CMU-ITC-86-052

The Andrew System

Programmer’s Guide to the Base Environment,
Version 2

Draft Version. Subject to Revision.

Prepared by

Ayami Ogura and Chris Neuwirth

Information Technology Center (ITC)
Carnegie Mellon University
Pittsburgh, PA 15213

A Joint Computing Venture
between IBM and
Carnegie Mellon University

Copyright © IBM Corporation
November 1986

Table of Contents

Introduction
Theory
A note for advanced programmers
Basics
Insets and data objects
Example 1: Putting an inset in a window
Running the example program
Declaring a structure for an inset
Deciding on a name for the inset
Declaring the data structure for the inset
Defining the driver routines for the inset
Writing the inset creation routine
Writing the routine for initializing the inset
Writing a routine for full update requests
Exporting and importing routines
Declaring the driver routines for export
Importing BE2 routines and exporting driver routines
Setting up an inset as a stand-alone application program
Compiling insets for static linking
Program listing for Example 1
Example 2: Dynamically loading an inset
Running the example program
Creating the inset

Compiling insets for dynamic loading

Program listing for Example 2

1
1"
13
14
15
15
16
17
18
18
19
20
20
20
21
22
23
25
25
27
28

30

Example 3: Responding to mouse hits

Running the example program

Declaring a structure for the inset
Deciding on a name for the inset
Declaring the data structure for the inset

Defining the driver routines for the inset
Creating the inset
Initializing the inset
Full update request
A request for an update
Handling mouse input

Exporting and importing routines

Declaring the driver routines for export

Importing BE2 routines and exporting driver routines
Setting up the inset

Compiling the inset

Program listing for Example 3

Example 4: Working with menus

Running the example program

Declaring a structure for the inset
Deciding on a name for the inset
Declaring the data structure for the inset

Defining the driver routines for the inset
Providing a procedure for string centering
Providing a procedure to make the inset invert
Creating the inset
Initializing the inset
Full update request
A request for an update
Handling mouse input

Exporting and importing routines

Declaring the driver routines for export

Importing BE2 routines and exporting driver routines
Setting up the inset

Compiling the inset

Program listing for Example 4

32

32

33
33
33

33
33
34
34
35
35

35
36
36

36
37
38
M
41
42
42
42
42
42
43
43
43
44
45
45
46
46
46
47
47

48

Example 5: Responding to keyboard input
Running the example program
Creating the inset
Adding a routine to the header file exports
Defining a routine to respond to keyboard input
Program listing for Example 5
Example 6: Mapping keys to commands
Running the example program
Declaring a key map structure and a key state structure
Accessing the keymap library
Creating and initializing the keymap
Mapping sequences of keys
Static loading of the keymap
Program listing for Example 6
Example 7: Working with scroll bars
Running the example program
Creating the inset
Naming the inset

Declaring the data structure for the inset

Defining the driver routines for the inset
Procedures for centering and inverting

Setting up the scroll bars

Getting information for the vertical scroll bar

Setting up the horizontal scroll bar
Exporting and importing routines

Declaring the driver routines for export

Importing BE2 routines and exporting driver routines
Setting up the inset

Compiling the inset

Program listing for Example 7

52
52
53
53
53
55
59
59
59
60
60
61
62
63
67
67
68
68
68

68
69

69
69
70
71
71
72
72
73

74

-V -

Programming Environment
Imports and exports
Dynamic loading
Dynamic procedure linking
Data Streams
Goals for a data stream protocol
Protocol definition
Reserved characters
Version header
Style sheet definitions
Template inclusion
Insets and data objects
Styles in the data
Routines, Objects and Support Packages
Inset Routines
The structure of an inset
Rectangles and visible rectangles
Creating and Deleting Insets
Providing a creation routine for inset x
Creating an inset
Providing an initialization routine for inset x
Initializing an inset
Providing a deletion routine for inset x
Destroying an inset

Communicating from the parent to the inset

Providing an full update for inset x
Notifying an inset that it should do a full update

Clipping a child’s visible rectangle
Resetting an inset’s window state

Providing an update routine for inset x
Notifying an inset that it should do an update

Providing a way for inset x to add menus

Providing a way for inset x to work with keyboard input

81
81
82
83
85
85
85
85
86
86
86
87
87
89
92
9
92
93
93
93
94
94
95
95
96

96
97

99
99

100
101

101

102

Notifying an inset that it has received keyboard input

Providing a way for inset x to receive the input focus
Notifying an inset that it has received the input focus

Providing a way for inset x to give up the input focus
Notifying an inset that it has lost the input focus

Providing a desired size routine for inset x
Negotiating the size of an inset

Providing a routine to handle mouse hits for inset x
Notifying an inset that a mouse hit has occurred

Communicating from an inset to its parent

Providing a way to an inset x to request an update
Requesting an update

Providing a routine for requesting the input focus
Requesting the input focus

Inset/Window Management Routines

Creating and deleting window insets
Creating a window to be used by an inset
Deleting a window
Putting an inset in a window

Communicating from the parent to the window inset

Updating the windows
Doing a full update on all the windows

Interacting with the outside
An interaction loop routine

Handling an arbitrary file descriptor
Removing a handler

Data Object Routines

Creating and deleting data objects
Providing a creation routine for a data object
Initializing a data object structure

Deleting a data object

Reading and writing routines

102

103
104

104
105

105
107

108
109

109

109
110

110
111

113
113
113
114
114
114

114
115

115
115
116
116
117
117
117
117
118

118

-V -

Reading a data object
Writing to a data object
Finding out if a data object has been modified

Setting a flag on a data object if the flag was modified

Viewing Routines

Adding an inset to a list of insets viewing the data object

Removing an inset from the list

Finding the default inset for viewing the data object

Menu Routines
Menu definition and installation
Focus-controls and universal menus
Menu routines

Creating a menu list

Freeing a menu list

Adding a menu to a menu list

Deleting a menu item from the menu list
Clearing a menu list

Getting the next item from a menu list
Positioning the pointer

Connecting two menu lists
Splitting a menu list chain

Finding chained menu lists

Changing the owner of a menu list
Finding the owner or a menu list

Finding the version number of a menu list
Telling the inset you want a menu list
Getting user response
Interfacing between BE2 and window management
The Keymap Package
Introduction to keymap facilities
Bindings
Procedure bindings
Sub-keymap bindings
No bindings

Keystates

118
118
119
119

120

120
121
121

123
123
125
127

127
127
127
128
128
128
129

129
129
129

130
130

130
131
131
131
133
133
133
133
133
134

134

- Vii -

Additional keymap facilities 134
Arguments 134
Last Command 134
Parent-Child parallel processing of keys 134

Keymap routines 135
Creating a keymap 135
Binding a character to a procedure 136
Binding a sequence of keys to a procedure 137
Binding a character to null 137
Creating state information for a keymap 138
Mapping sequences of keys 139
Initializing a keystate 140

Parallel processing of keys 141
Giving precedence to the inset 141
Giving precedence to the parent 142

Argument facilities 143
Getting the argument state 143
Setting the argument 144
Getting the argument 144
Clearing the command argument 145
Testing whether there is an argument 146

Last command facilities 147
Generating a new last command number 147
Setting the last command 148
Getting the last command 149

Document Objects 151
The document data object 151
Creating a new style sheet for a document 152
Deleting a style sheet from a document 153

Finding a style sheet for a document 153

Getting the length of a document 153
inserting a string into a document 153
Deleting a string from a document 154

Finding the character at a particular location 154
Creating an environment 154

Deleting an environment 154

- viii -

Displaying a document

Creating attribute structures
Changing an attribute structure

Clearing a document

Marks
Creating a mark

Destroying a mark

The document inset object

Locating a buffer position from a screen position
Finding out if a position is currently visible

Getting the position of a frame
Adjusting the frame position
Setting up the border size

Scrolling backwards from a position

Scrolling forward

Design of text style information

Style sheet Information

Document-level operations
Paragraph-level operations
Character-level operations

Operators
Implementation

Related topics

Document (screen) vs. manuscript (paper)

Counters
Forms

Dialog Box Inset

Dialog box routines

Dialog box support procedures

Asking a question:
Asking a question:
Asking a question:
Asking a question:

simple

immediate return
yes or no
immediate answer

Getting an input string from the user

155

155
155

156
156
156
156
157

157
157

157
157
158

158
158

159
159
160
161
162

164
164

164
164
165
167
169
170
17
171
171
172
172

172

Getting an input string from the user: non-blocking
Making an announcement

Restoring a display
Restoring a dialog box

Scroll Bar Inset
Vertical scroll bars
Finding information about inset
Finding something given a y pixel location
Setting up a display
Horizontal scroll bars
The Layout Pair Inset

Placing one inset above another

Division by pixels
Division by percentage of rectangle

Putting one inset to the left of another

Division by pixels
Division by percentage

Positioning insets

Finding the position of an inset
Setting the position of an inset

Setting layout pair states
Setting a layout pair state

The Buffer Package

Creating a new buffer

Deleting a buffer

Running a procedure on buffers
Listing all existing buffers
Finding a data object in a buffer
Finding a buffer

Changing the name of a buffer

Filing routines
Finding out if buffers have been written out
Finding a buffer for a file
Naming a buffer for a file

173
173

174
174

175
175

175
178
178

178
177
177

177
177

178

178
178

179

179
179

179
179

181

181
182
182
182
182
183
183

183
183
183
184

- X -

Setting the file name for a buffer
Putting file names into canonical form

Inset procedures
Attaching an inset to a buffer
Detaching an inset from a buffer

The Update List Package

Adding a redraw request to an update list

Clearing an update list
The Key Recording Package
Recording a key event
Starting a recording
Stopping a recording

Getting the last record

Playing a key sequence
Getting the next key sequence

Getting rid of a key record
Zopying a key record

Up and Coming
Printing
Groups and overlays

The group package
Size negotiation of groups

Appendix I: The BE2 -- X.11 Interface

184
184

185
185
185
188

188
188

189
189
190
190
190

191
191

191
191

193
193
194

194
197

203

Introduction

This manual describes the Andrew system’s Base Environment, Version 2, or
BE2, a collection of routines that forms the base for all user interface and
application program development in the Information Technology Center’s (ITC)
Andrew system. Andrew is a collaborative project between IBM and
Carnegie-Mellon University (CMU) to create a computing and communication
system that meets the needs of universities.

BE2 allows programmers to create (1) stand-alone applications that integrate
text, graphics and images in a standard, efficient user interface; and (2) multi-
media editors, i.e., editors that allow users to edit text, equations, graphs,
tables, pictures, etc., all in a single program.

BE2 supports two capabilities that have not been available in the same system
before: (1) the creation and editing of different types of objects in one place,
and (2) the inclusion of arbitrary types of objects within the same editor.

Some systems allow users to create and edit multiple objects within the same
editor, but the set of objects that the editor can manage is fixed in advance.
Users who need objects that are specialized (e.g., musical symbols) are
unlikely to find their needs met. Other systems allow users to include
arbitrary objects within an editor, but the objects are reduced to picture
format, a representation that removes all but the most basic editing
capabilities. In these systems, users who need to work with multiple objects
do so by creating and editing the object in a specialized object-editor, then
including the object in the target editor. If users need to edit the included
object at some later time, they typically delete the object from the target
editor, return to the editor that specializes in the object to edit it, then re-
include the object in the target editor. The primary advantage of BE2 is that it
allows programmers to build applications that support both activities--editing
different types of objects in one place and editing arbitrary types of objects.

This document is divided into the following six sections:

Theory

Basics

Programming Environment

Data Streams

Routines, Objects, and Support Packages
Up and Coming

2B

Theory presents an overview of BE2. It elaborates the goals of BE2 and
discusses its design.

Basics introduces the two basic building blocks in BE2: the inset object and
the data object. Inset objects manage the display of information on the screen
and interaction with users; data objects manage the storage of information and
its manipulation. The discussion of inset and data objects centers around

nine example programs. These programs are intended to introduce you to the
basic control and data structures you need to begin working with BE2. The
example programs and explanations cannot tell the entire story for every BE2
routine, however, Before extrapolating from the material in Basics, you
should at least skim the Section 5, Routines, Objects, and Support Packages.

-2-

Programming Environment discusses the environment in which BE2
applications are compiled, linked and loaded. To support a system that allows
arbitrary objects to be included within the same program, BE2 provides a
dynamic linking and loading subsystem.

Data Streams discusses the data stream representation developed to support
arbitrary objects.

Routines, Objects, and Support Packages describes the entire set of BE2
routines. It is composed of several subsections:

Inset Routines
Inset/Window Management Routines
Data Object Routines
Menu Routines

The KeyMap Package
Document Objects

Dialog Inset and Manager
Scroll Bar Inset

Layout Pairs

Buffer Package

Update List Package

Key Recording Package

—xXT Q00T

Routinez are part of BE2 proper. Objects, e.g., Document Objects, are BE2
applications of general utility. Packages are combinations of data structures,
routines, and protocols intended to simplify the creation of BE2 applications.

Up and Coming describes some of the routines and packages in the works.

The BE2 developers are currently specifying a set of graphics operations that
are intended to shield application programmers from the underlying window
management system. Mediating graphics calls through the BE2 graphics
facility maximizes the device independence and portability of application
programs. The graphics operations will be based on the operations provided
by the X.11 window management system. Appendix I: The BE2 -- X.11
Interface, provides a detailed description of the conversion of BE2 graphics
calls to X.11 calls. For more information on X.11, see Bettys, J., Newman, R. &
Fera, T.D., X/ib-C Language X Interface Protocol Version 11.

This manual assumes that you have read the User’s Guides for Andrew or
have comparable knowledge of the Andrew system. It also assumes you
know how to program in C, but it does not assume you are an experienced C
programmer.

Because the Andrew system software, including its documentation, is still
under development, you may encounter problems or require help. If you do,
you should contact an Andrew user consultant.

Additional sources of information about BE2 can be found in BE2: A Technical
Overview, located in /usr/andrew/doc/be2, and in the ITC source code, located
in /usr/andrew/src/be2.

Credits

BEZ2 has been a collaborative effort of a large group of people at the
Information Technology Center. The initial design team included: Andrew
Palay, Wilfred J. Hansen, Mike Kazar, Bruce Lucas and Andrew Appel. Mike
Kazar built the initial BE2 system from that design. The current design and
implementation group includes: Mike Kazar, Andrew Palay, Mark Sherman,
Maria Wadlow, Zalman Stern with assistance from Nathaniel Borenstein,
Richard Cohn, Wilfred J. Hansen, David Nichols and Tom Neuendorfer.

BE2 would never have been developed without the prototype environment,
BE1, developed at the ITC by James Gosling. That system was extended and
greatly improved by Wilfred J. Hansen.

Theory

This section describes the goals for BE2 and the design decisions made to
achieve those goals. BE2 has two primary goals: (1) to support the
development of stand-alone applications that integrate text, graphics and
images in a standard, efficient user interface: and (2) to support the
development of multi-media editors, i.e., editors that allow users to edit text,
equations, graphs, tables, pictures, etc., all in a singte program.

For example, the example below shows a document, based upon BE2, that
contains text and a picture:

Branex /criofgmen [pamassuS|

- I [Justi
| This is a SENITAE document. It contains sevs y

!*5'1 cocmmentary. At the

mement. the wiauvneignt of each Zo inset | Region frema: this sneuld be
hanaled in a mere soptusticated fashion -- | Title Tor Picture-figures,
the vaain/heignt is arbitraniiy set to 256 eacn
, Font |
Here follows a rifa-rerarance (ie. the source - E“ name) to that
'‘ameous, Compiex Grapnic usa.zip: ‘ Bomn A -
Bigger
. Typewriter
~F - Subseript
i \\~_\ Superscript
A (? Q\’;“'j::“x L Staller
/ 4 { TN v l Underline
f \7\4 JOoR ST
f\ E 3 (x o~ !
N / ' ! B T\ inset
s T T

N 1 _AiTn

Loy DTN
\ (g../ \\\ }
w ’_,,r

Nov/ we have an embesd2d Zip-stream [\: j (ie, the Zip ASCIl characters are rigrt here sne

within the sentence).

=

Sample BE2 Document with Text Editing Menus

The text and picture are separate objects and can be manipulated
independently. This is easily seen by the different menus available. A mouse

-6-

hit in the text region, as shown above, will give you a full set of menu of

options for editing the text.
with the picture inset being acted upon.

The next figure shows the same BE2 document

| Brand=-X {cmuftetomBEZ 2 pamassus
This is a samoie document. It contains several Zip objects and interspersed commentary. At the
moment, the wigth/height of each o inset1s setto its discovered XY e arema: this snould be
handled in a more sepnisticated fasnion -- but what 13lohe the strateeni! iFor Picture-iigures,
the widthéheight is arbitrarily set to 256 each way.) | Hide/Expose |
Here follows a riia-rerarance (ie, the source 2acumg I Pane le-name) to that
famcus. comeley crannic usazip: | Center __JiF
] S
Top
Bottom
Left
a2 -
7 3 Right
r\wj \ e N
- 4 »«g .
!)/ e N ,v | Flip
> f\q\“ L—. X \ :__/1 Flop
y w/
=l / | 1 Joersy] Zoom
H 1 \ [y \/J ..?5\
o \\ i”f A
h_ R\\A Ny
O A VT
| W—‘-“ - ¢"\-‘—:‘\
© \/"\'\’\ "L' 3 f\ﬁ 5 \
Mow we have an embecced Zip-stream [Di (ie, the Zin ASCIl characters are nght here ana
within the sentence).
N
[y ‘7—‘_‘

BE2 Document with Picture Editing Menus

Note that a mouse hit in the picture will give you a different set of menus for

editing the picture.

In BE2, documents are not necessarily comprised of text alone. Documents

may contain diagrams, tables, graphs, an
graphical images.
no text at all, as in a "picture document”
supports the creation of programs that al
variety of images, both textual and graph

d pictures, as well as other

In this sense of the word documen(a document may have

or a "table document.” BE?
low users to create documents with a
ical, in any combination, Text,

pictures, tables, graphs, equations, even the scroll bar are all kinds of objects.
A document with text and a graph, therefore, has two objects, a text object
and a graph object. A document that has only a picture and nothing else, has
only one object -- the picture.

In addition to editing different type of objects in one place, BE2 supports the
development of application programs that can include arbitrary objects upon
demand. For example, Brand-X, a multi-media editor based upon BE2, can
dynamically load any object that has been created according to BE2 protocols.
The editor does not need to know about the object in advance (See Example
2 in the section Basics, p. 25, for a demonstration).

Thus, BE2 supports two capabilities that have not been available in the same
system before: (1) the creation and editing of different types of objects in one
place, and (2) the inclusion of arbitrary types of objects within the same editor
or application program. Some systems allow users to create and edit multiple
objects within the same editor, but the set of objects that the editor can
manage is fixed in advance. Users who need objects that are specialized
(e.g., musical symbols) are unlikely to find their needs met. Other systems
allow users to include arbitrary objects within an editor, but the objects are
reduced to picture format, a representation that removes all but the most
basic editing capabilities. In these systems, users who need to work with
multiple objects do so by creating and editing the object in an specialized
object-editor, then including the object in the target editor. If users need to
edit the included object at some later time, they typically delete the object
from the target editor, return to the editor that specializes in the object to edit
it and then re-include the object in the target editor. The primary advantage
of BEZ2 is that it allows programmers to build applications that support both
activities--editing different types of objects in one place and editing arbitrary
types of objects.

To provide these capabilities, BE2 is an open design. Application
programmers can design and implement new objects that will eventually
appear inside a multi-media editor or another application program.
Application programmers must follow a set of guidelines when developing an
object. If a programmer follows these guidelines, then the object can be
included in any other application program or multi-media editor that has been
developed to manage arbitrary objects. An object can be placed inside
another object without either one having specific information about the other.
The only piece of information that the enclosing object must have about the
enclosed object is its name.

BE2 utilizes two major classes of objects. One object, the data object,
contains the actual data to be displayed as well as routines that are used to
manipulate that data. The other class of object, the inset object, or just inset,
contains information on how to display that data on the screen, as well as
routines that are used to manipulate that display. Both classes of objects
have an associated set of routines that must be supplied with the objects.
These routines provide a general mechanism for communicating among
these objects. For example, the data object needs to provide routines to read
and write a description of its contents to a file; the inset must provide

routines to update the display, handle key and mouse input, etc. These
general routines will be discussed in detail in the sections Basics and
Routines, Objects, and Support Packages of this manual.

Along with the set of general routines, an object may provide a set of specific
routines. In the case of text, there is a data object that contains the
characters that make up the text and routines that can, for example, insert a
string, delete characters and return the character at a given position. There is
also an associated inset object that describes how the text should be
displayed on the screen. This includes information such as which document
data object this inset is displaying, where the caret is currently located in the
text what part of the text is currently visible on the screen. The inset may
also provide routines that move the caret forward (or backward) one character
and scroll forward (or backward) one screen. All the text data objects and all
the text inset objects together form the package of routines that is known as
the text object.

It is important to note that while there are only two c/asses of objects (insets
and data objects), there are many kinds of objects (text object, graph object,
etc.). Many of these, like the text object, involve both insets and data objects,
and are therefore often referred to as a object package.

Object packages, the specific routines used for a certain kind of object, are not
always necessary. Using only the general routines we can build a mechanism
for embadding one object within another. Consider a document that containz
both a line drawing and an equation. The interactions between the document
objects and the line drawing objects are all done via the general routines.
Other than the creation of the line drawing objects, the document objects do
not care what kind of objects they are handling. Thus, you can write your own
support packages to work with the general routines instead of relying on or
waiting for such packages to be written by the Andrew system developers.

The next chapter in this manual will describe how insets and data objects are
used.

A Note for Advanced Programmers

If you are planning on creating many of your own support packages, the
following considerations that went in to the BE2 system design may be useful
for you to know.

1) The design of the system stays away from the issue of the
underlying window management system that wili be used. The window
management system is responsible for two major tasks: allocation of
the screen and the lowest level graphic interface to the display. At this
point we are unconcerned with how those two operations are handled.
The BE2 graphics facility is intended to shield application programmers
from window management details.

2) The design also stays away from trying to decide how the actual
user interface should look. Of course, the document editor will

probably look very much like the current EditText, but that is not
mandatory. In fact, by allowing the inclusion of one kind of object
within another, a whole new set of decisions must be made: for
example, the proper way to handle mouse clicks to a subordinate inset.
These decisions can only be made after some reasonable experience
with this system. Overall, a consistent user interface will most likely
be provided by a set of user interface design guidelines and a very
large tool kit.

3) It is necessary to look at the issue of higher level application
programmer interfaces to this system (CMU-Tutor is one such
example). While this is important, it is a separable issue. Itis
necessary to provide support for those developments, but the actual
creation of a single application programmer interface is extremely
doubtful. These interfaces must exist at different levels and will be
created with different models in mind.

While each of these three topics is important to examine, these topics will not
be covered in this document, since they will not affect the average user in the
short run.

Basics

This section introduces the basics of BE2. It begins by introducing the two
building blocks of BE2: the inset and the data object. Then, the basic routines
of BE2 itself are introduced through several example programs. These
examples illustrate the program structure needed by any application that uses
BEZ2:

Example 1: Putting an inset in a window
Example 2: Dynamically loading an inset
Example 3: Responding to mouse hits
Example 4: Working with menus

Example 5: Responding to keyboard input
Example 6: Mapping keys to commands
Example 7: Working with a scroll bar

Exampte 1 introduces the routines, program structure and compilation
techniques needed to put a simple inset in a window as a stand-alone
application, i.e., an inset that will be running as an independent application
program. Example 2 introduces the additional routines and program structure
needed to dynamically load an inset. Example 3 introduces the routines and
program structure needed to respond to mouse hits. Example 4 illustrates
how to add menus to the inset. Example 5 describes how to respond to
keyboard input from the user. Example 6 introduces facilities for mapping
keys to commands. Example 7 describes how to work with a scroll bar.

