
Adaptation Timing in Self-Adaptive Systems

Gabriel A. Moreno

CMU-ISR-17-103

April 2017

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

David Garlan (Chair)

Mark Klein

Claire Le Goues

Sam Malek (University of California, Irvine)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2017 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering

Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-

STITUTE MATERIAL IS FURNISHED ON AN AS-IS BASIS. CARNEGIE MELLON UNIVERSITY

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY

MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Carnegie Mellon R© is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004422

Keywords: self-adaptive systems, latency-aware, proactive, probabilistic model checking,

stochastic dynamic programming

To Nancy, Tommy and Melissa

iv

Abstract

Software-intensive systems are increasingly expected to operate under changing

and uncertain conditions, including not only varying user needs and workloads, but

also fluctuating resource capacity. Self-adaptation is an approach that aims to ad-

dress this problem, giving systems the ability to change their behavior and structure

to adapt to changes in themselves and their operating environment without human

intervention.

Self-adaptive systems tend to be reactive and myopic, adapting in response to

changes without anticipating what the subsequent adaptation needs will be. Adapt-

ing reactively can result in inefficiencies due to the system performing a suboptimal

sequence of adaptations. Furthermore, some adaptation tactics—atomic adaptation

actions that leave the system in a consistent state—have latency and take some time

to produce their effect. In that case, reactive adaptation causes the system to lag

behind environment changes. What is worse, a long running adaptation action may

prevent the system from performing other adaptations until it completes, further lim-

iting its ability to effectively deal with the environment changes.

To address these limitations and improve the effectiveness of self-adaptation, we

present proactive latency-aware adaptation, an approach that considers the timing

of adaptation (i) leveraging predictions of the near future state of the environment

to adapt proactively; (ii) considering the latency of adaptation tactics when deciding

how to adapt; and (iii) executing tactics concurrently. We have developed three dif-

ferent solution approaches embodying these principles. One is based on probabilis-

tic model checking, making it inherently able to deal with the stochastic behavior

of the environment, and guaranteeing optimal adaptation choices over a finite deci-

sion horizon. The second approach uses stochastic dynamic programming to make

adaptation decisions, and thanks to performing part of the computations required

to make those decisions off-line, it achieves a speedup of an order of magnitude

over the first solution approach without compromising optimality. A third solution

approach makes adaptation decisions based on repertoires of adaptation strategies—

predefined compositions of adaptation tactics. This approach is more scalable than

the other two because the solution space is smaller, allowing an adaptive system to

reap some of the benefits of proactive latency-aware adaptation even if the number

of ways in which it could adapt is too large for the other approaches to consider all

these possibilities.

We evaluate the approach using two different classes of systems with different

adaptation goals, and different repertoires of adaptation strategies. One of them is a

web system, with the adaptation goal of utility maximization. The other is a cyber-

physical system operating in a hostile environment. In that system, self-adaptation

must not only maximize the reward gained, but also keep the probability of sur-

viving a mission above a threshold. In both cases, our results show that proactive

latency-aware adaptation improves the effectiveness of self-adaptation with respect

to reactive time-agnostic adaptation.

v

vi

Acknowledgments

First and foremost, I would like to thank my advisor, David Garlan. I truly ap-

preciate that he accepted to take me as a student even under the uncertainty that the

newly created SEI Scholars Program posed at the time. His advice has been invalu-

able. I always enjoyed our meetings because, regardless of whether we discussed

high-level concepts or the details of an algorithm, he always had an illuminating

perspective that helped. At the same time, he would always ask the right questions,

gently forcing me to understand better the issues at hand.

I also want to thank the members of my thesis committee, Mark Klein, Claire Le

Goues, and Sam Malek. Their advice has helped me improve this dissertation.

I am grateful to the Software Engineering Institute for giving me the opportunity

to pursue doctoral studies. In particular, I want to thank all the people who supported

me, navigated all the administrative hurdles, and made this happen: Paul Nielsen,

Bob Behler, Linda Northrop, Mark Klein, Kurt Wallnau, Doug Schmidt, Kevin Fall,

Ned Deets, Jeff Boleng, and Sagar Chaki. Of course, this would have not been

possible without the collaboration of the Institute for Software Research, mainly

thanks to Bill Scherlis, Jonathan Aldrich, and Connie Herold.

I am also grateful for having had the opportunity to work with the members of

the ABLE group. In particular, I would like to thank Javier Cámara and Bradley

Schmerl, who worked with me and co-authored the publications that are the basis of

this dissertation.

My brothers, Marcelo and Sergio, deserve special thanks for introducing me to

the world of computers. First, they taught me to program in BASIC in a pocket

computer that had a 1-line display. Soon after, when I was about 11 years old, they

helped me nag my parents for months to buy a computer that was expensive and

not even sold in Argentina at the time. We then continued exploring together this

fascinating field.

Thanks to my parents, for their love and unconditional support, even after I chose

to live in the other hemisphere, 5,000 miles away.

I want to thank my children, Tommy and Melissa, for their patience while I

studied and worked on this, and for understanding when I was not available for

having some family time. Finally, but most certainly not least, I want to thank my

wife, Nancy. First, she left everything to come with me to Pittsburgh for my first

graduate school experience at CMU. Not only that, but 11 years later, she was very

supportive when I decided to go back to school for a PhD. For all the sacrifices she

made, her love and friendship, I am forever grateful.

vii

viii

Contents

1 Introduction 1

1.1 Motivating Example . 4

1.2 Thesis . 6

1.3 Solution Approach . 8

1.4 Research Claims . 11

1.5 Contributions . 11

1.6 Dissertation Outline . 13

2 Related Work 15

2.1 Self-Adaptive Systems . 15

2.2 Proactive Adaptation . 16

2.3 Adaptation Latency . 17

2.4 Model Predictive Control . 18

2.5 MDP-Based Adaptation Decisions . 19

2.6 Runtime Quantitative Verification . 19

3 Proactive Latency-Aware Adaptation 21

3.1 Approach Overview . 22

3.2 Adaptation Decision Problem . 24

3.3 Markov Decision Process . 26

3.4 Adaptation Tactics and Concurrency . 26

3.5 Environment Model . 27

3.6 Summary . 30

4 Probabilistic Model Checking Approach 31

4.1 Probabilistic Model Checking . 31

4.2 Adaptation Decision Overview . 33

4.3 Formal Model . 33

4.4 Environment Model . 35

4.5 System and Tactic Models . 35

4.5.1 System Model . 36

4.5.2 Tactic Models . 37

4.6 Adaptation Decision . 40

4.7 Summary . 41

ix

5 Stochastic Dynamic Programming Approach 43

5.1 Adaptation Decision . 44

5.1.1 Stochastic Environment . 48

5.1.2 Handling Latency . 50

5.2 Computing Reachability Predicates . 51

5.2.1 Delayed Reachability . 51

5.2.2 Immediate Reachability . 55

5.3 Algorithm . 59

5.4 Speedup Evaluation . 59

5.5 Summary . 61

6 Support for Alternative Notions of Utility 63

6.1 Adaptation Goal Composition . 63

6.2 PLA-SDP Formulation Extension . 65

6.3 Summary . 68

7 Strategy-based Proactive Latency-Aware Adaptation 69

7.1 Background . 70

7.2 Approach . 74

7.2.1 Strategy Scoring . 74

7.2.2 Adaptation Decision . 77

7.3 Effectiveness . 78

7.4 Scalability Analysis . 79

7.5 Summary . 84

8 Validation 85

8.1 Validation Systems . 85

8.1.1 RUBiS . 85

8.1.2 DART . 90

8.2 Claims Validation . 94

8.2.1 Effectiveness Improvement . 94

8.2.2 Applicable to Different Kinds of Systems 101

8.2.3 Scales to Systems of Realistic Size . 102

8.3 Summary . 106

9 Discussion and Future Work 109

9.1 Analysis of the Contributions of the Elements of the Approach 109

9.2 The Rationale for Two Main Solutions Approaches 111

9.3 Limitations . 114

9.4 Future Work . 122

9.5 Summary . 126

x

10 Conclusion 127

10.1 Contributions . 127

10.2 Summary . 128

A PLA-PMC PRISM Model for RUBiS 131

B PLA-PMC PRISM Model for DART 135

C PLA-SDP Alloy Models for RUBiS 139

C.1 Immediate Reachability Model . 139

C.2 Delayed Reachability Model . 141

D PLA-SDP Alloy Models for DART 145

D.1 Immediate Reachability Model . 145

D.2 Delayed Reachability Model . 147

Bibliography 151

xi

xii

List of Figures

1.1 RUBiS system architecture. 5

3.1 MAPE-K self-adaptation loop. 22

3.2 PLA self-adaptation loop. 24

3.3 Environment probability tree. 29

4.1 Module composition in adaptation decision model. 34

5.1 Elements of PLA-SDP. 44

5.2 Pattern of adaptation transitions in adaptation decision solution. 46

5.3 System and environment transitions. 49

5.4 PLA-SDP adaptation decision algorithm. 60

5.5 Adaptation decision times with PLA-PMC and PLA-SDP. 61

7.1 The Rainbow self-adaptation framework [54]. 71

7.2 Module composition in strategy scoring model. 75

7.3 SB-PLA adaptation decision algorithm. 78

7.4 Sample run of SB adaptation. 80

7.5 Sample run of SB-PLA adaptation. 81

7.6 Scalability comparison of PLA-SDP and SB-PLA. 83

8.1 DART environment model for threats (H = 3). 94

8.2 Traces used for workload generation. 96

8.3 Comparison of approaches in RUBiS with WorldCup ’98 trace. 97

8.4 Comparison of approaches in RUBiS with ClarkNet trace. 98

8.5 Comparison of approaches in RUBiS with ClarkNet trace (simulation). 99

8.6 Targets detected in DART. 100

8.7 Probability of mission survival in DART. 100

8.8 Targets detected in DART adjusted for mission survival. 101

8.9 RUBiS simulation of 18 hours of traffic for a whole regional cluster of the

WorldCup ’98 website using PLA-SDP. 104

8.10 RUBiS simulation of 18 hours of traffic for a whole regional cluster of the

WorldCup ’98 website using FF. 105

8.11 RUBiS simulation of 18 hours of traffic for a whole regional cluster of the

WorldCup’98 website using Reactive adaptation. 106

xiii

9.1 Comparison of partial approaches in RUBiS with large WorldCup ’98 trace (sim-

ulation). 111

9.2 Comparison of target detection in DART with partial approaches. 112

9.3 Comparison of probability of mission survival in DART with partial approaches. 112

9.4 Comparison of target detection adjusted for mission survival in DART with par-

tial approaches. 113

xiv

List of Tables

6.1 How reward is gained, relative to the constraint satisfaction. 64

6.2 Constraint satisfaction requirements (zero or more). 65

7.1 Adaptation strategies for RUBiS. 79

7.2 Comparison of strategy-based approaches. 79

8.1 Validation systems. 86

8.2 Comparison of approaches in large cluster simulation of RUBiS. 103

9.1 Adaptation managers with different combinations of the PLA elements. 110

9.2 Comparison of PLA-SDP and PLA-PMC solutions approaches. 112

xv

xvi

Acronyms

API Application Programming Interface.

CE Cross-Entropy.

CS Constraint Satisfaction.

DART Distributed Adaptive Real-Time.

DSL Domain-Specific Language.

DTMC Discrete Time Markov Chain.

ECM Electronic CounterMeasures.

EP-T Extended Pearson-Tukey.

FF Feed Forward.

FIFO First In, First Out.

FNR False Negative Rate.

FPR False Positive Rate.

LPS Limited Processor Sharing.

MAPE-K Monitor-Analyze-Plan-Execute-Knowledge.

MDP Markov Decision Process.

MPC Model Predictive Control.

OS Operating System.

P-NLA Proactive Non-Latency-Aware.

P-NLA-NC Proactive Non-Latency-Aware, No Concurrency.

PCTL Probabilistic Computation-Tree Logic.

PLA Proactive Latency-Aware.

PLA-NC Proactive Latency-Aware, No Concurrency.

PLA-PMC Proactive Latency-Aware with Probabilistic Model Checking.

xvii

PLA-SDP Proactive Latency-Aware with Stochastic Dynamic Programming.

PMC Probabilistic Model Checking.

POMDP Partially Observable Markov Decision Process.

RG Reward Gain.

RQV Run-time Quantitative Verification.

SB-PLA Strategy-Based Proactive Latency-Aware.

SDP Stochastic Dynamic Programming.

SLA Service Level Agreement.

TTP Tactics, Techniques, and Procedures.

UAV Unmanned Aerial Vehicle.

xviii

List of Terms

adaptation strategy A predefined decision tree built out of adaptation tactics [28].

adaptation tactic An action primitive that produces a change in the system, leaving it in a con-

sistent state [28].

brownout A paradigm for self-adaptation that consists in enabling or disabling optional com-

putations in the system in order to deal with changes in workload [83].

decision period The interval of time between consecutive adaptation decisions, denoted by τ .

dimmer In the brownout paradigm, a parameter that takes values in [0, 1] controlling the pro-

portion of system responses that include the optional computation [83].

discrete-time Markov chain Model for systems with fully probabilistic transitions, equivalent

to a Markov decision process with only one possible action [92].

environment state State of the environment defined by the properties of the environment rele-

vant to making adaptation decisions.

latency awareness The consideration of the latency of adaptation tactics when making adapta-

tion decisions.

look-ahead horizon Period of time into the future over which the evolution of the system and

the environment is considered when making adaptation decisions. Its length in decision

intervals is denoted as H .

Markov decision process Model for sequential decision making under uncertainty [121], and

suitable for modeling systems with a mix of probabilistic and nondeterministic behav-

ior [92].

policy A function that prescribes the action that must be taken in each state of a Markov deci-

sion process in order to achieve some goal, such as maximizing the expected accumulated

reward.

system configuration State of the system defined by the properties of the system that are rele-

vant to making adaptation decisions.

system state See system configuration.

xix

tactic effect The direct effect of the tactic on the structure and/or properties of the system, and

not the indirect effect that they may be intended to produce. For example, when adding a

new server, the effect is the system having one more active server, and not the reduction of

the response time.

tactic latency The time it takes between when a tactic is started and when its effect is produced.

utility A measure of the goodness of the performance of the system with respect to its adaptation

goal.

xx

Chapter 1

Introduction

Software-intensive systems are increasingly expected to operate under changing conditions, in-

cluding not only varying user needs and workloads, but also fluctuating resource capacity and

degraded or failed parts [15, 26, 33, 37, 101]. Furthermore, considering the scale of systems

today, the high availability demanded of them, and the fast pace at which conditions change,

it is not viable to rely mainly on humans to reconfigure systems to maintain optimal perfor-

mance [37, 42, 97]. Self-adaptation is an approach that aims to address this problem: a self-

adaptive system is a system capable of changing its behavior and structure to adapt to changes in

itself and its operating environment without human intervention [33].

Most self-adaptive system have some form of closed-loop control that monitors the state of

the system and its environment, decides if and how the system should be changed, and performs

the adaptation if necessary [15, 36, 81, 127]. Typically, these self-adaptation approaches rely

on a set of adaptation tactics they can use to deal with different conditions [54, 68, 87, 129].

For example, adding a server is a tactic that can be used to accommodate increased load in the

system, and revoking permissions from a user is a tactic for protecting the system from an insider

attack. Furthermore, it is possible, and probably desirable, to have more than one suitable tactic

to address the same issue. For instance, reducing the fidelity of the content served by a system

(e.g., switching from multimedia to text) is another tactic to manage increased load. Therefore,

the self-adaptive system must be able to not only decide when to adapt, but also choose among

several applicable tactics.

These adaptation decisions are usually driven by some criteria such as maximizing utility [28,

90, 138, 141, 142], or maintaining a set of invariants [2, 16, 136]. In the first case, a utility

function is used to evaluate the outcome of the candidate adaptations along different quality

dimensions, such as response time, and operating cost. In the case of invariants, the goal of the

adaptation is to satisfy a set of constraints. For example, it may need to keep the response time

below some threshold, or ensure that the power consumption is kept below some level.

Current self-adaptive systems tend to be reactive and myopic [88]. Typically, they adapt in

response to changes without anticipating what subsequent adaptation needs will be. Furthermore,

when deciding how to adapt, they focus on the immediate outcome of the adaptation. In general,

this would not be a problem if adaptation tactics were instantaneous, because the system could

adapt swiftly to changes, and consequently, there would not be a need for preparing for upcoming

environment changes. Unfortunately, adaptation tactics are not instantaneous. Although some

1

adaptation tactics are fast and can effectively be considered instantaneous, others are not. For

example, adapting the system to produce results with less fidelity may be achieved quickly if it

can be done by changing a simple setting in a component, whereas powering up an additional

server to share system load may take a considerable amount of time. We refer to the time it takes

from a tactic is started until its effect on the system is produced as tactic latency.1

Adapting reactively can result in inefficiencies due to the system performing a suboptimal

sequence of adaptations. For example, the system may adapt to handle a transient change, only

to have to adapt back to the previous configuration moments later. If the cost of performing those

two adaptations is higher than their benefit, the system would be better off not adapting. However,

reactive approaches that decide based on immediate outcomes cannot avoid such inefficiencies.

This issue is exacerbated when tactics are not instantaneous. First, it may be possible that by the

time the tactic completes, the situation that prompted the change has already subsided. Second,

it may happen that starting an adaptation tactic prevents the system from reacting to subsequent

changes until the tactic completes (e.g., rebooting a server is not possible while the server is

being re-imaged). Another limitation of a reactive approach is most evident when the objective

is to maintain system invariants. Clearly, a reactive approach results in invariants being violated

before the system can react to restore them.

Ignoring tactic latency has negative consequences as well. Consider a situation that can

be handled with either of two tactics, a or b. When the adaptation criterion is to restore an

invariant, then both tactics are equally good. However, if tactic a is faster than tactic b, it would

not be appropriate to consider them as being equally good—restoring invariants faster should

be preferred. In a utility-based approach, there is a similar problem. If tactic b is marginally

better than a in terms of instantaneous utility improvement, the decision would favor tactic b.
However, taking into account the fact that tactic a would start accruing the utility improvement

sooner than b, it may very well be that a is better when considering utility accrued over time. In

these situations, it is not possible to reason appropriately about adaptation unless the latency of

adaptation tactics is considered.

In this dissertation, we present an approach that addresses the limitations of reactive time-

agnostic adaptation by considering time in self-adaptation as a first-class concern. Instead of

being reactive, this solution uses a look-ahead horizon to proactively adapt, taking into account

not only the current conditions, but how they are estimated to evolve. In addition, the solution

explicitly takes into account tactic latency when deciding how to adapt, improving the outcome

of adaptation, both for utility-based adaptation, and for adaptation criteria that involve restoring

invariants as quickly as possible. Furthermore, explicit consideration of tactic latency allows

the decision to go beyond simply selecting the best adaptation tactic, and further improve the

outcome of adaptation by complementing a slow—but better—tactic with a fast tactic that can

be executed concurrently to ameliorate the problem while the slower tactic executes.

There are many kinds of systems that would have improved efficiency using this approach.

These are some examples:

• Cloud computing. One of the advantages of cloud computing is providing elastic com-

1We use the term effect of a tactic to refer to the changes that the tactic produces on the aspects of the systems

that are directly controllable, such as adding a server. It does not include the possible effect on emergent properties,

such as the change in response time due to the addition of a server.

2

puting capacity that can adjust dynamically to the load on the system. One limitation of

current approaches is that they assume that the control actions used to make these ad-

justments are immediate, when in reality they are not [47]. The approach in this thesis

could help improve the effectiveness of adaptation for cloud computing. For example, by

considering the latency of enlisting additional capacity, it could proactively start the adap-

tation, or decide that a short workload burst is better handled by another tactic, or perhaps

that both tactics are needed concurrently. Furthermore, it could even dynamically decide

which provider to use at different times based on their provisioning time. In fact, the deci-

sion would not necessarily always favor faster provisioning, if for example, the system can

afford, thanks to the proactive adaptation, to wait longer for the provisioning of the new

capacity by a cheaper provider.

• Wireless sensor networks. In general these systems present a trade-off between the fre-

quency of sensor reading reports and their battery life. Proactive adaptation can help im-

proving the battery life without compromising the mission supported by the sensor network

by adapting the reporting frequency ahead of environment changes [113]. For example, in

forest fire detection, the reporting frequency can be increased if the temperature is pre-

dicted to rise. Furthermore, some adaptations may require updating the firmware of the

nodes, an operation that can take over a minute for updating a single node [102].

• Cyber-physical systems. Some adaptations that could be used in cyber-physical systems

have latency that is due to physics. For example, since different formations in multi-robot

teams have different qualities, an adaptation may require switching between them. Doing

this has latency because of the time required for the robots to physically move in relation

to their teammates. As another example, a GPS may be turned off to save power; however,

turning it back on is an adaptation that is not instantaneous because the “time to first fix”

may be about a minute [99].

• Systems with human actuators. Even though the goal of self-adaptation is to minimize the

dependency on humans, self-adaptive systems often rely on humans to perform actions on

the physical world. For example, scaling out in industrial control systems may require the

connection of a device by a human operator [20]. Adaptation tactics that involve human

actions have considerable latency, which must be taken into account when deciding how

to adapt.

• Security. When a system is under cyber-attack, selecting the appropriate defensive action

requires knowing the attacker’s tactics, techniques, and procedures (TTPs). Tactics to ob-

serve the attacker to gather more information the TTPs being used take time. Meanwhile

the attacker may be exfiltrating data, causing harm to the enterprise. Explicitly consider-

ing the latency of the observation and the defensive tactics would allow a self-protecting

system to consider the consequences of not taking defensive action vs. the consequences

of taking inappropriate defensive actions. Also, moving target defense is an approach to

security whose goal is to change some aspect of the system frequently in order to make

it difficult for attackers to exploit knowledge about the system, or to maintain a foothold

on the system. One problem of this approach is that it typically focuses exclusively on

security, and it can blindly and constantly change the system, without regards to other im-

3

portant qualities of the system, such as performance. This kind of defense would benefit

from reasoning about proactive adaptations in the context of other qualities of the system,

and from the consideration of how long the moving target tactics take to execute.

The rest of this chapter introduces a motivating example that will be used throughout the

dissertation to present our approach, presents the thesis that this dissertation investigates, and

provides a road map for the rest of the dissertation.

1.1 Motivating Example

To illustrate the problem solved by this work and the approaches presented in this thesis, we

will use RUBiS, an open-source benchmark application that implements the functionality of an

auctions website [126].2 This application has been widely used for research in web application

performance, and various areas of cloud computing [39, 50, 74, 122]. RUBiS is a multi-tier web

application consisting of a web server tier that receives requests from clients using browsers, and

a database tier. In our version of the system, we also include a load balancer to support multiple

servers in the web tier, as shown in Figure 1.1.3 The load balancer distributes the requests arriving

at the website among the web servers. When a client requests a web page using a browser, the

web server processing the request accesses the database tier to get the data needed to render the

page with dynamic content. The request arrival rate, which induces the workload on the system,

changes over time, and we want the system to be able to self-adapt to best deal with this changing

environment.4

There are two ways the system can deal with changes in the workload induced by the clients.

First, as is typical in elastic computing, the system can add/remove servers to/from the pool of

servers connected to the load balancer. Second, it can adjust the proportion of responses that

include optional content (e.g., advertisement or suggested products) through a control known as

a dimmer,5 since not including the optional content in the response to a request reduces the load

imposed on the system.

The goal of self-adaptation in this system is to maximize the utility provided by the system

at the minimum cost. The utility is computed according to a service level agreement (SLA)

with rewards for meeting the average response time requirement in a measurement interval, and

penalties for not meeting it [77]. The cost is proportional to the number of servers used. The

SLA specifies a threshold T for the average response time requirement. The utility obtained in

2Further details about RUBiS are provided in Chapter 8. In addition, a second system used for the validation of

the thesis is presented in Chapter 8.
3Architecturally, RUBiS is similar to Znn.com, a model problem adopted by the self-adaptive systems research

community [30].
4RUBiS was not developed as a self-adaptive system, but we added self-adaptive capabilities to it by adding an

adaptation layer.
5We use a version of RUBiS extended with brownout capability [83]. Instead of being limited to a binary choice

in which all or no responses include the optional content, brownout uses the dimmer setting as a way to control the

proportion of responses that include the optional content, with 1 being the setting in which all responses include the

optional content, 0 when no one does (i.e., blackout), and values in between for different levels of brownout.

4

client tier web tier data tier

web

server

web

server

web

server

web

browser
web

browser
web

browser

load

balancer

web

server

database

client

HTTP load

balancer

data

store

tier

HTTP

server

shut-down

HTTP server

HTTP

database

access

Key

Figure 1.1: RUBiS system architecture.

an interval depends on whether the response time requirement is met or not, as given by6

U =

{

τa(dRO + (1− d)RM) if r ≤ T

τ min(0, a− κ)RO if r > T
(1.1)

where τ is the length of the interval, a is the average request rate, r is the average response time, d
is the dimmer value, κ is the maximum request rate the site is capable of handling with optional

content, and RM and RO are the rewards for serving a request with mandatory and optional

content, respectively, with RO > RM .

If cost were not a concern, the sever pool would be configured with all the servers on-line

at all times. However, that would not satisfy the secondary goal of minimizing operation costs,

which depends on the number of servers being used. Furthermore, there can be events (such as a

spike in sales) in which not even the maximum number of servers supported by the pool would

be sufficient to meet the response time requirement unless the dimmer is used as well.

To understand the limitations of a reactive time-agnostic approach to self-adaptation, consider

how it would handle the following scenario in RUBiS. Assume that the website is in a steady

state, meeting the response time requirement with a high dimmer setting, and two out of four

servers on-line. Traffic to the website starts to increase. At first, it can still be handled with the

current configuration, but at some point, the response time goes beyond the acceptable threshold

specified in the SLA. The adaptation manager detects the problem—after clients have already

experienced unacceptable response time—and decides to start a new server. Starting a server

takes time; meanwhile, traffic continues to increase and the response time continues to get worse.

When the new server comes on-line, the response time improves, but still does not meet the

6When we introduce equations, any element not previously defined is defined in the prose that follows.

5

requirement. The adaptation manager detects that, and adds another server. This time, when the

server finishes booting, the response time is finally brought back to an acceptable level.

Compare what just happened with how the approach presented in this thesis handles the

situation. When the traffic to the website starts to increase, but before it causes the response

time to become unacceptable, the adaptation manager detects through its look-ahead approach

that the response time will become unacceptable in the near future if the up-trend for the traffic

persists. Furthermore, it is able to determine that adding just one server will not be enough,

and decides that two servers are needed. Because it is aware that adding a server takes time, it

does not wait for the response time to become unacceptable, and instead starts the new servers

before that happens. Notwithstanding, moments later, due to a higher than expected increase

in traffic, and in spite of having started the available servers in advance, it determines that the

response time requirement will go above the acceptable threshold before the servers come on-

line. To avoid that, and because it is aware that lowering the dimmer is a low-latency tactic that

can executed concurrently with bringing the additional servers on-line, the adaptation manager

lowers the dimmer right before the response time gets too high. As soon as the servers come on-

line, it restores the dimmer to its highest setting. Thanks to the proactive latency-aware approach

and the use of concurrent tactic execution, the response time never goes above the acceptable

threshold.

1.2 Thesis

This dissertation shows that:

We can improve the effectiveness of self-adaptation over reactive time-agnostic

adaptation by (a) explicitly considering the latency of adaptation tactics, (b)

adapting proactively, and (c) potentially allowing concurrent execution of adap-

tation tactics.

Next, we elaborate on the different elements of the thesis statement.

We can improve the effectiveness of self-adaptation...

Self-adaptation is done to achieve some particular goal even in the face of environment change.

Examples of adaptation goals include continuing to satisfy requirements [18], maximizing util-

ity [30], and self-protection [129]. Clearly, a self-adaptation approach is effective if it achieves

its goal. Yet, there are different levels of effectiveness. Consider the case, for example, of self-

adaptation to satisfy requirements. Ideally, the approach would ensure that the system never fails

to meet a requirement. However, that may not be possible, especially if the self-adaptive system

reacts to the detection of an unsatisfied requirement. In that case, some time will pass from the

time that the system fails to satisfy the requirement until the problem is fixed. If we compare two

approaches, the one that takes longer to restore the requirement satisfaction, all else being equal,

is less effective.

Timeliness is a desired quality of self-adaption [69, 116, 127]. As such, it ought to be in-

cluded directly or indirectly in a measure of effectiveness of self-adaptation. In the previous

example, the effectiveness could be measured by the amount or proportion of time the system

6

meets all its requirements. In other cases, timeliness is indirectly measured by a metric relevant

to the goal of adaptation. For example, if the amount of sensitive data exfiltrated is a measure of

self-protection (less is better), then the longer a self-adaptive approach takes to stop the exfiltra-

tion, the worse it will be with respect to that metric. For utility-based approaches, a measure of

effectiveness could be the total utility that the system provides over its execution, as this encom-

passes both how much utility changes and how long the adaptation takes, thus measuring both

the impact and the timeliness of the adaptation.

The claim of the thesis is that effectiveness of self-adaption can be improved by using a

combination of the following ideas.

...by (a) explicitly considering the latency of adaptation tactics,...

Adaptation tactics take some time to produce their intended effect: that is, they have latency.

Different tactics have different latencies. For instance, some tactics involve just changing a prop-

erty of a component, which can often be done with very low latency. Others take a considerable

amount of time. For example, adding a processing node to a Cassandra database takes about 180

seconds [47]. Tactic latency is for the most part ignored by existing self-adaptation approaches,

especially when deciding how to adapt.

Ignoring tactic latency has several consequences that negatively affect adaptation effective-

ness. These include:

• assuming that the beneficial impact of the tactic will be produced immediately, distorting

the projected results. This can lead to misguided adaptation decisions.

• assuming that the tactic will complete before the need for it subsides, which may lead to

wasted resources for adaptation, and even preventing the selection of a faster useful tactic.

• not being able to reason about trade-offs between the impact different adaptation tactics

provide and the time they take. This can result, for example, in deciding to adapt in a way

that takes longer, to get a marginally better result in the end.

• not being able to start proactively an adaptation tactic in time so that it completes by the

time its effect is needed. This means that the system will lag with respect to the adaptations

needed to deal with changes in the environment.

• preventing the use of other incompatible tactics while a tactic with considerable latency

executes (e.g., not being able to remove a server while it is being added). Consequently,

an adaptation choice made at some point constrains the possible adaptations in subsequent

decisions.

By explicitly considering tactic latency, in what we refer to as latency-aware adaptation, our

approach avoids these issues, thereby improving adaptation effectiveness.

...(b) adapting proactively,...

Most self-adaptation approaches are reactive: that is, they adapt after detecting that the system

configuration is not suitable or not the best for the current environment state. As noted previ-

ously when discussing effectiveness, the longer it takes for the system to adapt reactively, the less

effective the adaptation is. Even if we ignore the adaptation decision time, reactive approaches

have a lower bound on the reaction time (i.e., the time it takes to produce an effect on the system)

7

imposed by the latency of the adaptation tactics. By adapting proactively and explicitly taking

into account tactic latency, we can make the reaction time virtually zero, improving the effec-

tiveness of the system. Proactive adaptation, not only allows the system to start the tactics so that

they complete in time, but also to decide how to adapt, taking into account how the environment

will evolve in the near future. For example, suppose that either tactic a or b can be used to deal

with an impending environment change, and tactic a is marginally better. A reactive approach

would choose tactic a. Now, if tactic b is predicted to be required in order to deal with a subse-

quent environment change, and there is an adaptation cost, it would be better to use tactic b in the

first place, and avoid the second adaptation cost. Since proactive adaptation uses a look-ahead

approach, it is able to make the correct decision in such case.

...and (c) potentially allowing concurrent execution of adaptation tactics.

Current self-adaptation approaches select one adaptation tactic or one adaptation strategy com-

posed of a sequence of tactics. That is, they start the execution of one tactic, wait until it com-

pletes, and then start the following one, and so on. Adaptation effectiveness can be improved by

supporting concurrent execution of adaptation tactics.7 There are two reasons why effectiveness

is improved. One is the simple reason that parallelization reduces the total amount of time a se-

quence of computations takes to execute. The most interesting case, though, is when a fast tactic

can be used to provide a partial improvement while a slower, but better, tactic is executing. For

example, consider a case in which an increase in system load can be handled by adding a server,

which takes a considerable amount of time. While the server is being added, the system may fail

to meet maximum response time requirements. However, that can be avoided by concurrently

executing a fast tactic to reduce the content fidelity. In that way, the response time requirement

is met. Once the tactic for adding the server completes, the content fidelity can be restored

using another fast tactic. Note that this kind of reasoning is only possible with latency-aware

adaptation.

1.3 Solution Approach

Proactive latency-aware adaptation improves self-adaptation effectiveness by integrating timing

considerations in a three-pronged approach:

• latency awareness: explicitly considers how long tactics take to execute, both to account

for the delay in producing their effect, and to avoid solutions that are infeasible when the

time dimension is considered.

• proactivity: leverages knowledge or predictions of the future states of the environment to

start adaptation tactics with the necessary lead time so that they can complete on time, and

to avoid unnecessary adaptations.

• concurrent tactic execution: exploits non-conflicting tactics to speed up adaptations that

involve multiple tactics, and to support long-latency tactics with faster ones that can pro-

duce intermediate results sooner.

7Not all tactics can be executed concurrently. This is discussed in Section 3.4.

8

Making an adaptation decision with these characteristics requires solving an optimization

problem to select the adaptation path that maximizes a utility function over a finite look-ahead

horizon. The decision horizon is necessary to achieve proactivity, so that the system prepares

for upcoming needs, and also to account for the delayed effect of adaptation tactics with latency.

Additionally, an adaptation action started at given time can constrain the adaptations feasible in

the near future. That is the reason why an adaptation path—a sequence of adaptation actions—

must be considered to assess the utility that the system could accrue over the look-ahead horizon.

Making decisions with such look-ahead requires relying on predictions of the state of the envi-

ronment over the decision horizon; however, these predictions are subject to uncertainty. Since

this is a problem of selecting adaptation actions in the context of the probabilistic behavior of the

environment, Markov decision processes (MDP) are a suitable approach. An MDP is a model

for sequential decision making when the outcome of taking an action in a given state is uncer-

tain [121]. One of the elements that define an MDP is a probabilistic transition function, which

gives the probability of reaching different target states when an action is taken in a given state

(more details are provided in Section 3.3). In our context, a state in the MDP refers to the joint

state of the system and the environment. This means that constructing the transition function of

the MDP requires taking into account the dynamics of both the environment and the system si-

multaneously. Given all the possible interactions between the different, and possibly concurrent,

adaptation tactics, the system, and the environment, constructing the MDP is a complex task.

Furthermore, since the predicted behavior of the environment, which is only known at run time,

is part of it, the MDP cannot be constructed off-line.

In this thesis, we present two different proactive latency-aware (PLA) solution approaches

that involve the construction and solution of an MDP to make adaptation decisions. We refer to

these as the main solution approaches, since they solve the full PLA adaptation decision problem.

A third solution approach uses the PLA principles to make adaptation decisions, but limits that

adaptive behavior to the selection of predefined combinations of adaptation tactics. Although less

flexible in terms of the adaption decisions it can make, this solution approach is more scalable

than the other two.

One approach, named PLA-PMC, is based on probabilistic model checking (PMC), a for-

mal verification technique used to analyze systems with stochastic behavior [95]. The approach

consists of (i) creating off-line formal specifications of the adaptation tactics and the system; (ii)

periodically generating at run time a model to represent the stochastic behavior of the environ-

ment; and (iii) using a probabilistic model checker at run time to synthesize the optimal strategy

that maximizes the expected value of a utility function over the decision horizon by analyzing

the composition of the models of the tactics, the system and the environment. From the optimal

solution computed by the model checker, we can extract the set of tactics that must be started in

order to achieve the adaptation goal (e.g., utility maximization).

One drawback of PLA-PMC is that the model checker has to construct the underlying MDP

every time an adaptation decision has to be made because the probabilistic transitions of the MDP

depend on the stochastic behavior of the environment, which can only be estimated at run time.

Consequently, the overhead of constructing the MDP must be incurred every time an adaptation

decision has to be made with PLA-PMC.

The second approach, PLA-SDP, practically eliminates the run-time overhead of constructing

the MDP by doing most of that off-line. Using formal modeling and analysis, the approach ex-

9

haustively considers the many possible system states, and combinations of tactics, including their

concurrent execution when possible. At run time, the adaptation decision is made by solving the

MDP using stochastic dynamic programming (SDP) principles [120], weaving in the stochastic

environment model as the solution is computed.

Even though PLA-SDP can make adaptation decisions much faster than PLA-PMC, it does

so at the expense of modifiability. It exploits the structure of the adaptation decision problem to

achieve its speed, and although it can efficiently solve a class of adaptation decision problems,

handling different problems with other characteristics would require redesigning its algorithm.

For example, in the scope of this thesis, tactic latencies are assumed to be deterministic. Relaxing

that assumption to support probabilistic latencies in future work would be straightforward with

PLA-PMC, whereas PLA-SDP would require changes to both the MDP construction part, and

the solution algorithm. Another advantage of PLA-PMC is that it is the gold standard for the

solution due to the optimality of the solution computed by the model checker. We envision

that advances in the field to handle growing classes of adaptation decision problems could be

lead by PMC-based solutions, with other solutions, such as SDP-based ones, following behind,

striving to solve the same class of problems more efficiently. That is what happened during the

development of the approaches in this thesis. Furthermore, there is ongoing work to improve the

efficiency of probabilistic model checking [57, 92], so its performance will likely be less of a

problem in the future. Hence, both approaches present distinct contributions to address the same

problems, and are therefore presented in this thesis.

Both PLA-PMC and PLA-SDP are tactic-based approaches; that is, they make decisions by

making adaptation plans combining adaptation tactics. Another kind of approach is the selection

of an adaptation strategy to achieve the adaptation goal. A strategy is a decision tree built out of

tactics [28]. For example, a strategy to reduce the response time in RUBiS, could add a server,

wait to check if it reduces the response time to a satisfactory level, and if it does not, reduce

the fidelity level—all as part of a single strategy. In this way, an adaptation strategy captures

the process a system administrator would follow to repair a problem. Since strategies are pre-

planned ways in which tactics can be combined, strategy-based adaptation lacks the flexibility

to generate all the solutions that tactic-based adaptation could provide, some of which could be

better. One benefit of strategies, though, is that they reduce the solution space, and, consequently,

make the adaptation decision faster. This could be desirable for systems in which tactic-based

adaptation would not be fast enough due to a large number of tactics available in the system. In

addition, there may be cases in which the designers of an adaptive system do not want it to have

the latitude to adapt in unforeseen ways that tactic-based adaptation confers, but restrict it to use

only strategies that they define. For example, robots are sometimes required to move like humans

to match the humans’ intuitive expectation of their behavior [75], even though that behavior may

be suboptimal or overly restrictive for the robots [125]. For such situations where the use of

strategies is desired, we also present SB-PLA, a strategy-based PLA adaptation approach that

builds on the ideas of PLA-PMC. In this approach, when an adaptation decision has to be made,

the latency of the adaptation tactics involved in a strategy and the predicted evolution of the

environment are considered to assess the impact of the applicable strategies. With SB-PLA,

systems that cannot use tactic-based adaptation for the aforementioned reasons can still benefit

from the improvements that proactive latency-aware adaptation brings.

