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ABSTRACT

Although there are 2339 pentomino tilings of the 6 x 10 rectangle, many pairs of
solutions are similar. We show that the solutions can be divided into 911 equivalence
classes by the similarity transformations:

rotate or reflect a subset of the pieces

interchange two congruent subsets

rearrange two pieces
Early steps of the computation utilize the standard "polar" representation of solutions to
rapidly determine the differences between two solutions. Next the pieces that differ are
checked to see if they all are transformed the same in transition from one solution to the
other; this trick substantially reduces the computation. Later steps manipulate bit mask

representations of shapes and rely for speed on special data arrays to reflect a column at a
time.

1. The problem

Many workers have found the 2339 unique solutions to tiling the 6 x 10 rectangle
with pentominoes! [Golomb, 1965]. Occasionally a note will observe that one solution
can be transformed into another by moving a few pieces, but no systematic study of this
phenomenon has been reported. For example, the solution in Figure 1 can be
transformed by

a) flipping the LNPT pieces about a vertical axis,

b) flipping the NZ pieces about the northeast-southwest diagonal,

¢) interchanging the INPT and FUVX groups, or

d) rearranging the two pieces L and P.

The reader may be either amused or frustrated to find further transformations of Figure 1,
including one where an end of the W is surrounded by the U. The latter is achieved with
two of the above transformations and then two more. In all, the equivalence class
containing this solution has twelve members.

1 Pentomino is a registered trademark of Solomon W. Golomb.
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Figure 1. A tiling with four possible simllarity transformations.

Having observed that in some cases a whole sequence of solutions are related by
simple transformations, the problem naturally attracted me when looking for pattern
specification problems as part of research on a new subsequence algebra [Hansen, 1990].
To provide a baseline, the program reported here was coded in C.

It is possible that the most important application of pentomino studies is to
intrigue students and expand their spatial relations skills. However, the topic has proven
a fertile topic of intellectual study with investigations into various tiling problems,
especially on the infinite plane [Conway, 1990; Golomb, 1985]. Tiling problems have
also been used to test hardware concepts such as parallel processor architectures
[Furuichi, 1990} and neural network machines [Kajiura, 1989]. My own aspirations in
undertaking the study included finding good computer representations for shapes and the
hope that a better understanding of symmetries could lead to better techniques for
manually solving the tiling problem.

2. Definitions

The twelve pentominoes are as given in Figure 2. For this paper, a solution is a
tiling of the 6 x 10 rectangle with all 12 pentominoes. A subser of a solution is a subset
of its tiles retained in their relative positions, although possibly rotated or reflected. It is
not required that the pieces of a subset be connected, though they usually are.
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Figure 2. The twelve pentominoes. Each is named with a letter suggesting its
shape.

Two solutions are in the same equivalence class if they are identical except for a
similarity transformation, where the similarity transformations of interest are



1) a single symmetric subset,

2) two subsets of congruent shape, and

3) two pieces.

Note that by the definition of subset two solutions are not equivalent if the
difference between them is the rearrangement of the pieces in a symmetric group. Thus
the two solutions in Figure 3 are not equivalent despite differing only in a symmetric
shape consisting of the LNPVWYZ pieces.
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Figure 3. Two non-equivalent solutions. The 6x6 shape on the right is
symmetric, but its pieces are rearranged.

Case 3 is met by only the FN and LP pairs shown in Figures 4a and 4b. When
these patterns occur, they often merge two sets of solutions with interesting
transformations, so we decided to add them to the definition of equivalence. Ninety-one
instances of these patterns were found, resulting in 54 fewer equivalence classes.

a ‘ b

Figure 4. Asymmetric transformations with two pleces. These shapes
appeared as symmetry transforms between two solutions. (a) 81 times; (b) 10
times. There are other pairs of pieces that can make a shape two ways, but none
appear as similarity transformations between solutions.

The term orientation will refer to any rotation or reflection of a subset. If the
subset exceeds six units in width, it has the four orientations consisting of itself, its half-
turn rotation, and reflections about its horizontal or vertical axis. A subset not exceeding
six units also has reflections about each diagonal and rotations of a quarter turn in each
direction. When comparing two solutions, a re-orientation of a piece is the change in
orientation it undergoes if moved from one solution to the other.

3. Program Outline

When working by hand equivalences are usually found by scanning a solution and
looking for similarity transformations to other solutions. However, computer
implementation of this approach would require consideration of 2'% subsets of each
solution. Instead we adopted the approach of comparing each pair of solutions to see if
the subset of pentominoes which differ between them meets one of the transformations.
In most cases two solutions differ in the placement of all twelve pentominoes, so they
cannot have any equivalence.
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The principle data structures are those for "mask", "oriented pentomino"”, and
“solution”. A mask data structure represents the outline shape of one or more
pentominoes; it contains the height, the width, and a bitmap with one byte for each of up
to 10 columns. The bit map contents are normalized by shifting so neither the bottom
row nor the leftmost column is all zeroes.