After reading Basics, you will know the basic data and control structures
needed to create a application program that displays multiple objects and
allows the user to manipulate them. (Note: Examples showing how to work
with data objects, documents, and other routines, obejcts, and packages, are
forthcoming).

Insets and data objects

An inset is simply a rectangle of pixels in a window together with the
associated code (called an inset driver or driver) that manages the display
within that rectangle. The inset driver includes display routines, routines for
initializing menus, routines for handling keyboard and mouse input, and so on.
Examples of insets are a scroll of text, a picture embedded in a piece of text, a
label in a drawing, a table in a piece of text, or an equation included in a
document.

The inset is the first part of a general architecture for creating interactive
applications in the Andrew system. The data object is the second part of this
general architecture. Typically, an inset presents a view of a data object. In
the above example, the data objects are streams of text with formatting
information; equations; and tables. The data objects are displayed in the
window either because a user wishes to view the information represented by
the data objects or because he wishes to change (edit) the information.
Whereas the inset is responsible for handling the display of information, the
data object is responsible for maintaining that information, including storing

-11 -

-12-

and manipulating it. For example, the data object associated with a
document would contain the text of the document and procedures to
manipulate that text. In general, you can think of data objects as a
representation of permanent memory/storage, whereas insets represent views
onto data objects.

The reason for having both insets and data objects is to provide a way to have
multiple insets viewing a single data object. In this way, we can have, for
example, a document that contains both a graph inset and a table inset that
use the same underlying table data object. When the user updates the
numbers in the table, the graph would adjust accordingly. Likewise, having
both insets and data objects makes it possible to have a text editor that has
multiple windows in which the user can edit the same document in more than
one window. In this case, the data object would have to be the same, while
two different insets view it. If insets and data objects were not separate,
these application programs would not be possible.

The general interface that data objects provide is the minimal interface
required for communication between two data objects and between an inset
and a data object. Also, both insets and data objects can be nested.

The architecture is an open one, in that it specifies the minimal interface
between the components of the system, such as text editors, drawing editors,
and dialog boxes, to allow them to cooperate in creating the image the user
sees and manipulates. Due to this open architecture, programmers are not
confined to the available interfaces; they can choose or create their own.
Similarly, they are not limited to the available objects.

This kind of mechanism is especially feasible for the creation of multi-media
editors (a text editor that allows the inclusion of drawings in the text, a
drawing editor that allows the inclusion of text in the drawing, etc.), and the
creation of building blocks that can be used in educational applications, the
advantage here being that the standard interface will make it easier for
programmers to put them together and make interesting programs.

Example 1: Putting an inset in a window

This section describes how to write a program that uses a very simple inset.
The program will create a new window. and put the inset in the window; then
the inset will draw hello world in the center of it. The program illustrates

-- declaring a structure for the inset,

-- defining driver routines for the inset, i.e., the set of routines for
managing the inset’s display,

-- exporting the driver routines and importing BE2 routines,
-- setting up an inset as a stand-alone application program, and
-- compiling the inset for static linking, i.e., linking before run-time.

After reading Example1, you will know the very basic program structure
needed to work with insets in a stand-alone application program. Example 2
will introduce the changes you need to make in order to build an inset that
can be dynamically loaded into a multi-media editor or other BE2 application.

The discussion that follows presents a step by step description of how to write
the example program. If you were to follow the steps, you would produce a
program, called helloworld, in four files:

-- a helloworld.h file -- will contain the data structure declarations for
the inset, together with the export declarations for the driver
routines.

-- a helloworld.c file -- will contain statements that import BE2 routines,
export the driver routines, and define the driver routines.

-- main.c -- will contain declarations needed by BE2 linking and
loading facilities, and statements that create an instance of the
helloworld inset, create a window, put the inset in the window,
and enter an interaction loop that mediates communication
between a user and the application program.

-- Makefile -- will contain the directions for compiling, linking and
loading the inset and main program.

For a complete listing of these files, see the subsection, Program Listing for
Example 1 (p. 23). On a first reading of this section, you may find it useful to
just skim the program listing, then refer to the listing when needed as you
study how to build the program. The source code is also available in the
directory /usr/andrew/doc/be2/examplel, together with the compiled program.

Although the discussion of the steps relies heavily on the example, the steps
apply generally to any inset that will be used in a stand-alone application.

-13 -

- 14 -

Running the example program

Before reading the discussion of the example program, you may find it helpful
to run the program on your workstation.

Action 1. To run the program, at the Typescript prompt, type
/usr/andrew/doc/be2/example1/helioworld

and press the Enter key.

Response. The program will produce a window with hello world

centered in the body.

Action 2. Re-shape the program’s window.

Response. The inset will respond to an update request and redraw

hello world in the center.

Action 3. Click with the left mouse button.

Response. The program will make no response. This simple inset

c¢oes not respond to keyboard or mouse input, and it has no menus.

Later examples will illustrate how to extend the program so that the
inset responds to user input.

Action 4. To quit the program, move the cursor to the window title bar,
pop-up the menus and choose Zap from the card labeled This Window.

Response. The window will disappear from the screen.

Declaring a structure for an inset
Deciding on a name for the inset

To create an inset, you must decide on a name for it. The name is important
for two reasons. First, if your inset is going to be included in a multi-media

editor, the user will type your inset’s name in order to obtain an instance of it.

The name you pick should be unique and not conflict with already existing
insets. (To see the list of existing insets, see the directory
/usr/andrew/lib/be2.) The second reason the name of your inset is important
is that the routines in the inset driver module will all be located in a .c file.
For compiling your inset correctly, it is easiest if the module name for this .c
file is the same as your inset name. For example, the routines for an inset
named view would all be located in a file named view.c.

For Example 1, we chose the inset name, helloworld.

-15-

- 16 -

Declaring the data structure for the inset

The second thing you will want to do is to think about what data structure your
inset needs and declare it in a .h file that has the same name as the inset you
are building. In this example, the information is declared in a helloworld
structure in the file helloworld.h:

struct helloworld {
struct inset myinset; /* declare a BE2 inset */

}s
The statement struct inset myinset declares myinset as a member of the

helloworld structure of type struct inset, a structure provided by BE2.

In general, to declare an inset structure, you must declare a struct inset,
optionally followed by any data that is specific to the inset you are creating:

struct <pame of inset> f{
struct inset <my inset>; /* declare a BE2 inset */

/* data specific to this inset */

1

struct inzet is explained in detail in the section, Inset Routines (p. 91). Briefly,
struct inset stores the following information:

(1) the name of the inset (e.g., helloworld),

(2) a pointer to the set of procedures for managing the inset
(e.g., routines for creating an instance of the inset, redrawing
the display, etc.), and

(3) the coordinates and attributes of the rectangle on the display
that the inset manages.

You can also store data that is specific to the inset (e.g., a pointer to the data
object associated with the inset; the position of the text carat for a text inset,
etc.). Example 1 has no data that is specific to the inset. Example 3 will
introduce you to working with data that is inset specific.

Defining the driver routines for the inset

The driver for an inset is the program module that manages the user display
and interaction for instances of the inset. Each driver must define a set of
driver routines. For an inset named x these should be defined in a module
named x.c and must be named x_New, x FullUpdate, x_Update, etc., where
each routine name (e.g., New, FullUpdate, Update) is preceded by the inset
name, followed by an underscore (e.g., x). For the hellowor/d inset, these
routines will be defined in hellowor/d.c and will be declared as
helloworid_New, helloworld FullUpdate, etc. (See the subsection Program
Listing for Example 1, or /usr/andrew/doc/be2/example1).

The routines you define in the inset driver constitute entry points to the inset.
These entry points will be expected by any program--either a stand-alone
application or a multi-media editor--that uses the inset. It is important to note
that you should never call the driver routines directly, even in the inset driver
module. Instead, you should use a set of corresponding calling routines
provided by BE2. BE2 routines are of the form inset_followed by the
corresponding procedure name (e.g., inset New, inset FullUpdate). These
BE2 routines, which take particular insets as arguments, provide an interface
to an inset. Using BE2 routines makes it easier for a programmer to call
insets as well as to program them, since the inset routines guarantee that
state information needed by the inset will be correct (See /Inset Routines, p.
91).

Inset drivers generally will have more routines, or entry points, than just the
required ones. Typically, you would create these if you need to allow users to
manipulate the inset or its data object. For instance, a text editor needs to
allow users to move the caret, and a drawing program may allow drawing of
lines or movement of a point. But these entry points are not part of the
standard inset interface; the standard inset interface contains only those
routines necessary to allow the inclusion of an inset by programs that follow
the protocols defined in BE2; these programs will have no specific knowledge
about the inset.

The following discussion illustrates how to define the inset driver routines for
the helloworl/d inset. You should note, however, that not all the possible inset
driver routines are used in this example. Some inset driver routines have
defaults which are used when no more specific routine is defined. For a more
complete discussion of the inset driver routines and their defaults, see section
Inset Routines (p. 91).

Example 1 requires three driver routines: a routine to create instances of the
inset, a routine to initialize an instance of the inset, and a routine to respond
to requests to do a full update of the inset’s drawing. These routines
constitute a minimal set that you would need to define if you are creating an
inset.

-17 -

- 18 -

Writing the inset creation routine
struct helloworld *helloworld New() {
struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld Init(hw);
return (hw);

This routine creates and initializes an instance of a hellowor/d inset. First, it
dynamically allocates memory (see malloc (3) in the online help pages or Unix
manual) and assigns the allocated space to a helloworld pointer, Aw. Then it
calls the initialization routine hellowor/d_Init. Finally, it returns a pointer to
the inset that it has created.

Normally, the routine for creating an inset is passed a pointer to a data object,
dop. Since this helloworld example does not have a data object, it is not
used. (See Example 8, forthcoming, for a more typical creation routine).

You must provide an x_New () routine for any inset x that you want to create.
Basically, the routine should allocate storage for the inset and assign it to a
pointer, zall x_/nit to initialize the inset, and return the pointer to the newly
aliocated and initialized inset.

Writing the routine for initializing the inset

helloworld Init(hw)
struct helloworld #*hw; §

inset_InitStructure('helloworld", hw);

}

helloworld_Init calls inset InitStructure with the name of the newly created
inset’s type, "hellowor/d” and a pointer to the newly created inset, Aw.
inset_InitStructure records the name in hellowor/d’s inset structure and
initializes other general inset information.

Normally, the routine for initializing an inset is passed a pointer to a data
object, dop. Since this helloworld example does not have a data object, it is
not used. (See Example 8, forthcoming, for a more typical initialization
routine).

You must provide an x_/nit () routine for any inset x that you want to create.
Before performing any other initializations, the routine must call
inset_InitStructure (”x,” xp) in order to initialize the newly created inset’s
general inset information. Then it should initialize any information that is
specific to the inset x.

Writing a routine for full update requests

helloworld _FullUpdate(hw, how)
struct helloworld *hw;
int how; §{

int Xx,y;

x = graphics_GetWidth(hw) / 2;
y = graphics_GetHeight(hw) / 2;

graphics_Text(hw, x, y,"hello world");
}

Whenever the user takes an action that requires the inset’s window to be
redrawn, the inset’s FullUpdate routine will be called. The routine should do
whatever it must do to redraw its part of the display. In this example, when
helloworld_FullUpdate gets called, we would like it to draw the string hello
worl/d in the center of the window.

Understanding how to do this requires understanding a little more about the
structure of insets. For a complete discussion of the inset structure, see /Inset
Routines (p. 91).

Recall that an inset is simply a rectangle of pixels in a window. Graphics calis
are relative to insets rectangle, so we only need to divide the inset’s height
and width by 2 to calculate the coordinates for drawing the text at the midpoint
of the inset’'s rectangle. graphics_GetWidth(hw) gets the inset's width and
graphics_GetHeight(hw), the height.

The next statement, graphics_Text, actually draws hello world in the window.

You must provide an x_FullUpdate (xp, how) routine for any inset x that you
want to create. Basically, the routine should fully update its drawing in its
rectangle. Upon the first update call, it must create the drawing; on other
update calls it must redraw the drawing. Later examples will introduce more
complexities in the full update procedures (See also Inset Routines, p. 91).

- 19 -

-20 -

Exporting and importing routines

The program must export its inset driver routines. To do so, it must declare
the routines for export and then export them. The program must import all the
BEZ2 routines. Each file must also import any other external procedures it
uses.

Declaring the driver routines for export

To declare the driver routines for export, you will use three macros,
BeginModule, EndModule and Entry. BeginModule and EndModule identifies
the module to the BE2 linking facilities, declares the number of exported
procedures, and delimits the extent of the declaration. Entry gives the name
and the return type of each exported procedure. Since the .h header file
typically must be #included in each .c file for a module, it is a good place to
declare exports. Thus, in Example 1, helloworld.h will contain the following
declaration:

BeginModule(helloworld, 3)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld Init, int)
Entry(helloworld_FullUpdate, int)

EndModule()

BeginModule defines the start of the module declaration. The first parameter
is the name of the module, hefloworld, and the second is the number of
exported procedures--in this example, three. The next three lines use the
Entry macro to declare the three driver routines for export from the module.
Each call to Entry should give the name of the procedure and the type of value
that it returns.

Importing BE2 routines and exporting driver routines

The file helloworld.c, the program file for the inset routines, begins by
importing the constructs it needs from the BE2 library and exporting the driver
routine declarations in the helloworld.h file.

#include "CamphorImport.h"
#include 'be2/graphics.h"
#include "be2/inset.h"

#include "CamphorExport.h"
#include "helloworld.h"

The include files Camphorimport.h and CamphorExport.h define different
versions of BeginModule, EndModule and Entry macros. Camphorimport.h
defines the macros to produce the code required to import procedures from
another module during run-time. CamphorExport.h defines the macros to
produce the code required to export procedures from a module.

For this example, helloworld.c, the inset driver file, must #include be2/inset.h
to access the BE2 inset facilities, and export helloworl/d.h., the file containing
the declaration of exported procedures. The file also #includes be2/graphics.h
to access the underlying window management facilities.

The file main.c must import the be2/inset.h to access the BE2 facilities,
be2/im.h to access the inset/window management facilities,and hellowor/d.h to
access the helloworl/d inset declarations, as follows:

##include "CamphorImport.h"
#include '"be2/inset.h"
#include "be2/im.h"
#include "helloworld.h"

Note that the order of the libraries is important: inset.h must appear before
im.h before helloworld.h.

Setting up an inset as a stand-alone application program

main() §
im WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2™);
staticload(''im", imCamphorInitializer());
staticload('inset", insetCamphorInitializer());
staticload('"helloworld",helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New(''helloworld", NULL);
win = im_CreateWindow(NULL);
im FillWindow(win, hw);

im_KeyboardProcessor();

}

To set up an inset as a stand-alone application program, you should create a
main program that declares information needed for linking and loading,
creates an instance of the inset, creates a window, puts the inset in the
window, and enters an interaction loop.

In this example, main(), defined in main.c, begins with a call to camphorinit
which sets up the BE2 linking facilities to look for imported procedures in
/usr/andrew/lib/be2. The program should make calls to staticload for all
facilities that the application knows it will need in advance, because the
program will be significantly smaller and slightly faster.

The call to inset_New creates an instance of a helloworl/d inset.
im_CreateWindow creates the window and im_FillWindow puts the inset in the
window. im_KeyboardProcessor enters an interaction loop that mediates
communication between a user and the application.

-21-

-0

Compiling insets for static linking
CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include"
.SUFFIXES: .o
helloworld.o: helloworld.c helloworld.h
helloworld: main.o helloworld.o

cc -g -o hw main.o helloworld.o /usr/andrew/lib/libbe2.a\
/usr/andrew/1lib/libitc.a

The Makefile for a inset that will stand alone is like any other Makefile (see
make in the online help pages), with the exception of the CFLAGS
-DSTATICLINKING, which informs the BE2 dynamic linking facilities to generate
code for static rather than dynamic linking.

To compile the program using this Makefile, you should have the files
helloworld.h, helloworld.c, main.c and the Makefile itself in a single directory
in which you have read, write and list permissions. You may copy these files
from /usr/andrew/doc/be2/examplel.

Make the directory in which you have put the files the current directory. Then
at the Typescript prompt, type

make helloworid

and press the Enter key.

To run after compilation, type
helloworlid

and press the Enter key.

-23-

Program Listing for Example 1
helloworid.h

struct helloworld §
struct inset myinset; /* BE2 inset structure */

1

BeginModule(helloworld, 3)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)

EndModule()

helloworld.c

##include ''CamphorImport.h"
##include ''be2/graphics.h"
#tinclude 'be2/inset.h"

#tinclude ''CamphorExport.h"
#include "helloworld.h"

struct ielloworld *helloworld New() §
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld_Init(hw);

return(hw) ;

}

helloworld_Init(hw)
struct helloworld *hw; {
inset_InitStructure("helloworld", hw);

}

helloworld_FullUpdate(hw, how)
struct helloworld *hw;
int how; §

int x,y;

x = graphics_GetWidth(hw) / 2;
y = graphics_GetHeight(hw)/ 2;

graphics_Text(hw, x, y, "hello world");

-4 -

main.c

#tinclude "CamphorImport.h"
#include "graphics.h"
#include "be2/inset.h"
#include "be2/im.h"
#include "helloworld.h"

main()
im WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("helloworld",helloworldCamphorInitializer());
hw = (struct helloworld *) inset_New('helloworld" K NULL);
win = im_CreateWindow(NULL);

im_FillWindow(win, hw);

im_KeyboardProcessor();

}

Makefile

CFLAGS = -g -DSTATICLINKING -1'"/usr/andrew/include"
.SUFFIXES: .o

helloworld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o

cc -g -o hw main.o helloworld.o /usr/andrew/lib/libbe2.
/usr/andrew/1lib/libitc.a

- 25 -

Example 2: Dynamically loading an inset

Examplie 1 described the basic program structure needed to work with insets
in a stand alone application program. Example 2 will introduce the changes
you need to make in order to build an inset that can be dynamically loaded
into a multi-media editor or other BE2 application. Dynamic loading makes it
possible for application programmers to develop their own insets,
independent of the developers of the BE2 and other applications making use
of BE2, while still allowing these new, user-defined insets to be used in any
multi-media editor or other application with dynamic loading capabilities.

For this example, we will be modifying the helloworld inset created in
Example 1.

Running the example program

Before reading the discussion of the example program, you may find it helpful
to run the program on your workstation. The following gives direction for
dynamically loading the inset into Brand-X, or bx, a multi-media editor
developed using BE2.

Action 1. To set-up the dynamic loading subsystem’s Dynamic Loading
PATH, DLPATH, so that it finds the inset hellowor/d in
/usr/andrew/doc/be2/example2, at the Typescript prompt, type

setenv DLPATH /usr/andrew/doc/be2/example2: /usr/andrew/1ib/be2
and press the Enter key.

Response. The Typescript prompt will reappear. setenv DLPATH sets
the environment variable DLPATH to the value
/usrlandrew/doc/be2/example2:/usriandrew/lib/be2 (See csh (1)). As a
result, the dynamic loading subsystem will look for insets in both
lusr/andrew/doc/be2/example2, the location of inset for this example,
and /usr/andrewl/lib/be2, the location of some already defined insets.

Action 2. To run bx, the multi-media editor, at the Typescript prompt,
type

bx
and press the Enter key.
Response. You should get a Brand-X editor window on your screen.
Action 3. To load an inset, you will need some text to work with. To
create text, move the cursor to the editor window and type in some

characters. Three short lines of one or two words each will suffice.

Response. You should have a window that contains some text.

- 26 -

Action 4. To dynamically load the inset, type
ESC-X and do not press Enter.

Response. Brand-X will prompt you for with the word Function:

Action 5. At the prompt, type
vemds_addinsetstyle
and press the Enter key.
Response. Brand-X will prompt you with the prompt, Add sty/e for
inset:
Action 6. At the prompt, type
helloworld
and press the Enter key.
Response. Brand-X will add a new menu card labeled /nset with menu
itam helloworld on the card.
Action 7. To create an instance of the inset, select a region of text, pop
up the menus, and choose helloworld from the /nset menu.
Response. The helloworid inset will replace the text in the selected

region. You can repeat Action 7 to create multiple i\nstances of the
inset.

Action 8. To quit the program, pop up the menus and choose Quit from
the Top menu card.
Response. Brand-X will prompt you with the message, Modified
buffers exist, exit anyway?
Action 9. At the prompt, type

y
and press the Enter key.

Response. The Brand-X window will disappear from the screen.

Creating the inset

The header file helloworld.h is exactly the same as in Exampte 1. The driver
routines in hellowor/d.c are exactly the same except for the

helloworld _FullUpdate routine. Recall that in Example 1,

helloworld FullUpdate was declared with two parameters, a pointer to the
hellowor/d inset, hw, and an integer, how. But Example 1 ignored the how
parameter. The how parameter specifies how the inset’s environment has
changed and can have the following values:

inset_FULLREDRAW -- the inset should be completely redrawn.

inset_PARTIALREDRAW - the inset should be redrawn within the rectangle
specified by the parameter r; further partial redraws will follow.

inset_LASTPARTIALREDRAW - the inset should be redrawn within the
rectangle specified by the parameter r; this is the last partial
redraw.

inset_ REMOVE - the inset in being removed from the screen.

Example 1 ignored the how parameter and always did a full redraw of the
inset. But in a multi-media editing environment, the hel/loworl/d inset cannot
assume that the how parameter will have the value inset FULLREDRAW.
Furthermore, it is only on an inset_FULLREDRAW that an inset may assume that
its rectaingle has been cleared by inset FullUpdate. So we must modify the
hellowor/d inset to test for whether it needs to clear its portion of the window
before drawing. Note that the hellowor/d_FullUpdate can still ignore
inset_PARTIALREDRAW and inset_REMOVE values, since it does not partially redraw
its rectangle, nor does it do anything special upon being removed from view.

helloworld_FullUpdate(hw, how)
struct helloworld *hw;
int how; §

int x,y;

if (how = inset_FULIREDRAW || how = inset_LASTPARTTALREDRAW)
{
if (how = inset_LASTPARTIALREDRAW) §
/* Have to clear out the rectangle since it is not
cleared on a partial redraw */

graphics_Clear (hw);

N

= hw->myinset.r.width / 2;
y = hw->myinset.r.height / 2;

b
|

graphics_Text (hw, x, y, "hello world'");

}
}

The first if statement, if (how = = inset FULLREDRAW || how = =

- 27 -

- 28 -

inset LASTPARTIALREDRAW), optimizes the helloworld FullUpdate procedure,
since the inset does not need to take any action upon a partial redraw or
removal. The second if statement, if (how = = inset LASTPARTIALREDRAW),
tests to see whether the rectangle must be cleared, and if it does,
graphics_Clear (hw) actually clears the inset hw’s rectangle.

The rest of the procedure is like Example 1--it calculates the coordinates for
the center of the inset’s rectangle and draws hello world there.

Compiling insets for dynamic loading

With static linking, the linker combines several object programs into a single
program, searching libraries and resolving all external references. If there are
no errors, the output of the linker is an executable file (see /d (1) in the Unix
man or Andrew on-line help pages).

If STATICLINKING is defined, in the Makefile for the program, the procedure
declarations are converted to extern type proc (). With dynamic linking, all
procedure declarations are transformed to be illegal instruction traps. These
are then handled by a signal handler. Thus, static linking is more efficient if
you do not need the inset to be dynamically loaded.

If the inset you are defining is going to be dynamically loaded, you must
include the following in your Makefile:

.SUFFIXES: .6.0
0.6:

make6 $@

makeb is a shell script, located in /usr/andrew/bin, that runs the linker to
produce a relocatable object module. Relocatable object modules have their
references to relative positions rather than absolute addresses. Relocatable
modules are necessary in order for dynamic loading to work. Relative
addresses are usually less efficient than absolute addresses, so if you are not
going to dynamically load, you should still statically load as much as possible.