10

1.4 Research Claims

The main claim of this thesis is that the effectiveness of self-adaptation can be improved by using

the approach presented in this dissertation, and is repeated here for completeness, together with

a brief explanation of how that claim is established in this dissertation. In addition, there are two

other research claims that aim to demonstrate the practicality of the approach.

Claim 1. The approach improves the effectiveness of self-adaptation. This claim, already elab-

orated in 1.2, is validated by comparing the approach with a self-adaptation approach that lacks

the timing aspects of self-adaptation (i.e., it is not proactive, is latency-agnostic, and does not use

concurrent tactics) in two different systems with different adaptation criteria.

Claim 2. The approach is applicable to different kinds of systems.

Two important aspects that will differ across classes of systems are their adaptation goal and the

repertoire of tactics they use. For example, information systems that have to deal with changing

workload will have adaptation tactics that allow them to scale the resources they use (e.g., adding

servers), or to shape the workload (e.g., removing optional content such as product suggestions),

whereas a cyber-physical system may have tactics that, for example affect its physical configura-

tion to best suit the environment conditions. In addition, the adaptation criteria may be different.

For example, in an information system, the main trade-off may be between cost and performance,

with the adaptation criterion being to maximize a utility function that aggregates both. However,

in a cyber-physical system, the adaptation criteria may be to avoid violation of constraints (e.g.,

the vehicle does not crash), while maximizing some metric related to its mission (e.g., number

of objects found). To validate this claim, we applied the approach to two different systems in

different domains, each with different kinds of tactics, and different adaptation criteria.

Claim 3. The approach scales to systems of realistic size. The size of the space within which

the adaptation decision must search for the new system configuration increases with the number

of adaptation tactics, the number of parameters that adaptation can control, and the length and

granularity of the look-ahead horizon. For the approach to be practical, it has to be able to

handle adaptation in a search space with a size representative of what might be encountered

in practice. Furthermore, it must be able to carry out the adaptation decisions in a reasonable

time, for example, without overrunning a designated decision period. To validate this claim we

applied the approach to the two systems mentioned above, and in addition, we ran simulations to

artificially increase some of the parameters that define the adaptation search space beyond what

our experimental platform supports.

1.5 Contributions

The main contributions of this thesis are:

• a conceptual framework for proactive latency-aware adaptation that describes the PLA

self-adaptation loop, how the three elements—proactivity, latency-awareness, and concur-

11

rent tactic execution—are combined, and defines the PLA adaptation decision problem

independent of how it is solved. (Chapter 3)

• three solution approaches that realize the conceptual framework for proactive latency-

aware adaptation:

PLA-PMC, a solution approach based on probabilistic model checking, which, given

the optimality it achieves with exhaustive analysis, serves as the gold standard in

terms of solution effectiveness. PLA-PMC not only provides a reference with which

to compare other approaches, but also is a solution that can be relatively easily

adapted to handle problems that require extensions of PLA. In addition, with its mod-

ifiability, PLA-PMC provides a solution approach suitable to lead future extensions

of PLA. (Chapter 4)

PLA-SDP, a solution approach based on stochastic dynamic programming principles,

which exploits the PLA adaptation decision problem structure to make adaptation

decisions an order of magnitude faster than PLA-PMC, while retaining optimality

(as computed by PLA-PMC) (Chapter 5)

SB-PLA, a solution approach that uses the PLA principles to improve adaptation

decisions based on adaptation strategies. In this way, PLA can be used in systems

for which it is desired to limit the adaptive behavior to a repertoire of predefined and

trusted adaptation strategies. Additionally, SB-PLA is more scalable than the other

two solution approaches. (Chapter 7)

• support for a variety of forms of utility to drive adaptation decisions. In addition to the

often used form of additive utility maximization, this approach allows combining ways in

which utility is gained with requirements on the satisfaction of a probabilistic constraint.

This makes it possible to express, for example, that the system gains utility as long as it

does not fail, and that the probability of failure must be kept above some threshold. This

support for a variety of forms for the utility function makes our approach applicable to

systems with different adaptation goals. (Chapter 6)

The research presented in this thesis has resulted in the following peer-reviewed publications:

• J. Cámara, G. A. Moreno, and D. Garlan. Stochastic game analysis and latency aware-

ness for proactive self-adaptation. International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS 2014) [22]

This paper introduced the idea of proactive latency aware adaptation, showing that it can

improve the effectiveness of self-adaptation compared to time-agnostic adaptation.

• J. Cámara, G. A. Moreno, D. Garlan, and B. Schmerl. Analyzing Latency-Aware Self-

Adaptation Using Stochastic Games and Simulations. ACM Transactions on Autonomous

and Adaptive Systems. January 2016 [23].

This paper extended the previous work to support multiple adaptation tactics, and intro-

duced the use of formal modeling and analysis to compute off-line all the possible ways

in which the system configuration can be changed through the application of adaptation

tactics.

12

• G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Proactive self-adaptation under

uncertainty: a probabilistic model checking approach. Joint Meeting on Foundations of

Software Engineering (ESEC/FSE 2015) [108]

This paper presented PLA-PMC, a novel approach that uses probabilistic model checking

to solve the PLA adaptation decision problem considering the uncertainty of the environ-

ment.

• G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Efficient Decision-Making under

Uncertainty for Proactive Self-Adaptation. International Conference on Autonomic Com-

puting (ICAC 2016) [109]

This paper presented PLA-SDP, a PLA solution approach based on stochastic dynamic

programing that makes adaptation decisions an order of magnitude faster than the previous

approach.

1.6 Dissertation Outline

The rest of this thesis is organized as follows. Chapter 2 presents related work. Chapter 3

introduces the concept of proactive latency-aware adaptation, defines the adaptation decision

problem, and gives some background needed for the solution approaches. Chapter 4 presents

PLA-PMC, a solution approach based on probabilistic model checking. Chapter 5 describes

PLA-SDP, a solution approach that computes the same adaptation decisions as PLA-PMC, but

does it much faster. Chapter 6 extends the approach to support additional notions of utility.

Chapter 7 presents SB-PLA, a solution approach that uses the principles of PLA but is based on

adaptation strategies rather than just tactics. The validation of the thesis is presented in Chapter 8.

Chapter 9 has a discussion of the thesis, including an analysis of the contributions of the different

elements of our approach, and the rationale for the two solutions proposed. In addition, the

limitation of the approach are discussed, and future areas of work are presented. Chapter 10

concludes the thesis with a summary of its contributions and brief recap.

13

14

Chapter 2

Related Work

In this chapter we present related work organized in topics relevant for this thesis: self-adaptive

systems, proactive adaptation, adaptation latency, model predictive control, MDP-based adapta-

tion, and runtime quantitative verification. For each area, we note the similarities and difference

between existing works and ours.

2.1 Self-Adaptive Systems

In the last 15 years, there has been a substantial amount of research in self-adaptive systems,

encompassing several adaptivity properties such as self-protecting, self-optimizing, and self-

healing, which are usually referred to as self-* properties. Salehie and Tahvildari, and Krupitzer

et al. present two good surveys of the field [88, 127].

A key concept used to engineer self-adaptive systems is that of a feedback loop, which mon-

itors the state of the system and its environment, and adapts the system as needed to achieve

the desired self-* properties. Embracing feedback loops for software and making them explicit

has been identified as a crucial factor for building self-adaptive systems [15]. One explicit form

of feedback loop adopted by the self-adaptive systems community is the Monitor-Analyze-Plan-

Execute-Knowledge (MAPE-K) loop [81]. The MAPE elements cover the activities that must

be performed in the feedback loop: (i) monitoring the system and the environment; (ii) analyz-

ing the information collected and deciding if the system needs to adapt; (iii) planning how to

adapt; and (iv) executing the adaptation. The four activities share a knowledge base or repository

that integrates them. The approach presented in this thesis fits in the MAPE-K loop model of

self-adaptation. However, for the reasons explained in Chapter 3, we combine the analysis and

planning phases into a single phase that we refer to as adaptation decision.

In architecture-based self-adaptation, the knowledge includes a model of the architecture

of the running system that is maintained at runtime and used to reason about the changes that

should be made to the system to achieve the quality attributes linked to the adaptation goals [54].

Architecture-based approaches offer several benefits, including providing the right level of ab-

straction to describe dynamic change in terms of components and connectors, as opposed to

low-level algorithmic details [87]. Additionally, architecture-based self-adaptation is a good

fit for the approach described in this thesis because it allows one to use existing architecture

15

analyses [72, 86, 132] to assess the impact of potential changes in the system and the environ-

ment. One example of architecture-based self-adaptation is embodied in the Rainbow framework,

which provides reusable infrastructure with customization points to facilitate the implementation

of self-adaptive systems (see Section 7.1 for more details) [53].

Although not completely dependent on architecture models, this thesis leverages the concept

of architecture-based self-adaptation in that the reasoning required to make adaptation decisions

is based on a model of the system at a level of abstraction that is sufficient to analyze the proper-

ties that self-adaptation is aiming to control. In some cases, these models are not software archi-

tecture models, as in one of the systems used for the validation of the thesis (see Section 8.1.2).

Rainbow, like most self-adaptation approaches, only supports reactive adaptation [88]; that

is, it only adapts after the system has already failed to satisfy some requirement. In addition,

when deciding how to adapt, the latency of adaptation tactics is ignored, and consequently, the

fact that the environment will change while the adaptation is executed is also not considered. Our

approach addresses these limitations, aiming to deal with issues proactively, before a requirement

is not satisfied, and considering the latency of the different adaptation alternatives when deciding

how to adapt.

Even though Rainbow was designed for reactive adaptation, our approach was integrated into

this framework mostly using its customization points, except for the support for concurrent exe-

cution of adaptation tactics, which required deeper changes to the component that manages the

adaptation execution. When used with Rainbow, the architecture models used to make adapta-

tion decisions with our approach are explicitly represented in Acme, an architecture description

language [52].

2.2 Proactive Adaptation

Several taxonomies classify adaptation approaches into reactive and proactive [62, 88, 127]. In

reactive approaches the system adapts to deal with changes that have already happened, whereas

in proactive approaches the system adapts in anticipation of changes that are going to happen. In

its simplest case proactive adaptation could be thought of as reacting to the detection (through

prediction, for example) that a change will happen. However, this thesis deals with proactive

adaptation under uncertainty, which requires considering different possible future realizations of

the environment, in which the change does and does not happen. Thus, simply reacting to a

predicted future event is not sufficient.

One of the defining characteristics of autonomic systems1 is being anticipatory, defined as

“[being] able to anticipate to the extent possible, its needs and behaviors and those of its context,

and [being] able to manage itself proactively” [115]. That goal notwithstanding, the vast majority

of the self-adaptive approaches are reactive [88, 127], and in their recent survey, Krupitzer et al.

highlight proactive adaptation as a research challenge in the area of self-adaptive systems [88].

One area in which proactive adaptation has received considerable attention is service-based

systems [17, 64, 106, 143] because of their reliance on third-party services whose quality of ser-

vice (QoS) can change over time. In that setting, when a service failure or a QoS degradation

1Autonomic and self-adaptive are terms mostly used interchangeably in the literature, and in some cases the

former includes the latter [127].

16

is detected, a penalty has already been incurred, for example, due to service-level agreement

violations. Thus, proactive adaptation is needed to avoid such problems. Hielscher et al. propose

a framework for proactive self-adaptation that uses online testing to detect problems before they

happen in real transactions, and to trigger adaptation when tests fail [64]. Wang and Pazat use

online prediction of QoS degradations to trigger preventive adaptations before SLAs are vio-

lated [143]. However, these approaches are limited in that they ignore the adaptation latency, and

that their look-ahead is limited, for example by considering only the predicted QoS of services

yet to be invoked in a service composition being executed.

Gmach et al. present a proactive/reactive approach to resource pool management [58]. In

their approach, proactivity means allocating resources for an upcoming time interval of four

hours based on historic workload predictions. A reactive adaptation manager is then used to

compensate for prediction errors and change the allocation within the interval. Compared with

this thesis, there are several important limitations of their approach: not considering adaptation

latency, considering only one period in their look-ahead, and not being able to reason about long

running tactics that could prevent others from executing.

Work on anticipatory dynamic configuration by Poladian et al. [118] is the closest to our

approach. They demonstrated that when there is an adaptation cost or penalty, anticipatory adap-

tation outperforms reactive adaptation. Intuitively, if there is no cost associated with adaptation,

a reactive approach could adapt at the time a condition requiring adaptation is detected without

any negative consequence. However, when there is an adaptation cost, reactive adaptation is

suboptimal. By leveraging environment predictions and using a look-ahead horizon, anticipatory

adaptation can determine the best adaptation to carry out in order to maximize the sum of utility,

taking into account how the environment state will evolve in the short term, and the penalties

associated with adapting. Poladian’s work, however, is limited by the fact that it ignores adapta-

tion latency, which has the following consequences: (i) it cannot select between a fast and a slow

adaptation, (ii) it is not proactive because it cannot start adaptations with the necessary lead time

to complete by the time the environment changes, and (iii) it assumes that all configurations are

feasible at all times. Furthermore, that work only supports maximization of expected additive

utility as the reconfiguration goal, whereas ours support different forms of utility functions, as

described in Chapter 6.

2.3 Adaptation Latency

Adaptation latency (i.e., how long the system takes to adapt) is a concern in autonomic com-

puting, and has been proposed and used as a metric to evaluate adaptation approaches [11, 25,

48, 105]. Nevertheless, it is rarely taken into account as a factor in the adaptation decision. As

Gambi et al. point out, adaptations are typically assumed to be immediate. So, they pose—but

do not address—the research question of how knowledge of adaptation latency can be leveraged

to improve the quality of the control exerted by the MAPE loop [47].

Adaptation latency is considered in some very specific situations in some work. Musliner

considers adaptation latency by imposing a limit on the time to synthesize a controller for real-

time autonomous systems [110]. However, in that work there are no distinct planning and execu-

tion phases, and thus there is no consideration of the latency of the different actions the system

17

could take to adapt. In the area of dynamic capacity management for data centers, the work of

Gandhi et al. considers the setup time of servers, and is able to deal with unpredictable changes

in load by being conservative about removing servers when the load goes down [49]. Their work

is specifically tailored to adding and removing servers to a dynamic pool, a setting that resem-

bles the example introduced in Chapter 1. However, their work cannot reason about other tactics

that could be used instead of, or in combination with, tactics to control the number of servers.

Zhang et al. propose a safe adaptation approach that can minimize the cost of adaptation, with

adaptation duration being one such cost [144]. However, that cost is only considered once all

the possible ways of reaching the desired target configuration have been found. That is, adapta-

tion duration is not used when selecting among alternative target configurations. In their work

for autonomic security management, Iannucci and Abdelwahed consider the latency of security

actions when planning how to adapt to deal with security attacks [71]. However, the latency is

only factored into the decision as part of the reward structure in an MDP, penalizing actions with

longer latencies, but not actually taking into account how latency affects when actions changes

the state of the system.

None of these approaches considers adaptation latency systematically as a first-class concern

as this thesis does. In contrast to these other works, ours takes into account how the environment

changes while the adaptation is carried out, what adaptation tactics would become infeasible

during the execution of an adaptation, how utility changes while an adaptation is carried out, and

how faster tactics can complement slower tactics when executed concurrently.

2.4 Model Predictive Control

Model predictive control (MPC) is an approach with roots in process control that selects control

inputs to optimize forecasts of process behavior [124]. These forecasts or predictions are done

using a process model, thus its name. Our approach shares these high-level ideas with MPC: (i)

the use of a model to predict the future behavior of the system; (ii) the computation of a sequence

of control actions, committing only to the first one; and (iii) the use of a receding horizon [19].

Although MPC has been used in other approaches to self-adaptation [3, 91, 137], our approach

differs in the several significant ways. First, it takes into account that control actions executed at

a given time may prevent other control actions from being applicable in subsequent time steps,

as opposed to assuming that all control actions are applicable at all times. Second, it considers

tactic latency during the selection of the adaptation action(s), not just as an adaptation cost, but

modeling how the execution of the tactics affects the applicability of other tactics while the tactics

execute (over possibly multiple time intervals). Furthermore, our approach is able to decide

between fast and slow adaptation tactics. Third, it considers the possible concurrent adaptation

tactics during the decision, not just as a way to speed up the execution of the adaptation. Fourth,

it considers the transition probabilities of the environment supporting a richer stochastic model of

the environment instead of treating the predictions for the environment state at each time interval

over the decision horizon independently.

18

2.5 MDP-Based Adaptation Decisions

In this thesis, Markov Decision Processes (MDP) are used to model the adaptation decision

process. There are approaches that use reinforcement learning to gradually learn the optimal

policy for the underlying MDP [1, 9]. Their advantage is not requiring the construction of the

MDP, which in our case is built out of models of the system and the adaptation tactics provided

at design time, combined with models of the environment generated at run time. However,

those approaches need time to learn the dynamics of the system, and have to execute possibly

inadequate adaptations to learn their effect. Also, if a new adaptation tactic is added to the system

after it has learned the underlying MDP, it needs to learn again the underlying model with that

new tactic, especially considering how that tactic would behave when used in parallel with other

tactics. Our approach does not require learning, and therefore, does not have these issues. But on

the other hand, its performance does not benefit from experience, as learning does. In Section 9.4,

we propose how learning could be incorporated to our approach in future work.

Naskos et al. use MDPs to make cloud elasticity decisions [111]. Their approach focuses on

tactics to add and remove servers, and consequently, it cannot decide between alternative tactics,

nor support concurrent tactics. Iannucci and Abdelwahed use MDPs to compute policies to deal

with security attacks [71]. The main difference with our use of MDPs is that their work does

not consider how the environment evolves over time while the system is adapting, focusing only

on how the system state evolves. In addition, they only consider latency to favor faster tactics,

since their approach is tailored to dealing with security attacks, in which it is desired to contain

or clean the attack as fast as possible.

2.6 Runtime Quantitative Verification

PLA-PMC, one of the solution approaches for adaptation decisions presented in this thesis, in-

volves the use of probabilistic model checking. Calinescu et al. proposed the use of model

checking and quantitative verification techniques at run time to ensure the dependability of self-

adaptive systems [18]. In their approach, referred to as runtime quantitative verification (RQV),

information gathered through the self-adaptive system’s monitoring capability is used to update

parameters in the formal model of the system, which is then used to detect or predict require-

ments violations. If that is detected, the same quantitative verification techniques can be used to

select, for example, the configuration less likely to result in an unsatisfied requirement. One dif-

ficulty in achieving their vision is that the underlying verification technique, probabilistic model

checking, can be slow for certain systems, especially if the model checker has to be invoked

multiple times for each adaptation decision. However, Gerasimou et al. recently showed how the

overhead and execution time of this approach can be reduced by combining caching, look-ahead,

and near-optimal reconfiguration [56]. They used the PRISM probabilistic model checker [96]

in a simulation of a self-adaptive unmanned underwater vehicle.

There are two main differences between that use of verification, and the use of probabilistic

model checking in this proposal. One is that for adaptation decision, RQV is used to quantify

or verify properties of each possible configuration, one at a time, and that information is then

used to select a target configuration outside of the model checking process. In contrast, PLA-

19

PMC uses the model checker to find the best adaptation by having the model checker synthesize

a strategy,2 whose first action is the adaptation action that must be executed; that is, the model

checker is invoked only once per adaptation decision. The second difference is that they do the

verification of individual configurations in the context of a snapshot of the environment state. In

PLA-PMC, on the other hand, the verification analyzes sequences of adaptation in the context of

an evolving environment.

2The model checker can synthesize a strategy, which is the resolution of the nondeterminism in the input model

that maximizes the expectation of a utility function.

20

Chapter 3

Proactive Latency-Aware Adaptation

Today most self-adaptation approaches are reactive, making adaptation decisions based on cur-

rent conditions [88]. Unless there is an adaptation cost, being reactive is not a problem if the

system can adapt very quickly, because at any point, the system can rapidly change to best deal

with the conditions at that moment. However, as we have already noted, not all adaptation tactics

are instantaneous. For example, provisioning a new virtual machine in the cloud can take a few

minutes [104]. We refer to the period of time between when a tactic is started and when its effect1

is produced as tactic latency. The problem with tactics that have non-trivial latency is that not all

system configurations are possible at all times. For instance, if adding a new server to a system

takes two minutes, it is not possible to reach a system configuration with one more server in one

minute. The only way to have that additional server on time is to start its addition proactively,

taking into account the latency of that tactic.

Tactic latency also matters when the system can use tactics with different latencies to deal

with the same situation. For example, an alternative to adding capacity with a new server, is

to reduce load by reducing the quality of service (QoS); something that can typically be done

with a much faster tactic. In a situation like this, considering not only the effect of the tactics

on the system, but also their latency when deciding how to adapt can result in more effective

adaptations.

Latency-awareness is even more useful when concurrent tactic execution is supported. In that

case, it is possible to complement slow tactics with fast ones if they do not interfere with each

other. For example, suppose that at some point the tactic to add a server is started because that

was deemed appropriate to handle a predicted increase in the request rate to the system. However,

the next time the system evaluates its state—but before the tactic to add a server completes—the

request rate is worse than was estimated. In this case, the system can reduce the QoS—and the

load—right away using a fast tactic.

Another effect of tactic latency is that the execution of a tactic with considerable latency can

prevent the use of other incompatible tactics while it executes (e.g., removing a server while it

is being added). Consequently, an adaptation choice made at some point constrains the possible

adaptations in subsequent decisions.

1We refer to the direct effect of the tactic on the structure and/or properties of the system, and not the indirect

effect they may be intended to produce. For example, when adding a new server, the effect is the system having one

more active server, and not the reduction of its response time.

21

Proactive latency-aware adaptation, as introduced in Chapter 1, improves self-adaptation

effectiveness by considering both the current and anticipated adaptation needs of the system, and

taking into account the latency of adaptation tactics. To recap, the key pillars of PLA are:

• latency awareness: explicitly considers how long tactics take to execute, both to account

for the delay in producing their effect, and to avoid solutions that are infeasible when the

time dimension is considered.

• proactivity: leverages knowledge or predictions of the future states of the environment to

start adaptation tactics with the necessary lead time so that they can complete on time, and

to avoid unnecessary adaptations.

• concurrent tactic execution: exploits non-conflicting tactics to speed up adaptations that

involve multiple tactics, and to complement long-latency tactics with faster ones that can

produce intermediate results sooner.

In this chapter, we present an overview of the approach, the definition of the PLA adaptation

decision problem, and the elements that the different solution approaches have in common, in-

cluding the underlying Markov decision process, and the non-interference criteria for concurrent

tactics.

3.1 Approach Overview

Our approach fits in the general class of self-adaptation architectures based on explicit closed-

loop control such as the monitor, analyze, plan, and execute with knowledge (MAPE-K) loop

depicted in Figure 3.1 [81]. The MAPE phases cover the activities that must be performed in

the control loop: (i) monitoring the system and the environment; (ii) analyzing the information

collected and deciding if the system needs to adapt; (iii) planning how to adapt; and (iv) executing

the adaptation. The four activities share a knowledge base or repository that integrates them.

These notional elements are realized as follows in our approach.

Monitor ExecuteKnowledge

Analyze Plan

Target system

Figure 3.1: MAPE-K self-adaptation loop.

Knowledge model. As in other architecture-based self-adaptation approaches [54], we use an

abstract representation of the system that captures important system characteristics and properties

22

as the knowledge that is used to reason about the possible adaptations. For RUBiS, for example,

this model includes the number of servers, the number of active servers (i.e., those connected to

the load balancer and able to process requests), the maximum number of servers supported, the

current dimmer setting, and the observed average response time. In general, the model must have

all the information that is necessary to determine whether adaptation tactics are applicable, and

to compute the utility function2 that drives adaptation decisions.

Because some adaptation tactics have latency larger than the period of the control loop, it is

also necessary to keep track, in the model, of the adaptation tactics that are being executed, along

with information about the progress they have made (or equivalently, when they are expected to

complete). For example, for RUBiS, the model differentiates between active servers and servers

that are not active yet. For the latter, the expected time at which they will become active (i.e.,

when the tactic to add a server will be completed) is kept in the model.

In addition, the model has information about the environment, which, in the case of RUBiS,

includes the observed request arrival rate, and estimations of arrival rates in the near future.

Monitoring. Observations of the system and environment are collected, aggregated as needed,

and used to update the model. In RUBiS, for example, the request arrival rate at the load bal-

ancer is monitored and its average and standard deviation is reflected in the model. In terms of

architectural changes, when a server finishes booting and is connected to the load balancer, the

monitoring marks the server as active in the model.

Adaptation Decision. Even though MAPE-K has distinct phases for analyzing the system to

determine if adaptation is needed, and for planning how to adapt, these are combined into a single

activity in our approach, as shown in Figure 3.2. When the goal of self-adaptation is to maximize

a utility function, determining whether it is possible to adapt the system to a configuration that

will give higher utility—the analysis part—implies finding such a configuration—the planning

part. In our approach, the adaptation decision phase is run periodically, at a fixed interval τ .3 A

single computation of the solution of the adaptation decision problem (defined in Section 3.2),

simultaneously determines both whether adaptation is required, and what tactics should be used,

if needed. The output of the adaptation decision is a (possibly empty) set of adaptation tactics to

be executed.

Execution. The execution manager is a component that receives the set of tactics computed by

the adaptation decision, and executes them. It executes asynchronously relative to the adaptation

decision, so that if it has to execute a tactic with latency larger than the decision period (e.g.,

adding a server), the adaptation decision can still be made according to its period. Being able to

do so allows the approach to complement slow tactics with fast ones if they do not interfere with

each other. For example, suppose at some point, only the tactic to add a server is started because

it was determined that it was going to be sufficient to handle a predicted increase in the arrival

2To make the presentation simpler, we focus on utility maximization in the first chapters of the dissertation. In

Chapter 6, we present other forms of utility functions that include constraint satisfaction.
3Since the decision is done periodically, we also refer to τ as the period of the decision.

23

Monitor ExecuteKnowledge

Target system

Adaptation Decision

Figure 3.2: PLA self-adaptation loop.

rate. However, in the following decision period—and before the tactic to add server completes—

the realization of the environment is worse than it was estimated. In this case, the adaptation

decision can instruct the execution manager to execute the tactic to decrease the dimmer value,

a fast tactic. The execution manager can execute these adaptation tactics in parallel; thus, it can

change the dimmer value right away, without waiting for the other tactic to complete. Further

details about the concurrency of tactics is given in Section 3.4.

3.2 Adaptation Decision Problem

In any given system, self-adaptation is done to achieve a particular goal. The goal could be to

satisfy requirements such as response time at the minimum cost; to maximize the chargeable

fees according to an SLA; or to satisfy certain constraints, such as maintaining the probability

of failure below a threshold. Therefore, the self-adaptive system must make the appropriate

adaptation decisions to support its goal.

We start with the assumption that the adaptation goal can be encoded as maximizing aggregate

utility4 over the execution of the system, where utility is a measure that can be taken periodically,

at each decision interval, and represents the contribution of the system in that interval to the

overall adaptation goal. A simple example is when utility is the amount in dollars that can be

charged according to an SLA for a given interval, and the goal is to maximize the sum of the

fees that can be charged over the execution of the system. However, there is no need for utility to

be expressed in concrete units such as dollars, and it can actually be any measure. In Chapter 6,

we present an extension that supports other notions of utility, for example, involving both utility

maximization and probabilistic constraint satisfaction.

Making an adaptation decision requires being able to compute the utility that the current and

other system configurations can provide in the current and future states of the environment. We

assume that utility can be computed as a function of the state of the system and its environment,

4Unless otherwise indicated (e.g., with the other notions of utility presented in Chapter 6), aggregate is the sum

of the utility obtained in each period.

24

and denote it as U(c, e), where c is a system configuration,5 and e is an environment state.6

Note that even if there are many properties that would be needed to define the complete system

state (e.g., state of internal variables, open ports, etc.), only those needed to compute the utility

function and to determine whether tactics are applicable must be part of the system configuration.

In RUBiS, for example, given the number of active servers and the dimmer setting for the system,

and the request arrival rate of the environment, we can estimate the response time, and, in turn,

the utility that that system configuration achieves in that environment state.

At a high level, the adaptation decision answers the question of what adaptation tactic(s)

should be started now, if any, to maximize the aggregate utility that the system will provide in

the rest of its execution, considering that the system will keep adapting as necessary in future

decision intervals. Poladian et al. showed that reacting to the current situation without looking

ahead can result in suboptimal solutions when there is an adaptation cost [118]. We argue a

similar case for situations where adaptations have latency, even if there is no adaptation cost.

When there is no adaptation cost, tactics do not directly affect utility. Rather, they change the

system configuration, which in turn results in a change in utility. If adaptation tactics had no

latency, the system could adopt any configuration anytime, and thus no look-ahead would be

necessary for optimal adaptation decisions. However, when tactics have latency, it takes some

time for the system to adapt to a new configuration. Therefore, the configuration of the system at

time t constrains the possible configurations at a later time t + τ if τ is smaller than the latency

of at least one of the adaptation tactics. For instance, if the current configuration has one server

at time t, and the latency to add a server is λ, with τ < λ, then all system configurations with

more than one active server are not feasible at time t+ τ . That is, the configuration of the system

at any given time constrains the possible configurations at a later time. Consequently, it is not

possible to find the best configuration, or the adaptation to get to it, without looking ahead to see

which configurations will be needed in the future.

Although the decision approach must look ahead, it is not practical to look too far into the

future because of computational complexity, and because the uncertainty of the environment

predictions increases as they get further into the future. Therefore, the adaptation decision uses

look-ahead with a finite horizon of H decision intervals, and the question it answers is what

adaptation tactics should be started now, if any, to maximize the aggregate utility the system will

provide over the horizon.7

Making an adaptation decision with these characteristics requires solving an optimization

problem to select the adaptation path that maximizes the aggregate utility over a finite look-ahead

horizon. This requires relying on predictions of the state of the environment over the decision

horizon, which in general have uncertainty. Since this is a problem of selecting adaptation ac-

tions in the context of the probabilistic behavior of the environment, Markov decision processes

(MDP) are a suitable approach. Both PLA-PMC and PLA-SDP use MDPs as the underlying

decision model. The next section provides a brief background on MDPs.

5The terms system configuration and system state are used interchangeably.
6We do not consider utility at a granularity finer than the decision interval; that is, U is the utility for a decision

interval.
7The selection of values for parameters H and τ is discussed in Chapter 9.

25

3.3 Markov Decision Process

A Markov decision process (MDP) is a model for sequential decision making under uncer-

tainty [121], and is also suitable for modeling systems with a mix of probabilistic and nonde-

terministic behavior [92]. An MDP is a tupleM = 〈S, sI , A,∆, r〉, where

• S is a finite set of states

• sI ∈ S is an initial state

• A is a finite set of actions

• ∆ : S × A → D(S) is a probabilistic transition function (typically partial, since not all

actions may be enabled in all states), with D(S) denoting the set of discrete probability

distributions over S, and

• r : S → R≥0 is a reward function mapping each state to a non-negative reward.8

In the MDP, the system starts in state sI , and its state evolves in discrete time steps. When

the system is in state s, a set of actions A(s) are enabled. Any action a ∈ A(s) can be taken, and

the next system state, s′ is determined by the probabilistic transition function, with s′ = ∆(s, a).
When it transitions to state s′, the system then accrues reward r(s′).

Since the MDP does not specify how the action selection is made, the system is underspeci-

fied, allowing nondeterministic behavior. A policy9 prescribes how the action is selected in each

state, thereby removing the nondeterminism. Policies can be memory-dependent, if the action

selection depends on the history (i.e., the sequence of states visited and actions taken so far),

or they can be memoryless. In addition, they can be randomized if the action is drawn from a

probability distribution over the action set, or deterministic. In this work, we use memoryless

deterministic policies. Therefore, a policy is a function σ : S → A that maps states to actions

directly.

3.4 Adaptation Tactics and Concurrency

The main approaches presented in this thesis are based on adaptation tactics. An adaptation tactic

is an action primitive that changes the system [28]. Tactics can change properties of elements in

the system, such as changing the dimmer setting in the load balancer in RUBiS, or changing the

structure of the system, such as adding a new server. Even though tactics may involve a sequence

of system-level operations (e.g., adding a new server involves not only adding the server, but also

connecting it to the system’s load balancer), tactics are considered atomic operations that leave

the system in a consistent state. Although tactics can be combined into higher level constructs

called adaptation strategies, which are discussed in Chapter 7, tactic-based adaptation gives the

most flexibility for deciding how to adapt without having to take into account how to keep the

system in a consistent state—something that would be required if adaptation decisions were done

in terms of lower level operations.

8The reward can depend additionally on the action, with r : S × A → R≥0, but the simpler definition suffices

here.
9In the literature for MDPs, a policy is also referred to as an adversary, or a strategy. We avoid the latter to

prevent confusion with the use of the term in the self-adaptive systems literature.

26

In this work, we assume that tactics have deterministic effect and latency.10 By effect, we

mean the effect of the tactic on the structure and settable properties of the elements of the sys-

tem, and not on emergent properties, such as response time. Furthermore, each tactic has an

applicability condition, a predicate over the state of the system that determines if the tactic can

be used. Therefore, the only reason a tactic would not produce its intended effect is if it failed to

carry out the change on the system.

When making adaptation decisions, we assume the latency of a tactic to be known and de-

terministic. However, that does not mean that in reality it has to be so. For example, we can use

the average latency as the latency of the tactic used to make adaptation decisions. How much

of an effect this approximation has on the outcome of the decision depends on the variance of

the actual latency in relation to the decision interval. For example, if the latency variance and

the decision interval are on the same order of magnitude, the effect of the approximation would

be noticeable. But if the variance is only a few seconds, and the decision is made every one

minute, for example, the approximation is unlikely to have an effect on the effectiveness of the

approach.11

One of the reasons PLA can achieve better adaptation effectiveness is that it leverages con-

current tactic execution. By doing so, it can complement a slow tactic with a fast one when

necessary, or make multiple changes at once without having to sequence them. The adaptation

decision could assume that all tactics can be executed concurrently, and let the execution man-

ager deal with the concurrency. However, in practice tactics may conflict with each other. For

example, since tactics are considered atomic operations, it may not be possible to remove a server

while it is being added. In such cases, the execution manager would not be able to carry out an

adaptation decision that assumed concurrent execution, and would likely have to sequence the

tactics. Instead, we assume that for each tactic it is possible to generate a list of conflicting tactics

statically, and use that list to constrain the result of adaptation decisions to those that are actually

executable. Even though determining which tactics are conflicting is not in the scope of this

thesis, there is an approach that can be used to do that. In their work on preemptable adaptation

strategies, Raheja et al. use an approximation of rely-guarantee reasoning to determine whether

strategies interfere with each other [123]. Using the same idea, a tactic could guarantee that it

only modifies some subset of the system, and rely on no other tactic modifying that same subset

of the system. Since a tactic already expresses which parts of the system it modifies, it would not

be difficult to compute the set of conflicting tactics for a given tactic.

3.5 Environment Model

The goal of the adaptation decision is to decide how to adapt to maximize the utility the sys-

tem will accrue over the look-ahead horizon. However, utility is a function of both the system

configuration and the environment state. Therefore, deciding with a look-ahead horizon requires

predicting the near future states of the environment. These predictions are not perfect though,

and consequently, they are subject to uncertainty. In Esfahani and Malek’s list of sources of

10This and other assumptions are discussed in Chapter 9.
11This is further discussed in Chapter 9.

27

uncertainty that affect self-adaptive systems, this corresponds to uncertainty of parameters over

time [40].

In this work, we assume that the actions of the system do not affect the environment.12 The

environment can be modeled as a stochastic process in which the random variable representing

the state of the environment has one realization at each time step, with a time step being equal to

the decision period τ . In particular, our approach uses discrete-time Markov chains (DTMCs) to

model the probabilistic behavior of the environment. A DTMC is a tuple 〈S, sI , P 〉, where

• S is a finite set of states

• sI ∈ S is an initial state, and

• P : S × S → [0, 1] is a transition probability matrix where
∑

s′∈S P (s, s
′) = 1, ∀s ∈ S.

Each element P (s, s′) in the transition probability matrix represents the probability that the next

state of the process will be s′, given that the current state is s. The main difference between

an MDP and a DTMC is that in the latter there is no nondeterminism, and no action selection

to be made; that is, its behavior is completely probabilistic. Nevertheless, a DTMC can be

mapped to an MDP with a single action that is enabled in every state, thus making the model

fully probabilistic without having any nondeterminism. This will be relevant later on when we

compose the environment DTMC with the system MDP.

Using a DTMC to model the environment, each state represents a realization of the environ-

ment, and the probabilistic transitions defined by P occur at discrete time steps, probabilistically

determining the environment state in the following decision period. As long as the environment

model is encoded in this way, there is no particular requirement for how the model is constructed,

or what particular structure the DTMC has. We provide an example here of how the model of

the predicted environment behavior over the decision horizon is built for the RUBiS case. A

different approach is used in the DART example presented in Section 8.1.2.

In RUBiS, the environment of the system consists of the load created by the users, which

is summed up by the request arrival rate. A model of the environment, then, has to encode

predictions of the request arrival rate over the decision horizon. Such predictions can be made

using using a time series predictor, such as the autoregressive (AR) predictor that is part of

the RPS toolkit [35]. The monitoring component measures the requests arrival rate at the load

balancer. At the beginning of each decision period, the knowledge model is updated with the

average request arrival rate for the previous period. This observation is supplied to the time

series predictor so that it can update its internal model. Using the predictor, it is possible to obtain

estimations for the average request rate for the next decision period, given the past observations.

Since the estimation has an error with a normal distribution, the time series predictor provides

the variance associated with the estimation.

To create a DTMC that captures both the prediction of the environment states and its uncer-

tainty, we construct a probability tree like the one partially shown in Figure 3.3, which can be

encoded as a DTMC. The root of the tree corresponds to the current state of the environment,

each node represents a possible realization of the environment, and its children represent real-

izations conditioned on the parent, with the edges’ label representing the probability of the child

realization given that the parent was realized. Creating a small number of branches at each node

12We discuss this assumption in Chapter 9.

