CMU-ITC-85-038

RPC2 User Manual

M. Satyanarayanan

Information Technology Center
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

NOTE: Reference manual only; tutorial in preparation

Table of Contents

Preface

1.

Design Concepts
1.1. Introduction
1.2. An Example
1.2.1. Auth Subsystem .rpc file
1.2.2. Comp Subsystem .rpc file
1.3. Server for Auth and Comp Subsystems
1.4. Client using Auth and Comp Subsystems
The RPC2 Runtime System
2.1. Constants, Types, and Globals (from file rpc2.h)
2.2. Client-related Calls
2.3. Server-related RPC Calls
2.4. Miscellaneous Routines
Side Effects
3.1. Constants and Globals (from file se.h)
3.2. Adding New Kinds of Side Effects
3.2.1. Notes:
RP2Gen: A Stub Generator for RPC2
4.1. Introduction
4.2. Usage .)
4.3. Format of the description file
4.4. The C Interface
4.5. External Data Representations

. MultiRPC

5.1. Design Issues
5.2. An Example _
5.2.1. Auth Subsystem .rpc file
5.2.2. Comp Subsystem .rpc file
5.2.3. Server for Auth and Comp Subsystems
5.2.4. Client using Auth and Comp Subsystems
5.3. Usage
5.3.1. The Client Handler
5.3.2. Flow of Control in MultiRPC
5.3.3. MultiRPC Related Calls
5.3.3.1. RPC2__MultiRPC
5.3.3.2. MRPC__MakeMulti
5.3.3.3. MRPC__UnpackMuiti
5.3.3.4. HandleResult
5.3.4. Error Cases and Abnormal Behavior
5.4. C Interface Specification
5.4.1. MultiRPC Call Specifications

SO brLLW W =

15
15
22
29

55
55
57
57

73
73
73
74
77
78

81

81

B8BRRBS

99
100
100
100
101
101
101
102
104

Appendix |. Usage Notes for the ITC

Appendix ll. Remote Site and Communication Failures
Appendix Illl. Implementation Notes

Appendix IV. Recent Changes

Appendix V. Summary of RPC-related Calls

109
111
117
119
121

Preface

This document is a programmer’s reference manual for RPC2, the ITC remote procedure call
package. This package is being used at the present time for a variety of distributed applications such
as file servers, authentication servers, and database servers.

Considerable effort has gone into making this mechanism flexible and robust. In particular, it works
well even under conditions of heavy server load. However the package is simple enough to be used
by relatively unsophisticated applications. Do not let the size of this user manual scare you! A tutorial

introduction to this manual and procedures to simplify RPC initialization are in preparation.

Until the tutorial introduction is available the best way to learn RPC2 is as follows:

1. Study the example in Chapter 1. This is an actual piece of working code, and you should
try running the example.

2. Read Chapter 4 next. This describes the procedural abstraction provided by RP2Gen,
the stub generator for RPC2.

3. Read Chapter 2, which describes the RPC2 runtime system. Some of these calls are not
relevant to you if you use RP2Gen. Others, such as the initialization and export calls, are
pertinent to ali users of RPC2. This material will make more sense in conjunctlon with the
example of Chapter 1.

4. Read Chapter 3 to get an idea of how to add new kinds of side effects to RPC2. You will
probably not need this material unless you intend to extend RPC2, but an overview of this
material will probably be useful.

5. At all times keep available a copy of the LWP reference manual [1] and refer to it as
needed.

Some key features of this package are:

¢ Clients and servers are each assumed to be using the ITC lightweight process
package [1]. The RPC2 package will not work independently of the LWP package. The
LWP package makes it possible for a single Unix process to contain multiple threads of
control (LWPs). An RPC call is synchronous with respect to an individual LWP, but it
does not block the encapsulating Unix process.

e There is no a priori binding of RPC connections to LWPs within a client or server. RPC
connections and threads of control are orthogonal concepts.

e There is no a priori restriction (other than resource limitations) on the number of clients a
server may have, or on the number of servers a client may be connected to.

¢ A server sends and receives requests via many different Portals and may service many

different Subsystems. A good analogue to a server supporting many subsystems is the
Inet daemon in Unix 4.2, which is the rendezvous point for the FTP, Telnet, and Mail
subsystems. Binding by clients is done to a host-portal-subsystem triple.

¢ Host, portal, subsystem, and side effect descriptor specifications are discriminated union
types, to allow a multiplicity of representations. For example, hosts may be specified
either by name or by Internet address. Files may be specified by a file name or a low-level
identifier (or in future, perhaps even a file descriptor).

® RPC connections may be associated with Side-Effects to allow application-specific
network optimizations to be performed. An example is the use of a specialized protocol
for bulk transfer of large files. Detailed information pertinent to each type of side effect is
specified in a Side Effect Descriptor. Side effects are explicitly initiated by the server and
occur asynchronously. Synchronization occurs due to an explicit
RPC2__ChecksSideEffect() call by the server.

¢ Adding support for a new type of side effect is analogous to adding a new device driver in
Unix. To allow this extensibility, the RPC code has hooks at various points where side-
effect routines will be called. Global tables contain pointers to these side effect routines.
The basic RPC code itself knows nothing about these side-effect routines.

¢ RPC2 has builtin mechanisms to allow authentication of mutually suspicious clients and
servers and to provide encrypted transmissions after connection establishment. Multiple
levels of security are available and may be specified on an individual basis for each RPC
connection. Multiple encryption types are also supported, to allow servers to deal with
various types of clients.

e This is a completely revised implementation of an earlier RPC package [2], used in Vice-l.
The earlier implementation is no longer supported.

1. Design Concepts

1.1. Introduction

KLLKK o be written D>>X3>>

1.2. An Example

<LK intro to be written >

1.2.1. Auth Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Mellon University
(c) IBM Corporation November 1985

RPC interface specification for a trivial authentication subsystem. This is only an example: all it does is name to id and id to
name conversions.

Server Prefix "S";
Subsystem "auth™;

Internet port number; note that this is really not part of a specitic subsystem, but is part of a server; we should really have a
separate ex.h file with this constant. | am being lazy here
#define AUTHPORTAL 5000

define AUTHSUBSYSID 100 The subsysid for auth subsystem

Return codes from auth server
define AUTHSUCCESS 0
#define AUTHFAILED 1

typedef
RPC2_Byte PathName[1024];

typedef
RPC2__Struct

{
RPC2_Integer Groupld;
PathName HomeDir;

}
Authinfo;

AuthNewConn (IN RPC2_integer seType, IN RPC2_Integer secLevel, IN RPC2_Integer encType,
IN RPC2_CountedBS cldent) NEW ~ CONNECTION;

AuthUserld (IN RPC2__String Username, QUT RPC2_Integer Userld);
Returns AUTHSUCCESS or AUTHFAILED

AuthUserName (IN RPC2__Integer Userid, IN OUT RPC2_BoundedBS Username);
Returns AUTHSUCCESS or AUTHFAILED

AuthUserlnfo (IN RPC2__Integer Userld, QUT Authinfo Uinfo);
Returns AUTHSUCCESS or AUTHFAILED

AuthQuit();

1.2.2. Comp Subsystem .rpc file

M. Satyanarayanan Information Technology Center Camegie-MelIon University
(c) IBM Corporation November 1985

RPC interface specification for a trivial computational subsystem. Finds squares and cubes of given numbers.

Server Prefix "S";
Subsystem "comp";

define COMPSUBSYSID 200 The subsysid for comp subsystem

define COMPSUCCESS 1
define COMPFAILED 2

CompNewConn (IN RPC2__Integer seType, IN RPC2_integer secLevel, IN RPC2_Integer encType,
IN RPC2__CountedBS cldent) NEW - CONNECTION;

CompSquare (IN RPC2_Integer X); returns square of x
CompCube (IN RPC2_Integer X); returns cube of x
CompAge(); returns the age of this connection in seconds

CompExec(IN RPC2__String Command, IN QUT SE__Descriptor Sed);
Executes a command and ships back the result in a file. Returns
COMPSUCCESS or COMPFAILED

CompQuit();

1.3. Server for Auth and Comp Subsystems

exserver.c - Trivial server to demonstrate basic RPC2 functionality Exports two subsystems: auth and comp, each with a
dedicated LWP.

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMid[} = "(c) Copyright IBM Corporation November 1985";

#include <stdio.h>
#include <potpourri.h>
include <{strings.h>
#include <sys/signal.h>
include <sys/time.h>
#include {(sys/types.h>
include <netinet/in.h>
include <pwd.h>
#include <lwp.h>
#include <rpc2.h> .
#include <se.h>
#inciude "auth.h"
#include "comp.h”

This data structure provides per-connection info. Itis created on every new connection and ceases to exist after AuthQuit().
struct Userinfo

{
int Creation; Time at which this connection was created
other tields would go here
}
int NewCLWP(), AuthLWP(), CompLWP(); bodies of LWPs
void DebugOn(), DebugOff(); signal handlers
main()
{
int mypid;

signal(SIGEMT, DebugOn);
signal(SIGIOT, DebugOff);

InitRPC();
LWP_CreateProcess(AuthLWP, 4096, LWP_NORMAL - PRIORITY, “AuthLWP", NULL, &mypid);
LWP_CreateProcess(CompLWP, 4096, LWP_NORMAL - PRIORITY, "CompLWP", NULL, &mypid);

LWP_WaitProcess(main); sleep here forever; no one will ever wake me up
}
AuthLWP(p)
char *p; single parameter passed to LWP_CreateProcess()
{

RPC2_RequestFilter reqfilter;
RPC2_PacketBuffer *reqbuffer;
RPC2__Handle cid;

int rc;

char *pp;

: Set filter to accept auth requests on new or existing connections
regfilter FromWhom = ONESUBSYS;

regfilter.OldOrNew = OLDORNEW;
reqfilter.ConnOrSubsys.Subsysid = AUTHSUBSYSID;

while(TRUE)
{
cd = 0;

if ((rc = RPC2__GetRequest(®filter, &cid, ®butfer, NULL, NULL, NULL, NULL)) < RPC2__WLIMIT)
HandleRPCError(rc, cid); -

if ((rc = auth - ExecuteRequest{cid, reqbutfer)) CRPC2__WLIMIT)
HandleRPCError(rc, cid);

pp = NULL;
if (RPC2_GetPrivatePointer(cid, &pp) ! = RPC2_SUCCESS Il pp = = NULL)
RPC2_Unbind(cid); This was almost certainly an AuthQuit() call

}

}
CompLWP(p) .

char *p; single parameter passed to LWP_CreateProcess()
{

RPC2_RequestFilter regfilter;
RPC2__PacketBuffer *regbuffer;
RPC2__Handle cid;

intrc;

char *pp;

Set filter to accept comp requests on new or existing
connections
reqfilter.FromWhom = ONESUBSYS;
reqfilter.OldOrNew = OLDORNEW;
regfilter.ConnOrSubsys.Subsysld = COMPSUBSYSID;

while(TRUE)
{
cid = 0

if (rc = RPC2_GetRequest(&reqfilter, &cid, &reqbuffer, NULL, NULL, NULL, NULL)) < RPC2_WLIMIT)
HandleRPCError(rc, cid);

if ((rc = comp - ExecuteRequest(cid, reqgbuffer)) < RPC2_WLIMIT)
HandieRPCError(rc, cid);

pp = NULL,;
if (RPC2_GetPrivatePointer(cid, &pp) != RPC2_SUCCESS || pp = = NULL)
RPC2_Unbind(cid); This was almost certainly an CompQuit() call
} .
}

SF====z=z=z=z=:z==z=Bodiesof AuthRPCroutines = = = = = =z = 2 = = = = =

S - AuthNewConn(cid, seType, secLevel, encType, cldent)
RPC2_Handle cid;
RPC2_Integer seType, secLevel, encType;
RPC2_ CountedBS *cldent;
{

struct Userinfo *p;

p = (struct Userinfo *) malloc(sizeof(struct Userlnfo));
RPC2__SetPrivatePainter(cid, p);

p->Creation = time(0);
}

S - AuthQuit(cid) .

Get rid of user state; note that we do not do RPC2_Unbind() here, because this request itself has to complete. The invoking
server LWP therefore checks to see if this connection can be unbound.

{

struct Userinfo *p;

RPC2__GetPrivatePointer(cid, &p);

assert(p !'= NULL); we have a bug then

free(p); .

RPC2_SetPrivatePointer(cid, NULL);

return(AUTHSUCCESS);

}

S - AuthUserld(cid, userName, userld)
char *userName;
int *userld;
{
struct passwd *pw;
if (pw = getpwnam(userName)) = = NULL) return(AUTHFAILED);
*userld = pw->pw - uid;
return(AUTHSUCCESS);
}

S - AuthUserName(cid, userld, userName)
int userld;
RPC2_BoundedBS *userName;
{
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL) return(AUTHFAILED);
strcpy(userName->SeqBody, pw->pw ~ name);

. we hope the buffer is big enough
userName->Seglen = 1 + strlen(pw->pw - name);
return(AUTHSUCCESS); .

}

§ - AuthUserInfo(cid, userid, ulnfo)
int userld;
Authinfo *uinfo;
{
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL) return(AUTHFAILED);
uinfo->Groupid = pw->pw - gid;
strepy(uinfo->HomeDir, pw->pw - dir);
return(AUTHSUCCESS);

SEss3s=s3==x2zz==Bodiesof COMpRPCroutines = = = = z == = 2 = = = =
S - CompNewConn(cid, seType, secLevel, encType, cldent)
RPC2_Handle cid;
RPC2__Integer seType, secLevel, encType;
RPC2_CountedBS *cident;
{

struct Userinfo *p;

p = {struct Userinfo *) malloc(sizeof(struct Userinfo));
RPC2__SetPrivatePointer(cid, p);
p->Creation = time(0);

}

S - CompQuit{cid)
Get rid of user state; note that we do not do RPC2_Unbind() here, because this request itself has to complete. The invoking
server LWP therefore checks to see it this connection can be unbound.
{ .
struct Userinfo *p;
RPC2__GetPrivatePointer(cid, &p);

assert(p != NULL); we have a bug then
free(p);

RPC2__SetPrivatePointer(cid, NULL);

return(0);

}

S - CompSquare(cid, x)
int x;
{
return(x*x);

}

S - CompCube(cid, x) . :
RPC2__Handle cid;
int x;
{
return{x*x*x);

}

S - CompAge(cid, x)
RPC2_Handie cid;
int x;
{
struct Userinfo *p;
assert(RPC2_ GetPrivatePointer(cid, &p) = = RPC2_SUCCESS);
return(time(0) - p->Creation);

}

S - CompExec(cid, cmd)
RPC2__Handle cid;

char *cmd;
We should really have a formal of type SE_Descriptor at the end:;
but it is a dummy anyway
{
SE__Descriptor sed;
char mycmd[100];
sprintf(mycmd, "%s > /tmp/answer 2&1", cmd);
system(mycmd); beware; if this takes too long, client will get RPC2_DEAD!

bzero(&sed, sizeof(sed));

sed.Tag = DUMBFTP;

sed.Value.DumbFTPD.Tag = FILEBYNAME;How |/ wish C had a "with” clause like Pascal
sed.Value.DumbFTPD.TransmissionDirection = SERVERTOCLIENT;
sed.Value.DumbFTPD.ByteQuota= -1; .
strepy(sed.Value.DumbFTPD.Fileinfo.ByName.LocalFileName, "/tmp/answer");

if (RPC2_InitSideEffect(cid, &sed) != RPC2_SUCCESS) return(COMPFAILED);

if (RPC2__CheckSideEffect(cid, &sed, SE_ AWAITLOCALSTATUS) | = RPC2_SUCCESS)

return(COMPFAILED);
return{COMPSUCCESS);
}

iopen() is a system call created at the ITC; put a dummy here for other sites

iopen{}{}

InitRPC()
{
int mylpid = -1;
DFTP_ Initializer dftpi;
RPC2_Portalldent portalid, *portallist[1];
RPC2_Subsysldent subsysid;
struct timeval tout;

assert(LWP_InitializeProcesssuppoﬂ(LWP_NORMAL—PRIORITY. &mylpid) = = LWP__SUCCESS);

portalid. Tag = RPC2__ PORTALBYINETNUMBER;
portalid.Value.InetPortNumber = htons(AUTHPORTALY);
portallist{0] = &portalid;

tout.tv - sec = 240;

tout.tv - usec = 0;

DFTP__SetDefaults(&dftpi);

DFTP__Activate(&dftpi);

assert (RPC2_Init(RPC2_VERSION, 0, portallist, 1, -1, &tout) = = RPC2_SUCCESS);
subsysid.Tag = RPC2_SUBSYSBYID;
subsysid.Value.Subsysid = AUTHSUBSYSID;
assert(RPC2_Export(&subsysid) = = RPC2_SUCCESS);
subsysid.Value.Subsysld = COMPSUBSYSID;
assert{RPC2_Export(&subsysid) = = RPC2__SUCCESS);

}

HandleRPCError(rCode, connld)
int rCode;
RPC2_Handle connid;

{
fprintf(stderr, "exserver: %s\n", RPC2_ErrorMsg(rCode));

if (rCode < RPC2__FLIMIT &8& connld ! = 0) RPC2_Unbind(connlid);
}

void DebugOn()

{
RPC2_Debuglevel = 100;

}

void DebugOff()

{
RPC2_DebuglLevel = 0;

}

10

1.4. Client using Auth and Comp Subsystems

exclient.c -- Trivial client to demonstrate basic RPC2 functionality
M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMid[] = "(c) Copyright IBM Corporation November 1985";

#include <stdio.h>

include <potpourri.h>
#include <strings.h>
#include <sys/time.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <pwd.h>
#include <lwp.h>
#include <rpc2.h>
#include <se.h>
#include "auth.h"”
#include "comp.h"

define dgets(p) (LWP_DispatchProcess(), gets(p))
allow RPC to get control periodically

main()
{
int a;
char buf[100];

printf("Debug Level? (0) ");
dgets(buf);
RPC2_DebuglLevel = atoi(buf);

InitRPCY();
while (TRUE)
{ .
LWP__DispatchProcess(); otherwise we get RPC2__DEADs
printf("Action? (1 = New Conn, 2 = Auth Request, 3 = Comp Request) ");
dgets(buf);
a = atoi(buf);
switch(a)
{
case 1: NewConn(); continue;
case 2. Auth(); continue;
case3: Comp(); continue;
default: continue;

}

NewConn()
{

char hname[100], buf[100];
int newcid, rc;
RPC2_Hostldent hident;
RPC2_ Portalldent pident;
RPC2_Subsysldent sident;

printf("Remote host name? ");
dgets(hident.Value.Name);

hident.Tag = RPC2__HOSTBYNAME;

printf(" Subsystem? (Auth = %d, Comp = %d) ", AUTHSUBSYSID, COMPSUBSYSID);
dgets(buf);

sident.Value.Subsysid = atoi(buf);

sident.Tag = RPC2_SUBSYSBYID;
pident.Tag = RPC2_PORTALBYINETNUMBER;
pident.Value.InetPortNumber = htons(AUTHPORTAL);
same as COMPPORTAL
rc = RPC2_Bind(RPC2_OPENKIMONO, NULL, &hident, &pident, &sident,
DUMBFTP, NULL, NULL, &newcid);

if (TC == RPC2_SUCCESS)

printf("Binding succeeded, this connection id is %d\n", newcid);
else

printf("Binding failed: %s\n", RPC2_ErrorMsg(rc));

Auth()