The complete Makefile looks like the following:
CFLAGS = -g -I"/usr/andrew/include"
.SUFFIXES: .6 .o

.0.6:
makeé6 $*

all: helloworld helloworld.é6

$@.6: $@.o

helloworld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o
cc -g -0 helloworld main.o helloworld.o\
/usr/andrew/1ib/1libbe2. a\
/usr/andrew/1ib/libitc.a

Note that STATICLINKING is not specified, since dynamic linking is the default
for BE2. As mentioned above, the make6 procedure creates the .6 files for
the insei, which are relocatable.

To compile the program using this Makefile, you should have the files
helloworid.h, helloworld.c, main.c and the Makefile itself in a single directory
in which you have read, write and list permissions. Note that you do not
need main.c in order to make the hel/lowor/d.6 module, but you still need it to
make helloworld. Thus, if you were creating an inset that would never act as
a stand alone application, you would not need main.c.

Make the directory in which you have put the files the current directory. Then
at the Typescript prompt, type

make all
and press the Enter key.

The Makefile will generate helloworld, a stand alone inset, and helloworld.6, a
dynamically loadable helloworld inset.

- 29 .-

-30 -

Program Listing for Example 2
helloworld.h

struct helloworld {
struct inset myinset; /* inset structure ¥/

i;

BeginModule(helloworld, 3)
Entry(helloworld New, struct helloworld *)
Entry(helloworld Init, int)
Entry(helloworld_FullUpdate, int)

EndModule()

helloworld.c

#include "'CamphorImport.h"
##include "be2/graphics.h"
#include '"be2/inset.h"

#include "'CamphorExport.h"
#include "helloworld.h"

struct helloworld *helloworld New() {
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld Init(hw);

return(hw);

}

helloworld_Init(hw)
struct helloworld *hw; {
inset_InitStructure(''helloworld", hw);

}

helloworld FullUpdate(hw, how)
struct helloworld *hw;
int how; {

int x,y;

if (how = inset_FULLREDRAW || how = inset_LASTPARTIALREDRAW) {
if (how == inset_LASTPARTTALREDRAW) {
/* Have to clear out the rectangle since it is not cleared on a
partial redraw */

graphics_Clear (hw);

}
X = graphiCS_GetWidth(hW) / 2;

y = graphics_GetHeight(hw) / 2;

graphics_Text (hw, x, y, "hello world");

}
}

main.c

#include "CamphorImport.h"
##include "be2/inset.h"
#include '"be2/im.h"
#include "helloworld.h"

main() {
im WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("helloworld",helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New(''helloworld", 0);
win = im_CreateWindow(0);

im FillWindow(win, hw);

im_KeyboardProcessor();

}

Makefile
CFLAGS = -g -I"/usr/andrew/include"
.SUFFIXES: .6 .o

.0.6:
make6 $*

all: helloworld helloworld.6
$@.6: $@.o
helloworld.o: helloworld.c helloworld.h
helloworld: main.o helloworld.o
cc -g -0 helloworld main.o helloworld.o\

/usr/andrew/1ib/libbe2. a\
/usr/andrew/1lib/libitc.a

-31-

-32.-

Example 3: Responding to mouse hits

Example 1 described the basic program structure for an inset, and Example 2
showed how to dynamically load the inset into a multi-media editor. This
section will show how to take the inset in Example 2, and modify it into a inset
that can be moved around in a window in response to mouse hits.

Running the example program

Before reading the discussion of the example program, you may find it helpful
to run the program.

Action 1. To run the program, at the Typescript prompt, type
/usr/andrew/doc/be2/exampie3/helloworld

and press the Enter key.

Response. The program will produce a window with hello world

centered in the body.

Action 2. Re-shape the program’s window.

Response. The inset will respond to an update request and redraw

hello world in the center.

Action 3. Click with the left mouse button.

Response. The program will respond to an update request and redraw

hello world at the position of the mouse cursor at the time of the click.

Action 4. To quit the program, move the cursor to the window title bar,

pop-up the menus and choose Zap from the card labeled This Window.

Response. The window will disappear from the screen.

Declaring a structure for an inset
For a discussion on structure declaration, see Example 1.
Deciding on a name for the inset
For this example, we will continue to use the inset name, helloworl/d.
Declaring the data structure for the inset
The data structure for the inset will still be declared in the file hellowor/d.h,
but will be slightly different from the declaration in Example 1 in that some
data specific to the inset must be defined.
struct helloworld §
struct inset myinset;

int x,y;
int newx, newy;

/* current location of the string */
/* new position for the string */

I

The integer variables x and y hold the coordinates of the current location of
the string hello world in the window. newx and newy are defined by the
position of the mouse cursor at the time of a mouse button click, and tell the
inset the position in the window hello world should be redrawn.

Defining the driver routines for the inset
The following discussion illustrates how to define the inset driver routines for
the inset. For a complete discussion of driver routines, refer to Example 1.

Again, not all the possible inset driver routines are used in this example; the
defaults are used instead.

Example 3 requires five driver routines: a routine to create instances of the
inset, a routine to initialize an instance of the inset, and a routine to respond
to requests to do a full update of the inset’s drawing, a routine to do a simple
update of the drawing, and a routine to record mouse hits.

Creating the inset

struct helloworld *helloworld_New() §
struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld_Init(hw);

return(hw);

}

The creation routine hellowor/d_New is the same as in the previous examples.

-33-

- 34 -

Initializing the inset

helloworld Init(hw)

struct helloworld *hw; {
inset_InitStructure('helloworld", hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;

This is the same as in previous examples except for the last two lines, which
act to guarantee that the x,y and newx, newy are not being displayed
somewhere else at the time of initialization by assigning them the value
helloworld_BADPQOS, the largest negative number available on a (32 bit) machine.

Full update request

helloworld FullUpdate(hw, how)
struct helloworld *hw;
int how; {

if (how = inset_FULLREDRAW || how == inset_LASTPARTIALREDRAW)

{
if (how = inset LASTPARTIALREDRAW) {

graphics_Clear(hw);
}

if (hw->x = helloworld_BADPOS) §
hw->newx = hw->x = graphics_GetWidth(hw) / 2;
hw->newy = hw->y = graphics_GetHeight(hw) / 2;
}

graphics_Text(hw, hw->x, hw->y, "hello world");

This is the same as in Example 2, except that the coordinates of the mouse
hit, newx and newy, are also calculated, and the text string is redrawn at that
point when the left mouse button is clicked.

A request for an update

helloworld Update(hw)
struct helloworld *hw; {
if (hw->newx !'= hw->x || hw->newy != hw->y) {

graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, "hello world");
hw->x = hw->newx;
hw->y = hw->newy;
graphics_Text(hw, x, y, "hello world");
graphics_SetFunction(hw, graphics_GCset);

}

The difference between an update and a full update is that an update merely
redraws a specified portion of the inset, whereas a full update redraws
everything in the entire window. So, if the window is changed, then the inset
will full update, but if there is just an input from the mouse, and no other
change, then the inset just does a simple update, and redraws only clears the
text string at the old position and draws at the new position.

The first graphics_SetFunction in this example is telling the inset that if the screen
is white, print the text in black, and vice versa (graphics_GCinvert); the second
sets the conditions back to the original state.

Handling mouse input

struct inset *helloworld Hit(hw, action, x, y)
struct helloworld *hw;
int action, x, y; {
if (action = MouseMask(LeftButton, DownTransition) || action
= MouseMask(RightButton, DownTransition)) §
hw->newx = x;
hw->newy = y;
inset_WantUpdate(hw, hw);

}

return (struct inset *) hw;

}

This procedure handles the mouse input for the inset. When the left mouse
button is hit (DownTransition), newx,newy is calculated and made the new
"current” position for the text string. Then, the procedure requests an update
so that the string can be redrawn in the new position.

Exporting and importing routines

For a complete description of exporting driver routines and importing BE2
routines, see Example 1.

-35-

-36 -

Declaring the driver routines for export

In this example, hellowor/d.h will contain the following declaration:

BeginModule(helloworld, 5)

Entry(helloworld_New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld Update, int)
Entry(helloworld Hit, struct inset *)

EndModule()

jtdefine helloworld_BADPOS 0x80000000

Importing BE2 routines and exporting driver routines

The declarations are exactly the same as in the first two examples:
##include ''CamphorImport.h'
#include '"be2/graphics.h"
#tinclude "be2/inset.h"

#include "CamphorExport.h"
#include "helloworld.h"

Similarly, for the file main.c, the declarations should be:
##include "'CamphorImport.h"
#include ''be2/inset.h"
#include "be2/im.h"
#include "helloworld.h"

Setting up the inset

main() {

}

im_WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload('"im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload('"helloworld", helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New('helloworld", NULL);
win = im_CreateWindow(NULL);

im_FillWindow(win, hw);

im_KeyboardProcessor();

The body of the main.c file is exactly the same as in Example 1.

Compiling the inset
CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include"
.SUFFIXES: .o
helloworld.o: helloworld.c helloworld.h
helloworld: main.o helloworld.o
cc -g -o hw main.o helloworld.o /usr/andrew/lib/libbe2.a\
/usr/andrew/1lib/libitc.a
The Makefile for this example is exactly as in Example 1, and is a static link

compilation. For a detailed description and instructions on compiling, see the
discussion in Example 1.

- 37 -

- 38 -

Program Listing for Example 3
helloworld.h

struct helloworld {
struct inset myinset; /* inset structure */
int x,y; /* current location of the string */
int newx, newy; /* new position for the string */

35

BeginModule(helloworld, 5)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld _Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld_Update, int)
Entry(helloworld_Hit, struct inset *)

EndModule()

jfdefine helloworld_ BADPOS 0x80000000
helloworld.c

##include "CamphorImport.h"
#include "be2/graphics.h"
#include "be2/inset.h'

#include "CamphorExport.h"
#include "helloworld.h"

struct helloworld *helloworld New() §
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));

helloworld_Init(hw);

return(hw);

}

helloworld _Init(hw)

struct helloworld *hw; {
inset_InitStructure("helloworld", hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;

helloworld FullUpdate(hw, how)
struct helloworld *hw;
int how; §

if (how = inset_FULLREDRAW || how = inset_LASTPARTTALREDRAW) {
if (how == inset_LASTPARTTALREDRAW) {
/* Have to clear out the rectangle since it is not cleared on a
partial redraw */

graphics_Clear(hw);
}

if (hw->x == helloworld_BADPOS) ¢
hw->newx = hw->x = graphics_GetWidth(hw) / 2;
hw->newy = hw->y = graphics_GetHeight(hw) / 2;
}

graphics_Text(hw, x, y, "hello world");

}

helloworld_Update(hw)
struct helloworld *hw; {
if (hw->newx != hw->x || hw->newy != hw->y) {

graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, '"hello world");
hw->x = hw->newx;
hw->y = hw->newy;
graphics_Text(hw, x, y, 'hello world");
graphics_SetFunction(hw, graphics_GCset);

}

struct inset *helloworld Hit(hw, action, x, y)
struct helloworld *hw;
int action, x, y; {
if (action = MouseMask(LeftButton, DownTransition) || action =
MouseMask(RightButton, DownTransition)) §
hw->newx = Xx;
hw->newy = y;
inset_WantUpdate(hw, hw);

}

return (struct inset *) hw;

-39 -

- 40 -

main.c

##include "'CamphorImport.h"
#include "be2/inset.h"
#finclude "be2/im.h"
##include "helloworld.h"

main() {
im_WindowPtr win;
struct helloworld *hw;
camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload('"helloworld",helloworldCamphorInitializer());
hw = (struct helloworld *) inset_New(''helloworld", 0);
win = im _CreateWindow(0);

im FillWindow(win, hw);

im_KeyboardProcessor();

}

Makefile

CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include'
.SUFFIXES: .o

helloworld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o

cc -g -o hw main.o helloworld.o /usr/andrew/lib/libbe2.

/usr/andrew/1lib/libitc.a

Example 4: Working with menus

Example 3 showed how to move an inset around in a window. This example
will show how to add menus to an inset, by modifying the helloworld inset of
Example 3.

Running the example program

Before reading the discussion of the example program, you may find it helpful
to run the program.

Action 1. To run the program, at the Typescript prompt, type
/usr/andrew/doc/be2/exampled/helloworld

and press the Enter key.

Response. The program will produce a window with hello world

centered in the body.

Action 2. Re-shape the program’s window.

Response. The inset will respond to an update request and redraw

hallo world in the center.

Action 3. Click with the left mouse button.

Response. The program will produce hello world in the window at the
mouse cursor position at the time of the click.

Action 4. Click both mouse buttons at once.

Response. You will get a pop-up menu for the inset with two menu
items: Center and Inverse. If you choose Center, hello world will be
redrawn at the center of the window; if you choose /nvert, the inset
rectangle will turn black, with hello world drawn in white letters.
Choosing /nvert again will flip things back.

Action 4. To quit the program, move the cursor to the window title bar,
pop-up the menus and choose Zap from the card labeled This Window.

Response. The window will disappear from the screen.

- 42 -

Declaring a structure for an inset

For a discussion on structure declaration, see Example 1.

Deciding on a name for the inset

For this example, we will continue to use the inset name, helloworld.
Declaring the data structure for the inset

struct helloworld {§
struct inset myinset; /¥* inset structure */

int X,y; /* current location of the string */

int newx, newy; /* new position for the string */

char blackonwhite; /* true if text is to be drawn black on
white */

char newblackonwhite;
struct menulist *menus; /¥ menus for this inset ¥/

i

This is the same as in previous example with the addition of variables
(blackonwhite, newblackonwhite) that the inset will use to tell what state the
inset rectangle is in (True if background is white), as well as a menulList
structure, which will contain the menus and menu items for the inset.

Defining the driver routines for the inset

Example 4 requires the same five driver routines from Example 3: a routine
to create instances of the inset, a routine to initialize an instance of the inset,
and a routine to respond to requests to do a full update of the inset’s drawing,
a routine to do a simple update of the drawing, and a routine to record mouse
hits. No extra routines are necessary for the program to work.

Providing a procedure for string centering

centerstring(hw)

struct helloworld *hw; {
hw->newx = graphics_GetWidth(hw) / 2;
hw->newy = graphics_GetHeight(hw) / 2;
inset_WantUpdate(hw, hw);

}

This example, however, does require two extra procedures, the first of which
computes the center of the window and requests that the text be redrawn
there. In the previous example, this was done only in the FullUpdate routine.

Providing a procedure to make the inset invert

invertbackground(hw)

struct helloworld *hw; {
hw->newblackonwhite = ! hw->newblackonwhite;
inset_WantUpdate(hw, hw);

}

The second additional procedure keeps track of the current state and new
state of the window (black on white or white on black) and requests that the
inset be redrawn accordingly.

Creating the inset

struct helloworld *helloworld New() {
struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld_Init(hw);

return(hw);

This is still the same as in previous examples.
Initializing the inset

helloworld_Init(hw)
struct helloworld *hw; §
inset_InitStructure("helloworld", hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;
hw->newblackonwhite = hw->blackonwhite = 1;
hw->menus = im NewML();
im_AddToML(hw->menus, centerstring, ''Center", hw, 0);
im_AddToML(hw->menus, invertbackground, 'Invert", hw, 0);

}

The difference between the initialization procedure for this example and
Example 3 is that newbl/ackonwhite and blackonwhite are initialized and set to
1, and the menus are created to have the menu items Center and Invert.
Menus are always added to a "menu list,” so a new menu list is created first,
then the menu for the inset is added to it.

- 43 -

- 44 -

Full update request

helloworld_FullUpdate(hw, how)
struct helloworld *hw;
int how; {

int x,y;

if (how = inset FULLREDRAW || how = inset_LASTPARTIALREDRAW)

{
if (how = inset LASTPARTTALREDRAW) {

if (hw->blackonwhite) {
graphics_SetBackground(hw, graphics_WhitePixel)-

}

else |
graphics_SetBackGround(hw, graphics_BlackPixel);

}
graphics_Clear(hw);

}

else if (! hw->blackonwhite) {
/* Have to paint the rectangle black since it is set to
white before a full redraw */

graphics_SetBackGround(hw, BlackPixel);
graphics_Clear(hw);
}

graphics_SetFunction(hw, graphics_GCinvert);
if (hw->x = helloworld_BADPOS) {
hw->newx = hw->x = graphics_GetWidth / 2;
hw->newy = hw->y = graphics_GetHeight / 2;
}

graphics_Text(hw, x, y, "hello world");

inset_WantMenuList(hw, hw, hw->menus);

}

The FullUpdate procedure for this example handles redraws for the two menu
items. For Invert, if the current rectangle is white, then the it is painted black,
and the characters drawn in white. If the rectangle is black, then the it is
changed back to white, with black characters. For Center, the center of the
rectangle is computed, and the text is redrawn at that point. If Center is
chosen when the rectangle is black, then the rectangle must be repainted
black, since the FullUpdate sets the rectangle to white before a full redraw.

A request for an update

helloworld_Update(hw)
struct helloworld *hw; {

if (hw->newblackonwhite != hw->blackonwhite) §

}

graphics_SetFunction(hw, graphics_GCinvert);
graphics_FillRectangle(hw, graphics_GetWidth(hw),
graphics_GetHeight(hw));

hw->blackonwhite = hw->newblackonwhite;

if (hw->newx != hw->x || hw->newy != hw->y) {

}

graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, "hello world");
hw->x = hw->newx;

hw->y = hw->newy;

graphics_Text(hw, X, y, "hello world");
graphics_SetFunction(hw, graphics_GCset);

-

The first part of this procedure handles updates that require redrawing the
inset in inverse mode. Based on the values of newbl/ackonwhite and
blackonwhite passed to it, the update procedure will redraw in the mode
opposite the current mode, filling in the entire visible rectangle as either white

or black.

The second part of the procedure is exactly the same as in Example 3, and
handles redrawing of the text string according to mouse hit information.

Handling mouse input

struct inset *helloworld_Hit(hw, action, x, V)
struct helloworld *hw;
int action, x, y; {
if (action == MouseMask(LeftButton, DownTransition) || action

}

— MouseMask(RightButton, DownTransition)) {
hw->newx = x;

hw->newy = y;

inset_WantUpdate(hw, hw);

return (struct inset *) hw;

}

This procedure is exactly the same as in Example 3.

- 45 -

- 46 -

Exporting and importing routines

For a complete description of exporting driver routines and importing BE2
routines, see Example 1.

Declaring the driver routines for export
In this example, helloworld.h will contain the following declaration:

BeginModule(helloworld, 5)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld Update, int)
Entry(helloworld_Hit, struct inset *)

EndModule()

jidefine helloworld_ BADPOS 0x80000000

This is exactly the same as in the previous example, because no new routines
are necessary.

Importing BE2 routines and exporting driver routines

In this example, the hellowor/d.c file should begin with the following
declarations, which are exactly the same as in the previous examples:

#include "CamphorImport.h'"
#include 'be2/graphics.h"
#include "be2/inset.h"

#include "CamphorExport.h"
#include "helloworld.h"

Similarly, for the file main.c, the declarations should be:

##include 'CamphorImport.h"
#include "be2/inset.h"
#include '""be2/im.h"
#include "helloworld.h'

Setting up the inset

main() {
im_WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("helloworld",helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New(''helloworld", NULL);
win = im_CreateWindow(NULL);
im_FillWindow(win, hw);

im_KeyboardProcessor();

}
The body of the main.c file is exactly the same as in the previous examples.
Compiling the inset
CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include"
.SUFFIXES: .o
helloworld.o: helloworld.c helloworld.h
helloworld: main.o helloworld.o
cc -g -o hw main.o helloworld.o
/usr/andrew/1ib/1libbe2. a\
/usr/andrew/1ib/1libitc.a
The Makefile for this example is exactly as in the previous examples, and is a

static link compilation. For a detailed description and instructions on
compiling, see the discussion in Example 1.

- 47 -

- 48 -

Program Listing for Example 4
helloworld.h

struct helloworld {
struct inset myinset; /

.
W

inset structure */

int x,y; /* current location of the string */
int newx, newy; /* new position for the string */
char blackonwhite; /* true of text is to be drawn black on white */

char newblackonwhite;
struct menuList *menus; /* menus for this inset ¥/

};

BeginModule(helloworld, 5)
Entry(helloworld New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld_Update, int)
Entry(helloworld_Hit, struct inset *)

EndModule()

jidefine helloworld_BADPOS 0x80000000
helloworld.c

ftinclude "CamphorImport.h"
#include 'be2/graphics.h"
#finclude "be2/inset.h"

f##include "CamphorExport.h"
#include "helloworld.h"

centerstring(hw)

struct helloworld *hw; {
hw->newx = GetWidth(hw) / 2;
hw->newy = GetHeigth(hw) / 2;
inset_WantUpdate(hw, hw);

}

invertbackground(hw)

struct helloworld *hw; {
hw->newblackonwhite = ! hw->newblackonwhite;
inset_WantUpdate(hw, hw);

struct helloworld *helloworld_New() {
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld_Init(hw);

return(hw);

}

helloworld_Init(hw)
struct helloworld *hw; {
inset_InitStructure("helloworld"”, hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld BADPOS;
hw->newblackonwhite = hw->blackonwhite = 1;
hw->menus = im_NewML();
im_AddToML(hw->menus, centerstring, ''Center", hw, 0);
im_AddToML(hw->menus, invertbackground, "Invert", hw, 0);

}

helloworld_FullUpdate(hw, how)
struct helloworld *hw;
int how; {

int x,y;

if (how = inset_FULLREDRAW || how = inset_LASTPARTIALREDRAW) {
if (how = inset_LASTPARTIALREDRAW) {
/* Have to clear out the rectangle since it is not cleared on a
partial redraw */

if (hw->blackonwhite) §
graphics_SetBackground(hw, graphics_WhitePixel)
}

else
graphics_SetBackGround(hw, graphics_BlackPixel);

}
graphics_Clear(hw);

}

else if (! hw->blackonwhite) §
/* Have to paint the rectangle black since it is set to white
before a full redraw */

graphics_SetBackGround(hw, BlackPixel);
graphics_Clear(hw);
}

graphics_SetFunction(hw, graphics_GCinvert);

if (hw->x = helloworld_BADPOS) §
hw->newx = hw->x = GetWidth(hw) / 2;

- 49 -

-50 -

hw->newy = hw->y = GetHeight(hw)/ 2;
}

graphics_Text(hw, x, y, "hello world");

inset_WantMenuList(hw, hw, hw->menus);

}

helloworld_Update(hw)
struct helloworld *hw; {

if (hw->newblackonwhite != hw->blackonwhite) §
graphics_SetFunction(hw, graphics_GCinvert);
graphics_FillRectangle(hw, GetWidth(hw), GetHeight(hw));
hw->blackonwhite = hw->newblackonwhite;

}

if (hw->newx != hw->x || hw->newy != hw->y) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, "hello world");
hw->x = hw->newx;
hw->y = hw->newy;
graphics_Text(hw, x, y, "hello world");
graphics_SetFunction(hw, graphics_GCset);

}

struct inset *helloworld Hit(hw, action, x, y)
struct helloworld *hw;
int action, x, y; {
if (action == MouseMask(LeftButton, DownTransition) || action
MouseMask(RightButton, DownTransition)) {
hw->newx = x;
hw->newy = y;
inset_WantUpdate(hw, hw);

}

return (struct inset *) hw;

main.c

f#tinclude "CamphorImport.h"
#include "be2/inset.h"
#include "be2/im.h"
#include "helloworld.h"

main() §

}

im_WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2'");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("helloworld",helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New(''helloworld", 0);
win = im_CreateWindow(0);

im FillWindow(win, hw);

im KeyboardProcessor();

Makefile

CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include'

.SUFFIXES: .o

helloworld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o

cc -g -o hw main.o helloworld.o /usr/andrew/lib/libbe2.