28

e0

P95(ê1)

P50(ê1)

P5(ê1)

P95(ê2|P5(ê1)) P50(ê3|P95(ê2|P5(ê1)))
1

P50(ê2|P5(ê1)) P50(ê3|P50(ê2|P5(ê1)))
1

P5(ê2|P5(ê1)) P50(ê3|P5(ê2|P5(ê1)))
1

0.185

0.630

0.185
0.185

0.630

0.185

t = 2t = 1t = 0 t = 3

Figure 3.3: Environment probability tree.

requires discretizing the probability distribution of the estimation for the following period. Usu-

ally, three-point discrete-distribution approximations are used for constructing probability trees

for decision making. For example, we use the Extended Pearson-Tukey (EP-T) three-point ap-

proximation [80]. This approximation consists of three points that correspond to the 5th, 50th,

and 95th percentiles of the estimation distribution, with probabilities 0.185, 0.630, and 0.185,

respectively.

The construction of the probability tree starts with the root, which is the current state of the

environment, e0 in Figure 3.3. Using the predictor, we obtain the distribution for the estimation

for the following period, ê1. Note that the predictor has already seen the past realizations of the

environment, up to e0, so the prediction is implicitly conditioned on the past observations. Using

the estimation ê1, and the EP-T discrete approximation, three children of the root are created.

In Figure 3.3, the nodes Pk(ê1) represent the kth percentile of the distribution of the estimation

ê1. To continue the expansion of the tree, each child is visited and its children created in the

same way. However, the estimation for these children must be conditioned on the parent. This

is achieved by cloning the predictor (to avoid disturbing the state of the original predictor), and

supplying to it the state of the environment at the parent, as if that state would have actually been

the realization of the environment. In that way, when we obtain the prediction for the following

period, the prediction will be conditioned on the parent.

In principle, it would be possible to continue the expansion of the probability tree up to a

depth equal to the length of the look-ahead horizon. However, the further into the future we

get (i.e., the deeper in the tree), the higher the uncertainty of the predictions, and the larger the

resulting state space. In their use of probability trees, Poladian et al. found that they could limit

the branching depth without much impact on the quality of the solution [118]. We take a similar

approach, limiting the branching depth in the tree to two levels (as illustrated in Figure 3.3), and,

beyond that, continuing the extension of the branches without any further branching up to a depth

equal to the horizon.

29

3.6 Summary

In this chapter, we have introduced proactive latency-aware adaptation, and defined the PLA

adaptation decision problem, for which solution approaches will be presented in chapters 4 and 5.

The formulation of the problem, and consequently its solutions, are based on the following as-

sumptions, which are discussed in Chapter 9:

1. The adaptation goal can be expressed with one of the utility forms presented in Chapter 6.

2. Utility can be computed as a function of the state of the system and its environment. This,

in turn, requires being able to estimate the system measures of performance, such as re-

sponse time, that are used to compute utility.

3. Adaptation tactics have deterministic effect on the structure and properties of the system.

4. The actions of the system through adaptation tactics do not affect the evolution of the

environment.

In addition, we have shown how the PLA adaptation decision fits in the self-adaptation loop, and

provided background on concepts that are common among the approaches, including Markov

decision processes, our model of adaptation tactics, and environment modeling.

30

Chapter 4

Probabilistic Model Checking Approach

In this chapter, we present PLA-PMC, one of the approaches for proactive latency-aware adap-

tation.1 PLA-PMC is based on probabilistic model checking, a formal verification technique

used to analyze systems with stochastic behavior [95]. The approach consists of (i) creating off-

line formal specifications of the adaptation tactics and the system; (ii) generating periodically,

at run time, a model to represent the stochastic behavior of the environment; and (iii) using a

probabilistic model checker at run time to synthesize the optimal policy that maximizes the ex-

pectation of a utility function over the decision horizon by analyzing the MDP that results from

the composition of the models of the tactics, the system and the environment.

The key idea is to leave the adaptation decisions in the model underspecified through nonde-

terminism, and have the model checker resolve the nondeterministic choices so that accumulated

utility is maximized. Thanks to the use of formal specification and verification, it is straightfor-

ward for the approach to deal with the infeasibility of adaptations due to the latency of tactics,

or conflicts between them. Furthermore, the same mechanism allows the adaptation decision

to select multiple adaptation tactics to execute in parallel when they do not interfere with each

other. In addition, the use of probabilistic model checking naturally handles the uncertainty of

the environment.

The following section provides a brief background on probabilistic model checking, and the

rest of the chapter describes the formal models used, and the adaptation decision using proba-

bilistic model checking.

4.1 Probabilistic Model Checking

Probabilistic model checking is a set of techniques that enable the modeling and analysis of

systems that exhibit stochastic behavior, allowing quantitative reasoning about probability and

reward-based properties (e.g., resource usage, time, etc.). These techniques use state-transition

systems augmented with probabilities to describe the system behavior.

Probabilistic model checking approaches employing formalisms that support the specification

of nondeterminism, such as Markov decision processes, also enable the synthesis of policies

guaranteed to achieve optimal expected probabilities and rewards [93]. Reasoning about policies

1Much of the material in this chapter is adapted from our original publication about the approach [108].

31

is a fundamental aspect of model checking MDPs, which enables checking for the existence of a

policy that is able to optimize an objective expressed as a quantitative property in an extension of

probabilistic computation-tree logic (PCTL) [13]. In MDPs, PCTL allows expressing properties

such as P>p[F φ], which states that under all resolutions of the nondeterminism, the probability

of eventually satisfying the state formula φ is greater than p. Extensions to PCTL allow reasoning

about reward-based properties [46]. For instance, the property Rr
≥x[F φ] is true if the expected

reward r accumulated until formula φ is satisfied is at least x. Further extensions to the reward

operator enable the quantification of the maximum accrued reward r along paths that lead to

states satisfying the state formula φ, which are expressed as Rr
max=?[F φ] [46]. A typical example

of a property employing the reward maximization operator is Rtime

max=?[F empty battery], meaning

“maximum amount of time that a cell phone can operate before its battery is fully discharged,”

where time is a reward function.

In our approach, we use the PRISM probabilistic model checker [96]. In addition to model

checking MDPs with the characteristics previously described, PRISM provides a modeling lan-

guage to express MDPs, avoiding the need to input them in terms of the tuple described in

Section 3.3. A model in PRISM consists of one or more modules (a.k.a. processes). Modules

have variables that represent its state. The behavior of a module is specified with commands [94]

like:

[action] guard –> p1 : u1+ . . . + pn : un;

where guard is a predicate over the model variables, including variables in other modules. If the

guard is true, the process can make one of the transitions represented by each update ui, with the

+ operator separating the different alternatives. An update assigns new values to the module’s

variables (using the primed name of the variable to refer to the post-state). Even though only

variables of the module can be updated, the new values assigned to them can be functions of

variables in any module. Each update has an assigned probability pi ∈ [0, 1]. Multiple commands

with overlapping guards introduce local nondeterminism.

The complete model is the parallel composition of its modules. So, for an MDP, when mul-

tiple commands are simultaneously enabled, even across multiple modules, the choice of which

one is executed is nondeterministic. Composed modules synchronize (i.e., make transitions si-

multaneously) on shared actions, which are listed inside the square brackets at the beginning of

the command.2 A transition that specifies an action can only be taken if all the modules specify-

ing that action can make a transition labeled with that action too.3

Our approach to decision-making leverages the capability of probabilistic model checking

to synthesize policies that maximize expected reward, since it allows us to (i) deal with the

uncertain behavior of the environment, and (ii) find optimal policies based on a reward function

that is easily mapped to maximizing utility.4 In the following section, we show how similar

2This list can be empty if a command does not synchronize on any action.
3By default, all modules are composed in parallel, synchronizing on all of their common actions. Although not

used in this thesis, PRISM allows other forms of composition, such as renaming or hiding actions. For more details,

see the PRISM manual (http://www.prismmodelchecker.org/manual/).
4In general, the terms reward and utility are interchangeable, although with the extensions presented in Chapter 6,

utility is a broader notion that can impose constraints on how reward is gained.

32

http://www.prismmodelchecker.org/manual/

properties that refer to utility-based rewards are employed for decision-making in the context of

proactive latency-aware adaptation.

4.2 Adaptation Decision Overview

The overall approach to solve the PLA adaptation decision problem introduced in Section 3.2

using probabilistic model checking is to analyze the MDP model that results from the parallel

composition of processes representing the behavior of the environment and the system, starting at

the current time until the end of the decision horizon. These models are abstractions that contain

only the properties of the system and the environment that are necessary to compute the value of

the utility function, and to keep track of how the system changes when tactics are applied. As

noted earlier, the key idea is to leave the decision to execute adaptation tactics underspecified in

the model through nondeterministic behavior. That is, how the decision of whether to start the

execution of tactics is made is not encoded in the model, but is included as a nondeterministic

choice. Then, PRISM is used to synthesize a policy, resolving the nondeterminism in the model

so that the expected accumulated utility over the horizon is maximized. This policy indicates

which tactics must be used and when.

The following sections elaborate on the overall structure of the model used to make adaptation

decisions; describe the models of the environment, system, and tactics; and provide more details

about how the model checker is used with these models to solve the adaptation decision problem.

4.3 Formal Model

The model used to make adaptation decisions describes the behavior of the adaptive system in

the context of the predicted behavior of the environment over the look-ahead horizon. As de-

picted in Figure 4.1, it is composed of modules (or equivalently, concurrent processes) for the

environment, the adaptation tactics, and the system. The orchestration of these processes (i.e.,

when each one is allowed to make certain transitions) is critical to get the right behavior. How-

ever, it is as important to leave enough nondeterminism in the scheduling of the processes to

give the model checker the freedom to decide when to use the adaptation tactics. The orches-

tration is accomplished via a module, clock, that controls the passing of time, and through the

synchronization of modules on shared actions (the connectors in the figure).

The overall behavior of the model is as follows. The execution of the model is done at the

granularity of evaluation periods, so one unit of model time corresponds to τ in real-world time.

Time 0 in the model represents the beginning of the look-ahead horizon (i.e., the current time in

the controlled system). At the beginning of each evaluation period in the execution of the model,

the system has a chance to proactively adapt. Once the system has started the execution of a

tactic (or passed up the opportunity to do so), the environment updates its state for the current

period by taking a probabilistic transition according to its model. After that, the utility that the

system provides for the period is computed, and accumulated. Then, time is advanced, and the

process is repeated until the end of the horizon is reached.

33

environment

tactic1

...

tacticN

system

clock
tick tactic1 complete

tacticN complete

module
shared action

Figure 4.1: Module composition in adaptation decision model.

The specification of the clock module, called clk,5 is shown in Listing 4.1. The state vari-

ables are defined and initialized in lines 2-3, with the constant HORIZON being the number of

periods in the decision horizon. The behavior of the module is specified with the commands in

lines 5-6. In each period, the module takes two transitions. First, the command labeled with the

action tick advances the time. However, since the environment and the tactics share the same

action, and a module can only execute a labeled command when all modules sharing the same

label execute their corresponding command synchronously, clk will only be able to advance the

time when the tactics and environment modules are ready to do so. After that happens, clk

takes another transition labeled tack, with which the utility accumulation synchronizes.6 This

ensures that neither the system nor the environment change when the utility calculation is done.

The reward structure util (lines 9-11) defines the reward function that will be maximized by the

model checker, which in this case is the accumulation of the utility for the periods in the decision

horizon.7 Although not shown in the listing, periodUtility is a formula that encodes the system

utility function for a single period. The utility function may need to estimate emergent properties

(e.g., response time in the case of RUBiS), which depend on the state of the system and the en-

vironment. For example, the utility function for RUBiS uses queuing theory [84] to estimate the

response time (see Appendix A). Since the utility is computed as a function of the environment

and system state, their evolution over the decision horizon has to be modeled. The following

sections describe their models.

5clock is a reserved word in PRISM.
6This means that the utility for the period is computed right after time is advanced, which is different than

the conceptual schedule described before. This change allows a reduction of the state space without affecting the

resulting decision.
7The utility function is translated with a large positive shift constant because PRISM does not support the mod-

eling of negative rewards. This does not affect the result of the optimization.

34

1 module clk
2 time : [0..HORIZON] init 0;
3 readyToTick : bool init true;
4

5 [tick] readyToTick & time < HORIZON −> 1 : (time’ = time + 1) & (readyToTick’=false);
6 [tack] !readyToTick −> 1 : (readyToTick’=true);
7 endmodule
8

9 rewards ”util”
10 [tack] true : UTILITY SHIFT + periodUtility;
11 endrewards

Listing 4.1: Clock module and reward structure.

4.4 Environment Model

Recall from Section 3.5, that we want to encode the model of the predicted, but uncertain be-

havior of the environment as a DTMC. More specifically, for PLA-PMC we want to model the

evolution of the environment over the decision horizon as a PRISM module, so that it can be com-

posed with the model of the system and tactics as shown in Figure 4.1. Including a DTMC in

the PRISM model for an MDP is straightforward since, as noted before, a DTMC can be thought

of as an MDP having no nondeterminism (i.e., no action selection), with only fully probabilistic

behavior.

Each time an adaptation decision has to be made, the DTMC for the environment is gener-

ated, incorporating the latest environment predictions (see Section 3.5). Generating the PRISM

encoding that represents the DTMC for the environment model is straightforward. Listing 4.2

shows a fragment of the specification in PRISM of the probability tree shown in Figure 3.3. Each

node of the environment DTMC is assigned a unique index in the range [0..N − 1], where N is

the number of nodes. A variable s in the env module with the same range represents the state

of the environment as an index to a node in the DTMC. The transitions out of each node can be

encoded directly as commands in PRISM. For example, the command in line 4 represents all the

transitions out of the root node (s=0). The action tick is used to synchronize the transitions of

the environment with the transitions of the clock and the system. The mapping from state s to

the value of the state is encoded in the formula starting in line 9, using the conditional operator.8

In this formula, constants such as P5 E 1 represent the value of the nodes of the probability tree,

which, for the case of the RUBiS environment, is the request rate. In cases in which the environ-

ment is multi-dimensional, the values of the different dimensions corresponding to the nodes in

the DTMC can be encoded using multiple formulas akin to the one starting in line 9.

4.5 System and Tactic Models

In addition to the environment state, the system configuration is also needed to compute the

value of the utility function the adaptation decision is maximizing. This section presents how

the evolution of the system state, as it is changed by adaptation tactics, is modeled. Unlike the

8An expression of the form (condition ? a : b) is a if condition is true, and b otherwise.

35

1 module env
2 s : [0..N−1] init 0;
3

4 [tick] s = 0 −> 0.185 : (s’ = 1) + 0.63 : (s’ = 2) + 0.185 : (s’ = 3);
5 [tick] s = 1 −> 0.185 : (s’ = 4) + 0.63 : (s’ = 5) + 0.185 : (s’ = 6);
6 ...
7 endmodule
8

9 formula stateValue = (s = 0 ? E 0 : 0) +
10 (s = 1 ? P5 E 1 : 0) +
11 (s = 2 ? P50 E 1 : 0) +
12 ...

Listing 4.2: Environment module in PRISM.

environment model, the model of the system and its tactics does not change at run time except

for a few initialization constants; and consequently, it can be constructed off-line. For better

modularity, the system and each adaptation tactic are modeled as separate PRISM modules. Each

tactic module synchronizes with the system module on an action that represents the completion

of the adaptation tactic. Since the tactics are modeled as concurrent processes that synchronize

only when they all have had a chance to execute, their ordering is nondeterministic. This, and the

nondeterminism in the decision to start each tactic (described in Section 4.5.2), give sufficient

flexibility to the model checker so that it can decide how to best schedule the adaptation tactics

to achieve the adaptation goal.

4.5.1 System Model

The system model only has to keep track of the configuration information that is needed as input

to the utility function and to evaluate the applicability conditions of the different tactics. In

the case of RUBiS, this information includes the number of active servers, and the value of the

dimmer. Emergent properties, such as the response time in RUBiS, are not part of the system

state, since they are estimated as mentioned in Section 4.3. Note that the system model does not

need to specify the behavior of the system. For example, it does not need to model the processing

of requests in RUBiS. The only behavior that must be specified in the system model is how its

state changes as a result of using of adaptation tactics.9

The specification of the system module for RUBiS is shown in Listing 4.3. Lines 2-3 define

the two variables that capture the system configuration. They are initialized with constants ini ∗

that represent the state of the system at the time that the adaptation decision is invoked; that is,

at the beginning of the decision horizon. Although the actual dimmer property of the system can

range in the continuous interval [0, 1], it must be discretized to get a finite and manageable state

space. In this example, the dimmer setting is discretized into a small number of integer levels

(DIMMER LEVELS in line 3), which can be converted to the corresponding continuous value

when needed. Lines 5-8 have commands that capture how the system state is updated when each

9It is also possible to include system behavior that is not triggered by adaptation tactics. However, this would only

make sense if such behavior affected adaptation decisions (e.g., changing the applicability conditions of adaptation

tactics).

36

of the adaptation tactics completes. Since each command is synchronized with the completion

of the corresponding tactic, the associated state updates can take place only when the tactic

completes. For example, the command in line 5 is labeled with the action AddServer complete,

which is also shared by the module for the tactic to add a server, as will be shown later. In that

way, the two have to synchronize on that action. When the tactic completes, the system module

updates its state by increasing the number of servers. The sys module includes similar commands

with labeled actions for other tactics. The suffix start is used for the actions of tactics that are

instantaneous, but this is just a convention that we have adopted.

1 module sys
2 servers : [1.. MAX SERVERS] init ini servers;
3 dimmer : [1.. DIMMER LEVELS] init ini dimmer;
4

5 [AddServer complete] servers < MAX SERVERS −> 1 : (servers’ = servers + 1);
6 [RemoveServer start] servers > 1 −> 1 : (servers’ = servers − 1);
7 [IncDimmer start] dimmer < DIMMER LEVELS −> 1 : (dimmer’ = dimmer + 1);
8 [DecDimmer start] dimmer > 1 −> 1 : (dimmer’ = dimmer − 1);
9 endmodule

Listing 4.3: System module in PRISM.

Even though we use RUBiS as an example to make the presentation concrete, the same pattern

is used for different systems; that is, the system module consists of the representation of the

system state, and the commands that model how it is affected by adaptation tactics (the models

of the systems used for the validation are included in Appendix A and Appendix B).

4.5.2 Tactic Models

The responsibilities of each tactic module include determining if the tactic’s applicability condi-

tions are met; nondeterministically starting the tactic or passing the opportunity to do so; keeping

track of the progress of the tactic (if it has latency); and synchronizing with the system module

when the tactic completes. Again, we use tactics from the RUBiS example to present the ap-

proach, but the same pattern can be used for different tactics.

Tactics with latency. Listing 4.4 shows the model for the tactic to add a server. The state of

the tactic is defined in lines 5-6. The variable AddServer state is used to keep track of whether

the tactic is executing or not (it is greater than 0 when the tactic is executing), and if it is, how

much progress it has made. Tactic progress is tracked at the granularity of decision periods. For

that reason, the upper bound of AddServer state is the constant AddServer LATENCY PERIODS

defined in line 2 by rounding up the latency of the tactic to the nearest decision interval boundary.

Thus, when greater than zero, AddServer LATENCY PERIODS indicates how many periods the

tactic has executed for. As was the case with the system state, the state of AddServer state is

initialized with a constant that represents its state at the time the adaptation decision is invoked.

This is needed because the tactic may already be in progress when the adaptation decision is

carried out, and if that is the case, the fact that the tactic is running must be taken into account

37

to avoid making decisions inconsistent with the state of the system.10 This is the reason why the

knowledge model needs to keep track of tactic execution.

1 formula AddServer used = AddServer state != 0;
2 const int AddServer LATENCY PERIODS = ceil(AddServer LATENCY / PERIOD);
3

4 module AddServer
5 AddServer state : [0.. AddServer LATENCY PERIODS] init ini AddServer state;
6 AddServer go : bool init true;
7

8 // tactic applicable, start it
9 [AddServer start] sys go & AddServer go // can go

10 & !AddServer used // tactic has not been started
11 & AddServer applicable
12 −> (AddServer state’ = 1) & (AddServer go’ = false);
13

14 // tactic applicable, but don’t use it
15 [] sys go & AddServer go // can go
16 & !AddServer used // tactic has not been started
17 & AddServer applicable
18 −> (AddServer go’ = false);
19

20 // pass if the tactic is not applicable
21 [] sys go & AddServer go
22 & !AddServer used // tactic has not been started
23 & !AddServer applicable
24 −> 1 : (AddServer go’ = false);
25

26 // progress of the tactic
27 [] sys go & AddServer go
28 & !AddServer used & AddServer state < AddServer LATENCY PERIODS
29 −> 1 : (AddServer state’ = AddServer state + 1) & (AddServer go’ = false);
30

31 // completion of the tactic
32 [AddServer complete] sys go & AddServer go
33 & AddServer state = AddServer LATENCY PERIODS // completed
34 −> 1 : (AddServer state’ = 0) & (AddServer go’ = true); // so that it can start again at this time if needed
35

36 [tick] !AddServer go −> 1 : (AddServer go’ = true);
37 endmodule

Listing 4.4: PRISM model of a tactic with latency.

The variable AddServer go is for internal bookkeeping, and has to do with the orchestration

of the modules. At the beginning of each period this variable is true, as it is the sys go predicate,

which is simply an alias to readyToTick from the clock module. This means that the tactic has

an opportunity to execute one of its enabled behaviors. After doing that, AddServer go is set to

false to force the tactic to wait until the next period by leaving only the transition labeled with

tick enabled (line 36).

The guards for the different commands in the tactic module also check whether the tactic is

already being used (predicate AddServer used defined in line 1), and if the tactic is applicable.

For the latter, the predicate AddServer applicable, which will be explained later, is used.

10When a tactic is in progress, it cannot be started again. If that were needed, for example to support starting the

addition of a server while another one is being added, multiple copies of the tactic would have to be included in the

model.

38

When the tactic is enabled and applicable, the two commands starting in lines 9 and 15 are

enabled with identical guards. These commands correspond to starting the execution of the tactic,

and to passing up the chance to start it, respectively. Since these commands have no probability

specified on their update portion, the model represents a nondeterministic choice between them.

This is the key idea in this approach; that is, leaving the decision to start a tactic underspecified

through nondeterminism, and then have the model checker resolve the nondeterminism in a way

that maximizes the expected utility over the decision horizon.

When the tactic is enabled, but it is not applicable, it passes (lines 21-24). The commands

starting in lines 27 and 32 model the progress of the tactic and its completion, respectively. The

latter must synchronize with the system module on the action AddServer complete, causing the

system to reflect the change caused by the completion of the tactic in its state. Note that after

the completion of the tactic, AddServer go is left true11 to make it possible for the tactic to start

again in the same period.

Tactics with no latency. For tactics with negligible latency, the model can be simplified since

there is no need to track their progress. Listing 4.5 shows the model of the tactic to increase the

dimmer level in RUBiS. In this case, the state of the tactic is reduced to the two boolean variables

in lines 2-3. The variable IncDimmer go is true if this module has not yet used its chance to make

a decision in the current period. IncDimmer used is true if the tactic was used in this period.

If the tactic is enabled and applicable, the two commands starting in lines 5 and 10 are

enabled, and since they do not specify a probability in their update part, they are chosen nonde-

terministically. Again, this underspecification is later resolved by the model checker in a way

that maximizes the accumulated utility. The command starting in line 15 passes the turn for this

tactic to do something when the tactic is not applicable. After either of these three commands

has executed, the only enabled command is the one labeled with tick in line 19, making the tactic

process synchronize with the rest of the tactics and the clock before moving on to the next period.

Applicability conditions. The previous tactic models relied on predicates with the applicable

suffix to determine when an adaptation tactic can be applied. These predicates include two

classes of conditions. First, they ensure that the system is in a state in which the tactic can be

applied, regardless of what other tactics are being executed. For example, this ensures that the

tactic to add a server is not used when the system is already using the maximum number of

servers. The second class of condition ensures that the tactic does not conflict with other tactics

already being used. Listing 4.6 shows the definition of the applicability predicates for the two

tactics presented previously. The first lines define the concurrency rules, with the ∗ compatible

predicates indicating whether the tactic can be run given the other possibly interfering tactics that

could be in use. For example, the tactic AddServer can be used unless the tactic RemoveServer

is being used (line 2). This allows the adaptation decision to select non-conflicting tactics to

execute concurrently (e.g., decreasing the dimmer value while a server is being added), while

11This part of the update is actually not needed in the PRISM model since AddServer go is already true as

required by the command’s guard. However, we include it explicitly to show that it is intentional, since it breaks the

pattern of the other commands.

39

1 module IncDimmer
2 IncDimmer go : bool init true;
3 IncDimmer used : bool init false;
4

5 [IncDimmer start] sys go & IncDimmer go
6 & IncDimmer applicable
7 −> (IncDimmer go’ = false) & (IncDimmer used’ = true);
8

9 // tactic applicable but not used
10 [] sys go & IncDimmer go
11 & IncDimmer applicable
12 −> (IncDimmer go’ = false);
13

14 // pass if the tactic is not applicable
15 [] sys go & IncDimmer go
16 & !IncDimmer applicable
17 −> 1 : (IncDimmer go’ = false);
18

19 [tick] !IncDimmer go −> 1 : (IncDimmer go’ = true) & (IncDimmer used’ = false);
20 endmodule

Listing 4.5: PRISM model of a tactic with no latency.

avoiding the concurrent execution of conflicting tactics (e.g., adding a server while one is being

removed).

1 // tactic concurrency rules
2 formula AddServer compatible = !RemoveServer used;
3 formula IncDimmer compatible = !DecDimmer used;
4

5 // applicability conditions
6 formula AddServer applicable = servers < MAX SERVERS & AddServer compatible;
7 formula IncDimmer applicable = dimmer < DIMMER LEVELS & IncDimmer compatible;

Listing 4.6: Tactic applicability predicates in PRISM.

4.6 Adaptation Decision

The adaptation decision can be made after the environment model has been constructed as de-

scribed in Section 4.4. The input to the probabilistic model checker is the composition of the

modules previously described. We also have to specify the property of the model that must hold

under the policy we want the model checker to generate. In this case, the desired property is to

maximize the accumulated utility over the look-ahead horizon. In PCTL extended with rewards,

this property is expressed as

Rutil

max=?[F end]

where util is the reward structure specified in the model (Listing 4.1, lines 9-11), and end is a

predicate that indicates that the end of the look-ahead horizon has been reached by the clock

module.

40

The policy synthesized by PRISM resolves the nondeterminism in the model, replacing non-

deterministic choices with choices based on the state of the system and the environment. Because

the behavior of the environment remains stochastic, it is not possible to extract from the policy

what adaptation tactics should be used at all time steps in the horizon, since that decision de-

pends on the future realizations of the environment. That notwithstanding, the choices made by

the policy at time 0 are deterministic because they are made before the environment takes any

probabilistic transition. Because these choices are exactly the ones that should be enacted at the

current time in the controlled system (recall that time 0 in the model corresponds to the current

time), it is sufficient to extract these from the policy and ignore future choices. The set of tactics

extracted from the synthesized policy are handed off to the execution manager (see Figure 3.2),

thus completing the adaptation decision phase.

4.7 Summary

In this chapter, we have presented PLA-PMC, an approach for proactive latency-aware adapta-

tion under uncertainty that uses probabilistic model checking to make adaptation decisions. The

approach uses a finite look-ahead horizon to find the adaptation that maximizes the expected util-

ity accumulated over the decision horizon in the context of the uncertainty of the environment.

The advantages of using probabilistic model checking are that (i) the adaptation decision is op-

timal over the horizon because the model checker selects the policy through a combination of

mathematical models and exhaustive search; and (ii) it takes into account the stochastic behavior

of the environment. Furthermore, the modular specification of tactics as separate processes com-

bined with the use of tactic compatibility predicates allows the approach to deal naturally with

the (in)feasibility of adaptations due to the latency of tactics, and the conflicts (or lack thereof)

between them.

41

42

Chapter 5

Stochastic Dynamic Programming

Approach

In Chapter 4, we presented an approach that uses probabilistic model checking to solve the proac-

tive latency-aware adaptation decision problem. The probabilistic model checker takes as input

a formal specification of the adaptive system and its stochastic environment, which is internally

translated into an MDP, and solved. The solution to the MDP is the set of tactics that have to be

started in order to achieve the adaptation goal (e.g., utility maximization). Using MDPs in this

way, it is possible to reason about latency and uncertainty. However, the probabilistic transitions

of the MDP depend on the predicted behavior of the environment, which can only be estimated

at run time, and with a short horizon. Consequently, the overhead of constructing the MDP must

be incurred at run time, every time an adaptation decision has to be made, so that the latest

predictions of the environment behavior can be incorporated.

In this chapter we present PLA-SDP, an approach that practically eliminates the run-time

overhead of constructing the MDP by doing most of that work off-line.1 Using formal models,

the approach exhaustively considers the many possible system states and combinations of tac-

tics, including their concurrent execution when possible. At run time, the adaptation decision is

made by solving the MDP through stochastic dynamic programming, weaving in the stochastic

environment model as the solution is computed. Our experimental results (detailed in Chapter 8)

show that this approach reduces the adaptation decision time by an order of magnitude compared

to the PLA-PMC, while producing exactly the same results.

Figure 5.1 shows an overview of the elements of PLA-SDP and how they are used for mak-

ing adaptation decisions. The strategy to reduce the time it takes to make an adaptation decision

at run time is to avoid the run-time overhead of constructing the MDP. Since the model of the

environment needed to build the complete MDP is not known until run time, constructing the

complete MDP off-line is not possible. However, we can separate the aspects of the MDP that

are known before run time—namely the system model and how adaptation tactics affect the

system state—from the environment model. In that way, the system MDP can be constructed

off-line. The system MDP is encoded as reachability predicates that specify whether a system

configuration can be reached from another system configuration with the use of one or more

1This chapter is based on our original publication on the approach [109].

43

system

model

Alloy

analyzer

models of

adaptation

tactics

system

MDP

custom

SDP solver

environment

DTMC

utility

function

adaptation

decision

run time (for each adaptation decision)offline

Figure 5.1: Elements of PLA-SDP.

adaptation tactics. These predicates are formally defined in Section 5.1. In order to make run-

time adaptation decisions, it is necessary to compute the list of system configuration pairs that

satisfy these predicates for that particular system with its adaptation tactics. This explicit rep-

resentation of the predicates is computed from specifications of the system and its adaptation

tactics using the Alloy analyzer [76], a tool that analyzes these specifications exhaustively to find

all the possible configuration pairs that satisfy these predicates. This computation, described in

Section 5.2, is done off-line and results in the system MDP. When an adaptation decision has to

be made at run time, a stochastic model of the predicted evolution of the environment over the

decision horizon is generated and encoded as a DTMC, as described in Section 3.5. To make the

decision, an algorithm based on the principles of stochastic dynamic programming computes the

solution to the adaptation decision problem, weaving the environment DTMC into the system

MDP as the solution is computed.

The rest of this chapter is organized as follows. In Section 5.1, we present the mathemati-

cal formulation of the adaptation decision. Section 5.2 explains how the reachability predicates

that define the system MDP are computed off-line using formal specification and analysis. Sec-

tion 5.3 presents the algorithm that implements the mathematical optimization problem defined

in Section 5.1, which is used to make adaptation decisions at run time.

5.1 Adaptation Decision

As outlined in Section 3.2, the adaptation decision is formulated as a discrete-time sequential

decision problem with finite horizon, and its solution determines what adaptation tactics, if any,

should be started at the current time to maximize the aggregate utility the system will provide

over the decision horizon. A new adaptation decision is made at regular intervals of length τ , and

each decision itself is the solution of a discrete-time finite horizon decision problem, in which

time is discretized into intervals of length τ , with a horizon of H intervals.

44

In discrete-time MDPs there is no built-in consideration of the time actions and state transi-

tions take; therefore, we have to model the evolution of the system state in a way that considers

the latency of adaptation tactics. Furthermore, since tactics with different latency can be ex-

ecuted concurrently and not even start at the same time, it is not possible to combine multiple

tactics into a single MDP action, since each of these tactics could complete, and thus cause a state

transition in the MDP, at different times.2 In order to handle this, we avoid mapping adaptation

tactics directly to MDP actions, and focus instead on state transitions, which, although triggered

by adaptation tactics, can be due to one or more of them. Time is considered at the granularity

of the decision period τ , and the latency of tactics is approximated to multiples of τ . However,

the model must also deal with state changes that take a very short amount of time compared to

τ (e.g., a fast tactic), which cannot be appropriately modeled with a transition in the MDP that

takes an interval of length τ to complete.

In order to account for both fast tactics and tactics whose latency is not negligible, the evo-

lution of the self-adaptive system in this decision problem is modeled considering two kinds of

configuration changes or transitions due to adaptation: immediate, and delayed. Immediate tran-

sitions are the result of either the execution of tactics with very low latency (e.g., changing the

dimmer value), or the start of a tactic with latency (e.g., adding a server). In the latter case, the

transition is immediate because the target state is a configuration in which a new server is being

added, but the addition has not been completed yet. Delayed configuration changes are due to

adaptation as well, but also require the passing of time for the transition to happen. This is the

case, for example, with the addition of a new server, transitioning from a state in which the server

is being added to a state in which the addition has completed.

Any solution to the adaptation decision problem will follow the same pattern of immediate

and delayed transitions as shown in Figure 5.2 for H = 3. The interval t = 1 corresponds to

the interval of length τ starting at the current time, interval t = 2 starts τ later, and so on. To

simplify the presentation, we start with two assumptions, which will be relaxed later: (i) the

evolution of the environment over the decision horizon is known deterministically; and (ii) each

tactic is either instantaneous or its latency is approximately τ . The state of the environment in

interval t is et.
3 State c0 represents the configuration of the system when the adaptation decision

is being made. At that point, an immediate transition takes the system from c0 to c1 right before

the first interval starts. The negligible time that this transition takes is denoted as ǫ, and it is

shown disproportionately large in the figure so that it can be drawn. The passage of time causes

the configuration to change from c1 to c′1. For example, if c1 is a configuration in which the

addition of a server has been started, c′1 is one with the server addition completed. After that,

another immediate transition resulting in c2 takes place, then the second interval starts, and so

on. For the purpose of considering the utility accumulated over the decision horizon, the inter-

2Although there are MDP variants that consider time, such as continuous-time MDP [59], and timed MDP [78],

those models associate timing properties with actions, which can be taken one at a time. Therefore, they cannot be

used directly to model the timing aspects of concurrent adaptation tactics as is needed in our decision problem.
3In general, the state of the environment can change during a decision interval. However, for the abstraction in

this decision problem, we do not consider state changes in the environment and the system within a decision interval.

Therefore, a metric representative of the state of the environment throughout the interval is used (e.g., the average

request arrival rate).

45

mediate configuration that precedes each immediate transition is ignored, and the utility accrued

in interval t is U(ct, et).

ϵ
τ

ϵ
τ

ϵ
c0 c1

,
c1 c2 c2

,
cH

t = 1 t = 2 t = H

immediate transition

delayed transition

τ

U (c1, e1) U (c2, e2) U (cH , eH)

e1 e2 eHe0

environment transition

system state environment state

Figure 5.2: Pattern of adaptation transitions in adaptation decision solution.

In general decision problems, the solution is found by considering all the actions that are

applicable in each state, and the result is a policy that maps states to actions. However, in our

setting there are two reasons why finding and expressing the solution directly in terms of actions

is not practical. First, our approach supports concurrent execution of tactics, which means that

more than one tactic (or action) can be started simultaneously, resulting in a single transition to

a configuration with the combined effect of the tactics. Second, there can be tactics with latency

longer than the decision interval, which means that once the tactic has started, it is possible to

have transitions that are exclusively due to the passage of time (e.g., transitioning from a state in

which 2τ remain to complete the tactic, to one in which τ remains).4

Instead of dealing directly with actions, we use predicates over pairs of states that indicate

whether configuration c′ can be reached from configuration c. These reachability predicates are:

• RI(c, c′), which is true if configuration c′ can be reached with an immediate transition from

c with the use of none, one or more tactics; and

• RD(c, c′), which is true if configuration c′ can be reached with a delayed transition from c
in one time interval.

4Even though in the models used by PLA-PMC the decision is made at the level of adaptation tactics, the

complexity of the decision problem is hidden by PRISM. The MDP that PRISM builds, and then solves, ends up

having multiple states to represent the different combinations of tactics that could be started simultaneously, and

the different ways in which they could be phased in time. Furthermore, the generated MDP has a varying number

of transitions that happen without advancing the clock, to model the parallel composition of the tactic modules.

Here, we avoid modeling the problem in terms of adaptation actions so that transitions in the resulting MDP happen

following a predefined pattern in time.

46

A third helper predicate, used for a more compact notation, is true if c′ can be reached from c in

one time interval through a delayed transition followed by an immediate transition:

RT (c, c′) ≡ ∃c′′ : RD(c, c′′) ∧RI(c′′, c′)

Defining these predicates is not trivial due to the possible interactions between different tactics,

which requires exploring all the possible combinations of tactics, including all the different ways

in which they can be phased in time, given that some of them have latency. In our approach,

we use formal models and an analysis tool to compute these predicates off-line (as explained in

Section 5.2), reducing the burden on the run-time decision algorithm.

These predicates define the transition matrix for the system portion of the adaptation MDP.

Therefore, a solution like the one shown in Figure 5.2 is feasible only if the following holds

RI(c0, c1) ∧R
T (ct, ct+1), ∀t = 1, . . . , H − 1

To find the solution, let us refer to the set of all system configurations as C. This set contains

all the configurations that are unique with respect to the properties relevant to computing the

utility function, but not emergent or derived properties. In RUBiS, for example, these properties

include the number of active servers, and the dimmer value (but not response time, for example,

because it is an emergent property). Later on, this set will be extended to capture the state of

running tactics in the system configuration. Let us also define sets of configurations that can be

reached from a given configuration using different kinds of transitions:

CT (c) =
{

c′ ∈ C : RT (c, c′)
}

CI(c) =
{

c′ ∈ C : RI(c, c′)
}

With the assumption of a deterministic environment (i.e., the state of the environment is a func-

tion of time), the solution C∗ to the adaptation decision problem can be found using dynamic

programming [98]. Dynamic programming is an approach to solve complex decision problems

that can be divided into smaller problems such that the solution of a subproblem is a partial

solution to the complete problem. In the adaptation decision problem, for example, deciding

which adaptation tactic to execute at the beginning of the decision horizon so that the utility

accumulated over the whole horizon is maximized requires knowing the maximum utility that

can be obtained in the remainder of the horizon once the first action has been taken, which is

an optimization problem in itself. To solve a problem with dynamic programming, one has to

identify base cases that are easily solvable. For a decision problem like ours, the utility that can

be obtained in each of the possible states at the end of the horizon does not depend on anything

other than the system configuration and the environment state in that interval because there are no

further decisions or accumulation of utility considered beyond the end of the horizon. Therefore,

it makes sense to consider those as the base cases, working backwards throughout the decision

horizon. That is, the value of a configuration c ∈ C in the last interval of the horizon is the utility

that c provides in that interval. The value of a configuration c in interval t < H is the utility that

c provides in that interval, plus the maximum value that can be obtained from the configurations

reachable from c in interval t+ 1.

