CMU-ITC-84-011

D0 User dlanual

CMU-ITC-84-011
10 January 85 05:02

M. Satyanarayanan

Information Technology Center
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

NOTIZ: This document is subject to revision

ifable of Conients
Proface 1
1. ey Design Choices 2
1.1. An Example of a Trivial Client 4
1.2. An Example of a Trivial Forking Server }
1.3. An Example of a Trivial Nonforking Server 5
1.4. Constants 6
1.5. Types 8
1.6. Data Structures 9
2. Bulk-Transfer Protocols 10
2.1. Protocol EXPBULKPROTO1 10
2.1.1. Constants 10
2.1.2. Format of Bulk Descripto 10
3. Client-related RPC Calls ' 12
4. Server-related RPC Calls 18
Appendix |. Summary of RPC-related Calls 27

Appendix Il. Usage Notes for the ITC SUN Systems 29

Praiace

This is an outline of the Programmer’s Manual for the VICE RPC mechanism. In its present form its
primary purpose is to define the programming interface for an initial implementation. Some changeg
are likely to be made as unforseen issues are encountered during implementation. Experience with

the inttial implementation may necessitate further changes. Hence this interface should NOT be

assumed to be rigid and immutable in the near future.

The key design choices are summarized in Section INTRO. This document, in conjunction with the
other RPC documents [Satyanarayanan83a, Satyanarayanan83b], will be used as the basis of a

definitive and comprehensive document in the future.

1. ey Dasign Choices

e The concepts of “server’” and “client” are uscd without further refinement. Usually, VICE
subsysiems will be servers and workstations will be clients. When VICE nodes
communicate with each other, one of them will be a server and the other a client.

o Clients and servers are assumed to be Unix 4.2BSD processes. The initial
implementation will be built on Unix sockets. Extension to non-Unix clients will be
addressed later.

= A Service is uniquely identified in the network by a Subsystem Name-Host Name pair.
e A server can either be of type Forking or a Nonforking. In the former case, a separate
Unix process is forked to deal with each new client. In a nonforking type of server, a

single Unix process services all clients.

s In a forking type of server, the parent is called a Listening Server, while each of the
childrenis called a Working Server.

<

This terminology can also be extended to a nonforking type of server. Such a server
starts out as a listening server. When it accepts a client, it enters a state where il behaves
as a working server. When service to this client is terminated, the server returns to a state
where it behaves as a listening server. In the rest of the document, in the context of
nonforking servers, the terms “'Listening Server’” and "“"Working Server” will be used to
connote these distinct states.

» There is exactly one listening server in the network for each service.
o A process can be the listening server for at most one service. It may not be a working

server for any other service. A process may be the client of many services. Working and
listening servers may themselves be clients of other services.

In a client, the binding to a service is identified by a Connection. in a working server, the
client is implicit. When a client forks, the connections are NOT inherited by the child.
Similarly, a working server does NOT inherit any of its parent’s connections. The only
exception to this rule is that the connections of a nonforking server are available,
regardless of whether it is functioning as a working server or listening server.

As used in this context, Remote Procedure Call (RPC) is a paradigm representing a style of

communication between a client and a working server, and has the following properties:

e There is minimal effort to integrate RPC features into the programming language in use at
the client and server sites. A set of network-wide data types and a runtime library is used
to effect the implementation. A companion document entitled "RPGen: A Remote
Procedure Call Generator” describes a stub-generator for use with the RPC runtime
system described here.

& Interactions consist of an alternating sequence of brief requests by the client, and brief
replies by the server.

> Each request concists of an Operation and a set of Paramicters.
o A reply consists of a Return Cod= and a sct of resuit parameters.

2 A possible side-effect of a request is the transmission of a large object, generically
referred to as a Bulk-Unit. For example, when dealing a file server, an entire file may
retrieved by an appropriate request. Mechanisms used to transfer bulk-units are referred
to as Bulk-Transfer mechanisms. Each client-server connection deals with one kind of
bulk-umt and an associated bulk-transfer mechanism.

s RPCs are synchronous with respect to the client and server. Bulk-transfers occur
between the relinquishing of control by the server and the resumption of execution by the
client.

o An RPC data type called a Bulk-Descriptor acts as a placeholder for a bulk-unit in a
paramater list. It contains the intormation needed to effect a bulk-transfer of the
appropriate object.

