst-case choice of reward function. When background
knowledge is available indicating the sign of the different cost factors (i.e., whether each feature
is “good” and should be maximized or “bad” and should be minimized), the learned model can
outperform demonstrated behavior.

Remark 3.5 (Syed & Schapire (2007)). When it is assumed that ∀i θi ≥ 0, then if ∀i EP [fi] ≥
EP̃[fi], the distribution P has expected reward guaranteed to be higher than the reward of demon-
strated behavior on the unknown cost function θ∗.

This approach similarly yields a mixture of policies, which is later converted to a stationary
policy using Theorem 2.8 and learned using a linear programming formulation (Syed et al., 2008).
It also suffers from potentially assigning zero probability to demonstrated behavior.

3.2.5 Boltzmann Optimal-Action-Value Distribution
An alternative to mixing optimal policies to obtain a non-deterministic behavior model is to directly
obtain a distribution as a function of the MDP’s optimal action values, Qθ(s, a)∗, obtained by first
solving the Bellman equation (Theorem 2.7). A natural approach to regressing from a set of real
values to a probability distribution is the Boltzmann probability distribution. Inference under
this model was first proposed for goal inference (Baker et al., 2006, 2007) using the true costs of
generated behavior in synthetic experiments:

P(action a|state s) =
eβQθ(s,a)∑

action a′ e
βQθ(s,a′)

. (3.7)

The scale parameter, β, determines the stochasticity of the policy. As β →∞, the policy becomes
deterministic2. When Qθ(s, a) is learned from data, its scale is also learned and β is superfluous.

Two approaches for learning parameters in this model have been proposed. Neu & Szepesvári
(2007) employ this distribution within a loss function penalizing the squared difference in proba-
bility between the model’s action distribution and the demonstrated action distribution. Ramachan-
dran & Amir (2007) utilize it within a Bayesian approach to obtain a posterior distribution over
reward values using Markov Chain Monte Carlo simulation. The main weaknesses of the model
are summarized by Remark 3.6 and Remark 3.7.

Remark 3.6 (Neu & Szepesvári (2007)). The likelihood of data in the Boltzmann optimal-action-
value distribution is not convex in its parameters θ.

2This assumes that no two actions have equivalent reward. If there are multiple optimal actions, they will have
equal probability.
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The non-convexity of the data likelihood function under the Boltzmann model (Remark 3.6)
makes finding optimal model parameters difficult, and non-convex distributions such as this are as
a result generally less preferred than convex models for computational efficiency reasons.

Remark 3.7. The relationship between a policy’s expected reward and its probability in the Boltz-
mann optimal-action-value distribution is not monotonic.

Additionally, the non-monotonic relationship between a policy’s expected reward and its prob-
ability within the model (Remark 3.7) has a few undesirable consequences: the most likely policy
within the model does not necessarily have the highest probability within the model and policies
with equal reward do not necessarily have equal probability (and vice versa). Also, this model
provides no guarantees of performance relative to the demonstrated behavior.

3.2.6 Robust and Approximate Optimal Control
Another branch of research makes optimal decisions based on the Kullback-Leibler divergence of
decision setting dynamics to realize robust control techniques (Bagnell, 2004; Nilim & El Ghaoui,
2005). Specifically, this technique provides strong PAC-style performance guarantees when the
transition dynamics of a decision setting are only approximately known. It was recently observed
that the resulting probabilistic model is a linearization of the Bellman equations (Kappen, 2005;
Todorov, 2006). This linearized view enables more efficient techniques for approximating the
optimal policy’s value by solving a system of linear equations. The problem is formulated as a
continuous control problem where the action cost is defined as the Kullback-Liebler divergence of
the employed action’s implied dynamics and a set of “passive” dynamics, P0(sj|si). The actions in
this approach directly determine the next state—there are no stochastic dynamics given the action,
but a high cost is paid to employ a deterministic policy that differs from the passive dynamics. The
optimal action under this formulation yields stochastic dynamics:

P ∗KL(sj|si) =
P0(sj|si) ev

∗
KL(sj)∑

sk
P0(sk|si) ev

∗
KL(sk)

. (3.8)

In general, state transitions in Markov decision processes are dependent on the action and each
action does not deterministically lead to a different next state. Todorov proposes a method for
embedding general Markov decision processes within this framework (2009b), but this approach
is approximate and only anecdotal evidence has been provided to demonstrate its validity.

The compositionality of control laws within the linear Bellman approach is described by Todorov
(2009a) and employed (approximately) for generating realistic character animation (da Silva et al.,
2009).

Remark 3.8 (following Todorov (2009a)). Let π(1)
KL and π(2)

KL be optimal KL policies for terminal
reward V (1)

final(s) and V (2)
final(s) in a first-exit linear Bellman model with corresponding path integrals
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ZV (1)(s) and ZV (2)(s). Then for α ∈ [0, 1], βπ(1)
KL + (1−β)π

(2)
KL is an optimal linear Bellman policy

for terminal reward αV (1)
final(s) + (1− α)V

(2)
final(s), where β =

αz
V (1) (s)

αZ
V (1) (s)+(1−α)Z

V (2) (s)
.

Our work generalizes this idea of efficient composability to a full Bayesian treatment of latent
goal states (Ziebart et al., 2008c) in Chapter 11. Specifically, it not only incorporates arbitrary ter-
minal rewards, but also addresses appropriately updating those rewards based on observed behav-
ior when the goal of the behavior is unknown. We apply this approach to vehicle route preference
prediction in Chapter 12 and pedestrian trajectory prediction in Chapter 13.

A learning approach under the linear Bellman equation perspective (Krishnamurthy & Todorov,
2010) is identical to the maximum causal entropy model of this thesis for deterministic dynamics
(Ziebart et al., 2008b), except that a value function rather than a (feature-based) cost function is
learned3. Value function learning can be viewed as a special case of cost function learning where
each state has its own unique feature. The advantage of learning the value function is the simplicity
of not having to solve a forward inference problem. For some domains, that forward inference
problem can be prohibitively expensive. However, there is also a large disadvantage because the
resulting model is then unable to generalize. For example, changes in end-state constraint (i.e.,
goal), state transition dynamics, or transfer to similarly-parameterized MDPs require a learned
cost function rather than a learned value function. Krishnamurthy & Todorov (2010) propose a
linear regression approach to obtain a parametric cost function from the learned values, however
this approach provides no predictive guarantees and is not evaluated in that work. A method of
generalizing by estimating the value function as a mixture of Gaussians is proposed to reduce
dependence on training data for accurate estimation, but this still does not transfer to other goals
or settings.

We investigate some of the restrictions of linearizing the Bellman equation relative to the prin-
ciple of maximum causal entropy approach developed in this thesis in Section 6.3 and relate the
compositionality of optimal control in the linearized Bellman equation approach to our techniques
for efficient Bayesian inference of latent goals in Chapter 11.

3.2.7 Noise-Augmented Optimal Actions

A final, and quite general approach from the optimal control perspective for making an optimal
policy stochastic is to augment the optimal value function with a sampled noise distribution, εs,a,
and generate a stochastic policy using many sampled deterministic policies:

π(s) = argmax
a

Q∗(s, a) + εs,a. (3.9)

3The claimed “passive dynamics” generalization is equivalent to optimizing the relative entropy and is generalized
via Remark 5.3 by simply adding corresponding action features.
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Any distribution can be employed for the error term, however the generality comes at a cost:
simulation is required rather than closed-form analysis. Nielsen & Jensen (2004) take this ap-
proach to model decisions in an influence diagram and to then learn the underlying utility function
upon which Q∗(s, a) is based using Markov chain Monte Carlo sampling strategies. In this thesis,
we employ basic principles to obtain a theoretically-justified error term. This provides predic-
tive guarantees and computational efficiency benefits that the noise-augmented approach generally
lacks.

3.3 Discrete Choice Theory
Economists have long studied models for estimating the probability of different choice selections
from a set of discrete options under various axiomatic formulations and noise assumptions. We
review some of the approaches established from that perspective here.

3.3.1 Multinomial and Conditional Logit
Choice models estimate the probability that an individual with characteristics defined by vector
xi will select one of c ∈ C choices (i.e., P(y = c|x, C)). Luce (1959) derived an axiomatic
probabilistic model based on the independence of irrelevant alternatives (IIA) axiom. Under the
IIA axiom, the relative odds between two choices are unaffected by the addition of options to the
set of choices.

∀c1,c2∈Ca,Cb
P(y = c1|x, Ca)
P(y = c2|x, Cb)

=
P(y = c1|x, Ca)
P(y = c2|x, Cb)

(3.10)

The resulting multinomial logit probabilistic model has the following form:

P(y = c|x, Ca, θ) =
eθ
>
c x∑

c′∈C e
θ>
c′x
, (3.11)

which is a log-linear (logistic regression) model.
McFadden (1974) proposes employing characteristics of the available options, zc, within a

model based on the IIA axiom. When both characteristics of the individual and the options are
employed, the probability distribution of this conditional logit model takes the following form:

P(y = c|x, z, C, θ, φ) =
eθ
>
c x+φ>zc∑

c′∈C e
θ>
c′x+φ>zc′

, (3.12)

which is similarly a log-linear model. This approach has the advantage of providing specification to
the predictive probability distribution based on the characteristics of the different available options.
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3.3.2 Criticisms of the Independence of Irrelevant Alternatives Axiom
A common criticism of the IIA axiom (and the multinomial and conditional logit models that em-
ploy it) is its inability to take into account (near) perfect substitutes. Consider the “Red Bus/Blue
Bus” example (McFadden, 1974), where the options of driving a car or taking a red bus are avail-
able to a commuter with equal probability under the model. If a blue bus option is added, and
commuters are indifferent to bus color, one would expect a probability of 50%, 25%, and 25% for
car, red bus, and blue bus, but instead each is equally probable under the IIA axiom.

A number of alternate discrete choice models have been proposed that relax the IIA axiom to
address this scenario.

3.3.3 Nested Logit
The nested logit discrete choice model (Ben-Akiva, 1974) incorporates correlation among similar
groups of disjoint choices (nests), C1, C2, ... such that C = ∪k Ck and ∀j 6=k Cj ∩ Ck = Ø. The
probability of a choice i in clique Ck is specified by the chain rule:

P(i) = P(Ck) P(i|Ck), (3.13)

with probabilities defined by:

P(Ck) =
eZCk+λ ln

∑
i∈Ck

eVi∑n
j=1 e

ZCj+λ ln
∑
i∈Cj

eVi
and (3.14)

P(i|Ck) =
eVCi∑
j∈Ck e

VCj
.

The λ ∈ [0, 1] parameter in this model is related to the correlation between choices within each
of the nests. When λ = 1, this model reduces to a standard logit model.

3.4 Discussion
We now discuss the relations of the reviewed approaches to each other and to the maximum causal
entropy approach contributed by this thesis.

3.4.1 Connections Between Approaches
Despite being developed under varying perspectives with differing assumptions and for different
purposes, there are a number of similarities between these approaches. The linear Bellman opti-
mal control model (Todorov, 2006) and the conditional multinomial logit discrete choice model
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(McFadden, 1974) are both exponential family models that can be equivalently expressed as a spe-
cial form of conditional random fields with potentials that correspond to rewards (Ardis & Brown,
2009; Toussaint, 2009). Evaluating the robust MDP model by the power method is equivalent to
forward or backward algorithms for chain conditional random field inference and is a special case
of the nested logit model’s hierarchical inference procedure (Equation 3.14).

The independence of irrelevant alternatives axiom of discrete choice theory also has analogies
in the optimal control approaches for decision modeling. Specifically, the correlation-based pa-
rameter of the nested logit model has a number of parallels. The Boltzmann optimal-action-value
distribution does not obey the IIA axiom and is similar to the λ = 0 nested logit model. More
generally, the discount factor, which is commonly employed to make the Bellman equations for
infinite time horizons convergent, when applied within the linear Bellman optimal control model
is very similar to the effect that λ has in the nested logit model.

3.4.2 Relation to Thesis Contributions
Information revelation settings

The primary contribution of this thesis is a principled approach for modeling the conditional prob-
abilities of variables in settings with side information that is revealed over time from a known
conditional probability distribution. Markov decision processes with stochastic dynamics match
this information revelation setting because the next state is random and only revealed after an ac-
tion is made. Conditional random fields are ill-suited for this setting because they are based on
the principle of maximum conditional entropy, which assumes full knowledge of random side in-
formation in advance. As a consequence, there is a disconnect between maximizing conditional
likelihoods in a conditional random field and maximizing the expected reward in a corresponding
MDP (Remark 6.17). Similarly, the linear Bellman equation model relies on an imprecise em-
bedding to model general MDPs because linearization alone is inappropriate for dealing with the
information availability of the general MDP.

The maximum causal entropy approach of this thesis provides a means for probabilistically
modeling behavior within settings characterized by sequentially revealed side information (e.g.,
such as the sequence of states in a Markov decision process) so that maximum likelihood policy
estimation is equivalent to expected reward maximization. This is in contrast to the Boltzmann
optimal value action model, where the maximum likelihood policy and the maximum expected
reward policy within the Markov decision process do not necessarily match. An additional advan-
tage of the maximum causal entropy approach is that the optimization for learning parameters in
the model is convex.

Cost potential function learning

In the special case that the corresponding Markov decision process has deterministic state-transition
dynamics, revealing the next state provides no new information. This is due to the fact that the next
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state is already known from the choice of action and current state. In this setting, the principle of
maximum causal entropy reduces to a probabilistic model that matches the linear Bellman model
(Todorov, 2006), conditional random field (Ardis & Brown, 2009; Toussaint, 2009), and condi-
tional logit (McFadden, 1974) models of behavior.

While the development of the linear Bellman model (Todorov, 2006) precedes the maximum
entropy approach for decision modeling (Ziebart et al., 2008b), its purpose was for efficient ap-
proximate inference of the optimal policy and optimal value function. More recent attempts to
apply the linear Bellman model for learning (Krishnamurthy & Todorov, 2010) propose learning
value functions rather than the cost functions learned in the maximum entropy approach. As pre-
viously discussed, the computational benefits of the approach come at the cost of not being able to
generalizes to changes in the problem setting.

Similarly, the conditional random field model of Markov decision processes has only been
previously applied for purposes of inference based on known reward values (Ardis & Brown, 2009;
Toussaint, 2009). We note that our work (Ziebart et al., 2008b) represents the first employment of
this model for the purpose of learning from observed behavior. Additionally, the use of features
associated with “states” rather than observations is atypical from the standard CRF perspective.
The principle of maximum causal entropy generalizes the validity of this approach to settings with
stochastic state dynamics.

The conditional logit model is perhaps the most similar to the maximum entropy model of
decision making on decision tasks with no information revelation. It is important to note the limits
of the conditional logit approach in its previous applications. For route preference modeling, for
instance, the first step of applying logit models when given a road network with infinite possible
paths between two points is to employ a route selection algorithm that generates a tractable subset
of paths to consider. We view our approach as an extension of the efficiency of the conditional logit
model from trees of decisions to graphs with (potentially) infinite sequences of choices. Maximum
causal entropy also generalizes the discrete choice models to settings with stochastic state transition
dynamics.
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Overview of Part II
Part II of the thesis provides the formulations and theoretical properties of the maximum causal
entropy approach needed for modeling sequences of behavior, as well as the justifications for its
use as a predictive tool.

Chapter 4 reviews the theory of causal information. This less widely known extension of
information theory enables its applicability to settings with feedback and interaction.

Chapter 5 presents the general formulation for modeling a sequence of variables that is causally
conditioned on a sequence of additional sequentially-revealed variables. Two types of constraints
are introduced: affine equality constraints and convex inequality constraints, which generally cor-
respond to efficiency and rationality requirements in this thesis.

Chapter 6 applies the general maximum causal entropy formulation to the inverse optimal con-
trol setting of finding the reward, utility, or cost function of the parametric Markov decision pro-
cess or linear-quadratic regulator frameworks introduced in Chapter 2. Equality constraints are
employed to match statistical expectations of characteristics of demonstrated behavior. Inference
under this model corresponds to a softened application of the Bellman equation, leading to a num-
ber of simple inference algorithms in Part III.

Chapter 7 extends the maximum causal entropy approach to the influence diagram framework
(Chapter 2). Whereas in the inverse optimal control setting of Chapter 6, only future side informa-
tion is unknown or latent at each point in time, the formulation of this chapter allows current and
past information to also be unknown. This corresponds to common decision settings with partial
information, such as the POMDP, and to collaborative multi-agent coordination. We establish an
important boundary on the applicability of the maximum causal entropy approach: perfect recall
of past decisions is required for many of the theoretical niceties introduced in Chapter 5 to hold.

Chapter 8 demonstrates the wider applicability of the maximum causal entropy approach by
applying it to multi-agent game play. The inequality constraints of Chapter 5 are employed to
enforce rationality requirements of players’ strategies in sequential games. This enables a novel,
well-specified correlated equilibrium solution concept with log-loss prediction guarantees in the
sequential setting of Markov games.

Together, the theoretical developments of these five chapters provide a broad scope of ap-
plicability for the maximum causal entropy approach for predicting behavior under a number of
behavior frameworks.



Chapter 4

The Theory of Causal Information

“Nobody knows what entropy really is, so in a debate you will always have the advantage.”
– John von Neumann (Mathematician, 1903–1957)

The field of information theory was developed primarily by Shannon’s seminal communica-
tions work (1948). It enables the quantification of the amount of information provided by random
variables. Information measures for joint, conditional, marginal, and relative distributions are well
known. They are frequently employed in communication, control, and machine learning appli-
cations. In this chapter, we review those measures and their properties. We then review the less
widely known causal extension of information theory. This extension enables the applicability
of information theory in settings of interaction and feedback. It serves as the backbone of our
approach for creating predictive distributions for human behavior in those settings.

4.1 Information Theory
We provide a brief overview of information-theoretic measures. We refer the reader to Cover &
Thomas (2006)’s excellent book on the topic for a more thorough coverage of information theory
and its applications.

4.1.1 Entropy and Information
Shannon’s information entropy of distribution P over random variable X measures the uncer-
tainty of that probability distribution.

Definition 4.1. The entropy of a discrete random variable, X, distributed according to P is:

HP(X) = EP(X)[− log P(x)]

= −
∑
x∈X

P(x) log P(x). (4.1)

45
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For continuous-valued variables1, the entropy is:

HP(X) =

∫
x

P(x) log P(x) dx. (4.2)

When log2 is used, the discrete entropy (4.1) measures the average number of bits needed for a
binary message that encodes a sample from distribution P. A uniform distribution maximizes this
entropy measure, while an entropy of zero corresponds to a single point distribution.

When X is a vector of variables, X1:T , rather than a scalar, the joint entropy measures the
uncertainty of the joint distribution, P (X1:T ).

Definition 4.2. The joint entropy of the vector of random variables, X1:T , distributed according to
P(X1:T ) is:

HP(X1:T ) = EP(X1:T )[− log P(x1:T )]

= −
∑
x1:T

P(x1:T ) log P(x1:T ). (4.3)

The cross entropy measures the amount of uncertainty of the distribution P under a different
distribution Q both over random variable X .

Definition 4.3. The cross entropy of distribution P under distribution Q is:

H(P, Q) = EP(X)[− logQ(x)]

= −
∑
x∈X

P(x) logQ(x). (4.4)

From the coding perspective, the cross entropy is the expected number of bits needed to encode
samples from P under the incorrect probability distribution, Q. It is equivalent to the log-loss of
distribution Q evaluated by predicting data actually distributed according to P .

The conditional entropy extends information theory to conditional probability distribution
settings. It measures the average amount of information needed to recover Y given that X is
known.

Definition 4.4. The conditional entropy of Y given X distributed according to P(Y |X) is:

HP(Y |X) = EP(X,Y )[− log P(y|x))]

= −
∑
y∈Y

∑
x∈X

P(y, x) log P(y|x), (4.5)

for scalar random variables Y and X and naturally extends to vectors of random variables.
1We will typically only consider the discrete-valued expansion in this chapter. The continuous-valued analog can

be obtained from the continuous-valued definition of expectations.
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The entropy of the previously described distributions are implicitly relative to a uniform distri-
bution. In general, other relative distributions can be employed. The relative entropy measures the
additional amount of information needed to code samples of P according to a different encoding
distribution, Q.

Definition 4.5. The relative entropy of distribution P relative to distribution Q is:

H(P //Q) = EP(X)

[
log

P(x)

Q(x)

]
=
∑
x∈X

P(x) log
P(x)

Q(x)
. (4.6)

We employ this modified notation to avoid conflict with causal entropy measure notation2.

The relative entropy is more commonly known as the Kullback Leibler-divergence (Kullback &
Leibler, 1951) between P and Q: DKL(P ||Q) , H(P //Q).

Definition 4.6. The mutual information of two variables distributed according to P(Y,X) is:

I(X;Y ) = EP(X,Y )

[
log

(
P(x, y)

P(x) P(y)

)]
=
∑
x∈X

∑
y∈Y

P(x, y) log

(
P(x, y)

P(x) P(y)

)
.

The mutual information (Definition 4.6) provides the amount of information shared by two
random variables.

Definition 4.7. The conditional mutual information of two variables conditionally distributed
(given an additional variable) according to P(Y,X|Z) is:

I(X;Y |Z) = EP (X,Y,Z)

[
log

(
P(x, y|z)

P(x|z) P(y|z)

)]
=
∑
z∈Z

P (z)
∑
x∈X

∑
y∈Y

P (x, y|z) log

(
P(x, y|z)

P(x|z) P(y|z)

)

Lastly, the conditional mutual information (Definition 4.7) provides the amount of informa-
tion shared by two random variables conditioned on a third variable.

2Typically the relative entropy is denoted asH(P ||Q). However, this conflicts with the existing notation employed
for the causal entropy we will employ later. Hence, we employ the alternate notation
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4.1.2 Properties
There are many well-known and useful identities relating the previously introduced information-
theoretic measures. We list some of them here.

Remark 4.8. A chain rule of entropies relates the joint and conditional entropies:

H(X1:T ) =
∑
t

H(Xt+1|X1:t).

Remark 4.9. Following Remark 4.8, the conditional entropy can be expressed as:

H(Y |X) = H(Y,X)−H(X).

Remark 4.10. The entropy, relative entropy, and cross entropy are related by:

H(P //Q) , H(P, Q)−HP(X).

Remark 4.11. The mutual information can be defined in terms of the joint, conditional, and
marginal entropies in a number of ways:

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

= H(X, Y )−H(X|Y )−H(Y |X).

Remark 4.12. A chain rule of mutual information provides the following relation between mutual
information and conditional mutual information:

I(X1:T ; Y1:T ) =
∑
t

I(Y1:T ;Xt|X1:t−1)

=
∑
t

I(X1:T ;Yt|Y1:t−1).

We also list useful inequalities that relate those information-theoretic measures. These inequal-
ities can be obtained using Jensen’s inequality: f(E[X]) ≤ E[f(X)] for convex f .

Remark 4.13. The entropy is always positive: H(X) ≥ 0.

Remark 4.14. Conditioning on additional variables never increases entropy:

∀X,Y,Z HP(Y |X) ≥ HP(Y |X,Z)

with equality when Y is conditionally independent of Z given X .

Remark 4.15. Gibbs’ inequality assures that the KL divergence is always positive:

DKL(P ||Q) ≥ 0 (4.7)

with equality if and only if P = Q.
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4.1.3 Information Theory and Gambling
Information theory and gambling have many close connections. We summarize the main results
of Cover & Thomas (2006) in this section to illustrate those connections. Many perspectives on
gambling have focused on maximizing the expected payoff of a (set of) bet(s). This strategy has
the unfortunate problem that over a large enough time span, the realized payoff by employing
an expected utility maximizing strategy will be zero with high probability. This is known as the
gambler’s paradox. An alternate perspective is to maximize the rate of growth of investment.

More concretely, Cover & Thomas (2006) consider an m horse race where the payoff on a
bet is bioi, where bi is the fraction of total wealth bet that horse i will win, and oi is the payoff
multiplier if horse i does win. It is assumed that the initial wealth of the gambler is 1, and all of
the gambler’s wealth is bet during each race. After a sequence of races, the gambler’s wealth will
be:

Sn =
n∏
t=1

S(Yt), (4.8)

where S(Y ) = b(Y ) o(Y ) and Yt is the winning horse. The expected doubling rate of invest-
ment is then: W (b, p) = E[logS(Y )] =

∑m
k=1 pk log(bkok) when the winning horse is distributed

according to p.

Theorem 4.16 (from Cover & Thomas (2006)). Proportional gambling, b∗ = p, is log-optimal
with optimal doubling rate:

W ∗(p) =
k∑
i=1

pi log oi −H(p). (4.9)

Theorem 4.17 (from Cover & Thomas (2006)). When side information, Xt, is provided before
each race, the optimal doubling rate,

W ∗(Y|X) =
k∑
i=1

P(y|x) log oi −H(Y|X), (4.10)

is obtained by b∗ = p(y|x). The difference in growth rate by having the side information is the
mutual information between the side information and the winning horse variables:

∆W = W ∗(Y|X)−W ∗(Y) = I(Y; X). (4.11)

Thus, there are very strong connections between information-theoretic measures and invest-
ment growth rates in gambling. The causal information investigated in this thesis expand this gam-
bling perspective to settings where the outcomes of consecutive horse races are dependent, and the
the revealed side information is also dependent on previous side information and race outcomes.
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4.2 Causal Information

4.2.1 Sequential Information Revelation and Convex Influence

Many important problem settings with sequential data involve partial information, feedback, and
interaction. For example, in decision settings with stochastic dynamics, future side information
(i.e., the future state), X, is unknown during earlier points of interaction (Figure 4.1). As a con-
sequence, the future side information should have no causal influence in our statistical models of
interaction until after it is revealed. In other words, the specific instantiation value, xt2 , should have
no causal influence on yt1 for t1 < t2. However, this does not imply a statistical independence—the
influence of earlier interactions on future side information should not be ignored. In the case of
stochastic dynamics, the actions chosen do influence the future state.

Figure 4.1: The sequence of side information variables, X, and conditioned variables, Y, that are revealed
and selected over time.

More formally this notion of causal influence means that if a future side information variable
were secretly fixed to some value by intervention (Pearl, 2000) rather than generated according
to its conditional probability distribution, the distribution over all earlier variables would be unaf-
fected by this change. In contrast, if by intervention some side information variable were fixed to
some value, the value of variables does influence future conditioned variables.

4.2.2 Causally Conditioned Probability

The causally conditioned probability (Kramer, 1998) from the Marko-Massey theory of directed
information (Marko, 1973; Massey, 1990) is a natural extension of the conditional probability,
P(Y|X), to the situation where each Yt (for t = 1..T ) is conditioned on only a portion of the X
variables, X1:t, rather than the entirety, X1:T .

Definition 4.18. Following the previously developed notation (Kramer, 1998), the probability of Y
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causally conditioned on X is:

P(YT ||XT ) ,
T∏
t=1

P(Yt|X1:t,Y1:t−1). (4.12)

We will often consider Y to be actions or controls applied to a system and X to be the system’s
state in this thesis. This interpretation can be useful in understanding the approach, but it is im-
portant to note that Y and X can represent any sequentially revealed information where the causal
assumption that future side information does not influence earlier variables is reasonable.

Figure 4.2: A sequence of variables, Y1:T conditioned (left) and causally conditioned (right) on a corre-
sponding sequence of side information variables, X1:T . In the conditional setting, edges cannot be directed
upwards from X variables to Y, and typically the distribution over X is not modeled at all. In the causally
conditioned setting, edges cannot be directed leftward from future time step variables, Xt+1:T ,Yt+1:T to
previous time step variables, X1:t,Y1:t.

The subtle, but significant difference between the causally conditioned distribution and the
conditional probability distribution, P(Y|X) =

∏T
t=1 P(Yt|X1:T ,Y1:t−1)—where each Yt variable

is conditioned on all X variables—is illustrated by Figure 4.2. In the conditional distribution,
many edges are directed against the direction of time from Figure 4.1. This distinction serves as
the underlying basis for the maximum causal entropy approach.

4.2.3 Causal Entropy and Information
Information-theoretic measures based on the standard conditional probability distribution also ex-
tend to the causally conditioned probability distribution (Equation 4.12).

Definition 4.19. The causal entropy (Kramer, 1998; Permuter et al., 2008) of Y given X is:

H(YT ||XT ) , EY,X[− log P(YT ||XT )] (4.13)

=
T∑
t=1

H(Yt|X1:t,Y1:t−1).
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The causal entropy (Definition 4.19) measures the uncertainty present in the causally condi-
tioned distribution of the Y variable sequence given the preceding partial X variable sequence. It
can be interpreted as the expected number of bits needed to encode the sequence Y1:t given the
previous Y variables and sequentially revealed side information, X1:t, which has been revealed at
each point in time and excluding unrevealed future side information, Xt+1:T .

The causal information (also known as the directed information) is a measure of the shared
information between sequences of variables when the variables are revealed sequentially.

Definition 4.20. The causal information (or directed information) of two vectors of variables is:

I(XT → YT ) =
∑
t

I(X1:t;Yt|Y1:t−1)

It differs from the chain rule for mutual information (Remark 4.12) in that the X variable vector is
limited to t rather than T on the right-hand side.

4.2.4 Properties
Using the causally conditioned probability distributions, any joint distribution can be expressed
via the chain rule3 as P(Y,X) = P(YT ||XT ) P(XT ||YT−1). Our approach estimates P(YT ||XT )
based on a provided (explicitly or implicitly) distribution of the side information, P(XT ||YT−1) =∏

t P(Xt|X1:t−1,Y1:t−1). By employing this relationship between the joint and causal distributions,
Equation 4.13 can be equivalently expressed in terms of the joint-relative entropy.

Remark 4.21. The causally conditioned entropy is related to the joint and relative entropy as:

H(YT ||XT ) = H(Y,X)−H(XT ||YT−1) (4.14)
= const.−H (Y,X//P0(X,Y))

Equation 4.14 is the joint distribution over X and Y relative to a baseline joint distribution,
P0(X,Y), that obeys the provided side information distribution, P(XT ||YT−1), and is otherwise
uniform over P(YT ||XT ). We employ the “//” notation introduced in Definition 4.5 to represent
the relative entropy and distinguish it from our employed causal entropy notation, “||.”

It is easy to verify that the causal entropy upper bounds the conditional entropy; intuitively this
reflects the fact that conditioning on information from the future (i.e., acausally) can only decrease
uncertainty.

Theorem 4.22. Generally, the conditional and causal entropies are related as:

H(Y|X) ≤ H(YT ||XT ) ≤ H(Y) ≤ H(Y,X), (4.15)

3More generally, other decompositions of the form: P(Y,X) = P(YT ||XT−∆1) P(XT ||YT−∆2) for 0 ≤ ∆1 <
∆2 are possible, including the “standard” conditional decomposition, P (Y,X) = P (X)P (Y|X).
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since additional conditioning can never increase entropy. In the special case that P(XT ||YT−1) is
a deterministic function, then:

H(YT ||XT ) = H(Y) = H(Y,X). (4.16)

Additionally, the causal information obeys inequalities relating it to the mutual information.

Theorem 4.23 (Massey (1990)). The causal information is upper bounded by the mutual informa-
tion:

I(X1:T → Y1:T ) ≤ I(X1:T ; Y1:T )

Theorem 4.24 (Massey (1990)). The causal information is upper bounded by sum of per-timestep
mutual information:

I(X1:T → Y1:T ) ≤
T∑
t=1

I(Xt;Yt),

with equality if and only if Y1, ..., YT are statistically independent.

4.2.5 Previous Applications of Causal Information
Causal information theory has found applicability as an information-theoretic measure in the anal-
ysis of communication channels with feedback (Massey, 1990; Kramer, 1998), decentralized con-
trol (Tatikonda, 2000), and sequential investment and online compression with side information
(Permuter et al., 2008). We review those previous results in this section.

Figure 4.3: A single-user communication channel with delayed feedback.

One of the main focuses of communications research is establishing the maximum amount
of information that can be reliably transmitted through a communication channel. Analysis of
channel capacity (as this quantity is otherwise known) for channels with feedback began with
Shannon’s result for single-user channels (Figure 4.3) that feedback does not increase channel
capacity (Shannon, 1956).

However, in multi-user channels (Shannon, 1961), such as the two-way channel of Figure 4.4,
feedback has been shown to increase capacity (Gaarder & Wolf, 1975).
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Figure 4.4: A two-way communication channel with delayed feedback.

Theorem 4.25 (Massey (1990)). If X1:T and Y1:T are input and output sequences of a discrete
channel, and U1:K is a source output sequence (i.e., message to transmit), then:

I(U1:K ; Y1:T ) ≤ I(X1:T → Y1:T )

Combining Theorem 4.23 with Theorem 4.25, Massey (1990) establish the causal information
as a tighter bound on the mutual information between the source message and the discrete channel
output in communication channels with feedback.

Theorem 4.26 (Corollary 4.1 of Kramer (1998)). The capacity region CTWC of the discrete mem-
oryless common-output two-way channel is the closure of the set of rate-pairs (R1, R2) such that:

R1 = I(X1,1:T → Y1:T ||X2,1:T )

R2 = I(X2,1:T → Y1:T ||X1,1:T )

where T is a positive integer and where:

P(X1,t, X2,t|X1,1:t−1,X2,1:t−1,Y1:t−1) = P(X1,t|X1,1:t−1,Y1:t−1) P(X2,t|X2,1:t−1,Y1:t−1)

for all t = 1, 2, ..., T .

With Theorem 4.26, Kramer (1998) proves the relationship between directed information and
channel capacity in the memory-less common-output two-way channel setting.

Tatikonda (2000) formulates the problem of stochastic control in distributed settings with com-
munication limitations as a problem of selecting the channel input distribution that maximizes
the causal information of the channel output B1:T , channel input, A1:T , and the stochastically-
controlled state, Z1:T :

I(A1:T → (B1:T ,Z1:T )).

Under a Markovian assumption, a dynamic program that resembles the value iteration (Bellman,
1957) is employed to obtain the channel input distribution.

Permuter et al. (2008) investigate betting strategies in settings where side information providing
information on the outcome of horse races is sequentially provided at each point in time (i.e., before
each consecutive horse race). They establish the causally conditioned probability distribution as
the distribution by which to allocate bets on each of the races to maximize growth rate.
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Theorem 4.27 (Permuter et al. (2008)). Given a sequence of horse races with outcomes Yi at time
i with side information Xi at time i, where o(Yi|Y i−1) is the payoff at time i for horse Yi given that
previous horse race winners were Y1:i−1, then for any finite horizon T , the maximum growth rate is
achieved when a gambler invests money in proportion to the causal conditioning distribution, i.e.,

b∗(yi|y1:i−1, xi) = p(yi|y1:i−1, x
i), ∀y1:i, xi, i ≤ T. (4.17)

The corresponding optimal growth rate is:

W ∗(YT ||XT ) = E[log o(Y 1:T )]−H(YT ||XT ). (4.18)

The result of Theorem 4.27 extends maximum growth rate investing (Theorem 4.16 and Theorem
4.17) to the sequential setting with variable dependence.

4.3 Discussion
In this chapter, we reviewed the well-known information-theoretic measures of entropy and infor-
mation for marginal, joint, conditional, and relative probability distributions. We then reviewed
causal information theory, an extension of information theory to settings with interaction and feed-
back. We summarized the key results of the applications of causal information theory for com-
munication, control, and gambling problems. In Chapter 5, we connect the standard information-
theoretic concepts to existing techniques for prediction. We then extend those techniques using the
less widely known causal information theory for prediction of purposeful, adaptive behavior.



Chapter 5

The Principle of Maximum Causal Entropy

“It is far better to foresee even without certainty than not to foresee at all.”
— Henri Poincaré (Mathematician, 1854–1912).

In this chapter, we motivate and present the principle of maximum causal entropy (Ziebart
et al., 2010b). This principle extends the maximum entropy approach (Jaynes, 1957) to conditional
probability distributions in settings characterized by interaction with stochastic processes where
side information from those processes is dynamic, i.e., revealed over time according to a known
conditional probability distribution. Importantly, each future side information variable is latent
during earlier points of interaction, and its particular instantiation should have no causal influence
before it is revealed. Instead, the principle of maximum causal entropy prescribes expectations
over future side information variables while they are latent. Of significance for the focus of this
thesis, this framework provides a principled approach with predictive guarantees for modeling
observed behavior sequences characterized by features or statistics that define its purposefulness
or rationality, while being sequential influenced by external, random factors.

We begin this chapter by reviewing the principle of maximum entropy. We summarize some
of its important properties and establish its connection to probabilistic graphical models. We then
employ causal information theory (Chapter 4) to extend the principle of maximum entropy to
sequential settings with adaptation, feedback, and partial information.

5.1 Principle of Maximum Entropy

When given only partial information about a probability distribution, P̃ , typically many differ-
ent distributions, P , are capable of matching that information. For example, many distributions
have the same mean value. The principle of maximum entropy resolves the ambiguity of an
under-constrained distribution by selecting the single distribution that has the least commitment
to any particular outcome while matching the observational constraints imposed on the distribu-
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tion (Jaynes, 1957). The lack of commitment (or uncertainty) of the distribution is measured by
Shannon’s information entropy (Definition 4.1).

Definition 5.1. The maximum entropy probability distribution is the distribution with maximum
information entropy subject to matching expected characteristics (denoted as characteristic func-
tions gk(P ) with empirical characteristic averages gk(P̃ )) and is obtained from the following op-
timization:

argmax
P

HP(X) (5.1)

such that: ∀k gk(P ) = gk(P̃ )∑
x

P(x) = 1

∀x P(x) ≥ 0

While any characteristic function is possible, we will focus on probabilistically weighted char-
acteristic functions, gk(P ) = EX [fk(x)] =

∑
x∈X P(x)fk(x). The distribution satisfying the max-

imization then has the following form:

P(x) = Z(α)−1 e
∑
k αkfk(x). (5.2)

The parameters, {αk}, are generally obtained using numerical optimization techniques to satisfy
the constraints of Equation 5.1. The normalization factor, Z(α) =

∑
x e

∑
k αkfk(x), forces the

distribution to normalize and is also called the partition function.
Many of the fundamental building blocks of statistics are maximum entropy distributions. The

Gaussian distribution, for example, has the form of a maximum entropy distribution constrained
to match first and second moments. Similarly, more sophisticated probabilistic models, such as
Markov random fields, also maximize the entropy subject to similar constraints, as we explore in
Section 5.1.3.

5.1.1 Justifications for the Principle of Maximum Entropy
There are a number of different arguments that have been put forth to justify the principle of max-
imum entropy’s usage. Jaynes (1957) originally employed an information-theoretic justification
that a lower entropy probability distribution corresponds to “committing” to enforce additional
assumptions on the probability distribution that are not necessary given the available information
(i.e., constraints on the distribution). While this justification has an intuitive appeal as a general-
ization of the principle of indifference, other arguments present stronger quantitative justification.