47

The formulation of the adaptation decision problem with dynamic programming is as follows:

vH(c) = Û(c, eH), ∀c ∈ C (5.1)

vt(c) = Û(c, et) + max
c′∈CT (c)

vt+1(c′), ∀c ∈ C, t = H − 1, . . . , 1 (5.2)

C∗ = argmax
c′∈CI(c0)

v1(c′) (5.3)

where vH(c) represents the value that each configuration has at the end of the horizon—the base

cases—and vt(c) is the value that will be obtained from time step t onwards if the system is in

configuration c at time t and optimal decisions are made in the remainder of the horizon. The

configuration that the system should adapt to in order to maximize the utility accumulated over

the decision horizon is the one that has the maximum value at time t = 1.

The utility function used to solve the adaptation decision problem is the decision utility func-

tion Û , which has some differences with respect to U , the one used to measure the utility of the

system. The main difference is that the emergent system properties that are relevant for comput-

ing the utility function are not measured but estimated. For example, for RUBiS, the response

time used here is not the measured response time of the system, since Û is used to compute the

utility that the system would attain under a certain configuration and state of the environment.

Therefore, emergent properties like these have to be estimated. For example, the response time

in RUBiS can be estimated using queuing theory [84], or performance analysis tools, such as

layered queuing network solvers [100, 112], or queuing Petri net solvers [85]. In addition, Û can

encode other decision preferences that, despite not being considered by the measurement utility

function, are desirable for the system. For instance, in a case in which all the configurations

of RUBiS would exceed the response time threshold, the measurement utility function would

choose the one with the smallest number of servers, since it would see no benefit in having more.

This is not the right decision because removing resources from an overloaded system would

cause the backlog of requests to increase at a higher rate, making the recovery of the system in

subsequent decisions even more unlikely. If it is desired to avoid such behavior, Û can be defined

to favor the configuration with the most servers in such a case.

The result of argmax in (5.3) is actually a set, so we can pick any configuration c∗ ∈ C∗.

However if c0 ∈ C∗, we can avoid adapting, since no configuration change would render any

improvement. Since the actions in our setting are assumed to be deterministic, given the source

and target of a single transition, it is possible to determine the actions that must be taken, as we

explain later in Section 5.2.2. Therefore, once c∗ is found, the set of tactics that must be started

to reach it from c0 can be determined.

5.1.1 Stochastic Environment

We model the evolution of the environment over the decision horizon as a discrete-time Markov

chain (see Section 3.5). The set of environment states is denoted by E, and the probability of

transitioning from state e to state e′ is given by p(e′|e). The most straightforward way to take

into account the stochastic evolution of the environment would be to create the joint MDP of

48

the system MDP and the environment Markov chain,5 and then find its solution. However, this

would require creating the transition probability matrix over the joint state space C × E, and

evaluating many joint states that would never be reachable. Keeping in mind that this would

have to be done every time an adaptation decision has to be made in order to incorporate the

latest environment predictions, doing this has a couple of drawbacks. First, the full joint MDP

would have to be created for every decision so that the latest environment predictions could be

incorporated. Second, evaluating the utility for a pair of system configuration and environment

state may involve some extensive computation (e.g., invoking a layered queuing network solver

to estimate response time), so doing that for unreachable joint states is a waste of resources and

time.

To reduce the running time of the adaptation decision, we avoid creating the joint MDP,

and instead weave the environment model into the predefined MDP of the system as needed.

Referring to Figure 5.2, we can see that the system and the environment make a transition almost

simultaneously at the beginning of each interval. For example, at the start of the interval at t = 1,

the system transitions from c0 to c1 (the alternative target configurations are not shown), and the

environment transitions from its current state e0 to e1 deterministically. On the other hand, with

a stochastic environment both the system and the environment have several possible target states

at each interval. Figure 5.3 depicts these two kinds of transitions interleaved. First, the system

takes a deterministic transition, and then the environment takes a probabilistic transition.

system transition environment transition

system state environment state

c1,1 e0

c1,1 e1,1 c1,1 e1,2

c0 e0

c1,2 e0

c1,2
e1,1 c1,2 e1,2

Figure 5.3: System and environment transitions.

Using the principles of stochastic dynamic programming [120], the adaptation decision prob-

lem with a stochastic model of the environment can be solved as follows:

5A discrete-time Markov chain can be turned into an MDP by assuming there is a single action applicable in

every state.

49

vH(c, e) = Û(c, e), ∀c ∈ C, e ∈ EH (5.4)

vt(c, e) = Û(c, e) + max
c′∈CT (c)

∑

e′∈Et+1

p(e′|e)vt+1(c′, e′) ∀c ∈ C, e ∈ Et,

t = H − 1, . . . , 1

(5.5)

C∗ = argmax
c′∈CI(c0)

∑

e′∈E1

p(e′|e0)v
1(c′, e′) (5.6)

Note that instead of evaluating all environment states in E for each time interval, only those

that are feasible are considered. Et is the set of environment states feasible in time interval t.
When a probability tree is used to model the environment, Et is the set of nodes of depth t. This

greatly reduces the number of calculations of accumulated utility that have to be made, avoiding

evaluating system/environment state pairs that are not feasible.

5.1.2 Handling Latency

When a tactic has latency, the adaptation decision has to be able to determine when the tactic is

going to complete, so that its effect on the system configuration can be accounted for at the right

time. In addition, while a tactic executes, it can prevent other incompatible tactics from starting,

which affects the decision. So far, we assumed that if a tactic had latency, it was roughly equal

to one time interval, but in reality it can be of any length, and span multiple intervals. Since

we use a Markov model, there is no history in the model to allow us to directly keep track of

the progress of the tactic. Consequently, we have to extend the state space in the model to keep

track of the progress of tactics with latency. However, given that decisions are made at regular

intervals over the decision horizon, it is only necessary to keep track of the progress of the tactic

at the granularity of the time interval, as in PLA-PMC.

For RUBiS, for example, the configuration of the system with the properties relevant for

computing the utility function can be captured by a tuple (s, d), where s is the number of active

servers, and d is the discretized dimmer value. In order to keep track of the progress of the tactic

to add a server, we extend the configuration with another component, so that the full configuration

tuple is (s, d, padd), where padd ∈
{

0, . . . , ⌈λ
τ
⌉
}

is the number of time intervals left until the

tactic completes, with 0 indicating that the tactic is not being executed.6 Every delayed transition

enabled by RD decreases the progress tracking component of the configuration tuple for all the

executing tactics. That is, if there are N tactics with latency, and the configuration tuple has

components p1, . . . , pN to represent the progress of the tactics with latency, then

∀c = (. . . , p1, . . . , pN), c
′ = (. . . , p′1, . . . , p

′
N) ∈ C :

RD(c, c′) =⇒ ∀i = 1, . . . , N : p′i = max(0, pi − 1)

For example, the start of the tactic to add a server implies an immediate transition in the model

to a configuration with padd equal to its maximum value. This transition is enabled by RI . It

6If a tactic cannot execute concurrently with itself, a single value can track its progress. If multiple instances of

a tactic can be executed concurrently, one progress component per instance is needed.

50

is then followed by a sequence of delayed transitions enabled by RD that decrease the value of

padd until it reaches 0, and when that happens, the number of servers in the configuration tuple is

increased.

5.2 Computing Reachability Predicates

The predicates RI and RD determine which system configurations can be reached from other

configurations through adaptation; that is, they specify which transitions are feasible in the sys-

tem MDP. Defining these predicates by extension, or trying to express them in propositional

logic can be a daunting and error prone task due to all the possible combinations of tactics, all

their possible phasings (i.e., how their executions overlap in time), and all the possible system

states that must be taken into account. Instead, we use formal models and analysis to compute

the reachability predicates. Specifically, we use Alloy [76] to formally specify system configu-

rations and adaptation tactics, and to compute the reachability predicates.7 Alloy is a language

based on first-order logic that allows modeling structures—known as signatures—and relation-

ships between them in the form of constraints. Alloy is a declarative language, and, in contrast to

imperative languages, only the effect of operations—tactics in our case—on the model must be

specified, but not how the operations work. The Alloy analyzer is used to find structures that sat-

isfy the model. By deferring combining the system and environment states until run time in our

approach, these predicates are independent of the environment state, and thus can be computed

off-line. Hence, the overhead of using formal methods to compute the predicates is not incurred

at run time.

The support for concurrent tactics in the adaptation decision is handled by these predicates.

The adaptation problem formulation (5.4)-(5.6) is agnostic with regard to concurrent tactic exe-

cution, since it only cares about state reachability, regardless of whether that requires concurrent

tactics or not. On the other hand, to correctly determine whether a configuration can be reached

from another configuration when computing the predicates, it is necessary to consider whether

tactics can be executed concurrently or not. To that end, we rely on a compatibility predicate for

each tactic that indicates whether it can be run, considering the other tactics that are executing.

This is the same approach used in PLA-PMC to express in the model whether a tactic can be run

or not (see Section 4.5.2). According to the concurrency model described in Section 3.4, we re-

quire that two tactics are allowed to execute concurrently only if they affect disjoint subsets of the

properties of the configuration state. From the formal model perspective, this requirement makes

the tactics serializable, since the state resulting from the serial application of any combination of

compatible tactics would be the same as if they were applied in parallel.

5.2.1 Delayed Reachability

To compute RD, we use Alloy to find all the pairs (c, c′) ∈ CP×CP, such that RD(c, c′), where

CP is the configuration space extended with tactic progress. To achieve that, we introduce first

other necessary pieces of the model, starting with the definition of the configuration space for the

7Our initial use of Alloy to compute the reachability predicates was published in [23], and later improved

in [109].

51

system. Listing 5.1 shows the declarations that define the configuration space for RUBiS. The

sets S, and D represent the different numbers of active servers, and dimmer levels, respectively.

The elements of these sets are not numbers, but rather abstract elements. However, lines 1-2

specify that these are ordered sets. Thus, we can refer to their first and last elements, for example,

with SO/first and SO/last. Also, we can get the successor and predecessor of an element e with

SO/next[e] and SO/prev[e]. The signature C defines the set of all possible configurations, each

having a number of active servers s, and a dimmer level d. In the Alloy model, we distinguish

between plain system configurations, C, and configurations extended with tactic progress, CP.

The reason we do this is for the model to be more modular, keeping concerns separated, so that

it is easier to generate the model in the Alloy language for different systems, and/or different

sets of tactics. For example, new tactics can be added to the model without modifying C. Note,

however, that when the adaptation decision problem is solved, CP in this model corresponds to

C in the formulation presented in Section 5.1.

1 open util/ordering[S] as SO
2 open util/ordering[D] as DO
3 sig S {} // the different number of active servers
4 sig D {} // the different dimmer levels
5

6 // each element of C represents a configuration
7 sig C {
8 s : S, // the number of active servers
9 d : D // dimmer level

10 }

Listing 5.1: Alloy model: configurations.

Listing 5.2 shows the elements needed to represent tactic progress. The declaration of the

set of all the tactics T as abstract in line 3 indicates that all of its elements must be elements

of one of the signatures that extends it. For each of the tactics with no latency, a singleton set

extending T is declared (line 4). Since it is necessary to tell tactics with latency apart, the abstract

subset LT is declared (line 5), and a singleton subset of it is declared for each of the tactics with

latency (line 6, only AddServer in our example). The different levels of progress of each tactic

are represented by the elements of an ordered set. For example, TPAS (lines 1 and 8) contains

the levels of progress of the tactic to add a server, with TPASO/first indicating that the tactic has

just started, TPASO/last indicating that the tactic execution has completed, and the elements in

between representing intermediate progress. The ordered sets that represent the levels of progress

of tactics are subsets of an abstract set TP. The signature CP extends C, adding a mapping p from

tactics with latency, LT, to the tactic progress, TP (line 12). The facts in lines 14-15 constrain p

to be a function over LT. Additionally, we require that the function maps each tactic to a progress

in its corresponding class (line 16). Lastly, the fact in line 19 requires that all elements of CP

are different. The predicate equals (lines 21-23) is true if the two configurations are equal with

respect to the fields of C. The predicate equalsExcept (lines 25-27) is similar, except that it

supports excluding one field of C from the comparison.

Note that even though we are using the RUBiS example to describe the models, they can be

easily adapted to model other systems, since special effort has been devoted to making as many

52

1 open util/ordering[TPAS] as TPASO // tactic progress for adding server
2

3 abstract sig T {} // all tactics
4 one sig IncDimmer, DecDimmer, RemoveServer extends T {} // tactics with no latency
5 abstract sig LT extends T {} // tactics with latency
6 one sig AddServer extends LT {} // tactic with latency
7 abstract sig TP {} // tactic progress
8 sig TPAS extends TP {} // one sig for each tactic with latency
9

10 // configuration extended with the progress of each tactic with latency
11 sig CP extends C {
12 p: LT −> TP
13 } {
14 ˜p.p in iden // p maps each tactic to at most one progress
15 p.univ = LT // every tactic in LT has a mapping in p (p.univ is the domain of p)
16 p[AddServer] in TPAS // restrict each tactic to its own progress class
17 }
18

19 fact uniqueConfigs { all disj c1, c2 : CP | !equals[c1, c2] or c1.p != c2.p}
20

21 pred equals[c, c2 : C] {
22 all f : C$.fields | c.(f.value) = c2.(f.value)
23 }
24

25 pred equalsExcept[c, c2 : C, ef : univ] {
26 all f : C$.fields | f=ef or c.(f.value) = c2.(f.value)
27 }

Listing 5.2: Alloy model: configurations extended with tactic progress.

parts of the model as possible be system-independent. For example, in Listing 5.2, lines 19-27

do not depend at all on the specific fields that define the configuration space of a system. In

addition, it is straightforward to extend or modify the model for other systems. For instance, if

another tactic with latency were added, lines equivalent to lines 1, 8, and 16 would need to be

added.

Now that we have all the basic elements in the model, we can present the predicates that

determine the reachability in one time interval. For each tactic with latency, a predicate like

addServerTacticProgress, shown in Listing 5.3, is needed. This predicate is true if according to

the tactic, the post-state c’ can be reached in one time interval from the pre-state c. If the tactic

is running (i.e., its progress is not in the last state), the predicate requires that in the post-state,

the progress of the tactic is the next one (line 3). If it reaches the last level of progress, then the

configuration has one more server in the post-state (line 5), reflecting the effect of the completion

of the tactic. In addition, it is as important to ensure that if the tactic is not running, it stays in

that state (line 10), and does not have an effect (line 11). We also need to require that nothing

else changes (lines 15-16). Line 15 requires that every field of C other than s, the field affected

by this tactic, stays the same, whereas line 16 ensures that the progress of all the other tactics has

not been changed in the post-state.

Finally, the predicates for the progress of each tactic with latency have to be put together

to define progress, a predicate equivalent to RD (line 1-3, Listing 5.4). When the system has

more than one tactic with latency, their predicates have to be composed to reflect the effect that

all of them would have on the state. All the progress predicates are serializable, because they

53

1 pred addServerTacticProgress[c, c’ : CP] {
2 c.p[AddServer] != TPASO/last implies { // tactic is running
3 c’.p[AddServer] = TPASO/next[c.p[AddServer]]
4 c’.p[AddServer] = TPASO/last implies {
5 c’.s = SO/next[c.s] // tactic effect
6 } else {
7 c’.s = c.s // no finished yet, maintain state
8 }
9 } else { // tactic is not running

10 c’.p[AddServer] = TPASO/last // stay in not running state
11 c’.s = c.s
12 }
13

14 // nothing else changes other than s and the progress of this tactic
15 equalsExcept[c, c’, C$s]
16 (LT − AddServer) <: c.p in c’.p
17 }

Listing 5.3: Alloy model: tactic progress predicate

either correspond to tactics that can execute concurrently, for which serializability is required;

or they correspond to incompatible tactics. In the latter case, only one of them could be in a

state in which it can affect the configuration, whereas the rest would have no effect, making them

serializable as well. Therefore, all of the progress predicates can be combined using sequential

composition [66]. In the example of Listing 5.4, we assume there is another tactic with latency,

rebootServerTacticProgress, and show an example of sequential composition.

1 pred progress[c, c’ : CP] { // is c’ reachable from config c in one evaluation period?
2 some tc : CP | addServerTacticProgress[c, tc] and rebootServerTacticProgress[tc, c’]
3 }
4

5 sig Result {
6 c, c’ : CP
7 } {
8 progress[c, c’]
9 }

10

11 // this reduces the number of unused configurations
12 // each cp in CP is either in a pair in a result, or an intermediate one needed for that pair
13 fact reduceUsedConfigs {
14 all cp : CP | {some r : Result | r.c = cp or r.c’ = cp
15 or (addServerTacticProgress[r.c, cp] and rebootServerTacticProgress[cp, r.c’])
16 }
17 }
18

19 pred show { }

Listing 5.4: Alloy model: delayed transition predicate.

To compute RD with Alloy, we define a signature Result that represents a pair of config-

urations for which progress holds (Listing 5.4, lines 5-9). Alloy requires that a scope (i.e.,

cardinality, either exact or as a bound) be provided for the different sets in the model. In general,

the scope can be determined by the number of values that each of the fields that define the system

state space can take. In the case of RUBiS, the scope can be computed based on the maximum

54

number of servers for the system, and the number of dimmer levels. In addition, the scope for

the sets that define the number of progress levels for the tactics with latency has to be specified.

For each tactic with latency, the scope of its corresponding progress set is the number of time

intervals needed for the execution of the tactic plus one, to denote the state in which the tactic

is not running. In addition, we specify a scope of 1 for the signature Result, so that in a valid

instance of the model, there is only one pair (c, c′) that satisfies RD(c, c′). The following com-

mand shows how the Alloy analyzer is run to obtain all model instances, and thus all the pairs,

that satisfy RD(c, c′).

run show for exactly 3 S, exactly 3 TPAS, exactly 5 D, exactly 1 Result, 3 C, 3 CP

The run command finds all the instances that satisfy the model and the predicate specified as its

first argument, which in this case always holds. The remainder of the command, the for clause,

specifies the scope for the analysis. In this case, it is stating that the maximum number of servers

is 3, the latency for the tactic to add a server is 2 (+1 in the scope), and there are 5 dimmer levels.

The scope after that indicates that each instance should have exactly one result. The bound for

C and CP depends on the number of tactics with latency used in the model. If we look at the

sequential composition of these tactics in line 2 of Listing 5.4, we observe that it requires up to

three distinct elements of CP; that is, one more than the number of tactics with latency. And,

since each distinct element of CP could be associated with a different element of C, we need at

most the same number of elements for the latter. In this example, the value for the upper bound

of their scope is 3, because there are two tactics with latency. When run with this command,

Alloy generates all the instances that satisfy the model. The output is read using Alloy’s API,

and used to generate a simple encoding of RD as a lookup table suitable for use at run time when

a decision has to be made.

Even though we are only interested in the instance of the Result signature, which corresponds

to a pair in RD, Alloy can generate many instances that have the same instance of Result if they

vary in something else that is valid in the model. For example, if the progress predicate can be

satisfied with fewer elements of CP than were specified in the scope, then there are free elements

of CP that can take any value. In such a case, Alloy will generate all possible combinations of

them. To reduce the number of such instances that result in multiple solutions with the same

pair for RD, we include the fact in lines 13-17, which requires that elements of CP are used in

the progress predicate. This considerably reduces the amount of time needed to compute all the

solutions.

5.2.2 Immediate Reachability

In order to compute RI , we define a predicate for each tactic that checks whether the tactic is

applicable, and if so, it reflects the effect of the tactic on the post-state. However, we cannot

simply compose them sequentially, as we do for RD, because it is necessary to consider cases

in which a tactic is not used even if its applicable. The approach we take to deal with this

problem is to model a trace of configuration states such that each element of the trace is related

to its predecessor by either the application of a tactic, or the identity relation. Even though this

55

trace consists of a sequence of tactics, it represents the simultaneous start of those tactics, whose

combined effect on the system state is the result of their sequential composition. Using the Alloy

analyzer we can find all possible traces that satisfy this model, and the set of all pairs formed by

the first and last state of each trace is the relation RI .

Listing 5.5 shows a portion of the model to compute RI defining the model of a trace. In

addition to computing RI , we also need to compute for each pair in that relation the (possibly

empty) set of tactics that have to be started for the immediate transition represented by the pair

to hold. This is used to determine which tactics have to be started once the solution to (5.6) is

found. To accomplish that, the elements of the trace have not only the configuration state, but

also a set of tactics that have been started to arrive at that particular state in the trace (lines 3-6).

The fact traces defines what a valid trace is. Line 9 states that at the beginning of the trace no

tactic has been started at this time. The remainder of the fact specifies that every trace element

is the same as its predecessor, or is related to its predecessor by one of the predicates for the

tactics. These predicates specify tactic applicability and how the state is affected when the tactic

is started, which largely depends on whether the tactic has latency or not.

1 open util/ordering[TraceElement] as Trace
2

3 sig TraceElement {
4 cp : CP,
5 starts : set T // tactics started
6 }
7

8 fact traces {
9 let fst = Trace/first | fst.starts = none

10 all e : TraceElement − last | let e’ = next[e] | {
11 equals[e, e’] and equals[e’, Trace/last]
12 } or addServerTacticStart[e, e’] or removeServerTactic[e, e’] or decDimmerTactic[e, e’] or incDimmerTactic[e, e’]
13 }

Listing 5.5: Alloy model: traces for immediate reachability.

For each tactic with latency there is a predicate that models the start (but not the effect, which

is delayed) of the tactic. An example is shown in Listing 5.6. These predicates relate trace

elements instead of configuration states, since they have to maintain the state of starts in the

trace elements, and use it to determine tactic compatibility. The predicate addServerTacticStart

first checks that the tactic is compatible (line 7) using the predicate addServerCompatible. This

predicate (lines 1-4) checks that this tactic has not already been started in the trace, and that it is

compatible. In this case, this tactic is not compatible with the tactic RemoveServer, so it ensures

that the latter has not been started. Also, the predicate holds only if the tactic is applicable, which

in this case means that the number of servers has not reached its maximum, or last value (line 8).

In the post-state, the tactic is added to the set of tactics started (line 10), and the progress of the

tactic is set to the first level (line 12). In addition, the predicate ensures that nothing else changes

(lines 15-16).

For instantaneous tactics, the predicate follows the same pattern, except that the effect of the

tactic on the post-state is included (e.g., an increase of the dimmer value), and no tactic progress

state is affected. Listing 5.7 shows the predicates for the tactic to increase the dimmer. The

56

1 pred addServerCompatible[e : TraceElement] {
2 e.cp.p[AddServer] = TPASO/last
3 !(RemoveServer in e.starts)
4 }
5

6 pred addServerTacticStart[e, e’ : TraceElement] {
7 addServerCompatible[e]
8 e.cp.s != SO/last
9

10 e’.starts = e.starts + AddServer
11 let c = e.cp, c’=e’.cp | {
12 c’.p[AddServer] = TPASO/first
13

14 // nothing else changes
15 equals[c, c’]
16 (LT − AddServer) <: c.p in c’.p
17 }
18 }

Listing 5.6: Alloy model: predicates for tactic start.

compatibility predicate holds if the tactic has not already been used in this trace, and if the tactic

DecDimmer, with which it is not compatible, has not been started. In line 12, the predicate

incDimmerTactic reflects the effect of the tactic on the system configuration in the post-state. In

this case, it reflects an increase in the dimmer setting.

1 pred incDimmerCompatible[e : TraceElement] {
2 !(IncDimmer in e.starts)
3 !(DecDimmer in e.starts)
4 }
5

6 pred incDimmerTactic[e, e’ : TraceElement] {
7 incDimmerCompatible[e]
8 e.cp.d != dimmer/last
9

10 e’.starts = e.starts + IncDimmer
11 let c = e.cp, c’=e’.cp | {
12 c’.d = c.d.next
13

14 // nothing else changes
15 equalsExcept[c, c’, C$d]
16 c’.p = c.p
17 }
18 }

Listing 5.7: Alloy model: predicates for instantaneous tactic.

Similarly to what is done for computing RD, Alloy is used to find all the possible instances

that satisfy the model. In this case, the command used to run the Alloy analyzer is the following.

run show for exactly 3 S, exactly 3 TAPS, 5 D, 3 C, 3 CP, 3 TraceElement

The scope for the properties of the system configuration and tactic latency are the same as ex-

57

plained before. However, the scope for C, CP, and TraceElement is one more than the maximum

number of tactics that could be started concurrently.8

The model presented thus far would generate different solutions for different permutations of

tactics in the trace. Since the order of the tactics within a trace does not matter, because in the

end they will be used as a set of tactics to be started concurrently by the adaptation manager, it

is a waste of time to generate those permutations. To avoid that, we impose an arbitrary order on

the tactics requiring that they follow that order if they appear in a trace. This does not prevent

any feasible trace from being generated, because if two tactics are compatible, the order in which

they are applied does not matter. If they are not compatible, only one of them can appear in the

trace. Notwithstanding, the one that is first in the order imposed does not trump the other because

a trace that has latter but not the former is also valid. Listing 5.8 shows a modified version of the

trace model to accomplish this. Lines 1-8 define an arbitrary order for the tactics. The predicate

validOrder is used in line 21 to ensure that the new tactic started by an element does not have any

of the tactics previously started by the trace as a successor.

1 open util/ordering[T] as TO
2

3 fact tacticOrdering {
4 TO/first = AddServer
5 AddServer.next = RemoveServer
6 RemoveServer.next = IncDimmer
7 IncDimmer.next = DecDimmer
8 }
9

10 // holds if the tactics started in e are not successors of t
11 pred validOrder[t : T, e : TraceElement] {
12 all s : e.starts | !(s in t.nexts)
13 }
14

15 fact traces {
16 let fst = Trace/first | fst.starts = none
17 all e : TraceElement − last | let e’ = next[e] | {
18 equals[e, e’] and equals[e’, Trace/last]
19 } or (
20 (addServerTacticStart[e, e’] or removeServerTactic[e, e’] or decDimmerTactic[e, e’] or incDimmerTactic[e, e’]) and
21 (let s = e’.starts − e.starts | all t : s | validOrder[t, e]))
22 }

Listing 5.8: Alloy model: avoiding unnecessary permutations in traces.

When Alloy is run to analyze the model presented in this section, it finds all the traces that

satisfy the model. Through its API we can iterate over all the traces it produces. For each trace,

the first and last element correspond to pairs ofRI . In addition to encodingRI as a simple lookup

table for its use at run time, a map that associates pairs in RI to their corresponding set of tactic

starts is also constructed. This map can be used to determine the tactics that have to be started to

realize the immediate transition from the current configuration to the next optimal configuration

found with (5.6).9

8The scope could be the total number of tactics plus one, which is easier to determine than the maximum number

of tactics that could be started concurrently. The result would be the same, except that this off-line analysis would

be slower because it would generate duplicate solutions that differ only in free elements that do not affect the result.
9The complete Alloy models for the two systems used for the validation of the thesis are included in Appendix C

58

5.3 Algorithm

The algorithm in Figure 5.4 implements the mathematical formulation in (5.4)-(5.6). The func-

tion DECIDE takes the current system configuration c0 and the model of the environment E,

and returns the configuration cbest, which is the configuration reachable through an immediate

adaptation that maximizes the expected value to be accumulated over the decision horizon.

To avoid duplication, (5.4) and (5.5) are implemented by the same loop in lines 2-10. Basi-

cally, this loop iterates over the decision horizon starting from the end, and has nested loops to

iterate over system configurations and environment states. Inside all these nested loops, a call to

the function EXPECTEDVALUE computes the expected value for a given pair of system and en-

vironment states. The parameter V has all the values v computed up to that point. The algorithm

has one optimization over the mathematical formulation. Line 4 avoids computing the expected

utility for configurations that are not reachable from the current configuration, when t = 1, be-

cause at that point it is simple to determine whether a configuration is reachable through the use

of RI .

The function EXPECTEDVALUE computes the expected utility that can be accumulated from

time t until the end of the decision horizon if the system is in configuration c at time t, given that

the environment is e. For t = H , this expected value is just Û(c, e), since that is the end of the

decision horizon. For other values of t, however, we must add the maximum expected value that

can be accumulated afterwards, given the stochastic environment behavior. This is accomplished

by lines 34-43, which implement the second term of (5.5).

Finally, lines 12-27 implement (5.6), finding the configuration cbest that can be reached im-

mediately and maximizes the expected utility to be accumulated over the decision horizon. Note

that the algorithm gives preference to the current system configuration, c0, if it happens to be one

of the optimal solutions, avoiding unnecessary adaptations.

5.4 Speedup Evaluation

To compare the running time of the run-time decision of PLA-SDP with PLA-PMC, we measured

the adaptation decision time with both solutions in a simulation of RUBiS (see Section 8.1.1 for

more details).10 Since the adaptation decision time increases with the size of the state space,

the maximum number of servers used in RUBiS was varied between 10 and 100, resulting in

increasing sizes of the state space. The results are shown in the box plot in Figure 5.5, with

each box summarizing the statistics of the multiple decisions made in a run of the simulation,

with the median, 1st and 3rd quartiles represented by the box, and the range by the bar.11 These

results show that the adaptation decisions with PLA-SDP are much faster than with PLA-PMC,

with an average speedup of 27.9, and with much less variance. Despite computing the solution to

the adaptation decision much faster, PLA-SDP produces exactly the same results as PLA-PMC,

and Appendix D.
10The adaptation decision code is exactly the same used with the real system; only the managed system is simu-

lated.
11 The first decision in each run with PLA-PMC took longer, probably because the model checker had not been

cached yet. To avoid these outliers, the first data point for each run was not used for the plot.

59

1: function DECIDE(c0, E)

2: for t = H downto 1 do

3: for all i ∈ C do

4: if t 6= 1 ∨RI(c0, i) then

5: for all e ∈ Et do

6: vt(i, e)← EXPECTEDVALUE(i, t, e, E, V)
7: end for

8: end if

9: end for

10: end for

11:

12: cbest ← c0
13: v0(c0, e0)← −∞
14: for all j ∈ C do

15: v′ ← 0
16: if RI(c0, j) then

17: for all e′ ∈ E1 do

18: v′ ← v′ + p(e0, e
′)v1(j, e

′)
19: end for

20: if v′ >= v0(c0, e0) then

21: if j = c0 ∨ v′ > v0(c0, e0) then

22: v0(c0, e0)← v′

23: cbest ← j

24: end if

25: end if

26: end if

27: end for

28: return cbest
29: end function

30: function EXPECTEDVALUE(c, t, e, E, V)

31: if t = H then

32: v ← 0
33: else

34: v ← −∞
35: for all j ∈ C do

36: v′ ← 0
37: if RT (c, j)) then

38: for all e′ ∈ Et+1 do

39: v′ ← v′ + p(e, e′)vt+1(j, e
′)

40: end for

41: v ← max(v, v′)
42: end if

43: end for

44: end if

45: v ← Û(c, e) + v

46: return v

47: end function

Figure 5.4: PLA-SDP adaptation decision algorithm.

60

which was confirmed in these runs and is also shown in Chapter 8. The decision speed of the

approach is further analyzed in Chapter 8 as well.

0

50

100

150

10 20 30 40 50 60 70 80 90 100

servers

d
e

c
is

io
n

 t
im

e
 (

s
)

PLA−PMC

PLA−SDP

Figure 5.5: Adaptation decision times with PLA-PMC and PLA-SDP.

5.5 Summary

In this chapter we presented PLA-SDP, an approach for proactive latency-aware adaptation that

makes adaptation decisions faster than PLA-PMC while producing the same results. This is

achieved by keeping the system and environment components of the adaptation MDP separate as

long as possible, combining them efficiently when an adaptation decision has to be made. The

system MDP is difficult to build due to the large number of possible combinations of tactics,

system states, and the (in)compatibility of certain tactics. However, because of this separation,

the system MDP does not require information about the environment, which is known only at

run time. Therefore, it can be built off-line using formal specification in Alloy. The probabilistic

model of the environment is updated at run time, and is combined with the system MDP as the

adaptation decision is solved using stochastic dynamic programming. Our experimental results

show that this approach is more than twenty times faster than using probabilistic model checking

at run time to make adaptation decisions, while preserving the same effectiveness. Another

61

advantage of PLA-SDP over PLA-PMC is that it is not constrained to a particular language

(PRISM, in the case of PLA-PMC) to implement the decision utility function Û . This is because

the algorithm in Figure 5.4 can be implemented in any general purpose language,12 and thus

allows the decision utility function to be implemented with the full flexibility of the language,

even invoking third party tools such as performance prediction tools.

12The results presented in this chapter were obtained with the implementation of PLA-SDP written in C++.

62

Chapter 6

Support for Alternative Notions of Utility

In previous chapters, the adaptation goal has been presented as the maximization of utility ac-

cumulated over the execution of the system, and approximated by only considering the decision

horizon. Even though that kind of goal is sufficient for many kinds of self-adaptive systems,

there are others with different adaptation goals that cannot be coerced into the maximization of

a sum. For example, if reward (or utility) can only be gained as long as a constraint has always

been satisfied, whether it can be collected or not in an individual period depends on what has

happened in previous periods. Even though this seems trivial as a rule for accounting rewards,

it is not that simple for making adaptation decisions. For example, in PLA-SDP, the adaptation

decision MDP is solved by backward induction, evaluating states in reverse chronological order.

Therefore, either the algorithm requires a modification to deal with this, or the representation of

state has to be expanded to include the necessary history.

In this chapter we present an approach to support alternative notions of utility, allowing us to

express adaptation goals as a combination of how reward is accumulated and a requirement on

constraint satisfaction. The different combinations allow us to implement a variety of adaptation

goals with an extension to PLA-SDP. One of the possible combinations is used for one of the case

studies described in Chapter 8, and other brief examples illustrating how other combinations can

be used are provided in this chapter.

6.1 Adaptation Goal Composition

We define the adaptation goal as a reward maximization problem subject to keeping the proba-

bility of satisfying a constraint above a lower bound. The basic building blocks used to formulate

the goal are the following functions, which determine the reward gain and constraint satisfaction

during a single decision period with system configuration c in environment e:
• g(c, e) is the reward that the system gains

• s(c, e) is the probability of satisfying a constraint1

For example, g(c, e) could be the utility RUBiS attains by serving requests, and s(c, e) could be

1For cases in which constraint satisfaction can be determined with certainty, the range of s can be {0, 1}. The

approaches in this chapter can be used without modification.

63

the probability of the system being available (i.e., the probability of satisfying the constraint of

not being down).

These functions refer to individual decision periods with no relation to what happens in other

periods. However, the adaptation goal must be formulated over the whole decision horizon. Let

us start with how reward is gained over the decision horizon, although that can itself be modified

by the constraint. We define three reward gain (RG) forms relative to the satisfaction of the

constraint, which are summarized in Table 6.1. RG1 is the reward accumulation over the decision

horizon regardless of the constraint satisfaction, which is the adaptation goal we have used as an

example in previous chapters. In the other two forms, reward gain depends on the satisfaction of

the constraint. In RG2, the reward is only gained in a given period if the constraint is satisfied

in the period. Since s(c, e) is a probability, RG2 maximizes the expected reward gained over

the horizon. RG3 represents the case in which the reward is gained in a period as long as the

constraint has been satisfied up to the current period (inclusive) within the decision horizon. The

product in RG3 represents the probability of having satisfied the constraint in all the periods up

to period t, and the whole equation is the expected reward gained over the decision horizon.

Table 6.1: How reward is gained, relative to the constraint satisfaction.

When reward is gained maximize
c1,...,cH

RG1: regardless of the constraint

satisfaction

H
∑

t=1

g(ct, et)

RG2: only when the constraint is

satisfied

H
∑

t=1

s(ct, et)g(ct, et)

RG3: as long as the constraint

has been and is satisfied

H
∑

t=1

(

t
∏

i=1

s(ci, ei)

)

g(ct, et)

In addition to how reward is gained, it is also possible to impose a requirement on the proba-

bility of satisfying the constraint, although this is optional. Table 6.2 shows two different forms

for the constraint satisfaction (CS) requirement. Form CS1 requires that the probability of sat-

isfying the constraint be no less than a bound P in each period, whereas CS2 requires that the

probability of satisfying the constraint over all periods be no less than P .

Here are a few examples of how these reward gain and constraint satisfaction requirements

can be used to formulate different adaptation goals.

64

Table 6.2: Constraint satisfaction requirements (zero or more).

Bound on the probability of subject to

CS1: satisfying the constraint in each period ∀t ∈ {1, . . . , H} s(ct, et) ≥ P

CS2: satisfying the constraint over all periods

H
∏

t=1

s(ct, et) ≥ P

Example 1. A system gets reward only if it is available, and it is desired to keep the probability

of being available in each evaluation period over some threshold P . The fact that the system is

unavailable in one period does not prevent it from being available afterwards (i.e., it can repair

itself). The problem formulation in this case is {RG2, CS1}, with the constraint being being

available.

Example 2. A robot gets reward as long as it can operate (i.e., its battery has charge), and it

is desired to keep the probability of being able to operate over some threshold P . If the robot

runs out of battery, it cannot recover (e.g., it cannot reach a recharging station). The problem

formulation in this case is {RG3, CS2}, with the constraint being having battery charge.

Example 3. A drone gets reward only if it is not detected in a segment of the route it is flying.

However, being detected in a segment does not mean it cannot get reward in subsequent seg-

ments. Nevertheless, it is desired to keep the probability of being undetected during the entire

mission over some threshold P . The problem formulation in this case is {RG2, CS2}, with the

constraint being not being detected.

Example 4. A system gets reward in every period even if it is slow to respond. However, it

is desired to keep the probability of meeting the response time requirement in each period over

some threshold P . The problem formulation in this case is {RG1, CS1}, with the constraint

being meeting the response time requirement.

Example 5. A drone gets reward as long as it does not crash. The problem formulation in this

case is {RG3}, with the constraint being not crashing.

6.2 PLA-SDP Formulation Extension

We now show how to extend the formulation of the stochastic dynamic programming adaptation

decision to support these types of adaptation goals. In particular, we focus on the most difficult

65

combination, {RG3, CS2}, since the other forms are either subsumed by this one or require

minor modifications, as described later.

