
Reasonably Programmable Literal
Notation: Supplemental Material

Cyrus Omar Jonathan Aldrich
July 8, 2018

CMU-ISR-18-104

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This report presents a complete technical account of the formal system that was described
in the accompanying paper, as well as more details on the quasiquotation TLM.

This work was supported in part by AFRL and DARPA under agreement #FA8750-16-2-0042; by the
NSA under lablet contract #H98230-14-C-0140.

Keywords: extensible syntax; macros; hygiene; type systems

Contents

A Implementing Quasiquotation 2

B MLLit: A Calculus of Simple TLMs 3
B.1 Typographic Conventions . 4
B.2 Core Language . 5

B.2.1 Syntax . 5
B.2.2 Static Semantics . 5
B.2.3 Structural Operational Semantics . 11

B.3 Unexpanded Language (UL) . 12
B.3.1 Syntax . 12
B.3.2 Type Expansion . 15
B.3.3 Typed Expression Expansion . 16

B.4 Proto-Expansion Validation . 21
B.4.1 Syntax of Proto-Expansions . 21
B.4.2 Proto-Type Validation . 26
B.4.3 Proto-Expression Validation . 26
B.4.4 Proto-Pattern Validation . 28

B.5 Metatheory . 28
B.5.1 Type Expansion . 28
B.5.2 Typed Pattern Expansion . 31
B.5.3 Typed Expression Expansion . 34
B.5.4 Abstract Reasoning Principles . 41

1

Appendix A

Implementing Quasiquotation

The Reason quasiquotation TLMs, e.g. $proto_expr, can be implemented by the functional
transformations outlined below, with an example from each step (grossly simplified from
the actual Parsetree representation) on the right. In words, $re_expr first programmatically
invokes the Reason parser on the literal body. It next serializes the generated parse tree
to Reason source code, then parses that. This produces a parse tree that, if evaluated
in the appropriate environment, will produce the original parse tree. The final step is
to implement antiquotation as described above by repurposing the generalized literal
forms in the body, using the source locations from the first parse tree, which have been
carried into the second parse tree as constants.
body "2 + ‘(xyz)‘"

|> parse_re Plus(Num(2, Loc(0)), GenLit("xyz", Loc (6)))

|> serialize_re "Plus(Num(2, Loc(0)), GenLit (\"xyz\", Loc (6)))"

|> parse_re Ap(V("Plus"), /*...*/Ap(V("GenLit"), Pair(Str("xyz"), /*...*/Num (6)))

|> genlit_to_sp Ap(V("Plus"), /*...*/ Spliced (6,8,TyPath (["ProtoExpr","t"])))

2

Appendix B

MLLit: A Calculus of Simple TLMs

This section defines MLLit, the calculus of simple expression and pattern TLMs. For some
readers, it might be useful to snip out pattern matching to get a language strictly of ex-
pression TLMs. To support that, one can omit the segments typeset in gray backgrounds
below to recover MLELit, a calculus of simple expression TLMs. We have included the
necessary eliminators below (they are technically redundant with pattern matching, but
don’t hurt things so they’re left in white.)

3

B.1 Typographic Conventions

Our typographic conventions below are based closely on PFPL’s typographic conventions
for abstract binding trees [1]. In particular, the names of operators and indexed families of
operators are written in typewriter font, indexed families of operators specify indices
within [braces] (except when the index is a label set, L, or natural number, n, in which
case it is omitted). Term arguments are grouped roughly by sort using {curly braces}
and (rounded braces). We write p.e for expressions binding the variables that appear in
the pattern p. The variables in a pattern are assumed to be distinct.

We write {i ↪→ τi}i∈L for an unordered collection of type arguments τi, one for each
i ∈ L, and similarly for arguments of other sorts. Similarly, we write {i ↪→ Ji}i∈L for the
finite set of derivations Ji for each i ∈ L.

We write {ri}1≤i≤n for sequences of n ≥ 0 rule arguments, and similarly for other
finite sequences.

Empty finite sets and finite functions are written ∅, or omitted entirely within judge-
ments, and non-empty finite sets and finite functions are written as comma-separated
sequences identified implicitly up to exchange and contraction.

4

B.2 Core Language

B.2.1 Syntax

Sort Operational Form Description
Typ τ ::= t variable

parr(τ; τ) partial function
all(t.τ) polymorphic
rec(t.τ) recursive
prod({i ↪→ τi}i∈L) labeled product
sum({i ↪→ τi}i∈L) labeled sum

Exp e ::= x variable
lam{τ}(x.e) abstraction
ap(e; e) application
tlam(t.e) type abstraction
tap{τ}(e) type application
fold(e) fold
unfold(e) unfold
tpl({i ↪→ ei}i∈L) labeled tuple
prj[`](e) projection
inj[`](e) injection
case(e; {i ↪→ xi.ei}i∈L) case analysis
match(e; {ri}1≤i≤n) match

Rule r ::= rule(p.e) rule
Pat p ::= x variable pattern

wildp wildcard pattern
foldp(p) fold pattern
tplp({i ↪→ pi}i∈L) labeled tuple pattern
injp[`](p) injection pattern

B.2.2 Static Semantics

Type formation contexts, ∆, are finite sets of hypotheses of the form t type. We write ∆, t type
when t type /∈ ∆ for ∆ extended with the hypothesis t type.

Typing contexts, Γ, are finite functions that map each variable x ∈ dom(Γ), where
dom(Γ) is a finite set of variables, to the hypothesis x : τ, for some τ. We write Γ, x : τ,
when x /∈ dom(Γ), for the extension of Γ with a mapping from x to x : τ, and Γ∪ Γ′ when
dom(Γ) ∩ dom(Γ′) = ∅ for the typing context mapping each x ∈ dom(Γ) ∪ dom(Γ′)
to x : τ if x : τ ∈ Γ or x : τ ∈ Γ′. We write ∆ ` Γ ctx if every type in Γ is well-formed
relative to ∆.

Definition B.2.1 (Typing Context Formation). ∆ ` Γ ctx iff for each hypothesis x : τ ∈ Γ,
we have ∆ ` τ type.

5

∆ ` τ type τ is a well-formed type

∆, t type ` t type
(B.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` parr(τ1; τ2) type
(B.1b)

∆, t type ` τ type

∆ ` all(t.τ) type
(B.1c)

∆, t type ` τ type

∆ ` rec(t.τ) type
(B.1d)

{∆ ` τi type}i∈L

∆ ` prod({i ↪→ τi}i∈L) type
(B.1e)

{∆ ` τi type}i∈L

∆ ` sum({i ↪→ τi}i∈L) type
(B.1f)

∆ Γ ` e : τ e is assigned type τ

∆ Γ, x : τ ` x : τ
(B.2a)

∆ ` τ type ∆ Γ, x : τ ` e : τ′

∆ Γ ` lam{τ}(x.e) : parr(τ; τ′)
(B.2b)

∆ Γ ` e1 : parr(τ; τ′) ∆ Γ ` e2 : τ

∆ Γ ` ap(e1; e2) : τ′
(B.2c)

∆, t type Γ ` e : τ

∆ Γ ` tlam(t.e) : all(t.τ)
(B.2d)

∆ Γ ` e : all(t.τ) ∆ ` τ′ type

∆ Γ ` tap{τ′}(e) : [τ′/t]τ
(B.2e)

∆ Γ ` e : [rec(t.τ)/t]τ
∆ Γ ` fold(e) : rec(t.τ)

(B.2f)

∆ Γ ` e : rec(t.τ)
∆ Γ ` unfold(e) : [rec(t.τ)/t]τ

(B.2g)

{∆ Γ ` ei : τi}i∈L

∆ Γ ` tpl({i ↪→ ei}i∈L) : prod({i ↪→ τi}i∈L)
(B.2h)

6

∆ Γ ` e : prod({i ↪→ τi}i∈L; ` ↪→ τ)

∆ Γ ` prj[`](e) : τ
(B.2i)

∆ Γ ` e : τ

∆ Γ ` inj[`](e) : sum({i ↪→ τi}i∈L; ` ↪→ τ)
(B.2j)

∆ Γ ` e : sum({i ↪→ τi}i∈L) {∆ Γ, xi : τi ` ei : τ}i∈L

∆ Γ ` case(e; {i ↪→ xi.ei}i∈L) : τ
(B.2k)

∆ Γ ` e : τ {∆ Γ ` ri : τ Z⇒ τ′}1≤i≤n

∆ Γ ` match(e; {ri}1≤i≤n) : τ′
(B.2l)

∆ Γ ` r : τ Z⇒ τ′ r takes values of type τ to values of type τ′

p : τ
Γ′ ∆ Γ ∪ Γ′ ` e : τ′

∆ Γ ` rule(p.e) : τ Z⇒ τ′
(B.3)

Rule (B.3) is defined mutually inductively with Rules (B.2).
p : τ
Γ p matches values of type τ and generates hypotheses Γ

x : τ
x : τ
(B.4a)

wildp : τ
∅
(B.4b)

p : [rec(t.τ)/t]τ
Γ
foldp(p) : rec(t.τ)
Γ

(B.4c)

{pi : τi
Γi}i∈L

tplp({i ↪→ pi}i∈L) : prod({i ↪→ τi}i∈L)
∪i∈L Γi
(B.4d)

p : τ
Γ
injp[`](p) : sum({i ↪→ τi}i∈L; ` ↪→ τ)
Γ

(B.4e)

Metatheory

The rules above are syntax-directed, so we assume an inversion lemma for each rule
as needed without stating it separately or proving it explicitly. The following standard
lemmas also hold.

The Weakening Lemma establishes that extending the context with unnecessary
hypotheses preserves well-formedness and typing.

7

Lemma B.2.2 (Weakening).

1. If ∆ ` τ type then ∆, t type ` τ type.

2. (a) If ∆ Γ ` e : τ then ∆, t type Γ ` e : τ.

(b) If ∆ Γ ` r : τ Z⇒ τ′ then ∆, t type Γ ` r : τ Z⇒ τ′.

3. (a) If ∆ Γ ` e : τ and ∆ ` τ′′ type then ∆ Γ, x : τ′′ ` e : τ.

(b) If ∆ Γ ` r : τ Z⇒ τ′ and ∆ ` τ′′ type then ∆ Γ, x : τ′′ ` r : τ Z⇒ τ′.

4. If p : τ
Γ then ∆, t type ` p : τ
Γ.

Proof Sketch.

1. By rule induction over Rules (B.1).

2. By mutual rule induction over Rules (B.2) and Rule (B.3) , and part 1.

3. By mutual rule induction over Rules (B.2) and Rule (B.3) , and part 1.

4. By rule induction over Rules (B.4).

Note clause 4, which allows weakening of ∆ but requires that the pattern typing judge-
ment is linear in the pattern typing context, i.e. it does not obey weakening of the pattern
typing context. This is to ensure that the pattern typing context captures exactly those
hypotheses generated by a pattern, and no others.

The Substitution Lemma establishes that substitution of a well-formed type for a type
variable, or an expanded expression of the appropriate type for an expanded expression
variable, preserves well-formedness and typing.

Lemma B.2.3 (Substitution).

1. If ∆, t type ` τ type and ∆ ` τ′ type then ∆ ` [τ′/t]τ type.

2. (a) If ∆, t type Γ ` e : τ and ∆ ` τ′ type then ∆ [τ′/t]Γ ` [τ′/t]e : [τ′/t]τ.
(b) If ∆, t type Γ ` r : τ Z⇒ τ′′ and ∆ ` τ′ type then ∆ [τ′/t]Γ ` [τ′/t]r : [τ′/t]τ Z⇒

[τ′/t]τ′′.

3. (a) If ∆ Γ, x : τ′ ` e : τ and ∆ Γ ` e′ : τ′ then ∆ Γ ` [e′/x]e : τ.

(b) If ∆ Γ, x : τ′ ` r : τ Z⇒ τ′′ and ∆ Γ ` e′ : τ′′ then ∆ Γ ` [e′/x]r : τ Z⇒ τ′′.

Proof Sketch.

1. By rule induction over Rules (B.1).

2. By mutual rule induction over Rules (B.2) and Rule (B.3) .

8

3. By mutual rule induction over Rules (B.2) and Rule (B.3) .

The Decomposition Lemma is the converse of the Substitution Lemma.

Lemma B.2.4 (Decomposition).

1. If ∆ ` [τ′/t]τ type and ∆ ` τ′ type then ∆, t type ` τ type.

2. (a) If ∆ [τ′/t]Γ ` [τ′/t]e : [τ′/t]τ and ∆ ` τ′ type then ∆, t type Γ ` e : τ.
(b) If ∆ [τ′/t]Γ ` [τ′/t]r : [τ′/t]τ Z⇒ [τ′/t]τ′′ and ∆ ` τ′ type then ∆, t type Γ ` r :

τ Z⇒ τ′′.

3. (a) If ∆ Γ ` [e′/x]e : τ and ∆ Γ ` e′ : τ′ then ∆ Γ, x : τ′ ` e : τ.
(b) If ∆ Γ ` [e′/x]r : τ Z⇒ τ′′ and ∆ Γ ` e′ : τ′ then ∆ Γ, x : τ′ ` r : τ Z⇒ τ′′.

Proof Sketch.

1. By rule induction over Rules (B.1) and case analysis over the definition of substitu-
tion. In all cases, the derivation of ∆ ` [τ′/t]τ type does not depend on the form of
τ′.

