
CMU-ITC-86-049

The Vice 2 File Server

This document describes the distributed Vice 2 file server. It explains how
to install it from the tape, and gives the operating instructions to keep it
running. It also describes what has not been distributed at this time, and
how to get those features as well. There is a short section on trouble-

shooting and bug reporting and a list of the major things that are still
being worked on.

There are also a few papers of interest at the end.

The first is a description of protection in vice called File and Directory
Protection.

The next is a description of the fs program, which allows setting and
displaying information about the file server called fs: A File System
Program.

Then there is a description of up a program used to update files based on
their dates called Up: A Backup Facility.

After this is a brief description of how vice works from the user point of
view called Vice Overview.

And finally there is a brief overview of how the various parts of the file
system are controlled called Vice Operation Overview.

What you have

The materials that come with this distribution are:

This document

2 streaming tapes containing a dump of hd0a and hd0g from
a 70 megabyte disk of an RT file server

1 streaming tape containing the workstation binaries

1 streaming tape containing the sources

In addition you will need the two diskettes that come with the 4.2
distribution called bzstallation Boot and Miniroot.

Server Installation

Installation assumes that you have an with a 70 megabyte disk for the root
and stone number of other disks to hokl the data the file system stores.
The first two streaming tapes should be restored to hd0a and hd0g. The

ANOVA for Total Quality

source df mean s_uare F _rob.

Subjects 14 3.3317 NS

Conditions 2 37.9556 4.28 4.02

Subject X Condition _ 28 8.8603

Newman-Keuls Tests of Significance

for Total Quality

Advanced Pen and PC

Workstation Paper

Advanced .52 3.828"

Workstation

Pen and 3.307**

Paper

PC

-2-

root disk will mount the hd0a partition as /, use the hd0b partition as
swap and mount the hdOg partition as/usr.

At this point you should restore the tape, which is in dump format.

To do this, you boot the diskette marked installation BOOT and when it

prompts you insert the Installation MINIROOT diskette and press enter.
This will then bring up a Unix system. At the shell prompt enter
restore.tape root user._This will initialize the hd0a and hd0g partitions and
load them from the tapes. When it requests the boot tape insert the one
for the hd0a partition, and when it requests the user tape, insert the one
for the hd0g partition. At this point you should use the newfs command
to initialize the partitions that will be used to store vice data. To do this
cd/etc and isstle the command:

newfs/dev/hdnc disktype

where:
the n in hdnc is 1 or 2 for the disk to use

diskO,pe is the type of disk you are inititializing.

e.g. to initialize a 70r disk on the 1 drive issue the command:

newfs /dev/hdlc hd70r

This should be done for all disks that are going to be used for vice
partitions.

Each disk's "c" parition should then be added to /etc/fvtab and mounted
on a vice directory. All partitions that vice uses start with the string/vicep.
In the above example to make the system recognize the 70 megabyte
partition the line:

/4ev/hd Ic:/vicepa:rw: 1:2

should be added to/etc/fstab.

One other note is that if you are going to be using the system on an
ethernet instead of on a token ring, the file/UseEthernet should be added
to the root. This is to tell the/etc/rc script to initialize the ethernet instead
of the token ring. This can be accomplished by issuing the commands:

/ere/mount /dev/hd0a /mnt:
echo >/mnt/UseEthernet

This distribution assumes that the server will be called vice/. Attempting
to change this name is very difficult. The machine name of this server and

-3-

its IP address must also be added to/etc/hosts (the file server needs only to
know its own IP address and that of other file servers, so it is not essential
to have a complete host table). Probably the best way to get this is to add
an entry for vice l to /etc/hosts and add it to the server by taring it to a
diskette and putting it on the server from the diskette. There is a
/etc/hosts.example in the shipped system that has entries for a couple of
servers and workstations. This example uses IP addresses reserved for C-
MU _o it should not be used directly.

There will be two users on the system. Root will have the password
andylS0 and admin will have the password install.

The system is now ready to be brought up as a running file server. Type
/etc/reboot.

Setting Up Your Workstation

To run venus on a workstation, one needs to make a few changes to that
workstation's operating environment. Specifically, one needs the following:

A new kernel, compiled with the vice hooks (both VIRTUE
and VICE).

A directory for venus to use for a cache. This directory
should be on a partition containing at least 10 megabytes of
space.

Several new entries in/etc/services, one naming the filesrv
service, and one naming the venus.itc service. The first is the
service name provided by the file server for receiving
requests, and the second is the service name provided by
venus for debugging and monitoring information. One called
auth2 that is used by the authentication code. Three (vexec,
vlogin, vsheil) that are used to pass tokens between machines
to accomplish remote authentication. And one more opcons
for the monitor server.

Three devices,/dev/fs0,/dev/fsl and/dev/fs2, for
communications with the file system server process, venus.

An empty directory, usually named /vice, on which to mount
the remote file system.

A copy of the program named venus2, used for connecting to
the file server.

-4-

A copy of timeprogram named Is, used for doing special
operations to the file system that have no standard Unix
counterparts, such as setting the access control list on a
directory. This program may itself be stored in Vice.

The passwd file generated on the server with the bldpass.sh
command.

An updated/eFc/hosts that contains the addresses of the
workstations and the hosts.

Detailed instructions on how to build a vice hooks kernel are given later on
in this document, and will not be repeated here. Once the kernel has been
prepared, it should be installed as /vmunix on your workstation and
booted.

After you have a workstation with the modified /vmunix on your
workstation, you can load in all of the programs as follows:

cd /
tar xvf /dev/stO

This will cause the following to occur:

/bin replace login with one that understands vice
authentication.

/etc add netd and netd.conffor remote services
add vstab

put in a hosts.example - you should put your own
hosts file here
add services.add- these services should be added to

your services file. Note: the service numbers are not
important, but ensure that you have the same services
file on the file servers as on the workstations.

/usr add andrew, include and lib directories if they do not
exist

andrew - see dcscription below
inchLde - update copy of include/sys/inode.h which is
needed to compile the kernel until the next release
from Palo Alto

lib add netd directory used by/etc/netd

If you do not have a/usr/andrew one will be created and the following will
be added to it:

bin passwd, su programs that understand vice
authentication

log, unlog to set and reset authentication

-5-

up a program to do program copies based on dates
fs a program to deal with special vice file server
requests
vopcon a program to monitor the status of the fiel
servers

etc checkvenus, startvenus, venus2 the venus daemon and
programs to start it and keep it up to date on the
workstation

lib consoles[Default. Vopcon contains a template to run
the vopcon program

The reason for the programs is:

log, passwd, login, su, unlog, the programs in etc and netd.
These are the programs that are modified to deal with the
authentication server and to pass tokens between machines
on operations such as rsh.

venus2, startvenus and checkvenus
These are the programs to bring up venus and in the case of
checkvenus to fetch a new copy before venus starts on a
workstation

up and fv
These are programs to use to do things in the vice file system
that are different from the standard Unix file system.

vopcon and lib
These are programs that are needed to run a file server
monitor on a workstation that has the Andrew window
manager.

After this the following modifications must also be made.

Merge the services in /etc/services.add with your own copy of/etc/services.
Build a /etc/hosts file that contains the file servers as well as your own
workstations. /etc/hosts.example is just an example of a host table. Since
it contains addresses assigned to C-MU you should never actually use it
but use a host table that contains your own assigned addresses.