/usr/andrew/1lib/libitc.a

a\

-51 -

-52-

Example 5: Responding to Keyboard Input

Example 4 described how to add menus to the inset. This example introduces
the changes you need to make in order to build an inset that responds to
keyboard input. It will define two keys: ctr/-c and ctri-i. ctri-c will center hello
world in the window. ctri-i will invert the inset’s rectangle.

Running the example program

Before reading the discussion of the example program, you may find it helpful
to run the program on your workstation.

Action 1. To run the program on your workstation, at the Typescript
prompt, type

/usr/andrew/doc/exampleS/helloworld
and press the Enter key.
Response. The program will produce a window with hello world

centered in the inset’s rectangle,; in this case, in the body of the
window..

Action 2. To move hello world in the window, position the mouse
cursor within the program’s window and click on the left mouse button.
Response. hello world will be drawn, centered on the point where you
clicked the left mouse button.

Action 3. To use the keyboard to center hello world in the center of the
inset’s rectangle, type

ctrl-c

Response. hello world will be drawn in the center of the inset’s
rectangie.

Action 4. To invert the drawing, type
ctrl-i

Response. The background will invert. In this case, it will change from
white to black. Action 3 and 4 can be repeated in any order.

Action 5. To quit the program, move your mouse cursor into the
window’s title bar, pop up the menus and choose Zap from the This
Window menu card.

Response. The window will disappear from the screen.

Creating the inset

Adding the capability of responding to input from the keyboard requires
defining a new procedure, helloworld_Keyin. In general, if you are defining an
inset named x, and you want it to be able to respond to keyboard input, you
must provide a routine x_Key/n.

Adding a routine to the header file exports

To add a new BE2 interface procedure to the inset, we must increase the
number of exported procedures in the BeginModule statement from 5 to 6 and
add helloworld_Keyln to the Entry statements in the header file, helloworl/d.h
as follows:

BeginModule(helloworld, 6)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld Update, int)
Entry(helloworld_Hit, struct inset %)
Entry(helloworld_KeyIn, int)

EndModule()

The rest of the header file remains exactly the same as in the previous
example.

Defining a routine to respond to keyboard input

The driver routines in hellowor/d.c are exactly the same except for the
addition of the following helloworld Keyln procedure:

int helloworld_KeyIn(hw, c)
struct helloworld #hw;
int c¢; {
if (c == 03) /* Control C */
centerstring(hw);
else if (¢ == 011) /* Control I */
invertbackground(hw);
else
return inset_KEYUNACCEPTABLE;
return inset_KEYACCEPTABLE;

}

hellowor/d_Keyln examines the character ¢ to see whether it is a ctr/-c or a
ctrl-i. If the character is a ctrl-c, it calls the routine centerstring, to center
hello world in its’ rectangle, then it returns the value inset KEYACCEPTABLE to
indicate that it has accepted a key. If the character is a a ctr/-i, it calls the
routine invertbackground to invert the background of the rectangle, then it
returns inset_KEYACCEPTABLE. Otherwise, it returns inset KEYUNACCEPTABLE to
indicate that it is not interested in any other keys.

- 54 -

For any inset x, its x_Key/n procedure must be declared with two parameters:
ip, a pointer to the inset, and ch, the character which has been sent to the
inset. An inset will receive characters when it is the current input focus. An
x_Keyln routine should parse any sequence of characters it is sent and return
the following:

inset_KEYACCEPTABLE -- if it accepts the key.

inset KEYUNACCEPTABLE -- if the key is unacceptable.

inset_KEYPARTIALACCEPT -- if the the key is possibly acceptable, i.e., if it
is part of a keystroke command sequence .

Finally, an x_Keyln routine should test whether the value of ch is
inset_KEYSTATERESET. If the value of ch is inset_KEYSTATERESET, then the x_Key/n
routine should reset it’s parse state to the beginning of a command sequence.
It is a way to set up a cancel mechanism to allow the user to cancel out of a
keystroke command sequence. Of course, if an inset does not handle
sequences of keystrokes (and thus never returns a value of
inset_KEYPARTIALACCEPT), it can ignore values of inset KEYSTATERESET for ch. For
example, helloworld_Keyln can ignore inset KEYSTATERESET.

The main.c and Makefile remain the same.

-55-

Program Listing for Example 5
helloworld.h

struct helloworld {
struct inset myinset; /* inset structure */
int x,y; /* current location of the string */
int newx, newy; /* new position for the string */
char blackonwhite; /* true of text is to be drawn black on white =/
char newblackonwhite;
struct menulList *menus; /* menus for this inset */

};

BeginModule(helloworld, 6)
Entry(helloworld New, struct helloworld ¥*)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld_Update, int)
Entry(helloworld_Hit, struct inset #)
Entry(helloworld_KeyIn, int)

EndModule()

ffdefine helloworld BADPOS 0x80000000
hellowoi !d.c

#include "CamphorImport.h"
#include "be2/graphics.h"
##include "be2/inset.h"
##include "be2/im.h"

f##include "CamphorExport.h"
##include "helloworld.h"

centerstring(hw)

struct helloworld *hw; {
hw->newx = graphics_GetWidth(hw) / 2;
hw->newy = graphics_GetHeight(hw) / 2;
inset_WantUpdate(hw, hw);

3

invertbackground(hw)

struct helloworld *hw; {

hw->newblackonwhite = ! hw->newblackonwhite;
inset_WantUpdate(hw, hw);

- 56 -

struct helloworld *helloworld New() {
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld Init(hw);

return(hw);

}

helloworld_Init(hw)
struct helloworld *hw; {
inset_InitStructure('helloworld", hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;
hw->newblackonwhite = hw->blackonwhite = 1;
hw->menus = im_NewML();
im_AddToML(hw->menus, centerstring, ''Center', hw, 0);
im_AddToML(hw->menus, invertbackground, "Invert", hw, 0);

}

helloworld_FullUpdate(hw, how)
struct helloworld *hw;
int how; {

if (how = inset_FULLREDRAW || how = inset_LASTPARTTIALREDRAW)
if (how = inset_LASTPARTTALREDRAW) {
/* Have to clear out the rectangle since it is not cleared on a
partial redraw */

if (hw->blackonwhite) §
graphics_SetBackground(hw, graphics_WhitePixel)
}
else {
graphics_SetBackGround(hw, graphics_BlackPixel);
3
graphics_Clear(hw);
}
else if (! hw->blackonwhite) {
/% Have to paint the rectangle black since it is set to white
before a full redraw */

graphics_SetBackGround(hw, BlackPixel);
graphics_Clear(hw);
}

graphics_SetFunction(hw, graphics_GCinvert);
if (hw->x = helloworld_BADPOS) {

bw->newx = hw->x = graphics_GetWidth(hw) / 2;
hw->newy = hw->y = graphics_GetHeight(hw) / 2;

}

graphics_Text(hw, x, y, "hello world");

inset_WantMenulList(hw, hw, hw->menus);

}

helloworld Update(hw)
struct helloworld *hw; {

if (hw->newblackonwhite != hw->blackonwhite) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_FillRectangle(hw, graphics_GetWidth(hw),
graphics_GetHeight(hw));
hw->blackonwhite = hw->newblackonwhite;

}

if (hw->newx != hw->x || hw->newy != hw->y) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, "hello world");
hw->x = hw->newx;
hw->y = hw->newy;
graphics_Text(hw, x, y, "hello world");
graphics_SetFunction(hw, graphics_GCset);

}

struct inset *helloworld Hit(hw, action, x, y)
struct helloworld *hw;
int action, x, y; {
if (action == MouseMask(LeftButton, DownTransition) || action =
MouseMask(RightButton, DownTransition)) §
hw->newx = Xx;
hw->newy = y;
inset_WantUpdate(hw, hw);
}

return (struct inset *) hw;

}

int helloworld KeyIn(hw, c)
struct helloworld *hw;

int c¢; §
if (c = 03) /* Control C */
centerstring(hw);
else if (c = 011) /* Control I */
invertbackground(hw);
else

return inset KEYUNACCEPTABLE;
return inset_KEYACCEPTABLE;

-57 -

- 58 -

main.c

#include "CamphorImport.h"
#include "be2/inset.h"
#include "be2/im.h"
#include "helloworld.h"

main() {
im_WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("helloworld",helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New(''helloworld", 0);
win = im CreateWindow(0);

im FillWindow(win, hw);

inset_WantInputFocus(hw, hw);

im KeyboardProcessor();

}

Makefile

CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include"
.SUFFIXES: .o

helloworld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o

cc -g -o hw main.o helloworld.o /usr/andrew/1ib/1libbe2.
/usr/andrew/1lib/libitc.a

Example 6: Mapping keys to commands

The previous section introduced how to respond to keyboard input. This
section describes how to use the keymap package in responding to keyboard
input. The keymap package provides a set of facilities that will often make
writing the x_Keyln procedure for an inset x substantially easier. The keymap
package allows you to map sequences of keyboard characters to procedures.
Typically, each procedure will be command procedure, i.e., the procedure will
interpret the sequence of characters that the user types as a command.

Running the example program

To the user, this program appears identical to Example 5: ctr/-c centers hello
world and ctr/-i inverts the inset's rectangle. The difference resides solely in
the underiying mechanisms for responding to the keyboard input.

Action1. To run the program, at the Typescript prompt, type
/usr/andrew/doc/be2/exampleb
and press the Enter key.

Response. The program will produce a window with hello world
centered in the body of the window.

To proceed with running the porgram, proceed with Action2 in Example 5 (p.
52).

Declaring a keymap structure and a keystate structure

To use the keymap package, we must declare two structures: a keymap
structure and a keystate structure. It is convenient to declare them in the
hellowor/d structure in hellowor/d.h:

struct helloworld §
struct inset myinset;
int x,y;
int newx, newy;
char blackonwhite;
char newblackonwhite;
struct menulist *menus;
struct keymap *commands; /#* map keys to commands */
struct keystate *state; /* keep a keystate */

};

Formally, a keymap is a function that maps a sequence of keyboard characters
to a procedure. The keymap package allows you to ignore the actual
implementation details. To understand how keymaps work, however, you may
think of a keymap as an array with 128 entries, one for each AsCII character.
Each entry in the keymap array may have one of three values: a procedure,
another keymap, or a special value that indicates no binding.

- 50 -

- 60 -

If keymaps only mapped single keys to procedures, then there would be no
need to keep track of the state of the mapping. To map sequences of keys to
procedures, however, requires keeping state information. The keymap
package uses a keystate structure to keep track of the state information.

Accessing the keymap library

f#tinclude ''CamphorImport.h"
#finclude '"be2/graphics.h"
#tinclude "be2/inset.h"
#include "be2/im.h"
##include "be2/keymap.h"

#include "CamphorExport.h"
#include "helloworld.h"

To access the keymap package, we must #include "be2/keymap.h” in the files
that use keymap routines. In this example, the files helloworid.c and main.c.

Creating and initializing the keymap

helloworld_Init(hw)
struct helloworld *hw; {
inset_InitStructure('"helloworld", hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;
bw->newblackonwhite = hw->blackonwhite = 1;
hw->menus = im NewML();
im_AddToML(hw->menus, centerstring, "Center', hw, 0);
im_AddToML(hw->menus, invertbackground, "Invert", hw, 0);

hw->commands = keymap_create();
keymap_insertproc(hw->commands, '\003', centerstring);
keymap_insertproc(hw->commands, '\011', invertbackground);
hw->state = keymap_newstate(hw->commands);

}

keymap_create () creates a new keymap by dynamically allocating memory for
a keymap structure. In addition, it initializes the newly allocated keymap
structure so that all the keymap entries have the status keymap_EMPTY, that is,
no procedures and sub-keymaps are bound to characters. keymap create
returns a pointer to the newly created keymap, which we store in
hw->commands.

keymap_insertproc (hw-> commands, \003’, centerstring) sets the keymap
hw->commands to return the procedure centerstring whenever the user types
the character "\003," a ctr/-c. keymap_insertproc(hw->commands, \011’,
invertbackground) sets the keymap to the procedure invertbackground.

In addition to binding keys to procedures, it is possible to bind keys to other
keymaps with the procedure keymap _insertmap. This is necessary for
implementing sequences of keys, e.qg., cirl-x ctri-s. See the section The
KeyMap Package (p. 133 for a discussion.

hw-> state =keymap newstate (hw->commands) creates and initializes a
new keystate for the keymap hw->commands and assigns it to hw-> state, the
keystate for the hellowor/d inset, hw.

If you are creating an inset named x and you want to use keymaps, then in
the x_Init procedure for the inset, you should call x_keymap_pointer =
keymap_create () for each keymap that your inset needs. Then, you should
call keymap_insertproc or keymap_insertmap as needed to bind procedures
and sub-keymaps to character entries in the keymap. Finally, you should call
keymap newstate to create and initialize a keystate for the root keymap, and
store the keystate with your inset.

Mapping sequences of keys

int helloworld KeyIn(hw, c)
struct helloworld *hw;
int ¢; §

int result;

result = keymap_char(hw->state, hw, c);
if (result = inset_KEYACCEPTABLE) inset WantUpdate(hw, hw);
return result;

}

keymap_char (hw-> state, hw, c) performs one step in mapping a sequence of
characters to a procedure. It simulates the typing of the character c to the
keystate hw->state. If hw-> state maps the character to a procedure,
keymap_char calls the procedure with two parameters, hw and c¢. (Although
not done in this example, if hw-> state were to map to a sub-keymap,
keymap_char would set the hw-> state so that the next character that the user
typed would be mapped using the sub-keymap. See The KeyMap Package, p.
133, for an example).

keymap_char returns inset_KEYACCEPTABLE if procedure is called,
inset_KEYUNACCEPTABLE if no binding for the character sequence was found, and
inset_KEYPARTIALACCEPT if it is in the middle of processing a key sequence.

if (result = = inset_ KEYACCEPTABLE) inset_WantUpdate(hw, hw) tests
whether the result is inset_KEYACCEPTABLE and if it is, asks for an update.

In general, if you have defined a keymap for an inset x, then you should call
keymap_char in your x_Keyln procedure. Your x_Keyln procedure should
check the return value of keymap_char. If it is keymap_KEYACCEPTABLE, you
should call inset_ WantUpdate for the inset.

-61 -

- 62 -

Static loading of the keymap

#tinclude "CamphorImport.h"
#include "be2/inset.h"
#include "be2/im.h"
##include "be2/keymap.h"
#include "helloworld.h"

main() §
im WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("'keymap', keymapCamphorInitializer());
staticload("'helloworld",helloworldCamphorInitializer());

Since since we know in advance that it is needed, we will load the keymap
package statically with the statement staticload(” keymap”,
keymapCamphorinitializer()) in the file main.c. Note that the keymap package
must be included with the statement #include ”"be2/keymap.h” as well.

Program Listing for Example 6
helloworld.h

struct helloworid §
struct inset myinset; /* inset structure */
int x,y; /¥* current location of the string */
int newx, newy; /* new position for the string */
char blackonwhite; /* true of text is to be drawn black on white */
char newblackonwhite;
struct menuList *menus; /* menus for this inset */
struct keymap *commands;
struct keystate *state;

};

BeginModule(helloworld, 6)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld_Update, int)
Entry(helloworld_Hit, struct inset *)
Entry(helloworld_KeyIn, int)

EndModule()

jtdefine helloworld BADPOS 0x80000000
helloworid.c

#include "CamphorImport.h"
#include '"be2/graphics.h"
#include ''be2/inset.h"
#include ''be2/im.h"
#include "'be2/keymap.h"

#include "CamphorExport.h"
#include "helloworld.h"

centerstring(hw)

struct helloworld *hw; {
hw->newx =graphics_GetWidth / 2;
hw->newy = graphics_GetHeight / 2;
inset_WantUpdate(hw, hw);

}

invertbackground(hw)

struct helloworld *hw; {
hw->newblackonwhite = ! hw->newblackonwhite;
inset_WantUpdate(hw, hw);

- 63 -

- 64 -

struct helloworld *helloworld_New() {
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld_Init(hw);

return(hw);

}

helloworld_Init(hw)

struct helloworld *hw; f§
inset_InitStructure('helloworld", hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;
hw->newblackonwhite = hw->blackonwhite = 1;
hw->menus = im_NewML();
im_AddToML(hw->menus, centerstring, "Center", hw, 0);
im AddToML(hw->menus, invertbackground, "Invert", hw, 0);
hw->commands = keymap_create();
keymap_insertproc(hw->commands, '\003', centerstring);
keymap_insertproc(hw->commands, '\011', invertbackground);
hw->state = keymap_newstate(hw->commands);

}

helloworld_FullUpdate(hw, how)
struct helloworld *hw;
int how; §

if (how = inset FULLREDRAW || how = inset_LASTPARTTALREDRAW) §
if (how = inset_ LASTPARTTALREDRAW) {
/* Have to clear out the rectangle since it is not cleared on a
partial redraw */

if (hw->blackonwhite) {
graphics_SetBackground(hw, graphics_WhitePixel)
}
else {§
graphics_SetBackGround(hw, graphics_BlackPixel);
}
graphics_Clear(hw);
}
else if (! hw->blackonwhite) {
/* Have to paint the rectangle black since it is set to white
before a full redraw */

graphics_SetBackGround(hw, BlackPixel);
graphics_Clear(hw);
}

graphics_SetFunction(hw, graphics_GCinvert);

- 65 -

if (hw->x = helloworld_BADPOS) §
hw->newx = hw->x = graphics_GetWidth(hw) / 2;
hw->newy = hw->y = graphics_GetHeight (hw) / 2;

}
graphics_Text(hw, x, y, ""hello world");

inset_WantMenuList(hw, hw, hw->menus);

}

helloworld_Update(hw)
struct helloworld *hw; §

if (hw->newblackonwhite != hw->blackonwhite) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_FillRectangle(hw, graphics_GetWidth(hw),
graphics_GetHeight(hw));
hw->blackonwhite = hw->newblackonwhite;

}

if (hw->newx != hw->x || hw->newy != hw->y) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, "hello world");
hw->x = hw->newx;
hw->y = hw->newy;
graphics_Text(hw, x, y, "hello world");
graphics_SetFunction(hw, graphics_GCset);

}

struct inset *helloworld Hit(hw, action, x, y)
struct helloworld *hw;
int action, x, y; {
if (action = MouseMask(LeftButton, DownTransition) || action ==
MouseMask(RightButton, DownTransition)) {
hw->newx = x;
hw->newy = y;
inset_WantUpdate(hw, hw);
}

return (struct inset *) hw;

}

int helloworld_KeyIn(hw, c)
struct helloworld *hw;
int c¢; §

int result;

result = keymap_char(hw->state, hw, c);
if (result = inset KEYAXFPTARIE) inset_WantUpdate(hw, hw);
return result;

- 66 -

main.c

f#tinclude "'CamphorImport.h"
#include "be2/inset.h"
#tinclude "be2/im.h"
ftinclude "be2/keymap.h"
f#tinclude "helloworld.h"

main() {

}

im_WindowPtr win;
struct helloworld *hw;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2'");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload(''keymap", keymapCamphorInitializer());
staticload("helloworld", helloworldCamphorInitializer());

hw = (struct helloworld *) inset_New('"helloworld", 0);
win = im_CreateWindow(0);

im FillWindow(win, hw);

inset_WantInputFocus(hw, hw);

im_KoeyboardProcessor();

Makefile

CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include"

.SUFFIXES: .o

helloworld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o

cc -g -o hw hwmain.o helloworld.o /usr/andrew/lib/libbx.

/usr/andrew/1ib/libitc.a

Example 7: Working with scroll bars

Example 6 showed how to use the keymap package in responding to keyboard
input. This section will show how to add scroll bars to insets. This particular
example will have both vertical and horizontal scroll bars.

Running the example program

Before reading the discussion of the example program, you may find it helpful
to run the program on your workstation.

Action 1. To run the program on your workstation, at the Typescript
prompt, type

/usr/andrew/doc/example7/helloworld
and press the Enter key.
Response. The program will produce a window with hel/o world

centered in the inset’s rectangle; in this case, in the body of the
window..

Action 2. To move hello world in the window, position the mouse
cursor within the program’s window and click on the left mouse button.
Response. hello world will be drawn, centered on the point where you
clicked the left mouse button.
Action 3. To use the keyboard to center hello worl/d in the center of the
inset's rectangle, type

ctrl-c
Response. hello world will be drawn in the center of the inset's
rectangle.
Action 4. To invert the drawing, type

ctrl-i
Response. The background will invert. In this case, it will change from
white to black. Action 3 and 4 can be repeated in any order.
Action 5. Use the vertical scroll bar to scroll up or down.

Response. The inset will scroll up or down.

- 67 -

- 68 -

Action 6. Use the horizontal scroll bar to scroll to the left or right.

Response. The inset will scroll to the left or the right..

Action 7. To quit the program, move your mouse cursor into the
window’s title bar, pop up the menus and choose Zap from the This
Window menu card.

Response. The window will disappear from the screen.

Creating the inset

Naming the inset

For this example, we will continue to use the inset name, helloworl/d.
Declaring the data structure for the inset

struct helloworld {
struct inset myinset; /¥ inset structure ¥/
int x,y; /* current location of the string */
int newx, newy; /* new position for the string */
char blackonwhite; /* true if text is to be drawn black on
white */
char newblackonwhite;
struct menulList *menus; /* menus for this inset ¥/
struct keymap *commands;
struct keystate *state;

3

The data structure for this example is the same as in Example 6.
Defining the driver routines for the inset

Example 7 requires six more driver routines than Example 6. The additional
routines are: a routine to get information from the inset when using a vertical
scroll bar, a routine to find something in a given y pixel location, a routine to
setup the display with respect to a vertical scroll bar, a routine to get
information when using horizontal scroll bars, a routine to find something in a
given x pixel location, and a routine to setup the display with respect to a
horizontal scroll bar. These six routines are the minimum necessary to set up
both vertical and horizontal scroll bars for an inset.

Procedures for centering a string and inverting the background

centerstring(hw)

struct helloworld *hw; {
hw->newx = hw->graphics_GetWidth(hw) / 2;
hw->newy = hw->graphics_GetHeight(hw) / 2;
inset_WantUpdate(hw, hw);

}

invertbackground(hw)

struct helloworld *hw; {
hw->newblackonwhite = ! hw->newblackonwhite;
inset_WantUpdate(hw, hw);

}

These procedures are the same as in previous examples. See Example 3 for
a description.

Similarly, the fullupdate, update, menu, and keyln procedures are the same as
in the previous example. For a listing, see the end of this section. The
procedures are described in more detail in Example 6.

Setting up the scroll bars

Each scroll bar needs a minimum of three routines, that is, three routines for
the vertical scroll bar, and three for the horizontal scroll bar. These routines
provide information about the inset to the scroll bar module, so the scroll bars
will know how to properly draw themselves in the inset window, and so they
can tell the inset how to redraw when there is a movement on the scroll bars.