With an adaptation goal of the form {RG3, CS2}, the optimization problem is the following:

maximize
c1,...,cH

H
∑

t=1

(

t
∏

i=1

s(ci, ei)

)

g(ct, et) (6.1)

subject to

H
∏

t=1

s(ct, et) ≥ P (6.2)

The key idea to find a policy for the adaptation MDP that is a solution to this optimization

problem is to avoid transitions in the policy that would result in a violation of constraint (6.2).

However, achieving this requires keeping track of the probability of satisfying the constraint

for each partial solution to the problem throughout the backward induction. In the following

extended stochastic dynamic programming formulation of the adaptation decision problem, (6.4)

and (6.8) keep track of that probability, and (6.5) and (6.11) filter out partial solutions that would

violate (6.2).

vH(c, e) = s(c, e)g(c, e), ∀c ∈ C, e ∈ EH (6.3)

SH(c, e) = s(c, e), ∀c ∈ C, e ∈ EH (6.4)

For t = H − 1, . . . , 1, and ∀c ∈ C, e ∈ Et

CT
t (c, e) =







c′ ∈ CT (c)

∣

∣

∣

∣

∣

∣

s(c, e)
∑

e′∈Et+1

p(e′|e)St+1(c′, e′) ≥ P







(6.5)

if CT
t (c, e) 6= ∅

ĉt(c, e) ∈ argmax
c′∈CT

t
(c,e)

∑

e′∈Et+1

p(e′|e)vt+1(c′, e′) (6.6)

vt(c, e) = s(c, e)



g(c, e) +
∑

e′∈Et+1

p(e′|e)vt+1(ĉt(c, e), e′)



 (6.7)

St(c, e) = s(c, e)
∑

e′∈Et+1

p(e′|e)St+1(ĉt(c, e), e′) (6.8)

otherwise

vt(c, e) = −∞ (6.9)

St(c, e) = 0 (6.10)

66

Finally,

CI
0 =

{

c′ ∈ CI(c0)

∣

∣

∣

∣

∣

∑

e′∈E1

p(e′|e0)S
1(c′, e′) ≥ P

}

(6.11)

C∗ = argmax
c′∈CI

0

∑

e′∈E1

p(e′|e0)v
1(c′, e′) (6.12)

It is possible that CT
t (c, e) = ∅ for some t, which means that there is no policy that satisfies

the constraint satisfaction requirement. In that case, assuming that the system cannot stop, it is

better to do the best possible. That requires solving the problem again, this time making CT
t

have the configuration that results in the highest probability of satisfying the constraint when no

configuration meets that requirement. That is, if CT
t (c, e) = ∅ in (6.5), we can fall back to a

best-effort approach and compute it as

CT
t (c, e) = argmax

c′∈CT (c)

s(c, e)
∑

e′∈Et+1

p(e′|e)St+1(c′, e′) (6.13)

Analogously, if CI
0 = ∅ in (6.11), we can compute a best-effort solution with

CI
0 = argmax

c′∈CI(c0)

∑

e′∈E1

p(e′|e0)S
1(c′, e′) (6.14)

Note that it is not the same to directly compute the best-effort solution because it will enable

paths that would be discarded by the first solution. So, if the first problem has a solution, it may

not be the same as the best-effort solution.

The filtering done in (6.5) filters out the target configurations that would violate the probabil-

ity bound in expectation over the environment distribution. This filtering could have other forms.

For example, the bound could be applied to the minimum probability of satisfaction, as follows.

CT
t (c, e) =

{

c′ ∈ CT (c)

∣

∣

∣

∣

s(c, e) min
e′∈Et+1

St+1(c′, e′) ≥ P

}

(6.15)

The other forms of adaptation goals can be formulated based on the ones we have already

presented. RG2 can be implemented as RG1 (which is the original formulation presented in

Chapter 5) by replacing g(c, e) with g′(c, e) = s(c, e)g(c, e). CS1 can be implemented as CS2,

except that the tracking of the probability of satisfying the constraint in (6.8) has to be replaced

with

St(c, e) = s(c, e) (6.16)

In addition to these extensions, there are other simple transformations that can be used to

deal with other adaptation goals, and do not require changing the implementation of the decision

algorithm. Changing the sign of g(c, e) turns the goal into minimization. If instead of maximizing

a sum as in RG1, the maximization of a product is required, that can be achieved by taking the

logarithm of g(c, e).

67

6.3 Summary

This chapter presented other forms of utility that combine different forms of reward gain with re-

quirements on probabilistic satisfaction of a constraint, and showed how the PLA-SDP approach

can be extended to accommodate these richer goal formulations. As shown in the examples,

these cover a variety of adaptation goals for different kinds of self-adaptive systems.

68

Chapter 7

Strategy-based Proactive Latency-Aware

Adaptation

Both PLA-PMC and PLA-SDP solve the adaptation decision problem selecting the adaptation

tactics that must be executed, possibly concurrently, to achieve the adaptation goal. Even though

the decision considers sequences of tactics over the look-ahead horizon, it only commits to the

ones that must be started at the current time. Another approach is the selection of an adaptation

strategy to achieve the adaptation goal. A strategy is a predefined decision tree built out of tac-

tics [28]. For example, a strategy to reduce the response time in RUBiS, could add a server, wait

to check if it reduces the response time to a satisfactory level; if it does not, add another server,

wait and check; and if it still has not reduced the response time to the desired level, decrease the

dimmer. In this way, an adaptation strategy captures the process a system administrator might

follow to repair a problem [27, Ch. 4]. A strategy-based adaptation decision consists in selecting

the best strategy to achieve the adaptation goal from a repertoire of strategies.

Tactic-based adaptation is as, or more, effective than strategy-based adaptation. Intuitively,

the former has the flexibility to generate the same solutions the latter could generate. Since

strategies are pre-planned ways in which tactics can be combined [28], strategy-based adaptation

lacks the flexibility to generate all the solutions that tactic-based adaptation could provide, some

of which could be better. Despite this disadvantage, strategy-based adaptation may be desired

for either scalability, or what we loosely refer to as trust.

Scalability. PLA-SDP has to iterate multiple times over the system configuration space when

making an adaptation decision.1 In systems with a large adaptation-relevant configuration space,

the performance of the PLA-SDP will suffer. In addition, adaptation tactics with latency also

contribute to the size of the computational state space due to the need to keep track of their

progress. Strategy-based approaches do not suffer these scalability issues because the decision

time is mainly driven by the number of strategies and their structure, regardless of the size of the

system configuration space (Cheng shows this for reactive strategy-based adaptation [27, Ch. 4],

and we present a detailed analysis for using strategies in PLA in Section 7.4).

1In this chapter we focus on PLA-SDP to compare the scalability of tactic-based and strategy-based approaches,

since PLA-SDP scales better than PLA-PMC (see Section 5.4).

69

Trust. Dependability and predictability are two important factors that affect trust in automa-

tion [14, 128]. According to Schaefer et al., “dependability refers to the consistency and ef-

fectiveness of a behavior” [128]. For that reason, system administrators may desire to limit the

actions of the system to strategies they have tried before and are known to have worked reason-

ably well, as opposed to letting the system come up with untested arbitrary adaptation plans,

even if that means not attaining the most effective adaptation. Furthermore, since these strategies

are known in advance, it is possible to analyze off-line what problems they can solve and how

well [129]. Predictability means matching the system administrator’s expectation [128]. Dragan

et al. make an interesting distinction between predictability and the sometimes correlated con-

cept of legibility [38]. Predictable behavior matches the system administrator’s expectation of

what a system should be doing to achieve a known goal. For example, if the goal is to reduce

the response time of the system, the system administrator may expect the system to add more

servers. Legibility, on the other hand, is an inference in the opposite direction, meaning that the

system administrator can infer the goal from the observed behavior. Using strategies can help

both predictability and legibility, since strategies are used to ”capture routine human adaptation

knowledge as explicit adaptation policies” [27]. Therefore, the system behavior using a strategy

will match the system administrator’s expectation. Legibility is supported with strategy-based

adaptation because it is easier for the system administrator to identify a behavior from the label

of the strategy being used, and associate that to the goal of the strategy.2 Furthermore, the internal

structure of a strategy can also shed light into the behavior of the system, allowing, for example,

a system administrator to understand the conditions that triggered some adaptive behavior.

To date, strategies have only been used in a reactive way and without considering the latency

of adaptation. By bringing latency into the calculations needed for the selection of a strategy,

we can obtain much better ways to predict the outcomes of a strategy. In addition, by making

the selection of strategies and their execution proactive with look-ahead, we can address the

limitations of reactive adaptation discussed in previous chapters.

In this chapter we present SB-PLA, a strategy-based proactive latency-aware approach. SB-

PLA improves strategy-based adaptation, and allows reaping the benefits of PLA for systems in

which strategy-based adaptation is desired or needed. Section 7.1 gives some background on

strategies, the approaches that use them, and the limitations of those approaches. Section 7.2

describes how SB-PLA works. In Section 7.3, we compare the effectiveness of SB-PLA to

a strategy-based adaptation that does not use the proactive latency-awareness principles. Sec-

tion 7.4 shows how the strategy-based approach scales better than PLA-SDP.

7.1 Background

The use of strategies for self-adaptation was proposed by Cheng et al. [29], and became a key

aspect of the Rainbow framework [53]. Rainbow provides a reusable infrastructure to implement

architecture-based self-adaptive systems. Figure 7.1 shows the self-adaptation loop embodied

2Even though tactics also have labels, they represent primitive adaptation actions that can be used to achieve

different goals, making it more difficult to infer the adaptation intent from their label. For example, the tactic to

decrease the dimmer can be used as the sole action to deal with increased load, or just temporarily, while a new

server is being added.

70

by the Rainbow framework, which resembles the MAPE-K loop. The target system and its en-

vironment are monitored through probes. The monitoring information is aggregated by gauges,

and used to update models within the Model Manager. Although different kinds of models are

supported by Rainbow, the primary models used for adaptation decisions are architectural mod-

els specified in Acme, an architecture description language [52]. The Architecture Evaluator

analyzes the architecture model to determine if there is a need to adapt, and if that is the case,

the Adaptation Manager selects the adaptation strategy most suitable to deal with the current

conditions. The strategy is then executed by the Strategy Executor using effectors to carry out

the changes to the system dictated by the strategy.

System

Layer

Adaptation Layer

Target System

Translation

Infrastructure

Adaptation

Manager

Model Manager

Strategy

Executor

System API
Probes

Resource
DiscoveryEffectors

Gauges

Architecture

Evaluator

Figure 7.1: The Rainbow self-adaptation framework [54].

Rainbow has several customization points, depicted by the cutouts in Figure 7.1 [54]. The

Translation Infrastructure supports the definition of mappings to bridge the gap between the

architectural abstractions in the models and concrete elements in the target system. For example,

when an effector is invoked by the Strategy Executor, the architectural element to be affected

must be translated to the corresponding element in the target system. The Model Manager is

customized with architectural models of the target system, and the Architecture Evaluator is

tailored with the constraints that self-adaptation must maintain for the system. These constraints

are expressed as predicates over the architectural model. The Adaptation Manager is customized

with a repertoire of adaptation tactics and strategies, and a utility function that is used to select

which strategy to use when a constraint has been violated. The Strategy Executor is tailored with

operators that change the target system through the effectors.

As noted above, one of the several customizable aspects of Rainbow is the repertoire of

strategies it can use to adapt the target system when it is not performing as desired. These

strategies are defined in the Stitch language [28]. Stitch allows defining tactics, which then are

composed into strategies. When an adaptation decision has to be made, there may be situations in

71

which multiple strategies from the repertoire are applicable; in that case, strategy selection takes

into account the impact that the applicable strategies would have on the system along different

qualities of interest, such as response time and cost. A utility function combines these impacts

according to a business context (e.g., response time considered more important than cost) in

order to produce a final score for each strategy.

Listing 7.1 shows the Stitch code defining a tactic to set the dimmer value to its minimum

level. The condition block is a predicate over the model that defines when the tactic is applicable.

In this case, the condition is always true because this tactic is idempotent, and because the writer

of the tactic considered that it was reasonable to invoke it at any time. The action block defines

what the tactic does when it is executed, using operators that can change the system. In this

example, the operator setDimmer defined over the model M takes a component of the system as

the first argument, which must be a load balancer, and the value that its dimmer must be set to as

the second argument (line 6). The load balancer of the system is the component M.LB0, and the

minimum value for the dimmer is M.DIMMER MARGIN, a constant defined in the system model.

The effect block defines a predicate that represents the expected outcome of the tactic and it is

used to check whether the tactic completed successfully.

1 tactic TSetMinDimmer() {
2 condition {
3 true;
4 }
5 action {
6 M.setDimmer(M.LB0, M.DIMMER MARGIN);
7 }
8 effect {
9 M.LB0.dimmer == M.DIMMER MARGIN;

10 }
11 }

Listing 7.1: Sample tactic in Stitch.

In Stitch, a strategy is encoded as a decision tree with condition-action-delay nodes [28].

Listing 7.2 shows a sample strategy to reduce the response time as fast as possible encoded in

Stitch. Predicates over the model can be used to specify conditions and guards. For example,

the predicate between square brackets in line 1 is the applicability condition for the strategy,

indicating in this case that the strategy is applicable when the average response time is above the

response time threshold (see [28] for more details about predicates in Stitch). Each node in the

tree has a label (e.g., t1 in line 2) followed by a condition. If the condition is true, the action

following the condition after the operator −> is executed. If more than one node is enabled by its

condition, then one of them is chosen nondeterministically. The action can be either a tactic, or

the keywords done to terminate the strategy successfully, or fail to terminate the strategy with

a failure (e.g., if the adaptation goal was not achieved). The special condition success is true if

the previous tactic was successful, and default is true if no other node is enabled. The children

of each node in the tree are defined within curly braces (e.g., nodes t1a and t1b are children of

node t1).

The strategy in Listing 7.2 has three top-level nodes. In node t1, if the dimmer is not already

at the minimum (! isDimmerMin), the tactic to set the dimmer to its minimum setting is executed

72

1 strategy FastReduceResponseTime [M.LB0.avgResponseTime > M.RT THRESHOLD] {
2 t1 : (! isDimmerMin) −> TSetMinDimmer() {
3 t1a: (success) −> done;
4 t1b: (default) −> fail;
5 }
6 t2 : (isDimmerMin && canAddServer) −> TAddServer() @[180000 /∗ms∗/] {
7 t1a: (success) −> done;
8 t1b: (default) −> fail;
9 }

10 t3 : (default) −> fail;
11 }

Listing 7.2: Sample strategy in Stitch.

(TSetMinDimmer). If this tactic succeeds, the strategy terminates successfully (line 3); otherwise,

it terminates with failure (line 4). Node t2 adds a server with tactic TAddServer if the dimmer is

already at its minimum setting and it is possible to add a server. This node has a delay specified

with @[180000 /∗ms∗/], indicating that after the tactic is started, Rainbow will wait up to 3

minutes for the effect of the tactic to be observed. If neither t1 nor t2 are applicable, node t3

makes the strategy terminate as having failed.

When adaptation is needed, a strategy is selected by first filtering out all the nonapplicable

strategies based on their applicability conditions, and then selecting the one with the higher

score. To compute the score of a strategy, each tactic defines an impact vector that specifies

how different utility dimensions are affected by the tactic (e.g., cost is increased by one unit, and

response time is decreased by 500 ms). Starting at the leaves of the strategy’s tree, the impacts

are aggregated working towards the root using the probability of selecting each child node to

compute the expected impact vector of the parent node. Unless otherwise specified, each child is

assumed to have equal probability of being chosen (see [28] for mode details).

This strategy selection method has two limitations. First, the computation of the impact of

the strategy is largely independent of the context.3 For example, the same impact of adding a

server is assumed to be independent of the traffic arriving at the system, and also independent of

the number of servers already active in the system. The second limitation is that the latency of

the adaptation tactics is ignored. Even though a delay can be specified for a tactic in a strategy,

this delay is only used during the execution of the strategy, but it is not taken into account when

a strategy is being selected. Recent work has addressed the first limitation by using probabilistic

impact models that allow evaluating each strategy in the context of the current state of the system

and environment, and taking into account the stochastic nature of some tactics (e.g., a tactic could

fail with some probability) [21]. However, this evaluation is also time-agnostic. For example,

when the utility impact of a strategy is computed, it is assumed that the environment will not

change during the execution of the strategy, despite the fact that it can include multiple tactics

with latency. A strategy that is the most appropriate for a snapshot of the environment, may not

be the best one when the evolution of the environment is considered. For example, a strategy that

adds a server and then decreases the dimmer level if necessary may not be the most appropriate

if the request arrival rate is already predicted to keep increasing while the server is being added.

In that case, decreasing the dimmer first may be the best course of action. By addressing these

3The initial filtering of strategies based on their applicability condition is context dependent, though.

73

limitations, the impact of executing an adaptation strategy can be better estimated, reflecting

how the utility accrued by the system will change as the environment and the system change

during the execution of the tactic. This, in turn leads to a better selection of the most appropriate

adaptation strategy, thus improving the effectiveness of the adaptation.

7.2 Approach

SB-PLA improves over previous strategy-based adaptation approaches by (i) taking into account

the latency of the different adaptation tactics when computing the utility a strategy provides; and

(ii) taking into account how the environment is expected to evolve during the execution of the

strategy. To accomplish that, it builds on an approach to encoding the decision tree of a strategy

as a discrete-time Markov chain (DTMC) [129], and on PLA-PMC for modeling tactic latency

in the context of an evolving environment.

The overall SB-PLA approach consists in

1. filtering out inapplicable strategies (as is done currently)

2. scoring each applicable strategy using probabilistic model checking to compute the utility

each is expected to accrue over the decision horizon

3. selecting the strategy with the higher score

In the following sections we describe the strategy scoring approach first (7.2.1), and then how a

the overall strategy-based adaptation decision works (7.2.2).

7.2.1 Strategy Scoring

The score of a strategy is computed as the expected utility the system would accrue over the

decision horizon if the strategy was executed. To do that, we use probabilistic model checking

to compute the score, analyzing a formal model of the self-adaptive system composed with the

model of the environment, as in PLA-PMC. However, unlike in PLA-PMC, the model checker

is not used to make the adaptation decision. Instead, the decision is made outside of the model

checker using the scores computed with it.

The main difference with PLA-PMC is that instead of modeling multiple tactics with non-

deterministic starts, which are then resolved by the model checker, the SB-PLA model includes

only the strategy being scored, which is started deterministically at the beginning of the decision

horizon. That is, there is no nondeterminism in the model to be resolved, and thus it is a DTMC

and not an MDP.

The structure of the model for scoring a strategy is depicted in Figure 7.2. The modules for

the clock, the environment, and the system are identical to those used for PLA-PMC. However,

instead of having separate modules for each tactic, there is a single module that encodes the

strategy, including the execution of the tactics it uses. The system module synchronizes with the

strategy module on actions that represent the completion of tactics within the strategy, so that the

effect the tactics can be reflected on the system as they complete.

The encoding of a strategy in PRISM builds on the pattern used by Schmerl et al. [129],

enhanced with latency-awareness. Listing 7.3 shows the PRISM model of the strategy shown in

74

environment

strategy system
...

clock
tick tactic1 complete

tacticN complete

module
shared action

Figure 7.2: Module composition in strategy scoring model.

Listing 7.2. The state variable node indicates the node in the strategy that is being evaluated or

executed, with node=0 indicating the root node. For the purpose of computing utility, whether

a strategy finishes with done or fail is irrelevant, since the system will accrue utility regardless

(although different amounts). Therefore, all the leaf nodes of the strategy are represented by

a single value of the node variable. In this example, this value is 3, and the helper predicate

formula leaf (line 1) is defined to easily identify the leaf node.

The different branches of a node are represented by commands with the following pattern:

sys go & node=nodeId & branchCondition −> 1: (node’=nextNodeId) ;

The predicate sys go is true when it is the turn for the system and its adaptation strategy to

execute actions that do not involve the passage of time. For example, as long as sys go is true,

the strategy can execute multiple instantaneous tactics. Only when the strategy has completed, or

needs the passage of time for a tactic with latency to make progress, does it have to synchronize

with the clock on the tick action (lines 17 and 18 respectively). The node=nodeId conjunct of

the guard indicates which node these branches correspond to. Lines 8-10 represent the branches

of the root node of the strategy, thus the conjunct node=0. The branchCondition conjunct is the

condition that the branch has in the Stitch encoding of the strategy. In the case of the default

branch, the condition is the conjunction of the negation of the conditions of all the other branches

for that node (line 10). The update portion of these commands sets the variable node to the index

of the node that corresponds to the child for that branch, nextNodeId, as in the update of the

commands in lines 8-10.

The encoding of the action part of a strategy node depends on whether the tactic used in the

action has latency or not. If the tactic is instantaneous, as is the case for TSetMinDimmer() in

Listing 7.2, line 2, the command in its PRISM encoding follows the pattern:

[tacticAction] sys go & node=nodeId −> 1: (node’=nextNodeId) ;

where tacticAction is the label for the action that synchronizes with the system module upon

the execution of the tactic (see lines 5-8 in Listing 4.3, for example). The value nextNodeId in

the update portion of the command corresponds to the node that follows in the strategy after

75

1 formula leaf = (node=3);
2

3 module Strategy
4 node : [0..3] init 0;
5 exec : [0.. MAX LATENCY] init 0; // remaining tactic execution
6 tacticRunning : bool init false; // tactic with latency running
7

8 [] sys go & node=0 & (!isDimmerMin) −> 1: (node’=1);
9 [] sys go & node=0 & (isDimmerMin & canAddServer) −> 1: (node’=2);

10 [] sys go & node=0 & !(!isDimmerMin) & !(isDimmerMin & canAddServer) −> 1: (node’=3);
11

12 [MinDimmer start] sys go & node=1 −> 1: (node’=3);
13

14 [] sys go & node=2 & !tacticRunning −> 1: (tacticRunning’=true) & (exec’=TAddServer LATENCY); // tactic start
15 [AddServer complete] sys go & node=2 & tacticRunning & exec=0 −> 1: (tacticRunning’=false) & (node’=3); // tactic

completion
16

17 [tick] leaf −> 1: true; // strategy finished
18 [tick] exec > 0 −> 1: (exec’=exec−1); // tactic progress
19

20 // prevent all other tactics from executing
21 [RemoveServer start] false −> true;
22 [DecDimmer start] false −> true;
23 [IncDimmer start] false −> true;
24 [MaxDimmer start] false −> true;
25 endmodule

Listing 7.3: Sample strategy in PRISM

the execution of the tactic. Line 12 in Listing 7.3 is an example of this encoding. For this

particular strategy, all paths in its tree have a leaf immediately after the first tactic, and thus,

they transition directly to the leaf node (e.g, node’=3 in line 12). In cases with longer paths, it

would be necessary to model an intermediate node to transition to after the tactic is executed, but

before the selection of the next child node, much like the root node (node=0) models the branch

selection at the beginning of the strategy.

For tactics with latency, the PRISM encoding consists of three parts: starting the tactic,

allowing the tactic to make progress, and handling the completion of the tactic. The starting of

the tactic is done through a command with the following pattern:

[] sys go & node=nodeId & !tacticRunning −> 1: (tacticRunning’=true)&

(exec’=tacticLatency);

The boolean variable tacticRunning is true only if a tactic with latency is already running.4 There-

fore, this variable has to be false in the guard for the command to start a tactic. The update portion

of the command sets this variable to true and the variable exec to the latency in periods of the

tactic being started. In line 14, the constant TAddServer LATENCY represents the latency for the

tactic AddServer. The exec variable represents the number of periods left before the running tac-

tic completes. Since it would be possible to have more than one tactic with latency in the strategy,

the range of exec is defined up to the maximum of the latencies of all the tactics (line 5).

4Stitch does not support concurrent tactic execution; thus a boolean variable is sufficient.

76

The progress of the tactic is handled by line 18, regardless how many tactics with latency

the strategy has. This command decreases exec each time the model clock ticks until the tactic

execution completes.

The completion of the tactic is modeled with a command of the form

[tacticAction] sys go & node=nodeId & tacticRunning & exec=0 −>

1: (tacticRunning’=false) & (node’=nextNodeId);

That is, when the remaining execution time of the running tactic reaches zero, the tactic has com-

pleted. At that point, the strategy synchronizes with the system module on the action tacticAction

to reflect the impact of the tactic completion on the system state. As in the case with a tactic with

no latency, the update portion of the command sets node to the node that follows in the encoding

of the strategy tree.

When the execution of the strategy reaches a leaf node, the module stays in line 17, allow-

ing the clock module to make progress freely. This allows the environment evolution and the

accounting of utility to continue throughout the decision horizon even if the strategy finishes

before the end of the horizon.5

At the end of the encoding of the strategy in PRISM (lines 21-24), there is a block of com-

mands with false guards that synchronize on all the tactic actions that are not used by the strat-

egy. This is needed to prevent the system module from executing the commands associated with

those tactics, which would be unconstrained otherwise. For example, without these commands,

the system could arbitrarily remove a server if the server count is greater than one, even though

the strategy does not use that tactic. These commands prevent that from happening.

To compute the score of a strategy, the module of the strategy has to be composed with the

other modules shown in Figure 7.2. Operationally, this means concatenating the PRISM module

for the strategy with the code for the other modules to create a complete model. Then, the score

of the strategy is computed as the expected utility accumulated until the end of the decision

horizon, using the PRISM model checker to analyze the following PCTL property extended with

rewards.

Rutil

=? [F
cend]

This computation is encapsulated in a function evaluateStrategy(s, c, env), where s is the

strategy to be evaluated; c is the current state of the system, which is used to generate the initial

state of the variables in the model; and env is a model of the predicted evolution of the environ-

ment. The following section explains how this function is used in the overall adaptation decision

with SB-PLA.

7.2.2 Adaptation Decision

The adaptation decision has to determine which strategy from the repertoire, if any, should be

started to maximize the expected utility that the system will accrue over the decision horizon.

To be proactive, this decision has to be done periodically, so that if a strategy involves a tactic

5In practice, another strategy may be invoked to fill out the horizon. However, accounting for that would require

analyzing a model that would not only score a strategy but also make decisions about how to adapt after that strategy.

As a trade-off favoring scalability, we chose to limit the analysis to the scoring of a single strategy.

77

with latency, it can be started with the necessary lead time. However, since the decision is done

periodically without a concrete need for adaptation as a trigger, it is necessary to consider the

possibility of not adapting when making the adaptation decision. To this end, we define the NoOp

strategy, which has no actions and is always applicable.

Algorithm 7.3 shows how the adaptation decision is made. The function SBPLA takes the

current system configuration, and a model of the predicted evolution of the environment as input,

and returns the strategy selected by the adaptation decision. The algorithm starts by initializing

s∗, the selected strategy, to NoOp, so that this strategy is the result in case no other strategy is

applicable, or if no other applicable strategy has a higher score than NoOp. It then computes

S, the set of all the strategies from the repertoire that are applicable in the current system state

(line 3). Note that NoOp is not in the repertoire. If S is empty, the result is NoOp, otherwise,

the best strategy has to be selected using the scoring approach presented in the previous section.

In the latter case, v∗, representing the best score, is initialized to the score of the NoOp strategy

given by the evaluateStrategy function (line 5). For each strategy in S, the score of the strategy

is computed, and only if it is higher than the previous best score, the best strategy and best score,

s∗ and v∗ respectively, are updated (lines 8-11). In the end, the best strategy is returned, which

constitutes the outcome of the SB-PLA adaptation decision.

1: function SBPLA(c, env)

2: s∗ ← NoOp
3: S ← {s ∈ Repertoire : isApplicable(s, c)}
4: if S 6= ∅ then

5: v∗ ← evaluateStrategy(NoOp, c, env)
6: for all s ∈ S do

7: v ← evaluateStrategy(s, c, env)
8: if v > v∗ then

9: v∗ ← v
10: s∗ ← s
11: end if

12: end for

13: end if

14: return s∗

15: end function

Figure 7.3: SB-PLA adaptation decision algorithm.

7.3 Effectiveness

To show how SB-PLA improves over non-proactive non-latency-aware strategy-based adaptation

(SB), we compare two runs of the RUBiS simulation (see Section 8.1.1), one with each approach.

These runs were done with both approaches implemented in Rainbow. The SB approach was

implemented with the scoring of the strategy implemented using probabilistic model checking

78

as well. The only difference between the approaches was that in SB, the clock module was

modified to allow the strategy to execute completely before advancing the clock to compute the

accumulated utility over the decision horizon, thereby, ignoring the latency of the tactics used by

the strategy. Table 7.1 summarizes the strategies available to the system.

Table 7.1: Adaptation strategies for RUBiS.

Strategy Description

AddServer Adds a server

ReduceContentAndAddServer Decreases the dimmer one level and adds a server

MinimizeContent Sets the dimmer to the minimum level

RestoreFullContent Sets the dimmer to the maximum level

RemoveServer Removes a server

The results for SB and SB-PLA are summarized in Table 7.2. Although both approaches are

close in terms of the average number of servers used and the optional content served, we can

see that SB-PLA attains much higher utility (about 50% more), and has considerably fewer late

responses. Plots of different metrics shown in Figure 7.4 and Figure 7.5 give some insight into

the reasons why SB-PLA does better. As expected, SB-PLA starts the strategies that involve the

addition of a server with more lead time, taking into account the latency of that tactic. SB never

used the strategy ReduceContentAndAddServer, and always used the strategy AddServer when a

new server was needed. This is expected, since SB assumes that the addition of a server takes

no time, and consequently, it sees no benefit in reducing the content while the server is being

added. Interestingly, SB-PLA used both of these strategies. In most cases it used ReduceCon-

tentAndAddServer to deal with the latency. However, at time 1440, it used AddServer, apparently

because the upward trend of the arrival rate was low enough to give it time to add a server without

reducing the content. This shows that SB-PLA is more nuanced with respect to the timing of the

adaptation in the context of the evolution of the environment.

Table 7.2: Comparison of strategy-based approaches.

Approach Utility % Optional % Late Avg. Servers

SB 1072 72.6 17.2 1.9

SB-PLA 1568 66 2.8 1.8

7.4 Scalability Analysis

We now assess the scalability of SB-PLA compared to PLA-SDP.6 Solving the adaptation deci-

sion problem with either a tactic-based or a strategy-based approach involves the computation of

6This section only compares SB-PLA and PLA-SDP. The validation of the claims of the thesis is presented in

Chapter 8.

79

20

40

60

re
q
u
e
s
ts

/s

0

1

2

3

s
e
rv

e
rs

0.00

0.25

0.50

0.75

1.00

d
im

m
e
r

0

3

6

9

12

re
s
p
.
ti
m

e
 (

s
)

−50

0

50

u
ti
lit

y

0

300

600

900

0 500 1000 1500 2000 2500

time

c
u
m

.
u
ti
lit

y

Figure 7.4: Sample run of SB adaptation.

the estimated utility the system would accrue for numerous system and environment state pairs.

This computation outweighs other simpler operations the algorithms use, since it involves not

only computing the utility, but also predicting the inputs to the utility function, such as the re-

sponse time. For this reason, we compare the scalability of the two approaches in terms of the

number of utility calculations that they have to perform, which we denote with K.

In PLA-SDP, a utility calculation must be performed for every possible system configuration,

at each possible environment state in a given period. The number of possible system configura-

tions is |C|. The number of environment states in a given period in the decision horizon depends

on the structure of the environment DTMC, and it may be different for different periods, as is the

case in a probability tree. Thus, we use the maximum number of environment states in a period

and denote it by emax. The evaluation of all system configurations in all possible environment

80

20

40

60

re
q
u
e
s
ts

/s

0

1

2

3

s
e
rv

e
rs

0.00

0.25

0.50

0.75

1.00

d
im

m
e
r

0.00

0.25

0.50

0.75

re
s
p
.
ti
m

e
 (

s
)

−50

0

50

u
ti
lit

y

0

500

1000

1500

0 500 1000 1500 2000 2500

time

c
u
m

.
u
ti
lit

y

Figure 7.5: Sample run of SB-PLA adaptation.

states has to be done for each period in the decision horizon, and therefore repeated H times.

The number of utility calculations for PLA-SDP is then

KPLA-SDP = |C|emaxH (7.1)

In SB-PLA, the number of utility calculations depends mainly on the number of nodes (leaves

included) in the decision tree defined by the strategy. We characterize the tree by its branching

factor, b, and its depth in terms of tactics, d. The worst case for the number of utility calculations

is when all the tactics in the strategy have no latency, because all the leaves of the decision tree

are possibly reachable by the first period of the decision horizon, requiring utility calculations

81

through the end of the horizon. Since the number of leaves is bd, and assuming that the number

of applicable strategies is g, the number of utility calculations for SB-PLA is

KSB-PLA = gbdemaxH (7.2)

If the tactics in a strategy have a latency equal to one decision period, the number of utility

calculations in each of the first d periods of the decision horizon increases as the number of

nodes at the corresponding level of the tree increases. That is, for all of the first d periods, the

number of utility calculations is the number of nodes in the decision tree times the number of

environment states; and for the remaining H − d periods, it is equal to the number of leaves in

the decision tree times the number of environment states. The number of internal nodes in a tree

is given by (bd− 1)/(b− 1)− 1, thus the number of utility calculations for SB-PLA when tactics

have one-period latency is

K1
SB-PLA = g

(

bd − 1

b− 1
− 1 + bd(H − (d− 1))

)

emax (7.3)

Generalizing (7.3) for tactics with latency L, we have

KL
SB-PLA = g

(

L

(

bd − 1

b− 1
− 1

)

+ bd(H − L(d− 1))

)

emax (7.4)

A direct comparison of how PLA-SDP and SB-PLA scale is not possible because the number

of calculations for each depends on different parameters. For PLA-SDP, the number of system

configurations will have the most impact, since the H , and emax are likely to be much smaller

than the size of C. On the other hand, for SB-PLA, the number of strategies and their structure

have the most influence on the number of calculations it requires. Since the size of C is affected

by the number of tactics and their latency—due to the need to keep track of tactic progress—we

can make some assumptions and compute |C| as a function of the number of tactics in the system

and their latency. In addition, we can make an assumption about how the number of tactics affect

the number of applicable strategies and compute g. In this way, we can compare the scalability

of the two approaches varying the number of tactics and their latency.

Let us assume that each pair of tactics controls a property of the system with three possible

values. If a is the number of tactics, then the number of possible system configurations, not

accounting for tactic progress tracking, is 3a/2. If the tactics have latency, and assuming all

tactics have latency L, then the number of system states needed to keep track of tactic progress

is (L+ 1)a. Thus, we can compute the number of system configurations as

|C| = 3a/2(L+ 1)a (7.5)

We assume that the number of applicable strategies is half the number of tactics, since the number

of strategies in the repertoire will be smaller than the number of tactics, and not all of them are

applicable for a given adaptation decision. For the rest of the parameters, the following values

are used: H = 10, emax = 9, b = 2, and d = 3.

Figure 7.6 shows plots of the number of utility calculations needed for each approach with

these assumptions as the number of tactics increases, with each plot using a different tactic

82

latency. We can observe that the number of calculations increases much faster for PLA-SDP as

the number of tactics increases, especially considering that the plots use a logarithmic scale. In

addition, it is important to note that in SB-PLA each strategy can be scored independently of

the others. Therefore, it is possible to parallelize the adaptation decision, making SB-PLA even

more scalable.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

L: 0 L: 1

L: 2 L: 3

1000

10000

1e+04

1e+06

1e+08

1e+04

1e+06

1e+08

1e+10

1e+05

1e+08

1e+11

4 6 8 10 12 4 6 8 10 12

4 6 8 10 12 4 6 8 10 12

number of tactics

u
ti
lit

y
 c

a
lc

u
la

ti
o

n
s

● PLA−SDP SB−PLA

Figure 7.6: Scalability comparison of PLA-SDP and SB-PLA.

83

7.5 Summary

In this chapter we have presented SB-PLA, an alternative proactive latency-aware self-adaptation

approach based on adaptation strategies. Instead of having the freedom to compose adaptation

tactics in every feasible way as PLA-PMC and PLA-SDP do, this approach is limited to selecting

the best strategy—a predefined composition of tactics—from a repertoire. Doing this may be

desired for reasons of scalability and trust, limiting the adaptive behavior to strategies that are

understandable by humans, and have been tested before.

We showed that SB-PLA scales much better than the other approaches presented in this thesis,

while still providing an improvement over non-PLA strategy-based adaptation. Therefore, SB-

PLA could be a suitable compromise for systems with large adaptation spaces in which the

decision time of the other approaches would overrun the desired or needed adaptation period.

84

Chapter 8

Validation

This chapter presents the validation of the claims of the thesis, which was introduced in Chapter 1

and is restated here.

We can improve the effectiveness of self-adaptation over reactive time-agnostic

adaptation by (a) explicitly considering the latency of adaptation tactics, (b)

adapting proactively, and (c) potentially allowing concurrent execution of adap-

tation tactics.

The principles of proactive latency-aware adaptation introduced in Chapter 3, and its main

approaches presented in chapters 4 and 5 realize the key ideas stated in (a), (b), and (c) above. In

this chapter, we focus on the validation of the claims described in Section 1.4, summarized here:

Claim 1. The approach improves the effectiveness of self-adaptation.

Claim 2. The approach is applicable to different kinds of systems.

Claim 3. The approach scales to systems of realistic size.

To this end, we use two systems in completely different domains: RUBiS, a web system; and

DART, a self-adaptive formation of drones. The systems are described in Section 8.1 first, and

the results and evidence that substantiate the claims of the thesis are presented in Section 8.2.

8.1 Validation Systems

We used two systems for the validation of the thesis, RUBiS and DART. These systems are dif-

ferent in several ways, not only in their application domain, but also in the kind of adaptation

goal, the adaptation frameworks used to implement them, and the kinds of environment predic-

tions they use. Table 8.1 summarizes the difference between these systems, which are described

in detail in the following sections.

8.1.1 RUBiS

RUBiS was already introduced in Section 1.1. Here we provide more details about its implemen-

tation, and formalize its adaptation goal. In addition, we describe the RUBiS simulation, which

was used for some of the experiments.

85

Table 8.1: Validation systems.

RUBiS DART

domain website formation of unmanned air

vehicles in hostile environment

adaptation goal maximize utility according to

SLA at minimum cost

maximize number of targets

detected while keeping the

probability of surviving the

mission above a threshold

environment

prediction

forecast based on past

environment states using time

series predictor

forward-looking sensors that give

false positives and false negatives

for targets and threats

measure of

performance

prediction

queuing theory formulas that model the sensor

performance, and the effect of

threats

implementation

frameworks

two different implementations:
• Rainbow [53]
• custom PLA self-adaptation

loop in OMNeT++ simulation

two different implementations:
• DART architecture [65]
• custom PLA self-adaptation

loop in C++ simulation

adaptation tactics add server, remove server,

increase dimmer, decrease

dimmer

increase altitude, decrease

altitude, switch to tight formation,

switch to loose formation, turn

ECM on, turn ECM off

Although RUBiS has been used extensively for research in web application performance,

and various areas of cloud computing [39, 50, 74, 122], it was not originally designed as a self-

adaptive system, since it does not provide actuators suitable for adaptation. We started with the

version of RUBiS extended with brownout support [83], and added a load balancer, as shown

in Figure 1.1, so that the number of servers could be changed dynamically. Also, an adaptation

layer was added with monitoring, adaptation, and execution components to implement the self-

adaptation loop depicted in Figure 3.2.