{

RPC2_Handle cid;

int op, rc, uid;-

char name[100], buf[100];
Authinfo ainfo;
RPC2_BoundedBS bbs;

printf("Connection id? *);
dgets(buf);
cid = atoi{buf);
printf("Operation? (1 = Id, 2 = Name, 3 = Info, 4 = Quit) ");
dgets(buf);
op = atoi(buf);
switch(op)
{
case 1:
printf("Name? "),
dgets(name);
rc = AuthUserld(cid, name, &uid);
if (rc = = AUTHSUCCESS) printf("Id = %d\n", uid);
else
if (rc = = AUTHFAILED) printf("Bogus user name\n");
else printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 2:
printf("1d? ");
dgets(buf);
uid = atoi(buf);
bbs.MaxSeqglLen = sizeof(name);
bbs.Seqlen = 0;

1

12

bbs.SeqBody = (RPC2_ByteSeq) name;
rc = AuthUserName(cid, uid, &bbs);
it (rc = = AUTHSUCCESS) printf("Name = %s\n", bbs.SeqBody);
else
if (rc = = AUTHFAILED) printf("Bogus user id\n");
else printf("Call failed --> %s\n", RPC2__ErrorMsg(rc));
break;

case 3:
printf("1d? ");
dgets(buf);
uid = atoi(buf);
rc = AuthUserInfo(cid, uid, &ainfo);
if (rc = = AUTHSUCCESS) printf("Group = %d Home = %s\n", ainfo.Groupld, ainfo.HomeDir);
else :
if (rc = = AUTHFAILED) printf("Bogus user id\n");
else printf("Call failed --> %s\n", RPC2__ErrorMsg(rc));
break;

case 4:
rc = AuthQuit(cid);
if (rc '= AUTHSUCCESS)
printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
RPC2__Unbind(cid);
break;

Comp()
{
RPC2__Handle cid;
intop, rc, x;
SE_ Descriptor sed;
char cmd[100], buf[100];

printf(" Connection id? ");
dgets(buf);
cid = atoi(buf);
printf("Operation? (1 = Square, 2 = Cube, 3 = Age, 4 = Exec, 5 = Quit) ");
dgets(buf);
op = atoi(buf);
switch(op)
{
case 1:
printf("x? ");
dgets(buf);
x = atoi(buf);
rc = CompSquare(cid, x);
if (rc > 0) printf("x**2 = %d\n", rc);
else
printf(" Call failed --> %s\n", RPC2_ErrorMsg(rc));
break; ’

case 2:
printf("x? ");
dgets(buf);
x = atoi(buf); -

rc = CompCube(cid, x);
if (rc > 0) printf("x**3 = %d\n", rc);
else
printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 3:
rc = CompAge(cid);
if (rc > 0) printf("Age of connection = %d seconds\n", r¢);
else
printf("Call failed --> %s\n", RPC2__ErrorMsg(rc));
break;

case 4:
printf("Remote command: ");
gets(cmd);
bzero(&sed, sizeof(sed));

How I wish C had a "with" clause like Pascal

sed.Tag = DUMBFTP;
sed.Value.DumbFTPD.Tag = FILEBYNAME;

sed.Value.DumbFTPD.Filelnfo.ByName.ProtectionBits = 0644;
sed.Value.DumbFTPD. TransmnssuonDlrectlon = SERVERTOCLIENT

sed.Value.DumbFTPD.ByteQuota =

strcpy(sed.Value.DumbFT PD_.Fulelnfo.ByName.LocaIFileName, "/tmp/result");

rc = CompExec(cid, cmd, &sed);

if (rc = = COMPSUCCESS) system("echo Result of remote exec:;cat /tmp/result");

else

else
printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 5:
rc = CompQuit(cid);
if (rc<0)
printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
RPC2__Unbind(cid);
break;

InitRPC()

{

int mylpid = -1;
DFTP_Initializer dftpi;
struct timeval tout;

if (rc = = COMPFAILED) printf("Could not do remote exec\n");

assert{LWP__InitializeProcessSupport(LWP_NORMAL - PRIORITY, &mylpid) = = LWP__SUCCESS);

DFTP__SetDefaults(&dftpi);

dftpi.ChunkSize = 1024;

DFTP_Activate(&dftpi);
tout.tv - sec = 240;
tout.tv-usec = 0;

assert (RPC2_init(RPC2_VERSION, 0, NULL, 1, -1, &tout) = =

}

2K and 4K give much better performance

RPC2__SUCCESS);

13

14

iopen(}{}

15

2. The RPC2 Runtime System

The purpose of this section is to describe the physical layout of data in transmissions between client
and server RPC runtime systems. The runtime system deals with contiguous packet Buffers, each of

which consists of:

a Prefix which is of fixed length, and is used internally by the runtime system. It is NOT
transmitted.

a Header which is also of fixed length, and whose format is understood by the runtime
system. The opcode associated with the RPC, sequencing information, and the
completion code returned by the remote site are the kinds of information found
here.

a Body of arbitrary size. It is NOT interpreted by the runtime system, and is used to
transmit the input and output parameters of an RPC.

The actual header files are the authoritative source of these definitions, and will be more up-to-date
than this manual.

2.1. Constants, Types, and Globals (from file rpc2.h)

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

#ifndef - RPC2 ~
define ~RPC2 -

define RPC2_VERSION "Version 7.0: Satya, 9 April 1986, 11:30"
This string is used in RPC initialization calls to ensure that the runtime system and the header files are mutually consistent.
Also passed across on RPC2_Bind for advisory information to other side. Changes to this string may cause
RPC2_OLDVERSION to be returned on RPC2_Bind()s. For really minor changes alter RPC2_LastEdit in globals.c.

define RPC2_PROTOVERSION 6
Found as the first 4 bytes of EVERY packet. Change this if you change any aspect of the protocol sequence, or if you change
the packet header, or the body formats of the initialization packets. Used in inital packet exchange to verily that the client and
server speak exactly the same protocol. Orthogonal to RPC2_VERSION. We need this in the header at the very beginning,
else we cannot change packet formats in a detectable manner.

The following constants are used to indicate the security-level of RPC connections.

define RPC2_OPENKIMONO 98 Neither authenticated nor encrypted

define RPC2_AUTHONLY 12 Authenticated but not encrypted

define RPC2_HEADERSONLY 73 Authenticated but only headers encrypted
define RPC2__SECURE 66 Authenticated and fully encrypted

RPC2 supports multiple encryption types; the key length is fixed, and you must always supply a field of RPC2_KEYSIZE bytes
wherever an encryption key is called for. However, individual algorithms can choose to ignore excess bytes in the keys.

16

The encryption types are specified as integer bit positions so that the EncryptionTypesMask field of RPC2_GetRequest(} can
be a mask of these types. The required type must also be specified in RPC2_Bind().

To add support for other encryption types only the constants below and the internal runtime procedures RPC2_Encrypt() and
RPC2_Decrypt() have to be modified. :
define RPC2__DES 1
define RPC2_XOR 2
define RPC2_ENCRYPTIONTYPES (RPC2_DES | RPC2__XOR)
union of all supported types
#define RPC2_KEYSIZE 8 Size in bytes of the encryption keys

RPC procedure return codes:

These may also occur in the RPC2_ReturnCode field of reply headers: Values of 0 and below in those fields are reserved for
RPC stub use. Codes greater than 0 are assigned and managed by subsystems.

There are three levels of errors: Warning, Error, and Fatal Error. RPC2_SUCCESS > RPC2_WLIMIT > warning codes >
RPC2_ELIMIT > error codes > RPC2_FLIMIT > fatal error codes

The semantics of these codes are:

RPC2__SUCCESS: Everything was perfect.

Warning: Advisory information.

Error: Something went wrong, but the connection (if any) is still usable.
Fatal: The connection (if any) has been marke;i unusable.

Note that the routine RPC2_ErrorMsg() will translate return codes into printable strings.
define RPC2_SUCCESS 0
define RPC2_WLIMIT -1

#define RPC2_ELIMIT -1000
define RPC2_FLIMIT -2000

Warnings
#define RPC2_OLDVERSION RPC2_WLIMIT-1
define RPC2_INVALIDOPCODE RPC2_WLIMIT-2
Never returned by RPC2 itself; Used by higher levels, such as
rp2gen
define RPC2_BADDATA RPC2_WLIMIT-3
Never used by RPC2 itself; used by rp2gen or higher levels to
indicate bogus data
Errors
define RPC2_CONNBUSY RPC2_ELIMIT-1
define RPC2_SEFAIL1 RPC2_ELIMIT-2
define RPC2_TOOLONG RPC2_ELIMIT-3
Fatal Errors
define RPC2_FAIL RPC2_FLIMIT-1
define RPC2_NOCONNECTION RPC2_FLIMIT-2
define RPC2_TIMEOUT RPC2_FLIMIT-3
define RPC2_NOBINDING RPC2_FLIMIT-4

define RPC2_DUPLICATESERVER RPC2_FLIMIT-5

17

define RPC2__NOTWORKER RPC2_FLIMIT-8
define RPC2_NOTCLIENT RPC2_FLIMIT-7
define RPC2_WRONGVERSION RPC2_FLIMIT-8

define RPC2_NOTAUTHENTICATED

RPC2_FLIMIT-9

define RPC2_CLOSECONNECTION RPC2_FLIMIT-10
define RPC2__BADFILTER RPC2_FLIMIT-11
#define RPC2_LWPNOTINIT RPC2_FLIMIT-12
define RPC2_BADSERVER RPC2_FLIMIT-13
define RPC2_SEFAIL2 RPC2_FLIMIT-14

define RPC2_DEAD RPC2_FLIMIT-15

define RPC2__NAKED RPC2_FLIMIT-16

Universal opcode values: opcode values equal to or less than 0 are reserved. Values greater than 0O are usable by mutual

agreement between clients and servers.
#define RPC2_INIT1IOPENKIMONO -2

#define RPC2__INITTAUTHONLY -3
#define RPC2_INITIHEADERSONLY -4

#define RPC2_INITISECURE -5
define RPC2_LASTACK -6

define RPC2_REPLY -8
#define RPC2_INIT2 -10
#detine RPC2_INIT3 -1
define RPC2_INIT4 -12

define RPC2_NEWCONNECTION -13

define RPC2_BUSY -14

System Limits -
#define RPC2_MAXPACKETSIZE 10000

Global variables for debugging:

Begin a new connection with security level
RPC2 _OPENKIMONO
Begin a new connection with security level RPC2_AUTHONLY
Begin a new connection with security level
RPC2_HEADERSONLY
Begin a new connection with security level RPC2_SECURE
Packet that acknowledges a reply
Reply packet
Phase 2 of bind handshake
Phase 3 of bind handshake
Phase 4 of bind handshake
opcode of fake request generated by RPC2_GetRequest() on
new connection
keep alive packet ’

size of the largest acceptable packet buffer in bytes (includes
pretix and header)

RPC2_Debuglevel controls the level of debugging output produced on stdout. A value of 0 turns off the output altogether;
values of 1, 10, and 100 are currently meaningful. The default value of this variable is 0.

RPC2_Perror controls the printing of Unix error messages on stdout. A value of 1turns on the printing, while 0 turns it off. The

default value for this variable is 1.

RPC2_Trace controls the tracing of RPC calls, packet transmissions and packet reception. Set it to 1 for tracing. Set to zero
for stopping tracing. The internal circular trace buffer can be printed out by calling RPC2_DumpTrace().

extern long RPC2_DebuglLevet;
extern long RPC2_Perror;
extern long RPC2_Trace;

(A A AR LR S R R Py r ey Data Types known to RPGGH PEEEPIEILEOICPSPOERTESISISISIRSISISIIRIRS

typedef
long RPC2__Integer;

typedef .
unsigned long RPC2__Unsigned;

32-bit, 2's complement representation. On other machines, an
explicit conversion may be needed.

32-bits.

18

typedef
unsigned char RPC2_ Byte; A single 8-bit byte.

typedef
RPC2_Byte *RPC2_ByteSeq;
A contiguous sequence of bytes. In the C implementation this is a pointer. RPC2Gen knows how to allocate and transform the

pointer values on transmission. Beware if you are not dealing via RPC2Gen. May be differently represented in other
languages.

typedef

RPC2_ByteSeq RPC2_String; no nulls except last byte
A null-terminated sequence of characters. Identical to the C language string definition.

typedef
struct
{ .
RPC2_Integer Seqlen; length of SeqBody
RPC2_ByteSeq SeqBody; no restrictions on contents

}
RPC2__CountedBS;
A means of transmitting binary data.

typedef
struct
{
RPC2_Integer MaxSegLen; max size of bulfer represented by SeqBody
RPC2_ Integer Seqlen;) number of interesting bytes in SeqBody

RPC2_ByteSeq SeqBody; No restrictions on contents

}
RPC2_ BoundedBS;

RPC2_BoundedBS is intended to allow you to remotely play the game that C programmers play all the time: allocate a large
buffer, fill in some bytes, then call a procedure which takes this bufter as a parameter and replaces its contents by a possibly
longer sequence of bytes. Example: strcatf).

typedef

RPC2_Byte RPC2;_EncryptionKey[RPC2_K,EYSIZE];
Keys used for encryption are fixed length byte sequences

SOLPISIISIIIESILISIILIESIIROISILY Data Types usedonlyin ,un“'me Ca”s CEESPIPSISINSSPBSCSOEPLISISLISSRSSTYS

typedef RPC2__Integer RPC2__Handle; actually-a pointer in the remote machine's addr space
NOT a small integerlll
typedef
struct
{

enum HostType {RPC2__HOSTBYINETADDR = 17, RPC2_HOSTBYNAME =39} Tag;
dbx bogosity it anonymous enum

union
{
unsigned long InetAddress; NOTE: in network order, not host order
char Name[20}; ' this is a pretty arbitrary length
Value;
}

RPC2_Hostident;

19

typedef
struct
{
enum PortalType {RPC2_PORTALBYINETNUMBER = 53, RPC2_PORTALBYNAME = 64} Tag;

dbx bogosity if anonymous enum
union

{

unsigned short InetPortNumber; NOTE: in network order, not host order
char Name[20]; this is a pretty arbitrary length

}

Value;

}

RPC2_ Portalldent;

typedef
struct
{
enum SubsysType {RPC2_SUBSYSBYID = 71, RPC2_SUBSYSBYNAME = 84} Tag;
dbx bogosity if anonymous enum

union
{
long Subsysid; .
char Name[20]; . this is a pretty arbitrary length
} .

Value;

}

RPC2_ Subsysldent;

typedef

struct data structure filled by RPC2_GetPeerinto() call
{ :
RPC2__Hostldent RemoteHost;
RPC2__Portalldent RemotePortal;
RPC2__Subsysldent RemoteSubsys;
RPC2_Handie RemoteHandle;
RPC2_Integer SecurityLevel;
RPC2_integer EncryptionType;
RPC2_lInteger Uniquefier;
RPC2_EncryptionKey SessionKey;
}

RPC2__Peerinfo;

The RPC2_PacketButfer definition below deals with both requests and replies. The runtime system provides efficient buffer
storage management routines --- use them!

typedef
struct RPC2_PacketBuffer

{
struct RPC2__PacketBufferPrefix

{

NOTE: The Prefix is only used by the runtime system on the local machine. Neither clients nor servers ever deal with it. It is
never transmitted.

struct RPC2__PacketBuffer *Next; pointer to next element in buffer chain

struct RPC2__PacketBuffer *Prev; pointer to prev element in buffer chain

long MagicNumber; to detect storage corruption

long LEState; fo detect buffer chain addling

struct RPC2_PacketBuffer *Qname; name of queue this packet is on

long BufferSize; Set at malloc() time; size of entire packet, including prefix.
long LengthOfPacket; size of data actually transmitted: header + body

}

20

Prefix;

The transmitted packet begins here.
struct RPC2__PacketHeader

{

RPC2_Integer ProtoVersion;
RPC2_integer RemoteHandie;
RPC2_Integer LocalHandie;
RPC2_Integer Flags;

RPC2_Unsigned BodyLength;
RPC2_Unsigned SeqNumber;

RPC2_Integer Opcode;

RPC2_ Unsigned SEFlags;
RPC2_Unsigned SEDataOffset;
RPC2_Unsigned Subsysid;
RPC2_integer ReturnCode;
RPC2__Unsigned Lamport;
RPC2__Integer Uniquefier;
RPC2__Integer Spare2;
RPC2__Integer Spareg3;

}

Header;
RPC2_Byte Body[1];

}
RPC2__PacketBuffer;

Meaning of Flags field in RPC2 packet header
define RPC2_RETRY Ox1
define RPC2_ENCRYPTED Ox2

The first four tields are never encrypted

Set by runtime system

Set by runtime system; -1 indicates unencrypted error packet
Set by runtime system

Used by runtime system only

Everything below here can be encrypted
of the portion after the header. Set by client.

unique identifier for this message on this connection; set by
runtime system; odd on packets from client to server; even on
packets from server to client

Values greater than 0 are subsystem-specific: set by client.

Values less than 0 reserved: set by runtime system. Type of
packet determined by Opcode value: > 0 = =) request packet.
Values of RPC2_REPLY = =) reply packet, RPC2_ACK ==
ack packet, and so on
Bits tor use by side effect routines
Offset of piggy-backed side effect data, from the start of Body
Subsystem identifier. Filled by runtime system.
Set by server on replies; meaningless on request packets
For distributed clock mechanism
Used only in Init1 packets; truly unique random number

Arbitrary length body. For requests: IN and INOUT parameters;
For replies: OUT and INOUT parameters; Header.BodyLength
gives the length of this field

The second and third fields actually get sent over the wire

set by runtime system
set by runtime system

Leftmost byte of Flags field is reserved for use by side effect routines. This is in addition to the SEFlags f'ield. Flags is not”

encrypted, but SEFLAGS is.
Format of filter used in RPC2_GetRequest
typedef

struct

{

enum E1 {ANY = 12, ONECONN =37, ONESUBSYS = 43} FromWhom;
enum E2 {OLD = 27, NEW = 38, OLDORNEW = 69} OldOrNew;

union
{
RPC2__Handle WhichConn;
long Subsysid;
}
ConnOrSubsys;

}

ONECONN
ONESUBSYS

if FromWhom
if FromWhom

21

RPC2_RequestFilter;) Type of Filter parameter in RPC2_GetRequest()

The following data structure is the body of the packet synthesised by the runtime system on a new connection, and returned as
the result of an RPC2 _GetRequest().
typedef
struct
A
RPC2__Integer SideEffectType;
RPC2_Integer Securitylevel;
RPC2_ Integer EncryptionType;
RPC2__CountedBS Clientident;
}
RPC2_NewConnectionBody;

RPC2 runtime routines:

extern long RPC2_ Init();

extern long RPC2_Export();

extern long RPC2_ DeExport();

extern long RPC2__AllocBuffer();
extern long RPC2_ FreeButfer();
extern long RPC2__SendResponse();
extern long RPC2_ GetRequest();
extern long RPC2_MakeRPC();

extern long RPC2_MultiRPC();

extern long RPC2__Bind ();

extern long RPC2_ InitSideEffect();
extern long RPC2_CheckSideEffect();
extern long RPC2_Unbind();

extern long RPC2__GetPrivatePointer();
extern long RPC2_SetPrivatePointer();
extern long RPC2__GetSEPointer();
extern long RPC2__SetSEPointer();
extern long RPC2_ GetPeerInfo(); .
extern char *RPC2__ErrorMsg(); NOT long I
extern long RPC2_DumpTrace();
extern long RPC2__DumpState();
extern tong RPC2_ InitTraceBuffer();
extern long RPC2_LamportTime();
extern long RPC2_Enabie();

endif

22

2.2

. Client-related Calls

RPC2_Bind

Create a new connection

Call:
long RPC2_Bind(in long SecurityLevel, in long EncryptionType, in RPC2_Hostldent *Host,
in RPC2_Portalldent *Portal, in RPC2 _Subsysident *Subsys,
in long SideEffectType, in RPC2_CountedBS *Clientident,
in RPC2_EncryptionKey *SharedSecret, out RPC2_Handle *ConnHandle)
Parameters:

SecuritylLevel
One of the constants RPC2_OPENKIMONO, RPC2_ONLYAUTHENTICATE, RPC2_HEADERSONLY or
RPC2_SECURE ' '

EncryptionType
The kind of encryption to be used on this connection. For example, RPC2_XOR, RPC2_DES, etc. Ignored if
Securityl.evel is RPC2_OPENKIMONO. The bind will fail if the remote site does not support the requested type
of encryption.

