(MU-TTC - 038

An integrated authoring environment

Bruce Ame Sherwood
Center for Design of Educational Computing
and Department of Physics
Camnegie-Mellon University
Pittsburgh PA 15213
(phone 412-578-8530)

1985 June 29

The great potential for educational use of powerful advanced-function
workstations is currently limited not only by cost, but also by the lack of a
congenial authoring environment for educators. For generality and
universality, the Unix operating system has been chosen as the software
foundation for such workstations. "However, the Unix environment and its
computer languages were designed for other purposes and do not give much
dircct support for the major tasks of educational programming (display and
intcraction). This makes it difficult for non-exXpert programmers to create
educational materials. The purpose of this working paper is to outline what
is needed in such an environment, to describe an initial implementation at

Carnegie-Mellon University, and to lay the groundwork for considering
what should be done next.

.Background

Some universities, notably Brown, Carnegie-Mellon, and MIT, are
explonng the educational possibilities of advanced-function workstations.
These personal computers have been called “3M machines”: a million bytes
of memory (with virtual memory support), a million pixcls on the screen,
and a million machine instructions per second. In order to move toward
machine independence of educational applications, the use of these
advanced-function workstations has becn based on the Unix operating
systcm because it is widely available on many different computers. On
university campuses Unix has been the software systcm preferred by
computer scientists, due to the rich set of computer science tools which
have been created by and for Unix users. Unix itself is written in the

computer language C, so Unix tools tend to be orented toward support of
C programs.

In the hands of skilled system programmers, C is an excellent tool for
writing system software. "It is natural to attempt to write educational
applications for workstations in C. However, C has signiticant
disadvantages for this purpose. Many university faculty members have
significant programming skills but are not cxpert professional programmers.
In my own C programming and in that of faculty collecagues [have scen a
lot of time lost on picky details. Compiling and linking typical educational
programs written in C currently takes several minutes, which senously
impcdes rapid development. A large part of educational programming
consists of displaying text and graphics in complex ways. Like most
computer languages, C gives little or no direct support for such displays.
Display-oricnted subroutine librarics can go a long way toward filling the
gap, but problems remain in native C. For example, C supports only
standard ASCII characters, and typically a standard C compiler will not

permit italic, bold, or foreign-language characters in a source program. If
such text is to be displayed, varous inconvenicnt and indirect subterfuges
must be employed.

The Information Technology Center (ITC) at C-MU has built a powerful
addition to Unix, called “Andrew”. Andrew includes a graphics-oriented
window manager, a “base editor” library for sophisticated text

" manipulations, a “layout manager” for associating different procedures with
differcnt parts of a window, and the “Grits” subroutine library for
manipulating databases. Andrew is, as 1 will discuss later, an extremely
useful set of tools. However, it is difficuit for a non-expert programmer to
exploit directly the power Andrew offers.

What do we need?

There is a great need for an integrated authoring environment on advanced-
function workstations to make it much easier to exploit the power of these
remarkable machines for educational applications. Many of us have
drcamcd of an environment with at lcast the following properties:
incremental compilation to get speed of revision without paying a
significant penaity in speed of exccution: a good graphics editor which
would be tightly coupled to the program and which would automatically
take carc of scaling in the modem variable-window environment; error
diagnostics that would take the author immediately not just to the line but
to the position within the line where the mistake occurred; and extensive
on-line documentation linked to the authoring environment. The language
itself should avoid obscure syntax and represent as directly as possible what
will appear on the screen (e.g., centered or italic text should be represented
by centered or italic text, not by program directives). The language should

be as device-independent as possible yet easy to extend as new hardware
possibilities become apparent.

A major benefit of such an environment is that those few unusual faculty
who would like to write their own materials could do so, without having to
depend completely on programmers. If such a system could be used
unaided by individual professors, it would also make programmers and
programming teams more productive.

Undoubtedly there are other needs not included in the minimal list above,
and I hope that others will suggest extensions to make the environment as
complete as possible. One such extension might be in the area of
debugging tools, about which I've done little thinking beyond the obvious
desirc for some kind of step mode and breakpoint capability.

A trial implementation

We are now able to demonstrate an initial implementation of such an
" environment! It is not complete, but I have already used it to write some

little demonstrations and one nearly real program. It will be rather mature
by the cnd of this summer.