We included two pairs of adaptation tactics that can be used to deal with the changing arrival

rate and the load it induces. One pair of tactics can be used to add and remove servers, thus

changing the capacity of the system. The tactic to add a server has a latency λ.1 The inverse

tactic removes a server. Although this requires waiting for the server to complete the processing

of its requests, we assume that time to be negligible, and thus assume the tactic to be immediate.2

The other pair of tactics leverages the brownout paradigm. All responses that RUBiS provides

1The latency is assumed to be constant, but if it were a random variable, λ would be its expected value.
2This is just a choice we made for this example. If that time were not negligible compared to the decision period,

the tactic could be modeled as a tactic with latency.

86

must include mandatory content, such as the details of an item being browsed. The dimmer in

brownout, in this case, controls the proportion of responses that include optional content, which

in this case is a list of recommended related items. In that way, it is possible to use the dimmer

to control the load on the system that is induced by the requests users make. The value of the

dimmer can be thought of as the probability of a response including the optional content, thus

taking values in [0..1]. To control the dimmer, the system has two immediate adaptation tactics

that increase and decrease its value. We allow tactics to be executed concurrently only if they

belong to different pairs. For example, if a server is being added, a server cannot be removed,

but it is possible to increase or decrease the dimmer.

The goal of self-adaptation in our example, introduced in Chapter 1 and repeated here for

convenience, is to maximize the utility provided by the system at the minimum cost. The utility

is computed according to a service level agreement (SLA) with rewards for meeting the average

response time requirement in a measurement interval, and penalties for not meeting it [77]. The

cost is proportional to the number of servers used. The SLA specifies a threshold T for the

average response time requirement. The utility obtained in an interval depends on whether the

response time requirement is met or not, as given by

U =

{

τa(dRO + (1− d)RM) if r ≤ T

τ min(0, a− κ)RO if r > T
(8.1)

where τ is the length of the interval, a is the average request rate, r is the average response time, d
is the dimmer value, κ is the maximum request rate the site is capable of handling with optional

content, and RM and RO are the rewards for serving a request with mandatory and optional

content, respectively, with RO > RM .

For our experimental setup, RUBiS was deployed on a quad-core server running Ubuntu

Server 14.04 as the host operating system (OS), with three virtual machines (VM), also running

Ubuntu, each pinned to a dedicated core. These cores were isolated, and thus not used by the

host OS. The VMs were used to deploy up to three web servers with RUBiS hosted in an Apache

HTTP Server. The load balancer HAProxy [63] was run in the host OS to distribute requests

among the servers using the round-robin algorithm. In order to keep the latency of the tactic to

add a server experimentally controlled, the server VMs were kept running at all times, and the

addition and removal of a server was simulated by enabling and disabling the server in the load

balancer, respectively. When the tactic to add a server was used, the execution manager enabled

the server in the load balancer after a time of λ had elapsed, simulating the latency of the tactic.

The tactic to remove a server disconnects the server from the load balancer, but lets it process all

the requests already in, or queued for, that server. The adaptation layer (monitoring, adaptation

decision, execution manager, and knowledge model) was also deployed in the host OS. A second

computer was used to generate traffic to the website using requests traces previously recorded,

which were replayed using a client able to make as many concurrent requests as needed to re-

produce the requests according to their timestamps. All the requests target a single URL in the

system, which in turn selects a random item from the auction to render its details page.

To implement the self-adaptation goal using PLA, we had to define the decision utility func-

tion Û , and implement the ability to generate an environment model capturing the predicted en-

vironment behavior. The latter is done as described in Section 3.5. For this case, we used a Holt’s

87

time series predictor with autoregressive damping [70]. The monitoring component measures the

average request arrival rate at the load balancer over a decision period. These observations are

supplied to the predictor so that it can update its internal model, and the predictor is then used to

obtain the predictions needed for building the environment DTMC (see Section 3.5 for details).

The SLA defined in (8.1) assigns utility per measurement interval, and the goal of the system

is to maximize the utility it accumulates. Therefore, the decision utility function is a simple

additive utility function implementing (8.1), with two additional considerations. The first one is

to achieve the secondary goal of minimizing cost. To that end, Û is defined so that if U(c1, e) =
U(c2, e), then Û(c1, e) > Û(c2, e) if c1 has lower cost. This is achieved by rounding the original

utility values and scaling them so that this additional preference ordering due to cost can be

represented by the values in between the original values. The second consideration is to avoid

unstable solutions that would make it very difficult to regain control of the system. In particular,

in a case in which all the configurations would exceed the response time threshold, the utility

function would choose the one with the smallest number of servers to minimize cost. This is

not the right decision because removing resources from an overloaded system would cause the

backlog of requests to increase at a higher rate, making the recovery of the system in subsequent

decisions even more unlikely. Therefore, an exception to this rule is included in Û to favor the

configuration with the most servers and lower dimmer setting in such a case.

The utility function U in (8.1) is a function of the response time the system provides. For

the decision utility function Û , it is necessary to estimate the response time that the system

would attain under a certain configuration and state of the environment. In this case, we use a

queuing theory model to compute the average response time for each period based on the system

configuration and the environment state. Considering that web servers can only processes a

limited number of requests simultaneously while the rest are queued, we use a limited processor

sharing (LPS) model [145], which considers a system in which the number of concurrent requests

that can be processed by each server simultaneously is limited by a constant. We set this constant

equal to the maximum number of processes configured for each Apache HTTP server in the

system.

One important parameter that queuing theory needs in order to compute the estimated re-

sponse time is the service rate, which is the number of requests a server can process per second.

Although this parameter can be obtained through profiling, it varies throughout the execution of

the system for several reasons. For example, when servers are added to the system, their cache is

cold, making the service rate lower until their cache warms up. Also, there may be background

processes that affect the service rate, and in cloud computing settings, the sharing of physical

resources between virtual servers can also have an effect on the service rate. To make matters

worse, service rate is not a parameter that is easily measurable because it is based on the time it

takes to service requests without contention, something hardly achievable when the system is in

normal use.

To deal with this issue, researchers have proposed using Kalman filters to estimate the value

of the service rate as it changes at run time [50, 89, 146]. The high level idea is that other

measurable parameters are related to this hidden parameter through a performance model. Con-

sequently, the filter can update the estimation of the hidden parameter to reduce the error the

model would have predicting the observed parameters. For example, suppose that in a simple

performance model, the response time is a function of the request arrival rate, the service rate,

88

and the utilization of the server. Except for the service rate, all the other values can be measured.

If the current estimation of the service rate is erroneous, the performance model would predict

responses that differ from the measured ones. In that case, the Kalman filter updates the estima-

tion of the service rate, to minimize this error. In addition, it also has smoothing characteristics

that reduce jitter in the estimation.

For our implementation, we used OPERA, which supports performance modeling and uses

a Kalman filter for parameter estimation [112]. In addition to dealing with the changing service

rate due to the effects mentioned above, the use of the Kalman filter also helps to deal with

the limitations of queuing theory regarding transient states. The queuing theory model predicts

response time in steady state. However, when there is an increase in traffic that surpasses the

current capacity of the system, a backlog of requests builds up. Until this backlog is worked

off, returning to steady-state queue lengths, the observed response time is higher than normal,

even if the service rate does not change. In this case, the Kalman filter will adjust the estimated

service rate to match the observed reality, and this deflated service rate will, in turn, allow the

queuing theory model to provide better response time estimates. As the backlog is worked off,

the filter keeps updating the service rate, until it eventually matches the actual service rate when

the system is in steady state.

RUBiS Simulation

In addition to using the RUBiS software, a simulation of it was also used for experimentation.

Having a simulation is advantageous since it allows us to compress time, replicate experiments

with exactly the same conditions, and simulate larger platforms. Time can be compressed in a

simulation in two ways. There is never a real wait for something to happen, since the simulation

clock can just be advanced to the next relevant event. In addition, operations that take time and

whose actual result is not needed can be simulated by calculating when the operation would be

completed and just inserting a completion event at that time into the future, without actually

performing the time consuming operation.

To support experimentation through simulation, we developed SWIM, a simulator of web

applications like RUBiS. SWIM was implemented using OMNeT++, an extensible discrete event

simulation environment [139]. SWIM does not simulate the actual functionality of the web site,

or what particular pages a user accesses. Instead, it only simulates processing of requests at a

high level—simply as a computation that takes time to execute—which is sufficient to evaluate

approaches in terms of qualities such as response times, type of responses served, and number

of servers used. In addition, SWIM provides a TCP interface that allows the adaptation manager

to access probes and effectors that it can use to monitor and execute adaptation actions on the

system. The probes provide the following information: current dimmer value, number of servers

and active servers, utilization of each server, average request arrival rate, and average throughput

and response time for the two kinds of responses. The effectors allow the adaptation layer to

change the dimmer setting, remove and add servers. All operations have negligible execution

time, except for adding a server, which takes an amount of time configurable in the simulation.

This time simulates the time it takes to boot a server, or instantiate a new VM in the cloud.

The users’ requests are simulated by reading their time stamps from previously recorded

traces from real websites, and replaying the traces with the requests happening with their recorded

89

interarrival time. The requests arrive at the load balancer, and are forwarded to one of the servers

following a round robin algorithm. Each server simulates the processing of requests in the web

server. The maximum number of concurrent requests in a server is configurable so that it can

match the maximum number of processes configured in the real web server. When more than

one request is being processed by a server, the sharing of its processor is simulated by inflat-

ing its processing time accordingly. Requests assigned to a server that is already processing the

maximum number of concurrent request are queued and serviced in FIFO order.

The processing of a request is simulated only in terms of the time that it takes, not the results

it produces. The service time (i.e., the amount of time processing the request would take if

there is no contention) is drawn from a normal distribution truncated from below so that every

request has positive service time. The server supports the brownout approach, and has a dimmer

parameter that controls the probability of a response including the optional content. As it is done

in the real RUBiS, when a request arrives at the server, a random number is drawn from a uniform

distribution to determine whether its response should include the optional content. The service

time is then drawn from a random distribution whose parameters depend on the type of response.

Although the parameters of the two distributions are configurable in a flexible way, generally the

service time for responses that include the optional content have higher mean and variance.

In SWIM, the effect of a cold cache is also simulated by increasing service times when a

server is newly instantiated, emulating how cache misses add to the normal steady state service

time. As the server processes more requests, this effect gradually disappears.

All the random number generators used in the simulation are seeded so that it is possible to

replicate experiments with the same conditions, and thus make a direct comparison of different

adaptation approaches. The system is available for others to use at https://github.com/

cps-sei/swim

8.1.2 DART

This system represents a simulated team of unmanned aerial vehicles (UAVs) developed in the

context of the DART (Distributed Adaptive Real-Time) Systems project at the Carnegie Mellon R©

Software Engineering Institute [65]. In particular, we use a scenario of DART that embodies a

trade-off that a team of drones faces during a reconnaissance mission in hostile environment.

Namely, there is a trade-off between detecting targets on the ground—the main purpose of the

mission—and avoiding threats that could jeopardize the mission. Since the environment (i.e., the

location of targets and threats) is discovered only during the execution of the mission, and even

then, with some uncertainty, it is not possible to pre-plan the complete execution of the mission.

Self-adaptation is required for the team to best deal with the uncertain environment.

In this system, the team of drones has a designated leader and they all fly in formation, with

the leader at the center. High level decisions, such as what formation to adopt, where to fly, or

whether to move the formation up or down, are made autonomously by the leader (i.e., these

UAVs are not remotely piloted). The leader communicates these decisions to the rest of the

team to be executed. Each drone controls its own flight, following the leader’s instructions, and

implements a portion of a collision avoidance protocol that allows them to fly in close proximity

without colliding.

90

https://github.com/cps-sei/swim
https://github.com/cps-sei/swim

Problem Formulation

The team of drones has the following mission: to follow a planned route at constant forward

speed, detecting as many targets on the ground as possible along the route. There are threats

along the route that can destroy the team, so there is a trade-off between avoiding threats and

detecting targets. Both targets and threats are static, but neither their number nor their location

is known a priori. The team has to adapt by changing altitude and/or formation to maximize the

number of targets detected, taking into account that if the formation is lost to a threat, the mission

fails. The lower the team flies, the more likely it is to detect targets, but also, the more likely

it is to be hit by a threat. Changing formation also involves a similar trade-off, since flying in

tight formation reduces the probability of being hit by a threat, but at the same time reduces the

chances of detecting targets.

We assume that the route is divided into D segments of equal length, and an adaptation

decision is made periodically at the boundary between segments. Since the team flies at constant

speed, there is a direct mapping between decision periods and segments (i.e., we can refer to

decision period t and segment t interchangeably). Let us define the configuration c ∈ C of the

team as the pair (a, φ), where a is the altitude and φ is the formation of the team. The environment

state for segment i, referred to as ei, is a pair (ρi, zi), where ρi is the probability that it contains a

target, and zi is the probability that it contains a threat. We discuss later how these probabilities

are obtained.

Ignoring the requirement to survive for the moment, the team’s goal is to adapt, changing its

configuration in order to maximize the expected number of targets detected, given by

q =
D
∑

t=1

(

t
∏

i=1

s(ci, ei)

)

g(ct, et) (8.2)

where s(ci, ei) is the probability of survival at time i when the configuration of the team is ci
and the environment is ei; and g(ct, et) is the expected number of targets to be detected at time

t when the team is in configuration ct and in environment et.
3 The first factor in the summation

in (8.2) represents the probability of the team being operational at time t, which requires having

survived since the start of the mission. The probability of survival at each time is the complement

of the probability of being destroyed. A threat can destroy the team only if both are in the same

segment. However, a threat has range rT , and its effectiveness is inversely proportional to the

altitude of the team. In addition, the formation of the team affects the probability of it being

destroyed. The team can be in two different formations: loose (φ = 0), and tight (φ = 1).4

The latter reduces the probability of being destroyed [140] by a factor of ψ. Taking altitude and

formation into account, the probability of the team with configuration c being destroyed is5

d(c) =

(

(1− φ(c)) +
φ(c)

ψ

)

max
(

0, rT − a(c)
)

rT
(8.3)

3In this scenario there is at most one target per segment, so g(ct, et) is, effectively, the probability of detecting a

target at time t.
4The time required to change formations is assumed to be negligible. Consequently, no intermediate formation

states are considered.
5We use a(c) and φ(c) to refer to the properties of configuration c.

91

If the probability of segment t having a threat is z(et),
6 the probability of the team surviving

in segment t is

s(ct, et) = 1− z(et)d(ct)

The expected number of targets found in a segment depends on the probability of a target

being there and the configuration of the team. The probability of detecting a target given that

the target is in the current segment is inversely proportional to the altitude of the team [135].

In addition, flying in tight formation reduces the detection probability due to sensor occlusion

or overlap. The expected number of detected targets in segment t with environment et and

configuration ct is

g(ct, et) = ρ(et)

(

(1− φ(ct)) +
φ(ct)

σ

)

max
(

0, rS − a(ct)
)

rS

where rS is the range of the sensor (i.e., at an altitude of rS or higher, it is not possible to detect

targets), and σ is the factor by which the detection probability is reduced due to flying in tight

formation.

The expected number of targets detected during the whole mission according to (8.2) takes

into account the fact that targets can by detected only as long as the team has not been hit by

a threat. However, it does not express any survivability requirement. As it is, it may happen

that, upon not seeing any more targets ahead for the remainder of the mission, the team commits

suicide, given that surviving will not help it detect more targets. One possible way to solve this

issue is to include a reward for surviving the mission. However, the reward has to be calibrated

with respect to the number of targets that could be detected during the mission. A reward too

large would cause the team to be very risk-avoiding; but if it is too small, it will make the team

take riskier behavior for a better chance at detecting targets. Given that the number of targets is

not known a priori, this reward is very difficult to calibrate. Furthermore, different missions may

require different trade-offs between target detection and survivability, and having to express the

trade-off by balancing rewards would be unwieldy.

Instead, we want to explicitly include the survivability requirement in the adaptation goal.

Using one of the adaptation goal combinations introduced in Chapter 6, namely {RG3, CS2},
we can express the DART adaptation problem over the decision horizon as

maximize
c1,...,cH

H
∑

t=1

(

t
∏

i=1

s(ci, ei)

)

g(ct, et)

subject to

H
∏

t=1

s(ct, et) ≥ P

(8.4)

That is, targets can be detected as long as the survivability constraint is satisfied, and the proba-

bility of surviving must be at least P .

6We use ρ(e) and z(e) to refer to the properties of environment state e.

92

Environment Monitoring and Model

There could be various ways to obtain the probabilities that represent the environment state. For

example, these probabilities could be assigned based on the expert opinion of some operator, or

using previously gathered intelligence. For this scenario, we assume that the team has a way

of sensing the environment ahead with some finite horizon equal to the decision horizon. More

concretely, the team has a low quality sensor7 that makes observations of the segments ahead,

giving an output of 1 for the detection of a threat in a segment, and 0 otherwise. The same is

done for targets, and we assume that targets and threats can be sensed independently, through

the use of two different sensors, or with a single sensor that can distinguish between both types

of objects. In each monitoring interval, n samples are taken for each segment in the horizon

of length H . The observations are accumulated over the monitoring intervals, so that when a

segment first enters the look-ahead horizon, it will obtain n observations. In general, segment i
in the horizon (with i = 0) for the current segment, will have n(H − i+ 1) samples. In order to

build and maintain an environment model, it is necessary to keep track of two numbers for each

segment and each object type: the number of detections, and the number of non-detections (or

equivalently, the number of samples taken, and the number of detections).

To build the environment model, we assume that the two random variables in the environment

state (i.e., probability of segment containing a threat, and a target, respectively) are independent.

Given that, we can construct two independent environment models, and then join them to produce

the joint environment model. We first describe how the independent threat and target environment

models are created, and then explain how they are joined.

Since the team visits one segment per decision interval, t time steps into the future, the team

will be t segments further down the route. Using the information captured by the environment

monitoring, we can describe the probability density for ρt and zt using the Beta distribution [12].

For each segment, the number of detections and non-detections correspond to the parameters

α and β of the Beta distribution, respectively. This continuous distribution can then be dis-

cretized using the Extended Pearson-Tukey (EP-T) three-point approximation [80], allowing us

to consider three possible realizations of the environment for each segment. We assume no de-

pendencies between the state of different segments. Instead, we assume that a given state of the

environment at time t+1 can be reached with equal probability from every possible state at time

t. Consequently, creating a tree to represent the evolution of the environment would result in un-

necessary replication of environment states. To avoid that, we represent the environment model

as a DTMC with the topology exemplified in Figure 8.1 for a model of the threats with a horizon

of length 3. The root corresponds to the state of the environment at the current time/segment.

Since the environment model only covers the lookahead-horizon for the adaptation decision, we

refer to the current time as t = 0. For each value of t ∈ 1, . . . , H there are three nodes corre-

sponding to the three-point approximation of the distribution of the environment state at time t.
Every node for t < H has one edge going to each of the nodes that correspond to t + 1, with

their probabilities set according to the EP-T discretization.

Once the independent environment models for the threats and the targets have been created as

described above, the joint environment model is built by generating every possible combination

of threat and target environment states, and creating the edges accordingly. Note that only com-

7The sensor has false positive and false negative rates (FPR, and FNR, respectively) greater than zero.

93

z(e0) P50(z(ê1))

P5(z(ê1))

P95(z(ê1))

P50(z(ê2))

P5(z(ê2))

P95(z(ê2))

P50(z(ê3))

P5(z(ê3))

P95(z(ê3))

0.185

0.630

0.185

0.185

0.6300.185

0.185

0.630

0.185

0.
18

5
0.630

0.185

0.185

0.6300.185

0.185

0.630

0.185

0.
18

5

0.630

0.185

t = 3t = 2t = 1t = 0

Figure 8.1: DART environment model for threats (H = 3).

binations of states that correspond to the same time are feasible, and this fact can be exploited

to reduce the state space. Therefore, the joint model will have a single root node, and for each

t ∈ 1, . . . , H it will have 9 nodes.

8.2 Claims Validation

In this section we present the results of using the proposed approaches as evidence to validate

the claims of the thesis, organizing their presentation by claim.

8.2.1 Effectiveness Improvement

The main claim of this thesis is that the proposed approach improves the effectiveness of self-

adaptation. The validation of this claim is done by comparing the effectiveness of PLA (using

either of the two main solution approaches) with a self-adaptation approach that lacks the timing

aspects of PLA (i.e., it is not proactive and is latency-agnostic). The comparison is done in terms

of the adaptation goals of each system.

RUBiS

For validating the effectiveness improvement claim with RUBiS, we present two sets of results.

The first is based on runs of the actual RUBiS implementation,8 and the second is based on the

RUBiS simulation. In both cases, we use as a baseline for comparison a feed-forward (FF) self-

adaptation approach that is latency-agnostic. FF uses a single-point one-step-ahead prediction of

8These results were described in our original publication of PLA-SDP [109].

94

the request rate to select the adaptation tactic(s) that would result in the highest utility, assuming

that tactics are instantaneous, and not looking beyond the current decision.

The period for the adaptation layer (i.e., the monitoring and adaptation interval) was τ = 60
seconds. The length of the look-ahead horizon used for the adaptation decision was computed

as H = max
(

5,
⌈

λ
τ

⌉

(Smax − 1) + 1
)

, where Smax = 3 is the maximum number of servers.

In this way, the horizon is long enough for the system to go from one server to Smax, with an

additional time interval to observe the benefit. A minimum of 5 intervals enforces look-ahead

even if the tactic latency is small. The parameters of the utility function were set as follows:

response time threshold T = 0.75 seconds; rewards for responses with mandatory and optional

RM = 1, RO = 1.5 respectively; and maximum system capacity κ = 67.4 requests per second

(this value was obtained through profiling). The adaptation tactics could change the number of

servers between 1 and Smax, and the dimmer among the values 0.10, 0.30, 0.50, 0.70, and 0.90.

The stream of requests to the system was generated from publicly available traces captured

from real websites. Specifically, we used half of a day from the WorldCup ’98 trace [4], and one

day from the ClarkNet trace [5]. As it can be observed in the plots of the traces in Figure 8.2,

these traces have different characteristics. The WorldCup ’98 trace presents large spikes in traffic,

whereas the ClarkNet trace is bursty. Even though these traces do not correspond to an auctions

website, the point of using them is to exercise the system with realistic traffic patterns, and not

to replicate the behavior of users of an specific kind website. Also, even though these traces

are several years old, they still represent a significant traffic for our validation platform. In fact,

both traces were scaled down to last for 105 minutes, and to reach the maximum capacity of the

validation setup at their peak.

For each approach we ran the system four times, each with a different latency for the tactic to

add a server (λ = 60, 120, 180, and 240 seconds). For each run, the first 15 minutes were used

to let the system warm up with no adaptation. This allows the time series predictor to be primed,

and the estimation of the service time tracked by the Kalman filter to adjust. Self-adaptation was

used during the remaining 1.5 hours of the run, during which the metrics were collected.

The results of the comparison of the PLA approaches with FF are shown in Figures 8.3

and 8.4 for the two traces respectively, with the arrows in the side labels pointing in the direction

of better outcomes. We can observe that with the FF approach, the utility provided by the system

drops as the tactic latency gets larger, whereas the PLA approaches are able to maintain the level

of utility despite the increased latency. The effectiveness improvements that PLA brings for the

case with the largest latency are 65% and 60%, for each trace respectively. Additionally, we show

other metrics that, even though are not the main criteria for adaptation, are interesting to observe.

The FF approach provides more responses with optional content. This is understandable because

a latency-agnostic approach ignores the fact that the tactic to change the dimmer is much faster

than the tactic to add a server, thus favoring the latter to deal with an increase in request rate,

expecting to get a higher reward. However, the percentage of responses that do not meet the

response time requirement increases with latency when latency is ignored, resulting in penalties

instead. The PLA approaches, on the other hand, are able to keep the percentage of late responses

very low in spite of the increase in tactic latency. The charts plotting the average utility per server

show that despite using more servers, the PLA approaches obtain more utility per server for larger

tactic latencies.

95

20

40

60

0 1000 2000 3000 4000 5000 6000

time (s)

re
q
u
e
s
ts

/s

(a) WorldCup ’98

20

40

60

0 1000 2000 3000 4000 5000 6000

time (s)

re
q
u
e
s
ts

/s

(b) ClarkNet

Figure 8.2: Traces used for workload generation.

In these experiments, both PLA-PMC and PLA-SDP produced similar results. The slight

difference between the two is due to disturbances in the runs, such as network delays, and back-

ground processes that are not possible to control when running the real system. However, when

run in a simulation with exact replication of environmental conditions, PLA-PMC and PLA-SDP

produce exactly the same results. Figure 8.5 shows the results for the same experiment run in

the RUBiS simulation instead. This shows that PLA-SDP produces precisely the same results as

PLA-PMC in spite of the considerable speedup it achieves, as shown in Figure 5.5.

The rest of the results presented for RUBiS are based on its simulation, which allows us to

easily introduce variances to the adaptation approaches and test scalability beyond what our real

experimental platform supports. Comparing Figures 8.4 and 8.5 shows that the results obtained

with the simulation are similar to those obtained by running the experiments in the real system.

96

WorldCup

0

1000

2000

3000

0

20

40

60

0

10

20

30

0.0

0.5

1.0

1.5

2.0

0

500

1000

1500

⮜
 u

tility
⮜

 %
 w

/o
p
tio

n
a
l

%
 la

te
 ⮞

a
v
g
. s

e
rve

rs
 ⮞

⮜
 u

til/s
e
rve

r

60 120 180 240

tactic latency (s)

FF

PLA-PMC

PLA-SDP

Figure 8.3: Comparison of approaches in RUBiS with WorldCup ’98 trace.

Thus, we feel confident that the results for RUBiS presented in the rest of this chapter, which are

based on simulation, are similar to what experimentation on the real system would produce.

DART

The following results are based on 5,000 runs of the DART simulation with each approach.9 For

each run, there were 20 targets and 7 threats randomly placed along a route of 100 segments. In

addition, there are several other random behaviors in the simulation of the mission. The forward-

looking sensors and the target sensor are subject to random effects, as is the impact of threats

on the drones. For example, to determine if the team is destroyed while traversing a segment

with a threat, a random number d′ is drawn from a uniform distribution with range [0, 1], and if

d′ < d(c) (see (8.3)), the team is destroyed in the simulation. Despite the large number of runs,

9Since PLA-PMC and PLA-SDP produce the same results, only the latter was used for these experiments.

97

ClarkNet

0

1000

2000

3000

4000

0

20

40

60

0

5

10

15

20

0

1

2

3

0

500

1000

1500

⮜
 u

tility
⮜

 %
 w

/o
p
tio

n
a
l

%
 la

te
 ⮞

a
v
g
. s

e
rve

rs
 ⮞

⮜
 u

til/s
e
rve

r

60 120 180 240

tactic latency (s)

FF

PLA-PMC

PLA-SDP

Figure 8.4: Comparison of approaches in RUBiS with ClarkNet trace.

for better comparison, the random number generators that control all of these random effects

were seeded with matching seeds for the same run number of the two solution approaches. In

that way, both approaches faced the same behavior of the environment.

The tactics used in this simulation control the altitude and the formation of the team. There

are tactics to increase and decrease the altitude level at which the drones fly. The airspace is

divided vertically into 10 altitude levels. Transitioning from one level to the next, up or down,

takes the same time the team takes to traverse a segment in the route. Therefore, the latency of

these tactics is τ ; that is, the same as the decision interval. There are two other tactics that allow

the team to change formation. One takes the team to a close formation, and the other to a tight

formation. These two tactics are assumed to be immediate, or have negligible latency compared

to the decision interval.

As a baseline for comparison and measurement of the effectiveness improvement, we also

use a feed-forward approach (FF), which is latency-agnostic, and not proactive, in that it does

98

ClarkNet

0

1000

2000

3000

4000

5000

0

25

50

75

0

10

20

30

0

1

2

0

500

1000

1500

⮜
 u

tility
⮜

 %
 w

/o
p
tio

n
a
l

%
 la

te
 ⮞

a
v
g
. s

e
rve

rs
 ⮞

⮜
 u

til/s
e
rve

r

60 120 180 240

tactic latency (s)

FF

PLA-PMC

PLA-SDP

Figure 8.5: Comparison of approaches in RUBiS with ClarkNet trace (simulation).

not look ahead further than the segment it is about to enter. More precisely, it uses a single-point

estimation of the environment state in the segment that it is about to enter when making the

adaptation decision. Given the adaptation goal for this system, the PLA approach used in these

experiments is PLA-SDP as extended in Chapter 6—namely, using the {RG3, CS2} combina-

tion. PLA-SDP was run with a horizon H = 5. For these experiments, the probability bound

for the survivability constraint was set to P = 0.90. It is worth noting that the FF approach

was implemented to also consider the survivability requirement in addition to the maximization

of detected targets. This consideration, however, is limited to the period starting at the time the

decision is being made, given the lack of look-ahead in FF.

Figure 8.6 shows the statistics for the number of targets detected with each approach. PLA-

SDP detected the highest number of targets on average, and in addition it has less variance. The

average improvement of PLA-SDP over FF in the 5,000 missions simulated was 74%, with 3.5

more targets detected per mission on average.

99

0

5

10

15

FF PLA−SDP

ta
rg

e
ts

 d
e
te

c
te

d

Figure 8.6: Targets detected in DART.

Figure 8.7 shows the proportion of missions in which the team survived with each approach.

Here, the difference is impressive, with FF surviving less than 10% of the missions, while PLA-

SDP satisfied the requirement of surviving with at least 90% probability.

0.0

0.2

0.4

0.6

0.8

1.0

FF PLA−SDP

o
b
s
e
rv

e
d
 p

ro
b
a
b
ili

ty
 o

f
s
u
rv

iv
a
l

Figure 8.7: Probability of mission survival in DART.

The results shown in Figure 8.6 include targets detected even in missions in which the team

failed to survive. However, depending on the drones and/or the mission, the team may not be able

to transmit detected targets back to the base, requiring the team to complete the mission before

the data can be downloaded. Adjusting the target count so that targets detected are counted only

if the drones survive the mission, Figure 8.8 shows that the difference in effectiveness is even

more pronounced. In this case, even the 3rd quartile for FF is 0 because it only survived and

detected targets in 7% of the missions.

100

0

5

10

15

FF PLA−SDP

ta
rg

e
ts

 d
e
te

c
te

d

Figure 8.8: Targets detected in DART adjusted for mission survival.

8.2.2 Applicable to Different Kinds of Systems

To validate this claim, we provide evidence supporting applicability to systems that are different

in several key ways. The two systems used for the validation were chosen with two main criteria.

First, they had to conform to the basic assumptions of PLA enumerated in Chapter 3 and repeated

here: (i) that the adaptation goal can be expressed with one of the utility forms described in

Chapter 6; (ii) that it is possible to estimate the system measures of performance that are used to

compute utility; (iii) that tactics have deterministic effect on the structure and properties of the

system; and (iv) that the actions of the system do not affect the evolution of the environment.10

Second, the systems had to be different in several important ways. Table 8.1 summarizes the

differences between the two systems used for the validation, and we elaborate on them here.

These systems belong to two very different domains. RUBiS is an information system, in

which the adaptation is driven mainly by quality of service, revenue, and cost. The tactics in

this system deal with the allocation of resources, and the control of the optional content served,

which drive revenue and quality of service in opposite directions. The environment for this

system is determined by the users of the system, reflected as the rate with which user requests

are sent to the system. In this case, environment predictions are made using forecasting based

on past observations of the request arrival rate collected at run time through the monitoring

component. These observations are then processed by a time series predictor to compute the

predictions. DART, on the other hand, is a cyber-physical system, with tactics that affect its

physical properties (i.e., altitude and formation) and its configuration (i.e., turning electronic

countermeasures (ECM) on and off). In this system, adaptation is driven by mission objectives,

which include detecting targets in a hostile environment, and the requirement to survive with

a specified probability in order to complete the mission. The environment in DART is based

on physical elements, targets and threats with unknown locations. Contrary to what happens in

RUBiS, observations of the past environment are useless in DART. Therefore, the environment

predictions come from sensors that sense the world ahead of the team as it is flying. Since these

10 These assumptions and their potential limitations are discussed in Section 9.3.

101

sensors have lower quality when sensing far ahead, there is uncertainty in the predictions of the

environment that self-adaptation must deal with.

These systems have different adaptation goals. In RUBiS, the goal is to maximize the utility

according to a SLA, while minimizing cost. In DART, the goal is to maximize the number of

targets detected in a mission, while keeping the probability of surviving the mission above a

given requirement. In addition, in Chapter 6, we provided examples of systems with different

adaptation goals that are also supported by the approach.

The approach is not tied to a particular self-adaptation framework as shown by the different

implementations of the systems used for validation. The core of the approach—the decision-

making—was implemented in C++ and packaged in a library, which was used in all the im-

plementations. The library allows the user to provide the utility function and the configuration

space that is used for the adaptation decisions. Self-adaptation for RUBiS was implemented in

two different ways. In one implementation, the PLA self-adaptation loop was implemented as

modules in the OMNeT++ framework, with the adaptation decision module invoking the library.

Even though OMNeT++ is geared towards creating discrete-event simulations, its scheduler can

be replaced so that events are processed in real-clock time instead of simulated time. In fact, this

implementation of the adaptation manager was used to control both the real RUBiS and its sim-

ulation by having two sets of monitoring probes and effectors with the same interface, allowing

it to interact with both the real system and the simulation.

The second implementation of PLA self-adaptation for RUBiS was done using the Rainbow

framework for self-adaptation. Since Rainbow is implemented in Java, a wrapper for the library

was generated using SWIG, a tool that automatically generates wrappers for C++ code [134].11

The different customization points that Rainbow provides (see Figure 7.1) were used to imple-

ment PLA adaptation for RUBiS.12 An adaptation manager class was created to make adaptation

decisions using the library, and custom probes and effectors were used to monitor the system,

and to execute the operations needed by the adaptation tactics.

Self-adaptation for DART was implemented also in two different ways. One was using the

DART architecture and its tool chain [65]. In this case, the self-adaptation loop was implemented

in DMPL [24], invoking the library to make adaptation decisions. In the second implementation,

a custom PLA self-adaptation loop was implemented directly in C++.

The application of PLA self-adaptation to two systems that are different along several di-

mensions provides a strong argument that our approaches are applicable to different kinds of

systems.

8.2.3 Scales to Systems of Realistic Size

To validate this claim, we conducted two experiments: one to show that it can handle adaptation

decisions in a system with a large number of servers, capable of handling realistic traffic; and

another one that shows that the DART adaptation decisions can be done fast enough even in a

computer of modest performance used in small real drones. The results presented in this section

11Since SWIG can generates wrappers in several languages including Python, C#, and Perl, it would be possible

to use the library in the same way with frameworks written in other languages.
12Special thanks to Bradley Schmerl who modified Rainbow to support concurrent tactic execution.

102

are based on PLA-SDP, the fastest of the two main solution approaches. In Section 7.4 we

showed that SB-PLA is more scalable than PLA-SDP.

RUBiS in Large Server Cluster

To show PLA can handle a large system, we simulated RUBiS with the trace for day 51 (June

15, 1998) of the WorldCup ’98 dataset, using 18 hours of the traffic directed to one regional

cluster. This trace was not scaled down, and given the capacity of the simulated servers, we set

the maximum numbers of servers to 60. There were three games played on that day, so the trace

shows three main peaks in traffic (see top chart in Figure 8.9).

For this experiment the latency of the tactic to add a server was 180 seconds, and the looka-

head horizon was set to 10. The average decision time was 8.2 seconds, much shorter than the

decision interval of 60 seconds. We can see in Figure 8.9 that in spite of the decision time not

being negligible, PLA-SDP had only four violations of the response time requirement.

To provide contrast in terms of the effectiveness of the approach at this scale, we also ran this

experiment using the FF approach, obtaining the results shown in Figure 8.10. We can see that

FF had many more violations of the response time requirement, incurring in many penalties as

defined by the SLA. Since FF is not able to assess the future impact of making several successive

server additions, it relies much more on the dimmer, and uses fewer servers in general.

In case this limitation of FF was unfair for comparison, we also ran this experiment with

a purely reactive approach that works as follows. If the measured response time is above the

requirement, it tries to add a server, and if it cannot do that either because it has maxed out the

cluster or because another server is being added, it reduces the dimmer if possible. If the response

time is below the requirement and it has at least two servers of spare capacity, it increases the

dimmer if it can, and if the dimmer is already at its maximum, it removes a server. In addition,

it keeps more than one server of extra capacity up at all times.13 With this adaptation approach,

the decisions are not biased by the limitation of not being able to project the future benefit of an

action (although it does not consider the future either). As shown in Figure 8.11, the results are

not better than with FF, with a large percentage of late responses and using many more servers on

average than FF. The results of this experiment with a large number of servers are summarized

in Table 8.2.

Table 8.2: Comparison of approaches in large cluster simulation of RUBiS.

Approach Utility % Optional % Late Avg. Servers

PLA-SDP 576385 42 0.1 22.8

FF 241366 25.8 3 7.6

Reactive 62227 76 25.6 17.5

13This adaptation approach was designed to avoid reliance on tactic impact estimation. That is why predefined

recipes for adaptation were encoded to deal with each condition; for example, add a server if possible; if not, reduce

the dimmer. These are akin to strategies in Rainbow.

103

0

500

1000

1500

re
q
u
e
s
ts

/s

0

10

20

30

40

50

s
e
rv

e
rs

0.00

0.25

0.50

0.75

1.00

d
im

m
e
r

0.0

0.2

0.4

0.6

0.8

re
s
p
.
ti
m

e
 (

s
)

−2000

−1000

0

1000

2000

u
ti
lit

y

0e+00

2e+05

4e+05

6e+05

0 20000 40000 60000

time (s)

c
u
m

.
u
ti
lit

y

Figure 8.9: RUBiS simulation of 18 hours of traffic for a whole regional cluster of the

WorldCup ’98 website using PLA-SDP.