At C-MU we use the directory /user/venus2.cache as the venus cache
directory. Mkdir this directory and give it any protection you desire; venus
does not need any particular access to it since it runs as root anyway.
When venus is operating, this directory will be filled with many files.

' Several hundred will have names such as V0, V139, etc. and represent the
files actually cached by venus. There is a file named Cachelnfo, which
contains some infi)rmation on what files are actually cached by venus. In

-6-

order to completely flush the venus cache, it is only necessary to delete
Cachclnfo; one need not explicitly delete all of the V* files. Under no

c&cmnstances shouM you modify the contents of this directory while venus is
running, unless you enjoy kernel panics.

The new entries in /etc/scrvices looks like this, on our file servers and
workstations:

filesrv 2001/tcp
fsbulk _ 2002/tcp
filesrv2 2003/tcp
venus.itc 2106/tcp
vexec 712/tcp
vlogin 713/tcp
vshell 714/tcp
upds rv 2114 /tcp
auth2 2101/tcp
opcons 2115/tcp

Any ports may be used for these services, but it is imperative that tget
agree on the file server and the workstations. A list of these is included in
the file/etc/services.add that was brought in on the tar command. The list
also contains the services needed by PC server.

The three devices,/dev/fs0, 1 and 2, are used for communications between

venus and the kernel. Each device is used by one venus process, so having
three devices puts a limit of three concurrent venus processes. Under
normal circumstances, one only runs one venus process on a workstation at
a time. Thcse devices are character devices, with major device number 16
(on our kernel), and minor device numbers 0, I and 2, respectively. Their
protection mode must allow reading and writing by root. The command

mknod /dev/fsl c 16 1

for example, can be used to create the device/dev/fsl on a vice kernel.

The empty directory /vice can be created with the standard mkdir
command.

The final phase of installing venus inw)Ives placing the venus2 object file on
your local disk, and placing the commands to start it in your workstation's
/etc/rc file. Venus takes a large number of command-line options, which
may be given in any order.

-h < hostname >
Venus should contact this file server for volume location

information, ttostname may also be a list of hosts, separated
by commas (and no spaces). At least one of these servers

must be running for venus to locate a w_lume (a collection of
files). One need not list all of a site's file servers in this list,
just enough that one is reasonably confident that at least one

-7-

is running.

-k < kernel device name >

Venus will use this kernel device (e.g./dev/fs0) in
communicating with the kernel.

-cf < number of cache files >
This switch tells venus how many files it may use in the
cache. In gene/:al, you should not provide this switch, but
instead should use the "-c" argument to limit the number of
blocks used by the cache.

-cs < number of status cache entries >

This switch tells venus how many status cache entries to
allocate. Each one uses about 100 bytes of memory. The
default is 320. For most configurations, 320 stat cache
entries is sufficient.

-c < number of I K byte units of disk space available to
the cache >

This switch tells venus how much disk space it can use in the
cache directory. For various reasons, one should try to leave
about 5-10% of the disk free on the cache device (this is
above and beyond the 10 % that the fast Berkeley file system
tries to leave free).

-d

This tells venus not to fork. Normally venus forks and exits
immediately after opening the kernel device, but when
debugging venus, it is important to prevent this, since
debuggers deal very poorly with multiple processes.

-r < root volume name >
This switch tells venus what volume to use for the root
volume. Tile default is obtained from the file server, but can
be overridden here.

-f < cache directory name >
This switch gives the directory venus should use for the cache
directory.

<mount location >

Any path name not preceded by a "-" character is
interpreted as the location at which the kernel device will be
mounted. Exactly one of these should be specified on the
venus command line, for example, "/vice".

-8-

You usually will not not need to issue this command directly however. A
file called /etc/vstab is used to describe your venus configuration. It allows
you to specify the parameters that you want to use when you start up your
venus process and it is also used by other programs for information about
your venus. The format of the line in/etc/vstab is:

mountpoint :device: servers :cachedir :cachesize :parms

where :

mountpoint the mount location for vice
device the kernel device name to use
servers the list of servers to start with

cachedir the directory name for the venus
cache

cachesize the number of Ik byte units of disk
space for the cache

parms the input to the -i parm on venus

Another way to look at what is in/etc/vstab is:
mount location: -k:-h: -f:-c:O

where the parameters are what is specified directly on venus command.

The format of/etc/vstab is that the parameters are separated by ":"s and
there are no extraneous spaces. A /etc/vstab was installed with the tar
command above.

Then to bring up venus, you just place a startvenus - V _venus2 command in
your /etc/rc for the workstation and it will cause venus to be initialized.
The syntax for the startvenus command is:

startven,s-V venus-m mountcommand

where:

venus is the pathname of the venus daemon
mountcommand is the pathname of the mount command

For example to bring up a venus that is /usr/andrew/bin/venus2 with a
mount command that is/bin2/mount you would issue:

startvenus -V /usr/andrew/bin/venus2 -m
/bin2/mount

Even if you should decide to bring venus up with an explicit command in
your /etc/rc file, instead of using startvenus, you should still ensure that
there is an /etc/vstab with valid parameters, because other programs also
use the information in/etc/vstab.

-9-

Building a Vice Kernel

Building a vice kernel is quite simple. At the moment, to be safe, one
should set both the VIRTUE and VICE flags in the configuration file,
since we have never tested a kernel built with only the VICE flag set.
Theoretically, however, the VIRTUE flag is now unnecessary when
building a pure file system kernel.

In any event, to build a VICE kernel, copy the GENERIC file in
/usr/sys/conf to a file named VICE. Then add the following lines to VICE
in the options section

options VICE
options VIRTUE
options "VICE_CLI ENTS = 0"

and the following to the pseudo-device section nearer the end
pseudo-device rfs 3

Then simply go through the standard kernel generation procedure with
this new configuration file.

Adding a user

In order for a new user to be able to use the system, the user must be
registered with the protection system, and some disk space must be
allocated to that user by creating a volume for the user's files.

The programs to add users exist on the server in /usr/admin. What is
needed is to change the passwd file to add the users and update the group
file if you wish to change the group definitions. A protection data base
and its index is then generated and placed on line. The authentication
data base also must be updated to reflect the passwords for the new users.
After this it is also necessary to create volumes for the user.

Fortunately you do not have to do all of this. In /usr/admin there is a
passwd file that contains tile standard Unix users plus an entry for admin.
There is a group data set that only contains the group
System:Administrators with admin as the only member. If you want to
add groups (or add members to the System:Administrator group) you
should modify the groups file. Then all you need to do is supply an
adduser list. The adduser list is a list of what the file server needs to know
to set up tile new users. The list format is:

userid password server partition user name

The fields are tab separated, and the records are separated by the newline
characters.

-10-

userid -is the login id of the user
password -is the initial password for that userid
server -is the server that will receive that users volume
partition -is the partition name on the server for the

volume (e.g./vicepb)
user name -is the rest of the record.

Once the adduser list is prepared all you have to do is issue the bldpass.sh
command to do all ofthe processing needed.