L4

A server detects server-client communication failure synchronously on RPC_GetRequest
and RPC__SendResponse calls. There is no way for the server to detect situations where
the communication link is healthy but the client process is sick {e.g., in an infinite loop).

o A client also detects server-client communication failure synchronously, on a
RPC_MakeRPC call. To permit detection of sick servers, a timeout mechanism is
provided on RPC__MakeRPC. If a client desires further reassurance, it may periodically
generate durmmy RPC requests on each of its connecticns. By convention, all servers
recognize and respond immediately to the opcode Ping. No automatic pinging is done
by the RPC stubs.

A Security Levelis associated with each connection between a client and a server:

o Currently three levels of security are supported:

o neither authenticated nor secure
o authenticated but not secure
o both authenticated and secure.

o Authenticated in this context means that the client and server start out as mutually
suspicious parties and exchange credentials during the establishment of a connection. A
secret encryption key, known a priori only to the server and client is used in
authentication handshakes.

e Secure means that transmitted data is immune to eavesdropping and undetected
corruption. This is achieved by encryption, using a session key generated during
connection establishment. No attempt is made, however, to guard against traffic analysis
attacks.

» The RPC package makes no assumptions about the format of client identities or about

w

the mapping between clients, servers and sharcd socret koys. A sorver-supplied
Caliback Procedure is invoked during the authentication soquence to validate client
identities and obtain keys.

1.1. An Example of a Trivial Client

main()
{
intet, c2, ¢3; /*to hold connectionids*/
/* random initial processing */
RPC__Clientinit{ / * appropriate arguments */);

ct = RPC_Bind(/* arguments for Service 1 */};
c2 = RPC_Bind(/* arguments for Service 2 */};
c3 = RPC_Bind(/* arguments for Service 3 */});

while (WorkExists)
{

/* random processing */
RPC_MakeRPC(c1, /* appropriate arguments */),

/* other processing; calls via connections ¢2 and ¢3 as needed */

}

RPC__UnBind(c1);
RPC__UnBind(c2);
RPC__UnBind{c3);

}

1.2. An Example of a Trivial Forking Server

main()

{

int lamAWorker;

/* random initial processing */
RPC__Serverlnit(/* service name */, RPC_FORKINGSERVER);

while (TRUE)
{

/* random processing */

RPC__Accept(lamAWorker,/* other arguments */);
if (lamAWorker = = 0) break;
/* else | am the listener */

/* other processing; then parent goes back and listens for more */

}

/* Only a worker would get here */
while (TRUE)
{

/* random processing */

RPC__GetRequest(/* appropriate arguments /Y,
/T process this requaoest and il in bulk doscriptor */
RPC_SendReply(/* appropriste arguments */Y;

if (/* this was a Disconncct request /) break;

}

RPC__EndWork();
}

1.3. An Example of a Trivial Nonforking Server

main{)

{

/* random initial processing */
RPC_Serverlnit(/* service name */, RPC_NONFORKINGSERVER);

while (TRUE)
{

/* lam alistener */

RPC_Accept(lamAWorker,/* other arguments */);

while (TRUE)
{

/* lam now a worker */
/* random processing */

RPC_GetRequest(/* appropriate arguments */);
/¥ process this request and lill in bulk descriptor */
RPC__SendRepiy(/* appropriate arguments */);

if (/" this was a Disconnect request */) break;
}
RPC_EndWork(};
}
}

C

Editorial Mote:

The purpose of this section is to describe the physical layout of datain transmissions between client
and server RPC runtime systems. The runtime system deals with conliguous Request and

Response Buffers, each of which consists of:

a Prefix which is of fixed length, and is used internally by the runtime system. It is NOT
transmitted.

a Header which is also of fixed length, and whose format is understood by the runtime
system. The opcode associated with the RPC, sequencing information, and the
completion code returned by the remote site are the kinds of information found
here.

a Body of arbitrary size. it is NOT interpreted by the runtime system, and is used to
transmit the input and output parameters of an RPC.

For convenience, the following sections describe RPC runtime data types and data structures using C
definitions. C syntax is being used here as a means of specification, in conjunction with the

comments.

These definitions are found in a the C header file "/usr/local/rpc/include/rpc.h”. Those header files

are the authoritative source of these definitions, and will be more up-to-date than this manual.