DART in Embedded Computer

To show that adaptation decisions can be computed sufficiently fast in an embedded computer

with modest processing power, we ran the PLA-SDP adaptation manager for DART in a Rasp-

berry Pi 3, the onboard computer in the research drones used in the DART project. In order to

determine what the decision time requirement should be, we searched the published literature of

similar missions to obtain concrete measures. Kim et al. divide the mission space into cells with

a side of 2 km for UAVs with a speed of 300 km/h, which results in 24 seconds to traverse a

cell [82]. Flint et al. use a planning step of 30 seconds for their approach for controlling UAVs

searching for targets [45]. The most stringent requirement was that found in Baker et al., where

104

0

500

1000

1500

re
q
u
e
s
ts

/s

0

5

10

15

s
e
rv

e
rs

0.00

0.25

0.50

0.75

1.00

d
im

m
e
r

0

2

4

6

8

re
s
p
.
ti
m

e
 (

s
)

−2000

−1000

0

1000

2000

u
ti
lit

y

−1e+05

0e+00

1e+05

2e+05

0 20000 40000 60000

time (s)

c
u
m

.
u
ti
lit

y

Figure 8.10: RUBiS simulation of 18 hours of traffic for a whole regional cluster of the

WorldCup ’98 website using FF.

the search map is divided into cells 10 m wide, with UAVs flying at a speed of 10 m/s [8]. In this

case, a new cell is entered every second.

With a new cell (or segment) entered every second, the system has to be able to make an

adaptation decision in less than a second. In our experiments, the average decision time was

113 ms, and even if we add two more tactics to turn ECM on and off, the decision time is 494 ms.

Note that these results were obtained running in a very modest onboard computer, considering

that other drones, even small research drones, have much more processing power. For example,

the AscTec Firefly14 has an Intel Core i7 processor with speeds up to 3.1 GHz compared to the

14http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/

105

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/

0

500

1000

1500

re
q
u
e
s
ts

/s

0

10

20

30

40

50

s
e
rv

e
rs

0.00

0.25

0.50

0.75

1.00

d
im

m
e
r

0

5

10

re
s
p
.
ti
m

e
 (

s
)

−2000

−1000

0

1000

2000

u
ti
lit

y

−50000

−25000

0

25000

50000

75000

0 20000 40000 60000

time (s)

c
u
m

.
u
ti
lit

y

Figure 8.11: RUBiS simulation of 18 hours of traffic for a whole regional cluster of the

WorldCup’98 website using Reactive adaptation.

1.2 GHz processor of the Raspberry Pi 3. Therefore, we can conclude that PLA-SDP can make

adaptation decisions fast enough for using it in a real drone.

8.3 Summary

In this chapter we have presented results that support the claims of the thesis. We have shown that

PLA consistently improves the effectiveness of self-adaptation when compared to an approach

that lacks the timing aspects of PLA (i.e., it is not proactive and is latency-agnostic). PLA was

applied to two systems that are different in significant ways. In addition, we showed that it

106

scales to large systems, and it is sufficiently fast to make adaptation decisions using embedded

computers.

107

108

Chapter 9

Discussion and Future Work

In this thesis we have presented a conceptual framework for proactive latency-aware adaptation,

and three different solution approaches that implement those concepts. The key pillars of PLA

are (i) leveraging predictions of the near future state of the environment to adapt proactively; (ii)

considering the latency of adaptation tactics when deciding how to adapt; and (iii) executing tac-

tics concurrently in PLA-SDP and PLA-PMC. In previous chapters we have demonstrated that

PLA improves the effectiveness of self-adaptation in different domains, using different adapta-

tion frameworks. In this chapter we discuss how the combination of the three pillars is better

than any one of them individually, and why the two main solution approaches presented are both

relevant and needed. Also, we analyze the limitations of the approach, and discuss future work.

9.1 Analysis of the Contributions of the Elements of the Ap-

proach

The key elements of PLA are proactivity, latency-awareness, and concurrent tactic execution. In

Chapter 8, we have shown how PLA improves the effectiveness of self-adaptation. However,

it is worth analyzing if it would be possible to attain the same improvement without having all

these three elements in the approach. To answer this question, we developed a suite of adaptation

managers that had different combinations of these elements, as shown in Table 9.1.1

Using these adaptation managers, we ran simulations of RUBiS for 18 hours of the WorldCup

trace for one whole regional cluster with 20 servers. The resulting utility obtained with the

different approaches for different latencies of the tactic to add a server are shown in Figure 9.1.

In this chart we can clearly observe two things. One is that proactivity by itself provides a

substantial improvement, and the second is that the full approach, PLA-SDP, is the only one

that consistently gives the highest utility, except for being slightly worse for a latency of 60

seconds—we will come back to that. The other behaviors may seem odd at first, such as why

adding concurrency to a proactive non-latency-aware approach makes it worse. By analyzing

1Latency-awareness requires proactivity, thus, there are no latency-aware adaptation managers without proactiv-

ity.

109

Table 9.1: Adaptation managers with different combinations of the PLA elements.

proactive latency-aware concurrency

FF

P-NLA-NC X

P-NLA X X

PLA-NC X X

PLA-SDP X X X

the traces of the behavior of the approaches in these experiments, we arrived at the following

conclusions:

• P-NLA does worse than P-NLA-NC because when we add concurrency, it uses the dimmer

more because it has more opportunities to do so, especially while a server is being added

and the only tactic available is the dimmer. This causes a loss of utility because lower-

ing the dimmer results in less reward. Since this approach ignores latency, it still incurs

penalties for assuming that servers will become available faster than they do.

• Which of P-NLA and PLA-NC does better depends on the tactic latency. When we add

latency-awareness to proactivity, but without concurrency support, it will avoid tactics with

long latency because it is aware that if it starts a server addition, it will not be able to deal

with environment changes while the tactic is running. Therefore, it seems that unless there

is a large penalty for using the dimmer, PLA-NC prefers to use it instead of committing

to starting a tactic with long latency in order to avoid being in a situation in which it

cannot adapt. All of the approaches make optimistic estimations of the response time they

will attain after adding a server, since the effects of a cold cache are not fully modeled.

This possibly results in penalties due to high response time. However, since PLA-NC

tends to avoid server additions and removals, it may obtain an advantage by avoiding these

estimation errors. That is why it performs very well, and even slightly better than PLA-

SDP for low latency. However, for larger latencies, that advantage seems to be canceled

out by the penalties incurred by avoiding to add a server, which when absolutely necessary,

will take a considerable amount of time.

Using the full PLA-SDP with the three elements is the only choice that consistently gives

the highest utility. If for some reason it were not possible to use the full approach, the second

best choice would be to use proactivity alone. However, it depends on the available tactics and

how their use affects the utility attained by the system. For example, in the case of RUBiS,

the less difference in reward there is between serving and not serving the optional content, the

less consequential it is to use the dimmer in terms of how it affects the reward. Nevertheless,

the dimmer still provides an option to avoid penalties. In that case, for example, the PLA-

NC approach would not suffer the penalties of relying too much on the dimmer and it would

perform better than it did in these experiments. Still, using the full approach removes all those

unknowns, because it is able to adjust to differences in the utility function, relying more or less

on concurrency as it deems appropriate.

110

WorldCup

0e+00

2e+05

4e+05

6e+05

⮜
 u

tility

60 120 180 240 300

tactic latency (s)

FF

P-NLA-NC

P-NLA

PLA-NC

PLA-SDP

Figure 9.1: Comparison of partial approaches in RUBiS with large WorldCup ’98 trace (simula-

tion).

We also ran a similar experiment with DART, using the different adaptation managers. In this

case, all the adaptation managers consider the survivability requirement in addition to the maxi-

mization of detected targets. Figure 9.2 shows that proactivity brings some improvement over FF

in terms of targets detected. However, when latency-awareness is added, the adaptation performs

the best. In this case, having concurrency does not make a difference, probably because the

tactics with latency in this example have a latency equal to one decision period, so concurrency

does not provide the ability to execute another tactic while a longer one is executing, because by

the time a new decision is made, the tactic with latency has always completed. Similar results

were obtained with regards to the probability of surviving the mission, as shown in Figure 9.3.

Both PLA-NC and PLA-SDP satisfy the survivability requirement. Even though PLA-NC has a

higher probability of mission survival, Figure 9.4 shows that it had more missions in which it de-

tected fewer targets than PLA-SDP (as indicated by the lower 1st quartile). Therefore, PLA-NC

was more risk-avoiding than was necessary to satisfy the survivability requirement. Again, in the

case of DART, using the full approach provides the largest improvement in the effectiveness of

self-adaptation.

9.2 The Rationale for Two Main Solutions Approaches

In this thesis we have presented two main solution approaches to PLA self-adaptation, PLA-SDP

and PLA-PMC. In Section 1.3, we argued that having both was desirable because PLA-PMC

was modifiable, while PLA-SDP was much faster. Now, we revisit that discussion in light of the

contents of this dissertation, and present the argument considering how the two approaches are

similar or different, but complementary, along different dimensions, as summarized in Table 9.2.

Both approaches take into account the uncertainty of the environment when deciding how

to adapt. Although this seems irrelevant now, given that both are equally good at it, it is worth

111

0

5

10

15

FF P−NLA−NC P−NLA PLA−NC PLA−SDP

ta
rg

e
ts

 d
e
te

c
te

d

Figure 9.2: Comparison of target detection in DART with partial approaches.

0.0

0.2

0.4

0.6

0.8

1.0

FF P−NLA−NC P−NLA PLA−NC PLA−SDP

o
b
s
e
rv

e
d
 p

ro
b
a
b
ili

ty
 o

f
s
u
rv

iv
a
l

Figure 9.3: Comparison of probability of mission survival in DART with partial approaches.

Table 9.2: Comparison of PLA-SDP and PLA-PMC solutions approaches.

Feature PLA-SDP PLA-PMC

handles environment uncertainty yes yes

flexibility to change adaptation goal limited yes

optimal yes yes

fast yes no

can invoke external code yes no

easy to modify no yes

pointing out for two reasons. First, probabilistic model checking naturally handles probabilistic

behavior, and that was one of the main reasons it was considered first as a solution approach.

PLA-SDP, on the other hand, had to be designed to have that capability, not just by using prin-

112

0

5

10

15

FF P−NLA−NC P−NLA PLA−NC PLA−SDP

ta
rg

e
ts

 d
e
te

c
te

d
 (

s
u
rv

iv
a
l
a
d
ju

s
te

d
)

Figure 9.4: Comparison of target detection adjusted for mission survival in DART with partial

approaches.

ciples of stochastic dynamic programming, but by carefully considering how environment and

system transitions interacted, and how environment uncertainty affected those transitions, in or-

der to deal with them in a way that avoids the state explosion that would result from constructing

and solving the full joint MDP of the system and the environment (see Section 5.1.1). This is

one of the design choices that, in part, gives PLA-SDP its speed advantage over PLA-PMC, but

it does so at the expense of modifiability. As we discuss later, modifying PLA-PMC to handle

other kinds of uncertainty would be relatively straightforward, whereas for PLA-SDP that would

require considerable changes.

Another form of modifiability refers to changing the adaptation goal that the adaptation de-

cision aims to achieve, which in its simplest form is the maximization of aggregate utility. PLA-

SDP was designed to support different kinds of adaptation goals, as we described in Chapter 6.

Even though they cover a wide range of cases, the kinds of adaptation goals it supports are

limited to the different combinations of the three reward gain forms and the three2 constraint sat-

isfaction forms presented. In PLA-PMC, the adaptation goal is expressed as an extended PCTL

property, which gives it much more flexibility (see Section 4.6). For example, the following

multi-objective property for PRISM asks for the policy that maximizes the number of targets de-

tected, such that the probability of not being destroyed is greater that 90% and the total amount

of energy used is no more than 100.

multi (R{”targets”}max=?[C], P>=0.9 [G !destroyed], R{”energy”}<=100 [C])

An adaptation goal like this cannot be achieved with PLA-SDP unless it is further modified to

support the third objective.

One aspect in which PLA-PMC is less flexible than PLA-SDP is that it cannot invoke external

code. This means that everything needed to compute the utility function has to be programmed

in the PRISM language. Even though utility functions are relatively simple, and thus easy to

2Not having a constraint satisfaction requirement is the third option.

113

program in PRISM, the inputs to the function may not be as simple to compute. For example,

the estimation of the response time needed for RUBiS was done using queuing theory equations

programmed in PRISM. However, it would not be possible to use third-party performance esti-

mation tools such as OPERA [112] or LQNS [100] to compute the response time. PLA-SDP, on

the other hand, can invoke third-party code as needed. Nevertheless, it would possible to work

around this limitation of PLA-PMC by computing the utility for all the system and environment

state pairs that the model could evaluate—which are countable—before invoking PRISM, and

including the results as a table in the input to the model checker.

PLA-PMC is easier to modify than PLA-SDP. We have already shown how a new adaptation

goal could be handled by changing the property that PLA-PMC aims to satisfy. Similar changes

are doable with PLA-SDP, although they would require changes to the algorithm similar to the

ones introduced in Section 6.2. Handling additional forms of uncertainty, such as stochastic

tactic latencies would also be relatively easy to do with PLA-PMC by having the tactic mod-

ule choose probabilistically a latency for the tactic when it starts executing. Such a change in

PLA-SDP would require major changes, not only in the off-line computation of the reachability

predicates, but also in the algorithm, which now considers uncertainty as belonging exclusively

to the environment.

Considering the different features for the two approaches shown in Table 9.2, we can see

that no approach dominates the other. Given the modifiability of PLA-PMC, and that it is the

gold standard in terms of optimality, we envision that further advances in self-adaptation deci-

sion approaches could be led by the relaxation of assumptions and extensions of PLA-PMC, or

by similar approaches inspired by it that leverage the generality and optimality of probabilistic

model checking. The results from experimentation with these versions could be used to assess

the benefit a particular modification. For example, it is not obvious that modeling stochastic tac-

tic latencies would provide a substantial improvement over considering only its expected value.

Extensions to PLA-PMC could be used to test the hypothesis that the extension improves its ef-

fectiveness, without expending the larger effort that a modification to PLA-SDP would require.

If the extensions prove to be useful, they would then be followed by special purpose algorithms

that exploit the structure of the problem to achieve speedups as we did with PLA-SDP. Having

the probabilistic model checking version of the approach as the standard to compare against, the

optimized approaches could strive to achieve the same effectiveness with faster decision times.

In fact, the reason why we can confidently say that PLA-SDP is optimal is because in all our

experiments it has produced exactly the same results as PLA-PMC.

9.3 Limitations

In this section, we discuss the limitations of our approach, and suggest ways in which they could

be addressed in future work.

The approach only deals with exogenous uncertainty. In decision problems, uncertainty can

be classified into two classes: exogenous, in which the stochastic process is not affected by the

decisions; and endogenous, in which decisions affect the evolution of the stochastic process [60].

114

In the approach presented in this thesis, the stochastic process is the environment of the self-

adaptive system, and we assume that, within the decision horizon, the adaptation actions do not

affect the environment. That is, the approach deals only with exogenous uncertainty. This means

that it is not suitable for systems that have tactics that affect the environment. For example,

considering the DART scenario, if the drones were weaponized and one of the tactics were to

fire at a threat, then that system would be subject to endogenous uncertainty, since the presence

of a threat could be affected by the actions of the drones.

Despite this limitation, there is a broad class of self-adaptive systems that are not subject to

endogenous uncertainty. For example, in an IT system such as RUBiS, the actions of the system

do not directly affect the request arrival rate. One could argue that the actions of the system

can end up affecting the environment in this case. For example, sustained poor performance

would drive users away from the website, or showing the related products panel next to a product

could induce more clicks and requests. Nevertheless, we argue that the approach is still suitable

for such system for two reasons. First, the exogenous uncertainty assumption is only for the

duration of the decision horizon. That means, that if the environment takes longer than the

decision horizon to react to the actions of the system, then it is the same as if there were no

endogenous uncertainty. Second, even if the environment reacts within the decision horizon, the

approach decides periodically, with an interval between decisions that is much shorter than the

horizon. Therefore, the system is able to make new adaptation decisions that take into account the

change in the environment possibly induced by a previous adaptation. Obviously, if a previous

decision started a tactic with latency that cannot be preempted and that affected the environment,

then the system would suffer from not having considered the endogenous uncertainty. However,

since the approach supports parallel tactics, it could compensate by using different tactics if

available, such as changing the dimmer in RUBiS.

This limitation could be overcome in future work. The main challenge to accomplishing this

is how to model the effect of tactics on the environment. For instance, in the case of RUBiS,

one would have to be able to create a model of the environment capturing how the request rate

is affected by the presence of the optional content in the responses; or in the case of DART, how

the firing of a weapon at a threat modifies the probability of the presence of a threat.

Having such a model of the environment, PLA-PMC could be extended to deal with endoge-

nous uncertainty by making the environment model synchronize with the tactics. In that way,

when a tactic is executed in the model, the environment model would be able to reflect the im-

pact of the tactic on its evolution. In the case of PLA-SDP, the changes are more fundamental,

since the solution algorithm for stochastic dynamic programs with endogenous uncertainty can-

not use the backwards induction approach, unless the history of the actions is included in the

state. That notwithstanding, solution techniques for such decision problems exist [60], and their

performance continues to be improved [67]. In addition, as long as transition feasibility remains

independent of the state of the environment, as it is in PLA-SDP, it should be possible to use the

same approach to compute the reachability predicates off-line, thus attaining a performance edge

over a solution approach using probabilistic model checking.

The approach does not consider latency uncertainty. The latency of adaptation tactics is

assumed to be deterministic (i.e., it is represented by a single value, and not a probability dis-

115

tribution). In addition, for PLA-SDP, the latency is assumed to be constant (i.e., that it does not

change over time).

If the latency of a tactic is actually deterministic, then the approach computes the optimal

solution over the decision horizon. If the latency is not deterministic, we still need to represent it

with a single value, such as the expected value. What could happen is that if the realization of the

latency is larger than the expected value, the protracted execution of the tactic may prevent other

subsequent adaptations the decision could have planned from starting on time. If the realization

could be shorter than the expected value, then a tactic may be disfavored over others, when in

some realizations it would be better to have used it. Similar arguments can be made for other

single-value representation of the latency, such as its worst-case behavior.

The assumption of constant latency in PLA-SDP is, however, not a fundamental one, and it

would be relatively easy to overcome. The latency of the tactics could be monitored when they

are executed, so that the latency value that is used for adaptation decisions can be updated at

run time. In the models, the latency of the tactics is rounded up to the nearest multiple of the

decision period. If the latency changes at run time such that this rounded value changes, all that

needs to be done is to redo the generation of the delayed reachability predicate. However, it is

not necessary to wait until a decision has to be made to generate the predicate for a different

latency. For example, different predicates could be generated off-line for different latencies, or

they could be generated at run time, before they are needed, using the lookahead technique pro-

posed by Gerasimou et al. [56], by which spare resources are used to precompute solutions in the

neighborhood of the current state (or tactic latency, in our case). Furthermore, a recently pub-

lished technique and tool, Titanium, can speed up the analysis of evolving Alloy specifications

by tightening the bounds of relations that are not changed [7]. Using that tool may result in a

speedup of the time required to recompute the reachability predicate when only the tactic latency

changes.

Relaxing the assumption of deterministic latency in PLA-SDP would require a fundamen-

tal change, since the introduction of probabilistic transitions in the system model of the MDP,

would make impossible the use of Alloy to build the system model. One possibility to retain

the advantage of using Alloy to do part of the MDP construction off-line, would be to remove

the tracking of the tactic progress from the Alloy specifications, but still use Alloy to compute

reachability predicates between states that do not include representation of tactic progress. The

computation of the immediate reachability predicate would not be affected. The delayed reach-

ability predicate, on the other hand, would be limited to representing whether or not, after some

unknown delay, one configuration can be reached from another. The solution algorithm would

then have to be changed to incorporate the probabilistic distribution of the latency of the tactics

involved in a delayed transition, which will likely require abandoning the backward induction

solution approach.

In PLA-PMC, on the other hand, it would be easier to deal with probabilistic tactic latencies.

The selection of the tactic latency could be probabilistic, for example, by having different proba-

bilistic transitions in a tactic module that assign different values to the latency of the tactic. Once

the latency has been selected in this way, the tactic progress can be modeled in the say way as it

is done in PLA-PMC.

This limitation would also be relatively easy to overcome in SB-PLA using the same approach

to select the tactic latency probabilistically. The main difference is that instead of having separate

116

modules for each tactic, SB-PLA has a single module that models a complete strategy with its

tactics. Nevertheless, the same idea could be used. Referring to the example shown in Listing 7.3,

a probability distribution for the latency of the tactic TAddServer would be encoded replacing the

update portion of the command in line 14 with one including multiple probabilistic updates, each

with a different probability and a different tactic latency. An example of a command encoding a

probability distribution for the tactic latency is

[] sys go & node=2 & !tacticRunning −>

0.25 : (tacticRunning’=true) & (exec’=TAddServer LATENCY LOW)+

0.50 : (tacticRunning’=true) & (exec’=TAddServer LATENCY MEDIUM)+

0.25 : (tacticRunning’=true) & (exec’=TAddServer LATENCY HIGH);

The approach requires being able to estimate the system measures of performance that

are used to compute utility. To be proactive, the approach needs to be able to estimate the

utility that the system will accrue over the decision horizon under many different system config-

urations that could be reached through adaptation, and under many different realizations of the

environment. This means that it is necessary to be able to estimate the utility that a given system

configuration would yield in a given environment. In turn, utility depends on one or more mea-

sures of performance of the system, such as the probability of detecting a target, or of being hit

by a threat in DART; or the response time in RUBiS. In many cases, there are theories or analyses

that can be used to estimate these measures. For instance, response time can be estimated using

queuing theory, or layered queuing network analysis. In other situations, models specific to the

system can be used, as it was done in the DART example to compute the probability of detecting

a target.

Using theories, analyses, or models to make adaptation decisions or solve planning problems

is not uncommon, since it is necessary to have a way to estimate the consequence of future

actions [6, 45, 51, 73, 77, 103, 117, 146, 147]. However, there may be measures of performance

for which accurate theories or models do not exist. For those cases, it could be possible to use

machine learning to learn to estimate the impact of adaptation tactics. Using machine learning in

self-adaptive systems is not a novel idea (see [41] for example), however, we think it is possible to

avoid the initial error-prone learning phase by having the self-adaptive system use an initial rough

approximation to do the estimation, and improve over time through experience using machine

learning. If the initial approximation is good enough, even if largely suboptimal, the system can

start operating, collecting observations of the measure that can be used to train an estimator using

machine learning. Different approaches to combine the baseline estimation with the machine-

learned one can be used to achieve better estimations than would be possible with either by

itself [34].

The approach requires that the adaptation goal be expressible in one of the twelve forms

of utility supported. This limitation comes from the Principle of Optimality in dynamic pro-

gramming, which states that “an optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision” [10]. This implies that the optimal policy starting

from any state in any decision interval in the decision horizon is independent of how that state is

117

reached, which is the key to solving optimization problems through backwards induction as we

do in PLA-SDP. An example of a utility function that does not satisfy the Principle of Optimality

in our approach is one in which the utility of particular system configuration in a given state of

the environment depends on the configuration the system had in a previous decision interval.

The satisfaction of the Principle of Optimality is not a property of the actual problem being

solved, but a property of how the problem is modeled. For example, it would be possible to

encode the history of previous system states in the system state, making the decision in a given

state independent of how that state was reached. That is because there would be only one way in

which a state could be reached, which would be encoded in the state itself. Doing this in PLA-

SDP would require not only changing the definition of a system state, but also making changes

so that states can be reached only if that is consistent with the history they encode. That could

be done in two ways. Either the computation of the reachability predicates is modified so that

reachability is consistent with history; or the algorithm is changed to add history consistency to

the selection of feasible next states. Regardless of what is changed, the main drawback is that

the size of the state space would increase by a factor of |C|H−1. For PLA-PMC, it would also be

necessary to encode the history in the system state, thus causing the same increase of the size of

the state space as in PLA-SDP. However, PLA-PMC would not require other changes to compute

the optimal policy.

The approach does not directly use feedback of actual performance for adaptation deci-

sions. An important reason to use feedback in control theory is to reduce the impact of distur-

bances and modeling errors on the ability to control a system [15]. In a feedback control loop,

the process output (i.e., the metric the system is trying to control) is measured so that its devia-

tion with respect to the desired set point can be computed. Based on this deviation or error, the

controller decides what actuation, if any, is needed to bring the output close to the set point.

The approach presented in this dissertation uses direct feedback of the actual system state.

For example, if a tactic fails to execute, as long as the model is updated by monitoring the running

system, the adaptation manager will know that the system is not in the state it was supposed to

reach after the execution of the tactic, and if it still deems the tactic is needed, it will decide to

execute it again. This is accomplished by the periodic nature of the adaptation decision, which

uses the current observed state of the system to make a new adaptation decision.

However, unlike classical feedback loops, the approach does not compare the utility of the

system—what we are trying to control—with a set point. To illustrate the consequence of this

limitation, let us suppose that in the RUBiS adaptation manager the underlying queuing theory

model estimates that by adding a server the response time will drop below the threshold. The

adaptation manager then decides to add a server, but after it does so, the response time is still

above the threshold. The approach does not directly use that feedback to take a corrective action

because it does not use the observed response time as an input to the next decision. Furthermore,

unless the request rate changes, it will not take further actions because the theory will estimate—

as it did before—that the response time will be below the threshold with the current configuration,

even if it is actually above.

This limitation is overcome by using feedback within the underlying predictor so that its

predictions are corrected by the observations gathered from the running system. For example,

118

this was already done in the RUBiS adaptation manager with the use of the Kalman filter to

estimate the service rate of the servers in the system. This estimated service rate was, in turn,

used as an input to the queuing theory model to predict the response time. In that way, the

approach does not directly use the feedback, but benefits from it indirectly, through the use of

feedback to improve the predictions it relies on to decide.

Other ways in which feedback could be used is by exploiting the previous history of the

execution of the system. For example, Rainbow keeps track of the failure rate of each strategy,

and that information can be used to avoid strategies that have had a high failure rate [28]. Another

way of using feedback would be with the approach that improves the utility function through

machine learning as was previously described.

The approach requires formal models of the adaptive system. Formal models of the system

and the adaptation tactics have to be specified in Alloy for PLA-SDP, and PRISM for PLA-

PMC. Since the vast majority of software engineering practitioners are not trained in the use of

formal methods, this could be a barrier for the adoption of the approach. However, it would be

possible to automate the generation of these models, and even though this generation is not in the

scope of this thesis, special effort was put in devising models that follow very regular patterns

(see sections 4.5, 5.2, and 7.2.1), facilitating the future development of this automatic model

generation.

We envision that these formal models can be generated from a suitable domain-specific lan-

guage (DSL), such as an extended version of Stitch. The main components of the formal models

are the system model and the tactic models. The system model consists of one or more properties

representing a highly abstracted representation of the system, containing only the information

needed to make adaptation decisions. For example, the underlying architectural model of RUBiS

may have the topology of the 3-tier architecture, but only the number of active servers is needed.

Given a description of the tactics and the utility function, it would be possible to automatically

determine which properties of the system would be needed in the model. These properties would

include those used in tactic applicability conditions; and those that are both affected by tactics,

and needed to compute the utility function. For tactics, we need the DSL to capture the applica-

bility condition as a predicate over the properties of the system, the tactic latency, and the effect

of tactic completion on the properties of the system. Given this information, it would be possible

to generate the models following the patterns presented in chapters 4, 5, and 7.

The approach may not scale to large system state spaces. As noted in the scalability analysis

presented Section 7.4, the complexity of PLA-SDP is linear in the number of system states, which

in turn is exponential in the number of adaptation tactics. Even though the number of tactics is

unlikely to be more than 20 (see [147] for example), when compounded with the properties that

define the system configuration, it can lead to large state spaces. Depending on the decision

period, the decision time of PLA-SDP may not be sufficiently fast to avoid overrunning the

period. In such cases, it would be necessary to forgo optimality. We have already presented

SB-PLA in Chapter 7 to address this limitation within this thesis. Since SB-PLA relies on a

predefined repertoire of adaptation strategies, it has less flexibility when deciding how to adapt,

which can result in less effectiveness than the main PLA approaches. On the other hand, having

119

fewer choices to select from when making adaptation decisions, SB-PLA can scale to systems

with large state spaces. In addition, there are other possible alternatives that could be explored

in future work to address scalability in large systems.

One approach would be to have hierarchical adaptation decisions that operate at different

levels of discretization. For example, suppose that the number of servers in RUBiS could be any

in the range [1, 100]. A first decision could be made in a state space discretized to tens of servers,

and find an approximate solution at that level of granularity. Subsequently, another adaptation

decision would be made with the range of servers reduced to the block of ten servers selected by

the previous decision.

Another approach consists of computing approximate solutions. There are different strategies

that can be used to deal with the scalability limits of dynamic programming, such as solving for-

ward in time—instead of backwards—using value function approximations, thus avoiding having

to evaluate all the states in the state space [119]. A different approximation can be obtained by

considering only adaptation decisions at the beginning of the decision horizon, and assuming

that no further adaptations are made when computing the value of the different solutions [3].

Another promising approximate solution technique is the cross-entropy (CE) method, a generic

approach to solve combinatorial optimization problems [32]. The CE method consists in (i) ran-

domly generating a set of candidate solutions (adaptation paths in our case); (ii) selecting an

“elite set” with a fraction of the solutions that score highest according to the optimization crite-

ria; (iii) using the sample distributions of the elite set to update the parameters of the distributions

from which candidate solutions are sampled; and (iv) repeating the whole procedure until some

stopping criterion is met (e.g., convergence, or time limit).

In cases in which the maximum rate of change of the environment can be known, an approach

that can speed up the decision is to limit the possible adaptation actions to those that would be

necessary to deal with the maximum possible change of the environment within the decision

horizon. For example, Naskos et al. bound the number of virtual machines that could be added

or removed in an adaptation decision based on the maximum change the system load could

experience [111]. This technique is also suitable for cases in which the system state change is

limited within the decision horizon. For example, in the DART example, given the maximum rate

of altitude change, it would be possible to limit the state space considered in a decision to altitude

levels that would be reachable within the decision horizon, subject to the physical characteristics

of the system.

It is important to note that even if some of these techniques are used to speed up the adap-

tation decision, most of the elements of the approach proposed in this thesis remain the same.

For example, if CE were used, only the algorithm to compute the solution to the MDP would be

changed. All the off-line computation would remain the same, and the scoring of the solutions

would be largely based on the formulation in (5.4)-(5.6), except that instead of finding the con-

figurations that maximize the value, the value of the configuration determined by the solution

would be computed.

Although in this discussion about scalability we have focused primarily on the run-time adap-

tation decision time, the state spaces size also has an impact on the time it takes to compute the

reachability predicates using the Alloy analyzer. Even though long analysis times are tolerable,

since they affect only the off-line computation, it is possible for the state space to be too large

for Alloy to analyze (i.e., it would run out of memory). In our experiments, however, this has

120

not been an issue, even when we increased the size of the state space by adding more tactics

and increasing the number of possible values state variables can take. The off-line computation

for the experiment with a large RUBiS cluster described in Section 8.2.3 took 3 minutes. In a

configuration of DART with eight tactics and the altitude discretized into 100 levels, the off-line

analysis took 15 minutes. If for some system the off-line computation became an issue, it would

be possible to use the same approaches that were previously discussed to reduce the state space

size.

The approach relies on parameters that may need to be tuned. There are two main parame-

ters that the approach requires to be specified: the look-ahead horizonH and the decision interval

τ . The duration of the horizon (i.e., Hτ) should be long enough to cover the largest latency of

all the tactics, otherwise those long latency tactics would never be selected. On the other hand,

given that the further into the future, the more uncertainty environment predictions have, it does

not make sense to have a horizon that is too long, forcing the decision to consider very uncertain

predictions. In addition, the larger H , the slower the adaptation decision will be.

The decision interval τ also affects the effectiveness of the approach. The smaller τ is, the

more effective the approach is because it has more frequent opportunities to deal with changes

in the environment. However, if τ is too small, scalability suffers because H would have to be

large in order to cover the latency of the adaptation tactics. If τ is too large, then the benefit of

being able to use very low latency tactics to complement large latency tactics may be diluted. For

example, if the decision interval were set to the latency of the tactic to add a server in RUBiS,

then, it would not be possible to change the dimmer half-way through the addition of a server to

adjust to unpredicted changes in the environment.

In some domains, there may be system and environment characteristics to help guide the

selection of these parameters. In DART, for example, τ is the length of a route segment divided

by the speed of the drones. In that way, an adaptation decision can be made at each route

segment boundary. The horizon H can be determined based on the range of the forward looking

sensors. In other domains, it could be possible to determine the period τ considering the feasible

rate of change of the environment in addition to the latency of the tactics. For example, in

a wireless sensor network for forest fire detection, like the one described by Paez Anaya et

al. [113], the relevant property of the environment is the forest temperature. In that case, the

decision interval τ could be computed based on the maximum rate of change that the forest

temperature can experience. In addition, how much error is tolerated also plays an important

part in the determination of τ . For example, the system designer should consider whether it is

acceptable for the temperature to increase by 5 degrees before an adaptation decision is made, or

if the system should make more frequent decisions to adapt to smaller changes in temperature.

Even in information systems, the rate of change of the environment could be taken into account

to determine τ . Naskos et al. use the maximum change the system load could experience in a

decision interval to limit the adaptive behavior to be considered (i.e., number of virtual machines

to be added or removed) [111]. Similarly, the maximum rate of change for the load could be

considered to determine the decision interval τ given the maximum load change that available

tactics can deal with.

121

In this thesis we have not made a special effort to tune these parameters—we just used heuris-

tics to set them. However, it is likely that to obtain the most benefit of the approach, these pa-

rameters will have to be tuned for particular systems. This is not unlike other well known control

approaches like model predictive control (MPC) [19]. Implementing MPC requires tuning its pa-

rameters, which are similar to those of this approach. Although many guidelines and heuristics

have been proposed for tuning the parameters of MPC [55], there are no equations that can opti-

mally determine them. Thus, some approaches have been proposed to do MPC parameter tuning

using sequential parameter optimization [31], and particle swarm optimization [133]. Since these

approaches treat the controller as a black box, we believe it would be possible to adapt them to

tune the parameters of the approaches presented in this thesis.

9.4 Future Work

In the previous section we have already suggested ways in which the limitations of the approach

could be addressed, and all those are candidates for future work. We now highlight some of

those, and describe other areas that, although related, would require substantial research. These

areas of future work are presented roughly in increasing order of perceived difficulty.

PLA model generation. Both PLA-SDP and PLA-PMC require formal models of the adap-

tive system and the tactics specified in Alloy and PRISM respectively. The models for the two

approaches follow patterns, as shown in chapters 4 and 5, that make their automatic generation

possible. In the previous section, we already provided a summary of what elements would be

needed to generate the models. How challenging the generation would be depends on the desired

level of automation. The most challenging aspect would be determining what system properties

must be included in the model given the utility function and the specification of the tactics. As

was explained in previous chapters, there is a method for a human to do this, but for a generator

to do it would require that it be possible to express the utility function in the DSL used as input.

From the utility function, the generator has to determine what inputs are necessary. If the inputs

are properties of the system, the mapping is direct. However, some inputs may be emergent

properties of the system, such as the response time. In that case, a specification of the function

that estimates this emergent properties from the properties of the system and the environment

would be needed (or its interface at minimum). In the end, the generator has to be able to define

all the properties of the system state that are needed to compute the utility function U(c, e).

Combining reactive with PLA self-adaptation. In this thesis we have shown how proactive

adaptation can improve over reactive adaptation. However, there are situations in which a com-

bination of both would be desirable, especially to address one of the limitations of proactive

adaptations. Proactive adaptation relies on being able to estimate future measures of perfor-

mance such as response time. However, suppose that in some situation it fails to do so correctly.

For example, the estimation model used by the proactive adaptation decision may have erro-

neously estimated a response time below the required threshold, but then, the response time does

not meet the requirement. As we pointed out in the previous section, because PLA does not

use feedback directly, it will not do anything to address this problem if its estimation model

122

continues to predict wrongly a lower response time. Reactive adaptation, which does not rely

on estimates of future performance, could directly use the feedback of not meeting the response

time requirement to take action.

A combination of proactive and reactive adaptation was already proposed by Gmach et al.,

applying it to resource pool management [58]. In their approach, undesired interactions be-

tween the two paradigms are avoided by having the proactive part make longer term adaptation

decisions, and reactive adaptation making corrections in between. The proactive part relies on

historical workload patterns that tend to repeat weekly or seasonally, but given that it runs with a

much longer decision interval than that of the reactive part (4 hours vs. 5 minutes), it would not

be very useful to deal with faster changing workloads. We believe it would be more effective to

have the proactive adaptation operate with a shorter decision interval, as we do in this thesis to

gain its full benefit. However, naively combining the reactive with proactive adaptation would

not work well. For example, assuming there are no errors in its estimates, proactive adaptation

could have decided not to add a server in spite of an upcoming spike in traffic because it may have

known it was going to be short lived, or because it knew there was a tactic already executing that

would bring the response time down, or because it knew that starting a tactic would have blocked

a more important adaptation tactic needed in the near future. If reactive adaptation then came

and added that server anyway, it would undo part of the benefit of proactivity, which is making

current decisions taking into account how they will affect future decisions. For this combination

to work correctly, there would have to be some way for the proactive side to inform the reactive

part what its intention was. For example, it may inform the reactive part in some way that it

expected the response time to go above the threshold at time t, so that the reactive part does not

attempt to deal with that. In summary, the idea would be to use reactive adaptation to address the

limitations of proactive adaptation, but making sure that it does not override proactive decisions

that were right.

Improving adaptation decisions by learning from experience. Being proactive requires be-

ing able to estimate the utility that a given system configuration would attain in a given environ-

ment, so that the best adaptation action can be taken to achieve the adaptation goal. The utility

function depends on one or more measures of performance of the system, such as the probability

of detecting a target, or the response time. In general, these emergent properties can only be

approximately estimated using models such as a queuing theory model, or a model for a UAV

on-board camera [6]. Using these approximations would of course result in an approximation

to the actual utility to be attained, and consequently, the adaptation decision may be affected by

errors in this approximation.

Approaches that use machine learning to estimate the impact of adaptation tactics, on the

other hand, do not require these models to estimate future utility, and can eventually learn the

utility function. However, as pointed out by Esfahani et al., they require an initial learning phase,

during which the system may not perform well, as they need to do exploration to learn [41].

Using predictors such as those used in PLA (referred to as baseline predictors) in combina-

tion with machine-learned predictors would allow the system to operate initially relatively well

(as much as the approximation of the baseline predictors allows), and improve over time through

learning from the experience it gets while it is in operation. The approaches proposed by Didona

123

et al. allow combining baseline predictors with machine-learned predictors obtaining better pre-

diction accuracy than them individually [34]. For example, the K-Nearest-Neighbors approach

computes the average prediction errors for both the baseline predictor and the machine-learned

predictor in the neighborhood of the state for which a new prediction is needed. Then, the one

with the least error in the vicinity of that state is used. This will allow determining automatically

which predictor to use for different areas of the state space. In areas in which the system has had

less experience, the machine-learned predictor is likely to have higher prediction error than the

baseline, and thus, the latter will be used. On the other hand, the decision can exploit what it has

learned with machine learning in areas that have been well explored at run time.

