
CMU-ITC-85-038

RPC2 User Manual

M. Satyanarayanan

Information Technology Center
Carnegie-Mellon University

Schenley Park
Pittsburgh, PA 15213

NOTE: Reference manual only; tutorial in preparation

Table of Contents

Preface 1

1. Design Concepts 3
1.1. Introduction 3
1.2.An Example 3

1.2,1, Auth Subsystem .rpc file 3
1.2.2. Comp Subsystem .rpc file 4

1.3.Server for Auth and Comp Subsystems 5
1.4.Client using Auth and Comp Subsystems 10

2. The RPC2 Runtime System 15
2.1. Constants, Types, and Globals (from file rpc2,h) 15
2.2. Client-related Calls 22
2.3. Server-related RPC Calls 29
2.4. Miscellaneous Routines 38

3. Side Effects 55
3.1. Constants and Globals (from file se.h) 55
3.2. Adding New Kindsof Side Effects 57

3.2.1. Notes: 57

4. RP2Gen: A Stub Generator for RPC2 73
4.1. Introduction 73
4.2. Usage 73
4.3. Format of the description file 74

, 4.4. The C Interface 77

4.5. External Data Representations 78
5. MultiRPC 81

5.1. Design Issues 81
5.2. An Example 82

5.2.1. Auth Subsystem .rpc file 83
5.2.2. Comp Subsystem .rpc file 84
5,2,3. Server for Auth and Comp Subsystems 84
5.2.4. Client using Auth and Comp Subsystems 89

5.3. Usage 97
5.3.1. The Client Handler 98
5.3.2. Flow of Control in MultiRPC 99
5.3.3. MultiRPC Related Calls 100

5.3.3.1. RPC2 MultiRPC 100
5.3.3.2. MRPC_MakeMulti 100
5.3.3.3. MRPC_UnpackMulti 101
5.3.3.4. HandleResult 101

5,3.4. Error Casesand AbnormalBehavior 101

5,4, C Interface Specification 102
5.4.1. MultiRPC Call Specifications 104

Appendix I. Usage Notes for the ITC 109
Appendix I1. Remote Site and Communication Failures 111

Appendix II1. Implementation Notes 117

Appendix IV. Recent Changes 119

Appendix V. Summary of RPC-related Calls 121

Preface

This document is a programmer's reference manual for RPC2, the ITC remote procedure call

package. This package is being used at the present time for a variety of distributed applications such

as file servers, authentication servers, and database servers.

Considerable effort has gone into making this mechanism flexible and robust. In particular, it works

well even under conditions of heavy server Ibad. However the package is simple enough to be used

by relatively unsophisticated applications. Do not let the size of this user manual scare you! A tutorial

introduction to this manual and procedures to simplify RPC ini.tialization are in preparation.

Until the tutorial introduction is available the best way to learn RPC2 is as follows:

1. Study the example in Chapter 1. This is an actual piece of working code, and you should
try running the example.

2. Read Chapter 4 next. This describes the procedural abstraction provided by RP2Gen,
the stub generator for RPC2.

3. Read Chapter 2, which describes the RPC2 runtime system. Some of these calls are not
relevant to you if you use RP2Gen. Others, such as the initialization and export calls, are
pertinent to all users of RPC2. This material will make more sense in conjunction with the
example of Chapter 1.

4. Read Chapter 3 to get an idea of how to add new kinds of side effects to RPC2. You will
probably not need this material unless you intend to extend RPC2, but an overview of this
material will probably be useful

5. At all times keep available a copy of the LWP reference manual [1] and refer to it as
needed.

Some key features of this package are:

o Clients and servers are each assumed to be using the ITC lightweight process
package [1]. The RPC2 package will not work independently of the LWP package. The
LWP package makes it possible for a single Unix process to contain multiple threads of
control (LWPs). An RPC call is synchronous with respect to an individual LWP, but it
does not block the encapsulating Unix process.

• There is no a priori binding of RPC connections to LWPs within a client or server. RPC
connections and threads of control are orthogonal concepts.

• There is no a priori restriction (other than resource limitations) on the number of clients a
server may have, or on the number of servers a client may be connected to.

• A server sends and receives requests via many different Portals and may service many

different Subsystems. A good analogue to a server supporting many subsystems is the
tnet daemon in Unix 4.2, which is the rendezvous point for the FTP, Telnet, and Mail
subsystems. Binding by clients is done to a host-portal-subsystem triple.

• Host, portal, subsystem, and side effect descriptor specifications are discriminated union
types, to allow a multiplicity of representations. For example, hosts may be specified
either by name or by Internet address. Files may be specified by a file name or a low-level
identifier (or in future, perhaps even a file descriptor).

• RPC connections may be associated with Side-Effects to allow application-specific
network optimizations to be performed. An example is the use of a specialized protocol
for bulk transfer of large files. Detailed information pertinent to each type of side effect is
specified in a Side Effect Descriptor. Side effects are explicitly initiated by the server and
occur asynchronously. Synchronization occurs due to an explicit
RPC2 CheckSideEffectO call by the server.

• Adding support for a new type of side effect is analogous to adding a new device driver in
Unix. To allow this extensibility, the RPC code has hooks at various points where side-
effect routines will be called. Global tables contain pointers to these side effect routines.
The basic RPC code itself knows nothing about these side-effect routines.

• RPC2 has builtin mechanisms to allow authentication of mutually suspicious clients and
servers and to provide encrypted transmissions after connection establishment. Multiple
levels of security are available and may be specified on an individual basis for each RPC
connection. Multiple encryption types are also supported, to allow servers to deal with
various types of clients.

• This is a completely revised implementation of an earlier RPC package [2], used in Vice-I.
The earlier implementation is no longer supported.

3

1. Design Concepts

1.1. Introduction

<<<<<<to be written>>>>>>>

1.2. An Example

<<<<<intro to be written >>>>>>

1.2.1. Auth Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Me/Ion University

(c) IBM Corporation November 1985

RPC interface specification for a trivial authentication subsystem. This is only an example: all it does is name to id and M to
name conversions.

Server Prefix "S";
Subsystem "auth";

Internet port number; note that this is really not part of a specific subsystem, but is part of a server; we should really have a
separate ex.h file with this constant. I am being lazy here

#define AUTHPORTAL 5000

#define AUTHSUBSYSID 100 The subsysid for auth subsystem

Return codes from auth server
#define AUTHSUCCESS 0
#define AUTHFAILED 1

typedef
RPC2 Byte PathName[1024];

typedef
RPC2 Struct

{
RPC2_lnteger Groupld;
PathName HomeDir;

}
Authlnfo;

AuthNewConn (IN RPC2 Integer seType, INRPC2 Integer secLevel, IN RPC2 Integer encType,

INRPC2 CountedBS cldent) NEW - CONNECTION;

AuthUserld (IN RPC2_String Username, OUTRPC2 Integer Userld);
Returns AUTHSUCCESS or AUTHFAILED

4

AuthUserName (IN RPC2 Integer Userld, IN OUT RPC2 BoundedBS Username);
Returns AUTHSUCCESS or AUTHEAILED

AuthUserlnfo (IN RPC2 Integer Userld, OUT Authlnfo Ulnfo);
Returns AUTHSUCCESS or AUTHFAJLED

AuthQuit0;

1.2.2. Comp Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) IBM Corporation November 1985

RPC interface specification for a trivial computational subsystem. Finds squares and cubes of given numbers.

Server Prefix "S";
Subsystem "comp";

#define COMPSUBSYSID 200 The subsysid for comp subsystem

#define COMPSUCCESS 1
define COMPFAILED 2

CompNewConn (IN RPC2_lnteger seType, IN RPC2_lnteger secLevel, IN RPC2 Integer encType,
IN RPC2 CountedBS cldent) NEW - CONNECTION;

CompSquare (IN RPC2_lnteger X); returns square of x

CompCube(IN RPC2 Integer X'); returns cube of x

CompAge0; returns the age o! this connection in seconds

CompExec(INRPC2.._StringCommand,IN OUT SE_Descriptor Sed);
Executes a command and ships back the result in a file. Returns
COMPSUCCESS or COMPFAILED

CompQuit0;

5

1.3. Server for Auth and Comp Subsystems

exserver.c -- Trivial server to demonstrate basic RPC2 functionality Exports two subsystems: auth and comp, each with a
dedicated LWP.

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMid_ = "(c) Copyright IBM Corporation November 1985";

#include <stdio.h>

include <potpourri.h)
include <strings.h)
include <sys/signal.h)
include <sys/time.h)
include <sys/types.h)
include <netinet/in.h)

include (pwd.h)
include <lwp.h)
#include <rpc2.h)
include <se.h)
include "auth.h"
#include "comp.h"

This data structure provides per-connection info. It is created on every new connection and ceases to exist after AuthQuitO.
struct Userlnfo

{
int Creation; Time at which this connection was created

other fields would go here

};

int NewCLWP0, AuthLWP0, CompLWP0; bodies of LWPS
void DebugOn0, DebugOff0; signal handlers

main()
{
int mypid;

signal(SIGEMT, DebugOn);
signal(SIGIOT, DebugOff);

InitRPC0;
LWPCreateProcess(AuthLWP, 4096, LWP_NORMAL- PRIORITY, "AuthLWP", NULL, &mypid);
LWP._CreateProcess(CornpLWP,4096, LWP NORMAL - PRIORITY, "CompLWP", NULL, &mypid);
LWP WaitProcess(main); sleep here forever; no one will ever wake me up
}

AuthLWP(p)
char *p; single parameter passed to LWP CreateProcessO

{
RPC2 RequestFilter reqfilter;
RPC2 PacketBuffer *reqbuffer;
RPC2 Handle cid;
int rc;
char *pp;

6

Set tilter to accept auth requests on new or existing connections
reqfilter.FromWhom = ONESUBSYS;
reqfilter.OldOrNew = OLDORNEW;
reqfilter.ConnOrSubsys.Subsysld = AUTHSUBSYSID;

while(TRUE)
{
cid = 0;

if ((rc = RPC2 GetRequest(&reqfilter, &cicl, &reqbuffer, NULL, NULL, NULL, NULL)) < RPC2 WLIMIT)
HandleRPCError(rc, cid);

if ((rc = auth - ExecuteRequest(cid, reqbuffer)) < RPC2 WLIMII")
HandleRPCError(rc, cid);

pp = NULL;
if (RPC2_GetPrivatePointer(cid, &pp) ! = RPC2_SUCCESS II PP = = NULL)

RPC2 Unbind(cid); This was almost certainly an AuthQuitO call
}

}

CompLWP(p)

char *p; single parameter passed to LWP CreateProcessO
{
RPC2 RequestFilter reqfilter;
RPC2_PacketBuffer *reqbuffer;
RPC2 Handle cid;
int rc;
char *pp;

Set fi/ter to accept comp requests on new or existing
connections

reqfilter.FromWhom = ONESUBSYS;
reqfilter.OIdOrNew = OLDORNEW;
reqfilter.ConnOrSubsys.Subsysld= COMPSUBSYSID;

while(TRUE)
{
cid = O;

if ((rc = RPC2_GetRequest(&reqfilter, &cid, &reqbuffer, NULL, NULL, NULL, NULL)) < RPC2 WLIMIT)
HandleRPCError(rc,cid);

if ((rc = comp - ExecuteRequest(cid, reqbuffer)) < RPC2 WLIMIT)
HandleRPCError(rc,cid);

pp = NULL;
if (RPC2 GetPrivatePointer(cid, &pp) != RPC2 SUCCESS II PP = = NULL)

RPC2 Unbind(cid); This was almost certainly an CompQuitO call
}

}

= = = = = = = = = = = = = Bodies ofAuthRPCroutines = = = = = = = = = = = = =

S- AuthNewConn(cid,seType, secLevel,encType, cldent)
RPC2 Handle cid;
RPC2 Integer seType, secLevel,encType;

RPC2_CountedBS *cldent;
{
structUserlnfo *p;

p = (structUserinfo *) malloc(sizeof(structUserlnfo));
RPC2_SetPrivatePointer(cid, p);

7

p->Creation = time(0);
}

S - AuthQuit(cid)
Get rid of user state; note that we do not do RPC2 UnbindO here, because this request itseff has to complete. The invoking
server LWPtherefore checks to see il this connection can be unbound.

(
struct Userlnfo "p;
RPC2 GetPrivatePointer(cid, &p);
assert(p != NULL); we have a bug then
free(p);
RPC2 SetPrivatePointer(cid, NULL);
return(AUTHSUCCESS);

}

S - AuthUserld(cid, userName, userld)
char "userName;
int *userld;
(
struct passwd °pw;
if ((pw = getpwnam(userName)) = = NULL) return(AUTHFAILED);
*userld = pw->pw-uid;
return(AUTHSUCCESS);

}

S - AuthUserName(cid, userld, userName)
int userld;
RPC2 BoundedBS *userName;
(
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL) return(AUTHFAILED);
strcpy(userName->SeqBody, pw->pw- name);

we hope the buffer is big enough
userName->SeqLen = 1 + strlen(pw->pw-name);
return(AUTHSUCCESS);
}

S - AuthUserlnfo(cid, userld, ulnfoi
int userld;
Authlnfo *ulnfo;

(
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL)return(AUTHFAILED);
ulnfo->Groupld = pw->pw-gid;
strcpy(ulnfo->HomeDir, pw->pw - dir);
return(AUTHSUCCESS);

}

= = = = = = = = = = = = = BodiesolCompRPCroutines = = = = = = = = = = = = =

S - CompNewConn(cid, seType, secLevel, encType, cldent)

RPC2 Handle cid;
RPC2_lnteger seType, secLevel, encType;
RPC2_CountedBS °cldent;

(
struct Userlnfo *p;

8

p = (struct Userlnfo *) malloc(sizeof(struct Userlnfo));
RPC2 SetPrivatePointer(cid, p);
p->Creation = time(0);
}

S- CompQuit(cid)

Get rid of user state: note that we do not do RPC2 UnbindO here, because this request itsell has to complete. The invoking
server L WPtherefore checks to see it this connection can be unbound.

{
struct Userlnfo *p;

RPC2 GetPrivatePointer(cid, &p);

assert(p ! = NULL); we have a bug then
free(p);

RPC2 SetPrivatePointer(cid, NULL);
return(0);
}

S - CompSquare(cid, x)
int x;

{
return(x'x);
}

S - CompCube(cid, x)
RPC2 Handle cid;
int x;
(
return(x*x*x);
}

S - CompAge(cid, x)
RPC2 Handle cid;
int x;
{
struct Userlnfo *p;

assert(RPC2 GetPrivatePointer(cid, &p) = = RPC2 SUCCESS);
return(time(0)- p->Creation);
}

S - CompExec(cid, cmd)
RPC2 Handle cid;
char *cmd;

Weshould really have a formal of type SE Descriptor at the end;
but it is a dummy anyway

{
SE Descriptor sed;
char mycmd[100];

sprintf(mycmd, "%s >/tmp/answer 2>&1", cmd);

system(mycmd)_ beware; if this takes too long, client will get RPC2._DEADI

bzero(&sed, sizeof(sed));
sed.Tag = DUMBFTP;

sed.Value.DumbFTPD.Tag = FILEBYNAME;How I wish C had a "with" clause fike Pascal

sed.Value.DumbFTPD.TransmissionDirection = SERVERTOCLIENT;
sed.Value.DumbFTPD.ByteQuota = -1;

strcpy(sed.Value.Du mbFTPD.Filelnfo.ByName.LocalFileName, "/tmp/answer");
if (RPC2_lnitSideEffect(cid, &sed) t = RPC2 SUCCESS) return(COMPFAILED);
if (RPC2 CheckSideEffect(cid, &sed, SE_AWAITLOCALSTATUS) T= RPC2 SUCCESS)

9

return(COMPFAILED);
return(COMPSUCCESS);
}

iopenO is a system call created at the ITC; put a dummy here for other site_
iopen0{}

.................. RPC Initialization and Error handling = = = = =
InitRPC0

{
int mylpid = -1;
DFTP Initializer dftpi;

RPC2 Portalldent portalid, *portallist[1];
RPC2 Subsysldent subsysid;
struct tirneval tout;

assert(LWPJnitializeProcessSuloport(LWP NORMAL-PRIORITY, &mylpid) = = LWP SUCCESS);

portalid.Tag = RPC2 PORTALBYINETNUMBER;
portalid.Value.lnetPortNumber = htons(AUTHPORTAL);
portallist[O] = &portalid;
tout.tv-sec = 240;
tout.tv- usec = O;
DFTP SetDefaults(&dftpi);
DFTP Activate(&dftpi);

assert (RPC2 Init(RPC2 VERSION, 0, portallist, 1, -1, &tout) = = RPC2 SUCCESS);
subsysid.Tag = RPC2 SUBSYSBYID;
subsysid.Value.Subsysld = AUTHSUBSYSID;

assert(RPC2 Export(&subsysid) = = RPC2 SUCCESS);
subsysid.Value.Subsysld = COMPSUBSYSID;
assert(RPC2 Export(&subsysid) = = RPC2 SUCCI=SS);
}

HandleRPCError(rCode, connld)
int rCode;

RPC2 Handle connld;
{
fprintf(stderr, "exserver: %s\n", RPC2 ErrorMsg(rCode));
if (rCode < RPC2 FLIMIT && connld ! = O)RPC2 Unbind(connld);
}

void DebugOn0
{
RPC2 DebugLevel = 100;
}

void DebugOff0
{
RPC2 DebugLevel = O;
}

10

1.4. Client using Auth and Comp Subsystems

exclient.c -- Trivial client to demonstrate basic RPC2 functionality

M.Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMidr] = "(c) Copyright IBM Corporation November 1985";

include <stdio.h>

include <potpourri.h>
include <strings.h)
include <sys/time.h>
include <sys/types.h)
include <netinet/in.h>

include <pwd.h>
#include <lwp.h>
include <rpc2.h>
include <se.h>
include "auth.h"
#include "comp.h"

#define dgets(p) (LWP DispatchProcess0, gets(p))
allow RPCto get control periodicafly

main0
{
int a;
char buf[100];

printf(" Debug Level? (0) ");
dgets(buf);
RPC2_DebugLevel = atoi(buf);

InitRPC0;
while (TRUE)

{
LWP_DispatchProcess0; otherwise we get RPC2 DEADs
prinff("Action? (1 = New Conn, 2 = Auth Request, 3 = Comp Request) ");
dgets(buf);
a = atoi(buf);
switch(a)

{
case 1: NewConn0; continue;

case 2: Auth0;continue;
case3: ComP0; continue;
default: continue;

}
}

}

NewConnO
{

11

char hname[100], buf[100];
int newcid, rc;
RPC2 Hostldent hident;
RPC2 Portalldent pident;
RPC2 Subsysldent sident;

printf("Remote host name? ");
dgets(hident.Value.Name);

hident.Tag = RPC2 HOSTBYNAME;
printf("Subsystem? (Auth = %d, Comp = %d) ", AUTHSUBSYSID, COMPSUBSYSID);
dgets(buf);

sident.Value.Subsysld = atoi(buf);

sident.Tag = RPC2 SUBSYSBYID;

pident.Tag = RPC2 PORTALBYINETNUMBER;
pident.Value.lnetPortNumber = htons(AUTHPORTAL);

same as COMPPORTAL

rc = RPC2_Bind(RPC20PENKIMONO, NULL, &hident, &pident, &sident,

DUMBFTP, NULL, NULL, &newcid);
if (re = = RPC2_SUCCESS)

printf("Binding succeeded, this connection id is %d\n", newcid);
else

printf(" Binding failed: %s\n ", RPC2_ErrorMsg(rc));

}

Auth0
{
RPC2 Handle cid;
int op, rc, uid;.
char name[100], buf[100];
Authlnfo ainfo;
RPC2 BoundedBSbbs;

printf("Connection id? ");

dgets(buf);
cicl = atoi(buf);
printf("Operation?(1 = Id, 2 = Name,3 = Info, 4 = Quit)");
dgets(buf);
op = atoi(buf);
switch(op)

{
case 1:

prinff("Name? ");
dgets(name);
rc = AuthUserld(cid,name, &uid);
if (rc = = AUTHSUCCESS)prinff("ld = %d\n", uid);
else

if (re = = AUTHFAILED) printf("Bogus username\n");
else printf("CaU failed -->%s\n", RPC2_ErrorMsg(rc));

break;

case 2:

printf("ld? ");
dgets(buf);
uid = atoi(buf);
bbs.MaxSeqLen = sizeof(name);
bbs.SeqLen = 0;