1.4. Constants

#define RPC__VERSION "$Header: rpcglobs.mss,v 1.3 84/04/13 15:25:01 satya Exp $"
/v
The above string is in theory a random magic string. In practice it is the header inserted by the RCS system to uniquely identify
this revision level. It is used in RPC initialization and bind calls to ensure that the client runtime system, server runtime system,
and the header files on both sides are all mutually consistent

*/
#define BUFFPREFIX 16 /*Size of buffer prefix used by stub.*/
/‘
The following is the minimum sized buffer to hold both requests and responses:
t/ :
define MINBUFFSIZE (BUFFPREFIX + \
(sizeof(struct RPC__ReqgHdr) < sizeof(struct RPC_RespHdr)\
2 sizeof(struct RPC__RespHdr) : sizeof(struct RPC__ReqHdr)))
#define RPC_FORKINGSERVER 341 /* random on purpose */
define RPC_NONFORKINGSERVER 1123 /* random on purpose */
/'

The following constants are used to indicate the security-level of RPC connections. They are likely to be extended in future.
*/
define RPC_OPENKIMONO 938 /*Neither authenticated nor encrypted*/

#detne BRPC_OMLYAUTHENTICATE 12 St Authenticatoed but not encryptod*/
define RPC__SECURE 33291 ZrAuthenticatnd and encryptod */

define RPC_KEYSIZE 8 /*Size in bytes of the encryption heys used in RPC*/

/O
RPC procedure return codes:
These may also oceur in the RPC_ReturnCode and RPC__ButkReturnCode lields of reply headers: valuos of 0 and below in
those lields are rescrved for BPC stub use. Codes greater than 0 are assigned and managed by subsystems.)
v/
deline RPC_SUCCESS 0
#define RPC_FAIL - 1
define RPC__MOCONNECTION -2
deline RPC_TIMEQUT -3
define RPC_BULKSUCCESS 0
define RPC_BULKFAILURE -4
detine RPC__BULKTRAGEDY -5
define RPC_NOBINDING -6
define RPC_DUPLICATESERVER -7
#detine RPC__ALREADYLISTENER -8
define RPC_NOTLISTENER -9
define RPC_NOTWORKER -10
detine RPC__ALREADYWORKER -11
#define RIPC_NOTCLIENT -12
define RPC_TOOLONG -13
define RPC_WHRONGVYERSION -14
define RPC__NOTAUTHENTICATED -15
define RPC_CLOSECONNECTION -16
/'
I will think up more
*/

/O
Universal opcode values: opcode values equal to or less than 0 are reserved. Values greater than 0 are usable by mutual
agreement between clients and servers. This appiies to both Subsys and Opcode fields. fields in the RPC_ReqHdr.
*/
#define PING -1 /*All servers should return RPC_SUCCESS upon seeing this
: request. Used for end-to-end pinging by clients.*/

/’
Bulk-transfer protocol identification.
*
/
define EXPBULKPROTO1 23 /*random on purpose*/
/’

RPC server options:
These are used as bit settings in the ServerOptions field of RPC_Serverlnit.)

*/
define RPC__REVIVESERVER Ox1 /*This process is being restarted as a listening server. Reset
internal data structures, and force Unix to reuse port numbers.
The latter function is important when a server process is killed
and a new one started in its place.*/
/9

Debugging aids:
The global external variables RPC - ServerDebuglevel and RPC - ClientDebuglLevel control the level of debugging output
produced on stdout in the server and clicnt respectively. A value of 0 turns off the output altogether: values of 1, 10, and 100

are cutrently meaningtul, The diofaolt vadues of these variables is 0.

The giobal external variables RPC - ServerPerror and RIPC - CliantPerror conirol the printing of Unix error messages on stdout

in the server and client respectively. A value of 1 turns on the printing, while 0 turns it off. The default value lor these variables
is 1.

v/

1.5.7ynes

typedef
int RPC__Integer, /*32-bit, 2's complement representation. On other machines, an
explicit conversion may be needed.*/
typedef
char RPC_Byte; /*A single 8-bit byte.*/
typedef
char RPC_ByteSeq[1}; /*Should really be char [*]*/

/t
A contiquous sequence of bytes. This is merely a placeholder in the delinitions telow. At runtime. you are expected to know
where this item begins and how long this sequence is. Use array notation, or a pointer to step through this. Don't expect

sizeof() to work correctly on anything containing an RPC_ByteSeq element.
*/

typedef
RPC_ByteSeq RPC_String; /*no nulls except last byte*/
/'
A nuil-tarminated sequence of characters. Identical to the C language string definition.
*/

typedef
struct
{
RPC_Integer Seqlen; /*length of SeqBody*/
RPC_ByteSeq SeqBody; /*no restrictions on contents*/
}
RPC_CountedBS;
/t
A means of transmitting binary data.
*/

typedef
struct
{
RPC__Integer MaxSegl.en; /*max size of butfer represented by SeqBody*/
RPC_Integer SeglLen; /*number of interesting bytes in SeqBody*/
RPC_ByteSeq SeqBody; /*No restrictions on contents*/
1
RPC_BoundedBS;
/t
RPC_BoundedBS is intended to allow you to remotely play the game that C programmers play all the time: allocate a large
buffer, till in some bytes, then call a procedure which takes this buffer as a parameter and replaces its contents by a possibly
longer sequence of bytes. Example: strcat().
*/

typedaet
RPC_Byte RPC_EncryptionKey[RPC__KEYSIZE];
Vad
Keys uscd lor encryption are lixed length byte sequences