A second justification, suggested by Graham Wallis to Edwin Jaynes, derives the maximum
entropy distribution as the most probable of all “fair” random distributions that match provided
constraints (Jaynes & Bretthorst, 2003, Chapter 11). Consider the process of assigning probabil-
ities {p1, ..., pm} to m different possibilities by (uniformly) randomly assigning n � m quanta
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among those possibilities. If the random assignment does not match provided constraints on the
distribution, a new assignment is generated until one that matches constraints is found. The most
likely distribution that will be found by this process maximizes W = n!

n1!...nm!
. As n → ∞, a

monotonic function of W , 1
n

logW → −
∑m

i=1 pi log pi, which is the entropy of the distribution.
As a result, the most likely constraint-satisfying assignment from this process is equivalent to the
maximum entropy distribution in the limit of infinitesimally small quanta of probability. Note
that this derivation neither assumes nor employs any notions from information theory. Rather,
information-theoretic measures follow from the derivation.

An important predictive justification is from a game-theoretic perspective. It pits the decision
maker and nature against each other in the choice of probability distributions P(X) and P̃ (X), as
shown in Theorem 5.2.

Theorem 5.2 (Grünwald & Dawid (2003)). The maximum entropy distribution minimizes the
worst case prediction log-loss,

inf
P(X)

sup
P̃(X)

−
∑
X

P̃(X) log P(X),

given e.g., feature expectation constraints that P and P̃ both match: EP̃(X)[F(X)].

This can be viewed as a two-step game where the decision maker first selects a probability distri-
bution, P , and then nature adversarially chooses the empirical distribution, P̃ . Both distributions
are constrained to match provided constraints. The maximum entropy distribution is the one where
the decision maker chooses P to minimize the worst log-loss that nature can possible create by
choosing P̃ adversarially. As the log prediction rate is a natural evaluation metric for machine
learning applications, minimizing its worst case value is an important guarantee for machine learn-
ing techniques. The extension of this guarantee to sequential settings representing behavior is one
of the central contributions of this thesis.

Lastly, there is a useful gambling justification for maximum entropy. Returning to the horse
racing example of Section 4.1.3, the doubling rate is defined as:

W (X) =
∑
x

P(x) log (b(x) o(x))

=
∑
x

(P(x) log b(x) + P(x) log o(x)) . (5.3)

When the payoffs, o(X), are uniform, the right-hand expression of Equation 5.3 reduces to a con-
stant that is independent of the bet distribution, b. We consider the case where some properties
that P(X) must satisfy, i.e., EP̃[F(Y )], are known. Following the same adversarial viewpoint of
Theorem 5.2, the maximum entropy distribution for b(X) maximizes the worst-case doubling rate,

b(X)∗ = argmax
b(X)

min
P(X)

W (X),

where P(X) is chosen adversarially by “nature,” but must match EP̃[F(Y )].
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5.1.2 Generalizations of the Principle of Maximum Entropy

The principle of maximum entropy can be generalized by using alternate entropy measures. For
example, the conditional entropy (Equation 4.5) or relative entropy (KL divergence, Equation 4.6)
can be optimized in lieu of the standard entropy. We shall make use of and extend the conditional
entropy generalization throughout this thesis. On the other hand, we argue that optimizing the
relative entropy provides no additional generality in the maximum entropy framework, and that
it need not be considered as we generalize the entropy to settings with feedback throughout the
remainder of this thesis.

A choice of relative distribution, Q(x), is required to optimize the relative entropy. The distri-
bution obtained by optimizing the relative entropy then takes the following form:

P(x) ∝ Q(x)e
∑
k αkfk(x)

= elogQ(x)+
∑
k αkf(x) (5.4)

Note that Equation 5.4 could be similarly realized by introducing a new feature, fQ(x) = logQ(x),
into the maximum entropy probability distribution (Equation 5.2) and assigning it a fixed weight
of αQ = 1. If the relative distribution is given, e.g., by physical laws, this approach can be
directly applied. However, we argue that an appropriate relative distribution, Q(x), is generally
not known. Instead, a set of candidate relative distributions, {Q1(x), Q2(x), ...}, may be available
and an appropriate set of weights (αQ1 , αQ2 , ...) should be learned for those candidate relative
distributions rather than assumed. We more formally define this notion in Remark 5.3.

Remark 5.3. The maximum entropy distribution for P(x) (Equation 5.2) augmented with logQ(x)
features (corresponding to constraints on EP[logQ(x)]) is at least as expressive as the distribution
optimizing the entropy of P(x) relative to Q(x). Equivalence is realized when the parameter
αQ associated with the augmented feature in the maximum entropy model is fixed to 1.0 and the
remaining parameters are obtained through maximum entropy optimization. The maximum entropy
distribution can be more general when the choice of weights {αQ} is also optimized.

Since the relative entropy affords no greater generality than this simple extension of the stan-
dard maximum entropy approach, we will not consider it as a meaningful generalization as we
present the maximum causal entropy approach.

5.1.3 Probabilistic Graphical Models as Entropy Maximization

Existing probabilistic graphical models can be formulated from the maximum entropy approach.
This perspective is important for understanding the generalization that the maximum causal en-
tropy approach of this thesis provides. Markov random fields can be interpreted as an extension of
maximum entropy to joint probability distributions.
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The form of the Markov random field (Definition 2.3) can be derived as a maximum entropy
optimization (with probabilistic constraints on P(X) suppressed) as follows:

max
P(X)

H(X)

such that: ∀i EP(X)[fCi(XCi)] = EP̃(X)[fCi(XCi)],

where P̃ represents empirical probability distribution variables obtained from observed data, and
{Ci} are sets of subsets of X (i.e., cliques in the corresponding undirected graphical representa-
tion). The maximum entropy log-loss guarantee extends to the Markov random field.

Corollary 5.4 (of Theorem 5.2). Markov random fields guarantee minimal worst-case predictive
log-loss of X1:T subject to constraints {fCi}.

Conditional random fields are derived from the maximum entropy approach by maximizing the
conditional entropy (Definition 4.4), H(Y|X), subject to feature function expectation constraints
(with feature functions over X and Y):

max
P(Y|X)

H(Y|X)

such that: ∀i EP(Y,X)[fCi(YCi ,XCi)] = EP̃(Y,X)[fCi(YCi ,XCi)],

where P (Y,X) = P (Y|X)P̃ (X). The conditional random field provides a predictive log-loss min-
imization guarantee for its information availability setting.

Corollary 5.5 (of Theorem 5.2). Conditional random fields guarantee minimal worst-case predic-
tive log-loss of Y1:T when given side information, X1:T , up front and constraints, {fCi}, governing
the probability distribution.

The maximum causal entropy approach of this thesis generalizes this guarantee to settings
where side information, X1:T , is revealed sequentially.

5.1.4 Approximate Constraints and Bayesian Inference
A number of criticisms of the principle of maximum entropy illustrate incompatibilities between
employing the principle of maximum entropy and Bayesian inference. Jaynes distinguishes the two
by stating that the principle of maximum entropy “assigns” a distribution while applying Bayes’
theorem means “calculating” a probability (Jaynes, 1988). Formally reconciling or explaining
those differences is beyond the scope of this thesis. Instead we offer two high-level considerations
to alleviate some of the concerns over these incompatibilities. In the remainder of this thesis, we
will employ both the maximum entropy principle and Bayesian inference techniques as appropriate
based on the modeling or inference task.
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The first consideration is that the constraints of maximum entropy optimization are often as-
sumed to be absolute. Instead, in practice they are often estimates from finite samples of data.
Dudı́k & Schapire (2006) show that appropriately incorporating approximate constraints corre-
sponds to regularization function, R(α), in the dual optimization objective:

argmax
λ

(∑
t

log P(xt|λ)

)
−R(λ). (5.5)

The regularization term can be generally interpreted as a prior on the probability distribution. Its
form can be made to match common probability distributions used as priors in Bayesian inference
approaches depending on the noise assumptions of the constraints on the primal optimization. Two
such primal approximations on the estimates and corresponding supplementary dual potentials are
shown in Table 5.1.

Table 5.1: Primal approximation potentials and dual regularization terms from Dudı́k & Schapire (2006).

Description Primal constraint/potential Dual potential
Box constraints ∀j|EP̃[fj]− EP[fj]| ≤ βj λ> EP̃[f] +

∑
j βj|λj|

l22 norm ||EP̃[f]−EP[f]||22
(2α)

λ> EP̃[f] + α||λ||22

The second consideration is the difference between applying new information in parallel and
applying it in sequence. For example, consider a six-sided die with expected value, E[X] = 3.5.
If new information is provided that e.g., a given dice roll is even, X ≡ 0 (mod 2), an undesirable
result is obtained by finding the maximum entropy distribution that satisfies both constraints—
P(X=2) is more probable than P(X=6) in that case. Instead, approaches to reconcile maximum
entropy and Bayesian inference suggest first obtaining a distribution satisfying the initial constraint
and then maximizing the entropy of a new distribution constrained to match the added constraint
relative to that first distribution (Giffin & Caticha, 2007). In other words, constraints should be
applied in sequence.

5.2 Maximum Causal Entropy

In this section, we employ causal information-theoretic measures to extend the maximum entropy
approach to settings with sequential information revelation. These include partial information and
partial controllability settings. This extension enables extension of the maximum entropy approach
to purposeful, adaptive behavior settings investigated in this thesis.
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5.2.1 Convex Optimization
With the causal entropy (Equation 4.13) as our objective function, we now pose and analyze the
maximum causal entropy optimization problem.

Definition 5.6. The general form of the principle of maximum causal entropy prescribes the
causally conditioned entropy-maximizing probability distribution, P(YT ||XT ) , {P(YT ||XT )}
consistent with a set of affine equality constraints, {gi(P(YT ||XT )) = 0}, and convex inequal-
ity constraints, {hj(P(YT ||XT )) ≤ 0}, and a given distribution of side information, P(XT ||YT−1).
Obtaining P(YT ||XT ) can be accomplished by the following optimization:

argmax
P(YT ||XT )

H(YT ||XT ) (5.6)

such that: ∀i gi
(
P(YT ||XT )

)
= 0,

∀j hj
(
P(YT ||XT )

)
≤ 0,

∀X,Y P(YT ||XT ) ≥ 0,

∀X

∑
Y

P(YT ||XT )− 1 = 0, and

∀τ,Y1:τ ,X,X’:X1:τ=X′1:τ

∑
Yτ+1:T

(
P(YT ||XT )− P(YT ||X′T )

)
= 0,

where P (YT ||XT ) represents the set of random variables: {P (y1:T ||x1:T )}.
We refer to the first two constraints of the general maximum causal entropy optimization (Equa-

tion 5.6)—the sets of affine equality constraints (gi) and convex inequality constraints (hi)—as
behavioral constraints. These constraints vary between problem settings and domains, but typ-
ically the equality constraints can be interpreted as providing efficiency guarantees, while the in-
equality constraints provide rationality guarantees. The remaining constraints are the same for all
maximum causal entropy problem settings: the third and fourth are probabilistic constraints that
enforce non-negativity and normalization, and the final constraints are causal constraints that pre-
vent the influence of future side information on previous Y variables. More specifically, this final
causal constraint forces the causally conditioned probability up to point τ in time to be equivalent
for all possible future side information values of Xτ+1:T .

Remark 5.7. The causal constraints of Equation 5.6 force the causally conditioned probability
to factor as P(YT ||XT ) =

∏
t P(Yt|Y1:t−1,X1:t); otherwise, the conditional probability, P (Y|X),

would result. While future X variables and past Y variables are not necessarily statistically inde-
pendent, future X variables do not causally influence past Y variables due to this forced factoriza-
tion.

Theorem 5.8. The general maximum causal entropy optimization (Equation 5.6)—or, more cor-
rectly, minimizing its negation—is a convex optimization.
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Proof (sketch). The negative objective is a linear combination of convex functions of the form
Cx log x. The behavioral constraints by specification define a convex constraint space and the
remaining constraints enforcing causality requirements are affine in terms of P (YT ||XT ) variables.

Though standard convex optimization techniques (Boyd & Vandenberghe, 2004) can be em-
ployed to solve this general maximum causal entropy primal optimization, when T , |Y|, and/or
|X | are large, the number of constraints required to prevent future latent variables from influencing
earlier variables can grow exponentially. Specialized optimization techniques for specific forms
of {gi(P(YT ||XT ))} and {hj(P(YT ||XT ))} can provide significant computational efficiency im-
provements by decomposing the problem into a sequence of easier sub-optimizations, as we shall
see in later chapters and applications in this thesis.

5.2.2 Convex Duality
Often optimizing the dual of the maximum causal entropy optimization (Equation 5.6) leads to
desired computational efficiency improvements. This is particularly true when the number of
behavioral constraints is significantly smaller than the causal conditional probability variables,
{P(Y||X)}. The general form of the dual is as follows:

inf
P(YT ||XT )

−H(YT ||XT ) +
m∑
i=1

λigi(P(YT ||XT )) +
n∑
j=1

γjhj(P(YT ||XT )) (5.7)

+
∑

X

CX

(∑
Y

P(YT ||XT )− 1

)
+

∑
τ,Y1:τ ,X,X′:X1:τ=X′1:τ

φτ,Y,X,X′

( ∑
Yτ+1:T

P(Y||X)− P(YT ||X′T )

)
,

where dual parameters are unbounded λ and γ ≥ 0.
The final set of constraints force the causal conditional distribution to factor according to

P(YT ||XT ) =
∏

t P(Yt|Y1:t−1,X1:t) as described by Remark 5.7. It is often convenient to enforce
those constraints by maximizing the dual in terms of those P(Yt|Y1:t−1,X1:t) factors:

inf
{P(Yt|Y1:t−1,X1:t)}

−H(YT ||XT ) +
m∑
i=1

λigi(P(YT ||XT )) +
n∑
j=1

γjhj(P(YT ||XT )), (5.8)

with Lagrangian parameters λ and γ ≥ 0. Here we have also dropped the probabilistic normal-
ization constraint for brevity with the implicit understanding that the resulting causal conditional
distribution must normalize and that each P(YT ||XT ) term and each P(Yt|Y1:t−1,X1:t) term must
have non-negative value.

Typically, a parametric form for P (Yt|Y1:t−1,X1:t) can be obtained by solving for the closed-
form probability in terms of parameters λ and γ.

Theorem 5.9. Strong duality holds for the maximum causal entropy optimization.

The technical considerations for duality are discussed in the proof of Theorem 5.9 in Section A.2.
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5.2.3 Worst-Case Predictive Guarantees
The probability distribution that maximizes the causal entropy provides important worst-case guar-
antees when predicting the future Y variables given only previously available X and Y variables
and constraints on the probability distribution.

Theorem 5.10. The maximum causal entropy distribution minimizes the worst-case prediction
log-loss,

inf
P(Y||X)

sup
P̃(YT ||XT )

−
∑
Y,X

P̃(Y,X) log P(YT ||XT ), (5.9)

given that P̃(Y,X) = P̃(YT ||XT ) P(XT ||YT−1) and sets of constraints ∀i gi(P(YT ||XT )) = 0,
∀j hj(P(YT ||XT )) ≤ 0, when X is sequentially revealed from the known causally conditioned
distribution of side information, P(XT ||YT−1).

Theorem 5.10 follows naturally from Theorem 5.2 (Grünwald & Dawid, 2003) and extends
the “robust Bayes” results to the interactive setting as the main justification for employing the
maximum causal entropy approach for predictive applications. The theorem can be understood
by viewing maximum causal entropy as a maximin game where nature chooses a distribution to
maximize a predictor’s causal uncertainty while the predictor tries to minimize it. By duality, the
minimax view of the theorem is equivalent.

The view in this thesis is that the constraints of the maximum causal entropy optimization
should capture the structured, purposeful qualities of observed behavior. In that case, the worst-
case predictive log-loss guarantees of Theorem 5.10 force the distribution to be as uncertain as pos-
sible about “non-purposeful” qualities of behavior. If those aspects of behavior are not purposeful,
the agent should be indifferent to possible options that differ only in terms of those aspects.

5.2.4 Gambling Growth Rate Guarantees
The principle of maximum causal entropy also extends the growth rate guarantees for gambling to
the interactive setting. Consider side information variables that are sequentially revealed in a series
of horse races. Further, assume that the side information that is revealed depends on the previous
horse races (and bets).

The doubling rate for this causal setting is:

W (Y||X) =
∑
y,x

P (y, x) log (b(y||x)o(y||x))

=
∑
y,x

(P (y, x) log b(y||x) + P (y, x) log o(y||x)) (5.10)

We can ignore the right-hand term of Equation 5.10, which is again a constant for appropriate
“uniform” choice of odds. We assume equality and inequality constraints, {gi} and {hj}, on
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the probability distribution, P(Y,X). Additionally, the distribution must obey the known side
information dynamics, P(XT ||YT−1). Maximizing the worst-case growth rate for bet distribution,
b, is then:

b(Y||X)∗ = argmax
b(y||x)

min
P(y,x)

W (Y||X). (5.11)

Again, P(Y,X) is chosen adversarially, but must satisfy the provided equality and inequality con-
straints. This betting distribution is a maximum causal entropy distribution, which can be noted as
a consequence of Theorem 5.10. (The left-hand side of Equation 5.10 is the negative of Equation
5.9.)

5.3 Information-Theoretic Extensions and Special Cases

5.3.1 Static Conditioning Extension

We formulated the maximum causal entropy optimization with causal conditioning in Section
5.2.1. Causal conditioning is distinguished from typical conditioning, which we will refer to as
static conditioning in this work, by the ordered constraints on the causal influence of side infor-
mation variables. However, in many problems both causal conditioning and static conditioning are
appropriate. The distribution of Y causally conditioned on X and statically conditioned on W is
notated and defined (Kramer, 1998) as:

P(YT ||XT |W) ,
∏
t

P(Yt|Y1:t−1,X1:t,W). (5.12)

In the context of decisions and control problems, this static information may correspond to struc-
ture and/or characteristics of the decision problem that vary between instances. The entropy mea-
sure corresponding to the static and causally conditioned entropy is:

H(YT ||XT |W) , EP(X,Y|W)

[
− log P(YT ||XT |W)

]
. (5.13)

The previously employed convex equality and inequality behavioral constraints can be condi-
tioned on W, as well as the side information dynamics conditional distribution, P(XT ||YT−1|W).
The optimization problem for this static and causally conditioned distribution is then:
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argmax
P(Y||X|W)

H(YT ||XT |W) (5.14)

such that: ∀i gi(P(YT ||XT |W),W) = 0,

∀j hj(P(YT ||XT |W),W) ≤ 0,

∀X,Y,W P(YT ||XT |W) ≥ 0,

∀X,W

∑
Y

P(YT ||XT |W)− 1 = 0, and

∀τ,Y1:τ ,W,X,X’:X1:τ=X′1:τ

∑
Yτ+1:T

(
P(YT ||XT |W)− P(YT ||X′T |W)

)
= 0.

The factored dual (Equation 5.8) naturally extends to this setting with distributions and con-
straints conditioned on W (again, with probabilistic normalization multipliers suppressed):

inf
{P(Yt|Y1:t−1,X1:t,W)}

−H(YT ||XT |W) +
m∑
i=1

λigi(P(YT ||XT |W)) +
n∑
j=1

γjhj(P(YT ||XT |W)), (5.15)

with γ ≥ 0. Similarly, the worst-case log loss guarantee of Theorem 5.10 also extends to this
setting by appropriately conditioning on W. In many settings, we consider W to be a set of static
variables describing the environment or decision setting. However, it is often convenient notation-
ally to suppress this static conditioning.

5.3.2 Optimizing Relative Causal Entropy

The principle of maximum causal entropy can be viewed as optimizing the causal entropy of action
sequences relative to a uniform distribution over action sequences. A natural attempt to generalize
is to optimize the causal entropy relative to a baseline distribution P0(Y||X). We denote this
measure as:

H(YT ||XT//P0(YT ||XT )) , EP(Y,X)

[
log

P(YT ||XT )

P0(YT ||XT )

]
= EP(Y,X)

[
log P(YT ||XT )

]
+ EP(Y,X)

[
− log P0(YT ||XT )

]
. (5.16)

However, by expanding the causal relative entropy (Equation 5.16), we can see that by follow-
ing the general argument of Remark 5.3, no additional generality is provided by considering the
relative causal entropy dual optimization (Remark 5.11).
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Remark 5.11. A maximum causal relative entropy distribution that is relative to a causally condi-
tioned distribution P0(Y||X),

max
λ,γ≥0

inf
{P(Yt|Y1:t−1,X1:t)}

−H(YT ||XT ) + EP(Y,X)

[
log P0(YT ||XT )

]
+

m∑
i=1

λigi(P(YT ||XT ))

+
n∑
j=1

γjhj(P(YT ||XT )), (5.17)

can be obtained in the maximum causal entropy model by incorporating an additional affine La-
grange multiplier term, λP0 EP(Y,X)[log P0(YT ||XT )], where the multiplier λP0 is fixed to 1, equating
Equation 5.17 and Equation 5.8.

Any relative distribution can be incorporated into a maximum causal entropy model without
explicitly using the relative entropy by augmenting with additional features (Remark 5.11). How-
ever, we generally advocate learning the weights of all of the Lagrange multipliers from data rather
than assuming their values. This allows us to consider many possible relative distributions and to
learn which one or what combination of them is most explanatory of demonstrated data.

5.3.3 Continuous-Valued Maximum Causal Entropy

Many important problems in estimation and control are characterized by actions and states within
continuous spaces. In principle, these continuous spaces can be discretized into finer and finer
discrete resolutions with smaller and smaller approximation inaccuracies. Then discrete maximum
causal entropy methods can be employed. However, reasoning in the continuous space of states
and actions can be computationally beneficial for some problems.

We will limit our focus to continuous problem with causally conditioned probability density
functions, P ∗λ,γ(YT ||XT ), that are closed-form functions of the Lagrange multipliers λ and γ. The
dual optimization problems are then of the form:

max
λ,γ≥0

EP(Y,X)[− logP ∗λ,γ(YT ||XT )] +
m∑
i=1

λigi(P
∗
λ,γ(YT ||XT )) +

n∑
j=1

γjhi(P
∗
λ,γ(YT ||XT )), (5.18)

where EP(Y,X)[f(X,Y)] =
∫

X,Y∈X ,Y P(Y,X) f(X,Y) ∂X ∂Y. Just as in continuous control prob-
lems, which can only be solved exactly for carefully chosen formulations, the behavioral con-
straints, gi and hi, and the distribution of side information, P(XT ||YT−1), must be specifically
chosen to assure that the causally conditioned probability distribution, P ∗λ,γ(YT ||XT ), is a closed-
form expression. We do not investigate the continuous-time setting in this work, though the ideas
of this thesis are not restricted to discrete-time settings.
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5.3.4 Deterministic Side Information
In the special case that P(XT ||YT−1) is a deterministic distribution, the maximum causal entropy
distribution simplifies significantly. Consider the bounds of the conditional and causal entropies in
general and in the special deterministic case (Theorem 4.22). Thus, maximizing the causal entropy
of Y given X is equivalent to maximizing the entropy of Y alone in the deterministic dynamics
setting. Similarly, since the X variables can be fully recovered from the Y variables, the sets
of behavioral constraint functions, gi and hj , can be expressed solely in terms of Y probability
variables. Extending this to include static conditioning, H(YT ||XT |W) = H(Y|W), and gi and hj
can be expressed solely in terms of W and Y probability variables with no explicit dependence on
X variables.

Maximizing the causal entropy of Y given X and statically conditioned on W in the determin-
istic setting reduces to a conditional entropy maximization:

argmax
P(Y|W)

H(YT |WT ) (5.19)

such that: ∀i gi(P(Y|W)) = 0,

∀j hj(P(Y|W)) ≤ 0,

∀W,Y P(Y|W) ≥ 0, and

∀W

∑
Y

P(Y|W)− 1 = 0.

The dual of this conditional entropy optimization (with probabilistic normalization constraints
suppressed) is:

inf
P(Y|W)

−H(Y|W) +
m∑
i=1

λigi(P(Y|W)) +
n∑
j=1

γjhj(P(Y|W)), (5.20)

for γ ≥ 0. As this special case no longer depends on the causal entropy, and only the conditional
entropy, we shall show in Section 6.2.5 that for common choices of behavioral constraint functions
this approach is consistent with previously developed probabilistic models—specifically a globally
feature-conditioned variant of the conditional random field (Lafferty et al., 2001).

5.4 Discussion
The maximum causal entropy formulation presented in this chapter enables predictive models of
behavior sequences that satisfy purposeful measures of empirical data (represented as inequality
and equality constraints), while otherwise being as uncertain or agnostic as possible. Crucially, to
match the information availability of many sequential data settings, the causal constraints we have
introduced prevent the future side information variables from causally influencing past conditioned
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variables. For predictive purposes, we have shown that the maximum causal entropy formulation
provides important worst-case prediction guarantees—it minimizes the worst-case log-loss when
information is revealed and predictions are made sequentially (Theorem 5.10). Additionally, the
maximum causal entropy formulation is a convex optimization (Theorem 5.8), which provides
efficiency benefits.

In this thesis, we are focused on modeling human behavior. However, it is important to note that
the principle of maximum causal entropy is not specific to decision-making formalisms. Its predic-
tive log-loss guarantees are applicable to any setting with sequentially revealed side information
where there is no causal influence of side information over a predicted sequence of variables. We
apply this general approach to behavior prediction tasks in Markov decision processes in Chapter
6, influence diagrams in Chapter 7, and game-theoretic equilibria in Chapter 8.



Chapter 6

Statistic-Matching Maximum Causal
Entropy and Inverse Optimal Control

“Although nature commences with reason and ends in experience it is necessary for us to do the
opposite, that is to commence with experience and from this to proceed to investigate the reason.”

— Leonardo da Vinci (Scientist, 1452–1519).

We now introduce a specific form of maximum causal entropy distribution that matches the
characteristics of observed data in probabilistic expectation (Ziebart et al., 2010b). This formula-
tion is applicable for prediction in a wide range of problem settings characterized by information
revelation, feedback, and stochastic interaction. However, we specifically consider the perspec-
tive of forecasting sequences of decisions in this chapter. Under this perspective, we interpret the
Lagrange multipliers of the maximum causal entropy optimization as parameters for utility poten-
tial functions of a probabilistic decision-theoretic solution class, and address the inverse optimal
control problem of recovering a utility function that provides performance guarantees and best
explains demonstrated behavior.

The contributions of this chapter connect previously disparate concepts—inverse optimal con-
trol and exponential family probability distributions—for the first time. From the perspective of
probabilistic graphical models, maximum causal entropy in the inverse optimal control setting
generalizes conditional random fields (Lafferty et al., 2001) by allowing side information to be
dynamically revealed from a known conditional probability distribution. From the control perspec-
tive, it augments the decision-theoretic performance guarantees of inverse optimal control with the
information-theoretic prediction guarantees of the principle of maximum entropy.

70



6.1. STATISTIC MATCHING CONSTRAINTS 71

6.1 Statistic Matching Constraints

6.1.1 General and Control Motivations and Problem Setting

When approximating a probability distribution, a common constraint for the approximation is that
it match empirical statistics of the observed distribution (in expectation). In some domains, those
empirical statistics are the only information available about a distribution due to a limited num-
ber of conducted experiments. In other domains, a selection of empirical statistics is assumed to
capture the most salient properties of the distribution—for instance, selected based on background
knowledge, such as physical significance. Matching those statistics (and not necessarily match-
ing a large number of additional available statistics of the distribution) prevents overfitting to the
empirical data and enables better predictions from smaller sample sizes. The maximum causal en-
tropy approach extends the maximum entropy principle to be applied when some variables should
not be causally influenced by others and matching empirical statistics of data is desired.

For control and decision-making domains, Y corresponds to the sequence of actions, A, that
an agent employs over time. The X variables correspond to the sequences of states, S, of the agent
over time. The dynamics governing the states are generally stochastic functions of previous states
and actions, P(St|S1:t−1,A1:t−1), and are often Markovian: P(St|St−1, At−1). We assume that
these dynamics are either explicitly provided or estimated from data using a separate procedure.
Since future states are only revealed after actions are selected, they should have no causal influence
over earlier actions. This matches the causal assumptions of the maximum causal entropy model of
the conditional action distribution, {P(At|A1:t−1,S1:t)}. In this context, we refer to this conditional
action distribution as a stochastic policy, denoted π(At|A1:t−1,S1:t), which, in the Markovian set-
ting, reduces to π(At|St). We refer to the statistics of the distribution to be matched in expectation
as feature functions, F(S,A)→ RK .

As we shall see, a number of interesting analogies to decision-theoretic models and inference
procedures arise from this formulation. Namely, by interpreting the Lagrange multipliers of the
maximum causal entropy model as utility function parameters, the probability distribution is in-
ferred using a softened version of the Bellman equation (Bellman, 1957). This inherently captures
purposefulness and adaptation in the model. However, it is in error to restrict applications of the
maximum causal entropy approach only to data generated by mechanisms that are assumed to pos-
sess purposefulness and adaptation just because the model provides this interpretation. Indeed,
though we focus on actions and states in our interpretation here, the predictive guarantees of the
approach apply to any sequential data with causal influence restrictions and statistical features.

6.1.2 Optimization and Policy Form

We now formalize and solve the maximum causal entropy optimization for matching empirical
expectations. Formally, the expected feature functions implied by the stochastic maximum causal
entropy policy, EP(S,A)[F(S,A)], are constrained to match the empirical feature function expecta-
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tions, EP̃(S,A)[F(S,A)]. This corresponds to affine equality constraint functions: gi(P(A||S)) =
EP(S,A)[Fi(S,A)]− EP̃(S,A)[Fi(S,A)] = 0.

Definition 6.1. The general maximum causal entropy optimization (Equation 5.6) reduces to the
following optimization problem:

argmax
{P(At|S1:t,A1:t−1)}

H(AT ||ST ) (6.1)

such that: EP(S,A)[F(S,A)] = EP̃(S,A)[F(S,A)]

∀S1:t,A1:t P(At|S1:t,A1:t−1) ≥ 0

∀S1:t,A1:t−1

∑
At

P(At|S1:t,A1:t−1) = 1.

In Definition 6.1 we have expressed the objective and probability constraints in terms of the
conditional probability factors of the causally conditioned probability. This factorization corre-
sponds to the general factored maximum causal entropy dual in Equation 5.8. We note that
as P(A,S) = P(AT ||ST ) P(ST ||AT−1), the constraints of Equation 6.1 are affine in terms of
P(AT ||ST ) variables, but not in terms of P(At|S1:t,A1:t−1) terms. When the feature mapping from
state and action sequences to real-valued vectors is considered explicitly as a set of variables, the
objective is H(AT ||ST |{F}). However, we will drop this additional static conditioning on {F} in
our notation and formulation.

We now provide the factored form of the solution to this optimization problem.

Theorem 6.2. The distribution satisfying the maximum causal entropy constrained optimization
with feature function expectation constraints (Equation 6.1) has a form defined recursively as:

Pθ(At|S1:t,A1:t−1) =
ZAt|S1:t,A1:t−1,θ

ZS1:t,A1:t−1,θ

(6.2)

logZS1:t,A1:t−1,θ = log
∑
At

ZAt|S1:t,A1:t−1,θ

= softmax
At

(∑
St+1

P(St+1|S1:t,A1:t) logZS1:t+1,A1:t,θ

)
ZAt|S1:t,A1:t−1,θ = e

∑
St+1

P(St+1|S1:t,A1:t) logZS1:t+1,A1:t,θ

ZS1:T ,A1:T−1,θ = eθ
>F(S,A),

where softmaxx f(x) , log
∑

x e
f(x).

Proof (sketch). We note that the (negated) primal objective function (Equation 6.1) is convex in
the variables P(A||S) and subject to linear constraints on feature function expectation matching,
valid probability distributions, and non-causal influence of future side information (Theorem 5.8).
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Differentiating the Lagrangian of the causal maximum entropy optimization (Equation 6.1), and
equating to zero, we obtain the general form:

Pθ(At|S1:t,A1:t−1) ∝ exp
{
θ> EP(S,A)[F(S,A)|S1:t,A1:t]

−
∑
τ>t

EP(S,A)[log Pθ(Aτ |S1:τ ,A1:τ−1)|S1:t,A1:t]
}
. (6.3)

Substituting the more operational recurrence of Equation 6.2 into Equation 6.3 verifies the theo-
rem. We will use this softmax interpretation (Equation 6.2) for the inference procedure extensively
due to its close relation to decision-theoretic and optimal control inference procedures.

The second exponentiated term in Equation 6.3 can be interpreted as a future expected causal
entropy. It is difficult to directly interpret the meaning of the maximum causal entropy probability
distribution from this general form. We provide a simplified version and relation to the Bellman
equation in Section 6.2.1 after presenting a number of useful general properties of the distribution.

6.1.3 Properties
As a special case of the general maximum causal entropy approach, a number of important prop-
erties result from the statistic-matching constraint formulation.

Corollary 6.3 (of Theorem 5.10). The maximum causal entropy distribution minimizes the worst
case prediction log-loss, i.e.,

inf
P(A||S)

sup
P̃(AT ||ST )

−
∑
A,S

P̃(A,S) log P(AT ||ST ),

given P̃(A,S) = P̃(AT ||ST ) P(ST ||AT−1) and the constraint of matching feature expectations,
EP(S,A)[F(S,A)] = EP̃(S,A)[F(S,A)], when S is sequentially revealed from a known conditional
probability distribution and actions are sequentially predicted using only previously revealed vari-
ables.

Corollary 6.3 provides worst-case predictive log-loss guarantees for all possible distributions
that match feature statistics.

As in other maximum entropy-based models, maximizing entropy is consistent with maximum
likelihood estimation of model parameters–in this case, maximum causal likelihood.

Theorem 6.4. Maximizing the causal entropy, H(AT ||ST ) while constrained to match (in expec-
tation) empirical feature functions, Ẽ[F(S,A)], is equivalent to maximum causal likelihood esti-
mation of θ given data set {Ã, S̃} under the conditional probability distribution of Equation 6.3:

θ̂ = argmax
θ

log
∏
i

Pθ(Ã
(i)||S̃(i)

)

= argmax
θ

∑
i,t

log P(Ã
(i)
t |S̃

(i)

1:t, Ã
(i)

1:t−1),
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Figure 6.1: The Markovian factorization of Y variables causally conditioned on X variables.

where (i) indexes the training examples.

6.1.4 Markovian Simplifications
The maximum causal entropy policy of Equation 6.2 simplifies greatly when feature functions de-
compose over timesteps, i.e., F(S,A) =

∑
t fSt,At , and side information dynamics are Markovian,

i.e., P(St+1|S1:t,A1:t) = P(St+1|St, At).

Corollary 6.5 (of Theorem 6.2). The distribution satisfying the maximum causal entropy con-
strained optimization for the sequential problem setting of Equation 6.1 that is further assumed to
have Markovian feature function expectation constraints, F(S,A) =

∑
t fSt,At , and Markovian

side information dynamics, P(St+1|St, At), has a form defined recursively as:

Pθ(At|St) =
ZAt|St,θ
ZSt,θ

(6.4)

logZSt,θ = log
∑
At

ZAt|St,θ

= softmax
At

(∑
St+1

P(St+1|St, At) logZSt+1,θ + θ>fSt,At
)

= softmax
At

(
EP(St+1|St,At)[logZSt+1,θ] + θ>fSt,At

)
ZAt|St,θ = e

∑
St+1

P(St+1|St,At) logZSt+1,θ
+θ>fSt,At

= eEP(St+1|St,At)[logZSt+1,θ
]+θ>fSt,At

where softmaxx f(x) , log
∑

x e
f(x).

In general, any sequential set of variables can be “Markovianized” by augmenting the side
information with variables that are sufficient statistics of the history of variables. Thus, this sim-
plification and the perspective it provides is still quite general.
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6.1.5 Goal-Directed Feature Constraints
A simple view of goal-directed behavior is that, when successful, it is characterized by a sequence
of states and actions that terminate in an intended final state. Incorporating a terminal-state feature
within the feature-matching maximum causal entropy framework (Equation 6.1) can constrain the
policy distribution to terminate in the same goal states as demonstrated behavior.

There are many possible of goal-directed settings:

• Unconstrained: In the unconstrained setting, trajectories are either infinite or can termi-
nate in any state. Actions are chosen only based on the uncertain future utility and are not
constrained to reach particular states.

• First exit: There is a set of exit states, Sexit, in which a sequence of states and actions can
terminate. This can be accomplished in the maximum causal entropy framework by adding
a feature to the maximum causal entropy optimization’s constraints that is an indicator func-
tion of the terminal state: EP [I(ST ∈ Sexit)] = EP̃ [I(ST ∈ Sexit)]. The terminal state is then
forced to match the empirical distribution: P(ST ∈ Sexit) = P̃(ST ∈ Sexit). If this probability
is 1, only terminal states in Sexit are permitted.

• Exit distribution: The terminal state of state-action sequences is distributed according to
P̃(exit). This can be accomplished in the maximum causal entropy framework by augment-
ing the feature set with a K th feature, FK(S1:T ,A1:T−1) = ST , and constraining that feature
to match the empirical distribution in expectation: P(ST ) = P̃(ST ).

• Paired start-exit distribution: The initial and terminal state pair is distributed according
to the distribution P̃(start, exit). This can be accomplished in the maximum causal entropy
framework by augmenting the feature set with a K th feature, F(S1:T ,A1:T−1) = S1 × ST ,
and constraining that feature to match the empirical distribution in expectation: P(S1, ST ) =
P̃(S1, ST ).

The selection of a particular goal-directed setting is heavily application dependent. Additionally,
for some behavior forecasting applications, behavior may be goal-constrained, but the particular
terminal constraints may be unknown. We investigate a Bayesian approach to that problem in
Chapter 11.

6.2 Inverse Optimal Control
Inverse optimal control, as described in Section 3.2.1, has traditionally been viewed as the task
of recovering the reward function of a decision process (e.g., a Markov decision process) that
induces demonstrated behavior sequences. This is an important problem for programming robots
by demonstration (Argall et al., 2009). We employ the statistic-matching maximum causal entropy
approach to the problem of inverse optimal control. Applying the principle of maximum causal
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entropy to this setting with statistic-matching constraints addresses the inverse optimal control
problem with predictive guarantees. This approach connects inverse optimal control to exponential
family probability distributions for the first time.

