CMU-ITC-88-061

The Andrew Toolkit - An Overview

RRT Andrew J. Palay
T - Wilfred J. Hansen
R Michael L. Kazar
: Mark Sherman
Maria G. Wadlow
Thomas P. Neuendorffer
Zalman Stern
Miles Bader
Thom Peters

Information Technology Center
Camegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

The Andrew Toolkit is an object-oriented system designed to provide a founda-
tion on which a large number of diverse user-interface applications can be developed.
With the toolkit the programmer can piece together components such as text, buttons,
and scroll bars, to form more complex components. It also allows for the embedding
of components inside of other components, such as a table inside of text or a drawing
inside of a table. Some of the components included in the toolkit are multi-font text,
tables, spreadsheets, drawings, equations, rasters, and simple animations. Using these
components we have built a multi-media editor, mail system, and help system. The
toolkit is written in C, using a simple preprocessor to provide an object-oriented
environment. That environment also provides for the dynamic loading/linking of code.
The dynamic loading facility provides a powerful extension mechanism and allows the
set of components used by an application to be virtually unlimited. The Andrew
Toolkit has been designed to be window system independent. It currently runs on two
window systems, including X.11, and can be ported easily to others.

1. Introduction

During the past five years a number of window systems have been developed for high-resolution
bit-mapped graphics displays (Macintosh(1], SunWindows (2], Andrew system{3,4}, X Windows(5],
NeWS§(6]). Each of those systems have included a programmer interface for developing applications.
These have been low-level interfaces that have provided a simple graphics abstraction, a method for
receiving input events and perhaps some simple components of the system (menus, scroll bars, dialog
boxes). In writing to the lower-level interface, application programmers continually replicate the same
functional body of code. Further, since the lower-level interface provides few guidelines for the
developer, it becomes difficult to build components that can be used by other developers. This again
results in replication of large amounts of code that should be rcused. It also results in the development
of inconsistent applications. Since cach window system does provide a full user interface system, appli-
cation programmers have built functionally equivalent but divergent user interfaces. This lcads to chaos
for a user community. Becausc of these problems, higher-level interfaces have been devcloped
(MacApp(7], SunView(8] the Andrew Base Editor{9], X Toolkit[10}).

The Andrew Toolkit (formerly known as Base Environment 2 or BE?) is a new high-level
cnvironment for the development of uscr mntertace applications. Built upon the lcssons lcamed over the

-2-

past four years during the development of a prototype system built at the Information Technology
Center (ITC), the toolkit provides a general framework. for -building and combining compenents, It is
based on a minimal protocol that allows components to communicate with each other about user inter-

face policies, while allowing the developer maximum freedom to determine the actual interactions
between components. .

The Andrew Toolkit has been built using an object-oriented system, the Andrew Class System,
that also provides the ability to dynamically load and link code. This ability provides a powerful exten-
sion facility for applications. We have already used this feature to build a generic multi-media editor
(EZ) that can edit a wide variety of components by loading the appropriate code when needed. Further,
the dynamic loading facility can be used to add additional components to the basic toolkit without hav-
ing to rebuild the applications. -

The toolkit provides the usual set of simple components (menu, scroll bars, etc) and a number of
higher-level editable components including multi-font text, tables/spreadsheets, drawings, equations, ras-
ters and simple animations. The text and table components are multi-media components, in that they
allow the embedding other components within their description. The drawing component will soon sup-
port this feature. e

In addition to the editor, we have developed a number of basic applications including a mail sys-
tem[11], a help system, a typescript facility that provides an enhanced interface to the C-shell, a ditroff

previewer, and a system monitor (console) that displays status information such as the time, date, CPU
load and file system information. Since both the mail and help applications use the text component for
the display of information, they automatically inherit the multi-media functionality of the text com-
ponent. Examples snapshots of these applications can be found at the end of this artcle.

We have also developed a number of extension packagés; These include a C-language program-
ming component, a compile package, a tags package, a spelling checker, a style editor and a filter
mechanism!, ... o L : : S .

The original design of the Andrew Toolkit arose from discussions about the devclopment of a text
editor that would allow the user to embed other components, such as tables, drawings, rasters, ctc.
Further we wanted those components to be editable in place. Some of the problems that must be
addressed in building such a system include:

- how_tb_ resolve the handling of input evchts between components.
— how to arbitrate the display of menus.

-~ howto dfbi_tfatc the display of the mouse cursor.

. how and when to display components. o

- how to detenniﬁé the sizé and plzicemem of cmbedded components.
.- how to store the external representation of components.

In examining these problems, we developed a general architecture that allows the inclusion of one
component inside another. This allows the developer to build components that can embed arbitrary
components without detailed knowledge about the embedded object. Further, new components can be
easily included in already existing components without any additional work.

