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Abstract

It is often convenient to make certain assumptions during the learning pro-
cess. Unfortunately, algorithms built on these assumptions can often break down
if the assumptions are not stable between train and test data. Relatedly, we can
do better at various tasks (like named entity recognition) by exploiting the richer
relationships found in real-world complex systems. By exploiting these kinds
of non-conventional regularities we can more easily address problems previously
unapproachable, like transfer learning. In the transfer learning setting, the dis-
tribution of data is allowed to vary between the training and test domains, that
is, the independent and identically distributed (i.i.d.) assumption linking train
and test examples is severed. Without this link between the train and test data,
traditional learning is difficult.

In this thesis we explore learning techniques that can still succeed even in
situations where i.i.d. and other common assumptions are allowed to fail. Specif-
ically, we seek out and exploit regularities in the problems we encounter and doc-
ument which specific assumptions we can drop and under what circumstances
and still be able to complete our learning task. We further investigate different
methods for dropping, or relaxing, some of these restrictive assumptions so that
we may bring more resources (from unlabeled auxiliary data, to known dependen-
cies and other regularities) to bear on the problem, thus producing both better
answers to existing problems, and even being able to begin addressing problems
previously unanswerable, such as those in the transfer learning setting.

In particular, we introduce four techniques for producing robust named entity
recognizers, and demonstrate their performance on the problem domain of protein
name extraction in biological publications:

• Feature hierarchies relate distinct, though related, features to one another
via a natural linguistically-inspired hierarchy.

• Structural frequency features exploit a regularity based on the structure
of the data itself and the distribution of instances across that structure.

• Snippets link data not by the distribution of the instances or their features,
but by their labels. Thus data that have different attributes, but similar
labels, will be joined together, while instances that have similar features,
but distinct labels, are segregated to allow for variation between domains.

• Graph relations represent the entities contained in the data and their
relationships to each other as a network which is exploited to help discover
robust regularities across domains.

Thus we show that learned classifiers and extractors can be made more robust to
shifts between the train and test data by using data (both labeled and unlabeled)
from related domains and tasks, and by exploiting stable regularities and complex
relationships between different aspects of that data.
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Chapter 1

Introduction

1.1 Background

The desire to exploit information attained from previous effort, and not to start each new

endeavor de novo is perhaps part of human nature, and certainly a maxim of the scientific

method. Nevertheless, due to the difficulty of integrating knowledge from distinct, but

related, experimental domains (the distribution from which the data is drawn) and tasks

(the type of prediction desired from the learner), it is common practice in most machine

learning studies to focus on training and tuning a model to a single, particular domain and

task pair, or setting, at the expense of all others. Often, once work has completed on one

setting, the researcher begins afresh on the next, carrying over only the techniques and

experience learned, but often not the data or model itself.

Consider the task of named entity recognition (NER). Specifically, suppose you are given a

corpus of encyclopedia articles in which all the personal name mentions have been labeled.

The standard supervised machine learning problem is to learn a classifier over this training

data that will successfully label unseen test data drawn from the same distribution as the
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training data, where “same distribution” could mean anything from having the train and

test articles written by the same author to having them written in the same language.

Having successfully trained a named entity classifier on this encyclopedia data, now consider

the problem of learning to classify tokens as names in instant messenger data. Clearly

the problems of identifying names in encyclopedia articles and instant messages are closely

related, and learning to do well on one should help your performance on the other. At the

same time, however, there are serious differences between the two problems that need to

be addressed. For instance, capitalization, which will certainly be a useful feature in the

encyclopedia problem, may prove less informative in the instant messenger data since the

rules of capitalization are followed less strictly in that domain. Thus there seems to be some

need for altering the classifier learned on the first problem (called the source domain) to fit

the specifics of the second problem (called the target domain). This is the problem of domain

adaptation [Daumé III and Marcu, 2006] and constitutes a subproblem in the broader field

of transfer learning, which has been studied as such for at least the past ten years [Thrun,

1996; Baxter, 1997].

The intuitive solution seems to be to simply train on the target domain data. Since this

training data would be drawn from the same distribution as the data you will ultimately

test over, this approach avoids the transfer issue entirely. The problem with this idea is

that often large amounts of labeled data are not available in the target domain. While it

has been shown that even small amounts of labeled target data can greatly improve transfer

results [Chelba and Acero, 2004; Daumé III, 2007], there has been relatively little work on

the case when there is no labeled target data available, that is, totally unsupervised domain

adaptation. In this scenario, one way to adapt a model trained on the source domain is to

make the unlabeled target test data available to the model during training time. Leveraging

unlabeled test data during training time is called transductive learning and is a well studied

problem in the scenario when the training data and test data come from the same domain.
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However, transduction is not well-studied in a transfer setting, where the training and test

data come from different domains, which will be the learning scenario upon which we focus

throughout most of the thesis.

Figures 2.1 and 1.1 give schematic overviews of the ways we see these techniques intersecting

and overlapping with one another, while Table 2.1 provides a detailed breakdown of various

transfer learning settings.

1.2 Goal of the thesis: robust learning

This thesis is concerned with various forms of robust learning both within and without the

framework of transfer learning:

Regularities and relationships among various aspects of data can be

exploited to help create classifiers that are more robust across the data

as a whole (both source and target).

1.2.1 Robust learning in the face of unstable properties

It is often convenient to make certain assumptions during the learning process. Unfortu-

nately, algorithms built on these assumptions can often break down if the assumptions are

not stable between train and test data. We define a property of the data to be stable if said

property remains relatively unchanged across variations in other aspects of the data, where

such properties can be attributes of the data instances themselves or relationships among

different parts of the data; and the ‘variations’ allowed among the data and the degree to

which the stable property must remain ‘unchanged’ is defined with respect to the degree of

robustness desired. For instance, in traditional learning, given (x, y)train drawn from some
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training distribution Dtrain, and (x, y)test drawn from some test distribution Dtest, we assume

that ptrain(y | x) = ptest(y | x). If we allow p(y | x) to vary across training and testing data

(that is, if we allow Dtrain 6= Dtest, as in the domain adaptation setting), a standard machine

learning technique like naive Bayes may fail. In the language of this thesis, this learning

technique is not robust to this change in the data. Our thesis is that we can make learned

classifiers and extractors more robust by using data (both labeled and unlabeled) from related

domains and tasks, and by exploiting stable regularities and complex relationships between

different aspects of that data.

1.2.2 Exploiting rich relationships

Relatedly, we can do better at various tasks (like information extraction) by exploiting the

richer relationships found in real-world complex systems. When we start working with such

a system, we usually find it convenient to first abstract away to a relatively simply stated

learning problem, such as: Given an example x, predict its label y. This type of simplifying

reduction is often necessary (at the expense of richer representations incorporating more do-

main knowledge and auxiliary sources of information) in order to frame the learning problem

in a way that is consistent with the often harsh assumptions underlying many favored learn-

ing techniques. While these assumptions may be useful in providing structure in relatively

simple learning problems, when faced with complex, real-world systems, they can often prove

burdensome, or fail all together, and may actually be better replaced with problem-specific

structure such as regularities among features or external sources of data.
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1.2.3 Transfer learning

By exploiting these kinds of non-conventional regularities we can more easily address prob-

lems previously unapproachable, like transfer learning. In the transfer learning setting, the

distribution of data is allowed to vary between the training and test domains, that is, the

i.i.d. assumption linking train and test examples is severed. Without this link between the

train and test data, traditional learning is difficult. Take, for example, the problem of train-

ing an extractor to identify the sender and recipient of a letter. For our training data we are

given formal business letters with their senders and recipients labeled. For testing, however,

we are required to identify the sender and recipient not in business letters but in student

e-mails. Whereas in the non-transfer, business to business, learning case we could exploit

regularities in the tokens themselves, for instance, looking for capitalized words that do not

begin a sentence, in the transfer setting, this capitalization property may no longer hold

between the train and test domains, that is, it is not stable. In light of this, we need a new

relationship linking the domains together, an information path linking the training data to

the test data. One possibility in this example would be to exploit the common structure

of the letters themselves: specifically, the property of recipient names being located at the

start of a letter, and sender names being located at the end. This tends to be true both

in formal business letters and informal e-mails, and thus provides a stable regularity from

which our classifier can generalize from the training data to the test data. In this way we

can make use of one type of regularity (document structure) when another (the conditional

distribution of capitalized names) ceases to hold.

Thus, in this thesis we try to find learning techniques that can still succeed even in situa-

tions where i.i.d. and other common assumptions are allowed to fail. Specifically, we seek out

and exploit regularities in the problems we encounter and document which specific assump-

tions we can drop and under what circumstances and still be able to complete our learning
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task. We further investigate different methods for dropping, or relaxing, some of these re-

strictive assumptions so that we may bring more resources (from auxiliary data, to known

dependencies and other regularities) to bear on the problem, thus producing both better

answers to existing problems, and even being able to begin addressing problems previously

unanswerable, such as those in the transfer learning setting.

1.3 Scope of the thesis: named entity recognition (NER)

For most of this thesis we will focus on the specific problem of learning to extract protein

names from articles published in biological journals. In the named entity resolution (NER)

formalism, a document is segmented into a sequence of tokens, with each of these tokens1

then being classified as belonging to one of a set of possible label classes – in our case, the

binary set {PROTEIN, NON PROTEIN}. A standard technique for this kind of problem

is to gather a corpus of documents drawn from the domain on which you will eventually be

evaluated. These documents then need to be painstakingly hand-labeled by a domain expert

in order to identify which tokens in the document represent proteins, and which do not.

The ‘expertise’ of this domain specialist should not be underestimated, since such biological

distinctions are subtle and often elude all but the most experienced annotators. The work is

therefore slow, and the resulting annotated datasets are often relatively small and expensive.

We have access to such a corpus of protein-labeled abstracts from biological articles. Several

techniques have been proposed for building protein-name extractors over these abstracts and

their performances have been evaluated with respect to extracting new proteins from other,

previously unseen abstracts drawn from a similar distribution of articles [Franzén et al.,

2002]. In our work, however, we are interested in identifying proteins, not in abstracts, but

1Multi-token entities, or spans, are possible, and in fact common, but we focus here on the single token

entity example for ease of explanation.
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in the captions of papers (we use this information to create a structured search engine of

images and captions from biological articles [Murphy et al., 2004]). To this end we have

downloaded tens of thousands of open-access, full text articles from the Internet. Unfortu-

nately, all of these documents are wholly unlabeled and we do not have the resources to label

them ourselves. Thus, our problem is: given labeled abstracts (source training domain) and

unlabeled captions and full text (source auxiliary training data), how can we train a model

that will extract proteins well from unseen captions (target test domain). This is at once a

semi-supervised learning problem (due to the unlabeled auxiliary training data) [Zhu, 2005],

and a domain adaptation problem (due to the difference in domains from which the source

and target data are drawn).

1.4 Approach & organization of the thesis

Our thesis attempts to explore the ways we can relax assumptions and exploit regularities

in order to better solve real-world learning problems. The following chapters introduce

examples of problems involving violated assumptions, and the solutions we came up with for

overcoming these broken assumptions. Figure 1.1 shows one way of visualizing the various

types of structure and regularity that can be tapped in solving various learning problems.

In this model, instances x, their labels y, and constituent features F , can be joined in

various relationships. For instance, the standard assumption joining instances is that they

are all drawn independently from an identical distribution (i.i.d.). In the problem we face,

however, this assumption is violated as instances (words) are drawn from different sections of

a document (abstract, caption, etc.) and therefore have different distributions within those

sections. Therefore, in this setting the i.i.d. assumption linking the instances to each other

(most importantly, linking the training instances to the test instances) is severed, resulting in

training and testing sets of seemingly unrelated instances among which it appears impossible
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to generalize. If we exploit a different regularity, however, re-linking the instances to each

other in some way and taking the place of the invalidated i.i.d. assumption (see the top-left

cloud in Figure 1.1), we are again able to learn and generalize across samples of training and

test data.

In this thesis we explore four main approaches to solving this problem of robust named entity

recognition:

1. When the assumption that instances share the same set of features fails to hold, we

develop a new method for relating these distinct, though related, features to one an-

other via a natural linguistically-inspired hierarchy (the bottom cloud in Figure 1.1).

These are the feature hierarchies explained in Chapter 3.

2. Chapter 4 introduces what we call structural frequency features, a regularity based

on the structure of the data itself and the distribution of instances across that structure.

These are represented by the upper-left cloud in the diagram, linking instances of the

data by their inherent structure.

3. Chapter 5 introduces snippets, represented by the upper-right cloud in the diagram,

linking the data not by the distribution of the instances or their features, but rather

by their labels. Thus data that have very different attributes, but similar labels, will

be joined together, while instances that appear to have similar features, but distinct

labels, are segregated to allow for variation between domains.

4. Finally, the top middle cloud in Figure 1.1 represents the graph relations of Chapter

6 wherein the different entities contained in the data and their relationships to each

other are represented as a network which is exploited to help discover robust regularities

across domains.
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Chapter 2 goes into more detail concerning the various techniques that currently exist for

robust learning, as summarized in Table 2.1 and Figure 2.1. A large amount of time is

spent discussing transfer learning and its close relationship to the more general goal of this

thesis, robustness. In particular, we relate transfer learning’s goal of training learners that

can generalize across data drawn from different distribution to our goal of producing robust

classifiers that perform well across a variety of related data sources. Following that, we

further explore the approaches introduced in this section (visually summarized in Figure 1.1)

and show how they contribute to this thesis’ goal of robust learning in real-world systems.
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Figure 1.1: Visualization of the various types of structure used for robust learning. X’s
represent instances, while Y...Z’s represent different task labels for that instance. Dark
lines denote observed variables and relationships, while light lines symbolize unobserved
data. Paths between and among instances, features and labels are conducted via clouds
representing common relationships between these attributes. These paths allow information
to flow from one type of observation in a certain domain or task to other related, though
possibly distinct, types of observations in related domains and tasks. For example, knowledge
about one instance-label tuple 〈x1, y1〉 can directly inform an observer about another, unseen
label, y2, due to the i.i.d. relationship between x1 and x2 and the stability of p(y|x). Similarly,
knowledge of x1’s value for feature b (F1b) can help you estimate the value for the unobserved
F1a if there is some relationship (as in our hierarchical lexical features example) linking the
features to each other. Relatedly, knowledge that instances x1 and x2 share a common label
(z1) for task Z, along with knowledge of x2’s Y label (y2), might in turn help predict x1’s Y
label (y1). (For example, if x1 and x2 are instances of abstracts, Y ’s are their labeled gene
mentions, and z1 is an author they share in common.) In much of the work of this thesis
these relationships are manifested as external facts and assumptions, for example, external
linguistic knowledge about the hierarchy relating lexical features to one another, external
biological knowledge constraining which proteins can occur in which regions of a cell, or
external citation and authorship information as in the previous example. These external
data sources can often provide the information paths necessary to link various aspects of
the data together, allowing us to learn in complex settings where common assumptions, like
i.i.d., may not hold. 10



Chapter 2

Survey

2.1 Current state of the art

Throughout this section you may refer to Figure 2.1 to get an overall view of the state of

the art.

2.1.1 Transfer learning

The phrase transfer learning covers several different subproblems. When only the type

of data being examined is allowed to vary (from news articles to e-mails, for example), the

transfer problem is called domain adaptation [Daumé III and Marcu, 2006]. When the task

being learned varies (say, from identifying person names to identifying protein names), the

transfer problem is called multi-task learning [Caruana, 1997]. Both of these are considered

specific types of the over-arching transfer learning problem, and both seem to require a way

of altering the classifier learned on the first problem (called the source domain, or source

task) to fit the specifics of the second problem (called the target domain, or target task).
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Figure 2.1: Venn diagram representation of the subspace of robust learning settings. Domain

adaptation and multi-task learning are represented as subsets of transfer learning, which is

itself a subset of all robust learning techniques. These techniques can also intersect with semi-

supervised methods. A sampling of non-transfer robust learning techniques (such as sparse

feature selection, expectation maximization and principal components analysis) are also

included for completeness. Compare with Table 2.1, which structures the transfer learning

sub-region into greater detail.
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More formally, given an example x and a class label y, the standard statistical classification

task is to assign a probability, p(y|x), to x of belonging to class y. In the binary classification

case the labels are Y ∈ {0, 1}. In the case we examine, each example xi is represented as a

vector of binary features (f1(xi), · · · , fF (xi)) where F is the number of features. The data

consists of two disjoint subsets: the training set (Xtrain, Ytrain) = {(x1, y1) · · · , (xN , yN)},

available to the model for its training and the test set Xtest = (x1, · · · , xM), upon which we

want to use our trained classifier to make predictions.

In the paradigm of inductive learning, (Xtrain, Ytrain) are known, while both Xtest and Ytest

are completely hidden during training time. In this cases Xtest and Xtrain are both assumed

to have been drawn from the same distribution, D. In the setting of transfer learning,

however, we would like to apply our trained classifier to examples drawn from a distribution

different from the one upon which it was trained. We therefore assume there are two different

distributions, Dsource and Dtarget, from which data may be drawn. Given this notation we

can then precisely state the transfer learning problem as trying to assign labels Y target
test to test

data X target
test drawn from Dtarget, given training data (Xsource

train , Y source
train ) drawn from Dsource.

In this thesis we focus on two subproblems of transfer learning:

• domain adaptation, where we assume Y (the set of possible labels) is the same for both

Dsource and Dtarget, while Dsource and Dtarget themselves are allowed to vary between

domains.

• multi-task learning [Ando and Zhang, 2005; Caruana, 1997; Sutton and McCallum, 2005;

Zhang et al., 2005] in which the task (and label set) is allowed to vary from source to

target.

Domain adaptation can be further distinguished by the degree of relatedness between the

source and target domains. For example, in this work we group data collected in the same

medium (e.g., all annotated e-mails or all annotated news articles) as belonging to the same
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genre. Although the specific boundary between domain and genre for a particular set of data

is often subjective, it is nevertheless a useful distinction to draw.

One common way of addressing the transfer learning problem is to use a prior which, in

conjunction with a probabilistic model, allows one to specify a priori beliefs about a distri-

bution, thus biasing the results a learning algorithm would have produced had it only been

allowed to see the training data [Raina et al., 2006]. In the example from §1.1, our belief

that capitalization is less strict in instant messages than in encyclopedia articles could be

encoded in a prior that biased the importance of the capitalization feature to be lower

for instant messages than encyclopedia articles. In Section 3.1 we address the problem of

how to come up with a suitable prior for transfer learning across named entity recognition

problems.

2.1.2 Domain adaptation

Domain adaptation is distinct from other forms of transfer learning (such as multitask learn-

ing [Ando and Zhang, 2005; Caruana, 1997; Sutton and McCallum, 2005; Zhang et al., 2005])

because we are assuming that the set of possible labels, Y , remains constant across the various

domains, while allowing the distribution of X and, most importantly, Y |X to change. In our

setting, the labels, Y , are members of the binary set {PROTEIN, NON PROTEIN}, while

the instances, X, are the tokens of the documents themselves. Another important example

of domain adaptation is concept drift, in which the source and target data’s distributions

start out identical, but drift farther and farther apart from each other over time [Widmer

and Kubat, 1996].

In prior work, different researchers have made different assumptions about the relationship

between the source and target domain, a defining characteristic of domain adaptation. In the

supervised setting, one can directly compare both the marginal and conditional distributions
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of the data in both domains, looking for patterns of generalizability across domains [Daumé

III and Marcu, 2006; Jiang and Zhai, 2006; Daumé III, 2007], as well as examining the

common structure of related problems [Ben-David et al., 2007; Schölkopf et al., 2005; Arnold

et al., 2008; Blei et al., 2002]. There is likewise work that tries to quantify these inter-domain

relationships in the unsupervised [Arnold et al., 2007], semi-supervised [Grandvalet and

Bengio, 2005; Blitzer et al., 2006], and transductive learning settings [Taskar et al., 2003].