.
*/

1.6. Data Structures

/O
Fields titled in by stubs are identilied explicitly
s
struct RPC_ReqHdr /*Fixed-length; format and length determined by ProtoVersion.
*/
{
RPC_Integer ProtoVersion; /*which protocol version to use. Filled by client*/
RPC_Integer BodylLength; /*of the portion alter the header. Filled by client.*/
RPC_Integer Tag; /tunique identifior for this messaqe on this connection: always
has an odd value: lilled by client stub */
RPC_Integer Subsys; /*Subsystem name. Filled by client. Value should be greater than
0.*/
RPC_Integer Opcode; /*Operation meaningful to this subsystem. Filled by client. Value
should be greater than 0.*/
RPC_Integer NoReturnValue; /*If zero, a reply from the server is expected. If nonzero, no
reply is expected.*/
h¥
struct RPC_ReqBlock /*This is what actually gels sent over the wire */
{
struct RPC_ReqHdr Header; /*Length field contains length of next element */
RPC_ByteSeq Body; /*bytes corresponding to the parameters*/
h¥
struct RPC_ReqBuffer /*Allocate this as bulfer for requests and use in RPC calls*/
{

RPC_Integer BufferPrefix{BUFFPREFIX/sizeof(RPC__Integer)];
/*for stub use only*/

struct RPC_ReqBlock ActualRequest;

)
struct RPC_RespHdr /*Fixed-length; format and length determined by ProtoVersion
*/
{
RPC_Integer ProtoVersion; /*which protocol version to use. Filled by server.*/
RPC__Integer Bodylength; /*of the portion after the headear. Filled by server.*/
RPC_Integer Tag; /*unique identifier for this message on this connection; always
an even value: filled by server stub.*/ :
RPC_Integer InReplyTo; /*Tag value of request,; filled by server stub */
RPC_Integer ReturnCode; /*standard or operation-dependent error code. Filled by server.
*/
RPC_Integer BulkReturnCode; /*indicates what happened to bulk transfer. Filled by server
stub.*/
5
struct RPC_RespBlock /*This is what actually gets sent over the wire */
{

struct RPC_RespHdrHeader, /*BodylLength lield contains length of next element.*/

10

RPC_DByteSeqg Body, /*byles corresponding to the nen-bulk results.*/
IS

struct RPC_RespBultfer /*Allocate this as buller for Responses and use in RPC roplies*/
{

HPC_Integer ButferPrefix| BUFFPREFIX/sizeof(RPC__Integer)];
/*for stub use only*/
struct RPC_RespBlock ActualResponse;

k
/’
Historical note:

The detinition of RPC_BulkDescriptor that used to be here is now superfluous. It looks like a RPC_BoundcdBS and is viewed
as such.
*/

2. Bulk-Transter Protocols
Each bulk-transfer protocol has its own bulk-descriptor format. For purposes of transmission, these

descriptors are merely viewed as data of type RPC__CountedBS.

2.1. Protocol EXPBULKPROTO1

At the present time, cnly one bulk-transfer mechanism is being supported. It is symbolically referred
to as EXPBULKPROTO1 and provides whole file transfer between client and server. The bulk-
descriptor associated with this protocol is defined below. The corresponding C header fiie is

"/usr/local/rpc/include/ftp.h™.

2.1.1. Consianis

/U
Global constants which are used by the bulk-transter mechanism
*/

/O
The following op codes filled in by the server and passed to its stub. The same codes are sent back to the client on the
bulk-transter channel to prepare it for bulk-transfer
*/
#define FTP_SEND 1 /*Transter file trom server to client.*/
#define FTP_RECEIVE 2 /*Transfer lile from client tu server.*/

2.1.2. Format of Bulk Descriptor

/.
Bulk-descriptor definition.
*

/

/t
Right now we are only concerned with a bulk-transfer mechanism for dealing with one lile transfer. Bulk-descriptors for
dealing with multiple file transters may be developed later.

11

t/

e

The chent process lills in some ficids of the descriptor and calls its RPC stub. The sorver process fitls in other lields of these
descriptors, creates a response block and a peinter to the bull-descriplor and ealls its RIYC stub. The bulk-transter is ALWAYS
initiated by the stub on the server side. On successful completion of the bulk transter, it sois the RPC__BulkReturnCocle field in
the response block to RPC_BULKSUCCESS. If the bulk transler (ails, it is set to RPC_BULKFAIL. The response block is then
sent to the client, and the server stub returns control to the server. On rcceipt ol the 1esponse block, the client stub returns
controf 1o its caller.