6.2.1 Policy Guarantees

We now specifically focus on the inverse optimal control problem of recovering the rewards of
a parametric-reward Markov decision process (Definition 2.10),MPRMDP/θ, that provides guaran-
tees with respect to observed behavior. Previous approaches to the inverse optimal control problem
suffer from a great deal of ill-posedness (Section 3.2.1, particularly Remark 3.2) that the maximum
causal entropy approach resolves using its unique solution criteria and robustness to sub-optimal
behavior.

Theorem 6.6 (from Abbeel & Ng (2004)). Any distribution that matches feature function expec-
tations, EP(S,A)[F(S,A)] with demonstrated expectations, EP̃(S,A)[F(S,A)], guarantees equivalent
expected utility on the unknown parameters of a reward function linear in F(S,A).

Corollary 6.7 (of Theorem 6.6 and Definition 6.1). The maximum causal entropy distribution
provides the same expected utility as demonstrated variable sequences on any unknown parameters
of a reward function linear in F(S,A).

Theorem 6.6 and Corollary 6.7 show that the maximum causal entropy inverse optimal con-
trol approach provides the same utility matching guarantees as Abbeel & Ng (2004). However,
unlike that past work, in addition to this utility-matching guarantee, the maximum causal entropy
distribution also provides the strong worst-case predictive guarantee of Corollary 6.3. As a result,
the model provides probabilistic support for all possible behaviors and non-zero probability for
demonstrated behavior. This overcomes the disadvantages of previous approaches providing no
support for demonstrated behavior illuminated by Remark 3.4.

6.2.2 Soft Bellman Equation Interpretation

Surprisingly, though we began with a formulation based on information theory, the resulting prob-
ability distribution has close connections to decision theory. In fact, the maximum causal entropy
probability distribution is a generalization of optimal control laws. We now redefine the log par-
tition functions of the simplified probability distribution (the lower Markovian-order version of
Equation 6.2) in terms of a state-action value, Qsoft

θ (at, st), and a state-based value, V soft
θ (s), to

provide a useful analogy to the Bellman equation for determining optimal control and decision
making. This connection enables straight-forward extension of the value iteration algorithm for
solving the Bellman equation (Bellman, 1957) to the maximum causal entropy inverse optimal
control setting.
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Theorem 6.8. The maximum causal entropy distribution with statistic matching (Theorem 6.2) can
be re-expressed as:

Qsoft
θ (at, st) , logZat|st

= EP(st+1|st,at)[V
soft
θ (st+1)|st, at] + θ>fst,at (6.5)

V soft
θ (st) , logZst

= softmax
at

Qsoft
θ (at, st), (6.6)

where softmaxx f(x) , log
∑

x e
f(x) provides a smooth interpolation (i.e., differentiable) of the

maximum of different functions.

We illustrate the behavior of the soft maximum function in Figure 6.2. Without loss of gen-
erality, when needed, the entire history of states and actions can be compressed into the current
state, S ′t = {S1:t,A1:t}, making Equations 6.5 and 6.6 applicable to any “Markovianized” causal
side information setting with feature constraints that linearly decompose over time1.

Figure 6.2: Left: Two action value functions, Qsoft(a1, s) and Qsoft
θ (a2, s) and the soft maximum function,

V soft
θ (s) = softmaxaQ

soft
θ (a, s). Right: A zoomed in portion of the soft maximum function and the gaps

between the action value function and the soft maximum function at a particular choice of parameters.
Action probabilities are distributed according to the exponentiated gap distance.

The gap between an action’s value and the state value, Qsoft
θ (s, a) − V soft

θ (s), determines that
action’s probability within the maximum causal entropy model: πθ(a|s) = eQ

soft
θ (s,a)−V soft

θ (s). When
1This “Markovianization” is a common technique that is not unique to the approach of this thesis.
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the gaps of multiple actions approach equivalence, the probability of those actions become uniform
under the distribution. In the opposite limit, when the gap between one action and all others
grows large, the stochastic maximum causal entropy policy becomes deterministic and matches
the optimal policy (Remark 6.9).

Remark 6.9. Let parameters, θ, be positively scaled by scalar α. As α → ∞, the soft maximum
under scaled parameters, αθ, behaves like a maximum function and the maximum causal entropy
recurrence relation (Equation 6.5 and Equation 6.6) becomes equivalent to the Bellman equation2.

We now analyze the maximum causal entropy distribution to establish a number of its desirable
properties and relationships to optimal decision theory.

Theorem 6.10. The probability of a stochastic policy, π , {P(Aτ |S1:τ ,A1:τ−1)}, under the max-
imum causal entropy distribution is related to the expected feature potentials and the softmax
recurrence as follows:

logP soft
θ (π) = EP (S1:T ,A1:T |π)

[
T∑
t=1

θ>fSt,At

∣∣∣∣π
]
−
∑
S1

P(S1)V soft
θ (S1), (6.7)

where the latter term is independent from the policy, π.

Theorem 6.10 establishes a monotonic relationship between policy probability and expected
values under the soft maximum value iteration interpretation. This overcomes our earlier criti-
cisms of other inverse optimal control approaches (Remark 3.4). Two desirable properties of the
maximum causal entropy distribution follow immediately.

Corollary 6.11. The most likely policy within the maximum causal entropy model maximizes the
expected feature potentials:

π∗ = argmax
π

EP(S1:T ,A1:T |π)

[
T∑
t=1

θ>fSt,At

∣∣∣∣π
]
. (6.8)

These expected feature potentials can be interpreted as the expected value of the policy.

The correspondence between the most likely policy and maximizing expected feature potentials
(Corollary 6.11) enables prescriptive solution techniques to be employed for finding the most likely
policy within the maximum causal entropy probability distribution.

2When two action sequences provide equivalent reward, a uniform distribution over those entire sequences is
prescribed under the maximum causal entropy model, while the Bellman equations arbitrarily choose one of the
optimal actions to deterministically employ.
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Corollary 6.12. Two policies have equivalent probability within the maximum causal entropy
model if and only if they have equal expected feature potential functions:

P soft
θ (π1) = P soft

θ (π2)⇔ EP(S1:T ,A1:T |π1)

[
T∑
t=1

θ>fSt,At

]
= EP(S1:T ,A1:T |π2)

[
T∑
t=1

θ>fSt,At

]
. (6.9)

Corollary 6.12 shows that there exists no preference between policies with equivalent poten-
tial functions by the maximum causal entropy distribution. Thus, under the interpretation of the
Lagrangian potentials as utility functions, an equal preference over equal expected utility policies
exists.

6.2.3 Large Deviation Bounds
A natural question is: how many samples are needed to reasonably estimate the empirical feature
counts of demonstrated behavior? Large deviation bound analysis enables us to bound the proba-
bility of sample feature counts from deviating greatly from the true distribution from which they
are drawn.

Theorem 6.13. The deviation between the empirical average of feature vectors and the expectation
of feature vectors is bounded by:

P

(∣∣∣∣∣
∣∣∣∣∣ 1n∑

i

Fi − E

[
1

n

∑
i

Fi

]∣∣∣∣∣
∣∣∣∣∣
∞

≥ ε

)
≤

K∑
k=1

2 exp

(
− 2n2ε2∑n

i=1(fmax
i,k − fmin

i,k )2

)
, (6.10)

via Hoeffding’s inequality and the union bound, where F1,F2, ... are random variables corre-
sponding to expected feature vectors obtained by policies (random variables), and assuming that
those feature samples are bounded by P (Fi,k−E[Fi,k] ∈ [fmin

i,k , f
max
i,k ]) = 1. In the special case that

all elements of the difference of sampled feature vectors from their expectation are bounded by the
same values, this reduces to:

P

(∣∣∣∣∣
∣∣∣∣∣ 1n∑

i

Fi − E

[
1

n

∑
i

Fi

]∣∣∣∣∣
∣∣∣∣∣
∞

≥ ε

)
≤ 2K exp

(
− 2nε2

(fmax − fmin)2

)
. (6.11)

When the reward function parameters are known, a similar question can be asked about the
average reward of randomly sampled policies. This question is answered by Theorem 6.14.

Theorem 6.14. The deviation between the empirical average reward and the expected reward is
bounded by:

P

(∣∣∣∣∣ 1n∑
i

θ>Fi − E

[
1

n

∑
i

θ>Fi

]∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2n2ε2∑n

i=1(rewardmax
i − rewardmin

i )2

)
,

(6.12)
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where θ>F1, θ
>F2, ..., are the expected rewards obtained from policies with expected features

F1, ... under policies (random variables), and assuming that the rewards are bounded by P (θ>Fi−
E[θ>Fi] ∈ [rewardmin

i , rewardmax
i ]) = 1. In the special case that the bounds on the rewards are the

same, this reduces to:

P

(∣∣∣∣∣ 1n∑
i

θ>Fi − E

[
1

n

∑
i

θ>Fi

]∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(rewardmax − rewardmin)2

)
. (6.13)

6.2.4 Continuous Problems with Linear Dynamics and Quadratic Utilities

Often in problems of control (e.g., of a robot or aircraft), the number of states and actions are infi-
nite and correspond to continuous-valued quantities. One application of the principle of maximum
entropy to this domain is to constrain quadratic and linear state expectations3:

EP

[∑
t

st s>t

]
= EP̃

[∑
t

st s>t

]
; and

EP

[∑
t

st

]
= EP̃

[∑
t

st

]
.

These constraints yield Lagrangian terms: Q ·
∑

t st s>t and R ·
∑

t s, where Q is a matrix and R is
a vector4. These Lagrangian potentials can be equivalently expressed as:

∑
t s>t Qst and

∑
t s>t R.

The softened Bellman equations for this settings are then as follows:

Qsoft
θ (at, st) = EP(st+1|st,at)[V

soft
θ (st+1)|st, at] (6.14)

V soft
θ (st) = softmax

at
Qsoft
θ (at, st) + s>t Qst + s>t R,

where Q is a positive semi-definite matrix and P(st+1|st, at) is distributed according to a multivari-
ate conditional Gaussian. Based on the equivalence between the form of a Gaussian distribution
and an exponentiated quadratic function, iterative computation of the value function is possible in
closed form (Theorem 6.15).

Theorem 6.15. For the special case where dynamics are linear functions with Gaussian noise,
the quadratic MaxCausalEnt model permits a closed-form solution and, given dynamics st+1 ∼

3Quadratic and linear constraints on the action variables, EP[
∑

t sts>t ] = EP̃[
∑

t sts>t ] and EP[
∑

t s>t ] =
EP̃[

∑
t s>t ]. However, as described in Section 2.2.2, augmenting the state with past action values enables the equiva-

lent constraints solely in terms of state constraints.
4We employ the Frobenius inner product (also referred to as the matrix dot product) for the first Lagrangian poten-

tial term: A · B =
∑

i,j Ai,jBi,j and the standard vector dot product for the second Lagrangian potential term.



6.3. RELATION TO ALTERNATE INFORMATION-THEORETIC APPROACHES 81

N(Ast + Bat,Σ), Equation 2.10 reduces to:

Qsoft
θ (at, st) =

[
at
st

]> [ B>DB A>DB
B>DA A>DA

] [
at
st

]
+

[
at
st

]> [ B>G
A>G

]
V soft
θ (st) = s>t (Cs,s + Q− C>a,sC

−1
a,aCa,s)st + s>t (Fs + R) + const,

where C and D are recursively computed as: Ca,a = B>DB; Cs,a = C>a,s = B>DA; Cs,s =

A>DA; D = Cs,s + Q− C>C−1
a,aCa,s; and G = Fs + R.

The maximum causal entropy policy for the linear-quadratic setting is then distributed according
to: P (at|st) ∝ eQ

soft
θ (at,st), which is also Gaussian.

6.2.5 Deterministic Dynamics Reduction
The inverse optimal control problem generalizes existing techniques for maximum entropy. The
conditional random field (Lafferty et al., 2001) is a common example. When the conditional distri-
bution of side information (i.e., the state transition dynamics) is deterministic, the causal entropy
(with static conditioning on features, {fs,a}) reduces to the conditional entropy (Theorem 4.22).
The optimization of Equation 6.1 reduces in this setting to the following optimization:

max
A

H(A|{fs,a}) (6.15)

such that: EP(A)

[∑
t

fst,at

]
= EP̃(A)

[∑
t

fst,at

]
∑

A

P(A) = 1.

The form of the distribution over action sequences satisfying this optimization is:

P(A) ∝ e
∑
t θ
>fst,at . (6.16)

When we consider the characteristics, {fs,a}, as variables on which the distribution is conditioned,
this probability distribution corresponds to a conditional random field (Lafferty et al., 2001) where
each At variable is conditioned on all characteristics, {fs,a} (though it only depends on the set of
features associated with the value it takes on). This application of conditional random fields differs
from typical applications, which are typically concerned with recognition of a sequence of hidden
variables from a sequence of noisy observations.

6.3 Relation to Alternate Information-Theoretic Approaches
A natural question in the statistic-matching/inverse optimal control setting is: what benefits does
the principle of maximum causal entropy provide compared to existing maximum joint, marginal,



82 CHAPTER 6. STATISTIC-MATCHING MAXIMUM CAUSAL ENTROPY

and conditional entropy approaches? We investigate this question in this section by exploring
maximum entropy approaches based on previous information-theoretic concepts.

6.3.1 Maximum Joint Entropy
A natural approach to attempt is to maximize the joint entropy of S and A. We note the decom-
position of the joint distribution into two causal distributions relates the joint entropy to the causal
entropy (Remark 4.21). This decomposition shows the difference between these two measures—
the extra causally conditioned side information entropy, H(ST ||AT−1):

H(A,S) = H(AT ||ST ) +H(ST ||AT−1). (6.17)

A simple application of the maximum joint entropy approach is to employ the Markov random
field joint distribution,

P(A,S) ∝ eθ
>F(S,A), (6.18)

and obtain a conditional probability distribution by marginalizing the latent future state variables
of the joint distribution:

P(At|S1:t,A1:t−1) ∝
∑

St+1:T ,At+1:T

eθ
>F(S,A).

Unfortunately this probability distribution is inefficient to compute and it ignores the crucial de-
pendence between sequences with shared prefixes, which prevents two similar sequences from
having probability distributions that are independent from one another.

6.3.2 Causally-Constrained Maximum Joint Entropy
A more sophisticated approach employs the causal constraints of the maximum causal entropy
formulation on the joint entropy measure. The joint entropy is maximized while constraining
the joint probability distribution to factor into the unknown causally conditioned probability of A
given S, P(AT ||ST ), and the known causal conditional probability of S given A, P(ST ||AT−1), as
follows:

argmax
{P(At|S1:t,A1:t−1)}

H(A,S) (6.19)

such that: EP(S,A)[F(S,A)] = EP̃(S,A)[F(S,A)]

∀S1:t,A1:t P(At|S1:t,A1:t−1) ≥ 0; and

∀S1:t,A1:t−1

∑
At

P(At|S1:t,A1:t−1) = 1.
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The form of the conditional probability distribution satisfying this optimization is then:

Pθ(At|S1:t,A1:t−1) ∝ exp
{
θ> EP(S,A)[F(S,A)|S1:t,A1:t]

−
∑
τ>t

EP(S,A)[log Pθ(Aτ |S1:τ ,A1:τ−1) + log P(Sτ |S1:τ−1,A1:τ−1)|S1:t,A1:t]
}
. (6.20)

Relating this distribution to the Bellman equation (Bellman, 1957), we have:

QCCJE(at, st) , EP(st+1|st,at)[V
CCJE(st+1)|st, at] + θ>fst,at +H(st+1|st, at) (6.21)

V CCJE(st) , softmax
at

QCCJE(at, st).

The key difference from the maximum causal entropy soft-maximum interpretation is the inclusion
of the entropy associated with the state transition dynamics, H(st+1|st, at). Including this entropy
can only decrease the uncertainty over action sequences. We argue that this is inappropriate when
the dynamics of side information, P(ST ||AT−1), are known, or simply not variables of interest in
the prediction task.

Figure 6.3: A Markov decision process that illustrates the implications of considering the uncertainty of
stochastic dynamics under the causally conditioned maximum joint entropy model. Two actions are available
in state S1: one that has a high degree of next state uncertainty (top) and one that has a deterministic next
state (bottom).

Figure 6.3 illustrates the sensitivity of the action distribution to the entropy of state transition
dynamics. As the number of stochastic next states in the top action increases, the action distri-
bution under the causally constrained maximum joint entropy is biased heavily towards that top
action. However, this causally conditioned joint entropy could be appropriate for settings where
both conditioned and side information distributions are being estimated. We do not investigate that
setting in detail in this thesis.
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6.3.3 Marginalized Maximum Conditional Entropy
We previously showed how the conditional random field can be derived by maximizing the condi-
tional entropy of a probability distribution subject to feature-matching constraints in Section 5.1.3.
The resulting probability distribution is of the form:

P(A|S) ∝ e
∑
t θ
>fat,st . (6.22)

Since the future state variables, St+1:T , are unavailable when At is predicted, a practical approach
is to take the joint distribution using Equation 6.22 and the transition dynamics and marginalize
over the latent future state:

P(at|st) ∝
∑

st+1:T

∏
τ>t

P(sτ+1|sτ , aτ )e
∑
τ θ
>faτ ,sτ

=
∑

st+1:T

e
∑
τ θ
>faτ ,sτ+log P(sτ+1|sτ ,aτ ) (6.23)

Theorem 6.16. The marginalized maximum conditional entropy distribution (Equation 6.23) can
then be interpreted under the dynamic programming perspective using the re-expression:

QCE
θ (at, st) = softmax

st+1

(
V CE
θ (st+1) + log P(st+1|st, at)

)
+ θ>fat,st (6.24)

V CE
θ (st) = softmax

at
QCE
θ (at, st)

If we view the Lagrangian potential function, θ>fat,st , as a reward, then under this model an
additional cost of − log P(St+1|S1:t,A1:t) is “paid” to obtain the desired outcome from the tran-
sition dynamics. As a result, the recovered policy is not equivalent to the corresponding Markov
decision process’ optimal policy.

Remark 6.17 (based upon Toussaint (2009), Equation 12). By Jensen’s inequality, the log likeli-
hood of the conditional random field distribution (Equation 3.2) corresponds to an upper bound
on the expected reward (i.e., negative expected cost) in the corresponding MDP rather than the
exact expected reward:

log ES,A

[
T∏
t=0

e−cost(At,St)
∣∣∣π(A|S)

]
≥ ES,A

[
log

T∏
t=0

e−cost(At,St)
∣∣∣π(A|S)

]
(6.25)

= ES,A

[
−

T∑
t=0

cost(At, St)
∣∣∣π(A|S)

]
.
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Figure 6.4: A Markov decision process that illustrates the preference of the marginalized maximum condi-
tional entropy for “risky” actions that have small probabilities of realizing high rewards. Consider actions
in the four cardinal directions from each state (i.e., grid cell), and transition dynamics that with some prob-
ability of failure, a transition is made to an orthogonal cardinal direction instead of the intended direction.
Green cells have very low cost, gray cells have medium, and red cells have extremely high cost.

The relationship between these two objectives is shown in Remark 6.17. Thus, the model has
a strong preference for sequences of actions where the expected utility obtainable by any actual
policy is quite low (due to the stochastic transition dynamics leading to low-reward outcomes), but
a few “lucky” sequences have high utility.

This preference for risky state dynamics is illustrated in Figure 6.4, where a high utility tra-
jectory to a goal state is possible, but unlikely due to stochastic state transition dynamics. Those
dynamics make an alternate policy—going “around” rather than taking the risky path—have higher
expected utility, but that policy is less preferred under the marginal maximum conditional entropy
model, which assumes that desirable state transitions can be realized by paying a penalty.

6.4 Discussion
In this chapter, we have derived the probability distribution of the maximum causal entropy dis-
tribution for the statistic-matching constraint setting. We have shown that the problem of inverse
optimal control can be posed in this way, and that the Lagrangian potentials, θ>f, that result can
be interpreted as analogs to rewards or costs in existing decision frameworks. This connection is
significant: prediction of purposeful behavior follows the same mechanisms as optimal generation
approaches for that behavior (with added relaxations to address uncertainty). It is also surprising:
after beginning with a purely information-theoretic formulation of an estimation problem, we have
arrived at a stochastic generalization of optimal control criteria.

Other work has similarly aimed at combining information theory with decision theory and
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warrants discussion. One prevalent line of research is determining the value of information, which
is the amount an agent in a decision framework would be willing to pay to observe the value of a
variable before making a decision (Howard, 1966; Poh & Horvitz, 1996; Krause & Guestrin, 2005).
This perspective is useful for prescriptive purposes, but not for the predictive task we address
with the maximum causal entropy approach. Tishby & Polani (2010) define an information-to-go
quantity as an information-theoretic analog of the decision-theoretic cost-to-go. It is a measure
of the future uncertainty of states and actions in decision settings, relative to a prior belief about
the marginal distributions of future states and actions. This is similar to the causally-constrained
maximum joint entropy approach and suffers the same bias for highly uncertain state transition
dynamics. However, it may be useful if predicting both the future actions and states is desired.



Chapter 7

Maximum Causal Entropy Influence
Diagrams for Imperfect Information

“Real knowledge is to know the extent of one’s ignorance.”
— Confucius (Philosopher, 551–479BC).

In the previous chapter, we investigated reasoning in the presence of future uncertainty. Many
applications of machine learning and decision making also involve reasoning in the presence of
historic and current uncertainty. For example, in partially observable Markov decision processes
(POMDPs), only noisy observations of the world’s state are revealed to the agent, and the agent
is forced to act based on an uncertain belief about the world. This chapter extends the maximum
causal entropy approach to settings with side information that includes latent variables and prob-
lems with imperfect recall where past observations are “forgotten.” We employ a maximum causal
entropy variant of the influence diagram (Miller et al., 1976; Howard & Matheson, 1984), a graph-
ical framework that subsumes Bayesian Networks and augments their capabilities to reason about
latent variables with decisions and utilities so that inference includes optimal decision making.

Maximum causal entropy expands the applicability of influence diagrams from the prescription
of optimal decisions to the prediction of decision-making and the recovery of explanatory utility
weights from observed decision sequences. Additionally, influence diagrams provide a convenient
graphical representation of variable relationships in behavior prediction tasks. We investigate the
structural properties of influence diagrams required for the maximum causal entropy approach to
be applicable, finding that perfect decision recall is required.

7.1 Maximum Causal Entropy Influence Diagrams
We begin by describing different types of imperfect information and examples for each to moti-
vate the contributions of this chapter before introducing the maximum causal entropy influence
diagram.

87
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7.1.1 Imperfect Information
Supporting the additional uncertainty of latent variables from the current point in time and from
the past extends the maximum causal entropy model to behavior prediction in partial information,
multi-player, and bounded rationality settings. For example, in many multi-player games (e.g.,
card games such as poker), each player possesses a partial and distinctive knowledge of the state
of the game and acts by inferring the other players’ knowledge. Explicitly modeling this dynamic
information availability is important for the prediction of actions in such settings.

We consider four different types of imperfect information in sequential decision settings:

1. Latent future side information: Future side information variables, Xt+1:T , are unavailable
when each conditioned variable, Yt, is chosen. Example: the maximum causal entropy in-
verse optimal control setting of Chapter 6 (e.g., control of a system in settings with stochastic
dynamics).

2. Partially observed side information: Side information variables, X1:t, are only partially
observed at each time step. Example: behavior in a partially observable Markov decision
process (e.g., the exploratory diagnosis of a partially-observed system).

3. Latent previously observed side information: Conditioning variables from the parent set
of an early conditioned variable, par(Yt1), that are relevant to a future conditioned variable,
Yt2 (t1 < t2), but “forgotten” and not part of the parent set of Yt2 . Example: games where
players have secret information (e.g., simple variants of poker).

4. Latent past decisions: Earlier conditioned variables (Yt1), that are relevant to future condi-
tioned variables, Yt2 (t1 < t2), but “forgotten” and not part of the parent set of Yt2 . Example:
multi-player games with hidden (or simultaneous) actions in otherwise full information set-
tings.

In this chapter, we discuss the applicability of the maximum causal entropy approach to the
latter three information settings. We generalize the dependency structure of maximum causal en-
tropy inverse optimal control from Chapter 6 to address the second and third imperfect information
settings.

7.1.2 Representation: Variables, Dependencies, and Features
We employ the influence diagram graphical model structure as a convenient representation for the
estimated variables (Y), the conditioning variables (X), and the feature functions, F(X,Y). We
again employ the decision-based interpretation of these variables, replacing Y with actions, A, and
X with state variables, S.

The maximum causal entropy influence diagram differs from the traditional influence diagram
(Section 2.2.3) primarily in the meaning of utilities.
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Definition 7.1. A maximum causal entropy influence diagram (MaxCausalEnt ID) is structurally
characterized by three different types of nodes and directed edges connecting those nodes. The
node types are:

• Square decision nodes (A) that correspond to conditioned variables;

• Circular uncertainty nodes (S) that correspond to observed and unobserved side information
variables; and

• Diamond utility nodes (U) that correspond to statistic-matching potential functions.

Additionally, directed edges connect these nodes with the role of each edge depending on the type
of node to which it is a parent1. The roles are as follows:

• The parents of a decision node, par(At), are conditioned on or “known” when the At vari-
able is assigned an instantiation value.

• An uncertainty node’s parents, par(St), specify the variables upon which its conditional
probability distribution, P(St|par(St)), is defined.

• The parents of a utility node, par(Ut), in a MaxCausalEnt ID indicate the form of feature
functions of the utility node FUt : par(Ut)→ Rk.

The variables and relationships of the maximum causal entropy influence diagrams are summarized
in Table 7.1.

Table 7.1: Influence diagram graphical representation structural elements, symbols, and relationships.

Type Symbol Parent relationship

Decision nodes
Specifies the variables that are observed when action A is se-
lected

Uncertainty nodes
Specifies the conditional probability distribution, P(S|par(S)),
of the state variable S

Utility nodes
Specifies feature utility functions, θ>F (par(U))→ R, with (un-
known) parameter weights θ

The only requirement on the structure of a maximum causal entropy influence diagram is
acyclicity. However, the complexity of reasoning in the MaxEnt ID depends greatly on the de-
pendencies between decision distributions implied by the structure (i.e., the other decision distri-
butions that are required to infer a particular decision node’s distribution). Instead, those problems
can often be more efficiently solved by exploiting the factored distribution of the side information.

1We assume utility nodes are not parents of any other node, but the same desired relationship—knowing what
utility is received—can be accomplished by employing an intermediary uncertainty node that takes on the utility.
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7.2 Maximum Causal Parent Entropy

Using the structure of the influence diagram, we now formulate the corresponding maximum causal
entropy optimization, the structural constraints required by the formulation, and the probability
distribution form.

7.2.1 Formulation and Optimization

We formulate the imperfect information maximum causal entropy optimization problem by allow-
ing a distribution over side information variables, X, and conditioned variables, Y, that forms a
joint distribution as:

P(Y,X) =
∏
t

P(Yt|par(Yt))
∏
t

P(Xt|par(Xt)), (7.1)

where par(Yt) ⊆ (Y1:t−1∪X) represents a set of parent variables of Yt, and par(Xt) are constrained
so that the directed graph formed by edges {epar(Yt)→Yt} ∪ {epar(Xt)→Xt} is acyclic.

Extending the setting of Chapter 5, we assume that the conditional distribution of side informa-
tion, P(X||par(X)), is known, and we are left to estimate the conditional distribution, P(Y||par(Y)).

The causally conditioned probability distribution and entropy measure extend to this influence
diagram graphical structure setting.

Definition 7.2. We define the causal parent probability of Y given X as:

P(Y||par(Y)) ,
∏
t

P(Yt|par(Yt)). (7.2)

Definition 7.3. The causal parent entropy is formed from this probability distribution and is:

H(Y||par(Y)) , EP(X,Y)[− log P(Y||par(Y))]. (7.3)

This entropy measure serves as the objective function that extends the maximum causal en-
tropy approach to settings with additional imperfect information. The key distinction between this
entropy measure and the previous causal entropy measure (Equation 4.13) introduced in Chapter
4 is that some of the variables in X may never be directly conditioned upon by any Y variable or
may be conditioned on intermittently (along with past Y variables) over time in the causal parent
entropy measure of this section.

Definition 7.4. The imperfect information maximum causal entropy optimization maximizes the
causal parent entropy (Equation 7.3) while matching expected and statistic-based feature func-
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tions, F(X,Y)→ RK . It is formally defined as:

max
{P(Yt|par(Yt))}

H(Y||par(Y)) (7.4)

such that: EP(X,Y)

[∑
t

Ft(X1:t,Y1:t)

]
= EP̃ (X,Y)

[∑
t

Ft(Xt, Yt)

]
∀t,Yt,par(Yt) P(Yt|par(Yt)) ≥ 0

∀t,par(Yt)

∑
Yt

P(Yt|par(Yt)) = 1.

Just as in the general maximum causal entropy optimization (Equation 5.6), the convexity of
the imperfect information optimization (Equation 7.4) when optimizing in terms of the conditional
probability terms, {P(Yt|par(Yt))}, is not readily apparent. Indeed, only with further restrictions
to the parent structure of variables do we establish the convexity of the optimization in Equation
7.4.

Definition 7.5. Perfect past decision recall is a constraint on the parent sets of decision variables,
Y, that forces all past decision variables to be parents of future decision variables:

∀t Y1:t−1 ⊆ par(Yt). (7.5)

Convexity follows from the additional constraint of perfect decision recall (Definition 7.5).

Theorem 7.6. The imperfect information maximum causal entropy optimization of Equation 7.4
constrained by perfect past decision recall can be formulated as a convex optimization problem.

Proof (sketch). Consider the causal conditional probability distribution, {P(YT ||XT )}, of a partic-
ular conditioned variable, Yt, its parent set, par(Yt), and the variables that are greater-ancestors
(i.e., non-parent ancestors of Yt):

granc(Yt) , anc(Yt) ∩ par(Yt).

As before, future side information variables can have no causal influence over earlier conditioned
variables; this is accomplished using the final constraints of Equation 5.6—marginalizing over
non-ancestor variables. This constrains the causally conditioned probability distribution to factor
into a product of ancestor-conditioned terms:

P(Y||X) =
∏
t

P(Yt|par(Yt), granc(Yt)).

Of the ancestor values in each conditional probability term: P(Yt|par(Yt), granc(Yt)), the granc
set of variables are unobserved. Constraining these conditional probability distributions to be
equivalent across varying greater-ancestor values,

∀t,Yt,par(Yt),granc(Yt)1,granc(Yt)2 P(Yt|par(Yt), granc(Yt)1) = P(Yt|par(Yt), granc(Yt)2),
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enforces any imperfect information constraints that are implied by the variable dependence struc-
ture. When constrained by perfect past decision recall, this constraint is a linear function of
causally conditioned probabilities.

Remark 7.7. Without perfect past decision recall, the imperfect information maximum causal
entropy optimization is non-convex in general.

This property of perfect decision recall denotes an important boundary for the applicability of
the causal entropy approach; without it, convexity and strong duality, upon which the maximum
entropy approach relies, do not hold (Remark 7.7). The inefficiency of reasoning in the general
imperfect past decision setting should not be particularly surprising; it could be employed to rep-
resent Nash equilibria inference problems in a wide range of game settings that are known to be
non-polynomial (assuming the complexity hierarchy does not collapse).

7.2.2 Distribution Form
Following the formulation of Theorem 7.6, we obtain the form of the distribution for the imperfect
information setting with perfect past decision recall.

Theorem 7.8. The maximum causal entropy probability distribution for the imperfect information
setting with perfect past decision recall (Theorem 7.6) is distributed according to the following
recurrence relationship:

Pθ(Yt|par(Yt)) =
ZYt|par(Yt),θ

Zpar(Yt),θ
(7.6)

logZpar(Yt),θ = log
∑
Yt

ZYt|par(Yt),θ

= softmax
Yt

(
EP(par(Yt+1)|par(Yt),Yt)

[
logZpar(Yt),θ|par(Yt), Yt)

] )
ZYt|par(Yt),θ = e(EP(par(Yt+1)|par(Yt),Yt)[logZpar(Yt),θ|par(Yt),Yt)])

Zpar(YT+1),θ = eθ
>F(X,Y),

where the final set of parents for the “after last” Y variable is the complete set of variables:
par(YT+1) , X ∪ Y.

It is similar to the feature-matching maximum causal entropy distribution, except that addi-
tional variables can be latent and are then marginalized over given the parents of each Yt.

7.2.3 Perfect Recall Reduction
One important special case of imperfect information that simplifies the distribution of Equation
7.6 is perfect recall, which limits uncertainty to side information variables that will be revealed at
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some point in time (or are never revealed). This specifically excludes past decisions or influences
on decisions that are later “forgotten.”

Definition 7.9. In the perfect recall sequential prediction setting, each conditioned variable, Yt, is
constrained to be conditioned on all previous conditioned variables and variables on which they
depended. This constrains the parent sets as follows:

∀t par(Yt) ∪ Yt ⊆ par(Yt+1). (7.7)

Imperfect information modeling problems with perfect recall structure (Definition 7.9) can be
reduced to the maximum causal entropy inverse optimal control setting of Chapter 6 via Theorem
7.10.

Theorem 7.10. In the perfect recall setting, the imperfect information maximum causal entropy
distribution of Equation 7.4 can be reduced to a non-latent maximum causal entropy model by
employing expectations to obtain side information dynamics,

P ′ (par(Yt)|Yt−1, par(Yt−1)) =

EP(X|Yt−1,par(Yt−1))

[
P(par(Yt)|X, Yt−1, par(Yt−1)) P(X|Yt−1, par(Yt−1))

∣∣Yt−1, par(Yt−1)
]
,

and expected statistic-based features,

F ′t (Yt, par(Yt)) = EP(X|par(Yt))
[
Ft(X,Y1:t−1)) P(X|par(Yt))

∣∣par(Yt)
]
.

Additionally, strict perfect recall is often not necessary; parent sets that satisfy perfect recall
can often be reduced without affecting the corresponding maximum causal entropy probability
distribution.

Definition 7.11. A subset of conditioning variables, parC(Yt) ⊆ par(Yt), (i.e., side information, X,
or previous conditioned variables, Y1:t−1,) is relevant in the maximum causal entropy setting if it
is the minimum size set of variables such that:

P(Yt|par(Yt)) = P(Yt|parC(Yt)),

where parC(Yt) is the set of parents for Yt that are members of set C, and P(Yt|parC(Yt)) is the
distribution obtained by maximizing the causal parent entropy (Equation 7.4) according to this
alternate conditioning structure.

Any parents of a conditioned variable that are not relevant (Definition 7.11) can be removed
from the parent set, reducing the complexity of the resulting maximum causal entropy model’s
parametrization.
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7.3 Example Maximum Causal Entropy Influence Diagram Rep-
resentations

Many sequential data modeling problems can be expressed as maximum causal entropy influence
diagrams. This is a natural consequence of many optimal control problems being representable as
influence diagrams (Section 2.2.3). We now review a few classes of decision prediction tasks to
illustrate the breadth of applicability of the maximum causal entropy influence diagram.

Figure 7.1: The maximum causal entropy influence diagram graphical representation for maximum causal
entropy inverse optimal control. For Markov decision processes: Ut(St, At) = θ>fSt,At , and for linear
quadratic regulation models: Ut(st, at) = s>t Qst + a>t Rat. Absolute conditioning on {fS,A} or Q and R is
suppressed, as are perfect recall dependencies that are irrelevant.

The model of maximum causal entropy inverse optimal control (Chapter 6) is depicted in Figure
7.1. The Markov decision process and linear quadratic regulation settings can each be represented
with different forms of utility node functions. Note that perfect past decision recall edges are
not present. However, descendants’ utility nodes are conditionally independent of past decisions
given parents of an action. Thus, past decisions are irrelevant and the perfect past decision recall
requirement is not violated.

The fully observable control prediction task of Figure 7.1 is extended to the setting where the
state is only partially-observed through observation variables in Figure 7.2. This model satisfies
the perfect recall constraint since all influences on past decisions and decisions are parents of future
decision nodes.
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Figure 7.2: The maximum causal entropy influence diagram graphical representation for maximum causal
entropy inverse optimal control in a partially observable system. The state variables are only partially
observed via observation variables, O1:T , that are distributed according to a known conditional distribution,
P(Ot|St).

Figure 7.3: The extensive-form game setting where players have access to private information, S1 and S2,
and take sequential decisions. Recall of all past actions is provided by the sets of edges connecting all
decisions.

Figure 7.3 shows a maximum causal entropy influence diagram for an extensive-form game
where each player has private information that is only conveyed to the other players through a
choice of actions. The decision problem of this influence diagram satisfies the perfect past decision
recall property.
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Figure 7.4: The Markov game setting where the state of the game changes according to known Markovian
stochastic dynamics, P(St+1|St, At,1, At,2), and the players share a common reward.

Figure 7.4 shows a maximum causal entropy influence diagram for a Markov game setting
where two players act simultaneously without knowing the other player’s action. This setting does
not satisfy the perfect decision recall property because At,1 and At,2 have no recall relationship.
We investigate settings where the actions at each timestep are correlated in Chapter 8.

7.4 Discussion
In this chapter, we have expanded the maximum causal entropy approach for matching empirical
statistics of data to settings where in addition to future latent variables, past and current variables
can be latent also.

The four imperfect information settings are covered to various degrees by the maximum causal
entropy formulations introduced thus far, as shown in Table 7.2.

Table 7.2: Coverage of the four imperfect information settings by different maximum causal entropy vari-
ants.
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Imperfect recall maximum causal entropy X X X X
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The perfect recall maximum causal entropy formulation (Definition 7.9) has the advantage of
reducing to the inverse optimal control model, making inference relatively straight-forward. The
perfect past decision recall formulation extends the applicability to settings where side information
on which past decisions were based is latent. Finally, the imperfect information maximum causal
entropy formulation (Definition 7.4) supports all of these forms of imperfect information, but is no
longer a convex optimization problem.

The problem of recovering explanatory utility functions for influence diagrams was previously
investigated for inconsistent behavior by assuming for each instance of behavior, a noisy copy of
the true utility function was sampled and then optimal behavior under that noisy utility function
employed to obtain the demonstrated behavior sequence (Nielsen & Jensen, 2004). Markov chain
Monte Carlo techniques are then employed to learn the mean and variance of the distribution from
which noisy utility functions are drawn. We view the maximum causal entropy influence diagram a
significant improvement over this inefficient learning procedure since the convexity of its objective
function enables much more efficient and more exact learning.



Chapter 8

Strategic Decision Prediction via Maximum
Causal Entropy

“Maybe all one can do is hope to end up with the right regrets.”
— Arthur Miller (Playwright, 1915–2005).