The bldpass.sh script will create the volumes and add the user to the
appropriate data bases. It will also emit a list that can be used to initialize
the volumes on line. Bldpass.sh makes a few assumptions about users,
first it assumes that the user is going to have his volume named user.uid.
Second it assumes that his home directory is going to be/vice/usr/uid. In
both of these assumptions uid is the first field in the adduser list. The
script that bldpass.sh emits called initlist should be run on a workstation.
It will take care of initializing each of the user volumes. The initlist
contains a call to inituser.sh for each user in the adduser list. A default for

inituser.sh is shipped, but you should customize it for your location.

The groups file is specific to vice (not /etc/group) and lists the names of
groups, the group number of the group (always a negative number) and
the list of the names of the members of that group, as they appear in the
passwd file. As distributed the only group is the System:Administrators
group. The sample groups file corresponding to this situation can be
found in /vice/db/groups. System administrators are the people who are
authorized to have special privileges in vice: a system administrator can
always change an access list, can set or change quotas on volumes, and
can change the owners of files. This group list as distributed has a user in
it named adrnin. You may also find it useful to add other groups here, to
allow common access to files.

Groups and user names, stored in the protection data base, are used by
the file server to interpret access lists. An access list is stored with each
directory, and specifies a list of users and groups and the rights of those
users and groups to access that directory and files within the directory. As
mentioned, system administrators always have the right to change any
access list. For more information on access lists, see the documentation on
the fs command.

Volume Commands

Volume are the unit of disk allocation within vice, and are used to support
administration of the system. In a larger system, volume operations are
controlled from a central system control machine, the software for which is

-11-

not being distributed at this time. For this system, the control machine
operations are included on the vieel server.

To create a volume, log on to the server and cd to /vice/bin. Issue the
command :

createvol volname server partition

vo#zarne is the flame of the volume.
server is the name of the server where the volume will be
built

partition is the name of the partition to use/vicep?

At C-MU, we name volumes with names such as "user.joe", where joe is
the user's name, for user volumes; we use names like "ibm032.bin" to
name system, machine specific, volumes. The name does not matter;
however, you will find it useful to have a reasonably consistent naming
scheme if your system grows at all.

As delivered the system comes empty. The first volume you may want to
create is a root volume. This could be accomplished by issuing the
command

createvol root vicel /vicepa

To remove a volume, use the purgevol command. Its syntax is

purgevol volname

vohTarne is the name you wish the volume to be referred to
as, probably the user name of function of the volume.

This command is only necessary if you are through with a volume and no
longer want to use it.

To move a volume from one server to another or from one partition to
another use the command:

movevol volname server partition

volname is the name of the volume you wish to move

server is the name of the server that is suppose to have the
volume after the move

partition is the partition on server that is to hold the volume

-12-

after the move

The vol-lookup command is only used for debugging, but it is nice to know
if the volume was actually created.

Its syntax is:

vol-lookup volname

Tile last three commands described are not normally used by the
operators, but they are used automatically by the system.

The vol-salvage command is used to ensure that the files in the system are
consistent. It is the equivalent of the UNIX fsck command. Its syntax is

voi-salvage [-f]

the -f flag is used to force all volumes to be salvaged, normally only those
wHumes that might need salvaging are salvaged. Note that the fsck
command is still used at reboot. It is also important to note that the fsck
command has been modified to recognize vice files stored in a partition.
Use of an unmodified fsck will destroy all vice tiles on a system.

The bldvldb.sh command is used to generate a new Volume Location Data
Base. It is run automatically when volumes are created.

Tile makebackups command is invoked nightly (around midnight) to make
read-only backup volumes of each w)lume in the system. These are
created using the volume cloning mechanism, which does not actually
create new copies of all of the files, but only copies of the volume structure
that points to the files.

At C-MU we do backup using a separate staging machine, and then dump
the volumes from there to tape. We are not distributing that code right
now, but, the file system itself contains some primitives that would allow a
backup strategy to be developed. There are two commands to convert
wHumes to a byte stream image and then back to a volume. There is a
third command that will take a full dump a partial dumps and combine
them into one dumpfile. There is also a file that contains a list of all of the
w)lumes in the system and their type. By scanning the list of volumes and
converting all of the read/write volumes to byte streams it is possible to

build a system that will allow the wHumes to be dumped on a regular
basis. By basing the (lump scheme on the information in the file it will not
be necessary to change your procedures as new volumes are created. The
commands are:

vol-dump vohzumber [-i lower-time-bound] > &tmpfile

13-

where:
volnumber is the number of tile w,_lume to dump
-i is the time in Unix epoch time to start the dump from. If not

specified or if zero is specified, the entire volume is dumped. This
allows partial dumps to be made of only that data that was
changed since the time specified. This time can be earlier than the
end time of the full dump. For instance if you took a full dump at
midnight on Sunday and on Tuesday took a partial dump of all files
that had changed since I I:00PM on Sunday until Tuesday
midnight, the vol-merge command below would emit a dumpfile that
contained all of the files in the volume, as of midnight on Tuesday.

dumpfile is where the dump is to be placed. This shows redirection to
a file, but it could be to a pipe or anything else, the file is written on
standard out by the program

vol-restore [-n] rwlro partition < dumpfile

where:
-n means leave the name the same as in dumpfile otherwise the name

will be appended with .restored.
rwlro means to restore the volume as a read/write volume, or as a

read/only w)lume
partition is the disk partition to restore the volume to
dumpfile is the result of a vol-dump command

vol-merge full-dump partiall partiahl ... > dumpfile

where:

full-dump is the name of a full dump file
partiah7 is the name of one (or more partial dumps of the same

volume

dumpfile is a new dump file that contains the merged results of the full
and partial dumps

The file with the list of volumes is /vice/vol/AllVolumes that exists on the
control server. Its format is:

name number server partitiotz size miHquota maxquota type cdate mdate

fetches

where:
name is the name of the w_lume
number is the volume number for the volume
server is the server that has the volume

partition is the partition on the server
size is the size of the volume in IK blocks

minquota is the minimum quota value (currently unused)

14-

maxquota is the maximum number of blocks allowed on the
volume

type is R for read/only W for read/write or B for backup
cdate is the creation date in Unix epoch format
mdate is the last move date in Unix epoch format
fetches is the number of times the file has been fetched from
the server

The fields are blank Separated and there are newline characters between
records. By writing a small awk script it is possible to generate a series of
commands to dump all RW volumes. After that the restore consists of
reloading the volume from the dumped copy. When a volume is restored,
you can either restore it with the same name, or with a different name. If
you choose a different name, you can just mount it and retrieve the files
from it, if you restore it with the same name, you should ensure that there
is not ah'eady a volume with that name in the system.

A scheme that would give you a daily backup is to take a full dump of all
w)lumes on Saturday. That would give you all of the files as of Friday
midnight. On Monday through Friday take a partial dump of all volumes
as of I I:00PM on the previous Saturday. By merging the full dump with
any of the partial dumps, you would be able to restore the files as of any
day of the week. For instance if you wanted the files as of Tuesday
midnight, you would merge the full clump with the clump taken on
Wednesday and that would create a dumpfile of the volume as of Tuesday
midnight. By then restoring that dumpfile, you would have a volume that
contains all of the files at the date required.