12

bbs.SeqBody = (RPC2 ByteSeq) name;
rc = AuthUserName(cid, uid, &bbs);
if (rc = = AUTHSUCCESS) printf("Name = %s\n", bbs.SeqBody);
else

if (rc = = AUTHFAILED) printf("Bogus user idkn");
else printf("CaU failed -->%s\n", RPC2 ErrorMsg(rc));

break;

case 3:

printf("ld? ");
dgets(buf);
uid = atoi(buf);
rc = AuthUserlnfo(cid, uid, &ainfo);
if (rc = = AUTHSUCCESS) printf("Group = %d Home = %s\n", ainfo.Groupld, ainfo.HomeDir);
else

if (rc = = AUTHFAILED) printf("Bogus user idkn");
else printf("Call failed -->%s\n", RPC2_ErrorMsg(rc));

break;

case 4:

rc = AuthQuit(cid);
if (rc K= AUTHSUCCESS)

printf("Call failed -->%s\n", RPC2 ErrorMsg(rc));
RPC2 Unbind(cid);
break;

}

}

Comp0
{
RPC2 Handle cid;
int op, rc, x;
SE Descriptor sed;
char cmd[100], buf[100];

printf("Connection id? ");
dgets(buf);
cid = atoi(buf);
printf("Operation? (1 = Square, 2 = Cube, 3 = Age, 4 = Exec, 5 = Quit)");
dgets(buf);
op = atoi(buf);
switch(op)

{
case 1:

printf("x? ");
dgets(buf);
x = atoi(buf);
rc = CompSquare(cid, x);
if (rc > 0) printl("x'*2 = %d\n", rc);
else

prinff("Call failed -->%skn", RPC2 ErrorMsg(rc));

break;

case 2:

printf("x? ");
dgets(buf);
x = atoi(buf); "

13

rc = CompCube(cid, x);
if (rc >(3)printt("x'*3 = %d\n", rc);
else

printf("Call failed -.> %s\n", RPC2 ErrorMsg(rc));
break;

case 3:

rc = CompAge(cid);
if (rc > 0) printf("Age of connection = %dseconds\n", rc);
else

printf("CaU failed --> 9'_kn", RPC2 ErrorMsg(rc));
break;

case 4:

printf("Remote command: ");
gets(cmd);
bzero(&sed,sizeof(sed));

How I wish C had a "with" clause like Pascal

sed.Tag = DUMBFTP;
sed.Value.DumbFTPD.Tag = FILEBYNAME;
sed.Value.DumbFTPD.Filelnfo.SyName.ProtectionBits= 0644;
sed.Value.DumbFTPD.TransmissionDirection= SERVERTOCLIENT;
sed.Value.DumbFTPD.ByteQuota = -1;

strcpy(sed.Value.Du mbFTPD.Filelnfo.ByName.LocalFileName, "/tmp/result");

rc = CompExec(cid, cmd, &sed);
if (rc = = COMPSUCCESS) system("echo Result of remote exec:;cat/trap/result");
else

if (rc = = COMPFAILED) printf("Could not do remote exec\n");
else

printf("Call failed -->%skn", RPC2_ErrorMsg(rc));
break;

case 5:

rc = CompQuit(cid);
if (rc < 0)

printf("Call failed -->%skn", RPC2 ErrorMsg(rc));
RPC2 Unbind(cid);
break;

}

}
= = RPCInitialization and Error handling = =

InitRPC0
{
int mylpid = -1;
DFTP_lnitializer dftpi;
struct timevaltout;

assert(LWP_lnitializeProcessSupport(LWP_NORMAL- PRIORITY, &mylpid) = = LWP_SUCCESS);

DFTP_Set Defaults(&dftpi);
dftpi.ChunkSize = 1024; 2K and 4K give much better performance

DFTP Activate(&dftpi);
tout.tv- sec = 240;
tout.tv - usec = 0;

assert(RPC2 Init(RPC2 VERSION, 0, NULL, 1, -1, &tout) = = RPC2_SUCCESS);
}

14

iopenO{}

15

2. The RPC2 Runtime System

The purpose of this section is to describe the physical layout of data in transmissions between client

and server RPC runtime systems. The runtime system deals with contiguous packet Buffers, each of
which consists of:

a Prefix which is of fixed length, and is used internally by the runtime system. It is NOT
transmitted.

a Header which is also of fixed length, and whose format is understood by the runtime
system. The opcode associated with the RPC, sequencing information, and the
completion code returned by the remote site are the kinds of information found
here.

a Body of arbitrary size. It is NOT interpreted by the runtime system, and is used to
transmit the input and output parameters of an RPC.

The actual header files are the authoritative source of these definitions, and will be more up-to-date
than this manual.

2.1. Constants, Types, and Globals (from file rpc2.h)

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

ifndef - RPC2-

#define - RPC2 -

define RPC2_VERSION "Version 7.0: Satya, 9 April 1986, 11:30"

This string is used in RPC initialization calls to ensure that the runtime system and the header tiles are mutually consistent.

Also passed across on RPC2 Bind for advisory information to other side. Changes to this string may cause

RPC2_OLDVERSION to be returned on RPC2_BindOs. For really minor changes alter RPC2 LastEdit in globals.c.

#define RPC2_PROTOVERSION 6

Found as the first 4 bytes of EVERY packet. Change this if you change any aspect of the protocol sequence, or ff you change
the packet header, or the body formats of the initialization packets. Used in inital packet exchange to verify that the client and

server speak exactly the same protocol. Orthogonal to RPC2_VERSION. We need this in the header at the very beginning,
else we cannot change packet lormats in a detectable manner.

The following constants are used to indicate the security-level of RPC connections.

#define RPC2_OPENKIMONO 98 Neither authenticated nor encrypted

define RPC2 AUTHONLY 12 Authenticated but not encrypted

#define RPC2 HEADERSONLY 73 Authenticated but only headers encrypted

#define RPC2 SECURE 66 Authenticated and fully encrypted

RPC2 supports multiple encryption types; the key length is fixed, and you must always supply a field of RPC2 KEYSIZE bytes

wherever an encryption key is called for. However, individual algorithms can choose to ignore excess bytes in the keys.

16

The encryption types are specified as integer bit positions so that the EncryptionTypesMask tield of RPC2 GetRequestOcan

be a mask of these types. The required type must also be specified in RPC2 BindO.

To add support tor other encryption types only the constants below and the internal runtime procedures RPC2_EncryptO and

RPC2_DecryptO /'}ave to be modified.
#define RPC2_DES 1

#define RPC2 XOR 2

#define RPC2_ENCRYPTIONTYPES (RPC2_DES I RPC2 XOR)

union of all supported types

#define RPC2_KEYSIZE 8 Size in bytes of the encryption keys

RPC procedure return codes:

These may also occur in the RPC2 ReturnCode field of reply headers: Values of 0 and below in those fields are reserved for

RPC stub use. Codes greater than 0 are assigned and managed by subsystems.

There are three levels of errors: Warning, Error, and Fatal Error. RPC2 SUCCESS > RPC2_WLIMIT > warning codes >

RPC2 EL/MIT ._error codes ,_RPC2 FLIM/T > fatal error codes

The semantics of these codes are:

RPC2. SUCCESS: Everything was perfect.

Warning: Advisory information.

Error: Something went wrong, but the connection (if any) is still usable.

Fatal: The connection (if any) has been marked unusable.

Note that the routine RPC2 ErrorMsgO will translate return codes into printable strings.

#define RPC2_SUCCESS 0

#define RPC2_WLIMIT -1

#define RPC2_ELIMIT -1000

#define RPC2_FLIMIT -2000

Warnings

#define RPC2_OLDVERSION RPC2 WLIMIT-1

#define RPC2_INVALIDOPCODE RPC2 WLIMIT-2
Never returned by RPC2 itseff; Used by higher levels, such as

rp2gen

#define RPC2 BADDATA RPC2_WLIMIT-3
Never used by RPC2 itself; used by rp2gen or higher levels to

indicate bogus data

Errors

#define RPC2_CONNBUSY RPC2 ELIMIT-1

#define RPC2_SEFAIL1 RPC2 ELIMIT-2

#define RPC2 TOOLONG RPC2_ELIMIT-3

Fatal Errors

#define RPC2_FAIL RPC2_FLIMIT-1

#define RPC2 NOCONNECTION RPC2 FLIMtT-2
define RPC2_TIMEOUT RPC2_FLIMIT-3

define RPC2_NOBINDING RPC2._ FLIMIT-4
#define RPC2_DUPLICATESERVER RPC2 FLIMIT-5

17

define RPC2 NOTWORKER RPC2 FLIMIT-6

#define RPC2_NOTCLIENT RPC2 FLIMIT-7
#define RPC2 WRONGVERSION RPC2 FLIMIT-8

#define RPC2_NOTAUTHENTICATED RPC2 FLIMIT-9

#define RPC2_CLOSECONNECTION RPC2_FLIMIT-10

define RPC2 BADFILTER RPC2 FLIMIT- 11

deft ne RPC2_LWPNOTINIT RPC2_ FLIMIT- 12

#define RPC2 BADSERVER RPC2_FLIMIT- 13
#define RPC2_SEFAIL2 RPC2 FLIMIT-14

#define RPC2_DEAD RPC2 FLIMIT-15

#define RPC2_NAKED RPC2 FLIMIT-16

Universal opcode values: opcode values equal to or less than 0 are reserved. Values greater than 0 are usable by mutual
agreement between clients and servers.

#define RPC2 INIT1OPENKIMONO -2 Begin a new connection with security level

RPC2 OPENKIMONO
#define RPC2 INITIAUTHONLY -3 Begin a new connection with security level RPC2__AUTHONL Y

#define RPC2 INITIHEADERSONLY -4 Begin a new connection with security level
RPC2_HEADERSONL Y

define RPC2 INIT1SECURE -5 Begin a new connection with security level RPC2 SECURE
#define RPC2 LASTACK -6 Packet that acknowledges a reply

#define RPC2 REPLY -8 Reply packet

#define RPC2 INIT2 -10 Phase 2 of bind handshake
#define RPC2 INIT3 -11 Phase 3 of bind handshake

#define RPC2 INIT4 -12 Phase 4 of bind handshake

#define RPC2 NEWCONNECTION -13 opcode of fake request generated by RPC2_GetRequestO on
new connection

#define RPC2 BUSY -14 keep alive packet

System Limits

#define RPC2 MAXPACKETSIZE 10000 size of the largest acceptable packet buffer in bytes fincludes
prefix and header)

Global variables for debugging:

RPC2 DebugLevel controls the level of debugging output produced on stdout. A value of 0 turns off the output altogether;

values of 1, 10, and 100 are currently meaningful. The default value of this variable is O.

RPC2 Perror controls the printing of Unix error messages on stdout. A value of 1 turns on the printing, while 0 turns ff off. The
default value for this variable is 1.

RPC2 Trace controls the tracing of RPC calls, packet transmissions and packet reception. Set ff to 1 for tracing. Set to zero

for stopping tracing. The internal circular trace buffer can be printed out by calling RPC2 DumpTraceO.

extern long RPC2 DebugLevel;
extern long RPC2 Perror;

extern long RPC2_ Trace;

************************* Data Types known to RPGen oo,,,,,***,,,,***_,***e,,_o,_.

typedef

long RPC2 Integer; 32-bit. 2"s complement representation. On other machines, an
expficit conversion may be needed.

typedef.

unsigned long RPC2_Unsigned; 32.bits.

18

typedef
unsigned char RPC2 Byte; A single 8-bit byte.

typedef
RPC2_Byte *RPC2 ByteSeq;

A contiguous sequence of bytes. In the C implementation this is a pointer. RPC2Gen knows how to allocate and transform the
pointer values on transmission. Beware if you are not dealing via RPC2Gen. May be differently represented in other
languages.

typedef

RPC2_ByteSeq RPC2 String; no nulls except last byte
A null.terminated sequence of characters. Identical to the C language string definition.

typedef
struct

{
RPC2_lnteger SeqLen; length of SeqBody
RPC2_ByteSeq SeqBody; no restrictions on contents
}

RPC2 CountedBS;
A means of transmitting binary data.

typedef
struct

{
RPC2 Integer MaxSeqLen; max size of buffer represented by SeqBody
RPC2 Integer Seql_en; number of interesting bytes in SeqBody
RPC2 ByteSeq SeqBody; No restrictions on contents
}

RPC2 BoundedBS;
RPC2 BoundedBS is intended to allow you to remotely play the game that C programmers play all the time: allocate a large
buffer, fill in some bytes, then call a procedure which takes this buffer as a parameter and replaces its contents by a possibly

longer sequence of bytes. Example: strcatO.

typedef
RPC2_Byte RPC2_EncryptionKey[RPC2 KEYS|ZE];

Keys used for encryption are fixed length byte sequences

,,*,,,,,,.,,,=,,,.._,,._,,,,,,,.**_...,.,,,°o,.. Data Typesused only in runtime calls ********************************

typedef RPC2 Integer RPC2 Handle; actually a pointer in the remote machine's addr space
NOT a small integerlll

typedef
struct

(
enum HostType {RPC2 HOSTBYINETADDR = 17, RPC2_HOSTBYNAME = 39} Tag;

dbx bogosity if anonymous enum
union

(
unsigned tong InetAddress; NOTE: in network order, not host order
char Name[20]; this is a pretty arbitrary length
}
Value;

}
RPC2 Hostldent;

19

typedef
struct

{
enum PortalType {RPC2 PORTALBYINETNUMBER= 53, RPC2 PORTALBYNAME = 64} Tag;

dbx bogosity if anonymous enum
union

{
unsigned short InetPortNumber; NOTE: in network order, not host order

char Name[20]; this is a pretty arbitrary length
}
Value;

}
RPC2 Portalldent;

typedef
struct

{
enum SubsysType {RPC2 SUBSYSBYID = 71, RPC2_SUBSYSBYNAME = 84} Tag;

dbx bogosity if anonymous enum
union

{
long Subsysld;
char Name[20]; this is a pretty arbitrary length
}
Value;

}
RPC2_Subsysldent;

typedef
struct data structure filled by RPC2 GetPeerlnfoO call

(
RPC2 Hostldent RemoteHost;
RPC2 Portalldent RemotePortal;
RPC2 Subsysldent RemoteSubsys;
RPC2 Handle RemoteHandle;
RPC2 Integer SecurityLevel;
RPC2 Integer EncryptionType;
RPC2 Integer Uniquefier;
RPC2 EncryptionKey SessionKey;
}

RPC2 Peerlnfo;
The RPC2 PacketBulfer definition below deals with both requests and repfies. The runtime system provides efficient buffer
storage management routines --- use theml

typedef
struct RPC2 PacketBuffer

(
struct RPC2_PacketBufferPrefix

{
NOTE: The Prefix is only used by the runtime system on the local machine. Neither clients nor servers ever deal with it. It is
never transmitted.

struct RPC2 PacketBuffer *Next; pointer to next element in buffer chain
struct RPC2 PacketBuffer "Prey; pointer to prev element in butter chain

long MagicNumber; to detect storage corruption

long LEState; to detect buffer chain addling
struct RPC2 PacketBuffer *Qname; name of queue this packet is on
long BufferSize; Set at ma//ocO time; size of entire packet, including prefix.
long LengthOfPacket; size of data actually transmitted: header + body
}

2O

Prefix;

The transmitted packet begins here.

struct RPC2 PacketHeader

{
The first four fields are never encrypted

RPC2 Integer ProtoVersion; Set by runtime system

RPC2 Integer RemoteHandle; Set by runtime system; -1 indicates unencrypted error packet
RPC2 Integer LocalHandle; Set by runtime system

RPC2 Integer Flags; Used by runtime system only

Everything below here can be encrypted

RPC2 Unsigned BodyLength; of the portion after the header. Set by client.
RPC2 Unsigned SeqNumber; unique identifier tor this message on this connection; set by

runtime system; odd on packets from client to server; even on
packets from server to client

RPC2 Integer Opcode; Values greater than 0 are subsystem-specitic: set by client.

Values less than 0 reserved: set by runtime system. Type of

packet determined by Opcode value: ._ 0 = = > request packet.

Values of RPC2 REPLY = = > reply packet, RPC2. ACK = =
ack packet, and so on

RPC2 Unsigned SEFlags; Bits for use by side effect routines

RPC2 Unsigned SEDataOffset; Offset of piggy-backed side ellect data. from the start of Body
RPC2 Unsigned Subsysld; Subsystem identifier. Filled by runtime system.

RPC2 Integer ReturnCode; Set by server on replies; meaningless on request packets

RPC2 Unsigned Lamport; For distributed Clock mechanism
RPC2 Integer Uniquefier; Used only in Initl packets; truly unique random number

RPC2 Integer Spare2;

RPC2 Integer Spare3;

}
Header;

RPC2 Byte Body[l]; Arbitrary length body. For requests: IN and INOUT parameters;

For replies: OUT and INOUT parameters; Header.BodyLength

gives the !ength of this field
}

RPC2 PacketBuffer; The second and third fields actually get sent over the wire

Meaning of Flags fie/c/in RPC2 packet header

#define RPC2_RETRY Oxl set by runtime system
#define RPC2_ENCRYPTED Ox2 set by runtime system

Leftmost byte of Flags tie/c/is reserved for use by side effect routines. This is in addition to the SEF/ags field. Flags is not
encrypted, but SEFLAGS is.

Format of filter used in RPC2 GetRequest

typedef
struct

{
enum E1 {ANY = 12, ONECONN =37, ONESUBSYS = 43} FromWhom;

enum E2 {OLD = 27, NEW = 38, OLDORNEW = 69} OIdOrNew;
union

{
RPC2 Handle WhichConn; if FromWhom = -- ONECONN

long Subsysld; if FromWhom = = ONESUBSYS

}
ConnOrSubsys;

}

21

RPC2 RequestFilter; Type of Filter parameter in RPC2 GetRequestO

The tollowing data structure is the body of the packet synthesised by the runtime system on a new connection, and returned as
the result of an RPC2 GetRequestO.

typedef
struct
.(

RPC2 Integer SideEffectType;
RPC2 Integer SecurityLevel;
RPC2 Integer EncryptionType;
RPC2 Counted BSClientldent;
}

RPC2 NewConnectionBody;

RPC2 runtime routines:

extern longRPC2 Init0;
extern longRPC2 Export0;
extern long RPC2_DeExport0;
extern long RPC2 AIIocBuffer0;
extern long RPC2_FreeBuffer0;
extern longRPC2_SendResponse0;
extern longRPC2_GetRequest0;
extern longRPC2_MakeRPC0;
extern longRPC2_MultiRPC0;
extern longRPC2 Bind 0;
extern longRPC2 InitSideEffect0;
extern long RPC2 CheckSideEffect0;
extern long RPC2 Unbind();
extern longRPC2_GetPrivatePointer0;
extern longRPC2 SetPrivatePointer0;
extern long RPC2 GetSEPointer0;
extern long RPC2_SetSEPointer0;

extern longRPC2 GetPeerlnfo0;
extern char *RPC2 ErrorMsg0; NOT long/I//
extern long RPC2_DumpTrace0;

extern longRPC2 DumpState();
extern tongRPC2_lnitTraceBuffer0;
extern long RPC2_LamportTime0;
extern long RPC2 Enable0;
#endif

22

2.2. Client-related Calls

RPC2_Bind

Create a new connection

Call:

long RPC2_Bind(in long SecurityLevel, in long EncryptionType, in RPC2 Hostldent "Host,

in RPC2_Portalldent "Portal, in RPC2_Subsysldent *Subsys,

in long SideEffectType, in RPC2 CountedBS *Clientldent,

in RPC2_EncryptionKey "SharedSecret, out RPC2 Handle "ConnHandle)

Parameters:

SecurityLevel

One of the constants RPC20PENKIMONO, RPC20NLYAUTH.ENTICATE, RPC2 HEADERSONLY or
RPC2 SECURE

EncryptionType

The kind of encryption to be used on this connection. For example, RPC2 XOR, RPC2 DES, etc. IgnoresJ if

SecurityLevel is RPC20PENKIMONO. The bind will fail if the remote site does not support the requested type
of encryption.

Host The identity of the remote host on which the server to be contacted is located. This may be specified as a string

name or as an Internet address. In the former case the RPC runtime system will do the necessary name
resolution.

