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Abstract

We prove that access to the prior distribution over target functions can improve the sample com-
plexity of self-terminating active learning algorithms, so that it is always better than the known
results for prior-dependent passive learning. In particular, this is in stark contrast to the analysis
of prior-independent algorithms, where there are known simple learning problems for which no
self-terminating algorithm can provide this guarantee for all priors.
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1 Introduction and Background
Active learning is a powerful form of supervised machine learning characterized by interaction be-
tween the learning algorithm and supervisor during the learning process. In this work, we consider
a variant known as pool-based active learning, in which a learning algorithm is given access to a
(typically very large) collection of unlabeled examples, and is able to select any of those exam-
ples, request the supervisor to label it (in agreement with the target concept), then after receiving
the label, selects another example from the pool, etc. This sequential label-requesting process
continues until some halting criterion is reached, at which point the algorithm outputs a function,
and the objective is for this function to closely approximate the (unknown) target concept in the
future. The primary motivation behind pool-based active learning is that, often, unlabeled exam-
ples are inexpensive and available in abundance, while annotating those examples can be costly
or time-consuming; as such, we often wish to select only the informative examples to be labeled,
thus reducing information-redundancy to some extent, compared to the baseline of selecting the
examples to be labeled uniformly at random from the pool (passive learning).

There has recently been an explosion of fascinating theoretical results on the advantages of this
type of active learning, compared to passive learning, in terms of the number of labels required to
obtain a prescribed accuracy (called the sample complexity): e.g., [Freund et al., 1997, Dasgupta,
2004, Dasgupta, 2005, Hanneke, 2007b, Balcan et al., 2010, Balcan et al., 2006, Kääriäinen, 2006,
Hanneke, 2007a,Dasgupta et al., 2008,Hanneke, 2010,Hanneke, 2009]. In particular, [Balcan et al.,
2010] show that in noise-free binary classifier learning, for any passive learning algorithm for a
concept space of finite VC dimension, there exists an active learning algorithm with asymptotically
much smaller sample complexity for any nontrivial target concept. In later work, [Hanneke, 2009]
strengthens this result by removing a certain strong dependence on the distribution of the data in
the learning algorithm. Thus, it appears there are profound advantages to active learning compared
to passive learning.

However, another point noted by [Balcan et al., 2010] is that active learning often suffers from a
lack of internal verification of these improvements. That is, although the number of labels required
to achieve good accuracy is significantly smaller than passive learning, it is often the case that
the number of labels required to verify that the accuracy is good is not significantly improved.
In particular, this phenomenon can dramatically increase the sample complexity of active learning
algorithms that adaptively determine how many labels to request before terminating by maintaining
an internal estimator of their own accuracy. In short, if we require the algorithm both to learn an
accurate function and to know that its function is accurate, then the number of labels required by
active learning is often not significantly smaller than the number required by passive learning.

We should note, however, that all of the above considerations were proven for a learning sce-
nario in which the target concept is considered a constant, and no information about the process
that generates this concept is known a priori. Alternatively, we can consider a modification of this
problem, so that the target concept can be thought of as a random variable, a sample from a known
distribution (called a prior) over the space of possible concepts. Such a setting has been studied in
detail in the context of passive learning for noise-free binary classification. In particular, [Haussler
et al., 1992] found that for any concept space of finite VC dimension d, for any prior and dis-
tribution over data points, O(d/ε) random labeled examples are sufficient for the expected error
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rate of the Bayes classifier produced under the posterior distribution to be at most ε. Furthermore,
it is known that Ω(1/ε) is sometimes a lower bound on the number of random labeled examples
required to achieve expected error at most ε, by any passive learning algorithm.