Multiple Servers

At a large location such as C-MU we have devoted a separate machine to
coordinate all of our servers. In this release the distributed server (vicel)
has the coordination responsibility. This means that it will be running
extra programs that handle cross server responsibilities, such as updating
server binaries, distributing the volume location data base, etc. There are
several different aspects to this:

Update server
First is a pair of programs called updatesrv and updateclnt. Updatesrv
runs on vicel (here after called the control server, since it also has the
control functions running) and updateclnt runs on all other servers. This

•pair of programs are responsible for keeping files in a list of directories in
sync. The main copy of the files are kept at the control server and the
other servers check periodically to see if they have the latest copy. This
means that by just updating flies on the control machine, the other servers
will automatically get the latest copy. That is how all of the binaries and
data bases are distributed. The update programs are also used to keep the

-15-

clock on the other servers in sync. If you change the time here, it will
cause the clock to be set on all of the other servers (and from there it will
cause the clock to be set on all of the workstations).

Status server

The filestats program polls all of the on line servers and keeps a status
block on them that the vopcon program can retrieve to allow status to be
displayed for each of the servers.

Authentication server
The authentication server runs on all file servers, but it is only at the
control server that passwords can be changed. This is transparent to the
user since the Unix passwd command is still used to change them.

Other
Since the volume location data base is distributed from the control

machine, all scripts to creat volumes, add users, etc. should be run on that
machine.

Adding a new server

When a new server is to be added, it can be created using the same
procedure as was used to create the first server. It must have a different
name (vice2 has a nice ring to it). To add it to the system, simply bring it
up (with its new name), add the name to vice l's host table, and then issue
the addserver.sh command on vicel. The syntax is:

addserver.sh hostname servernumber

where:
hostname is the new server's hostname

servernumber is a number that is not already allocated
in/vice/db/servers

The command will update the appropriate files on the server and make it
known to the world. To get it to be recognized and displayed by the file
server monitor, w)pcon, it will be necessary to restart the filestats process.
This can be done by just killing vopcon, as the monitor process will
automatically restart it.

Authentication

Authentication with vice is different than in standard Unix. Vice has a

central password server that is used during login to check your password.
Each file server has a read only copy of the authentication data so any

-16-

server can answer login requests. Only the control machine has the
read/write copy, so you can only change your password there. The local
/etc/passwd file no longer has passwords in it, it only contains the other
information that Unix needs. You receive a new copy of login, su and
passwd, which should be installed on you workstations. These programs
know how to deal with the authentication server. Authentication only
lasts for 25 hours. You must reauthenticate after that, either by logging
out and back in again or by using the log command. To use log, just type
the command and it will prompt you for your password. If you are
leaving your workstation the unlog program will remove your
authentication information from the machine.

It is also necessary to transfer authentication information between
machines for commands like rsh and rcp. By running the/etc/netd server
and using the version of /etc/netd.conf supplied, these changes will be
transparent to you. They come on the workstation tape in the directory
etc. They use the programs in lib/netd on the workstation tape.

What is not in this distribution

This section describes major functions that are running at C-MU but that
we have not distributed, and why. The purpose of this distribution is to
allow a few places to began to look at vice and see how it runs. It is not
yet a full scale distribution. We expect to learn much about what an
actual distribution will take from this.

Backup and Restore

The backup and restore that we do at C-MU is automated. It is not

distributed because is that it is designed for a very large configuration and
requires a separate machine. We plan to make this easily distributable.
The basic backup and restore functions are distributed however. The
automatic make backup command that runs from crontab. What this
command does is to make a copy of all of the files in a volume. It does
not actually copy any data however, it just builds another structure to
point at the same data and then increments the reference count on the
data. It operates much like a hard link does in the UNIX system. Having
done this it then makes that data available in a subdirectory of the root
w)lume called OldFiles. What this gives is a read-only copy of the files.
By running this job in the middle of the night, you wind up with a copy of
yesterdays files. It is then run the next day, and it deletes the previous

days read-only copies and builds a new set. It is these read-only copies
that are used for backup. This has a couple of nice effects. First it always
appears that the dumps all happen at about the same time every day, and
second, the dumps do not have to worry about the data changing, since
the dumps are taken from read-only copies of the data.

-17-

We do distribute the commands to dump and restore volumes. Please see
the section on dump and restore under Volume Commands to see how to
tailor these to your needs.

What is going on

This section describes what the processes on your file servers do. It also
describes what files are used by these processes and what they contain.

A ps aux of a running file server should look like this

USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND

root 136 18.7 4.8 192 128 p0 R 0:00 ps aux

root 131 10.4 3.5 180 90 p0 S 0:01 -csh (csh)

root 45 0.i 2.2 72 54 ? S 0:00 /etc/netd

root 69 0.0 3.5 180 90 co I 0:01 -csh (csh)

root 70 0.0 31.8 1232 888 ? S < 0:09 £i7e

root 1 0.0 0.9 38 18 ? I 0:00 /etc/ini

root 0 0.0 0.2 0 0 ? D 0:00 swapper

root 2 0.0 0.3 I00 0 ? D 0:00 pagedaemon

root 34 0 0 1.4 56 32 ? I 0:01 /etc/cron

root 66 0 0 6.5 250 176 ? I O:OOauth2

root 68 0 0 9.8 348 268 ? I 0:01 filestats

root 64 0 0 1.2 48 26 ? I 0:00filemonitor

root 57 0 0 1.3 50 30 ? I 0:00authmon

root 61 0 0 i.I 46 24 ? I 0:00statmon

root 31 0 0 0.5 26 6 ? S 0:00 /etc/update

root 58 0 0 5.9 246 160 ? I O:Olupdatesrv -p /

The following processes are the ones that are specific to the file servers:

The process called file is the actual file server code. The
process called filemonitor is used to monitor the file process.
If the.file process exits for any reason, the filemonitor process
will restart it. If the file process exited abnormally, the

filemonitor also salvages the file system, before restarting the
file process. The presence of a file called SHUTDOWN in
the directory/vice/file is used to indicate that thefi/e process
exited normally.

The process called auth2 is the authentication server and it
has the authmon process to restart it if it should quit. It will
have been invoked with the -chk option on all machines
except the control machine.

The updatesrv process is used to keep selected files in sync on

18-

the servers. It can also be used to allow work stations to
fetch new venus programs.

The filestats and statmon programs only run on the control
server and they are used to feed information to the vopcon
program to keep a display of the server status.

The vol-makebackups process is invoked from crontab around midnight to
create read-only backup volumes of all the read-write volumes, so it will
not usually appear the ps listing.

What is kept where

This section offers a tour of the /vice directory and describes what the use
of the files are. In the/vice directory are the following subdirectories

auth2 Used by authentication

Contains the log file and two small files that
contain the process ids of the authentication
server and its monitor

bin where vice binaries are kept

This contains the various binaries and shell

scripts that are used by the file server.

db where common data needed for the servers are kept

These are the various data files needed by a running file
server. Included in these are all the files needed for a

complete distributed server with authentication and
backup/restore.

VLDB this is the Volume Location Data Base

auth2.pw and auth2.pwa are files that contain
tile users passwords. They are used for the
authentication servers to verify a user during
login. Tile auth2.pwa file is a processed version
of tlle auth2.pw file. If an auth2.pwa file exists,
the server uses it, otherwise the server uses the
auth2.pw a file and creates a new auth2.pwa file.

auth2.tk this is a token that is common to the
file servers and the authentication servers.