Host The identity of the remote host on which the server to be contacted is located. This may be specified as a string
name or as an Internet address. In the former case the RPC runtime system will do the necessary name
resolution,

Portal An identification of the server process to be contacted at the remote site. Portals are unique on a given host. A
portal may be specified as a string name or as an Internet port value. in the former case the RPC runtime
system will do the necessary name to port number conversion. Support for other kinds of portals (such as Unix
domain) may be available in future.

Subsys
Which of the potentially many subsystems supported by the remote server is desired. May be specified as a
number or as a name. in the latter case, the RPC runtime system will do the translation from name to number.

SideEffectType
What kind of side effects are to be associated with this connection. The only side effects intially supported are
bulk-transfers of files, identified by type DUMBFTP or SMARTFTP. May be 0 if no side effects are ever to be
attempted on this connection.

Clientident
Adequate information for the server to uniquely identify this client and to obtain SharedKey. Not interpreted by

the RPC runtime system. Only the GetKeys callback procedure on the server side need understand the format
of Clientident. May be NULL if SecurityLevel is RPC2__OPENKIMONO

23

SharedSecret
An encryption key known by the callback procedure on the server side to be uniguely associated with
Clientident. Used by the RPC runtime system in the authentication handshakes. May be NULL if SecurityLevel
is RPC2_OPENKIMONO.)

ConnHandle

An unique integer returned by the call, identifying this connection. This is not necessarily a small-valued
integer.

Completion Codes:

RPC2_SUCCESS
All went well

RPC2_NOBINDING
The specified host, server or subsystem could not be contacted

RPC2_WRONGVERSION
The client and server runtime systems are incompatible. Note that extreme incompatibilty may result in the
server being unable to respond even with this error code. In such a case the server will appear to be down,

* resulting in a RPC_NOBINDING return code.

RPC2_OLDVERSION
This is a warning. The RPC2_VERSION values on client and server sides are different. Normal operation is still
possible, but one of you is running an obsolete version of the run time system. You should obtain the latest
copy of the RPC runtime system and recompile your code.

RPC2_NOTAUTHENTICATED
A SecurityLevel other than RPC2__OPENKIMONO was specified, and the server did not accept your credentials.

RPC2_SFFAIL1
The associated side effect routine indicated a minor failure. The connection is established.and usable.

RPC2_SEFAIL2
The associated side effect routine indicated a serious failure. The connection is not established.

RPC2_FAIL
Some other mishap occurred.

Creates a new connection and binds to a remote server on a remote host. The subsystem information
is passed on to that server to alert it to the kind of remote procedure calls that it may expect on this
connection.

A client/server version check is performed to ensure that the runtime systems are compatible. Note
that there are really two version checks. One is for the RPC network protocol and packet formats,
and this must succeed. The other check reports a warning if you have a different RPC runtime system
from the server. You may also wish to do a higher-level check, to ensure that the client and server
application code are compatible.

24

The SecurityLevel parameter determines the degree to which you can trust this connection. If
RPC2_OPENKIMONO is specified, the connection is not authenticated and no encryption is done on
future requests and responses. If RPC2__ONLYAUTHENTICATE is specified, an authentication
handshake is done to ensure that the client and the server are who they claim to to be (the fact that
the server can find SharedSecret from Clientldent is assumed to be proof of its identity). If
RPC2_SECURE is specified, the connection is authenticated and all future transmissions on it are
encrypted using a session key generated during the authentication handshake.
RPC2_HEADERSONLY is similar to RPC2_SECURE, except that only RPC headers are encrypted.

The kind of encryption used is specified in EncryptionType. The remote site must specify an
RPC2__GetRequest with an EncryptionTypeMask that includes this encryption type.

RPC2_MakeRPC

Make a remote procedure call (with possible side-effect)

Call:
long RPC2_MakeRPC(in RPC2_Handle ConnHandle, in RPC2_PacketBuffer *Request,
in SE_Descriptor *SDesc, out RPC2_PacketBuffer **Reply,
in struct timeval *Patience, in long EnqueueRequest)
Parameters:

ConnHandle
identifies the connection on which the call is to be made

Request
A properly formatted request buffer.

SDesc

25

A side effect descriptor with local fields filled in. May be NULL if no side effects will occur as a result of this call.

Reply On return, it will pdint to a response buffer holding the response from the server. You should free this buffer

when you are done with it.

Patience
Maximum time to wait for remote site to respond. A NULL pointer indicates infinite patience.

EnqueueRequest

Specifies whether the caller should be biocked if ConnHandle is already servicing an RPC request from some
other lwp. If this variable is 1 the caller is blocked. Otherwise a return code of RPC2__CONNBUSY is returned.

Completion ques:
RPC2_SUCCESS

All went well.

RPC2_NOCONNECTION

ConnHandle does not refer to a valid connection.

RPC2_TIMEOUT
A response was not received soon enough. Occurs only if the Patience parameter was non-NULL.

RPC2_SEFAIL1
The associated side effect resulted in a minor failure. Future calls on this connection will still work.

RPC2_SEFAIL2

The associated side effect resulted in a serious failure. Future calls on this connection will fail.

26

RPC2_DEAD

The remote site has been deemed dead or unreachable. Note that this is orthogonal to an RPC2_TIMEOUT
return code.

RPC2__NAKED

The remote site sent an explicit negative acknowledgement. This can happen if that site thought you were
dead, or if someone at that site unbound your connection.

RPC2_CONNBUSY
EnqueueRequest specified 0 and ConnHandle is currently servicing a call. Try again later.

The workhorse routine, used to make remote calls after establishing a connection. The call is
sequential and the calling Iwp is blocked until the cali completes. The associated side effect, if any, is
finished before the call completes. The listed completion codes are from the local RPC stub. Check
the RPC2__ReturnCode fields of the reply and the status fields of SDesc to see what the remote site
thought of your request. Without an explicit timeout interval the remote site can take as long as it
wishes to perform the requested operation and associated side effects. The RPC protocol checks
periodically to ensure that the remote site is alive. If an explicit Patience timeout interval is specified,
the call must complete within that time.

27

RPC2_MultiRPC

Make a collection of remote procedure calls

Call:
long RPC2_MultiRPC(in long HowMany, in RPC2_Handle ConnHandlelList[],
in RPC2_PacketBuffer *Request, in SE_Descriptor SDesclList[],
in long (*UnpackMulti)(), in out ARG _INFO *Arginfo,
in struct timeval *Patience)
Parameters:

HowMany
How many servers to contact

ConnHandlelList i
List of HowMany connection handles for the connections on which calls are to be made.

Request
A properly formatted request buffer.

SDescList
List of HowMany side effect descriptors

UnpackMulti)
Pointer to unpacking routine called by RPC2 when each server response as received. If RP2Gen is used, this
will be supplied by MRPC_MakeMulti. Otherwise, it must be supplied by the client.

Arginfo
A pointer to a structure containing argument information. This structure is not examined by RPC2; it is passed
untouched to UnpackMulti. If RP2Gen is used, this structure will be supplied by MRPC_MakeMulti. Otherwise,
it can be used to pass any structure desired by the client or supplied as NULL.

Patience
Maximum time to wait for remote sites to respond. A NULL pointer indicates infinite patience as long as RPC2
believes that the server is alive. Note that this timeout value is orthogonal to the RPC2 internal timeout fc;r
determining connection death.

Completion Codes:

RPC2_SUCCESS
All servers returned successfully, or all servers until client-initiated abort returned successfully. Individual
server response information is supplied via UnpackMulti to the user handler routine supplied in the Arginfo
structure.

RPC2_TIMEOUT
The user specified timeout expired before all the servers responded.

28

RPC2_FAIL
Something other than SUCCESS or TIMEOUT occurred. More detailed information is supplied via UnpackMulti
to the user handler routine supplied in the Arginfo structure.

Logically identical to iterating through ConnHandleList and making RPC2_MakeRPC calls to each
specified connection using Request as the request block, but this call will be considerably faster than
explicit iteration. The calling lightweight process blocks until either the client requests that the call
abort or one of the following is true about each of the connections specified in ConnHandleList: a
reply has been received, a hard error has been detected for that connection, or the specified timeout
has elapsed. ‘

The Arginfo structure exists to supply argument packing and unpacking information in the case
where RP2Gen is used. Since its value is not examined by RPC2, it can contain any pointer that a
non-RP2Gen generated client wishes to supply.

Similarly, UnpackMulti will point to a specific unpacking routine in the RP2Gen case. If the RP2Gen
interface is not used, you should assume that the return codes of the supplied routine must conform
to the specifications in section 5.4.1.

Side effects are supported as in the standard RPC2 case except that the client must supply a separate
SE_Descriptor for each connection. The format for the SE__Descriptor argument is described in
section 5.4. It will often be useful to supply connection specific information such as unique file names
in the SE_Descriptor.

A further discussion of the MultiRPC facility can be found in chapter 5.

29

2.3. Server-related RPC Calls

RPC2_Export

Indicate willingness to accept calls for a subsystem

Call:
long RPC2_Export(in RPC2_Subsysident *Subsys)

Parameters:

Subsys
Specifies a subsystem that wiil be henceforth recognized by this server. This is either an integer or a symbolic
name that can be translated to the unique integer identifying this subsystem.

Completion Codes:
RPC2_SUCCESS

All went well

RPC2_DUPLICATESERVER
Your have aiready exported Subsys.

RPC2_BADSERVER

Subsys is invalid.

RPC2_FAIL
Something else went wrong.

Sets up internal tables so that when a remote client performs an RPC2_Bind() operation specifying
this host-portal-subsystem triple, the RPC runtime system will accept it. A server may declare itself to
be serving more than one subsystem by making more than one RPC2__Export calls. '

30

RPC2_DeExport

Stop accepting new connections for one or all subsystems.

Call:
long RPC2_DeExport(in RPC2_Subsysident *Subsys)

Parameters:

Subsys
Specifies the subsystem to be deexported. This is either an integer or a symbolic name that can be translated to
the unique integer identifying this subsystem. A value of NULL deexports all subsystems.

Completion Codes:
RPC2_SUCCESS

All went well

RPC2_BADSERVER
Subsys is not a valid subsystem, or has not been previously exported.

RPC2_FAIL

Something else went wrong.

After this call, no new connections for subsystem Subsys will be accepted. The subsystem may,
however, be exported again at a later time. Note that existing connections are not broken by this call.

31

RPC2_GetRequest

Wait for an RPC request or a new connection

Call:
long RPC2_GetRequest(in RPC2_RequestFilter *Filter, out RPC2__Handle *ConnHandle,
out RPC2_PacketButfer **Request, in struct timeval *Patience,
in long (*GetKeys)(), in long EncryptionTypeMask, in long (*AuthFail)())

Parameters:

Filter A filter specifying which requests are acceptable. See description below.

ConnHandle
Specifies the connection on which the request was received.

Request .
Value ignored on entry. On return, it will point to a buffer holding the response from the client. Free this buffer
after you are done with it. :

Patience
A timeout interval specifying how long to wait for a request. If NULL, infinite patience is assumed.

GetKeys
Pointer to a callback procedure to obtain authentication and session keys. See description below. May be
NULL if no secure bindings to this server are to be accepted.

EncryptionTypeMask
A bit mask specifying which types of encryption is supported. Binds from clients who request an encryption
type not specified in this mask will fail.

AuthFail
Pointer to a callback procedure to be called when an authentication failure occurs. See description below.- May
be NULL if server does not care to note such failures.

Cqmpletion Codes:
RPC2_SUCCESS

I have a request for you in Request. New connections result in a fake request.

RPC2_TIMEOUT
Specified time interval expired.

RPC2_BADFILTER
A nonexistent connection or subsystem was specified in Filter.

32

RPC2_SEFAIL1

The associated side effect routine indicated a minor failure. Future calls on this connection will stilt work.

RPC2_SEFAIL2

The associated side effect routine indicated a serious failure. Future calls on this connection will fail too.

RPC2_DEAD
You were waiting for requests on a specific connection and that site has been deemed dead or unreachable.

RPC2_FAIL
Something irrecoverable happened.

The call blocks the calling lightweight process until a request is available, a new connection is made,
or until the specified timeout period has elapsed. The Filter parameter allows a great deal of flexibility
in selecting precisely which calls are acceptable. New connections result in a fake request with a
body of type RPC2__NewConnection. Do not try to do a RPC2__SendResponse to this call. All other
RPC2_GetRequest calis should be eventually matched with a corresponding RPC2__SendResponse
call.

The fields of RPC2__NewConnection are self-explanatory. Note that you must invoke RPC2_Enabile()
after you have handled the new connection packet for further requests to be visible. If you are using
RP2Gen, this is done for you automatically by the generated code that deals with new connections.

The callback procedure for key lookup should look like this:
long GetKeys(in Clientident, out IdentKey, out SessionKey)
RPC2_CoundedBS *Clientldent;
RPC2_EncryptionKey *IdentKey;
RPC2_EncryptionKey *SessionKey;
GetKeys() will be calied at some point in the authentication handshake. It should return 0 if
Clientldent is successfully looked up, and -1 if the handshake is to be terminated. It should fill

IdentKey with the key to be used in the handshake, and SessionKey with an arbitrary key to be used
for the duration of this connection. You may, of course, make SessionKey the same as IdentKey.

The callback procedure for noting authentication failure should look like this:
long AuthFail(in Clientldent, in EncrType, in PeerHost, in PeerPortal)
RPC2_CoundedBS *Clientident;
RPC2_integer EncryType;
RPC2_Hostldent *PeerHost;

RPC2_Portalldent *PeerPortal: ‘
AuthFail() will be called after an RPC2_NOTAUTHENTICATED packet has been sent to the client. The

33

parameters give information about the client who was trying to authenticate himself, the type of
encryption requested, and the site from which the RPC2_Bind() was attempted. The callback
procedure will typically record this in a log file somewhere.

34

RPC2_Enable

Allow servicing of requests on a new connection

Call:
long RPC2_Enable(in RPC2_Handle ConnHandle)

Parameters:
ConnHandle
Which connection is to be enabled - .
Completion Codes:
RPC2_SUCCESS

Enabled the connection.

RPC2_NOCONNECTION

A bogus connection was specified.

Typically invoked by the user at the end of his NewConnection routine,
level data structures appropriately. Until a connection is enabled, RPC2
on that connection will be returned in a RPC2__GetRequest call.

however, be held and responded to with RPC2__BUSY signals unti
call is present primarily to avoid race hazards in higher-level con
RP2Gen automatically generates this call at after a NewConnection

after setting up his higher-
guarantees that no requests
Such a request from a client will,
I the connection is enabled. This
nection establishment. Note that

RPC2_SendResponse

Respond to a request from my client

Call:
long RPC2__SendResponse(in RPC2__Handle ConnHandle, in RPC2 _PacketBuffer *Reply)

Parameters:

ConnHandle
Which connection the response is to be sent on.

Reply A tilled-in buffer containing the réply to be sent to the client.

Completion Codes:
RPC2_SUCCESS

| sent your response.

RPC2_NOTWORKER
You were not given a request to service.

RPC2_DEAD
The remote site is dead or unreachable.

RPC2_NAKED
The remote site sent an explict negative acknowlegment.

RPC2_SEFAIL1

The associated side effect routine indicated a minor faiture. Future calls on this connection will still work.

RPC2_SEFAIL2

The associated side effect routine indicated a serious failure. Future calls on this connection will fail too.

RPC2_FAIL
Some irrecoverable failure happened.

Sends the specified reply to the caller. Any outstanding side effects are completed before Reply is
sent. Encryption, if any, is done in place and will clobber the Reply buffer.

36

RPC2_InitSideEffect

Initiate side effect

Calt:
long RPC2_InitSideEffect(in RPC2_Handle ConnHandle, in SE_Descriptor *SDesc)

Parameters:

ConnHandle
The connection on which the side effect is to be initiated.

SDesc
A filled-in side effect descriptor.

Completion Codes:

RPC2_SUCCESS
The side effect has been initiated.

RPC2_NOTSERVER
Only one side effect is allowed per RPC call. This has to be initiated between the GetRequest and
SendResponse of that call. You are violating one of these restrictions.

RPC2_SEFAIL1
The associated side effect routine indicated a nontatal failure. Future calls on this connection will work.

RPC2__SEFAIL2

The associated side effect routine indicated a serious failure. Future calls on this connection will fail too.

RPC2_FAIL
Other assorted calamities

Initiates the side effect specified by SDesc on ConnHandle. The call does not wait for the completion
of the side effect. If you need to know what happened to the side effect, do a RPC2__CheckSideEffect
call with appropriate flags.

37

RPC2_CheckSideEffect

Check progress of side effect

Call:
long RPC2_CheckSideEffect(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
in long Flags)

Parameters:

ConnHandle .
The connection on which the side effect has been initiated.

SDesc
The side effect descriptor as it was returned by the previous RPC2_ InitSideEffect or RPC2_CheckSideEffect
call on ConnHandle. On output, the status fields are filled in.

Flags Specities what status is desired. This call will block until the requested status is available. This is a bit mask,
with RPC2_GETLOCALSTATUS and RP02__GETREMO:I'ESTATUS bits indicating local and remote status. A
Flags value of 0 specifies a poiling status check: no blocking will occur and the currently known local and
remote status will be returned.

Completion Codes:
RPC2_SUCCESS

The requested status fields have been made available.

RPC2_NOTSERVER
No side effect is ongoing on ConnHandle.

RPC2_SEFAIL1

The associated side effect routine indicated a nonfatal failure. Future calls on this connection will work.

RPC2_SEFAIL2

The associated side effect routine indicated a serious failure. Future calls on this connection will fail too.

RPC2_FAIL
Other assorted calamities

Checks the status of a previously initiated side effect. This is a (potentially) blocking call, depending
on the specified flags.

38

2.4. Miscellaneous Routines

RPC2_Init

Perform runtime system initialization

Call:
long RPC2_Init(iin char *Versionld, in long Options, in RPC2__Portalldent *Portallist(],
in long HowManyPortals, in long RetryCount,
in struct timeval *KeepAlivelnterval)

Parameters:

Versionld

Set this to the constant RPC2_VERSION. The current value of this string constant must be identical to the
value at the time the client runtime system was compiled.

Options
Right now there are no options.

PortalList

An array of unique network addresse;.s within this machine, on which requests can be listened for, and to which
responses to outgoing calls can be made. In the internet domain this translates into a port number or a
symbolic name that can be mapped to a port number. You need to specify this parameter even if you are only
going to be a client and not export any subsystems. A value of NULL will cause RPC2 to select an arbitrary,
nonassigned portal.

HowManyPortals
Specifies the number of elements in the array PortalList.

RetryCount
How many times to retransmit a packet before giving up all hope of receiving acknowledgement of its receipt.
Should be in the range 1 to 30. Use a value of -1 to obtain the default.

KeepAlivelnterval
How often to probe a peer during a long RPC call. This value is also used to calculate the retransmission
intervals when packet loss is suspected by the RPC runtime system. Use NULL to obtain the default.

Completion Codes:
RPC2_SUCCESS

All went well

RPC2_FAIL

Unable to initialize client. Check for bogus parameter values.

RPC2_WRONGVERSION

The header file and the library have different versions. This should never happen in a properly administered
system.