PortalAn identification of the server process to be Contacted at the remote site. Portals are unique on a given host. A

portal may be specified as a string name or as an Internet port value. In the former case the RPC runtime

system will do the necessary name to port number conversion. Support for other kinds of portals (such as Unix

domain) may be available in future.

Subsys

Which of the potentially many subsystems supported by the remote server is desired. May be specified as a

number or as a name. In the latter case, the RPC runtime systemwill do the translation from name to number.

SideEffectType

What kind of side effects are to be associated with this connection. The only side effects intially supported are

bulk-transfers of files, identified by type DUMBFTP or SMARTFTP. May be 0 if no side effects are ever to be

attempted on this connection.

Clientldent

Adequate information for the server to uniquely identify this client and to obtain SharedKey. Not interpreted by

the RPC runtime system. Only the GetKeys callback procedure on the server side need understand the format

of Clientldent. May be NULL if SecurityLevel is RPC20PENKIMONO

23

SharedSecret
An encryption key known by the callback procedure on the server side to be uniquely associated with

Clientldent. Used by the RPC runtime system in the authentication handshakes. May be NULL if SecurityLevel

is RPC20PENKIMONO.

ConnHandle
An unique integer returned by the call, identifying this connection. This is not necessarily a small-valued

integer.

Completion Codes:

RPC2 SUCCESS
Allwentwell

RPC2 NOBINDING
Thespecifiedhost,serverorsubsystemcouldnotbecontacted

RPC2_WRONGVERSION
Theclientandserverruntimesystemsareincompatible.Notethatextremeincompatibiltymayresultinthe
serverbeingunableto respondevenwiththiserrorcode.Insucha casetheserverwillappearto bedown,

• resultingina RPC.NOBINDINGreturncode.

RPC2 OLDVERSION
This is a warning. The RPC2_VERSION values on client and server sides are different. Normal operation is still

possible, but one of you is running an obsolete version of the run time system. You should obtain the latest

copy of the RPCruntime system and recompile your code.

RPC2NO TAUTHENTICATED
ASecurityLevelotherthanRPC2,OPENKIMONOwasspecified,andtheserverdidnotacceptyourcredentials.

RPC2 SEFAIL 1
The associated side effect routine indicated a minor failure. The connection isestablished.and usable.

RPC2 SEFAIL2
Theassociatedsideeffectroutineindicatedaseriousfailure.Theconnectionisnotestablished.

RPC2_FAIL
Some other mishapoccurred.

Creates a new connection and binds to a remote server on a remote host. The subsystem information
is passed on to that server to alert it to the kind of remote procedure calls that it may expect on this
connection.

A client/server version check is performed to ensure that the runtime systems are compatible. Note
that there are really two version checks. One is for the RPC network protocol and packet formats,
and this must succeed. The other check reports a warning if ybu have a different RPC runtime system
from the server. You may also wish to do a higher.level check, to ensure that the client and server
application code are compatible.

24

The SecurityLevel parameter determines the degree to which you can trust this connection. If
RPC20PENKIMONO is specified, the connection is not authenticated and no encryption is done on
future requests and responses. If RPC20NLYAUTHENTICATE is specified, an authentication
handshake is done to ensure that the client and the server are who they claim to to be (the fact that
the server can find SharedSecret from Clientldent is assumed to be proof of its identity). If
RPC2 SECURE is specified, the connection is authenticated and all future transmissions on it are
encrypted using a session key generated during the authentication handshake.
RPC2 HEADERSONLY is similar to RPC2 SECURE, except that only RPC headers are encrypted.

The kind of encryption used is specified in EncryptionType. The remote site must specify an
RPC2 GetRequest with an EncryptionTypeMask that includes this encryption type.

25

RPC2 MakeRPC

Make a remote procedure call (with possible side-effect)

Call:

long RPC2_MakeRPC(in RPC2_Handle ConnHandle, in RPC2_PacketBuffer "Request,
in SE Descriptor "SDesc, out RPC2 PacketBuffer ''Reply,
in struct timeval "Patience, in long EnqueueRequest)

Parameters:

ConnHandle
identifiesthe connectionon whichthe call isto bemade

Request
A properlyformattedrequestbuffer.

SDesc

A sideeffect descriptorwith localfieldsfilled in. MaybeNULLif noside effectswill occur asa resultof this call.

Reply On return, it will point to a responsebuffer holdingthe responsefrom the server. Youshouldfree this buffer
when you aredonewith it.

Patience

Maximumtimeto wait for remotesite to respond.A NULLpointer indicatesinfinitepatience.

EnqueueRequest
Specifieswhetherthe callershouldbeblockedif ConnHandleisalreadyservicingan RPC requestfromsome
otherIwp. If thisvariableis1thecallerisblocked.Otherwisea returncodeof RPC2 CONNBUSYis returned.

Completion Codes:

RPC2_S UCCESS
Allwent well.

RPC2 NOCONNECTION
ConnHandledoesnot referto avalidconnection.

RPC2_TIMEOUT
A responsewasnot receivedsoonenough.Occursonly if the Patienceparameterwasnon-NULL.

RPC2_SEFAIL 1
The associatedsideeffect resultedin aminor failure. Futurecallson thisconnectionwillstill work.

RPC2 SEFAIL2
The associatedsideeffect resultedin aseriousfailure. Futurecallson thisconnectionwill fail.

26

RPC2_DEAD
The remote site has been deemed dead or unreachable. Note that this is orthogonal to an RPC2 TIMEOUT
return code.

RPC2 NAKED
Theremotesitesentanexplicitnegativeacknowledgement.Thiscan happen if thatsite thought youwere
dead, or if someone at that site unbound your connection.

RPC2 CONNBUSY
EnqueueRequest specified 0 and ConnHandle is currently servicing a call. Try again later.

The workhorse routine, used to make remote calls after establishing a connection. The call is
sequential and the calling Iwp is blocked until the call completes. The associated side effect, if any, is
finished before the call completes. The listed completion codes are from the local RPC stub. Check
the RPC2 ReturnCode fields of the reply and the status fields of SDesc to see what the remote site
thought of your request. Without an explicit timeout interval the remote site can take as long as it
wishes to perform the requested operation and associated side effects. The RPC protocol checks
periodically to ensure that the remote site is alive. If an explicit Patience timeout interval is specified,
the call must complete within that time.

27

RPC2_MultiRPC

Make a collection of remote procedure calls

Call:

long RPC2 MultiRPC(in long HowMany, in RPC2 Handle ConnHandleList[],
in RPC2_PacketBuffer "Request, in SE_Descriptor SDescList[],
in long (*UnpackMulti)O, in out ARG INFO *Argtnfo,
in struct timeval "Patience)

Parameters:

HowMany
Howmanyserversto contact

ConnHandleList

Listof HowManyconnectionhandlesfor the connectionson whichcallsare to bemade.

Request
A properlyformattedrequestbuffer.

SDescList
ListofHowManysideeffectdescriptors

UnpackMu/ti
Pointerto unpackingroutinecalledbyRPC2wheneachserverresponseasreceived.If RP2Genis used,this
will besuppliedbyMRPC_.MakeMulti.Otherwise,it mustbesuppliedbytheclient.

Arg/nfo
A pointerto a structurecontainingargumentinformation.Thisstructureis notexaminedby RPC2;it is passed
untouchedto UnpackMulti.IfRP2Genisused,thisstructurewillbesuppliedbyMRPC MakeMulti.Otherwise,
itcanbeusedtopassanystructuredesiredby theclientorsuppliedasNULL.

Patience

Maximumtimeto waitfor remotesitesto respond.A NULLpointerindicatesinfinitepatienceas longasRPC2
believesthat the serveris alive.Notethat this timeoutvalueis orthogonalto the RPC2internaltimeoutfor

determiningconnectiondeath.

Completion Codes:

RPC2 SUCCESS
AI_serversreturnedsuccessfully,or all servers until client-initiatedabort returned successfully. Individual
serverresponseinformation is supplied via UnpackMultito the user handler routine supplied in the Arglnfo
structure.

RPC2 TIMEOUT

The userspecifiedtimeoutexpiredbeforeall the serversresponded.

28

RPC2_FAIL
Somethingotherthan SUCCESSor TIMEOUToccurred.Moredetailed informationis suppliedvia UnpackMulti
to the user handlerroutinesupplied in theArglnfo structure.

Logically identical to iterating through ConnHandleList and making RPC2 MakeRPC calls to each
specified connection using Request as the request block, but this call will be considerably faster than

explicit iteration. The calling lightweight process blocks until either the client requests that the call
abort or one of the following is true about each of the connections specified in ConnHandleList: a
reply has been received, a hard error has been detected for that connection, or the specified timeout
has elapsed.

The Arglnfo structure exists to supply argument packing and unpacking information in the case
where RP2Gen is used. Since its value is not examined by RPC2, it can contain any pointer that a
non-RP2Gen generated client wishes to supply.

Similarly, UnpackMulti will point to a specific unpacking routine in the RP2Gen case. If the RP2Gen
interface is not used, you should assume that the return codes of the supplied routine must conform
to the specifications in section 5.4.1.

Side effects are supported as in the standard RPC2 case except that the client must supply a separate
SE_Descriptor for each connection. The format for the SE_Descriptor argument is described in
section 5.4. It will often be useful to supply connection specific information such as unique file names
in the SE_Descriptor.

A further discussion of the Mu[tiRPC facility can be found in chapter 5.

29

2.3. Server-related RPC Calls

RPC2 Export

Indicate willingness to accept calls for a subsystem

Call:
long RPC2 Export(in RPC2_Subsysldent *Subsys)

Parameters:

Subsys
Specifiesa subsystemthat will be henceforthrecognizedby this server. Thisis either an integeror asymbolic
namethatcan betranslatedto the uniqueinteger identifyingthissubsystem.

Completion Codes:

RPC2_SUCCESS
Allwentwell

RPC2 DUPLICATESERVER
YourhavealreadyexportedSubsys.

RPC2 BAD SER VER
Subsysis invalid.

RPC2 FAIL
Somethingelse wentwrong.

Sets up internal tables so that when a remote client performs an RPC2 Bind0 operation specifying
this host-portal-subsystem triple, the RPC runtime system will accept it. A server may declare itself to
be serving more than one subsystem by making more than one RPC2 Export calls.

3O

RPC2_DeExport

Stop accepting new connections for one or all subsystems.

Call:

long RPC2_DeExport(in RPC2 Subsysldent "Subsys)

Parameters:

Subsys
Specifiesthe subsystemto bedeexported.This is either anintegeror a symbolicnamethat can betranslatedto
the uniqueintegeridentifyingthissubsystem.AvalueofNULLdeexportsallsubsystems.

Completion Codes:

RPC2_SUCCESS
All wentwell

RPC2_BADSERVER
Subsysis nota validsubsystem,or hasnotbeenpreviouslyexported.

RPC2_FA/L
Somethingelsewentwrong.

After this call, no new connections for subsystem Subsys will be accepted. The subsystem may,

however, be exported again at a later time. Note that existing connections are not broken by this call.

31

RPC2_GetRequest

Wait for an RPC request or a new connection

Call:

long RPC2 GetRequest(in RPC2_RequestFilter "Filter, out RPC2 Handle *ConnHandle,
out RPC2 PacketBuffer "*Request, in struct timeval *Patience,
in long (*GetKeys)O, in long EncryptionTypeMask, in long (*AuthFail)O)

Parameters:

Filter Afilter specifyingwhich requestsareacceptable.Seedescriptionbelow.

ConnHandle

Specifiesthe connectiononwhichthe requestwasreceived,

Request
Valueignoredon entry.On return, it will point to a bufferholding theresponsefrom the client. Freethis buffer
afteryou aredonewith it.

Patience

AtimeoutintervalspecifyinghowIor_gto wait for a request•If NULL,infinitepatienceisassumed.

GetKeys
Pointer to a callback procedure to obtain authenticationand sessionkeys• Seedescription below. May be
NULLif nosecurebindingsto thisserverareto be accepted.

Encryption TypeMask
A bit maskspecifyingwhichtypesof encryptionis supported.Bindsfrom clientswho requestan encryption
typenot specifiedinthis maskwill fail.

AuthFail

Pointerto acallbackprocedureto be calledwhenanauthenticationfailure occurs.Seedescriptionbelow.-May
be NULLif serverdoes not careto note suchfailures.

Completion Codes:

RPC2_SUCCESS
I havea requestfor you in Request.Newconnectionsresultin afake request.

RPC2 TIMEOUT
Specifiedtimeintervalexpired.

RPC2 BADFILTER
Anonexistentconnectionor subsystemwasspecifiedinFilter.

32

RPC2_SEFA IL 1
The associated side effect routine indicated a minor failure. Future calls on this connection will still work.

RPC2_SEFAIL2
The associated side effect routine indicated a serious failure. Future calls on this connection will fail too.

RPC2_DEAD
You were waiting for requests on a specific connection and that site has been deemed dead or unreachable.

RPC2_FAIL
Something irrecoverable happened.

The call blocks the calling lightweight process until a request is available, a new connection is made,
or until the specified timeout period has elapsed. The Filter parameter allows a great deal of flexibility
in selecting precisely which calls are acceptable. New connections result in a fake request with a
body of type RPC2 NewConnection. Do not try to do a RPC2 SendResponse to this call. All other
RPC2 GetRequest calls should be eventually matched with a corresponding RPC2 SendResponse
call.

The fields of RPC2_NewConnection are self-explanatory. Note that you must invoke RPC2_Enable0

after you have handled the new connection packet for further requests to be visible. If you are using
RP2Gen, this is done for you automatically by the generated code that deals with new connections.

The callback procedure for key lookup should look like this:

long GetKeys(in Clientldent, out IdentKey, out SessionKey)

RPC2_CoundedBS *Clientldenh

RPC2_EncryptionKey *ldentKey;

RPC2_EncryptionKey *SessionKey,
GetKeys0 will be called at some point in the authentication handshake. It should return 0 if

Clientldent is successfully looked up, and -1 if the handshake is to be terminated. It should fill
IdentKey with the key to be used in the handshake, and SessionKey with an arbitrary key to be used
for the duration of this connection. You may, of course, make SessionKey the same as IdentKey.

The callback procedure for noting authentication failure should look like this:

long AuthFail(in Clientldent, in EncrType, in PeerHost, in PeerPortal)

RPC2_CoundedBS *Clientldent;

RPC2_lnteger EncryType;

RPC2 Hostldent *PeerHost;
RPC2 Portalldent *PeerPortal;

AuthFail0 will be called after an RPC2 NOTAUTHENTICATED packet has been sent to the client. The

33

parameters give information about the client who was trying to authenticate himself, the type of
encryption requested, and the site from which the RPC2 Bind0 was attempted. The callback
procedure will typically record this in a log file somewhere.

34

RPC2 Enable

Allow servicing of requests on a new connection

Call:
long RPC2 Enable(in RPC2_Handle ConnHandle)

Parameters:

ConnHandle
Whichconnectionisto beenabled,

Completion Codes:

RPC2_SUCCESS
Enabledtheconnection.

RPC2 NOCONNECTION
Abogusconnectionwasspecified. "

Typically invoked by the user at the end of his NewConnection routine, after setting up his higher-
level data structures appropriately. Until a connection is enabled, RPC2 guarantees that no requests
on that connection will be ret.urned in a RPC2 GetRequest call. Such a request from a client will,
however, be held and responded to with RPC2 BUSY signals until the connection is enabled. This
call is present primarily to avoid race hazards in higher.level connection establishment. Note that
RP2Gen automatically generates this call at after a NewConnection routine.

35

RPC2_Send Response

Respond to a request from my client

Call;

long RPC2 SendResponse(in RPC2 Handle ConnHandle, in RPC2_PacketBuffer °Reply)

Parameters:

ConnHandle

Whichconnectionthe responseis to besenton.

Reply Afilled.in buffercontainingthereplyto besentto theclient.

Completion Codes:

RPC2_S UCCESS
tsentyourresponse.

RPC2_NO TWORKER
Youwerenotgivenarequesttoservice.

RPC2 DEAD
The remotesite isdeador unreachable.

RPC2 NAKED
The remotesite sentanexplict negativeacknowlegment.

RPC2_SEFAIL 1
Theassociatedsideeffectroutine indicatedaminorfailure. Futurecallson thisconnectionwill still work.

RPC2_SEFAIL2
The associatedsideeffectroutineindicatedaseriousfailure. Futurecallsonthis connectionwill fail too.

RPC2_FA IL
Someirrecoverablefailurehappened.

Sends the specified reply to the caller. Any outstanding side effects are completed before Reply is
sent. Encryption, if any, is done in place and will clobber the Reply buffer.

36

RPC2_I nit SideEffect

Initiate side effect

Call:

long RPC2_lnitSideEffect(in RPC2_Handle ConnHandle, in SE Descriptor "SDesc)

Parameters:

ConnHandle
The connectiononwhichthe sideeffect is to beinitiated.

SDesc

Afilled-inside effectdescriptor.

Completion Codes:

RPC2_S UCCESS
Thesideeffecthas beeninitiated.

RPC2_NO TSERVER
Only one side effect is allowed per RPC call, This has to be initiated between the GetRequest and
SendResponseof that call. Youareviolatingoneof theserestrictions.

RPC2 SEFAIL1
Theassociatedsideeffect routineindicateda nonfatalfailure. Futurecallson thisconnection willwork.

RPC2 SEFAIL2
Theassociatedsideeffect routineindicateda seriousfailure.Futurecallson thisconnectionwillfail too.

RPC2_FA/L
Otherassortedcalamities

Initiates the side effect specified by SDesc on ConnHandle. The call does not wait for the completion
of the side effect. If you need to know what happened to the side effect, do a RPC2_CheckSideEffect

call with appropriate flags.

37

RPC2_CheckSideEffect

Check progress of side effect

Call:

long RPC2 CheckSideEffect(in RPC2_Handle ConnHandle, inout SE Descriptor *SDesc,
in long Flags)

Parameters:

ConnHandle
Theconnectionon whichthesideeffecthasbeeninitiated.

SDesc

The side effect descriptor as it was returned by the previousRPC2_lnitSideEffector RPC2 CheckSideEffect
call on ConnHandle.Onoutput,the statusfieldsarefilled in.

Flags Specifieswhatstatus is desired. Thiscall will block until the requestedstatus is available. This is a bit mask,
with RPC2_GETLOCALSTATUSand RPC2 GETREMOTESTATUSbits indicating local and remotestatus. A
Flags value of 0 specifies a polling status check: no blocking will occur and the currently known local and
remotestatuswill be returned.

Completion Codes:

RPC2 SUCCESS
The requestedstatusfields havebeenmadeavailable.

RPC2 NOTSERVER
Nosideeffect isongoingonConnHandle,

RPC2 SEFAIL 1
The associatedsideeffect routineindicatedanonfatalfailure. Futurecallsonthis connectionwillwork.

RPC2 SEFAIL2
Theassociatedsideeffect routineindicatedaseriousfailure. Futurecalls onthis connectionwill fail too.

RPC2 FAIL
Otherassortedcalamities

Checks the status of a previously initiated side effect. This is a (potentially) blocking call, depending
on the specified flags.

38

2.4. Miscellaneous Routines

RPC2 Init

Perform runtime system initialization

Call:

long RPC21nit(in char *Versionld, in long Options, in RPC2_Portalldent *PortalList[],

in long HowManyPortals, in long RetryCount,

in struct timeval "KeepAlivelnterval)

Parameters:

Versionld

Set this to the constant RPC2_VERSION. The current value of this string constant must be identical to the

value at the time theclient runtimesystemwas compiled.

Options

Right now there are no options.

PortalList

An array of unique network addresses within this machine, on which requests can be listened for, and to which

responses to outgoing calls can be made. In the Internet domain this translates into a port number or a

symbolic name that can be mapped to a port number. You need to specify this parameter even if you are only

going to be a client and not export any subsystems. A value of NULL will cause RPC2 to select an arbitrary,

nonassigned portal.

HowManyPortals

Specifies the number of elements in the array PortalList.

RetryCount

How many times to retransmit a packet before giving up all hope of receiving acknowledgement of its receipt.

Should be in the range I to 30. Use a value of -1 to obtain the default.

KeepAlivelnterval

How often to probe a peer during a long RPC call. This value is also used to calculate the retransmission

intervals when packet loss is suspected by the RPC runtime system. Use NULL to obtain the default.