-19-

.files this is a small file that is used with multiple
servers to replicate a set of files between servers.

serl,erkey this is also used in authentication to
establish the file servers credentials

serrers this is a list of the active servers and

what range of volume numbers they are
assigned(As servers are added they should be
put in this list

i,ice.pcf this is the index data file for the
protection data base.

vice.pdb this is the protection data base. We are
going to merge these two files very soon.

file where file server data and control shell scripts are kept

This is where a number of log files are stored and where
some files containg current process ids are kept. It also
contains a number of shell scripts used to control the file
server when local debugging is being done.

BackupLog a log file for the backup process
that runs from crontab

FileLog a log file of the file server process

SalvageLog a log file created by the process of
salvaging the file system

UpdateLog a log file that is used when there are
replicated servers to indicate what files have
been updated on this server.

UpdateMonitor the pid of the monitor process
for the update server.

UpclatePid the pid of the update server.

pid the pid of the file server

monitor the pid of the file server monitor
process

debugou tells the file server to start dumping

- 20 -

debug messages into FileLog. These give more
information about the running server and
should only be used for debugging. Repeated
calls to the script increase the volume of
messages.

debugqff tells the file server to reset its
debugging messages.

list gives a list of the connected users in FileLog

restart does a clean restart of the file server

when a salvage is not required

shutdown brings down the file server to a clean
shutdown

startup starts the file server up

stats dumps some running information into
FileLog about the various requests that have
been handled by the server and the resources
that it is using

Two files of interest in this directory are:

SHUTDOWN which indicates that the file
server was shutdown cleanly and does not need
to be salvaged.

FULLSALVAGE which indicates that a full
salvage of all volumes should be done, not just
a salvage of recently changed volumes, which is
the default.

spool used by the volume package

This directory is used by the volume utilities.

vol used by the volume package

This directory is used by the volume package in
the running server to keep track of information
about the system.

AilVohmtes, BackupList, R WList and
VohtmeList are lists that are used to kcep track

-21 -

of this servers volumes.

f_.lock is a file that is used to establish locking
between the file server process and various
other volume utilities

maxvolid is the maximum volume id that this
server has created

partitions is a list of partition information

Other files of interest in the file system.

[ROOTVOLUME the volume name of the volume that is the
root of the vice file system.

flow to see what is happening

There are a few things that can be done to monitor the file servers. First
is just to run a vopcon on an andrew workstation and see what is
happening on the display. This allows you to monitor many of the
operational parameters of the server and see if it is operating correctly and
not overloaded.

However, there are some hooks to see what the file server is doing at any
time. If you log on to the server and cd/vice_file there are some debugging
aids. You probably should not have to use these, but it may be necessary
if you report a difficult problem.

First if you are checking the file server you should do a tail on FileLog
which is a log where the file server records its status periodically. The
command tail -f FileLog & will cause the contents of the last few lines of
FileLog to be printed on the screen, and then any new lines will also be
printed as they are stored. There are a few scripts in this directory that
will help you to see what is going on. First a stats will cause a number of
counters that the file server monitors to be dumped into the log. The
dump is formatted and fairly self explanatory. The file server will
automatically do this dump after every 4096 requests.

If you type dehugon it will cause the file server to start putting out a
message to the log for every request that comes in over the network. If
you type debugon a second time, the amount of information will increase
to include some internal information and also a line at the completion of
every requcst. This is useful to see if the workstations are actually getting
requests through to the server and what type of requests are coming in.
To go back to the standard level of messages the debugoff command will
reset the debugging level to zero. Always ensure that you type debugoff

- 22 -

before you leave or the log will grow rapidly and fill your partition with
debugging information.

The other command that is useful is list. List will cause a list of which
users are on which workstations to print out. This is useful to see if
connections are being made. It will also indicate what level of
authentication is in effect on the connection and when the token will
expire. Connections that are not authenticated do not have an expiration
time.

What we are doing

This section describes the changes we are making that will be coming later.

Smaller RPC

We are currently redoing the RPC code to make it much smaller. The
reason for this is that one of the major loads on a workstation is the size of
the venus process that is running there. A large portion of the size of venus
is due to the RPC code. We are currently testing a version that is much
smaller.

Programmable group control

Currently you are either in a group or not. It is sometimes nice to be able

to enable and disable your participation in a group. We are testing a
version of the access list package that allows you to enable and disable
your group participation based on calls through venus. This will allow, for
example, people who are system administrators to turn off their
administrator rights, except when they need them. It would also allow
access lists to be built that can be turned on and off under program
control.

Trouble reporting

If there is trouble with the file server it will automatically restart itself. It
should also leave a core file in the directory/vice/.file. This core file should
be transferred here along with a copy of the FileLog file that is also in the
same directory.

If a vemxs has trouble it leaves a core file in its cache directory. It is that
core file that we need. This core file will be deleted when the venus
restarts, so to save it you must boot your system single user and move it
someplace else before reboot.

- 23 -

Trouble reports should be sent to me - Mike West Phone - (412) 268-6737,
IBM-TieLine 363-6737, vnet address cmumjw at pghvml, arpa net address
mikew#@andrew.cmu.edu, until we get a formal trouble reporting structure
in place. We would also like to have any comments you have on the file
system, either good or bad; and any requests for functional enhancements.

- 24 -

File and Directory Protection
Protecting directories and files in Andrew

Andrew's protection mechanisms allow you to control who can do
things with the files in a given directory or subdirectory that you
own, and what actions each person can take.

Who can work with your directories
You can allow individual users or groups of users to access your
directories. _

A user is someone with an Andrew account. Individual users are

referenced by their login names.

A group is a collection of users. Small groups may contain only
individual users. Larger groups may have smaller groups as
members as well as individual users. For example, you might
establish a group consisting of co-workers and give them access to a
particular directory. Then, you decide that you want all those
people as well as a few others to have access to another directory.
You could make the smaller group a member of the larger group
and everyone in the smaller group would automatically receive the
permissions granted to the larger group. At present, you cannot
define your own groups except by working with a System
Administrator; however, a facility for defining groups will be added
soon.

In general, the only groups the protection system recognizes now are
the system groups such as System:AnyUser, which is the large
group composed of everyone with an Andrew account.

The access list for a directory contains the names of the users and
groups who can work with the files in that directory. You can edit
the access list for a directory that you own, add users to it, and
change what they can do, by using the fir program.

What other users can do with your directories
The pernfissions that you can to give to users or groups control what
they can do with the files in a given directory. Permissions are
sometimes referred to as "rights." Here are the possible permissions
in Andrew's protection system and what they allow users to do:

Lookup (L): obtain status information about the files
in the directory.

Read (R): read any file in the directory.

Write (W): write any existing file in the directory.

- 25 -

Insert (!): acid new files or subdirectories to the
directory.

Delete (D): remove files or subdirectories.

Lock (K): place read locks on any file in the directory.
Used mainly by application programs.

Adminis(er (A): modify the access list and ownership
of a directory. The owner of the directory ALWAYS
has Administer rights, even if he or she is locked out
of the directory, and can therefore reset the
protections.