Similarly, in the biological domain, there has been work on using semi-supervised machine

learning techniques to extract protein names by combining dictionaries with large, full-text

corpora [Shi and Campagne, 2005], but without the explicit modeling of differences between

data domains that we attempt in this thesis. In our work, we take advantage of the fact

that the source and target domains are different sections of the same structured document

and use this fact to develop features that are robust across those different domains.

2.1.3 Multi-task learning

Whereas in domain adaptation the set of possible labels for our learning task, Y , is held

constant between source and target data, in the multi-task setting this label set, or task, is

allowed to vary between the source task and target task [Ando and Zhang, 2005; Caruana,

1997; Sutton and McCallum, 2005; Zhang et al., 2005; Ghamrawi and McCallum, 2005].

Expanding on the example from Section 1.1, this would be like using encyclopedia articles

labeled with personal names in order to train an extractor to find place names in those same

types of articles. Again, there is an obvious overlap between these two learning problems

and the goal of multi-task learning is to investigate how best to characterize and exploit this

similarity. More nefariously, not only are the labels themselves allowed to change, but also

the intended semantics of those labels. For example, the two semantically distinct problems

of labeling tokens as people or places can both be represented by the same binary labeling
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scheme.

Although there seems to be a clear formal distinction between domain adaptation and multi-

task learning, in this work we tend to consider them in much the same way. Our thesis’s

goal is to find robust ways of learning using as many different sources of data as we have

available. Just as the data we use can come from many related domains, so too our labels

(where they are available) are allowed to refer to a number of distinct, though inter-related

tasks. Thus, for much of this thesis we will use the term ‘task’ (or alternately, setting) to

refer both to the distribution from which our training and test data are drawn and the set

of labels which our learning is trying to predict.

2.1.4 Semi-supervised learning

Analogously to multi-task learning, where we try to make use of data with labels related to

our source task, in the semi-supervised setting we try to make use of data with no labels

at all [Abney, 2007; Collins and Singer, 1999; Yarowsky, 1995]. Indeed, in the multi-task

framework, any data for which all labels for all tasks are not available can be consid-

ered, in some sense, semi-supervised. In this way, as presented in Figure 2.1, we consider

semi-supervised learning an extra dimension of the robust learning framework that one can

combine with an existing technique by making use of what unlabeled data is available. In

the supervised setting, the data is usually segmented into two disjoint subsets: the training

set (Xtrain, Ytrain) = {(x1, y1) · · · , (xN , yN)}, which can be used for training, and the test

set Xtest = (x1, · · · , xM), for which labels are not available at training time. In the semi-

supervised setting [Zhu, 2005], the training data is supplemented with a set of auxiliary

data, Xaux = (x1, · · · , xP ), for which no corresponding labels are provided. When using

semi-supervised techniques for transfer learning, the distribution from which this unlabeled

auxiliary data is drawn is allowed to vary.
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2.1.5 Non-transfer robustness

Despite recent interest in and research into the problems of transfer learning as such, the

idea of robust learning itself is not a new one. Feature selection has proved a very effective

means of generating robust learners, especially when regularized for sparsity, as in the case

of lasso and least angles regression [Tibshirani, 1996; Efron et al., 2004]; or when the features

are designed to succinctly summarize the relevant information contained in a dataset, as in

principal components analysis [Jolliffe, 2002] and mutual information techniques [Zaffalon

and Hutter, 2002]; or when they are engineered to be resilient to deletion [Globerson and

Roweis, 2006]. Researchers have also tried engineering and selecting features themselves

that they believe will be robust to noise and shifts in the data [Janche and Abney, 2002].

Relatedly, a whole range of expectation maximization (EM) techniques have been developed

for learning in situations where not all relevant information is available [Dempster et al.,

1977; Ghahramami and Jordan, 1994]. In this thesis we build on many these techniques,

combining and extending them where necessary.

2.2 Examples of transfer learning settings & techniques

In the first two sections below (§2.2.1-2.2.2), we introduce and discuss several examples of

learning across the spectrum of transfer problems [Arnold et al., 2007]. These problems vary

with respect to what labels and data are available from the source and target domains at

train time. They are also summarized in Table 2.1 for the reader’s convenience. Later, we

survey some popular approaches to these types of problems (§2.2.3-2.2.5), and then present

some comparative results to make the algorithms’ relative strengths and weaknesses more

concrete (§2.2.6, Table 2.4).
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Table 2.1: Learning settings are summarized by the type of auxiliary and test data used.

For all settings we assume (Xsource
train , Y source

train ) is available at training time, while Ytest is

unknown. Settings for which we have run experiments are marked in bold (c.f. Table 2.4).

Some settings are omitted where they do not correspond to a known natural example.

Natural name for learning setting
Auxiliary data Test data

Domain Labels Domain Xtest

Inductive learning - - Dsource unseen

Semi-supervised inductive learning Dsource unseen Dsource unseen

Transductive learning - - Dsource seen

Transfer learning - - Dtarget unseen

Inductive transfer learning Dtarget seen Dtarget unseen

Semi-supervised inductive transfer learning Dsource unseen Dtarget unseen

Transductive transfer learning - - Dtarget seen

Supervised Transductive transfer learning Dtarget seen Dtarget seen

Relaxed Transductive transfer learning1 - - Dtarget seen

Semi-supervised transductive transfer learning Dsource unseen Dtarget seen

1 A relaxation of transductive transfer learning in which proportions of labels in the

target data is known at training time.
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2.2.1 Inductive learning

In the paradigm of inductive learning, (Xtrain, Ytrain) are known, while both Xtest and Ytest

are completely hidden during training time. In the case of semi-supervised inductive learn-

ing [Zhu, 2005; Sindhwani et al., 2005; Grandvalet and Bengio, 2005], the learner is also

provided with auxiliary unlabeled data Xauxiliary, that is not part of the test set. It has

been noted that such auxiliary data typically helps boost the performance of the classifier

significantly.

2.2.2 Transductive learning

Another setting that is closely related to semi-supervised learning is transductive learn-

ing [Vapnik, 1998; Joachims, 1999; Joachims, 2003], in which Xtest (but, importantly, not

Ytest), is known at training time. That is, the learning algorithm knows exactly which ex-

amples it will be evaluated on after training. This can be a great asset to the algorithm,

allowing it to shape its decision function to match and exploit the properties seen in Xtest.

One can think of transductive learning as a special case of semi-supervised learning in which

Xauxiliary = Xtest.

In the three cases discussed above, Xtest and Xtrain are both assumed to have been drawn

from the same distribution, D. As mentioned previously, however, we are more interested in

the case where these distributions are allowed to differ, that is, the transfer learning setting.

One of the first formulations of the transfer learning problem was presented over 10 years

ago by Thrun [Thrun, 1996]. More recently there has been a focus on using source data

to learn various types of priors for the target data [Raina et al., 2006]. Other techniques

have tried to quantify the generalizability of certain features across domains [Daumé III and

Marcu, 2006; Jiang and Zhai, 2006], or tried to exploit the common structure of related
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problems [Ben-David et al., 2007; Blitzer et al., 2006].

Although the case of transfer learning without access to any data drawn from Dtarget is not

completely hopeless [Jiang and Zhai, 2006], in this thesis we choose to focus on extensions

to the transfer learning setting that allow us to capture some information about Dtarget.

One obvious such setting is inductive transfer learning where we also provide a few auxiliary

labeled data (X target
auxiliary, Y

target
auxiliary) from the target domain in addition to the labeled data

from the source domain. Due to the presence of labeled target data, this method could also

be called supervised transfer learning and is the most common setting used by researchers in

transfer learning today.

There has also been work on transductive transfer learning, where there is no auxiliary

labeled data in the target domain available for training, but where the unlabeled test set

on the target domain X target
test can be seen during training. Again, due to the lack of labeled

target data, this setting could be considered unsupervised transfer learning. It is important

to point out that transductive learning is orthogonal to transfer learning. That is, one can

have a transductive algorithm that does or does not make the transfer learning assumption,

and vice versa. Much of the work in this thesis is inspired by the belief that, although

distinct, these problems are nevertheless intimately related. More specifically, when trying

to solve a transfer problem between two domains or tasks, it seems intuitive that looking

at the possibly unlabeled data of the target domain, or another related task, during training

will improve performance over ignoring this source of information.

We note that the setting of inductive transfer learning, in which labeled data from both source

and target domains are available for training, serves as an upper-bound to the performance

of a learner based on transductive transfer learning, in which no labeled target data is

available. For similar reasons, we considered an additional artificial setting, which we call

relaxed transductive transfer learning, in our experiments. This setting is almost equivalent to
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the transductive transfer setting, but the model is allowed to know the proportion of positive

examples in the target domain. Although this technically violates the terms of unsupervision

in transductive transfer learning, in practice estimating this single parameter over the target

domain does not require nearly as much labeled target data as learning all the parameters

of a fully supervised transfer model, and thus serves as a nice compromise between the two

extremes of transduction and supervision. Practically, this proportion is useful to know for

determining thresholds [Yang, 2001] and guaranteeing certain semi-supervised performance

results [Blum and Mitchell, 1998].

These and a few other interesting settings are summarized in Table 2.1. Note that we only

displayed a small subset of the many possible learning settings.

2.2.3 Naive Bayes classifier

Inductive learning: maximum likelihood estimation

Naive Bayes [McCallum and Nigam, 1998] is one of the most popular and effective generative

classifiers for many text-classification tasks. Like any generative model, its decision rule is

given by the posterior probability of the class y given the example x, given by P (y|x), which

is computed using Bayes’ rule as follows:

P (y|x) =
P (x|θ(y))π(y)∑
y′P (x|θ(y′))π(y′)

(2.1)

where θ(y) are the class-conditional parameters and π(y) are the prior probabilities. The

naive Bayes model makes the somewhat unrealistic yet practical assumption of conditional-

independence between the features of each example, given its class. That is:

P (x|θ(y)) =
F∏
j=1

P (fj(x)|θj(y)) (2.2)

In our case, since the features are all binary, we use the Bernoulli distribution to model each
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feature as follows:

P (x|θ(y)) =
F∏
j=1

(θj(y))fj(x)(1− θj(y))1−fj(x) (2.3)

where θj(y) can be interpreted as the probability that the feature fj assumes a value 1

given the class y. The Bernoulli parameters θj(y) and π(y) are estimated using Maximum

Likelihood training with the labeled training data (Xtrain, Ytrain) = {(x1, y1), · · · , (xN , yN)}

as below:

θj(y) =

∑N
i=1 fj(xi)δy(yi) + λ∑N

i=1 δy(yi) + 2λ

π(y) =

∑N
i=1 δy(yi)

N
(2.4)

where δy(yi) = 1 if y = yi and 0 otherwise; and λ is the Laplace smoothing parameter, which

we set to 0.05 in our experiments.

Inductive transfer learning: maximum likelihood estimation with concatenated

data

In the inductive transfer case we concatenate the entire labeled data (Xsource
train , Y source

train ) and

(X target
train , Y

target
train ) to generate a single training set. Then, we learn the parameters θj(y) and

π(y) using the maximum likelihood estimators shown in the classic supervised case (see

eqn. 2.4). Although more sophisticated approaches are possible, we tried this algorithm as

a simple baseline.

Transductive transfer learning: source-initialized EM

In the transductive transfer case, (X target
train , Y

target
train ) are not available for training, but X target

test is

available at training time. Learning from unlabeled examples in the generative framework is

done typically using the standard Expectation Maximization algorithm [Nigam et al., 2000].

The algorithm is iterative, and consists of two steps: in the E-step corresponding to the tth

iteration, we compute the posterior probability of each label for all the unlabeled examples
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w.r.t. the old parameter values θ
(t)
j (y), π(t)(y) as follows:

∀yP (y|x, θ(t), π(t)) =
P (x|θ(t)(y))π(t)(y)∑
y′ P (x|θ(t)(y′))π(t)(y′)

(2.5)

In the M-step, we estimate the new parameters θ
(t+1)
j (y), π(t+1)(y) using the posterior prob-

abilities as follows.

θ
(t+1)
j (y) =

∑N
i=1 fj(xi)P (y|xi, θ(t)

j (y))∑N
i=1 P (y|xi, θ(t)

j (y))
(2.6)

π(t+1)(y) =

∑N
i=1 P (y|xi, θ(t)

j (y))

N
(2.7)

where N is the number of unlabeled examples available during training. In our case, this is

the size of the set X target
test . The iterations are continued until the likelihood of the unlabeled

data converges to a maximum value. In the completely unsupervised case of the EM algo-

rithm, the model parameters are initialized to random values before starting the iterations.

In our case, since we have (Xsource
train , Y source

train ) at our disposal, we first do a classic supervised

training of our model using the labeled source data, and initialize the parameters to the

ones learned from the source data, before we start the EM iterations. This encodes the

information available from the source data into the model, while allowing the EM algorithm

to discover its optimal parameters on the target domain.

Relaxed transductive transfer learning: redefining the prior

In the case when the values of the prior probability of each class in the target data is available,

we simply fix π(y) to these values and only estimate θ(y) using eqn. 2.6 in the M-step of the

EM algorithm.
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2.2.4 Maximum entropy

Entropy maximization (MaxEnt) [Berger et al., 1996; Nigam et al., 1999] is a way of mod-

eling the conditional distribution of labels given examples. Given a set of training ex-

amples Xtrain ≡ {x1, . . . , xN}, their labels Ytrain ≡ {y1, . . . , yN}, and the set of features

F ≡ {f1, . . . , fF}, MaxEnt learns a model consisting of a set of weights corresponding to

each class Λ = {λ1,y...λF,y}y∈{0,1} over the features so as to maximize the conditional likeli-

hood of the training data, p(Ytrain|Xtrain), given the model pΛ. In exponential parametric

form, this conditional likelihood can be expressed as:

pΛ(yi = y|xi) =
1

Z(xi)
exp(

F∑
j=1

fj(xi)λj,y) (2.8)

where Z is the normalization term.

In order to avoid overfitting the training data, these λ’s are often further constrained by

the use of a Gaussian prior [Chen and Rosenfeld, 1999] with diagonal covariance, N (µ, σ2),

which tries to maximize: ∑
j,y

log
1√

2πσ2
j,y

exp(−(λj,y − µj,y)2

2σ2
j,y

) (2.9)

Thus the entire expression being optimized is:

argmax
Λ

N∑
i=1

(
log pΛ(yi|xi)− β

F∑
j

(λj,i − µj,i)2

σ2
j,i

)
(2.10)

where β > 0 is a parameter controlling the amount of regularization. Maximizing this

likelihood is equivalent to constraining the joint expectations of each feature and label in the

learned model, EΛ[fj, y], to match the Gaussian-smoothed empirical expectations Etrain[fj, y]

as shown below:

Etrain [fj, y] =
1

N

N∑
i

(
fj(xi)δy(yi)−

λj,i − µj,i
σ2
j,i

)
(2.11)

EΛ [fj, y] =
1

N

N∑
i

fj(xi)PΛ(y|xi) (2.12)
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where δy(yi) = 1 if y = yi and 0 otherwise. In the next few subsections, we will describe how

we adapt the model to various scenarios of transfer learning.

Conditional random fields (instance structure)

When it comes to actually training a model, we need a learning algorithm that can integrate

and balance the variety of features and disparate sources of information we are trying to

exploit. We used conditional random fields (CRF’s) [Lafferty et al., 2001], a general-

ization of the common maximum entropy model from the i.i.d. case (where each token is

classified in isolation), to the sequential case (where each token’s classification influences

the classification of its neighbors). This attribute is especially useful in a setting such as

domain adaptation, where we would like to spread high-confidence predictions made on ex-

amples resembling the source domain to lower-confidence predictions of less familiar target

domain instances. Similarly, like maximum entropy models, CRF’s allow great flexibility

with respect to the definition of the model’s features, freeing us from worrying about the

relative independence of specific features, while maintaining the crucial focus on the locality

of features.

The parametric form of the CRF for a sentence of length n is given as follows:

pΛ(Y = y|x) =
1

Z(x)
exp(

n∑
i=1

F∑
j=1

fj(x, yi)λj) (2.13)

where Z(x) is the normalization term. CRF learns a model consisting of a set of weights

Λ = {λ1...λF} over the features so as to maximize the conditional likelihood of the training

data, p(Ytrain|Xtrain), given the model pΛ.

CRF with Gaussian priors

To avoid overfitting the training data, these λ’s are often further constrained by the use of a

Gaussian prior [Chen and Rosenfeld, 1999] with diagonal covariance, N (µ, σ2), which tries
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to maximize:

argmax
Λ

N∑
k=1

(
log pΛ(yk|xk)

)
− β

F∑
j

(λj − µj)2

2σ2
j

where β > 0 is a parameter controlling the amount of regularization, and N is the number

of sentences in the training set.

Inductive transfer: Source trained prior models (Chelba-Acero)

One recently proposed method [Chelba and Acero, 2004] for transfer learning in MaxEnt

models, which we call the Chelba-Acero model. involves modifying Λ’s regularization term.

First a model of the source domain, Λsource, is learned by training on {Xsource
train , Y source

train }.

Then a model of the target domain is trained over a limited set of labeled target data{
X target
train , Y

target
train

}
, but instead of regularizing this Λtarget to be near zero by minimizing

‖Λtarget‖2
2, Λtarget is instead regularized towards the previously learned source values Λsource

by minimizing ‖Λtarget − Λsource‖2
2. Thus the modified optimization problem is:

argmax
Λtarget

Ntarget
train∑
i=1

log pΛtarget(yi|xi)− β‖Λtarget − Λsource‖2
2 (2.14)

where N target
train is the number of labeled training examples in the target domain. It should be

noted that this model requires Y target
train in order to learn Λtarget and is therefore a supervised

form of inductive transfer.

Feature space expansion (Daumé)

Another approach to the problem of inductive transfer learning is explored by Daumé [Daumé

III, 2007; Daumé III and Marcu, 2006]. Here the idea is that there are certain features

that are common between different domains, and others that are particular to one or the

other. More specifically, we can redefine our feature set F as being composed of two distinct

subsets F specific
⋃
Fgeneral, where the conditional distribution of the features in F specific
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differ between Xsource and X target, while the features in Fgeneral are identically distributed in

the source and target. Given this assumption, there is an EM-like algorithm [Daumé III and

Marcu, 2006] for estimating the parameters of these distributions. There is also a simpler

approach [Daumé III, 2007] of just making a duplicate copy of each feature in Xsource and

X target, so whereas before you had xi = 〈f1(xi)...fF (xi)〉, you now have

xi = 〈 f1(xi)
specific, f1(xi)

general

...fF (xi)
specific, fF (xi)

general 〉
(2.15)

where specific is source or target respectively, and fj(xi)
specific is just a copy of fj(xi)

general.

The idea is that by expanding the feature space in this way MaxEnt (or any other learner)

will be able to assign different weights to different versions of the same feature. If a feature

is common in both domains its general copy will get most of the weight, while its specific

copies (f source and f target) will get less weight, and vice versa.

Transductive transfer learning

Transductive learning under the MaxEnt framework can be performed analogously to the

naive Bayes method. Similarly, given a prior estimate of the probability of each class label

in the test data, relaxed transductive learning can also be performed.

2.2.5 Support vector machines (SVM)

Support vector machines (SVM’s) [Joachims, 2002] take a different approach to the binary

classification problem. Instead of explicitly modeling the conditional distribution of the

data and using these estimates to predict labels, SVMs try to model the data geometrically.

Each example is represented as an F -dimensional real-valued vector of features and is then

projected as a point in F -dimensional space.

The inductive SVM exploits the label information of the training data and fits a discrim-
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inative hyperplane between the positively and negatively labeled training examples in this

space, so as to best separate the two classes. This separation is called the margin, and thus

SVMs belong to the margin based approach to classification. This formulation has proven

very successful as inductive SVMs currently have some of the best general performance of

any popular machine learning algorithm.

Inductive SVM

Recall that in the supervised inductive transfer case, we are given the training sets (Xsource
train , Y source

train )

and (X target
train , Y

target
train ). Since the SVM does not explicitly model the data distribution, we sim-

ply concatenate the source and target labeled data together and provide the entire data for

training. The hope is that it will improve on an SVM trained purely on labeled source data,

by re-adjusting its hyperplane based on the labeled target data. It is possible to do better

than such a naive approach 1, but we used this as a reasonable baseline.