*/

/‘

What follows is the lormat of the SeqBody component of an RPC__CountedBS. The Seqlen component will be set to the
current size of the struct FTP_Descriplor) variable.

*/

struct FTP_Descriptor

{
RPC _Integer Operation; /*FTP_SEND or FTP_RECEIVE; filled in by Server.*/
RPC_Inteqger Length; /*Number of bytes to be transmitted; filled in by Server lor

FTP_SEND and by Client tor FTP_RECEIVE: usually equal to
length of file. A value ol -1 on FTP__SEND means the entire file*/

RPC_integer Protection; /on the side where the lile is to be created. On FIP_RECEIVE.
client tilis in this field; the server iay choose to inhent this
protection or to override it before calling RPC_SendResponse().
On FTP_SEND client fills in this tield with the desired protection,
or setsit to 0; in the latter case the protection on the server is
inherited.See chmod(2) in Unix manual for datails*/

RPC_String ClientFileName; /*File name on client side: filled in by Client */

RPC_String ServerFileName; /*File name on Server side; filled in by Server */

I3

W

. Clieni-related RPC Calls

RPC_Clientinit

Initialize RPC stub to be a client

Call:
int RPC_ClientInit(IN int MaxSockets, IN char *Versionld, IN int ClientOptions)

Parameters:

MaxSockets Maximum number of sockets that may be used by the RPC stub. A value of -1
indicates that the client does not care how many are used.

Versionld Sct this to the constant RPC_VERSICN. The current value of this string
constant must be identical to the value at the time the client runtime system
was compiled.

ClientOptions Currently there are no valid client options; this parameter is here for future
use.

Completion Codes:

RPC_SUCCESS Allwentwell
RPC_FAIL Unable to initialize client.

RPC_WRONGVERSION

The header file and client runtime system versions do not match.

Initializes the RPC stub in this process. Since connections are NOT inherited, every process must
make this call, and perform bindings before RPC requests can be made. The MaxSockets parameter
is advisory information for the stub. If you get a wrong version indication, obtain a consistent version

of the header files and the RPC runtime library and recompile your code.

RPC _Bind

Create a new connectlion

int RPC_Bind(IN int Securityl.evel, IN char *Subsysname, IN char *Hostname,

Parameters:

SecurityLevel

Subsysname
Hostname
Bulkproto
cid

Clientldent

SharedSecret

Completion Codes:

RPC_SUCCESS

IN int Bulkproto, QUT int *cid,
IN RPC _Bounded3S *Clientldent,
IN RPC_EncryptionKey SharedSecret)

One of the constants RPC_OPENKIMONO, RPC _ONLYAUTHENTICATE, or
RPC_SECURE

The name of the subsystem whose services are desired

The network host name where the subsystem is located

The bulk-transfer protocol to be used on this connection

A small integer returned by the call, identifying this connection

Adcquate informalion for the server to uniquely identify this client and to
obtain SharedKey. Not interpreted by the RPC stubs. Only the caliback
procedure on the server side need understand the tormat of Clientldent. May
be NULL if SecurityLevel is RPC__OPENKIMONO

An encryption key known by the callback procedure on the server side to be
uniquely associated wilh Clientldent. Used by the RPC stubs in the
authentication haondshakes. May be NULL if Securitylevel is
RPC_OPENKIMONQO.

All went well

RPC_NOTCLIENT You are not properly initialized.

RPC_NOBINDING The specified host or subsystem could not be contacted

RPC_WRONGVERSION

The client and server runtime systems are incompatible.

RPC_NOTAUTHENTICATED

A SecurityLevel other than RPC__OPENKIMONO was specified, and the server

14

did not accept your credaentials.

RPC_FAIL Some other mishap occurred. May also occur somelimes in lieu of |
RPC_NOTAUTHENTICATED.

Creates a new connection and binds to a remote server on a remote host. At the end cf this call, a

worker process has been forked to deal with this client. On a nonforking server, the server enters

worker state.

A client/server version number check is performed to ensure that the runtime systems are
compatible. You are advised to do a similar higher-ievel check, to ensure that the client and server

application code are also compatible.