Each pentomino is represented with a set of up to eight oriented pentomino data
structures, one for each orientation. The data structure has a mask giving the shape of the
piece and an array of pointers to the other orientations of the same pentomino. With the
latter a single array access yields the result of applying any given re-orientation to the
pentomino. For example, suppose Lx is the array of pointers for the L piece oriented as
on the left side of Figure 4b. Then Lx[NortheastSouthwestReflection] points to the
oriented pentomino structure for the L on the right of the Figure.

The solution data structure has both a string form of the solution and its "polar"
representation. The latter consists of an array of twelve elements, each pointing to an
oriented pentomino structure and giving its row/column location in the solution. Two
solutions have pentomino j in common if and only if they have the same values in the j’th
element of their polar representations.

The steps of the computation are outlined in Algorithm 1. The first step (labeled
{1}) is to assign to each solution its own unique equivalence class. Then {2} all pairs of
solutions are compared--considering all four orientations of the first against the second--
and when two are found equivalent, their classes are merged {9} by changing all
solutions which have the class number of the first to have the class number of the second.

{1} Assign a unique equivalence class number to each solution.

{2} For each pair of solutions, in each of four relative orientations:

{3}  Compute Ndiff, the number of differing pieces.

{4} If Ndiff is 12, the solutions are not equivalent.

{5} (seetext)

{6}  If Ndiff is 2,

{7}  Orif the differing pieces are related by symmetry,

{8} Or if Ndiff is even and the differing pieces can both be
divided in the same two congruent subsets,

{9} Then merge the two equivalence classes.

{10} Output solutions with final equivalence class numbers.

Algorithm 1. Computing equivalence classes. This algorithm is sufficient, but
can be accelerated by adding the step 5 described in the text.

Step {3} computes Ndiff, the number of pentominos for which two solutions
differ. A value of one is impossible; eleven cannot occur if there is a similarity
transformation; twelve is the most common and indicates non-equivalence instantly {4}.
When Ndiff is two, the solutions are equivalent by (at least) the third rule of equivalence
{6}. For other values of Ndiff, the differing subsets are checked to see if they are
symmetric {7}. If not and if Ndiff is even the two subsets are further tested to see if both
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have two congruent subsets which can be swapped to transform between the
solutions{8}.

Symmetry of a subset {7} is tested by building a mask representing the shape of
the subset and seeing if one of the symmetric re-orientations of the mask is identical to
the mask. If this succeeds, the pieces are further tested to ensure both subsets have their
pieces in the same relative positions. For this test a polar representation of one subset is
successively re-oriented and checked against the other. For this reason, the re-orientation
operations are programmed for both masks and the polar representation.

Checking the pentominos that differ to see if they can be split in two congruent

subsets {8} is the computationally most intensive task. All (pj; ) possible halvings of
the subset have to be tested; this is only 3 tests for Ndiff of 4, but 126 tests for Ndiff of
10. Fortunately, large values of Ndiff were uncommon because the solution list was
partially equivalence-class ordered in earlier experiments. The congruence test for each
halving was optimized by first computing and comparing the bounding rectangles before
generating masks and checking congruence.

Steps {7} and {8} both require rotation and reflection of shapes represented as
mask data structures. Only three such operations were implemented--reflections about
the vertical, horizontal, and northeast-southwest axes--because all other re-orientations
can be generated by multiple applications of these. Reflection about the horizontal axis
was done simply by swapping bytes from opposite ends of the bit mask. Reflection about
the vertical axis was computed via a precalculated array, Vreflect, giving the vertical
reflection for each byte pattern. For instance, Vreflect[0xB] is the value 0x34 (that is, the
reflection of 001011 is 110100). Reflection about the northeast-southwest axis used a
precalculated array of bitmaps indexed by column position and contents. If the i column
has contents j, the bitmap NESW/[i][j] has one bits in the right positions to be a reflection
of jinthei” column. The bitmaps selected by each byte of the mask are OR’ed together
to make a composite bitmap for the northeast-southwest reflected mask value.

As described so far, the algorithm required three and a quarter hours on an IBM
RT/PC workstation with its APC card. This is not an unreasonable use of resource since
workstations normally sit idle every night. However, it was a pleasant surprise to find an
additional step which greatly reduced the computation.

Observe that when a subset of pieces is re-oriented for a symmetric
transformation from one solution to another, all the pieces must undergo the same
transformation: all reflected horizontally, or all rotated 180 degress, or whatever.
Similarly when swapping two congruent subsets between two solutions all pieces must
undergo the same re-orientation, except in the case of one-quarter turns, where half the
pieces turn one way and half the other. The improved algorithm was created by
introducing step {5} to test that all pieces have the same re-orientation between the two
puzzles; for simplicity, all quarter turns were trteated as equal.
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The improved algorithm took only 25 minutes on the same processor. Most of the
work of the algorithm is done in steps {4} and {5}, the first of which rejects all but

636402 of the 10931601 solution pairs considered and the second of which rejects all but
2633 of the remainder.