2. By mutual rule induction over Rules (B.2) and Rule (B.3) and case analysis over the
definition of substitution. In all cases, the derivation of ∆ [τ′/t]Γ ` [τ′/t]e : [τ′/t]τ
or ∆ [τ′/t]Γ ` [τ′/t]r : [τ′/t]τ Z⇒ [τ′/t]τ′′ does not depend on the form of τ′.

3. By mutual rule induction over Rules (B.2) and Rule (B.3) and case analysis over
the definition of substitution. In all cases, the derivation of ∆ Γ ` [e′/x]e : τ
or ∆ Γ ` [e′/x]r : τ Z⇒ τ′′ does not depend on the form of e′.

Lemma B.2.5 (Pattern Regularity). If p : τ
Γ and ∆ ` τ type then ∆ ` Γ ctx and
patvars(p) = dom(Γ).

Proof. By rule induction over Rules (B.4).

Case (B.4a).

(1) p = x by assumption

(2) Γ = x : τ by assumption

(3) ∆ ` τ type by assumption

(4) ∆ ` x : τ ctx by Definition B.2.1 on
(3)

(5) fv(p) = dom(Γ) = {x} by definition

Case (B.4b).

9

(1) p = wildp by assumption

(2) Γ = ∅ by assumption

(3) ∆ ` ∅ ctx by Definition B.2.1

(4) patvars(p) = dom(Γ) = ∅ by definition

Case (B.4d).

(1) p = tplp({i ↪→ pi}i∈L) by assumption

(2) τ = prod({i ↪→ τi}i∈L) by assumption

(3) Γ = ∪i∈LΓi by assumption

(4) {pi : τi
Γi}i∈L by assumption

(5) ∆ ` prod({i ↪→ τi}i∈L) type by assumption

(6) {∆ ` τi type}i∈L by Inversion of Rule
(B.1e) on (5)

(7) {∆ ` Γi ctx}i∈L by IH over (4) and (6)

(8) {patvars(pi) = dom(Γi)}i∈L by IH over (4) and (6)

(9) ∆ ` ∪i∈LΓi ctx by Definition B.2.1
over (7), then
Definition B.2.1
iteratively

(10) patvars(p) = dom(Γ) = ∅ by definition and (8)

Case (B.4e).

(1) p = injp[`](p′) by assumption

(2) τ = sum({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption

(3) ∆ ` sum({i ↪→ τi}i∈L; ` ↪→ τ′) type by assumption

(4) p′ : τ′
Γ by assumption

(5) ∆ ` τ′ type by Inversion of Rule
(B.1f) on (3)

(6) ∆ ` Γ ctx by IH on (4) and (5)

(7) patvars(p′) = dom(Γ) by IH on (4) and (5)

10

(8) patvars(p) = dom(Γ) by definition and (7)

B.2.3 Structural Operational Semantics
The structural operational semantics is specified as a transition system, and is organized
around judgements of the following form:

Judgement Form Description
e 7→ e′ e transitions to e′

e val e is a value
e matchfail e raises match failure

We also define auxiliary judgements for iterated transition, e 7→∗ e′, and evaluation, e ⇓ e′.

Definition B.2.6 (Iterated Transition). Iterated transition, e 7→∗ e′, is the reflexive, transitive
closure of the transition judgement, e 7→ e′.

Definition B.2.7 (Evaluation). e ⇓ e′ iff e 7→∗ e′ and e′ val.

Our subsequent developments do not make mention of particular rules in the dynamic
semantics, nor do they make mention of other judgements, not listed above, that are
used only for defining the dynamics of the match operator, so we do not produce these
details here. Instead, it suffices to state the following conditions.

Condition B.2.8 (Canonical Forms). If ` e : τ and e val then:

1. If τ = parr(τ1; τ2) then e = lam{τ1}(x.e′) and x : τ1 ` e′ : τ2.

2. If τ = all(t.τ′) then e = tlam(t.e′) and t type ` e′ : τ′.

3. If τ = rec(t.τ′) then e = fold(e′) and ` e′ : [rec(t.τ′)/t]τ′ and e′ val.

4. If τ = prod({i ↪→ τi}i∈L) then e = tpl({i ↪→ ei}i∈L) and ` ei : τi and ei val for each
i ∈ L.

5. If τ = sum({i ↪→ τi}i∈L) then for some label set L′ and label ` and type τ′, we have that
L = L′, ` and τ = sum({i ↪→ τi}i∈L′ ; ` ↪→ τ′) and e = inj[`](e′) and ` e′ : τ′ and
e′ val.

Condition B.2.9 (Preservation). If ` e : τ and e 7→ e′ then ` e′ : τ.

Condition B.2.10 (Progress). If ` e : τ then either e val or e matchfail or there exists an e′

such that e 7→ e′.

11

B.3 Unexpanded Language (UL)

B.3.1 Syntax

Stylized Syntax

Sort Stylized Form Description
UTyp τ̂ ::= t̂ identifier

τ̂ ⇀ τ̂ partial function
∀t̂.τ̂ polymorphic
µt̂.τ̂ recursive
〈{i ↪→ τ̂i}i∈L〉 labeled product
[{i ↪→ τ̂i}i∈L] labeled sum

UExp ê ::= x̂ identifier
ê : τ̂ ascription
let val x̂ = ê in ê value binding
λx̂:τ̂.ê abstraction
ê(ê) application
Λt̂.ê type abstraction
ê[τ̂] type application
fold(ê) fold
unfold(ê) unfold
〈{i ↪→ êi}i∈L〉 labeled tuple
ê · ` projection
inj[`](ê) injection
case ê {i ↪→ x̂i.êi}i∈L case analysis
notation â at τ̂
{ expr parser e; expansions require ê } in ê seTLM definition
â ‘(b)‘ seTLM application
match ê {r̂i}1≤i≤n match
notation â at τ̂ { pat parser e } in ê spTLM definition

URule r̂ ::= p̂⇒ ê match rule
UPat p̂ ::= x̂ identifier pattern

_ wildcard pattern
fold(p̂) fold pattern
〈{i ↪→ p̂i}i∈L〉 labeled tuple pattern
inj[`](p̂) injection pattern
â ‘(b)‘ spTLM application

12

Body Lengths We write ‖b‖ for the length of b. The metafunction ‖ê‖ computes the
sum of the lengths of expression literal bodies in ê:

‖x̂‖ = 0
‖ê : τ̂‖ = ‖ê‖
‖let val x̂ = ê1 in ê2‖ = ‖ê1‖+ ‖ê2‖
‖λx̂:τ̂.ê‖ = ‖ê‖
‖ê1(ê2)‖ = ‖ê1‖+ ‖ê2‖
‖Λt̂.ê‖ = ‖ê‖
‖ê[τ̂]‖ = ‖ê‖
‖fold(ê)‖ = ‖ê‖
‖unfold(ê)‖ = ‖ê‖
‖〈{i ↪→ êi}i∈L〉‖ = ∑i∈L ‖êi‖
‖` · ê‖ = ‖ê‖
‖inj[`](ê)‖ = ‖ê‖
‖case ê {i ↪→ x̂i.êi}i∈L‖ = ‖ê‖+ ∑i∈L ‖êi‖
‖notation â at τ̂ { expr parser e; expansions require ê } in ê′‖ = ‖ê‖+ ‖ê′‖
‖â ‘(b)‘‖ = ‖b‖
‖match ê {r̂i}1≤i≤n‖ = ‖ê‖+ ∑1≤i≤n ‖ri‖
‖notation â at τ̂ { pat parser e } in ê‖ = ‖ê‖

and ‖r̂‖ computes the sum of the lengths of expression literal bodies in r̂:

‖ p̂⇒ ê‖ = ‖ê‖

Similarly, the metafunction ‖ p̂‖ computes the sum of the lengths of the pattern literal
bodies in p̂:

‖x̂‖ = 0
‖fold(p̂)‖ = ‖ p̂‖

‖〈{i ↪→ p̂i}i∈L〉‖ = ∑
i∈L
‖ p̂i‖

‖inj[`](p̂)‖ = ‖ p̂‖
‖â ‘(b)‘‖ = ‖b‖

Common Unexpanded Forms Each expanded form maps onto an unexpanded form.
We refer to these as the common forms. In particular:

• Each type variable, t, maps onto a unique type identifier, written t̂.

13

• Each type, τ, maps onto an unexpanded type, U (τ), as follows:

U (t) = t̂
U (parr(τ1; τ2)) = U (τ1) ⇀ U (τ2)

U (all(t.τ)) = ∀t̂.U (τ)
U (rec(t.τ)) = µt̂.U (τ)

U (prod({i ↪→ τi}i∈L)) = 〈{i ↪→ U (τi)}i∈L〉
U (sum({i ↪→ τi}i∈L)) = [{i ↪→ U (τi)}i∈L]

• Each expression variable, x, maps onto a unique expression identifier, written x̂.

• Each core language expression, e, maps onto an unexpanded expression, U (e), as
follows:

U (x) = x̂
U (lam{τ}(x.e)) = λx̂:U (τ).U (e)
U (ap(e1; e2)) = U (e1)(U (e2))
U (tlam(t.e)) = Λt̂.U (e)
U (tap{τ}(e)) = U (e)[U (τ)]
U (fold(e)) = fold(U (e))

U (unfold(e)) = unfold(U (e))
U (tpl({i ↪→ ei}i∈L)) = 〈{i ↪→ U (ei)}i∈L〉

U (prj[`](e)) = U (e) · `
U (inj[`](e)) = inj[`](U (e))

U (match(e; {ri}1≤i≤n)) = match U (e) {U (ri)}1≤i≤n

• Each core language rule, r, maps onto an unexpanded rule, U (r), as follows:

U (rule(p.e)) = urule(U (p).U (e))

• Each core language pattern, p, maps onto the unexpanded pattern, U (p), as follows:

U (x) = x̂
U (wildp) = uwildp

U (foldp(p)) = ufoldp(U (p))
U (tplp({i ↪→ pi}i∈L)) = utplp[L]({i ↪→ U (pi)}i∈L)

U (injp[`](p)) = uinjp[`](U (p))

Textual Syntax

In addition to the stylized syntax, there is also a context-free textual syntax for the UL.
For our purposes, we need only posit the existence of partial metafunctions parseUTyp(b)
and parseUExp(b) and parseUPat(b) .

Condition B.3.1 (Textual Representability).

14

1. For each τ̂, there exists b such that parseUTyp(b) = τ̂.

2. For each ê, there exists b such that parseUExp(b) = ê.

3. For each p̂, there exists b such that parseUPat(b) = p̂.

We also impose the following technical conditions .

Condition B.3.2 (Expression Parsing Monotonicity). If parseUExp(b) = ê then ‖ê‖ < ‖b‖.

Condition B.3.3 (Pattern Parsing Monotonicity). If parseUPat(b) = p̂ then ‖ p̂‖ < ‖b‖.

B.3.2 Type Expansion

Unexpanded type formation contexts, ∆̂, are of the form 〈D; ∆〉, i.e. they consist of a type
identifier expansion context, D, paired with a type formation context, ∆.

A type identifier expansion context, D, is a finite function that maps each type identifier
t̂ ∈ dom(D) to the hypothesis t̂ t, for some type variable t. We write D] t̂ t for the
type identifier expansion context that maps t̂ to t̂ t and defers to D for all other type
identifiers (i.e. the previous mapping is updated.)

We define ∆̂, t̂ t type when ∆̂ = 〈D; ∆〉 as an abbreviation of

〈D] t̂ t; ∆, t type〉

Definition B.3.4 (Unexpanded Type Formation Context Formation). ` 〈D; ∆〉 utctx iff for
each t̂ t type ∈ D we have t type ∈ ∆.

∆̂ ` τ̂ τ type τ̂ has well-formed expansion τ

∆̂, t̂ t type ` t̂ t type
(B.5a)

∆̂ ` τ̂1 τ1 type ∆̂ ` τ̂2 τ2 type

∆̂ ` uparr(τ̂1; τ̂2) parr(τ1; τ2) type
(B.5b)

∆̂, t̂ t type ` τ̂ τ type

∆̂ ` uall(t̂.τ̂) all(t.τ) type
(B.5c)

∆̂, t̂ t type ` τ̂ τ type

∆̂ ` urec(t̂.τ̂) rec(t.τ) type
(B.5d)

{∆̂ ` τ̂i τi type}i∈L

∆̂ ` uprod[L]({i ↪→ τ̂i}i∈L) prod({i ↪→ τi}i∈L) type
(B.5e)

{∆̂ ` τ̂i τi type}i∈L

∆̂ ` usum[L]({i ↪→ τ̂i}i∈L) sum({i ↪→ τi}i∈L) type
(B.5f)

15

B.3.3 Typed Expression Expansion

Contexts

Unexpanded typing contexts, Γ̂, are, similarly, of the form 〈G; Γ〉, where G is an expression
identifier expansion context, and Γ is a typing context. An expression identifier expansion
context, G, is a finite function that maps each expression identifier x̂ ∈ dom(G) to the
hypothesis x̂ x, for some expression variable, x. We write G] x̂ x for the expression
identifier expansion context that maps x̂ to x̂ x and defers to G for all other expression
identifiers (i.e. the previous mapping is updated.)