Getting information for the vertical scroll bar

helloworld yGetInfo(hw, len, vstart, vsize, dstart, dsize)
struct helloworld *hw;
int *len, *vstart, *vsize, *dstart, *dsize; {
*len = graphics_GetHeight(hw);
*vstart = 0;
*dstart = hw->y - graphics_GetVisualTop(hw);
if (hw->y < graphics_GetVisualTop(hw)) {
*len -= hw->y;
*vstart -= hw->y;
*dstart -= hw->y;
}
else if (hw->y > graphics_GetVisualTop(hw) +
graphics_GetHeight(hw)) {
*len = hw->y;
}
*vsize = graphics_GetHeight(hw);
*dsize = 1;

- 69 -

-70 -

helloworld_yWhatIsAt(hw, loc, pos)
struct helloworld *hw;
int loc;
int *pos; {
if (hw->y < graphics_GetVisualTop(hw))
*pos = hw->y + loc;
}

else {

ol

*pos = loc;
}

helloworld_ySetFrame(hw, pos, ylocn)
struct helloworld *hw;
int pos, ylocn; {
hw->newy = hw->y + ylocn - pos;
inset_WantUpdate(hw,hw);

}

The procedures yGetinfo, yWhatisAt, and ySetFrame provide the vertical scroll
bar with the necessary information to draw or redraw itself in the inset, and in
turn, the scroll bar will tell the inset how to redraw itself according to
movements on the scroll bar.

yGetinfc is called to discover information about the inset. The inset should
return its length in /en, what part of the object is visible in vstart and vsize,
and what part of the object is selected in dstart and dsize.

yWhatlsAt returns in pos the position in the inset corresponding to /oc in
pixels from the top of the inset.

ySetfFrame tells the inset to setup its display so that the data at position pos
appears at where pixels from the top of the inset. A view moves the line that
contains pos to be close to where pixels away from the top of the rectangle.

Setting up the horizontal scroll bar

helloworld_xGetInfo(hw, len, vstart, vsize, dstart, dsize)
struct helloworld *hw;
int *len, *vstart, *vsize, *dstart, *dsize; {

*len = graphics_GetWidth(hw);

*ystart = 0;

*dstart = hw~->x - graphics_GetVisualLeft(hw);

if (hw->x < graphics_GetVisualLeft(hw)) {

*len -= hw->x;
*vstart -= hw->x;
*dstart -= hw->x;

}

else if (hw->x > graphics_GetVisualLeft(hw) +
graphics_GetWidth(hw)) {
*len = hw->x;

*vsize = graphics_GetWidth(hw);
*dsize = 1;

}

helloworld_xWhatIsAt(hw, loc, pos)
struct helloworld *hw;
int loc;
int *pos; {
if (hw->x < graphics_GetVisualLeft(hw)) §
*pos = hw->x + loc;
}
else §
*pos = loc;
}
}

helloworld xSetFrame(hw, pos, xlocn)
struct helloworld *hw;
int pos, xlocn; {
hw->newx = hw->x + xlocn - pos;
inset_WantUpdate(hw, hw);
}

The procedures xGetinfo, xWhatlsAt, and xSetFrame are exactly like their
vertical scroll bar counterparts.

Exporting and importing routines
Declaring the driver routines for export
In this example, hellowor/d.h will contain the following declaration:

BeginModule(helloworld, 12)
Entry(helloworld_New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld Update, int)
Entry(helloworld_Hit, struct inset *)
Entry(helloworld_KeyIn, int)
Entry(helloworld yGetInfo, int)
Entry(helloworld_yWhatIsAt, int)
Entry(helloworld_ySetFrame, int)
Entry(helloworld xGetInfo, int)
Entry(helloworld xWhatIsAt, int)
Entry(helloworld xSetFrame, int)

EndModule()

ffdefine helloworld BADPOS 0x80000000

-72-

Importing BE2 routines and exporting driver routines

In this example, the helloworid.c file should begin with the following
declarations:

f#include "CamphorImport.h"
#include ''be2/graphics.h"
J#Hinclude "be2/inset.h"
#include '"be2/im.h"
##include '"be2/keymap.h"
#include "be2/scroll.h"

#include "CamphorExport.h'
#include "helloworld.h"

Note the addition of "be2/scroll.h” module.
Similarly, for the file main.c, the declarations should be:

##include "'CamphorImport.h"
#include "be2/inset.h"
#include "be2/im.h"
#include '"be2/keymap.h"
#include "be2/scroll.h"
#include '"helloworld.h"

Setting up the inset

main()
im WindowPtr win;
struct helloworld *hw;
struct inset *sb;

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("keymap", keymapCamphorInitializer());
staticload("scroll", scrollCamphorInitializer());

staticload("helloworld",hel1owor1dCamphorInitializer());

im_init();

hw = (struct helloworld *) inset_New('helloworld", 0);

sb = inset_New(''scroll", 0, hw);
scroll_SetStates(sb, scroll_LEFT, scroll_TOP);
win = im_CreateWindow(0);

im_FillWindow(win, sb);
inset_WantInputFocus(hw, hw);

im_KeyboardProcessor();

b

The main.c file is similar to that for Example 6 with the additional static
loading of scroll bar package and the setting of scroll bar inset.

Compiling the inset

CFLAGS = -g -DSTATICLINKING -I'"/usr/andrew/include"
.SUFFIXES: .o
helloworld.o: helloworld.c helloworld.h
helloworld: main.o helloworld.o
cc -g -o hw main.o helloworld.o
/usr/andrew/1ib/1ibbe2. a\

/usr/andrew/1ib/1libitc.a

The Makefile for this example is exactly as in the previous examples, and is a
static link compilation.

-73 -

- 74 -

Program Listing for Example 7
helloworid.h

struct helloworld §
struct inset myinset; /* inset structure */
int Xx,y; /* current location of the string */
int newx, newy; /¥ new position for the string */
char blackonwhite; /* true of text is to be drawn black on white */
char newblackonwhite;
struct menulist *menus; /% menus for this inset */
struct keymap *commands;
struct keystate *state;

1

BeginModule(helloworld, 12)

Entry(helloworld_New, struct helloworld *)
Entry(helloworld_Init, int)
Entry(helloworld_FullUpdate, int)
Entry(helloworld_Update, int)
Entry(helloworld_Hit, struct inset *)
Entry(helloworld KeylIn, int)
Entry(helloworld_yGetInfo, int)
Entry(helloworld_yWhatIsAt, int)
Entr s(helloworld_ySetFrame, int)
Entry(helloworld_xGetInfo, int)
Entry(helloworld_xWhatIsAt, int)
Entry(helloworld_xSetFrame, int)

EndModule()

jidefine helloworld_BADPOS 0x80000000
helloworld.c

#include '"CamphorImport.h"
#include 'be2/graphics.h"
#include "be2/inset.h"
#include "be2/im.h"
#tinclude ''be2/keymap.h"
#tinclude "be2/scroll.h"

#include "CamphorExport.h"
##include "helloworld.h"

centerstring(hw)

struct helloworld *hw; §
hw->newx = hw->graphics_GetWidth(hw) / 2;
hw->newy = hw->graphics_GetHeight(hw) / 2;
inset_WantUpdate(hw, hw);

invertbackground(hw)

struct helloworld *hw; {
hw->newblackonwhite = ! hw->newblackonwhite;
inset_WantUpdate(hw, hw);

}

struct helloworld *helloworld New() §
register struct helloworld *hw;

hw = (struct helloworld *) malloc(sizeof(struct helloworld));
helloworld_Init(hw);

return(hw);

}

helloworld Init(hw)

struct helloworld *hw; {
inset_InitStructure("helloworld"”, hw);
hw->x = hw->y = helloworld_BADPOS;
hw->newx = hw->newy = helloworld_BADPOS;
hw->newblackonwhite = hw->blackonwhite = 1;
hw->menus = im NewML();
im_AddToML(hw->menus, centerstring, "Center", hw, 0);
im AJddToML(hw->menus, invertbackground, "Invert", hw, 0);
hw->commands = keymap_create();
keymap_insertproc(hw->commands, '\003', centerstring);
keymap_insertproc(hw->commands, '\011', invertbackground);
hw->state = keymap_newstate(hw->commands);

}

helloworld_FullUpdate(hw, how)
struct helloworld #*hw;
int how; {

if (how = inset_ FULLREDRAW || how == inset_LASTPARTIALREDRAW) {
if (how = inset_LASTPARTIALREDRAW) {
/* Have to clear out the rectangle since it is not cleared on a
partial redraw */

if (hw->blackonwhite) §
graphics_SetBackground(hw, graphics_WhitePixel)
}
else {
graphics_SetBackGround(hw, graphics_BlackPixel);
}
graphics_Clear(hw);
}
else if (! hw->blackonwhite) f§
/* Have to paint the rectangle black since it is set to white
before a full redraw */

-75-

- 76 -

graphics_SetBackGround(hw, BlackPixel);
graphics_Clear(hw);
}

graphics_SetFunction(hw, graphics_GCinvert);

if (hw->x = helloworld_BADPOS) {

hw->newx = hw->x = graphics_GetVisualLeft(hw) +
graphics_GetWidth(hw) / 2;

hw->newy = hw->y = graphics_GetVisualTop(hw) +
graphics_GetHeight(hw) / 2;
}

graphics_Text(hw, x, y, "hello world");

inset_WantMenulList(hw, hw, hw->menus);

}

helloworld_Update(hw)
struct helloworld *hw; {

if (hw->newblackonwhite != hw->blackonwhite) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_FillRectangle(hw, graphics_GetVisualLeft(hw),
graphics_GetVisualTop(hw), graphics_GetWidth(hw),
graphics_GetHeight(hw));
hw->blackonwhite = hw->newblackonwhite;

}

if (hw->newx != hw->x || hw->newy != hw->y) {
graphics_SetFunction(hw, graphics_GCinvert);
graphics_Text(hw, x, y, "hello world™);
hw->x = hw->newx;
hw->y = hw->newy;
graphics_Text(hw, x, y, "hello world");
graphics_SetFunction(hw, graphics_GCset);

}

struct inset *helloworld Hit(hw, action, x, y)
struct helloworld *hw;
int action, x, y; {
if (action = MouseMask(LeftButton, DownTransition) || action ==
MouseMask(RightButton, DownTransition)) {
hw->newx = x;
hw->newy = y;
inset_WantUpdate(hw, hw);

}

return (struct inset *) hw;

}

int helloworld_KeyIn(hw, c)
struct helloworld *hw;
int c¢; {

int result;

result = keymap_char(hw->state, hw, c);
if (result = 0) inset_WantUpdate(hw, hw);
return result;

}

helloworld_yGetInfo(hw, len, vstart, vsize, dstart, dsize)
struct helloworld *hw;
int *len, *vstart, *vsize, *dstart, *dsize; {
*len = graphics_GetHeight(hw);
*ystart = 0;
*dstart = hw->y - graphics_GetVisualTop(hw);
if (hw->y < graphics_GetVisualTop(hw)) §
*len -= hw->y;
*ystart -= hw->y;
*dstart -= hw->y;
}
else if (hw->y > graphics_GetVisualTop(hw) + graphics_GetHeight(hw))
{
*len = hw->y;
}
*ysize = graphics_GetHeight(hw);
*dsize 1;

il

}

helloworld_yWhatIsAt(hw, loc, pos)
struct helloworld *hw;
int loc;
int *pos; {
if (hw->y < graphics_GetVisualTop(hw)) {
*pos = hw->y + loc;
}
else {
*pos = loc;

}

helloworld_ySetFrame(hw, pos, ylocn)
struct helloworld *hw;
int pos, ylocn;
hw->newy = hw->y + ylocn - pos;
inset_WantUpdate(hw,hw);

}

helloworld xGetInfo(hw, len, vstart, vsize, dstart, dsize)

- 78 -

struct helloworld *hw;
int *len, *vstart, *vsize, *dstart, *dsize; {
*len = graphics_GetWidth(hw);
*ystart = 0;
*dstart = hw->x - graphics_GetVisualLeft(hw);
if (hw->x < graphics_GetVisualLeft(hw)) {
*len -= hw->x;
*ystart -= hw->x;
*dstart -= hw->x;
}
else if (hw->x > graphics_GetVisualLeft(hw) + graphics_GetWidth(hw))
{
*len = hw->x;
}
*vsize = graphics_GetWidth(hw);
*dsize 1;

}

helloworld_xWhatIsAt(hw, loc, pos)
struct helloworld *hw;
int loc;
int *pos; {
if (hw->x < graphics_GetVisualLeft(hw)) {
*pos = hw->x + loc;
}
else {
*pos = loc;
}
}

helloworld_xSetFrame(hw, pos, xlocn)
struct helloworld *hw;
int pos, xlocn; {
hw->newx = hw->x + xlocn - pos;
inset_WantUpdate(hw, hw);

}

main.c

##include ''CamphorImport.h'"
#include "be2/inset.h"
#include "be2/im.h"
#include '"be2/keymap.h"
#include "be2/scroll.h"
‘#include "helloworld.h"

main()
im WindowPtr win;
struct helloworld *hw;
struct inset #sb;

}

camphorinit(0, 0, 0, "/usr/andrew/lib/be2");
staticload("im", imCamphorInitializer());
staticload("inset", insetCamphorInitializer());
staticload("keymap", keymapCamphorInitializer());
staticload("scroll", scrollCamphorInitializer());
staticload("helloworld",helloworldCamphorInitializer());

im_init();

hw = (struct helloworld *) inset New(''helloworld", 0);
sb = inset_New(''scroll", 0, hw);

scroll_SetStates(sb, scroll_LEFT, scroll TOP);

win = im CreateWindow(0);

im FillWindow(win, sb);

inset_WantInputFocus(hw, hw);

im_KeyboardProcessor();

Makefile

CFLAGS = -g -DSTATICLINKING -I"/usr/andrew/include"

.SUFFIXES: .o

hellowoyrld.o: helloworld.c helloworld.h

helloworld: main.o helloworld.o

cc -g -o hw main.o helloworld.o /usr/andrew/lib/libbe2.

/usr/andrew/1lib/libitc.a

a\

-79 -

Programming Environment

In addition to setting up the proper inset (and/or data object) structure, it is
necessary to compile the program within the proper environment. The
programmer’s interface to both insets and data objects in BE2 requires certain
operations on procedures that are normally not provided in the C language.

In particular, BE2 must periodically, given the name of a type of inset or data
object, generate a set of procedures that implement specific operations on
objects of that type. BE2 does this by combining the name of the type of
object and the name of the operation into a character string which calls the
procedure implementing the operations neccessary on objects of that type.

Thus, BE2 requires an operation that efficiently maps character strings into
procedure pointers. This section describes this operation, and related
mechanisms, which are provided by the Camphor programming environment.

Procedure names in the Camphor environment are composed of a module
name and an entry name within that module. The procedure name is
represented as a character string, with an underscore separating the module
name from the entry name. For example, the procedure named Redraw within
the piechart module would be named as piechart Redraw. In most cases, all
of the procedures in a single module are expected to exist in a single source
file, and some macros that simplify operations in this case have been
providead.

One of the major advantages of Camphor is that is supports dynamic loading
of procedures. Therefore, it is possible to have, say, a picture inset
dynamically loaded into a text document, which saves a lot of time. In the
previous chapter, the examples dealt only with static linking. This chapter
will deal more with dynamic loading procedures, but this does not at all mean
that you will always need to dynamically load in BE2. In particular, the Import
and Export procedures described in the next section is important whether you
are using static or dynamic load.

Imports and Exports

For every code module provided, there must be an include file enumerating
the procedures exported by that module. This should greatly simplify the
usage dynamic linking procedures in Camphor. The procedures must be
declared by means of a macro, Entry, which gives both the type and name of
each procedure. This include file, depending upon the definition of the Entry
macro, can be used to import functions from a module or to export functions
from a module.

A short example should clarify things:

#include "CamphorImport.h"

#include "importedModulel.h" /* import functions from module */
#include "importedModule2.h" /* and this one, */

#include "importedModule3.h" /* and this one, */

-81 -

-82-

#include "importedModule4.h'" /* and this one. */
imp

##include "CamphorExport.h"
##include "myModule.h' /* these functions are exported */

The include files Camphorimport.h and CamphorExport.h both define their own
versions of the BeginModule, Entry, and EndModule macros. The former
defines these macros to generate the code required to import procedures
from another module within the Camphor run-time system, while the latter
defines these macros to generate the code required to export procedures from
a module.

BeginModule defines the start of the module definition. It gives the module
name and, unfortunately, a number which must be at least as large as the
number of entries listed following. (Unfortunate because this number must be
changed every time the entries are changed) After the BeginModule line,
there are a number of lines giving the name of the exported procedure, and
the type of value that it returns. Finally, the module definition completes with
an EndModule line. See any of the main.c files for the examples in the
previous section.

Dynamic Loading

When a reference to a module is made (either by calling an imported
procedure, or by calling type_makeproc or type_create procedures described
below) and the required module is not present in the running program, the
Camphor run-time system can attempt to search for and load the missing
module at run-time. Essentially,a path to be searched can be set up before
the reference to the procedure,and when the reference is made, the dynamic
loader will search the path for the module, load it if found, and augment the
symbol table enumerating the modules and procedures whose addresses are
known.

This dynamically loading of modules makes it convenient for people to write
their own inset code independent of the maintainers of the library and other
applications making use of the library, while still allowing these new, user-
defined insets to be used.

With static linking, the linker combines several object programs into a single
program, searching libraries and resolving all external references. If there are
no errors, the output of the linker is an executable file (see /d (1) in the Unix
man or Andrew on-line help pages).

With dynamic linking, all procedure declarations are transformed to be illegal
instruction traps.
These are then handled by a signal handler.

If STATICLINKING is defined, the procedure declarations are converted to
extern type proc (). This is more efficient if you do not need the inset to be
dynamically loaded.

if the inset you are defining is not going to be dynamically loaded by a multi-
media editor, you should define STATICLINKING since it allows the
preprocessor to generate more efficient code. On the other hand, if you are
writing an inset for general use (e.g., scroll bars, drawing editor insets, etc.),
you should remove the -DSTATICLINKING option from your compilation flags.

-Dname = def Defines the name to the preprocessor, as if by #define. If no
definition is give, the name is defined as 1.

If the inset you are defining is going to be dynamically loaded, you must
include the following in your Makefile:

.SUFFIXES: .6.0
0.6:
make6 $@

makeb is a shell script (located in /user/andrew/bin) that runs the linker to
produce a relocatable object module. Relocatable object modules have their
references to relative positions rather than absolute addresses. Relocatable
modules are necessary in order for dynamic loading to work. Relative
addresses are usually less efficient than absolute addresses, so if you are not
going to dynamically load, you should remove this line from the Makefile.

Debugging

Check that each routine for the inset driver in <inset-name > .c is exported in
<inset-name> .h

Check that the number of exports in BeginModule (n) matches or exceeds the
number (less efficient) the number of Entry’s in the list.

Dynamic Procedure Linking --- The Type Module Calls

Support for run-time linking of procedures is provided by the type module
procedure. Type module provides two routines, type create and
type_makeproc, for manipulating collections of procedures by name.

The routine type_makeproc maps a procedure name to a pointer to the actual
code. It takes two parameters, a module name and an entry name, and
returns a pointer to the appropriate procedure, or null if the procedure cannot
be located.

For example, the module myModule.h from the first example about might look
like this:

BeginModule(myModule, 3)
Entry(myModule_Procl, int)
Entry(myModule_Proc2, char #)
Entry(myModule_Proc3, float)

-83-

-84 -

EndModule()

The routine type_create, on the other hand, deals with entire modules. It
takes four parameters: an interface name, a module name, an array of
procedure names within that module that make up the interface, and the
address of a structure in which to store the located procedures. Essentially,
this procedure provides a bulk interface to the dynamic type routines, so that
instantiating many objects of the same type does not result in repeatedly
looking up all the names.

An interface consists of an ordered set of procedures, and several different
modules can export the same interface. In addition, any one module can also
export several different interfaces. When type create is called, it first checks
its list of located interfaces to see if it has located the procedures defining the
named interface for the particular module also named in the call. If it has,
type_create simply copies the list of procedure addresses from its table to the
structure passed by the user to contain these addresses. It is only in the case
where type_create has not yet instantiated the interface for the requested
module that it makes use its third parameter: the array of procedure names
making up the interface. In this case, type_create calls type_makeproc
repeatedly with the name of the module it is instantiating and each procedure
from the array of procedure names.

et st e s A8 B A s

Data Stream

This section describes the data stream protocol definition, i.e., the
specifications for data objects’ external data representation. The discussion
centers around a data stream for a text data object. Other, more global,
issues are touched upon, but only as they refer to text data objects.

The external data representation is expected to be used both for storing
objects in files and for cut and paste operations.

Goals for a data stream protocol

-- Handle an arbitrary collection of insets and data objects.
Achieved through the use of \begindata, \enddata and \inset
commands.

-- Share data objects between two views in the same document.
Achieved by the separation of the \begindata and \enddata
commands from the \inset command and the inclusion of a data
object registry.

-- Specify an inset (identified by name) so that commands can
be sent to it. Achieved by the use of an inset registry.

-- Contain only printable AsSCll characters (make the datastream
more readable). Achieved through expanded versions of
stylesheet definitions and command names.

-- Simple parsing algortihm (easy to determine beginning and
end of data objects). Achieved through use of simplified
command names and recursive inset parsing.

-- Interpreted and uninterpreted files should be recognized by
the system and treated accordingly. (reserved characters
should not have to be quoted in uninterpreted files). Achieved
by checking for the version string \dsversion{#} at the
beginning of the highest level data object.

Protocol Definition
Reserved Characters
\
{
}
These characters are reserved, and should be quoted with a \ (backslash) in

interpreted documents. Quoting should not be used in uninterpreted
documents.

-85 -

- 86 -

Version Header
\dsversion{versionnumber}

This string should be included as the first line of the highest level data object
in the document. This string is used to distinguish formatted documents from
plain text documents. Versionnumber refers to the version of the new
datastream that was used to write the document and it determines which read
routine will be used to read it.

Stylesheet Definitions

\define{stylesheetname, devicetype, menuname
[attribute opcode optype opparm]

[attribute opcode optype opparm]}

A stylesheet is a series of attribute modifications which create the desired
effect on the selected text. The stylesheet format above will be used both for
stylesheet definitons in the document and for those in the template.
Stylesheetname refers to the common name of the stylesheet (e.g. italic, bold,
etc). Devicetype refers to the display medium (e.g. D for display, P for
printer). Menuname is the internal name of the stylesheet (e.g. Font,ltalic,
Font,Bold, etc). A stylesheet can contain one or more attribute specifications.
Attribute refers to the name of the attribute being modified (e.g. fontface,
leftmargin). Opcode is the operator to be used in modifying that attribute (e.g.
copy, add). Optype specifies the type of the parameter (e.g. points, inches).
Opparm is a parameter of the operation which can be either a digit or a string
(e.g. "AndyType”, 42).

Template Inclusion
\template{templatename}

The template string may be used in a text document to indicate that a
template should be read before the document is processed. Templatename
refers to the name of the template to be used. Templatename may include a
full path (e.g. /cmu/itc/maria/templates/my.template), or may use the default
path (/usr/andrew/lib/Templates/xxx.template, where the user has typed in the
'xxx" portion of the path) or a path that is defined in the user's preference file.
The inclusion of a template string in the file does not preclude the inclusion of
additional stylesheet definitions, however a document should include only one
template string.

Insets and Data Objects

\begindata{datatype, dataname}
text
\enddata{datatype}

The begindata, enddata pair mark the extent of the data included in a
particular data object. Use of the begindata, enddata pair indicate that the
data should be stored in memory, and the location of the data and it's
dataname, a canonical name used to refer to that data object, should be
stored and registered in a data registry. Datatype refers to the type of data
being stored (e.g. text, array, etc).

\inset{insettype, insetname, dataname}

The inset string is used to mark the place in the document where the inset
should appear. The definition of the data object (it's begindata, enddata
markers) and the inset marker need not be adjacent, however a data object
definition must precede any inset marker which refers to it. Multiple inset
markers may refer to a single data object. Insettype refers to the body of

code which can be dynamically loaded to be used in displaying the inset (e.qg.

delta, eq, zip, etc.). Insetname is a canonical name used to refer to the inset
and is registered in an inset registry. The insetname is also used to register
the inset as a viewer of a particular data object. Dataname is a reference to
the data object being used by this inset.