In the context of active learning (again, with access to the prior), [Freund et al., 1997] analyze
the Query By Committee algorithm, and find that if a certain information gain quantity is lower-
bounded by a constant g, then the algorithm requires only O((d/g) log(1/ε)) labels to achieve
expected error rate at most ε. In particular, they show that this is satisfied for homogeneous linear
separators under a near-uniform prior, and a near-uniform data distribution over the unit sphere.
This represents a marked improvement over the results of [Haussler et al., 1992] for passive learn-
ing. However, the condition that the information gain be lower-bounded by a constant is quite
restrictive, and many interesting learning problems are precluded by this requirement.

In the present paper, we take a more general approach to the question of active learning with
access to the prior. We are interested in the broad question of whether access to the prior bridges
the gap between the sample complexity of learning and the sample complexity of learning with
verification. Specifically, we ask the following question.

Can a prior-dependent self-terminating active learning algorithm for a concept class of finite
VC dimension always achieve expected error rate at most ε using o(1/ε) label requests?

First, in Section 3, we go through a concrete example, namely interval classifiers under a
uniform data density but arbitrary prior, to illustrate the general idea, and convey some of the
intuition as to why one might expect a positive answer to this question. In Section 4, we present a
general proof that the answer is always “yes.” As the known results for passive learning with access
to the prior are typically∝ 1/ε [Haussler et al., 1992], this represents an improvement over passive
learning. The proof is simple and accessible, yet represents an important step in understanding the
problem of self-termination in active learning algorithms, and the general issue of the complexity
of verification. Also, as this is a result that does not generally hold for prior-independent algorithms
(even for their “average-case” behavior induced by the prior) for certain concept spaces, this also
represents a significant step toward understanding the inherent value of having access to the prior.

2 Definitions and Preliminaries
First, we introduce some notation and formal definitions. We denote by X the instance space,
representing the range of the unlabeled data points, and we suppose a distribution D on X , which
we will refer to as the data distribution. We also suppose the existence of a sequence X1, X2, . . .
of i.i.d. random variables, each with distribution D, refered to as the unlabeled data sequence.
For simplicity, we will suppose this sequence is essentially inexhaustible, corresponding to the
practical fact that unlabeled data are typically available in abundance as they are often relatively
inexpensive to obtain. Additionally, there is a set C of measurable classifiers h : X → {−1,+1},
refered to as the concept space. We denote by d the VC dimension of C, and in our present context
we will restrict ourselves to spaces C with d < ∞, refered to as a VC class. We also have a
probability distribution π, called the prior, over C, and a random variable h∗ ∼ π, called the target
function; we suppose h∗ is independent from the data sequence X1, X2, . . .. For any measurable
h : X → {−1,+1}, define the error rate er(h) = D({x : h(x) 6= h∗(x)}). So far, this setup is
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essentially identical to that of [Haussler et al., 1992, Freund et al., 1997].
The protocol in active learning is the following. An active learning algorithm DHM is given

as input the prior π, the data distribution D, and a value ε ∈ (0, 1]. It also (implicitly) depends
on the data sequence X1, X2, . . ., and has an indirect dependence on the target function h∗ via
the following type of interaction. The algorithm may inspect the values Xi for any initial seg-
ment of the data sequence, select an index i ∈ N to “request” the label of; after selecting such
an index, the algorithm recieves the value h∗(Xi). The algorithm may then select another index,
request the label, receive the value of h∗ on that point, etc. This happens for a number of rounds,
N(DHM,h∗, ε,D, π), before eventually the algorithm halts and returns a classifier ĥ. An algo-
rithm is said to be correct if E[er

(
ĥ
)

] ≤ ε. Define the expected sample complexity of DHM for
(ε,D, π) to be SC(ε,D, π) = E[N(DHM,h∗, ε,D, π)].