Completion Codes:

RPC2_SUCCESS

All went well

RPC2 FAIL

Unable to initialize client. Check for bogus parameter values.

39

RPC2 WRONGVERSION
The header file and the library have different versions. This should never happen in a properly administered
system.

RPC2 L WPNO TINIT

The LWP package has not been properly initialized. Be sure to call LWP InitializeProcessSupport0 before
calling RPC2Jnit0.

RPC2BAD SERVER
ThePortalListfieldspecifiesaninvalidaddress.

RPC2 DUPLICATESERVER
An entry in PortalList specifies an address which is already in use on this machine

RPC2_SEFAIL 1
Theassociatedsideeffectroutineindicateda minorfailure.

RPC2 SEFAIL2
The associated side effect routine indicated a serious failure.

Initializes the RPC runtime system in this process. This call should be made before any other call in
this package is made. It should be preceded by an initialization call to the LWP package and a.call to
SE SetDefaults with InitialValues as argument. If you get a wrong version indication, obtain a
consistent version of the header files and the RPC runtime library and recompile your code. Note that
this call incorporates a call to initialize IOMGR.

RetryCount and KeepAlivelnterval together define what it means for a remote site to be dead or
unreachable. Packets are retransmitted at most RetryCount times until positive acknowledgement of
their receipt is received. This is usually piggy-packed with useful communication, such as the reply to
a request. The KeepAlivelnterval is used for two purposes: to determine how often to check a remote
site during a long RPC call, and to calculate the intervals between the RetryCount retransmissions of
a packet. The RPC runtime system guarantees detection of remote site failure or network partition
within a time period in the range KeepAlivelnterval to twice KeepAlivelnterval. See Appendix II for
further information on the retry algorithm.

Remember to activate each side effect, XXX, that you are interested in by invoking the corresponding
XXX_Activate0call, prior to calling RPC2 Init.

You may get a warning about SOGREEDY being undefined, if your kernel does not have an ITC bug
fix. RPC2 will still work but may be slower and more likely to drop connections during bulk transfer.
This is because of insufficient default packet buffer space within the Unix kernel.

4O

RPC2_Unbind

Terminate a connection by client or server

Call;
long RPC2_Unbind(in RPC2 Handle ConnHandle)

Parameters:

ConnHandle
identifies the connection to be terminated

Completion Codes;

RPC2_SUCCESS
All went well

RPC2 NOCONNECTION
ConnHandle is bogus

RPC2_SEFAIL1
The associated side effect routine indicated a minor failure.

RPC2 SEFAIL2
The associated side effect routine indicated a serious failure.

RPC2 FAIL
Otherassortedcalamities

Removes the binding associated with the specified connection. Normally a higher-level
disconnection should be done by an RPC just prior to this call. Note that this call may be used both
by a server and a client, and that no client/server communication occurs: the unbinding is unilateral.

41

RPC2_AIIocBuffer

Allocate a packet buffer

Call:

long RPC2. AflocBuffer(in long MinBodySize, out RPC2 PacketBuffer "'Buff)

Parameters:

MinBodySize
Minimumacceptablebodysizefor the packetbuffer.

Buff Pointerto the allocatedbuffer.

Completion Codes;

RPC2 SUCCESS
Bufferhasbeenallocatedand "Buff pointsto it.

RPC2 FAIL
Couldnotallocateabuffer of requestedsize.

Allocates a packet buffer of at least the requested size. The BodyLength field in the header of the
allocated packet is set to MinBodySize. The RPC runtime system maintains its own free list of buffers.
Use this call in preference to mallocO,

42

RPC2_FreeBuffer

Free a packet buffer

Call:

long RPC2 FreeBuffer(inout RPC2 PacketBuffer "Buff)

Parameters:

Buff Pointer to the buffer to be freed. Set to NULL by the call.

Completion Codes:

RPC2_SUCCESS

Buffer has been freed. *Buff has been set to NULL.

RPC2 FAIL

Could not free buffer.

Returns a packet buffer to the internal free list. Buff is set to NULL specifically to simplify Iocatihg
bugs in buffer usage.

43

RPC2_Get P rivate Pointe r

Obtain private data mapping for a connection.

Call:

long RPC2 GetPrivatePointer(in RPC2_Handle WhichConn, out char ==PrivatePtr)

Parameters:

WhichConn

Connectionwhoseprivatedata pointerisdesired.

PrivatePtr

Setto pointto privatedata.

Completion Codes:

RPC2_SUCCESS

*PrivatePtrnow pointsto the privatedata associatedwittfthis connection.

RPC2_FA IL
Bogusconnectionspecified.

Returns a pointer to the private data associated with a connection. No attempt is made to validate this
pointer.

44

RPC2 SetPrivatePointer

set private data mapping for a connection.

Call:

long RPC2_SetPrivatePointer(in RPC2 Handle WhichConn, in char °PrivatePtr)

Parameters:

WhichConn

Connection whose private data pointer is to be set,

PrivatePtr
Pointer to private data.

Completion Codes:

RPC2_SUCCESS
Private pointer set for this connection.

RPC2 FAIL
Bogus connection specified.

Sets the private data pointer associated with a connection. No attempt is made to validate this
pointer.

45

RPC2_Get SEPointe r

Obtain per-connection side-effect information..

Call:
long RPC2 GetSEPointer(in RPC2 Handle WhichConn, out char "*SEPtr)

Parameters:

WhichConn

Connectionwhoseside-effectdatapointerisdesired.

SEPtr Setto pointtoside-effectdata.

Completion Codes:

RPC2_SUCCESS
*SEPtrnowpoints to the sideeffectdata associatedwith this connection.

RPC2 FAIL
Bogusconnectionspecified.

Returns a pointer to the side effect data associated with a connection, No attempt is made to validate
this 3ointer. This call is should only by the side effect routines, not by clients.

46

RPC2_SetSEPointe r

Set per-connection side-effect connection.

Call:
long RPC2_SetSEPointer(in RPC2 Handle WhichConn, in char "SEPtr)

Parameters:

WhichConn

Connectionwhosesideeffectpointeristo beset.

SEPtr Pointertosideeffectdata.

Completion Codes:

RPC2 SUCCESS
Sideeffectpointersetfor thisconnection,

RPC2 FA/L
Bogusconnectionspecified.

Sets the side effect data pointer associated with a connection. No attempt is made to validate this
pointer. This call should only be used by the side effect routines, not by clients.

47

RPC2_Get Pee rlnfo

Obtain miscellaneous connection information.

Call:

long RPC2 GetPeerlnfo(in RPC2 Handle WhichConn, out RPC2 Peerlnfo *Peerlnfo)

Parameters:

WhichConn

Connectionwhosepeeryouwishtoknowabout

Peerlnfo
Datastructureto befilled.

Completion Codes:

RPC2_S UCCESS
Peer informationhasbeenobtainedfor thisconnection.

RPC2_FAIL
Bogusconnectionspecified.

i

Returns the peer information for a connection. Also returns other miscellaneous connection-related
information, such as the securrity level in use. This information may be used by side-effect routines or
high-level server code to perform RPC bindings in the opposite direction. The RemoteHandle and
Uniquefier information are useful as end-to-end identification between client code and server code.

48

RPC2_Lampo rtTime

Get Lamport time

Call:

long RPC2_LamportTime()

Parameters:

None

Completion Codes:

None

Returns the current Lamport time. Bears no resemblance to the actual time of day. Each call is
guaranteed to return a value at least one larger than the preceding call. Every RPC packet sent and
received by this Unix process has a Lamport time field in its header. The value returned by this call is
guaranteed to be greater than any Lamport time field received or sent before now. Useful for
generating unique timestamps in a distributed system.

49

RPC2 DumpState

Dump internal RPC state.

Call:
long RPC2_DumpState(in FILE °OutFile, in long Verbosfy)

Parameters:

OutFile
File on which the trace is to be produced. A value of NULL implies stdout.

Verbosity
Controls the amount of information dumped. Right now two values 0 and 1 are meaningfull.

Completion Codes:

RPC2_SUCCESS
The dump has been produced. "

You should typicallycall this routineafter calling RPC_DumpTrace.

5O

RPC2 InitTraceBuffer

Set trace buffer size.

Call:

long RPC2_lnitTraceBuffer(in long HowMany)

Parameters:

HowMany
Howmanyentriesthe tracebuffershouldhave, Set it to zero to deletetracebuffer.

Completion Codes:

RPC2_SUCCESS

The tracebufferhasbeenadjustedappropriately.

Allowsyou to createand change the trace buffer at runtime. All existingtrace entriesare lost.

51

RPC2 DumpTrace

Print a trace of recent RPC calls and packets received.

Call:
long RPC2 DumpTrace(in FILE "OutFile, in long HowMany)

Parameters"

OutFile
File on which the trace is to be produced. A value of NULL implies stdout.

HowMany
The HowMany most recent trace entries are printed. A value of NULL implies as many trace entries as possible.

Values larger than TraceBufferLength specifed in RPC2Jnit are meaningless.

Completion Codes;

RPC2_SUCCESS
Therequestedtracehasbeenproduced.

RPC2_FAIL
The trace buffer had no entries.

Note that it is not necessary for RPC2 Trace to be currently set. You can collect a trace and defer
calling RPC2_DumpTrace until a convenient time. This call does not alter the current value of
RPC2_Trace.

52

XX X_SetDefaults

Set an SE initializer to its default values

Call:
long XXX_SetDefaults(in XXX_lnitializer *Initializer)

Parameters:

Initializer
InitializerforsideeffectXXXwhichyouwishtosettodefaultvalues.-

Completion Codes:

RPC2_SUCCESS

Each side effect type, XXX,defines an initializationstructure type, XXX Initializer, and an initialization
routine, XXX.SetDefaults0.

A typical initialization sequence consists of the following: for each side effect, XXX, that you care
about,

(1) declare a local variable of type XXX_lnitializer,
(2) call XXX_SetDefaults0 with this local variable as argument,
(3) selectively modify those initial values you care about in the local variable, and
(4) call XXX_Activate0 with this local variable as argument.

Finally call RPC2_lnit.

This allows you to selectively set parameters of XXX without having to know the proper values for all
of the possible parameters. Alas, if only C allowed initialization in type declarations this routine would
be unnecessary.

53

XXX_Activate

Activates a side effect type and initializes it

Call:

long XXX_Activate(in XXX_lnitializer =lnitializer)

Parameters:

Initializer

Initializerfor sideeffect XXX.•

Completion Codes:

RPC2_SUCCESS

Activates side effect XXX. Code corresponding to this side effect will not be linked in otherwise. See
comment for XXX.SetDefaultsO for further details, o

54

55

3. Side Effects

3.1. Constants and Globals (from file se.h)

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

ifndef - SE -

#define - SE-

struct SE Definition

{
long SideEffectType; what kind of side effect am I?

long (*SE Init)0; on both client & server side

long (* SE Bind 1)0; on client side
long (*SE Bind2)0; on client side

long (*SE_Unbind)0; on client and server side

long (*SE NewConnection)0; on server side

long (*SE MakeRPC1)0; on client side
long (*SE._MakeRPC2)0; on client side

long (*SE GetRequest)0; on server side

tong (* SE InitSideEffect)(); on server side

long (*SE CheckSideEffect)0; on server side

long (*SE SendResponse)0; on server side

long (*SE_PrintSEDescriptor)0; for debugging
long (*SE_SetDefaults)0; for initialization

};

Types of side effects: use this in the RPC2 BindO carl
#define DUMBFTP 231

#define SMARTFTP 1189

enum WhichWay {CLIENTTOSERVER = 93, SERVERTOCLIENT = 87};
enum FilelnfoTag {FILEBYNAME = 33, FILEBYINODE = 58};

struct DFTP Descriptor
{
enum WhichWay TransmissionDirection;

IN

char hashmark; IN: 0 for non-verbose transfer

long SeekOffset; IN: ._ = O;position to seek to before first read or write

long BytesTransferred; OUT: value after RPC2 CheckSideElfectO meaningful

long ByteQuota; IN: maximum number of data bytes to be sent or received.
SE FAIL 1 is returned and the transfer aborted if this limit would

be exceeded. EnforceQuota in DFTP Inifializer must be
specified as 1 at RPC initialization for the quota enforcement to

take place. A value of -1 implies a fimit of infinity.

enum FilelnfoTag Tag; IN
union

{
struct

56

{
long ProtectionBits; Unix mode bits to be set for created files
char LocalFileName[256];
}
ByName; if (Tag = = FILEBYNAME);standard Unix openO

struct

{
long Device; device on which file resides
long Inode; inode number of file (inode MUST exist already)

}
Bylnode; ff (Tag = = FILEBYINODE); ITC inode-open

}
Filelnfo; everything is IN

};

#define SFTP Descriptor DFTP Descriptor

enum SE_Status {SE_NOTSTARTED = 33, SE INPROGRESS= 24, SE SUCCESS = 57, SE FAILURE = 36};

typedef
struct SE SideEffectDescriptor

{
enum SE_Status LocalStatus;
enum SE_Status RemoteStatus;
long Tag; DUMBFTP or SMARTFTPor ASYNCFTP
union

{
struct DFTP Descriptor DumbFTPD;
struct SFTP Descriptor SmartF-l'PD;
}
Value;

}
SE Descriptor;

typedef struct DFTPI
{
long NoOfBulkLWPs;
long ChunkSize;
long SupportedEncryptionTypes; Mask
long EnforceQuota;
} DFTP Initializer;

typedef struct SFTPI
{
long PacketSize; bytes in data packet
long WindowSize; max number of outstanding unacknowledged packets
long RetryCount;
long Retrylnterval; in milliseconds
long SendAhead; number of packets to read and send ahead
tong AckPoint; when to send ack

long EnforceQuota; 0 = = > don't
} SFTP Initializer;

Flag options in RPC2 CheckSEStatusO: OFtthese together as needed

57

#define SE AWAITLOCALSTATUS 1
#define SE AWAITREMOTESTATUS 2

extern struct SE Definition "SE.DefSpecs; array
extern long SE DefCount; how many are there?
extern void SE SetDefaults0;
#endif

3.2. Adding New Kinds of Side Effects

The rest of this chapter is not intended for the average user. Only a system programmer who intends

to add support for a new kind of side effect needs to understand the semantics of the calls described

here. The normal user need only concern himself with the format of the side effect descriptor,

described above.

3.2.1. Notes:

1. You will modify two RPC2 files (se.h and se.c), and add one more file containing the code
implementing your new side effect. Also modify the Makefile to compile and link in your
new file.

2. Client and server programs will cause the appropriate side effect routines to be linked in
by calling the appropriate SE Activate0 for each side effect they are interested in. Note
that these calls must precede RPC Init0.

3. None of these procedures will be called for a connection, if the RPC2 Bind that created
the connection specified NULL for the SideEffectType parameter.

4. In each of the calls, ConnHandle is the handle identifying the connection on which the
side effect is desired. It is not likely to be a small integer. Since you cannot access the
internal data structures of the RPC2 runtime system, you cannot use this for much. It is
passed to you primarily for identification.

5. You can use RPC2 GetSEPointer0 and RPC2 SetSEPointer0 to associate per-
connection side effect data structures.

6. Use RPC2 GetPeerlnfo0 to get the identity of a connection's peer.

7. Three return codes:RPC2 SUCCESS and RPC2 SEFAIL1 and RPC2 SEFAIL2 are
recognized for each of the calls. The successful return causes the RPC runtime system
to resume normal execution from the point at which the side effect routine was invoked.
The failure returns abort the call at that point and returns RPC2 SEFAIL1 or
RPC SEFAIL2 to the client or server code that invoked the RPC system call.
RPC2 SEFAIL1 is an error, but not a fatal error. Future RPC calls on this connection will
still work. RPC2 SEFAIL2 is a fatal error.

8. To add a new type of side effect do the following:

58

a. Define an appropriate side effect descriptor, add it to the header file se.h and to the
discriminated union in the definition of SE Descriptor.

b. Define an appropriate Initializer structure and a corresponding component in the
SE Initializer structure in file se.h.

c. Write a set of routines corresponding to each of the SE_XXX routines described in
the following pages. This includes a SE ActivateO routine to enlarge the table in
file se.c, and a SE SetDefaultsO routine to deal with SE Initializer structures.

59

SE_lnit

Call:
long SE_lnit()

Parameters-

None

Completion Codes"

RPC2 SUCCESS

RPC2 SEFAIL1

RPC2_SEFAIL2

Called just prior to return from RPC2_lnit.

60

SE_Bindl

Call:

long SE_Bind 1(in RPC2_Handle ConnHandle, in RPC2_CountedBS *Client/dent)

Parameters;

ConnHandle

Clientldent

Completion Codes:

RPC2 SUCCESS

RPC2_SEFA IL 1

RPC2 SEFAIL2

Called on RPC2 Bind on client side. The call is made just prior to sending the first connection.

establishment packet to the server. The connection establishment is continued only if
RPC2 SUCCESS is returned.

61

SE_Bind2

Call:

long SE Bind2(in RPC2_Handle ConnHandle)

Parameters:

ConnHandle

Completion Codes:

RPC2_SUCCESS

RPC2_SEFA IL 1

RPC2_SEFAIL2

Called on RPC2 Bind on client side. The call is made just after the connection is successfully
established, before control is returned to the caller. If SE_Bind2 returns RPC2_SEFAIL1 or
RPC2 SEFAIL2, that code is returned as the result of the RPC2 Bind. Otherwise the usual code is
returned.

62

SE Unbind

Call:
long SE Unbind(in RPC2 Handle ConnHandle)

Parameters:

ConnHandle

Completion Codes:

RPC2_SUCCESS

RPC2 SEFAIL7

RPC2 SEFAIL2

Called when RPC2_Unbind is executed on the client or server side. You are expected to free any
side effect storage you associated with this connection, and to do whatever cleanup is necessary.
Note that the connection state is available to you and is not destroyed until you return
RPC2_SUCCESS.

63

SE_NewConnection

Call:

long SE_NewConnection(in RPC2 Handle ConnHandle, in RPC2_CountedBS _Clientldent)
Parameters-"

ConnHandle

Cfientldent

Completion Codes;

RPC2_SUCCESS

RPC2 SEFAIL1

RPC2 SEFAIL2

Called on server side when a new connection is established, just prior to exit from the corresponding
RPC2 GetRequest0.

64

SE_MakeRPC1

Call:

long SE_MakeRPC1(in RPC2_Handle ConnHandle, inout SE Descriptor "SDesc,
inout RPC2 PacketBuffe. r "°RequestPtr)

Parameters:

ConnHandle

SDesc

RequestPtr

Completion Codes:

RPC2 SUCCESS

RPC2 SEFAIL 1

RPC2_SEFAIL2

Called after a request has been completely filled, just prior to network ordering of header fields,
encryption and transmission. You may use the Prefix information to determine the actual size of the

buffer corresponding to *RequestPtr. If you add data, remember to update the BodyLength field of
the header in *RequestPtr. You also probably wish to update the SideEffectFlags and
SideEffectDataOffset fields of the header. SDesc points to the side effect descriptor passed in by the
client.

If you need more space than available in the buffer passed to you, you may allocate a larger packet,
copy the current contents and add additional data. Return a pointer to the packet you allocated in
RequestPtr: this is the packet that will actually get sent over the wire. DO NOT free the buffer pointed

to by RequestPtr initially. If you allocate a packet, it will be freed immediately after successful
transmission.

65

SE_MakeRPC2

Call:

long SE_MakeRPC2(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2_PacketBuffer *Reply)

Pa ramete rs:

ConnHandle

SDesc

Reply

Completion Codes:

RPC2SUCCESS

RPC2 SEFAIL1

RPC2 SEFAIL2

Called just after Reply has been received, after decryption and host ordering of header fields.
Examine the SideEffectFlags and SideEffectDataOffset fields to determine if there is piggy-backed
side effect data for you in Reply. If you remove data, remember to update the BodyLength field of the
header in Reply. SDesc points to the side effect descriptor. You will probably wish to fill in the status
fields of this descriptor. If the MakeRPC call fails for some reason, this routine will be called with a
Reply of NULL. This allows you to take suitable cleanup action.

66

SE_GetRequest

Call:

long SE_GetRequest(in RPC2 Handle ConnHandle, inout RPC2 PacketBuffer *Request)
Parameters:

ConnHandle

Request

Completion Codes:

RPC2_S UCCESS

RPC2 SEFAIL 1

RPC2 SEFAIL2

Called just prior to successful return of Request to the server. You should look at Request, extract
side effect data if any, modify the header fields appropriately.