Defaults and Examples
Default protections for Andrew directories. Each user automatically
receives the protection that the parent directory had. As part of
user installation you may wish to define a common protection that
is set on user directories.

Example: Assigning permissions to groups and subgroups. You can
assign permissions to groups of users as well as to individuals. If
you assign permissions to a group, any subgroups of that group
which you then create will receive the same permissions. In
addition, you may assign the subgroups specific rights of their own.

To illustrate this, let us suppose that user langston has established
two groups, one called langston:students and one called
langston:assistants. The students need read, lookup, and insert
rights to a directory called "notes" so they can examine the files in
the directory and also add new files. The assistants need the same
rights and also write rights, so they can amend and correct the files
when necessary. If user langston makes the assistants part of the
students group, she can give them all read, lookup, and insert
rights, like this

langston.students rl

Then, when langston assigns langston:assistants write rights, the
assistants will automatically receive the other three rights, like this

langston.assistants rliw

Example: Assigning negative rights to specific users. To give a user
"negative" rights (that is, to deny that user a particular set of rights
to a directory), you must add "-negative" before the user's name in
the command line for fs. For instance, suppose user langston
decides that all Andrew users except dgg should have read and

- 26 -

lookup access to a directory called "notes." This could be
accomplished with

fs sa /cmu/itc/langston/notes System:AnyUser rl -negative
dgg rl

You can also use the "-minus" switch to accomplish the same thing.
The counterparts to -negative and -minus (that is, -positive and
-plus) also work; for instance, the following command would
accomplish the same thing as the example above:

fs sa/cmu/itc/langston/notes -minus dgg rl -plus System:AnyUser

Fs considers all the rights you add to be positive unless it sees a
-negative or -minus; then it considers all the rights that follow to be
negative unless it sees a -positive or -plus. Now, if langston lists the
access on the notes directory using "fs la /cmu/itc/langston/notes",
the following information will appear:

Nolvnal rights:
System:AnyUser rli
langston rlidwka

Negative rights:
dgg rli

Removing negative rights, or restoring rights you have denied: If you
have denied a user access to a directory by using "-negative", you
must also restore the rights using -negative. That is, to restore dgg's
rights in the examples given above, it would not be sufficient for
langston to give the command "Is sa /cmu/itc/langston/notes dgg
none". Instead, langston would have to issue this command:

fs sa/cmu/itc/langston/notes -negative dgg none

which says that user dgg should no longer have any negative rights.
That will allow dgg to inherit the rights of System:AnyUser and
thus have the read and lookup rights that were denied in the
previous example.

Controlling access to individual files
We encourage users to control access to directories rather than
individual files because of the greater flexibility offered by the access
list mechanism. However, there may be a particular case in which
you have one sensitive file in a directory that you wish to protect
separately. For such cases, the chmod command may be helpful.
In the Andrew protection system, chmod allows you to control
whether the file can be read or written at all. If you "turn off"
reading for the file, you will prevent anyone, including yourself,

- 27 -

from reading it; the same is true for writing. By default, files can be
read by anyone with Read access to the directory in which they
appear and written by anyone with Write access to the directory.
Here are the commands that you may issue to control reading and
writing to a given file:

To turn off writing for the file:

cffmod -w < filename >

To turn off reading for the file:

chmod -r <filename>

To then make the file writeable by those with Write
access to the directory:

chmod +w < filename >

To then make the file readable by those with Read
access to the directory:

chmod + r < filename >

- 28 -

IS: A File System Program
What fs is

fs displays information about the file server. Most often, people use
it to see how much of their allocated storage space they are
currently using and to change the protection on their personal
directories, fs will only change the protection or "rights" on
directories and not on individual files. To change protection on
individual files,'you need the Andrew version of chmod.

Quick reference
Syntax:

To list or change the volume or space allocation for a
directory:

fs Iv directoryname
fs sv directoryname

[-i minquota] [-a maxquota] [-n name] [-m motd] [-o offmsg]

To create, delete, or examine a mount point:

fs mkmount volumename filename [-rw]
fs rmmount filename
fs lsmount filename

To force venus to re-evaluate the meaning of all mount points
to backup volumes:

fs checkbackups < any vice file name >

To force venus to immediately check the status of all file
servers to see if they have crashed or restarted:

fs checkservers < any vice file name >

To flush a file from the venus cache:

fs flush filename

To find the location of a file:

fs whereis directoryname

To list or change protections:

fs la directoryname
fs sa directoryname [-negative] username < [

- 29 -

rwidlak] [all] [none] [read][write] >

Options/arguments:

h,: for "list volume." Shows the current status of the volume
on which the directory is stored.

sv: for "set volume." Sets the current status of the volume on

which the directory is stored. This option is only available to
members of the System:Administrators group.

Volume attributes include the following:

minimum quota -- currently not used.

maximum quota -- the maximum amount of space this
volume is permitted to store. If this amount is 0, then
no quota is enforced.

name -- the name of the volume. This name is the

same name as placed in mount points, so renaming a
volume may cause it to essentially disappear from its
old mounted position.

motd -- the message of the day. A string an operator
may attach to a volume, describing some news
relevant to the volume

offmsg -- the offline message for the volume. If a
volume is offline, this message should explain why.

flush: Remove the file from the venus cache. This command
should not be required.

mkmount: create a mount point. Mount vohmzename at the
point in the file system described byfilename. If the -rw flag
is set, never use the corresponding read-only volume for a
volume. Otherwise, if a read-only volume exists (and the
parent is also on a read-only volume) then use the read-only
volume.

rmmount: delete a mount point. Remove a mount point from
the file system. The volume itself is not changed.

lsmount: list the contents of a mount point. This command
can be used to tell what volume a mount point refers to.

- 30 -

checkbackups: This command re-evaluates all mount points
for backup volumes immediately. Thus if a new backup
volume has been created for a particular volume, the mount
point to that volume will be evaluated to this very latest
volume. Venus periodically checks the status of backup
volumes in any event. The file name need only refer to a file
served by venus; it is used by the kernel to route the
command to the appropriate venus if more than one is
running on a workstation.

checkservers: This command is used to force venus to check

if any server it previously thought was down has come up
again. Venus checks these suspected down servers every 4
minutes anyway; this command is only required by the very
impatient. As with checkbackups, the file name need only
refer to a file served by venus; it is used by the kernel to route
the command to the appropriate venus if more than one is
running on a workstation.

whereis: Lists the file server or file servers having copies of
this file.

&: for "list access." Shows the permissions on the directory
specified.

sa: for "set access." Sets the access to the directory specified
for the user named. This option is only available to
System:Administrators, owners or users with administer
rights on this directory.

directoryname: the name of the directory for which you are
checking or changing the access. You can supply the
"twiddle" (-) as a directory name to check your home
directory.

-negative: makes the rights you specify for username negative,
or denies thc named user the rights you specify. See the
Examples below.

username: the name of the user for whom you are chccking or
changing the access.

rwidlak: one or more of the following letters which represent
different permissions:

r (read): Allows the user to read any file in the
directory.