Transductive SVM

Transduction with SVMs, due to their geometric interpretation, is quite intuitive. Whereas,

in the supervised case, we tried to fit a hyperplane to best separate the labeled training

data, in the transductive case, we add in unlabeled testing data which we must also sep-

arate. Since we do not know the labels of the testing data, however, we cannot perform

a straight forward margin maximization, as in the supervised case. Instead, one can use

an iterative algorithm [Joachims, 1999]. Specifically, a hyperplane is trained on the labeled

source data and then used to classify the unlabeled testing data. One can adjust how confi-

dent the hyperplane must be in its prediction in order to use a pseudo-label during the next

phase of training (since there are no probabilities, large margin values are used as a measure

of confidence). The pseudo-labeled testing data is then, in turn, incorporated in the next

1For example, one could impose a higher penalty for classification errors on the target data than on the

source data.
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round of training. The idea is to iteratively adjust the hyperplane (by switching presumed

pseudo-labels) until it is very confident on most of the testing points, while still performing

well on the labeled training points.

Transductive SVMs were originally designed for the case where the training and test sets were

drawn from the same domain. Again, since SVMs do not model the data distribution, it is

not immediately obvious how one would model different distributions in the SVM algorithm.

Hence in this work, we directly test the applicability of transductive SVMs to the transductive

transfer setting.

Relaxed transductive SVM: tweaking the margin

Just as in the probabilistic naive Bayes and MaxEnt settings prior knowledge of class propor-

tions in the test data could be leveraged to improve cross domain learning by adjusting the

prior probability of each class label, similarly in the SVM setting this same information can

be used to adjust the margin and penalty assessed for each misclassified training example of

each class. For instance, if one expects more positive examples in the test data, then to train

a learner that minimizes expected performance over the test data, one should penalize errors

on positive training data (false negatives) more severeley than errors on negative training

data (false positives), since these will occur more often in the test data.

2.2.6 Comparison of existing techniques

Domain

We now turn to protein name extraction, an interesting problem domain [Shi and Campagne,

2005; Wang et al., 2008; Ji et al., 2002] in which to compare these methods within various

learning settings. In this problem you are given text related to biological research (usually

29



Table 2.2: Summary of data used in experiments

Corpus name (Abbr.) Abstracts Tokens % Positive

UTexas (UT) 748 216,795 6.6%

Yapex (Y) 200 60,530 15.0%

Yapex-train (YTR) 160 48,417 15.1%

Yapex-test (YTT) 40 12,113 14.5%

abstracts, captions, and full body text from biological journal articles) which is known to

contain mentions of protein names. The goal is to identify which words are part of a protein

name mention, and which are not. One major difficulty is that there is a large variance in

how these proteins are mentioned and annotated between different authors, journals, and

sub-disciplines of biology. Because of this variance it is often difficult to collect a large corpus

of truly identically distributed training examples. Instead, researchers are often faced with

heterogeneous sources of data, both for training and testing, thus violating one of the key

assumptions of most standard machine learning algorithms. Hence the setting of transfer

learning is very relevant and appropriate to this problem.

Data and evaluation

Our corpora are abstracts from biological journals coming from two sources: University of

Texas, Austin (UT) [Bunescu et al., 2004] and Yapex [Franzén et al., 2002]. Each abstract

was tokenized and each token was hand-labeled as either being part of a protein name or not.

We used a standard natural language toolkit [Cohen, 2004] to compute tens of thousands of

binary features on each of these tokens, encoding such information as capitalization patterns

and contextual information of surrounding words.

Some summary statistics for these data are shown in Table 2.2. We purposely chose corpora

that differed in two important dimensions: the total amount of data collected and the relative

30



Table 2.3: Training and testing data used in the settings of Inductive learning (I), Inductive Trans-

fer (IT), Transductive Transfer (TT) and Relaxed Transductive Transfer (RTT). Abbreviations of

data sets are described in Table 2.2.

Setting Source-train Target-train Target-test

I - YTR YTT

IT UT YTR YTT

TT UT - Y

RTT UT - Y

proportion of positively labeled examples in each dataset. Specifically, UT has over three

times as many tokens as Yapex but has only half the proportion of positively labeled protein

names. This disparity is not uncommon in the domain and could be attributed to differing

ways the data sources were collected and annotated. Specifically, if the protein mention

annotations in Yapex tend to be longer (that is, extend for more tokens) then the proportion

of positively labeled tokens will be higher in Yapex. For all our experiments, we used the

larger UT dataset as our source domain and the smaller Yapex dataset as our target. We

also split the Yapex data into two parts: Yapex-train (YTR) consisting of 80% of the data,

and Yapex-test (YTT), consisting of the remaining 20%.

In Table 2.3, we display the subsets of data used for various learning settings in our exper-

iments. Note that the transductive methods use different testing data from the inductive

methods. This choice is made deliberately to provide a chance for the classifiers in each set-

ting to achieve their peak performance, i.e., transductive algorithms work best when there is

abundance of unlabeled test data and inductive algorithms work best when there is plenty of

labeled data. However, since the data is slightly different between inductive and transductive

settings, one must use caution in comparing the transductive results to the inductive ones.
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Because of the relatively small proportion of positive examples in both the UT and Yapex

datasets, we are more interested in achieving both high precision and recall of protein name

mentions instead of simply maximizing classification accuracy. Since we were dealing with

binary, and not sequential classification, the definition of these measures is straightforward

as summarized below:

accuracy =
# of tokens labeled correctly by the model

total # of tokens

precision =
# of POS-tokens labeled POS by the model

# of tokens labeled POS by the model

recall =
# of POS-tokens labeled POS by the model

# of POS-tokens

F1 =
2× recall× precision

recall + precision
(2.16)

We use the F1 measure, which combines precision and recall into one metric, as our main

evaluation measure. These metrics are evaluated on the level of tokens, as opposed to

multi-token spans, since this provides a simple binary distinction that is a nice test case for

comparison to other machine learning studies, and avoids any complications of ambiguous

or noisy span boundaries.

Experiments and results

We assessed the relative performance of these methods on the four different learning settings

described in previous sections. We restricted ourselves to a limited evaluation since the goal

of these experiments was to concretely illustrate the various learning settings, rather than

provide an exhaustive comparison of methods.

In addition to running the corresponding adaptations of each model for each of the settings,

we did a few additional runs across the settings for purposes of illustration. For example, we

ran the transductive SVM not only on the transductive settings, but also on the two inductive

settings. Note that TSVM, when run on the inductive case corresponds to transductive
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Table 2.4: Summary of % precision (Prec), recall (Rec), and F1 for regular maximum en-

tropy (Basic), prior-based regularized MaxEnt (Chelba-Acero), and feature expansion Max-

Ent (Daumé), inductive SVM (ISVM), transductive SVM (TSVM), Maximum Likelihood

Naive Bayes (NB-ML), and EM based Naive Bayes (NB-EM) models under the condi-

tions of classic inductive learning, (Induction), unsupervised transductive transfer learning,

(TransductTransfer), relaxed transductive transfer, (RelaxTransductTransfer), and super-

vised inductive transfer (InductTransfer), as introduced in the previous sections and summarized

in Table 2.1. F1 measures are presented in bold.

Method
Induction TransductTransfer RelaxTransductTransfer InductTransfer

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

MAXIMUM ENTROPY

Basic 85 78 82 75 42 54 65 68 67 81 54 65

Chelba-Acero - - - - - - - - - 87 84 85

Daumé - - - - - - - - - 84 62 72

SUPPORT VECTOR MACHINES

ISVM 78 58 67 86 40 54 86 40 55 86 52 65

TSVM 68 79 73 86 46 60 72 75 73 86 58 70

NAIVE BAYES

NB-ML 80 93 86 50 81 62 48 85 61 55 84 67

NB-EM - - - 40 84 54 41 82 55 - - -
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learning (see Table 2.1) and when run on the inductive transfer case, corresponds to the

supervised transductive transfer learning in Table 2.1. There are other extra runs we did for

the purposes of comparison, which will become apparent from the following discussion.

Table 2.4 summarizes the results under all four settings. The inductive experiment is dom-

inated by Naive Bayes, achieving an F1 of 86% compared to MaxEnt’s 82% and TSVM’s

73%. This should not be surprising since generative models are known to be robust when a

large amount of labeled training data is available.

Moving to the transductive transfer setting causes all three methods’ performances to fall,

but MaxEnt falls most sharply, causing it to lose its entire lead over TSVM. Note that in

this setting, basic MaxEnt and ISVM have equivalent performance of about 54% F1. The

inductive Naive Bayes (using maximum likelihood estimator) proves to the top performer

in this setting. TSVM, on the other-hand, is able to adjust its hyperplane in light of the

transfer test data and stabilize its performance at 60%, even though it is unlabeled, because

it knows where these points lie relative to the labeled training points in feature space. The

transductive version of the naive Bayes (using EM), however, fares worse than its inductive

counterpart. Since EM’s optimization function is the marginal log-likelihood of the test data,

without knowledge of the test’s conditional distribution, it is not guaranteed to improve the

classification performance in some cases.

In the relaxed transductive transfer setting, finally, where the target dataset is still unlabeled

but all algorithms are told the expected proportion of positive examples, TSVM excels.

Again, while MaxEnt is able to make significant use of this information (note the jump to

67% from 54%), it seems TSVM does a better job leveraging the prior knowledge into better

performance. Maximum Likelihood based Naive Bayes, on the other hand loses out. It seems

that the class conditional probability is more critical in naive Bayes than the prior, so tuning

the latter’s value does not have any positive impact on its performance. Also, notice that
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the EM based naive Bayes is even worse, repeating the pattern in the transductive transfer

case.

Finally, the last column of Table 2.4 compares the performance of the three methods for

inductive transfer learning: the prior-based regularized maximum entropy method (Chelba-

Acero, described in section 2.2.4), and the feature expanding version (Daumé, described in

section 2.2.4). We can see that both methods handily outperform the transductive transfer

methods described in the second column of Table 2.4, and for the most part outperform even

the relaxed transductive transfer versions in column three. This should not be surprising

given the fact that the inductive transfer methods can actually see some labeled examples

from the target domain and thus, in the case of MaxEnt, better estimate the conditional

expectation of the features in the target data. Likewise, since they have access to labeled

target data, they can also assess the proportion of positive examples and adjust their decision

functions accordingly. What is more surprising, however, is the fact that these methods do

not significantly outperform the inductive learning methods described in the first column of

Table 2.4. This suggests that these inductive transfer methods are relying almost entirely on

their labeled target data in order to train their classifiers, and are not making full use of the

large amount of labeled source data. One might assume that having access to almost four

times as much related data, in the form of the labeled source data, would significantly boost

their ability to classify the target data (this is, after all, one of the stated goals of transfer

learning). Dishearteningly, in this instance, this seems not to be the case. The regularized

maximum entropy model Chelba-Acero does outperform2 the basic MaxEnt in the inductive

setting, but not by as much as might have been hoped for.

In order to measure how much these inductive transfer methods’ explicit modeling of the

transfer problem was responsible for their performance, we compared them to the baselines

2Chelba-Acero has F1 of 85 vs. MaxEnt ’s 82. Significance was determined by comparing the 99% binomial

confidence intervals for each method’s recall and precision.
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of ISVM, TSVM, MaxEnt and Naive Bayes trained on a simple concatenation of the labeled

source and target training data. These transfer-agnostic methods clearly benefited from

the addition of labeled target data (as compared to column TransductiveTransfer), yet still

yielded consistently lower F1 than the transfer-aware Chelba-Acero and Daumé methods,

suggesting that the mere presence of labeled sets of both types (source and target) of data

is not enough to account for the transfer methods’ superior results. Instead, it seems it is

the modeling of the different domains in the transfer problem, even in simple ways, that

provides the extra boost to performance.

Conclusions

These experiments and analysis have shed light on a number of important issues and con-

siderations related to the problems of transduction and transfer learning.

We have seen that in the case of discriminative models, even a small amount of prior knowl-

edge about the target domain can greatly improve performance in a transductive transfer

problem. The generative model is not able to exploit this information. For all these models,

we notice that even large amounts of source data cannot overcome the advantage of having

access to labeled data drawn from the target distribution.

We have also seen the degree to which pseudo-labeling based schemes can improve per-

formance by incorporating the unlabeled structure of the target domain. However, this

improvement is not seen in the generative Naive Bayes model. We believe this is because

discriminative models directly optimize classification accuracy, while the EM based Naive

Bayes model optimizes an unrelated function, namely, the marginal log-likelihood.

Finally, we have seen that the generative Naive Bayes model is robust in the inductive setting

with large amount of labeled data, while the discriminative models are at least as good or

better in the transductive setting. Of the two discriminative models considered, the margin

based SVM seems to adapt better to the unlabeled data.
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These insights regarding the benefits of prior domain knowledge, pseudo labels, and labeled

target data will be leveraged again in Sections 3, 6.2 and 5 respectively to create our own

robust NER learners.
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Chapter 3

Hierarchical Feature Models

In this chapter we draw on the results of the previous section indicating the utility of domain-

specific priors, and develop a lexically-motivated hierarchical model of our domain’s feature

space that can be used to construct robust priors for domain-adaptive named entity recog-

nition.

3.1 Definition of hierarchical feature models

By exploiting the hierarchical relationship present in many different natural language feature

spaces, we are able to transfer knowledge across domains, both relating similar features to

one another, while allowing distinct ones to vary across domains, genres and tasks [Arnold

et al., 2008].

3.1.1 Hierarchical feature trees

In many NER problems, features are often constructed as a series of transformations of the

input training data, performed in sequence. Thus, if our task is to identify tokens as either
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Figure 3.1: Graphical representation of the hierarchical transfer model.

being (O)utside or (I)nside person names, and we are given the labeled sample training

sentence:

O O O O O I

Give the book to Professor Caldwell (3.1)

one such useful feature might be: Is the token one slot to the left of the current token

Professor? We can represent this symbolically as L.1.Professor where we describe the

whole space of useful features of this form as: {direction = (L)eft, (C)urrent, (R)ight}.{distance

= 1, 2, 3, ...}.{value = Professor, book, ...}. Some example features describable this way1

1Defining features in this form allows the natural language toolkit we use for these experiments, Mi-
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CurrentToken.charPattern.Xx = TRUE

LeftToken.1.isTitle = TRUE

LeftToken.1.lowerCase.isWord.professor = TRUE

Table 3.1: Examples of features for token Caldwell in example Sentence 3.1.

are shown in Table 3.1 and further described in §4.1.1. We can conceptualize the structure

of this feature space as a tree, where each slot in the symbolic name of a feature is a branch

and each period between slots represents another level, going from root to leaf as read left to

right. Thus a subsection of the entire feature tree for the token Caldwell could be drawn as

in Figure 3.2 (zoomed in on the section of the tree where the L.1.Professor feature resides).

Figure 3.2: Graphical representation of a hierarchical feature tree for token Caldwell in

example Sentence 3.1.

Representing feature spaces with this kind of tree, besides often coinciding with the explicit

language used by common natural language toolkits [Cohen, 2004], has the added benefit

of allowing a model to easily back-off, or smooth, to decreasing levels of specificity. For

example, the leaf level of the feature tree for our sample Sentence 3.1 tells us that the word

Professor is important, with respect to labeling person names, when located one slot to the

northird, to recursively instantiate tens of thousands of features based on a very simple set of user-defined

patterns, such as IsNumeral or IsTitle. See Appendix A for more details.

40



left of the current word being classified. This may be useful in the context of an academic

corpus, but might be less useful in a medical domain where the word Professor occurs

less often. Instead, we might want to learn the related feature L.1.Dr. In fact, it might be

useful to generalize across multiple domains the fact that the word immediately preceding

the current word is often important with respect to the named entity status of the current

word. This is easily accomplished by backing up one level from a leaf in the tree structure

to its parent, to represent a class of features such as L.1.*.

It has been shown empirically that, while the significance of particular features, such as

ThisToken.equals.mr or ThisToken.equals.professor, might vary between domains and tasks,

certain generalized classes of features, such as ThisToken.IsTitle, retain their importance

across domains [Minkov et al., 2005].

3.1.2 New model: hierarchical prior model

One way of implementing this sort of ”back-off” is to use the feature hierarchy as a prior

for transferring beliefs about the significance of entire classes of features across domains

and tasks. Some examples illustrating this idea are shown in Table 3.2. In these examples,

the asterisk (*) stands for wildcard and will match anything. For example, the feature

LeftToken.IsWord.IsTitle.equals.* would match any token which had a title directly

to its left, while LeftToken.IsWord.IsTitle.equals.mr would only match tokens that has

the specific token ’mr’ on their left.

In this section, we will present a new model that learns simultaneously from multiple do-

mains, by taking advantage of a feature hierarchy. We will assume that there are D domains

on which we are learning simultaneously. Let there be Md training data in each domain d.

For our experiments with non-identically distributed, independent data, we use conditional

random fields (cf. §2.2.4). However, this model can be used with any discriminative prob-

41



LeftToken.*

LeftToken.IsWord.*

LeftToken.IsWord.IsTitle.*

LeftToken.IsWord.IsTitle.equals.*

LeftToken.IsWord.IsTitle.equals.mr

Table 3.2: A few examples of the feature hierarchy

abilistic model, even those without sequential structure, such as the MaxEnt model. Let

Λ(d) = (λ
(d)
1 , · · · , λ(d)

Fd
) be the parameters of the discriminative model in the domain d where

Fd represents the number of features in the domain d (while we focus on binary features in

this work, this model is general enough to admit real valued features as well).

Further, we will also assume that the features of different domains share a common hierarchy

represented by a tree T , whose leaf nodes are the features themselves (cf. Figure 3.2). The

model parameters Λ(d), then, form the parameters of the leaves of this hierarchy. Each

non-leaf node n ∈ non-leaf(T ) of the tree (the w’s of Figure 3.1) is also associated with a

hyper-parameter zn. Note that since the hierarchy is a tree, each node n has only one parent,

represented by pa(n). Similarly, we represent the set of children nodes of a node n as ch(n).

The entire graphical model for an example consisting of three domains is shown in Figure 3.1.

The conditional likelihood of the entire training data (y,x) = {(y(d)
1 ,x

(d)
1 ), · · · , (y(d)

Md
,x

(d)
Md

)}Dd=1

is given by:

P (y|x,w, z) =

{
D∏
d=1

Md∏
k=1

P (y
(d)
k |x

(d)
k ,Λ(d))

}

×

{
D∏
d=1

Fd∏
f=1

N (λ
(d)
f |zpa(f (d)), 1)

}

×

 ∏
n∈Tnonleaf

N (zn|zpa(n), 1)


(3.2)

42



where the terms in the first line of eq. (3.2) represent the likelihood of data in each domain

given their corresponding model parameters, the second line represents the likelihood of each

model parameter in each domain given the hyper-parameter of its parent in the tree hierarchy

of features and the last term goes over the entire tree T except the leaf nodes. Note that in

the last term, the hyper-parameters are shared across the domains, so there is no product

over d. Note also that the model described in eq. (3.2) is general: while for the remainder of

the thesis we will often instantiate P (y
(d)
k |x

(d)
k ,Λ(d)) using conditional random fields (CRF),

the method should apply equally well under the substitution of any conditional model.

We perform a MAP estimation for each model parameter as well as the hyper-parameters.

Accordingly, the estimates’ update rules are given as follows:

λ
(d)
f =

Md∑
i=1

∂

∂λ
(d)
f

(
logP (ydi |x

(d)
i ,Λ(d))

)
+ zpa(f (d))

zn =
zpa(n) +

∑
i∈ch(n)

λi

1 + |ch(n)|
(3.3)

Essentially, in this model, the weights of the leaf nodes (model parameters) depend on the

log-likelihood as well as the prior weight of its parent. Additionally, the weight of each

hyper-parameter node in the tree is computed as the average of all its children nodes and

its parent, resulting in a smoothing effect, both up and down the tree.