67

SE_lnitSideEffect

Call:

long SE_lnitSideEffect(in RPC2_Handle ConnHandle, inout SE Descriptor °SDesc)

Parameters:

ConnHandle

SDesc

Completion Codes:

RPC2 SUCCESS

RPC2 SEFAIL1

RPC2_SEFAIL2

Called when the server does an RPC2 InitSideEffect call. You will probably want to examine some
fields of SDesc and fill in some status-related fields. Note that there is no requirement that you should
actually initiate any side effect action. You may choose to piggy back the side effect with the reply
later.

68

SE_CheckSideEffect

Call:

long SE_CheckSideEffect(in RPC2 Handle ConnHandle, inout SE Descriptor "SDesc,
in long Flags)

Parameters:

ConnHandle

SDesc

Flags

Completion Codes:

RPC2 SUCCESS

RPC2 SEFAIL 1

RPC2 SEFAIL2

Called when the server does an RPC2 CheckSideEffect call. The Flags parameter will specify what
status is desired. You may have to actually initiate the side effect, depending on the circumstances.

69

SE_SendResponse

Call:

long SE SendResoonse(in RPC2 Handle ConnHandle, in RPC2_PacketBuffer ""ReplyPtr)

Parameters:

ConnHandle

ReplyPtr

Completion Codes"

RPC2_S UCCESS

RPC2 SEFAIL 1

RPC2_SEFAIL2

Called just before the reply packet is network-ordered, encrypted and transmitted. You may wish to
add piggy-back data to the reply; modify the BodyLength field in that case. If you are not
piggybacking data, make sure that the side effect is complete before returning from this call.

If you need more space than available in the buffer passed to you, you may allocate a larger packet,
copy the current contents and add additional data. Return a pointer to the packet you allocated in
ReplyPtr: this is the packet that will actually get sent over the wire. DO NOT free the buffer pointed to
by ReplyPtr initially. If you allocate a packet, it will be freed immediately after successful transmission.

70

SE_P rintSEDesc riptor

Call;

long SE PrintSEDescriptor(in SE._Descriptor °SDesc, in FILE °outFile)

Parameters:

SDesc

Guaranteedtorefertoyourtypeofsideeffect.

outFile

Alreadyopenandreadytoreceivebytes.

Completion Codes:

RPC2 SUCCESS

Called when printing debugging information. You should print out SDesc, suitably formatted, on
outFile.

71

SE SetDefaults

Call.

long SE SetDefaults(XXX_lnitializer *Slnit)

Parameters;

Slnit Aninitializerfor thissideeffect,XXX.

Completion Codes;

RPC2_SUCCESS

Called to set Slnit to appropriate default values.

72

SE_Activate

Call:

long SE Activate(in XXX_lnitializer °Slnit)

Parameters:

Slnit Initializationvaluesto be usedfor thisside effect,XXX.

Completion Codes:

RPC2 SUCCESS

Called to activate this side effect type. The body of this procedure should allocate and fill in a routine
vector in the side effect table in file se.c. It should also obtain its initialization parameters from Slnit.

73

4. RP2Gen: A Stub Generator for RPC2

NOTE

This chapter is derived from the original documents by Jon

Rosenberg, David Nichols and M. Satyanarayanan. RP2Gen was

written by Jon Rosenberg.

,,)

4.1. Introduction

RP2GEN takes a description of a procedure call interface and generates stubs to use the RPC2

package, makingthe interface availableon remote hosts. RP2GEN is designed to work with a number

of different languages (C, FORTRAN 77, PASCAL), however, only the C interface is currently

implemented.

RP2GEN also defines a set of external data representationsfor RPC types. These representationsare

defined at the end of this document in the section entitled External Data Representations. Any

program wishing to communicate with a remote program using the RP2GEN semantics must obey

these representationstandards.

4.2. Usage

RP2GEN is invoked as follows:

rp2gen [server/anguage] [client/anguage] file

Where server language is the language to be used for the server interface and client language is the

language for the clientinterface. The possibilitiesfor these fields are

-c C
-f FORTRAN 77

-p PASCAL

If onlyone language option is specified, the same language is used for both the server and the client.

The default optionsare -c -c. Note that a particular language option may not support all of the data

types.

File is the file containing the description of the interface. Normally, these files have the extension

.rpc2. RPGen createsthree files namedbase.client.ext, base.server.ext and base.h, where base is the

74

name of the file without the extension and the pathname prefix, and ext is the appropriate language-

specific extension. The options indicate the target language for the generated output. The default is

-C. Thus

rp2gen samoan.rpc2

would yield the files samoan.client.c,samoan.server.cand samoan.h.

A person wanting to provide a package remotely writes his package with a normal interface. The

client programmerwrites his code to make normal calls on the interface. Then the client program is

linkedwith

ld ... base.client,.o-lrpc2 ...

and the server program with

ld ... base.server.o-lrpc2 ...

The server module provides a routine, the ExecuteRequest routine, that will decode the parameters of

the request and make an appropriate call on the interface. (The routine is described below in the

language interface sections.) The client module translates calrs on the interface to messages that are

sent via the RPC2 package. The .h file contains type definitions that RP2GEN generated from the

type definitions in the input file, and definitions for the op-codes used by RP2GEN. This file, which is

automatically included in the server and client files, may be included by any other module that needs

access to these types.

4.3. Format of the description file

In the syntax of a description file below, non-terminalsare represented by italic namesand literalsare

representedby bold strings.

file :: = prefixes header_fine default_timeout dec/_or..proc_list

prefixes ::= empty I prefix I prefix prefix
prefix : := Server Prefix string ; I Client Prefix string ;

header line ::= Subsystem subsystem..name ;
subsystemname : := string
string :: = " zero_or_more_ascil chars "
default_timeout ::= Timeout (id_number); _ empty

75

decl_or_proc_list :: = decl or_proc I decl_or..proc decl_or_proc_list
decl_or_proc :: = include I define I typedef I procedure_description
include : := #include ' file name '
define ::= #define identifier number

typedef : : = typedef rpc2_type identifier array, spec ;
rpc2_type : := type_name } rpc2_struct I rpc2_enum
type_name ::: RPC2_lnfeger I RPC2_Unsigned I RPC2_Byte

I RPC2_String [RPC2 CountedBS I RPC2 BoundedBS
I SE_Descriptor RPC2 EncryptionKey I identifier

rpc2_struct ::= RPC2 Struct{ field list}
field_list ::= field I field field...list
field :: = type_name identifierJist ;
identifierJist :: = identifier I identifier , identifier list
rpc2_enum : : = RPC2_Enum { enum_list }
enum_list :: = enum , enumJist I enum
enum: : = identifier = number

array_spec ::= empty I [id_number]
id..number ::= number I identifier

procedure_description ::= proc_name (formal list)
timeout_override newconnection ;

proc_name : :. identifier
formalJist ::= empty I formal_parameter I formal_parameter , formal list
formal_parameter ::= usage type_name parameter_name
usage ::= IN I OUT I IN OUT

parameter_name : : = identifier
timeout_override :: = Timeout (id_number) I empty
new_connection ::= NEWCONNECTION I empty
empty : : ,,

In addition to the syntax above, text inclosed in /* and */ is treated as a comment and ignored.

Appearances of an include statement will be replaced by the contents of the specified file. All

numbers are in decimal and may be preceded by a single - sign. Identifiers follow C syntax except

that the underline character, _, may not begin an identifier. (Note that a particular language interface

defines what identifiers may actually be used in various contexts.)

The following are reserved words in RP2GEN: server, client, prefix, subsystem, timeout,

typedef, rpc2_struct, rpc2_enum, in and out. Case is ignored for reserved words, so that, for

example, subsystem may be spelledas SubSystem if desired. Case is not ignored, however, for

identifiers. Note that the predefined type names (RPC2 Integer, RPC2 Byte, etc.) are identifiers and

must be written exactly as given above.

The prefixes may be used to cause the names of the procedures in the interface to be prefixed with a

unique character string. The line

Server Prefix "test";

will cause the server file to assume that the name of the server interface procedure name is

test_name. Likewise, the statement

76

Client Prefix "real";

affects the client interface. This feature is useful in case it is necessary to link the client and server

interfaces together. Without this feature, name conflicts would occur.

The header_line defines the name of this subsystem. The subsystem name is used in generating a

unique for the execute request routine.

The default timeout is used in both the server and client stubs. Both are specified in seconds. Zero

is interpreted as an infinite timeout value. The value specifies the timeout value used on

RPC2 MakeRPC0 and RPC2 SendResponse0 calls in the clientand server stubs respectively. The

timeout parameter may be overriden for individual procedures by specifying a timeout_override. Note

that the timeouts apply to each individual Unix blocking system call, not to the entire RPC2 procedure.

The new_connection is used to designate at most one server procedure that will be called when the

subsystem receives the initial RPC2 connection. The new connection procedure must have 4

arguments in the following order with the following usages and types:

(IN RPC2_Integer SideEffectType, IN RPC2_Integer SecurityLevel,
IN RPC2 Integer EncryptionType, IN RPC2 CountedBS ClientIdent)

where SideEffectType, SecurityLevel, EncryptionType, and Clientldent have the values that were

specified on the client's call to RPC2,Bind. Note that RP2Gen will automatically perform an

RPC2 Enable call at the end of this routine. If no new connection procedure is specified, then the

call to the execute request routine with the initial connection request will return RPC2 FAIL.

The usage tells whether the data for the parameter is to be copied in, copied out, or copied in both

directions. The usage and type_name specifications together tell how the programmer should

declare the parameters in the server code.

An Example

77

Subsystem "fs2";

typedef RPC2_Unsigned VolumeId;

typedef RPC2 Unsigned VnodeId;

typedef RPC2 Unsigned Unique;

typedef RPC2_Struct {
Volumeld Volume;

VnodeId Vnode;

Unique Unique;

} ViceFid;

ViceConnectFS(IN RPC2 String UserName,

IN RPC2 String WorkStationName,
IN RPC2 String VenusName);

ViceRemoveCallBack (IN ViceFid fid);

4.4. The C Interface

This section describes the C interface generated by RP2GEN. The following table shows the

relationship between RP2GEN parameter declarations and the corrseponding C parameter

declarations.

RPC2 Type C Declaration

J IN OUT I , IN OUT

RPC2 Integer long long " long °

RPC2 Unsigned unsigned long unsigned long ° unsigned long "

RPC2 Byte unsigned char unsigned char" unsigned char"

RPC2 String unsigned char ° unsigned char ° unsigned char *

RPC2. CountedBS RPC2 CountedBS • RPC2_.CountedBS ° RPC2 CountedBS °

RPC2 BoundedBS RPC2 BoundedBS ° RPC2 BoundedBS ° RPC2 BoundedBS °

RPC2 EncryptionKey RPC2 EncryptionKey RPC2 EncryptionKey • RPC2 EncryptionKey "

SE_Descriptor illegal illegal SE_Descriptor °

RPC2 Enum name name name ° name •

RPC2 Struct name name ° name ° name °

RPC2_Byte name[...] name name name

In all cases it is the caller's responsibility to allocate storage for all parameters. This means that for IN

and IN OUT parameters of a non-fixed type, it is the callee's responsibility to ensure that the value to

be copied back to thecaller does not exceed the storage allocated by the callee.

The caller must call an RPC2 procedure with an initial implicit argument of type RPC2_Handle that

indicates the destination address(es) of the target process(es). The callee must declare the C routine

that corresponds to an RPC2 procedure with an initial implicit argument of type RPC2_Handle. Upon

invocation, this argument will be bound to the address of a handle that indicates the address of the

78

caller.

The ExecuteRequest Routine

RP2GEN generates another routine that serves to interpret and execute an RPC2 request. The name

of this routine is "subsystem_name_ExecuteRequest", and its header is

int subsystem_name_Execut.eRequest(cid, Request., bd)
RPC2_Hand] e cid;
RPC2_PacketBuf fer *Request`;

SE_Descriptor "bd;

This routinewillunmarshallthe arguments and callthe appropriateinterfaceroutine. The return

valuefrom thisroutinewillbe thereturnvaluefromthe interfaceroutine.

Programming rules for the server and client

The client program is responsible for actually making the connection with the server and must pass

the connection id as an additional parameter (the first) on each call to the interface.

4.5. External Data Representations

This section defines the external data representation used by RP2GEN, that is, the representation that

is sent out over the wire. Each item sent on the wire is required to be a multiple of 4 (8-bit) bytes.

(Items are padded as necessary to achieve this constraint.) The bytes of an item are numbered 0

through n-1 (where n rood 4 = 0). The bytes are read and written such that byte m always precedes

byte m + 1.

RPC2_lnteger

An RPC2_lnteger is a 32-bit item that encodes an integer represented in two's complement notation.

The most significant byte of the integer is O, and the least significant byte is 3.

RPC2 Unsigned

An RPC2_Unsigned is a 32-bit item that encodes an unsigned integer. The most significant byte of

the integer is O, the least significant byte is 3.

RPC2_Byte

An RPC2_Byte is transmitted as a single byte followed by three padding bytes.

RPC2_String

An RPC2_String is a C-style null-terminated character string. It is sent as an RPC2_lnteger indicating

the number of characters to follow, not counting the null byte, which is, however, sent. This is

79

followed by bytes representing the characters (padded to a multiple of 4), where the first character

(i.e., farthest from the null byte) is byte O. A RPC2_String of length 0 is representing by sending an

RPC2_lnteger with value 0, followed by a 0 byte and three padding bytes.

RPC2_CountedBS

An RPC2_CountedBS is used to represent a byte string of arbitrary length. The byte string is not

terminated by a null byte. An RPC2_CountedBS is sent as an RPC2_lnteger representing the number

of bytes, followed by the bytes themselves (padded to a multiple of 4). The byte with the lowest

address is sent as byte 0.

RPC2_BoundedBS

An RPC2_BoundedBS is intended to allow you to remotely play the game that C programmers play:

allocate a large buffer, fill in some bytes, then call a procedure that takes this buffer as a parameter

and replaces its contents by a possibly longer sequence of bytes. An RPC2_BoundedBS is

transmitted as two RPC2_lnteger's representing the maximum and current lengths of the byte strings.

This is followed by the bytes representing the contents of the buffer (padded to a multiple of 4). The

byte with the lowest address is byte 0.

RPC2_Enc ryption Key

An RPC2_EncryptionKey is used to transmit an encryption key (surprise!). A key is sent as a

sequence of RPC2_KEYSlZE bytes, padded to a multiple of 4. Element 0 of the array is byte 0.

SE_Descriptor

Objects of type SE_Descriptor are never transmitted.

RPC2_Struct '

An RPC2_Struct is transmitted as a sequence of items representing its fields. The fields are sent in

textual order of declaration (i.e., from left to right and top to bottom). Each field is sent using,

recursively, its RPC2 representation.

RPC2_Enum

An RPC2_Enum has the same representation has an RPC2_lnteger, and the underlying integer used

by the compiler is transmitted as the value of an RPC2_Enum. (Note that in C this underlying value

may be specified by the user. This is recommended practice.)

Array

The total number of bytes transmitted for an array must be a multiple of 4. However, the number of

8O

bytes sent for each element depends on the type of the element.

Currently, only arrays of RPC2_Byte are defined. The elements of such an array are each sent as a

single byte (no padding), with array element n-1 preceding element n.

81

5. MultiRPC

5.1. Design Issues

The MultiRPC facility is an extension to RPC2 that provides a parallel RPC capability for sending a

single request to multiple servers and awaiting their individual responses. Although the actual

transmission is done sequentially, the resultant concurrent processing by the servers results in a

significant increase in time and efficiency over a sequence of standard RPC calls. The RPC2 runtime

overhead is also reduced as the number of servers increases. For the purposes of this discussion, the

base RPC2facility will be referred to simply as RPC2.

A noteworthy feature of the MultiRPC design is the fact that the entire implementation is contained on

the client side of the RPC2 code. The packet which is finally transmitted to the server is identical to a

packet generated by an RPC2 call, and the MultiRPC protocol requires only a normal response from a

server.

A major design goal was the desire to automatically provide MultiRPC capability for any subsystem

without requiring any additional support from the subsytem designer or implementor. This has been

achieved through modifications to RP2Gen, the RPC2 stub generation package (see chapter 4).
s

RP2Gen generates an array of argument descriptor structures for each server operation in the

specification file, and these arrays are inserted in the beginning of the client side stub file. These

structures are made available to the client through definitions in the associated .h file, and allow the

use of MultiRPC with any routine in any subsystem with RP2Gen generated interfaces.

The orthogonality of the MultiRPC modifications also extends to the side effect mechanism (see

appropriate chapter). Side effects for MultiRPC work exactly as in the RPC2 case except that the

client must supply a separate SE_Des c ripto r for each connection.

Parameter packing and unpacking for MultiRPC is provided in the RPC2 runtime library by a pair of

routines. These library routines provide the functionality of the client side interface generated by

RP2Gen as well as some additional modifications to support MultiRPC. It was decided to perform the

packing and unpacking in RPC2 library routines rather than in individual client side stub routines as in

the RPC2 case; this requires some extra processing time, but saves a significant amount of space in

the client executable file. This approach has the added advantage of modularity; execution of RPC2

calls will not be affected at all, and even for MultiRPC calls the additional processing time is

negligable in comparison to the message transmission overheads imposed by the UNIX kernel.

82

Another feature of MultiRPC is the client supplied handler routine. Through the handler routine the

client is allowed to process each server response as it arrives rather than waiting for the entire

MultiRPC call to complete. After processing each response, the client can decide whether to continue

accepting server responses or whether to abort the remainder of the call. This facility can be useful if

only a subset of responses are required, or if one failed message renders the entire call useless to the

client. This capability is discussed further in section 5.3.1.

MultiRPC also provides the same correctness guarantees as RPC2except in the case where the client

exercises his right to terminate the call. RPC2 guarantees that a request (or response) will be

processed exactly once in the absence of network and machine crashes; otherwise, it guarantees that

it will be processed at most once. If the call completes normally, a return code of RPC2 SUCCESS

guarantees that all messages have been received by the appropriate servers.

5.2. An Example

The following example is the same as the one in section 1.2, but here it has been converted to use

MultiRPC. Comparison of the two examples will illustrate the differences in the client code necessary

to use the MultiRPC facility. Only the code in the file exclient.c has been changed; exserver.c and

both of the .rpc2 files were unaffected by the modifications.

This example illustrates the MultiRPC interface to a simple system. The system exports two

subsystems, an authentication server and a computation server. The authentication operations

include looking up either a user name or a user id given the complementary information, or looking up

some user statistics given the user id. The computation server operations include squaring a number,

cubing a number, requesting the age of a given connection, and causing the remote host to exec a

specified command and return the results as a side effect in a file.

A user can create a new connection or make a request to either the authentication or computation

subsystem. The new connection choice results in an RPC2_Bind to the subsystem specified;

subsystem requests cannot be made until a new connection has been created. The bind returns a

connection id which can be used to identify the connection when making server requests.

Once a connection has been established to a subsystem, a subsystem request can be made. The

client will prompt for the number of servers to which the request is to be made, and for their

connection ids. In each case except the Bind, the call is made using MultiRPC using the

MRPC_MakeMulti library routine interface. Note that RPC2_MultiRPC is used even when only one

83

server is requested.

A minimalhandler routine is supplied for each server operation. It is adequateto demonstratethe

format of the routine even though it does little actual processing of the responses. The handler

corresponds to the HandleResult routine described in sections 5.4.1 and 5.3.3.4.

5.2.1. Auth Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Me#on Universffy

(c) IBM Corporation November 1985

RPC interface specification for a trivial authentication subsystem. This is only an example: all ff does is name to id and id to
name conversions.