" "For example, users of the Andrew System can currently compose papers that contain tables, cqua-
tions, drawings, rasters and animations. The text component uses a gencric mechanism to inciude other
components. If a new component is developed. it can be included in the text component using that
same mechanism. This is an important feawre of the system, especially within a university environ-
ment.. Given our limited resources we knew from the outset that we could not write all the components
that were required by the university. For exampic, members of the music department will want 1o
include musical scores inside of text just as casily as others include tables. Members of the electrcal

engineering department will ‘want to include circuit diagrams inside of text. The list is. essentially

1 the filter mechanism gives the user the ability to use standard tools on regions of text contained in a file being
edited.

oy

limitless.

The dynamic loading feature is esseutial in extending the toolkit’s functionality. If a member of
the music department creates a music component and embeds that component into a text component (or
any other component that allows embedding of components), the code for the music component will be
dynamically loaded into the application. Except for a slight delay to load the code, the user of the edi-
tor is unaware that the music component was not statically loaded. The user is also unaware that the
music component was not part of the original system. The editor did not have to be recompiled,
relinked, or otherwise modified to use the new music component. Further, all users of the text com-
ponent automatically acquire the ability to use the music component: it can be sent in a mail messages
easily as edited in a document.

The Andrew Toolkit has been designed to be window system independent (and to a great extent
operating system independent). It currently runs under both the original ITC/Andrew Window System
and under X.11. Within the university community, and we believe the more general community as
well, there exists a wide range of machines and thus window systems that need to be supported. Within
the UNIXt operating system community, the X Window System is developing into a de facto standard,
although other window systems may eventually rival it. In the lower-end personal computer market
there exist the PC and the Macintosh. Even though the price of computers will continue to drop those
machines will remain useful environments for many users. Finally there is the development of newer
operating systems, such as OS/2, for machines between the low-end personal computers and the high-
function UNIX workstations.

Since we could not see the development of a window system standard over that range of
machines, we chose to make Andrew Toolkit window system independent. This will allow us potential
to support a consistent set of applications over a diverse set of window systems. Clearly the personal
computer versions would be more limited, but we consider it to be a great advantage for a user o be
able to use a low-cost machine for the normal simple tasks, and then easily move to the more powerful
machines when required.

2. Basic Toolkit Objects: Data Objects and Views

The Andrew Toolkit is based on the development of components that can be used as building
blocks for either applications or other more complex components. Data objects and views are two
closely related basic object types within the toolkit. A toolkit component is normally composed of a
view/data object pair. The data object contains the information that is to be displayed, while the view
contains the information about how the data is to be displayed and how the user is to manipulate the
data object (the user interface). For example, the text data object contains the actual characters, style
information and pointers to embedded data objects. It also provides ways to alter the data, such as
inserting characters and deleting characters. The text view contains information such as the current
selected piece of text, the portion of the text that is currently visible, and the location of the text. The
text view provides methods for drawing the text, handling various input events (mouse, keyboard,
menus), and manipulating the visual representation of the text.

The contents of a data object can be saved in a file, but the contents of the view cannot. The
information associated with the view 1s transient and is valid only during the running of an application.
When the application terminates that informauon has no further meaning. On the other hand. views
provide the facility for printing within the Andrew Toolkit.

While it is often the case that a view has an underlving data object, there are many cases when a
view will be used to solely provide a user intertace funcuon. In such a case there is no underlying data
object. The scroll bar is one such example. [t only adjusts the information contained in another view.,

We have made the view/data object disunction to provide a system where multiple views can
simultancously display the information contained 1n a single data object. Our design s similar to the
Model-View-Controller design used in Smalltalk(12] systems. By comparison, our data objects serve as
the modcls, our views arc views, and the conuoller is distributed between the interaction manager

! + UNIX is a trademark of Bell Laboratones.

- 4.

(global decisions) and individual views (decisions between children and parent views).

This separation of concerns has brought us many advantages. For examplz, in building an “editor,
we wanted to provide the user with the ability to edit the same information in more than one window.
Further, we wanted changes made in one window to be reflected in the other. This case is handled by
having two views of the same type, one in each window, displaying information from the same data
object. Similarly, we might want to have multiple views of the same type on a single data object in
one window. A system like Aldus’ PageMaker(TM) could be built under the Andrew Toolkit by allow-
ing the user to specify a set of views and their placement on a page. Some of those views (for exam-
ple, the text views) would be examining different sections of the same data object.