In this chapter, we investigate settings where multiple agents or players take actions within
sequential stochastic games. Equilibria solution concepts, such as Nash equilibria (NE) (Nash,
1951) and correlated equilibria (CE) (Aumann, 1974) are important constructs for these games
that provide certain individual or group performance guarantees. However, from a machine learn-
ing perspective, existing equilibria concepts are often not useful for prediction, because they do
not fully specify a unique strategy profile. Instead they may specify a polytope or point set of
possible expected utility outcome vectors, making strategy prediction under-specified in general
without additional assumptions. We introduce the maximum causal entropy correlated equilib-
ria solution concept for predictive purposes based on the principle of maximum causal entropy
with rationality constraints that prevent any regret from changing actions from that prescribed by
the joint distribution in this chapter.

8.1 Game Theory Background

8.1.1 Classes of Games
The canonical type of game studied within game theory is the one-shot game with a matrix of
payoffs for the players (Definition 8.1).

Definition 8.1. A normal-form game, GN , is defined by a set of players i = 1...N , a set of actions
for each player, ai,j ∈ Ai, and a utility vector Ua1,j1 ,...,aN,jN ∈ RN , specifying the payoffs to each
player for every combination of actions.

98
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In a normal-form game, each player (i = 1...N ) selects an action (ai) simultaneously without
knowledge of other players’ selected actions. A utility vector for each combination of actions,
Ua1,j1 ,...,aN,jN ∈ R

N , specifies a numerical payoff, Ua,i, to each player (i).

Table 8.1: The prisoner’s dilemma normal-form game. Two prisoners jointly receive the minimal sentence
if they both remain silent, but each has an incentive to (unilaterally) confess.

Silence Confess
Silence 0.5 years, 0.5 years 10 years, 0 years
Confess 0 years, 10 years 5 years, 5 years

The prisoner’s dilemma (Table 8.1) is a classic example of a normal form game.

Definition 8.2. A Markov game (Filar et al., 1997) (also known as a stochastic game) is defined
by a set of states (S) representing the joint states of N players, a set of individual actions (A)
for each player, a probabilistic state transition function, T : S × A1:N → P(S ′) specifying the
distribution for next state, S ′, and a utility function, Utilityi : S × A1:N → R for each player
i = 1 : N .

Markov games (Definition 8.2) generalize normal-form games to sequential action settings.
They also generalize Markov decision problems by incorporating multiple players who act based
upon their individual utility functions and jointly influence the future state of the game with their
actions, as shown in Figure 8.1.

Figure 8.1: The sequence of states and (Markovian) actions of a Markov game. Actions at each time step
can either be correlated (i.e., dependently distributed based on past actions and states or an external signaling
device), or independent.

Definition 8.3. An extensive-form game is defined by a tree of action sequences and state out-
comes where each agent is incapable of distinguishing between multiple states in the tree.
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Extensive form games (Definition 8.3) further extend the Markov game setting in a way where
unique sequences of states and actions may end up in a meta-state that is indistinguishable by the
agent from other states. This allows situations with incomplete information, such as imperfect
recall, to be represented within the model.

Game players choose a strategy profile, π, specifying next actions for each situation that
are either mixed (stochastic) or pure (deterministic); and either correlated (joint functions) or
independent (factor by players) based on a (discounted, 0 < γ ≤ 1) cumulative expected utility:

ExpectUtilπi (at1:N , s
t) , Eπ(st+1:T ,at+1:T

1:N |at1:N ,st)

[∑
τ≥t

γτUtilityi(s
τ , aτ1:N)

∣∣∣∣∣at1:N , s
t, π

]
(8.1)

for player i under the joint strategy profile, π. We assume in Equation 8.1 and throughout this
chapter that the strategy profile is mixed and Markovian1, meaning it depends only on the current
state and timestep. In a stationary mixed strategy profile, the joint action probabilities for each
state are the same for all time steps.

To obtain strategy profiles, it is useful to consider the amount of utility gained when taking
a deviation action, ati

′, instead of a provided action, ati, when: all players’ actions except player
i’s, denoted at−i, are known (Equation 8.2); or when other players’ actions, at−i, are unknown and
averaged over according to the strategy profile (Equation 8.3):

ExpectDevGainπi (at1:N , s
t, ati

′
) , ExpectUtilπi ({at−i, ati

′}, st)− ExpectUtilπi (at1:N , s
t) (8.2)

ExpectRegretπi (ati, a
t
i
′
, st) , EPπ(at−i|at,st)

[
ExpectDevGainπi (at1:N , s

t, ati
′
)
∣∣∣ati, st] . (8.3)

These quantities are useful for assessing the rationality of multi-player strategies.

8.1.2 Equilibria Solution Concepts
Defining equilibria solution concepts and finding corresponding equilibria in multi-agent settings
are important problems for applications ranging from conflict resolution to market-making. Per-
haps the most widely-known solution concept in game theory is the Nash equilibrium.

Definition 8.4. A Nash equilibrium for a game is defined as a fixed point where no agent has
positive deviation regret and agents’ actions are independent.

Though any finite game is guaranteed to have a mixed strategy Nash equilibrium (Nash, 1951),
only exponential-time NE-finding algorithms are known to exist (Lemke & Howson Jr, 1964) for
general-sum normal-form games, and associated decision problems regarding the characteristics
of possible NE are NP-hard (Gilboa & Zemel, 1989).

1Markovian equilibria strategy profiles are a consequence of the MCECE formulation and a commonly assumed
constraint imposed on equilibria in other solution concept formulations.
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When extending equilibria from the normal-form setting to the dynamic setting of Markov
games, the concept of sub-game equilibria—that even in states that are not reached under a policy,
the expected utilities of those states are based on the equilibrium of a game starting in that state—is
an important requirement.

Definition 8.5. A correlated equilibrium (CE) (Aumann, 1974) for a Markov game is a mixed joint
strategy profile, πCE , where no expected utility gain is obtained for any player by substituting an
action, ati

′ that deviates from the strategy. This is guaranteed with the following set of constraints:

∀t,i,st,ati,ati ′ ExpectRegretπ
CE

i (ati, a
t
i
′
, st) ≤ 0. (8.4)

Under this set of constraints, given the agent’s prescribed action, ati, there is no benefit for deviat-
ing (under the distribution of other players’ actions, P (at−i|ati)). We further require that regrets be
defined according to sub-game correlated equilibria.

Unlike Nash equilibria (Nash, 1951), which require independent player strategies, players in
a CE can coordinate their actions to obtain a wider range of expected utilities. Traffic lights are
a canonical example of a signaling device designed to produce CE strategies. However, external
signaling mechanisms are not necessarily required—players can coordinate their actions from their
history of past actions in sequential game settings. The deviation regret constraints (Equation
8.4) define a convex polytope of CE solutions in the N-dimensional space of players’ joint utility
payoffs (Figure 8.2).

Figure 8.2: A correlated equilibria polytope with a correlated-Q equilibrium (Definition 8.6) payoff at point
A that maximizes the average utility and a maximum entropy correlated equilibrium at point B (Definition
8.9) that provides predictive guarantees.

Consider the single shot, two-player prisoner’s dilemma of Table 8.1. For each of the two
players and two actions, there is one alternate action. Thus there are a total of four linear constraints
for the prisoner’s dilemma setting (and more generally, any two-player, two-action normal-form
game).
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In general, for a single-shot (i.e., normal-form) game, there areO(N |A|2) regret constraints that
are linear in a total of O(|A|N) strategy variables, {π(a1:N)}, and CE solutions can be efficiently
obtained (i.e., in the same polynomial time as the size of the Utility matrix specification) by solving
a linear program (LP) or a convex program (CP):

max
π

f0(π(A1:N)) (8.5)

such that: ∀i,ai,ai′
∑
a−i

π(a1:N)
(
Utility ({a−i, ai′})− Utility(a1:N)

)
≤ 0,

∀a1:Nπ(a1:N) ≥ 0, and
∑
a1:N

π(a1:N) = 1.

depending on whether the objective function, f0, is linear or (negative) convex.

Definition 8.6. A correlated-Q equilibria (CE-Q) (Greenwald & Hall, 2003) employs a linear or
convex function of strategy probabilities for the selection metric objective of Equation 8.5 to obtain
utility-unique strategy profiles2.

A number of objectives for CE-Q have been proposed (Greenwald & Hall, 2003):

• Utilitarian (uCE-Q) maximizes the sum of players’ utilities,
∑N

i=1 Eπ[Utilityi(a1:N)];

• Dictatorial (dCE-Q) maximizes a specific player’s utility, Eπ[Utilityi(a1:N)];

• Republican (rCE-Q) maximizes the highest player’s utility, maxi Eπ[Utilityi(a1:N)]; and

• Egalitarian (eCE-Q) maximizes lowest player’s utility, mini Eπ[Utilityi(a1:N)].

These strong assumptions about players’ preferences constrain CE-Q solutions to reside on the hull
of the most-positive quadrant of the CE polytope (Northeast in Figure 8.2). They do not necessarily
specify a unique strategy profile or joint set of payoffs. However, they do specifically require that a
corner of the joint utility polytope is covered by a CE-Q solution. More generally, strategies from
the other polytope quadrants are also possible. Various forms of punishment, for example, such
as grim-trigger strategies, have been recognized as viable sub-game strategies that disincentivize a
player’s undesirable actions. We augment these existing CE-Q with a few based on punishment:

• Disciplinarian (xCE-Q) minimizes a specific player’s utility, Eπ[Utilityi(a1:N)]; and

• Inegalitarian (iCE-Q) maximizes utility differences between two (groups of) different play-
ers, Eπ[Utilityi(a1:N)− Utilityj(a1:N)].

2Unique strategy profiles are not guaranteed by the CE-Q solution concept—multiple actions can provide the same
vector of player utilities, and the CE-Q strategies may comprise an entire facet of the CE polytope. We ignore this
ambiguity and employ a single CE-Q from the set of CE-Q strategy profiles in this work.
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Definition 8.7. The maximum entropy correlated equilibria (MaxEntCE) solution concept for
normal-form games (Ortiz et al., 2007) selects the unique CE with the fewest additional as-
sumptions (Figure 8.2) by employing Shannon’s information entropy as the objective function,
−
∑

a1:N
π(a1:N) log π(a1:N), as advocated by the principle of maximum entropy (Jaynes, 1957).

Since a Nash equilibria is guaranteed to exist (Nash, 1951) and a Nash equilibria is a spe-
cial case of correlated equilibria that is additionally constrained to have independent actions:
P(a1:K) =

∏
k P(ak), a correlated equilibria is always similarly guaranteed to exist. Of those

existing, one must maximize the entropy measure. However, the relaxation of the non-linear in-
dependent action constraint that differentiates Nash equilibria from correlated equilibria enables
algorithms to efficiently obtain correlated equilibria (Papadimitriou & Roughgarden, 2005) and
maximum entropy correlated equilibria (Ortiz et al., 2007) for a wider class of problems than can
be addressed using any algorithms for finding Nash equilibria (assuming the complexity hierarchy
does not collapse).

Table 8.2: The game of Chicken and its correlated equilibria strategy profiles.

Stay Swerve
Stay 0,0 4,1

Swerve 1,4 3, 3

CE 1
0 1
0 0

CE 2
0 0
1 0

CE 3
0 1

3
1
3

1
3

CE 4
1
4

1
4

1
4

1
4

Consider the game of Chicken (where each player hopes the other will Swerve) and the corre-
lated equilibria that define its utility polytope in Table 8.2. CE 1 and CE 2 are both dictatorial and
inegalitarian CE (for different players) and republican CE (but ambiguous). CE 3 is a utilitarian
CE and an egalitarian CE. CE 4 is the maximum entropy CE. Its predictive guarantee is apparent:
all other CE have infinite log-loss for at least one other CE; the MaxEntCE is the only CE that
assigns positive probability to the {Stay, Stay} action combination. We extend these predictive
guarantees to the Markov game setting in this work.

8.2 Maximum Causal Entropy Correlated Equilibria

We are motivated by two problems within the Markov game setting (Filar et al., 1997) characterized
by the dynamic interaction of multiple agents with a stochastic environment. The first is where a
trusted third party (or signaling mechanism) must coordinate the behavior of agents in a way that
is both:

• A correlated equilibria that can be found efficiently; and

• Sensitive to the amount of information revealed about the agents’ underlying motives.
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The second is the problem of predicting the behavior of agents that are assumed to be acting
according to an unknown correlated equilibria, which can naturally be arrived at without explicit
coordination by employing certain strategies in repeated games (Hart & Mas-Colell, 2000).

8.2.1 Formulation
Extension of the MaxEntCE solution concept (Ortiz et al., 2007) to the Markov game setting is not
straight-forward. The first difficulty is that the deviation regret constraints of normal-form games
(Equation 8.5), which are linear in the unknown mixed strategy variables, contain expectations
over future actions (Equation 8.4) when extended to the Markov game setting, creating non-linear
constraints that are products of the unknown variables.

Theorem 8.8. A linear program/convex program formulation of CE for Markov games is possi-
ble by considering as variables the entire sequence of joint player actions for the sequence of
revealed states, η(A1:T

1:N |S1:T ), and employing appropriate inequality constraints (deviation regret
guarantees) and equality constraints (forcing the strategy over sequences to factor into products of
Markovian strategies) on marginal distributions using linear functions of η(A1:T

1:N |S1:T ) variables.

Naı̈vely formulating the Markov game CE strategy profiles into an LP/CP is possible (Theorem
8.8), but the number of constraints and variables grows exponentially with the time horizon3. The
second difficulty is that there are many entropy measures based on joint, conditional, and marginal
probability distributions that could be applied as objective functions. For example, the joint en-
tropy is a natural entropy measure to consider. It is a combination of the entropy of the strategy
profiles’ actions and the entropy of the state dynamics:

H(a1:T
1:N , s

1:T ) =
T∑
t=1

(H(at1:N |s1:t, a1:t−1
1:N ) +H(st+1|s1:t, a1:t

1:N)) = H(aT1:N ||sT ) +H(sT ||aT−1
1:N ).

(8.6)

Since the transition dynamics are already known in this problem setting, the uncertainty associ-
ated with those dynamics is irrelevant. Maximizing the joint entropy generally makes the players’
strategies less uncertain than otherwise possible by adding the assumption that players care about
the uncertainty that actions supply beyond expectations over their random outcomes. The reason
for this extends directly from the decision theory setting illustrated by Figure 6.3 in Section 6.3.2.

We instead advocate the causally conditioned entropy measure (Kramer, 1998)H(AT
1:N ||ST ) ,∑

tH(at1:N |a1:t−1
1:N , s1:t), employed throughout this thesis. For the possible sequences of states

and actions through a Markov game, it corresponds to the uncertainty associated with only the
actions in such sequences. It is based on the causally conditioned probability distribution,

3The number of constraints is also exponential in the number of players. However, this is unavoidable in general
game settings since the size of the payoff matrix grows exponentially with the number of players. We are thus only
concerned with reducing the exponential dependence on the time horizon in this work.
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P(AT
1:N ||ST ) ,

∏
t P(at1:N |a1:t−1

1:N , s1:t), which conditions each set of correlated actions only on
actions and states that have been revealed at that point in time and not on future states, as in the
conditional probability distribution P(A1:N |S) =

∏
t P(at1:N |a1:t−1

1:N , s1:t, st+1:T ).

Definition 8.9. A maximum causal entropy correlated equilibrium (MCECE) solution maximizes
the causal entropy while being constrained to have no action deviation regrets4:

πMCECE , argmax
π

H(aT1:N ||sT ) = argmax
π

Ea1:T ,s1:T

[
T∑
t=1

− log P(at1:N |st)

]
(8.7)

such that: ∀t, i, ati, ati ′, st ExpectRegretπi (ati, a
t
i
′
, st) ≤ 0

∀t, st, at1:N P(at1:N |st) ≥ 0, ∀t, st
∑
at1:N

P(at1:N |st) = 1,

π factors as: P(AT
1:N ||ST ), and given: {P(st+1|st, at)}.

We further constrain the strategy profile to have sub-game equilibria, meaning that even in states
that are unreachable under the strategy profile and state dynamics, the strategy profile is con-
strained to satisfy Equation 8.7 in all sub-games starting from those states.

8.2.2 Properties
Based on the view of conditional entropy as a measure of predictability (Cover & Thomas, 2006),
the MCECE solution concept extends two important predictive guarantees to the multi-agent set-
ting:

Theorem 8.10 (extension of (Ortiz et al., 2007)). Given an MCECE strategy profile, no player may
decrease the predictability of her action sequence without creating deviation regret for herself.

Theorem 8.11 (extension of (Grünwald & Dawid, 2003)). The MCECE solution strategy profile,
πMCECE minimizes the worst-case log prediction loss for the sequences of joint actions, i.e.,

inf
P(AT ||ST )

sup
P̃ (AT ||ST )

∑
A,S

P̃ (A,S) log P(AT ||ST ), (8.8)

of all the CE-satisfying deviation regret constraints, where P̃ (AT ||ST ) is the (worst possible for
prediction) empirical CE strategy and the joint, P̃ (A,S), is the distribution of states and actions
under that strategy profile and the known state transition dynamics.

4We employ a Markovian formulation for simplicity of presentation. Note that it arises without additional as-
sumptions if a history-dependent strategy profile, P(at1:N |s1:t, a

1:t−1
1:N ), is employed, since the MCECE strategy profile

ultimately reduces to a Markovian strategy profile given the standard Markovian dynamics and Markovian payoffs
assumptions of Markov games.
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Theorem 8.11 is particularly relevant to our machine learning perspective, because it justifies
the MCECE strategy profile as a robust predictive model. It also provides a natural interpretation
in gambling settings.

Remark 8.12. Given that players of a stochastic game behave according to some unknown corre-
lated equilibrium, betting according to the MCECE distribution maximizes the worst-case growth
rate of winnings in this setting.

Alternate entropy measures, such as the joint entropy, provide guarantees that are mathemati-
cally similar to Theorem 8.10 and Theorem 8.11 but that do not match the Markov game setting.

Corollary 8.13 (of Theorem 8.8). The solution for the MCECE optimization (Equation 8.7) can
be obtained as the result of a convex program.

Despite being obtainable by convex optimization (Corollary 8.13), the straight-forward convex
program is not practical due to its exponential growth in T . We present an efficient computational
formulation in Section 9.3.

8.2.3 Distribution Form
We obtain the general form of the MCECE distribution from its optimization. Despite the non-
compact, history-dependent formulation of the naı̈ve MCECE convex program, the strategy profile
can be expressed compactly for Markov games.

Lemma 8.14. The MCECE strategy profile for a Markov game is also Markovian.

Theorem 8.15. The MCECE strategy profile, πMCECE
λ (at1:N |st), has the following recursive form

(with λ ≥ 0):

πMCECE
λ (at1:N |st) ∝ e

−
(∑

i,ati
′ λ
i,st,ati,a

t
i
′ ExpectDevGainπ

MCECE
i (at1:N ,st,ati

′)
)

+ExpectEnt(at1:N ,st)
, (8.9)

where ExpectEnt(at1:N , s
t) , Eat+1

1:N ,s
t+1

[
ExpectEnt(at+1

1:N , s
t+1) +H(at+1

1:N |st+1)
∣∣at1:N , s

t
]
.

We discuss algorithms for recursively generating this distribution in Section 9.3.1 and for ob-
taining λ parameters in a sequence of sub-problems for this recursion in Section 10.1.3.

8.3 Discussion
In this chapter, we have applied the maximum causal entropy approach to multi-player sequential
game settings. The result is a predictive model of correlated equilibrium strategy profiles that
provides worst-case log-loss predictive guarantees in sequential game settings. This application
demonstrates the versatility of the maximum causal entropy approach to settings beyond standard
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decision theory. It also illustrates the use of inequality constraints to enforce assumed rationality
characteristics of jointly rational behavior.

Dudık & Gordon (2009) previously applied maximum entropy to model behavior in extensive-
form games. In that formulation, nature is treated as an additional player and the entropy associated
with nature’s actions is also maximized. As we argued in Section 6.3.2, when the dynamics of
the game are assumed to be common knowledge, maximizing this entropy introduces sensitivity
to the transition dynamics and does not provide predictive guarantees of players’ strategies as a
result. Additionally, while extensive-form games generalize the classes of games we consider in
this chapter, strong duality does not hold; instead, only locally optimal model parameters trained
from data can be guaranteed.

8.3.1 Combining Behavioral and Rationality Constraints
The approach of this chapter is quite agnostic; no observed strategies are employed to predict
future behavior. Given additional knowledge of past behavior, the employed rationality constraints
(inequalities) can be augmented with behavioral constraints (equalities) that force the predictive
distribution to match demonstrated behavior strategies (in expectation) as in the inverse optimal
control setting of Chapter 6, and the maximum causal entropy influence diagram setting of Chapter
7.

8.3.2 Infinite-horizon Games
Extending from finite-horizon to infinite-horizon games is not as straight-forward in the multi-
player settings as it is in single-agent decision theory. Namely, asymmetric turn-taking behavior
arises as rational behavior in many games, and any finite-behavior game is then very sensitive to the
specific termination conditions of the game. Thus, approximating the infinite-horizon game with
a very large finite-horizon game does not necessarily converge (Zinkevich et al., 2006). Murray
& Gordon (2007) and MacDermed & Isbell (2009) attempt to efficiently extend value-iteration
to propagate the entire polytope of correlated equilibria dynamically. Using approximations, this
can be made efficient in practice. This approach holds promise for the maximum causal entropy
approach, but we do not investigate it in this thesis.
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Overview of Part III
Part III of this thesis leverages the theory of maximum causal entropy developed in Part II to for-
mulate efficient algorithms for reasoning and training within the maximum causal entropy models
of behavior.

Chapter 9 presents algorithms for efficient inferences of policies within the Markov decision
process, linear-quadratic regulation, and influence diagram frameworks and strategies within the
Markov game framework. Many of these algorithms are “softened” variants of the Bellman equa-
tion or similar sequential dynamic programming algorithms.

Chapter 10 presents algorithms for training maximum causal entropy models from demon-
strated behavior (or, in the case of multi-player game settings, simply to enforce rationality re-
quirements). These algorithms are simple gradient-based optimization techniques that rely on the
convexity properties of the principle of maximum causal entropy from Part II to provide convergent
optimality guarantees.

Chapter 11 investigates the setting where observed behavior is chosen in pursuit of some goal
known to the actor but unknown to the observer. Bayesian inference methods are developed for in-
ferring the latent goal with improved efficiency techniques for the non-adaptive (i.e., deterministic
dynamics) special case.

The algorithms of these three chapters together enable the maximum causal entropy approach
to be efficiently applied to large-scale behavior modeling and prediction tasks investigated in Part
IV of this thesis.



Chapter 9

Probabilistic Inference

“Computers are useless. They can only give you answers.”
— Pablo Picasso (Artist, 1881–1973).

We begin our exploration of algorithms for the maximum causal entropy approach by focusing
our attention on the development and analysis of algorithms for the task of efficient inference given
model parameters within the maximum causal entropy models for feature expectation matching
(Chapter 6), maximum causal entropy influence diagrams (Chapter 7), and predicting multi-agent
actions (Chapter 8). Since approaches to parameter optimization (i.e., learning) within maximum
causal entropy models requires repeated inference for many different parameter values (Chapter
10), efficient inference is especially important for the maximum causal entropy approach to be
applicable in large modeling domains.

9.1 Statistic-Matching Inference

We first consider inference algorithms for the statistic-matching setting of Chapter 6. As estab-
lished by Theorem 6.8, there is a close connection between maximum causal entropy inference
and stochastic optimal control based on a softened interpretation of the Bellman equation (Bell-
man, 1957). Our algorithms are developed along this line of thought, with some important spe-
cializations for the deterministic state transition dynamics setting, and significant differences in
convergence characteristics from optimal control algorithms.

9.1.1 Policy and Visitation Expectations

We are interested in two closely-related inference tasks:

• Obtaining the maximum causal entropy policy, π(A|S), for predictive purposes; and
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• Obtaining the expected number of times a certain state or action will be executed under that
policy, denoted Dsx or Dax,y for state x and action y in state x, respectively.

The latter quantities are needed to compute the statistics for model optimization purposes (e.g.,
fitting to data).

From the soft Bellman equation interpretation of the maximum causal entropy distribution
(Theorem 6.8), the policy is distributed according to:

π(a|s) = eQ
soft(s,a)−V soft(s), . (9.1)

The state-action log partition function ,Qsoft(s, a), and the state log partition function, V soft(s),
of Equation 9.1 are related by the following recurrence:

Qsoft(at, st) , logZat|st

= EP(st+1|st,at)[V
soft(st+1)|st, at] + reward(st, at) (9.2)

V soft(st) , logZst

= softmax
at

Qsoft(at, st), (9.3)

where softmaxx f(x) , log
∑

x e
f(x).

We employ Algorithm 9.1 to dynamically compute the recurrence of Equation 9.2 and Equa-
tion 9.3. A terminal state reward function, φ(s), influences or constrains the terminal state distri-
bution of state-action sequences. For example, if φ(s) is negative infinity except for one particular
state, state-action sequences are then constrained to terminate in that state. The other goal settings
(Section 6.1.5) can be similarly represented with appropriate choices of terminal state potential
function, φ(s).

For T iterations of the softmax propagation of Algorithm 9.1 (the loop beginning at line 4),
the algorithm’s total running time is O(T |A||S|) for the case where each action has a non-zero
probability of transitioning to each state. We will usually be concerned with settings where the
number of possible next states for each action is bounded by a small constant. In that case, the
total running time reduces to O(T (|A|+ |S|)).

We make frequent use of Algorithm 9.2 when performing exponentiated addition in the log
space. It avoids underflow and overflow when computing log partition functions and other related
quantities.

The policy is then recovered from the state log partition function using Equation 9.1 and Equa-
tion 9.2. We note that π(ax,y|sx) does not necessarily normalize over actions, i.e., often:∑

ax,y

π(ax,y|sx) < 1.

The remaining probability mass in any state that is not assigned to an action can be interpreted as
an action that terminates the state-action sequence, which is distributed according to eφ(s)−V soft(s).
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Algorithm 9.1 State log partition function calculation

Require: MDP,MMDP, and terminal state reward function, φ(s)→ R.
Ensure: state log partition functions, V soft(sx).

1: for all States sx do
2: V soft(sx)← −∞
3: end for
4: while not converged do
5: for all States sx do
6: V soft(sx)

′ ← φ(sx)
7: end for
8: for all Actions ax,y do
9: V soft(sx)

′ ← softmax
(
V soft(sx)

′, rewardMMDP(sx, ax,y) +
∑

z P(sz|sx, ax,y)V soft(sz)
)

10: end for
11: for all States sx do
12: V soft(sx)← V soft(sx)

′

13: end for
14: end while

Algorithm 9.2 Soft-maximum calculation
Require: inputs x1, x2

Ensure: softmax(x1, x2) = log (ex1 + ex2)
1: maxx ← max(x1, x2)
2: minx ← min(x1, x2)
3: softmax(x1, x2)← maxx + log

(
1 + eminx−maxx

)

We then arrive at a forward-backward inference algorithm that can be extended to approximate the
infinite time horizon.

From the policy action probabilities, a “forward pass” algorithm is employed to calculate
visitation frequencies for states and actions, as shown by Algorithm 9.3. Action visitation fre-
quencies are easily recovered from state visitation frequencies and the stochastic policy, since:
Dax,y = Dsxπ(ax,y|sx).

Similarly to Algorithm 9.1, the “forward” inference of Algorithm 9.3 is O(T |A||S|) in the
fully connected transition dynamics case, and O(T (|A| + |S|)) when the number of next states is
bounded by a constant.

Note that Algorithm 9.1 and Algorithm 9.3 strictly generalize the forward-backward algorithm
for efficient inference in Markov chain probability distributions (e.g., hidden Markov models, con-
ditional random fields).
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Algorithm 9.3 Expected state frequency calculation

Require: MDP,MMDP, stochastic policy, π(ax,y|sx)), and initial state distribution P0(sx).
Ensure: state visitation frequencies, Dsx under policy π(ax,y|sx).

1: for all states sx ∈MMDP do
2: Dsx ← 0
3: end for
4: while not converged do
5: for all states sx ∈MMDP do
6: D′sx ← P0(sx)
7: end for
8: for all actions ax,y ∈MMDP do
9: for all states sz ∈MMDP reachable by ax,y do

10: D′sz ← D′sz +Dsx π(ax,y|sx) P(sz|ax,y, sx)
11: end for
12: end for
13: for all states sx ∈MMDP do
14: Dsx ← D′sx
15: end for
16: end while

9.1.2 Deterministic Dynamics Simplifications

In the setting with deterministic state transition dynamics (Section 6.2.5), the structure of the prob-
lem can be exploited with specific algorithms based on the reversibility of computing the partition
function.

Theorem 9.1. The expected action visitation frequencies, Dax,y , for origin sa and goal state sb
in the deterministic dynamics maximum causal entropy statistic-matching model can be computed
from partition functions (and log partition functions, Vsa→sb , using the following equation:

Dax,y =
Zsa→sx ereward(ax,y) Zsy→sb

Zsa→sb
(9.4)

= eVsa→sx+reward(ax,y)+Vsy→sb−Vsa→sb

To calculate expected action frequencies, we therefore only need to compute the partition func-
tion (or log partition function) between all states and endpoints in our Markov decision process.
We employ dynamic programming to recursively compute the log partition function forward from
an initial state sa in Algorithm 9.4. This algorithm has O(T (|S|+ |A|)) run time, as a special case
of the stochastic dynamics algorithm.
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Algorithm 9.4 Forward log partition function calculation (deterministic)
Require: MDP,MMDP, initial and final endpoints sa and sb.
Ensure: V soft(sa, sx) is the log partition function from sa to sx from all sx ∈ S.

1: for all sx ∈MMDP do
2: V soft(sa, sx)← −∞
3: end for
4: while not converged do
5: for all sx ∈MMDP do
6: V soft′(sa, sx)← 0 if sa = sx and −∞ otherwise
7: end for
8: for all ax→y ∈MMDP do
9: V soft(sa, sy)

′ ← softmax
(
V soft(sa, sy)

′, rewardMMDP(sx, ax→y) + V soft(sa, sx)
)

10: end for
11: for all sx ∈MMDP do
12: V soft(sa, sx)← V soft(sa, sx)

′

13: end for
14: end while

The resulting forward log partition function can be combined with the “backwards” log parti-
tion function obtained in Algorithm 9.1 to calculate the action visitation frequencies according to
Equation 9.4.

Matrix-algebraic algorithm

A matrix-algebraic approach for exact inference in the deterministic dynamics setting makes use
of the geometric series of matrices (Theorem 9.2).

Theorem 9.2. For matrix A, if limt→∞ At = 0, then
∑∞

t=0 At = (I− A)−1, where I is the identity
matrix and A0 = I.

Algorithm 9.5 makes use of this geometric series expression to compute the partition functions
between all pairs of state endpoints.
The required matrix inversion (Step 5) can be performed by simple Gaussian elimination inO(|S|3)
time or by the Coppersmith-Winograd algorithm (Coppersmith & Winograd, 1990) in O(|S|2.376)
time1. However, if matrix B is very large, but also sparse (i.e., the total number of actions is much
smaller than |S|2), power-iteration methods are known to have better practical performance (e.g.,
the PageRank algorithm (Brin & Page, 1998)).

1The O(|S|2.376) is largely a theoretical guarantee; algorithms with worse asymptotic run time are more efficient
in practice on matrices of practical consideration.
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Algorithm 9.5 Partition function calculation via matrix inversion
Require: MDP,MMDP

Ensure: {ZA→B =
∑

ζA→B
erewardMMDP (ζA→B)}.

1: A← 0
2: for all actions aX→Y ∈MMDP do
3: AX,Y ← erewardMMDP (SX)+rewardMMDP (AX→Y )

4: end for
5: B← (I− A)−1 − I
6: for all state pairs SA ∈MMDP and SB ∈MMDP do
7: ZA→B ← BA,B

8: end for

9.1.3 Convergence Properties and Approximation
All of the algorithms that we have presented for inference require convergence—either of the val-
ues of a dynamic program (Algorithm 9.1), the steady-state visitation values (Algorithm 9.3), or the
sequence of matrix multiplications (Algorithm 9.5). For finite time horizon settings, convergence
is guaranteed. However, assuming a finite horizon may be inappropriate for many application set-
tings. The natural question is then: in which settings do these algorithm convergence requirements
hold over infinite horizons?

Remark 9.3. The convergence properties of the maximum causal entropy model can be broken
into three regimes:

• Strong non-convergence: the most likely policy under the model produces state-action se-
quences that, in expectation, have infinite length.

• Weak non-convergence: the most likely policy produces state-action sequences that are, in
expectation, finite in length, but the expected length of all state-action sequences (averaged
over all policies) is infinite in length.

• Convergence: expected state-action sequence lengths are finite when generated under the
most likely policy and when averaged over all policies.

Strong non-convergence has a straight-forward parallel in deterministic planning problems:
when a cycle of positive reward exists along a path between two endpoints, the optimal plan (and
the log partition function) will be undefined and its value will not converge. For stochastic state-
transition dynamics, the analogy is having a subset of states where a policy that only transitions
to that subset of states yields positive expected reward from any state from that subset. Weak
non-convergence is specific to the probabilistic, softened Bellman setting, and has no optimal
control parallel. Due to this difference, restraints that guarantee optimal control convergence do
not guarantee convergence in the maximum causal entropy model.
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Remark 9.4. Though strictly negative rewards ensure convergence in the state and action value
functions of the optimal control setting, they do not ensure convergence in the corresponding max-
imum causal entropy setting (i.e., of the soft-maximum log partition functions for states and ac-
tions).

Figure 9.1: An illustrative example of non-convergence with strictly negative rewards for each deterministic
action. We consider the case where each action has a cost (i.e., a negative reward) ε > 0. Note that the
most likely state-action sequence is the immediate transition to from s1 to s2 (with cost ε). However, the
contribution to the partition function for paths that cycle at state s1 a total of x times is 2xe−x ε = ex ln 2−x ε.
Thus, for ε ≤ ln 2, the partition function does not converge.

Figure 9.1 provides a simple example demonstrating the non-convergence of the potential func-
tion in the weak non-convergence regime of behavior (Remark 9.4).

A number of structural restrictions on the state transition dynamics do ensure partition function
convergence in general decision settings. We note three:

• Directed, acyclic decision structures: the state transition dynamics restrict the sequence of
states and actions so that no sequence can revisit the same state. Thus, every trajectory must
terminate with finite length, guaranteeing partition function convergence.

• Finite horizon structures: finite length trajectory is considered with potentially cyclic se-
quences. Explicit dependence on the time step is required by the log partition function:

Vsx→sb, t+1 = softmax
ax,y

(∑
sz

P(sz|ax,y, sx)Vsy→sb, t

)
, (9.5)

and in the corresponding time-varying policy.

• Discounted future rewards: at each timestep the state-action sequence ends with probabil-
ity (1− γ) for γ > 0. The remaining outcomes dynamics are multiplicatively scaled by the
discount factor, γ.

An important convergence guarantee results from employing discounting.
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Theorem 9.5. In a discounted future rewards setting with a bounded instantaneous reward and
a bounded number of actions, the partition functions of the maximum causal entropy model with
finite rewards are guaranteed to converge.

Convergence is also possible in infinite horizon, non-discounted, cyclic decision structures, but
only for some choices of parameters. For example, in the deterministic setting when the eigenval-
ues of the constructed transition reward matrix (Algorithm 9.5) are less than 1.

9.1.4 Propagation Optimizations and Approximations
For large MDPs, Algorithms 9.4 and 9.1 may be too slow in practice to employ for computing the
partition functions for the class of all paths of a large length (T). We could just consider a smaller
length, but small length paths may represent only a small portion of the probability mass in the
complete set of paths or fail to connect from constrained origin and terminal states. For example,
under certain parameter choices, a parameterized reward Markov decision process assigns nearly
all probability mass to the optimal action choices of each state. Intuitively, approaches similar
to the specialized, fast algorithms for finding optimal solutions for decision problems (e.g., A*
search (Hart et al., 1968) for planning settings) should be employed for the “softened” version of
those decision settings as well. Based on this motivation, we consider a smaller class of paths that
contains most of the probability mass of the larger class of paths, while being significantly more
efficient to compute.

Definition 9.6. Consider some ordering, Order(S) → Z, over states of the Markov decision pro-
cess. We call a path, ζ , consistent with this ordering if ∀St,St+1∈ζ Order(St) < Order(St+1). We
call a path k-inconsistent with ordering Order if ∀St,St+1∈ζ Order(St) > Order(St+1) at most k
time.

Rather than consider all paths of length T in our inference, we will now consider all paths that
are k-consistent with an ordering.

If we have convergent partition functions, and consider a very large length T and consistency
k, the set of paths that differ between the two classes will be small and contribute only a very small
amount to the overall probability mass of log partition functions.

To help illustrate the advantages of this class of paths, consider states sa and sb in a Markov
decision process with the minimum length of paths connecting the two states being L. We will have
to consider paths of length greater than L using more than L iterations of our standard inference
algorithm to have any estimate at all for visitation frequencies. However, if the ordering is carefully
chosen, the order-consistent set of paths will contain some paths from sa to sb and provide a
reasonable estimate of visitation frequencies.

We can efficiently consider the log partition functions based on the k-consistent class of paths
for some ordering by employing the dynamic program of Algorithm 9.6.

State log partition values are updated according to the ordering and, unlike the non-optimized
variant (Algorithm 9.1), the results of the updates from earlier in the ordering are propagated
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Algorithm 9.6 Optimized stochastic policy calculation

Require: MDP,MMDP, state ordering, Order, and terminal state reward function, φ(s)→ R.
Ensure: a maximum causal entropy policy, π(ax,y|sx).

1: for all States sx do
2: Vsx ← −∞
3: end for
4: t← 0
5: while not converged do
6: for all States sx according to the reverse of ordering Order do
7: Vsx ← φ(sx)
8: for all Actions ax,y from state sx do
9: Vsx ← softmax (Vsx ,

∑
Z P(sz|sx, ax,y)Vsz)

10: end for
11: end for
12: for all Actions ax,y do
13: πt(ax,y|sx)← e(

∑
z P(sz |sx,ax,y)Vsz)−Vsx

14: end for
15: t← t+ 1
16: end while

through states later in the ordering. In the deterministic dynamics setting, with state action se-
quences constrained to start in state sa and terminate in state sb, we employ a heuristic to order
each state (si) based on the state’s fractional progress between sa and sb. Three heuristics based
on this notion of progress are:

progress1(si) =
minζsa→si reward(ζsa→si)

minζsa→si reward(ζsa→si) + minζsi→sb reward(ζsi→sb)
; (9.6)

progress2(si) = 1−
minζsi→sb reward(ζsa→si)

minζsa→si reward(ζsa→si) + minζsi→sb reward(ζsi→sb)
; (9.7)

progress3(si) =

{
progress1(si) if minζsa→si < minζsi→sb
progress2(si) otherwise

}
(9.8)

We then generate our state order based on this measure of progress using a fixed domain-dependent
reward function. When there is no specific terminal state constraint, the cost of the optimal path
from the initial state, minζsa→si reward(ζsa→si), can be employed as an ordering criteria for the
states. Similar heuristic-based approaches can be employed in the stochastic setting by first solving
a fixed parameter optimal control problem and employing the resulting state value function to order
the states.