Styles in the data
\stylesheetname{text ... more text}

A backslash followed by a command which is not one of the above
commands, will be interpreted as a stylesheet command. That is, the
indicated stylesheet should be used to modify the selected text.
Stylesheetname refers to the name of the stylesheet to be used in the
modification of the document. An error will result if a stylesheet with that
name is not found. The curly brackets define the extent of the text for which
the appropriate stylesheet modifications will be in effect.

- 87 -

Routines, Objects, and Support Packages

This section describes all the routines, useful objects, and assorted support
packages that have been written for BE2. The sections in this chapter are as

follows:

1)

Inset Routines
Inset/Window Management Routines
Data Object Routines
Menu Routines
KeyMap Package
Document Objects
Dialog Box Inset
Scroll Bar Inset
Layout Pair Inset
Buffer Package
Update List Package

Key Recording Package

-89 -

Inset Routines

This section discusses two groups of routines: (1) x_ routines that you must
provide when you define an inset named x and (2) inset routines, located in
inset.c, that you must use to call upon a particular inset’s x_ routines. The
discussion divides the routines into the following groups:

Creating, initializing, and deleting insets

Negotiating about the size of the inset in the window
Adding menus for the inset

Managing mouse hits

Receiving and losing the input focus

Working with keyboard input

Redrawing and update requests

For each x_ routine, there is a corresponding inset_routine or macro. The
inset_ routine typically sets up the inset so that its information is current, and
then calls the corresponding x_ routine. You should always use the inset
routines to call the x_ routines for two reasons: First, it is easier for you to
call an an inset_ routine than to call the x_ routine, because you don’t need to
manage the set up. Second, it is easier to define an inset x if it can assume
that certain conditions will be true when it is called.

The structure of an inset

When you define an inset x, you must include an inset structure, defined in
inset.h. The following describes the current inset structure as it appears in
inset.h.

struct irset §
char *insetnare; /* %, name of the inset named x */
struct insetroutines *ir; /% the inset rautines */
struct GraphicsState gs; /* the graphics state associated with the inset */
struct inset *parent; /* parent inset */
char changed; /= troe is Update will be called %/
char flags; /% sare flags for top level irset %/

-91 -

-92 -

Rectangles and visible rectangles

Each inset has two rectangles associated with it: r, the rectangle that gives
the dimensions that the inset can scale its drawing to, and vr, the visible
rectangle that provides the dimensions for what is visible in the window. To
understand r and vr, suppose that a multi-media editor were displaying some
text and a drawing, and that the drawing happens to be at the very bottom of
the window. If the drawing inset’s rectangle, r, falls outside the window
boundary, and the drawing is relative to r, then the drawing will be clipped to
the inset’s visible rectangle, vr, as shown in the figure below.

[To see a picture, zip /cmu /unix /itcsrc /itc /insets /documentation /be2docs
/Inset.vr.zip]

You must attend to the visible rectangle if you wish to:

-- Scale the size of your drawing to the size of its visible region. In this
case, you would do your drawing relative to the visible rectangle rather
than the rectangle.

-- Produce a clipped drawing with maximum efficiency. In this case,
you would scale your drawing relative to r, but you would not actually
draw except when the coordinates fell within vr.

- Save the visible region or a part of it in a buffer, via im_SaveRegiot..
In this case, the rectangle coordinates you pass to im_SaveRegion
must be less than or equal to the rectangle, vr,; otherwise, the results
will be undefined. :

-- Work with child insets. In this case, whenever you set the value of a
child inset’s rectangle, r, you must also set the value of its visible
rectangle, vr. See inset_FullUpdate and inset ClipVisualRectangle for
discussions of how to work with child insets.

Otherwise you can ignore vr and simply draw within the dimensions given by
r. If you do, your drawing will automatically be clipped to vr.

Creating and deleting insets
Providing a creation routine for inset x

struct x *x_New(dop)
struct x_data dop;

Description. If you are defining an inset named x, you must provide
the routine x_New. You must declare x_New with a single parameter,
dop, a pointer to the data object for the inset. x_New should
dynamically allocate inset x (see malloc (3)) and then call x_Init.

Return value. If successful, x_New should return a pointer to the struct
x that it has created; NULL for failure.

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_New construct.

Example. If you were defining an inset named doc with a text data
object, you would have to create a procedure called doc_New
(text _pointer).

Creating an inset

struct inset *inset_New(name, parent, dataobject)
char *name;

struct inset parent;

long dataobject;

Description. inset_New creates and initializes an instance of the inset
name. The parameter parent should be a pointer to the newly created
inset’s parent, or NULL if the newly created inset has no parent.
dataobject should be a pointer to the data object that the newly created
inset will display.

To create and initialize most of the inset structure, inset New calls the
corresponding name_New procedure for the inset name; then it
initializes the data portion of the inset structure.

Return value. If successful, inset_New returns the pointer to the newly
created inset; if the inset given by name does not exist or the inset
could not be created for some other reason, then inset New returns
NULL.

Usage. You should always use the inset New procedure to create an
inset of type name, rather than calling name_New directly.

Example. inset New (”"doc”, 0, text) creates and initializes a new
document inset.

-94 -

Providing an initialization routine for inset x

x_Init(ip, dop)
struct x_inset ip;
struct x_data dop;

Description. If you are defining an inset named x, you must provide
the routine x_/nit. You must declare x_/nit with two parameters: ip, a
pointer to the inset x, and dop, a pointer to the data object for the inset.
x_Init should initialize any parts of the inset x structure that are local,
set x_inset->d to dop, and initialize any data as necessary.

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_/nit construct.

Example. If you were defining an inset named doc with a text data
object, you would have to create a procedure called doc_/nit
(doc_pointer, text_pointer).

Initializing an inset

inset_Init(name, ip, dop)
char name;
long ip, dop;

Description. inset_Init calls the name_/nit routine for the inset given by
name, passing it ip, a pointer to the inset given of type name, and dop,
the data object associated with ip, as parameters.

Usage. inset_Init is not implemented (9/12/86). At the present time,
you should call the name_inset routine directly in order to initialize it.

Providing a deletion routine for inset x

x_Destroy(ip)
struct inset ip;

Description. If you are defining an inset named x, you may optionally
provide the routine x_Destroy. If you do define it, you must declare
x_Destroy with a single parameter, ip, a pointer to the data object for
the inset. x_Destroy should call free(ip) to free the memory pointed to
by ip (see free(3)). If ip is the last inset pointing to its associated data
object, free(ip) will also cause the data object to be destroyed;
otherwise the data object will continue to exist.

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_Destroy construct.

Example. If you were defining an inset named doc with a text data
object, you might want to create a procedure called doc_Destroy
(doc_pointer).

Destroying an inset

inset_Destroy (ip)
struct inset ip;

Description. inset_Destroy looks for an x_Destroy routine for the inset
pointed to by ip and, if found, calls it; else it calls free (ip) in order to
free the memory pointed to by ip (see free(3)). If ip is the last inset
pointing to its associated data object, the data object will be destroyed;
otherwise the data object will continue to exist. In addition,
inset_Destroy forces a full update, so that all windows are cleared and
redrawn.

Usage. You should always use the inset_Destroy procedure to destroy
an inset of type x, rather than calling x_Destroy directly.

- 06 -

Communicating from the parent to the inset

An inset’s parent is responsible for notifying an inset when it needs to redraw
itself, adjust it’s menus to a new window size, when it is the input focus and
thus needs to take care of keyboard or mouse input, etc. The parent routine
does this through routines described in this section.

Providing an full update for inset x

x_FullUpdate (ip, how, 1)
struct inset ip;

int how;

struct rect r;

Description. If you are defining an inset named x, you must provide
the routine x_FullUpdate. You must declare x_Fu/lUpdate with three

parameters: ip, the pointer to inset; how, how the window should be
redrawn, and r, the rectangle within the inset that should be redrawn.

The how parameter specifies the degree of changes and can have the
following values:

inset_FULLREDRAW -- the inset should be completely redrawn.

inset_PARTIALREDRAW - the inset should be redrawn within the rectangle
specified by the parameter r; further partial redraws will follow.

inset_LASTPARTIALREDRAW - the inset should be redrawn within the
rectangle specified by the parameter r; this is the last partial
redraw.

inset_REMOVE - the inset in being removed from the screen.

In addition to redrawing the screen, your x_Ful/lUpdate procedure must
reset any regions that your inset is handling. Your routine may
assume that

1. Your inset’s parent has set the inset’s rectangle and window
appropriately.

2. Your x_Update routine will never be called before a call has been
made to your x_FullUpdate routine.

3. Your inset’s window has been selected.

4. Your inset’s clipping region has been set to the part of its rectangle
that is visible on the screen.

5. If your inset is appearing in a new window, the parent will call your
inset’s menu routines to add menus.

You must program your inset so that these assumptions will hold for
any of its children as well (see inset_FullUpdate, p. 97).

Usage. You should refer to BE2 Basics, pp. 11 - 87 for examples of
how to work with the x_Ful/Update construct. In general, if the inset is
going to be static, the x_Ful/lUpdate routine could ignore the how

parameter and always do a full redraw of the inset. The how
parameter is provided to give the programmer the ability to optimize
the x_FullUpdate.

Notifying an inset that it should do a full update

inset_FullUpdate(ip,how,r)
struct inset in;

int how;

struct rect r;

Description. inset_FullUpdate sets up the inset ip so that assumptions
it makes when doing a full update are true, then calls the inset’s
FullUpdate routine. The parameter how specifies the degree of change
and can have the following values:

inset_FULLREDRAW -- the inset should be completely redrawn.

inset_PARTIALREDRAW - the inset should be redrawn within the rectangle
specified by the parameter r; further partial redraws will follow.

inset_LASTPARTIALREDRAW - the inset should be redrawn within the
rectangle specified by the parameter r; this is the last partial
redraw.

inset_REMOVE - the inset in being removed from the screen.

If the parameter how has the values inset_PARTIALREDRAW oOf
inset_LASTPARTIALREDRAW, the parameter r is the rectangle within the
inset that should be redrawn; else r is NULL.

1. If the inset ip has a parent, inset FullUpdate sets the inset’s window

to its parent’s window.

2. It selects the inset’s window, making it the current window.

3. It sets the clipping rectangle to the part of the inset’s rectangle that

is visible on the screen.

4. It selects the inset’s menu region id, making the inset the currently

selected menu region.

5. It sets the character shim and space shims to NULL.

7. It defines the inset’s menu region to correspond to the visible

portion of the inset.

6. If the inset is appearing in a new window, it calls the inset’s menu
routines, if any. Then it calls im_AddGlobalMenus to update the
global menus, if any.

It calls the inset’s x_FullUpdate routine with parameters ip, how
and r.

@

Side Effects. Sets the im clip rectangle to the inset’s clip rectangle.
Sets the im character shims and space shims to 0. Sets the current
menu region to the inset’s region id.

Usage. You should always use the inset_FullUpdate procedure to

-97 -

- a8 -

cause an inset x to do a full update, rather than calling x_Fu/lUpdate
directly. Before calling inset_FullUpdate for a child inset, you must
insure that the child inset’s visible rectangle, vr, (see struct inset in
inset.h, p. 91). is correctly defined. There are two cases: (1) the child
inset's rectangle, r, is the same as your rectangle, i.e., the parent’s
rectangle, r; and (2) the child has a different rectangle.

If the child inset’s rectangle , r, is the same as yours, then simply set
the child inset’s visible rectangle, vr, to your visible rectangle, vr. For
example,

struct inset *parentinset, *childinset;
childinset->vr = parentinset->vr;

This is essentially what im_Interact does for the top level inset, where
vr is equal to the dimensions of the window.

If you have assigned a different rectangle to the child inset, you must
insure that the child’s visible rectangle will be on the screen. The
easiest way to insure this is to call inset_ClipVisualRectangle
(childinset, parentinset), which will set the child’s visible rectangle to
the result of clipping the child’s rectangle, r, against your visible
rectangle (See p. 99).

Eecause of its side effects, it is best for a parent inset to do all its own
update drawing before calling inset_FullUpdate for its child insets. If it
does not, then you will need to reset the im state parameters that
inset_FullUpdate clobbers.

Clipping a child’s visible rectangle

inset_ClipVisualRectangle (childinset, parentinset)
struct inset *childinset, *parentinset;

Description. inset_ClipVisualRectangle sets the childinset's visible
rectangle to the result of clipping the child’s rectangle, r, against the
parentinset’'s visible rectangle, vr.

Usage. If you are working with child insets, you must insure that the
child’'s visible rectangle is set correctly before any inset_FullUpdate.
The inset_ClipVisualRectangle routine is designed to make this easy.
inset_ClipVisualRectangle handles the following cases:

1. The inset’s rectangle and visible rectangle are completely contained
with the inset’s window (or parent inset’s visible rectangle).

2. The inset’s window (or parent inset’s visible rectangle) and visible
rectangle are completely contained within the area of the inset’s
rectangle.

3. The inset’s window (or parent inset’s visible rectangle), visible

rectangle and rectangle intersect.

(For illustration, zip
/emu/unix/itcsre/itc/insets/documentation/be2docs/Inset.vrclipcases.zip)

- 09 -

- 100 -

Providing an update routine for inset x

x_Update (ip)
struct inset ip;

Description. If you are defining an inset named x, you may want to
provide the routine x_Update. You must declare x_Update with a single
parameter, ip, a pointer to the inset. Whereas x_Ful/lUpdate gets
called when a inset’s window changes and the screen needs to be
updated, x_Update should be called when the inset's data object
changes and the screen needs to be updated.

Your x_Update routine may assume that

1. The screen is correct as of the previous call to this routine or
x_FullUpdate.

2. Your x_Update routine will never be called before a call has been
made to your x_FullUpdate routine, so the inset's rectangle and
window are properly set.

3. Your inset’'s window has been selected.

4. Your inset’s clipping region has been set to the part of its rectangle
that is visible on the screen.

You must program your inset so that these assumptions will hold for
aay of its children as well (see inset_Update, p. 101).

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_Update construct. If you do not provide a x_Update,
then you must arrange to do an x_FullUpdate whenever the inset’s data
object changes and the screen needs to be updated.

- 101 -

Notifying an inset that it should do an update

inset_Update(ip)
struct inset ip;

Description. inset_Update sets up the inset ip so that assumptions it
makes when doing an update are true, then calls the inset’s Update
routine. In particular,

1. It selects the inset's window, making it the current window.

2. It sets the clipping rectangle to the part of the inset’s rectangle that
is visible on the screen.

3. It selects the inset's menu region id, making the inset the currently
selected menu region.

4. It sets the character shim and space shims to NULL.

5. It sets the inset’s changed flag to NULL.

6. If there is an x_Update routine, it calls it with parameter ip.

Side Effects. Sets the im clip rectangle to the inset's clip rectangle.
Sets the im character shims and space shims to 0. Sets the current
menu region to the inset’s region id.

Usage. You should always use the inset_Update procedure to cause an
inset x to do an update, rather than calling x_Update directly.

Because of its side effects, it is best for a parent inset to do all its own
update drawing before calling inset_Update for its child insets. If it
does not, then you will need to reset the im state parameters that
inset_Update clobbers.

Providing a way for inset x to add menus

x_AddMenus(ip)
struct inset ip;

Description. If you are defining an inset named x, and you want the
inset to have its own menus, you must provide the routine
x_AddMenus. You must declare x_AddMenus with a single parameter,
ip, a pointer to the inset. You should place all your window manager
menu calls in x_AddMenus. In the underlying window manager,
menus should be associated with each window. Whenever the window
changes, the menus associated with each inset in the window must be
reset. inset_FullUpdate will call x_AddMenus directly whenever the
window changes. '

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_AddMenus construct.

- 102 -

Providing a way for inset x to work with keyboard input

int x_KeyIn(ip, ch)
struct inset ip;
int ch;

Description. If you are defining an inset named x, and you want it to
be receive menu or keyboard input, you must provide the routine
x_KeylIn. You must declare x_Keyl/n with two parameters: ip, a pointer
to the inset, and ch, the character which has been sent to your inset.
Your inset will receive characters when it is the current input focus.
Your x_Keyln routine should parse any sequence of characters it is
sent and return the following:

inset_KEYACCEPTABLE -- if it accepts the key.
inset_KEYUNACCEPTABLE -- if the key is unacceptable.
inset_KEYPARTIALACCEPT -- if the the key is possibly acceptable,

i.e., if it is part of a keystroke command sequence .

Finally, your x_Keyln routine should test whether the value of ch is
inset_KEYSTATERESET. If the value of ch is inset_KEYSTATERESET, then your
x_Keyln routine should reset it’s parse state to the beginning of a
command sequence. It is a way to set up a cancel mechanism to allow
the user to cancel out of a keystroke command sequence. Of course, if
your inset does not handle sequences of keystrokes (and thus never
returns a value of inset_KEYPARTIALACCEPT), it can ignore values of
inset_KEYSTATERESET for ch.

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of
how to work with the x_Keyln construct.

Notifying an inset that it has received keyboard input

int inset_KeyIn(ip, ch)
struct inset ip;
int ch;

Description. If there is an x_Key/n routine defined for the inset ip,
inset_Keyln calls it with the parameters ip, the inset, and ch, the
character to send the inset ip.

Return value. If x_Keyin is defined, it returns whatever value x_Keyin
returns; else it returns NULL.

Usage. You should always use the inset{ Keyln procedure to cause an
inset x to handle keyboard input, rather than calling x_Key/n directly.

- 103 -

Providing a way for inset x to receive the input focus

X_ReceiveInputFocus(ip)
struct inset ip;

Description. if you are defining an inset named x and want the user to
be able to do keyboard input to the inset, you must provide the routine
x_ReceivelnputFocus. When the user chooses your inset as the input
focus, im_Interact will call x_ReceivelnputFocus. You must declare
x_ReceivelnputFocus with a single parameter, ip, a pointer to the inset.

In order to give the user feedback, your x_ReceivelnputFocus routine
should highlight (1) the inset and (2) the precise point of input within
the inset in some fashion. Then it should call a routine to get
keystrokes from the user.

It is possible that you will want your x_ReceivelnputFocus to call
inset_ReceivelnputFocus for one of its children. If you do, you should
first get the keystrokes, then you should call inset ReceivelnputFocus
for the child inset, and then pass the keystrokes down to the child inset
via the inset_Keyin procedure. In this way, your inset can trap
keystrokes prior to its child seeing them.

If you do not provide an x_ReceivelnputFocus routine for an inset x, the
fcllowing default will be used:

default_ReceivelInputFocus(ip)
struct inset *ip;
{
if (! ip->hasinputfocus) {
ip->hasinputfocus = 1;
inset_WantUpdate(ip, ip);

}

In this case, the hasinputfocus flag is set and the inset automatically
requests to be Updated.

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_ReceivelnputFocus construct. Note that Input
Focus only applies to characters that are sent from the user’s
keyboard; mouse events and menu selections always follow the mouse
cursor.

- 104 -

Notifying an inset that it has received the input focus

inset_ReceivelnputFocus(ip)
struct inset ip;

Description. If there is a x_ReceivelnputFocus defined for an inset,
inset_ReceivelnputFocus calls it.

Usage. If the user clicks within an inset’s rectangle, the parent should
notify the inset that it has the input focus by calling inset_Receive
InputFocus. You should always use the inset ReceivelnputFocus
procedure to cause an inset x to notify an inset that it has the input
focus, rather than calling x_ReceivelnputFocus directly.

Providing a way for inset x to give up the input focus

x_LoselnputFocus(ip)
struct inset ip;

Description. If you are defining an inset named x, and x will be
receiving the keyboard input from the user, you must provide the
routine x_LoselnputFocus. You must declare x_LoselnputFocus with a
single parameter, ip, a pointer to an inset.

This routine will be called when x no longer has the input focus.
x_LoselnputFocus should de-highlight the inset. If the inset has
passed the input focus down to one of its children, then it should call
inset_LoselnputFocus with the child’s inset as an argument in order to
notify the child that it has lost the input focus.

If an inset does not provide a LoselnputFocus routine the following
default will be used:

default_LoselInputFocus(ip)
struct inset ¥*ip;
{
if (ip->hasinputfocus) {
ip->hasinputfocus = 0;
inset_KeyIn(ip, inset_KEYSTATERESET);
inset_WantUpdate(ip,ip);

}

In this case, the hasinputflag is cleared, the insets key state is reset to
the null state and the inset requests to be Updated.

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_Losel/nputFocus construct.

- 105 -

Notifying an inset that it has lost the input focus

inset_LoseInputFocus(ip)
struct inset ip;

Description. If there is a x_LoselnputFocus defined for an inset,
inset_LoselnputFocus calls it.

Usage. If the user clicks outside an inset’s rectangle, the parent
should notify the inset that it has lost the input focus by calling
inset_LoselnputFocus. You should always use the
inset_LoselnputFocus procedure to notify an inset that it has lost the
input focus, rather than calling x_LoselnputFocus directly.

Providing a desired size routine for inset x

x_DesiredSize(ip, width, height, pass, desiredwidth,
desiredheight, attributes)

struct inset ip;

int width, height, pass, *desiredwidth, *desiredheight,
*attributes;

Description. If you are defining an inset named x, you may want to
p-ovide the routine x_DesiredSize. x_DesiredSize takes six
parameters.

The parent inset provides the first three parameters to the child. The
width and height specify a proposed width and height for the inset
pointed to by ip.

The parameter pass can take on one of three values:

NULL - if both dimensions are flexible.
WIDTHSET - if the width can not be changed.
HEIGHTSET - if the height can not be changed.

In response to these three parameters, x_DesiredSize should set three
values. The desiredwidth and desiredheight should be set to the size
that ip wants to be.

The attributes parameter is set to a OR-ed combination of any of the
following four values:

WIDTHSMALLER -the width could be made smaller
WIDTHLARGER - the width could be made larger
HEIGHTSMALLER - the height could be made smaller
HEIGHTLARGER - the height could be made larger.

or NULL, which indicates that the inset really wants to be the size it is

- 106 -

requesting.

The process of negotiating between the parent’s proposal and the
child’s request will normally take place during the call to the
x_FullUpdate of the parent. The actual size and position of the inset ip
will be set prior to the parent calling the x_FullUpdate procedure of ip.

If an inset does not provide a DesiredSize routine the following default
will be used:

default_DesiredSize(ip, width, height, pass,
desiredwidth, desiredheight, attributes)
struct inset *ip;
long width;
long height;
long pass;
long *desiredwidth;
long *desiredheight;
long *attributes;
{
*desiredwidth = width;
*desiredheight = height;
*attributes = NULL;

}

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_DesiredSize construct.

- 107 -

Negotiating the size of an inset

inset_DesiredSize(ip, width, height, pass,
desiredwidth, desiredheight, attributes)

struct inset ip;

int width, height, pass, *desiredwidth, *desiredheight,
*attributes;

Description. If there is a x_DesiredSize defined for an inset,
inset DesiredSize calls it.

When you make the call, width and height should be set to specify a
proposed width and height for the inset pointed to by ip.

The parameter pass should be set to one of three values:

NULL - if both dimensions are flexible.
WIDTHSET - if the width can not be changed.
HEIGHTSET - if the height can not be changed.

After the procedure call, desiredwidth and desiredheight will be set to
the size that ip wants to be. If x_DesiredSize did not exist, they will be
set to width and height.

The attributes parameter will be set to a OR-ed combination of any of
the following four values:

WIDTHSMALLER -the width could be made smaller
WIDTHLARGER - the width could be made larger
HEIGHTSMALLER - the height could be made smaller
HEIGHTLARGER - the height could be made larger.

if x_DesiredSize did not exist, attributes will be set to the NULL.
Usage. You should always use the inset_DesiredSize procedure to

notify an inset that it has lost the input focus, rather than calling
x_DesiredSize directly.

- 108 -

Providing a routine to handle mouse hits for inset x

struct inset *x_Hit(ip, action, x, y)
struct inset ip;
int action, x, y;

Description. If you are defining an inset named x, you must provide
the routine x_Hit. You must declare x_Hit with four parameters ip, a
pointer to the inset; action, the type of mouse hit that occurred,
decodable by the underlying window manager; x, the horizontal
location of the mouse cursor at the time of the hit; and y, the vertical
location. x_Hit will be called when a mouse hit occurs within the
rectangle administered by the inset.