RPC2_LWPNOTINIT

The LWP package has not been properly initialized. Be sure to call LWP_ InitializeProcessSupport() before
calling RPC2__Init().

RPC2_BADSERVER
The PortalList field specifies an invalid address.

RPC2_DUPLICATESERVER
An entry in PortalList specifies an address which is already in use on this machine

RPC2_SEFAIL1
The associated side effect routine indicated a minor failure.

RPC2_SEFAIL2

The associated side effect routine indicated a serious failure.

Initializes the RPC runtime system in this process. This call should be made before any other call in
this package is made. It should be preceded by an initialization call to the LWP package and a call to
SE_SetDefaults with InitialValues as argument. If you get a wrong version indication, obtain a
consistent version of the header files and the RPC runtime library and recompile your code. Note that
this call incorporates a call to initialize IOMGR. ‘

RetryCount and KeepAlivelnterval together define what it means for a remote site to be dead or
unreachable. Packets are retransmitted at most RetryCount times until positive acknowledgement of
their receipt is received. This is usually piggy-packed with useful communication, such as the reply to
arequest. The KeepAlivelnterval is used for two purposes: to determine how often to check a remote
site during a long RPC call, and to calculate the intervals between the RetryCount retransmissions of
a packet. The RPC runtime system guarantees detection of remote site failure or network partition
within a time period in the range KeepAlivelntervai to twice KeepAlivelnterval. See Appendix Il for
further information on the retry algorithm.

Remember to activate each side effect, XXX, that you are interested in by invoking the corresponding
XXX Activate() call, prior to calling RPC2_Init. .

You may get a warning about SO_GREEDY being undefined, if your kernel does not have an ITC bug
fix. RPC2 will still work but may be slower and more likely to drop connections during bulk transfer.
This is because of insufficient default packet buffer space within the Unix kernel.

40

RPC2_Unbind

Terminate a connection by client or server

Call:
long RPC2_Unbind(in RPC2_Handle ConnHandle)

Parameters:

ConnHandle
identifies the connection to be terminated

Completion Codes:
RPC2_SUCCESS

All went well

RPC2_NOCONNECTION

ConnHandle is bogus ¢

RPC2_SEFAIL1

The associated side effect routine indicated a minor failure.

RPC2_SEFAIL2
The associated side effect routine indicated a serious failure.

RPC2_FAIL
Other assorted calamities

Removes the binding associated with the specified connection. Normally a higher-level
disconnection should be done by an RPC just prior to this call. Note that this call may be used both
by a server and a client, and that no client/server communication occurs: the unbinding is unilateral.

4

RPC2__AllocBuffer

Allocate a packet buffer

Call:
long RPC2__AllocBuffer(in long MinBodySize, out RPC2__PacketBuffer **Buff)

Parameters:
MinBodySize
Minimum acceptable body size for the packet bufter.

Buff Pointer to the allocated buffer.

Completion Codes:

RPC2_SUCCESS
Buffer has been allocated and *Buff points to it.

RPC2_FAIL
Could not allocate a buffer of requested size.

Allocates a packet buffer of at least the requested size. The BodylLength field in the header of the
allocated packet is set to MinBodySize. The RPC runtime system maintains its own free list of buffers.
Use this call in preference to malloc().

42

RPC2_FreeBuffer

Free a packet buffer

Call:
long RPC2_FreeBuffer(inout RPC2_PacketBuffer **Buff)

Parameters:

Buff Pointer to the buffer to be freed. Set to NULL by the call.

Completion Codes:
RPC2_SUCCESS
Buffer has been freed. *Buff has been set to NULL.

RPC2_FAIL
Could not free buffer.

Returns a packet buffer to the internal free list. Buff is set to NULL specifically to simplify locating
bugs in buffer usage.

RPC2_GetPrivatePointer

Obtain private data mapping for a connection.

Call:
long RPC2__GetPrivatePointer(in RPC2_Handle WhichConn, out char **PrivatePtr)

Parameters:
WhichConn

Connection whose private data pointer is desired.

PrivatePtr
Set 1o point to private data.
Completion Codes:
RPC2_SUCCESS

*PrivatePtr now points to the private data associated witlf this connection.

RPC2 _FAIL

Bogus connection specified.

Returns a pointer to the private data associated with a connection. No attempt is made to validate this
pointer.

44

RPC2_SetPrivatePointer

Set private data mapping for a connection.

Call:
long RPC2_SetPrivatePointer(in RPC2_Handle WhichConn, in char *PrivatePtr)

Parameters:
WhichConn

Connection whose private data pointer is to be set.

PrivatePtr
Pointer to private data.
Completion Codes:
RPC2_SUCCESS

Private pointer set for this connection.

RPC2_FAIL
Bogus connection specified.

Sets the private data pointer associated with a connection. No attempt is made to validate this
pointer. '

RPC2_GetSEPointer

Obtain per-connection side-effect information..

Call:
long RPC2_GetSEPointer(in RPC2_Handle WhichConn, out char **SEPtr)

Parameters:
WhichConn
Connection whose side-effect data pointer is desired.

SEPtr Set to point to side-effect data.

Completion Codes:
RPC2_SUCCESS

*SEPtr now points to the side effect data associated with this connection.

RPC2_FAIL
Bogus connection specified.

Returns a pointer to the side effect data associated with a connection. No attempt is made to validate
this pointer. This call is should only by the side effect routines, not by clients.

46

RPC2_SetSEPointer

Set per-connection side-effect connection.

Call:
long RPC2_SetSEPointer(in RPC2_Handle WhichConn, in char *SEPtr)

Parameters:

WhichConn
Connection whose side effect pointer.is to be set.

SEPtr Pointer to side effect data.

Completion Codes:
RPC2_SUCCESS

Side effect pointer set for this connectior'l.

RPC2_FAIL
Bogus connection specified.

Sets the side effect data pointer associated with a connection. No attempt is made to validate this
pointer. This call should only be used by the side effect routines, not by clients.

47

RPC2_GetPeerinfo

Obtain miscellaneous connection information.

Call:
long RPC2__GetPeerinfo(in RPC2_Handle WhichConn, out RPC2_Peerinfo *Peerinfo)

Parameters:

WhichConn
Connection whose peer you wish to know about

Peerinfo
Data structure to be filled.

Completion Codes:

RPC2_SUCCESS
Peer information has been obtained for this connection.

RPC2_FAIL
Bogus connection specified.

Returns the peer information for a connection. Also returns other miscellaneous connection-related
information, such as the securrity level in use. This information may be used by side-effect routines or
high-level server code to perform RPC bindings in the opposite direction. The RemoteHandle and
Uniquefier information are useful as end-to-end identification between client code and server code.

48

RPC2_LamportTime

Get Lamport time

Call:
long RPC2__tamportTime()

Parameters:

None

Completion Codes:

None

Returns the current Lamport time. Bears no resemblance to the ‘actual time of day. Each call is
guaranteed to return a value at least one larger than the preceding call. Every RPC packet sent and
received by this Unix process has a Lamport time field in its header. The value returned by this call is
guaranteed to be greater than any Lamport time field received or sent before now. Useful for
generating unique timestamps in a distributed system. ’

RPC2_DumpState

Dump internal RPC state.

Call:
long RPC2_DumpState(in FILE *OutFile, in long Verbosity)

Parameters: ’
OutFile
File on which the trace is to be produced. A value of NULL implies stdout.

Verbosity
Controls the amount of information dumped. Right now two values 0 and 1 are meaningfull.

Completion Codes:

RPC2_SUCCESS
The dump has been produceq. °

You should typically call this routine after calling RPC_DumpTrace.

49

50

RPC2__InitTraceBuffer

Set trace buffer size.

Call:
long RPC2_InitTraceBuffer(in long HowMany)

Parameters:

HowMany
How many entries the trace buffer shouid have. Set it to zero to delete trace buffer.

Completion Codes:

RPC2_SUCCESS

The trace buffer has been adjusted appropriately.

Allows you to create and change the trace buffer at runtime. All existing trace entries are lost.

51

RPC2_DumpTrace

Print a trace of recent RPC calls and packets received.

Call:
long RPC2_DumpTrace(in FILE *QutFile, in long HowMany)

Parameters:

OutFile
File on which the trace is to be produced. A value of NULL implies stdout.

HowMany
The HowMany most recent trace entries are printed. A value of NULL implies as many trace entries as possible.
Values larger than TraceBufferLength specifed in RPC2__Init are meaningless.

Completion Codes:
RPC2_SUCCESS

The requested trace has been produced.

RPC2_FAIL)
The trace buffer had no entries.

Note that it is not necessary for RPC2__Trace to be currently set. You can collect a trace and defer
calling RPC2_DumpTrace until a convenient time. This call does not alter the current value of
RPC2_Trace. .

52

XXX_SetDefaults

Set an SE initializer to its default values

Cali:
long XXX_SetDefaults(in XXX_Initializer *Initializer)

Parameters:
Initializer
Initializer for side effect XXX which you wish to set to default values.-
Completion Codes:

RPC2_SUCCESS

Each side effect type, XXX, defines an initialization structure type, XXX _Initializer, and an initialization
routine, XXX _SetDefauits().

A typical initialization sequence consists of the following: for each side effect, XXX, that you care
about,

(1) declare a local variable of type XXX_Initializer,

(2) call XXX_SetDefaults() with this local variable as argument,

(3) selectively modify those initial values you care about in the local variable, and
(4) call XXX_Activate() with this local variable as argument.

Finally call RPC2__Init.

This allows you to selectively set parameters of XXX without having to know the proper values for all
of the possible parameters. Alas, if only C allowed initialization in type declarations this routine would
be unnecessary. ‘

XXX _Activate

Activates a side effect type and initializes it

Call:
long XXX_Activate(in XXX_Initializer *Initializer)

Parameters:
Initializer
Initializer for side effect XXX. - .
Completion Codes:

RPC2_SUCCESS

Activates side effect XXX. Code corresponding to this side effect will not be linked in otherwise. See
comment for XXX SetDefaults() for further details. .

55

3. Side Effects

3.1. Constants and Globals (from file se.h)

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

{c) Copyright IBM Corporation November 1985

#ifndef ~SE -
#define - SE -

struct SE_ Definition

{

long SideEtfectType; what kind of side effect am I?
long (*SE_Init)(); on both client & server side
long (*SE_Bind1)(); on client side

long (*SE_Bind2)(); on client side

long (*SE_Unbind)(); , on client and server side
long (*SE_NewConnection)(); on server side

long (*SE_MakeRPC1)(); ' on client side

long (*SE__MakeRPC2)(); on client side

long (*SE__GetRequest)(); on server side

long (*SE_InitSideEffect)(); on server side

long (*SE_CheckSideEffect)(); on server side

long (*SE_SendResponse)(); on server side

long (*SE_ PrintSEDescriptor)(); for debugging

long (*SE__SetDefaults)(); for initialization

}

Types of side effects: use this in the RPC2_Bind() call
define DUMBFTP 231
define SMARTFTP 1189

enum WhichWay {CLIENTTOSERVER =93, SERVERTOCLIENT = 87};
enum FileInfoTag {FILEBYNAME = 33, FILEBYINODE = 58};

struct DFTP__Descriptor
{

enum WhichWay TransmissionDirection;

IN
char hashmark; IN: 0 for non-verbose transfer
long SeekOffset; IN: > = 0; position to seek to before first read or write
long BytesTransferred; OUT: value after RPC2_CheckSideEffect() meaningful
long ByteQuota; IN: maximum number of data bytes to be sent or received.

SE_FAIL1 is returned and the transfer aborted if this limit would
be exceeded. EnforceQuota in DFTP_|nitializer must be
specitied as 1 at RPC initialization for the quota enforcement to
take place. A value of -1implies a limit of intinity.

enum FilelnfoTag Tag; IN

union

{

struct

56

{
long ProtectionBits; Unix mode bits to be set for created files
char LocalFileName[256];
}
ByName; if (Tag = = FILEBYNAME); standard Unix open()
struct
{
long Device; device on which file resides
long Inode; inode number of file (inode MUST exist already)
}
Bylnode; it (Tag = = FILEBYINODE); ITC inode-open
} .
Filelnfo; everything is IN

k

#define SFTP_Descriptor DFTP_ Descriptor

enum SE_ Status {SE_NOTSTARTED =33, SE_INPROGRESS = 24, SE_SUCCESS =57, SE_FAILURE =36};

typedef
struct SE__SideEffectDescriptor .
{
enum SE_ Status LocalStatus;) ‘
enum SE__Status RemoteStatus;
long Tag; DUMBFTP or SMARTFTP or ASYNCFTP
union
{
struct DFTP__Descriptor DumbFTPD;
struct SFTP__Descriptor SmartFTPD;
}
Value;

}

SE_ Descriptor;

typedef struct DFTPI
{
long NoOfBulkLWPs;
long ChunkSize;
long SupportedEncryptionTypes; Mask
long EnforceQuota;
} DFTP_Initializer;

typedef struct SFTPI
{
long PacketSize; bytes in data packet
long WindowSize; max number of outstanding unacknowledged packets
long RetryCount;
long Retryinterval; in milliseconds
long SendAhead; number of packets to read and send ahead
long AckPoint; when to send ack
long EnforceQuota; 0==>don't

} SFTP_Initializer;

Flag options in RPC2 _CheckSEStatus(): OR these together as needed

57

define SE_AWAITLOCALSTATUS 1
define SE_ AWAITREMOTESTATUS 2

extern struct SE_ Definition *SE_DefSpecs; array

extern long SE_DefCount; how many are there?
extern void SE__SetDefaults();

#endif

3.2. Adding New Kinds of Side Effects

The rest of this chapter is not intended for the average user. Only a system programmer who intends
to add support for a new kind of side effect needs to understand the semantics of the calls described
here. The normal user need only concern himself with the format of the side effect descriptor,
described above.)

3.2.1. Notes:

1. You will modify two RPC2 files (se.h and se.c), and add one more file containing the code
implementing your new side effect. Also modify the Makefile to compile and link in your
new file.

2. Client and server programs will cause the appropriate side effect routines to be linked in
by calling the appropriate SE_Activate() for each side effect they are interested in. Note
that these calls must precede RPC__Init().

3. None of these procedures will be called for a connection, if the RPC2_Bind that created
the connection specified NULL for the SideEffectType parameter.

4. In each of the calls, ConnHandle is the handle identifying the connection on which the
side effect is desired. It is not likely to be a small integer. Since you cannot access the
internal data structures of the RPC2 runtime system, you cannot use this for much. itis
passed to you primarily for identification.

5.You can use RPC2_GetSEPointer() and RPC2_SetSEPointer() to associate per-
connection side effect data structures.

6. Use RPC2_GetPeerlnfo() to get the identity of a connection’s peer.

7. Three return codes:RPC2_SUCCESS and RPC2_SEFAIL1 and RPC2_SEFAIL2 are
recognized for each of the calls. The successful return causes the RPC runtime system
to resume normal execution from the point at which the side effect routine was invoked.
The failure returns abort the call at that point and returns RPC2_SEFAIL1 or
RPC_SEFAIL2 to the client or server code that invoked the RPC system call.
RPC2_SEFAIL1 is an error, but not a fatal error. Future RPC calls on this connection will
still work. RPC2_SEFAIL2 is a fatal error.

8. To add a new type of side effect do the following:

a. Define an appropriate side effect descriptor, add it to the header file se.h and to the
discriminated union in the definition of SE__Descriptor.

b. Define an appropriate Initializer structure and a corresponding component in the
SE__Initializer structure in file se.h.

c. Write a set of routines corresponding to each of the SE_ XXX routines described in
the following pages. This includes a SE__Activate() routine to enlarge the table in
file se.c, and a SE__SetDefaults() routine to deal with SE__Initializer structures.

SE_ Init

Cail:
long SE_Init()

Parameters:

None

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called just prior to return from RPC2_Init.

59

60

SE_Bind1

Call:
long SE_Bind1(in RPC2_Handle ConnHandle, in RPC2_CountedBS *Clientident)

Parameters:

ConnHandle
Clientident

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called on RPC2_Bind on client side. The call is made just prior to sending the first connection-
establishment packet to the server. The connection establishment is continued only if
RPC2__SUCCESS is returned.

61

SE_Bind2

Call:
long SE_Bind2(in RPC2_Handle ConnHandle)

Parameters:

ConnHandle

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called on RPC2_Bind on client side. The call is made just after the connection is successfully
established, before control is returned to the caller. If SE_Bind2 returns RPC2_SEFAIL1 or
RPC2_SEFAIL2, that code is returned as the result of the RPC2_Bind. Otherwise the usual code is
returned.

62

SE__Unbind

Call:
long SE_Unbind(in RPC2_Handle ConnHandle)

Parameters:

ConnHandle

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called when RPC2_Unbind is executed on the client or server side. You are expected to free any
side effect storage you associated with this connection, and to do whatever cleanup is necessary.
Note that the connection state is available to you and is not destroyed until you return
RPC2_SUCCESS.

SE_NewConnection

Call:
long SE__NewConnection(in RPC2_Handle ConnHandle, in RPC2_CountedBS *Clientident)

Parameters:

ConnHandle
Clientldent

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called on server side when a new connection is established, just prior to exit from the corresponding
RPC2__GetRequest().

64

SE__MakeRPC1

Calt:
long SE_MakeRPC1(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2_PacketBuffer **RequestPtr)
Parameters:
ConnHandle
SDesc
RequestPtr

Completion Codes:

RPC2_SUCCESS
RPC2__SEFAIL1

RPC2_SEFAIL2

Called after a request has been completely filled, just prior to network ordering of header fields,
encryption and transmission. You may use the Prefix information to determine the actual size of the
buffer corresponding to *RequestPtr. If you add data, remember to update the BodyLength field of
the header in *RequestPtr. You also probably wish to update the SideEffectFlags and
SideEffectDataOffset fields of the header. SDesc points to the side effect descriptor passed in by the
client. ‘

If you need more space than available in the buffer passed to you, you may allocate a larger packet,
copy the current contents and add additional data. Return a pointer to the packet you allocated in
RequestPtr: this is the packet that will actually get sent over the wire. DO NOT free the buffer pointed
to by RequestPtr initially. If you allocate a packet, it will be freed immediately after successful
transmission.

65
SE_MakeRPC2

Call:
long SE_MakeRPC2(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2_PacketButfer *Reply)
Parameters: '
ConnHandle
SDesc
Reply

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called just after Reply has been received, after decryption and host ordering of header fields
Examine the SideEffectFlags and SideEffectDataOffset fields to determine if th

ere is piggy-backed
side effect data for you in Reply.

If you remove data, remember to update the BodyLength field of the
header in Reply. SDesc points to the side effect descriptor. You will probably wish to fill in the status

fields of this descriptor. If the MakeRPC call fails for some reason, this routine will be called with a
Reply of NULL. This allows you to take suitable cleanup action.

66

SE_GetRequest

Cali:

long SE_GetRequest(in RPC2_Handle ConnHandle, inout RPC2_PacketBuffer *Request)
Parameters:

ConnHandle

Request

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called just prior to successful return of Request to the server. You should look at Request, extract
side effect data if any, modify the header fields appropriately.

67

SE_InitSideEffect

Call:

long SE_InitSideEffect(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc)
Parameters:

ConnHandle

SDesc

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called when the server does an' RPC2_InitSideEffect call. You will probably want to examine some
fields of SDesc and fill in some status-related fields. Note that there is no requirement that you should
actually initiate any side effect action. You may choose to piggy back the side effect with the reply
later.

68

SE_CheckSideEffect

Call:
long SE_CheckSideEtfect(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
in long Flags)
Parameters:
ConnHandle
SDesc
Flags

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called when the server does an RPC2__CheckSideEffect call. The Flags parameter will specify what
status is desired. You may have to actually initiate the side effect, depending on the circumstances.