The expected state and action visitation frequencies are similarly calculated according to this
optimized reward function using Algorithm 9.7.
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Algorithm 9.7 Optimized expected state frequency calculation

Require: MDP,MMDP, time-varying policy, πt(ax,y|sx)), and an initial state distribution P0(sx).
Ensure: state visitation frequencies, Dsx , under policy πt(ax,y|sx).

1: for all states sx ∈MMDP do
2: Dsx ← 0
3: end for
4: t← largest time-index of π
5: while not converged do
6: for all states sz according to ordering O do
7: Dsz ← P0(sz)
8: for all actions ax,y ∈MMDP such that Sz is a possible stochastic outcome of ax,y do
9: Dsz ← Dsz +Dsx πt(ax,y|sx) P(sz|ax,y, sx)

10: end for
11: end for
12: t← t− 1
13: end while

As a second optimization, paths through states that are very far away from A and B often
contribute little to the probability mass of the partition function. We only include states in our
ordering that are within a certain threshold: minζA→i cost(ζA→i)+minζi→B cost(ζi→B) < C, where
the threshold is determined by minζA→B cost(ζA→B). For example, C = αminζsa→si cost(ζsa→si)+
ε for some α > 1 and ε > 0. Optimal state values (i.e., optimal path costs in the deterministic
setting) are again based on a fixed heuristic.

While additional optimizations for the inference algorithm are possible based on intelligently
ordering the updates, there is an important technical consideration to keep in mind: any heuristics
employed to guide inference optimizations that depends on a learned cost weight may create non-
convexity when trying to optimize for that cost weight. In other words, adapting the ordering can
lead to non-convexity when fitting the parameters of a maximum causal entropy model to observed
data. This risk may be appropriately mitigated—either in theory or in practice—but we do not
explore dynamic re-orderings in this work.

9.1.5 Linear Quadratic Inference

For continuous state and continuous control inverse optimal control, the inference procedure is
very similar to Algorithm 9.1, but instead relies on the specific properties of Gaussian distributions
and quadratic reward functions to obtain closed-form expressions. As established by Theorem
6.15, when the state transition dynamics follow a linear function, st+1 ∼ N(Ast + Bat,Σ) for
given matrices A, B, and Σ, the time-varying state-action and state values are:
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Qsoft
θ (at, st) =

[
at
st

]> [ B>DB A>DB
B>DA A>DA

] [
at
st

]
+

[
at
st

]> [ B>G
A>G

]
V soft
θ (st) = s>t (Cs,s + Q− C>a,sC

−1
a,aCa,s)st + s>t (Fs + R) + const,

where C and D are recursively computed as: Ca,a = B>DB; Cs,a = C>a,s = B>DA; Cs,s =

A>DA; D = Cs,s + Q− C>C−1
a,aCa,s; and G = Fs + R.

Given terminal state quadratic reward weights, φ(s) = s>Qterminals + s>R and instantaneous
reward weights, Qinstant and Rinstant, Algorithm 9.8 generates time-varying quadratic state-value
and action-value parameters.

Algorithm 9.8 Linear-quadratic regulation value inference.
Require: Linear-quadratic model,Mlqr, with terminal quadratic reward parameters, Qterminal and

Rterminal; and time horizon, T .
Ensure: Time-varying action-value and state-value quadratic parameters: C and D; and linear

parameters: F and G.
1: D0 ← Qterminal
2: G0 ← Rterminal

3: for t = 1 to T do
4: Ca,a ← B>Dt−1B
5: Cs,a ← B>Dt−1A
6: Ca,s ← Cs,a

>

7: Cs,s ← A>Dt−1A

8: Ct ←
[

Ca,a Cs,a

Ca,s Cs,s

]
9: Gt ← Fs + Rinstant

10: Dt ← Cs,s + Qinstant − Cs,aC−1
a,aCa,s

11: Fa ← B>G
12: Fs ← A>G

13: Ft ←
[

Fa
Fs

]
14: end for

The state and action matrix multiplications dominate the run time of Algorithm 9.8. With naı̈ve
matrix multiplication, the run time is O(T (dim(S)3 + dim(A)3)).

The stochastic policy is then obtained from the state-action parameter, C:

π(a|s) ∝ e−[a s]>C[a s]−[a s]>F, (9.9)

which is a multi-variate Gaussian distribution.
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Algorithm 9.9 Linear-quadratic state and action distribution calculation.
Require: Linear-quadratic model,Mlqr, stochastic policy parameter, C, and initial state, s0.
Ensure: A sequence of state and action distributions, P(st) and P(at).

1: for t = 1 to T do
2: Compute joint distribution P(at, st) from P(st) and π(at|st)
3: Compute P(at) by marginalizing over st: P(at) =

∫
st P(at, st) ∂st

4: Compute joint distribution P(st+1, at, st) from P(at, st) and P(st+1|st, at)
5: Compute P(st+1) by marginalizing over at and st: P(st+1) =

∫
st,at P(st+1, at, st) ∂st ∂at

6: end for

We compute the joint distribution of states and actions from the state-dependent stochastic
policy by employing Algorithm 9.9.

Remark 9.7. The marginalized state and actions distributions are obtained from the following
linear relationships:

P (st) ∼ N(st|µst ,Σst) (9.10)
P (at|st) ∼ N(at| − C−1

a,aCa,sst, σa,a) (9.11)

P (st+1|st, at) ∼ N(st+1|A st +B at,Σdyn), (9.12)

by iteratively conditioning the Gaussian distributions and then marginalizing over previous vari-
ables.

Joint distributions and marginal distributions are obtained by transforming between the stan-
dard form (i.e., mean µ and variance Σ) and the canonical, quadratic form:

P(x) ∝ eη
>x− 1

2
x>Λx, (9.13)

which are related by: µ = Λ−1η and Σ = Λ−1. Marginalization is simpler in standard form (by
taking a sub-matrix of Σ and sub-vector of µ), while conditioning is simpler to apply in canonical,
quadratic form (by addition of the precision matrix, Λ and the vector η).

9.2 Latent Information Inference

We now consider the maximum causal entropy inference problems for influence diagrams. This
decision framework generalizes the inverse optimal control setting by allowing latent side infor-
mation variables and imperfect side information recall. As the maximum causal entropy approach
is only valid when duality holds, i.e., when perfect decision recall is guaranteed, we consider in-
ference within this setting.
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9.2.1 Perfect Recall Visitation Counts

We start by considering a stronger restriction on the influence diagram. For the special case of
perfect recall of both past decisions and past conditioning variables (Definition 7.9), reducing
the latent information inference to the inverse optimal control inference procedure is possible by
marginalizing and employing expectations.

Algorithm 9.10 MaxCausalEnt ID inference procedure for perfect recall
Require: A maximum causal entropy influence diagram with perfect recall.
Ensure: Partition functions Z(Yi|par(Yi)) that are maximum causal entropy distributed.

1: for all V ∈ V do
2: Associate V with argmaxYindex∈ancest(V ) index
3: end for
4: for i = |Y| to 1 do
5: for all values (Y ′i , par(Yi)′) do
6: Zi(Y

′
i |par(Yi)′)← 0

7: for all Vj associated with Yi do
8: for all values par(Vj)′ do
9: Compute P(par(Vj)′|par(Yi)′, Y ′i )

10: end for
11: Zi(Y

′
i |par(Yi)′)← Zi(Y

′
i |par(Yi)′) + Epar(Vj)[θ

>FVj(par(Vj))|Y ′i , par(Yi)′]
12: end for
13: for all values par(Yi+1)′ do
14: Compute P(par(Yi+1)′|Y ′i , par(Yi)′)
15: end for
16: Zi(Y

′
i |par(Yi)′)← Zi(Y

′
i |par(Yi)′) + Epar(Yi+1)′ [Zi+1(par(Yi+1)′)|Y ′i , par(Yi)′]

17: end for
18: for all par(Yi)′ do
19: Zi(par(Yi)′)← softmaxYi Zi(Yi|par(Yi)′)
20: end for
21: end for

Algorithm 9.10 illustrates the procedure for inferring decision probabilities in this special case
based on Theorem 6.2. Essentially, the dynamics of side information are calculated by marginal-
ization and the expectations of values are computed. We assume as a subroutine an algorithm for
calculating the marginal probabilities of variables conditioned on a set of fixed evidence variables
in a Bayesian network (e.g., variable elimination or belief propagation). Expectations over the
unobserved uncertainty nodes that are ancestors of value variables are employed in line 11. This
replaces the exact evaluations, θ>F(X,Y), of Equation 6.1.
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9.2.2 Imperfect Recall Visitation Counts

In the imperfect recall inference problem with perfect recall of past actions, action distributions are
recursively inter-dependent. As a result, the backward inductive dynamic programming technique
of Algorithm 9.10 can not be employed since P(aT |sT ) is not independent from the distribution
of past actions given state sT . Instead, we rely on a fixed point iteration algorithm that iteratively
updates the stochastic policy in hope of obtaining a fixed point solution to the inter-dependent
probability distributions.

Algorithm 9.11 MaxCausalEnt ID inference procedure for imperfect side information recall
Require: A maximum causal entropy influence diagram with perfect decision recall.
Ensure: Partition functions Z(Yi|par(Yi)) that are maximum causal entropy distributed.

1: for all actions nodes, at do
2: Set P(at|par(at)) to a uniform distribution
3: end for
4: Zpar(aT+1) = Utility(s, a)
5: while not sufficiently converged do
6: for τ = T to 1 do
7: Compute P(anc(aτ )|par(aτ ))
8: Compute P(par(aτ+1)|aτ , par(aτ ))
9: for all aτ , par(aτ ) do

10: Zaτ |par(aτ ) = EP(par(aτ+1)|aτ ,par(aτ ))[Zpar(aτ+1)|aτ , par(aτ )]
11: end for
12: for all par(aτ ) do
13: Zpar(aτ ) = softmaxaτ Zaτ |par(aτ )

14: end for
15: end for
16: end while

Algorithm 9.11 illustrates the procedure for obtaining the maximum causal entropy policy for
this more general imperfect information setting with perfect past decision recall.

9.3 Regret-Based Model Inference

The algorithms for considering multi-agent game settings maximize the causal entropy of the joint
distribution of players’ actions at each point in time, denoted at1:N , while enforcing rationality
constraints.
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9.3.1 Correlated Equilibria Inference
As established by Theorem 8.15, maximum causal entropy correlated equilibria are distributed
according to Equation 9.14:

πMCECE
λ (at1:N |st) ∝ e

−
(∑

i,ati
′ λ
i,st,ati,a

t
i
′ ExpectDevGain

πMCECE
λ
i (at1:N ,st,ati

′)
)

+ExpectEntλ(at1:N ,st)
, (9.14)

where ExpectEnt(at1:N , s
t) , Eat+1

1:N ,s
t+1

[
ExpectEntλ(a

t+1
1:N , s

t+1) +H(at+1
1:N |st+1)

∣∣at1:N , s
t
]
. The

free parameters, λ, are chosen to maximize the causal entropy while enforcing deviation regret
constraints for the joint action distribution of each state.

The naı̈ve approach to this problem is to jointly maximum the entropy of the optimization to
find all λ parameters for each time step and state in parallel, as shown in Algorithm 9.12.

Algorithm 9.12 MCECE strategy profile computation for finite horizon
Require: A fully-specified Markov game.
Ensure: A maximum causal entropy correlated equilibrium.

1: λ(1) = {λ(1)

t,i,st,ati,a
t
i
′} ← (arbitrary) positive initial values.

2: x← 1
3: while not converged do
4: Compute π(x)

λ = {πλ(at1:N |st)} from λ(x) using a subroutine.
5: Take an optimization step using π(x)

λ to improve λ(x+1)

6: x← x+ 1
7: end while

However, the Markovian relationship between variables can be exploited to improve the opti-
mization procedure.

Remark 9.8. For time-varying policies, future strategy probabilities (and dual parameters) are in-
dependent of earlier strategy and dual parameters given the state. As a result, a sequence dynamic
programming approach can be employed to compute the maximum causal entropy equilibrium.

Following Remark 9.8, Algorithm 9.12 can be re-expressed as a sequential dynamic program-
ming algorithm (Algorithm 9.13) resembling value iteration (Bellman, 1957). It iteratively com-
putes both future expected utilities and expected entropies by fully optimizing λ parameters at
timestep T and then employing the corresponding expected utilities and expected entropies for the
optimization at timestep T − 1. This process is iteratively continued to obtain the policy for all
timesteps.

We investigate algorithms for the optimization problem of Step 4 of Algorithm 9.13 in Chapter
10.
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Algorithm 9.13 Value iteration approach for obtaining MCECE
Require: A fully-specified Markov game.
Ensure: A maximum causal entropy correlated equilibrium.

1: ∀i,a1:N ,s ExpectUtili(a1:N , s)← Utilityi(a1:N , s)
2: ∀a1:N ,s ExpectEnt(a1:N , s)← 0
3: for t = T to 1 do
4: For each state, st, obtain {πλ(at1:N |st)} using ExpectUtil and ExpectEnt values in the fol-

lowing optimization:

argmax
π(at1:N |st)

H(at1:N |st) + Eπ(at1:N |st)
[
ExpectEnt(a1:N , s)|st

]
such that:

∑
a−i

P(at1:N |st)
(
ExpectRegret({at−i, ati}, st)− ExpectRegret(at1:N , s

t)
)
≤ 0

∀at1:N P(at1:N |st) ≥ 0 and
∑
at1:N

P(at1:N |st) = 1.

5: ∀i,a1:N ,s ExpectUtil′i(a1:N , s)← γ
∑

at1:N ,s
t π(at1:N |st) P(st|s, a1:N) ExpectUtili(a

t
1:N , s

t)

6: ∀s,a1:N ExpectEnt′(a1:N , s) ← γ
∑

at1:N ,s
t π(at1:N |st) P(st|s, a1:N)

(
ExpectEnt(at1:N , s

t) +

H(at1:N |st)
)

7: ∀i,a1:N ,s ExpectUtili(a1:N , s)← ExpectUtil′i(a1:N , s) + Utilityi(a1:N , s)
8: ∀a1:N ,s ExpectEnt(a1:N , s)← ExpectEnt′(a1:N , s)
9: end for

9.4 Discussion
In this chapter, we have presented algorithms for efficient inference within the maximum causal en-
tropy framework. For equality-constrained maximum causal entropy, the inference algorithms are
softened extensions of value iteration dynamic programming procedures. With inequality-based
rationality constraints, a similar dynamic programming procedure is employed to propagate infor-
mation backwards over time. However, a convex optimization is required to obtain the maximum
causal entropy policy at each state and timestep.

The efficiency provided by these algorithms is important. Rather than reasoning depending on
an entire history, which grows exponentially with history length, reasoning is generally linear in
the history size, as long as the dynamics governing side information are Markovian. This efficiency
enables the maximum causal entropy approach to be applied to large decision prediction tasks in
Part IV of the thesis.



Chapter 10

Parameter Learning

“Our knowledge is a little island in a great ocean of non-knowledge.”
— Isaac Singer (Inventor, 1811–1875).

Accurately predicting future behavior based on previously observed behavior sequences re-
quires fitting the parameters of the maximum causal entropy probability distribution using that ob-
served training data. Since no closed-form solution exists for the best parameter choice in general,
maximum entropy optimization-based approaches must instead be employed to obtain parameters
that provide accurate prediction. In this chapter, we describe the maximum causal entropy gradi-
ents and the gradient-based optimization methods that we employ to learn model parameters from
training data. In the case of rationality requirements for behavior in sequential games, optimiza-
tions techniques are required to enforce the rationality constraints independently of observed game
play.

10.1 Maximum Causal Entropy Model Gradients

By employing the Lagrangian of the maximum causal entropy optimization (Definition 5.6) and
solving for the causally conditioned probability distribution form, we are left to only enforce the re-
maining constraints—either purposeful equality constraints or inequality constraints guaranteeing
rationality.

10.1.1 Statistic-Matching Gradients

In the statistic-matching maximum causal entropy model (Chapter 6), the gradient of the dual is
the difference between empirical feature counts and expected feature counts:

126



10.1. MAXIMUM CAUSAL ENTROPY MODEL GRADIENTS 127

∇θ Fdual(θ) =

(
EP̃(X,Y)

[∑
t

F (xt, yt)

]
− EP(X,Y)

[∑
t

F (xt, yt)

])
. (10.1)

We employ Algorithm 10.1 to compute the expected feature sum under the maximum causal
entropy model’s policy (obtained via Algorithm 9.1). The empirical feature counts can be trivially
obtained by calculating the empirical visitation frequency and weighting each state’s feature by
this count.

Algorithm 10.1 Feature expectation calculation

Require: MDPMMDP, initial state s0, stochastic policy, π(a|s).
Ensure: Expected feature counts, E[f], under the stochastic policy, π(a|s).

1: Compute Dsx under π(a|s) from state s0 using Algorithm 9.7
2: E[f]← 0
3: for all sx ∈MMDP do
4: for all ai from state sx do
5: E[f]← E[f] +Dsx π(ai|sx) fsx,ai
6: end for
7: end for

In the linear-quadratic regulation setting, expected sums of quadratic states and actions serve
as continuous analogs to the feature function sums of the discrete state and action setting. The
maximum causal entropy dual’s gradient in this setting is simply the difference between these
sums of quadratics or linear state functions under the empirical distribution and under the model’s
expectation, as shown in Equation 10.2 and Equation 10.3:

∂Fdual(θ)

∂Q
=

(
EP̃(s1:T ,a1:T )

[∑
t

st s>t

]
− EP(s1:T ,a1:T )

[∑
t

st s>t

])
; (10.2)

∂Fdual(θ)

∂R
=

(
EP̃(s1:T ,a1:T )

[∑
t

st

]
− EP(s1:T ,a1:T )

[∑
t

st

])
. (10.3)

Employing the inferred state and action distributions at each point in time (Algorithm 9.9), the
quadratic expectations of states and actions are calculated according to Algorithm 10.2.

The integrals of Algorithm 10.2 are computed using the following Gaussian property:
Ex∼N(µ,Σ)[x x>] = µµ> + Σ.
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Algorithm 10.2 Quadratic expectation calculation

Require: LQRMLQR, state distribution P(st), action distribution P(at).
Ensure: Expectations, E[

∑
t st s>t ] and E[

∑
t at a>t ] based on distributions P(st) and P(at).

1: E[
∑

s s>]← 0
2: E[

∑
a a>]← 0

3: for t = 1 to T do
4: E[

∑
s s>]← E[

∑
s s>] +

∫
st P(st) st s>t ∂st

5: E[
∑

a a>]← E[
∑

a a>] +
∫

at P(at) at a>t ∂at
6: end for

10.1.2 Latent Information Gradients

The gradients for the latent information setting (Chapter 7) are very similar to those of the previ-
ous subsection; they are also differences between empirical feature expectation sums and feature
expectations under the maximum causal influence diagram model.

Algorithm 10.3 MaxCausalEnt ID Gradient Calculation
Require: A maximum causal entropy influence diagram and initial parameters, θ.
Ensure: log gradient,∇θ logP (y||par(y))

1: Compute Ẽ[F ]← 1
T

∑
t EX,Y[

∑
V F(V )|x̃t, ỹt]

2: Compute Z(par(Y )), Z(Y |par(Y )) via Algorithm 9.10 for Parameters θ
3: for all decision nodes Yi do
4: Replace Yi with an uncertainty node with probabilities P(yi|par(Yi)) = eZ(yi|par(Yi))−Z(par(Yi))

5: end for
6: E[F ]← Ok

7: for all V do
8: for all values par(V )′ do
9: Compute P(par(V )′) using {P(yi|par(Yi))}

10: end for
11: E[F ]← E[F ] + E[F (V )]
12: end for
13: ∇θ log P(y||par(y))← Ẽ[F ]− E[F ]

The added expectation in the maximum causal entropy influence diagram setting preserves the
convexity of the optimization since the feature matching constraint remains linear in the causally
conditioned probabilities. Standard gradient-based optimization techniques can be employed using
the gradient calculated in Algorithm 10.3.
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10.1.3 Maximum Causal Entropy Correlated Equilibrium Gradients
In the maximum causal entropy correlated equilibrium setting, optimization of model parameters
is also required. In this case, optimization is not employed to match empirical statistics of observed
data, but instead to enforce the remaining deviation regret constraints.

From Theorem 8.15 we have the form of the maximum causal entropy correlated equilibrium
distribution:

πMCECE
λ (at1:N |st) ∝ e

−
(∑

i,ati
′ λ
i,st,ati,a

t
i
′ ExpectDevGainπ

MCECE
i (at1:N ,st,ati

′)
)

+ExpectEnt(at1:N ,st)
, (10.4)

where ExpectEnt(at1:N , s
t) , Eat+1

1:N ,s
t+1

[
ExpectEnt(at+1

1:N , s
t+1) +H(at+1

1:N |st+1)
∣∣at1:N , s

t
]
.

The gradient of the log strategy distribution is thus:

∂

∂λi,st,ati,ati
′
log πMCECE

λ (at1:N |st) =
(
P(at1:N |st)− 1

)
ExpectDevGainπi (at1:N , s

t, ati
′
) (10.5)

∂

∂λi,st,ati,ati
′
log πMCECE

λ (at1:N |st) =
(
P(at1:N |st)

)
ExpectDevGainπi (at1:N , s

t, ati
′
), (10.6)

when each deviation regret constraint is violated (i.e., λ > 0).

10.2 Convex Optimization Methods
Using the gradient presented in Section 10.1 for each of the maximum causal entropy models, we
employ standard gradient-based optimization techniques to fit model parameters from data.

10.2.1 Gradient Descent
The standard, simple gradient-based optimization method is gradient ascent. It iteratively takes
steps in the direction of the gradient to improve the model parameters according to varying step
sizes.

Algorithm 10.4 illustrates the procedure for following the gradient towards the function’s op-
timal point. Standard gradient ascent is often impractically slow for many optimization problems.
One standard technique is to replace the decaying step size with line search, that finds the optimal
step size by performing a binary search along the line in the direction of the gradient.

10.2.2 Stochastic Exponentiated Gradient
When the gradient is computationally expensive to obtain for each training example, computing the
entire gradient before taking an optimization step can be extremely slow. Instead, stochastic opti-
mization (Robbins & Monro, 1951) can be employed to take optimization steps after the gradient
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Algorithm 10.4 Gradient Ascent calculation

Require: Gradient function∇θF (a, s)→ R|θ|, training data {ã(i), s̃(i)}, and learning rate λ.
Ensure: Approximately optimal θ parameters.

1: ∇F ← 0
2: Initialize θ to random initial values
3: t← 1000
4: while not sufficiently converged do
5: for all i do
6: ∇F ← ∇F +∇θF (a(i), s(i))
7: end for
8: θ ← θ − λ

t
∇F

9: t← t+ 1
10: end while

for each example or small groups of examples are calculated. The empirical improvements of the
stochastic approach have been demonstrated in maximum entropy-based models (Vishwanathan
et al., 2006) and other large-scale machine learning tasks. We combine this with the idea of tak-
ing exponentiated gradient steps (Kivinen & Warmuth, 1997). This exponentiation techniques has
been shown to provide better convergence rates than standard linear gradient update methods.

Algorithm 10.5 Stochastic exponentiated gradient ascent calculation

Require: Gradient function∇θF (a, s)→ R|θ|, training data {ã(i), s̃(i)}, and learning rate λ.
Ensure: Approximately optimal θ parameters.

1: Initialize θ to random initial values
2: t← 1000
3: while not sufficiently converged do
4: for all i in random order do
5: θ ← θe−

λ
t
∇θF (a(i),s(i))

6: t← t+ 1
7: end for
8: end while

Algorithm 10.5 illustrates the small differences from gradient ascent that allow stochastic (i.e.,
online) optimization of the objective function. Often small batches of examples (rather than sin-
gle examples) are employed to more robustly obtain the gradient step direction of Step 5 of the
algorithm.
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10.2.3 Subgradient Methods
When the function being optimized is not smooth, but still convex, sub-gradient methods can be
employed to obtain the optimal parameters. For inequality-constrained optimizations, an alterna-
tive to taking optimization steps based on the gradient using the entire set of remaining distribution
constraints is to individually apply each violated constraint or a small set of violated constraints
using the sub-gradient algorithm. This is particularly useful for enforcing inequality constraints.

Given a convex optimization problem of the form:

min
θ
f(θ)

such that: ∀i hi(θ) ≤ 0,

the corresponding feasibility optimization can be re-written as an unconstrained optimization (Boyd
et al., 2003):

min
θ

max
i
hi(θ). (10.7)

The method of subgradient optimization (Shor et al., 1985) can then be applied.

Algorithm 10.6 Sequential constraint, sub-gradient optimization

Require: Inequality constraint functions {h}, inequality constraint gradient {∇h}, and objective
gradient,∇f , initial parameters, θ̂.

Ensure: Feasible, near-optimal solution to the convex optimization.
1: t← 1000
2: while not sufficiently converged or not feasible do
3: if a violated constraint exists then
4: i← most violated constraint
5: ∇F ← ∇θ hi(θ)|θ̂
6: else
7: ∇F ← ∇θ f(θ)|θ̂
8: end if
9: θ̂ ← θ̂ − λ

t
∇F

10: t← t+ 1
11: end while

The subgradient optimization of Algorithm 10.6 extends the feasibility optimization of Equa-
tion 10.7 to include an objective function. It sequentially finds a violated constraint and takes
optimization steps to satisfy that constraint. This process continues until a feasible point is found,
at which point an optimization step that improves upon the objective function is taken. We employ
this technique to enforce rational inequality constraints in the multi-player game setting.
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10.2.4 Other Convex Optimization Methods
A number of more sophisticated methods for convex optimization exist that either employ the
Hessian of the objective function, or approximate the Hessian to improve optimization efficiency.
Describing each of these methods is beyond the scope of this work. Instead, we treat them as black
boxes. The BFGS algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) is
one such technique based on Newton’s method of optimization. Interior point methods (Nesterov
& Nemirovski, 1987) are also applicable for inequality-constrained optimizations.

These techniques provide better theoretical convergence guarantees than the simpler optimiza-
tion techniques previously described. However, we employ the simpler methods in practice.

10.3 Considerations for Infinite Horizons
When considering decision problems with infinite horizons, it is often possible for the inference
algorithm to be non-convergent for particular values of parameters (as discussed in Section 9.1.3).
This complicates simple gradient-based optimization approaches. We present the following three
techniques to address this complication.

10.3.1 Projection into Convergent Region
In some settings, constraints on the parameters that enforce convergence can be established. For
instance, in the LQR setting, if the Q matrix is positive-definite, then convergence of the D matrix
over infinite horizons (but ultimately terminating with fixed variance) is guaranteed. This positive
definite requirement can be enforced by projecting the Q matrix using its eigenvalue decomposition
and making its negative eigenvalues ε.

Convergence-Preserving Gradient Steps

A very similar option is to employ gradient steps that ensure convergent inference. This is difficult
in general, but possible for some special cases. For example, exponentiated matrix gradient algo-
rithms (Tsuda et al., 2006) take gradient steps that preserve positive-definiteness. The update step
is as follows, for learning rate λ:

Q← elog Q−λQ∇. (10.8)

Here the exponentiation and logarithm operators are matrix operations rather than scalar operators.

10.3.2 Fixed Finite Decision Structures
A second technique to address the infinite horizon and non-convergent inference considerations is
to approximate with a fixed horizon, as discussed in Section 9.1.3, or to employ other convergent
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inference guaranteeing constraints on the structure of the sequential decision representation. For
example, employing discounting naturally forces inference to converge.

10.3.3 Optimization Line-Search and Backtracking
A third technique is to leverage optimization algorithms that employ line search or provide back-
tracking. Choosing initial parameters that guarantee convergence (i.e., those with very high cost,
or large negative reward) is often straight-forward. Gradient-based optimization algorithms that
search along the gradient to find the optimal (convergent) point or detect non-convergent inference
are then employed. As an example of the latter, in standard gradient-ascent, when a parameter
optimization step is taken that leads to non-convergent inference, the algorithm reverts to the last
convergent inference parameters and the learning rate is decreased.

10.4 Discussion
In this chapter, we have presented optimization techniques for fitting parameters of the maximum
causal entropy models from observed data. The algorithms required for learning are simple appli-
cations of common convex optimization techniques. We view this as an advantage; no specialized
optimization methods are required and, due to convexity, good optimization convergence guar-
antees exist. In practice, these simple techniques perform well for training the maximum causal
entropy models of this thesis.
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Bayesian Inference with Latent Goals

“People’s behavior makes sense if you think about it in terms of their goals, needs, and motives.”
— Thomas Mann (Novelist, 1875–1955).

Up until this point of the thesis we have considered the problem setting where intentions—in
the form of terminal state constraints on behavior sequence within our maximum causal entropy
framework (i.e., terminal utility φ from Algorithm 9.1 described in Section 9.1.1)—have been
known or assumed. In many problem settings, these intentions, or goals, are not known a priori
and inferring them given only the partial demonstration of a sequences of states and actions drives
a number of important applications. In this chapter, we investigate methods for Bayesian inference
of goals and remaining trajectories to unknown goals. Additionally, we provide algorithms with
significant efficiency improvements for the setting with deterministic state dynamics.

11.1 Latent Goal Inference

Latent goal inference is the task of predicting the end target, or goal, of a partial sequence of
behavior. More formally, a partial sequence of states and actions, {s1:t, a1:t}, is provided. By
assumption, when complete, the full sequence will terminate in one state from a set of possible
goal states, G ∈ G ⊆ S. The probabilistic goal inference problem is to provide a distribution over
the possible goal locations.

11.1.1 Goal Inference Approaches

Goal inference can be framed as a probabilistic classification task mapping from the partial tra-
jectory, {s1:t, a1:t} to a probability distribution over possible goals, P (G). A maximum entropy
approach to this problem would define features between the goal variable and partial trajectory
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variables, F({s1:t, a1:t}, G). The conditional probability of a goal is then:

P (G|s1:t, a1:t) ∝ eθ
>F({s1:t,a1:t},G) (11.1)

This prediction technique provides the worst-case log-loss guarantees of maximum entropy. How-
ever, a difficulty of this approach is constructing good features that are a function of the goal state
and the partial behavior sequence. For large decision tasks, natural choices of features (i.e., the
quadratic interaction terms of partial trajectory states and goal states) can be quite large. This
makes fitting the predictive model from a limited amount of observed behavior sequences difficult.

11.1.2 Bayesian Formulation

An alternate approach avoids the potential difficulties of defining a compact set of features relating
goals and partial behavior sequences. Using a goal-conditioned distribution as a probabilistic pol-
icy, Bayes’ rule can be employed to update a belief in which of those goal states the sequence will
ultimately terminate. The initial belief is expressed as a prior distribution, P(G), and the posterior
distribution is then:

P(G|s1:t, a1:t) =
P(a1:t|s1:t, G) P(G)∑
G′ P(a1:t|s1:t, G′) P(G′)

(11.2)

∝

[∏
t

πG(at|st, G)

]
P(G),

where πG(at|st) denotes the policy that is constrained to goal state G.
The computational complexity of obtaining this posterior is largely dependent on the complex-

ity of computing each action’s conditional probability and the amount of computational re-use
possible when calculating conditional probabilities and related quantities.

The naı̈ve approach to latent goal inference computes the posterior probability directly accord-
ing to Equation 11.2. Algorithm 11.1 illustrates the steps required.

The main bottleneck of this algorithm is that a maximum causal entropy policy must be calcu-
lated for each goal state in the goal set. This yields O(|G|) total policy inference executions (Algo-
rithm 9.1), which dominates the algorithm’s run time for a total ofO(|G|T |S||A|) orO(|G|T (|S|+
|A|)) depending on the sparsity of the stochastic transition dynamics (and where T is the number
of iterations of the inference algorithm).

11.1.3 Deterministic Dynamics Simplification

In the special case of domains with exclusively deterministic dynamics, we exploit the reversibility
of computing the log partition functions to obtain a more efficient algorithm.
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Algorithm 11.1 Naı̈ve latent goal inference

Require: MDPMMDP, trajectory a1:t, s1:t, set of goals G = {G}, prior distribution P(G).
Ensure: {P(G|a1:t, s1:t)} posterior distributed according to Equation 11.2.

1: Z ← 0
2: for all G ∈ G do
3: Compute πG(a|s) using Algorithm 9.1
4: P(G|a1:t, s1:t)← 1
5: for all τ = 1 to t do
6: P(G|a1:t, s1:t)← P(G|a1:t, s1:t) πG(aτ |sτ )
7: end for
8: Z ← Z + P(G|a1:t, s1:t)
9: end for

10: for all G ∈ G do
11: P(G|a1:t, s1:t)← P(G|a1:t,s1:t)

Z

12: end for

Theorem 11.1. The posterior distribution of goals can be obtained from the log partition functions,
Vsx→sy , as follows:

P(G|a1:t, s1:t) ∝ P(G) eVst→G − Vs1→G . (11.3)

The difference in log partition functions, Vst→G−Vs1→G, can be interpreted as the progress that
the partial sequence has made towards potential goal state, G. Goal state likelihood is maximized
by the choice of goal towards which the most progress has been made.

Algorithm 11.2 employs the result of Theorem 11.1 to compute the posterior goal distribution
from log partition functions.

Algorithm 11.2 Efficient latent goal inference for deterministic dynamics

Require: MDPMMDP, trajectory a1:t, s1:t, set of goals G = {G}, prior distribution P(G).
Ensure: P(G|a1:t, s1:t) posterior distributed according to Equation 11.2.

1: Compute Vs1→sx for all sx via the forward updates of Algorithm 9.4.
2: Compute Vst→sx for all sx via the forward updates of Algorithm 9.4.
3: for all G ∈ G do
4: P(G|a1:t, s1:t)← P(G) eVst→G−Vs1→G

5: Z ← Z + P(G|a1:t, s1:t)
6: end for
7: for all G ∈ G do
8: P(G|a1:t, s1:t)← P(G|a1:t,s1:t)

Z

9: end for



11.2. TRAJECTORY INFERENCE WITH LATENT GOAL STATE 137

Compared to Algorithm 11.1, this approach reduces the required number of policy inferences
from O(|G|) to O(1). This provides a total run time of O(T (|S| + |A|)). In many settings, this
O(|G|) reduction makes latent goal inference practical for large decision problems.

11.2 Trajectory Inference with Latent Goal State
A related important prediction task is that of inferring a future sequence of state and actions when
the goal state is unknown and an initial trajectory, a1:t and s1:t, has been observed. These tasks
build upon the latent goal state inference task by adding trajectory prediction given an inferred
goal state distribution.

11.2.1 Bayesian Formulation
Any probabilistic goal inference technique can be employed. However, we will consider the
Bayesian latent goal inference perspective. We focus specifically on the problem of calculating
the estimated occurrences of some state Sx under the maximum causal entropy distribution with
latent goal state:

Dsx|s1:t,a1:t , EP(st+1:T ,at+1:T |s1:t,a1:t)

[
T∑

τ=t+1

I(sx = sτ )

∣∣∣∣∣s1:t, a1:t

]
. (11.4)

Other related inferences, such as calculating the probability of a continuation trajectory or sub-
trajectory can be realized with small modifications.

A simple approach to this inference task is to expand the definition of the expected state visita-
tions (Equation 11.4) and re-expresses it in terms of the latent goal state, G:

Dsx|s1:t,a1:t =
∑

st+1:T ,at+1:T

(
T∑

τ=t+1

I(sx = sτ )

)
P(at+1:T , st+1:T |a1:t, s1:t) (11.5)

=
∑
G

∑
st+1:T ,at+1:T

(
T∑

τ=t+1

I(sx = sτ )

)
P(st+1:T , at+1:t|at, st, G) P(G|s1:t, a1:t)

=
∑
G

∑
st+1:T ,at+1:T

(
T∑

τ=t+1

I(sx = sτ )

)
P(st+1:T , at+1:t|at, st, G)

P(s1:t, a1:t|G) P(G)∑
G′ P(s1:t, a1:t|G′) P(G′)

The naı̈ve algorithm for latent trajectory inference computes the values of this expansion di-
rectly, as shown in Algorithm 11.3.

The total run time is again either O(|G|T |S||A|) or O(|G|T (|S| + |A|)) depending on the
sparsity of the stochastic transition dynamics.
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Algorithm 11.3 Naı̈ve latent trajectory inference

Require: MDP MMDP, trajectory a1:t, s1:t, set of goals G = {G}, prior distribution P(G), and
state sx.

Ensure: Dsx|s1:t,a1:t computed according to Equation 11.4.
1: Dsx|s1:t,a1:t ← 0
2: for all G ∈ G do
3: Compute πG(a|s) using Algorithm 9.6
4: Compute P(G|a1:t, s1:t) according to Algorithm 11.1
5: Compute Dsx,G under πG(a|s) using Algorithm 9.3
6: Dsx|s1:t,a1:t ← Dsx|s1:t,a1:t +Dsx,G P(G|a1:t, s1:t)
7: end for

11.2.2 Deterministic Dynamics Simplification
As in the latent goal inference task, improved efficiency for the latent trajectory inference task can
be realized in the special case of deterministic dynamics.

Theorem 11.2. Action visitation calculations using final reward values are as follows:

φ(G) = logP (G|a1:t, s1:t)

= Vst→G − Vs1→G + log P(G),

and are equivalent to the goal-probability-weighted visitation calculations:

Dsx|s1:t,a1:t =
∑

st+1:T ,at+1:T

(
T∑

τ=t+1

I(sx = sτ )

)
P(at+1:T , st+1:T |a1:t, s1:t)

of Equation 11.4.

Algorithm 11.4 leverages the property of Theorem 11.2 to efficiently calculate state visitation
frequencies.

The algorithm requires only one additional inference compared with latent goal inference (Al-
gorithm 11.2), maintaining its overall O(1) inferences and total run time of O(T (|S|+ |A|)).