The SecurityLevel parameter determines the degree to which you can trust this connection. If
RPC_OPENKIMONO is specified, the connection is not authenticated and no encryption is done on
future requests and responses. If RPC_ONLYAUTHENTICATE is specified, an authentication
hancdshake is done to ensure that the client and the server are who they claim to to be (the fact that
the server can find SharedSecret from Clientldent is assumed to be proof of its identity). If
RPC_SECURE is specified, the connection is authenticated and all future transmissions on it are

encrypted using a session key generated during the authentication handshake.

RPC_diakeRPC

Make a romote procedure call

Call:
int RPC_MakeRPC(IN int cid, IN struct RPC_ReqBuffer *Request,
OUT struct RPC_RespBuftfer **Reply,
IN struct timeval *BreathOfLife)
Parameters:
cid identifies the connection on which the call is to be made
Request A properly formatied request buffer.
Reply Value ignored on entry. On return, it will point to a response butfer holding the

response from the server. Do not count on this buffer remaining around after
the next RPC - MakeRPC() call.

BreathOfLife Maximum time to wait for remote site to respond to any communication. Used
internally to timeout blocking operations. A NULL pointer indicates infinite
patience. Struct timevai specifies time in seconds and microseconds; see
gcttimeofday(2) in the Unix manual for further details.

Completion Codes:

RPC_SUCCESS All went well
RPC_NOTCLIENT You are not properly initialized.

RPC_NOCONNECTION

Bogus connection specified
RPC_TIMEQUT A response was not received soon enough.

RPC_TOOLONG The server tried to iransmit a response with a BodyLength fieid that was too
large to deal with. Future requests on this connection will get RPC_FAIL.

RPC_FAIL Other assorted calamities (such as a broken connection)

The workhorse routine, used to make remote calls after establishing a connection. In strict Unix style,
the call is sequential and blocks until complete. All bulk transfers are finished before the call
completes. The listed completion codes are from the local RPC stub. Check the RPC__ReturnCode

and RPC__BulkReturnCode fields of the reply to see what the remote site thought of your request. If

16

the remote site takes longer than BreathOfLife to reply to any individual blecking operation, the
connection is deeamed broken and future requests on this connactinn will be met with a response of
RPC__FAIL.

The timeout mechanism also provides a way for the client to perform end-to-end pinging if it so
desires. 13y convention, an opcode of Ping is recognized by all servers and is responded to
immediately by all of them with a return code of RPC _SUCCESS. Timer-driven pinging of the server

by the client is easily implemented with these facilities.

Note that BreathOfLife specifies patience for individual actions. To some extent, therefore, the exact
effect of a particular timeout value is implementation-dependent. If an overall time limit for the entire
RPC is desired, the client should start an alarm clock before calling RPC_MakeRPC. If the alarm

clock runs out, this connection should be abandoned.

If the MoReturnValue field of the request is nonzero, it is assumed that the server will not attempt to
send a response. Consequently this call will return without attempting to read a server reply. In that
case Neply will be NULL. Beware: if an errant server does send a response to such arequest, you are

in deep trouble; future RPC requests on this connection will behave strangely

Encryption, if any, is done in place and will cause the request buffer to be ciobbered.

RPC _Unbind

Terminate a connection

Call:
int RPC_Unbind(IN int cid)

Parameters:

cid identifies the connection to be terminated

Completion Codes:

RPC_SUCCESS All went well
RPC_NOTCLIENT You are notinitialized properly.

RPC_NOCONNECTION
The cid is bogus

RPC_FAIL Other assorted calamities

Removes the binding associated with the specified connection. Normally the server-level

disconnection should be done by an RPC just prior to this call.

18

4. Server-reinted RPC Calls

RPC SCerverlnit

Deciare onself a listening service process

int RPC_Serverinit(IN char *MySubsysName, IN int ServerType,

Calil:

Parameters:
MySubsysName
ServerType
Versionld

ServerOptions

Comnletion Codes:

RPC_SUCCESS

IN char *Versionld, IN int ServerOptions)

Well-known subsystem name. Uniquely identifies this process on this
machine.

Possible values are RPC_FORKINGSERVER and
RPC_NONFORKINGSERVER

Set this to the constant RPC_VERSION. The current value of this constant
must be equal to the value at the time the server runtime system was
compiled.

A bit mask of options. RPC - REVIVESERVER is the cnly meaningful option to
a server at present.

All went well

RPC_DUPLICATESERVER

You have a twin. You may wish to retry with the RPC-REVIVESERVER
option.

RPC_ALREADYLISTENER

You have already said you are a listening server

RPC_WRONGVERSION

RPC_FAIL

The header file and server runtime system version numbers do not match.

Something else went wrong.