4. Results

A total of 911 equivalence classes were identified with the largest class having
fifty members. Sample solutions from this and other large classes appear in Appendix 1.

One interesting aspect of equivalence classes is their "bushiness". Some classes
have a sequence of transformations from one solution to the next, where each solution
has only one transformation in and another out; other classes have several
transformations applicable in each solution so a few transformations can generate a
relatively large class. This aspect of the various classes is revealed in Figure 5 where the
x-axis orders the equivalence classes according to size and the y-axis is the number of
transformations applicable to solutions in the class.
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Figure 5. Equivalence classes organized by number of solutions and number of
transformations that apply. A value of one is represented with a bullet.

From the Figure we observe that about half the classes have one member and half
the remainder have only two. Altogether, however, these account for only about a third
of all solutions. Local maxima occur in the table for class sizes which are a multiple of
four solutions because symmetries contribute an even number of solutions and multiple
symmetries drive the class size toward a multiple of a power of two. One class, denoted
16b in the Appendix, has 16 solutions generated from only 3 transformations; this
happens because one of the transformations is the symmetries of the 3x5 rectangle
formed from pieces LNV. This is a prolific transformation, appearing 54 times as a

symmetry transform from one solution to another, including an appearance in the largest
class.
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The similarity transformations identified include

1550 cases of a symmetry transformation

433 cases of swapping two congruent pairs, and

91 cases where two pieces were rearranged asymmetrically.
The cases in the middle group can be further divided into 225 where the transformation
was also symmetric and another 208 where it was not. The numbers above total to more
than the number of equivalence classes because every similarity transformation between
solutions is counted even though in many cases more than one sequence of
transformation will convert one solution into another.

The definition of subset demands that the difference between two solutions be
formed by moving the pieces of the subset as a block, without rearranging their internal
order. Relaxing this restiction produces many more equivalences by symmettry with
arbitrary rearrangement of pieces. Curiously, however, the number of equivalence
classes is reduced by only three if the restriction is relaxed for the similarity
transformations of swapping two congruent subsets. The additional equivalences arise
from the shapes shown in Figure 6.

a b
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Figure 6. Shapes that add three more equivalences by swapping two
congruent subsets. (a) Can be made two ways with pieces INPT. (b) Can be
made three ways with pieces FVYZ.

The various similarity transformations involved 199 subset shapes, as detailed in
Appendix 2. One shape--the 3x3 square with a unit square in the middle of one side--
appears in both lists and is counted twice here. Curiously, it is the only symmetric shape
that appears among the shapes which form pairs of congruent subsets. Many shapes can
be made with more than one set of pieces; altogether 320 combinations of shape and
composition occurred.

Four of the shapes discovered are not connected subsets. In each case, however,
the pattern is composed of two symmetric and connected components, each of which
applies individually, so the underlying solutions would be in the same equivalence
classes even if disconnected shapes were disallowed.

Many of the smaller shapes appear as subsets of other, larger ones, so apparently
the symmetry structure of pentomino tilings is not yet completely elucidated.

Acknowledgment: Rebecca L. Hansen’s curiosity and enthusiasm contributed greatly
to my choosing and finishing this work.
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Appendix 1. Representatives of the largest equivalence classes

Figure Al.1 gives one solution from each of the forty-nine equivalence classes
whose size is seven or more. The integer in front of the solution is the size of the class;
the lower case letters are merely to distinguish classes.
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Figure A1.1 Solutions from large equivalence classes.
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Appendix 2. Shapes of subsets

Where there are similarity transformations between pairs of solutions, the set of
pieces re-oriented between the two solutions has one of the 199 shapes shown in the
Figures of this Appendix. Under each shape is shown the set(s) of pieces that constituted
that shape and the number of times that set appeared in the given shape.

Figure A2.1 shows the 73 shapes that occurred in swapping two congruent
subsets; all but one are asymmetric. Sometimes a similarity transformation that could be
expressed as swapping two congruent subsets could also have been expressed as a
symmetry transform; the two counts for each piece set are for the cases where symmetry
did not hold or did hold, respectively.

The shapes most often found in swapping two congruent subsets had the
following number of occurrences and alternate piece compositions:

70 PV FP NP UX

42 LN PU VZ LP

36 FL TY

29 FTY LNU ENV PUX
26 NV TY IL

22 LP IT

21 FU PV LP PT PZ UY

Figures A2.2 and A2.3 show the 126 shapes that occurred when there was a
symmetric subset transformation. Frequently occuring such shapes were:

112 FX

103  FT

81 PV FP NP

81 PT NZ

76 PwW LP

76 PUV FPU PUY LNV LTY
68 TV

56 PY LW

52 LU

In addition to the shapes shown below, similarity transformations occurred with
the shapes given in Figures 4a and 4b.
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Figure A2.1 Shape of each member of swappable congruent pairs.
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Figure A2.2 Shapes of symmetric groups; part 1.
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