. - It is also possible to have two different types of views displaying information contained in the
one data object. Currently the text view is a display-based text processing system. It can be character-
ized as a semi-WYSIWYG?2 or a WYSLRN3 view. It displays text with multiple fonts, indentations,
etc. but makes no attempt to display the information as it would appear on a piece of paper. This view
has been used for the basic text editor as well as the mail and help systems. It has been successful,
except in the case the user wants to format the text for printing. In this case we plan on providing a full
WYSIWYG text view. This paper-based text view will be designed to use the same text data object.
The user of the system will be able to choose to use either view or perhaps have one window using the
normal text view and the other using the WYSIWYG text view. Again changes made in one window
will automatically be reflected in the other window.

Just as it is possible to have two different views on the same data object in two windows, it is
also possible to have two different views on the same data object within the same window. A text
component could have two embedded views on the same data object. For example, the user might want
to display a table of numbers and a pie chart representing the table. This could be done by having one
table data object and two views, a normal table view and a pie chart view.

Despite its advantages, there is a cost to separating information into data objects and views. Two
particular areas of difficulties we have discovered are coordinating data objects and views, and the
maintaining stable view state. Each is briefly discussed below.

Our system does not encourage a close connection between the changing of the information con-
tained in a data object and the update of the visual appearance provided by the view. Since only one
view will be causing the data object to change, and muitiple views may have to reflect the change, a
delayed update mechanism must be used. When the user issues a command to0 a view to alter the
underlying data object, the view firsts request that the data object modify itself and then requests the
data object to inform all of its views that it has changed. When a view is informed that the underlying
data object has changed, it must determine what the change is and update its visual rcpresentation
appropriately. : : ‘

The delayed update mechanism is the trickiest challenge in building a data object/view pair. The
developer must develop some mechanism with which the view can determine which portion of the data
object has changed. This mechanism is normally provided by a set of methods exported by the data
object. It is not considered to be proper behavior for the data object to have detailed knowledge of a
specific type of view. This would be one way to handle the delayed update, but would preclude the
development of other types of views on the same tyvpe of dawa object.

The second difficultly we faced was retaining the swuble (or permanent) state for a view. In the
chart example, the underlying data object is a table of values. When a file displaying the chart is saved,
only those values (along with the inl'omalxon that a "chant’ 1s viewing the table) is saved. However, the
user may have set certain parameiers in the chart, such as the way 1o labet the axes. This information is
not past-of the table data object and would not stored in it Since a view has no permanent state, infor-
mation kept in the view, such as a axcs labelling, would also not be saved. In its simplest form, there is
no place to keep this view specific informauon.

2 What You See Is What You Get
3 What You See Looks Real Neat

-5.

Our solution consists of two parts: additional data objects and the idea of an observer. In the
example above, the chart view would be viewing not a table data object but an auxiliary chart data
object. The chart data object would retain information such as axes labelling. In addition, the chart data
object would be an observer of the table data object. As information in the table changed, the chart data
object would be notified and it, in turn, would notify the chart view. In fact, we do not have specially
defined auxiliary data objects. Rather, our update system is based on the observer mechanism, where a
data object may be observed by any number of other data objects and views. We have found that this
design has permitted a great deal of flexibility and functionality for combining pieces in the toolkit.

3. Event Processing: The View Tree

Views are used to define the user interface for an application. In defining a user interface, the
view must handle both the visual display of information on the screen and the handling of input events
that might change that display. Views are organized in a tree structure. Visually, each view is a rectan-
gle and is completely contained in its parent view. At the top of the tree is a view called the interac-
tion manager which is a window provided by the underlying window system. The interaction manager
has the responsibility of translating input events such as key strokes, mouse events, menu events and
exposure events from the window system to the rest of the view tree. The interaction manager is also
responsible for synchronizing drawing requests between views. By design, it has one child view, of
arbitrary type. That view may have any number of children. Child views are always visually contained
within the screen space allocated to their parent, but the toolkit does not define any screen relationship
between sibling views.

In general, when an event is received by the interaction manager, the event is passed down to the
interaction manager’s child. That view determines if it is interested in the event or if it should pass it
down to one of its children. This process recurs until some view actually handles the event. By passing
the event down the view tree, each parent gets the chance to determine the disposition of the event.
The view can use the semantic information associated with itself to make that determination.

Updates to the visual image of an application are handled in a similar fashion. When a view
wants to update its image it makes a request 1o its parcnt view. That request is usually passed up to the
interaction manager which then sends an update cvent back down the tree. Since a view might be
embedded in another view, it does not have complete control over its allocated screen space. The
parent might have overlaid some other image on top of the child’s image. By posting an update request
up the tree and having the update event come back down, the parent can now update its image and the
children’s images in the appropriate order.