69

SE_SendResponse

Call:

long SE__SendResponse(in RPC2_Handle ConnHandle, in RPC2_PacketBuffer **ReplyPtr)
Parameters:

ConnHandle

ReplyPtr

Completion Codes:

RPC2_SUCCESS
RPC2_SEFAIL1

RPC2_SEFAIL2

Called just before the reply packet is network-ordered, encrypted and transmitted. You may wish to
add piggy-back data to the reply; modify the BodyLength field in that case. If you are not
piggybacking data, make sure that the side effect is complete before returning from this call.

If you need more space than available in the buffer passed to you, you may allocate a larger packet,
copy the current contents and add additional data. Return a pointer to the packet you allocated in
ReplyPtr: this is the packet that wil actually get sent over the wire. DO NOT free the buffer pointed to
by ReplyPtr initially. If you allocate a packet, it will be freed immediately after successful transmission.

70

SE__PrintSEDescriptor

Cail:
long SE_PrintSEDescriptor(in SE_Descriptor *SDesc, in FILE *outFile)

Parameters:

SDesc
Guaranteed to refer to your type of side effect.

outFile
Already open and ready to receive bytes.

Completion Codes:

RPC2_SUCCESS

Called when printing debugging information. You should print out SDesc, suitably formatted, on
outFile.

SE_SetDefaults

Call:
long SE__SetDefaults(XXX_Initializer *Sinit)

Parameters:

Sinit An initializer for this side effect, XXX.

Completion Codes:

RPC2_SUCCESS

Called to set Sinit to appropriate default values.

71

72

SE__Activate

Call:
long SE_ Activate(in XXX_initializer *SInit)

Parameters:

Sinit Initialization values to be used for this sidé effect, XXX.

Completion Codes:

RPC2_SUCCESS

Called to activate this side effect type. The body of this procedure should allocate and fill in a routine
vector in the side effect table in file se.c. it should also obtain its initialization parameters from Slnit.

73

4. RP2Gen: A Stub Generator for RPC2
NOTE

This chapter is derived from the original documents by Jon
Rosenberg, David Nichols and M. Satyanarayanan. RP2Gen was

written by Jon Rosenberg.

")

4.1. Introduction

RP2GEN takes a description of a brocedure call interface and generates stubs to use the RPC2
package, making the interface available on remote hosts. RP2GEN is designed to work with a number
of different languages (C, FORTRAN 77, PASCAL), however, only the C interface is currently
implemented.

RP2GEN also defines a set of external data representations for RPC types. These representations are
defined at the end of this document in the section entitled External Data Representations. Any
program wishing to communicate with a remote program using the RP2GEN semantics must obey

these representation standards.

4.2. Usage
RP2GEN is invoked as follows:

rp2gen [server language] [client language] file

Where server language is the language to be used for the server interface and client language is the

language for the client interface. The possibilities for these fields are

< C
-f FORTRAN 77
-p PASCAL

It only one language option is specified, the same language is used for both the server and the client.
The default options are -c -c. Note that a particular language option may not support all of the data
types.

File is the file containing the description of the interface. Normally, these files have the extension

.roc2. RPGen creates three files named base.client.ext, base.server.ext and base.h, where base is the

74

name of the file without the extension and the pathname prefix, and ext is the appropriate language-
specific extension. The options indicate the target language for the generated output. The default is
-C. Thus

rp2gen samoan.rpc2

would yield the files samoan.client.c, samoan.server.c and samoan.h.

A person wanting to provide a package remotely writes his package with a normal interface. The
client programmer writes his code to make normal calls on the interface. Then the client program is
linked with

1d ... base.client.c -1rpc2 ...
and the server program with

1d ... base.server.o -lrpc2 ...

The server module provides a routine, the ExecuteRequest routine, that will decode the parameters of
the request and make an appropriate call on the interface. (The routine is described below in the
language interface sections.) The client module translates calls on the interface to messages that are
sent via the RPC2 package. The .h file contains type definitions that RP2GEN generated from the
type definitions in the input file, and definitions for the op-codes used by RP2GEN. This file, which is
automatically included in the server and client files, may be included by any other module that needs

access to these types.

4.3. Format of the description file

In the syntax of a description file below, non-terminals are represented by italic names and literals are
represented by bold strings.

file ::= pretixes header_line default_timeout decl_or _proc_Jist

prefixes ::= empty | prefix | prefix prefix
pretix ::= Server Prefix string ; | Client Prefix string ; _

header_line ::= Subsystem subsystem_name ;
subsystem_name ::= string

string ::= " zero_or_more_ascii_chars
default_timeout ::= Timeout (id_number }; | empty

75

decl_or_proc_list ::= decl_or_proc | decl_or_proc decl_or_proc_list
decl_or_proc ::= include | define | typedef | procedure_description
include ::= #include’ file_name * -

define ::= #define identitier number

typedef : := typedef rpc2_type identitier array_spec ;

rpc2_type : := type_name | rpc2_struct | rpc2_enum

type_name ::= RPC2_lInteger | RPC2_Unsigned | RPC2_Byte
| RPC2_String | RPC2_CountedBS | RPC2_BoundedBS
| SE_Descriptor RPC2_EncryptionKey | identifier

rpc2_struct ::= RPC2_Struct{ field_Jist }

field_list : := field | field field_Jist

field ::= type_name identifier_list ;

identifier_{ist ::= identifier | identitier , identifier_list

rpe2_enum ::= RPC2_Enum { enum_list }

enum_list ::= enum , enum_Jist | enum

enum ::= identitier = number

array_spec ::= empty | [id_number]

id_number ::= number | identitier

procedure_description ::= proc_name (formal_ist)
timeout_override new_connection ;

proc_name ::= identifier

formal_list ::= empty | formal_parameter | formal_parameter , formal_list

formal_parameter ::= usage type_name parameter_name

usage ::= IN | OUT | INOUT

parameter_name ::= identitier

timeout_override ::= Timeout (id_number) | empty
new_connection ::= NEW_CONNECTION | empty
empty ::=

In addition to the syntax above, text inclosed in /* and */ is treated as a comment and ignored.
Appearances of an include statement will be replaced by the contents of the specified file. All
numbers are in decimal and may be preceded by a single - sign. Identifiers follow C syntax except
that the underline character, _, may not begin an identifier. (Note that a particular language interface

defines what identifiers rhay actually be used in various contexts.)

The following are reserved words in RP2GEN: server, client, prefix, subsystem, timeout,
typedef, rpc2_struct, rpc2_enum, in and out. Case is ignored for reserved words, so that, for
example, subsystem may be spelled-as SubSystem if desired. Case is not ignored, however, for
identifiers. Note that the predefined type names (RPC2_Integer, RPC2_Byte, etc.) are identifiers and

must be written exactly as given above.

The prefixes may be used to cause the names of the procedures in the interface to be prefixed with a
unique character string. The line

Server Prefix "test";

will cause the server file to assume that the name of the server interface procedure name is

test_name. Likewise, the statement

76

Client Prefix "real";

affects the client interface. This feature is useful in case it is necessary to link the client and server

interfaces together. Without this feature, name conflicts would occur.

The header_Jine defines the name of this subsystem. The subsystem name is used in generating a

unique for the execute request routine.

The default_timeout is used in both the server and client stubs. Both are specified in seconds. Zero
is interpreted as an infinite timeout value. The value specifies the timeout value used on
RPC2__MakeRPC() and RPC2__SendResponse() calls in the client and server stubs respectively. The
timeout parameter may be overriden for individual procedures by specifying a timeout_override. Note

that the timeouts apply to each individual Unix blocking system call, not to the entire RPC2 procedure.

The new_connection is used to designate at most one server procedure that will be called when the
subsystem receives the initial RPC2 connection. The new connection procedure must have 4
arguments in the following order with the following usages and types:

(IN RPC2_Integer SideEffectType, IN RPC2_Integer SecurityLevel,
IN RPC2_Integer EncryptionType, IN RPC2_CountedBS ClientIdent)

where SideEffectType, SecurityLevel, EncryptionType, and Clientldent have the values that were
specified on the client’s call to RPC2_Bind. Note that RP2Gen will automatically perform an
RPC2_Enable call at the end of this routine. If no new connection procedure is specified, then the

call to the execute request routine with the initial connection request will return RPC2__FAIL.

The usage tells whether the data for the parameter is to be copied in, copied out, or copied in both
directions. The usége and type_name specifications together tell how the programmer should

declare the parameters in the server code.

An Example

77

Subsystem "fs2";

typedef RPC2_Unsigned Volumeld;
typedef RPCZ_Unsigned Vnodeld:
typedef RPC2_Unsigned Unique;
typedef RPC2_Struct {

VolumeId Volume;

VnodeId Vnode;

Unique Unigue;
} VicefFid;

ViceConnectFS(IN RPC2_String UserName,
IN RPC2_String WorkStationName,
IN RPC2_String VenusName);

ViceRemoveCallBack (IN ViceFid Fid);

4.4. The C Interface

This section describes the C interface generated by RP2GEN. The following table shows the
relationship between RP2GEN parameter declarations and the corrseponding C parameter

declarations.

RPC2__Unsigned
RPC2_Byte
RPC2_String
RPC2_CountedBS
RPC2_BoundedBS
RPC2_EncryptionKey
SE_ Descriptor
RPC2__Enum name
RPC2_Struct name
RPC2_Byte namel...]

unsigned long
unsigned char
unsigned char *
RPC2_CountedBS *
RPC2_BoundedBS *
RPC2__EncryptionKey
illegal
name
name *
name

unsigned long *
unsigned char *
unsigned char *
RPC2_CountedBS *
RPC2_BoundedBS *
RPC2_ EncryptionKey *
illegal
name *
name *
name

RPC2 Type C Declaration
IN ouT INOUT
RPC2_Integer long long * long *

unsigned long *
unsigned char *
unsigned char *
RPC2_CountedBS *
RPC2_BoundedBS *
RPC2__EncryptionKey *
SE_ Descriptor *
name *
name *
name

In all cases it is the caller's responsibility to allocate storage for all parameters. This means that for IN
and IN OUT parameters of a non-fixed type, it is the callee’s responsibility to ensure that the value to
be copied back to the caller does not exceed the storage allocated by the callee.

The caller must call an RPC2 procedure with an initial implicit argument of type RPC2_Handle that
indicates the destination address(es) of the target process(es). The callee must declare the C routine
that corresponds to an RPC2 procedure with an initial implicit argument of type RPC2_Handle. Upon

invocation, this argument will be bound to the address of a handle that indicates the address of the

78

caller.

The ExecuteRequest Routine
RP2GEN generates another routine that serves to interpret and execute an RPC2 request. The name

of this routine is "subsystem_name_ExecuteRequest”, and its header is

int subsystem_name_ExecuteRequest(cid. Request, bd)
RPC2_Handle cid;
RPC2_PacketBuffer *Request;
SE_Descriptor *bd;

This routine will unmarshall the arguments and call the appropriate interface routine. The return

value from this routine will be the return value from the interface routine.

Programming rules for the server and client
The client program is responsible for actually making the connection with the server and must pass

the connection id as an additional parameter (the first) on each call to the interface.

4.5. External Data Representations

This section defines the external data representation used by RP2GEN, that is, the representation that

is sent out over the wire. Each item sent on the wire is required to be a multiple of 4 (8-bit) bytes.

(Items are padded as necessary to achieve this constraint.) The bytes of an item are numbered 0

through n-1 (where n mod 4 = 0). The bytes are read and written such that byte m always precedes
byte m + 1.

RPC2_Integer
An RPC2_lInteger is a 32-bit item that encodes an integer represented in two’s complement notation.

The most significant byte of the integer is 0, and the least significant byte is 3.

RPC2_Unsigned
An RPC2_Unsigned is a 32-bit item that encodes an unsigned integer. The most significant byte of
the integer is 0, the least significant byte is 3.

RPC2_Byte
An RPC2_Byte is transmitted as a single byte followed by three padding bytes.

RPC2_String
An RPC2_String is a C-style null-terminated character string. It is sent as an RPC2_Integer indicating

the number of characters to follow, not counting the null byte, which is, however, sent. This is

79

foliowed by bytes representing the characters (padded to a multiple of 4), where the first character
(i.e., farthest from the null byte) is byte 0. A RPC2_String of length 0 is representing by sending an
RPC2_Integer with value 0, followed by a 0 byte and three padding bytes. .

RPC2_CountedBS

An RPC2_CountedBS is used to represent a byte string of arbitrary length. The byte string is not
terminated by a null byte. An RPC2_CountedBS is sent as an RPC2_integer representing the number
of bytes, followed by the bytes themselves (padded to a multiple of 4)7 The byte with the lowest
address is sent as byte 0.

RPC2_BoundedBS

An RPC2_BoundedBS is intended to allow you to remotely play the game that C programmers play:
allocate a large buffer, fill in some bytes, then call a procedure that takes this buffer as a parameter
and replaces its contents by a possibly longer sequence of bytes. An RPC2_BoundedBS is
transmitted as two RPC2_Integer’s representing the maximum and current lengths of the byte strings.
This is followed by the bytes representing the contents of the buffer (padded to a multiple of 4). The
byte with the lowest address is byte 0.

RPC2_EncryptionKey 4
An RPC2_EncryptionKey is used to transmit an encryption key (surprise!). A key is sent as a
sequence of RPC2_KEY SIZE bytes, padded to a multiple of 4. Element O of the array is byte 0.

SE_Descriptor
Objects of type SE_Descriptor are never transmitted.

RPC2_Struct -

An RPC2_Struct is transmitted as a sequence of items representing its fields. The fields are sent in
textual order of declaration (i.e., from left to right and top to bottom). Each field is sent using,
recursively, its RPC2 representation. ‘

RPC2_Enum
An RPC2_Enum has the same representation has an RPC2_Integer, and the underlying integer used
by the compiler is transmitted as the value of an RPC2_Enum. (Note that in C this underlying value

may be specified by the user. This is recommended practice.)

Array

The total number of bytes transmitted for an array must be a multiple of 4. However, the number of

80

bytes sent for each element depends on the type of the element.

Currently, only arrays of RPC2_Byte are defined. The elements of such an array are each sent as a

single byte (no padding), with array element n-1 preceding element n.

81

5. MultiRPC

5.1. Design Issues

The MultiRPC facility is an extension to RPC2 that provides a parallel RPC capability for sending a
single request to multiple servers and awaiting their individual responses. Although the actual
transmission is done sequentially, the resultant concurrent processing by the servers results in a
significant increase in time and efficiency over a sequence of standard RPC calls. The RPC2 runtime
overhead is also reduced as the number'of servers increases. For the purposes of this discussion, the

base RPC2 facility will be referred to simply as RPC2.

A noteworthy feature of the MultiRPC design is the fact that the entire implementation is contained on
the client side of the RPC2 code. The packet which is finally transmitted to the server is identical to a
packet generated by an RPC2 call, and the MultiRPC protocol requires only a normal response from a

server.

A major design goal was the desire to automatically provide MultiRPC capability for any subsystem
without requiring any additional support from the subsytem designer or implementor. This has been
achieved through modifications to RP2Gen, the RPC2 stub generation package (see chapter 4).
RP2Gen generates an array of argument descriptor structures for each server operation in the

specification file, and these arrays are inserted in the beginning of the client side stub file. These |
structures are made available to the client through definitions in the associated .h file, and allow the

use of MultiRPC with any routine in any subsystem with RP2Gen generated interfaces.

The orthogonality of the MultiRPC modifications also extends to the side effect mechanism (see
appropriate chapter). Side effects for MultiRPC work exactly as in the RPC2 case except that the

client must supply a separate SE_Descriptor for each connection.

Parameter packing and unpacking for MultiRPC is provided in the RPC2 runtime library by a pair of
routines. These library routines provide the functionality of the client side interface generated by
RP2Gen as well as some additional modifications to support MultiRPC. It was decided to perform the
packing and unpacking in RPC2 library routines rather than in individual client side stub routines as in
the RPC2 case; this requires some extra processing time, but saves a significant amount of space in
the client executable file. This approach has the added advantage of modularity; execution of RPC2
calls will not be affected at all, and even for MultiRPC calls the aqditional processing time is

negligable in comparison to the message transmission overheads imposed by the UNIX kernel.

82

Another feature of MultiRPC is the client supplied handler routine. Through the handler routine the
client is allowed to process each server response as it arrives rather than waiting for the entire
MultiRPC call to complete. After processing each response, the client can decide whether to continue
accepting server responses or whether to abort the remainder of the call. This facility can be useful if
only a subset of responses are required, or if one failed message renders the entire call useless to the

client. This capability is discussed further in section 5.3.1.

MultiRPC also provides the same correctness guarantees as RPC2 except in the case where the client
exercises his right to terminate the call. RPC2 guarantees that a request (or response) will be
processed exactly once in the absence of network and machine crashes; otherwise, it guarantees that
it will be processed at most once. If the call completes normally, a return code of RPCZ_SUCCESS

guarantees that all messages have been received by the appropriate servers.

5.2. An Example

The following example is the same as the one in section 1.2, but here it has been converted to use
MultiRPC. Comparison of the two examples will illustrate the differences in the client code necessary
to use the MultiRPC facility. Only the code in the file exclient.c has been changed; exserver.c and
both of the .rpc2 files were unaffected by the modifications.

This example illustrates the MultiRPC interface to a simple system. The system exports two
subsystems, an authentication server and a computation server. The authentication operations
include looking up either a user name or a user id given the complementary information, or looking up
some user statistics given the user id. The computation server operations include squaring a number,
cubing a number, requesting the age of a given connection, and causing the remote host to exec a

specified command and return the results as a side effect in a file.

A user can create a new connection or make a request to either the authentication or computation
subsystem. The new connection choice results in an RPC2_Bind to the subsystem specified;
subsystem requests cannot be made until a new connection has been created. The bind returns a

connection id which can be used to identify the connection when making server requests.

Once a connection has been established to a subsystem, a subsystem request can be made. The
client will prompt for the number of servers to which the request is to be made, and for their
connection ids. In each case except the Bind, the call is made using MultiRPC using the

MRPC_MakeMulti library routine interface. Note that RPC2_MultiRPC is used even when only one

server is requested.

A minimal handler routine is supplied for each server operation. It is adequate to demonstrate the
format of the routine even though it does little actual processing of the responses. The handler

corresponds to the HandleResult routine described in sections 5.4.1 and 5.3.3.4.

5.2.1. Auth Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Melion University

{c) IBM Corporation November 1985

RPC interface specification for a trivial authentication subsystem. This is only an example: all it does is name to id and id to
name conversions.

Server Prefix "S";
Subsystem "auth"; . -

Internet port number; note that this is really not bart of a specific subsystem, but is part of a server; we should really have a
separate ex.h file with this constant. | am being lazy here
define AUTHPORTAL 5000

define AUTHSUBSYSID 100 The subsysid for auth subsystem

Return codes from auth server
define AUTHSUCCESS 0
#define AUTHFAILED ¢

typedef
RPC2_Byte PathName[1024];

typedef
RPC2_Struct

{
RPC2__Integer Groupld;
PathName HomeDir;

}
Authinfo;

AuthNewConn (IN RPC2__Integer seType, IN RPC2__Integer secLevel, IN RPC2_Integer encType,
IN RPC2_CountedBS cldent) NEW - CONNECTION;

AuthUserld (IN RPC2_String Username, OUT RPC2_Integer Userld);
Returns AUTHSUCCESS or AUTHFAILED

AuthUserName (IN RPC2_Integer Userid, IN OUT RPC2__BoundedBS Username);
Returns AUTHSUCCESS or AUTHFAILED

AuthUserinfo (IN RPC2__Integer Userld, OUT Authinfo Uinfo);
Returns AUTHSUCCESS or AUTHFAILED

AuthQuit();

5.2.2. Comp Subsystem .rpc file

M. Satyanarayanan Information Technology Center Carnegie-Mellon University
(c) IBM Corporation November 1985

RPC interface specification for a trivial computational subsystem. Finds squares and cubes of given numbers.