Server Prefix "S";
Subsystem "auth";

Internet port number; note that this is reafy not part of a specific subsystem, but is part of a server; we should rea#y have a
separate ex.h file with this constant. I am being lazy here

#define AUTHPORTAL 5000

#define AUTHSUBSYSID 100 The subsysid for auth subsystem

Return codes from auth server
#define AUTHSUCCESS 0
#define AUTHFAILED 1

typedef
RPC2_Byte PathName[1024];

typedef
RPC2 Struct

{
RPC2_lnteger Groupld;
PathName HomeDir;

}
Authlnfo;

AuthNewConn (IN RPC2 Integer seType, IN RPC2_lnteger secLevel, INRPC2_lnteger encType,
IN RPC2 CountedBS cldent) NEW - CONNECTION;

AuthUserld (IN RPC2_String Username, OUT RPC2 Integer Userld);
Returns AUTHSUCCESS or AUTHFAILED

AuthUserName (IN RPC2 Integer Userld, INOUT RPC2 BoundedBS Usemame);
Returns AUTHSUCCESS or AUTHFAILED

AuthUserlnfo (IN RPC2_lnteger Userld, OUT Authlnfo Ulnfo);
Returns AUTHSUCCESS or AUTHFAILED

84

AuthQuit0;

5.2.2. Comp Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) IBM Corporation November 1985

RPC interface specification for a trivia/computational subsystem. Finds squares and cubes of given numbers.

Server Prefix "S";

Subsystem "comp";

define COMPSUBSYSID 200 The subsysid for comp subsystem

define COMPSUCCESS 1
#define COMPFAILED 2

CompNewConn (IN RPC2_lnteger seType, IN RPC2_lnteger secLevel, IN RPC2 Integer encType,
IN RPC2_CountedBS cldent) NEW - CONNECTION;

CompSquare (IN RPC2 Integer X); returns square of x

CompCu be (IN RPC2 Integer X); returns cube of x

CompAge0; returns the age of this connection in seconds

CompExec(IN RPC2_String Command, IN OUT SE_Descriptor Sed);
Executes a command and ships back the result in a file. Returns

COMPSUCCESS or COMPFAILED

CompQuit0;

5.2.3. Server for Auth and Comp Subsystems

exserver.c -. Trivia/ server to demonstrate basic RPC2 functionality Exports two subsystems: auth and comp, each with a
dedicated L WP.

M. Satyanarayanan Information Technology Center Carnegie-Me/Ion University

(c) Copyright IBM Corporation November 1985

static char IBMidO = "(c) Copyright IBM Corporation November 1985";

85

include <stdio.h>
include <potpourri.h>
include <strings.h>
include <sys/signal.h>
include <sys/time.h>
include <sys/types.h>
include <netinet/in.h>

include <pwd.h>
#include <lwp.h>
include <rpc2.h>
include (se.h>
include "auth.h"

#include "comp.h"

This data structure provides per-connection inlo. It is created on every new connection and ceases to exist after AuthQuitO.
struct Userlnfo

(
int Creation; Time at which this connection was created

other fields would go here
};

int NewCLWP0, AuthLWP0, CompLWP0; bodies of LWPs
void DebugOn0, DebugOff0; signal handlers

main()
(
int mypid;

signal(SIGEMT, DebugOn);
signal(SIG lOT, DebugOff);

InitRPC0;
LWP CreateProcess(AuthLWP, 4096, LWP NORMAL- PRIORITY, "AuthLWP', NULL, &mypid);
LWP CreateProcess(CompLWP, 4096, LWP_NORMAL - PRIORITY, "CompLWP", NULL, &mypid);
LWP WaitProcess(main); sleep here lorever, no one will ever wake me up
}

AuthLWP(p)
char *p; single parameter passed to LWP_CreateProcessO
{
RPC2 RequestFilter reqfilter;
RPC2_PacketBuffer *reqbuffer;
RPC2_Handle eid;
int rc;
char "pp;

Set filter to accept auth requests on new or existing connections

reqfilter.FromWhom = ONESUBSYS;
reqtilter.OIdOrNew = OLDORNEW;
reqfilter.ConnOrSubsys.Subsysld = AUTHSUBSYSID;

while(TRUE)

(
cid = 0;

if ((rc = RPC2 GetRequest(&reqfilter, &cid, &reqbuffer, NULL, NULL, NULL, NULL)) < RPC2 WLIMIT)
HandleRPCError(rc, cid);

if ((rc = auth- ExecuteRequest(cid, reqbuffer)) < RPC2_WLIMI'I-)
HandleRPCError(rc, cid);

86

pp = NULL;
if (RPC2 GetPrivatePointer(cid, &pp) ! = RPC2 SUCCESS II PP = = NULL)

RPC2 Unbind(cid); This was almost certainly an AuthQuitO call
}

}

CompLWP(p)
char °p; single parameter passed to LWP CreateProcessO
{
RPC2 RequestFilter reqfilter;
RPC2 PacketBuffer *reqbuffer;
RPC2 Handle cid;
int rc;
char °pp;

Set filter to accept comp requests on new or existing
connections

reqfilter.FromWhom = ONESUBSYS;
reqfilter.OIdOrNew = OLDORNEW;
reqfilter.ConnOrSubsys.Subsysld = COMPSUBSYSID;

while(TRUE)
{
cid = O;
it ((rc = RPC2 GetRequest(&reqfilter, &cid, &reqbuffer, NULL, NULL, NULL, NULL)) < RPC2 WLIMIT)

HandleRPCError(rc, ¢id);
if ((rc = comp- ExecuteRequest(cid, reqbuffer)) (RPC2 WLIMIT)

HandleRPCError(rc, cid);
pp = NULL;
if (RPC2 GetPrivatePointer(cid, &pp) != RPC2 SUCCESS II PP = = NULL)

RPC2 Unbind(cid); This was almost certainly an CompQuitO call
}

}

= = -- = = = = -- = = = -- = BodiesotAuthRPCroutines = = = = = = = = = = = = =

S- AuthNewConn(cid, seType, secLevel, encType, cldent)
RPC2 Handlecid;
RPC2_lnteger seType, secLevel, encType;
RPC2 CountedBS "cldent;
{
struct Userlnfo *p;

p = (struct Userlnfo *) malloc(sizeof(struct Userlnfo));

RPC2 SetPrivatePointer(cid, p);
p->Creation = time(O);
}

S- AuthQuit(cid)
Get r/d of user state; note that we do not do RPC2 UnbindO here. because this request itself has to complete. The invoking
server LWP therefore checks to see ff this connection can be unbound.

{
struct Userlnfo °p;
RPC2 GetPrivatePointer(cid, &p);
assert(p I = NULL); we have a bug then
free(p);

RPC2 SetPrivatePointer(cid, NULL);

87

return(AUTHSUCCESS);
}

S - AuthUserld(cid, userName, userld)
char *userName;
int °userld;
{
struct passwd °pw;

if ((pw = getpwnam(userName)) = = NULL) return(AUTHFAILED);
"userld = pw->pw-uid;
return(AUTHSUCCESS);
}

S - AuthUserName(cid, userld, userName)
int userld;
RPC2 BoundedBS *userName;
{
struct passwd °pw;
if ((pw = getpwuid(userld)) = = NULL)return(AUTHFAILED);
strcpy(userName->SeqBody, pw-)pw - name);

we hope the bulfer is big enough
userName-)SeqLen = 1 + strlen(pw->pw-name);
return(AUTHSUCCESS);
}

S - AuthUserlnfo(cid, userld, u'lnfo)
int usedd;
Authlnfo °ulnfo;
{
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL) return(AUTHFAILED);
ulnfo->Groupld = pw->pw- gid;
strcpy(ulnfo->HomeDir, pw->pw - dir);
return(AUTHSUCCESS);

}

-- = = = = = = = = Bodies of Comp RPCroutines = = = = = = = = = -- = = =
S- CompNewConn(cid, seType, secLevel, encType, cldent)

RPC2_Handle cid;
RPC2 Integer seType, secLevel, encType;
RPC2 CountedBS *cldent;
{
struct Userlnfo °p;

p = (struct Userlnfo °) malloc(sizeof(struct Userlnfo));
RPC2 SetPrivatePointer(cid, p);
p->Creation = time(O);
}

S - CompQuit(cid)

Get rid of user state; note that we do not do RPC2_UnbindO here. because this requesf itself has to complete. The invoking
server L WPtherefore checks to see if this connection can be unbound.

{
struct Userlnfo °p;

RPC2 GetPrivatePointer(cid, &p);
assert(p I= NULL); we have a bug then

88

free(p);

RPC2 SetPrivatePointer(cid, NULL);
return(0);
}

S- CompSquare(cid, x)
int x;
{
return(x'x);
}

S - CompCube(cid, x)
RPC2 Handle cid;
int x;
{
return(x "x'x);
}

S - CompAge(cid, x)
RPC2 Handle cid;
int x;
{
struct Userlnfo *p;

assert(RPC2 GetPrivatePointer(cid, &p) = = RPC2 SUCCESS);
return(time(0) - p->Creation);
}

S - CompExec(cid, cmd)
RPC2 Handle cid;
char *cmd;

Weshould really have a formal of type SE Descriptor at the end;
but it is a dummy anyway

{
SE Descriptor sed;
char mycmd[lO0];
sprintf(mycmd, "%s >/tmp/answer 2>&1", cmd);

system(mycmd); .beware;if this takes too long, client will get RPC2 DEADI

bzero(&sed, sizeof(sed));
sed.Tag = DUMBFTP;

sed.Value.DumbFTPD.Tag = FILEBYNAME;How I wish C had a "with" clause like Pascal
sed.Value.DumbFTPD.TransmissionDirection = SERVERTOCLIENT;
sed.Value.DumbF-l'PD.ByteQuota = -1;

strcpy(sed.Value.DumbFTPD.Filelnfo:ByName.LocalFileName, "/trap/answer");

if (RPC2 InitSideEffect(cid, &sed) ! = RPC2_SUCCESS) return(COMPFAILED);
if (RPC2 CheckSideEffect(cid, &sed, SE AWAITLOCALSTATUS) i = RPC2 SUCCESS)

return(COMPFAILED);
return(COMPSUCCESS);
}

iopenO is a system call created at the ITC;put a dummy here for other sites
iopen(){}

= = = RPC Initialization and Error handling = = =
InitRPCO

{
int mylpid = -1;

89

DFTP Initializer dftpi;
RPC2 Portalldent portalid, "portallist[1];
RPC2 Su bsysldent subsysid;
struct timeval tout;

assert(LWPJnitializeProcessSupport(LWP_NORMAL-PRIORITY, &mylpid) = = LWPmSUCCESS);

portalid.Tag = RPC2 PORTALBYINETNUMBER;
portalid.Value.lnetPortNumber = htons(AUTHPORTAL);
portallist[O] = &portalid;
tout.iv- sec ---240;
tout.tv-usec = O;
DFTP SetDefaults(&dftpi);
DFTP Activate(&dftpi);

assert (RPC2 Init(RPC2._VERSION, O, portallist, 1, -1, &tout) = = RPC2 SUCCESS);
subsysid.Tag = RPC2 SUBSYSBYID;
subsysid.Value.Subsysld = AUTHSUBSYSID;
assert(RPC2 Export(&subsysid) = = RPC2 SUCCESS);
subsysid.Value.Subsysld = COMPSUBSYSID;
assert(RPC2 Export(&subsysid) = = RPC2 SUCCESS);
}

HandleRPCError(rCode, connld) .
int rCode;

RPC2_Handle connld;
{
fprintf(stderr, "exserver: %s\n", RPC2 ErrorMsg(rCode));
if (rCode < RPC2 FLIMIT && connld != 0) RPC2 Unbind(connld);
}

void DebugOn0
{
RPC2 DebugLevel = 100;.
}

void DebugOff0

{
RPC2 DebugLevel = O;
}

5.2.4. Client using Auth and Comp Subsystems

exclient.c -- Trivial client to demonstrate RPC2 - MultiRPCO functionality

M. Satyanarayanan and E.Siegel Information Technology Center Carnegie.Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMida = "(c) Copyright IBM Corporation November 1985";

include (stdio.h)

include <potpourri.h)
include <strings.h)

include<sys/time.h)

90

include <sys/types.h>
include <netinet/in.h>
#include <pwd.h>
include <lwp.h>
#include <rpc2.h>
include <se.h>

include <preempt.h>
include "auth.h"

#include "comp.h"

long Handle - AuthUserld0, Handle - AuthUserName0;
long Handle - AuthUserlnfo0, Handle - AuthQuit0;
long Handle - CompSquare0, Handle- CompCube0;

long Handle- CompAge0, Handle- CompExec0, Handle- CompQuit0;
int returns;

#define MAXCONNS 10

#define dgets(p) {if (gets(p) = = NULL) {perror("stdin");abort0;}}
allow RPCto get control periodically

main()
{
int a;

char bur[100];

printf("Debug Level? (0) ");
dgets(buf);
RPC2 DebugLevel = atoi(buf);

InitRPC0;
while (TRUE)

{
LWP DispatchProcess0; otherwise we get RPC2 DEADs
printf("Action? (1 = New Corm, 2 = Auth Request, 3 = Comp Request) ");
dgets(buf);
a = atoi(buf);
switch(a)

{
case 1: NewConn0; continue;
case 2: Auth0; continue;
case3: Comp0; continue;
default: continue;

}
}

}

NewConn0
{
char hname[100], buf[100];
int newcid, rc;
RPC2_Hostldent hident;

RPC2_Portalldent pident;
RPC2_Subsysldentsident;

printf("Remote hostname? ");
dgets(hident.Value.Name);

91

hident.Tag = RPC2 HOSTBYNAME;
printf("Subsystem? (Auth = %d, Comp = %d) ", AUTHSUBSYSID, COMPSUBSYSID);
dgets(buf);

sident.Value.Subsysld = atoi(buf);

sident.Tag = RPC2 SUBSYSBYID;
pident.Tag = RPC2 PORTALBYINETNUMBER;
pident.Value.lnetPortNumber = htons(AUTHPORTAL);

same as COMPPORTAL

rc = RPC2_Bind(RPC2 _OPENKIMONO, NULL, &hident, &pident, &sident,
SMARTFTP, NULL, NULL, &newcid);

if (rc = = RPC2_SUCCESS)
printf("Binding succeeded, this connection id is %d\n", newcid);

else

printf("Binding failed: %s\n", RPC2_ErrorMsg(rc));

}

Auth0
{
RPC2 Handle cid[MAXCONNS];
int op, rc, uid[MAXCONNS], howmany, i;
char name[100], buf[100];
Authlnfo ainfo[MAXCONNS];
RPC2 BoundedBS bbs[MAXCONNS];

while (1) {
printf(" How manysewers? ");

dgets(buf);
howmany = atoi(buf);
if (howmany<_= 10&& howmany> 0) break;

}
for (i = 0; i < howmany;i + +) {

printf("Connection id?");
dgets(buf);
cid[i] = atoi(buf);

}
printf("Operation?(1 = Id, 2 = Name,3 = Info, 4 = Quit) ");
dgets(buf);
op = atoi(buf);
returns = O; Zero return counter
switch(op)

{
case 1:

prinff("Name? ");
dgets(name);
rc = MakeMulti(AuthUserld- OP, AuthUserld- PTR, howmany,cid, Handle - AuthUserld,

NULL, name, uid);

if (rc l= RPC2 SUCCESS) printt("CaU failed --> %s\n", RPC2 ErrorMsg(rc));
break;

case 2:

prinff("ld?");
dgets(buf);
uid[0] = atoi(buf);

bbs[0]MaxSeqLen = sizeof(name);
bbs[0].SeqLen = 0;
bbs[0].SeqBody = (RPC2_ByteSeq) name;
for(i = 1; I< howrnany;i+ +) {

92

bbs[i].MaxSeqLen = sizeof(name};
bbs[i].SeqLen = 0;
bbs[i].SeqBody = (RPC2 ByteSeq)malloc(sizeof(name));

}
rc = MakeMulti(AuthUserName - OP, AuthUserName - PTR, howmany, cid,

Handle- AuthUserName, NULL, uid[O], bbs);
if (rc ! = RPC2 SUCCESS) prinff("Call failed --> °/_s\n", RPC2 ErrorMsg(rc));
for(i = 1;i<howmany;i+ +){

free(bbs[i].Seq Body);
}
break;

case 3:

prinff("ld? ");
dgets(buf);
uid[O] = atoi(buf);
rc = MakeMulti(AuthUserlnfo - OP, AuthUserlnfo - PTR, howmany, cid,

Handle - AuthUserlnfo, NULL, uid[O], ainfo);
if (rc I= RPC2 SUCCESS) prinff("Call failed --> %s\n", RPC2 ErrorMsg(rc));
break;

case 4:

rc = MakeMulti(AuthQuit -OP, AuthQuit- PTR, howmany, cid, Handle - AuthQuit, NULL);

if (rc ! = RPC2 SUCCESS) printf(".Call failed -->%s\n", RPC2 ErrorMsg(r¢));
break;

}

}

long Handle - AuthUserld(HowMany, cid, thishost, rpcval, name, uid)
int HowMany, thishost, rpcval, uid_;
RPC2 Handlecid_;

char nameQ;
(

printf("received reply from connection %d:kn", cid[thishost]);
if (rpcval = = AUTHSUCCESS) printf("ld = %dkn", uid[thishost]);
else

if (rpcval = = AUTHFAILED) printf("Bogus user name\n");
if (+ + returns > HowMany) return 1; /* wait for all returns */
else return O;

}

long Handle - AuthUserName(HowMany, cid, thishost, rpcval, uid, bbs)
int HowMany, thishost, rpcval, uid;
RPC2 BoundedBS bbs_;
RPC2_Handle cidrJ;
{

printf("received reply from connection °/_l:\n", cid[thishost]);
if (rpcval = = AUTHSUCCESS) prinff("Name = %s\n", bbs[thishost].SeqBod¥);
else

if (rpcval = = AUTHFAILED) printf("Bogus user id\n");
else printf("Call failed -->%skn", RPC2 ErrorMsg(rpcval));

if (+ + returns > HowMany) return 1; /* wait for all returns "/

return 0;
}

longHandle - AuthUserlnfo(HowMany, cid, thishost, rc, uid, ainfo)

93

int HowMany, thishost, rc, uid;
Authtnfo ainfo[];
RPC2 Handle cid[.];
(

printf("received reply from connection %d:\n", cid[thishost]);
if (rc = = AUTHSUCCESS)printf("Group = %d Home = %s\n",

ainfo[thishost].Groupld, ainfo[thishost].HomeDir);
else

if (rc = = AUTHFAILED) printf("Bogus user id\n");
else printf("Call failed -->%skn", RPC2 ErrorMsg(rc));

if (+ + returns > HowMany) return 1; /* wait for all returns */
return 0;

}

long Handle - AuthQuit(HowMany, cid, thishost, re)
int HowMany, thishost, re;
RPC2 Handle cid[];
{

prinff("received reply from connection %d:\n", cid[thishost]);
if (rc != AUTHSUCCESS)

prinff("Call failed for connection %d --> %skn", cid[thishost], RPC2 ErrorMsg(rc));
RPC2 Unbind(cid [thishost]);
if (+ + returns) HowMany) return 1; /* wait for all returns */
return O;

}

Comp0

{
RPC2 Handle cid[MAXCONNS];
int ol3, rc, x, howmany, i;
SE - Descriptor sed[MAXCONNS];
char cmd[lO0_, buf[100], fname[30];

while (1) {
prinff("How many servers? "); •
dgets(buf);
howmany = atoi(buf);
if (howmany < = 10 && howmany > 0) break;

}
for (i = 0; i < howmany; i + +) {

prinff("Connection id? ");
dgets(buf);
cid[i] = atoi(buf);

}
printf("Operation? (1 = Square, 2 = Cube, 3 = Age, 4 = Exec, 5 = Quit)");
dgets(buf);
op = atoi(buf);
returns = 0; Zero return counter

switch(op)
(
case 1: "

prinff("x? ");
dgets(buf);
x = atoi(buf);

rc = MakeMulti(CompSquare- OP, CompSquare- PTR, howmany, cid,
Handle - CompSquare, NULL, x);

if (rc 1= RPC2 SUCCESS) printf("MakeMulti call failed -.->%s\n", RPC2_ErrorMsg(rc));
break;

case 2:

94

printf("x? ");
dgets(buf);
x = atoi(buf);

rc = MakeMulti(CompCube- OP, CompCube - PTR, howmany, cid, Handle- CompCube, NULL, x);
if (rc ! = RPC2 SUCCESS) printf("MakeMulti call failed -->%s\n", RPC2 ErrorMsg(rc));
break;

case 3:

rc = MakeMulti(CompAge - OP, CompAge - PTR, howmany, cid, Handle - CompAge, NULL);
if (rc != RPC2 SUCCESS) printf("MakeMulti call failed -->%s\n", RPC2 ErrorMsg(rc));
break;

case 4:

printf("Remote command: ");
gets(cmd);
for (i = 0; i < howmany; i + +) {
bzero(&(sed[i]), sizeof(sed));