11.3 Discussion
In this chapter, we have extended the inference procedure for maximum causal entropy to settings
where behavior is goal-constrained, but the goal is unknown to the behavior forecaster and must be
inferred. Our efficient optimizations for the deterministic dynamics setting generalizes the linear
compositionality of Todorov (Todorov, 2009a) to a full Bayesian treatment.
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Algorithm 11.4 Efficient latent trajectory inference for deterministic dynamics

Require: MDP MMDP, trajectory a1:t, s1:t, set of goals G = {G}, prior distribution P(G), and
state sx.

Ensure: Dsx|s1:t,a1:t computed according to Equation 11.4
1: Compute Vst→sx for all sx via the forward updates of Algorithm 9.4.
2: Compute {P(G|a1:t, s1:t)} via Algorithm 11.2
3: for all G ∈ G do
4: φ(G)← Vst→G − Vs1→G + log P(G|a1:t, s1:t)
5: end for
6: Compute π(a|s) for final reward φ(s) using Algorithm 9.1
7: Compute Dsx using Algorithm 9.3, policy π(a|s), and initial state st

This problem was previously addressed by Baker et al. (2007) under the Boltzmann action
value distribution of Section 3.2.5. There are major negative computational efficiency implications
for employing that model for goal inference—action values must be computed for each action to all
possible goal locations. In contrast, the optimization technique of this chapter for deterministic dy-
namics requires only a constant number of softmax inferences to obtain posterior goal distributions
and posterior trajectories with unknown goal.



Part IV

Applications
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Overview of Part IV
Part IV of the thesis employs the models of Part II and the algorithms of Part III to behavior
modeling and prediction tasks. We demonstrate that many of the theoretical niceties of the maxi-
mum causal entropy framework translate into predictive and task performance improvements over
existing methods. Additionally, we show that the algorithms enable these prediction tasks to be
performed efficiently.

Chapter 12 applies maximum causal entropy inverse optimal control model to the task of assist-
ing a vehicle’s driver by predicting the driver’s intended future route in a road network with road
characteristics available. We train a maximum causal entropy model using demonstrated global
positioning sensor data and evaluate the predictive capabilities.

Chapter 13 applies the maximum causal entropy inverse optimal control model to the task of
creating more intelligent robot navigation behavior. Our approach predicts future human move-
ment trajectories and plans robot movements that are more complementary to those predictions.

Lastly, Chapter 14 demonstrates the wider range of applicability of the maximum causal en-
tropy approach on synthetic problems in a multi-player Markov game setting, for predicting be-
havior in a partial information diagnostic setting, and for predicting the controls of a device in a
continuous state and action setting.



Chapter 12

Driver Route Preference Modeling

“Americans will put up with anything provided it doesn’t block traffic.”
— Dan Rather (Journalist, 1931–).

A common decision task solved by many individuals on a daily basis is that of selecting a driv-
ing route to travel from point a to point b in a road network. Many different factors influence this
decision task. They range from personal preferences to contextual factors. Global positioning sys-
tem (GPS) technology allows these decision sequences to be passively observed with no additional
interaction burden placed upon the driver. This presents opportunities for:

• Training and evaluating context-dependent decision prediction methods on large-scale se-
quential decision problems.

• Creating useful applications that benefit drivers based on the ability to accurately predict
driver intentions and future behavior.

In this chapter, we apply the maximum causal entropy framework to the problem of modeling
driving route preferences and compare with other methods.

12.1 Motivations
Directly communicating our intentions and preferences to a computational system while driving
is a difficult (and dangerous) task (Steinfeld et al., 1996). However, a computational system that
is aware of that information could be extremely valuable. For example, a navigation application
may be able to warn of unexpected accidents or provide more geographically relevant coffee shop
recommendations if it knew where a driver were going. Instead of relying on drivers to commu-
nicate their intentions, which they often will not or cannot do, we take the opposite perspective;
the navigation system itself should learn to predict the intentions and future behaviors of the driver
based on past observations and the current situation.

142
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12.2 Understanding Route Preferences
Previous research on predicting the route preferences of drivers found that only 35% of the 2,517
routes taken by 102 different drivers were the “fastest” route, as defined by a popular commercial
route planning application (Letchner et al., 2006). Disagreements between route planning software
and empirical routes were attributed to contextual factors, like the time of day, and differences in
personal preferences between drivers.

We conducted a survey of 21 college students who drive regularly in the Pittsburgh area to
help understand the variability of route preference as well as the personal and contextual factors
that influence route choice. We presented each participant with four different maps labeled with
a familiar start and destination point. In each map we labeled a number of different potentially
preferable routes. Participants selected their preferred route from the set of provided routes under
6 different contextual situations for each endpoint pair. The contextual situations we considered
were: early weekday morning, morning rush hour, noon on Saturday, evening rush hour, immedi-
ately after snow fall, and at night.

Table 12.1: Context-dependent route preference survey results for one pair of endpoints

Route
Context A B C D E F G

Early morning 6 6 4 1 2 2 0
Morning rush hour 8 4 5 0 1 2 1

Saturday noon 7 5 4 0 1 2 2
Evening rush hour 8 4 5 0 0 3 1

After snow 7 4 4 3 2 1 0
Midnight 6 4 4 2 1 4 0

The routing problem most familiar to our participants had the most variance of preference. The
number of participants who most preferred each route under each of the contextual situations for
this particular routing problem is shown in Table 12.1. Of the 7 available routes to choose from
(A-G) under 6 different contexts, the route with highest agreement was only preferred by 8 people
(38%). In addition to route choice being dependent on personal preferences, route choice was often
context-dependent. Of the 21 participants, only 6 had route choices that were context-invariant. 11
participants used two different routes depending on the context, and 4 participants employed three
different context-dependent routes.

Our participants were not the only ones in disagreement over the best route for this partic-
ular endpoint pair. We generated route recommendations from four major commercial mapping
and direction services for the same endpoints to compare against. The resulting route recommen-
dations also demonstrated significant variation, though all services are context- and preference-
independent. Google Maps (Google 2008) and Microsoft’s MapPoint (MapPoint 2008) both chose
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route E, while MapQuest (MapQuest 2008) generated route D, and Yahoo! Maps (Yahoo 2008)
provided route A.

Participants additionally provided their preference towards different driving situations on a five-
point Likert scale (see Table 12.2). The scale was defined as: (1) very strong dislike, avoid at all
costs; (2) dislike, sometimes avoid; (3) don’t care, doesn’t affect route choice; (4) like, sometimes
prefer; (5) very strong like, always prefer.

Table 12.2: Situational preference survey results

Preference
Situation 1 2 3 4 5

Interstate/highway 0 0 3 14 4
Excess of speed limit 1 4 5 10 1

Exploring unfamiliar area 1 8 4 7 1
Stuck behind slow driver 8 10 3 0 0

Longer routes with no stops 0 4 3 13 1

While some situations, like driving on the interstate are disliked by no one and being stuck
behind a slow driver are preferred by no one, other situations have a wide range of preference
with only a small number of people expressing indifference. For example, the number of drivers
who prefer routes that explore unfamiliar areas is roughly the same as the number of drivers with
the opposite preference, and while the majority prefer to drive in excess of the speed limit and
take longer routes with no stops, there were a number of others with differing preferences. We
expect that a population covering all ranges of age and driving ability will possess an even larger
preference variance than the more homogeneous participants in our surveys.

The results of our formative research strongly suggest that drivers’ choices of routes vary
greatly and are highly dependent on personal preferences and contextual factors.

12.3 PROCAB: Context-Aware Behavior Modeling
The variability of route preference from person to person and from situation to situation makes
perfectly predicting every route choice for a group of drivers extremely difficult. We adopt the
more modest goal of developing a probabilistic model that assigns as much probability as possible
to the routes the drivers prefer. Some of the variability from personal preference and situation
is explained by incorporating contextual variables within our probabilistic model. The remaining
variability in the probabilistic model stems from influences on route choices that are unobserved
by our model.

Many different assumptions and frameworks can be employed to probabilistically model the
relationships between contextual variables and sequences of actions. The probabilistic reasoning
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from observed context-aware behavior (PROCAB) approach that we employ is based on three
principled techniques previously introduced in this thesis:

• Representing driving route decisions as sequential actions in a parametric-reward Markov
decision process (PRMDP) with parametric costs (Definition 2.10).

• Using inverse optimal control (Section 3.2.1) to recover cost weights for the PRMDP that
explain observed behavior.

• Employing the principle of maximum entropy (Section 5.1) and its causal extension (Sec-
tion 5.2) to find the unique set of cost weights that have the least commitment.

The resulting probabilistic model of behavior is context-dependent, compact, and efficient to
learn and reason about. It can be viewed as a special deterministic case of the maximum causal
entropy approach to inverse optimal control. In this section, we describe the formulation of the
route selection task as a Markov decision process. We then explain how the resulting model is
employed to efficiently reason about context-dependent behavior.

12.3.1 Representing Routes Using a Markov Decision Process
Markov decision processes (MDPs) (Puterman, 1994) provide a natural framework for representing
sequential decision making tasks, such as route planning. The agent takes a sequence of actions
(a ∈ A), which transition the agent between states (s ∈ S) and incur an action-based cost1 (c(a) ∈
R). We employ the PRMDP variant where costs of actions are parameterized (Definition 2.10).
A simple deterministic PRMDP with 8 states and 20 actions representing a small grid-like road
network is shown in Figure 12.1.

Figure 12.1: A simple Markov Decision Process with action costs.

In the optimal control problem, the agent is trying to minimize the sum of costs while reaching
some destination. We call the sequence of actions a path, ζ . For MDPs with parametric costs, a
set of features (fa ∈ Rk) characterize each action, and the cost of the action is a linear function of

1The negation of costs, rewards, are more common in the MDP literature, but less intuitive for our application.
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these features parameterized by a cost weight vector (θ ∈ Rk). Path features, fζ , are the sum of the
features of actions in the path:

∑
a∈ζ fa. The path cost is the sum of action costs (Figure 12.1), or,

equivalently, the cost weight applied to the path features.

cost(ζ|θ) =
∑
a∈ζ

θ>fa = θ>fζ

The advantage of the MDP approach is that the cost weight is a compact set of variables represent-
ing the reasons for preferring different behavior, and if it is assumed that the agent acts sensibly
with regard to incurred costs, the approach generalizes to previously unseen situations.

12.4 Taxi Driver Route Preference Data

Now that we have described our model for probabilistically reasoning from observed context-
aware behavior, we will describe the data we collected to evaluate this model. We recruited 25
Yellow Cab taxi drivers from whom we collected GPS data. Their experience as taxi drivers in
Pittsburgh ranged from 1 month to 40 years. The average and median were 12.9 years and 9 years
respectively. All participants reported living in the area for at least 15 years.

12.4.1 Collected Position Data

We collected location traces from our study participants over a three month period using global
positioning system (GPS) devices that log locations over time. Each participant was provided one
of these devices2, which records a reading roughly every 6 to 10 seconds while in motion. The
data collection yielded a dataset of over 100,000 miles of travel collected from over 3,000 hours
of driving. It covers a large area surrounding our city (Figure 12.2). Note that no map is being
overlaid in this figure. Repeated travel over the same roads leaves the appearance of the road
network itself.

12.4.2 Road Network Representation

The deterministic action-state representation of the corresponding road network contains over
300,000 states (i.e., road segments) and over 900,000 actions (i.e., available transitions between
road segments). There are characteristics describing the speed categorization, functionality cate-
gorization, and lane categorization of roads. Additionally we can use geographic information to
obtain road lengths and turn types at each intersection (e.g., straight, right, left).

2In a few cases where two participants who shared a taxi also shared a GPS logging device
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Figure 12.2: The collected GPS datapoints

12.4.3 Fitting to the Road Network and Segmenting

To address noise in the GPS data, we fit it to the road network using a particle filter (Thrun et al.,
2005). A particle filter simulates a large number of vehicles traversing over the road network,
focusing its attention on particles that best match the GPS readings. A motion model is employed
to simulate the movement of the vehicle and an observation model is employed to express the
relationship between the true location of the vehicle and the GPS reading of the vehicle. We use
a motion model based on the empirical distribution of changes in speed and a Laplace distribution
for our observation model.

Once fitted to the road network, we segmented our GPS traces into distinct trips. Our segmen-
tation is based on time-thresholds. Position readings with a small velocity for a period of time are
considered to be at the end of one trip and the beginning of a new trip. We note that this problem
is particularly difficult for taxi driver data, because these drivers may often stop only long enough
to let out a passenger and this can be difficult to distinguish from stopping at a long stoplight. To
address same of the potential noise, we discard trips that are too short, too noisy, and too cyclic.
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12.5 Modeling Route Preferences
In this section, we describe the features that we employ in the maximum causal entropy prediction
approach. These features serve to model the utilities of different road segments in our predictive
model.

12.5.1 Feature Sets and Context-Awareness
As mentioned, we have characteristics of the road network that describe speed, functionality, lanes,
and turns. These combine to form path-level features that describe a path as numbers of different
turn types along the path and road mileage at different:

• speed categories,

• functionality categories, and

• numbers of lanes.

To form these path features, we combine the comprising road segments’ features for each of their
characteristics weighted by the road segment length or intersection transition count.

Table 12.3: Example feature counts for a driver’s demonstrated route(s)

Feature Value
Highway 3.3 miles

Major Streets 2.0 miles
Local Streets 0.3 miles
Above 55mph 4.0 miles

35-54mph 1.1 miles
25-34 mph 0.5 miles

Below 24mph 0 miles
3+ Lanes 0.5 miles
2 Lanes 3.3 miles
1 Lane 1.8 miles

Feature Value
Hard left turn 1
Soft left turn 3

Soft right turn 5
Hard right turn 0

No turn 25
U-turn 0

The PROCAB approach finds the cost weight for different features so that the model’s feature
counts will match (in expectation) those demonstrated by a driver (e.g., as shown in Table 12.3).
when planning for the same starting point and destination. Additionally, unobserved features may
make certain road segments more or less desirable. To model these unobservable features, we add
unique features associated with each road segment to our model. This allows the cost of each road
segment to vary independently.
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We conducted a survey of our taxi drivers to help identify the main contextual factors that
impact their route choices. The perceived influences (with average response) on a 5-point Likert
Scale ranging from “no influence” (1) to “strong influence” (5) are: Accidents (4.50), Construc-
tion (4.42), Time of Day (4.31), Sporting Events (4.27), and Weather (3.62). We model some of
these influences by adding real-time features to our road segments for Accident, Congestion, and
Closures (Road and Lane) according to traffic data collected every 15 minutes from Yahoo’s traffic
service.

We incorporate sensitivity to time of day and day of week by adding duplicate features that are
only active during certain times of day and days of week. We use morning rush hour, day time,
evening rush hour, evening, and night as our time of day categories, and weekday and weekend as
day of week categories. Using these features, the model tries to not only match the total number
of e.g., interstate miles, but it also tries to match the right number of interstate miles under each
time of day category. For example, if our taxi drivers try to avoid the interstate during rush hour,
the PROCAB model assigns a higher weight to the joint interstate and rush hour feature. It is then
less likely to prefer routes on the interstate during rush hour given that higher weight.

Matching all possible contextual feature counts highly constrains the model’s predictions. In
fact, given enough contextual features, the model may exactly predict the actual demonstrated
behavior and overfit to the training data. We avoid this problem using regularization (for theo-
retical justification, see Section 5.1.4), a technique that relaxes the feature matching constraint by
introducing a penalty term (−

∑
i λiθ

2
i ) to the optimization. This penalty prevents cost weights

corresponding to highly specialized features from becoming large enough to force the model to
perfectly fit observed behavior.

12.5.2 Learned Cost Weights

We learn the cost weights that best explain a set of demonstrated routes using Algorithm 9.6. For
improved efficiency, we also consider only the set of paths residing within some sub-portion of
the road network. The sub-portion is carefully chosen to minimize the approximation loss while
maximizing algorithm speed. Using this approach, we can obtain cost weights for each driver or a
collective cost weight for a group of drivers. In this work, we group the routes gathered from all
25 taxi drivers together and learn a single cost weight using a training set of 80% of those routes.

Figure 12.3 shows how road type and speed categorization influence the road’s cost in our
learned model. The generally monotonic relation between learned costs and these categories of
road type match what we might assume about taxi drivers’ preferences.

12.6 Navigation Applications and Evaluation

We now focus on the applications that our route preference model enables. We evaluate our model
on a number of prediction tasks needed for those applications. We compare the PROCAB model’s
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Figure 12.3: Speed categorization and road type cost factors normalized to seconds assuming 65mph driving
on fastest and largest roads

performance with other state of the art methods on these tasks using the remaining 20% of the taxi
route dataset to evaluate.

12.6.1 Turn Prediction
We first consider the problem of predicting the action at the next intersection given a known final
destination. This problem is important for applications such as automatic turn signaling and fuel
consumption optimization when the destination is either specified by the driver or can be inferred
from his or her normal driving habits. We compare PROCAB’s ability to predict 55,725 decisions
at intersections with multiple options3 to approaches based on Markov models.

We measure the accuracy of each model’s predictions (i.e., percentage of predictions that are
correct) and the average log likelihood, 1

#decisions

∑
decision d log Pmodel(d) of the actual actions in the

model. This latter metric evaluates the model’s ability to probabilistically estimate the distribution
of decisions. Values closer to zero are closer to perfectly predicting the data. As a baseline,
guessing uniformly at random (without U-turns) yields an accuracy of 46.4% and a log likelihood
of −0.781 for our dataset.

Markov Models for Turn Prediction

We implemented two Markov models (introduced in Section 3.1.1) for turn prediction. A Markov
model predicts the next action (or road segment) given some observed conditioning variables. Its
predictions are obtained by considering a set of previously observed decisions at an intersection
that match the conditioning variables. The most common action from that set can be predicted or
the probability of each action can be set in proportion to its frequency in the set4. For example,

3Previous Markov model evaluations include “intersections” with only one available decision, which comprise
95% (Simmons et al., 2006) and 28% (Krumm, 2008) of decisions depending on the road network representation.

4Some chance of selecting previously not taken actions is enabled by smoothing the distribution.
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Liao et al. (2007b) employ the destination and mode of transport for modeling multi-modal trans-
portation routines. We evaluate the Markov models employed by Krumm (2008), which conditions
on the previous K traversed road segments, and Simmons et al. (2006), which conditions on the
route destination and current road segment being traversed.

Table 12.4: K-order Markov model performance

Non-reducing Reducing
History Accuracy Likelihood Accuracy Likelihood
1 edge 85.8% −0.322 85.8% −0.322
2 edge 85.6% −0.321 86.0% −0.319
5 edge 84.8% −0.330 86.2% −0.321
10 edge 83.4% −0.347 86.1% −0.328
20 edge 81.5% −0.367 85.7% −0.337
100 edge 79.3% −0.399 85.1% −0.356

Evaluation results of a K-order Markov model based on road segment histories are shown in
Table 12.4. We consider two variants of the model. For the non-reducing variant, if there are no
previously observed decisions that match the K-sized history, a random guess is made. In the
Reducing variant, instead of guessing randomly when no matching histories are found, the model
tries to match a smaller history size until some matching examples are found. If no matching
histories exist for K = 1 (i.e., no previous experience with this decision), a random guess from the
possible next actions is then made.

In the non-reducing model we notice a performance degradation as the history size, K, in-
creases. The reduction strategy for history matching helps to greatly diminish the degradation
of having a larger history, but we still find a small performance degradation as the history size
increases beyond 5 edges.

Table 12.5: Destination Markov model performance

Destinations Accuracy Likelihood
1x1 grid 85.8% −0.322
2x2 grid 85.1% −0.319
5x5 grid 84.1% −0.327
10x10 grid 83.5% −0.327
40x40 grid 78.6% −0.365
100x100 grid 73.1% −0.416
2000x2000 grid 59.3% −0.551

We present the evaluation of the Markov model conditioned on a known destination in Table
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12.5. We approximate each unique destination with a grid of destination cells, starting from a
single cell (1x1) covering the entire map, all the way up to 4 million cells (2000x2000). As the grid
dimensions grow to infinity, the approach treats each destination as unique. We find empirically
that using finer grid cells actually degrades accuracy, and knowing the destination provides no
advantage over the history-based Markov model for this task.

Both of these results show the inherent problem of data sparsity for directed graphical models
in these types of domains. With an infinite amount of previously observed data available to con-
struct a model, having more information (i.e., a larger history or a finer grid resolution) can never
degrade the model’s performance. However, with finite amounts of data there will often be few or
no examples with matching conditional variables, providing a poor estimate of the true conditional
distribution, which leads to lower performance in applications of the model.

PROCAB Turn Prediction

The PROCAB model predicts turns by reasoning about paths to the destination. Each path has
some probability within the model, and many different paths share the same first actions. An
action’s probability is obtained by summing up all path probabilities that start with that action.
The PROCAB model provides a compact representation over destination, context, and action se-
quences, so the exact destination and rich contextual information can be incorporated without
leading to data sparsity degradations like the Markov model.

Table 12.6: Baseline and PROCAB turn prediction performance

Accuracy Likelihood
Random guess 46.4% −0.781
Best history Markov model 86.2% −0.319
Best destination Markov model 85.8% −0.319
PROCAB (no context) 91.0% −0.240
PROCAB (context) 93.2% −0.201

We summarize the best comparison models’ results for turn prediction and present the PRO-
CAB turn prediction performance in Table 12.6. The PROCAB approach provides a large im-
provement over the other models in both prediction accuracy and log likelihood. Additionally,
incorporating time of day, day of week, and traffic report contextual information provides im-
proved performance. We include this additional contextual information in the remainder of our
experiments.
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12.6.2 Route Prediction
We now focus on route prediction, where the origin and destination of a route are known, but the
route between the two is not and must be predicted. Two important applications of this problem are
route recommendation, where a driver requests a desirable route connecting two specified points,
and unanticipated hazard warning, where an application can predict the driver will encounter some
hazard he is unaware of and provide a warning beforehand so that the hazard can be avoided.

We evaluate the prediction quality based on the amount of matching distance between the
predicted route and the actual route, and the percentage of predictions that match. We consider all
routes that share 90% of distance as matches. This final measure ignores minor route differences,
like those caused by noise in GPS data. We evaluate a previously described Markov model, a
model based on estimated travel time, and our PROCAB model.

Markov Model Route Planning

We employ route planning using the previously described destination-conditioned Markov model
(Simmons et al., 2006). The model recommends the most probable route satisfying origin and
destination constraints.

The results (Table 12.7, Markov) are fairly uniform regardless of the number of grid cells
employed, though there is a subtle degradation with more grid cells.

Travel Time-Based Planning

A number of approaches for vehicle route recommendation are based on estimating the travel time
of each route and recommending the fastest route. Commercial route recommendation systems,
for example, try to provide the fastest route. The Cartel Project (Hull et al., 2006) works to better
estimate the travel times of different road segments in near real-time using fleets of instrumented
vehicles. One approach to route prediction is to assume the driver will also try to take this most
expedient route.

We use the distance and speed categorization of each road segment to estimate travel times, and
then provide route predictions using the fastest route between origin and destination. The results
(Table 12.7, travel time) show a large improvement over the Markov model. We believe this is due
to data sparsity in the Markov model and the travel time model’s ability to generalize to previously
unseen situations (e.g., new origin-destination pairs).

Inverse Optimal Control and PROCAB

Our view of route prediction and recommendation is fundamentally different than those based
solely on travel time estimates. Earlier research (Letchner et al., 2006) and our own study have
shown that there is a great deal of variability in route preference between drivers. Rather than
assume drivers are trying to optimize one particular metric and more accurately estimate that metric
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in the road network, we implicitly learn the metric that the driver is actually trying to optimize in
practice. This allows other factors on route choice, such as fuel efficiency, safety, reduced stress,
and familiarity, to be modeled. While the model does not explicitly understand that one route is
more stressful than another, it does learn to imitate a driver’s avoidance of more stressful routes
and features associated with those routes.

We first evaluate two other IRL models. The first is Maximum Margin Planning (MMP) Ratliff
et al. (2006), which is a model capable of predicting new paths, but incapable of density estimation
(i.e., computing the probability of some demonstrated path). The second model is an action-based
distribution model (Action) that has been employed for Bayesian IRL Ramachandran & Amir
(2007) and hybrid IRL Neu & Szepesvári (2007). The choice of action in any particular state is
assumed to be distributed according to the future expected reward of the best policy after taking the
action, Q∗(S, a). In our setting, this value is simply the optimal path cost to the goal after taking a
particular action.

Table 12.7: Evaluation results for Markov model with various grid sizes, time-based model, the PROCAB
model, and other inverse optimal control approaches

Model Dist. Match 90% Match
Markov (1x1) 62.4% 30.1%
Markov (3x3) 62.5% 30.1%
Markov (5x5) 62.5% 29.9%
Markov (10x10) 62.4% 29.6%
Markov (30x30) 62.2% 29.4%
Travel Time 72.5% 44.0%
Max Margin 75.3% 46.6%
Action 77.3% 50.4%
Action (costs) 77.7% 50.8%
PROCAB 82.6% 61.0%

Inverse optimal control approaches and the PROCAB model specifically provide increased
performance over both the Markov model and the model based on travel time estimates, as shown
in Table 12.7. This is because the inverse optimal control approaches are able to better estimate
the utilities of the road segments than the feature-based travel time estimates. Additionally, the
PROCAB model outperforms the other inverse optimal control approaches. One explanation is
that its capability to address the inherent sub-optimality of demonstrated taxi trajectories is better
than the other approaches.
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12.6.3 Destination Prediction

Finally, we evaluate models for destination prediction. In situations where a driver has not entered
her destination into an in-car navigation system, accurately predicting her destination would be
useful for proactively providing an alternative route. Given the difficulty that users have in entering
destinations (Steinfeld et al., 1996), destination prediction can be particularly useful. It can also
be used in conjunction with our model’s route prediction and turn prediction to deal with settings
where the destination is unknown.

In this setting, a partial route of the driver is observed and the final destination of the driver is
predicted. This application is especially difficult given our set of drivers, who visit a much wider
range of destinations than typical drivers. We compare PROCAB’s ability to predict destination to
two other models, in settings where the set of possible destinations is not fully known beforehand.

We evaluate our models using 1881 withheld routes and allow our model to observe various
amounts of the route from 10% to 90%. The model is provided no knowledge of how much of
the trip has been completed. Each model provides a single point estimate for the location of the
intended destination and we evaluate the distance between the true destination and this predicted
destination in kilometers.

Bayes’ Rule

As discussed in Chapter 11, we employ Bayes’ rule (Equation 12.1) and probabilistic route pref-
erence models that predict route (B) given destination (A) can be employed along with a prior on
destinations, P(A), to obtain a probability distribution over destinations, P(A|B)5:

P(A|B) =
P(B|A) P(A)∑
A′ P(B|A′) P(A′)

∝ P(B|A) P(A). (12.1)

Markov Model Destination Prediction

We first evaluate a destination-conditioned Markov model for predicting destination region in a
grid. The model employs Bayes’ rule to obtain a distribution over cells for the destination based
on the observed partial route. The prior distribution over grid cells is obtained from the empirical
distribution of destinations in the training dataset. The center point of the most probable grid cell
is used as a destination location estimate.

Evaluation results for various grid cell sizes are shown in Table 12.8. We find that as more
of the driver’s route is observed, the destination is more accurately predicted. As with the other
applications of this model, we note that having the most grid cells does not provide the best model
due to data sparsity issues.

5Since the denominator is constant with respect to A, the probability is often expressed as being proportionate to
the numerator.
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Table 12.8: Prediction error of Markov, Predestination, and PROCAB models in kilometers

Percentage of trip observed
Model 10% 20% 40% 60% 80% 90%
Markov model 5x5 9.61 9.24 8.75 8.65 8.34 8.17
Markov model 10x10 9.31 8.50 7.91 7.58 7.09 6.74
Markov model 20x20 9.69 8.99 8.23 7.66 6.94 6.40
Markov model 30x30 10.5 9.94 9.14 8.66 7.95 7.59
Predestination 40x40 MAP 7.98 7.74 6.10 5.42 4.59 4.24
Predestination 40x40 Mean 7.74 7.53 5.77 4.83 4.12 3.79
Predestination 80x80 MAP 11.02 7.26 5.17 4.86 4.21 3.88
Predestination 80x80 Mean 8.69 7.27 5.28 4.46 3.95 3.69
PROCAB MAP 11.18 8.63 6.63 5.44 3.99 3.13
PROCAB Mean 6.70 5.81 5.01 4.70 3.98 3.32

Predestination

The Predestination system (Krumm & Horvitz, 2006) grids the world into a number of cells and
uses the observation that the partially traveled route is usually an efficient path through the grid
to the final destination. Using Bayes’ rule, destinations that are opposite of the direction of travel
have much lower probability than destinations for which the partially traveled route is efficient. Our
implementation employs a prior distribution over destination grid cells conditioned on the starting
location rather than the more detailed original Predestination prior. We consider two variants of
prediction with Predestination. One predicts the center of the most probable cell (i.e., the Maximum
a Posteriori or MAP estimate). The other, Mean, predicts the probabilistic average over cell center
beliefs. We find that Predestination shows significant improvement (Table 12.8) over the Markov
model’s performance.

Figure 12.4: The best Markov model, Predestination, and PROCAB prediction errors
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PROCAB Destination Prediction

In the PROCAB model, destination prediction is also an application of Bayes’ rule. Consider a
partial path, ζA→B from point A to point B. The destination probability is then:

P(dest|ζA→B, θ) ∝ P(ζA→B|dest, θ) P(dest)

∝
∑

ζB→dest
ereward(ζ|θ)∑

ζA→dest
ereward(ζ|θ) P(dest) (12.2)

We use the same prior that depends on the starting point (A) that we employed in our Predestina-
tion implementation. The posterior probabilities are efficiently computed by taking the sums over
paths from points A and B to each possible destination (Equation 12.2) using the forward pass of
Algorithm 1.

Table 12.8 and Figure 12.4 show the accuracy of PROCAB destination prediction compared
with other models. Using averaging is much more beneficial for the PROCAB model, likely be-
cause it is more sensitive to particular road segments than models based on grid cells. We find that
the PROCAB model performs comparably to the Predestination model given a large percentage of
observed trip, and better than the Predestination model when less of the trip is observed. PRO-
CAB’s abilities to learn non-travel time desirability metrics, reason about road segments rather
than grid cells, and incorporate additional contextual information may each contribute to this im-
provement.

12.7 Discussion
In this chapter, we have applied the maximum causal entropy approach to prediction tasks in per-
sonal navigation. We have demonstrated state-of-the-art performance on turn prediction, route pre-
diction, and destination prediction tasks using large-scale data collected from taxi drivers. One of
the main advantages of our approach—personalization to individual drivers driving preferences—
is not well-explored by this approach, since taxi drivers are typically optimizing for travel-time
rather than e.g., avoiding certain types of driving for safety reasons. We expect an even larger
performance improvement over more naı̈ve approaches on prediction tasks for non-professional
drivers.



Chapter 13

Pedestrian Motion Prediction

“Real men usually voluntarily avoid robots”
— Tadokoro et al. (1995)

In this chapter, we apply the maximum causal entropy framework to the problem of predicting
the future movements of a pedestrian within an indoor environment. Accurate predictions in this
task are important for planning intelligent robot movements that appropriately balance the desire
to have the robot efficiently reach its destination with the desire not to hinder peoples’ movements
in the environment.

13.1 Motivations
Determining appropriate robotic actions in environments with moving people is a well-studied (Ta-
dokoro et al., 1995; Bennewitz et al., 2002; Foka & Trahanias, 2002), but often difficult task due to
the uncertainty of each person’s future behavior. Robots should certainly never collide with people
(Petti & Fraichard, 2005), but avoiding collisions alone is often unsatisfactory because the disrup-
tion of almost colliding can be burdensome to people and sub-optimal for robots. Instead, robots
should predict the future locations of people and plan routes that will avoid such hindrances (i.e.,
situations where the person’s natural behavior is disrupted due to a robot’s proximity) while still
efficiently achieving the robot’s objectives. For example, given the origins and target destinations
of the robot and person in Figure 13.1, the robot’s hindrance-minimizing trajectory would take the
longer way around the center obstacle (a table), leaving a clear path for the pedestrian.

One common approach for predicting trajectories is to project the prediction step of a track-
ing filter (Madhavan & Schlenoff, 2003; Schlenoff et al., 2004; Mertz, 2004) forward over time.
For example, a Kalman filter’s (Kalman & Bucy, 1962) future positions are distributed according
to a Gaussian distribution with growing uncertainty and, unfortunately, often high probability for
physically impossible locations (e.g., behind walls, within obstacles). Particle filters (Thrun et al.,
2005) can incorporate more sophisticated constraints and non-Gaussian distributions, but degrade
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Figure 13.1: A hindrance-sensitive robot path planning problem in our experimental environment contain-
ing a person (green square) in the upper right with a previous trajectory (green line) and intended destination
(green X) near a doorway, and a robot (red square) near the secretary desk with its intended destination (red
X) near the person’s starting location. Hindrances are likely if the person and robot both take the distance-
minimizing path to their intended destinations. Laser scanners are denoted with blue boxes.

into random walks of feasible rather than purposeful motion over large time horizons. Closer to
our research are approaches that directly model the policy (Galata et al., 2001). These approaches
assume that previously observed trajectories capture all purposeful behavior, and the only uncer-
tainty involves determining to which previously observed class of trajectories the current behavior
belongs. Models based on mixtures of trajectories and conditioned action distribution modeling
(using hidden Markov models) have been employed (Vasquez Govea et al., 2005). This approach
often suffers from over-fitting to the particular training trajectories and context of those trajecto-
ries. When changes to the environment occur (e.g., rearrangement of the furniture), the model will
confidently predict incorrect trajectories through obstacles.

We assume that people behave similarly to planners, i.e., they efficiently move to reach desti-
nations. In traditional planning, given a cost function mapping environment features to costs, the
optimal trajectory is easily obtained for any endpoints in any environment described using those
features. Our approach learns the cost function that best explains previously observed trajectories.
Unfortunately, traditional planning is prescriptive rather than predictive—the sub-optimality typi-



160 CHAPTER 13. PEDESTRIAN MOTION PREDICTION

Figure 13.2: Images of the kitchen area (left), secretary desk area (center), and lounge area (right) of our
experimental environment.

cally present in observed data is inexplicable to a planner. We employ the principle of maximum
causal entropy developed in this thesis to address the lack of decision uncertainty. Specifically,
we employ the maximum causal entropy inverse optimal control technique of Chapter 6. This
approach yields a soft-maximum version of Markov decision processes (MDP) that accounts for
decision uncertainty. As we show, this soft-max MDP model supports efficient algorithms for
learning the cost function that best explains previous behavior, and for predicting a person’s future
positions.

Importantly, the featured-based cost function that we employ enables generalization. Specifi-
cally, the cost function is a linear combination of a given set of features computed from the envi-
ronment (e.g., obstacles and filters applied to obstacles). Once trained, the cost function applies to
any configuration of these features. Therefore if obstacles in the environment move, the environ-
ment otherwise changes, or we consider an entirely different environment, our model generalizes
to this new setting. We consider this improved generalization to be a major benefit of our approach
over previous techniques.

Predictions of pedestrian trajectories can be naturally employed by a planner with time-
dependent costs so that potential hindrances are penalized. Unfortunately, the increased dimen-
sionality of the planning problem can be prohibitive. Instead, we present a simple, incremental
“constraint generation” planning approach that enables real-time performance. This approach ini-
tially employs a cost map that ignores the predictions of people’s future locations. It then iteratively
plans the robot’s trajectory in the cost map, simulates the person’s trajectory, and adds “cost” to
the cost map based on the probability of hindrance at each location. The time-independent cost
function that this procedure produces accounts for the time-varying predictions, and ultimately
yields a high quality, hindrance-free robot trajectory, while requiring much less computation than
a time-based planner.

We evaluate the quality of our combined prediction and planning system on the trajectories of
people in a lab environment using the opposing objectives of maximizing the robot’s efficiency in
reaching its intended destination and minimizing robot-person hindrances. An inherent trade-off
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Algorithm 13.1 Incorporating predictive pedestrian models via predictive planning

1: PredictivePlanning( σ > 0, α > 0, {Ds,t}, Dthresh )
2: Initialize cost map to prior navigational costs c0(s).
3: for t = 0, . . . , T do
4: Plan under the current cost map.
5: Simulate the plan forward to find points of probable interference with the pedestrian

{(si)}Kti=1 where Ds,t > Dthresh.
6: If K = 0 then break.
7: Add cost to those points
8: ct+1(s) = ct(s) + α

∑Kt
i=1 e

− 1
2σ2
‖s−si‖2 .

9: end for
10: Return the plan through the final cost map.

between these two criteria exists in planning appropriate behavior. We show that for nearly any
chosen trade-off, our prediction model is better for making decisions than an alternate approach.

13.2 Planning with Pedestrian Predictions

13.2.1 Temporal Predictions

To plan appropriately requires predictions of where people will be at different points in time.
More formally, we need predictions of expected future occupancy of each location during the time
windows surrounding fixed intervals: τ, 2τ, ..., T τ . We denote these quantities as Ds,t. In theory,
time can be added to the state space of a Markov decision process and explicitly modeled. In
practice, however, this expansion of the state space significantly increases the time complexity of
inference, making real-time applications based on the time-based model impractical. We instead
consider an alternative approach that is much more tractable.

We assume that a person’s movement will “consume” some cost over a time window t accord-
ing to the normal distribution N(tC0, σ

2
0 + tσ2

t ), where C0, σ2
0 , and σ2

t are learned parameters.
Certainly

∑
tDs,t = Ds, so we simply divide the expected visitation counts among the time inter-

vals according to this probability distribution. We use the cost of the optimal path to each state,
Q∗(s), to estimate the cost incurred in reaching it. The resulting time-dependent occupancy counts
are then:

Ds,it ∝ Dse
−(C0t−Q

∗(s))2

2(σ20+tσ
2
1) . (13.1)

These values are computed using a single execution of Dijkstra’s algorithm (Dijkstra, 1959) in
O(|S| log |S|) time to compute Q∗(.) and then O(|S|T ) time for additional calculation.
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Ideally, to account for predictive models of pedestrian behavior, we should increase the di-
mensionality of the planning problem by augmenting the state of the planner to account for time-
varying costs. Unfortunately, the computational complexity of combinatorial planning is exponen-
tial in the dimension of the planning space, and the added computational burden of this solution
will be prohibitive for many real-time applications.

We therefore propose a novel technique for integrating our time-varying predictions into the
robot’s planner. Algorithm 13.1 details this procedure; it essentially iteratively shapes a time-
independent navigational cost function to remove known points of hindrance. At each iteration,
we run the time-independent planner under the current cost map and simulate forward the resulting
plan in order to predict points at which the robot will likely interfere with the pedestrian. By then
adding cost to those regions of the map we can ensure that subsequent plans will be discouraged
from interfering at those locations. We can further improve the computational gain of this tech-
nique by using efficient replanners such as D* and its variants (Ferguson & Stentz, 2005) in the
inner loop. While this technique, as it reasons only about stationary costs, cannot guarantee the
optimal plan given the time-varying costs, we demonstrate that it produces good robot behavior in
practice that efficiently accounts for the predicted motion of the pedestrian.