3.1.3 An approximate hierarchical prior model

The hierarchical prior model is a theoretically well founded model for transfer learning

through feature hierarchy. In practice, however, it can be troublesome to compute. We

therefore propose an approximate version of this model that weds ideas from the exact

hierarchical prior model and the Chelba-Acero model.

As with the Chelba-Acero prior method in §2.2.4, this approximate hierarchical method

also requires two distinct data sets, one for training the prior and another for tuning the
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final weights. The tuning was performed by training a model to convergence on the tuning

data set, and using the trained coefficients as the parameter values in the new model. Unlike

Chelba-Acero, we smooth the weights of the priors using the feature-tree hierarchy presented

in §3.1, like the hierarchical prior model.

For smoothing of each feature weight, we chose to back-off in the tree as little as possible

until we had a large enough sample of prior data (measured as M , the number of subtrees

below the current node) on which to form a reliable estimate of the mean and variance of

each feature or class of features. For example, if the tuning data set is as in Sentence 3.1,

but the prior contains no instances of the word Professor, then we would back-off and

compute the prior mean and variance on the next higher level in the tree. Thus the prior

for L.1.Professor would be N (mean(L.1.*), variance(L.1.*)), where mean() and variance()

of L.1.* are the sample mean and variance of all the features in the prior dataset that match

the pattern L.1.* – or, put another way, all the siblings of L.1.Professor in the feature tree.

If fewer than M such siblings exist, we continue backing-off, up the tree, until an ancestor

with sufficient descendants is found.

This backing-off strategy has the result that the information contained in the data instances

is kept closer to the leaves, based on the sample size for that leaf, which seems to be im-

portant. In fact, our preliminary experiments indicated that the approximate hierarchical

model outperforms the exact model on real-life data. We conjecture that the main reason for

this phenomenon is over-smoothing. In other words, by letting the information propagate

from the leaf nodes in the hierarchy all the way to the root node, as in the exact method,

the model loses its ability to discriminate between its features.

A detailed description of the approximate hierarchical algorithm is shown in Table 3.3. Notice

the similarity to empirical Bayes techniques, where the height of our implicit underlying

hierarchical Bayesian model varies depending on the sparsity of the data available to estimate
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the parameters of our Gaussian prior.

It is important to note that this smoothed tree is an approximation of the exact model

presented in §3.1.2 and thus an important parameter of this method in practice is the degree

to which one chooses to smooth up or down the tree. One of the benefits of this model is that

the semantics of the hierarchy (how to define a feature, a parent, how and when to back-off

and up the tree, etc.) can be specified by the user, in reference to the specific datasets and

tasks under consideration. For our experiments, the semantics of the tree are as presented

in §3.1.1.

The Chelba-Acero method can be thought of as a hierarchical prior in which no smoothing

is performed on the tree at all. Only the leaf nodes of the prior’s feature tree are considered,

and, if no match can be found between the tuning and prior’s training datasets’ features, a

N (0, 1) prior is used instead. However, in the new approximate hierarchical model, even if a

certain feature in the tuning dataset does not have an analog in the training dataset, we can

always back-off until an appropriate match is found, even to the level of the root. As long as

the hierarchy is constructed such that related features are near each other in the tree, this

backing-off should result in a possibly weaker, but hopefully still relevant, estimate of the

missing feature.

Henceforth, we will use only the approximate hierarchical model in our experiments and

discussion.
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Input: Dsource = (Xsource
train , Y source

train )

Dtarget = (X target
train , Y

target
train );

Feature sets F source, F target;

Feature Hierarchies Hsource, Htarget

Minimum membership size M

Train CRF using Dsource to obtain

feature weights Λsource

For each feature f ∈ F target

Initialize: node n = f

While (n /∈ Hsource

or |Leaves(Hsource(n))| ≤M)

and n 6= root(Htarget)

n← Pa(Htarget(n))

Compute µf and σf using the sample

{λsourcei | i ∈ Leaves(Hsource(n))}

Train Gaussian prior CRF using Dtarget as data

and {µf} and {σf} as Gaussian prior parameters.

Output:Parameters of the new CRF Λtarget.

Table 3.3: Algorithm for approximate hierarchical prior: Pa(Hsource(n)) is the parent of node

n in feature hierarchy Hsource; |Leaves(Hsource(n))| indicates the number of leaf nodes (basic

features) under a node n in the hierarchy Hsource.

46



Table 3.4: Summary of data used in experiments

Corpus Genre Task Tokens Features Frequency of positive class

UTexas Bio Protein 217,000 105,000 6.6%

Yapex Bio Protein 61,000 37,000 15.0%

MUC6 News Person 45,000 40,000 2.29%

MUC7 News Person 102,000 68,000 2.20%

CSPACE E-mail Person 28,000 19,000 4.20%

3.2 Investigation of hierarchical feature models

3.2.1 Data, domains and tasks

For our investigations into hierarchical feature models, we chose five different corpora (sum-

marized in Table 3.4). Although each corpus can be considered its own domain (due to

variations in annotation standards, specific task, date of collection, etc), they can also be

roughly grouped into three different genres. These are: abstracts from biological journals

[UT [Bunescu et al., 2004], Yapex [Franzén et al., 2002]]; news articles [MUC6 [Fisher et al.,

1995], MUC7 [Borthwick et al., 1998]]; and personal e-mails [CSPACE [Kraut et al., 2004]].

Each corpus, depending on its genre, is labeled with one of two name-finding tasks :

• protein names in biological abstracts

• person names in news articles and e-mails

We chose this array of corpora so that we could evaluate our hierarchical prior’s ability to

generalize across and incorporate information from a variety of domains, genres and tasks.

In each case, each item (abstract, article or e-mail) was tokenized and each token was hand-

labeled as either being part of a name (protein or person) or not, respectively. We used

a standard natural language toolkit [Cohen, 2004] to compute tens of thousands of binary
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features on each of these tokens, encoding such information as capitalization patterns and

contextual information from surrounding words. This toolkit produces features of the type

described in §3.1.1 and thus was amenable to our hierarchical prior model. In particular, we

chose to use the simplest default out-of-the-box feature generator and purposefully did not

use specifically engineered features, dictionaries, or other techniques commonly employed to

boost performance on such tasks. The goal of our experiments was to see to what degree

named entity recognition problems naturally conformed to hierarchical methods, and not

just to achieve the highest performance possible.

3.2.2 Experiments & results

We evaluated the performance of various transfer learning methods on the data and tasks

described in §3.2.1. Specifically, we compared our approximate hierarchical prior model

(HIER), implemented as a CRF, against three baselines:

• GAUSS: CRF model tuned on a single domain’s data, using a standard N (0, 1)1 prior

• CAT: CRF model tuned on a concatenation of multiple domains’ data, using a N (0, 1)2

prior

• CHELBA-ACERO: CRF model tuned on one domain’s data, using a prior trained on a

different, related domain’s data (cf. §2.2.4)

We use token-level F1 as our main evaluation measure, combining precision and recall into

one metric. These results can be viewed in light of the similar experiments performed in

§2.2.6. Specifically the Chelba-Acero model, which demonstrated a substantial win over

the other methods in the inductive transfer setting, serves as a plausible baseline to the

approximate hierarchical prior model evaluated here.

2We found anecdotal evidence suggesting these baselines were robust across a range of choices of default

prior variance.
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Figure 3.3: Adding a relevant HIER prior helps compared to the GAUSS baseline ((c) >

(a)), while simply CAT’ing or using CHELBA-ACERO can hurt ((d) ≈ (b) < (a), except

with very little data), and never beats HIER ((c) > (b) ≈ (d)). All models were tuned on

MUC6 except CAT (b), tuned on MUC6+MUC7.

3.2.3 Intra-genre, same-task transfer learning

Figure 3.3 shows the results of an experiment in learning to recognize person names in

MUC6 news articles. In this experiment we examined the effect of adding extra data from

a different, but related domain from the same genre, namely, MUC7. Line a shows the

F1 performance of a CRF model tuned only on the target MUC6 domain (GAUSS) across

a range of tuning data sizes. Line b shows the same experiment, but this time the CRF

model has been tuned on a dataset comprised of a simple concatenation of the training

MUC6 data from (a), along with a different training set from MUC7 (CAT). We can see

that adding extra data in this way, though the data is closely related both in domain and

task, has actually hurt the performance of our recognizer for training sizes of moderate to

large size (the x-axis in the plot). This is most likely because, although the MUC6 and

49



MUC7 datasets are closely related, they are still drawn from different distributions and

thus cannot be intermingled indiscriminately. Line c shows the same combination of MUC6

and MUC7, only this time the datasets have been combined using the HIER prior. In this

case, the performance actually does improve, both with respect to the single-dataset trained

baseline (a) and the naively trained double-dataset (b). Finally, line d shows the results

of the CHELBA-ACERO prior. Curiously, though the domains are closely related, it does

more poorly than even the non-transfer GAUSS. One possible explanation is that, although

much of the vocabulary is shared across domains, the interpretation of the features of these

words may differ. Since CHELBA-ACERO doesn’t model the hierarchy among features like

HIER, it is unable to smooth away these discrepancies. In contrast, we see that our HIER

prior is able to successfully combine the relevant parts of data across domains while filtering

the irrelevant, and possibly detrimental, ones.

This experiment was repeated for the three other sets of intra-genre tasks (MUC6→MUC7,

Y apex → UT and UT → Y apex), with the results shown in Figures 3.4, 3.5 and 3.6,

respectively, and summarized in §3.2.5.

3.2.4 Inter-genre, multi-task transfer learning

In Figure 3.7 we see that the properties of the hierarchical prior hold even when transferring

across tasks. Here again we are trying to learn to recognize person names in MUC6 e-mails,

but this time, instead of adding only other datasets similarly labeled with person names, we

are additionally adding biological corpora (UT & YAPEX), labeled not with person names

but with protein names instead, along with the CSPACE e-mail and MUC7 news article

corpora. The robustness of our prior prevents a model trained on all five domains (g) from

degrading away from the intra-genre, same-task baseline (e), unlike the model trained on

concatenated data (f ). CHELBA-ACERO (h) performs similarly well in this case, perhaps
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Figure 3.4: All models were trained on MUC6 and tuned on MUC7 except CAT (b), tuned
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

F
1

Percent of target-domain data used for feature coefficient tuning

Intra-genre transfer performance evaluated on UTexas

(a) GAUSS

(b) CAT

(c) HIER: UT+Y prior

Figure 3.5: All models were trained on Yapex (Y) and tuned on UTexas (UT) except CAT

(b), tuned on UT+Y.
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Figure 3.7: Transfer aware priors CHELBA-ACERO and HIER effectively filter irrelevant

data. Adding more irrelevant data to the priors doesn’t hurt ((e) ≈ (g) ≈ (h)), while simply

CAT’ing it, in this case, is disastrous ((f) << (e). All models were tuned on MUC6 except

CAT (f), tuned on all domains.
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because the domains are so different that almost none of the features match between prior

and tuning data, and thus CHELBA-ACERO backs-off to a standard N (0, 1) prior.

This robustness in the face of less similarly related data is very important since these types

of transfer methods are most useful when one possesses only very little target domain data.

In this situation, it is often difficult to accurately estimate performance and so one would

like assurance than any transfer method being applied will not have negative effects.

3.2.5 Comparison of HIER prior to baselines

Each scatter plot in Figure 3.8 shows the relative performance of a baseline method against

HIER (the full results, summarized in these scatter plots, are shown in Appendix B). Each

point represents the results of two experiments: the y-coordinate is the F1 score of the

baseline method (shown on the y-axis), while the x-coordinate represents the score of the

HIER method in the same experiment. Thus, points lying below the y = x line represent

experiments for which HIER received a higher F1 value than did the baseline.
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Figure 3.8: Comparative performance of baseline methods (GAUSS, CAT, CHELBA-ACERO) vs. HIER prior, as trained

on nine prior datasets (both pure and concatenated) of various sample sizes, evaluated on MUC6 and CSPACE datasets.

Points below the y = x line indicate HIER outperforming baselines.
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While all three plots show HIER outperforming each of the three baselines, not surprisingly,

the non-transfer GAUSS method suffers the worst, followed by the naive concatenation

(CAT) baseline. Both methods fail to make any explicit distinction between the source and

target domains and thus suffer when the domains differ even slightly from each other. Al-

though the differences are more subtle, the right-most plot of Figure 3.8 suggests HIER is

likewise able to outperform the non-hierarchical CHELBA-ACERO prior in certain trans-

fer scenarios. CHELBA-ACERO is able to avoid suffering as much as the other baselines

when faced with large difference between domains, but is still unable to capture as many

dependencies between domains as HIER.

3.2.6 Prior work related to hierarchical feature models

While existing techniques have tried to quantify the generalizability of certain features across

domains and used that to aid in transfer [Daumé III and Marcu, 2006; Jiang and Zhai, 2006],

they do not provide an explicit, interpretable, set of priors which define and regulate what is

meant by ’generalizable’, as our feature hierarchy does. Other work has tried to exploit the

common structure of related problems in the source and target domains [Ben-David et al.,

2007; Schölkopf et al., 2005], but relies on labeled examples drawn from the target domain

to do so, i.e., supervised transfer learning, while our work requires no labeled target data.

While there are examples of unsupervised [Arnold et al., 2007], semi-supervised [Grandvalet

and Bengio, 2005; Blitzer et al., 2006], and transductive approaches [Taskar et al., 2003],

they likewise do not take advantage of the known, cross-domain, hierarchical relationship

among features.

Recent work using so-called meta-level priors to transfer information across tasks [Lee et al.,

2007], while related, does not take into explicit account the hierarchical structure of these

meta-level features often found in NLP tasks. Daumé allows an extra degree of freedom
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among the features of his domains, implicitly creating a two-level feature hierarchy with

one branch for general features, and another for domain specific ones, but does not extend

his hierarchy further [Daumé III, 2007]. More recent work extends and formalizes Daumé’s

two-level structure to a full Bayesian hierarchical model, allowing for more nuanced control

of the relationship among domains in a more complex transfer task like our own [Finkel and

Manning, 2009]. Finkel and Manning’s work also presents a nice generalized framework from

which to view our use of smoothing over hierarchies of linguistic features as a method for

learning the parameters of a Gaussian regularization.

Work on hierarchical penalization [Szafranski et al., 2007] in two-level trees (concurrent with

our ACL paper [Arnold et al., 2008]) tries to produce models that are parsimonious with re-

spect to a relatively small number of groups of variables as structured by the tree, as opposed

to transferring knowledge between and among the branches of the tree themselves, as in our

transfer setting. Much of this hierarchical approach can also be related to wavelet-based

methods [Donoho and Johnstone, 1995] that try to represent and compress the regularities

in data using a known hierarchy. A key difference, however, is that wavelets tend to use a

hierarchy of frequencies, useful for encoding images or sounds, and it is not clear how they

would extend to categorical data such as tokens in a document.

3.2.7 Discussion

In this work we have introduced hierarchical feature tree priors for use in transfer learning

on named entity extraction tasks. We have provided evidence that motivates these models

on intuitive, theoretical and empirical grounds, and have gone on to demonstrate their

effectiveness in relation to other, competitive transfer methods. Specifically, we have shown

that hierarchical priors allow the user enough flexibility to customize their semantics to a

specific problem, while providing enough structure to resist unintended negative effects when
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used inappropriately. Thus hierarchical priors seem a natural, effective and robust choice for

transferring learning across NER datasets and tasks.

From the broader perspective of this thesis as a whole, we have demonstrated that hierar-

chical feature trees provide a robust method for relating disparate parts of a data set to one

another (in this case, features in feature space). The hierarchy provides a binding frame-

work within which different aspects of the data can relate to and influence each other, and

be aggregated by the learner to produce a model that is robust across these variations in the

data.

Finally, while we have not investigated it here, we suspect these techniques for learning

hierarchical priors could be applied to other structures besides trees, for example, polymor-

phic hierarchies or directed acyclic graphs (although there may be non-trivial issues such of

semantics and convergence to address before such extensions could be achieved).
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Chapter 4

Structural Frequency Features

In this chapter we define a novel feature based on the distribution of tokens across the struc-

ture of a document. We find that this feature has predictive properties that are preserved

across domains, and thus provides a regularity that we can exploit to achieve more robust

named entity recognition.

4.1 Definition of structural frequency features

Given a set of documents, each of which is structured into various sections, we can com-

pute, for each token occurring in those documents, a statistic summarizing how often that

token appears in one section of a document versus another. We call this segmentation of

a data source into sections the document’s structure, and the set of statistics gathered by

conditioning on a token’s distribution across the document’s structure that token’s struc-

tural frequency features. By modeling the distribution of instances across various related

domains in a single unified feature space, structural frequency features are able to combine

these disparate source of information in order to create a stronger learner [Arnold and Cohen,
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2008]. This idea of using external, inter-dependent structure to improve learning robustness

has been used previously by skip-chain conditional random fields to allow the incorporation

of global, inter-connected constraints [Sutton and McCallum, 2004]. Previously, stacked

learning introduced the idea of tying predictions together across examples to reduce bias

and improve generalization performance [Wolpert, 1992], while more recent work has ex-

tended the stacked learning model to the specific problem of learning on sequentially related

data common to many NER tasks [Cohen and Carvalho, 2005], as well as more arbitrary

interactions, expressed graphically [Kou and Cohen, 2007].

4.1.1 Lexical features

Most modern information extraction systems rely on some kind of representation, usually

a set of features, that distills the document into a form the algorithm can interpret and

manipulate. The exact form of these features is a vital component of the overall system,

balancing the complexity of a rich representation with the parsimony of an insightful view

of the domain and problem being solved. For named entity recognition, lexical features,

which try to capture patterns of words within the text of a document, are one of the most

common, and intuitive, types of these representations. Generally, a lexical feature is a

function of a word and its context. The specific definition of this function may vary widely

across domains and implementations. In our setting, each lexical feature is a boolean function

over a token in a document representing the value and morphology of that token and its

neighbors. For example, given the sentence fragment from a caption of a biological paper:

‘Figure 4: Tyrosine phosphorylation...’, some lexical features for the token ‘Tyrosine’ would

look like:

Notice that, although these features are defined with respect to a certain current token,

‘Tyrosine’, they also take into account the context of that word in the document. In
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CurrentToken.isWord.Tyrosine

CurrentToken.charPattern.Xx

CurrentToken.endsWith.ine

Right1Token.endsWith.ation

Right1Token.isWord.phosphorylation

Left1Token.isWord.:

Left3Token.isWord.Figure

Table 4.1: Lexical features for token ‘Tyrosine’ in sample caption: ‘Figure 4: Tyrosine

phosphorylation...’.

this example, if we knew that this occurrence of ‘Tyrosine’ was labeled as a protein, the

fact that the token immediately to the right of the current token was ‘phosphorylation’

(Right1Token.isWord.phosphorylation) might be useful in predicting whether other, hereto-

fore unseen tokens besides ‘Tyrosine’, that also happen to be followed by a token such as

‘phosphorylation’, might also be proteins.

Since each word in one’s vocabulary may constitute a feature (e.g., CurrentToken.isWord.A,

CurrentToken.isWord.B, ...), it is not uncommon to have tens or even hundreds of thousands

of such binary lexical features defined in one’s feature space. The benefit of this is that such

a large feature space can richly represent most any training set. The examples in Table

4.1 also include domain-specific features such as ‘CurrentToken.endsWith.ine’ (a common

suffix for amino-acids). These custom features allow the researcher to bias his feature space

towards specific features that he feels might be more informative with respect to his particular

problem domain. While this specificity may be advantageous for an expert dealing with a

limited domain, it can become a liability when that domain is uncertain, or even variable,

as is the case in our robust learning setting.
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For instance, while the occurrence of the word ‘Figure’ followed by a number and a colon may

be very informative in terms of identifying words as proteins in the captions of papers, if our

extractor is trained only on abstracts it may never see those types of features. Indeed, since

lexical features are merely functions of the specific sections of text seen during training, they

are unable to capture information residing in other sections of the document which may prove

useful. Even in the semi-supervised case where the learning algorithm has access to unlabeled

target domain data, lexical features are unable to take advantage of this information since

there is no way to relate the unlabeled tokens to the labeled ones.