The following figure presents a view tree for a window that contains a scrollable text view that
contains a table view. The text view is surrounded by a scroll bar, which is surrounded by a frame.
The frame provides a message line view.* The text and table views reference their respective data
obejcts. The lines around the screen image represent the physical area of the image associated with
each view.

When a mouse event is rcceived by the interaction manager, it passes the event down to the
frame view. The frame determines if it should handle the mouse event directly or if it should be passed
down to either of its children. The frame accepts the mouse event dircctly if it is close to the dividing
line between its two children (in this case the user is allowed to adjust the position of the dividing ling).
If the mouse event is passcd down to the scroll bar view, that view will accept the mouse event if it is
over the scroll bar or pass it to its child if it 1s not. The text view accepts the mouse event it it 1S not
in any of its subviews; otherwise it 100 passcs the event down.

As ‘the mouse event works its way down the view tree, the view determining the disposition of
the mouse event only nceds to be aware of the location of its children and not the child’s type. Simi-
larty, the child nceds to have no knowledge about the type of its parent, nor its location in the overall
vicw trec.

4 The frame, in conjunction with the message line aiso provides a dialog box facility. To simplify the figure, that
detail has been omitted.

prrrres gt Window
I TT——————————— i System
: g : 3 ¥
f February 11, 1988 ; .
: '
i v
i Dear David, Interaction
: Manager
H Enclosed is a list of our expenses ...
: : I y
e— Frame
: HEEI Y Scroll Bar Mes;age
d : : Rt Line
' Hope you have a nice ...
, Sincerely.
Textview
e Tableview

The controlling relationship between a view and its children is one area in which the Andrew
Toolkit differs from other toolkits. Other systems closely tie the handling of events to the physical rcla-
tionship of components on the screen. If a component is physically on top of another component it will
block the transmission of certain events to the lower component>. While this is valid in many cir-
cumstances, there are times when it is not. Further, many tookits use a global analysis of all views in
order to process and distribute events. The Andrew Toolkit distributes this authority to cach view over
its children.

Our toolkit was designed to overcome the limitauons that we had experienced with a global, phy-
sical model. An early prototype toolkit (the Andrew Base Editor) tied the handling of cvents 1o the phy-
sical relationship of components on the screen. During the early design phase for the Andrew Toolkit,
we attempted to build a drawing cditor using that prototype. The drawing editor used the text com-
ponent ta display and edit text within the drawings. The text componcnt was a subordinate of the
drawing component. The user of the drawiny cditor might first enter some text and then place a line
over the text. When a mouse event occurs near that Line only the drawing component could determine
whether the user was selecting the line or the underlving text. This was impossible to accomplish since
the toolkit maintained strict, global controf over the distribution of input cvents.

5 X.11 comes very close to handling this comectly except for cxposure events which do not propagate to overlapped
windows.

-7 -

A similar case can be seen in the handling of mouse events by the frame view. The frame physi-
cally divides its image into two areas separated by a thin line. In order to allow the user to easilv drag
that line, the frame allocates a slightly larger area to accept mouse events. That area overlaps the space
allocated to the frame’s children. If the handling of events was dictated by the screen layout, this

interaction would be much more difficult to provide and would require more detailed knowledge of the
view tree structure to maintain.

The parental authority is a major architectural concept in the Andrew Toolkit. The discussion
above described how this authority is exercised for controlling mouse events. The same mechanism is
used between children and parents to negotiate the contents of menus, the display of cursors, the map-
ping of keyboard symbols and the focus of attention.

4. The Graphics Layer

The view tree mechanism provides a general mechanism for handling of events in the Andrew
Toolkit. It hides from the developer the specifics of the input model used by the underlying window
system. In a similar fashion, the toolkit uses a graphics layer to hide the output model of the specific

display medium. The display medium is usually the underlying window system, but can also be a
printer.

The graphics layer is built using a third type of object, the drawable. A drawable contains infor-
mation about the underlying graphics medium. For a window system, that information normally
includes:

-- the window to draw in.

-- the location of the drawable in that window.

-- a small graphics state (e.g. current point, line thickness, current font).
-- the coordinate system for the drawable.

The drawable provides a set of drawing operations similar to those provided by the X.11 window
system.

Each view contains a pointer to a drawable, which is used for all drawing operations. The
developer of a view rarely accesses a drawable direcly. All methods exported by the drawable are also
provided as part of the view interface.

Separating the view and the drawable will allow us to provide a simple default printing mechan-
ism. When a view receives a print request for a specific type of printer it can temporarily shift its
pointer to a drawable for that printer type and do a redraw of its image. We expect to provide this
facility in a later version of the toolkit.