We define Γ̂, x̂ x : τ when Γ̂ = 〈G; Γ〉 as an abbreviation of

〈G] x̂ x; Γ, x : τ〉

Definition B.3.5 (Unexpanded Typing Context Formation). ∆ ` 〈G; Γ〉 uctx iff ∆ ` Γ ctx
and for each x̂ x ∈ G, we have x ∈ dom(Γ).

Body Encoding and Decoding

An assumed type abbreviated Body classifies encodings of literal bodies, b. The mapping
from literal bodies to values of type Body is defined by the body encoding judgement
b ↓Body ebody. An inverse mapping is defined by the body decoding judgement ebody ↑Body b.

Judgement Form Description
b ↓Body e b has encoding e
e ↑Body b e has decoding b

The following condition establishes an isomorphism between literal bodies and values
of type Body mediated by the judgements above.

Condition B.3.6 (Body Isomorphism).

1. For every literal body b, we have that b ↓Body ebody for some ebody such that ` ebody : Body
and ebody val.

2. If ` ebody : Body and ebody val then ebody ↑Body b for some b.

3. If b ↓Body ebody then ebody ↑Body b.

4. If ` ebody : Body and ebody val and ebody ↑Body b then b ↓Body ebody.

5. If b ↓Body ebody and b ↓Body e′body then ebody = e′body.

6. If ` ebody : Body and ebody val and ebody ↑Body b and ebody ↑Body b′ then b = b′.

We also assume a partial metafunction, subseq(b; m; n), which extracts a subsequence
of b starting at position m and ending at position n, inclusive, where m and n are natural
numbers. The following condition is technically necessary.

Condition B.3.7 (Body Subsequencing). If subseq(b; m; n) = b′ then ‖b′‖ ≤ ‖b‖.

16

Parse Results

The type abbreviated ParseResultE, and an auxiliary abbreviation used below, is defined
as follows:

LSE
def
= Error, SuccessE

ParseResultE
def
= sum(Error ↪→ 〈〉, SuccessE ↪→ PrExpr)

The type abbreviated ParseResultP, and an auxiliary abbreviation used below, is defined
as follows:

LSP
def
= Error, SuccessP

ParseResultE
def
= sum(Error ↪→ 〈〉, SuccessP ↪→ PrPat)

seTLM Contexts

seTLM contexts, Ψ̂, are of the form 〈A; Ψ〉, where A is a TLM identifier expansion context
and Ψ is a seTLM definition context.

A TLM identifier expansion context, A, is a finite function mapping each TLM identifier
â ∈ dom(A) to the TLM identifier expansion, â x, for some variable x. We write
A] â x for the TLM identifier expansion context that maps â to â x, and defers to
A for all other TLM identifiers (i.e. the previous mapping is updated.)

An seTLM definition context, Ψ, is a finite function mapping each variable x ∈ dom(Ψ)
to an expanded seTLM definition, x ↪→ setlm(τ; eparse), where τ is the seTLM’s type
annotation, and eparse is its parse function. We write Ψ, x ↪→ setlm(τ; eparse) when
x /∈ dom(Ψ) for the extension of Ψ that maps x to x ↪→ setlm(τ; eparse). We write
∆ ` Ψ seTLMs when all the type annotations in Ψ are well-formed assuming ∆, and the
parse functions in Ψ are closed and of the appropriate type.

Definition B.3.8 (seTLM Definition Context Formation). ∆ ` Ψ seTLMs iff for each x ↪→
setlm(τ; eparse) ∈ Ψ, we have ∆ ` τ type and ∅ ∅ ` eparse : parr(Body; ParseResultE).

Definition B.3.9 (seTLM Context Formation). ∆ ` 〈A; Ψ〉 seTLMctx iff ∆ ` Ψ seTLMs and
for each â x ∈ A we have x ∈ dom(Ψ).

We define Ψ̂, â x ↪→ setlm(τ; eparse), when Ψ̂ = 〈A; Φ〉, as an abbreviation of

〈A] â x; Ψ, x ↪→ setlm(τ; eparse)〉

17

spTLM Contexts

spTLM contexts, Φ̂, are of the form 〈A; Φ〉, whereA is a TLM identifier expansion context,
defined above, and Φ is a spTLM definition context.

An spTLM definition context, Φ, is a finite function mapping each variable x ∈ dom(Φ)
to an expanded seTLM definition, a ↪→ sptlm(τ; eparse), where τ is the spTLM’s type
annotation, and eparse is its parse function. We write Φ, a ↪→ sptlm(τ; eparse) when
a /∈ dom(Φ) for the extension of Φ that maps x to a ↪→ sptlm(τ; eparse). We write
∆ ` Φ spTLMs when all the type annotations in Φ are well-formed assuming ∆, and the
parse functions in Φ are closed and of the appropriate type.

Definition B.3.10 (spTLM Definition Context Formation). ∆ ` Φ spTLMs iff for each a ↪→
sptlm(τ; eparse) ∈ Φ, we have ∆ ` τ type and ∅ ∅ ` eparse : parr(Body; ParseResultP).

Definition B.3.11 (spTLM Context Formation). ∆ ` 〈A; Φ〉 spTLMctx iff ∆ ` Φ spTLMs
and for each â x ∈ A we have x ∈ dom(Φ).

We define Φ̂, â x ↪→ sptlm(τ; eparse), when Φ̂ = 〈A; Φ〉, as an abbreviation of

〈A] â x; Φ, a ↪→ sptlm(τ; eparse)〉

Typed Expression Expansion

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ ê has expansion e of type τ

∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ x̂ x : τ
(B.6a)

∆̂ ` τ̂ τ type ∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê : τ̂ e : τ
(B.6b)

∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : τ1 ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê2 e2 : τ2

∆̂ Γ̂ `Ψ̂;Φ̂ let val x̂ = ê1 in ê2 ap(lam{τ1}(x.e2); e1) : τ2
(B.6c)

∆̂ ` τ̂ τ type ∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ ê e : τ′

∆̂ Γ̂ `Ψ̂;Φ̂ λx̂:τ̂.ê lam{τ}(x.e) : parr(τ; τ′)
(B.6d)

∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : parr(τ; τ′) ∆̂ Γ̂ `Ψ̂;Φ̂ ê2 e2 : τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê1(ê2) ap(e1; e2) : τ′
(B.6e)

∆̂, t̂ t type Γ̂ `Ψ̂;Φ̂ ê e : τ

∆̂ Γ̂ `Ψ̂;Φ̂ Λt̂.ê tlam(t.e) : all(t.τ)
(B.6f)

18

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : all(t.τ) ∆̂ ` τ̂′ τ′ type

∆̂ Γ̂ `Ψ̂;Φ̂ ê[τ̂′] tap{τ′}(e) : [τ′/t]τ
(B.6g)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : [rec(t.τ)/t]τ

∆̂ Γ̂ `Ψ̂;Φ̂ fold(ê) fold(e) : rec(t.τ)
(B.6h)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : rec(t.τ)

∆̂ Γ̂ `Ψ̂;Φ̂ unfold(ê) unfold(e) : [rec(t.τ)/t]τ
(B.6i)

{∆̂ Γ̂ `Ψ̂;Φ̂ êi ei : τi}i∈L

∆̂ Γ̂ `Ψ̂;Φ̂ 〈{i ↪→ êi}i∈L〉 tpl({i ↪→ ei}i∈L) : prod({i ↪→ τi}i∈L)
(B.6j)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : prod({i ↪→ τi}i∈L; ` ↪→ τ)

∆̂ Γ̂ `Ψ̂;Φ̂ ê · ` prj[`](e) : τ
(B.6k)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ′

∆̂ Γ̂ `Ψ̂;Φ̂ inj[`](ê) inj[`](e) : sum({i ↪→ τi}i∈L; ` ↪→ τ′)
(B.6l)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : sum({i ↪→ τi}i∈L) {∆̂ Γ̂, x̂i xi : τi `Ψ̂;Φ̂ êi ei : τ}i∈L

∆̂ Γ̂ `Ψ̂;Φ̂ case ê {i ↪→ x̂i.êi}i∈L case(e; {i ↪→ xi.ei}i∈L) : τ
(B.6m)

∆̂ ` τ̂ τ type

∅ ∅ ` eparse : parr(Body; ParseResultE) ∆̂ Γ̂ `Ψ̂;Φ̂ êdep edep : τdep

Γ̂ = 〈G; Γ〉 ∆̂ 〈G; Γ, x : τdep〉 `Ψ̂,â x↪→setlm(τ; eparse);Φ̂ ê e : τ′

edefn = ap(lam{τdep}(x.e); edep)

∆̂ Γ̂ `Ψ̂;Φ̂ notation â at τ̂ { expr parser eparse; expansions require ê } in ê edefn : τ′

(B.6n)

Ψ̂ = Ψ̂′, â x ↪→ setlm(τ; eparse) Γ̂ = 〈G; Γ, x : τdep〉
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](eproto) eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : parr(τdep; τ)

∆̂ Γ̂ `Ψ̂;Φ̂ â ‘(b)‘ ap(e; x) : τ
(B.6o)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ {∆̂ Γ̂ `Ψ̂; Φ̂ r̂i ri : τ Z⇒ τ′}1≤i≤n

∆̂ Γ̂ `Ψ̂;Φ̂ match ê {r̂i}1≤i≤n match(e; {ri}1≤i≤n) : τ′
(B.6p)

19

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultP)
∆̂ Γ̂ `Ψ̂; Φ̂,â x↪→sptlm(τ; e′parse)

ê e : τ′

∆̂ Γ̂ `Ψ̂; Φ̂ notation â at τ̂ { pat parser eparse } in ê e : τ′
(B.6q)

∆̂ Γ̂ `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ r̂ has expansion r taking values of type τ to values of type τ′

∆̂ `Φ̂ p̂ p : τ
〈G ′; Γ′〉 ∆̂ 〈G] G ′; Γ ∪ Γ′〉 `Ψ̂; Φ̂ ê e : τ′

∆̂ 〈G; Γ〉 `Ψ̂; Φ̂ urule(p̂.ê) rule(p.e) : τ Z⇒ τ′
(B.7)

Typed Pattern Expansion

∆̂ `Φ̂ p̂ p : τ
̂Γ p̂ has expansion p matching against τ generating hypotheses Γ̂

∆̂ `Φ̂ x̂ x : τ
〈x̂ x; x : τ〉
(B.8a)

∆̂ `Φ̂ _ wildp : τ
〈∅; ∅〉
(B.8b)

∆̂ `Φ̂ p̂ p : [rec(t.τ)/t]τ
̂Γ

∆̂ `Φ̂ fold(p̂) foldp(p) : rec(t.τ)
̂Γ
(B.8c)

τ = prod({i ↪→ τi}i∈L)

{∆̂ `Φ̂ p̂i pi : τi
̂Γi}i∈L

∆̂ `Φ̂ 〈{i ↪→ p̂i}i∈L〉 tplp({i ↪→ pi}i∈L) : τ
]i∈L Γ̂i
(B.8d)

∆̂ `Φ̂ p̂ p : τ
̂Γ

∆̂ `Φ̂ inj[`](p̂) injp[`](p) : sum({i ↪→ τi}i∈L; ` ↪→ τ)
̂Γ
(B.8e)

Φ̂ = Φ̂′, â _ ↪→ sptlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](eproto) eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆̂; Φ̂; b Γ̂

∆̂ `Φ̂ â ‘(b)‘ p : τ
̂Γ
(B.8f)

In Rule (B.8d), Γ̂i is shorthand for 〈Gi; Γi〉 and]i∈LΓ̂i is shorthand for

〈]i∈LGi;∪i∈LΓi〉

20

B.4 Proto-Expansion Validation

B.4.1 Syntax of Proto-Expansions

Sort Operational Form Stylized Form Description
PrTyp τ̀ ::= t t variable

prparr(τ̀; τ̀) τ̀ ⇀ τ̀ partial function
prall(t.τ̀) ∀t.τ̀ polymorphic
prrec(t.τ̀) µt.τ̀ recursive
prprod({i ↪→ τ̀i}i∈L) 〈{i ↪→ τ̀i}i∈L〉 labeled product
prsum({i ↪→ τ̀i}i∈L) [{i ↪→ τ̀i}i∈L] labeled sum
splicedt[m; n] splicedt[m; n] spliced type ref.

PrExp è ::= x x variable
prasc{τ̀}(è) è : τ̀ ascription
prletval(è; x.è) let val x = è in è value binding
prlam{τ̀}(x.è) λx:τ̀.è abstraction
prap(è; è) è(è) application
prtlam(t.è) Λt.è type abstraction
prtap{τ̀}(è) è[τ̀] type application
prfold(è) fold(è) fold
prunfold(è) unfold(è) unfold
prtpl({i ↪→ èi}i∈L) 〈{i ↪→ èi}i∈L〉 labeled tuple
prprj[`](è) è · ` projection
prinj[`](è) inj[`](è) injection
prcase(è; {i ↪→ xi.èi}i∈L) case è {i ↪→ xi.èi}i∈L case analysis
splicede[m; n; τ̀] splicede[m; n; τ̀] spliced expr. ref.
prmatch(è; {r̀i}1≤i≤n) match è {r̀i}1≤i≤n match

PrRule r̀ ::= prrule(p.è) p⇒ è rule
PrPat p̀ ::= prwildp _ wildcard pattern

prfoldp(p̀) fold(p̀) fold pattern
prtplp[L]({i ↪→ p̀i}i∈L) 〈{i ↪→ p̀i}i∈L〉 labeled tuple pattern
prinjp[`](p̀) inj[`](p̀) injection pattern
splicedp[m; n; τ̀] splicedp[m; n; τ̀] spliced pattern ref.