Lexical features thus provide a valuable, but brittle, representation of the training data. Our

work augments these rich, though domain-specific, lexical features with other non-lexical

features based on the internal structure of a document, contributing another view of the

data that is more robust to changes in the domain. We show that combining these types of

domain-specific and domain-robust features produces a classifier that performs well across

domains.

4.1.2 Document structure

We begin by highlighting the common observation that most documents are written with

some kind of internal structure. For instance, the biological papers we studied in this exper-

iment (like most academic papers) can be divided into three sections:

• Abstract: summarizing, at a high level, the main points of the paper such as the

problem, contribution, and results.

• Caption: summarizing the figure it is attached to. These are especially important

in biological papers where most important results are represented graphically. Unlike

computer science papers, which usually have brief captions, in our corpus the average

61



caption was over 125 words long, thus supporting our belief that they might contain

useful information for our NER task.

• Full text: the main text of a paper, that is, everything else besides the abstract and

captions.

An example of such a structured document is provided in Figure 4.1. In this figure we see

the various ways a protein can be referred to throughout the sections of a document.
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Figure 4.1: Sample biology paper. Each large black box represents a different subsection of the document’s structure:

abstract, caption and full text. Each small highlighted color box represents a different type of information: full protein

name (red), abbreviated protein name (green), parenthetical abbreviated protein name (blue), non-protein parentheticals

(brown), genes (orange), and measurement units (purple).
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Notice how the distribution of these types of occurrences varies across the structure of the

document. For instance, full name references (red) (like ‘macrophage colony-stimulating

factor’) appear in the abstract and full text of the paper, but not its caption. In contrast,

non-protein parentheticals (brown) (like ‘(A)’, ‘(B)’, ‘(lane 1)’, ‘(lanes 2 to 4)’, ‘(lane 3)’,

and ‘(lane 4)’) do appear in the caption but not in the full text or abstract.

This is similar to the complex way the instances in Figure 1.1 are related to each other: not

through a common distribution (as in the i.i.d. case), but rather through another mediating

relationship (in this case, the structural features relating the occurrence of tokens across

the common structure of a document). Here we see the importance of explicitly modeling

the difference between the source and target domains: if one were to näıvely train a purely

lexical feature based extractor on the abstracts and try to apply it to the captions, the

extractor might be confused by the non-protein parentheticals, having never seen them in its

training data. Likewise, it might waste significant probability mass on features representing

the unabbreviated form of protein names which it might never see in its caption test data.

It is important to note that in order to support this interpretation of the data in which

we can compare and aggregate token occurrences across different sections of the document,

we have to make the so-called one-sense-per-discourse assumption [Gale et al., 1992]. This

common assumption states that tokens in one section of a document have the same meaning

as identical tokens in other sections of the same document. This can be visualized as another

layer of edges in Figure 1.1, linking occurrences of words across sections of a document,

and ultimately, bridging the gap between the source and target domains. This assumption

is necessary since, without it, we would have no reason for believing that a potentially

ambiguous token, such as ‘CAT’, used in a certain sense in one section of a document, would

have the same sense in a different section of the document, and therefore, would have no

way to aggregate that token’s features and statistics across the entire document.
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Since we have no labeled target domain data, however, it is not obvious how we might amend

or supplement our source domain training data so as to avoid these problems. The key insight

is the fact that these domains, while distinct, are nevertheless related by the overarching

structure of the documents in which they reside. For instance, while unabbreviated protein

names never appear in the caption, and non-protein parentheticals never appear in the

abstract, both of these occur in the full text of the paper. Thus, our goal is to find some

class of features that can relate these different types of occurrences together across the

differing subsections of a document’s structure. We will achieve this by leveraging the one-

sense-per-discourse assumption and our knowledge about our documents’ structure.

4.1.3 Structural frequency features

Let D1, D2, · · · , Dk be the k parts of text document D. Let c(f,Di) be the frequency count

of feature f in Di. A structural frequency feature is formally defined as: c(f,Di)/c(f,Dj).

Like lexical features, structural frequency features are simply functions of tokens in context.

Unlike purely lexical features, however, structural frequency features are able to leverage the

occurrence of tokens across all sections of a document, including the unlabeled captions and

full text. The idea is to leverage the fact that different types of tokens (e.g., unabbreviated

protein names, non-protein parentheticals, etc.) occur with different frequencies in different

sections of a document. In this sense, structural frequency features are related to the infor-

mation theoretic concepts of conditional entropy and mutual information. In the example

from Figure 4.1 in §4.1.2, we noticed that non-protein parentheticals occurred quite often

in the caption, but not at all in the abstract. While this seems informative, in our setting,

unfortunately, we do not have labels for the caption data. We are therefore unable to make

a distinction between protein and non-protein parentheticals in the caption section of the

document. We can, however, make such a distinction in the abstract section of the same
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document, for which we do have labels. Thus, if we see a parenthesized token in a caption,

and see the same token parenthesized in the abstract, we might be able to transfer that

abstract token’s label to the unlabeled caption occurrence. In this respect, these structural

frequency features provide the links necessary to perform a kind of label propagation across

the subsections of a document [Zhu and Ghahramani, 2002].

Given our previously stated one-sense-per-discourse assumption, we now have a means of

transferring our labels across the different unlabeled sections of a document and may have

a useful, non-transfer, semi-supervised learning model. Our ultimate goal, however, is semi-

supervised domain adaptation, and these structural features, as described thus far, still lack

a way of ensuring they will be robust across shifts in domain. The key to addressing that

issue is to consider the occurrence of tokens not in isolation within each subsection of a

document, but rather jointly across sections. For instance, in Figure 4.1 we see the pattern

‘(lane *)’ occurs quite often in the caption, but never in the full text. In fact, there are many

such non-proteins that only ever appear in the caption section of the document. In contrast,

the token ’M-CSF’ occurs with high frequency across all three sections of the document.

Indeed, there are relatively few proteins that do not occur in the abstract of a paper.

It seems we can use the relative distribution of tokens across the different sections of a

document, in and of itself and without any lexical or morphological information about the

form of token itself, as a signal of that token’s likelihood of being a protein. This makes

sense, since authors are conveying different kinds of information, in different ways, across

the various sections of a document and so are not equally likely to mention a protein, in the

same particular way, across the entire document.

Specifically, for each unique word-type in a document, we counted the number of times it

appeared in each of the different sections of that document (for example, the word-type ‘M-

CSF’ occurs three times in the abstract, four times in the full text, and three times in the
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Times in: Log prob. in: Log cond. prob. in:

Word A C F A C F P(C|A) P(F|A)

‘M-CSF’ 3 3 4 -1.84 -1.61 -3.10 -1.20 -1.12

‘macrophage’ 2 0 1 -2.01 -Inf -3.70 -Inf -1.72

‘(M-CSF)’ 1 0 1 -2.30 -Inf -3.70 -Inf -1.72

‘PU.1’ 5 2 0 -1.61 -1.78 -Inf -1.37 -Inf

‘kDa’ 0 0 1 -Inf -Inf -3.70 Undefined Undefined

Table 4.2: Sample structural frequency features for specific tokens in example paper from

Figure 4.1, as distributed across the (A)bstract, (C)aptions and (F)ull text. Log probabilities

are computed assuming the following number of total tokens are found in each section of the

paper: A = 206, C = 121, F = 4, 971, C|A = 47, F |A = 53.

caption of the example in Figure 4.1). We then normalized these counts by the total number

of tokens in a given section to come up with an empirical probability of a word-type occurring

in a particular section. We also computed the conditional forms of these features, that is, we

counted the number of times a token appeared in section x, given that it also appeared in

section y, again normalizing to form an empirical probability distribution. Continuing our

example, the token ‘macrophage’ never occurs in the caption and thus, although the token

does occur in the abstract, probability(word occurring in caption|word occurs in abstract) is

still zero (see Table 4.2 for more examples). These conditional structural frequency features

allow us to characterize the particular distribution patterns that different types of words

have across the sections of a document. In particular, we might be interested in modeling

things like p(word is a protein|word appears in caption but not in abstract). Figures 4.2 and

4.3 show the distribution of two such features across our training data.

Figure 4.2 shows a histogram of the number of times words labeled in the abstract as pro-
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teins (left) and non-proteins (right) occurred with a given log normalized probability in the

document’s full text, given that it also appeared (at least once) in the same document’s

abstract section. Since these probabilities are plotted on the log scale, any zero values (i.e.,

words that appear in abstracts but never in the full text), will be assigned to the bin at
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Figure 4.2: Histogram of the number of occurrences of protein (left) and non-protein (right) words with the given log

normalized probability of appearing in full text, given that they also appear in an article’s abstract.
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negative infinity. The lack of instances at negative infinity in the left plot is evidence that,

if a protein is in an abstract, it is also always in the full text at least once. But this is not

so for non-proteins – the large spike on the left side of the right plot shows a large number

of non-proteins that appear in abstracts but never in the full text. Also notice the general

right-shift of the entire distribution in the left plot, indicating an overall higher proportion

of proteins occurring in full-text, given that they appear in an abstract, than non-proteins.

Figure 4.3 shows a similar distribution, only this time the conditional structural frequency

feature is measuring the likelihood of a word occurring in the captions of a paper, given that

it appeared in the abstract. Notice, again, the left spike in the non-protein histogram on

the right, indicating that a large number of non-proteins never appear in article’s captions,

despite appearing in its abstract. In contrast, the higher peaks to the right of the protein

plot on the left show a much higher proportion of proteins appearing in captions, given they

also appear in the abstract.

These plots clearly demonstrate a significant difference in the distribution of protein and

non-protein tokens across the various subsections (abstract, captions, and full text) of a

document’s structure and suggest these structural frequency features may be informative

with respect to identifying and extracting proteins. Thus, at training time, we compute these

structural frequency features for each token in our labeled training abstracts. Since counting

token occurrences across document sections, however, does not require labels itself, we can

freely use all the unlabeled text from the papers we have to calculate the features. Likewise,

by leveraging the one-sense-per-discourse assumption, we can attach the word-type’s label

(found in the abstract) to each of these features defined across the various sections of the

document. In the end, we are left with a semi-supervised intra-document representation of

the labeled abstract data that is, due to its cross structural nature, robust to shifts across

the various document section domains.
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Figure 4.3: Histogram of the number of occurrences of protein (left) and non-protein (right) words with the given log

normalized probability of appearing in captions, given that they also appear in an article’s abstract.
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4.2 Investigation of structural frequency features

4.2.1 Data

Our training data for these experiments was drawn from two sources:

• GENIA: a corpus of Medline abstracts with each token annotated as to whether it is

a protein names or not [Ohta et al., 2002]

• PubMed Central (PMC): a free, on-line archive of biological publications [National

Institues of Health, 2009]

Since our methods rely on having access to a document’s labeled abstract along with the

unlabeled captions and full text, and GENIA1 only provided labeled abstracts, we had to

search PMC for the corresponding full text, where available. Of GENIA’s 1,999 labeled

abstracts, we were able to find the corresponding full article text (in PDF format) for 303 of

them on PMC. These PDF’s were (noisily) converted to text2 and segmented into abstract,

captions, and full text using automated tools. Figure 4.1 shows an example of one such

segmented PDF.

Of these 303 papers, consisting of abstracts labeled with protein names along with corre-

sponding unlabeled captions and full text, 218 (consisting of over 1.5 million tokens) were

used for training, and 85 (almost 640,000 tokens) were used for testing. From these docu-

ments we computed the previously described standard lexical features, along with 12 different

structural frequency feature statistics (FREQ) for each unique token in the corpus, summa-

rizing that token’s conditional distribution in both protein and non-protein classes across

1Of the biological journal corpora used in §3.2.1, only Genia could be used for these experiments since the

UTexas abstracts were not labeled with their corresponding PubMed id numbers, and the Yapex abstracts,

while labeled with paper ids, did not have their full text available in PMC
2e-PDF PDF to Text Converter v2.1: http://www.e-pdfconverter.com
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the abstract, captions, and full text of the document, corresponding to the Dabstract, Dcaption

and Dfulltext different sections of a document, as specified in our formal structural frequency

feature definition. These features were then provided as training data to a CRF-based ex-

tractor, with evaluations performed on held-out data via cross validation.

4.2.2 Experiment & results

Non-transfer: abstract to abstract

In this non-transfer experiment, our standard CRF-based model labeled tokens of held-

out abstracts as protein or not, and these predictions were automatically evaluated with

respect to token-level precision, recall and F1 measure using the held-out GENIA labels for

those abstracts. Figure 4.4 compares the performance of extractors trained only on lexical

features (LEX of §4.1.1), only on structural frequency features (FREQ of §4.1.3), and on

a combination of both types of features (LEX+FREQ), while Table 4.3 summarizes the

precision, recall and F1 values of these models’ as evaluated over the test data.

We can observe that, while the lexically trained model always outperforms the strictly struc-

tural frequency informed model (LEX dominates FREQ), the FREQ model nevertheless

produces a competitive precision-recall curve despite having no access to any lexical infor-

mation. This supports the intuition developed from observing the difference between protein

and non-protein distributions in Figures 4.2 and 4.3.

Similarly, the fact that the combined model LEX+FREQ dominates each constituent model

(LEX and FREQ individually) demonstrates that each type of feature (lexical and structural)

is contributing a share of unique information, not represented by the other. This supports

the connection with co-training, proposed in §5.1, by indicating that the feature sets are

somewhat independent with respect to identifying protein names. The fact that their effect
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in the combined model is not completely additive suggests they are not wholly independent

either.
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(FREQ), and both sets of features (LEX+FREQ).
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Model name Prec Rec F1

LEX+FREQ .74 .64 .69

LEX .75 .55 .64

FREQ .48 .58 .53

Table 4.3: Summary of results for extractors trained on full papers and evaluated on ab-

stracts. Values in bold are significantly greater than those in plain font (one-sided paired

t-test, p < .01).

Transfer: abstract to caption

Cross-domain experiments involving structural frequency features (FREQ) are fully de-

scribed in §5.2.4 and 5.2.5, where they are presented in the context of complete ablation

studies, along with the soon-to-be-introduced snippets of §5.1.

Conclusions

A concluding discussion of structural frequency features is likewise defered until §5.3, so as

to incorporate the closely related concept of snippets.
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Chapter 5

Snippets

Although structural frequency features provide domain-robust signals to our extractor, they

do not directly ameliorate the domain-brittleness of the lexical features discussed in §4.1.1.

5.1 Definition of snippets

To address this issue, we introduce a kind of pseudo-data we call snippets. Snippets are

tokens or short phrases taken from one of the unlabeled sections of a document and added

to the training data, having been automatically positively or negatively labeled by some

high confidence method [Arnold and Cohen, 2008]. Together, they help make the target

distribution ‘look’ more like the source distribution with respect to the characteristics they

share, while reshaping the target distribution away from the source distribution in regards to

the ways in which they differ. The net effect is to produce an augmented view of the training

data that will produce a more robust learner. We achieve this robustness by leveraging a

key assumption: that tokens that commonly appear near words of a certain class (protein or

non-protein) in source text will also tend to be neighbors of similarly classed words in the
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target text.

In this way, snippets are related to previous work which dealt with creating pseudo-labeled

data based on limited domain knowledge or weak constraints. In particular, Wang et al.

exploit the weakly labeled tags associated with biological article abstracts to increase the

amount of annotated data available to a learner [Wang et al., 2008], while Daumé uses

auxiliary data from related tasks, along with prior knowledge about the relationships between

and consistency constraints among these tasks, in order to synthesize pseudo-labeled data,

or hints, which are shown to aid the learning process [Daumé III, 2008], in a process akin to

bootstrap learning.

5.1.1 Positive snippets

Positive snippets (i.e., snippets automatically labeled as positive examples) are an attempt

to leverage the overlap between and across domains, by taking high confidence examples

from one domain and transferring them to the other. In this sense, it is related to co-

training [Blum and Mitchell, 1998]. Specifically, positive snippets leverage the one-sense-

per-discourse assumption (which we again rely upon due to our lack of labeled target data).

The procedure for generating positive snippets is relatively straight-forward:

1. All positively labeled tokens are extracted from the labeled source sections of the

document (in this experiment, these are proteins in the abstracts), or encoded via a

priori domain knowledge (such as a dictionary or gazetteer).

2. The unlabeled target sections of the document are searched for these positive tokens

(having been extracted from the labeled source sections in step 1).

3. Any matching instances are copied from the unlabeled section, along with a bit of

neighboring context (we use a default of three neighboring tokens on each side), directly
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into the training data (by concatenating at the end).

4. These copied sections of text (called snippets), having been copied into the source

training data, are then pseudo-labeled using the one-sense-per-discourse assumption:

the snippet tokens matching other positively labeled tokens from the labeled source-

data sections are labeled positive, while their neighboring context tokens (where they

do not match a protein name observed in the source data) are left unlabeled, and

therefore, implicitly negative.

5. This modified training data, now containing pseudo-labeled snippets from the target

data, is then passed to the learner as usual.

The idea behind this process is that the surrounding context will help inform the extractor of

the differences in the distribution of lexical features between the source and target domains.

Since our goal is to train an extractor that will be robust to shifts from source to target

domain, we would like to introduce some examples of the target domain into the source

domain training data to make it look more like the target domain. Since we don’t have labels

for the target domain, however, we have to rely on this high-confidence (albeit possibly low

recall) token matching heuristic and the assumption that, in the absence of other information

such as dictionaries and gazetteers, unlabeled context surrounding pseudo-labeled snippets

contains only negative tokens.

Although we focus in this work on specific methods for pseudo-labeling our examples, and

learning algorithms for generalizing from these pseudo-labels, we believe the idea behind

snippets should be generalizable to a wider class of domains and techniques, besides named

entity recognition in text using discriminative classifiers. The exact form and method in

which snippets are constructed will depend on the specifics of the domain being studied,

but in general, the practitioner will want to optimize the performance of the techniques

being used to pseudo-label the data (whether classifiers, stop-lists, dictionaries, etc) to the
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characteristics of the problem, for example, increasing precision at the expense of recall when

the cost of a false positive is disproportionately high.

5.1.2 Negative snippets

Similar to the positive variety, negative snippets (i.e., snippets automatically labeled as

negative examples) provide examples of tokens which may appear to be proteins when viewed

with respect to the source domain, but are in fact not proteins in the target domain. These

must rely on some form of prior knowledge about the target domain for their high-confidence

automatic labeling, perhaps some kind of extractor previously trained for the target domain

or a gazetteer. For example, a researcher may have previously trained an extractor to identify

tokens in captions that refer to specific panel locations in the accompanying image (e.g., the

token ‘(B)’ in Figure 4.1’s caption). We call these types of references image pointers [Cohen

et al., 2003]. Although this kind of token pattern may look like a parenthetical protein

mention if seen in an abstract, since we have an existing extractor able to identify it as an

image pointer in captions (and thus, by assumed mutual exclusion, not a protein), we are

able to add all occurrences in a paper’s captions of similarly identified image pointers (labeled

as negative) to that paper’s labeled training data. A similar process can be followed for all

kinds of high-confidence negative labels, such as bibliographic citations, lists of measurement

units, and various other stoplists.

Given a list of high-confidence negative tokens collected in this way (or, equivalently, ex-

tractors trained to detect them), negative snippets can be constructed in a way analogous

to positive snippets. Specifically, unlabeled tokens from the target data are matched against

the list of collected negative tokens (extractors) and copied over into the source training

data along with their context, as before. In contrast to positive snippets, however, the en-

tire snippet (both the matched negative token and its surrounding context) are implicitly
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pseudo-labeled as negative examples. This is done because we do not have any labels for the

target data (except any positive snippet lists) and so cannot tell if any of the negative token’s

context belong to the POSITIVE class. In the absence of this information, our default choice

is to leave the snippets implicitly labeled as negative, since this is the most likely guess in the

absence of other information. While this may lead to false negatives in the pseudo-labeled

training data, it will nevertheless allow us to use our unlabeled target data not just to add

new inter-domain information (as with structural frequency features), but also, perhaps as

importantly, to adjust and augment the distribution of existing source domain derived lex-

ical features to make them more in accord with the target domain, ultimately producing

extractors that are more robust to changes between training and test domains.