5. External Representation

Most of the problems with embedding components inside other components are solved by the
view interface, except for the external representation of the components. As stated earlier, only data
object descriptions are written out to files. The toolkit architecture places one requirement on the exter-
nal represcntation. When a data object writes out its external representation it is enclosed in a
begin/end marker pair. The markers must be properly nested and it must be possible to find all the data
associated with an object without actually parsing the data. Those markers provide 2 tag denoung the
type of the object being writien and an idenuficauon tag that can be used for referencing the data object
by other data objects.

Thus the earlier example contaning a table embedded in text would have an external representa-
tion that looks like:

\begindata{text, 1}

text data ...
\begindata(table, 2}

the table data goes here ...
\enddata(table,2}

more text data ...

\view {spread, 2}

rest of text data ...
\enddata(text,1)

The \view construct is specific to the text object and indicates the exact placement within the text
of the view (of type spread) on the table data object.

The use of nested begin/end markers is the only requirement of for the external representation we
also strongly encourage developers to follow the following guidelines:

- use only printable 7-bit ascii characters (including tab, space and new-line).
-- keep line lengths below 80 characters.
-- make the representation understandable.

The first two suggestions make it possible to transport files across almost all networks (especially
as mail). The final suggestion is an attempt to provide an easier recovery mechanism in the rare
occurrence when files are partially destroyed. This suggestion only makes sense in the context of the
first two suggestions. If the file is being stored using only 7-bit codes and with line lengths than 80
characters then the overhead in making it understandable is small. Of course there are some objects,
such as rasters, where this requirement is impossible to meet. However, cven in those cases it is possi-
ble to make it slighly more comprehensible. For example, the raster format could make sure the bits
representing a new row always begin on a new line.

6. The Object Oriented Environment

The Andrew Toolkit is built using the Andrew Class System (Class). Class provides an object-
oricnted environment with single-inheritance. The Class language permits the definition of object
methods and class procedures. Object methods are similar to C++{13] methods, and a may be overrid-
den in subclasses. Class procedures are similar to Smalltalk’s class methods, only they may not be over-
ridden. C procedures for controlling the initialization and disposition of objects are created by the Class
preprocessor. Class also provides for the dynamic loading/linking of code.

Class is a C language-based system. It consists of a small run-time library and a simple prepro-
cessor that only preprocesses class header files. The class header files are almost identical to standard
C header files except for the inclusion of another type of definition, the class. The preprocessor, gen-
erates two include files, an export file (.ch) that is used when defining a class and an import file (.ih)
that is used when using a class. The C files written using Class look almost identical to normal C files
and are not run through a special preprocessor.

Class is similar in nature to C++. We chose to implement our own system for several reasons:

-~ We wanted to support dynamic loading/linking. C++ generates code that must be staucally
linked. Modifying the C++ preprocessor was considered but deemed impractical without getting
the changes made in official version. We made some initial inquiries, but could not solve this
problem quickly enough for development to continue.

- We wanted to develop a system that could be debugged casily. C++ preprocesses both include
and source files. Untl a debugger is built that understands the original C++ code, developers
would have to understand the transtormations made by the C++ preprocessor. This would pose

only small problems tor the highly experienced developer, but would cause problems for our
developer community.

== We wanted as simple a system as possible. We needed an object-oriented environment but not
the other constructs built into C++.

-9-

-~ We wanted to be free of any external dependencies that required yet another licensing agreement.

We hoped to make the toolkit available to widely available. - Requiring another licensed product
seemed to be a bad idea.

Even though we did not use C++ to implement the toolkit, the Class system used C++ as a model
for its object oriented system. If the above problems were solved (which might now be a possibility)
converting to C++ would be a relatively easy (but time-consuming) activity.

7. Extending the Toolkit

The Andrew Toolkit has been built to be extendable. This is a major feature of the system. The
system has been designed in such a fashion that the creator of a data object or view does not have to
take any special action to allow that object to be embedded in another object. The data object and view
interfaces have been designed to provide the necessary and sufficient set of methods for two objects to
communicate without detailed knowledge of each other. Further, those interfaces make it easy for the
author of an object to allow it to include other objects. The text object can include any other type of
data object. Authors of new objects are strongly encouraged to handle the inclusion of arbitrary objects
instead of special casing the inclusion of specific objects.

The dynamic loading/linking feature also provides a low-level extension language for applications
built using the toolkit. Sophisticated users can write code (using the class system) to implement new
commands. These commands can be bound either to key sequences or to menus. When invoked, the
code is loaded and executed.

This feature has also provided us the ability to run all of our applications from a single base pro-
gram. We have created a program, called runapp, that contains the basic components of the toolkit.
The code for each individual application is then dynamically loaded in at run time. Since most UNIX
systems do not provide shared libraries, this allows multiple toolkit applications to share a significant
portion of code. This leads to performance improvements in a large number of arcas:

-- paging activity is reduced.