Common Proto-Expansion Terms

Each core language term, except variable patterns, maps onto a proto-expansion term.
We refer to these as the common proto-expansion terms. In particular:

21

• Each type, τ, maps onto a proto-type, P(τ), as follows:

P(t) = t
P(parr(τ1; τ2)) = prparr(P(τ1);P(τ2))
P(all(t.τ)) = prall(t.P(τ))
P(rec(t.τ)) = prrec(t.P(τ))

P(prod({i ↪→ τi}i∈L)) = prprod({i ↪→ P(τi)}i∈L)
P(sum({i ↪→ τi}i∈L)) = prsum({i ↪→ P(τi)}i∈L)

• Each core language expression, e, maps onto a proto-expression, P(e), as follows:

P(x) = x
P(lam{τ}(x.e)) = prlam{P(τ)}(x.P(e))
P(ap(e1; e2)) = prap(P(e1);P(e2))
P(tlam(t.e)) = prtlam(t.P(e))
P(tap{τ}(e)) = prtap{P(τ)}(P(e))
P(fold(e)) = prfold(P(e))

P(unfold(e)) = prunfold(P(e))
P(tpl({i ↪→ ei}i∈L)) = prtpl({i ↪→ P(ei)}i∈L)

P(inj[`](e)) = prinj[`](P(e))
P(match(e; {ri}1≤i≤n)) = prmatch(P(e); {P(ri)}1≤i≤n)

• Each core language rule, r, maps onto the proto-rule, P(r), as follows:

P(rule(p.e)) = prrule(p.P(e))

Notice that proto-rules bind expanded patterns, not proto-patterns. This is because
proto-rules appear in proto-expressions, which are generated by seTLMs. It would
not be sensible for an seTLM to splice a pattern out of a literal body.

• Each core language pattern, p, except for the variable patterns, maps onto a proto-
pattern, P(p), as follows:

P(wildp) = prwildp
P(foldp(p)) = prfoldp(P(p))

P(tplp({i ↪→ pi}i∈L)) = prtplp[L]({i ↪→ P(pi)}i∈L)

P(injp[`](p)) = prinjp[`](P(p))

Proto-Expression Encoding and Decoding

The type abbreviated PrExpr classifies encodings of proto-expressions. The mapping from
proto-expressions to values of type PrExpr is defined by the proto-expression encoding
judgement, è ↓PrExpr e. An inverse mapping is defined by the proto-expression decoding
judgement, e ↑PrExpr è.

22

Judgement Form Description
è ↓PrExpr e è has encoding e
e ↑PrExpr è e has decoding è

Rather than picking a particular definition of PrExpr and defining the judgements
above inductively against it, we only state the following condition, which establishes an
isomorphism between values of type PrExpr and proto-expressions.

Condition B.4.1 (Proto-Expression Isomorphism).

1. For every è, we have è ↓PrExpr eproto for some eproto such that ` eproto : PrExpr and eproto val.

2. If ` eproto : PrExpr and eproto val then eproto ↑PrExpr è for some è.

3. If è ↓PrExpr eproto then eproto ↑PrExpr è.

4. If ` eproto : PrExpr and eproto val and eproto ↑PrExpr è then è ↓PrExpr eproto.

5. If è ↓PrExpr eproto and è ↓PrExpr e′proto then eproto = e′proto.

6. If ` eproto : PrExpr and eproto val and eproto ↑PrExpr è and eproto ↑PrExpr è′ then è = è′.

Proto-Pattern Encoding and Decoding

The type abbreviated PrPat classifies encodings of proto-patterns. The mapping from
proto-patterns to values of type PrPat is defined by the proto-pattern encoding judgement,
p̀ ↓PrPat p. An inverse mapping is defined by the proto-expression decoding judgement,
p ↑PrPat p̀.

Judgement Form Description
p̀ ↓PrPat p p̀ has encoding p
p ↑PrPat p̀ p has decoding p̀

Again, rather than picking a particular definition of PrPat and defining the judge-
ments above inductively against it, we only state the following condition, which estab-
lishes an isomorphism between values of type PrPat and proto-patterns.

Condition B.4.2 (Proto-Pattern Isomorphism).

1. For every p̀, we have p̀ ↓PrPat eproto for some eproto such that ` eproto : PrPat and eproto val.

2. If ` eproto : PrPat and eproto val then eproto ↑PrPat p̀ for some p̀.

3. If p̀ ↓PrPat eproto then eproto ↑PrPat p̀.

4. If ` eproto : PrPat and eproto val and eproto ↑PrPat p̀ then p̀ ↓PrPat eproto.

5. If p̀ ↓PrPat eproto and p̀ ↓PrPat e′proto then eproto = e′proto.

23

6. If ` eproto : PrPat and eproto val and eproto ↑PrPat p̀ and eproto ↑PrPat p̀′ then p̀ = p̀′.

Segmentations

The segmentation, ψ, of a proto-type, seg(τ̀) or proto-expression, seg(è), is the finite set of
references to spliced types and expressions that it mentions.

seg(t) = ∅
seg(prparr(τ̀1; τ̀2)) = seg(τ̀1) ∪ seg(τ̀2)
seg(prall(t.τ̀)) = seg(τ̀)
seg(prrec(t.τ̀)) = seg(τ̀)
seg(prprod({i ↪→ τ̀i}i∈L)) =

⋃
i∈L seg(τ̀i)

seg(prsum({i ↪→ τ̀i}i∈L)) =
⋃

i∈L seg(τ̀i)
seg(splicedt[m; n]) = {splicedt[m; n]}

seg(x) = ∅
seg(prasc{τ̀}(è)) = seg(τ̀) ∪ seg(è)
seg(prletval(è1; x.è2)) = seg(è1) ∪ seg(è2)
seg(prlam{τ̀}(x.è)) = seg(τ̀) ∪ seg(è)
seg(prap(è1; è2)) = seg(è1) ∪ seg(è2)
seg(prtlam(t.è)) = seg(è)
seg(prtap{τ̀}(è)) = seg(è) ∪ seg(τ̀)
seg(prfold(è)) = seg(è)
seg(prunfold(è)) = seg(è)
seg(prtpl({i ↪→ xi.èi}i∈L)) =

⋃
i∈L seg(èi)

seg(prprj[`](è)) = seg(è)
seg(prinj[`](è)) = seg(è)
seg(prcase(è; {i ↪→ xi.èi}i∈L)) = seg(è) ∪⋃

i∈L seg(èi)
seg(splicede[m; n; τ̀]) = {splicede[m; n; τ̀]} ∪ seg(τ̀)
seg(prmatch(è; {r̀i}1≤i≤n)) = seg(è) ∪⋃

1≤i≤n seg(r̀i)

seg(prrule(p.è)) = seg(è)

The splice summary of a proto-pattern, seg(p̀), is the finite set of references to spliced
types and patterns that it mentions.

seg(prwildp) = ∅
seg(prfoldp(p̀)) = seg(p̀)
seg(prtplp[L]({i ↪→ p̀i}i∈L)) =

⋃
i∈L seg(p̀i)

seg(prinjp[`](p̀)) = seg(p̀)
seg(splicedp[m; n; τ̀]) = {splicedp[m; n; τ̀]} ∪ seg(τ̀)

The predicate ψ segments b defined below checks that each segment in ψ, has positive
extent and is within bounds of b, and that the segments in ψ do not overlap or sit imme-

24

diately adjacent to one another, and that spliced segments that are exactly overlapping
have equal segment types.

Definition B.4.3 (Segmentation Validity). ψ segments b iff

1. For each splicedt[m; n] ∈ ψ, all of the following hold:

(a) 0 ≤ m ≤ n < ‖b‖
(b) For each splicedt[m′; n′] ∈ ψ, either

i. m = m′ and n = n′; or
ii. n′ < m− 1; or

iii. m′ > n + 1
(c) For each splicede[m′; n′; τ̀] ∈ ψ, either

i. n′ < m− 1; or
ii. m′ > n + 1

(d) For each splicedp[m′; n′; τ̀] ∈ ψ, either

i. n′ < m− 1; or
ii. m′ > n + 1

2. For each splicede[m; n; τ̀] ∈ ψ, all of the following hold:

(a) 0 ≤ m ≤ n < ‖b‖
(b) For each splicedt[m′; n′] ∈ ψ, either

i. n′ < m− 1; or
ii. m′ > n + 1

(c) For each splicede[m′; n′; τ̀′] ∈ ψ, either
i. m = m′ and n = n′ and τ̀ = τ̀′; or

ii. n′ < m− 1; or
iii. m′ > n + 1

3. For each splicedp[m; n; τ̀] ∈ ψ, all of the following hold:

(a) 0 ≤ m ≤ n < ‖b‖
(b) For each splicedt[m′; n′] ∈ ψ, either

i. n′ < m− 1; or
ii. m′ > n + 1

(c) For each splicede[m′; n′; τ̀′] ∈ ψ, either

i. n′ < m− 1; or
ii. m′ > n + 1

(d) For each splicedp[m′; n′; τ̀′] ∈ ψ, either

25

i. m = m′ and n = n′ and τ̀ = τ̀′; or
ii. n′ < m− 1; or

iii. m′ > n + 1

B.4.2 Proto-Type Validation

Type splicing scenes, T, are of the form ∆̂; b.

∆ `T τ̀ τ type τ̀ has well-formed expansion τ

∆, t type `T t t type
(B.9a)

∆ `T τ̀1 τ1 type ∆ `T τ̀2 τ2 type

∆ `T prparr(τ̀1; τ̀2) parr(τ1; τ2) type
(B.9b)

∆, t type `T τ̀ τ type

∆ `T prall(t.τ̀) all(t.τ) type
(B.9c)

∆, t type `T τ̀ τ type

∆ `T prrec(t.τ̀) rec(t.τ) type
(B.9d)

{∆ `T τ̀i τi type}i∈L

∆ `T prprod({i ↪→ τ̀i}i∈L) prod({i ↪→ τi}i∈L) type
(B.9e)

{∆ `T τ̀i τi type}i∈L

∆ `T prsum({i ↪→ τ̀i}i∈L) sum({i ↪→ τi}i∈L) type
(B.9f)

parseUTyp(subseq(b; m; n)) = τ̂ 〈D; ∆app〉 ` τ̂ τ type ∆ ∩ ∆app = ∅

∆ `〈D;∆app〉; b splicedt[m; n] τ type
(B.9g)

B.4.3 Proto-Expression Validation

Expression splicing scenes, E, are of the form ∆̂; Γ̂; Ψ̂; Φ̂; b. We write ts(E) for the type
splicing scene constructed by dropping unnecessary contexts from E:

ts(∆̂; Γ̂; Ψ̂; Φ̂; b) = ∆̂; b

∆ Γ `E è e : τ è has expansion e of type τ

∆ Γ, x : τ `E x x : τ
(B.10a)

∆ `ts(E) τ̀ τ type ∆ Γ `E è e : τ

∆ Γ `E prasc{τ̀}(è) e : τ
(B.10b)

26

∆ Γ `E è1 e1 : τ1 ∆ Γ, x : τ1 `è2 e2 τ2 :

∆ Γ `E prletval(è1; x.è2) ap(lam{τ1}(x.e2); e1) : τ2
(B.10c)

∆ `ts(E) τ̀ τ type ∆ Γ, x : τ `E è e : τ′

∆ Γ `E prlam{τ̀}(x.è) lam{τ}(x.e) : parr(τ; τ′)
(B.10d)

∆ Γ `E è1 e1 : parr(τ; τ′) ∆ Γ `E è2 e2 : τ

∆ Γ `E prap(è1; è2) ap(e1; e2) : τ′
(B.10e)

∆, t type Γ `E è e : τ

∆ Γ `E prtlam(t.è) tlam(t.e) : all(t.τ)
(B.10f)

∆ Γ `E è e : all(t.τ) ∆ `ts(E) τ̀′ τ′ type

∆ Γ `E prtap{τ̀′}(è) tap{τ′}(e) : [τ′/t]τ
(B.10g)

∆ Γ `E è e : [rec(t.τ)/t]τ

∆ Γ `E prfold(è) fold(e) : rec(t.τ)
(B.10h)

∆ Γ `E è e : rec(t.τ)

∆ Γ `E prunfold(è) unfold(e) : [rec(t.τ)/t]τ
(B.10i)

τ = prod({i ↪→ τi}i∈L)

{∆ Γ `E èi ei : τi}i∈L

∆ Γ `E prtpl({i ↪→ èi}i∈L) tpl({i ↪→ ei}i∈L) : τ
(B.10j)

∆ Γ `E è e : prod({i ↪→ τi}i∈L; ` ↪→ τ)

∆ Γ `E prprj[`](è) prj[`](e) : τ
(B.10k)

∆ Γ `E è e : τ′

∆ Γ `E prinj[`](è) inj[`](e) : sum({i ↪→ τi}i∈L; ` ↪→ τ′)
(B.10l)

∆ Γ `E è e : sum({i ↪→ τi}i∈L) {∆ Γ, xi : τi `E èi ei : τ}i∈L

∆ Γ `E prcase(è; {i ↪→ xi.èi}i∈L) case(e; {i ↪→ xi.ei}i∈L) : τ
(B.10m)