5.2 Investigation of snippets & structural frequency

features

We now examine the utility of our two new types of features:

• Structural frequency features: Informative with respect to protein extraction, but

make repeated occurrences of the same token in different sections look similar.

• Snippets: Pseudo-examples that push a learned classifier towards being consistent

with the one-sense-per-discourse assumption.

5.2.1 Data

For these experiments we used the same data as for the structural frequency feature experi-

ments in Section 4.2.
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5.2.2 Experiment

We used ablation studies to assess the amount of information our novel features each con-

tribute to the task of protein name extraction, both in the non-transfer (abstract to abstract)

and domain adaptation (abstract to caption) setting. In each case, we trained an extractor

on a version of the training data constructed with the appropriate set of features:

• Structural frequency features (FREQ): As described in §4.1.3.

• Positive snippets (POS): As described in §5.1.1, high-confidence positively pseudo-

labeled examples of tokens (i.e., proteins), extracted from other sections of the docu-

ment, were incorporated into the training examples to help augment the marginal and

conditional distributions of the tokens and their class labels. On average each docu-

ment had 18 positive snippets added to it, as determined by the number of matching

tokens found in our domain-specific dictionaries and gazetteers.

• Negative snippets (NEG): As described in §5.1.2, similar to POS, except examples

of negatively pseudo-labeled tokens were added. On average each document had 50

negative snippets added to it, as determined by the number of matching tokens found in

our domain-specific stop-lists and our mutually exclusive classes such as image pointers.

In all experiments we used the Minorthird toolkit to construct the lexical features and

perform the CRF training [Cohen, 2004], and performed evaluation via cross validation over

held out data (except where comparative user studies were conducted in §5.2.4 and 5.2.5, as

noted).
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5.2.3 Non-transfer: abstract to abstract

Table 5.1 shows the performance of seven1 different extractors (sorted by F1), each trained

on a unique combination of our proposed features: positive snippets (POS), negative snip-

pets (NEG), and structural frequency features (FREQ), all along with the standard lexical

features (LEX). A check mark in a feature’s column means that row’s extractor was provided

with that column’s features at train-time. In this non-transfer experiment, our model labeled

tokens of held-out abstracts as protein or not, and these predictions were automatically eval-

uated with respect to token-level precision, recall and F1 measure using the held-out GENIA

labels for those abstracts. From this table we can notice a number of trends. With respect to

the baseline model (BASE) trained only on lexical features, adding positive snippets (POS)

doesn’t seem to help precision or recall much, while adding structural frequency features

(FREQ) improves recall (and thus F1) dramatically. This makes sense, since positive snip-

pets were proposed as a method of increasing domain-robustness, and these results are for

the non-transfer setting. On the other hand, structural frequency features were proposed

as a general purpose method of using an article’s internal structure to help extract useful

information from the unsupervised sections of the document. In this respect, FREQ features

might be expected to aid in even the non-transfer setting, as they do here. Interestingly,

although in isolation, and even in combination, POS and NEG snippets themselves don’t

seem to improve on the baseline model in the non-transfer setting, when combined with

FREQ features (FULL) they do seem to provide another boost to recall. This may be due

to the fact the inter-domain information implicitly incorporated by the structural frequency

features allows the model to better make use of the cross-domain snippets.

We should note that, although this non-transfer, abstract to abstract setting is convenient

1The NEG model, containing only negative snippets, is missing, but given the results of NEG FREQ and

FREQ can be assumed to be no better than BASE.
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(since we can get precise evaluation numbers) and the results encouraging, it is unclear what

they might indicate about performance in the transfer setting, which we address next.

Model name POS NEG FREQ Prec Rec F1

FULL X X X .738 .673 .704

FREQ X .744 .640 .688

POS FREQ X X .727 .637 .679

POS X .760 .555 .641

POS NEG X X .760 .547 .636

BASE .753 .550 .636

NEG FREQ X X .751 .535 .625

Table 5.1: Summary of ablation study results for extractors trained on full papers and

evaluated on abstracts (results for FREQ from Table 4.3 are included here for completeness).

For F1 results, all values in bold are significantly greater than all those in plain font (one-

sided paired t-test, p < .01).

5.2.4 Transfer: abstract to caption, full vs. baseline

Finally, we present the results of a user study in the domain adaptation setting. We trained

extractors on various combinations of features computed on the training data, and com-

pared them to the full model trained on lexical, structural, positive and negative snippets,

evaluating each with respect to the proteins they predicted in held-out captions. Unlike the

non-transfer setting, however, since we had no labels for any captions, we could not per-

form automatic evaluation. Instead, we employed human experts to manually compare the
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predictions made by variously constructed extractors, side by side, and evaluate which they

preferred.

Figure 5.1 shows a screenshot of the tool we used to perform these evaluations. In the

top-right, two extractors are being compared: 1A in yellow and 1B in blue (their names

have been blinded from the evaluator). The top-left panel shows the captions of a particular

test article with each extractor’s positive (protein) predictions highlighted in its color, with

green highlights representing tokens on which both extractors predict positive. The bottom

panel shows two columns of buttons: 1A’s predictions are on the left, and 1B’s on the right.

Since we are evaluating user preference, only the predictions where the extractors disagree

are shown. For each row (corresponding to a disagreement between extractors) the human

expert clicks the cell of the prediction he prefers: clicking an empty cell in one column

means the user believes the other column’s extractor made a type I (false positive) error,

while clicking a non-empty cell implies the other column’s extractor made a type II (false

negative) error.

Each of these judgments can be viewed as the outcome of a paired trial, and by using a

paired t-test, we can assess how the extractors differ along with which the user prefers. Due

to the nature of the hypothesis tests, however, we cannot quantify at all by how much the

user prefers one to another, or by how much one has improved with respect to the other.
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Figure 5.1: Screenshot of application used to compare various protein extractors’ performance on captions in the face of

no labeled data.
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This makes it difficult to tell how much of a boost has been achieved by various changes

to the algorithm, and puts the burden of thoughtful experiment design on the researcher

in order to test instructive hypotheses. Another downside to the user-evaluation approach

is that it requires a new study to be performed after every change to the algorithm, thus

encouraging well-planned, if frugal, iterations.

This issue of evaluation in the absence of labeled test data is not unique to our experiments,

however, and is endemic to all types of unsupervised, semi-supervised and transfer learning

problems. The issues is that, in these learning settings, data from the test domain is by

definition scarce or non-existent. Even when there is some labeled test data present, it

is usually far preferable to use what is available for training, rather than reserve it for

evaluation. Thus it is necessary to come up with evaluation methods, such as our comparative

user study, that make do without labeled test data.

Although pre-labelled test datasets provide a convenient benchmark against which to perform

repeated, automated evaluations, they are expensive. We found the expense of performing

side by side hand-evaluations to be relatively low (given a thoughtful experiment design and

user-interface). They also have the added benefit of being robust to issues such as inter-

annotator agreement, which can plague a highly technical domain such as biological entity

tagging. For example, while two expert annotators may not agree on the precise boundaries

of a complex protein entity span (and thus cause confusion for the learner if one expert

labeled the training data, and another the test data), they are more likely to have consis-

tent standards when comparing the proposed methods during test time, and thus provide

consistent results that may be aggregated, reducing the number of comparisons needed to

reach consensus. This user-preference based method is also more efficient than comparing

fully-annotated articles if the various classifiers being compared frequently agree, since hu-

man effort will only be spent comparing differences, rather than labeling large stretches of
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identical predictions.

Using our user study method we found that our proposed model (FULL, the joint com-

bination of all three new feature types: POS, NEG and FREQ) was preferred by users

significantly more often (p < .01, see Table 5.2) than the baseline model trained only on

lexical features.

Evaluation is an important consideration in semi-supervised domain adaptation, since, by

definition, no labeled test (target domain) data is available. The type of comparative evalu-

ation we performed could be instrumented into various end-user applications (for example,

click-through logs from protein name search engines such as SLIF2) to automatically extract

the necessary user-preference information, thus obviating the need of a special evaluator.

5.2.5 Transfer: abstract to caption, full vs. ablated

Having established that a model based on a combination of our new features (incorporated in

the FULL model) improved user preference over the baseline, purely lexical model, we then

performed an ablation study to ascertain which of these new features (structural frequency

(FREQ), positive snippets (POS), or negative snippets (NEG)) were responsible for the

improvements observed. Table 5.2 summarizes these results for each ablation considered. In

each such study comparing the full model to a degraded model, the full model was preferred

significantly more often than the ablated model (one-sided paired t-test, p<.01), indicating

that our proposed features are, in fact, useful for unsupervised domain adaptation.

In addition, it should be noted that, although the lack of labeled target data required us to

use user studies to compare methods, we were able to reach high-confidence conclusions after

only a relatively small number of hand-evaluations, due to the statistical efficiency of our

paired tests. This should lend encouragement to those hesitant to tackle problems lacking

2http://slif.cbi.cmu.edu/
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labeled test data, for fear of tedious hand-labeled evaluations.

Preferred model Compared to p-value # user labels Equivalent # documents

FULL BASE 3.6 E-4 182 3.64

FULL NEG FREQ 9.9 E-9 78 1.56

FULL POS NEG 1.8 E-4 120 2.40

FULL POS FREQ 1.1 E-4 46 .92

Table 5.2: Summary of transfer results for extractors trained on full papers and evaluated

on captions. The preferred model is in bold. Equivalent # documents is calculated by

comparing the number of user labels required in our side by side evaluation to those needed

by an automated system, requiring a fully-annotated document (in this case, an image

caption), with about 50 labeled tokens per document.

From these results we can further observe that adding POS snippets seems to have a no-

ticeable effect on user preference (since FULL is prefered to NEG FREQ). This is a nice

complement to the result from §5.2.3 which indicated that POS snippets are not as useful

in the non-transfer setting. Indeed, it is the ability of POS snippets to shape the labeled

training source data to look more like the target data that allows the extractors so trained

to be robust across shifts in domains. Similar user preference is seen for the contribution of

NEG snippets and FREQ features, indicating that they too aid in domain-adaptation, both

by leveraging unlabeled training data and by helping to inform the training data with some

target domain attributes.

89



5.3 Conclusions: snippets & structural frequency fea-

tures

In these chapters we have shown how exploiting structure, in the form of frequency features

and positive and negative snippets, can help produce robust extractors that overcome the

problem of semi-supervised domain adaptation. We have defined a new set of features based

on structural frequency statistics and demonstrated their utility in representing inter-domain

information drawn from both supervised and unsupervised sources, in a manner somewhat

orthogonal to the traditional lexically based feature sets. Towards a similar goal of robust

cross-domain learning, we have defined a technique for introducing high-confidence positively

and negatively labeled pseudo examples (snippets) from the target domain into the source

domain, and shown that these too provide a convenient, and effective, method for producing

an extractor that is robust to domain shifts between training and testing data sets. Finally,

through a comparative analysis of each new feature’s contribution to same-domain and inter-

domain information extraction performance, we have discovered an intriguing relationship

between a feature’s utility in the non-transfer and transfer settings. Along the way, in order

to assess our transfer techniques’ performance in the face of a lack of labeled test data, we

have also developed a novel framework for human evaluation that facilitates statistically

interpretable paired testing.
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Chapter 6

Graph Relations for Robust Named

Entity Recognition

Recall that our goal throughout this thesis has been to discover patterns within and relation-

ships among various sources of data, and to investigate and exploit these regularities in order

to produce learners that are more robust across shifts in data and task. More abstractly,

Figure 1.1 shows how each learning problem can be represented as a tuple (X, Y, . . . Z) of

features, labels and other domain and task specific metadata such as the feature hierarchies

relating source-domain features to target-domain features in Chapter 3, or the structural

frequency features and snippets ’ one-sense-per-discourse assumption relating source-domain

tokens to target-domain tokens in Chapters 4 and 5.

In this chapter we use the problem of relating tokens in source abstracts to tokens in re-

lated target abstracts in the biomedical literature as a motivating example with which to

demonstrate how we can explicitly model these types of metadata-derived relationships as

edges and paths in a general graph. Although we focus in this chapter on citation-based

metadata such as authorship and citation, our graph representation should be flexible enough
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to express most other types of metadata and thus should be applicable to many other new

problems.

We break down the problem of relating tokens across abstracts into two phases:

• Section 6.1 establishes that meaningful relationships hold between author and gene

entities. This is verified by link prediction experiments.

• Section 6.2 establishes that similar relationships help for in-task generalization for NER

(just as structural frequency features and snippets were shown to do).

We leave the analogous cross-task experiments, which would examine these methods’ ef-

fectiveness in transferring from abstracts to captions and across biological subdomains, for

future work.

The rest of the chapter is organized as follows: Section 6.1 begins with an introduction to

the idea of annotated citation networks in §6.1.1 while §6.1.2 provides details of their im-

plementation and construction. §6.1.3 discusses our graph-walk based method of extracting

useful information from these networks, while §6.1.4 relates how we used this method on our

data to help predict which genes an author would write about in the future. The results

of these experiments, along with concluding remarks and related work, are summarized in

Sections 6.1.5 and 6.1.6.

Section 6.2 is organized in a parallel fashion: §6.2.1 relates our success at predicting genes

from authors using citation networks (in §6.1) to the more central problem of robust named

entity recognition. §6.2.2 recalls the data used for these graph-based NER experiments

(almost identical to those of §6.1.2), while §6.2.3 describes our method for combining graph-

based predictions with standard lexical features to create graph-augmented named entity

extractors. These augmented extractors are then compared to standard lexically trained

ones in §6.2.4, with the results detailed and summarized in Sections 6.2.5 and 6.2.6
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6.1 Graph relations for cross-task learning

We demonstrate the usefulness of various types of publication-related metadata, such as ci-

tation networks and curated databases, for the task of identifying genes in academic biomed-

ical publications. Specifically, we examine whether knowing something about which genes

an author has previously written about, combined with information about previous coau-

thors and citations, can help us predict which new genes the author is likely to write about

in the future [Arnold and Cohen, 2009]. Framed in this way, the problem becomes one of

predicting links between authors and genes in the publication network. We show that this

social-network based link prediction technique outperforms various baselines, including those

relying only on non-social biological information, suggesting a fruitful combination with al-

ready present lexical information to create more robust named entity extractors (further

explored in Section 6.2).

6.1.1 Introduction

Although academics have long recognized and investigated the importance of citation net-

works, their investigations have often been focused on historical [Garfield et al., 1964], sum-

mary, or explanatory purposes [Erosheva et al., 2004; Liu et al., 2005; Cardillo et al., 2006;

Leicht et al., 2007]. While other work has been concerned with understanding how influence

develops and flows through these networks [Dietz et al., 2007], we instead focus on the prob-

lem of link prediction [Cohn and Hofmann, 2001; Liben-Nowell and Kleinberg., 2003]. Link

prediction is the problem of predicting which nodes in a graph, currently unlinked, ‘should’

be linked to each other, where ‘should’ is defined in some application-specific way. This

may be useful to know if a graph is changing over time (as in citation networks when new

papers are published), or if certain edges may be hidden from observation (as in detecting
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insider trading cabals). In our setting, we seek to discover edges between authors and genes,

indicating genes about which an author has yet to write, but which he may be interested in.

We define a citation network as a graph in which publications and authors are represented as

nodes, with bi-directional authorship edges linking authors and papers, and uni-directional

citation edges linking papers to other papers (the direction of the edge denoting which paper

is doing the citing and which is being cited). We can construct such a network from a given

corpus of publications along with their lists of cited works. There exist many so called curated

literature databases for biology in which publications are tagged, or manually labeled, with

the genes with which they are concerned. We can use this metadata to introduce gene

nodes to our enhanced citation network, which are bi-directionally linked to the papers in

which they are tagged. Finally, we exploit a third source of data, namely biological domain

expertise in the form of ontologies and databases of facts concerning these genes, to create

association edges between genes which have been shown to relate to each other in various

ways. We call the entire structure an annotated citation network.

In the following subsections, respectively, we discuss the topology of our annotated citation

network, along with describing the data sources from which the network was constructed.

We then employ random walks, a technique used for calculating the proximity of nodes in our

graph, thus suggesting plausible novel links between authors and genes. Finally, we describe

an extensive set of ablation studies performed to assess the relative importance of each type

of edge, or relation, in our model and discuss the results, concluding with a view towards a

future model combining network and text information in Section 6.2.

6.1.2 Data

We are lucky to have access to many sources of high quality data:
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• PubMed and PubMed Central (PMC): PubMed is a free, open-access on-line archive

of over 18 million biological abstracts and bibliographies, including citation lists, for

papers published since 1948 [U.S. National Library of Medicine, 2008]. PubMed Central

contains full-text copies of over one million of these papers for which open-access has

been granted [National Institues of Health, 2009].

• The Saccharomyces Genome Database (SGD): A database of various types of informa-

tion concerning the yeast organism Saccharomyces cerevisiae, including descriptions

of its genes along with over 40,000 papers manually tagged with the genes they men-

tion [Dwight et al., 2004].

• The Gene Ontology (GO): A large ontology describing the properties of and rela-

tionships between various biological entities across numerous organisms [Consortium,

2000].

From the data provided by these sources we are able to extract the nodes and edges that

make up our annotated citation network, shown graphically in Figure 6.1. Specifically our

network consists of the following.

Nodes

The nodes of our network represent the entities we are interested in.

• 44,012 Papers contained in SGD for which PMC bibliographic data is available.

• 66,977 Authors of those papers, parsed from the PMC citation data. Each author’s

position in the paper’s citation (i.e. first author, last author, etc.) is also recorded,

although it is not represented in the graph.

• 5,816 Genes of yeast, mentioned in those papers.
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Figure 6.1: Topology of the full annotated citation network, node names are in bold while

edge names are in italics.

Edges

We likewise use the edges of our network to represent the relationships between and among

the nodes, or entities.

• Authorship: 178,233 bi-directional edges linking author nodes and the nodes of the

papers they authored.

• Mention: 160,621 bi-directional edges linking paper nodes and the genes they discuss.

• Cites : 42,958 uni-directional edges linking nodes of citing papers to the nodes of the

papers they cite.

• Cited : 42,958 uni-directional edges linking nodes of cited papers to the nodes of the

papers that cite them

• RelatesTo: 1,604 uni-directional edges linking gene nodes to the nodes of other genes
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appearing in their GO description.

• RelatedTo: 1,604 uni-directional edges linking gene nodes to the nodes of other genes

in whose GO description they appear.

The SGD database contains papers published from 1950 through 2008, with the number of

papers annotated growing exponentially each year, as shown in Figure 6.2. The relationships

between genes, derived from GO, are likewise labeled with the year in which they were

discovered. This allows us to conveniently segment all the data chronologically, enabling

pure temporal cross validation1.

6.1.3 Methods

Now that we have a representation of the data as a graph, we are ready to begin the calcu-

lation of our link predictions. To motivate our algorithm, imagine the first step is to pick

a node, or set of nodes, in the graph to which our predicted links will connect. These are

our query nodes. We then perform a random walk out from the query node, simultaneously

following each edge to the adjacent nodes with a probability proportional to the inverse of

the total number of adjacent nodes [Cohen and Minkov, 2006]. We repeat this process a

number of times, each time spreading our probability of being on any particular node, given

we began on the query node. If there are multiple nodes in the query set, we perform our

walk simultaneously from each one. After each step in our walk we have a probability dis-

tribution over all the nodes of the graph, representing the likelihood of a walker, beginning

at the query node(s) and randomly following outbound edges in the way described, of being

on that particular node. Under the right conditions, after enough steps this distribution will

converge (a full discussion of the criteria and rates of convergence for random walks is beyond

1An on-line demo of our work, including links to the network data file used for the experiments, can be

found at http://yeast.ml.cmu.edu/nies/.
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Figure 6.2: Distribution of papers published per year in the SGD database.
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the scope of this thesis, but suffice it to say that there are a wide variety of variations of

the simple random walk technique that can deal with most degenerate cases). We can then

use this distribution to rank all the nodes, predicting that the nodes most likely to appear

in the walk are also the nodes to which the query node(s) should most likely connect.