In general, x_Hit should decode the action of the mouse hit and take
appropriate action, or if it believes that the hit actually belongs to a
child inset, it should call inset_Hit on the child inset.

Return value. If the inset itself handles the mouse hit, x_Hit should
return a pointer to the inset; if it has passed the mouse hit to one of its
children, it should return the value returned by its child’s x_Hit routine
so that the inset manager will know what inset gets the next mouse
event: The inset manager passes all DownTransitions down the inset
tree. After a DownTransition and until the UpTransition, all mouse
events (i.e.,, DownMovements) will go to the inset that actually handled
the initial DownTransition. The DownMovements, of course, can always
be filtered further down the inset tree (from parent to child).

If an inset does not provide a Hit routine the following default will be
used:

struct inset *default_Hit(ip, x, y, action)
Struct inset *ip;

{

return ip;

}

Notifying an inset that a mouse hit has occurred in its rectangle

struct inset *inset_Hit(ip, action, x, y)
struct inset ip;
int action, x, y;

Description. If there is a x_Hit defined for inset ip, inset_Hit calls it.

Usage. You should always use the inset_Hit procedure to notify an
inset that it has received a mouse hit, rather than calling x_Hit directly.

Communicating from an inset to its parent

The following routines are called by the inset to request an action of its
parent.

Providing a way to an inset x to request an update
x_WantUpdate(ip, descendant)

Description. If you are defining an inset named x, you must provide
the routine x_WantUpdate. You must declare x_WantUpdate with two
parameters: an inset ip and a chiid of the inset, descendant.
x_WantUpdate will be called when the descendant inset, which must ba
a child of the inset ip, wants to be updated.

If an inset does not provide a x_WantUpdate routine the following
default will be used:

default_WantUpdate(ip, descendant)
struct inset *ip;
struct inset *descendant;
{
if (ip == descendant && ! ip->changed)
inset_WantUpdate(ip->parent, descendant);

}

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_WantUpdate construct.

- 109 -

- 110 -

Reqdesting an update

inset_WantUpdate(ip, descendant)
struct inset ip, descendant;

Description. If there is an x_WantUpdate routine, it calls it with ip, the
parent inset, and descendant, the child inset, as arguments; else if the
inset ip has a parent, it calls inset_WantUpdate with the parent and
descendant.

Usage. If an inset wants to request that it should be updated, it should
call inset_WantUpdate with both arguments set to itself. You should
always use the inset_WantUpdate procedure to notify a parent inset
that an inset needs an update, rather than calling x_WantUpdate
directly.

Providing a routine for requesting the input focus

x_WantInputFocus(ip, descendant)
struct inset ip, descendant;

Description. If you are defining an inset named x, you may want to
provide the routine x WantinputFocus. It will be called when the
descendant inset desires the input focus.

If an inset does not provide a x_Want/nputFocus routine the following
default will be used:

default_WantInputFocus(ip, descendant)
struct inset *ip;
struct inset *descendant;
{

if (ip->parent) inset_WantInputFocus(ip-
>parent, descendant);}

Usage. You should refer to BE2 Basics, pp. 11 - 79 for examples of how
to work with the x_WantInputFocus construct.

- 111 -

Requesting the input focus

inset_WantInputFocus(ip, descendant)
struct inset ip, descendant;

Description. If there is an x_WantinputFocus routine, it calls it with ip,
the parent inset, and descendant, the child inset, as arguments; else if
the inset ip has a parent, it calls inset WantInputFocus with the parent
and descendant.

Usage. You should always use the inset WantinputFocus procedure to
notify a parent inset that an inset needs the input focus, rather than
calling x_WantinputFocus directly.

Along with the inset_routines, the standard inset package provides the
following:

inset_InitStructure(name, ip)
This takes an inset structure and its name and generates a list of standard

procedures. It will put in defaults for procedures that are not provided and
sets the value of a routine to NULL if there is no proper default.

Inset/Window Management Routines

The following routines are the inset-window management routines available in
BE2. The routines in this package handle the interface between a top level
inset and the underlying window management system. Thus, a programmer
can create a window by calling the underlying window management system,
and associate an inset with that window, as well as create and control menus.
Note that the handle used in communication with this package is not a pointer
to an inset, but rather a pointer to a window.

All inset/window management routines are prefixed by im .
Creating and deleting window insets
Creating a window to be used by an inset

struct im_window
*im_CreateWindow (host)
char *host;

Description. im_CreateWindow creates a window that can be used by
the im_FillWindow routine which associates an inset with the window.
The parameter host is the name of the host machine that is passed to
the underlying window management system so it can determine what
rmachine the window will be brought up on.

Return value. If successful, im_CreateWindow should return a pointer
to a new window.

Usage. If you want the window to be brought up on the normal host,
pass in NULL (or Q) for the host value. Passing nothing in for this
argument will lead to random program behavior.

- 113 -

- 114 -

Deleting a window

im_DeleteWindow (win)

ot

struct im_window *win;

Description. If you have created a window, you can use this routine to
delete it and its corresponding window. The window itself is deleted,
but any inset visible in the window will not be destroyed. The
parameter win is a pointer to the window to be deleted.

Usage. Since the routine does not call inset_Destroy automatically, if
you want any inset visible in the window to to deleted to be destroyed
you should call inset Destroy specifically.

Putting an inset in a window

im_FillWindow(win, in)
struct im_window *win;
struct inset in;

Description. This procedure associates a specific inset with a window
and places the inset in the window created with im_CreateWindow.

The parameters win and in specify the window to be used and the inset
tc be placed in it, respectively. All mouse and keyboard events
occurring in the window will be directed to the inset in the window.

Communicating from the parent to the window inset

Updating the windows

im_ForceUpdate ()

Description. This routine forces an update on all the windows and
insets that have requested they be redrawn via inset WantUpdate, by
calling the procedure inset_Update.

Usage. See the section on Inset Routines pp.109-111 for complete
descriptions of the inset WantUpdate and inset_Update procedures.

- 115 -

Doing a full update on all the windows

im_ForceFullUpdate (win)
struct im_window *win;

Description. This procedure causes window to be cleared and
redrawn by calling on the procedure inset_FullUpdate. The parameter

win indicates the particular window to be redrawn: if win is NULL, all
windows wiil be fully redrawn.

Usage. See the section General Inset Routines pp. 96 - 98 for a full
description of the inset FullUpdate procedure.

Interacting with the outside
An interaction loop routine

im_Interact(mayBlock)
int mayBlock;

Description. im_Interact is an interaction routine that performs one of
the following "user-interactions” and then returns.

Performs one character event of a keyboard macro.

Handles a redraw request from the underlying window
management system,

Reads a character from a window and calls the
appropriate inset_Keyln or inset_Hit procedures,
depending upon whether the character represents
keyboard input or a mouse hit.

Handles input available from an arbitrary file descriptor.
Executes an event from the timer event queue.

Return Value. The procedure returns a boolean: FALSE if the /Interact
foop should be performed; TRUE if loop should end.

Usage. Since the procedure returns after performing a single
operation, it must be called from a while loop in order to accomplish
what in Unix/Emacs terms is called a recursive edit.

- 116 -

Handling an arbitrary file descriptor

im_AddFileHandler(f, handler, param, priority)
FILE *f;

int (*handler) ();

char *param;

int priority;

Description. One of the operations that im_Interact can perform is
calling an input handler for a file descriptor from which input is sought.
Such an operation is enabled by calling im_AddFileHandler, which
associates a function to be called with the file descriptor when input is
available.

The parameter f is the pointer to a file in which the caller is
interested. handler is the address of a procedure to call when input
appears from the file descriptor. param will be passed to the
procedure provided by handler, when it is called. The procedure
provided by handler is called with two parameters, the first being the
file descriptor upon which input is available, and the second being a
parameter associated with this call to im_AddFileHandler. The last
parameter is a priority. BE2 can only remember a fixed number of
handlers, and the ones that it keeps are those associated with the
smallest-numbered priority.

Return Value. Returns a boolean: TRUE if the procedure was successful
in associating a function to be called with the file descriptor; FALSE
otherwise.

Removing a handler

im_RemoveFileHandler (f)
FILE *f;

Description. This procedure removes one handler for the named file
descriptor from the list of handled file descriptors. The parameter f is
a pointer to the file descriptor.

Data Object Routines

The following routines are the standard routines that must be provided by a
data object. There are two groups of routines: (1) x_ routines that you must
provide when you define a data object for the inset named x and (2) data_
routines, located in data.c, that you must use to call upon a particular inset’s
x_routines. The discussion divides the routines into the following groups:

Creating and deleting data objects
Reading and writing routines
Viewing routines

For each x_ routine, there is a corresponding data_ routine or macro. The
data_ routine typically sets up the inset so that its information is current, and
then calls the corresponding x_ routine. You should always use the data_
routines to call the x_ routines for two reasons: First, it is easier for you to
call an an data_ routine than to call the x_ routine, because you don’t need to
manage the set up. Second, it is easier to define an inset d if it can assume
that certain conditions will be true when it is called.

Creating and deleting data objects
Providing a creation routine for a data object

struct data *data_NewData (name)
char *name;

Description. If you are defining a data object named d, you must
provide the routine data_NewData. You must declare data NewData
with a single parameter, name, the name of the new data object.

Return value. If successful, data_NewData should return a pointer to
the struct data that it has created; NULL for failure.

Initializing a data object structure

data_InitStructure (name, dop)
char *name;
register struct data ¥*p;

Description. This routine takes a data object structure and the name
and generates the list of standard procedures. The routine puts in the
defaults for procedures that are not provided and sets the value of the
routine to a null routine if there is no proper default.

- 117 -

- 118 -

Deleting a data object

data_FreeData (dop)
register struct data *dop;

Description. This routine frees the storage held by the data object
given by dop. It should recursively free any data objects contained
within it.

Reading and writing routines

These routines are called by a data object to act on another data object.

Reading a data object

struct data *data_Read (dop, d,start, length)
register struct data *dop;

char *d;

int start, length;

Description.This routine reads the ascii representation of the
appropriate data object, modifying the data object given by dop. If the
routine encounters the representation of another data object,it will
recursively call another data object’s read routine. When it calls on
the child to read its description, the parent data object does not need
to understand the data the child is reading.

Writing to a data object

data_Write (dop, d, start, length)
register struct data *dop;

char *d;

int start, length;

Description. This routine takes a pointer to a data object dop, and
writes the ascii representation of the data object to the file. It should
recursively call data_Write on any objects in encounters recursively.

- 119 -

Finding out if a data object has been modified

data_GetModified (dop)
register struct data *dop;

Description. Since data objects can be read and written by other data
objects, you may need to keep tabs on modifications made to a data
object. This procedure indicates whether the data object has been
modified since the last time it was written.

Return value. Boolean. True if data object was modified, Faise
otherwise.

Usage. If a data object does not provide a GetModified routine, the
following default will be used:

default_GetModified(dop)
struct data *dop;

{
}

return (dop->modified != 0);

Setting a flag on a data object if the flag was modified

cata_SetModified (dop, flag)
register struct dat *dop;
int flag;

Description. You may want the flag for a data object set to a certain
value, despite changes made to it. This routine sets the flag for the
data object specified by the pointer dop to the value flag.

Usage. If a data object does not provide a SetModified routine, the
following default will be used:

default_SetModified(dop, flag)
struct data *dop;
int flag;

{
}

dop->modified = flag;

- 120 -

Viewing routines

Viewing routines are used to associate an inset with a data object.
Adding an inset to a list of insets viewing the data object

data_AddViewer (data, inset)
struct data *data;
struct inset *inset;

Description. This routine adds the inset inset to the list of insets that
are viewing the data object data. When an inset is added to this list it
is requesting that the data object calls its WantUpdate routine
whenever the data object is changed.

Usage. If the data object does not provide an AddViewer routine, the
following default will be used:

default_AddViewer(dop, ip)
struct data *dop;

struct inset *ip;

int flag;

{

struct insetlist *in;

for (in = dop->viewers;
in != NULL && in->ip != ip;
in = in->next);

if (in = NULL) {
in = (struct insetlist *
malloc(sizeof (struct insetlist));
in->ip = ip;
in->next = dop->viewers;

dop->viewers = in;

-121 -

Removing an inset from the list

data_RemoveViewer (data, inset)
struct data *data;
struct inset *inset;

Description. This routine removes the inset from the list of insets that
are viewing the data object data.

Usage. The default routine is as follows:

default_RemoveViewer(dop, ip)
struct data *dop;
strucft inset *ip;
int flag;
{
struct insetlist *in;
struct insetlist *pin = NULL;

for (in = dop->viewers;
in != NULL && in->ip != ip;
in = in->next) pin = in;

if (in != NULL) §

if (pin = NULL)
dop->viewers = in->next;
else
pin->next = in->next;
free(in);

}

Finding the default inset for viewing the data object

data_InsetName(dop)
register struct data *dop;

Description. This routine returns the name of the default inset to be
used for viewing objects of the type of the data object pointed to by
dop.

Usage. The default routine is as follows:

char *default_InsetName(dop)
struct data *dop:

{

return dop->datacbjectname;

}

Menu Routines

A BE2 application may control several windows. At any given time, each
window has a set of available menu items. These items are available
anywhere the mouse is clicked appropriately, i.e., middle-button click, within
that window. The menu items available to a user is specified in an application
by a Menulist. Menu lists are used by insets to describe which items should
appear in a menu and the kind of processing that should take place if a menu
item is selected. The menu package is used by insets to define and
manipulate menu lists.

Menu items are provided by the insets in the window. Each inset may have
any number of menu lists. Each list described the menu items an inset wants
at a given time. Like everything else in BE2, the installation of menu items in a
window is made for an inset by its parent. Whenever an inset wishes to
provide a certain collection of menu items, it passes the list of the menu items
to its parent. The parent is then responsible for making those menu items
available to a user of a program (if deemed appropriate by the parent).
Typically, a parent will just pass the list up to its parent, until the top of the
inset tree is reached, where the inset manager will perform the actual window
manager calls to install the menu items. An inset may decide to change its
menus during execution. For example, a drawing editor may change the
menus depending on what kind of object has been selected for manipulation.
Whenever an inset desires the menus to change, it will call its parent with a
different list of desired menu items.

The inset manager provides an interface for the “top-most” inset to use to
install menus. The implementation of the interface will execute the necessary
window manager calls for installing the desired menu items. BE2 applications
should never make window manager calls directly for menu manipulation.

Menu definition and installation

The current menu facility separates menu definition and menu installation.
Menu definition is the process of creating the available menu items. Menu
installation is the process of making menu items visible (and selectable) by
the user. Some applications may choose to combine these two processes, but
we will try to keep them separate in our discussion.

An inset typically defines a menu when it is created and initialized. Typically,
the /nit procedure of an inset will create all the menu lists that it will ever use,
and keep these menu lists as local variables. In many circumstances, it will be
possible for all insets of the same type to share menu lists.

Empty menu lists are created by calling menu_NewML which returns a value
of type MenulList. menu_NewML takes a single parameter, the inset that is
building the menu list (usually, the inset making the NewML call). ltems are
added to the menu list by repeated calls of menu_AddToML, which takes four
parameters:

MenuList: The menu list which to be appended with a new menu item;

- 123 -

=124 -

menuString: A pointer to the string that is to be used to denote the menu item
to the user;

proc: A pointer to the procedure that should be called when the menultem is
selected (see below)

rock: A long word worth of arbitrary data to be passed to proc when called
(see below)

When a menu list is no longer needed, such as when the inset is about to be
destroyed, then the menu list should be discarded by using the procedure
menu_FreeML, which takes as its only parameter the menu to be reclaimed.
Typically, this call will be made in the inset’s Destroy procedure.

When a menu item is selected by the user, the procedure specified in the
menu item will be called with the following two parameters:

inset : A pointer to the inset responsible for the menu item (as passed to
NewML)

rock: A long word of arbitrary data. This is the datum that was specified in the
menu_AddToML cali for this menu item.

The selection of a menu does not, by itself, cause any changes in the
available menus to the user, nor does it change the input focus.

Eventually a menu list must be presented to the inset manager (or its
functional equivalent) where the list will be converted in appropriate window
manager calls. Typically, the final menu list will be produced by the topmost
inset. There are several paradigms that children insets can use to negotiate
with their parents about menu lists. After discussing the protocol used for
communicating menu lists between parent and children insets, we will
consider two specific paradigms that can implemented with the protocol.

In all paradigms, the communication between parent and children insets about
menu lists takes place through the WantMenuList procedure. This procedure
must be provided by every inset (we will discuss the default procedure
below). A typical call of this procedure to establish the menus desired by an
inset would look like:

WantMenuList(parent,self,DesiredMenuList)
This should be read that the WantMenuL.ist in the inset’s parent
(parent.WantMenuList) should be called with the parameters of the requester
of the menu list change (self) and the menu list that should be used by the

application (DesiredMenul.ist). This would be coded as:

inset_WantMenuList(ParentInsetPointer,CurrentInsetPointer,DesiredMenuList);

where ParentinsetPointer and CurrentinsetPointer are presumed to be

declared and initialized appropriately.
Focus-controls and universal menus

Two common paradigms that can be used by children and parents for
manipulating menus are Focus-controls-menu and Universal-menus (also
known as Menu-Chaos).

Focus-controls-menus uses the paradigm that the current focus of interaction
(usually keyboard interaction), should control which menus are available.
Therefore, when an inset receives the input focus, it should call the
WantMenuList procedure of its parent, passing the menu list that it would like
to have displayed. When the inset loses the input focus, it should call its
parent with an empty menu list indicating that it no longer wants its menus to
be displayed. (Note: an empty menu list is not a null -- an empty menu list is
returned by a call to menu_NewML and must be freed, when no longer
needed, by corresponding calls to menu_FreeML.) The menu list provided by
the "focused” inset completely specifies the available menu items for the user
-- no other menu items will be displayed.

In the focus-controls-menus paradigm, the parent of a focused inset would just
pass the same menu list up to its parent without changing the "requester of

the menu list change”. This would correspond to the procedure:

procedure WantMenuList(RequestingInset,RequestedMenuList);

{
}

WantMenuList(parent,RequestingInset,RequestedMenulist);

(Note: the first parameter is Requestinglnset, not self as before.) The topmost
inset would call the inset manager interface to the window manager to install
the desired menus. (Note: when an inset loses the input focus, an empty
menu list would be get passed up the inset tree unti lit reached the inset
manager, which would cause all menu items to be removed.)

Universal-menus uses the paradigm that all menus for all insets should
always be available. Menus come into existence when the inset is created and
disappear when the inset disappears. The rest of the discussion assumes that
containing insets are created by their parent inset when the parent inset is
created, and they are destroyed by the parent inset when the parent inset is
destroyed.

When an inset runs its /nit procedure (after being created), it not only creates
its menu list, but immediately calls its parent WantMenuList to request that the
menu list be used. The parent will not call its parent WantMenulList. Instead,
the parent will save the child’s menu list in a local variable of the parent
dedicated to that child. When the parent has created all of its children, it will
have stored in local variables the menu list that each child requested. The
parent will create its own list, concatenate all of the lists, and pass the new
list to its parent by making a WantMenuList call. Concatenation of lists is
accomplished by the menu_ChainML procedure. This procedure takes two

- 125 -

- 126 -

menu lists as arguments. The second chain will be logically appended to the
first chain. Naturally, if a parent has only one child and no menu lists of its
own, then it would just pass the child’s menu list up to its parent. Like the
focus-controls-menus paradigm, the topmost inset would pass the final list to
the inset manager for translation into appropriate window manager calls.

Because we assume that an inset is destroyed by its parent, the parent knows
that the menus need to be redefined, and will make calls to its parent after
destruction of the child (after reconstructing a new concatenated menu list).
Note: this implies that the WantMenuList procedure must distinguish between
the time it is called for initial setup and the time it is called to update an
already established collection of insets. One easy way to accomplish this goal
would be to check if the requesting inset had already provided a desired
menu list. If not, then the passed list is being provided as an initial value to be
stored for later use. If a menu-list value already exists for that inset, then an
update is being made and the reconstructed menu list should be immediately
passed up the inset tree.

Of course, these two paradigms can be used in combination. For example, we
might believe that the topmost inset may have some menu items with
universal availability, e.g., Quit, while all other insets would have menus only
on becoming "focused”. When the focused inset’s menu list reached the top
most inset, the top most inset would concatenate its own list before passing
the resulting menu list to the inset manager.

Another combination is that an inset may have one set of menus when it is
focused and another when it is not. When an inset is focused, it passes its
"active” menu list to its parent; when it loses the focus, it passes its
"passive” menu list to its parent. However, the parent implementation of
WantMenuList changes radically from the Focus-controls-menus paradigm.
That paradigm had the parent just passing up the menu list (eventually to the
inset manager). If that were done here, the inset manager would first cause
the menus of the deactivated inset to be installed, then almost immediately,
the activated inset’s menu list would replace the deactivated inset's menu list
by another call up the inset tree to the inset manager. Instead, each parent
must collect the menu lists of its children, like in the universal-menu
paradigm. The critical difference is when to call a parent’s WantMenuList. The
appropriate time is when the parent has finished executing its ReceiveFocus
procedure, which would typically look like:

ReceivelnputFocus(parent) {

call "correct” child's ReceivelnputFocus(self);

/* some time here child calls WantMenuList which stores menu
list¥#/

construct new menu list of activated and passive children, and
self;

parent.WantMenulList;

}

- 127 -

Menu procedures
This section describes the menu package and its related routines.
Creating a menu list

MenuList *menu_NewML(OwnerInsetPtr)
inset *OwnerInsetPtr;

Description.This procedure creates an empty menu list pointer that is
"owned” by the Ownerinset. The OwnerinsetPtr is passed to
procedures called when menu items in the list are invoked.

Freeing a menu list

menu_FreeML(MenuListPtr)
MenuList * MenuListPtr;

Description.This procedure frees the designated menu list. Other menu
lists that were prepended to this menu list now have undefined chains
and need to be unchained.

Adding & menu to a menu list

menu_AddToML (MenuListPtr, MenuProc, menuString, rock)
MenuList *MenuListPtr;

char *MenuProc;

char *menuString;

long rock;

Description. This procedure adds a menu item to a menu list. The
MenuProc is the procedure that will be called when the menu item is
selected. The MenuString is the user visible presentation of the menu
item. The rock is an long datum that will be passed to the MenuProc
when the menu item is selected. If the string is aleady in the menu list,
the MenuProc and rock associated with the string will be changed. The
effects of adding a menu item with a string that is the same as another
menu item in a chained menu list is undefined. This call changes the
version number of the menu list.

- 128 -

Deleting @ menu item from the menu list

menu_DeleteFromML (MenuListPtr, menuString)
MenuList *MenuListPtr;
char *menuString;

Description.This procedure deletes the menu item with the given
menuString from the menu list. Chained lists are not examined. If no
menu item has the string, then no change is made to the menu list.
This call changes the version number of the menu list.

Clearing a menu list

menu_ClearML (MenuListPtr)
MenuList *MenuListPtr;

Description.Clears a menu list out completely. This call has no effect
on chained menu lists. This call changes the version number
associated with the menu list.

Connecting two menu lists

menu_ChainML(FirstMenuListPtr,NextMenuListPtr)
MenuList *FirstMenuList, *#NextMenuListPtr;

Description.This procedure is used to logically connect two menu lists.
The chain headed by NextMenulList is appended to the chain headed by
FirstMenuList. Menu lists in either chain may be altered without
affecting the chaining, i.e., one can add, delete or clear a menu list and
the lists will still be chained. Freeing a menu list will cause the
chaining of the menu lists to become illegal -- one should unchain lists
first by calling UnlinkML(NextMenuListPtr) (see below). This does not
changed the menu list’s version number.