Server Prefix "S";
Subsystem "comp";

define COMPSUBSYSID 200 The subsysid for comp subsystem

define COMPSUCCESS 1
define COMPFAILED 2

CompNewConn (IN RPC2__Integer seTypé. IN RPC2__Integer secLevel, IN RPC2__Integer encType,
IN RPC2__CountedBS cldent) NEW - CONNECTION;

CompSquare (IN RPC2__Integer X); returns square of x
CompCube (IN RPC2__Integer X); returns cube of x
CompAge(); ’ returns the age of this connection in seconds

CompExec(IN RPC2__String Command, IN OUT SE__Descriptor Sed);
Executes a command and ships back the result in a file. Returns
COMPSUCCESS or COMPFAILED

CompQuit();

5.2.3. Server for Auth and Comp Subsystems

exserver.c -- Trivial server to demonstrate basic RPC2 functionality Exports two subsystems: auth and comp, each with a
dedicated LWP.

M. Satyanarayanan Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMid[] = "(c) Copyright IBM Corporation November 1985";

#inciude <stdio.h>

include <potpourri.h>
#include <strings.h>

include <{sys/signal.h>
#inciude <sys/time.h>
#include <sys/types.h>
#include <netinet/in.h)
#include <pwd.h>
#include <lwp.h>
#include <rpc2.h>
#include <se.h>
#include "auth.h"
#include "comp.h"

This data structure provides per-connection info. It is created on every new connection and ceases to exist after AuthQuit().
struct Userinfo

{
int Creation; Time at which this connection was created
other tields would go here
}
int NewCLWP(), AuthLWP(), CompLWP(); bodies of LWPs
void DebugOn(), DebugOff(); signal handlers
main()
{
int mypid;

signal(SIGEMT, DebugOn);
signal(SIGIOT, DebugOff);

InitRPC();
LWP__CreateProcess(AuthLWP, 4096, LWP_NORMAL - PRIORITY, "AuthLWP", NULL, &mypid);
LWP__CreateProcess(CompLWP, 4096, LWP_NORMAL - PRIOCRITY, "CompLWP", NULL, &mypid);

LWP_ WaitProcess(main); sleep here forever; no one will ever wake me up
}
AuthLWP(p)
char *p; single parameter passed to LWP_CreateProcess()
{

RPC2_RequestFilter regfiiter;
RPC2_ PacketBuffer *reqbuffer;
RPC2_Handle cid; '
int rc;

char *pp;

Set filter to accept auth requests on new or existing connections
regfiter. FromWhom = ONESUBSYS;
reqfilter.OldOrNew = OLDORNEW;
regfilter.ConnOrSubsys.Subsysld = AUTHSUBSYSID;

while(TRUE)
{
cid = 0;

if ((rc = RPC2_GetRequest(&reqfilter, &cid, &reqbuffer, NULL, NULL, NULL, NULL)) < RPC2_WLIMIT)
HandleRPCError(rc, cid);

if ((rc = auth - ExecuteRequest(cid, regbutfer)) < RPC2_WLIMIT)
HandleRPCError(rc, cid);

pp = NULL;
it (RPC2_GetPrivatePointer(cid, &pp) ! = RPC2_SUCCESS || pp = = NULL)
RPC2_Unbind(cid); This was almost certainly an AuthQuit() call
}
}
CompLWP(p)
char *p; single parameter passed to LWP_CreateProcess()
{

RPC2__RequestFilter regfilter;
RPC2__PacketBuffer *reqbuffer;
RPC2__Hand!le cid;

intrc;

char *pp;

Set filter to accept comp requests on new or existing
: connections
reqfilter. FromWhom = ONESUBSYS;
regfilter. OldOrNew = OLDORNEW;
regfilter.ConnOrSubsys.Subsysld = COMPSUBSYSID;

while(TRUE)
cid = 0; . :
it ((rc = RPC2_GetRequest(®filter, &cid, ®buffer, NULL, NULL, NULL, NULL)) < RPC2_WLIMIT)
HandleRPCError(re, cid);
if ((rc = comp- ExecuteRequest(cid, regbuffer)) < RPC2_WLIMIT)
HandleRPCError(rc, cid);

pp = NULL;
if (RPC2_GetPrivatePointer(cid, &pp) ! = RPC2_SUCCESS || pp = = NULL)
RPC2_Unbind(cid), This was almost certainly an CompQuit() call
}
}
:::::::.—::.—::Bodieso'AuthRPCrouﬁnes:=:==========

S - AuthNewConn(cid, seType, secLevel, encType, cldent)
RPC2__Handle cid;
RPC2_ Integer seType, secLevel, encType;
RPC2__CountedBS *cldent;
{

struct Userinfo *p;

p = (struct Userinfo *) malloc(sizeof(struct Userinfo));
RPC2__SetPrivatePointer(cid, p);
p->Creation = time(0);

}

S - AuthQuit(cid)

Get rid of user state; note that we do not do RPC2_Unbind() here, because this request itself has to complete. The invoking
server LWP therefore checks to see if this connection can be unbound.

{

struct Userinfo *p;

RPC2__GetPrivatePointer(cid, &p);

assert(p = NULL); we have a bug then

free(p);

RPC2__SetPrivatePointer(cid, NULL);

87

return{AUTHSUCCESS);
}

S - AuthUserld(cid, userName, userld)
char *userName;
int *userld;
{
struct passwd *pw;
if ((pw = getpwnam(userName)) = = NULL) return(AUTHFAILED);
*userld = pw->pw - uid;
return(AUTHSUCCESS);
}

S - AuthUserName(cid, userld, userName)
int userld;)
RPC2_BoundedBS *userName;
{
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL) return(AUTHFAILED);
strepy(userName->SeqBody, pw->pw - name);
we hope the buffer is big enough
userName->Seqlen = 1 + strlen(pw->pw - name);
return(AUTHSUCCESS);
}

S - AuthUserlInfo(cid, userid, ulnfo)
int userld;
Authinfo *ulnfo;
{
struct passwd *pw;
if ((pw = getpwuid(userld)) = = NULL) return(AUTHFAILED);
ulnfo->Groupld = pw->pw - gid;
strepy(uinfo->HomeDir, pw->pw - dir);
return(AUTHSUCCESS);

==z===z5=z=2=z=zxz2zz= BodiesofCompRPCroutines ===z =z==z32==s2232
S - CompNewConn(cid, seType, secLevel, encType, cldent)
RPC2_Handle cid;
RPC2__Integer seType, seclLevel, encType;
RPC2__CountedBS *cident;
{

struct Userinfo *p;

= (struct Userinfo *) malloc(sizeof(struct Userinfo));
RPC2__SetPrivatePointer(cid, p);
p->Creation = time(0);

}

S - CompQuit{(cid)
Get rid of user state; note that we do not do RPC2_Unbind() here, because this request itself has to complete. The invoking
server LWP therefore checks to see if this connection can be unbound.
{
struct Userinfo *p;
RPC2__GetPrivatePointer(cid, &p);
assert(p ! = NULL); we have a bug then

free(p);
RPC2__SetPrivatePointer(cid, NULL);
return(0);

}

S - CompSquare(cid, x)
intx; -
{
return{x*x);

}

S - CompCube(cid, x)
RPC2_Handle cid;
int x;

{
return{x*x*x);

}

S - CompAge(cid, x)
RPC2__Handle cid;
int x;
{
struct Userinfo *p;
assert(RPC2__GetPrivatePointer(cid, &p) = = RPC2_SUCCESS);
return(time(0) - p->Creation);

}

S - CompExec(cid, cmd)
RPC2_Handle cid;

char *cmd;
We should really have a formal of type SE_Descriptor at the end;
but it is a dummy anyway

{

SE_ Descriptor sed;

char mycmd[100];

sprintf(mycmd, "%s > /tmp/answer 2>&1", cmd);

system(mycmd); beware; if this takes too long, client will get RPC2_DEADI!

bzero(&sed, sizeof(sed));

sed.Tag = DUMBFTP;

sed.Value.DumbFTPD.Tag = FILEBYNAME;How | wish C had a "with" clause like Pascal
sed.Value.DumbFTPD.TransmissionDirection = SERVERTOCLIENT;
sed.Value.DumbFTPD.ByteQuota = -1; .
strcpy(sed.Value.DumbFTPD.Filelnfo.ByName.LocalFileName, "/tmp/answer");

it (RPC2_InitSideEffect(cid, &sed) ! = RPC2_SUCCESS) return(COMPFAILED);

if (RPC2_CheckSideEffect(cid, &sed, SE__AWAITLOCALSTATUS) ! = RPC2__SUCCESS)

return(COMPFAILED);
return(COMPSUCCESS);
}
iopen() is a system call created at the ITC; put a dummy here for other sites
iopen({}
.-=================RPCInitializationandErrorhandling================:=
InitRPC()
{

int mylpid = -1;

DFTP_Initializer dftpi;

RPC2_Portalldent portalid, *portallist[1];
RPC2_ Subsysident subsysid;

struct timeval tout;

assert(LWP__InitializeProcessSupport(LWP_NORMAL - PRIORITY, &mylpid) = = LWP_SUCCESS);

portalid.Tag = RPC2_PORTALBYINETNUMBER;
portalid.Value.lnetPortNumber = htons(AUTHPORTAL);
portallist{0] = &portalid;

tout.tv - sec = 240;

tout.tv - usec = O;

DFTP__SetDefaults(&dftpi);

DFTP_ Activate(&dftpi);

assert (RPC2_Init(RPC2__VERSION, 0, portallist, 1, -1, &tout) = = RPC2__SUCCESS);
subsysid.Tag = RPC2__SUBSYSBYID;
subsysid.Value.Subsysid = AUTHSUBSYSID;
assert{(RPC2 _Export(&subsysid) = = RPC2__SUCCESS);
subsysid.Value.Subsysld = COMPSUBSYSID;
assert(RPC2_Export(&subsysid) = = RPC2__SUCCESS);

}

HandleRPCError(rCode, connid)
int rCode;
RPC2_Handle connld;

{
fprintf(stderr, "exserver: %s\n", RPC2__ErrorMsg(rCode));
it rCode < RPC2_FLIMIT && connid ! = 0) RPC2_Unbind(connid);

} .

void DebugOn()

{
RPC2_DebuglLevel

}

void DebugOff()

{
RPC2__DebugLevel

}

100;.

"
e

5.2.4. Client using Auth and Comp Subsystems

exclient.c -- Trivial client to demonstrate RPC2 - MultiRPC() functionality
M. Satyanarayanan and E. Siegel Information Technology Center Carnegie-Mellon University

(c) Copyright IBM Corporation November 1985

static char IBMid[] = "(c) Copyright IBM Corporation November 1985";

include <stdio.h>
#include <potpourri.h>
#include <strings.h>
#include <sys/time.h>

#include <sys/types.h>
#include <netinet/in.h>
#include <pwd.h>

include <iwp.h>
#include <rpc2.h>
#include <se.h>
#include <preempt.h>
#include "auth.h"
#include "comp.h"

long Handle - AuthUserld(), Handle - AuthUserName();

long Handle - AuthUserinfo(), Handle - AuthQuit();

long Handle - CompSquare(), Handle - CompCube();

long Handle - CompAge(), Handle - CompExec(), Handle - CompQuit();
int returns;

define MAXCONNS 10
define dgets(p) {if (gets(p) = = NULL) {perror("stdin");abort();}}
allow RPC to get control periodically

main()
{
int a;
char buf[100];

printf("Debug Levei? (0) ");
dgets(buf);
RPC2_DebugLevel = atoi(buf);

InitRPCJ();
while (TRUE)
{
LWP__DispatchProcess(); otherwise we get RPC2_DEADs
printf("Action? (1 = New Conn, 2 = Auth Request, 3 = Comp Request) ");
dgets(buf);
a = atoi(buf);
switch(a)
{
case 1: NewConn(); continue;
case 2. Auth(); continue;
case3: Comp(); continue;
default: continue;

}

NewConn()
{
char hname[100}, buf[100];
int newcid, rc;
RPC2__Hostldent hident;
RPC2__Portalldent pident;
RPC2__Subsyslident sident;

printf("Remote host name? ");
dgets(hident.Value.Name);

hident.Tag = RPC2_HOSTBYNAME;

printf("Subsystem? (Auth = %d, Comp = %d) ", AUTHSUBSYSID, COMPSUBSYSID);
dgets(buf);

sident.Value.Subsysid = atoi(buf);

sident.Tag = RPC2_SUBSYSBYID;
pident.Tag = RPC2_PORTALBYINETNUMBER;
pident.Vaiue.InetPortNumber = htons(AUTHPORTAL);
same as COMPPORTAL
rc = RPC2_Bind(RPC2_OPENKIMONO, NULL, &hident, &pident, &sident,
SMARTFTP, NULL, NULL, &newcid);

if (rc = = RPC2_SUCCESS)

printf("Binding succeeded, this connection id is %d\n", newcid);
else ’

printf("Binding failed: %s\n", RPC2_ErrorMsg(rc));

Auth()
{
RPC2_Handle cid[MAXCONNS};
int op, rc, UId[MAXCONNS], howmany, i;
char name{100], buf[100];
Authinfo ainfo[MAXCONNS];
RPC2_BoundedBS bbs[MAXCONNS];

while (1) {
printf("How many servers? ");
dgets(buf);
howmany = atoi(buf);
if (howmany <= 10 && howmany > 0) break;
}
for (i = 0; i <howmany; i+ +){
printf("Connection id? ");
dgets(buf);
cid[i] = atoi(buf);

printf("Operation? (1 = Id, 2 = Name, 3 = Info, 4 = Quit) ");
dgets(buf);

op = atoi(buf);

returns = O; Zero return counter
switch(op)

case 1:
printf("Name? ");
dgets(name);
rc = MakeMulti(AuthUserid - OP, AuthUserld - PTR, howmany, cid, Handle - AuthUserld,
NULL, name, uid);
if (rc 1= RPC2_SUCCESS) printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 2:
printf("1d? ");
dgets(buf);
uid[0] = atoi(buf);
bbs[0].MaxSeglLen = sizeof(name);
bbs[0].Seql.en = O;
bbs[0].SeqBody = (RPC2_ByteSeq) name;
for(i = 1;1< howmany;i+ +){

92

bbs[i].MaxSeqlLen = sizeof(name);
bbsl[i].SeqlLen = 0;
bbs[i].SeqBody = (RPC2_ByteSeq) malloc(sizeof(name));
}
rc = MakeMulti(AuthUserName - OP, AuthUserName - PTR, howmany, cid, .
Handle - AuthUserName, NULL, uid{0], bbs);
if (rc != RPC2_SUCCESS) printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
for(i = 1;i<howmany;i+ +){
free(bbs[i].SeqBody);
}

break;

case 3:
printf("1d? "),
dgets(buf);
uid[0] = atoi(buf); .
rc = MakeMuiti(AuthUserInfo - OP, AuthUserinfo - PTR, howmany, cid,
Handle ~ AuthUserinfo, NULL, uid|0], ainfo);
if (rc 1= RPC2__SUCCESS) printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 4:

rc = MakeMulti(AuthQuit - OP, AuthQuit - PTR, howmany, cid, Handle - AuthQuit, NULL);

if (rc {= RPC2__SUCCESS) printf("Call failed --> %s\n", RPC2__ErrorMsg(rc));
break;

long Handle - AuthUserid(HowMany, cid, thishost, rpcval, name, uid)

int HowMany, thishost, rpcval, uid[};

RPC2__Handle cid[];

char namel];

{
printf("received reply from connection %d:\n", cid[thishost]);
if (rpeval = = AUTHSUCCESS) printf("Id = %d\n", uid[thishost]);
else .

if (rpcval = = AUTHFAILED) printf("Bogus user name\n");

if (+ +returns > HowMany) return 1; /* wait for all returns */
else return 0;

}

long Handle ~ AuthUserName(HowMany, cid, thishost, rpcval, uid, bbs)
int HowMany, thishost, rpcval, uid;

RPC2_BoundedBS bbs][];

RPC2_Handle cid{];

{
printf("received reply from connection %d:\n", cid[thishost});
if (rpcval = = AUTHSUCCESS) printf("Name = %s\n", bbs[thishost].SeqBody);
else
if (rpcval = = AUTHFAILED) printf("Bogus user id\n");
else printf("Call failed --> %s\n", RPC2_ ErrorMsg(rpcval));
if (+ +returns > HowMany) return 1; /* wait for all returns */
return O;
}

long Handle - AuthUserinfo(HowMany, cid, thishost, rc, uid, ainfo)

int HowMany, thishost, rc, uid;
Authinfo ainfof};
RPC2_Handle cid[];
{
printt("received reply from connection %d:\n", cid[thishost]);
if (rc = = AUTHSUCCESS) printf("Group = %d Home = %s\n",
ainfo[thishost).Groupld, ainfo[thishost]. HomeDir);
else
if (rc = = AUTHFAILED) printf("Bogus user id\n");
else printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
it (+ +returns > HowMany) return 1; /* wait for all returns */
return 0;

}

long Handle - AuthQuit(HowMany, cid, thishost, rc)
int HowMany, thishost, rc;
RPC2__Handle cid[];

printf("received reply from connection %d:\n", cid[thishost));
if (rc = AUTHSUCCESS)
printf(" Call failed for connection %d --> %s\n", cid{thishost], RPC2_ErrorMsg(rc));
RPC2__Unbind(cid[thishost]);
if (+ +returns > HowMany) return 1; /* wait for all returns */
return O; .