-- key portions of the code are almost always paged in thus improving user performance.
-- virtual memory use decreases

-- file fetch time decreases if running under a distributed file system.

-- the file size of an application is reduced.

8. Window System Independence

The Andrew Toolkit has been designed to be window system independent. To port the toolkit to
another window system, six classes must be written, encompassing approximately 70 routines. Of those
routines, about 50 routines are normally simple transformations to the graphics layer of the underlying
window system. Once those are writien, any toolkit application should run in the new environment®.
The six classes that must be written are:

-- Window System: this class exists to allow the toolkit to get a handle on the other window system
classes listed below.

-~ Interaction Manager: this class provides the interface to the event processing mechanism from
the underlying window system. This includes the handling of keystrokes, mouse cvents and
menus.

- Cursor: this class provides an intertace 1o defining cursors on the underlying window system.

- Graphic: this class provides the output intertace 10 the underlying window system. All drawing
operations are made using this class.

6 Some applications such as typescnpt arc dependent on the underlving operating system, and will not port quite as
casily.

- 10 -

-- FontDesc: this provides an interface to font descriptions.

-- Off Screer. Window: this provides the facility to draw off screen images that can be later included
on screen,

Using this facility we are currently able to run applications on two different window systems
without any recompilation. Applications are normally configured for one system. However, using the
dynamic loading facility, the modules for the other system can be loaded at run time. The choice of
window system to use is currently controlled by the setting of an environment variable. With a little
more restructuring of the basic code we believe that it will be possible to actually open windows on two
different window systems at the same time.

9. Current Status

The basic toolkit applications (editor, mail, help, preview, typescript, console) have been in gen-
eral use on the Carnegiec Mellon campus for the past four months using the original Andrew window
system. The system is actively used by approximately 3000 people. Users are beginning to experiment
with the multi-media facility which has only been recently advertised. Within the ITC we are starting
to convert to X.11. We hope to be using X.11 within the ITC exclusively by the middle of winter.
The timetable for converting the campus to X.11 is currently the summer of 1988. This depends on the
conversion of various applications to use the toolkit and the performance of available X.11 systems.

One of the challenges associated with building user-interface software is to make it easy to use
for the beginning users while making it powerful enough for experienced users. The prototype editor
built at the ITC was highly influenced by the goal of making it easy for the novice user. While we
were developing that system and until the release to the ITC of EZ, programmers at the ITC used
emacs to edit programs. Since the release of EZ, use of emacs has dramatically decreased. This has
been accomplished without sacrificing the usability of the system by our campus user community.

10. Conclusion

UNIX, and its software tools approach to computing, provided a new paradigm for building appli-
cations. The idea was that portable, general purpose modules could be strung together in different ways
to create complex applications without a lot of duplication of effort. The Andrew Toolkit can be seen
as an extension of this concept to the graphic workstation environment.

In this way, the Andrew Toolkit is unique among existing toolkits. It provides the usual toolkit
functions (text, scroll bars, dialog boxes, etc) but also provides the ability to embed components inside
of other components. The architecture for embedding components has been designed to strongly
encourage programmers to build new components that can be used in both new and existing applica-
tions. The architecture also encourages pronrammers 10 develop objects that can include arbitrary com-
ponents instead of specific ones.

" The separation of information into data objects and views provides a hnghly modularized structure
that also supports the building block paradigm. In this way data objects can be used in ways diffcrent
than originally envisioned by their creator. New views on exijing data objects can be created. Existing
data objects can also be used as the building blocks for more complex objects. This can be done
without using the existing object’s companion view.

The Andrew Class System is an c¢sscnuial element in supporting this paradigm. The object onented
nature of the system allows programmers to casily develop new specialize objects out of existing
objects such as the C language component. The dynamic loading facility of Class allows the toolkit to
be easily extended by a large community of developers.

Finally, the toolkit is unique among other toolkits in its potential to provide a common base of
applications across a diverse set of machines and window systems. We have spent considerable ctfort
to make the system window system independent and believe that it will be important in the future t0
support thc same softwarc base on many sysiems.

-11 -

Acknowledgments

The Anarew Toolkit and applications have been designed and developed over the past two and a
half years. Many other people have been involved in various phases of the work including Andrew
Appel, Nathaniel Borenstein, Mark Chance, Richard Cohn, Curt Galloway, John Howard, Tom Lord,
William Lott, Bruce Lucas, David Nichols, Marc Pawliger, and Adam Stoller. The toolkit could not
have been built without the earlier work done at the ITC by James Gosling and David Rosenthal.
Documentation for the toolkit has been written by Chris Neuwirth and Ayami Orgura.