I thought it would be feasible to use the powerful Unix and Andrew tools
to implement Microtutor, a machinec-independent dialect of Tutor, the
language of the PLATO computer-based education system. From my
involvement with Microtutor in the PLATO project at the University of

Illinois, I knew that this language incorporates most of the important
constructs for interactive educational programming, including easy
production of graphics, support for diverse kinds of text, rich sequencing
facilities, input analysis routines of various kinds, and good calculational
capabilitics. As will be discussed later in more detail, Microtutor nced not
do the whole job, but it could serve at least as a much-needed tool for
building user interfaces to programs written in other languages such as C or
~Lisp. Also, the mechanisms used to implement Microtutor could be used
to create integrated programming environments for other languages. '

Earlier this spring 1 was delighted to find that it took only three davs to
build an expression compiler using the Unix tools Lex and Yacc. These
tools made it possible to do such work so much faster than had been
possible in my earlier PLATO work, that I rashly predicted that I could
have the beginnings of an authoring environment by the end of the
summer. My estimate was wayv off. Starting with only the expression

-compiler | had built cariier, in just ten days I was able to implement the
following:

1) About a third of the Microtutor language, including all the
major text and graphics dispiay facilities, floaung-point
vanabies, and while and for loops.

2) A text output command which displays all the special
forms (italics, bold, large, small, centering, etc.) that the
Andrew editor supports. The execution-time display is the
same as the source code (as modified by positioning and by
specification of margins). This is a major leap forward, since
C and other languages are incapable of this directness (though
presumably some Kind of preprocessor could in principle be
created which would overcome this).

3) Incremental compilation. There is no waiting between
making a change and secing the effect, yet exccution speed is
very fast.

4) Compilation error reporting to the nearest position within a
source line.

5) A graphics editor of a novel kind, so tightly integrated with
the source code that there is no separatc command language
necessary to use it.

6) A command new to Microtutor with four arguments to
specify whether you want X scaled to the window size.
whether you want y scaled, whether you want text size scaled,
and whether you want to constrain the scaling to maintain
aspect ratio (so that circles don’t become cllipses). With onc
line of code an absolute-coordinate program tums into one
which automatically scales and replots appropriately under
window changes. The graphics editor fully supports this
automatic scaling.

For floating point expressions I currently produce P-codes which on a Sun
workstation execute at 50% the speed of compiled C code. | estimate that

it would take a day with the help of somcone knowledgeable to genecrate
native machine code, which would execute inside the workstation that one
happens to be using. I believe that only source code should be kept in
permanent storage, to eliminate the administrative burdens of trying to cope
with separate compilations for every brand of workstation.

I possess on-line the text for the book "The ptutor Language” written by

- my wife and me. I believe it will be relatively easv using the Andrew

"Grits” database subroutine library to make powerful connections between
programs and this textbook. :

There are a few crucial additions to Illinois Microtutor in order to exploit
the workstation environment, so we need a distinctive name for the dialect.
Andrew doesn’t yet support the Greek letter mu which we normally used in
the name, and the system is written in C, so we will call it C-MU Tutor.

This has been the most exciting experience of my professionat life. I am in
a state of cuphoric shock. What I was able to do by myself in a week in
the Andrew environment would have taken my colleagues and me at
Illinois many months to do. Unix and Andrew by themselves are not
fiendly environments for rapid large-scale production of educational
materials, but they provide a fantastic environment for building tools.

Thanks to being able to build on UNIX and Andrew, a few weeks will
suffice to build what I believe is a viable educational authors’ programming
language and environment. The benefits of this initial implementation are
in themselves great — authors will be able to begin to use this language
productively by late summer. More generally, this is an exampie ot how
authonng facilitics may be developed quickly and easily by building on
UNIX and on Andrew. [will illustrate the power of the current
environment (UNIX and Andrew) by describing how C-MU Tutor was

developed. Then I will suggest other educationally useful applications that
might be developed in similar ways.

How did it happen?

Much of the credit goes to ITC’s base editor subroutine library. This is a
set of powerful routines for manipulating documents. In C-MU Tutor
source code, Andrew document markers keep track of which sections of the
program have changed and thercfore need recompilation. Pointers and
routines make it trivially easy to take the author to the point within a
source line where a Iexical or compilation error has been detected. The
same document data structure is just right for holding P-codes, becausc the
routines for insertion and delction automatically do memory management.
The graphics editor depends on the ease with which new source can be
inserted into the body of thc program, and on the ability to identifv a
mousc-selected region of text. The interrupt-driven interaction loop of the
Andrew “layout manager” makes it easy to have compilation take place in
the background, concurrent with text editing, even though only onc process
is involved.

Another major support comes from the advanced-function work station,
with all its cycles, bytes. and pixels. In previous work [was often forced to
think much more about these resources than about the task. In the

.
L Tene

PLATO project we were proud of what we did with few cycles and bytes
per user, but we paid a big development price. With a powerful personal
computer [could write in C rather than assembler, and compilations and
links took only about five minutes. At Illinois almost all the work had to
be done in assembler (due to lack of target machine memory and speed),
which slowed down the development process a great deal. Also, the
shortest tumaround to try a new version of the system was about fifteen

 minutes and often was much longer. Much of the work had to be done at

night in order not to interrupt users.