-31 -

w (write) : Allows the user to edit any existing file in
the directory.

i (insert): Allows the user to create new files or
subdirectories in the directory.

d (delete): Allows the user to remove files or
subdirectories in the directory.

i (lookup): Allows the user to obtain status
information about the files in the directory, for
example, to list the names of the files in the directory.

a (administer): Allows the user to change the access
list on that directory. You automatically have
administer rights to any directories you own.

k (lock): Allows read locks to be placed on any file
in the directory. Lock is used mainly for application
programs. If you are not writing any application
programs, you can ignore Lock.

all: Allows the user complete access to the directory.

all: allows tile specified user all the above permissions.

none: allows the specified user none of the above
permissions.

read: allows the specified user the rights normally associated
with the ability to read files (that is, rl).

write: allows the specified user the rights normally associated
with the ability to write files (that is, rwihi).

Notes:

All your directories and any files in them have certain
protections assigned to them which either allow or do not
allow users access to your directories and files. Typically, all
users have look up rights on your Mailbox directory. This
allows them to send you mail and to see how many pieces of
mail you have in your Mailbox. (It does not allow them to
see who sent the mail or to read your mail).

Any subdirectory you create will automatically be assigned
the same protection as the directory immediately above it (its

!

- 32-

parent directory). Any file you create will automatically take
on tile protection of the directory in which it appears. If you
are careful about where you store your files, you will not
need to change protections as often. When you do need to
change protections, you can do so for any directory that you
own.

Examples

Substitute the flames of your own directories and the appropriate
users for the ones used in the examples below.

To list the access on a directory you own:

fs la/cmu/itc/langston/texts

You would see a listing like this:

Normal rights:
System:AnyUser rl
[angston rlidwa

This listing tells you that any user on the Andrew system can read
(r) and look up (1) files in the directory called "texts". Langston,
the owner of the directory, has the following rights: read (r), look up
(1), insert (i), delete (d), write (w), and administer (a).

To give another user access to a directory you own:

fs sa/cmu/itc/langston/texts dgg rwild

This line means that user langston has allowed user dgg read, write,
insert, lookup, and delete access to the texts directory. Now the
command "fs la /cmu/itc/langston/texts" woukt show this
information:

Normal rights:
System:AnyUser rl
langston rlidwa
dgg rwi/d

To deny anoiher user access to directory you own:

To give a user "negative" rights (that is, to deny that user a
particular set of rights to a directory), you must add "-negative"
before the user's name in the command line. For instance, suppose
user langston decides that all Andrew users except dgg shoukl have
read and lookup access to a directory called "notes." This could be
accomplished with

- 33-

fs sa /cmu/itc/langston/notes System:AnyUser rl -negative
dgg rl

You can also use the "-minus" switch to accomplish the same thing.
The counterparts to -negative and -minus (that is,-positive and
-plus) also work; for instance, the following command would
accomplish the same thing as the example above:

fs sa _/cmu/itc/langston/notes -minus dgg rl -plus
System:AnyUser

Fs considers all the rights you add to be positive unless it sees a
-negative or -minus; then it considers all the rights that follow to be
negative unless it sees a -positive or -plus. Now, if langston lists the
access on the notes directory using "fs la /cmu/itc/langston/notes",
the following information will appear:

Nmvnal rights:
System:AnyUser rli
langston rlidwka

Negative rights:
dgg rli

Removing negative rights, or restoring rights you have denied:

If you have denied a user access to a directory by using "-negative",
you must also restore the rights using -negative. That is, to restore
dgg's rights in the examples given above, it would not be sufficient
for langston to give the command "fs sa/cmu/itc/langston/notes dgg
none". Instead, langston would have to issue this command:

fs sa/cmu/itc/langston/notes -negative dgg none

which says that user dgg should no longer have any negative rights.
That will allow dgg to inherit the rights of System:AnyUser and
thus have the read and lookup rights that were denied in the
previous example.

To remove all rights for all users:

fs sa /cmu/itc/langston/accounts System:AnyUser
nolle

The above command would remove all rights from all users except
Langston to the subdirectory called "accounts."

- 34 -

Up: A Backup Facility

What up is
Up is a program that will selectively copy files from one directory to
another. That is, used more than once, it only copies files which
have changed.

Quick reference
Syntax: up [-d] [-v] sourcedirectory targetdirectory

0 ptions/arguments:
-o -- copies the files but does not copy the Vice access list
information.

-v -- turns on verbose output.

Notes:

Unlike the cp command, up preserves the date on any file it copies.
That feature is useful if you have programs which assume that two
files with the same date have the same contents; you can move files
around without changing their dates. In addition, some programs
like tile Unix make program compare dates of files to see whether
one was made out of another. In some cases you can save
unnecessary recompiling by using up if you want to copy a whole
directory.

Up is often used by people who want to copy files to their local disk
so they can work apart from Vice. More information on that,
including some important warnings, is in the section of this text
called "Maintaining files locally."

Up will copy a file from tile source directory to the target directory
if 1) the file is not aheady in the target directory; 2) the write date
on the two versions (lifter; or 3) the lengths of the two versions
differ.

Up is designed to preserve Vice access list information. When you
up files from the local disk, none of them will have this information
and you will see an error message. You can ignore it.

If a file in the target directory has write permission for the owner
turned off (e.g. chmod 400 filename), up will not overwrite that file.

- 35-

Vice Overview

The Vice file server is designed to meet the need of giving distributed work
stations a shared file system. It gives a time-sharing view of files to a
distributed set of workstations. From the workstation point of view, it
looks like a large hierarchical file tree. Users and programs running on a
workstation can deal with the files as if they were local. Programs written
to run against the Unix file system, will work unchanged if the files are in
Vice. If a user moves from one workstation to another, he still has full
access to the same files, and there is no need for him to change any of his
normal procedures.

It was necessary to make a few changes in the way files were handled,
particularly in the area of file protection. Vice adds a protection
mechanism that allows a more generalized mapping of users to their rights
to deal with files. This addition was felt to be necessary to handle the
more complex situations that would evolve when the shared file system
grew to handling thousands of users. To support this an authentication
server was implemented that takes the place of Unix password verification,
by dealing with a central authentication server.

What follows is a scenario of what happens as a user logs on to a
workstation that is a vice client. This should give a better idea of the way
we have chosen to implement vice.

First, when the workstation is booted, a local process (called venus) is
started. The responsibility of this process is to map local Unix requests
into vice calls. This is done by retrieving files from vice when the
workstation needs them, and placing them in a local cache. When venus
starts up, it scans through its cache and finds out which files are currently
stored there. Once in the cache, the user requests deal with the local copy
of the file, and when the last user closes the file, it is stored back to vice if
it was changed. The mount command is used to tell the kernel to associate
a new device with a directory, and this is the kernel's indication that files
accessed in these directories are associated with vice. The new devices are

f_O-2 and any directory can be used. For the purposes of this description I
will assume that the command/etc/mount/dev/fsO/vice was the one issued.

When a user comes up to the workstation and logs in, login uses the
password supplied to go through a hand shake with an attthentication

_server, and winds up with a set of tokens that can be used to talk to any
vice file server. A couple of points of interest here, first the password itself
is never transmitted on the network, and second the tokens returned have
a time stamp that causes them to expire in 25 hours. This means that if a
token is somehow stolen, it is only good for 25 hours. The two tokens
returned are a venus token, which is used by venus to get information

- 36-

about the user and a server token. The server token is encrypted with a
key only known to the file server and the authentication server. There is
enough information in the token for the file server to verify that the user is
a valid user, and this saves the file server from having to contact the
authentication server. Once login has these tokens it passes them to venus
so that venus can use them to authenticate the user with various file
servers. Venus saves the token in an area that is related to the user.