∅ `ts(E) τ̀ τ type E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; Φ̂; b
parseUExp(subseq(b; m; n)) = ê 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ ê e : τ

∆ ∩ ∆app = ∅ dom(Γ) ∩ dom(Γapp) = ∅

∆ Γ `E splicede[m; n; τ̀] e : τ
(B.10n)

∆ Γ `E è e : τ {∆ Γ `E r̀i ri : τ Z⇒ τ′}1≤i≤n

∆ Γ `E prmatch(è; {r̀i}1≤i≤n) match(e; {ri}1≤i≤n) : τ′
(B.10o)

27

∆ Γ `E r̀ r : τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

∆ ∪ ∆app ` p : τ
Γ′ ∆ Γ ∪ Γ′ `E è e : τ′

∆ Γ `E prrule(p.è) rule(p.e) : τ Z⇒ τ′
(B.11)

B.4.4 Proto-Pattern Validation

Pattern splicing scenes, P, are of the form ∆̂; Φ̂; b.

p̀ p : τ
P Γ̂ p̀ has expansion p matching against τ generating hypotheses Γ̂

prwildp wildp : τ
P 〈∅; ∅〉
(B.12a)

p̀ p : [rec(t.τ)/t]τ
P Γ̂

prfoldp(p̀) foldp(p) : rec(t.τ)
P Γ̂
(B.12b)

τ = prod({i ↪→ τi}i∈L)

{ p̀i pi : τi

P Γ̂i}i∈L

prtplp[L]({i ↪→ p̀i}i∈L) tplp({i ↪→ pi}i∈L) : τ
P]i∈LΓ̂i
(B.12c)

p̀ p : τ
P Γ̂

prinjp[`](p̀) injp[`](p) : sum({i ↪→ τi}i∈L; ` ↪→ τ)
P Γ̂
(B.12d)

∅ `∆̂; b τ̀ τ type parseUPat(subseq(b; m; n)) = p̂ ∆̂ `Φ̂ p̂ p : τ
̂Γ

splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂
(B.12e)

B.5 Metatheory

B.5.1 Type Expansion

Lemma B.5.1 (Type Expansion). If 〈D; ∆〉 ` τ̂ τ type then ∆ ` τ type.

Proof. By rule induction over Rules (B.5). In each case, we apply the IH to or over each
premise, then apply the corresponding type formation rule in Rules (B.1).

Lemma B.5.2 (Proto-Type Validation). If ∆ `〈D;∆app〉; b τ̀ τ type and ∆ ∩ ∆app = ∅ then
∆ ∪ ∆app ` τ type.

Proof. By rule induction over Rules (B.9).

28

Case (B.9a).

(1) ∆ = ∆′, t type by assumption

(2) τ̀ = t by assumption

(3) τ = t by assumption

(4) ∆′, t type ` t type by Rule (B.1a)

(5) ∆′, t type∪ ∆app ` t type by Lemma B.2.2 over
∆app to (4)

Case (B.9b).

(1) τ̀ = prparr(τ̀1; τ̀2) by assumption

(2) τ = parr(τ1; τ2) by assumption

(3) ∆ `〈D;∆app〉; b τ̀1 τ1 type by assumption

(4) ∆ `〈D;∆app〉; b τ̀2 τ2 type by assumption

(5) ∆ ∪ ∆app ` τ1 type by IH on (3)

(6) ∆ ∪ ∆app ` τ2 type by IH on (4)

(7) ∆ ∪ ∆app ` parr(τ1; τ2) type by Rule (B.1b) on (5)
and (6)

Case (B.9c).

(1) τ̀ = prall(t.τ̀′) by assumption

(2) τ = all(t.τ′) by assumption

(3) ∆, t type `〈D;∆app〉; b τ̀′ τ′ type by assumption

(4) ∆, t type∪ ∆app ` τ′ type by IH on (3)

(5) ∆ ∪ ∆app, t type ` τ′ type by exchange over
∆app on (4)

(6) ∆ ∪ ∆app ` all(t.τ′) type by Rule (B.1c) on (5)

Case (B.9d).

(1) τ̀ = prrec(t.τ̀′) by assumption

(2) τ = rec(t.τ′) by assumption

(3) ∆, t type `∆app; b τ̀′ τ′ type by assumption

29

(4) ∆, t type∪ ∆app ` τ′ type by IH on (3)

(5) ∆ ∪ ∆app, t type ` τ′ type by exchange over
∆app on (4)

(6) ∆ ∪ ∆app ` rec(t.τ′) type by Rule (B.1d) on (5)

Case (B.9e).

(1) τ̀ = prprod({i ↪→ τ̀i}i∈L) by assumption

(2) τ = prod({i ↪→ τi}i∈L) by assumption

(3) {∆ `∆app; b τ̀i τi type}i∈L by assumption

(4) {∆ ∪ ∆app ` τi type}i∈L by IH over (3)

(5) ∆ ∪ ∆app ` prod({i ↪→ τi}i∈L) type by Rule (B.1e) on (4)

Case (B.9f).

(1) τ̀ = prsum({i ↪→ τ̀i}i∈L) by assumption

(2) τ = sum({i ↪→ τi}i∈L) by assumption

(3) {∆ `∆app; b τ̀i τi type}i∈L by assumption

(4) {∆ ∪ ∆app ` τi type}i∈L by IH over (3)

(5) ∆ ∪ ∆app ` sum({i ↪→ τi}i∈L) type by Rule (B.1f) on (4)

Case (B.9g).

(1) τ̀ = splicedt[m; n] by assumption

(2) parseUTyp(subseq(b; m; n)) = τ̂ by assumption

(3) 〈D; ∆app〉 ` τ̂ τ type by assumption

(4) ∆ ∩ ∆app = ∅ by assumption

(5) ∆app ` τ type by Lemma B.5.1 on (3)

(6) ∆ ∪ ∆app ` τ type by Lemma B.2.2 over
∆ on (5) and exchange
over ∆

30

B.5.2 Typed Pattern Expansion

Theorem B.5.3 (Typed Pattern Expansion).

1. If 〈D; ∆〉 `〈A;Φ〉 p̂ p : τ
〈G; Γ〉 then p : τ
Γ.

2. If p̀ p : τ
〈D;∆〉; 〈A;Φ〉; b 〈G; Γ〉 then p : τ
Γ.

Proof. By mutual rule induction over Rules (B.8) and Rules (B.12).

1. We induct on the premise. In the following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 and
Φ̂ = 〈A; Φ〉.

Case (B.8a).

(1) p̂ = x̂ by assumption
(2) p = x by assumption
(3) Γ = x : τ by assumption
(4) x : τ
x : τ by Rule (B.4a)

Case (B.8b).

(1) p = wildp by assumption
(2) Γ = ∅ by assumption
(3) wildp : τ
∅ by Rule (B.4b)

Case (B.8c).

(1) p̂ = fold(p̂′) by assumption
(2) p = foldp(p′) by assumption
(3) τ = rec(t.τ′) by assumption
(4) ∆̂ `Φ̂ p̂′ p′ : [rec(t.τ′)/t]τ′
̂Γ by assumption
(5) p′ : [rec(t.τ′)/t]τ′
Γ by IH, part 1 on (4)
(6) foldp(p′) : rec(t.τ′)
Γ by Rule (B.4c) on (5)

Case (B.8d).

(1) p̂ = 〈{i ↪→ p̂i}i∈L〉 by assumption
(2) p = tplp({i ↪→ pi}i∈L) by assumption
(3) τ = prod({i ↪→ τi}i∈L) by assumption
(4) {∆̂ `Φ̂ p̂i pi : τi
〈Gi; Γi〉}i∈L by assumption
(5) Γ = ∪i∈LΓi by assumption
(6) {pi : τi
Γi}i∈L by IH, part 1 over (4)
(7) tplp({i ↪→ pi}i∈L) : prod({i ↪→ τi}i∈L)
∪i∈L Γi

by Rule (B.4d) on (6)

31

Case (B.8e).

(1) p̂ = inj[`](p̂′) by assumption
(2) p = injp[`](p′) by assumption
(3) τ = sum({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption
(4) ∆̂ `Φ̂ p̂′ p′ : τ′
̂Γ by assumption
(5) p′ : τ′
Γ by IH, part 1 on (4)
(6) injp[`](p′) : sum({i ↪→ τi}i∈L; ` ↪→ τ′)
Γ by Rule (B.4e) on (5)

Case (B.8f).

(1) p̂ = â ‘(b)‘ by assumption
(2) A = A′, â x by assumption
(3) Φ = Φ′, a ↪→ sptlm(τ; eparse) by assumption
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption
(6) eproto ↑PrPat p̀ by assumption

(7) p̀ p : τ
∆̂; 〈A;Φ〉; b 〈G; Γ〉 by assumption
(8) p : τ
Γ by IH, part 2 on (7)

2. We induct on the premise. In the following, let Γ̂ = 〈G; Γ〉 and ∆̂ = 〈D; ∆〉 and
Φ̂ = 〈A; Φ〉.

Case (B.12a).

(1) p = wildp by assumption
(2) Γ = ∅ by assumption
(3) wildp : τ
∅ by Rule (B.4b)

Case (B.12b).

(1) p̀ = prfoldp(p̀′) by assumption
(2) p = foldp(p′) by assumption
(3) τ = rec(t.τ′) by assumption

(4) p̀′ p′ : [rec(t.τ′)/t]τ′
∆̂; Φ̂; b Γ̂ by assumption
(5) p′ : [rec(t.τ′)/t]τ′
Γ by IH, part 2 on (4)
(6) foldp(p′) : rec(t.τ′)
Γ by Rule (B.4c) on (5)

Case (B.12c).

(1) p̀ = prtplp[L]({i ↪→ p̀i}i∈L) by assumption
(2) p = tplp({i ↪→ pi}i∈L) by assumption
(3) τ = prod({i ↪→ τi}i∈L) by assumption

32

(4) { p̀i pi : τi

∆̂; Φ̂; b 〈Gi; Γi〉}i∈L by assumption

(5) Γ = ∪i∈LΓi by assumption
(6) {pi : τi
Γi}i∈L by IH, part 2 over (4)
(7) tplp({i ↪→ pi}i∈L) : prod({i ↪→ τi}i∈L)
∪i∈L Γi

by Rule (B.4d) on (6)

Case (B.12d).

(1) p̀ = prinjp[`](p̀′) by assumption
(2) p = injp[`](p′) by assumption
(3) τ = sum({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption

(4) p̀′ p′ : τ′
∆̂; Φ̂; b Γ̂ by assumption
(5) p′ : τ′
Γ by IH, part 2 on (4)
(6) injp[`](p′) : sum({i ↪→ τi}i∈L; ` ↪→ τ′)
Γ by Rule (B.4e) on (5)

Case (B.12e).

(1) p̀ = splicedp[m; n; τ̀] by assumption

(2) ∅ `∆̂; b τ̀ τ type by assumption
(3) parseUExp(subseq(b; m; n)) = p̂ by assumption
(4) ∆̂ `Φ̂ p̂ p : τ
̂Γ by assumption
(5) p : τ
Γ by IH, part 1 on (4)

The mutual induction can be shown to be well-founded by showing that the following
numeric metric on the judgements that we induct on is decreasing:

‖∆̂ `Φ̂ p̂ p : τ
̂Γ‖ = ‖ p̂‖

‖ p̀ p : τ
∆̂; Φ̂; b Γ̂‖ = ‖b‖

where ‖b‖ is the length of b and ‖ p̂‖ is the sum of the lengths of the literal bodies in p̂,
as defined in Sec. B.3.1.

The only case in the proof of part 1 that invokes part 2 is Case (B.8f). There, we have
that the metric remains stable:

‖∆̂ `Φ̂ â ‘(b)‘ p : τ
̂Γ‖

=‖ p̀ p : τ
∆̂; Φ̂; b Γ̂‖
=‖b‖

The only case in the proof of part 2 that invokes part 1 is Case (B.12e). There,
we have that parseUPat(subseq(b; m; n)) = p̂ and the IH is applied to the judgement

33

∆̂ `Φ̂ p̂ p : τ
̂Γ. Because the metric is stable when passing from part 1 to part 2, we
must have that it is strictly decreasing in the other direction:

‖∆̂ `Φ̂ p̂ p : τ
̂Γ‖ < ‖splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂‖

i.e. by the definitions above,
‖ p̂‖ < ‖b‖

This is established by appeal to Condition B.3.7, which states that subsequences of b
are no longer than b, and the Condition B.3.3, which states that an unexpanded pattern
constructed by parsing a textual sequence b is strictly smaller, as measured by the metric
defined above, than the length of b, because some characters must necessarily be used to
apply the pattern TLM and delimit each literal body. Combining Conditions B.3.7 and
B.3.3, we have that ‖ p̂‖ < ‖b‖ as needed.

B.5.3 Typed Expression Expansion

Theorem B.5.4 (Typed Expansion (Strong)).

1. (a) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e : τ then ∆ Γ ` e : τ.

(b) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ then ∆ Γ ` r : τ Z⇒ τ′.

2. (a) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e : τ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

(b) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` r : τ Z⇒ τ′.

Proof. By mutual rule induction over Rules (B.6), Rule (B.7), Rules (B.10) and Rule (B.11) .