Makes this listening server process known to the rest of the world. Sels up name server tables so that

when a client performs an RPC_Bind{) operation specifying this subsystem-host pair, the

underlying socket mechanism will know where to go. A process can be a listening server for at most

19

one subsystem pair. 1f you get a wrong version indication, obtain a consistent version of the header
files and the RPC runtime library and recompile your code. I this server was recently killed, Unix may
not allow you to start another server with the same service name for a certain poriod of time. To

alleviate this problem, use the RPC - REVIVESERVER option.

RPC_Accepnt

Listen for a bind request from a client

int RPC_Accept{ OUT int *WhoAmli, OUT int *BulkProto, IN int (*GetKeys)(),

Cait:

Parameters:
WhoAmli
BulkProto
GetKeys
SecurityLevel
Clientldent

Completion Codes:

RPC_SUCCESS

QUT int *SecurityLevel, OUT RPC_BoundedBS **Clientident)

Value on return indicates whether | am a listening or working server. The
working server receives a value of 0, while the listening server receives the
process id value of the newly-forked working server. Remember that the
listening server itself becomes the working server when an RPC__Accept is
done in a nonforking server.

In the working server, the value returned is the name of the bulk transfer
protocol to be used. In the listening server a value of NULL is returned.

Pointer to a callback procedure with the following formal deciaration:

int GetKeys(IN Clientident, QUT ldentKey, OUT SessionKey)
RPC_BoundedBS *Clientldent;
RPC__EncryptionKey ldentKey;

RPC__EncryptionKey SessionKey;
GetKeys() will be called at some point in the authentication handshake. It
should return O if Clientldent is successfully looked up, and -1 if the
handshake is to be terminated. [t should fill ldenikey with the key to be used
in the handshake, and SessionKey with an arbitrary key to be used for the
duration of this connection. May be NULL if no secure bindings to this server
are to be accepted.

On return, this will contain RPC_OPENKIMONO,
RPC_ONLYAUTHENTICATE, or RPC_SECURE.

On return, if Securitylevel is other than RPC__OPENKIMONQ, this will contain
the identity of the client. This is identical to the information passed in the
corresponding RPC_Bind call on the client side, and to the caliback
procedure GetKeys().

All went well

21

RPC_NOTLISTENER

You did not decliue yourself to be alistenmdg server process

RPC _NOTAUTHENTICATED
Someone tied to do an authentcated RIPC_Bind to me, but lailed.
Clientldent contains the identity of the alleged client. Take suitable action and
reissue RPC__Aceept.

RPC_FAIL Something else went wrong

This process must have made an RPC_Serverlit call previously. The call blocks until someone,
somewhere does an RPC__Bind() to this listening server. If a forking server, the server RPC stub
forks a new server process, which will serve the RPC request on that connection. In a nonforking

server, the server enters the working state.
It is verified that the client and server RPC runtime systems are compatible.

The security level of this connection is specified in the corresponding RPC_Bind call on the client
side. If RPC_OPENKIMONO is specified, no authentication is done. Otherwise authentication is

done and the identity of the accepted client is returned in Clientldent.

The GetKeys() callback procedure is used by the RPC stub when creating authenticated conneciions.
Unsuccessful RPC__Bind()s by clients are reported to the server; this may be ot use in dealing with

malicious clients.

22

3PC_GetRequest

Wait for next request from my client

Call:

int RPC_GetRequest(IN struct timeval *BreathOfLife,

Parameters:

BreathOfLife

Request

Completion Codes:

RPC_SUCCESS

OQUT struct RPC_RequestBuffer **Recuest)

A timeout interval to be used in all blocking system calls. If NULL, infinite
patience is assumed. This is not a highly accurate mechanism, but it does
detect inactive clients. Note that the underlying sockets also use keepalives,
so this parameter is needed only if you wish to detect the case where the
application program at the remote site is inactive. Note that this is per-
blocking system cali. not for this entire RPC cail.

Value ignored on entry. On return, it will point to a requestbuffer halding the
response from the client. Do not count on this buffer remaining around after
the next RPC - GetRequest() call.

| have a request for you

RPC_NOTWORKER

RPC_TOOLONG

RPC_TIMEQUT

You are not a working server process.

The client tried to transmit an enormous request. Future RPC__GetRequest()
calls will get RPC__FAIL.

Specified time interval expired.

RPC_CLOSECONNECTION

The remote site deliberately closed this connection

This call may be issued only by a worker server process. The call blocks until a request is available or -

until the specified timeout pericd has elapsed. Obtaining a RPC_CLOSECONNECTION return code

to this call is usual way a server learns of the disappearance of a client.

apC _SendResponse

Respond to a request from my client

Call:
int RPC_SendResponse(IN struct RPC_ResponscBulfer *Reply,
IN FTP_Descriptor *BDesc, IN struct timeval *BreathOfLife)

Parameters:

Reply A filled-in buffer containing the reply to be sent to the client on completion of
bulk transfer.