We interpret the fact that there are more (weighted) paths from a given author to a given

gene as suggesting that the query author is more likely to write about the predicted gene in

the future. We feel comfortable making this interpretation since the only edge-type joining an

Author node to a Gene node that we have modeled in our training network is the Authorship

relation. Thus, when a similar coupling is predicted by the graph walk, we interpret the

predicted edge as suggesting that the query author is likely to write about the predicted

gene in the future, just as the analogous edge in the training data represented the fact that

an author wrote about a gene in the past. This interpretation seems safe to make in cases

where there are constrained semantics for edge-types joining certain classes of nodes. If

there were multiple similarly typed edges (for instance, Author → Gene edges representing

an author’s disdain for a gene) the results of the random walk would be more ambiguous.

In practice, the same results can be achieved by multiplying the adjacency matrix of the

graph by a vector representing the current distribution over the graph, that is, the probability

of being on any one node. This adjacency matrix may be weighted to reflect the varying

strength of different edge types, as well as the fact that transition probabilities are normalized

over all out-edges from a node. Each such multiplication represents one complete step in the

walk, resulting in an updated distribution over the nodes of the graph.

We can adjust the adjacency matrix (and thus the graph) by selectively hiding, or removing,

certain types of edges. For instance, if we want to isolate the influence of citations on our

walk, we can remove all the citation edges from the graph, perform a walk, and compare the

results to a walk performed over the full graph.
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Likewise, in order to evaluate our predicted edges, we can hide certain instances of edges,

perform a walk, and compare the predicted edges to the actual withheld ones. For example,

if we have all of an author’s publications and their associated gene mention data for the years

2007 and 2008, we can remove the links between the author and the genes he mentioned in

2008 (along with all other edges gleaned from 2008 data), perform a walk, and then see how

many of those withheld gene-mention edges were correctly predicted. Since this evaluation

is a comparison between one unranked set (the true edges) and another ranked list (the

predicted edges) we can use the standard information retrieval metrics of precision, recall

and F1.

6.1.4 Experiment

To evaluate our network model, we first divide our data into two sets:

• Train, which contains only authors, papers, genes and their respective relations which

were published before 2008

• Validation, which contains new2 (author
Mentions→ genes) relationships that were first

published in 2008.

From this Train data we create a series of subgraphs, each emphasizing a different set

of relationships between the nodes. These subgraphs are summarized in Figure 6.3. By

selectively removing edges of a certain type from the FULL graph we were able to isolate the

effects of these relations on the random walk and, ultimately, the predicted links. Specifically,

we classify each graph into one of four groups and later use this categorization to asses the

2We restrict our evaluation to genes about which the author has never previously published (even though

an author may publish about them again in 2008), since realistically, these predictions would be of no value

to an author who is already familiar with his own previous publications.
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Figure 6.3: Subgraphs queried in the experiment, grouped by type: B for baselines, S
for social networks, C for networks conveying biological content, and S+C for networks
making use of both social and biological information. Shaded nodes represent the node(s)
used as a query. **For graph RELATED GENES, which contains the two complimen-
tary uni-directional Relation edges, we also performed experiments on the two subgraphs
RELATED GENESRelatesTo and RELATED GENESRelatedTo which each contain only one
direction of the relation edges. For graph CITATIONS, we similarly constructed subgraphs
CITATIONSCites and CITATIONSCited.
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relative contribution of each edge type to the overall link prediction performance.

Baseline

The baseline graphs are UNIFORM , ALL PAPERS and AUTHORS. UNIFORM and

ALL PAPERS do not depend on the author node. UNIFORM , as its name implies, is

simply the chance of predicting a novel gene correctly given that you select a predicted gene

uniformly at random from the universe of genes. Since there are 5,816 gene names, and

on average each author in our query set writes about 6.7 new genes in 2008, the chance

of randomly guessing one of these correctly is 6.7/5816 = .12%. Using these values we

can extrapolate this model’s expected precision, recall and F1. Relatedly, ALL PAPERS,

while also independent of authors, nevertheless takes into account the distribution of genes

across papers in the training graph. Thus its predictions are weighted by the number of

times a gene was written about in the past. This model provides a more reasonable baseline.

AUTHORS considers the distribution of genes over all papers previously published by the

author. While this type of model may help recover previously published genes, it may not

do as well identifying new genes.

Social

The social graphs (RELATED PAPERS, RELATED AUTHORS, COAUTHORS,

FULL MINUS RELATED GENES and CITATIONS) are constructed of edges that

convey information about the social interactions of authors, papers and genes. These include

facts about which authors have written together, which papers have cited each other, and

which genes have been mentioned in which papers.
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Content

In addition to social edges, some graphs also encode information regarding the biological

content of the genes being published. The graph RELATED GENES models only this bi-

ological content, while FULL MINUS COAUTHORS, FULL MINUS CITATIONS,

FULL and FULL(AUTHOR + 1 GENE) all contain edges representing both social and

biological content.

Protocol

For our query nodes we select the subset of authors who have publications in both the

Train and Validation set. To make sure we have fresh, relevant publications for these

query authors, and to minimize the impact of possible ambiguous name collision, we further

restrict the query author list to only those authors who have publications in both 2007

and 2008. This yields a query list, AllAuthors, with a total of 2,322 authors, each to

be queried independently, one at a time. We further create two other query author lists,

FirstAuthors and LastAuthors containing 544 and 786 authors respectively, restricted

to those authors who appear as the first or last author, respectively, in their publications in

the Validation set. The purpose of these lists of queries is to determine whether an author’s

position in a paper’s list of authors has any impact in our ability to predict the genes he or

she might be interested in.

Given these sets of graphs and query lists, we then query each author in each of our three

lists, independently, against each subgraph in Figure 6.3. Each such (author, graph) query

yields a ranked list of genes predicted for that author given that network representation. By

comparing this list of predicted genes against the set of true genes from Validation (i.e.

the new genes query authors published about in the held-out 2008 publication data) we are
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able to calculate the performance of each (author, graph) pairing3. These resulting precision,

recall, F1 and MAP metrics, broken down for each set of author positions, are summarized

in Figure 6.5 respectively.

Querying with extra information

Finally, we were interested in seeing what effect adding some limited information about an

author’s 2008 publications to our query would have on the quality of our predictions. This

might occur, for instance, if we have the text of one of the author’s new papers available and

are able to perform basic information extraction to find at least one gene. The question is, can

we leverage this single, perhaps easy to identify gene, to improve our chances of predicting or

identifying other undiscovered new genes? To answer this question, in addition to querying

each author in isolation, we also queried, together as a set, each author and the one new

gene about which he published most in 2008 (see graph FULL(AUTHOR + 1 GENE) in

Figure6.3). These results are summarized, along with the others, in Figure 6.5, again broken

down by author position.

6.1.5 Results

Using Figures 6.3, 6.4 and 6.5 as guides, we turn now to an analysis of the effects dif-

ferent edge types have on our ability to successfully predict new genes. We should first

explain the absence of results for the AUTHORS graph, and the lines for UNIFORM and

ALL PAPERS in Figures 6.4 and 6.5. Since these baselines do not depend on the query,

they are constant across models and are thus displayed as horizontal lines across the charts

in Figures 6.4 and 6.5. AUTHORS is missing because it is only able to discover genes

3Since the list of predicted genes is sometimes quite long (since it is a distribution over all genes in the

walk), we set a threshold and all evaluations are calculated only considering the top 20 predictions made (in

practice, this choice of threshold did not affect the relative performance of the models much).
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that have already been written about by the query authors in the training graph. Since our

evaluation metrics only count the prediction of novel genes, AUTHORS’s performance is

necessarily zero.
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Figure 6.4: Mean percent precision and recall @20 of queries across graph types, broken down by author position, shown
with error bars demarking the 95% confidence interval. Baselines UNIFORM and ALL PAPERS are also displayed.
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Figure 6.5: Mean percent F1 @20 of queries across graph types, broken down by author position, shown with error bars

demarking the 95% confidence interval. Baselines UNIFORM and ALL PAPERS are also displayed.
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Given these baselines, let us next consider the role of author position on prediction perfor-

mance. It is apparent from the results that, in almost all settings, querying based on the first

author of a paper generates the best results, with querying by last author performing the

worst. This seems to suggest that knowing the first author of a paper is more informative

than knowing who the last author was in terms of predicting which genes that paper may

be concerned with. Depending on the specifics of one’s own discipline, this may be surpris-

ing. For example, in computer science it is often customary for an advisor, lab director or

principal investigator to be listed as the last author. One might assume that the subject

of that lab’s study would be most highly correlated with this final position author, but the

evidence here seems to suggest otherwise. Tellingly, the only case in which the last author

is most significant4 is in the CITATIONS CITED model. Recall that in this model only

edges from cited papers to their citing papers are present. These results may suggest that

in this model, knowing the last author of the paper actually is more valuable. This might

be explained by the assumption that the actual scientific content of an article is best indi-

cated by the primary person conducting the experiment, who in this field is usually the first

author. When it comes time to create a bibliography, however, the citer may be more likely

to remember related work with respect to the more senior member of the research team (in

this domain, usually the last author), within whose general research area the specific work

lies.

Given that in most cases the models queried using first authors performed the best, the

columns of Figures 6.4 and 6.5 have been positioned in order of increasing first author F1

performance, and all subsequent comparisons are made with respect to the first author

queries, unless otherwise stated. Thus we notice that those models relying solely on the

biological GO information relating genes to one another (Content graphs from Figure 6.3)

4Measured by 80% confidence intervals.
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perform significantly5 worse than any other model, and are in fact in the same range6 as the

UNIFORM model. Indeed, the FULL model benefits from having the relations removed,

as it is outperformed5 by the FULL MINUS RELATED GENES model.

There are a few possible explanations for why these content-based biological edges might be

hurting performance. First, scientists might not be driven to study genes which have already

been demonstrated to be biologically related to one another. Since we are necessarily using

biological facts already discovered, we may be behind the wave of new investigation. Second,

these new investigations, some of them biologically motivated, might not always turn out

conclusively or successfully. This would likewise lead to the genes being studied in this way

lying outside the scope of our biological content. Finally, it is possible that our methods for

parsing and interpreting the GO information and extracting the relationships between genes

may not be capturing the relevant information in the same way a trained biologist might be

able to. Relatedly, the ontologies themselves might be designed more for summarizing the

current state of knowledge, rather than suggesting promising areas of pursuit.

In contrast, the models exploiting the social relationships in CITATIONS, COAUTHORS,

RELATED AUTHORS and RELATED PAPERS all outperform7 the ALL PAPERS

baseline. While each of these social edge types is helpful on its own, their full combination

is, perhaps counter-intuitively, not the best performing model. Indeed, while FULL outper-

forms5 its constituent CITATIONS and COAUTHORS models, it nevertheless benefits

slightly8 from having the coauthor edges removed (as in FULL MINUS COAUTHOR).

This may be due to competition among the edges for the probability being distributed by

our random walk. The more paths there are out of a node, the less likely the walker is to

follow any given one. Thus, by removing the (many) coauthorship edges from the FULL

5p < .01 using the Wilcoxon signed rank test.
6Containing the UNIFORM baseline in their 95% confidence intervals.
7Baseline is out of their 95% confidence intervals.
8p < .15 using the Wilcoxon signed rank test.
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graph, we allow the walk to reach a better solution more quickly.

Interestingly, the best performance9 of the single-author query models is achieved by the

relatively simple, pure collaborative filtering RELATED PAPERS model [Goldberg et al.,

1992]. Explained in words, this social model predicts that authors are likely to write about

genes that co-occur with an author’s previously studied genes in other people’s papers. This

makes sense since, if other people are writing about the same genes as the author, they are

more likely to share other common interests and thus would be the closest examples of what

the author may eventually become interested in in the future.

Finally we examine the question of whether having not only a known author to query, but also

one of this author’s new genes, aids in prediction. The results for the FULL(AUTHOR +

1 GENE) model10 seem to indicate that the answer is yes. Adding a single known new gene

to our author query of the FULL model improves our prediction performance by almost 50%,

and significantly outperforms11 the best single-author query model, RELATED PAPERS,

as well. This is a promising result, as it suggests that the information contained in our

network representation can be combined with other sources of data (gleaned from performing

information extraction on papers’ text, for example) to achieve even better results than either

method alone.

6.1.6 Related work & Conclusions

While there has been extensive work on analyzing and exploiting the structure of networks

such as the web and citation networks [Kleinberg, 1999; Kleinberg et al., 1999], most of the

techniques used for identifying and extracting biological entities directly from publication

9p < .10 using the Wilcoxon signed rank test.
10During evaluation the queried new gene is added to the set of previously observed genes and thus does

not count towards precision or recall.
11p < .02 using a paired sign test.
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text [Cohen and Hersh, 2005; Feldman et al., 2003; Murphy et al., 2004; Franzén et al., 2002;

Bunescu et al., 2004; Shi and Campagne, 2005] and curated databases [Wang et al., 2008]

rely on performing named entity recognition on the text itself [Collins and Singer, 1999] and

ignore the underlying network structure entirely. While these techniques perform well given

a paper to analyze, they are impossible to use when such text is unavailable, as in our link

prediction task.

In this section we have introduced a new graph-based annotated citation network model

to represent various sources of information regarding publications in the biological domain.

We have shown that this network representation alone, without any features drawn from

text, is able to outperform competitive baselines. Using extensive ablation studies we have

investigated the relative impact of each of the different types of information encoded in the

network, showing that social knowledge often trumps biological content, and demonstrated

a powerful tool for both combining and isolating disparate sources of information.

We have further shown that, in the domain of Saccharomyces research from which our corpus

was drawn, knowing who the first author of a paper is tends to be more informative than

knowing who the last author is (contrary to some conventional wisdom). We have also

shown that, despite performing well on its own, our network representation can easily be

further enhanced by including in the query set other sources of knowledge about a prediction

subject gleaned from separate techniques, such as information extraction and document

classification.

With respect to same domain multi-task transfer, we have shown that we can use

instances and labels across various tasks (such as paper ids labeled with authors, citations

and genes) to help predict future authors and genes. Relatedly, we have shown that it is

easier to perform author ⇒ gene prediction if we also have author ⇒ paper, paper ⇒ gene

and paper ⇒ paper relations. We show gene⇒ gene relations are not helpful.
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Finally, we have shown that external data sources such as citation networks (PMC), gene

ontologies (GO) and curated databases (SGD) can be combined to form curated citation

networks which can be exploited to improve author ⇒ gene prediction, and that a limited

and well studied domain, such as yeast as represented in SGD, provides an ideal test-bed

for quickly developing and evaluating novel robust learning techniques. The key features

that allow this are large amounts of different kinds of relatively noise free data (such as

curated databases, citation lists and gene ontologies) giving different views of the problem

domain, and, crucially, some normalized representation of entities across those data sources

(PubMed ID’s, author names and gene identifiers) allowing one to join facts between them.

6.2 Graph-based priors for named entity extraction

6.2.1 Introduction & goal

Given the success of the curated citation networks of Section 6.1 in predicting which genes

an author might write about in the future, along with our underlying goal of discovering

and exploiting interesting relationships between various aspects of data and tasks to produce

more robust learners, this section demonstrates how we are able to exploit this same network-

based information, combined with common lexical features, into a CRF-based extractor for

robustly recognizing genes in text.

6.2.2 Data

For this combined experiment, since it required both labeled abstracts and a curated cita-

tion network, we used the intersection of the data from §4.2 and §6.1.2, namely, 298 GENIA

abstracts for which PMC, SGD and GO information was available, along with protein la-
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bels. We split this data into training and testing splits, and built citation networks for

each split (train citation network, test citation network), along with a combined network

(combined network).

6.2.3 Method

During training, each abstract is presented to MinorThird to have its tokens’ features con-

structed and evaluated. At the start of this process, each abstract’s set of authors are queried

against a curated citation network, and a ranked list of predicted genes is returned. This

ranked list of genes is then broken down into five constituent dictionaries comprised of the

top 5, 10, 20, 50 and 100 results each. These dictionaries of the top-K predicted genes for

the author set of each training abstract are then added to MinorThird’s definition of features

(as explained in Appendix A). Thus, each token in the given abstract, in addition to the

normal set of lexical features, is tagged with features describing whether it is a member of

each of the top-K lists. All these features, for each token within each abstract in the training

data, are then presented to the CRF model to be learned.

Once a model has been trained, predictions are made on the held-out test data in an anal-

ogous way: each test abstract is queried against the test citation network, a ranked list of

genes is returned and turned into a set of features, each of which is evaluated for all tokens

of that abstract. This complete feature vector is then passed to the trained CRF and a

prediction is made. These predictions are aggregated in the normal way.

These train and prediction methods are summarized in Tables 6.1 and 6.2 respectively.
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Input: Abstract = Labeled abstract to be trained upon

Citations = Citation network

Thresholds = Threshold for predicting a gene

Train: Authors = ExtractAuthors(Abstract)

RankedGenes = RankGenes(Authors, Citations)

PredictedGenes = PredictGenes(RankedGenes, Thresholds)

Features = LexcialFeatures(Abstract, PredictedGenes)

CRF = TrainCRF (Features)

Output: CRF

Table 6.1: Algorithm for training a model built upon graph-based priors over lexical features.

Input: Abstract = Test abstract to be labeled

Citations = Citation network

Thresholds = Threshold for predicting a gene

CRF = Model trained using graph-based priors

Prediction: Authors = ExtractAuthors(Abstract)

RankedGenes = RankGenes(Authors, Citations)

PredictedGenes = PredictGenes(RankedGenes, Thresholds)

Features = LexcialFeatures(Abstract, PredictedGenes)

PredictedGenes = PredictGenes(Features, CRF )

Output: PredictedGenes

Table 6.2: Algorithm for predicting using a model built upon graph-based priors over lexical

features.
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6.2.4 Experiment

We performed three experiments to evaluate the contribution of the curated citation network

features to our standard lexical-feature-based CRF extractor:

• CRF LEX: The standard CRF model trained on the standard lexical features de-

scribed in §4.1.1 (LEX).

• CRF LEX+GRAPH SUPERVISED: The standard CRF model trained on the

standard lexical features, augmented with curated citation network based features

(GRAPH). In this GRAPH SUPERVISED model, training data abstracts were queried

against the train citation network comprised solely of citation data concerning the

papers in the training corpus.

• CRF LEX+GRAPH TRANSDUCTIVE: Similar to the CRF LEX +

GRAPH SUPERVISED model, except, during training, instead of querying the

train citation network, this model queries the combined network, comprised of citation

data concerning both the train and test papers, but with all the gene nodes and edges

from the test papers to gene nodes removed. This type of semi-supervised training

is possible since no textual data or class labels are needed or used during the cita-

tion network graph walk, only the structure of the citation network itself is utilized.

This method is labeled ‘TRANSDUCTIVE’ since it attempts to take advantage of the

unlabeled structure of the test data (in this case, its citation network) during training.

6.2.5 Results

The results of these experiments are summarized in Figure 6.6. We can clearly see that the

addition of the citation network graph walk based features (CRF LEX+GRAPH SUPERVISED
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and CRF LEX+GRAPH TRANSDUCTIVE ) improves extractor performance over the pure-

ley lexical based baseline (CRF LEX ). We do not, however, see a significant difference in

performance between the supervised and transductive versions of the augmented features

(CRF LEX+GRAPH SUPERVISED vs. CRF LEX+GRAPH TRANSDUCTIVE ).
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Figure 6.6: Precision (black), recall (blue), and F1 (red) of a lexical CRF model (CRF LEX), a lexical CRF model

augmented with supervised graph-based features (CRF LEX + GRAPH SUPERVISED), and a lexical CRF model aug-

mented with semi-supervised graph-based features (CRF LEX+GRAPH TRANSDUCTIVE). *’s represent values which

are significantly greater than the CRF model’s respective value, as measured with the Wilcoxon signed rank test at the

significance level (p) shown.
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This may be because the transductive test data available at train time is unsupervised, and

therefore, contains no examples of test-domain proteins or links between those proteins and

author or paper nodes. Instead, all that is provided is the citation network of the test-domain

data.