1. In the following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉.

(a) Case (B.6a).
(1) ê = x̂ by assumption
(2) e = x by assumption
(3) Γ = Γ′, x : τ by assumption
(4) ∆ Γ′, x : τ ` x : τ by Rule (B.2a)

Case (B.6b).
(1) ê = ê′ : τ̂ by assumption
(2) ∆̂ ` τ̂ τ type by assumption
(3) ∆̂ Γ̂ `Ψ̂;Φ̂ ê′ e : τ by assumption

(4) ∆ Γ ` e : τ by IH, part 1(a) on (3)

34

Case (B.6c).
(1) ê = let val x̂ = ê1 in ê2 by assumption
(2) e = ap(lam{τ1}(x.e2); e1) by assumption
(3) ∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : τ1 by assumption

(4) ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê2 e2 : τ by assumption

(5) ∆ Γ ` e1 : τ1 by IH, part 1(a) on (3)
(6) ∆ Γ, x : τ ` e2 : τ by IH, part 1(a) on (4)
(7) ∆ Γ ` lam{τ1}(x.e2) : parr(τ1; τ) by Rule (B.2b) on (6)
(8) ∆ Γ ` ap(lam{τ1}(x.e2); e1) : τ by Rule (B.2c) on (7)

and (5)

Case (B.6d).
(1) ê = λx̂:τ̂1.ê′ by assumption
(2) e = lam{τ1}(x.e′) by assumption
(3) τ = parr(τ1; τ2) by assumption
(4) ∆̂ ` τ̂1 τ1 type by assumption
(5) ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê′ e′ : τ2 by assumption

(6) ∆ ` τ1 type by Lemma B.5.1 on (4)
(7) ∆ Γ, x : τ1 ` e′ : τ2 by IH, part 1(a) on (5)
(8) ∆ Γ ` lam{τ1}(x.e′) : parr(τ1; τ2) by Rule (B.2b) on (6)

and (7)

Case (B.6e).
(1) ê = ê1(ê2) by assumption
(2) e = ap(e1; e2) by assumption
(3) ∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : parr(τ2; τ) by assumption

(4) ∆̂ Γ̂ `Ψ̂;Φ̂ ê2 e2 : τ2 by assumption

(5) ∆ Γ ` e1 : parr(τ2; τ) by IH, part 1(a) on (3)
(6) ∆ Γ ` e2 : τ2 by IH, part 1(a) on (4)
(7) ∆ Γ ` ap(e1; e2) : τ by Rule (B.2c) on (5)

and (6)

Case (B.6f) through (B.6m). These cases follow analagously, i.e. we apply
Lemma B.5.1 to or over the type expansion premises and the IH part 1(a)
to or over the typed expression expansion premises and then apply the
corresponding typing rule in Rules (B.2d) through (B.2k).

Case (B.6n).

35

(1) ê =
notation â at τ̂′ { expr parser eparse; expansions require êdep } in ê′

by assumption
(2) ∆̂ ` τ̂′ τ′ type by assumption
(3) ∆̂ Γ̂ `Ψ̂; Φ̂ êdep edep : τdep by assumption
(4) ∅ ∅ ` eparse : parr(Body; ParseResultE) by assumption

(5) ∆̂ 〈G; Γ, x : τdep〉 `Ψ̂,â x↪→setlm(τ′; eparse);Φ̂ ê′ e′ : τ

by assumption
(6) ∆ ` τ′ type by Lemma B.5.1 to (2)
(7) ∆ ` τdep type by Lemma B.5.1 to (3)
(8) ∆ Γ, x : τdep ` e′ : τ by IH, part 1(a) on (5)
(9) ∆ Γ ` edep : τdep by IH, part 1(a) on (3)

(10) e = ap(lam{τdep}(x.e′); edep) by assumption
(11) ∆ Γ ` e : τ by Rule (B.2c) and

Rule (B.2b) with (8)
and (7) and (9)

Case (B.6o).
(1) ê = â ‘(b)‘ by assumption
(2) A = A′, â x by assumption
(3) Ψ = Ψ′, x ↪→ setlm(τ; eparse) by assumption
(4) Γ = Γ′, x : τdep by assumption
(5) e = ap(e′; x) by assumption
(6) b ↓Body ebody by assumption
(7) eparse(ebody) ⇓ inj[SuccessE](eproto) by assumption
(8) eproto ↑PrExpr è by assumption

(9) ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e′ : parr(τdep; τ) by assumption
(10) ∅ ∩ ∆ = ∅ by finite set

intersection
(11) ∅ ∩ dom(Γ) = ∅ by finite set

intersection
(12) ∅ ∪ ∆ ∅ ∪ Γ ` e′ : parr(τdep; τ) by IH, part 2(a) on (9),

(10), and (11)
(13) ∆ Γ ` e′ : parr(τdep; τ) by finite set and finite

function identity over
(12)

(14) ∆ Γ ` x : τdep by Rule (B.2a)
(15) ∆ Γ ` e : τ by Rule (B.2c) on (13)

and (14)

36

Case (B.6p).
(1) ê = match ê′ {r̂i}1≤i≤n by assumption
(2) e = match(e′; {ri}1≤i≤n) by assumption
(3) ∆̂ Γ̂ `Ψ̂; Φ̂ ê′ e′ : τ′ by assumption

(4) {∆̂ Γ̂ `Ψ̂; Φ̂ r̂i ri : τ′ Z⇒ τ}1≤i≤n by assumption
(5) ∆ Γ ` e′ : τ′ by IH, part 1(a) on (3)
(6) {∆ Γ ` ri : τ′ Z⇒ τ}1≤i≤n by IH, part 1(b) over

(4)
(7) ∆ Γ ` match(e′; {ri}1≤i≤n) : τ by Rule (B.2l) on (5)

and (6)

Case (B.6q).
(1) ê = notation â at τ̂′ { pat parser eparse } in ê′

by assumption
(2) ∆̂ ` τ̂′ τ′ type by assumption
(3) ∅ ∅ ` eparse : parr(Body; ParseResultE) by assumption

(4) ∆̂ Γ̂ `Ψ̂; Φ̂,â x↪→sptlm(τ′; eparse)
ê′ e : τ by assumption

(5) ∆ ` τ′ type by Lemma B.5.1 to (2)
(6) ∆ Γ ` e : τ by IH, part 1(a) on (4)

(b) Case (B.7).
(1) r̂ = p̂⇒ ê by assumption
(2) r = rule(p.e) by assumption
(3) ∆̂ `Φ̂ p̂ p : τ
〈A′; Γ〉 by assumption
(4) ∆̂ 〈A]A′; Γ ∪ Γ〉 `Ψ̂; Φ̂ ê e : τ′ by assumption
(5) p : τ
Γ by Theorem B.5.3,

part 1 on (3)
(6) ∆ Γ ∪ Γ ` e : τ′ by IH, part 1(a) on (4)
(7) ∆ Γ ` rule(p.e) : τ Z⇒ τ′ by Rule (B.3) on (5)

and (6)

2. In the following, let ∆̂ = 〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉.

(a) Case (B.10a).
(1) è = x by assumption
(2) e = x by assumption
(3) Γ = Γ′, x : τ by assumption
(4) ∆ ∪ ∆app Γ′, x : τ ` x : τ by Rule (B.2a)

37

(5) ∆ ∪ ∆app Γ′, x : τ ∪ Γapp ` x : τ by Lemma B.2.2 over
Γapp to (4)

Case (B.10d).
(1) è = prlam{τ̀1}(x.è′) by assumption
(2) e = lam{τ1}(x.e′) by assumption
(3) τ = parr(τ1; τ2) by assumption

(4) ∆ `∆̂app; b τ̀1 τ1 type by assumption

(5) ∆ Γ, x : τ1 `∆̂app; Γ̂app; Ψ̂; Φ̂; b è′ e′ : τ2 by assumption
(6) ∆ ∩ ∆app = ∅ by assumption
(7) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(8) x /∈ dom(Γapp) by identification

convention
(9) dom(Γ, x : τ1) ∩ dom(Γapp) = ∅ by (7) and (8)

(10) ∆ ∪ ∆app ` τ1 type by Lemma B.5.2 on (4)
and (6)

(11) ∆ ∪ ∆app Γ, x : τ1 ∪ Γapp ` e′ : τ2 by IH, part 2(a) on (5),
(6) and (9)

(12) ∆ ∪ ∆app Γ ∪ Γapp, x : τ1 ` e′ : τ2 by exchange over Γapp
on (11)

(13) ∆ ∪ ∆app Γ ∪ Γapp ` lam{τ1}(x.e′) : parr(τ1; τ2)
by Rule (B.2b) on (10)
and (12)

Case (B.10e).
(1) è = prap(è1; è2) by assumption
(2) e = ap(e1; e2) by assumption

(3) ∆ Γ `∆̂app; Γ̂app; Ψ̂; Φ̂; b è1 e1 : parr(τ2; τ) by assumption

(4) ∆ Γ `∆̂app; Γ̂app; Ψ̂; Φ̂; b è2 e2 : τ2 by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) ∆ ∪ ∆app Γ ∪ Γapp ` e1 : parr(τ2; τ) by IH, part 2(a) on (3),

(5) and (6)
(8) ∆ ∪ ∆app Γ ∪ Γapp ` e2 : τ2 by IH, part 2(a) on (4),

(5) and (6)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` ap(e1; e2) : τ by Rule (B.2c) on (7)

and (8)

Case (B.10f).
(1) è = prtlam(t.è′) by assumption
(2) e = tlam(t.e′) by assumption

38

(3) τ = all(t.τ′) by assumption

(4) ∆, t type Γ `∆̂app; Γ̂app; Ψ̂; Φ̂; b è′ e′ : τ′ by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) t type /∈ ∆app by identification

convention
(8) ∆, t type∩ ∆app = ∅ by (5) and (7)
(9) ∆, t type∪ ∆app Γ ∪ Γapp ` e′ : τ′ by IH, part 2(a) on (4),

(8) and (6)
(10) ∆ ∪ ∆app, t type Γ ∪ Γapp ` e′ : τ′ by exchange over

∆app on (9)
(11) ∆ ∪ ∆app Γ ∪ Γapp ` tlam(t.e′) : all(t.τ′) by Rule (B.2d) on (10)

Case (B.10g) through (B.10m). These cases follow analagously, i.e. we apply
the IH, part 2(a) to all proto-expression validation judgements, Lemma
B.5.2 to all proto-type validation judgements, the identification conven-
tion to ensure that extended contexts remain disjoint, weakening and
exchange as needed, and the corresponding typing rule in Rules (B.2e)
through (B.2k).

Case (B.10n).
(1) è = splicede[m; n; τ̀] by assumption
(2) E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; b by assumption

(3) ∅ `ts(E) τ̀ τ type by assumption
(4) parseUExp(subseq(b; m; n)) = ê by assumption
(5) ∆̂app Γ̂app `Ψ̂ ê e : τ by assumption
(6) ∆ ∩ ∆app = ∅ by assumption
(7) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(8) ∆app Γapp ` e : τ by IH, part 1 on (5)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` e : τ by Lemma B.2.2 over

∆ and Γ and exchange
on (8)

Case (B.10o).
(1) è = prmatch(è′; {r̀i}1≤i≤n) by assumption
(2) e = match(e′; {ri}1≤i≤n) by assumption

(3) ∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b è′ e′ : τ′ by assumption

(4) {∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b r̀i ri : τ′ Z⇒ τ}1≤i≤n by assumption
(5) ∆ ∩ ∆app = ∅ by assumption

39

(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) ∆ ∪ ∆app Γ ∪ Γapp ` e′ : τ′ by IH, part 2(a) on (3),

(5) and (6)
(8) ∆ ∪ ∆app Γ ∪ Γapp ` r : τ′ Z⇒ τ by IH, part 2(b) on (4),

(5) and (6)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` match(e′; {ri}1≤i≤n) : τ

by Rule (B.2l) on (7)
and (8)

(b) There is only one case.

Case (B.11).
(1) r̀ = prrule(p.è) by assumption
(2) r = rule(p.e) by assumption
(3) p : τ
Γ′ by assumption

(4) ∆ Γ ∪ Γ′ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ′ by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γ′) = ∅ by identification

convention
(7) dom(Γapp) ∩ dom(Γ′) = ∅ by identification

convention
(8) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(9) dom(Γ ∪ Γ′) ∩ dom(Γapp) = ∅ by standard finite set

definitions and
identities on (6), (7)
and (8)

(10) ∆ ∪ ∆app Γ ∪ Γ′ ∪ Γapp ` e : τ′ by IH, part 2(a) on (4),
(5) and (9)

(11) ∆ ∪ ∆app Γ ∪ Γapp ∪ Γ′ ` e : τ′ by exchange of Γ′ and
Γapp on (10)

(12) ∆ ∪ ∆app Γ ∪ Γapp ` rule(p.e) : τ Z⇒ τ′ by Rule (B.3) on (3)
and (11)

The mutual induction can be shown to be well-founded by showing that the following
numeric metric on the judgements that we induct on is decreasing:

‖∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ‖ = ‖ê‖

‖∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ‖ = ‖b‖

where ‖b‖ is the length of b and ‖ê‖ is the sum of the lengths of the seTLM literal bodies
in ê, as defined in Sec. B.3.1.