The number of pixels matters because of the special things which become
possible when there is ample room on the screen. For the interactive
graphics editor it is essential to display both the C-MU Tutor source code
and its execution. While building the C-MU Tutor system, it was useful to
display several different program files simultaneously.

Here is a particularly striking example of what happened during those ten
days, and how the Andrew workstation environment made it possible. As I
woke up one morming, I suddenly realized that I could instantly have an
integrated graphics editor. [rushed to campus, and in an hour, with fiftcen
lines of code, I had it. Here's how it works:

In Microtutor display commands, a basic element is of course an x-y
coordinate pair. To add a coordinate pair to a source statement, | use the
mouse to position the editing caret at the desired Spot in the source code.
Then I move the mouse to0 the execution display and click a position there.
I take this mouse x-y, generate alphanumeric source code of the form
"120,245”, drive the base editor “Insert String” routine to place this text into
the source code, and then drive the re-execution (and hence re-compilation)
of the modified source code. This re-compilation and re-execution is so

fast that I can roam quickly around the screen adding more and more x-y
pairs to a growing line drawing.

A related powerful technique is to use the mouse to make a selection of text
-- put a box around an x-y pair as though one were going to copy it or cut
it out. Then click in the execution arca. The new X-y coordinate generated
from the mouse position replaces the boxed source code, and the screen
replots with the change in effect. The selection box stays in place, so one
can quickly move around the screen adjusting this one coordinate point of
the drawing, which may be the comner of a2 box, the center of a circle, or any
componcent of the display. The effect is extraordinary, but thanks to the

Andrew environment it took less typing to implement this graphics editor
than it does to describe it.

This machinery scales the mouse coordinates inversely to the Microtutor-
specified scaling, with the result that automatic sereen scaling is handled
tnvially but powerfully by this editor. Note that I'm simply adding or
modifying source in standard Microtutor statements, so there is no separate
graphics editor command language. Eventually we may put up a menu so
that mousc choices can gencerate the command names.

C-MU Tutor in a larger context

While Microtutor has many of the modem programming structurcs, its
current definition does not include structured datg types, although there is a

« N

partial substitute in its rather powerful statement-function capability. [
expect that even with a complete implementation, with or without the
addition of structured data types, there will be many situations which call
for other languages (e.g., Lisp). C-MU Tutor might be the language of
choice for much of the user interface aspects of such programs. For
example, the C-MU project “Dr. Thevenin”, an artificial tutor on circuit
theory, uses an eclectic combination of Lisp, Ops3, C, Lex, and Yacc. But
none of these offer decent support for putting the circuit diagram on the
screen. Since C-MU Tutor exploits esscntially all the Andrew display
capabilities, but packages them in an extremely easv-to-use form, it has

‘much to offer such projects. For these reasons 1 intend to make sure that

C-MU Tutor is callable and can call other languages. .

Another use is in the context of C-MU’s Glo (Graphical Layout
Organizer). An author uses Glo interactively to specify layouts within a
window. These rectangular areas are not mere geometrical shapes. but in
the Andrew layout manager regime have specific redraw, update. and mouse
hit procedures associated with them. It is possible to specity that one Glo
lavout be a scrollable base editor document. another be an animation
displaver. and another be a Unix shell typescript. A new Glo lavout type is
C-MU Tutor, and onc or more lavouts can have C-MU Tutor source tiles
associated with them. Because of this environment. it is not necessary that
C-MU Tutor itself do everything. It can coexist and collaborate with other
processes in a window.

In addition to these mixed uses, I anticipate that many educational
applications will be pure C-MU Tutor programs, because of the speed with
which such programs can be written and revised, and because it is possibie
to provide a highly integrated authoring environment around the language.

‘What next?

I’m excited about C-MU Tutor because it eliminates compilation delays,
lets me write fancy text with italics etc. in the source code itself, and
because of its other excellent display-generation propertics. But consider
this: What I have done so easily for C-MU Tutor might be done by others
for Basic and Pascal. With a bit of planning, by the end of this summer we
might be able to run Basic or Pascal microcomputer programs in a window,
for those educational applications for which we have source code. Many
pcople have been concemed about how we can bring along existing
applications into the advanced workstation world. Perhaps this is a wav to
do it, with the existence proof that it has now been done for Microtutor.