Under ideal circumstances, even this unlabeled citation information might help in the trans-

ductive setting by allowing probability mass to flow through ‘short cuts’ present in the

test-domain data, but not in the training domain. For instance, if the training data is drawn

from a certain journal, and the test (and therefore, transductive) data is drawn from a dif-

ferent journal, it may be possible that the most relevant gene for a particular author query

happens to have been written about, in a training data journal, by a coauthor with whom

the query author’s only collaboration occurred in the transductive domain journal – a rela-

tionship that could not be found by the purely supervised method. This type of network

would allow a transductively trained extractor to weight such test-domain relevant paths

more highly than the purely training-domain trained counterpart, and thus provide more

robust performance on cross-domain tasks.

The fact that, in our experiments, the transductive data does not improve performance

seems to indicate that the form of the training and test networks in our data, along with the

paths contained within them, are relatively consistent across domains, and that the training

data set is sufficiently large. Although we did not perform the experiments here, it would be

interesting to examine this relationship between the amount of content-based information

(such as lexical features) available in the data to the usefulness of network-based information

(such as the citation features). Specifically, by varying the amount of lexical information

provided to the algorithm at train time, one could help tease out how the lexical, supervised,

and transductive graph-based features relate to each other and in what situations each type

of data (content vs. network) is most useful.
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6.2.6 Conclusions

In this section we have shown that we can use source-domain abstracts labeled with source-

task lexical features, along with auxiliary-domain paper ids labeled with auxiliary-task au-

thors, citations and genes to help identify unlabeled genes. This is an example of domain

adaptive multi-task transfer, since it suggests that learning to predict which proteins

an author is likely to write about will also help recognizing those proteins in text. Similar

techniques could be used to exploit recognition of other auxiliary information in the text,

such as the author or subject organism.

We have also shown that graphs, such as the curated citation network in §6.1, provide a

convenient structure with which to relate and integrate external data sources such as

SGD and GO. We have shown that random walks over these graphs can be used to generate

soft labels, or priors, which can then be used as features to significantly improve standard

information extraction techniques for gene named entity extraction. This method allows

for clean and efficient incorporation of disparate sources of information derived from

external data sources into existing information extraction systems, aiding not just in learning

but also at evaluation time. This, in turn, leads to the identification and exploitation of stable

relationships that contribute to robust learning in transfer settings.
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Chapter 7

Conclusion

7.1 Summary

In Chapter 1 of this thesis we introduced and motivated the study of robust named entity

recognition, continuing on to explore the landscape of existing techniques and settings in

Chapter 2. We have shown a number of ways by which regularities and relationships in

the instance, feature and label space of domains and tasks can be exploited to improve the

robustness of the trained learners. Specifically, as summarized in Figure 1.1, we have:

• used the linguistically-inspired feature hierarchies of Chapter 3 to exploit the hierar-

chical relationship between lexical features, allowing for natural smoothing and sharing

of information across features.

• developed the structural frequency features of Chapter 4 to take advantage of

the information contained in the very structure of the data itself and the distribution

of instances across that structure (in our case, the distribution of words across the

sections of an article).
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• introduced snippets in Chapter 5, leveraging the relationship of entities among them-

selves, across tasks and labels within a dataset. Specifically, we used high confidence

positive and negative labels of various kinds to pseudo-label unannotated target do-

main data, thus allowing us to learn a more robust representation of the entire space

of data.

• explored the simple, yet powerful, graph relations of Chapter 6 which allow us to tie

together disparate entities and sources of data in a way that lets brittleness in one

cross-domain task be supported by robustness from another, orthogonal, task.

7.2 Overview: generalizability & extensions

While these specific techniques for achieving robust named entity recognition in a transfer

setting have proven very successful and constitute a substantial part of this thesis’ con-

tribution, we would now like to take a step back and present a higher-level view of what

general principles we can distill from our results that might prove generally applicable to

other machine learning practitioners in potentially quite different domains.

While others have presented ‘unifying’ views of transfer and regularization with respect to

hierarchical Bayesian models [Finkel and Manning, 2009] and spectral graph based methods

[Dai et al., 2009], we view the various approaches discussed in the previous chapters as all

being characterized as methods for leveraging different types of metadata that may be shared

across domains and tasks. As first introduced in Chapter 6, we use the term metadata to

refer to aspects of data and tasks that are distinct from the domain and task-specific instance

features or class labels commonly used in machine learning problems. In the visualization of

Figure 1.1, these are the lines and clouds that join problems together (Z) even when their

feature or label spaces differ (X and Y ).
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Given this perspective, we can then reinterpret each of our robust learning techniques as

a method for isolating and exploiting different forms of metadata. For example, tokens

occurring in different sections of a document share meta properties such as: their linguistic

features having common parents (exploited by lexical feature hierarchies to propagate feature

weights); belonging to a common discourse (exploited by snippets to propagate class labels);

being contained in an integrated document (exploited by structural frequency features to

compute section-invariant features); and having been written by a single set of authors

(exploited by citation networks to propagate other shared features, such as mentioned genes).

In this way, transfer is achieved by allowing some information to propagate from source to

target, conducted along paths of shared metadata.

We have further found that combining these metadata can have complimentary effects:

stringing together features so as to construct a chain or network of interconnected prop-

erties (as in our citation networks) allows transfer among domains that may have no direct

connection between them (such as discovering sets of authors who have never written a paper

together yet share common interests).

Metadata, of course, is not limited to the text-based NER problems discussed in this the-

sis. Indeed, the common definition of transfer learning as ‘training and testing on different,

but related, domains or tasks’ presupposes the source and target problems to be ‘related.’

It is exactly these shared relationships, linking the two learning problems together, that a

practitioner can exploit as metadata. The key is to distill out exactly what these common

properties are and how they are distributed across the domains adn tasks: whether hierarchi-

cally as in our lexical features, identically as in our snippets, or in more complex patterns as

in our citation networks. Once these relationships are understood, they can be represented

explicitly as features and fed into any common learning algorithm1.

1While we focus on conditional random fields and random walks in this work, there is no reason these

metadata-based features could not be used by any other machine learning algorithm.
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As an example of the generality of this concept of shared metadata, consider the problem of

categorizing the sentiment of blog posts on the internet. We may believe that training on one

set of blogs (say, technology news sites) should help us perform better on a different set of

blogs (say, product reviews), but we may not be exactly sure how to transfer knowledge from

one domain to the other. Using our approach, we would first identify metadata that is shared

among various aspects of the domains and tasks. For example, if we are able to perform

product name recognition in the news domain, we may be able to identify common products

that appear both in news and product review sites by matching tokens classified as products

in the news sites to their counterparts in the review sites. We can then use this identity

property to link the associated posts together, in a way analogous to snippets. Similarly, we

can exploit the blog publication process by grouping posts written by common authors, or

published on common sites, together, as in our citation networks. We can go further and

examine the structure of a blog post itself: following hyperlinks, parsing comments (including

attributing them to their authors) and linking tracebacks. For instance, we can apply the

one-sense-per-discourse assumption to the comments on a blog post to conclude that if a

comment is recognized to be a) strongly disagreeing with the parent post and b) clearly

expressing negative sentiment, then the original poster was most likely expressing positive

sentiment.

Another example is the problem of identifying product names in company print brochures

given crawls of other companies’ websites. In this case, there are essentially two types

of transfer going on at once: from website to brochure, and from one company to an-

other. Again, the first step is to identify common attributes shared across the different web,

print, and company domains. For example, in terms of transferring product names across

companies, we might be able to identify key words on company websites that signal what

industry the company is in. Using these as domain-invariant features, we can construct

industry-specific grammars for indentifying product names: for example, software products
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may commonly end in a version number such as ‘2.0’, while car products might end in a series

code such as ‘EX’. If we have access to external data sources, such as resume websites like

LinkedIn, we might be able to link companies together in some way by the work histories

of their employees. Likewise, shared formatting might provide a means of transferring from

web to print, leveraging the assumption, for example, that usage of the italics tag in HTML

is analogous to usage of italics font in print.

We hope these examples have helped demonstrate how the concept of relating shared meta-

data across domains and tasks can provide a general framework for performing robust transfer

in a wide variety of different learning settings and encourage other practitioners to take a

look at their own problems and consider if a metadata approach might be beneficial.

7.3 Future work

There remain many rich avenues of exploration in this topic of robust learning for named

entity recognition. For example, while we used the seemingly natural tree-like structure

of the MinorThird feature-space to construct our feature hierarchy, there are many more

ways one could think about creating, or learning, this structure – whether from prior domain

knowledge or a model selection algorithm.

For instance, one could imagine directly assessing the correlation between various sets of

features in some validation dataset, and using this information to help reorder the feature

tree. Specifically, different versions of the tree could be constructed by ‘pivoting’ the tree on

various key features (as determined by these features’ covariances and correlations with other

features and statistics), and the tress created in this manner compared in a cross-validation

model selection experminent.

In fact, the idea of organizing and relating entities together via hierarchies is not limited to
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features. Whereas the snippets we examined in this thesis relied on exact token match-

ing to perform their function, one could imagine a hierarchical system that allowed one to

robustly back-off from exact token matches to tree-based similarity matches. Such a system

might be able to relate a specific species, such as ‘Homo sapiens ’, to other related cousins,

such as ‘Homo erectus ’, merely by recognizing their common subtoken ‘Homo’. This could

be encoded as a common parent token node ‘Homo’, having ‘sapiens ’ and ‘erectus ’ as sibling

child nodes. In this way a purely token-based hierarchy might be able to capture seemingly

more robust semantic information rather cheaply.

Similarly, one could search out many other types of structure within and around documents

to exploit along the lines of the document sections used by our structural frequency

features. In the biological domain, for example, papers can often be categorized by the

procedure or experimental method employed. It seems promising that there would be certain

regularities within and between experiment types that might be useful for identifying proteins

and other associated discriminative words.

With respect to snippets, the continued development of task-specific classifiers, such as

image pointers, provides a reusable, modular type-system on top of which robust learners

of many kinds can be built. Relatedly, the development of taxonomies and grammars that

allow domain experts to encode the relationships and constraints between different entities

and aspects of the data promises to be a challenging, but rewarding, area of future work.

Tying all of these approaches together is the framework of using graphs to encode and oper-

ate on relationships between data of all types. Our feature hierarchies are just trees (a special

type of graph) relating features to one another, while snippets and structural frequency fea-

tures both encode similarity and distinction between tokens across different aspects of the

data and domains being learned. These links, joining information across feature-, instance-

and label-space, can likewise be modeled as edges in a complex network. Such graphical
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models, and their associated walks, edge-learning and other techniques, themselves provide

a robust method by which to combine data from multiple sources in order to discover reg-

ularities that lead, ultimately, to learning that is more robust than any single technique

alone.

With the exception of these graph-walks, we have focused, for ease of development and

comparison, on a relatively small set of linear learning methods such as conditional random

fields. While we feel that these techniques healthily served, and did not limit, our research,

there is certainly room to benefit from further extension and incorporation of our methods

to other machine learning algorithms such as latent variable or grammar based models.

With respect to curated citation networks, it is still unclear exactly how much information

can be combined before diminishing returns are encountered. For instance, we know that

adding a single new query significantly improves prediction accuracy, but what about adding

a second or third gene? Relatedly, does it matter if the gene provided is relatively common

or rare in the over distribution of genes across publications? Does knowledge of a harder to

recognize gene provide more benefit that an easy one?

Following up on an existing model of document structure [Cohen et al., 2003; Arnold and

Cohen, 2008], we hope to extend this annotated citation network model to include the text

and structure of the document itself. In this proposed model, different sections of a document,

such as the abstract and image captions, along with the words that occur in those sections,

would be represented as nodes in a document graph, with edges connecting related entities

(such as the sequential ordering of paragraphs or cross-referencing of images and citations

in the text).

We also see value in incorporating a temporal dimension to the network. In our current

model all edges are walked upon with equal probability, regardless of the temporal distance

between the two connected nodes. We might do better by taking this time distance into
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account: for example, coauthorship on a paper 20 years ago may carry less weight than a

collaboration just a few years ago.

In addition to leveraging traditional information extraction techniques to aid in our graph

search, as already demonstrated, we would also like to explicitly model the text of the doc-

ument as a graph [Minkov et al., 2006]. For example, yeast gene names share morphological

features: all genes sharing the same three letter prefix are functionally related. Likewise, we

hope to deepen the gene-gene relationships we extracted crudely from parsing the textual

GO annotation data. One way of doing this would be to calculate the mutual information

of pairs of genes by measuring how often they occur across different sections of a single

document, or across publications related by the same author, publication year, etc. This

would also provide real-valued (as opposed to binary-valued) data from which to construct

weighted edges. In this way we hope to improve performance by modeling these types of

relationships and information graphically.

We would also like to perform the full graph-based transfer experiment alluded to in the in-

troduction to Chapter 6, in which we apply our graph-based features, successful in improving

purely lexically-based intra-domain NER, to the cross-domain problem of identifying genes

in captions, having only been trained on abstracts and their associated annotated citation

networks. We could also extend this to transfer across biological subdomains, such as or-

ganisms, journals, and experiment design.

Finally, we look forward to extending the ideas begun in this thesis (summarized in Figure

1.1) for representing and integrating the various heuristics we have developed for robust

learning into a common, unified framework. In particular, we see potential in expressing

the feature hierarchies, snippets, structural frequency features and various citation-based

information (along with other techniques and sources of data yet to be developed) as relations

in a large graph which serve as ‘bridges’ conducting information between the source and
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target domains.
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Appendix A

Feature Language Definition

The lexical features used in this work are produced by the open-source natural language

toolkit MinorThird [Cohen, 2004]. The user can define a method of tokenization as a regular

expression (the default is to split on non-alphanumeric characters), and then the toolkit

evaluates a set of predefined binary features on each token:

• charType: These features describe (in a regular expression-like syntax) the pattern of

the characters in the token.

– charType.Xx+: the token begins with a capital letter, followed by lower case

letters

– charType.X+: the token contains all capital letters

– charType.x+: the token contains all lower case letters

– charType.0+: the token contains all digits

• isWord : These features describe the exact value of the token. They can be modified

by the lowerCase operator to match lower case versions of the word.
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– isWord.aardvark

– isWord.ant

– ...

– isWord.zebra

Each feature is recursively defined and evaluated (as TRUE or FALSE) on each token in

the document, along with each token’s neighbors (within a defined window size, by default

three) to the left and right, as shown in Listing A.1.

In addition to these predefined features, the user is allowed to define her own set of features

that will likewise be evaluated across the tokens of the document. The templates for these

features can be expressed in a regular expression-like language called Mixup which allows

great flexibility for creating customizable and extensible domain-specific feature languages.

For instance, Table 3.1 demonstrates a feature called LeftToken.1.isTitle, that evaluates

TRUE for the token ‘Professor’, one to the left of the token ‘Caldwell’. To create this

feature isTitle, the user a priori defined a Mixup program with a dictionary called ‘titles’

that contained the strings the user wanted to recognize as titles, such as: ‘Mr.’, ‘Mrs.’, ‘Dr.’,

‘Professor’. Then, at training time, the Mixup program is run over the document, evaluating

the isTitle feature (along with all the other features) over each of the tokens, evaluating as

TRUE for the token ‘Professor’.

The features in a Mixup program can also refer to one another, allowing the user to define

a context-sensitive sequence of word types specifying, for instance, that the part of a token

followed by the common protein suffix ‘ine’ should be tagged with the feature isProteinBase.

These custom made features are applied in the same recursive hierarchical manner as the

built-in features.
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Listing A.1: MinorThird feature generation code.

curTok = currentToken ;

// charType f e a t u r e s

from ( curTok ) . tokens ( ) . eq ( ) . charType ( ) . emit ( ) ;

// isWord f e a t u r e s

from ( curTok ) . tokens ( ) . eq ( ) . isWord ( ) . emit ( ) ;

// userDef ined f e a t u r e s

for ( int j =0; use rDe f inedFeatures . l ength ; j++) {

from ( curTok ) . tokens ( ) . prop ( userDe f inedFeatures [ j ] ) . emit ( ) ;

}

// neighborhood f e a t u r e s

for ( int i =0; i<windowSize ; i++) {

// charType f e a t u r e s

from ( curTok ) . l e f t ( ) . token(− i −1). eq ( ) . charType ( ) . emit ( ) ;

from ( curTok ) . r i g h t ( ) . token ( i ) . eq ( ) . charType ( ) . emit ( ) ;

// isWord f e a t u r e s

from ( curTok ) . l e f t ( ) . token(− i −1). eq ( ) . isWord ( ) . emit ( ) ;

from ( curTok ) . r i g h t ( ) . token ( i ) . eq ( ) . isWord ( ) . emit ( ) ;

// userDef ined f e a t u r e s

for ( int j =0; use rDe f inedFeatures . l ength ; j++) {

from ( curTok ) . l e f t ( ) . token(− i −1). prop ( userDe f inedFeatures [ j ] ) . emit ( ) ;

from ( curTok ) . r i g h t ( ) . token ( i ) . prop ( userDe f inedFeatures [ j ] ) . emit ( ) ;

}

}
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In these various ways the user is able to specify a robust customizable and precise defini-

tion of the features he would like to instantiate over the data, ultimately serving as the

representation over which learning is performed.
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Appendix B

Hierarchical Feature Model

Evaluations

Figures B.1, B.2, B.3 and B.4 each show the full set of evaluations performed for each of

the models described in Section 3.2.2 under each experimental setting of training and tuning

data, as evaluated on MUC6, MUC7, UTexas and Yapex test data respectively.
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Figure B.1: Comparative results for various experiment settings evaluated on the MUC6 dataset. (Red ‘N(0,1)’ uses a
standard normal regularizer, and concatenates the training data where applicable. When the train dataset is the same
as the test dataset this is the GAUSS model; Green ‘new hier GEN’ uses a generalizing hierarchical model, without
transfer, and so is only applicable when the target domain data is part of the training set; Blue ‘old hier TRANS’ uses
our hierarchical model; Purple ‘new hier TRANS’ uses the CHELBA-ACERO model)
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Figure B.2: Comparative results for various experiment settings evaluated on the MUC7 dataset. (Red ‘N(0,1)’ uses a
standard normal regularizer, and concatenates the training data where applicable. When the train dataset is the same
as the test dataset this is the GAUSS model; Green ‘new hier GEN’ uses a generalizing hierarchical model, without
transfer, and so is only applicable when the target domain data is part of the training set; Blue ‘old hier TRANS’ uses
our hierarchical model; Purple ‘new hier TRANS’ uses the CHELBA-ACERO model)
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Figure B.3: Comparative results for various experiment settings evaluated on the UTexas dataset. (Red ‘N(0,1)’ uses
a standard normal regularizer, and concatenates the training data where applicable. When the train dataset is the same
as the test dataset this is the GAUSS model; Green ‘new hier GEN’ uses a generalizing hierarchical model, without
transfer, and so is only applicable when the target domain data is part of the training set; Blue ‘old hier TRANS’ uses
our hierarchical model; Purple ‘new hier TRANS’ uses the CHELBA-ACERO model)
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Figure B.4: Comparative results for various experiment settings evaluated on the Yapex dataset. (Red ‘N(0,1)’ uses a
standard normal regularizer, and concatenates the training data where applicable. When the train dataset is the same
as the test dataset this is the GAUSS model; Green ‘new hier GEN’ uses a generalizing hierarchical model, without
transfer, and so is only applicable when the target domain data is part of the training set; Blue ‘old hier TRANS’ uses
our hierarchical model; Purple ‘new hier TRANS’ uses the CHELBA-ACERO model)
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