40

The only case in the proof of part 1 that invokes part 2 is Case (B.6o). There, we have
that the metric remains stable:

‖∆̂ Γ̂ `Ψ̂;Φ̂ â ‘(b)‘ e : τ‖

=‖∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ‖
=‖b‖

The only case in the proof of part 2 that invokes part 1 is Case (B.10n). There,
we have that parseUExp(subseq(b; m; n)) = ê and the IH is applied to the judgement
∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ. Because the metric is stable when passing from part 1 to part 2, we
must have that it is strictly decreasing in the other direction:

‖∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ‖ < ‖∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b splicede[m; n; τ̀] e : τ‖

i.e. by the definitions above,
‖ê‖ < ‖b‖

This is established by appeal to Condition B.3.7, which states that subsequences of b
are no longer than b, and Condition B.3.2, which states that an unexpanded expression
constructed by parsing a textual sequence b is strictly smaller, as measured by the metric
defined above, than the length of b, because some characters must necessarily be used to
apply a TLM and delimit each literal body. Combining these conditions, we have that
‖ê‖ < ‖b‖ as needed.

Theorem B.5.5 (Typed Expression Expansion). If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e : τ then
∆ Γ ` e : τ.

Proof. This theorem follows immediately from Theorem B.5.4, part 1(a).

B.5.4 Abstract Reasoning Principles

Lemma B.5.6 (Proto-Type Expansion Decomposition). If ∆ `〈D;∆app〉; b τ̀ τ type where
seg(τ̀) = {splicedt[mi; ni]}0≤i<n then all of the following hold:

1. {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}0≤i<n

2. τ = [{τi/ti}0≤i<n]τ
′ for some τ′ and fresh {ti}0≤i<n (i.e. {ti /∈ dom(∆)}0≤i<n and

{ti /∈ dom(∆app)}0≤i<n)

3. fv(τ′) ⊂ dom(∆) ∪ {ti}0≤i<n

Proof. By rule induction over Rules (B.9). In the following, let ∆̂ = 〈D; ∆app〉 and
T = ∆̂; b.

Case (B.9a).

(1) τ̀ = t by assumption

41

(2) τ = t by assumption

(3) ∆ = ∆′, t type by assumption

(4) seg(τ̀) = ∅ by definition

(5) fv(t) = {t} by definition

(6) {t} ⊂ dom(∆) ∪∅ by definition

The conclusions hold as follows:

1. This conclusion holds trivially because n = 0.

2. Choose τ′ = t and ∅.

3. (6)

Case (B.9b).

(1) τ̀ = prparr(τ̀1; τ̀2) by assumption

(2) τ = parr(τ′1; τ′2) by assumption

(3) ∆ `T τ̀1 τ′1 type by assumption

(4) ∆ `T τ̀2 τ′2 type by assumption

(5) seg(τ̀) = seg(τ̀1) ∪ seg(τ̀2) by definition

(6) seg(τ̀1) = {splicedt[mi; ni]}0≤i<n′ by definition

(7) seg(τ̀2) = {splicedt[mi; ni]}n′≤i<n by definition

(8) {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}0≤i<n′

by IH on (3) and (6)

(9) τ′1 = [{τi/ti}0≤i<n′]τ
′′
1 for some τ′′1 and fresh {ti}0≤i<n′

by IH on (3) and (6)

(10) fv(τ′′1) ⊂ dom(∆) ∪ {ti}0≤i<n′ by IH on (3) and (6)

(11) {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}n′≤i<n
by IH on (4) and (7)

(12) τ′2 = [{τi/ti}n′≤i<n]τ
′′
2 for some τ′′2 and fresh {ti}n′≤i<n

by IH on (4) and (7)

(13) fv(τ′′2) ⊂ dom(∆) ∪ {ti}n′≤i<n by IH on (4) and (7)

(14) {ti}0≤i<n′ ∩ {ti}n′≤i<n = ∅ by identification
convention

(15) fv(τ′′1) ⊂ dom(∆) ∪ {ti}0≤i<n by (10) and (14)

(16) fv(τ′′2) ⊂ dom(∆) ∪ {ti}0≤i<n by (13) and (14)

(17) τ′1 = [{τi/ti}0≤i<n]τ
′′
1 by substitution

properties and (9) and
(14)

42

(18) τ′2 = [{τi/ti}0≤i<n]τ
′′
2 by substitution

properties and (12)
and (14)

(19) parr(τ′1; τ′2) = [{τi/ti}0≤i<n]parr(τ
′′
1 ; τ′′2) by substitution and

(17) and (18)
(20) fv(parr(τ′′1 ; τ′′2)) = fv(τ′′1) ∪ fv(τ′′2) by definition

(21) fv(parr(τ′′1 ; τ′′2)) ⊂ dom(∆) ∪ {ti}0≤i<n by (20) and (15) and
(16)

The conclusions hold as follows:

1. (8) ∪ (11)

2. Choosing {ti}0≤i<n and parr(τ′′1 ; τ′′2), by (19)

3. (21)

Case (B.9c) through (B.9f). These cases follow by analagous inductive argument.

Case (B.9g).

(1) τ̀ = splicedt[m; n] by assumption

(2) seg(splicedt[m; n]) = {splicedt[m; n]} by definition

(3) parseUTyp(subseq(b; m; n)) = τ̂ by assumption

(4) 〈D; ∆app〉 ` τ̂ τ type by assumption

(5) t /∈ dom(∆) by identification
convention

(6) t /∈ dom(∆app) by identification

(7) τ = [τ/t]τ by definition

(8) fv(t) ⊂ ∆ ∪ {t} by definition

The conclusions hold as follows:

1. (3) and (4)

2. Choosing {t} and t, by (5), (6) and (7)

3. (8)

Lemma B.5.7 (Proto-Expression and Proto-Rule Expansion Decomposition).

1. If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e : τ where seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪
{splicede[mi; ni; τ̀i]}0≤i<nexp then all of the following hold:

43

(a) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

(b) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp

(c) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp

(d) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some e′ and {ti}0≤i<nty and {xi}0≤i<nexp

such that {ti}0≤i<nty fresh and {xi}0≤i<nexp fresh

(e) fv(e′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

2. If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ and

seg(r̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

then all of the following hold:

(a) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

(b) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp

(c) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp

(d) r = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]r
′ for some e′ and fresh {ti}0≤i<nty and fresh

{xi}0≤i<nexp

(e) fv(r′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

Proof. By rule induction over Rules (B.10) and Rule (B.11). In the following, let ∆̂ =
〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉 and E = ∆̂; Γ̂; Ψ̂; Φ̂; b.

1. Case (B.10a).

(1) è = x by assumption
(2) e = x by assumption
(3) Γ = Γ′, x : τ by assumption
(4) seg(x) = {} by definition
(5) fv(x) = {x} by definition
(6) fv(x) ⊂ dom(Γ) by definition
(7) fv(x) ⊂ dom(Γ) ∪ dom(∆) by (6) and definition

of subset
The conclusions hold as follows:

(a) This conclusion holds trivially because nty = 0.
(b) This conclusion holds trivially because nexp = 0.
(c) This conclusion holds trivially because nexp = 0.
(d) Choose x, ∅ and ∅.

44

(e) (7)

Case (B.10b) through (B.10m). These cases follow by straightforward inductive
argument.

Case (B.10n).

(1) è = splicede[m; n; τ̀] by assumption
(2) seg(splicede[m; n; τ̀]) = seg(τ̀) ∪ {splicede[m; n; τ̀]}

by definition
(3) seg(τ̀) = {splicedt[m′i; n′i]}0≤i<nty by definition

(4) ∅ `ts(E) τ̀ τ type by assumption
(5) parseUExp(subseq(b; m; n)) = ê by assumption
(6) 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ ê e : τ by assumption

(7) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

by Lemma B.5.6 on (4)
and (3)

(8) x /∈ dom(Γ) by identification
convention

(9) x /∈ dom(Γapp) by identification
convention

(10) x /∈ dom(∆) by identificaiton
convention

(11) x /∈ dom(∆app) by identification
convention

(12) e = [{τ′i /ti}0≤i<nty , e/x]x by definition
(13) fv(x) = {x} by definition
(14) fv(x) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {x} by definition

The conclusions hold as follows:

(a) (7)
(b) {(4)}
(c) {(6)}
(d) Choosing x, {ti}0≤i<nty and {x}, by (8), (9), (10), (11) and (12).
(e) (14)

Case (B.10o).

(1) è = prmatch(è′; {r̀i}1≤i≤n) by assumption
(2) e = match(τ; e′){ri}1≤i≤n by assumption
(3) ∆ Γ `E è e : τ′ by assumption
(4) {∆ Γ `E r̀j rj : τ′ Z⇒ τ}1≤j≤n by assumption
(5) seg(prmatch(è′; {r̀i}1≤i≤n)) = seg(è) ∪⋃

0≤i<n seg(r̀i)
by definition

45

(6) seg(è′) = {splicedt[m′i; n′i]}0≤i<n′ty ∪ {splicede[mi; ni; τ̀i]}0≤i<n′exp

by definition
(7) {seg(r̀j) =
{splicedt[m′i,j; n′i,j]}0≤i<nty,j ∪ {splicede[mi,j; ni,j; τ̀i,j]}0≤i<nexp,j}0≤j<n

by definition
(8) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<n′ty

by IH, part 1 on (3)
and (6)

(9) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<n′exp
by IH, part 1 on (3)
and (6)

(10) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei :
τi}0≤i<n′exp

by IH, part 1 on (3)
and (6)

(11) e′ = [{τ′i /ti}0≤i<n′ty , {ei/xi}0≤i<n′exp
]e′′ for some e′′ and fresh

{ti}0≤i<n′ty and fresh {xi}0≤i<n′exp
by IH, part 1 on (3)
and (6)

(12) fv(e′′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪ {xi}0≤i<n′exp

by IH, part 1 on (3)
and (6)

(13) {{〈D; ∆app〉 ` parseUTyp(subseq(b; m′i,j; n′i,j)) τ′i,j type}0≤i<nty,j}0≤j<n
by IH, part 2 over (4)
and (7)

(14) {{∅ `〈D;∆app〉; b τ̀i,j τi,j type}0≤i<nexp,j}0≤j<n by IH, part 2 over (4)
and (7)

(15) {{〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi,j; ni,j)) ei,j :
τi,j}0≤i<nexp,j}0≤j<n by IH, part 2 over (4)

and (7)
(16) {rj = [{τ′i,j/ti,j}0≤i<nty,j , {ei,j/xi,j}0≤i<nexp,j]r

′
j}0≤j<n for some {r′j}0≤j<n

and fresh {{ti,j}0≤i<nty,j}0≤j<n and fresh {{xi,j}0≤i<nexp,j}0≤j<n
by IH, part 2 over (4)
and (7)

(17) {fv(r′j) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti,j}0≤i<nty,j ∪ {xi,j}0≤i<nexp,j}0≤j<n
by IH, part 2 over (4)
and (7)

(18) (∪0≤j<n{ti,j}0≤i<nty,j) ∩ {ti}0≤i<n′ty = ∅ by identification
convention

(19) (∪0≤j<n{xi,j}0≤i<nexp,j) ∩ {xi}0≤i<n′exp
= ∅ by identification

convention
(20) e′ = [{τ′i /ti}0≤i<n′ty ∪0≤j<n {τi,j/ti,j}0≤i<nty,j , {ei/xi}0≤i<nexp ∪0≤j<n

46

{τi,j/ti,j}0≤i<nty,j]e
′′ by substitution

properties and (11)
and (12) and (18) and
(19)

(21) {rj = [{τ′i /ti}0≤i<n′ty ∪0≤j<n {τi,j/ti,j}0≤i<nty,j , {ei/xi}0≤i<nexp ∪0≤j<n

{τi,j/ti,j}0≤i<nty,j]r
′
j}0≤j<n by substitution

properties and (16)
and (17) and (18) and
(19)

(22) e = [{τ′i /ti}0≤i<n′ty ∪0≤j<n {τi,j/ti,j}0≤i<nty,j , {ei/xi}0≤i<n′exp
∪0≤j<n

{ei,j/xi,j}0≤i<nexp,j]match(e
′′; {r′i}1≤i≤n) by (20) and (21) and

definition of
substitution

(23) fv(e′′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪0≤j<n {ti,j}0≤i<nty,j ∪
{xi}0≤i<n′exp

∪0≤j<n {xi,j}0≤i<nexp,j by (12) and (18) and
(19)

(24) {fv(r′j) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪0≤j<n {ti,j}0≤i<nty,j ∪
{xi}0≤i<n′exp

∪0≤j<n {xi,j}0≤i<nexp,j}0≤j<n by (17) and (18) and
(19)

(25) fv(match(e′′; {r′i}1≤i≤n)) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪0≤j<n

{ti,j}0≤i<nty,j ∪ {xi}0≤i<n′exp
∪0≤j<n {xi,j}0≤i<nexp,j

by (23) and (24)

The conclusions hold as follows:

(a) (8)∪⋃
0≤j<n (13)j

(b) (9)∪⋃
0≤j<n (14)j

(c) (10)∪⋃
0≤j<n (15)j

(d) Choose:
i. match(e′′; {r′i}1≤i≤n)

ii. {ti}0≤i<n′ty ∪ {{ti,j}0≤i<nty,j}0≤j<n; and

iii. {xi}0≤i<n′exp
∪ {{xi,j}0≤i<nexp,j}0≤j<n; and

We have e = [{τ′i /ti}0≤i<n′ty ∪ {{τi,j/ti,j}0≤i<nty,j}0≤j<n, {ei/xi}0≤i<n′exp
∪

{{ei,j/xi,j}0≤i<nexp,j}0≤j<n]match(e′′; {r′i}1≤i≤n) by (22).
(e) (25)

2. By rule induction over the rule typing assumption. There is only one case. In the
following, let ∆̂ = 〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉 and E = ∆̂; Γ̂; Ψ̂; Φ̂; b.