I’'m fairly certain about Basic, because it is usually interpreted. and we can
interpret faster. I mentioned that at present | semi-compile C-MU Tutor to
machine-independent P-codes. The exccution of these P-codes is a little
slower than the execution of true compiled code, but much faster than
interpreting raw source. Given Andrew speed, we can certainly convert
Basic source to P-codes on the fly and re-exccute these P-codes faster than
a microcomputer interprets Basic source. This would give us cxecutuon
time to handle the highly machine-specific “peeks” and “pokes” people are
forced to stck into their Basic programs. We could emulate the effects of
these machinc-language pecks and pokes by treating them as P-codes on
our machine (or by doing the relevant screen manipulations if the peeks and
pokes deal with display aspects). I'm less certain about applications

van

¢

originally written in Pascal for the Macintosh, in that a Pascal program
compiled on a Lisa and run on a Macintosh exccutes in native 68000 mode,

so wec would not have the same speed advantage that exists for interpreted
Basic.

A more serous question is whether the Andrew window manager or MIT’s
X window manager has all the functionality necessary to perform the

" operations that a Macintosh program does through calling the Macintosh

library. My guess is that at the present time we could do most of it if not
all. We centainly could build a display inside a window that looks like a
Macintosh window. When 1 get a bit farther along, it might be a useful
exercise to try to write a C-MU Tutor program to produce such a display,
as a test of the graphics capabilities of C-MU Tutor.

On the other hand, a colleague wams me that compiling the wide range of
syntactical structures in Basic, and handling correctly the bizarre peek and
poke references to the hardware, may be a much larger task than treating
Microtutor. He also suggests that treaung Pascal would also be a major
task, though I would have thought that Pascal with its rcgular structures
should be straight-forward. However. I don’t know these languages neariy
as well as 1 know Microtutor, so he may be nght. This is an 1ssue that
needs further study. The goal is attractive, however. Educational
institutions interested in the Andrew systcm would be much more

interested if they were assured that their own existing programs would run
in the new environment.

Steven Lerman, dircctor of Project Athena at MIT, points out that it could
be uscful to treat C itself in this wav. For people who know C and are
comfortable with it, this could be 2 heipful tool. In order to allow tancyv
Andrew text to appear in the C source code, it would probably not be
possible to compiie this “almost-C” program with the normal C compiier.
But it would let C programmers write in a language very similar to C and
get many of the benefits of C-MU Tutor.

The incremental compiler and graphics cditor would be somewhat harder to
implement for any of these languages compared with C-MU Tutor, because

- of the latter's very simple fixed format (including fixed rules for indenting

control blocks). Also, there is an important structural difference between
C-MU Tutor and these other languages. The Tutor “main-unit” construct
provides a natural restart point for re-execution when a window is reshaped,
in order to restore the screen displav. There is no comparable noton in C
or Basic or Pascal. It can however be simulated in C with the “setymp”
routine, which saves the curreat registers and stack pointer. Even when
several levels deep in calls, “longimp” can be used to restore these registers,

effectively restarting the C program at the point where the sctjmp routine
had been invoked.

oy g e

j13)ua3d uvd aM

tuud qews pue qunid
aGlel osn uva apm
A3 oyRn pur Ixa)
pioq Aejdsip ued om

Vo

3

Zz
Uy

prozaden pur
Jiuriaal peqid

SLLve

'$2%0q puw

‘8311 'sanry

@
v
*
\
{Hajuad ued apm
upd qrews pue qupld
a3Je[osn ued I ix3p 9)pj pue 1xay pjoq Aejdsip uea ap
ZIE'09b'SPT'RAT B}
t2 u_u.:u
BIT'16T w
821°222'€9T'F6T 112}
prozadell §8 RAT'ZHIISOT'ZOILET Hb Yy
s15u300 9j8ueyodr §§ LPE'LBTIGET'SH (142}
2'eS'SkIisTSt x0q
' 'spjozadesy pue
saj3ueiass pofid R AEY
H 0202 v
zso1ydread jpun
uoeld z2Ainaid HOLNL

2[8ue.

4

011 +(8ap/213ur)uis,snipes’'sze + (3opsajdue)soo,sniperffricec SEIP
01 '09¢ ‘0 = =[2ur

T-snrpes

2/(05-041) = snipry

ori'ece

$!0L1°00+ 35042

spdne.

ant'ect

‘Bop(ocrioa-)uriote = 313ur (2ina+zigcrnibs
otr'os

011°0L°0L1°002:0S°00C'011°02

(S

NIT'0L
2ITSSTLISTST,

'$2:1:0q pur

‘$912112 ‘saul

0z'0e

0't-‘1-'0

az1'are

1sa1ydead

ueipes Jad s2212ap 48 (Dumimansgr = fop

sniper ‘913uv

oop

doorpus

doo
210113
212112
v
N
A0S
e
YR L]
L3
ATIp
21211
e
xnq

21m
v
orossa
2u1y
un

-
o
sutyap