By re-running this iterative replanner every 0.25 seconds using updated predictions of pedes-
trian motion, we can achieve intelligent adaptive robot behavior that anticipates where a pedestrian
is heading and maneuvers well in advance to implement efficient avoidance. In practice, we use the
final cost-to-go values of the iteratively constructed cost map to implement a policy that chooses
a good action from a predefined collection of actions. When a plan with sufficiently low prob-
ability of pedestrian hindrance cannot be found, the robot’s speed is varied. Additionally, when
the robot is too close to a pedestrian, all actions that take the robot within a small radius of the
human are removed to avoid potential collisions. Section 13.3.6 presents quantitative experiments
demonstrating the properties of this policy.

13.3 Experimental Evaluation
We now present experiments demonstrating the capabilities of our prediction model and its useful-
ness for planning hindrance-sensitive robot trajectories.

13.3.1 Data Collection
We collected over one month’s worth of data in a lab environment. The environment has three
major areas (Figure 13.1): a kitchen area with a sink, refrigerator, microwave, and coffee maker; a
secretary desk; and a lounge area. We installed four laser range finders in fixed locations around
the lab, as shown in Figure 13.1, and ran a pedestrian tracking algorithm (MacLachlan, 2005).
Trajectories were segmented based on significant stopping time in any location.

From the collected data, we use a subset of 166 trajectories through our experimental envi-
ronment to evaluate our approach. This dataset is shown in Figure 13.3 after post-processing and
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Figure 13.3: Collected trajectory dataset.

being fit to a 490 by 321 cell grid (each cell represented as a single pixel). We employ 50% of
this data as a training set for estimating the parameters of our model and use the remainder for
evaluative purposes.

13.3.2 Learning Feature-Based Cost Functions
We learn a 6-parameter cost function over simple features of the environment, which we argue
is easily transferable to other environments. The first feature is a constant feature for every grid
cell in the environment. The remaining functions are an indicator function for whether an obstacle
exists in a particular grid cell, and four “blurs” of obstacle occupancies, which are shown in Figure
13.4.

Figure 13.4: Four obstacle-blur features for our cost function. Feature values range from low weight (dark
blue) to high weight (dark red).

We then learn the weights for these features that best explain the demonstrated data. The result-
ing cost function for the environment is shown in Figure 13.5. Obstacles in the cost function have
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very high cost, and free space has a low cost that increases near obstacles. Essentially, the predic-
tive model learns that travel through obstacles is extremely expensive and that travel near obstacles
is costly, but not as expensive, relative to travel through open space. Despite the simplicity of the
learned model, it generalizes well and provides useful predictions in practice.

Figure 13.5: Left: The learned cost function in the environment. Right: The prior distribution over destina-
tions learned from the training set.

The prior distribution over destinations is obtained from the set of endpoints in the training set,
and the temporal Gaussian parameters are also learned using the training set.

13.3.3 Stochastic Modeling Experiment
We first consider two examples from our dataset (Figure 13.6) that demonstrate the need for
uncertainty-based modeling.

Figure 13.6: Two trajectory examples (blue) and log occupancy predictions (red).

Both trajectories travel around the table in the center of the environment. However, in the first
example (left), the person takes the lower pathway around the table, and in the second example



13.3. EXPERIMENTAL EVALUATION 165

(right), the person takes the upper pathway despite that the lower pathway around the table has a
lower cost in the learned cost function. In both cases, the path taken is not the shortest path through
the open space that one would obtain using an optimal planner. Our uncertainty-based planning
model handles these two examples appropriately, while a planner would choose one pathway or the
other around the table and, even after smoothing the resulting path into a probability distribution,
tend to get a large fraction of its predictions wrong when the person takes the “other” approximately
equally desirable pathway.

13.3.4 Dynamic Feature Adaptation Experiment

In many environments, the relevant features that influence movement change frequently: furniture
is moved in indoor environments; the locations of parked vehicles are dynamic in urban environ-
ments; and weather conditions influence natural environments with muddy, icy, or dry conditions.
We demonstrate qualitatively that our model of motion is robust to these feature changes.

The left frames of Figure 13.7 show the environment and the path prediction of a person moving
around the table at two different points in time. At the second point of time (bottom left), the
probability of the trajectory leading to the kitchen area or the left hallway is extremely small. In
the right frames of Figure 13.7, an obstacle has been introduced that blocks the direct pathway
through the kitchen area. In this case, the trajectory around the table (bottom right) still has a very
high probability of leading to either the kitchen area or the left hallway. As this example shows,
our approach is robust to changes in the environment such as this one.

13.3.5 Comparative Evaluation

We now compare our model’s ability to predict the future path of a person with a previous approach
for modeling goal-directed trajectories – the variable-length Markov model (VLMM) (Galata et al.,
2001). The VLMM (introduced in Section 3.1.1) estimates the probability of a person’s next cell
transition conditioned on the person’s history of cells visited in the past. It is variable length
because it employs a long history when relevant training data is abundant, and a short history
otherwise.

The results of our experimental evaluation are shown in Figure 13.8. We first note that for the
training set (denoted train), that the trajectory log probability of the VLMM is significantly better
than the plan-based model. However, for the test set, which is the metric we actually care about,
the performance of the VLMM degrades significantly, while the degradation in the plan-based
model is much less extreme. We conclude from this experiment that the VLMM (and similar
directed graphical model approaches) are generally much more difficult to train to generalize well
because their number of parameters is significantly larger than the number of parameters of the
cost function employed in our approach.
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Figure 13.7: Our experimental environment with (right column) and without (left column) an added ob-
stacle (gray, indicated by an arrow) between the kitchen and center table (with white arrow for emphasis).
Predictions of future visitation expectations given a person’s trajectory (white line) in both settings for two
different trajectories. Frequencies range from red (high log expectation) to dark blue (low log expectation).

13.3.6 Integrated Planning Evaluation

We now simulate robot-human hindrance problems to demonstrate the benefit of our trajectory
forecasting approach. We generate 200 hindrance-sensitive planning problems (corresponding to
22 different person trajectories in Figure 13.3) by selecting problems where naı̈ve planning (disre-
garding the pedestrian) causes hindrances. We ignore the causal influence of the robot’s action on
the person’s trajectory, and measure the trade-off between robot efficiency and interference with
the person’s trajectory. Specifically, the average hindrance count measures the average number
of times the policy removed actions due to proximity to a human, and the average execution time
measures the number of time steps needed to reach the goal. The trade-off is controlled by vary-
ing the degree of the visitation frequency threshold used in Algorithm 13.1. The robot trajectory
planner is provided with person location forecasts at 4Hz.

The trade-off curves of planning using our plan-based forecasts and using a straight-forward
particle-based forecasting model on this set of problems are shown in Figure 13.9. For both pre-
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Figure 13.8: Log probability of datasets under the VLMM and our approach.

dictive models, while the execution time varies over a small range, the average hindrance count
decreases by a factor of two. Additionally, as the figure shows, the plan-based forecasting is supe-
rior to the particle-based approach for almost any level of the trade-off.

13.4 Discussion
In this chapter, we have demonstrated the effective use of the maximum causal entropy approach
for improving the navigation decisions of a robot. We employ a sophisticated predictions of the
future positions of pedestrians within the robot’s environment. The path planning employed by our
approach does not employ inverse optimal control to learn the cost for robot navigation; it uses a
fixed cost function to deter movements leading to hindrances.

Recently a complementary maximum entropy inverse optimal control has been employed to
also improve robot navigation among people. This technical approach was extended to address
settings with partial information. Whereas we use the inverse optimal control approach to model
pedestrian behavior and employ the predictions in a cost function, Henry et al. (2010) pose the
problem of path planning for a robot as a supervised problem and extend our maximum entropy
approach to deal with partial observability of a probabilistic model of crowds of pedestrian move-
ments. Combining these two approaches, or learning to adjust the robot’s planner from interaction
with pedestrians, is an important future direction for this line of research.
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Figure 13.9: The trade-off in efficiency versus pedestrian hindrance for varying degrees of hindrance pe-
nalization for planning under both planning-based predictions and particle-based predictions.



Chapter 14

Other Applications

“Life is a sum of all your choices”
— Albert Camus (Philosopher, 1913–1960)

We now present three additional applications with varying complexity of interaction: the first
is interactions of multiple players within a correlated equilibrium, the second is interaction with a
partially observable system, and the third is inverse linear quadratic regulation.

14.1 Maximum Causal Entropy Correlated Equilibria for Markov
Games

Using the theory developed in Chapter 8 for rational behavior in multi-player games, we present
experiments for the robust prediction of rational behavior in stochastic games.

14.1.1 Experimental Setup
Following Zinkevich et al. (2006), we generate random stochastic Markov games according to the
following procedure. For each of |S| states in the Markov game, each of N players has |A| actions
to choose from (for a total of |A|N joint actions). The state transition dynamics, {P(st+1|st, a1:N

t )},
depend on the combination of players’ actions (and state) and are drawn uniformly from the sim-
plex of probabilities. The utility obtained by each player in each state, Utilityi(s), is drawn uni-
formly from {0, 0.1, 0.2, ..., 0.9}. For our experiments, we allow either the number of states to vary
with 2 actions and 3 players; or the number of players to vary for random Markov games with 2
states and 2 actions. In both cases, we employ a discount factor of γ = 0.75. We consider a fixed
time horizon of T = 10 time steps for our experiments.

We generate time-varying strategy profiles for MCECE using Algorithm 9.13 and for the CE-Q
variants using projected sub-gradient optimization. The CE-Q strategies we evaluate are a subset
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of those described in Section 8.1.2. iCEQ maximizes the positive margin of player 1’s utility over
player 2’s utility. We repeat this process for 100 random games for each choice of game parameters
and investigate the properties of the resulting CE strategy profiles.

14.1.2 Evaluation
While the joint entropy of trajectories through a game tends to greatly increase with the number
of states due to increased transition dynamic stochasticity, the uncertainty of the per-state action
uncertainty does not, as shown in Figure 14.1.

Figure 14.1: The (log2) causal entropy measure of the inherent difficulty of predicting the 10 time step
action sequences that are generated by different correlated equilibria solution concepts’ strategy profiles for
varying numbers of states (left) with 2 actions and 3 players, and for varying numbers of players (right) with
2 actions and 2 states. It can be interpreted as the number of binary bits needed on average to represent the
actions of a sampled trajectory under the strategy profile’s distribution.

In fact, actions become slightly more predictable with more states, presumably due to the
availability of more diverse action outcomes that better satisfy multiple players’ objectives. By
contrast, the uncertainty of action sequences increases logarithmically with the size of the action
set, as one might expect. We note that in all cases, the MCECE strategy profile is the most uncertain
(by design), and many of the previously investigated CE-Q solutions are the most deterministic.

The log probability of samples from one strategy profile under another strategy profile (i.e., the
log-loss or cross entropy),

−
∑
a1:N

πA(a1:N) log πB(a1:N), (14.1)

is a common, but harsh metric for evaluating the predictive capabilities of strategy profile B; it
penalizes infinitely for actions with non-zero probability in A, but zero probability in B. Instead,
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Table 14.1: The average cross-strategy-profile predictability for the single time step action distribution from
the initial game state averaged over 100 random 3-player, 2-state, 2-action Markov games. Denoted are the
percentage of strategies that are impossible to represent in the strategy profile (i.e., having zero probability
within the model). and the average number of bits needed to encode the combined action of those that are
impossible to represent. We only count strategies with 0.1% probability or more under the predicted strategy
profile for assessing representation possibility and never penalize more than 16.6 bits (− log2 0.00001) for
any extremely small probability in the predicting strategy profile to avoid any approximation effects—both
to the benefit of CE-Q strategy profiles.

MCECE uCE-Q d1CE-Q d2CE-Q x1CE-Q x2CE-Q iCE-Q Average

MCECE ——–
1.951 1.951 1.967 2.010 1.992 1.974 1.974
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

uCE-Q
3.377

——–
2.039 1.888 2.647 3.072 2.444 2.578

22.3% 4.5% 5.7% 21.2% 20.8% 13.8% 14.7%

d1CE-Q
3.442 1.866

——–
2.511 3.328 2.321 1.798 2.544

18.9% 3.5% 5.6% 18.8% 17.6% 9.8% 12.4%

d2CE-Q
3.462 1.872 2.536

——–
2.576 3.489 3.060 2.833

17.0% 1.7% 3.3% 15.6% 17.2% 12.1% 11.2%

x1CE-Q
2.897 2.472 2.798 2.450

——–
2.375 2.764 2.626

0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x2CE-Q
2.877 2.605 2.251 2.905 2.373

——–
2.116 2.521

0.5% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1%

iCE-Q
3.378 2.279 1.902 2.989 3.116 2.276

——–
2.657

5.3% 1.9% 0.0% 2.5% 5.1% 4.2% 3.2%

we extend the representational interpretation of the log probability and assess what fraction of
samples in A are possible to represent in B and of the ones possible to represent, the average
number of bits required to do so, −

∑
a1:N :πB(a1:N )>0 πA(a1:N) log πB(a1:N)).

The results of this comparison across strategy profiles is shown in Table 14.1 (for 3 players) and
Table 14.2 (for 4 players). We note that in some cases one C-EQ strategy profile may better predict
another than the MCECE strategy profile when their objectives are closely aligned. For example,
the x2CE-Q tends to predict iCE-Q fairly accurately since both are punishing player 2 to some
degree. However, overall the MCECE solution profile provides a much more robust prediction of
other strategy profiles on average and full support of all possible action combinations.

14.2 Inverse Diagnostics
Many important problems can be framed as interaction with a partially observable stochastic sys-
tem. In medical diagnosis, for example, tests are conducted, the results of which may lead to
additional tests to narrow down probable conditions or diseases and to prescribe treatments, which
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Table 14.2: The average cross-strategy-profile single action predictability for 4 players and otherwise the
identical experimental setting as Table 14.1.

MCECE uCE-Q d1CE-Q d2CE-Q x1CE-Q x2CE-Q iCE-Q Average

MCECE ——–
3.451 3.468 3.476 3.518 3.509 3.475 3.483
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

uCE-Q
7.308

——–
3.955 3.652 6.495 6.814 5.591 5.636

25.8% 9.4% 8.5% 21.8% 22.0% 17.9% 17.6%

d1CE-Q
6.914 3.831

——–
4.746 7.566 5.536 3.895 5.415

22.5% 5.8% 10.2% 21.2% 17.6% 11.2% 14.8%

d2CE-Q
7.109 3.408 4.767

——–
5.643 7.651 6.976 5.926

23.1% 6.4% 10.7% 18.3% 21.5% 19.7% 16.6%

x1CE-Q
4.603 4.300 5.000 3.849

——–
3.918 4.372 4.340

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x2CE-Q
4.633 4.401 3.917 4.986 3.944

——–
3.171 4.175

0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

iCE-Q
6.380 5.070 3.884 6.501 5.991 4.311

——–
5.356

11.5% 5.0% 2.8% 8.0% 8.7% 5.5% 6.9%

are adjusted based on patient response. Motivated by the objective of learning good diagnosis
policies from experts, we investigate the Inverse Diagnostics problem of modeling interaction with
partially observed systems.

14.2.1 MaxCausalEnt ID Formulation

In this setting, the partially observed set of variables (related by a Bayesian Network in this appli-
cation) serves as side information. Inference over the latent variables from this set is required to
infer decision probabilities. Additionally, decisions can influence the variables, causally changing
their values, and the implications of these interventions must also be assessed. Vectors of features
are associated with observing or manipulating each variable, and we employ our MaxCausalEnt
ID model with these features as value nodes as shown in Figure 14.21.

14.2.2 Fault Diagnosis Experiments

We apply our inverse diagnostics approach to the vehicle fault detection Bayesian Network (Heck-
erman et al., 1994) shown in Figure 14.3. Apart from the relationship between Battery Age and
Battery (exponentially increasing probability of failure with battery age), the remaining condi-

1An objective function over the Bayesian Network variables can also be incorporated into a value node at each
time-step and/or at the end of the sequence, as shown.



14.2. INVERSE DIAGNOSTICS 173

Figure 14.2: The MaxCausalEnt ID representation of the diagnostic problem.

Figure 14.3: The vehicle fault detection Bayesian Network.

tional probability distributions are deterministic-or’s (i.e., failure in any parent causes a failure in
the child). The remaining (conditional) probabilities is shown in Table 14.3.

Table 14.3: Probability distributions governing random variables in the vehicle fault diagnosis Bayesian
network of the inverse diagnostics experiment.

P (battery age = x) =
1

5
for x = 0, 1, 2, 3, 4

P (starter failure) = 0.005

P (fuel pump failure) = 0.002

P (fuel failure) = 0.006

P (spark plug failure) = 0.003

P (battery failure|battery age) = 1− e−.01∗battery age

Each variable in the network can be tested, revealing whether it is operational (or the battery’s
age), and the Battery, Fuel, Fuel Line, Fuel Pump, Spark Plugs, and Starter can each be replaced
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(making it and potentially its descendants operational). Replacements and tests are both character-
ized action features: a cost to the vehicle owner, a profit for the mechanic, and a time requirement.
Ideally a sequence of tests and replacements would minimize the expected cost to the vehicle
owner, but an over-booked mechanic might instead choose to minimize the total repair time so that
other vehicles can be serviced, and a less ethical mechanic might seek to optimize personal profit.

Table 14.4: Replacement and observation features for variables of the vehicle fault diagnosis Bayesian
network. The first feature corresponds to an approximate cost to the vehicle owner. The second feature
corresponds to an approximate profit to the mechanic. The final feature corresponds to a time requirement.

Variable Replace Features Observation Features
Battery Age [5.0, 5.0, 0.0]

Starter [120.0, 100.0, 40.0] [60.0, 30.0, 20.0]
Fuel Pump [150.0, 120.0, 30.0] [70.0, 40.0, 20.0]
Fuel Line [50.0, 30.0, 15.0] [40.0, 20.0, 15.0]

Fuel [30.0, 25.0, 10.0] [15.0, 10.0, 5.0]
Batter [140.0, 120.0, 20.0] [50.0, 30.0, 20.0]

Engine Turns Over [5.0, 5.0, 3.0]
Fuel Subsystem [10.0, 10.0, 5.0]

Fuel Gauge [3.0, 3.0, 2.0]
Lights [2.0, 2.0, 2.0]

Spark Plugs [90.0, 60.0, 40.0] [50.0, 30.0, 20.0]
Engine Starts [5.0, 5.0, 3.0]

To generate a dataset of observations and replacements, a stochastic policy is obtained by
adding Gaussian noise, εs,a, to each action’s future expected value, Q∗(s, a), under the optimal
policy for a fixed set of weights and selecting the highest noisy-valued action, Q∗(s, a) + εs,a,
to execute at each time-step. Different vehicle failure samples are generated from the Bayesian
Network conditioned on the vehicle’s engine failing to start, and the stochastic policy is sampled
until the vehicle is operational.

We evaluate the prediction error rate and log-loss of our model in Figure 14.4. We compare
against a Markov Model that ignores the underlying mechanisms for decision making and sim-
ply predicts behavior in proportion to the frequency it has previously been observed (with small
pseudo-count priors). Our approach consistently outperforms the Markov Model even with an or-
der of magnitude less training data. The classification error rate quickly reaches the limit implied
by the inherent stochasticity of the data generation process.
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Figure 14.4: Error rate and log-loss of the MaxCausalEnt ID model and Markov Model for diagnosis action
prediction as training set size (log-scale) increases.

14.3 Helicopter Control
We demonstrate the MaxCausalEnt approach to inverse stochastic optimal control on the prob-
lem of building a controller for a learned helicopter model (Abbeel et al., 2007) with linearized
stochastic dynamics. Most existing approaches to inverse optimal control with stochastic dynam-
ics (Ratliff et al., 2006; Abbeel & Ng, 2004) have both practical and theoretical difficulties in the
presence of imperfect demonstrated behavior, leading to unstable controllers due to large changes
in cost weights (Abbeel et al., 2007) or poor predictive accuracy (Ratliff et al., 2006).

14.3.1 Experimental Setup

To test the robustness of our approach, we generated five 100 timestep sub-optimal training tra-
jectories by noisily sampling actions from an optimal LQR controlled designed for hovering using
the linearized stochastic simulator of Abbeel et al. (2007). It simulates a XCell Tempest helicopter
using four continuous control variables: elevator, aileron, rudder, main rotor; and a 21 dimensional
state space: position, orientation, velocity, angular rate, previous controls, and change in previous
controls.

14.3.2 Evaluation

We contrast performance between maximum margin planning (Ratliff et al., 2006) (labeled IN-
VOPT in Figure 14.5) and MaxCausalEnt trained using demonstrated trajectories. Performance
was evaluated by generating trajectories from the optimal controller of each model and measuring
their cost under the true cost function used to generate the original sub-optimal demonstration tra-
jectories. The InvOpt model performs poorly because there is no optimal trajectory for any cost
function that matches demonstrated features.

On the other hand, the function learned by MaxCausalEnt IOC not only induces the same
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Figure 14.5: Left: An example sub-optimal helicopter trajectory attempting to hover around the origin point.
Right: The average cost under the original cost function of: (1) demonstrated trajectories; (2) the optimal
controller using the inverse optimal control model; and (3) the optimal controller using the maximum causal
entropy model.

feature counts– and hence equal cost on the unknown cost function– under the learned probabilistic
policy, but because of the quadratic cost function its learned controller’s optimal policy is always
at least as good as the demonstrated behavior on the original, unknown cost function. Figure 14.5
demonstrates this; the resulting learned optimal policy outperforms the demonstrated behavior on
the original, unknown cost function. In this sense, MaxCausalEnt provides a rigorous approach to
learning a cost function for such stochastic optimal control problems: it is both predictive and can
guarantee good performance of the learned controller.

14.4 Discussion
In this chapter, we demonstrated three applications of the maximum causal entropy approach that
extend beyond discrete-valued inverse optimal control. Specifically, we investigated the setting of
multiple rational agents, the setting with additional latent information, and the setting of contin-
uous control. These applications help to illustrate the versatility of the maximum causal entropy
principle.
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Conclusions
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Chapter 15

Open Problems

“Science never solves a problem without creating ten more.”
— George Bernard Shaw (Playwright, 1856–1950).

Throughout this thesis, we have made numerous assumptions about the structural relation-
ships among variables and the conditional probability distributions from which side information
is drawn. Specifically, we have assumed that the structure and the probability distributions are
known—both to the agent acting to generate behavior sequences, and to the observer trying to
model and predict the agent’s future behavior—, that certain restrictions exist on the influence of
decisions and side information on one another, and that deviation regret constrains the distribution
of actions. Many possible extensions to the presented work are based on relaxing these assump-
tions in various ways.

15.1 Structure Learning and Perception
Throughout this thesis, we have assumed that the dynamics governing side information and which
side information influences which decisions are both known. However, in many problem settings,
only observed data from a sequential interaction with a stochastic process is available, and learning
both the structural dependencies between variables and probability distributions relating observed
data is a necessary task. Importantly, in the maximum causal entropy model a sequence of vari-
ables causally conditioned on another sequence of variables is distributed very differently than a
sequence statically conditioned on another sequence.

Learning both the structure and distributions relating side information and decision variables is
an important direction for future research. In the context of decision making, this is a problem of
modeling the perception process of the decision maker. A number of important questions follow:

• What classes of structures are indistinguishable from one another given only observational
data?
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• How efficiently in terms of sample sizes can distinguishable classes of structures be reliably
learned from observational data drawn from a distribution and structure that is in the class of
the maximum causal entropy framework?

• How computationally efficiently can maximum causal entropy structure learning be per-
formed?

• What approximation techniques can be employed to make maximum causal entropy structure
learning more efficient?

• How can theories of perception be incorporated into the structure learning process?

Assuming that the agent knows the structure and distribution of side information variables (but
the learner does not) provides a useful starting point. Relaxing that assumption of agent knowledge
of side information probabilities (and even structure) leads to interesting areas of new research
where the maximum causal entropy approach is likely to serve a foundational role.

15.2 Predictive Strategy Profiles

For multi-player settings, existing equilibria solution concepts are largely defined for prescriptive
settings where the actions of an autonomous player (or players) needs to be obtained and em-
ployed within a game setting. For predictive settings, most equilibria solution concepts are under-
specified—typically they allow multiple solutions and no probabilistic bias over the set of valid
equilibria to employ as a probability distribution—making them inapplicable without additional
assumptions. Additionally, in numerous experiments (McKelvey & Palfrey, 1992), the actions of
human game players often do not follow any rational equilibria solution that game theory pre-
scribes.

Predictive models of players’ strategies relax the perfect rationality assumptions of game theory
to allow for bounded rationality, error-prone action selection, and ulterior motives beyond the game
payoff.

Definition 15.1. In a quantal response equilibrium (McKelvey & Palfrey, 1995, 1998), players
actions are noisily distributed based on the expected utility of the action, typically according to a
logit response function. For normal form games, player i’s action choice is distributed according
to:

P(ai) =
eλEP(a)[Utilityi(a)|ai]∑
a′i
eλEP(a)[Utilityi(a)|a′i]

. (15.1)
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In the extension to Markov games, the future expected utility is computed based on the assumption
that the quantal response equilibrium is also played in the future:

P(ati) =
eλEP(at)[EUtilityti(at)|ati]∑
ati
′ eλEP(at)[EUtilityi(at)|ati

′]
. (15.2)

A desirable quality of the quantal response equilibrium (Definition 15.1) is that the parameter λ
controls the rationality of the distribution. Namely, as λ goes to infinity, the distribution converges
to a Nash equilibrium.

An alternative model of strategy profiles more explicitly models the bounded rationality of
human players.

Definition 15.2. In a level-k model of behavior (Costa-Gomes et al., 2001), a level-k agent plays
the optimal response strategy profile against a level-(k−1) player. A level-0 player chooses actions
uniformly at random.

Recent quantitative evaluations (Wright & Leyton-Brown, 2010) have shown that the com-
bination of these two approaches (Stahl & Wilson, 1995) with the model learned and evaluated
through a cross-validation procedure provide significantly more accurate predictions than either
model alone.

Establishing some form of maximum entropy duality of these existing approaches and general-
izing to the setting where features rather than payoffs are known are both important open problems.
The formulation, however, must be nuanced; simply enforcing the feature-matching constraints of
inverse optimal control can often lead to predicted behaviors that are highly random and only
weakly adversarial when given behavior that is highly purposeful and very competitive.

15.3 Closing the Prediction-Intervention-Feedback Loop
Creating a closed-loop assistive system that predicts the intentions of human behaviors, executes
interventions on behalf of its users, and assesses feedback from the user to self-improve the entire
system is the ultimate application goal for the research of this thesis. The predictive techniques,
algorithms, and applications described in earlier chapters are one important component of realizing
such a system. While we believe that accurate behavior predictions are crucial for selecting appro-
priate interventions, learning the context-dependent appropriateness of the possible interventions
in terms of those behavior predictions is another important learning problem.

The assistive navigation system application provides a natural testbed for creating closed-loop
interventional feedback system. Many additional interesting settings exist for a such a closed-loop
system. If an end-task utility is defined according to a known measure, reinforcement learning
techniques can be employed to find intervention strategy that best improve end-task utility. Im-
portantly, the adaptation of the user to the intervention strategy is an important aspect to consider.
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When task-level feedback is not as explicit, user adaptation alone can be leveraged to understand
which intervention strategies are desirable to the user.



Chapter 16

Conclusions and Discussion

“Essentially, all models are wrong, but some are useful.”
— George Box (Statistician, 1919–).

We conclude by summarizing and discussing the theoretical and empirical arguments we have
presented in this thesis in support of its central claim:

The principle of maximum causal entropy creates probabilistic models of decision
making that are purposeful, adaptive, and/or rational, providing more accurate
prediction of human behavior.

16.1 Matching Purposeful Characteristics
The premise of our approach has been that many human behaviors are purposeful and that there
are measurable characteristics that differentiate purposeful behavior from non-purposeful behavior.
We see this in the vehicle navigation modeling application in the form of destination and road
characteristics that define the desirability (or lack thereof) of different road segments of the road
network. In the pedestrian trajectory prediction work, we saw this in the avoidance of obstacles
and areas near obstacles. Statistical models capable of matching those purposeful characteristics
are desired, but they must be capable of generalizing beyond the behavior previously seen.

16.2 Information-Theoretic Formulation
The principle of maximum causal entropy provides the important predictive guarantees of minimax
log-loss for prediction in the sequential setting. This establishes it as a principled approach for
modeling sequential data in a range of decision, control, and game settings where the future is not
completely controllable. For this guarantee to be of practical importance, the constraints employed
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within the maximum causal entropy framework must represent the essence of underlying factors
influencing the distribution. In the context of behavior modeling, we have focused on constraints
on the terminal or goal characteristics of behavior sequences and basis on functions describing
states and actions that can be interpreted as utility or cost potential components.

16.3 Inference as Softened Optimal Control
To support the purposeful viewpoint, we have established a close algorithmic connection relating
inference in our proposed maximum causal entropy framework to optimal behavior in decision
theory, planning, and control. Inference in the maximum causal entropy framework can then be
viewed as a softened version of the mechanisms employed for optimal decision making. We con-
sider this connection to be significant in demonstrating that the models we have developed are
inherently biased towards purposeful behavior. Much of the learning problem is then learning the
utility function (i.e., cost or reward) that guides behavior sequences in this relaxed analogy of the
optimal decision making model.

16.4 Applications Lending Empirical Support
We have evaluated the maximum causal entropy approach on prediction tasks in personal naviga-
tion, pedestrian movement, assistive control, and multiplayer stochastic games to demonstrate its
performance in comparison to existing approaches. We have shown improved performance over
existing state-of-the-art techniques for:

• Predicting route selections compared with directed graphical models in the vehicle naviga-
tion domain.

• Predicting pedestrian movements compared with filtering-based approaches in the hindrance-
sensitive robot planning work.

• Robustly predicting correlated equilibria strategy profiles in Markov games settings.

Additionally, we have shown simple experiments demonstrating the benefits of the approach on
the inverse diagnostics setting where side information is latent and on the inverse linear quadratic
regulation setting with continuous states and actions.



Appendix A

Proofs

A.1 Chapter 4 Proofs
Theorem 4.22. Generally, the conditional and causal entropies are related as:

H(Y|X) ≤ H(YT ||XT ) ≤ H(Y) ≤ H(Y,X), (A.1)

since additional conditioning can never increase entropy. In the special case that P(XT ||YT−1) is
a deterministic function, then:

H(YT ||XT ) = H(Y) = H(Y,X). (A.2)

Proof. If P(XT ||YT−1) is deterministic, H(XT ||YT−1) = 0. By definition, H(Y,X) =
H(YT ||XT ) +H(XT ||YT−1), and since H(XT ||YT ) = 0, then H(Y,X) = H(YT ||XT ).

A.2 Chapter 5 Proofs
Theorem 5.8. The general maximum causal entropy optimization (Equation 5.6)—or, more cor-
rectly, minimizing its negation,

argmin
{P(Yt|X1:t,Y1:t−1)}

−H(YT ||XT ) (A.3)

such that: EP(X,Y)[F(X,Y)] = ẼP(X,Y)[F(X,Y)];

∀X1:t,Y1:t−1

∑
Yt

P(Yt|X1:t,Y1:t−1) = 1
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—is a convex optimization. Further, when a feasible solution exists on the relative interior of the
constraints, strong duality holds.

Proof. While we assumed the form of P(YT ||XT ) as a function of {P(Yt|X1:t,Y1:t−1)} in Equation
A.3, our optimization can be equivalently posed as a function of {P(YT ||XT )} with linear con-
straints forcing normalization that prevents acausal influence of future side information, as shown:

argmin
{P(YT ||XT )}

−H(YT ||XT ) (A.4)

such that: EP(X,Y)[fk(X,Y)] = EP̃(X,Y)[fk(X,Y)] for k = 1, ..., K;

∀X

∑
Y

P(YT ||XT ) = 1;

and: ∀X,X̂:X1:τ=X̂1:τ

∑
Yτ+1:T

P(Y||X) =
∑

Yτ+1:T

P(Y||X̂)

Starting with xi log xi, which is a known convex function for xi > 0 (since ∂2

∂x2i
xi log xi = 1

xi
≥

0), taking a positive linear combination of many of these terms preserves convexity, and yields:∑
iCixi log xi. −H(YT ||XT ) follows this form, and is thus convex. All the constraints of Equation

A.4 are linear functions of P(YT ||XT ).

Theorem 5.9. Strong duality holds for the maximum causal entropy optimization.

Proof. Strong duality is guaranteed if Slater’s condition holds (Boyd & Vandenberghe, 2004).
Slater’s condition applied to this optimization is: There exists {P(YT ||XT )} that is strictly feasible
on the probabilistic inequality constraints. This condition fails when:

1. Matching features is infeasible; or

2. The distribution is singular and does not have full support.

As long as the model and empirical data are drawn from the same distribution of P(XT ||YT−1),
condition (1) is satisfied. Condition (2) corresponds to an extreme point. It can be avoided by
loosening the constraints by ε to guarantee full support. Since this extreme point corresponds
to perfectly predictable behavior, a deterministic behavior distribution will be able to match the
constraints without requiring slack.

Theorem 5.10. The maximum causal entropy distribution minimizes the worst case prediction
log-loss,

inf
P(Y||X)

sup
P̃(YT ||XT )

−
∑
Y,X

P̃(Y,X) log P(YT ||XT ),
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given that P̃(Y,X) = P̃(YT ||XT ) P(XT ||YT−1) and feature expectations EP̃(X,Y)[F(X,Y)] when X
variables are sequentially revealed.

Proof (sketch). The theorem is essentially a special case of Grünwald & Dawid’s generalized
maximum entropy–robust Bayes duality (2003). We provide the basic outline for the maximin and
minimax interpretations of maximum causal entropy and refer the reader to Grünwald & Dawid’s
paper for additional details.

The causal entropy can be defined as: H(P̃(Y||X)) = infP(Y||X) EP̃(X,Y)[− log P(Y||X)].
Choosing P̃(Y||X) to maximize this is then: supP̃(Y||X) infP(Y||X) EP̃(X,Y)[− log P(Y||X)]. As a
consequence of convex duality, this final expression is equivalent to the worst-case log-loss of the
theorem (by swapping maximization and minimization ordering).

A.3 Chapter 6 Proofs
Theorem 6.2. The distribution satisfying the maximum causal entropy constrained optimization
(Equation A.3) is recursively defined as:

Pθ(Yt|X1:t,Y1:t−1) =
ZYt|X1:t,Y1:t−1,θ

ZX1:t,Y1:t−1,θ

(A.5)

logZX1:t,Y1:t−1,θ = log
∑
Yt

ZYt|X1:t,Y1:t−1,θ = softmax
Yt

(∑
Xt+1

P(Xt+1|X1:t,Y1:t) logZX1:t+1,Y1:t,θ

)
ZYt|X1:t,Y1:t−1,θ = e

∑
Xt+1

P(Xt+1|X1:t,Y1:t) logZX1:t+1,Y1:t,θ

ZX1:T ,Y1:T−1,θ = eθ
>F(X,Y),

where softmaxx f(x) , log
∑

x e
f(x).

Proof. Differentiating the Lagrangian of the maximum causal entropy optimization (Equation
A.3),

Λ(P, θ) = H(YT ||XT ) +
∑
k

θk

(
EP(X,Y)[Fk(X,Y)]− EP̃(X,Y)[Fk(X,Y)]

)
+

∑
t,X1:t,Y1:t−1

CX1:t,Y1:t−1

(∑
Yt

P(Yt|X1:t,Y1:t−1)− 1

)
, (A.6)

we have:

∇{P(Yt|X1:t,Y1:t−1)}Λ(P, θ) =

{
CX1:t,Y1:t−1 − Pθ(X1:t,Y1:t−1) (A.7)

( T∑
τ=t

EP(X,Y)[log Pθ(Yτ |X1:τ ,Y1:τ−1)|X1:t,Y1:t] +
∑
k

θk EP(X,Y)[Fk(X,Y)|X1:t,Y1:t]
)}
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Note that at this point we can pull the log Pθ(Yt|X1:t,Y1:t−1) term back out of the expectation,
equate the gradient to 0, and solve, yielding:

Pθ(Yt|X1:t,Y1:t−1) ∝ eθ
> EP(X,Y)[F(X,Y)|X1:t,Y1:t]−

∑
τ=t+1 EP(X,Y)[log Pθ(Yτ |X1:τ ,Y1:τ−1)|X1:t,Y1:t]. (A.8)

Using this recursive definition, we go further to prove the operational recurrence of the theorem.
We will ignore the CX1:t,Y1:t−1 term for now, ultimately setting it to the remaining normalization
term after factoring out the Pθ(X1:t,Y1:t−1) multiplier and substituting our recursive definitions.

−
T∑
τ=t

EP(X,Y)

[
log Pθ(Yτ |X1:τ ,Y1:τ−1)

∣∣∣X1:t,Y1:t

]
+ θ> EP(X,Y)

[
F(X,Y)

∣∣∣X1:t,Y1:t

]
=−

T−1∑
τ=t

EP(X,Y)

[ ∑
Xτ+1

Pθ(Xτ+1|X1:τ ,Y1:τ ) logZθ(X1:τ+1,Y1:τ )− logZθ(X1:τ ,Y1:τ−1)
∣∣∣X1:t,Y1:t

]
− EP(X,Y)[θ

>F(X,Y)− logZθ(X1:T ,Y1:T−1)|X1:t,Y1:t] + θ> EP(X,Y)

[
F(X,Y)

∣∣∣X1:t,Y1:t

]
=−

T∑
τ=t

EP(X,Y)

[
logZθ(X1:τ+1,Y1:τ )− logZθ(X1:τ ,Y1:τ−1)

∣∣∣X1:t,Y1:t

]
− EP(X,Y)[logZθ(X1:T ,Y1:T−1|X1:t,Y1:t)]

= logZθ(X1:t,Y1:t−1)

Thus setting CX1:t,Y1:t−1 to negate this remaining term, which is also only a function of X1:t and
Y1:t−1 (and, importantly, not Yt), completes the proof.

Lemma A.1. H(YT ||XT ) = −EP(X,Y)[θ
>F(X,Y)] + logZ where logZ =

∑
X1

logZX1
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Proof.