BDesc A bulk descriptor, or NULL. If non-NULL, the bulk transfer defined by the
descriptor will be carried out hefore the reply is sent. We may extend this to
multiple bulk descriptors later.

BreathOfLife Timeoul interval for blocking operations. Note that this is per-blocking system
call, not for this entire RPC cail.

Completion Codes:

RPC_SUCCESS 1sentyourresponse, and tried to perform the buik transter, if any.

RPC_NOTWORKER

You are not a working server process.
RPC_TIMEQUT The specified timeout period was exceeded.

RPC_FAIL Some irrecoverable failure happened.

This call may be issued only by a worker server process. If BulkDesc is NULL, the Reply is sent back
to the client and the cali terminates. Otherwise the bulk transfer specified is carried out first, and then
Reply is sent to the client. In that case, the RPC_BulkReturnCode field will be filled in by the bulk

transfer stub. If it cares, the server should examing this ficld on completion of the call.

Encryption, if any, is done in place and will clobber both parameters. The timeout mechanism is not

particularly accurate.

24

Ree endWork

Terimmate worker server

Call:
int RPC_EndWork()

Parameters:

None

Completion Codes:

RPC_NOTWORKER

You are not a working server process.

This call is typically issued after a Disconnect request is received by the working server. In the initial
implementation it will merely result in process destruction. it is present in case the cost of forking
workers becomes unacceptable; in that case something smart can be done with these semi-dead

processes waiting for resurrection

In the case of a nonforking server, this call returns the server from a working to a listening slate.

)
[@21

2P _Endlisten

Terminale alistening server

Call:
int RPC_FEndListen()

Parameters:

None

Completion Codes:

RPC_NOTLISTENER

You are not a listening server process.

This call is present mainly for symmetry. If a listening server chickens out, and decides it cannot
handle any more binds to it, it issues this call. RPC__Binds to this subsystem-hostname pair will no
longer be routed to this process. However process destruction will not occur untii all the forked

worker processes have terminated.

26

Appendix
Summary of RPC-relaiad Calls

Mote: The numbers in sgquare brackets indicate the page on which the call is described.

[12]
RPC_Clientinit(IN int MaxSockets, IN char *Versionid, IN int ClientOptions)
[13]
RPC_Bind(IN int SecurityLevel, IN char *Subsysname, IN char *Hostname,
IN int Bulkproto, QUT int *cid, IN RPC_BoundedBS *Clientldent,
IN RPC_EncryptionKey SharedSecret)
[15]
RPC_MakeRPC(IN int cid, IN struct RPC_ReqBufter *Request,
QUT struct RPC_RespButfer **Reply, IN struct timeval *BreathQfLife)
(7]
RPC_Unbind(IN int cid)
(18]
RPC_Serverinit(IN char *MySubsysName, IN int ServerType, IN char *Versionld,
IN int ServerQptions)
[20]
RPC_Accept(OUT int *WhoAml, OUT int *BulkProto, IN int (*GetKeys)(),
OUT int *SecuritylLevel, OUT RPC_BoundedBS **Clientldent)
[22]
RPC_GetRequest(IN struct timeval *BreathOfLijfe,
OUT struct RPC_RequestBuffer * *Request)
[23]
RPC_SendResponse(IN struct RPC_ResponseBuffer *Reply,
IN FTP_Descriptor *BDesc, IN struct timeval *BreathOfLife)
[24]
RPC_EndWork()
[25]

RPC_EndListen{)

29

3

)
4

T s engary F 3 £ 24, DTN D

Usage Noles for tha 1T DU Sysiems
The directory "/usr/tocal/rpc" on all the machines contains the C header {iles and runtime routines
for using RPC. Note that "/usr” on a diskless machine is a symbolic link to "/pub/usr” on its disk

server.
in your client and server source programs include the files "rpc.h" and “ftp.h".

Compile thus:

¢cc ~-I/usr/local/rpc/include client.c /usr/local/rpc/1ib/librpc.a -o client.out
c¢c -I/usr/local/rpc/include server.c fusr/local/rpc/lib/librpc.a -o server.out

The following external variables may be set for debugging on the client side:
extern int RPC_ClientDebuglevel; /* Default 0; higher values ==> verbose output */

extern int RPC_ClientHash; /* Default 0; set to 1 to see a '#' after each
block of bulk-transfer */

The variables RPC - ServerDebuglevel and RPC - ServerHash perform a similar function on the

server side.

References