How I wish C had a "with" clause like Pascal

sed[i].Tag = SMARTFTP;
sed[i].Value.DumbFTPD.Tag = FILEBYNAME;
sed[i].Value.DumbFTPD.Filelnfo.ByName.ProtectionBits = 0644;
sed[i].Value.DumbFTPD.TransmissionDirection = SERVERTOCLIENT;
sed[i].Value.DumbFTPD.ByteQuota = -1;
sprintf(fname, "/tmp/result- %d", cid[i]_g filename with connection id
strcpy(sed[i].Value.Du mbFTPD.Filelnfo.ByName.LocalFileName, fname);
}
rc = MakeMulti(CompExec - OP, CompExec - PTR, howmany, cid,

Handle - CompExec, NULL, cmd, sed);
if (rc != RPC2_.sUCCESS) printf("MakeMulti call failed -->%s\n", RPC2 ErrorMsg(rc));
break;

case 5:

rc = MakeMulti(CompQuit- OP, CompQuit- PTR, howmany,cid, Handle - CompQuit, NULL);
}

}

long Handle - CompSquare(HowMany, cid, thishost, rc, x)
int HowMany,thishost, rc, x;

RPC2 Handle cid[];
{

prinff("received replyfrom connection %d:\n", cid[thishost]);
if (rc != O)printf("x*=2 = %d\n", re);
else

printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
if (+ + returns > HowMany) return 1; /* wait for all returns */
return 0;

}

long Handle - CompCube(HowMany, cid, thishost, rc, x)
int HowMany, thishost, re, x;
RPC2 Handle cid_;

{
printf("received reply from connection %d:kn", cid[thishost]);
if (rc > 0) printf("x"3 = %dkn", re);
else

prinff("Call failed -->%skn", CompCubekn");
if (+ + returns > HowMany) return 1; /" wait for all returns "/
return O;

}

95

long Handle - CompAge(HewMany, cid, thishost, re)
int HowMany, thishost, rc;

RPC2 Handle cid[];
{

printf(" received reply from connection %d:\n", cid[thishost]);
if (rc > O)printf("Age of connection = %d seconds\n", rc);
else

printf("Call failed --> %s\n", CompAge\n");

if (+ + returns > HowMany) return 1; /* wait for all returns °/
return O;

}

long Handle - CompExec(HowMany, cid, thishost, rc, cmd, sed)

int HowMany, thishost, re;
RPC2_Handle ¢id[.];
char cmd[];
SE - Descriptor sedrL];
{
char ucmd[lO0];

printf("received reply from connection %d:\n", cid[thishost]);
sprintf(ucmd, "echo Result of remote exec:;cat/trap/result - %d", cid[thishost]);
if (rc = = COMPSUCCESS)system(ucmd);
else

if (rc = = COMPFAILED) printf("Could not do remote execkn");
else

prinff("Call failed -->%s\n", CompExeckn");
if (+ + returns > HowMany) return 1; /* wait for all returns °/
return O;

}

long Handle - CompQuit(HowMany, cid, thishost, rc)
int HowMany, thishost, re;
RPC2 Handle cidU;
{

if (rc < O)
printf("Call failed -->%s\n", RPC2 ErrorMsg(rc));

RPC2 Unbind(cid);
if (+ + returns > HowMany) return 1; /" wait for all returns °/
return O;

}

= = -- = = # RPC Initialization and Error handling = # - - - =, = -- = =

InitRPC0
{
int mylpid = -1;
struct timeval t;

DFTP - Initializer dftpi;

SFTP - Initializer sftpi;
struct timeval tout;

assert(LWP_lnitializeProcessSupport(O, &mylpid) = = LWP_SUCCESS);
t.tv- sec = 1;

t.tv-usec = O;
assert(PRE- InitPreempt(&t) = = LWP SUCCESS);
PRE- PreemptMe();

t

96

DFTP - SetDefaults(&dftpi);

dftpi.ChunkSize = 1024; 2K and 4K give much better perlormance
DFTP - Activate(&dftpi);

SFTP - SetDefaults(&sftpi);

SFTP - Activate(&sftpi);
tout.tv- sec = 30;

tout.tv- usec = 0;

assert {RPC2 InIt(RPC2._VERSION 0, NULL, 1, -1, &tout) = = RPC2 _SUCCESS);

}

iopenO(}

97

5.3. Usage

Support for MultiRPC exists both at the language level and at the runtime level. The runtime level

support includes the MultiRPC routines themselves along with the associated library routines which

perform argument packing and unpacking. The language level support consists mainly of the

argument descriptor information supplied by RP2Gen for each subsystem. The client may choose to

interface directly with the runtime MultiRPC system without taking advantage of the RP2Gen

simplifications, but the discussion in the following sections assumes the existence of the RP2Gen

interface except where explicitly noted otherwise.

The procedure for making a MultiRPC call is very similar to that for making an RPC2 call. The

subsystem is designed and the specification is written into a _subsys>.rpc2 file (the specification

format is described in section 4). RP2Gen is then invoked on the specification file, and it generates

both the standard server and client side interfaces as well as the MultiRPC argument descriptor

structures and definitions for each server operation. The relevant descriptor pointers are made

available to the client through the associated _subsys>.h file.

Once the interface has been specified, the subsystem implementor is responsible for writing the

server main loop and the procedures to perform the server operations. This implementation is

completely independent of any considerations relating to MultiRPC; MultiRPC is completely

transparent to the server side of a subsystem.

From the client's perspective, making a MultiRPC call is slightly different from the RPC2 case. Instead

of the procedure-like client side interface supplied by the stub routines, the single library routine

MRPC MakeMulti is used to interface to RPC2 MultiRPC. The use of the library routine represents a

large space savings in the executable files, but requires some additional information from the client

making the call (see sections 5.3.3.2 and 5.4.1). The client is also responsible for supplying a handler

routine for any server operation which is used in a MultiRPC call. This handler routine is called by

RPC2 as each individual server response arrives; it is used both for providing individual server return

codes to the client and for giving the client control over the continuation or termination of the

MultiRPC call. The handler routine is discussed in greater detail in the following section, and its

interface is described in section 5.4.1.

98

5.3.1. The Client Handler

The client handler routine is intendedto givethe client control and flexibility in handling the incoming

server responses from the MultiRPC call. For each connection specified in a RPC2 MultiRPC call,

the client handler iscalled either when a connection error is detected or when the server responsefor

that connection arrives. This allows the client to examine the replies as they arrive, and providesthe

opportunityto perform incremental bookeeping and analysis of the responses.The handler also has

the ability to abort the MultiRPC call at any .time. A more detailed discussion of the handler

specificationscan be found insection 5.4.1.

Since a MultiRPC call could potentiallylast a long time, it is crucial to providethe client with some

measure of control over the progressand termination of the call. With many server responses, there

are manyvariables that the client might wishto monitor in order to evaluate the progressof the call.

In particular, the server responses and return codes themselves have a significant effect on the
o

client's perception of the progress of the call. To address these requirements, RPC2 periodically

passes control to the client during execution of the MultiRPC call. A client supplied routinedesigned

to be called as each server response arrives provides access to complete current information about

the status of the call; it also gives the client the ability to perform any incremental processing he

considers necessary or useful. The Client then indicates his decision to either continue accepting

server responses or to terminate the MultiRPC call via the handler return code.

The value of client control over the progress of the MultiRPC call can best be illustrated with some

specific examples. One example is in the case of connection errors. If the client requires responses

on all of the designated connections and one of them returns an error, then the final result of the

MultiRPC call will be useless and the remainder of the processing time will have been wasted. With

the client handler routine the client has the ability to notice the connection error. He then has the

ability to abort the call, or even to use the handler routine as an opportunity to rebind to the failed site

and make an RPC2 call on that connection.

Another example is in the implementation of a replicated server. A useful way to deal with operation

quorums (specified as some subset n of the total number of replicated servers) is to send messages

out to all or many of the available servers and abort the call as soon as the first n responses arrive.

This has the advantage of supplying the fastest possible execution for the replicated call; furthermore,

since the n members of the quorum need not be chosen explicitly, the call will rarely have to be

repeated if one of the servers is busy or inoperational.

The handler receives full sets of arguments each time it is called, along with an index identifying the

99

current connection. The types of the server arguments to the client handler are identical to the types

in the original MakeMulti call: the argument list is in fact passed through RPC2 and returned to the

handler. Any processing is permissible in the handler routine, although it should be noted that since

RPC2 MultiRPC does not support enqueueing of server requests any call made on a connection

already active in a MultiRPC call will generate a return code of RPC2 BUSY. Also, for lengthy

blocking computations the same cautions with respect to lightweight processes apply as for RPC2.

It should also be noted that the use of the abort facility of the client handler carries with it some risks.

These are discussed in more detail in section 5.3.4.

5.3.2. Flow of (_ontrol in MultiRPC

The flow of control in MuItiRPC is much the same as for RPC2 except for the iterative calling of the

client handler. The client initiatesthe MultiRPC call by calling the library routine MRPC MakeMulti.

MakeMulti packs the client arguments into a request buffer, and calls RPC2 MultiRPC with the

request buffer, some argument packing information,and a pointer to MRPC UnpackMulti, the library

unpacking routine.

RPC2 MultiRPCsets up the processing environment,initializesthe request packet headers for all the

designated servers, and .performs any necessary side effect initialization. It then calls an internal

routineto perform the transmission of the request packets. This transmissionroutine does not return

until either the client supplied timeout expires or until it has received responses from all of the

designated servers. Once the request packets have been transmitted, the routine settles into a loop

waiting for server responses to arrive. As each response arrives, some preliminary processing is

performed, and any remaining side effect processing is completed. Then RPC2 calls

MRPC UnpackMulti to unpack the response buffer into the client's original arguments.

MRPC UnpackMulti unpacks the buffer and calls the client handler routine with the current servers's

information. The client then performs whatever processing he wishes, and returns with his

instructions to continue or terminate the call. If he wishes to continue, the internal loop continues

until all the server responses have been received. Otherwise, the loop terminates and the

transmissionroutine cleans up any loose ends caused bythe termination.

Control then returns to RPC2 MultiRPC, which checks the return code and returns to

MRPC MakeMulti. MakeMultisimplypasses the supplied return code back to the client as it returns.

Since side effects are completely determined by the SE Desc riptor and the connection, extending

the side effect mechanism to MultiRPC requires nothing more than supplying a unique

100

SE_Desc ripto r for each connection.

5.3.3. MultiRPC Related Calls

5.3.3.1.RPC2 MultiRPC

RPC2 MultiRPC is the RPC2 runtime routineresponsible for setting up the internal state properly for

sending the request packets to the specified servers. It is called via the RPC2 library routine

MRPC MakeMulti. One of the arguments to MultiRPC is the Arglnfo structure. This structure is never

examined by RPC2, but is simplypassed through UnpackMulti. If the RP2Gen interface is used, this

argument is supplied by MRPC_MakeMulti and need not concern the client. If the RP2Gen interface

isnot used,thiscan point to any structure needed bythe client's unpacking routine.

The UnpackMulti argument is also related to the RP2Gen interface. If the RP2Gen interface is used,

this argument is automatically supplied by MRPC MakeMulti and will point to the RPC2 library

unpacking routine. If the RP2Gen interface is not used, the client is responsible for supplying a

pointer to a routine matchingthe UnpackMultispecification (see section5.4.1).

5.3.3.2. MRPC MakeMulti

MRPC MakeMulti is the library routine which provides the parameter packing interface to

RPC2 MultiRPC. It takes the place of the individualclient side stub routines generated by RP2Gen.

In additon to the usual informationsupplied in an RPC2 call, it takes as arguments RP2Gen generated

argument and operation descriptors, the number of servers to be called, and a pointer to a client

supplied handler routine (see section 5.4.1 for more detailed information). Using the argument

descriptors,MRPC MakeMulti packs the supplied serverarguments into an RPC2 request buffer and

creates a data structure containing call specific information and a pointer to the client handler

routine. It then makes the MultiRPC call, and passesthe final return code back to the client when the

call terminates.

OUT and IN- OUT parameters mustbe supplied in the form of arrays of pointers to the appropriate

argument types. The parameter interface specifications are discussed in sectin 5.4. The size of the

array is dependent on the numberof servers designated by the client. For IN - OUT parameters it is

only necessary to actually fill in a value for the first element of the array, although storage must be

properlyallocated for all of the elements.

101

5.3.3.3. MRPC_UnpackMulti

MRPC UnpackMulti is a RPC2 library routine which functions as the other half of MRPC MakeMulti.

It unpacks the contents of the response buffer into their appropriate places in the client's arguments,

and calls the client handler routine. It returns with the return code supplied by the client handler

routine. If the RP2Gen interface is not used, the client must supply a pointer to a routine with the

specified interface (see section 5.4_1)to RPC2_MultiRPC.

5.3.3.4. HandleResult

HandleResult is a place holder used to refer to the client-supplied handler routine. It is called once for

each connection by MRPC UnpackMulti with the newly arriv.ed server reply. It can perform as much

or as little processing as the client deems necessary, and controls the continuation or termination of

the MultiRPC call with its return code. The argument specifications of this routine are explained in

detail in section 5.4.1.

5.3.4. Error Cases and Abnormal Behavior

The semantics for errors in the MultiRPC case are somewhat different from those in the RPC2 case.

Since several messages are being transmitted in the same call, an error on one connection should not

necessarily cause the call to terminate. The client does, however, need to be informed of error states

on any of his connections. The handler routine will be called at most once for each connection

submitted to the MultiRPC call, either with an error condition or with the server response. No packet

will actually be sent on any connection for which an error was detected in the course of processing.

As mentioned earlier, the additional flexibility provided by the client handler routine incurs some risks.

RPC2 makes no guarantees as to the state of the connections which are not examined because of an

abort by the client. When the client returns an abort code, there may still be some outstanding server

replies. RPC2_MultiRPC increments the connection sequence number and resets the connection

state, thus pretending that the response in question was actually received. This allows the system to

continue with normal operation.

The risks of this approach can be illustrated with some examples. A client makes a MultiRPC request

R1 to 3 servers, and terminates the call after two of the server responses have been received. At

server $3, the request has been queued because the server was busy with a previous request. The

client then decides to make another MultiRPC request R2 on a set of servers that includes server S3

from the first call. S3 then receives R2, tagged with the next logical sequence number, on the same

connection as RI. If $3 has not yet begun processing R1, then it will throw R2 away because it

recognizes that its sequence number is too high. S3 will then proceed to process R1 and send the

102

response back to the client; the client, however, will promptly throw the response away as a retry

because the semantics of his abort command was to pretend that the response to R1 from S3 had

already arrived.

Now, assuming that the client chooses to terminate his second call before $3 returns, the client and

S3 are completely out of synch. $3, having thrown away R2, will always be expecting a packet with

R2's sequence number; the client, however, has already incremented the connection at the

termination of R2. In order to keep the connection from hanging around uselessly, S3 will send a

RPC2 NAK return code if it ever receives a request R3 on the same connection with a sequence

number greater than R2. This will kill the connection, forcing the client to rebind if he wants to

continue communicating with S3.

Another risk associated with the use of abort is the risk of not identifying dead connections. If a server

S2 is dead but the client always chooses to abort his MultiRPC call before a response from S2

arrives, RPC2 may not have time to notice th_.tthe connection is dead.

These problems are a result of the client's ability to ignore the responses on some connections in a

MultiRPC call, and will generally only manifest themselves in a case where a server is forced to queue

a request because it is busy processing an earlier request. This means that the MultiRPC call should

be used with caution in cases where simultaneous binding to a single site might result, although the

severity of the problem can be lessened by providing a greater number of LWPs at the single site. It is

important to note that these problems arise only in the case where the client chooses to abort the call

before all replies have been received. However, the explicit NAK by the server at least gives the client

the opportunity to learn that something has gone wrong with the connection and act accordingly.

5.4. C Interface Specification

The following table shows the C type interface between the client routine and MRPC MakeMulti for

all the possible combinations of legal parameter declarations and types. In all cases it is the client's

responsibility to allocate storage for all parameters, just as in the RPC2 case. For all types, IN

parameters are handled the same as in the single MakeRPC case. For OUT and IN - OUT parameters,

arrays of pointers to parameters must be supplied in order to hold the multiple server responses. The

array for each parameter must contain the same number of items as the number of servers contacted,

and they must be filled sequentially starting from element zero. For all IN- OUT parameters except for

SE Descriptors, only the first element of the array need be filled in. For SE Descriptors, all

elements must be filled in. The following table should be consulted for specific formats.

103

RPC2 Type C Declaration

IN OUT IN OUT

RPC2_lnteger long long "[] long *[]

RPC2_Unsigned unsigned long unsigned long "[] unsigned long *[]

RPC2_Byte unsigned char unsigned char "[] unsigned char *[]

RPC2_String unsigned char * unsigned char "*[] unsigned char ='[]

RPC2 CountedBS RPC2_CountedBS = RPC2_CountedBS *[] RPC2_CountedBS *[]

RPC2_BoundedBS RPC2 BoundedBS * RPC2 BoundedBS *[] RPC2_BoundedBS =[]

RPC2 EncryptionKey RPC2_EncryptionKey RPC2_EncryptionKey *[] RPC2_EncryptionKey *[]

SE Descriptor illegal illegal SE Descriptor "[]

RPC2 Enum name name name "[] name *[]

RPC2 Struct name name = name *[] name *[]

RPC2 Byte name[...] name name *[] name *[]

The client is only responsible for understanding the parameter type interface to the MakeMulti and

HandleResult routines, and for allocating all necessary storage. MRPC MakeMulti and

MRPC UnpackMulti are included in the RPC2 libraries.

104

5.4.1. MultiRPC Call Specifications

MRPC_MakeMulti

Pack arguments and initialize state for RPC2 MultiRPC

Call:

long MRPC_MakeMulti(in long ServerOp, in ARG ArgTypes[], in long HowMany,
in RPC2_Handle CIDList[], in long (*HandleResult)O,
in struct timeval.*Timeout, _Variable Length Argument List_)

Parameters:

ServerOp
For server routine foo, "foo-OP". RP2GEN generated opcode, defined in include file. Note that subsystems

with overlapping routine names may cause problems in a MakeMulti call.

Arg Types
For server routine foo, "foo-PTR". RP2GEN generated array of argument type specifiers. A pointer to this

array is located in the generated include file foo.h.

HowMany
How many servers are being called

CIDList
Array of connection handles, one for each of the servers

HandleResult
User procedure to be called after each server response. Responses are processed as they come in. Client can

indicate when he has received sufficient responses (see below). MRPC_MakeMulti will not return the server

responses.

Timeout
User specified timeout.Note that the default timeoutset inthe .rpc file will not be active here: a NULL value will

be passed throughto MultiRPC, whereit will indicate infinite patience as longas RPC2 believes that the server

is alive. Note that this timeout value is orthogonal to the RPC2 internal timeout for determining connection

death.

Variable Length ArgUment List
This is just the list of the server arguments as they are declared in the .rpc2 file. It is represented in this form

since each call will have a different argument list.

Completion Codes:

RPC2 SUCCESS
Allwentwell

105

RPC2 TIMEOUT

The user specified timeout expired before all the server responses were received

RPC_FAIL

For all OUT or IN - OUT parameters, an array of HowMany of the appropriate type should be allocated
and supplied by the client. For example, if one argument is an OUT integer, an array of HowMany
integers (i.e. int foo[HowMany]) should be used. For structures, an array of structures and NOT an
array of pointers to structures should be used. IN arguments are treated as in the RPC2 MakeRPC
case.

106

MRPC_UnpackMulti

Unpack server arguments and call client handler routine

Call:

long MRPC UnpackMulti(in long HowMany, in RPC Handle ConnHandleList,
in out ARG_INFO °Arglnfo, in RPC_PacketBuffer "Response,
in long rpcval, in long thishost)

Parameters:

HowMany
How many servers were included in the MultiRPC call

ConnHandleList
Array of HowMany connection ids

Arglnfo
Pointer to argument information structure. This pointer is the same one passed in to MultiRPC, so for the

non-RP2Gen case itstype is determined by the client.