We will be interested in proving that certain algorithms achieve a sample complexity

SC(ε,D, π) = o(1/ε)

For some (C,D), it is known that there are π-indepenent algorithms (meaning the algorithm’s
behavior is independent of the π argument) DHM such that we always have

E[N(DHM,h∗, ε,D, π)|h∗] = o(1/ε)

for instance, threshold classifiers have this property under any D, homogeneous linear separators
have this property under a uniformD on the unit sphere in k dimensions, and intervals with positive
width on X = [0, 1] have this property under D = Uniform([0, 1]) (see e.g., [Dasgupta, 2005]). It
is straightforward to show that any such DHM will also have SC(ε,D, π) = o(1/ε) for every π.
In particular, the law of total expectation and the dominated convergence theorem imply

lim
ε→0

εSC(ε,D, π) = lim
ε→0

εE[E[N(DHM,h∗, ε,D, π)|h∗]] = E
[
lim
ε→0

εE[N(DHM,h∗, ε,D, π)|h∗]
]

= 0.

In these cases, we can think of SC as a kind of “average-case” analysis of these algorithms. How-
ever, there are also many (C,D) for which no such π-independent algorithm exists, achieving
o(1/ε) sample complexity for all priors. For instance, this is the case for C as the space of interval
classifiers (including the empty interval) on X = [0, 1] underD = Uniform([0, 1]) (this essentially
follows from a proof of [Balcan et al., 2010]). Thus, any general result on o(1/ε) expected sam-
ple complexity for π-dependent algorithms would signify that there is a real advantage to having
access to the prior.

3 An Example: Intervals
In this section, we walk through a simple and intuitive example, to illustrate how access to the
prior makes a difference in the sample complexity. For simplicity, in this example we will suppose
the algorithm may request the label of any point in X , not just those in the sequence {Xi}; the
same ideas can easily be adapted to the setting where queries are restricted to {Xi}. Specifically,
consider X = [0, 1], D uniform on [0, 1], and the concept space of interval classifiers, where
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C = {I[a,b] : 0 < a ≤ b < 1}. For each classifier h ∈ C, let w(h) = P(h(x) = +1) (the width of
the interval h).

Consider an active learning aglorithm that makes label requests at the locations (in sequence)
1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, . . . until (case 1) it encounters an example x with
h∗(x) = +1 or until (case 2) the set of classifiers V ⊆ C consistent with all observed labels so far
satisfies E[w(h∗)|V ] ≤ ε (which ever comes first). In case 2, the algorithm simply halts and returns
the constant classifier that always predicts −1: call it h−; note that er(h−) = w(h∗). In case 1,
the algorithm enters a second phase, in which it performs a binary search (repeatedly querying the
midpoint between the closest two −1 and +1 points – taking 0 and 1 as known negative points) to
the left and right of the observed positive point, halting after log2(2/ε) label requests on each side;
this results in estimates of the target’s endpoints up to ±ε/4, so that returning any classifier among
the set V ⊆ C consistent with these labels results in error rate at most ε; in particular, if h̃ is the
classifer in V returned, then E[er(h̃)|V ] ≤ ε.

Denoting this algorithm by DHM[], and ĥ the classifier it returns, we have

E
[
er
(
ĥ
)]

= E
[
E
[
er
(
ĥ
) ∣∣∣V ]] ≤ ε,

so that the algorithm is definitely correct.
Note that case 2 will definitely be satisfied after at most 2

ε
label requests, and case 1 will

definitely be satisfied after at most 2
w(h∗)

label requests, so that the algorithm never makes more
than 2

max{w(h∗),ε} label requests. Abbreviating N(h∗) = N(DHM[], h
∗, ε,D, π), we have

E[N(h∗)]

=E[N(h∗)|w(h∗) = 0]P(w(h∗) = 0) + E[N(h∗)|0 < w(h∗) ≤
√
ε]P(0 < w(h∗) ≤

√
ε)

+ E[N(h∗)|w(h∗) >
√
ε]P(w(h∗) >

√
ε)

≤E[N(h∗)|w(h∗) = 0]P(w(h∗) = 0) + E[E[N(h∗)|h∗]|0 < w(h∗) ≤
√
ε]P(0 < w(h∗) ≤

√
ε)

+ E[E[N(h∗)|h∗]|w(h∗) >
√
ε]P(w(h∗) >

√
ε)