We are also grateful to our user community, especially our fellow workers at the ITC, who have
been forced to be the front-line testing organization for our software over the past four years.

The ITC is a joint project between IBM and CMU. The ITC also receives support from the
National Science Foundation. Development and deployment of the toolkit would not have been possible
without the support of these organizations.

References

1. Inside Macintosh, Addison-Wesley, 1985.
SunWindows System Programmer’s Guide, Sun Micorsystems, Inc..

3. James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H. Howard, David S. H.
Rosenthal, and F. Doleson Smith, ‘‘Andrew: A Distributed Personal Computing Environment,”’
Communications of the ACM, vol. 29, no. 3, pp. 184-201, March 1986.

4. James Gosling and David S. H. Rosenthal, “*‘A Network Window Manager,”” in Proceedings of
the 1984 Uniform Conference, Washington, D.C., January 1984.

5. R.W. Scheifter and J. Gettys, ‘“The X WIndow System,”” ACM Transactions on Graphics, vol. 5,
no. 2, pp. 79-109, Apnl 1986.

6. NeWS Manual, Sun Microsystems, Inc., March 1987.

7. K. Shumucker, Object-Oriented Programming for the Macintosh, Hayden Book Company, Has-
brouck Heights, NJ, 1986.

8. SunView Sysiem Programmer’s Guide, Sun Micorsystems, Inc..

James G%mg and David S. H. Rosenthal, *‘The User Interface Toolkit,”” in Proceedings of PRO-
TEXT 1 Conference, 1984.

10. X Toolkit Library - C Language Interface, Massachusetts Institute of Technology and Digital
Equipment Corporation, 1987.

11. Nathaniel Borenstein, Craig Everhart, Jonathan Rosenberg, and Adam Stoller, “*A Multi-media

Message System for Andrew,”’ in Proceedings of the USENIX Technical Conference, Dallas, TX,
February 1988 (this volume).

12. Adcle Goldberg and David Robson, SmaliTalk-80: The Language and Its Implementation,
Addison-Wesley, 1983.

13. Bjamne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.

-12 -

Snaphots

1.

Snapshot of a full screen image containing a console, a typescript, and two ez windows. The two
ez windows show editting a document and a c file.

MM T AT A T e docuuacnocd o harmarie)
2saren I50: (A | \ ﬂf Jhe Andrew Toolkit - An Overview

Fetching ctextview.o { 2:52:08 PM) i Andrew J. Palsy
Snapshat stored In His Amp/snapshat-5 (25216 PM 'ﬂl} i Wiltred Hansen
A Michaei L. Kazar
pescnpt harmarviiie iy Mark Sherman
7| % messages -n 5 Maris Q. Wodlow
T | Praparing to resd wessages (Version g Thomas P. Neuendortfer
? §.21-N). please wait. 5 Zalman Stera
4| % fastaraster /nq)/ll.p:hntﬂ ; Miles Bader
% | srapps mes.snapshot >messaap.ps 5 Thom Peters
'1.{ % print -Tnative messnap.ps it %
" 1 we35040.pS being queued on ater dogwood
.:l’ X print Enunvg glsun pt') hm:‘;?:;:;::’&‘gz:;’;"
;' ;‘:SMP Ps being queusd on prinnr dogwood :' B th. PA 15213
H Abstract
i
:' The Andrew Toolkit is an obj i d system & to provide a
15 4‘ foundaion on which 3 isrge number of diverse user-interface applicadions can be
i

ez ~10C2IDASICSHNILC narmarviiic

T! /® Next three used for error headling. */
y | static char *curcentfile;
~4 static int currentline o 0.

Jtatic wvoid (*cucrentErrocProc) () e NULL;
static pointsr currentEccrocBock,

boolean vut__Initializedhject(classiD., init)
struct classheader *classid.
struct init *imit;

init->keys = NULL,
init->manus = NULL,
intt->usedKevstates « NULL;
init<>ussdfenus = NEL,
ceturn TV,

]
1
§
1
!
\ {
§
t
\

]

v01d init__Finalizedbject(valf)
struct it *seil,

) B q t

ki : struct keystatelist *fresltsn. ‘maxt,

for (freeltam « self{->usadkeystates, fceeitem 'e MUIL, freeitem = raxt) {

Filets read ony.

Snapshot of a help window. Uscrs can see overview information by clicking in the Overviews

panel on the right. Similarly they can see specific information about a program by clicking in the
Programs panel.