Response
RPC2 response buffer

rpcval
Individualconnectionerrorcodeorserverresponsecode

thishost
Index into ConnHandleList to identify the returning connection

Completion Codes:

0 Continue accepting and processing server responses

-1 Abort MultiRPC call and return

This routine is fixed in the RP2Gen case, and can be ignored by the client. For the non-RP2Gen case,
a pointer to a routine with the argument structure described must be supplied as an argument to
RPC2 MultiRPC. The functionality of such a client-supplied routine is unconstrained, but note that
the return codes have an important effect on the process of the MultiRPC call.

107

HandleResult

Process incoming server replies as they arrive

Call;

long HandleResult(in long HowMany, in RPC2_Handle ConnArray[], in long WhichHost,
in long rpcval, <Variable Length Argument List>)

Parameters;

HowMany
number of servers from MRPC_.MakeMulti call

ConnArray
array of connection ids as supplied to MRPC MakeMulti

WhichHost
this is an offset into ConnArray and into any OUT or IN- OUT parameters. Using this to index the arrays will

yield the responding server and its corresponding argument values.

rpcval
this is the RPC2 return code from the specified server

<Variable Length Argument List>
These should be specified asdescribed above for MRPC MakeMulti

Completion Codes;

0 Continue processing server responses

- 1 Terminate MRPC MakeMulti call and return

This routine must return either 0 or -1. A return value of zero indicates that the client wants to
continue receiving server responses as they come in (normal case). A return value of 1 indicates that
the client has received enough responses and wants to terminate the MakeMulti call (in which the
client is still blocked). This allows the client to call a large number or servers and terminate after the
first n responses are received.

Note that the name of this routine is arbitrary and may be determined by the client. RPC2 MultiRPC
sees it only as a pointer supplied as an argument to MRPC_MakeMulti. The parameter list is
predefined, however, and the client must follow the structure specified here in writing the routine.

108

109

Appendix I
Usage Notes for the ITC

The .h files (rpc2.h, se.h) are in/cmu/itc/nfs/include.

There are actually two versions of the library: and the normal one, librpc2.a, and one with debugging

completely turned off librpc2_s.a. Using librpc2_s.a will make your final load module considerably

smaller, but will produce no debugging information at all 1. For the Suns, these libraries are in

/cmu/itc/nfs/lib. For any other supported machine the libraries will be in

/cmu/itc/nfs/machine/lib.

Rp2gen is in /cmu/itc/nfs/bin for the Suns and in /cmu/itc/nfs/machine/bin for any other

supported machine.

The currently supported machines are Suns, Vaxes, and the IBM PC-RT.

The directory/cmu/itc/nfs/release/rpc2 contains a copy of the sources used to build the current

version of RPC2. Use this in conjunction with dbx, or if you just wish to examine the source

corresponding to the released version. The sources of the immediately preceding released version of

RPC2 are in/cmu/itc/nfs/oldv/rpc2.

Compile thus:

NFS = /cmu/itc/nfs

cc -g .l$(NFS)/include <<your files>> $(NFS)/lib/librpc2.a $(NFS)/lib/Iwp.o\

$(NFS)/lib/timer.o ${NFS)/lib/iomgr.o -o (,<output file>>

Stack checking is possible. Refer to the LWP manual for details.

The following external variables may be set for debugging:
RPC2 DebugLevel: values of O, 1, 10 and 100 are meaningful. Initial value is 0.

RPC2 Perror: set to I to see Unix error messages on stderr. Initial value is I.

RPC2_Trace: set to I to enable tracing. 0 turns off tracing. Initial value is O.

Setting the hashmark variable to a non-zero character in DumbFTP descriptors will allow
you to watch the progress of file transfers.

1Tracing will still work.

110

111

Appendix II
Remote Site and Communication Failures

Two hazards face the user of an RPC package:

1. The communication medium may fail.

2. The peer process at a remote site may crash.

A key problem in RPC is reliably detecting either of these events when an RPC call is in progress.

Detection of failures in the absence of RPC calls in progress is an orthogonal issue, and can be

reduced to this issue by generating artificial keepalive RPC calls.

Ideally, the detection of these failures should be independent of the specific RPC call in progress. In

other words, as long as we are sure that communication medium is not broken and that the remote

server process is alive, we should not care how long it takes to receive the reply to an RPC request.

At the same time failures should be detected as soon as possible, so that suitable recovery actions

can be performed. The following paragraphs show this goal is achieved in RPC2.

When the RPC2 runtime System receives a retry packet for a request it is already working on, it

responds with a Busy packet. There are two constants BtotaI and N. These constants are set in

RPC2 Init0], with suitable defaults built in. These semantics of these two constants are:

1. Communication failure is declared if N successive retries of a packet fail to provoke any
kind of response. The response may be a reply, a Busy packet, an acknowledgement if
the packet being sent is a reply, or an implicit piggy-backed acknowledgement.

2. Site failure is declared if silence is observed for a total period of time in the range BtotaI tO
2Btotal "

RPC2 does not try to accurately distinguish between site failure and communication failure: one may

masquerade as the other, and a single failure RPC2 DEAD reflects both cases. Loosely speaking, N

characterises the probability of packet loss in the communication medium, while BtotaI characterises

how sluggish a server may get before it is declared dead.

Given Btota I and N, we can determine B I, B2.... B N such that B1 + B2 + B 3 ... BN =

BtotaI and Bi _ Bi+ 1"Each Bi is a retry interval and the progressive lengthening of these intervals is to

allow for transient overloads at remote sites. In RPC2, Bi+ i = 2Bi. In practise we may place a

minimum bound on the values for Bis, tO avoid send out packets too close to each other.

112

The RPC2 packet transmission algorithm is based on these concepts and is outlined as follows:

while (TRUE)

{

for(i = 0;i<N;i+ +)

{

send(packet);

awaitresponse(Bi);

if (reply or lastack arrived) quit;

if (BUSY arrived) break;

}

if (i > = N) goto TimeOut;

sleep(Btotal);

}

TimeOut: mark connection RPC2 DEAD;

mark all other connections to this (host, portal) pair as RPC2 DEAD;

Failure is detected in time B]tota I if the remote site dies just after the sleepO call ends. If the failure

occurs immediately after the remote site sends a Busy packet, failure is detected after a total

of 2Btotar These cases bound the time it takes to detect failure. Failure is also declared if all N of the

retries are lost due to communication failure. This will occur in a time exactly equal to Btotar

How does this mesh with side effects? The above algorithm will work regardless of the duration of a

side effect as long as Busy packets are sent out by that server at intervals of Biota I. Note that it is

immaterial whether the side effect involves asynchronous Unix processes or not. If such processes

are involved their failure will be detected (perhaps as RPC2 DEAD failures or in other ways) and

reported by the remote server explicitly as RPC2 SEFAIL2. Only if the remote server is itself dead or

113

unreachable is the RPC return code RPC2_DEAD and this will occur no later than 2Btota! after the

failure. In DUMBFTP, side effect failure is detected because it is implemented using RPC2. In cases

where TCP or other protocols are being used for side effects, the failure detection mechanismsof

these protocols will be relied upon to detect side effect failure.

Tables I1-1 and 11-2show how the N retransmissions take place within Btotal, for typical values of N and

BtotaI. The original attempt is at time 0. The numbers in parentheses indicate the time (BN) that RPC2

waits after the transmission of the last retry, before declaring failure. A lower limit of 500 milliseconds

for the retry interval is assumed.

114

,,)

15 secs 30 secs 45 secs 60 secs

1 retries 5.00 (10.00) 10.00 (20.00) 15.00 (30.00) 20.00 (40.00)

2 retries 2,14 4.29 (8.57) 4.29 8.57 (17,14) 6,43 12.86 (25.71) 8.57 17.14 (34.29)

3 retries 1.00 2.00 4.00 (8.00) 2.00 4.00 8.00 (16.00) 3.00 6.00 12.00 (24.00) 4.00 8,00 16.00 (32.00)

4 retries 0.50 0.97 1.94 3.87 0.97 1.94 3.87 7.74 1.45 2,90 5.81 11.61 1.94 3.87 7.74 15.48

(7.73) (15.48) (23.23) (30.97)

I
5 retries 0.50 0,50 0.95 1.90 0.50 0.95 1.90 3.81 0,71 1,43 2.86 5.71 0,95 1,90 3.81 7.62

3,81 (7.33) 7.62 (15.21) 11.43 (22.86) 15,24 (30.48)

6 retries 0,50 0,50 0.50 0,94 0,50 0,50 0,94 1,89 0,50 0,71 1.42 2.83 0,50 0.94 1.89 3.78

1.89 3.78 (6.89) 3.78 7.56 (14.83) 5,67 11.34 (22.53) 7.56 15.12 (30.21)

7 retries 0.50 0.50 0.50 0,50 0.50 0.50 0.50 0.94 0.50 0.50 0.71 1.41 0.50 0.50 0.94 1.88

0.94 1.88 3.76 (6.41) 1.88 3.76 7.53 (14.38) 2.82 5.65 11.29 (22.12) 3.76 7,53 15.06 (29.82)

8 retries 0.50 0.50 0.50 0.50 0,50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.50 0.50 0.50 0.94

0.50 0.94 1.88 3.76 0.94 1.88 3.76 7.51 1.41 2.82 5.64 11.27 1,88 3.76 7.51 15.03

(5.92) (13.91) (21.66) (29.38)

9 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

0.50 0.50 0.94 1.88 0.50 0.94 1.88 3.75 0.70 1.41 2.82 5.63 0.94 1.88 3.75 7.51

3.75 (5.43) 7.51 (13.42) 11.26 (21.18) 15.01 (28.91)

10 retries 0.50 0.50 0.50 0,50 0.50 0.50 0,50 0.50 0.50 0.50 0.50 0.50 0,50 0,50 0.50 0,50

0.50 0.50 0.50 0.94 0.50 0.50 0.94 1.88 0.50 0.70 1.41 2.81 0.50 0.94 1.88 3,75

1.88 3.75 (4,93) 3.75 7.50 (12.93) 5.63 11.26 (20.69) 7,50 15.01 (28.42)

Table I1-1: Retry Constants (BiotaI = 15 to 60 seconds (0.50 secs lower limit))

115

90 secs 120 secs 240 secs 300 secs

1 retries 30.00 (60.00) 40.00 (80.00) 80.00 (160,00) 100.00 (200.00)

2 retries 12.86 25.71 (51.43) 17.14 34.29 (68.57) 34.29 68.57 (137.14) 42.86 85.71 (171.43)

3 retries 6.00 12.00 24.00 8.00 16.00 32.00 16.00 32.00 64,00 20,00 40.00 80.00

(48.00) (64.1_0) (128.00) (160.00)

4 retries 2.90 5,81 11.61 23.23 3.87 7.74 15.48 30.97 7.74 15.48 30.97 61.94 9.68 19,35 38.71 77,42

(46.45) (61.94) (123.87) (154.84)

5 retries 1.43 2.86 5.71 11,43 1.90 3.81 7.62 15.24 3.81 7.62 15.24 30.48 4.76 9.52 19.05 38.10

22.86 (45.71) 30,48 (60.95) 60.95 (121.90) 76.19 (152.38)

6 retries 0.71 1.42 2.83 5.67 0.94 1.89 3.78 7.56 1.89 3.78 7,56 15.12 2.36 4.72 9.45 18.90

11.34 22.68 (45.35) 15.12 30.24 (60.47) 30.24 60.47 (120.94) 37.80 75.59 (151.18)

7 retries 0.500.71 1.41 2.82 0.500.94 1.883.76 0.94 1,883.767.53 1.18 2.354.71 9.41

5.65 11.29 22.59 7.53 15,06 30.12 15.06 30.12 60.24 18.82 37.65 75.29

(45.03) (60.21) (120.47) (150.59)

8 retries 0.50 0.50 0.70 1.41 0.50 0.50 0.94 1.88 0.50 0.94 1.88 3.76 0.59 1.17 2.35 4.70

2.82 5.64 11.27 22.54 3.76 7.51 15.03 30.06 7.51 15.03 30.06 60.12 9.39 18.79 37.57 75.15

(44.62) (59.82) (120.20) (150.29)

9 retries 0.50 0.50 0.50 0.70 0.50 0.50 0.50 0.94 0.50 0.50 0.94 1.88 0.50 0.59 1.17 2.35

1.41 2.82 5.63 11.26 .1.88 3.75 7.51 15.01 3.75 7.51 15.01 30.03 4.69 9.38 18.77 37.54

22.52 (44.16) 30.03 (59.38) 60.06 (119.82) 75.07 (149.94)

10 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.94 0.50 0.50 0.59 1,17

0.70 1.41 2.81 5.63 0.94 1.88 3.75 7.50 1.88 3.75 7.50 15.01 2.34 4.69 9.38 18.76

11.26 22.51 (43.68) 15.01 30,01 (58.91) 30.01 60.03 (119.38) 37.52 75.04 (149.51)

Table 11-2: Retry Constants (BtotaI = 90 to 300 seconds (0.50 secs lower limit))

116

117

Appendix III
Implementation Notes

Some of these refer to bugs, others to restrictions, still others to random useful observations. These

are specific to the current state of the RPC2 implementation and are very likely to change in the near

future, as refinements are made to RPC2

1. RPC2 runs on Suns, Vaxen and the IBM PC-RT machines.

2. Only one portal in RPC2 Init.

3. Only DumbFTPD currently supported.

4. getsubsysbyname0 is a fake routine. It knows about "Vice2-FileServer" and "DumbFTP-
Server" and "Vice2-CallBack".

5. RPC2 MultiRPC not implemented yet.

118

119

Appendix IV
Recent Changes

This appendix summarizes the differences between the latest release of RPC (i.e. corresponding to

this manual) and the previous release.

This is release 7 (Version 7.0). The immediately preceding release was 6 (Version 6.2).

Changes visible to the user are:

1. There is a new call RPC2 Enable0 which you must use on the server side to enable
connections after they are established. This is done for you by RP2Gen if you use it.

2. You must now call XXX_Activate0 to activate each type of side effect XXX. If you do not
call this routine code for that side effect will not be linked in. For example you must call
DFTP_Activate0 to enable the dumb file transfer protocol.

3. Each side effect XXX now has a XXX_SetDefaults0 routine which sets defaults
initialization values on a variable of type XXX.Initializ,er.

4. RPC2_GetPeerlnfo0 now returns information in a structure rather than as a long
sequence of arguments.

5. RPC2 SendResponse no longer has a SE Descriptor argument.

6. You no longer have to include dftp.h if you are using the DFTP side effect routines.

Changes internal to RPC2 and invisible to the user:

1. Support is being added for SFTP, the faster file transfer protocol. However, it will not be
enabled by default. The next release will have it enabled.

120

121

Appendix V
Summary of RPC-related Calls

Note: The numbers in square brackets indicate the page on which the call is described.

122

References

[1] Jonathan Rosenberg, Larry Raper, David Nichols, M. Satyanarayanan.
LWP Manual

Information Technology Center, CMU-ITC-037, 1985.

[2] M.Satyanarayanan.
RPC Manual

Information Technology Center, CMU-ITC-011, 1984.

iii

List of Tables

Table I1-1: Retry Constants (Btotat = 15 to 60 seconds (0.50 secs lower limit)) 114
Table 11-2: Retry Constants (BtotaI = 90 to 300 seconds (0.50 secs lower limit)) 115

Jv

[22]

RPC2 Bind(in tong SecurityLeve/, in long EncryptionType,
inRPC2 Host_dent*Host; inRPC2 Porta/Ident *Portal,

in RPC2_Subsysldent *Subsys, in long SideEffectType,
in RPC2 CountedBS *Client/dent, in RPC2 EncryptionKey "SharedSecret,
out RPC2 Handle "ConnHandle)

[25]
RPC2 MakeRPC(in RPC2 Handle ConnHandle, in RPC2_PacketBuffer "Request,
in SE Descriptor "SDesc, out RPC2_PacketBuffer *'Reply,
in struct timeval "Patience, in long EnqueueRequest)

[27]
RPC2 MultiRPC(in long HowMany, in RPC2 Handle ConnHandleList[],
in RPC2_PacketBuffer "Request, in SE Descriptor SDescList[],
in long ('UnpackMulti)O, in out ARG_INFO *Arglnfo, in struct timeval "Patience)

[29]
RPC2_Export(in RPC2 Subsysldent *Subsys)

[30]
RPC2_DeExport(in RPC2 Subsysldent "Subsys)

[31]
RPC2_GetRequest(in RPC2 RequestFilter *Filter,
out RPC2 Handle "ConnHandle, out RPC2 PacketBuffer **Request,
in struct timeval "Patience, in long (*GetKeys)O, in long EncryptionTypeMask,
in long ('AuthFail)O)

[34]
RPC2 Enable(in RPC2_Handle ConnHandle)

[35]
RPC2_SendResponse(in RPC2_Handle ConnHandle,
in RPC2 PacketBuffer *Reply)

[36]
RPC2_lnitSideEffect(in RPC2 Handle ConnHandle, in SE_Descriptor "SDesc)

[37]
RPC2_CheckSideEffect(in RPC2_Hand/e ConnHand/e,
inout SE_Descriptor "SDesc, in long Nags)

[38]
RPC2 /nit(in char *Version/d, in long Options, in RPC2_Porta//dent "Porta/List[],
in long HowManyPorta/s, in long RetryCount, in struct timeva/ "KeepAlive/nterval)

[4O]
RPC2 Unbind(in RPC2 /-/and/e ConnHand/e)

[41]
RPC2._AIIocBuffer(in long MinBodySize, out RPC2_PacketBuffer "*Buff)

[42]
RPC2 FreeBuffer(inout RPC2_PacketBuffer *'Buff)

[43]
RPC2_GetPrivatePointer(in RPC2_Handle WhichConn, out char *'PrivatePtr)

[44]
RPC2 SetPrivatePointer(in RPC2_Handle WhichConn, in char *PrivatePtr)

[45]
RPC2 GetSEPointer(in RPC2_Handle WhichConn, out char *'SEPtr)

[46]
RPC2 SetSEPointer(in RPC2 Handle WhichConn, in char *SEPtr)

[47]
RPC2 GetPeerlnfo(in RPC2_Handle WhichConn, out RPC2_Peerlnfo *Peerlnfo)

[48]
RPC2 LamportTimeO

[49]
RPC2 DumpState(in FILE *OutFile, in long Verbosity)

[50]
RPC21nitTraceBuffer(in long HowMany)

[51]
RPC2 DumpTrace(in FILE *OutFfle, in long HowMany)

[52]
XXX_SetDefaults(in XXX_lnitializer "Initializer)

[53]
XXX_Activate(in XXX_lnitializer "Initializer)

[59]
SE_lnitO

[60]
SE_Bind 1(in RPC2 Handle ConnHandle, in RPC2 CountedBS *Clientldent)

[61]
SE_Bind2(in RPC2 Handle ConnHandle)

[62]
SE Unbind(in RPC2 Handle ConnHandle)

[63]
SE_NewConnection(in RPC2 Handle ConnHandle,
in RPC2_CountedBS *Clientldent)

[64]
SE MakeRPC 1(in RPC2 Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2_PacketBuffer * "RequestPtr)

[65]
SE_MakeRPC2(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2 PacketBuffer "Reply)

[66]
SE_GetRequest(in RPC2_Handle ConnHandle,
inout RPC2 PacketBuffer *Request)

[67]
SE_lnitSideEffect(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc)

[68]

vi

SE_CheckSideEffect(in RPC2_Handle ConnHandle, inout SE_Descriptor "SDesc,
in long Flags)

[69]
SE_SendResponse(in RPC2 Handle ConnHandle,
in RPC2 PacketBuffer ° *ReplyPtr)

[70]
SE_PrintSEDescriptor(in SE_Descriptor °SDesc, in FILE *outFile)

[71]
SE SetDefaults(XXX_lnitializer "Slnit)

[72]
SE_Activate (in XXX_lnitializer "Slnit)

[104]
MRPC_MakeMu/ti(in /ong ServerOp, in ARG ArgTypes[], in/ong HowMany,
in RPC2 Hand/e C/DList[], in/ong (*Hand/eResu/t)O, in struct timeva/ *Timeout,
CVariab/e Length Argument List._)

[106]
MRPC_UnpackMulti(in long HowMany, in RPC Handle ConnHandleList,
in out ARG_INFO "Arglnfo, in RPC_PacketBuffer "Response, in long rpcval,
in long thishost)

[107]
HandleResult(in long HowMany, in RPC2 Handle ConnArray[],
in long WhichHost, in long rpcval, {Variable Length Argument List>)