≤E[N(h∗)|w(h∗) = 0]P(w(h∗) = 0) +
2

ε
P(0 < w(h∗) ≤

√
ε) +

2√
ε

+ 2 log2

2

ε
. (1)

The third term in (1) is O(1/
√
ε), and therefore o(1/ε). Since P(0 < w(h∗) ≤

√
ε)→ 0 as ε→ 0,

the second term in (1) is o(1/ε) as well. If P(λ(h∗) = 0) = 0, this completes the proof. We focus
the rest of the proof on the first term in (1), in the case that P(w(h∗) = 0) > 0, i.e. there is nonzero
probability that the target h∗ labels the space almost all negative. Letting V denote the subset of C
consistent with all requested labels, note that on the event w(h∗) = 0, after n label requests (for n
a power of 2) we have maxh∈V w(h) ≤ 1/n. Thus, for any value wε ∈ (0, 1), after at most 2

wε
label

requests, on the event that w(h∗) = 0,

E[w(h∗)|V ] ≤ E [w(h∗)I[w(h∗) ≤ wε]]

π(V )
≤ E [w(h∗)I[w(h∗) ≤ wε]]

P(w(h∗) = 0)
. (2)

Now note that, by the dominated convergence theorem,

lim
w→0

E
[
w(h∗)I[w(h∗) ≤ w]

w

]
= E

[
lim
w→0

w(h∗)I[w(h∗) ≤ w]

w

]
= 0.
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Therefore, E [w(h∗)I[w(h∗) ≤ w]] = o(w). If we define wε as the largest value of w for which
E [w(h∗)I[w(h∗) ≤ w]] ≤ εP(w(h∗) = 0) (or, say, half the supremum if the maximum is not
achieved), then we have wε = ω(ε). Combined with (2), this implies

E[N(h∗)|w(h∗) = 0] ≤ 2

wε
= o(1/ε).

Thus, all of the terms in (1) are o(1/ε), so that in total E[N(h∗)] = o(1/ε).
In conclusion, for this concept space C and data distribution D, we have a correct active learn-

ing algorithm achieving a sample complexity SC(ε, π) = o(1/ε) for all priors π on C.

4 Main Result
In this section, we present our main result: a general result stating that o(1/ε) expected sample
complexity is always achievable by some correct active learning algorithm. This represents an
improvement over the known results for passive learning with a prior: namely, Θ(1/ε). As men-
tioned, this type of result is often not possible for algorithms lacking access to the prior π, as there
are well-known problems (C,D) for which no prior-independent correct algorithm (of the self-
terminating type studied here) can achieve o(1/ε) sample complexity for every prior π [Balcan
et al., 2010]; in particular, the intervals problem studied above is one such example.

First, we have a small lemma.

Lemma 1. For any random variable Z and sequence of functions φn such that, for some constant
c ∈ (0,∞), ∀z, φn(z) = o(1/n) and ∀n ∈ N, φn(z) ≤ c/n, there exists a sequence φ̄n such that

φ̄n = o(1/n) and P
(
φn(Z) > φ̄n

)
→ 0.

Proof. For any constant δ ∈ (0,∞), we have (by Markov’s inequality and the dominated conver-
gence theorem)

lim
n→∞

P (nφn(Z) > δ) ≤ 1

δ
lim
n→∞

E[nφn(Z)] =
1

δ
E[ lim

n→∞
nφn(Z)] = 0.

Therefore (by induction), there exists a diverging sequence ni in N such that

sup
n≥ni

P
(
nφn(Z) > 2−i

)
→ 0

as i → ∞. Inverting this, let in = max{i ∈ N : ni ≤ n}, and define φ̄n(Z) = (1/n) · 2−in . By
construction, P

(
φn(Z) > φ̄n

)
→ 0. Furthermore, ni →∞ =⇒ in →∞, so that we have

lim
n→∞

nφ̄n = lim
n→∞

2−in = 0,

implying φ̄n = o(1/n).
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Theorem 1. For any VC class C and data distribution D, there is a correct active learning algo-
rithm achieving a sample complexity SC for (C,D) such that, for all priors π on C,

SC(ε, π) = o(1/ε).