- 129 -

Positioning the pointer

menu_RewindML(ML)
MenuList *ML;

Description.Position the hidden menu list pointer to the start of the
menu list.

Getting the next item from a menu list

long menu_NextME (ML, aproc, astring, arock)
MenuList *ML;

char *¥*aproc;
char **astring;
long *arock;

Description.Get the next menu item from a menu list. Returns 0 for the
menu string if no more menu items; returns some undefined non-zero
value if the parameters were set. Note that calling menu_NextME
repeatedly after a menu_RewindML is defined to show you the entire
contents of the menu list.

Splitting a menu list chain

menu_SplitML(MenuListPtr)
MenuList *MenuListPtr;

Description. This procedure is used to logically split the chain
containing the menu list denoted by MenuListPtr. The menu list before
MenuListPtr will become the end of its chain, the rest of the chain will
start with MenuListPtr. This does not change any menu list’s version
number.

Finding chained menu lists

MenuList “*menu_ChainedML(MenuListPtr)
MenuList *MenuListPtr;

Description. This procedure returns a pointer to the menu list that is
chained (logcailly follows) the specified menu list. If no menu list is
chained, then 0 is returned.

- 130 -

Changing the owner of a menu list

menu_OwnML(MenuListPtr,OwnerInset)
MenuList #*MenuListPtr;
inset *OwnerlInset;

Description. This procedure sets the owner of a menu list to the

specified Ownerlnset. This is as if the NewML had been called with
Ownerlnst. This does not change the version number.

Finding the owner or a menu list

inset *menu_MLOwner(MenuListPtr)
MenuList *MenuListPtr;

Description.This procedure returns the owner” inset of the menu list.

Finding the version number of a menu list

long menu_GetMLVersion(ML)
MenuList *ML;

Dascription. This call returns the version number of a menu list. It can
be used to check if the contents of a menu list are the same as at
some other time.

- 131 -

Telling the inset you want a menu list

inset_WantMenuList (called_inset,requesting_inset, ml)
inset *called_inset, *requesting_inset;
MenulList #*ml;

Description. Calls the WantMenuList procedure of the called inset with
the other two parameters. Normally, the called inset would be the
parent inset and the requesting inset would be the inset calling
inset_WantMenulist. The default procedure is that the called_inset is
the parent inset and the other two parameters are passed up
unchanged. See the discussion of inset communication for more
information.

Getting user response

MenultemHit(OwnerInsetPtr, Rock)
inset *OwnerInsetPtr;
long Rock;

Description. When a menu item is hit, a procedure with the above
signature (parameters) is called. The OwnerlnsetPtr is the owner that
was specified in the menu list, and the rock is the long datum specified
in the AddMenultem call.

Interfacing between BE2 and the window manager

im_InstallML(MenuListPtr)
MenuList *MenuListPtr;

Description. This procedure provides an interface between BE2 and the
underlying window manager. The top most inset responsible for menus
should call im_InstalIML with the menu list that should be used for the
application.

The Keymap Package

The keymap package provides a set of facilities that will often make writing
the x_Keyln procedure for an inset x substantially easier. The keymap
package allows you to bind sequences of keyboard characters to procedures.
Typically, each procedures will be command procedure, i.e., the procedure
will interpret the sequence of characters that the user types as a command. If
you use the keymap package facilities to bind a sequence of characters to a
procedure and set up your x_Key/n accordingly, then when the user types that
sequence, the im_Interact loop (see p. 115) will invoke the corresponding
procedure. For example, if you bind ctr/-x ctri-s to a procedure called
Write_Buffer_to_File, then when the user types ctr/-x ctrl-s, the im_Interact
loop will invoke Write_Buffer_to_File. Likewise, if you bind the keystroke a to
Insert_Character, then when the user types an a, the Im_Interact loop will
invoke the procedure Insert_Character. To use the keymap facilities, you
must make calls to the keymap library to make the bindings and you must
write the procedures.

Introduction to keymap facilities

Formally, a keymap is a function that maps a sequence of keyboard characters
to a procedure. To understand how keymaps work, it is useful to think of a
keymap as an array with 128 entries, one for each AsSCll character. Each entry
in the keymap array may have one of three values: a procedure, another
keymap, or a special value used to indicate that the character has no binding.

Bindings
Procedure bindings

Whenever the user types a character, the character is used as an index into
the keymap array. If the array value for the character is a procedure, then the
mapping is done and the procedure is executed. For example, suppose the
keymap Edit_BasicCommands maps ctr/-s to the procedure

Edit SearchForward. Then when the user types a cirl-s, the character is
mapped to the procedure SearchForward, which is then executed.

Sub-keymap bindings

If the array value for the character that a user types is another keymap, then
the specified keymap will be used to map the next character that the user
types. For example, suppose that the keymap Edit_BasicCommands maps
ctrl-x to another keymap, Edit_eXtendedCommands, and that ctr/-s in the
keymap eXtendedCommands maps to the procedure WriteBuffertoFile. Then
when the user types ctr/-x, the keymap eXtendedCommands will be used to
interpret the next character that the user types. If the user types ctr/-s, then
that will map to the procedure WriteBufferToFile, which will be executed.

A keymap that itself has sub-keymaps defines an implicit tree, where one
keymap is the root keymap, and the other sub-keymaps are branches.

- 133 -

- 134 -

No bindings

Finally, if the character that the user types maps to a value that indicates
there is no binding, then the keymap returns a status code indicating that
there was no procedure bound to that sequence of keys.

Keystates

If keymaps only mapped single keys to procedures, then there would be no
need to keep track of the state of the mapping. To map sequences of keys to
procedures, however, requires keeping state information. For instance, the
mapping process must know which keymap is being used to evaluate the next
incoming character. This state information is kept in a keystate that you must
associate with the root keymap that you create.

Additional keymap facilities
Arguments

The keymap package allows you to define numeric arguments as part of a
character sequence. Numeric arguments are typically used in order to allow
the user to repeat a command easily or to allow the user to specify an
alternative value for a command’s parameter. For example, the Document
package (see p. 151) defines ctr/-u as an argument procedure. If the user
types the character sequence ctri-u 10 ctri/-f, the procedure Forward executes
10 times, resulting in the text cursor moving forward 10 characters.

Last Command

The keymap package also provides facilities that allow you to keep track of
the last command that the user has entered. This information is useful if the
behavior of procedures you are writing needs to be depend upon previous
procedures that the user has called. For example, the Document package
(see p. 151) makes the behavior of ctr/-n and ctr/-p depend upon whether the
previous character was a ctr/-n or ctr/-p.

Parent-Child parallel processing of keys

Finally, the keymap package allows you to let a parent inset and a child inset
interpret a character in parallel, specifying which inset should take
precedence if both the parent and the child want to accept the key. For
example, if you are programming a stand-alone application inset, the top level
inset provided by the Inset Manager maps ctri-c to exit. But the Inset
Manager sends the key to to the top level inset and to the your inset in
parallel, giving you precedence. Thus, if you want to define ctr/-c yourself,
you can, and your definition will prevail. On the other hand, if you are working
with a child inset, you may want offer keys to both your inset and to the child,
but override the child inset’s interpretation in some cases. For example, if
you use the Document package (see p. 151) to create a child inset, you may
wish to override its mapping of ctr/-s to view_search and provide your own

search function. In that case, you would offer keys to your inset and the child
document inset in parallel, but give your inset precedence.

Keymap routines
Creating a keymap

struct keymap
keymap_create()

Description. keymap_create creates a new keymap by dynamically
allocating memory for a keymap structure. In addition, it initializes the
newly allocated keymap structure so that all the keymap entries have
the status keymap_EMPTY, that is, no procedures and sub-keymaps are
bound to characters.

Return value. keymap_create returns a pointer to the newly created
keymap.

Usage. If you are creating an inset named x and you want to use
keymaps, then in the x_Init procedure for the inset, you should call
Xx_kmap = keymap create () for each keymap that your inset needs.
After calling keymap_create, you will use the pointers to bind
cnaracters to procedures and other keymaps.

Example.

struct keymap *Edit_BasicCommands;
struct keymap *Edit_eXtendedCommands;

Edit_BasicCommands = keymap_create();
Edit_eXtendedCommands = keymap_create();

creates two keymaps, EditText Keymap and
EditText_eXtendedCommands.

- 135 -

- 136 -

Binding a character to a procedure

keymap_insertproc (kmap, c, procedure)
struct keymap *kmap;

int c;

char *procedure;

Description. keymap_insertproc sets the keymap, kmap, to return
procedure whenever the user types the character c.

Usage. If you are creating an inset named x and you want to use
keymaps, then in the x_/nit procedure for the inset, you should call
x_keymap_pointer = keymap_create () for each keymap that your inset
needs. Then you should call keymap_insertproc as needed for the
procedure entries that you want defined in your keymaps.

Example.

struct keymap *Edit_BasicCommands;
struct keymap *Edit_eXtendedCommands;

EditText BasicCommands = keymap_ create();
EditText_eXtendedCommands = keymap_create();

keymap_insertproc(Edit_BasicCommands, '\016', Edit_NextLine);
keymap_insertproc(Edit_BasicCommands, '\023', Edit_Search);
keymap_insertproc(Edit_eXtendedCommands, '\023',
Edit_WriteBufferToFile);

associates the procedure Edit_NextLine with the character \016,’ a
ctrl-n, and the procedure Edit_Search with the character \023,” a ctrl-s
in the keymap Edit_BasicCommands; it associates the procedure
Edit_WriteBufferToFile with ctri-s in the keymap
Edit_eXtendedCommands.

- 137 -

Binding a sequence of keys to a procedure

keymap_insertmap(kmap, c, sub-keymap)
struct keymap *kmap;

int c;

char *sub-keymap;

Description. keymap_insertmap associates the specified character, c,
with the sub-keymap for the keymap, kmap. When the user types the
specified character, the next character the user types will be
interpreted by sub-keymap.

Usage. If you are creating an inset named x and you want to use
keymaps, then in the x_/nit procedure for the inset, you should call
Xx_keymap_pointer = keymap_create () for each keymap that your inset
needs. Then, if you want to associate a sub-keymap with an entry in a
keymap, you should call keymap _insertmap.

Example.

struct keymap *Edit_BasicCommands;
struct keymap *Edit_eXtendedCommands;

EditText_BasicCommands = keymap_create();
EditText_eXtendedCommands = keymap_create();

keymap_insertmap(Edit_BasicCommands, '\030',
Edit_eXtendedCommands);

associates the keymap Edit_eXtendedCommands with the character
N\030," a ctrl-x, in the keymap Edit BasicCommands.

Binding a character to null

keymap_insertnull(kmap, c)
struct keymap *kmap;
int c;

Description. Associates a NULL operation with keymap kmap’s
character, c.

Usage. When you create a keymap, all the characters in the keymap
are associated with NULL operations by keymap_create. Thus, the only
reason to call keymap_insertnull is if you want to rebind a key to a NULL
operation.

- 138 -

Creating state information for a keymap

struct keystate
*keymap_newstate (kmap)
struct keymap *kmap;

Description. keymap_newstate allocates a new keystate for the
keymap, kmap, and initializes it.

Return value. keymap_newstate returns a pointer to the newly
allocated keystate.

Usage. If you are creating an inset named x and you want to use
keymaps, then in the x_/nit procedure for the inset, you should call
X_keymap_pointer = keymap_create () for each keymap that your inset
needs. Then, you should call keymap_insertproc or keymap_insertmap
as needed to bind procedures and sub-keymaps to character entries in
the keymap. Finally, you should call keymap newstate to create and
initialize a keystate for the root keymap, and store the keystate with
your inset.

Example.

struct Edit_inset {
struct inset *insetp;
struct keystate *kstate;
{Edit_insetp;

struct keymap *Edit_BasicCommands;
struct keymap *Edit_eXtendedCommands;

EditText_BasicCommands = keymap_create();
EditText_eXtendedCommands = keymap create();

keymap_insertproc(Edit_BasicCommands, '\016', Edit_NextLine);

keymap_insertproc(Edit_BasicCommands, '\023', Edit_Search);

keymap_insertmap(Edit_BasicCommands, '\030',
Edit_eXtendedCommands);

keymap_insertproc(Edit_eXtendedCommands, '\023',
Edit_WriteBufferToFile);

Edit_insetp->kstate = keymap_newstate (Edit_BasicCommands);

- 139 -

Mapping sequences of keys

int

keymap_char(kstate, insetp, c)
struct keystate *kstate;
Struct inset *insetp;

long c;

Description. keymap_char performs one step in mapping a sequence
of characters to a procedure. It simulates the typing of the character ¢
to the keystate kstate. If the kstate maps the character to a procedure,
keymap_char calls the procedure with two parameters, insetp and c.
If the kstate maps to a sub-keymap, keymap _char sets the kstate so
that the next character that the user types will be mapped using the
sub-keymap.

Return value. keymap_char returns inset KEYACCEPTABLE if procedure is
called, inset_KEYUNACCEPTABLE if no binding for the character sequence
was found, and inset_KEYPARTIALACCEPT if it is in the middle of
processing a key sequence.

Usage. If you have defined a keymap, then you should call
keymap_char in your x_Keyln procedure. Your x_Keyln procedure
should check the return value of keymap char. If it is
inset_KEYACCEPTABLE, you should call inset WantUpdate for the inset.

Example.

X_KeyIn (insetp, c)
struct inset *insetp;
long c; f

register struct x_inset *x_insetp = (struct x_inset *) (insetp);
register int result;

result = keymap_char (x_insetp->kstate, insetp, c);
if (¢ = inset_KEYSTATERESET)
return result;
if (result = keymap_KEYACCEPTABLE)
inset_WantUpdate (insetp, insetp);
return result;

}

This example shows how to set up an inset for working with keymap’s
within x_Keyln. Note that the example assumes that you have stored a
pointer to the keystate (see keymap_newstate) in Xx_insetp-> kstate.

- 140 -

Initializing a keystate

keymap_initstate(kstate, kmap)
struct keystate *kstate;
struct keymap *kmap;

Description. This procedure initializes the keystate kstate for the
keymap kmap. If kmap is NULL, then kstate is reset to its initial state
using the keymap with which it was previously associated.

Usage. keymap_newstate calls keymap_initstate to initialize a new
keystate. Thus, the only reason to call keymap_initstate is to re-
initialize a keymap's keystate.

Parallel processing of keys

If you are working with child insets, the keymap package allows you to let
your inset and a child inset interpret a character in parallel, specifying which
should take precedence if both you and the child want to accept the key. For
example, the top level inset provided by the Inset Manager maps ctrl-c to exit.
But the Inset Manager sends the key to to the top level inset and to the your
inset in parallel, giving you precedence. Thus, if you want to define ctri-c
yourself, you can, and your definition will prevail. On the other hand, if you
are working with a child inset, you may want offer keys to both your inset and
child, but override the child inset’s interpretation in some cases. For
example, if you use the Document package (see p. 151) to create a child inset,
you may wish to override its mapping of ctr/-s to view_search, providing your
own search function. In that case, you would offer keys to your inset and the
child document inset in parallel, but give your inset precedence.

Giving precedence to the inset

keymap_InsetAndKeymap(parent, child, kstate, c)
struct inset *parent, *child;

struct keystate *kstate;

long c;

Description. keymap_InsetAndKeymap offers the character ¢ to the
inset child by calling keymap_char (kstate, child, c) and offers the
character c to the inset parent by calling keymap char (kstate, parent,
c). If both the child and the parent have a binding for the character, the
child’s binding takes precedence.

Return value. keymap_InsetAndKeymap returns inset_ KEYACCEPTABLE if
a procedure is called, inset KEYUNACCEPTABLE if no binding for the
character sequence was found, and inset_KEYPARTIALACCEPT if it is in the
middle of processing a key sequence.

Usage. If you have defined a keymap for your inset, but want a child
inset to be able to override it with its own keymap, then you should call
keymap_InsetAndKeymap rather than keymap _char when processing
keyboard input.

Example.

return_code = keymap_InsetAndKeymap (ip, ip->inputfocus, ip-
>kstate,c);

- 141 -

- 142 -

Giving precedence to the parent

keymap_KeymapAndInset(parent, child, kstate, c)
struct inset *parent, *child;

struct keystate *kstate;

long c;

Description. keymap_KeymapAndinset offers the character ¢ to the
inset parent by calling keymap_char (kstate, parent, c) and offers the
character c to the inset child by calling keymap_char (kstate, child, c).
If both the parent and the child have a binding for the character, the
parent’s binding takes precedence.

Return value. keymap KeymapAndInset returns returns
inset_KEYACCEPTABLE if a procedure is called, inset_ KEYUNACCEPTABLE if no
binding for the character sequence was found, and
inset_KEYPARTIALACCEPT if it is in the middle of processing a key
sequence.

Usage. If you have defined child insets, but do not want them to be
able to override your keymaps, you should call
keymap_KeymapAndinset when offering them keyboard input.

Argument facilities

The keymap package allows numeric arguments as part of a character
sequence. Numeric arguments are typically used to allow the user to repeat a
command easily or to allow the user to specify an alternative value for a
command’s parameter. For example, the Document package (see p.151)
defines ctr/-u as an argument procedure. If the user types the character
sequence ctr/-u 10 ctr/-f, the procedure view Forward executes 10 times,
resulting in the text cursor moving forward 10 characters.

If you are defining numeric arguments, you will want to associate a character
sequence, like ctrl-u, that will act as a numeric argument command
procedure. That procedure should be prepared to set the argument. Then the
rest of your command procedures in the keymap will need to check whether
the user has provided an argument.

The keystate uses an argstate structure and a set of procedures to keep track
of arguments for you.

struct argstate {
int argument;
int argprovided;
int argnext;
int argdigit;

argument --The current argument. This is initialized to 1.

argprovided -- A boolean that indicates whether the user has provided
an argument; initially FALSE.

argnext -- A boolean that indicates whether argument_provided should
be set upon the next command.

argdigit -- A boolean that indicates that a digit has been already seen
in this argument; initially FALSE.

Getting the argument state

struct argstate
*keymap_argstate ()

Description. keymap_argstate returns a pointer to the argument state
for the keystate.

Usage. You should call keymap_argstate to get a pointer to the
argument state. This is typically necessary if you need to access parts
of the argstate structure for which there are no procedures defined.

- 143 -

- 144 -

Setting the argument

keymap_providearg(kstate, value)
struct keystate *kstate;
int value;

Description. keymap_providearg sets the keystate, kstate, so that the
keymap package provides the argument value to the next command
procedure that calls keymap_argprovided..

Usage. If you are defining a command procedure for numeric
arguments, then the procedure should call keymap_providearg as
appropriate. For example, the Document package defines vemd _ctriu
as a numeric argument command procedure. If the user types ctrl-u
ctri-f, it means go forward 4 characters; if ctrl-u ctrl-u ctri-f, go forward
64 characters.

Example.

vemds_ctrlu (v)
struct view *v; {
register struct argstate *as;

as=keymap_argstate();
as->argdigit = 0;

if (keymap_argprovided(v->kstate)
keymap_providearg (as->argument * 4);
else keymap_providearg (4);
by

Getting the argument

keymap_argument(kstate)
struct keystate *kstate;

Description. keymap argument returns the argument provided by the
keystate, kstate, or 1 if none was provided.

Usage. Each command procedure that you write should get the
argument that the user specified and do the command the specified
number of times. For example, the Document packages’ routines all
call keymap_argument to see how many times to execute.

Example.

vemds_backword (v)
register struct view *v; {

register int i, argument_count;

- 145 -

i=0;

argument_count = keymap_argument(v->ks);

while (i < argument_count) {
/* move back a single "word" in the document */
i++;

Clearing the command argument

keymap_cleararg(kstate)
struct keystate *ks;

Description. keymap_cleararg sets the argument associated with the
keystate, kstate, to 1, and sets the keystate so that
keymap_argprovided returns FALSE.

Usage. This procedure is intended to be invoked by a command
procedure that needs to clear the argument state. Typically, if the
command procedure is going to invoke another command procedure,
the argument state should be cleared. For example, in the Document
package, vemds_deleteword invokes vemds_forwardword, so it must
clear the argument state before invoking it.

Example.

vemds_deleteword (v)
register struct view #v; {

register struct int i, argument_count, pos;

i=0;
argument_count = keymap_argument();
keymap_cleararg();
while (i < argument_count) {
pos = view_getdotpos(v);
vemds__forwardword(v) ;
doc_delete(view_document(v), view _getdotpos(v)-pos);
view_setdotpos(v,pos);
i+

by

- 146 -

Testing whether there is an argument

keymap_argprovided(kstate)
struct keystate *kstate;

Description. keymap_argprovided returns TRUE if the user has already
provided an argument for the keystate, kstate; FALSE otherwise.
keymap_argprovided is a macro, so arguments should not have side
effects.

Usage. If a command procedure that you are writing needs to test
whether the user has provided an argument, then it should use this
procedure. For example, the Document package’s vemds_digit
procedure tests whether the user has typed the digit in the context of
an specifying a command argument or in the context of wanting to
insert a digit into the document.

Example.

vemds_digit (v, ¢)
struct view *#v;
char c; {

register struct argstate *as;

as = keymap_argstate ();
if (keymap_argprovided(v->ks)) {
if (as->argdigit = 0) {
as->argdigit = 1;
as->argument = 0;
}
keymap_providearg (as->argument*10+c-0x30);

}
else vemds_SelfInsert (v, c);

Last command facilities

The keymap package provides facilities for keeping track of the last command
that the user has entered. This information is useful if the behavior of
procedures needs to be depend upon previous procedures that the user has
called. For example, the Document package (see p. 151) makes the behavior
of ctrl-n and ctrl-p depend upon whether the previous character was a ctr/-n or
ctri-p.

To work with these facilities, you must allocate a last command number for
each state that you need to keep track of. Then, when the state occurs, you
should call LCSet with the appropriate last command number as an argument.
Finally, when you need to test whether the last command was one of the
states you are interested in, you should call LCGet to get the value of the last
command.

Generating a new last command number
long keymap_LCAlloc()
Description. Generates a new last command flag. The numbers are
allocated by shifting, so they can be AND-ed with the value of
keymap LCGet. Generates a maximum of 32 unique numbers. When it
reaches 32, begins at 1 again.
Return value. Returns the newly allocated number.
Usage. You should allocate a unique last command number for each
procedure or set of procedures that needs one. For example, the
Document package allocates two: one for keeping track of whether the
previous command was a ctrl-k, and another for keeping track of

whether the previous command was a ctrl-p or ctrl-n.

Example. LCMove = keymap_LCAlloc ();

- 147 -

- 148 -

Setting the last command

keymap_LCSet(LCvalue)
long LCvalue;

Description. Sets the value of the this command to LCvalue, which
should be a number that was allocated from LCAlloc.

Usage. If a command procedure needs to record that it was the last
command, it should call LCSet with its LCvalue. For example,
vmds_nextline calls LCSet.

Example.

vemds_nextline (v)
register struct view *v; {

int pos;

if (keymap_ICGet () & ICMove)
pos = PreviousMovePosition;
else PreviousMovePosition = pos = v->currentposition;

keymap_ILCSet (LCMove);

- 149 -

Getting the last command
keymap_LCGet()

Description. keymap LCGet returns the value of the last command.
Commands that have not set a value through the LCA/loc and LCSet
facilities return the value NULL.

Usage. Use LCGet in any procedure that needs to know the value of
the last command. You will typically want to AND it with an allocated
value to see whether the last command was a command that your
procedure is interested in.

Example.

vemds_nextline (v)
register struct view *v; {

int pos;

if (keymap_LCGet () & LCMove)
pos = PreviousMovePosition;
else PreviousMovePosition = pos = v->currentposition;
keymap_LCSet (ILCMove);
}