47

Case (B.11).

(1) r̀ = prrule(p.è) by assumption
(2) r = rule(p.e) by assumption
(3) p : τ
Γ′ by assumption
(4) ∆ Γ ∪ Γ′ `E è e : τ′ by assumption
(5) seg(r̀) = seg(è) by definition
(6) seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

by definition
(7) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

by IH, part 1 on (4)
and (6)

(8) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp by IH, part 1 on (4)
and (6)

(9) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei :
τi}0≤i<nexp by IH, part 1 on (4)

and (6)
(10) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e

′ for some e′ and fresh {ti}0≤i<nty

and fresh {xi}0≤i<nexp by IH, part 1 on (4)
and (6)

(11) fv(e′) ⊂ dom(∆) ∪ dom(Γ) ∪ dom(Γ′) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

by IH, part 1 on (4)
and (6)

(12) r = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]rule(p.e′) by substitution
properties and (10)

(13) fv(p) = dom(Γ′) by Lemma B.2.5 on (3)
(14) fv(rule(p.e′)) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

by definition of fv(r)
and (11) and (13)

The conclusions hold as follows:

(a) (7)
(b) (8)
(c) (9)
(d) Choosing rule(p.e′) and {ti}0≤i<nty and {xi}0≤i<nexp , by (12)
(e) (14)

Theorem B.5.8 (seTLM Abstract Reasoning Principles). If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ â ‘(b)‘
e : τ then:

1. (Expansion Typing) Ψ̂ = Ψ̂′, â x ↪→ setlm(τ; eparse) and ∆ Γ ` e : τ

48

2. (Responsibility) b ↓Body ebody and eparse(ebody) ⇓ inj[SuccessE](eproto) and eproto ↑PrExpr
è

3. (Segmentation) seg(è) segments b

4. (Segment Typing) seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪{splicede[mi; ni; τ̀i]}0≤i<nexp
and

(a) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

(b) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp and {∆ ` τi type}0≤i<nexp

(c) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp and {∆ Γ `
ei : τi}0≤i<nexp

5. (Capture Avoidance) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some {ti}0≤i<nty and

{xi}0≤i<nexp and e′

6. (Context Independence) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp

Proof. By rule induction over Rules (B.6). There is only one rule that applies. In the
following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉.

Case (B.6o).

(1) Ψ̂ = Ψ̂′, â x ↪→ setlm(τ; eparse) by assumption

(2) Γ = Γ′, x : τdep by assumption

(3) e = ap(ex; x) by assumption

(4) 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ â ‘(b)‘ e : τ by assumption

(5) ∆ Γ ` e : τ by Theorem B.5.5 on
(4)

(6) b ↓Body ebody by assumption

(7) eparse(ebody) ⇓ inj[SuccessE](eproto) by assumption

(8) eproto ↑PrExpr è by assumption

(9) seg(è) segments b by assumption

(10) ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è ex : parr(τdep; τ) by assumption

(11) seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

by definition

(12) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

by Lemma B.5.7 on
(10) and (11)

(13) {∆ ` τ′i type}0≤i<nty by Lemma B.5.1, part
1 over (12)

49

(14) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp by Lemma B.5.7 on
(10) and (11)

(15) ∅ ∩ ∆ = ∅ by definition

(16) {∆ ` τi type}0≤i<nexp by Lemma B.5.1, part
2 over (14) and (15)

(17) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp

by Lemma B.5.7 on
(10) and (11)

(18) {∆ Γ ` ei : τi}0≤i<nexp by Theorem B.5.5 over
(17)

(19) ex = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some e′ and fresh {ti}0≤i<nty and

fresh {xi}0≤i<nexp by Lemma B.5.7 on
(10) and (11)

(20) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp by Lemma B.5.7 on
(10) and (11)

(21) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]ap(e
′; x) by definition of

substitution on (19)

The conclusions hold as follows:

1. (1) and (5)
2. (6) and (7) and (8)
3. (9)
4. (11) and

(a) (12) and (13)
(b) (14) and (16)
(c) (17) and (18)

5. (21)
6. (20)

Lemma B.5.9 (Proto-Pattern Expansion Decomposition). If p̀ p : τ
∆̂; Φ̂; b Γ̂ where

seg(p̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

then all of the following hold:

1. {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

2. {∅ `∆̂; b τ̀i τi type}0≤i<npat

50

3. {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

4. Γ̂ =
⊎

0≤i<npat Γ̂i

Proof. By rule induction over Rules (B.12). In the following, let P = ∆̂; Φ̂; b.

Case (B.12a).

(1) p̀ = prwildp by assumption

(2) e = wildp by assumption

(3) Γ̂ = 〈∅; ∅〉 by assumption

(4) seg(prwildp) = ∅ by definition

The conclusions hold as follows:

1. This conclusion holds trivially because nty = 0.

2. This conclusion holds trivially because npat = 0.

3. This conclusion holds trivially because npat = 0.

4. This conclusion holds trivially because Γ̂ = ∅ and npat = 0.

Case (B.12b).

(1) p̀ = prfoldp(p̀′) by assumption

(2) p = foldp(p′) by assumption

(3) τ = rec(t.τ′) by assumption

(4) p̀ p : [rec(t.τ′)/t]τ′
P Γ̂ by assumption

(5) seg(prfoldp(p̀′)) = seg(p̀′) by definition

(6) seg(p̀′) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

by definition

(7) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty by IH on (4) and (6)

(8) {∅ `∆̂; b τ̀i τi type}0≤i<npat by IH on (4) and (6)

(9) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

by IH on (4) and (6)

(10) Γ̂ =
⊎

0≤i<npat Γ̂i by IH on (4) and (6)

The conclusions hold as follows:

1. (7)

51

2. (8)

3. (9)

4. (10)

Case (B.12c).

(1) p̀ = prtplp[L]({j ↪→ p̀j}j∈L) by assumption

(2) p = tplp({j ↪→ pj}j∈L) by assumption

(3) τ = prod({j ↪→ τj}j∈L) by assumption

(4) Γ̂ =
⊎

j∈L Γ̂j by assumption

(5) { p̀j pj : τj

P Γ̂j}j∈L by assumption

(6) seg(prtplp[L]({j ↪→ p̀j}j∈L)) =
⋃

j∈L seg(p̀j) by definition

(7) {seg(p̀j) =
{splicedt[m′i,j; n′i,j]}0≤i<nty,j ∪ {splicedp[mi,j; ni,j; τ̀i,j]}0≤i<npat,j}j∈L

by definition

(8) npat = Σj∈Lnpat,j by definition

(9) {{∆̂ ` parseUTyp(subseq(b; m′i,j; n′i,j)) τ′i,j type}0≤i<nty,j}j∈L
by IH over (5) and (7)

(10) {{∅ `∆̂; b τ̀i,j τi,j type}0≤i<npat,j}j∈L by IH over (5) and (7)

(11) {{∆̂ `Φ̂ parseUPat(subseq(b; mi,j; ni,j)) pi,j : τi,j
̂Γi,j}0≤i<npat,j}j∈L
by IH over (5) and (7)

(12) {Γ̂j =
⊎

0≤i<npat,j
Γ̂i,j}j∈L by IH over (5) and (7)

(13)
⊎

j∈L Γ̂j =
⊎

j∈L
⊎

i∈npat,j
Γ̂i,j by definition and (12)

The conclusions hold as follows:

1.
⋃

j∈L
⋃

i∈nty,j
(9)i,j

2.
⋃

j∈L
⋃

i∈npat,j
(10)i,j

3.
⋃

j∈L
⋃

i∈npat,j
(11)i,j

4. (13)

Case (B.12d).

(1) p̀ = prinjp[`](p̀′) by assumption

(2) p = injp[`](p′) by assumption

(3) τ = sum({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption

52

(4) p̀ p : τ′
P Γ̂ by assumption

(5) seg(prinjp[`](p̀′)) = seg(p̀′) by definition

(6) seg(p̀′) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

by definition

(7) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty by IH on (4) and (6)

(8) {∅ `∆̂; b τ̀i τi type}0≤i<npat by IH on (4) and (6)

(9) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

by IH on (4) and (6)

(10) Γ̂ =
⊎

0≤i<npat Γ̂i by IH on (4) and (6)

The conclusions hold as follows:

1. (7)

2. (8)

3. (9)

4. (10)

Case (B.12e).

(1) p̀ = splicedp[m; n; τ̀] by assumption

(2) ∅ `∆̂; b τ̀ τ type by assumption

(3) parseUPat(subseq(b; m; n)) = p̂ by assumption

(4) ∆̂ `Φ̂ p̂ p : τ
̂Γ by assumption

(5) seg(splicedp[m; n; τ̀]) = seg(τ̀) ∪ {splicedp[m; n; τ̀]}
by definition

(6) seg(τ̀) = {splicedt[m′i; n′i]}0≤i<nty by definition

(7) {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}0≤i<n
by Lemma B.5.6 on (2)
and (6)

The conclusions hold as follows:

1. (7)

2. (2)

3. (3) and (4)

4. This conclusion holds by (4) because npat = 1.

53

Theorem B.5.10 (spTLM Abstract Reasoning Principles). If ∆̂ `Φ̂ â ‘(b)‘ p : τ
̂Γ
where ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 then all of the following hold:

1. (Expansion Typing) Φ̂ = Φ̂′, â x ↪→ sptlm(τ; eparse) and p : τ
Γ

2. (Responsibility) b ↓Body ebody and eparse(ebody) ⇓ inj[SuccessP](eproto) and eproto ↑PrPat
p̀

3. (Segmentation) seg(p̀) segments b

4. (Segment Typing) seg(p̀) = {splicedt[n′i; m′i]}0≤i<nty ∪{splicedp[mi; ni; τ̀i]}0≤i<npat
and

(a) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

(b) {∅ `∆̂; b τ̀i τi type}0≤i<npat and {∆ ` τi type}0≤i<npat

(c) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
〈Gi; Γi〉}0≤i<npat and {pi :
τi
Γi}0≤i<npat

5. (Visibility) G =
⊎

0≤i<npat Gi and Γ =
⋃

0≤i<npat Γi

Proof. By rule induction over Rules (B.8). There is only one rule that applies.

Case (B.8f).

(1) ∆̂ `Φ̂ â ‘(b)‘ p : τ
̂Γ by assumption

(2) Φ̂ = Φ̂′, â x ↪→ sptlm(τ; eparse) by assumption

(3) p : τ
Γ by Theorem B.5.3 on
(1)

(4) b ↓Body ebody by assumption

(5) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption

(6) eproto ↑PrPat p̀ by assumption

(7) seg(p̀) segments b by assumption

(8) p̀ p : τ
∆̂; Φ̂; b Γ̂ by assumption

(9) seg(p̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; }]0≤i<npat

by definition

(10) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty by Lemma B.5.9 on (8)
and (9)

(11) {∆ ` τ′i type}0≤i<nty by Lemma B.5.1, part
1 over (10)

54

(12) {∅ `∆̂; b τ̀i τi type}0≤i<npat by Lemma B.5.9 on (8)
and (9)

(13) {∆ ` τi type}0≤i<npat by Lemma B.5.1, part
2 over (12)

(14) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

by Lemma B.5.9 on (8)
and (9)

(15) {pi : τi
Γi}0≤i<npat by Theorem B.5.3 over
(14)

(16) G =
⊎

0≤i<npat Gi and Γ =
⋃

0≤i<npat Γi by Lemma B.5.9 on (8)
and (9)

The conclusions hold as follows:

1. (2) and (3)

2. (4) and (5) and (6)

3. (7)

4. (9) and

(a) (10) and (11)
(b) (12) and (13)
(c) (14) and (15)

5. (16)

55

Bibliography

[1] Robert Harper. Practical Foundations for Programming Languages. Cambridge Univer-
sity Press, 2nd edition, 2016. URL https://www.cs.cmu.edu/~rwh/plbook/2nded.
pdf. B.1

56

https://www.cs.cmu.edu/~rwh/plbook/2nded.pdf
https://www.cs.cmu.edu/~rwh/plbook/2nded.pdf

	A Implementing Quasiquotation
	B A Calculus of Simple TLMs
	B.1 Typographic Conventions
	B.2 Core Language
	B.2.1 Syntax
	B.2.2 Static Semantics
	B.2.3 Structural Operational Semantics

	B.3 Unexpanded Language (UL)
	B.3.1 Syntax
	B.3.2 Type Expansion
	B.3.3 Typed Expression Expansion

	B.4 Proto-Expansion Validation
	B.4.1 Syntax of Proto-Expansions
	B.4.2 Proto-Type Validation
	B.4.3 Proto-Expression Validation
	B.4.4 Proto-Pattern Validation

	B.5 Metatheory
	B.5.1 Type Expansion
	B.5.2 Typed Pattern Expansion
	B.5.3 Typed Expression Expansion
	B.5.4 Abstract Reasoning Principles