Proof. Consider a slightly different type of active learning algorithm than that defined above:
namely, an algorithm DHMa that takes as input a budget n ∈ N on the number of label re-
quests it is allowed to make, and that after making at most n label requests returns as output a
classifier ĥn. It is known that for any C and D as above, there exists a (prior-independent) active
learning algorithm DHMa of this type, and a (target-dependent) function R(n;h∗) satisfying (for
some C-dependent h∗-independent constant c ∈ (0,∞))

∀f ∈ C, R(n; f) ≤ c/n and R(n; f) = o(1/n),

such that we always have E
[
er
(
ĥn

) ∣∣∣h∗] ≤ R(n;h∗) (see [Hanneke, 2009], and related earlier

work [Balcan et al., 2010]).1 That is, equivalently, for any fixed value for the target function,
the expected error rate is o(1/n), where the random variable in the expectation is only the data
sequence X1, X2, . . .. Our task in this proof is to convert such an algorithm into one of the form
defined in Section 1: that is, a self-terminating prior-dependent algorithm, taking ε as input.

For this, consider the value

nε = min
{
n ∈ N : E

[
er
(
ĥn

)]
≤ ε
}
.

This value is accessible based purely on access to π and D. Furthermore, we clearly have (by
construction) E

[
er
(
ĥnε

)]
≤ ε. Thus, denoting by DHM ′

a the active learning algorithm, taking

(D, π, ε) as input, which runs DHMa(nε) and then returns ĥnε , we have that DHM ′
a is a correct

algorithm (i.e., its expected error rate is at most ε).
As for the expected sample complexity SC(ε, π,D) achieved byDHM ′

a, we have SC(ε, π,D) ≤
nε, so that it remains only to bound nε. By Lemma 1, there is a π-dependent function R(n; π) such
that

∀π, π ({f ∈ C : R(n; f) > R(n; π)})→ 0 and R(n; π) = o(1/n).

Therefore, by the law of total expectation,

E
[
er
(
ĥn

)]
= E

[
E
[
er
(
ĥn

) ∣∣∣h∗]] ≤ E [R(n;h∗)]

≤ c

n
π ({f ∈ C : R(n; f) > R(n; π)}) +R(n; π) = o(1/n).

In particular, this implies nε = o(1/ε), as required.

1Furthermore, it is not difficult to see that we can take this R to be measurable in the h∗ argument.
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In fact, the dependence on D in the algorithm described in the proof is fairly weak, and we
can eliminate any direct dependence on D by using an algorithm DHMa that does not depend
on D (see [Hanneke, 2009]), and then replacing er (DHMa(n)) by a 1 − ε/2 confidence upper
bound based on mε = Ω

(
1
ε2

log 1
ε

)
i.i.d. unlabeled examples X ′1, X

′
2, . . . , X

′
mε independent from

the examples used by the algorithm (e.g., set aside in a pre-processing step, where the bound
is calculated via Hoeffding’s inequality and a union bound over the values of n that we check, of
which there are at mostO(1/ε)). Then we simply increase the value of n (starting at some constant,
such as 1) until

1

mε

mε∑
i=1

E
[
I [h∗ (X ′i) 6= [DHMa(n)] (X ′i)]

∣∣∣{Xj}j, {X ′j}j
]
≤ ε/2.

The expected value of the smallest value of n for which this occurs is o(1/ε). Note that the expec-
tation only requires access to the prior π, not the data distribution D; if desired for computational
efficiency, this may also be estimated by a 1 − ε/4 confidence upper bound based on Ω

(
1
ε2

log 1
ε

)
independent samples of h∗ values with distribution π, where for each sample we simulate the exe-
cution of DHMa(n) for that target function in order to obtain the returned classifier. In particular,
note that no actual label requests to the oracle are required during this process of determining the
appropriate label budget nε, as all executions of DHMa are simulated.
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