H(YT ||XT ) =
T∑
t=1

H(Yt|X1:t,Y1:t−1)

=
T∑
t=1

EP(X1:t,Y1:t) [− log P(Yt|X1:t,Y1:t−1)]

=
T−1∑
t=1

EP(X1:t,Y1:t)

−∑
Xt+1

P(Xt+1|X1:t,Y1:t) log
∑
Yt+1

ZYt+1|X1:t+1,Y1:t + log
∑
Yt

ZYt|X1:t,Y1:t−1


+ EP(X1:T ,Y1:T )

[
−F(X,Y) + log

∑
YT

ZYt|X1:t,Y1:t−1

]

=
T−1∑
t=1

EP(X1:t+1,Y1:t)

− log
∑
Yt+1

ZYt+1|X1:t+1,Y1:t

+ EP(X1:t,Y1:t−1)

[
log
∑
Yt

ZYt|X1:t,Y1:t−1

]

+ EP(X1:T ,Y1:T )

[
−θ>F(X,Y)

]
+ EP(X1:T ,Y1:T−1)

[
log
∑
YT

ZYT |X1:T ,Y1:T−1

]
= −EP(X,Y)

[
θ>F(X,Y)

]
+ logZ

Lemma A.2. ∇θ logZ = EP(X,Y)[F(X,Y)].

Proof. This is the special case of the more general conditional result:

∇θ logZ(Yt|X1:t,Y1:t−1) =
∑
Xt+1

P(Xt+1|X1:t,Y1:t)∇θ logZ(X1:t+1,Y1:t)

=
∑
Xt+1

P(Xt+1|X1:t,Y1:t)

∑
Yt+1

Zθ(Yt+1|X1:t+1,Y1:t)∇θ logZθ(Yt|X1:t,Y1:t−1)

Zθ(X1:t+1,Y1:t)

=
∑
Xt+1

P(Xt+1|X1:t,Y1:t)
∑
Yt+1

P(Yt+1|X1:t+1,Y1:t)∇θ logZθ(Yt|X1:t+1,Y1:t)


= EP(Xt+1,Yt+1) [∇θ logZθ(Yt+1|X1:t+1,Y1:t)|X1:t,Y1:t] = EP(X,Y)[F(X,Y)|X1:t,Y1:t]

The final step can be seen by “pushing” the recursion to the final time-step base case.

Lemma A.3. The gradient of the dual of the causally conditioned entropy optimization is(
EP(X,Y)[F(X,Y)] − EP̃(X,Y)[F(X,Y)]

)
, which is the difference between the expected feature vec-

tor under the probabilistic model and the empirical feature vector given the complete policy,
{P(Yt|X1:t,Y1:t−1)}.
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Proof. Starting with the Lagrangian, we apply Lemma A.1 then after differentiation apply Lemma
A.2.

Λ(θ) = −EP(X,Y)[θ
>F(X,Y)] + logZ − θ>

(
EP(X,Y)[F(X,Y)]− EP̃(X,Y)[F(X,Y)]

)
= logZ − θ> EP̃(X,Y)[F(X,Y)]

∇θΛ(θ) = ∇θ logZ − EP̃(X,Y)[F(X,Y)]

= EP(X,Y)[F(X,Y)]− EP̃(X,Y)[F(X,Y)]

Theorem 6.4. Maximizing the causal entropy, H(AT ||ST ) while constrained to match (in expec-
tation) empirical feature functions, EP̃(S,A)[F(S,A)], is equivalent to maximum causal likelihood
estimation of θ given data set {Ã, S̃} under the conditional probability distribution of Equation
6.3:

θ̂ = argmax
θ

log
∏
i

Pθ(Ã
(i)||S̃(i)

) (A.9)

= argmax
θ

∑
i,t

log P(Ã
(i)
t |S̃

(i)

1:t, Ã
(i)

1:t−1),

where (i) indexes the training examples.

Proof. We re-express Equation A.9 as follows:∑
i,t

log P(Ã
(i)
t |S̃

(i)

1:t, Ã
(i)

1:t−1) =
∑
t

∑
A1:t,S1:t

P̃(S1:t,A1:t) log P(At|S1:t,A1:t−1)

=
∑
t

∑
A1:t,S1:t

P̃(S1:t,A1:t)
(
logZAt|S1:t,A1:t−1 − logZS1:t,A1:t−1

)
,

and then find the gradient via Lemma A.2:

∇θ

(∑
t

∑
A1:t,S1:t

P̃(S1:t,A1:t)
(
logZAt|S1:t,A1:t−1 − logZS1:t,A1:t−1

))
=
∑
t

∑
A1:t,S1:t

P̃(S1:t,A1:t)
(
EP(S,A) [F(A,S)|S1:t,A1:t]− EP(S,A) [F(A,S)|S1:t,A1:t−1]

)
= EP̃(A,S)[F(A,S)]− EP(A,S)[F(A,S)]

This gradient is equivalent (modulo the sign) to the gradient of the dual (Lemma A.3). Thus, the
optimizing either function produces the same optima solution point.
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Theorem 6.6. Any distribution that matches feature function expectations, EP(S,A)[F(S,A)] with
demonstrated expectations, EP̃(S,A)[F(S,A)], guarantees equivalent expected utility on the un-
known parameters of a reward function linear in F(S,A).

Proof. Following Abbeel & Ng (2004) and simply employing the definition of the expected reward
we have:

EP(S,A)[F(S,A)] = EP̃(S,A)[F(S,A)]

∀θ θ> EP(S,A)[F(S,A)] = θ> EP̃(S,A)[F(S,A)]

∀θ EP(S,A)[rewardθ(S,A)] = EP̃(S,A)[rewardθ(S,A)].

Theorem 6.8. The maximum causal entropy distribution with statistic matching (Theorem 6.2)
can be re-expressed as:

Qsoft
θ (at, st) , logZat|st

= EP(st+1|st,at)[V
soft
θ (st+1)|st, at] + θ>fst,at (A.10)

V soft
θ (st) , logZst

= softmax
at

Qsoft
θ (at, st), (A.11)

where softmaxx f(x) , log
∑

x e
f(x) provides a smooth interpolation (i.e., differentiable) of the

maximum of different functions.

Proof. These relationships can be directly verified algebraically.

Theorem 6.10. The probability of a stochastic policy, π , {P(Aτ |S1:τ ,A1:τ−1)}, under the max-
imum causal entropy distribution is related to the expected feature potentials and the softmax
recurrence as follows:

log Psoft
θ (π) = Eπ(S1:T ,A1:T )

[
T∑
t=1

θ>fSt,At

]
−
∑
S1

p(S1)V soft
θ (S1), (A.12)

where the latter term is independent from the policy, π.

Proof. We start from the log of the multinomial distribution and employ the soft value iteration
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interpretation of the action probability distribution to prove the theorem.

log Psoft
θ (π) = log

∏
A1:T ,S1:T

P(A1:T ||S1:T )π(A1:T ,S1:T ) (A.13)

=
∑

A1:T ,S1:T

π(A1:T ,S1:T ) log P(A1:T ||S1:T )

=
T∑
t=1

∑
At,St

π(At, St) log P(At|St)

=
T∑
t=1

∑
At,St

π(At, St)
(
Qsoft
θ (At, St)− V soft

θ (St)
)

=
T∑
t=1

∑
At,St

π(At, St)

∑
St+1

(
P(St+1|St, At)V soft

θ (St+1)
)

+ θ>fSt,At − V soft
θ (St)


=

T∑
t=1

∑
At,St

π(St, At)θ
>fSt,At +

T∑
t=2

∑
St

π(St)V
soft
θ (St)−

T∑
t=1

∑
St

π(St)V
soft
θ (St)

= Eπ(S1:T ,A1:T )

[
T∑
t=1

θ>fSt,At

]
−
∑
S1

p(S1)V soft
θ (S1),

where π(A1:T ,S1:T ), π(At, St), and π(St) are the probability of state-action sequences and
marginal probabilities of time-indexed state-action pairs, and states.

Theorem 6.13. The deviation between the empirical average of feature vectors and the expecta-
tion of feature vectors is bounded by:

P

(∣∣∣∣∣
∣∣∣∣∣ 1n∑

i

Fi − E

[
1

n

∑
i

Fi

]∣∣∣∣∣
∣∣∣∣∣
∞

≥ ε

)
≤

K∑
k=1

2 exp

(
− 2n2ε2∑n

i=1(fmax
i,k − fmin

i,k )2

)
, (A.14)

where F1,F2, ... are random variables corresponding to expected feature vectors obtained by
policies (random variables), and assuming that those feature samples are bounded by P (Fi,k −
E[Fi,k] ∈ [fmin

i,k , f
max
i,k ]) = 1. In the special case that all elements of the difference of sampled

feature vectors from their expectation are bounded by the same values, this reduces to:

P

(∣∣∣∣∣
∣∣∣∣∣ 1n∑

i

Fi − E

[
1

n

∑
i

Fi

]∣∣∣∣∣
∣∣∣∣∣
∞

≥ ε

)
≤ 2K exp

(
− 2nε2

(fmax − fmin)2

)
. (A.15)
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Proof. By Hoeffding’s inequality, we have:

P

(∣∣∣∣∣ 1n∑
i

Fi,k − E

[
1

n

∑
i

Fi,k

]∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2n2ε2∑n

i=1(fmax
i,k − fmin

i,k )2

)
, (A.16)

By the union bound:

P

(
K⋃
k=1

∣∣∣∣∣ 1n∑
i

Fi,k − E

[
1

n

∑
i

Fi,k

]∣∣∣∣∣ ≥ ε

)
≤

K∑
k=1

P

(∣∣∣∣∣ 1n∑
i

Fi,k − E

[
1

n

∑
i

Fi,k

]∣∣∣∣∣ ≥ ε

)
.

Combining these, and recognizing that:

P

(
K⋃
k=1

∣∣∣∣∣ 1n∑
i

Fi,k − E

[
1

n

∑
i

Fi,k

]∣∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣∣
∣∣∣∣∣ 1n∑

i

Fi,k − E

[
1

n

∑
i

Fi,k

]∣∣∣∣∣
∣∣∣∣∣
∞

≥ ε

)
proves the theorem.

Theorem 6.14. The deviation between the empirical average reward and the expected reward is
bounded by:

P

(∣∣∣∣∣ 1n∑
i

θ>Fi − E

[
1

n

∑
i

θ>Fi

]∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2n2ε2∑n

i=1(rewardmax
i − rewardmin

i )2

)
,

(A.17)

where θ>F1, θ
>F2, ..., are the expected rewards obtained from policies with expected features

F1, ... under policies (random variables), and assuming that the rewards are bounded by P (θ>Fi−
E[θ>Fi] ∈ [rewardmin

i , rewardmax
i ]) = 1. In the special case that the bounds on the rewards are the

same, this reduces to:

P

(∣∣∣∣∣ 1n∑
i

θ>Fi − E

[
1

n

∑
i

θ>Fi

]∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(rewardmax − rewardmin)2

)
. (A.18)

Proof. A direct application of Hoeffding’s inequality proves the theorem.

Theorem 6.15. For the special case where dynamics are linear functions with Gaussian noise,
the quadratic MaxCausalEnt model permits a closed-form solution and, given dynamics st+1 ∼
N(Ast + Bat,Σ), Equation 2.10 reduces to:

Qsoft
θ (at, st) =

[
at
st

]> [ B>DB A>DB
B>DA A>DA

] [
at
st

]
+

[
at
st

]> [ B>G
A>G

]
V soft
θ (st) = s>t (Cs,s +Q− C>a,sC

−1
a,aCa,s)st + s>t (Fs + R) + const,
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where C and D are recursively computed as: Ca,a = B>DB; Cs,a = C>a,s = B>DA; Cs,s =

A>DA; D = Cs,s + Q− C>C−1
a,aCa,s; and G = Fs + R.

Proof. Maximizing the causally conditioned entropy, H(a||s), subject to quadratic constraints
yields a temporal recurrence over the continuous state and action spaces (Theorem 6.2). Using
the Q and R matrices as Lagrange multipliers, we arrive at the quadratic LQR evaluation met-
ric,

∑
t tr[ata

>
t Q] =

∑
t a>t Qat and

∑
t tr[sts

>
t R] =

∑
t s>t Rst, and the dynamic programming

algorithm for recursive computation is:

Qsoft
θ (at, st) =

∫
st+1

P(st+1|st, at)V soft
θ (st+1)dst+1 (A.19)

V soft
θ (st) = softmax

at
Qsoft
θ (at, st) + s>t Qst + s>t R. (A.20)

We will assume and then verify that both Qsoft
θ (at, st) and V soft

θ (st) have quadratic forms; specifi-
cally,

Qsoft
θ (at, st) =

[
at
st

]> [ Ca,a Ca,s

Cs,a Cs,s

] [
at
st

]
+

[
at
st

]> [ Fa
Fs

]
, and

V soft
θ (st) = s>t Dst + s>t G.

Based on this assumption, Equation A.19 can be equivalently expressed as:

Qsoft
θ (at, st) = Est+1 [s

>
t+1Dst+1 + s>t+1G|st, at]

= (Ast + Bat)>D(Ast + Bat) + tr(DΣ) + a>t B>G + s>t A>G (A.21)

=

[
at
st

]> [ B>DB A>DB
B>DA A>DA

] [
at
st

]
+

[
at
st

]> [ B>G
A>G

]
+ const.

Thus the set of update rules are: Ca,a = B>DB; Cs,a = C>a,s = B>DA; Cs,s = A>DA;
Fa = B>G; and Fs = A>G.

Equation A.20 can be expressed as:

V soft
θ (st) = log

∫
at
ea>t Ca,aat+2a>t Ca,sst+stCs,sst+s>t Fs+a>t Fadat + s>t Qst + s>t R

= log

∫
at
e(at+C−1

a,aCa,sst)>Ca,a(at+C−1
a,aCa,sst)−s>t C>a,sC−1

a,a
>Ca,aC−1

a,aCa,sst+s>t Cs,sst+s>t Fs+a>t Fadat

+ s>t Qst + s>t R

= log
√
πd|Ca,a| − s>t C>a,sC

−1
a,aCa,sst + s>t Cs,sst + s>t Fs + s>t Qst + s>t R

= s>t (Cs,s + Q− C>a,sC
−1
a,aCa,s)st + s>t (Fs + R) + const,

yielding update rule: D = Cs,s + Q − C>a,sC
−1
a,aCa,s and G = Fs + R. The probabilistic policy

under this model is: π(at|st) ∝ eQ
soft
θ (at,st).
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Theorem 6.16. The marginalized maximum conditional entropy distribution (Equation 6.23) can
be interpreted under the dynamic programming perspective using the re-expression:

QCE
θ (at, st) = softmax

st+1

(
V CE
θ (st+1) + log P(st+1|st, at) + θ>fat,st

)
(A.22)

V CE
θ (st) = softmax

at
QCE
θ (at, st)

Proof. The conditional probability of Yt is distributed as:

P(Yt|X1:t,Y1:t−1) ∝
∑

Xt+1:T ,Yt+1:T

(
T∏
τ=t

P(Xτ+1|Xτ , Yτ )

)
eθ
>F(X,Y)

=
∑

Xt+1:T ,Yt+1:T

e
∑T
τ=t θ

>F(X,Y)+log P(Xτ+1|Xτ ,Yτ ) (A.23)

Note that P(Yt|X1:t,Y1:t−1) = P(Yt|Xt) given the factorization of F and the side information
distribution. We define Qlcrf

θ (Yt, Xt) as the log of this unnormalized probability (Equation A.23)
and will now recursively define it, eventually in terms of a V lcrf

θ (Xt) term, which we will also
define.

Qlcrf
θ (Yt, Xt) = log

∑
Xt+1:T ,Yt+1:T

e
∑T
τ=t+1 θ

>F(X,Y)+log P(Xτ+1|Xτ ,Yτ )

= log
∑

Xt+1,Yt+1

eθ>FXt+1
+log P(Xt+1|Xt,Yt)

∑
Xt+2:T ,Yt+2:T

e
∑T
τ=t+1 θ

>FXτ+1
+log P(Xτ+1|Xτ ,Yτ )


= log

∑
Xt+1,Yt+1

(
eθ
>FXt+1

+log P(Xt+1|Xt,Yt)+Qlcrf
θ (Yt+1,Xt+1)

)
= log

∑
Xt+1

(
elog P(Xt+1|Xt,Yt)+V lcrf

θ (Xt+1)
)

= softmax
Xt+1

V lcrf
θ (Xt+1) + log P(Xt+1|Xt, Yt)

V lcrf
θ (Xt) = log

∑
Yt

eQ
lcrf
θ (Yt,Xt)+θ>FXt

= softmax
Yt

Qlcrf
θ (Yt, Xt) + θ>FXt

A.4 Chapter 7 Proofs
Theorem 7.6. The maximum causal entropy probability distribution for the imperfect information
setting with perfect past decision recall (Theorem 7.6) is distributed according to the following
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recurrence relationship:

Pθ(Yt|par(Yt)) =
ZYt|par(Yt),θ

Zpar(Yt),θ
(A.24)

logZpar(Yt),θ = log
∑
Yt

ZYt|par(Yt),θ

= softmax
Yt

(
EP(par(Yt+1)|par(Yt),Yt)

[
logZpar(Yt),θ|par(Yt), Yt)

] )
ZYt|par(Yt),θ = e(EP(par(Yt+1)|par(Yt),Yt)[logZpar(Yt),θ|par(Yt),Yt)])

Zpar(YT+1),θ = eθ
>F(X,Y),

where the final set of parents for the “after last” Y variable is the complete set of variables:
par(YT+1) , X ∪ Y.

Proof. As in the proof of Theorem 5.8, we consider the complete causally conditioned sequence
of variables P(Y||X). The convex optimization is then:

argmin
{P(Y||X)}

−H(Y||par(Y)) (A.25)

such that: EX,Y[fk(X,Y)] = ẼX,Y[fk(X,Y)] for k = 1, ..., K;

∀par(Y)

∑
Y

P(Y||par(Y)) = 1;

and: ∀t,X,X̂,Y,Ŷ:{X,Y}par(Yt)={X̂,Ŷ}par(Yt),

∑
Yt+1:T

P(Y||X) =
∑

Yt+1:T

P(Ŷ||X̂),

where {X,Y}par(Yt) indicates the X and Y variables that are parents of Yt. The final constraint of
A.25 enforces the causal constraint and constrains the conditional probabilities of Yt with different
non-parent variables to be the same. With the parent sets constrained by perfect past decision
recall, these constraints are linear functions of causally conditioned probabilities, so convexity is
maintained.

Theorem 7.8. The maximum causal entropy probability distribution for the imperfect information
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setting is distributed according to the following recurrence relationship:

Pθ(Yt|par(Yt)) =
ZYt|par(Yt),θ

Zpar(Yt),θ
(A.26)

logZpar(Yt),θ = log
∑
Yt

ZYt|par(Yt),θ

= softmax
Yt

(
EP(par(Yt+1)|par(Yt),Yt)

[
logZpar(Yt),θ|par(Yt), Yt)

] )
ZYt|par(Yt),θ = e(EP(par(Yt+1)|par(Yt),Yt)[logZpar(Yt),θ|par(Yt),Yt)])

Zpar(YT+1),θ = eθ
>F(X,Y),

where the final set of parents for the “after last” conditioned variable, YT+1, is the complete set of
variables: par(YT+1) , X ∪ Y.

Proof. Differentiating the Lagrangian of the maximum causal entropy optimization (Equation
A.25),

Λ(P, θ) = H(YT ||par(Y)T ) +
∑
k

θk

(
EP(X,Y)[Fk(X,Y)]− EP̃(X,Y)[Fk(X,Y)]

)
+

∑
t,X1:t,Y1:t−1

Cpar(Yt)

(∑
Yt

P(Yt|par(Yt))− 1

)
(A.27)

we have:

∇{P(Yt|par(Yt))}Λ(P, θ) =

{
Cpar(Yt) − Pθ(par(Yt)) (A.28)(

T∑
τ=t

EP(X,Y) [log Pθ(Yτ |par(Yτ ))|par(Yt), Yt] +
∑
k

θk EP(X,Y)[Fk(X,Y)|par(Yt), Yt]

)}

We ignore the CX1:t,Y1:t−1 term for now and ultimately set it to the remaining normalization term
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after factoring out the P(par(Yt)) multiplier and substituting our recursive definitions.

−
T∑
τ=t

EP(X,Y)

[
log Pθ(Yτ |par(Yτ ))

∣∣∣par(Yt), Yt
]

+ θ> EP(X,Y)

[
F(X,Y)

∣∣∣par(Yt), Yt
]

=−
T−1∑
τ=t

EP(X,Y)

[ ∑
Xτ+1

Pθ(Xτ+1|par(Xτ+1)) logZθ(par(Yτ+1))− logZθ(par(Yτ ))
∣∣∣par(Yt), Yt

]
− EP(X,Y)[θ

>F(X,Y)− logZθ(par(YT ), YT )|par(Yt), Yt] + θ> EP(X,Y)

[
F(X,Y)

∣∣∣par(Yt), Yt
]

=−
T∑
τ=t

EP(X,Y)

[
logZθ(X1:τ+1,Y1:τ )− logZθ(X1:τ ,Y1:τ−1)

∣∣∣par(Yt), Yt
]

− EP(X,Y)[logZθ(par(YT ))|par(Yt), Yt]
= logZθ(par(Yt))

Thus setting Cpar(Yt) to negate this remaining term, which is also only a function of par(Yt) (and,
importantly, not Yt), completes the proof.

Theorem 7.10. The perfect recall maximum causal entropy distribution of Equation 7.4 can be
reduced to a non-latent maximum causal entropy model by employing expectation to obtain side
information dynamics,

P (par(Yt)|Yt−1, par(Yt−1)) =

EP(X|Yt−1,par(Yt−1))

[
P(par(Yt)|X, Yt−1, par(Yt−1)) |Yt−1, par(Yt−1)

]
,

and expected statistic-based features,

Ft (Yt, par(Yt)) = EP(X|par(Yt),Yt)
[
Ft(X,Y1:t))

∣∣par(Yt), Yt
]
.

Proof (sketch). Distributing the feature potential function into the recursive portion of Equation
A.25, we have:

ZYt|par(Yt),θ = e(EP(par(Yt+1)|par(Yt),Yt)[logZpar(Yt),θ|par(Yt),Yt)])+E[θ>Ft(X,Y1:t)|par(Yt),Yt]

Taking logarithms and employing the transition dynamics of the theorem, the distribution can then
be converted to the softmax recursive form of statistic-matching without latent side information.
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A.5 Chapter 8 Proofs

Theorem 8.8. A LP/CP formulation of CE for Markov games is possible by considering as vari-
ables the entire sequence of joint player actions for the sequence of revealed states, η(A1:T

1:N |S1:T ),
and employing appropriate inequality constraints (deviation regret guarantees) and equality con-
straints (forcing the strategy over sequences to factor into products of Markovian strategies) on
marginal distributions using linear function of η(A1:T

1:N |S1:T ) variables.

Proof. We consider optimizing over variables that represent the probability of an entire sequence
of actions given the entire sequence of S states, denoted as conditional strategy sequence variables:
η(a1:T

1:N |s1:T ). Given the state dynamics P(st+1|st, at), action-state strategy probabilities, π(at|st:T ),
can be obtained by marginalizing over a linear function of conditional sequence variables:

π(at1:N |st:T ) =
∑
s1:t−1

∑
a1:t−1
1:N

∑
at+1:T
1:N

η(a1:T
1:N |s1:T )

t−1∏
τ=1

P(sτ |aτ−1, sτ−1)

=
∑
s1:t−1

∑
a1:t−1
1:N

∑
at+1:T
1:N

P(a1:T
1:N , s

1:t−1|st:T ). (A.29)

Crucially, to match the Markov game setting, the conditional distribution of actions at time step t
should be equivalent regardless of future state variables, st+1:T , since those variables are not yet
known in the Markov game:

∀t,st+1:T ,s̃t+1:Tπ(at1:N |st, st+1:T ) = π(at1:N |st, s̃t+1:T ). (A.30)

We note that the constraints of Equation A.30 are linear functions of conditional strategy sequence
variables via the steps of Equation A.29.
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argmax
{η(a1:T1:N |s1:T )}

f0({η(a1:T
1:N |s1:T )}) (A.31)

such that: ∀t,i,st,ati,ati ′
∑

at−i,a
t+1:T
1:N ,s1:t−1,st+1:T

η(a1:T
1:N |s1:T )

∏T
τ=1 P(sτ+1|sτ , aτ )
P(st+1|st, at)

×

(
P(st+1|st, at1:N

′
)

(∑
τ>t

Utility(sτ , aτ1:N) + Utility(st, at1:N
′
)

)

− P(st+1|st, at1:N)

(∑
τ>t

Utility(sτ , aτ1:N) + Utility(st, at1:N)

))
≤ 0

∀t,st,at1:N
∑
s1:t−1

∑
a1:t−1
1:N

∑
at+1:T
1:N

η(a1:T
1:N |s1:T )

t−1∏
τ=1

P(sτ |aτ−1, sτ−1) ≥ 0

∀t,st
∑
s1:t−1

∑
a1:t1:N

∑
at+1:T
1:N

η(a1:T
1:N |s1:T )

t−1∏
τ=1

P(sτ |aτ−1, sτ−1) = 1

∀t,st+1:T ,s̃t+1:T

∑
s1:t−1

∑
a1:t−1
1:N

∑
at+1:T
1:N

t−1∏
τ=1

P(sτ |aτ−1, sτ−1)
(
η
(
a1:T

1:N |s1:T
)

(A.32)

− η
(
a1:T

1:N |s1:t, s̃t+1:T
) )

= 0

All constraints are linear in conditional variables, so when −f0 is a linear or convex function, the
optimization (Equation A.31) is a linear program or convex program. We note that the number of
constraints in the last set of constraints (Equation A.32) can be reduced from O(|S|2T ) to O(|S|T )
by chains of equality constraints (rather than all pair-wise constraints). However, the total number
of constraints is still exponential in T and there are a total of O(|S|T |A|NT ) variables in this
formulation.

Theorem 8.10. Given an MCECE strategy profile, no player may decrease the predictability of
her action sequence without creating deviation regret for herself.

Proof. Ignoring all the deviation regret constraints in our notation, consider the decomposition of
the causally conditioned entropy using the chain rule:

argmax
{π(at1:N |st)}

H(AT1:N ||ST ) = argmax
{π(at1:N |st)}

(
H(ATi ||ST ) +H(AT−i||ST )

)
=
{
πMCECE(at−i|st)

}
∪ argmax
{π(ati|st)}

H(ATi ||ST , AT−i).
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As shown, this can equivalently be viewed as a causally conditioned entropy maximization of
player i’s strategy profile (with the suppressed deviation regret constraints) given the combined
MCECE strategy profile of the other players. By definition this is already the least predictable
strategy profile that player i can employ (subject to any deviation regret constraints).

Theorem 8.11. The MCECE solution strategy profile, πMCECE minimizes the worst-case log pre-
diction loss for the sequences of joint actions, i.e.,

inf
P(AT ||ST )

sup
P̃(AT ||ST )

∑
A,S

P̃(A,S) log P(AT ||ST ), (A.33)

of all the CE satisfying deviation regret constraints, where P̃(AT ||ST ) is the (worst possible for
prediction) empirical CE strategy and the joint, P̃(A,S), is the distribution of states and actions
under that strategy profile and the known state transition dynamics.

Proof. As a special case of Grünwald & Dawid (2003), the causal entropy can be expressed as:
H(P̃(AT ||ST )) = infP(AT ||ST ) EP̃(A,S)[− log P(AT ||ST )]. Choosing P̃(YT ||XT ) that maximizes this
then: supP̃(AT ||ST ) infP(AT ||ST ) EP̃(A,S)[− log P(AT ||ST )], which is invariant to swapping the order
of the sup and inf operations.

Lemma 8.14. The MCECE strategy profile for a Markov game is also Markovian.

Proof sketch. The Markovian state transition dynamics of the Markov game imply that the entropy
of future actions due to those state dynamics is conditionally independent of past states and ac-
tions given the current state of the game. As a consequence, any strategy profile based on certain
previous states and actions can be employed from the current state by pretending those previous
states and actions occurred, and the result is the same amount of entropy (and satisfaction of all
deviation regret constraints) as if those previous states and actions had actually occurred. Thus by
maximization and uniqueness of MCECE strategy profile, all MCECE strategies from the current
state forward must employ the same (history-dependent) strategy profile, effectively making that
strategy profile Markovian.

Theorem 8.15. The MCECE strategy profile, πMCECE
λ (at1:N |st), has the following recursive form

(with λ ≥ 0):

πMCECE
λ (at1:N |st) ∝ e

−
(∑

i,ati
′ λ
i,st,ati,a

t
i
′ ExpectDevGainπ

MCECE
i (at1:N ,st,ati

′)
)

+ExpectEnt(at1:N ,st)
, (A.34)

where ExpectEnt(at1:N , s
t) , Eat+1

1:N ,s
t+1

[
ExpectEnt(at+1

1:N , s
t+1) +H(at+1

1:N |st+1)
∣∣at1:N , s

t
]
.

Proof sketch. We find the form of the probability distribution by finding the optimal point of the
Lagrangian. We suppress the probabilistic positivity constraints and normalization constraints with
the understanding that the resulting probability distribution must normalize to 1.
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argmax
π

H(AT ||ST ) (A.35)

such that: ∀t,i,ati,ati ′,s1:t,a1:t−1
1:N

ExpectRegretπi (ati, a
t
i
′
, s1:t, a1:t−1

1:N ) ≤ 0

and probabilistic constraints on π.

The Lagrangian for the optimization of Equation A.35 when using entire history-dependent
probability distributions and parameters is:

Λ(π, λ) = H(a1:T
1:N ||s1:T )−

∑
t,i,ati,a

t
i
′,s1:t,a1:t−1

1:N

λt,i,ati,ati
′,s1:t,a1:t−1

1:N
ExpectRegretπi (ati, a

t
i
′
, s1:t, a1:t−1

1:N ) (A.36)

Taking the partial derivative with respect to a history-dependent action probability for a particular
state, we have:

∂Λ(π, λ)

∂ P(at1:N |s1:t, a1:t−1
1:N )

= −
∑

st+1:T ,at+1:T
1:N

P(st+1:T , at+1:T ) log
T∏
τ=t

P(aτ1:N |s1:τ , a1:τ−1
1:N )

−
∑
i,ati
′

λt,i,ati,ati
′,s1:t,a1:t−1

1:N
ExpectDevGainπi (ati, a

t
i
′
, s1:t, a1:t−1

1:N )

= − log P(at1:N |s1:t, a1:t−1
1:N )−

∑
st+1:T ,at+1:T

1:N

P(st+1:T , at+1:T ) log
T∏
τ=t

P(aτ1:N |s1:τ , a1:τ−1
1:N )

−
∑
i,ati
′

λt,i,ati,ati
′,s1:t,a1:t−1

1:N
ExpectDevGainπi (ati, a

t
i
′
, s1:t, a1:t−1

1:N ). (A.37)

Equating Equation A.37 to zero provides the form of the history dependent distribution:

P(at1:N |s1:t, a1:t−1
1:N ) ∝ exp

{ ∑
st+1:T ,at+1:T

1:N

P(st+1:T , at+1:T ) log
T∏
τ=t

P(aτ1:N |s1:τ , a1:τ−1
1:N ) (A.38)

−
∑
i,ati
′

λt,i,ati,ati
′,s1:t,a1:t−1

1:N
ExpectDevGainπi (ati, a

t
i
′
, s1:t, a1:t−1

1:N )
}
.

It is important to note that duality in this optimization relies on a feasible solution on the relative
interior of the constraint set. This can be accomplished by adding an infinitesimally small amount
of slack, ε, to the constraint set Ortiz et al. (2007).

Following the argument that the MCECE is Markovian (Lemma 8.14), Equation A.38 reduces
to the Markovian form of the theorem.
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A.6 Chapter 9 Proofs
Theorem 9.1. The expected action visitation frequencies, Dax,y , for origin A and goal state B
in the deterministic dynamics maximum causal entropy statistic-matching model can be computed
from partition functions using the following equation:

Dax,y =
ZA→x e−cost(ax,y) Zy→B

ZA→B
(A.39)

Proof. Our proof relies on employing the partition function excluding a particular action, which we
denote ZA→B/ax→y =

∑
ζA→B :ax,y /∈ζA→B e

−cost(ζ), the partition function restricted to contain a par-
ticular action, which we denote ZA→B3ax→y =

∑
ζA→B :ax,y∈ζA→B e

−cost(ζ), and two mathematical
series formulas:

∞∑
i=0

xi =
1

1− x
(A.40)

∞∑
i=1

ixi =
x

(1− x)2
(A.41)

We can combine these ideas by expressing Zy→y3ax,y as the combination of independently cho-
sen paths to state x and actions ax,y. First, we note a useful relationship between action inclusive
partition functions and unconstrained partition functions (Equation A.42). We re-express this par-
tition function as a sum of increasingly repeated cycles from y to x and containing action ax,y. We
finally employ our mathematical series formula (Equation A.40) to obtain Equation A.43.

Zy→y3ax,y = e−cost(ax,y)Zx→y = e−cost(ax,y)Zy→x (A.42)

=
∞∑
k=1

(
e−cost(ax,y)Zy→x/ax,y

)k
=

1

1− e−cost(ax,y)Zy→x/ax,y
− 1 (A.43)

We can express the regular partition function using the action excluding and action containing
partition functions. We can simply combine the partition function for all paths that do not include
ax,y with the partition function for all possible paths that do contain ax,y (by taking action ax,y and
then returning to Sx). This value can then be expressed in terms of the action inclusion partition
function as shown in Equation A.45 by employing Equation A.42

ZA→x = ZA→x/ax,y + ZA→x/ax,y e
−cost(ax,y) Zy→x (A.44)

= ZA→x/ax,y
(
1 + Zy→y3ax,y

)
(A.45)
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We count the unnormalized probability mass of paths weighted by action membership by com-
bining the mass of different disjoint sets of paths. A valid path from A to B containing action ax,y
can be characterized as:

• A sub-path from A to x that does not include ax,y

• Action ax,y

• Any number of “looping” paths from y to x followed by action ax,y

• A sub-path from y to B that does not include ax,y

Using this construction, the unnormalized probability mass of paths that take action ax→y ex-
actly k ≥ 1 times is:

∑
ζA→B :#ax,y∈ζ=k

eθ
>fζ = ZA→x/ax,ye

−cost(ax,y)
(
Zy→x/ax,ye

−cost(ax,y)
)k−1

Zy→B/ax,y (A.46)

The expected action visitation frequencies can then be calculated by combining these unnor-
malized probability masses and weighting by the number of actions ax,y contained in each set.

Dax,y =

∑∞
k=1 k ZA→x/ax,y e

−cost(ax,y)
(
Zy→x/ax,ye

−cost(ax,y)
)k−1

Zy→B/ax,y
ZA→B

(A.47)

=
ZA→x/ax,y e

−cost(ax,y) Zy→B/ax,y

(
1 +

∑∞
k=1 k

(
Zy→x/ax,ye

−cost(ax,y)
)k)

ZA→B

=

ZA→x/ax,y e
−cost(ax,y) Zy→B/ax,y

(
1 +

Zy→x/ax,y e
−cost(ax,y)

(1−Zy→x/ax,y e
−cost(ax,y))2

)
ZA→B

(A.48)

=
ZA→x/ax,y e

−cost(ax,y) Zy→B/ax,y + ZA→x e
−cost(ax,y) Zy→B (1 + Zy→x/ax,y e

−cost(ax,y))

ZA→B

=
ZA→x e

−cost(ax,y) Zy→B
ZA→B

(A.49)

We reduce Equation A.47 to Equation A.48 using the mathematical series formula (Equation
A.41) and Equations A.43 and A.42. We reduce Equation A.48 by expanding the product and
applying Equations A.45. Finally, we obtain Equation A.49 using the same logic as employed for
Equation A.44.
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Theorem 9.2. For matrix A, if limt→∞ At = 0, then
∑∞

t=0 At = (I− A)−1, where I is the identity
matrix and A0 = I.

Proof sketch. If limt→∞At = 0, then by definition:

∞∑
t=0

At = I + A
∞∑
t=0

At (A.50)

∞∑
t=0

At(I− A) = I (A.51)

∞∑
t=0

At = (I− A)−1, (A.52)

by following simple matrix algebra.

Theorem 9.5. In a discounted future rewards setting with a bounded instantaneous reward and
bounded number of actions, the partition functions of the maximum causal entropy model with
finite rewards are guaranteed to converge.

Proof sketch. With discount rate γ, Equation 6.5 can be re-expressed as:

Qsoft
θ (at, st) = γEP(st+1|st,at)

[
softmax

at
Qsoft
θ (at+1, st+1)|st, at

]
+ θ>fst,at (A.53)

For non-convergence to occur, the sum of Qt values at time step t must grow larger than the sum
of Qt+∆t values at time step t + ∆t and approaches infinity as t → ∞. However, as these sums
approach infinity, the loss from discount of the sum which bounds the previous timestep’s partition
mass due to the future, (1−γ)∆t

∑
a,sQ

soft
θ (a, s), must also grow larger than

∑
s,a θ

>fs,a, preventing
growth to infinity (and non-convergence).

A.7 Chapter 11 Proofs

Theorem 11.1. The posterior distribution of goals can be obtained from the log partition func-
tions, Vsx→sy , as follows:

P(G|a1:t, s1:t) ∝ P(G) eVst→G − Vs1→G . (A.54)
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Proof.

P(G|a1:t, s1:t) ∝ P(a1:t, s1:t|G) P(G)

=
∑

at+1:T ,st+1:T

P(a1:T , s1:T |G) P(G)

=

∑
at+1:T ,st+1:T

ereward(a1:T ,s1:T )∑
a1:T ,s1:T e

reward(a1:T ,s1:T )
P(G)

∝ Zst→G
Zs1→G

P(G)

= P(G) eVst→G−Vs1→G

Theorem 11.2. Action visitation calculations using final reward values as follows:

φ(G) = log P(G|a1:t, s1:t)

= Vst→G − Vs1→G + log P(G),

are equivalent to the goal-probability-weighted visitation calculations:

Dsx|s1:t,a1:t =
∑

st+1:T ,at+1:T

(
T∑

τ=t+1

I(sx = sτ )

)
P(at+1:T , st+1:T |a1:t, s1:t)

of Equation 11.4.

Proof sketch. Writing out the visitation frequencies from state st to goals with potentials weighted
by φ(G), we have:

Dsx|φ(G) =
Zst→sx

∑
G Zsx→G P(G|a1:t, s1:t)∑

G Zst→G P(G|a1:t, s1:t)
, (A.55)

which is equivalent to the goal-probability-weighted visitation calculation of the theorem.
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