}

Comp()
{
RPC2_Handle cid[MAXCONNS];
int op, rc, x, howmany, i; ’
SE - Descriptor sed[MAXCONNS];
char cmd([100}, buf[100], fname[30];

while (1) {
printf("How many servers? "); -
dgets(buf);
howmany = atoi(buf);
if (howmany <= 10 && howmany > 0) break;
}
for i = 0;i<howmany;i+ +){
printf("Connection id? ");
dgets(buf);
cid[i] = atoi(buf);

printf("Operation? (1 = Square, 2 = Cube, 3 = Age, 4 = Exec,5 = Quit) ");
dgets(buf);

op = atoi(buf);

returns = O; Zero return counter

switch{op)

case1: -’
printf("x? ");
dgets(buf);
x = atoi(buf);
rc = MakeMulti(CompSquare - OP, CompSquare - PTR, howmany, cid,
Handle - CompSquare, NULL, x);
if (rc 1= RPC2_SUCCESS) printf("MakeMulti call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 2:

94

printf("x?),

dgets(buf);

x = atoi{buf);

rc = MakeMuiti(CompCube - OP, CompCube - PTR, howmany, cid, Handle - CompCube, NULL, x);
if (re != RPC2_SUCCESS) printf("MakeMulti call faited --> %s\n", RPC2_ErrorMsg(rc));

break;

case 3:
rc = MakeMulti(CompAge - OP, CompAge - PTR, howmany, cid, Handle - CompAge, NULL);
if (rc = RPC2_SUCCESS) printf("MakeMulti call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 4:
printf("Remote command: ");
gets(cmd);
for (i = 0; i Chowmany; i+ +){
bzero(&(sed[i]), sizeof(sed));
How I wish C had a "with" clause like Pascal
sed[i}.Tag = SMARTFTP;
sed[i].Value.DumbFTPD.Tag = FILEBYNAME;
sed(i].Value. DumbFTPD.Fileinfo.ByName.ProtectionBits = 0644,
sed(i].Value.DumbFTPD.TransmissionDirection = SERVERTOCLIENT;
sed[i].value. DumbFTPD.ByteQuota = -1
sprintf(fname, "/tmp/result - %d", cid[iPag filename with connection id
strcpy(sed[i].VaIue.DumbFTPD.Filelnfo.ByName.LocaIFileName, fname);

rc = MakeMuiti(CompExec - OP, CompExec - PTR, howmany, cid,

Handle - CompExec, NULL, cmd, sed);
if (rc != RPC2__SUCCESS) printf("MakeMulti call failed --> %s\n", RPC2_ErrorMsg(rc));
break;

case 5:
rc = MakeMulti(CompQuit - OP, CompQuit - PTR, howmany, cid, Handle - CompQuit, NULL);
}
}

long Handle ~ CompSquare(HowMany, cid, thishost, rc, x)
int HowMany, thishost, rc, x;
RPC2_ Handle cidf];
{
printf("received reply from connection %d:\n", cid[thishost]);
if (rc 1= 0) printf("x**2 = %d\n", rc);
else
printf(" Call failed --> %s\n", RPC2_ErrorMsg(rc));
if (+ +returns > HowMany) return 1; /* wait for afl returns */
return 0;

long Handle - CompCube(HowMany, cid, thishost, rc, x)
int HowMany, thishost, re, x;
RPC2_Handle cidl];
{
printf("received reply from connection %d:\n", cid[thishost]);
if (rc > 0) printf("x**3 = %d\n", rc);
else
printf{" Call failed --> %s\n", CompCube\n");
if (+ +returns > HowMany) return 1; /* wait for all returns */
return 0;

long Handle - CompAge(HowMany, cid, thishost, rc)
int HowMany, thishost, rc;
RPC2_Handle cid[}];

printf("received reply from connection %d:\n", cidfthishost]);
if (rc > 0) printi(" Age of connection = %d seconds\n", rc);
else

printf(" Call failed --> %s\n", CompAge\n");
if (+ +returns > HowMany) return 1; /* wait for all returns */
return O;

}

long Handle - CompExec(HowMany, cid, thishost, rc, cmd, sed)
int HowMany, thishost, rc;
RPC2_ Handle cid[];
char cmd[];
SE - Descriptor sedf];
{
char ucmd[100];

printf("'received reply from connection %d:\n", cid{thishost]);
sprintf(ucmd, "echo Result of remote exec:;cat /tmp/result - %d", cid[thishost]);
if (rc = = COMPSUCCESS) system(ucmd); :
else

if ('c = = COMPFAILED) printf(" Could not do remote exec\n");

else

printf("Call failed --> %s\n", CompExec\n");

if (+ +returns > HowMany) return 1; /* wait for all returns */
return O; :

}

long Handle - CompQuit{HowMany, cid, thishost, rc)
int HowMany, thishost, rc;
RPC2_Handle cid[];

{ .
if (rc <0) :
printf("Call failed --> %s\n", RPC2_ErrorMsg(rc));
RPC2_ Unbind(cid); .
if (+ +returns > HowMany) return 1, /* wait for all returns */
return O;
}
SESfss=s=5=s===z=:=z=RPClinitialization and Errorhandling = = = = = = = = s = 2 2 = s = = = =
InitRPC()
{
int mylpid = -1;

struct timeval t;

DFTP - Initializer dftpi;
SFTP - Initializer sftpi;
struct timeval tout;

assert(LWP_InitializeProcessSupport(0, &mylpid) = = LWP__SUCCESS);
ttv-sec = 1;

ttv-usec = 0;

assert(PRE - InitPreempt(&t) = = LWP__SUCCESS);

PRE - PreemptMe();

96

DFTP - SetDefaults{&dftpi);

dftpi.ChunkSize = 1024, 2K and 4K give much better performance
DFTP - Activate(&dftpi);

SFTP - SetDefaults(&sftpi);

SFTP - Activate(&sftpi);

tout.tv - sec = 30;

tout.tv - usec = 0;

assert (RPC2_Init(RPC2_VERSION, 0, NULL, 1, -1, &tout) = = RPC2_SUCCESS);

}

iopen(){}

97

5.3. Usage

Support for MultiRPC exists both at the language level and at the runtime level. The runtime level
support includes the MultiRPC routines themselves along with the associated library routines which
perform argument packing and unpacking. The language level support consists mainly of the
argument desCriptor information supplied by RP2Gen for each subsystem. The client may choose to
interface directly with the runtime MultiRPC system without taking advantage of the RP2Gen
simplifications, but the discussion in the following sections assumes the existence of the RP2Gen

interface except where explicitly noted otherwise.

The procedure for making a MultiRPC call is very similar to that for making an RPC2 call. The
subsystem is designed and the specification is written into a C{subsys>.rpc2 file (the specification
format is described in section 4). RP2Gen is then invoked on the specification file, and it generates
both the standard server and client side interfaces as well as the MultiRPC argument descriptor
structures and definitions for each server operation. The relevant descriptor pointers are made
available to the client through the associated <subsys>.h file.

Once the interface has been specified, the subsystem implementor is responsible for writing the
server main loop and the procedures to perform the server operations. This implementation is
completely independent of any considerations relating to MultiRPC; MultiRPC is completely

transparent to the server side of a subsystem.

From the client’s perspective, making a MultiRPC call is slightly different from the RPC2 case. Instead
of the procedure-like client side interface supplied by the stub routines, the single library routine
MRPC__MakeMulti is used to interface to RPC2_MultiRPC. The use of the library routine represents a
large space savings in the executable files, but requires some additional information from the client
making the call (see sections 5.3.3.2 and 5.4.1). The client is also responsible for supplying a Handler
routine for any server operation which is used in a MultiRPC call. This handler routine is called by
RPC2 as each individual server response arrives: it is used both for providing individual server return
codes to the client and for giving the client control over the continuation or termination of the
MultiRPC call. The handler routine is discussed in greater detail in the following section, and its

interface is described in section 5.4.1.

98

5.3.1. The Client Hand!ler

The client handler routine is intended to give the client control and flexibility in handling the incoming
server responses from the MultiRPC call. For each connection specified in a RPC2_MultiRPC call,
the client handler is called either when a connection error is detected or when the server response for
that connection arrives. This allows the client to examine the replies as they arrive, and provides the
opportunity to perform incremental bookeeping and analysis of the responses. The handler also has
the ability to abort the MultiRPC call at any time. A more detailed discussion of the handler

specifications can be found in section 5.4.1.

Since a MultiRPC call could potentially last a long time, it is crucial to provide the client with some
measure of control over the progress and termination of the call. With many server responses, there
are many variables that the client might wish to monitor in order to evaluate the progress of the call.
In particular, the server responses and return codes themselves have a significant effect on the
client’'s perception of the progress of the call. To address these ?equir_ements, RPC2 periodically
passes control to the client during executionv of the MultiRPC call. A client supplied routine designed
to be called as each server response arrives provides access to complete current information about
the status of the call; it also gives the client the ability to perform any incremental processing He
considers necessary or useful. The client then indicates his decision to either continue accepting

server responses or to terminate the MultiRPC call via the handler return code.

The value of client control over the progress of the MultiRPC call can best be illustrated with some
specific examples. One example is in the case of connection errors. If the client requires responses
on ali of the designated connections and one of them returns an error, then the final result of the
MultiRPC call will be useless and the remainder of the processing time will have been wasted. With
the client handler routine the client has the ability to notice the connection error. He then has the
ability to abort the call, or even to use the handler routine as an opportunity to rebind to the failed site

and make an RPC2 call on that connection.

Another example is in the implementation of a replicated server. A useful way to deal with operation
quorums (specified as some subset n of the total number of replicated servers) is to send messages
out to all or many of the available servers and abort the call as soon as the first n responses arrive.
This has the advantage of supplying the fastest possible execution for the replicated call; furthermore,
since the n members of the quorum need not be chosen explicitly, the call will rarely have to be

repeated if one of the servers is busy or inoperational.

The handler receives full sets of arguments each time it is called, along with an index identifying the

99

current connection. The types of the server arguments to the client handler are identical to the types
in the original MakeMulti call: the argument list is in fact passed through RPC2 and returned to the
handler. Any processing is permissible in the handler routine, although it should be noted that since
RPC2_MultiRPC does not support enqueueing of server requests any call made on a connection
already active in a MultiRPC call will generate a return code of RPC2_BUSY. Also, for lengthy

blocking computations the same cautions with respect to lightweight processes apply as for RPC2.

it should also be noted that the use of the abort facility of the client handler carries with it some risks.

These are discussed in more detail in section 5.3.4.

5.3.2. Flow of Control in MultiRPC

The flow of control in MultiRPC is much the same as for RPC2 except for the iterative calling of the
client handler. The client initiates the MultiRPC call by calling the library routine MRPC__MakeMulti.
MakeMulti packs the client arguments into a request buffer, and calls RPC2_MultiRPC with the
request buffer, some argument packing information, and a pointer to MRPC__UnpackMulti, the library

unpacking routine.

RPC2__MultiRPC sets up the processing environment, initializes the request packet headers for all the
designated servers, and performs any necessary side effect initialization. It then calls an internal
routine to perform the transmission of the request packets. This transmission routine does not return
until either the client supplied timeout expires or until it has received responses from all of the
designated servers. Once the request packets have been transmitted, the routine settles into a loop
waiting for server responses to arrive. As each response arrives, some preliminary processing is
performed, and any remaining side effect processing is completed. Then RPC2 calls
MRPC_UnpackMulti to unpack the response buffer into the client's original arguments.
MRPC__UnpackMulti unpacks the buffer and calls the client handler routine with the current servers's
information. The client then performs whatever processing he wishes, and returns with his
instructions to continue or terminate the call. If he wishes to continue, the internal loop continues
until all the server responses have been received. Otherwise, the loop terminates and the

transmission routine cleans up any loose ends caused by the termination.

Control then returns to RPC2_MultiRPC, which checks the return code and returns to

MRPC__MakeMulti. MakeMulti simply passes the suppiied return code back to the client as it returns.

Since side effects are completely determined by the SE_Descriptor and the connection, extending

the side effect mechanism to MultiRPC requires nothing more than supplying a unique

100
SE_Descriptor for each connection.

5.3.3. MultiRPC Related Calls

5.3.3.1. RPC2_MultiRPC

RPC2_MultiRPC is the RPC2 runtime routine responsible for setting up the internal state properly for
sending the request packets to the specified servers. It is called via the RPC2 library routine
MRPC_MakeMulti. One of the arguments to MultiRPC is the Arglnfo structure. This structure is never
examined by RPC2, but is simply passed through UnpackMulti. If the RP2Gen interface is used, this
argument is supplied by MRPC_ MakeMulti and need not concern the client. If the RP2Gen mterface

is not used, this can point to any structure needed by the client’s unpacking routine.

The UnpackMulti argument is also related to the RP2Gen interface. If the RP2Gen interface is used,
this argument is automatically supplied by MRPC__MakeMuiti and will point to the RPC2 library
unpacking routine. If the RP2Gen interface is not used, the client is responsible for supplying a

pointer to a routine matching the UnpackMulti specification (see section 5.4.1).

5.3.3.2. MRPC_MakeMulti ’ .

MRPC__MakeMulti is the library routine which provides the parameter packing interface to
RPC2_MultiRPC. It takes the place of the individual client side stub routines generated by RP2Gen.
In additon to the usual information supplied in an RPC2 call, it takes as arguments RP2Gen generated
argument and operation descriptors, the number of servers to be called, and a pointer to a client
supplied handler routine (see section 5.4.1 for more detailed information). Using the argument
descriptors, MRPC_ MakeMulti packs the supplied server arguments into an RPC2 request buffer and
creates a data structure containing call specific information and a pointer to the client handler
routine. It then makes the MultiRPC call, and passes the final return code back to the client when the

call terminates.

OUT and IN - OUT parameters must be supplied in the form of arrays of pointers to the appropriate
argument types. The parameter interface specifications are discussed in sectin 5.4. The size of the
array is dependent on the number of servers designated by the client. For IN - QUT parameters it is
only necessary to actually fill in a value for the first element of the array, although storage must be
properly allocated for all of the elements.

101

5.3.3.3. MRPC_UnpackMulti

MRPC__UnpackMuiti is a RPC2 library routine which functions as the other half of MRPC__MakeMulti.
It unpacks the contents of the response buffer into their appropriate places in the client’s arguments,
and calis the client handler routine. It returns wi'th the return code supplied by the client handler
routine. If the RP2Gen interface is not used, the client must supply a pointer to a routine with the

specified interface (see section 5.4.1) to RPC2_MultiRPC.

5.3.3.4. HandleResult

HandleResult is a place holder used to refer to the client-supplied handlef routine. It is called once for
each connection by MRPC_ UnpackMulti with the newly arrived server reply. It can perform as much
or as little processing as the client dveems necessary, and controls the continuation or termination of
the MultiRPC call with its return code. The argument specifications of this routine are explained in

detail in section 5.4.1.

5.3.4. Error Cases and Abnormal Behavior

The semantics for errors in the MultiRPC case are somewhat different from those in the RPC2 case.
Since several messages are being transmitted in the same call, an error on one connection shéuld not
necessarily cause the call to terminate. The client does, however, need to be informed of error states
on any of his connections. The handler routine will be called at most once for each connection
submitted to the MultiRPC call, either with an error condition or with the server response. No packet

will actually be sent on any connection for which an error was detected in the course of processing.

As mentioned earlier, the additional flexibility provided by the client handler routine incurs some risks.
RPC2 makes no guarantees as to the state of the connections which are not examined because of an
abort by the client. When the client returns an abort code, there may still be some outstanding server
replies. RPC2_MultiRPC increments the connection sequence number and resets the connection
state, thus pretending that the response in question was actually received. This allows the system to

continue with normal operation.

The risks of this approach can be illustrated with some examples. A client makes a MultiRPC request
R1 to 3 servers, and terminates the call after two of the server responses have been received. At
server S3, the request has been queued because the server was busy with a previous request. The
client then decides to make another MultiRPC request R2 on a set of servers that includes server S3
from the first call. $3 then receives R2, tagged with the next logical sequence number, on the same
connection as R1. If S3 has not yet begun processing R1, then it will throw R2 away because it

recognizes that its sequence number is too high. S3 will then proceed to process R1 and send the

102

response back to the client; the client, however, will promptly throw the response away as a retry
because the semantics of his abort command was to pretend that the response to R1 from S3 had

already arrived.

Now, assuming that the client chooses to terminate his second call before S3 returns', the client and
S3 are completely out of synch. $3, having thrown away R2, will always be expecting a packet with
R2’s sequence number; the client, however, has already incremented the connection at the
termination of R2. In order to keep the connection from hanging around uselessly, S3 will send a
RPC2_NAK return code if it ever receives a request R3 on the same connection with a sequence
number greater than R2. This will kill the connection, forcing the client to rebind if he wants to

continue communicating with S3.

Another risk associated with the use of abort is the risk of not identifying dead connections. If a server
S2 is dead but the client always chooses to abort his MultiRPC call before a response from S2

arrives, RPC2 may not have time to notice that the connection is dead.

These probiems are a result of the clieni’s ability to ignore the responses on some connections in a
MultiRPC call, and will generally only manifest themselves in a case where a server is forced to queue
a request because it is busy processing an earlier request. This means that the MultiRPC call should
be used with caution in cases where simultaneous binding to a single site might result, although the
severity of the problem can be lessened by providing a greater number of LWPs at the single site. It is
important to note that these problems arise only in the case where the client chooses to abort the call
before all replies have been received. However, the explicit NAK by the server at least gives the client
the opportunity to learn that something has gone wrong with the connection and act accordingly.

5.4. C Interface Specification

The following table shows the C type interface between the client routine and MRPC_ MakeMulti for
all the possible combinations of legal parameter declarations and types. In all cases it is the client’s
responsibility to allocate storage for all parameters, just as in the RPC2 case. For all types, IN
parameters are handled the same as in the single MakeRPC case. For OUT and IN - OUT parameters,
arrays of pointers to parameters must be supplied in order to hold the multiple server responses. The
array for each parameter must contain the same number of items as the number of servers contacted,
and they must be filled sequentially starting from element zero. For all IN - OUT parameters except for
SE_Descriptors, only the first element of the array need be filled in. For SE_Descriptors, all

elements must be filled in. The following table should be consulted for specific formats.

103

RPC2__CountedBS
RPC2_BoundedBS
RPC2_ EncryptionKey
SE_ Descriptor

unsigned char *
RPC2__CountedBS *
RPC2_BoundedBS *
RPC2__EncryptionKey

unsigned char *[]
unsigned char **[]
RPC2_CountedBS *[]
RPC2_BoundedBS *[]
RPC2_EncryptionKey *[]

RPC2 Type C Declaration
IN ouT INOUT
RPC2_Integer long long *[] long *[]
RPC2_Unsigned unsigned long unsigned long *[] unsigned long *[]
RPC2_Byte unsigned char
RPC2_String

unsigned char *[]

unsigned char **[]
RPC2_CountedBS *[]
RPC2_BoundedBS *[]

RPC2_EncryptionKey *[]
illegal illegal SE_ Descriptor *[]
RPC2_Enum name name name *[] name *[]
RPC2__Struct name name * name *[] name *[]
RPC2_Byte namel...] name name *[] name *[]

The client is only responsible for understanding the parameter type interface to the MakeMulti and
HandleResult routines, and for allocating all necessary storage.

MRPC__UnpackMulti are included in the RPC2 libraries.

MRPC__MakeMulti and

104

5.4.1. MultiRPC Call Specifications
MRPC_MakeMulti

Pack arguments and initialize state for RPRC2_MultiRPC

Call: »
long MRPC_MakeMulti(in long ServerOp, in ARG ArgTypes(], in long HowMany,
in RPC2_Handle CIDList(f], in long (*HandleResuit)(),
in struct timeval *Timeout, <Variable Length Argument List))

Parameters:

ServerOp
For server routine foo, "foo ~ OP". RP2GEN generated opcode, defined in include file. Note that subsystems
with overlapping routine names may cause problems in a MakeMulti calt.

ArgTypes
For server routine foo, "foo~ PTR". RP2GEN generated array of argument type specifiers. A pointer to this
array is located in the generated include file f00.h.

HowMany
How many servers are being called

CIDList

Array of connection handles, one for each of the servers

HandleResult
User procedure to be called after each server response. Responses are processed as they come in. Client can
indicate when he has received sufficient responses (see below). MRPC_MakeMuiti will not return the server
responses.

Timeout
User specified timeout. Note that the default timeout set in the .rpc fite will not be active here: a NULL value will
be passed through to MultiRPC, where it will indicate infinite patience as long as RPC2 believes that the server
is alive. Note that this timeout value is orthogonal to the RPC2 internal timeout for determining connection
death,

{Variable Length Argument List>
This is just the list of the server arguments as they are declared in the .rpc2 file. It is represented in this form
since each call will have a different argument list.

Completion Codes:

RPC2_SUCCESS
All went well

105

RPC2_TIMEOUT

The user specified timeout expired before all the server responses were received

RPC_FAIL

For all OUT or IN - OUT parameters, an array of HowMany of the appropriate type should be allocated
and supplied by the client. For example, if one argument is an OUT integer, an array of HowMany
integers (i.e. int foo[HowMany]) should be used. For structures, an array of structures and NOT an
array of pointers to structures should be used. IN arguments are treated as in the RPC2__MakeRPC
case.

106

MRPC_UnpackMulti

Unpack server arguments and call client handler routine

Cali:
long MRPC__UnpackMulti(in long HowMany, in RPC_Handle ConnHandleList,
in out ARG_INFO *Arglrifo, in RPC__PacketBuffer *Response,
in long rpcval, in long thishost) :

Parameters:
HowMany

How many servers were included in the MultiRPC call

ConnHandlelist
Array of HowMany connection ids

Arglinfo
Pointer to argument information structure. This pointer is the same one passed in to MultiRPC, so for the
non-RP2Gen case its type is determined by the client.