As login proceeds and the user opens a file in one of the vice directories
(say his .cshrc file with the file name/vice/usr/foo/.cshrc), the open request
is received by the Unix kernel. The kernel recognizes that /vice is
associated with the fsO device and passes the call to venus. Venus receives
the request which contains the vice path name. It then goes through a
process very similar to the kernel's namei routine. It looks at the root of
the vice file system and finds the name usr in it. Associated with the name
is a vice file system id orfid. (Calls between venus and vice identify files by
a.#d rather than by name. Name resolution is done entirely in venus.) It
finds the name usr in the root directory and checks its cache for the rid
associated with it. Assuming it's in the cache it would then look up foo in
the usr directory, and find it. For the sake of simplification, let us assume
that all of the directories are in the cache, but that the file is not. (This is
not an unusual assumption, in fact if the user regularly uses this
workstation, the .cshrc is probably in the cache as well.) Next, venus finds
the.rid for .cshrc in the J?)o directory, and finds that the .cshrc file is not in
his cache. Venus sends a request to vice to fetch the .cshrc file into it's
cache (freeing up some space if necessary). The request to vice specifies
the rid of the .cshrc file.

When vice receives the request, the access rights of the user are checked, to
ensure that the user is allowed to read it. Vice then initiates a transfer of
the file to the workstation. Vice also remembers that the workstation has

a copy of the file. This is used to notify the workstation if another
workstation changes the file.

Once venus receives the response it passes information back to the kernel
to indicate the ()pen was successful and passes a Unix file descriptor that
allows the user program to deal directly with the file in the cache. From
here until close the program deals entirely with the local file. At close time
venus notes that the cache copy of the file is not being used, and will
remove the file if space is needed in the cache.

Since the server will notify the workstation if the file changes, any
subsequent requests for the file can be satisfied immediately, there is not
even the need for a request to vice to ask if the cached copy is current.
This is why the directory search mechanism works, because most of the
time the directories needed are already in the cache, and lookup is just a
local operation. In fact, well over 95% of the time, all files are in the local

- 37-

cache.

As a consequence of file caching, the semantics of file sharing between
processes on different workstations are somewhat different than in a
standard Unix system. (For processes on the same workstation there is no
essential difference.) When the file is initially created, it is stored as a zero
length file on the server (to allow processes on other workstations to try to
obtain and advisory lock on the file, and to implement the exclusive open
mode), but until thd last close of the file is received from a given
workstation, the file is not updated further at the server. This implies that
as long as the file is kept open at a workstation, no other workstation will
see any changes made by that workstation.

- 38-

Vice Operation Overview

The Vice file system is a number of machines working together to provide
a view to its clients of a single hierarchical file system. Most of the
machines are.file servers. There is also a server control machine where the
servers get the latest copies of data bases and binaries. The control
machine also runs a brogram that allows various consoles to display the
latest status of the servers. The file servers are the machines that actually
store the files. Files are stored in volumes which are just a connected part
of the hierarchical file structure. The functions of the control machine may
be combined with one of the file servers to create a control server.

Terms

I will use the following terms frequently so I will define them here.

File Server The machines that contain the data that makes up the file
system hierarchy. There are many of these machines, each contains
a number of different volumes.

Control Machine The central machine where all of the common routines
and data to run the servers is maintained. This may be one of the
servers.

Volumes A logical structure used to contain parts of the hierarchical
structure of files. All files in a volume are logically connected.
Usually used for related files, like the files of one user. The volume
is used extensively. It is the unit of data that is moved from server
to server, the place that quotas are assigned, the unit of data that
can be made read only for replication and in general the unit that
operators of the file system work with.

Console A machine that is used to run the server monitor program.
The console will indicate if a server is down. It is also useful for

determining how well a server is running when it is up.

The volume is the critical unit of the file system for operators. It is
w)lumes where quotas are applied. It is volumes that are restored if a user

loses a file. It is w)lumes that represent a users set of files. If a partition
on a server is getting too full it is a volume that must be moved to free up
space on the partition.

- 39-

Machines

Since there are several types of machines that make up a file system I will
describe each type and the function of the programs that run on them.

File Server

These are the machines that actually store the users files. The primary
processes that they run are file and filemon. File is the actual file server
that works with venus to present the users with their files. Filemon is a
program that will automatically restart file if it is stopped or abends.
Update and UpdateMonitor are used to keep the common files up to date.
They connect to the control machine and ensure that all of the local copies
of common files are correct. /vice/bin/updatesrv is a local server that is
used by workstations to fetch current copies of venus before venus is
started.

Control Machine

This machine is used to centrally administer the file servers. It has a
process running on it that the file servers use to keep files on their local file
systems up to date. Also each of the file servers sets its clock to match the
one on this machine.

Other files in the directories are maintained automatically as follows:

A central copy of the authentication data bases is kept here
and propagated to all of the file servers using the update
programs.

It is here that the VLDB (Volume Location Data Base) is
also kept. It is built b_qsed on information gathered from
each of the servers.

The vice.pdb and vice.p¢f files are built by the add user
utilities and propagated to the other servers. For more
information on the vice.pdb and the vice.pcf see the section
on adding users.

The auth2.pw and auth2.pwa files are built by auth2 and
propagated to the other servers which only have read/only
copies of them.

All other files in the control directories are updated manually.

- 40 -

Tile primary use of this machine is to make the administration of the file
servers easier.

Console

This machine does not have to be a dedicated machine. Any machine that
is running a copy of vopcon is a console machine. For now all you can do
from one of these machines is monitor the file servers to see how they are
running. A complete list of the options for vopcon and how they are used
see the section on monitoring below.

Operation Description

From a user's point of view the unit transferred between vice and venus is
tile file. Venus fetches and stores files from vice. From an operations
point of view the unit that is dealt with is the volume. All operations deals
with volumes. When users are added to the system, it is a volume that is
created for the user. When quotas are put on, they are put on a volume.
When data is (lumped and restored, it is once again the volume that is
used as the unit of interchange. When a user is moved from one server to
another, this is accomplished by moving his volume. The point of this is
that operations should think of volumes when they think of administering
vice. This turns out to be an essential simplification, particularly when
you are dealing with a large system. In a very large system there might be
as many as 20,000 volumes, but there could be in excess of 500,000 files
and directories.

The primary tasks of administering a vice system is the creation of volumes
when users are added to the system, the placement of those volumes on a
particular server, and perhaps the moving of volumes between servers to
handle space or load balancing considerations. In addition, the adding of
users requires the updating of the central authentication data base where
passwords are stored, and the local copies of the Unix /etc/passwd file,
which contains other information about the user. All of this is done in the

bldpass.sh script that is provided. The design allows all of this to be
accomplished from the control machine. The intent is that file servers run
themselves, and the file system is operated from the control machine and
monitored with a console. The file servers themselves should run
automatically and only need attention for hardware problems. To
accomplish this processes on file servers are automatically restarted if they
should fail. All system change, new servers, new users and etc. is

introduced to the system from the control machine.