{usriandyiheipiezhelp (more)~ .

composed of these parts: 1y oi%clxhones
::] Using Other
§ 1) Related Ir*fﬁrmatxon asout EZ :
; 2) Startng £ :__r 4 =] Programs
3) Selecting Text and using menus
q) Previewing and Printing your cocuments About help
S} Quitting EZ cd
6) Aavice: consote
7) Pop-up Menu meanings | ¢cp
8) Quick Reference ez
g) Relateo tools v lgszpnm
: For details about creating and editing otner tv2es of . ,hoeg'ﬁ,
| documents with EZ, see tne 1sets overview tie. It is

* * " EZ: A Document Editor Androw Tour
Bulletin Boaras
What EZ is Customizing Andrew
Mail
i 3i Manaaqing Files and
EZ Is an editing program that you can use to create, edit, Dimgmes

and format many aifferent tvoes ot dccuments. This
help document introduces EZ and exgiains how you can
use it to create and ecit "text” documents. it is

;:| Profecting Files and

Printing Occuments
Programming

.| 1ogout

Snapshot of messages reading window. The panel on the left gives a list of message folders that
can beé read. It currently contains a list of all the messages folders available on campus. It can
also be set to display the folders a user is subscribed to or just the user’s personal folders. The
panel at the top left contains the list of messages in the selected folder. The message being
displayed contains a drawing within the text of the message.

All 1414 Folders

-13.

andrew.msdemo (Local Bboard, 9 of 19 new)

(BEJ[E!E]BBIE]EIB[BE!EJ[E][EJEB[3(3[3[3!BBEGGHNBBGBEEEBGBEQEEEi b

LRSS

kS

<

ndrew dvmeas hosttble.po2
mdrew dacmons hosttadle.po3
|drew drxanons hostuble.poS
adrew drmmonslistoflists
mdrew daancas.NCppoll

andrew dieenons.pUrgesent

adrew daanoans.s eindex
ndrew darmons WP
wdrew.documentaton
mdrew.XPres
mdrew.gNU-EMacs
wmdrew.gripes

mdrew helpsys
wdrew hints

andrew informix
andrew kermit

wdrew kudos

andzew JosT
mdzew.NAC

andzew IN$
adrew.ns2d

adrew ms.batmail
ndrew ms.CUi
andrew.ms.demo
.drew ms.dowW-jones
wndrew.ms.pCINIES
ndrew ms.SCALS
adrew ms.teCh
andrew ms.iech.evs
adrew ms.tech TAC
andrew ms.Version-3x

- -andsew meVErS100-4X

mdsew JDUSICIANS
ndrew NE(WOrKs
wdsew NEWbboards
wmdsew OLES
andeew.Opinion
adzew.Opinion.bar-stories
wndeew peserver

wdeew pieiure

ndrew picture.animals
ndrew prewure.CArTOONS
“mdree picvem.clipart

 23-Oct-87 What it does. how it works - Nathaniel Borenstein 275)
« 23-Oct-87 The big picture - Nathaniel Borenstein (2539)
' 23-Oct-87 The detiled picture - Nathaniel Borenstein (3993)

L

The Andrew message system is, not surpn'singh‘, interally complicated.
“The drawing below depicts these complications ierarchically. Atthe top
level, it simpty shows tne five major types of components of the system,
which run on five aitferent categones of machines. By using the zip
hierarchical drawing editor, you can “20om in* on the vanous parts of the

picture to see more detail about how each machine’s function is
structured intemally.

Internetwork connectons
{(ARPAnet, CSNet, NSFNer,
Usenet, BlTnet, VNET)

Post Office

Delivery System
(Queue-try-switch mai)

;] i

214 -

4. Snapshot of messages composition window. The message being created contains a raster image.

i messagesss- - - ! Sentr . i
To: Andrew Palay <ajp+@andrew.crmu.edu> (Wor't Keep Copyf
Subject: Big Cag Won't Clear
- ' Won't Hide
S e - Reset

big cats, Here's a picture | recently found.

Knowing yaur fondness for

v

.15 -

Snapshot of an ez window containing a number of embedded

P ¢ A la 7 objects (text, equations, and an ani-
mation) within a table that is contained inside of text. ' oo -

" docsipascatts T 7

Jhisis an example text component that contains atable. The table contans a number of
other components including another text component, an equation and an animation. It also
shows off the spreadsheet capabilities of the table.

-Pascal’s Triangle

This table contains Voj=vig=20
several descriptions of 1
Pascal’s Triangle. It 11

contains a set of Vi:m Vi 14V
equations which defines Le T RS
the values of the wiangle.
It also contains an
animation showing the
building of the triangle.
Finally there is an
implementation of
Pascai’s Triangle using
the spreahsheet facilities
of the table object.

In order to run the
animation, click into the
cell and choose the
animate item frem the
menus.

P

—

-t ot i
v WN —
Voo w—

—y

] The End