Response
RPC2 response buffer

rpcval .
Individual connection error code or server response code

thishost
Index into ConnHandleList to identify the returning connection

Completion Codes:'

0 Continue accepting and processing server responses

-1 Abort MultiRPC call and return

This routine is fixed in the RP2Gen case, and can be ignored by the client. For the non-RP2Gen case,
a pointer to a routine with the argument structure described must be supplied as an argument to
RPC2__MultiRPC. The functionality of such a client-supplied routine is unconstrained, but note that
the return codes have an important effect on the process of the MultiRPC call.

107

HandleResult

Process incoming server replies as they arrive

Call:
long HandleResult(in long HowMany, in RPC2_Handle ConnArray[], in long WhichHost,
in long rpcval, <Variable Length Argument List>)

Parameters:

HowMany .
number of servers from MRPC_MakeMulti call

ConnArray
array of connection ids as supplied to MRPC_ MakeMulti

WhichHost .
this is an offset into ConnArray and into any OUT or IN - OUT parameters. Using this to index the arrays wil
yield the responding server and its corresponding argument values.

rpcval
this is the RPC2 return code from the specified server

(Variable Length Argument List>
These should be specified as described above for MRPC_MakeMulti

Completion Codes:

0 Continue processing server responses

-1 Terminate MRPC_ MakeMulti call and return

This routine must return either 0 or -1. A return value of zero indicates that the client wants to
continue receiving server responses as they come in (normal case). A return value of 1 indicates that
the client has received enough responses and wants to terminate the MakeMulti call (in which the
client is still blocked). This allows the client to call a large number or servers and terminate after the
first n responses are received.

Note that the name of- this routine is arbitrary and may be determined by the client. RPC2_MultiRPC
sees it only as a pointer supplied as an argument to MRPC_MakeMulti. The parameter list is
predefined, however, and the client must follow the structure specified here in writing the routine.

108

109

Appendix |
Usage Notes for the ITC

The .h files (rpc2.h, se.h) are in /cmu/itc/nfs/include.

There are actually two versions of the library: and the normal one, librpc2.a, and one with debugging
completely turned off librpc2_s.a. Using librpc2_s.a will make your final load module considerably
smaller, but will produce no debugging information at all'. For the Suns, these libraries are in
/cmu/itc/nfs/lib. For any other supported machine the libraries will be in
/cmu/itc/nfs/machine /lib.

Rp2gen is in /cmu/itc/nfs/bin for the Suns and in /cmu/itc/nfs/machine/bin for any other

supported machine.
The currently supported machines are Suns, Vaxes, and the IBM PC-RT.

The directory /cmu/itc/nfs/release/rpc2 contains a copy of the sources used to build the current
version of RPC2. Use this in conjunction with dbx, or if you just wish to examine the source
corresponding to the released version. The sources of the immediately preceding released version of
RPC2 are in /cmu/itc/nfs/oldv/rpc2.

Compile thus:

NFS = /cmu/itc/nfs
cc -g -I$(NFS)/include <<your files>> $(NFS)/lib/librpc2.a ${NFS)/lib/Ilwp.o\
$(NFS)/lib/timer.o ${NFS)/lib/iomgr.o -0 <<output file>>

Stack checking is possible. Refer to the LWP manual for details.

The following external variables may be set for debugging:

RPC2_Debuglevel: values of 0, 1, 10 and 100 are meaningful. Initial value is 0.
RPCZ_Perror: set to 1 to see Unix error messages on stderr. Initial value is 1.
RPC2_Trace: set to 1 to enable tracing. 0 turns off tracing. Initial value is 0.

Setting the hashmark variable to a non-zero character in DumbFTP descriptors will allow
you to watch the progress of file transfers.

1Tracing will still work.

110

111

Appendix Il
Remote Site and Communication Failures

Two hazards face the user of an RPC package:

1. The communication medium may fail.

2. The peer process at a remote site may crash.

A key problem in RPC is reliably detecting either of these events when an RPC call is in progress.
Detection of failures in the absence of RPC calls in progress is an orthogonal issue, and can be

reduced to this issue by generating artificial keepalive RPC calls.

Ideally, the detection of these failures should be independent of the specific RPC call in progress. In
other words, as long as we are sure that communication medium is not broken and that the remote
server process is alive, we should not care how long it takes to receive the reply to an RPC request.
At the same time failures should be detected as soon as possible, so that suitable recovery actions

can be performed. The following paragraphs show this goal is achieved in RPC2,

When the RPC2 runtime system receives a retry packet for a request it is already working on, it

responds with a Busy packet. There are two constants B and N. These constants are set in

total
RPC2_ Init()], with suitable defaults built in. These semantics of these two constants are:

1. Communication failure is declared if N successive retries of a packet fail to provoke any
kind of response. The response may be a reply, a Busy packet, an acknowledgement if
the packet being sent is a reply, or an implicit piggy-backed acknowledgement.

2. Site failure is declared if silence is observed for a total period of time in the range B to

2Btotal *

total

RPC2 does not try to accurately distinguish between site failure and communication failure: one may
masquerade as the other, and a single failure RPC2_DEAD refiects both cases. Loosely speaking, N

characterises the probability of packet loss in the communication medium, while B characterises

total
how sluggish a server may get before it is declared dead.

Given B, N N =

B, otat N9 B, <B, . Each B, is a retry interval and the progressive lengthening of these intervals is to

and N, we can determine B, B, .. By such that B, + B, + B, .. B

allow for transient overloads at remote sites. In RPC2, B;,; = 2B, In practise we may place a

minimum bound on the values for B, to avoid send out packets too close to each other.

12

The RPC2 packet transmission algorithm is based on these concepts and is outlined as follows:

while (TRUE)

{

for(i = 0;i<N;i+ +)
{
send(packet);
awaitresponse(Bi);
if (reply or lastack arrived) quit;
if (BUSY arrived) break;
}

if (i>= N) goto TimeOut;

sleep(B

}

total);

TimeOut: mark connection RPC2__DEAD;

mark all other connections to this (host, portal) pair as RPC2_DEAD;

Failure is detected in time Blotar if the remote site dies just after the sleep() call ends. If the failure
occurs immediately after the remote site sends a Busy packet, failure is detected after a total
of 2B,,,.r These cases bound the time it takes to detect failure. Failure is also declared if all N of the

retries are lost due to communication failure. This will occur in a time exactly equal to Btota/.

How does this mesh with side effects? The above algorithm will work regardless of the duration of a

side effect as long as Busy packets are sent out by that server at intervals of 8 Note that it is

total’
immaterial whether the side effect involves asynchronous Unix processes or not. If such processes
are involved their failure will be detected (perhaps as RPC2_DEAD failures or in other ways) and

reported by the remote server explicitly as RPC2_SEFAIL2. Only if the remote server is itself dead or

113

unreachable is the RPC return code RPC2_DEAD and this will occur no later than ZBtofa, after the
failure. In DUMBFTP, side effect failure is detected because it is implemented using RPC2. In cases
where TCP or other protocols are being used for side effects, the failure detection mechanisms of

these protocols will be relied upon to detect side effect failure.

Tables 1I-1 and 1I-2 show how the N retransmissions take place within B for typical values of N and

total’
B, o The original attempt is at time 0. The numbers in parentheses indicate the time (B)) that RPC2
waits after the transmission of the last retry, before declaring failure. A lower limit of 500 milliseconds

for the retry interval is assumed.

114

")
15 secs 30 secs 45 secs 60 secs
1 retries 5.00 (10.00) 10.00 (20.00) 15.00 (30.00) 20.00 (40.00)
2 retries 2.14 4.29 (8.57) 4.29 8.57 (17.14) 6.43 12.86 (25.71) 8.57 17.14 (34.29)
3 retries 1.00 2.00 4.00 (8.00) 2.00 4.00 8.00 (18.00) 3.00 6.00 12.00 (24.00) 4.00 8.00 16.00 (32.00)
4 retries 0.500.97 1.94 3.87 0.97 1.94 3.877.74 1.452.905.81 11.61 1.943.87 7.74 15.48
(7.73) (15.48) (23.23) (30.97)
S retries 0.50 0.50 0.95 1.90 0.50 0.95 1.90 3.81 0.711.432.86 5.71 0.951.903.81 7.62
3.81(7.33) 7.62 (15.21) 11.43 (22.86) 15.24 (30.48)
6 retries 0.50 0.50 0.50 0.94 0.500.50 0.94 1.89 0.500.71 1.42 283 0.500.94 1.89 3.78
1.89 3.78 (6.89) 3.78 7.56 (14.83) 5.67 11.34 (22.53) 7.56 15.12 (30.21)
7 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.94 0.500.500.71 1.41 0.500.50 0.94 1.88
0.94 1.883.76 (6.41) 1.88 3.76 7.53 (14.38) 2.825.65 11.29 (22.12) 3.76 7.53 15.06 (29.82)
8 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.500.50 0.50 0.70 0.50 0.50 0.50 0.94
0.500.94 1.883.76 . 0.94 1.88 3.76 7.51 141282564 11.27 1.883.76 7.51 15.03
(5.92) (13.91) (21.66) (29.38)
9 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.500.94 1.88 0.500.94 1.88 3.75 0.70 1.41 2.82 563 0.94 1.88 3.75 7.51
3.75 (5.43) 7.51(13.42) 11.26 (21.18) 15.01 (28.91)
10 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.94 0.50 0.50 0.94 1.88 0.500.70 1.41 2.81 0.500.94 1.88 3.75
1.88 3.75 (4.93) 3.75 7.50 (12.93) 5.63 11.26 (20.69) 7.50 15.01 (28.42)

Table 11-1: Retry Constants (B‘otal = 15 to 60 seconds (0.50 secs lower limit))

115

90 secs

120 secs 240 secs 300 secs
1 retries 30.00 (60.00) 40.00 (80.00) 80.00 (160.00) 100.00 (200.00)
2 retries 12.86 25.71 (51.43) 17.14 34.29 (68.57) 34.29 68.57 (137.14) 42.86 85.71 (171.43)
3 retries 6.00 12.00 24.00 8.00 16.00 32.00 16.00 32.00 64.00 20.00 40.00 80.00
(48.00) (64:00) (128.00) (160.00)
4 retries 2.905.81 11.6123.23 3.877.74 15.48 30.97 7.74 15.48 30.97 61.94 9.68 19.3538.71 77.42
(46.45) (61.94) (123.87) (154.84)
5 retries 143286571 11.43 1.90 3.817.62 15.24 3.817.62 15.24 30.48 4.76 9.52 19.05 38.10
22.86 (45.71) 30.48 (60.95) 60.95 (121.90) 76.19 (152.38)
6 retries 0.711.42283567 0.94 1.893.78 7.56 1.893.78 7.56 15.12 2.36 4.729.45 18.90
11.34 22.68 (45.35) 15.12 30.24 (60.47) 30.24 60.47 (120.94) 37.80 75.59 (151.18)
7 retries 0.500.71 1.412.82 0.500.94 1.883.76 0.94 1.883.767.53 1.18 2354.719.41
5.65 11.29 22.59 7.53 15.06 30.12 15.06 30.12 60.24 18.82 37.65 75.29
(45.03) (60.21) (120.47) (150.59)
8 retries 0.50 0.50 0.70 1.41 0.500.50 0.94 1.88 0.500.94 1.883.76 0.591.172.354.70
2.825.64 11.27 22.54) 3.76 7.51 15.03 30.06 7.51 15.03 30.06 60.12 9.39 18.79 37.57 75.15
(44.62) (59.82) (120.20) (150.29)
Qretries 0.50 0.50 0.500.70 0.500.50 0.50 0.94 0.50 0.500.94 1.88 0.500.591.17 2.35
1412825.63 11.26 1.883.757.51 15.01 3.757.51 15.01 30.03 4.699.38 18.77 37.54
22.52 (44.16) 30.03 (59.38) 60.06 (119.82) 75.07 (149.94)
10 retries 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.94 0.50 0.500.59 1.17

0.70 1.41 2.815.63
11.26 22.51 (43.68)

0.94 1.88 3.75 7.50
15.01 30.01 (58.91)

1.88 3.75 7.50 15.01
30.01 60.03 (119.38)

2.34 4.699.38 18.76
37.5275.04 (149.51)

Table 11-2: Retry Constants (Btot a = 9010 300 seconds (0.50 secs lower limit))

16

117

- Appendix I
Implementation Notes

Some of these refer to bugs, others to restrictions, still others to random useful observations. These
are specific to the current state of the RPC2 implementation and are very likely to change in the near
future, as refinements are made to RPC2

1. RPC2 runs on Suns, Vaxen and the IBM PC-RT machines.
2. Only one portal in RPC2__Init.

3. Only DumbFTPD currently supported.

4. getsubsysbyname() is a fake routine. It knows about "Vice2-FileServer" and "DumbFTP-
Server" and "Vice2-CallBack".

5. RPC2__MultiRPC not implemented yet.

118

19

‘Appendix IV
Recent Changes

This appendix summarizes the differences between the latest release of RPC (i.e. corresponding to

this manual) and the previous release.

This is release 7 (Version 7.0). The immediately preceding release was 6 (Version 6.2).

Changes visible to the user are:

1. There is a new call RPC2__EnabIe() which you must use on the server side to enable
connections after they are established. This is done for you by RP2Gen if you use it.

2. You must now call XXX_Activate() to activate each type of side effect XXX. If you do not
call this routine code for that side effect will not be linked in. For example you must call
DFTP__Activate() to enable the dumb file transfer protocol.

3. Each side effect XXX now has a XXX_SetDefaults() routine which sets defaults
initialization values on a variable of type XXX Initializer.

4. RPC2__GetPeerinfo() now returns information in a structure rather than as a long
sequence of arguments.

5. RPC2_SendResponse no longer has a SE__Descriptor argument.
6. You no longer have to include dftp.h if you are using the DFTP side effect routines.

Changes internal to RPC2 and invisible to the user:

1. Support is being added for SFTP, the faster file transfer protocol. However, it will not be
enabled by default. The next release will have it enabled.

120

121

Appendix V
Summary of RPC-related Calls

Note: The numbers in square brackets indicate the page on which the call is described.

122

References

[1] Jonathan Rosenberg, Larry Raper, David Nichols, M. Satyanarayanan.
LWP Manual
Information Technology Center, CMU-ITC-037, 1985.

[2] M.Satyanarayanan.
RPC Manual
Information Technology Center, CMU-ITC-011, 1984.

List of Tables

Table II-1: Retry Constants (Btotal = 15 to 60 seconds (0.50 secs lower limit)) 114

Table l1-2: Retry Constants (Btot al = 90 to 300 seconds (0.50 secs lower limit)) 115

[22]

[25]

[27]

[29]
[30]

[31]

[34]

[35]

(36]

[37]

[38]

[40]
[41]
[42]

[43)

RPC2_Bind(in long SecurityLevel, inlong EncryptionType,

in RPC2__Hostldent *Host, in RPC2__Portalldent *Portal,

in RPC2_Subsyslident *Subsys, inlong SideEtfectType,

in RPC2_CountedBS *Clientldent, in RPC2_EncryptionKey *SharedSecret,
out RPC2_Handle *ConnHandle)

RPC2_MakeRPC(in RPC2_Handle ConnHandle, in RPC2_PacketBuffer *Request,
in SE_Descriptor *SDesc, out RPC2_PacketBuffer **Reply,
in struct timeval *Patience, in long EnqueueRequest)

RPC2__MultiRPC(in long HowMany, in RPC2_Handle ConnHandlelList[],
in RPC2_PacketBuffer *Request, in SE__Descriptor SDescl.ist[],
in long (*UnpackMulti)(), in out ARG_INFQ *Arginfo, in struct timeval *Patience)

RPC2_Export(in RPC2_Subsysldent *Subsys)
RPC2_DeExport(in RPC2_Subsysident *Subsys)

RPC2_GetRequest(in RPC2_RequestFilter *Filter,

out RPC2_Handle *ConnHandle, out RPC2_PacketBuffer **Request,

in struct timeval *Patience, in long (*GetKeys)(), in long EncryptionTypeMask,
in long (*AuthFail)())

RPC2_Enable(in RPC2_Handle ConnHandle)

RPC2_SendResponse(in RPC2_Handle ConnHandle,
in RPC2_PacketBuffer *Reply)

RPC2__InitSideEffect(in RPC2_Handle ConnHandle, in SE_Descriptor *SDesc)

RPC2_CheckSideEffect(in RPC2__Handle ConnHandle,
inout SE_Descriptor *SDesc, in long Flags)

RPC2_Init(in char *Versionld, in long Options, in RPC2_Portalldent *PortalList(],
in long HowManyPortals, in long RetryCount, in struct timeval *KeepAliveinterval)

RPC2_Unbind(in RPC2_Handle ConnHandle)
RPC2_AllocBuffer(in long MinBodySize, out RPC2_PacketBuffer **Buff)
RPC2_FreeBuffer(inout RPC2_PacketBuffer **Buff)

RPC2_GetPrivatePointer(in RPC2_Handle WhichConn, out char **PrivatePtr)

[44]
[45]
[46]
[47]
(48]
[49]
[50]
[51]
[52]
(53]
[59]
(60}
[61]
[62]

(63]

[64]

[65]

[66]

[67]

[68]

RPC2__SetPrivatePointer(in RPC2_Handle WhichConn, in char *PrivatePtr)
RPC2_GetSEPointer(in RPC2_Handle WhichConn, out char **SEPtr)
RPC2_SetSEPointer(in RPC2_Handle WhichConn, in char *SEPtr)
RPC2_GetPeerInfo(in RPC2_Handle WhichConn, out RPC2_Peerinfo *Peerinfo)
RPC2_LamportTime() |

RPC2_DumpState(in FILE *OutFile, in long Verbosity)
RPC2_InitTraceBuffer(in long HowMany)

RPC2_DumpTrace(in FILE *QutFile, in long HowMany)

XXX_SetDefaults(in XXX_initializer *Initializer)

XXX_Activate(in XXX _Initializer *Initializer)

SE_Init()

SE_Bind1(in RPC?_HandIe ConnHandle, in RPC2_CountedBS *Clientldent)
SE_Bindé(in RPCZ_HandIe ConnHandle)

SE__Unbind(in RPC2__Handle ConnHandle)

SE_NewConnection(in RPC2_Handle ConnHandle,
in RPC2_CountedBS *Clientldent)

SE_MakeRPC1(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2_PacketBuffer **RequestPtr)

SE_MakeRPC2(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
inout RPC2__PacketBuffer *Reply)

SE_GetRequest(in RPC2__Handle ConnHandle,
inout RPC2_PacketBuffer *Request)

SE_InitSideEffect(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc)

Vi

SE_CheckSideEffect(in RPC2_Handle ConnHandle, inout SE_Descriptor *SDesc,
in long Flags) '

[69]
SE_SendResponse(in RPC2__Handle ConnHandle,
in RPC2_PacketBuffer **ReplyPtr)
[70]
SE_PrintSEDescriptor(in SE_Descriptor *SDesc, in FILE *outFile)
[71]
SE_SetDefaults(XXX_Initializer *Sinit)
[72]
SE__Activate(in XXX_initializer *Sinit)
[104] .
MRPC__MakeMulti(in long ServerOp, in ARG ArgTypes(], in long HowMany,
in RPC2_Handle CIDList[], in long (*HandleResult)(), in struct timeval *Timeout,
<(Variable Length Argument List>)
[106]
MRPC_UnpackMulti(in long HowMany, in RPC_Handle ConnHandleList,
in out ARG_INFO *Arginfo, in RPC_PacketBuffer *Response, in long rpcval,
in long thishost)
[107] ’

HandleResult(in long HowMany, in RPC2_Handle ConnArray(],
in long WhichHost, in long rpcval, <Variable Length Argument List>)