Dealing with other aspects of timing. In this thesis, we have dealt with the timing of adapta-

tion considering two aspects of the problem: when the adaptation is carried out, and how long it

takes. There are other aspects of timing in self-adaptation that could be considered. Pandey et

al. propose combining different planning approaches for self-adaptation, taking into account the

trade-off between how quickly each can make an adaptation decision and the quality of the solu-

tion [114]. For example, one planner may provide quick approximate decisions, whereas other

approaches may take more time to decide, but provide better decisions. In real-time systems, the

adaptation planning itself may need to be scheduled as a task that must be completed within a

deadline. Musliner proposes an approach to do controller synthesis for self-adaptive real-time

systems, in which the reconfiguration of the system has to be done within a deadline [110].

Adaptation decision approaches based on any-time algorithms, such as the cross-entropy method

previously discussed, could be useful for systems with such constraints. For real-time control

systems, the Simplex architecture provides a way to automatically switch to a baseline controller

if the more advanced, but possibly less tested, controller takes the system to an undesirable

state [130]. In this case, the adaptation decision is about selecting the controller whose output

will be used to control the system. When controllers for cyber-physical systems are developed,

models are used to do off-line verification and provide guarantees about the system behavior.

However, those guarantees are only valid as long as the behavior observed at run time matches

these models. ModelPlex is a method that can monitor the system to detect deviations from the

models, and if the behavior does not fit the model, it can initiate fail-safe actions [107].

Additionally, when self-adaptation is used in real-time systems, it must be ensured that the

system will continue to meet its timing requirements after an adaptation is carried out. Steiner

et al., for example, propose an approach that performs a schedulability analysis of the system

configuration that would result from an adaptation [131].

Integrating these timing aspects with those considered by PLA would be desirable, or even

required, for some kinds of systems.

Combining PLA with control theory. For years, control theory has been a source of inspira-

tion for the self-adaptive systems research community, not only because it provides examples of

different forms of control loops, but also because of its mathematical underpinnings that allow

computing properties such as controllability, and stability [15, 26]. Two of the biggest challenges

for the use of control theory for software self-adaptation has been the need to have mathematical

models of the software system’s dynamics, and the lack of software engineering methods that

124

treat controllability as a first class concern [44]. However, several contributions have been made

in the last few years addressing them [3, 43, 83]. Control theory is naturally better at handling

continuous actuators, but PLA requires discretizing them, as we did with the dimmer in RU-

BiS. Conversely, PLA inherently deals with a discrete state space (and corresponding actuators),

whereas control theory has to resort to some conversion from the continuous control signal it

computes to discrete actuation. In addition, PLA can reason about conflicts between tactics, tac-

tic applicability given the system state, and how the use of a tactic can constrain the reachable

states in the near future, whereas control theory cannot easily handle these.

Given these complementary characteristics, finding a way to combine both approaches may

increase the effectiveness and/or the applicability of each approach. For example, handling dim-

mer settings continuously would allow the approach to be more effective than its discretized

counterpart without incurring the state explosion that even approximating it would imply with

PLA. At the same time, state-dependent, discrete tactics with latency would be better handled

by PLA, rather than computing a continuous signal that represents the change in the number of

servers, which first must be discretized, and second, may not be aware of the infeasibility of

adding servers at a given time.

There are several criteria that could be used to allocate actuators to the two kinds of controls.

For example, it could be by discrete vs. continuous, or by immediate vs. with latency. Or perhaps

the controllers would be hierarchical with the inner control loop based on control theory and the

outer loop using PLA. It is not immediately obvious how this combination would be best realized,

and that poses an interesting research challenge.

Handling endogenous uncertainty. As we noted in the previous section, the PLA approach

only deals with exogenous uncertainty; that is, it assumes that adaptation actions do not affect

the environment. Dealing with endogenous uncertainty may be necessary for some domains. As

mentioned before, weaponized drones in DART with a tactic to fire at a threat would require that

in order to account for the fact that such a tactic could alter the presence of threats in the envi-

ronment ahead. In general, given their actual interaction with the environment, cyber-physical

systems are more likely to require dealing with endogenous uncertainty. For example, a robot

could push an object out of the way, thus changing its environment; and a smart home could turn

off outdoor lights to save power, but at the same time make itself more attractive to burglars. In

addition, any self-adaptive system for which its environment is adversarial would benefit from,

or even require, understanding how its actions affect the behavior of the environment. Cyber-

security is one clear example, in which self-protecting actions taken by the system can influence

the behavior of the attacker. For instance, the disconnection of a compromised computer will

be detected by attackers prompting them to change their behavior; however, if the network con-

nections or services the attacker is accessing are replaced with emulated ones, that change is not

detected by the attackers, allowing a defender to gather more information about them [61].

Handling endogenous uncertainty would not be too difficult with probabilistic model check-

ing, as noted earlier. The challenge in this case would be modeling the impact of tactics on

the environment, and how to model the environment in a way that includes not only the prob-

abilistic transitions the represent the uncertainty about the state of the environment—what we

currently model—but also the probabilistic transitions that result from the tactics the system can

125

use. For PLA-SDP, there is an additional challenge, since dealing with endogenous uncertainty

means either foregoing the backwards induction approach that supported a fast solution of the

decision problem, or storing the history of actions in the state. In any case, state space explosion

will probably be an issue, something that would require looking at solution approaches that are

parallelizable.

Reasoning about tactics that reduce uncertainty. This challenge is related to the previous

one, however in this case the system’s action do not affect the environment behavior, but change

what the system knows about the environment. For example, in a self-protecting system, a

tactic may consist in observing an attacker to identify its tactics, techniques and procedures.

Such a tactic would have a large latency, but will give the system more information about its

environment, rather than affect the environment. Another example is to have tactics that can

change the number of samples taken by the forward-looking sensors in DART. Again, these

tactics would only affect what the system knows about the environment (e.g., the more samples

it takes, the less variance the prediction of the environment has). Having better information about

the environment would result in better predictions, possibly at the expense of waiting for those

information gathering tactics to execute. The fundamental difference between these kinds of

tactics and the tactics used in this thesis is that for the former it is not possible to determine how

using the tactic will concretely affect the model of the environment the system has. This means

that it is not possible for the decision procedure to factor in precisely how using a tactic of this

kind affects the future.

Dealing with this kind of tactic that updates the belief that the system has of the environment

will likely require resorting to partially observable Markov decision processes (POMDP) [79].

However, the solution approaches for MDPs do not easily extend to POMDPs. Furthermore, the

use of probabilistic model checking is not an option, because at the time of this writing PRISM

does not support POMDPs. Perhaps solution approaches developed for planning could be used,

but the challenge will be making them fast enough to make adaptation decisions in a reasonable

time.

9.5 Summary

In this chapter we have shown that the combination of the three pillars of PLA (i.e., proac-

tivity, latency-awareness, and concurrent tactics) performs consistently better than any of them

used individually. We have also discussed why both PLA-PMC and PLA-SDP are relevant.

PLA-PMC is more modifiable and better suited for trying new developments in self-adaptation

decision-making, whereas PLA-SDP performs much faster and does not limit the encoding of

the predictors needed for the approach to a single language.

In addition, we discussed the limitations of the approach and how they could be addressed,

either with workarounds or with future research. We also discussed several areas of interesting

future work in a spectrum of near term improvements to facilitate adoption, to more challenging

topics that would require substantial research.

126

Chapter 10

Conclusion

In previous chapters we analyzed how the different elements of PLA contribute to the improve-

ment in effectiveness that it attains; reviewed the importance of having both PLA-PMC and

PLA-SDP; discussed limitations of the approach; and proposed areas of future work. This chap-

ter concludes the thesis by listing its contributions and providing a brief summary.

10.1 Contributions

This thesis advances software engineering through improvements in the effectiveness of self-

adaptive systems by considering timing in adaptation—when to adapt relative to the predicted

needs, and how long that takes. The main contributions of this thesis are:

• a conceptual framework for proactive latency-aware adaptation that describes how the ele-

ments of PLA are combined, and defines the PLA adaptation decision problem independent

of the solution approach. (Chapter 3)

• a solution approach based on probabilistic model checking, which, through exhaustive

analysis, can find the optimal solution to the PLA adaptation decision problem. Given

its optimality, it serves as a gold standard with which other approaches can be compared.

In addition, it is easily modifiable, and thus suitable to explore future extensions to PLA.

(Chapter 4)

• a solution approach based on the principles of stochastic dynamic programming, which

exploits the problem structure to reduce the adaptation decision time by an order of mag-

nitude while computing the same optimal solution as PLA-PMC. (Chapter 5)

• a strategy-based solution approach that uses the principles of PLA to improve strategy-

based adaptation. This approach provides a PLA solution that can be used in systems

in which the adaptive behavior needs to be limited to predefined and tested adaptation

strategies. Additionally, this approach is more scalable than the other two. (Chapter 7)

• support for a variety of adaptation goals formed by combining how reward is gained and

an optional requirement on the satisfaction of a probabilistic constraint. This makes the

PLA-SDP solution approach applicable to systems with different kinds of adaptation goals.

(Chapter 6)

127

Additionally, there are other secondary contributions:

• demonstration of the approach applied to two different systems in two very different do-

mains, and implemented with different self-adaptation frameworks

• an implementation of these approaches as a library suitable for different kinds of systems

• implementation of PLA adaptation managers, including SB-PLA, for Rainbow

• SWIM, a simulation of a web system suitable for experimentation in self-adaptive systems

that can be used for comparing self-adaptation approaches, and as an easy-to-deploy target

system for Rainbow

10.2 Summary

In Chapter 3 we explained why the timing aspects in self-adaptation are important, and intro-

duced the concept of proactive latency-aware adaptation (PLA) as a way to explicitly consider

them. PLA has three main pillars: (i) latency awareness to take into account how long adaptation

tactics take to execute, to considered not only their delayed effect, but also how their execution

affects the feasibility of subsequent adaptations; (ii) proactivity to adapt proactively considering

the anticipated needs of the system based on predictions of the near-future state of the environ-

ment; and (ii) concurrent tactic execution, which leverages non-conflicting tactics to complement

tactics that have long latency with faster tactics, and to reduce the amount of time required to

complete an adaptation by executing tactics concurrently. The PLA adaptation decision problem

was formulated independently of specific solution approaches, as the problem of deciding what

adaptation tactic(s) to start at the time the decision is being made in order to maximize the utility

accrued over the decision horizon. Additionally, we proposed using Markov decision processes

as the formalism to model the adaptation decision problem, which we then solve using two novel

approaches.

The first of these approaches, PLA-PMC was presented in Chapter 4. PLA-PMC uses prob-

abilistic model checking to make adaptation decisions. The key idea is to create a model of

the system, its environment, and the adaptation tactics, but leave the choice to start adaptation

tactics or not underspecified through nondeterminism. This model is specified in the PRISM

language and is a high-level representation of the underlying MDP. The model is then analyzed

by the PRISM model checker to synthesize a policy resolving the nondeterminism so that the

adaptation goal, specified as a PRCTL property, is satisfied.

In PLA-PMC, the model checker must process the model to build the MDP every time an

adaptation decision has to be made. In Chapter 5 we introduced PLA-SDP, an approach that

virtually eliminates that overhead by building most of the MDP off-line. PLA-SDP uses Alloy

off-line to analyze a model of the system and the adaptation tactics to compute the reachabil-

ity predicates that encode the deterministic transitions in the MDP. At run time, a novel custom

algorithm based on the principles of stochastic dynamic programming is used to solve the adap-

tation decision problem, weaving in the probabilistic environment transitions as it computes the

solution. PLA-SDP achieves a drastic speed-up in this way, while computing the same optimal

solution as PLA-PMC.

128

In Chapter 6 we presented a way to support different notions of utility in addition to maxi-

mization of aggregate reward. With this approach, adaptation goals can be defined by composing

a form of reward gain, with a form of constraint satisfaction. The former specifies how reward is

gained relative to the constraint satisfaction (e.g., reward is gained as long as the constraint has

always been satisfied). The latter optionally imposes a requirement on the probability of satisfy-

ing the constraint. These more complex notions of utility are necessary to deal with adaptation

goals in some self-adaptive systems, as demonstrated in the DART system, in which the goal is to

maximize the number of targets detected while keeping the probability of surviving the mission

above a bound—something that cannot be encoded in a simple additive utility function since the

two measures are not comparable.

Both PLA-PMC and PLA-SDP are tactic-based solution approaches, in that they have the

flexibility to combine tactics in arbitrary ways. For some systems, the designer may prefer to

limit the adaptations to tried and tested adaptation strategies, which combine tactics in predefined

ways. In Chapter 7 we presented SB-PLA, a solution approach that uses the principles of PLA

to improve the effectiveness of strategy-based adaptation. SB-PLA is also much more scalable

than the other approaches, since the solution space is reduced when the adaptation decision is

done in terms of strategies. Though not as effective as the other two approaches, SB-PLA still

provides an improvement over non-PLA strategy-based adaptation, thus providing a reasonable

compromise for systems in which the full approaches would take too long to make adaptation

decisions.

The approaches were demonstrated with two systems that were used to validate thesis’ claims.

RUBiS is a web system, and DART is a cyber-physical system. These systems are different in

several important aspects including their adaptation goal, the kinds of tactics they have, the kinds

of environment predictions they use, and how they are implemented. Given that the approach

presented in this thesis was used for these two different systems, we believe that PLA will im-

prove the self-adaptation effectiveness of other systems, and that it will inspire other adaptation

approaches by highlighting the importance of considering adaptation timing in self-adaptation.

129

130

Appendix A

PLA-PMC PRISM Model for RUBiS

The following listing shows the template for the PLA-PMC PRISM model for RUBiS. This

template is completed at run time before each adaptation decision by injecting the initialization

block in the tag // # init , and the environment model in the tag // #environment.

1 mdp
2 // init block must include values for the following constants
3 // const int HORIZON
4 // const double PERIOD
5 // const int DIMMER LEVELS
6 // const double DIMMER MARGIN
7 // const int MAX SERVERS
8 // const double RT THRESHOLD
9 // const int ini servers

10 // const int ini dimmer
11 // const double AddServer LATENCY
12 // const int ini AddServer state
13 // const double serviceTimeMean
14 // const double serviceTimeVariance
15 // const double lowServiceTimeMean
16 // const double lowServiceTimeVariance
17 // const int threads
18 // /
19 // # init
20 label ” initState ” = servers = ini servers & AddServer state = ini AddServer state
21 & dimmer = ini dimmer;
22

23 label ” final ” = time = HORIZON & readyToTick;
24 formula sys go = readyToTick;
25

26 module clk
27 time : [0.. HORIZON] init 0;
28 readyToTick : bool init true;
29 [tick] readyToTick & time < HORIZON −> 1 : (time’ = time + 1) & (readyToTick’=false);
30 [tack] !readyToTick −> 1 : (readyToTick’=true);
31 endmodule
32

33 module env
34 // #environment
35

36 // tactic concurrency rules
37 formula AddServer compatible = !RemoveServer used;
38 formula RemoveServer compatible = !AddServer used;
39 formula IncDimmer compatible = !DecDimmer used;
40 formula DecDimmer compatible = !IncDimmer used;
41

42 // tactic

131

43 formula AddServer used = AddServer state != 0;
44 const int AddServer LATENCY PERIODS = ceil(AddServer LATENCY / PERIOD);
45

46 // applicability conditions
47 formula AddServer applicable = servers < MAX SERVERS & AddServer compatible;
48

49 module AddServer
50 AddServer state : [0.. AddServer LATENCY PERIODS] init ini AddServer state;
51 AddServer go : bool init true;
52

53 // tactic applicable, start it
54 [AddServer start] sys go & AddServer go // can go
55 & AddServer state = 0 // tactic has not been started
56 & AddServer applicable
57 −> (AddServer state’ = 1) & (AddServer go’ = false);
58

59 // tactic applicable, but don’t use it
60 [] sys go & AddServer go // can go
61 & AddServer state = 0 // tactic has not been started
62 & AddServer applicable
63 −> (AddServer go’ = false);
64

65 // pass if the tactic is not applicable
66 [] sys go & AddServer go
67 & AddServer state = 0 // tactic has not been started
68 & !AddServer applicable
69 −> 1 : (AddServer go’ = false);
70

71 // progress of the tactic
72 [] sys go & AddServer go
73 & AddServer state > 0 & AddServer state < AddServer LATENCY PERIODS
74 −> 1 : (AddServer state’ = AddServer state + 1) & (AddServer go’ = false);
75

76 // completion of the tactic
77 [AddServer complete] sys go & AddServer go
78 & AddServer state = AddServer LATENCY PERIODS // completed
79 −> 1 : (AddServer state’ = 0) & (AddServer go’ = true); // so that it can start again at this time if needed
80

81 [tick] !AddServer go −> 1 : (AddServer go’ = true);
82 endmodule
83

84

85 // tactic
86 module RemoveServer
87 RemoveServer go : bool init true;
88 RemoveServer used : bool init false;
89

90 [RemoveServer start] sys go & RemoveServer go
91 & servers > 1 & RemoveServer compatible // applicability conditions
92 −> (RemoveServer go’ = false) & (RemoveServer used’ = true);
93

94 // tactic applicable but not used
95 [] sys go & RemoveServer go // can go
96 & servers > 1 & RemoveServer compatible // applicability conditions
97 −> (RemoveServer go’ = false);
98

99 // pass if the tactic is not applicable
100 [] sys go & RemoveServer go
101 & !(servers > 1 & RemoveServer compatible) // applicability conditions negated
102 −> 1 : (RemoveServer go’ = false);
103

104 [tick] !RemoveServer go −> 1 : (RemoveServer go’ = true) & (RemoveServer used’ = false);
105 endmodule
106

107

108 // tactic

132

109 module IncDimmer
110 IncDimmer go : bool init true;
111 IncDimmer used : bool init false;
112

113 [IncDimmer start] sys go & IncDimmer go
114 & dimmer < DIMMER LEVELS & IncDimmer compatible // applicability conditions
115 −> (IncDimmer go’ = false) & (IncDimmer used’ = true);
116

117 // tactic applicable but not used
118 [] sys go & IncDimmer go // can go
119 & dimmer < DIMMER LEVELS & IncDimmer compatible // applicability conditions
120 −> (IncDimmer go’ = false);
121

122 // pass if the tactic is not applicable
123 [] sys go & IncDimmer go
124 & !(dimmer < DIMMER LEVELS & IncDimmer compatible) // applicability conditions negated
125 −> 1 : (IncDimmer go’ = false);
126

127 [tick] !IncDimmer go −> 1 : (IncDimmer go’ = true) & (IncDimmer used’ = false);
128 endmodule
129

130 // tactic
131 module DecDimmer
132 DecDimmer go : bool init true;
133 DecDimmer used : bool init false;
134

135 [DecDimmer start] sys go & DecDimmer go
136 & dimmer > 1 & DecDimmer compatible // applicability conditions
137 −> (DecDimmer go’ = false) & (DecDimmer used’ = true);
138

139 // tactic applicable but not used
140 [] sys go & DecDimmer go // can go
141 & dimmer > 1 & DecDimmer compatible // applicability conditions
142 −> (DecDimmer go’ = false);
143

144 // pass if the tactic is not applicable
145 [] sys go & DecDimmer go
146 & !(dimmer > 1 & DecDimmer compatible) // applicability conditions negated
147 −> 1 : (DecDimmer go’ = false);
148

149 [tick] !DecDimmer go −> 1 : (DecDimmer go’ = true) & (DecDimmer used’ = false);
150 endmodule
151

152 // system
153 module sys
154 servers : [1.. MAX SERVERS] init ini servers;
155 dimmer : [1.. DIMMER LEVELS] init ini dimmer;
156

157 [AddServer complete] servers < MAX SERVERS −> 1 : (servers’ = servers + 1);
158 [RemoveServer start] servers > 1 −> 1 : (servers’ = servers − 1);
159 [IncDimmer start] dimmer < DIMMER LEVELS −> 1 : (dimmer’ = dimmer + 1);
160 [DecDimmer start] dimmer > 1 −> 1 : (dimmer’ = dimmer − 1);
161 endmodule
162

163

164 // continuous equivalent for the dimmer level
165 formula dimmerFactor = DIMMER MARGIN + (1 − 2 ∗ DIMMER MARGIN) ∗ (dimmer − 1) / (DIMMER LEVELS − 1);
166

167 // ∗∗∗
168 // Queuing model G/G/c LPS with round−robin allocation to servers
169 // ∗∗∗
170 formula interarrivalMean = stateValue;
171

172 // assume arrivals have exponential distribution
173 formula interArrivalVariance = pow(interarrivalMean, 2);
174

133

175 formula lambda = 1 / (interarrivalMean ∗ interArrivalScaleFactorForDecision ∗ servers);
176 formula beta = dimmerFactor ∗ serviceTimeMean + (1−dimmerFactor) ∗ lowServiceTimeMean;
177 formula rho = lambda ∗ beta;
178 formula overloaded = (rho >= 1);
179 formula ca2 = interArrivalVariance ∗ servers / pow(interarrivalMean ∗ servers, 2);
180 formula cs2 = (dimmerFactor ∗ serviceTimeVariance + (1−dimmerFactor) ∗ lowServiceTimeVariance) / pow(beta, 2);
181 formula dp = pow(rho, threads ∗ (1+cs2)/(ca2 + cs2));
182 formula rb = ((ca2 + cs2) / 2) ∗ dp ∗ beta / (1 − rho);
183 formula rz = ((ca2 + cs2) / (1 + cs2)) ∗ (1 − dp) ∗ beta / (1 − rho);
184 formula totalTime = rb + rz ;
185 formula rt = (interarrivalMean=0 ? 0 : totalTime) ;
186

187

188 // Response time to clients utility function
189 const double SERVER COST SEC = 1;
190 const double MAX ARRIVAL CAPACITY = 1/0.04452713;
191 const double MAX ARRIVAL CAPACITY LOW = 1/0.002430258;
192

193 const double NORMAL REVENUE = 1.5;
194 const double LOW REVENUE = 1;
195 formula poweredServers = (AddServer state > 0 ? servers + 1 : servers);
196 formula cost = poweredServers;
197 formula spacing = MAX SERVERS + 1;
198 formula maxThroughput = MAX SERVERS ∗ MAX ARRIVAL CAPACITY;
199 formula latePenalty = maxThroughput ∗ NORMAL REVENUE ∗ spacing;
200

201 formula throughput = (interarrivalMean > 0) ? 1/interarrivalMean : 0;
202

203 formula positiveUtilityTemp = throughput ∗ (dimmerFactor ∗ NORMAL REVENUE + (1−dimmerFactor) ∗ LOW REVENUE);
204 formula positiveUtility = ((positiveUtilityTemp − floor(positiveUtilityTemp) >= 0.5) ? ceil (positiveUtilityTemp) : floor(

positiveUtilityTemp)) ∗ spacing;
205

206 formula uTotal = (overloaded) ? (−latePenalty − 2 ∗ spacing + poweredServers + (1−dimmerFactor))
207 : (((rt>RT THRESHOLD) ? min(0, throughput ∗ NORMAL REVENUE ∗ spacing − latePenalty) : positiveUtility) −

cost);
208

209 formula periodUtility = (PERIOD)∗(uTotal);
210

211 formula UTILITY SHIFT = PERIOD ∗ (latePenalty + 2 ∗ spacing + MAX SERVERS);
212

213 rewards ”util ”
214 [tack] true : UTILITY SHIFT + periodUtility;
215 endrewards

134

Appendix B

PLA-PMC PRISM Model for DART

The following listing shows the template for the PLA-PMC PRISM model for DART. This tem-

plate is completed at run time before each adaptation decision by injecting the initialization block

in the tag // # init , and the environment model in the tag // #environment.

1 mdp
2 // init block must include values for the following constants
3 // const int HORIZON
4 // const double PERIOD
5 // const int MAX ALT LEVEL
6 // const int init a
7 // const int init f
8 // const double IncAlt LATENCY
9 // const double DecAlt LATENCY

10 // const int ini IncAlt state
11 // const int ini DecAlt state
12 // const double destructionFormationFactor
13 // const double threatRange
14 // const double detectionFormationFactor
15 // const double sensorRange
16

17 // # init
18

19 // ∗∗
20 // CLOCK
21 // ∗∗
22 const int TO TICK = 0;
23 const int TO TICK2 = 1; // intermediate tick for constraint satisf . update
24 const int TO TACK = 2;
25

26 label ” final ” = time = HORIZON & clockstep=TO TICK;
27 formula sys go = clockstep=TO TICK;
28

29 module clk
30 time : [0.. HORIZON] init 0;
31 clockstep : [0..2] init TO TICK;
32

33 [tick] clockstep=TO TICK & time < HORIZON −> 1: (time’=time+1) & (clockstep’=TO TICK2);
34 [tick2] clockstep=TO TICK2 −> 1 : (clockstep’=TO TACK);
35 [tack] clockstep=TO TACK −> 1: (clockstep’=TO TICK);
36 endmodule
37

38 module env
39 // #environment
40

41 // ∗∗
42 // SYSTEM

135

43 // ∗∗
44

45 // Variable range and initialization
46 const a MIN=0; const a MAX=MAX ALT LEVEL; const a INIT=init a;
47 const f MIN=0; const f MAX=1; const f INIT=init f;
48

49 module sys
50 a : [a MIN..a MAX] init a INIT;
51 f : [f MIN..f MAX] init f INIT ;
52

53 [GoTight start] f=0 −> 1: (a’=a GoTight impact)
54 & (f ’=f GoTight impact);
55 [GoLoose start] f=1 −> 1: (a’=a GoLoose impact)
56 & (f ’=f GoLoose impact);
57 [IncAlt complete] a < MAX ALT LEVEL −> 1: (a’=a IncAlt impact)
58 & (f ’= f IncAlt impact) ;
59 [DecAlt complete] a > 0 −> 1: (a’=a DecAlt impact)
60 & (f ’=f DecAlt impact);
61 endmodule
62

63

64 formula a GoTight impact = a + (0) >= a MIN ? (a+(0)<=a MAX? a+(0) : a MAX) : a MIN;
65 formula f GoTight impact = f + (1) >= f MIN ? (f+(1)<=f MAX? f+(1) : f MAX) : f MIN;
66 formula a GoLoose impact = a + (0) >= a MIN ? (a+(0)<=a MAX? a+(0) : a MAX) : a MIN;
67 formula f GoLoose impact = f + (−1) >= f MIN ? (f+(−1)<=f MAX? f+(−1) : f MAX) : f MIN;
68 formula a IncAlt impact = a + (1) >= a MIN ? (a+(1)<=a MAX? a+(1) : a MAX) : a MIN;
69 formula f IncAlt impact = f + (0) >= f MIN ? (f+(0)<=f MAX? f+(0) : f MAX) : f MIN;
70 formula a DecAlt impact = a + (−1) >= a MIN ? (a+(−1)<=a MAX? a+(−1) : a MAX) : a MIN;
71 formula f DecAlt impact = f + (0) >= f MIN ? (f+(0)<=f MAX? f+(0) : f MAX) : f MIN;
72

73

74 // tactic concurrency rules
75 formula IncAlt used = IncAlt state != 0;
76 formula DecAlt used = DecAlt state != 0;
77

78 formula GoTight compatible = !GoLoose used;
79 formula GoLoose compatible = !GoTight used;
80 formula IncAlt compatible = !DecAlt used;
81 formula DecAlt compatible = !IncAlt used;
82

83 // ∗∗
84 // TACTIC: GoTight
85 // ∗∗
86

87 // Applicability conditions
88 formula GoTight applicable = GoTight compatible & f=0;
89

90 module GoTight
91 GoTight used : bool init false;
92 GoTight go : bool init true;
93

94 // Tactic applicable, start it
95 [GoTight start] sys go & GoTight go & GoTight applicable −> (GoTight used’=true) & (GoTight go’=false);
96

97 // Tactic applicable, but do not start it
98 [] sys go & GoTight go & GoTight applicable −> (GoTight go’=false);
99

100 // Pass if the tactic is not applicable
101 [] sys go & GoTight go & !GoTight applicable −> 1 : (GoTight go’=false);
102

103 [tick] !GoTight go −> 1: (GoTight go’=true) & (GoTight used’=false);
104 endmodule
105

106

107 // ∗∗
108 // TACTIC: GoLoose

136

109 // ∗∗
110

111 // Applicability conditions
112 formula GoLoose applicable = GoLoose compatible & f=1;
113

114 module GoLoose
115 GoLoose used : bool init false;
116 GoLoose go : bool init true;
117

118 // Tactic applicable, start it
119 [GoLoose start] sys go & GoLoose go & GoLoose applicable −> (GoLoose used’=true) & (GoLoose go’=false);
120

121 // Tactic applicable, but do not start it
122 [] sys go & GoLoose go & GoLoose applicable −> (GoLoose go’=false);
123

124 // Pass if the tactic is not applicable
125 [] sys go & GoLoose go & !GoLoose applicable −> 1 : (GoLoose go’=false);
126

127 [tick] !GoLoose go −> 1: (GoLoose go’=true) & (GoLoose used’=false);
128 endmodule
129

130

131 // ∗∗
132 // TACTIC: IncAlt
133 // ∗∗
134

135 const int IncAlt LATENCY PERIODS = ceil(IncAlt LATENCY/PERIOD);
136

137 // Applicability conditions
138 formula IncAlt applicable = IncAlt compatible & a < MAX ALT LEVEL;
139

140 module IncAlt
141 IncAlt state : [0.. IncAlt LATENCY PERIODS] init ini IncAlt state;
142 IncAlt go : bool init true;
143

144 // Tactic applicable, start it
145 [IncAlt start] sys go & IncAlt go & IncAlt state =0 & IncAlt applicable −> (IncAlt state’=IncAlt LATENCY PERIODS) & (

IncAlt go’=false);
146

147 // Tactic applicable, but do not start it
148 [] sys go & IncAlt go & IncAlt state =0 & IncAlt applicable −> (IncAlt go’=false);
149

150 // Pass if the tactic is not applicable
151 [] sys go & IncAlt go & IncAlt state =0 & ! IncAlt applicable −> 1 : (IncAlt go’=false) ;
152

153 // Progress of the tactic
154 [] sys go & IncAlt go & IncAlt state > 1 −> 1: (IncAlt state’= IncAlt state−1) & (IncAlt go’=false) ;
155

156 // Completion of the tactic
157 [IncAlt complete] sys go & IncAlt go & IncAlt state =1 −> 1: (IncAlt state’=0) & (IncAlt go’=true) ;
158

159 [tick] ! IncAlt go −> 1: (IncAlt go’=true);
160 endmodule
161

162

163 // ∗∗
164 // TACTIC: DecAlt
165 // ∗∗
166

167 const int DecAlt LATENCY PERIODS = ceil(DecAlt LATENCY/PERIOD);
168

169 // Applicability conditions
170 formula DecAlt applicable = DecAlt compatible & a > 0;
171

172 module DecAlt
173 DecAlt state : [0.. DecAlt LATENCY PERIODS] init ini DecAlt state;

137

174 DecAlt go : bool init true;
175

176 // Tactic applicable, start it
177 [DecAlt start] sys go & DecAlt go & DecAlt state=0 & DecAlt applicable −> (DecAlt state’=DecAlt LATENCY PERIODS) & (

DecAlt go’=false);
178

179 // Tactic applicable, but do not start it
180 [] sys go & DecAlt go & DecAlt state=0 & DecAlt applicable −> (DecAlt go’=false);
181

182 // Pass if the tactic is not applicable
183 [] sys go & DecAlt go & DecAlt state=0 & !DecAlt applicable −> 1 : (DecAlt go’=false);
184

185 // Progress of the tactic
186 [] sys go & DecAlt go & DecAlt state > 1 −> 1: (DecAlt state’=DecAlt state−1) & (DecAlt go’=false);
187

188 // Completion of the tactic
189 [DecAlt complete] sys go & DecAlt go & DecAlt state=1 −> 1: (DecAlt state’=0) & (DecAlt go’=true);
190

191 [tick] !DecAlt go −> 1: (DecAlt go’=true);
192 endmodule
193

194 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
195 // Utility Function
196 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
197 const int LOOSE = 0;
198 const int TIGHT = 1;
199

200 formula probOfThreat = stateValue;
201

202 formula probabilityOfDestruction = probOfThreat
203 ∗ ((f = LOOSE) ? 1.0 : (1.0 / destructionFormationFactor))
204 ∗ max(0.0, threatRange − (a + 1)) / threatRange; // +1 because level 0 is one level above ground
205

206 module constraint // in this case the constraint is surviving
207 satisfied : bool init true;
208 [tick2] satisfied −> (1.0 − probabilityOfDestruction): (satisfied ’=true)
209 + probabilityOfDestruction : (satisfied ’=false) ;
210 [tick2] ! satisfied −> true;
211 endmodule
212

213

214 formula probOfTarget= stateValue1;
215

216 formula probOfDetection = probOfTarget
217 ∗ ((f = LOOSE) ? 1.0 : (1.0 / detectionFormationFactor))
218 ∗ max(0.0, sensorRange − (a + 1)) / sensorRange; // +1 because level 0 is one level above ground
219

220 module sensor
221 targetDetected: bool init false;
222 [tick2] true −> probOfDetection: (targetDetected’=true) + (1.0 − probOfDetection): (targetDetected’=false);
223 endmodule
224

225 rewards ”util ”
226 [tack] satisfied & targetDetected : 1;
227

228 // give slight preference to not adapting
229 [tick] time = 0 & IncAlt state = ini IncAlt state & DecAlt state=ini DecAlt state & a=init a & f= init f : 0.000000001;
230 endrewards

138

Appendix C

PLA-SDP Alloy Models for RUBiS

C.1 Immediate Reachability Model

The following listing contains the PLA-SDP Alloy model for computing immediate reachability

for RUBiS.

1 open util/ordering[S] as servers
2 open util/ordering[TAP] as progress // tactic add progress
3 open util/ordering[TraceElement] as trace
4 open util/ordering[D] as dimmer
5 open util/ordering[T] as TO
6

7 abstract sig TP {} // tactic progress
8 sig TAP extends TP {} // one sig for each tactic with latency
9

10 abstract sig T {} // tactics
11 abstract sig LT extends T {} // tactics with latency
12 one sig IncDimmer, DecDimmer, RemoveServer extends T {} // tactics with no latency
13 one sig AddServer extends LT {} // tactics with latency
14

15 // define configuration properties
16 sig S {} // the different number of active servers
17 sig D {} // the different dimmer levels
18

19 /∗ each element of C represents a configuration ∗/
20 abstract sig C {
21 s : S, // the number of active servers
22 d : D // dimmer level
23 }
24

25 pred equals[c, c2 : C] {
26 all f : C$.fields | c.(f.value) = c2.(f.value)
27 }
28

29 pred equalsExcept[c, c2 : C, ef : univ] {
30 all f : C$.fields | f=ef or c.(f.value) = c2.(f.value)
31 }
32

33 /∗
34 ∗ this sig is a config extended with the progress of each tactic with latency
35 ∗/
36 sig CP extends C {
37 p: LT −> TP
38 } {
39 ˜p.p in iden // functional (i.e., p maps each tactic to at most one progress)
40 //#p = #LT // every tactic in LT has a mapping in p

139

41 p.univ = LT // every tactic in LT has a mapping in p (p.univ is domain(p))
42 p[AddServer] in TAP // restrict each tactic to its own progress class
43 }
44

45 fact tacticOrdering {
46 TO/first = AddServer
47 AddServer.next = RemoveServer
48 RemoveServer.next = IncDimmer
49 IncDimmer.next = DecDimmer
50 }
51

52 sig TraceElement {
53 cp : CP,
54 starts : set T // tactics started
55 }
56

57 // do not generate atoms that do not belong to the trace
58 fact {
59 CP in TraceElement.cp
60 }
61

62 pred equals[e, e2 : TraceElement] {
63 all f : TraceElement$.subfields | e.(f.value) = e2.(f.value)
64 }
65

66 fact traces {
67 let fst = trace/first | fst.starts = none
68 all e : TraceElement − last | let e’ = next[e] | {
69 equals[e, e’]
70 equals[e’, trace/last]
71 } or ((addServerTacticStart[e, e’] or removeServerTactic[e, e’] or decDimmerTactic[e, e’] or incDimmerTactic[e, e’]) and
72 (let s = e’.starts − e.starts | all t : s | validOrder[t, e]))
73 }
74

75 pred validOrder[t : T, e : TraceElement] {
76 all s : T | s in e.starts => !(s in t.nexts)
77 }
78

79 pred addServerCompatible[e : TraceElement] {
80 e.cp.p[AddServer] = progress/last
81 !(RemoveServer in e.starts)
82 }
83

84 pred addServerTacticStart[e, e’ : TraceElement] {
85 addServerCompatible[e] and e.cp.s != servers/last
86 e’.starts = e.starts + AddServer
87 let c = e.cp, c’=e’.cp | {
88 c’.p[AddServer] = progress/first
89

90 // nothing else changes
91 equals[c, c’]
92 (LT − AddServer) <: c.p in c’.p
93 }
94 }
95

96 pred removeServerCompatible[e : TraceElement] {
97 !(RemoveServer in e.starts)
98 e.cp.p[AddServer] = progress/last // add server tactic not running
99 }

100

101 pred removeServerTactic[e, e’ : TraceElement] {
102 removeServerCompatible[e] and e.cp.s != servers/first
103 e’.starts = e.starts + RemoveServer
104 let c = e.cp, c’=e’.cp | {
105 c’.s = servers/prev[c.s]
106

140

107 // nothing else changes
108 equalsExcept[c, c’, C$s]
109 c’.p = c.p
110 }
111 }
112

113 pred incDimmerCompatible[e : TraceElement] {
114 !(IncDimmer in e.starts) and !(DecDimmer in e.starts)
115 }
116

117 pred incDimmerTactic[e, e’ : TraceElement] {
118 incDimmerCompatible[e] and e.cp.d != dimmer/last
119 e’.starts = e.starts + IncDimmer
120

121 let c = e.cp, c’=e’.cp | {
122 c’.d = c.d.next
123

124 // nothing else changes
125 equalsExcept[c, c’, C$d]
126 c’.p = c.p
127 }
128 }
129

130 pred decDimmerCompatible[e : TraceElement] {
131 !(DecDimmer in e.starts) and !(IncDimmer in e.starts)
132 }
133

134 pred decDimmerTactic[e, e’ : TraceElement] {
135 decDimmerCompatible[e] and e.cp.d != dimmer/first
136 e’.starts = e.starts + DecDimmer
137

138 let c = e.cp, c’=e’.cp | {
139 c’.d = c.d.prev
140

141 // nothing else changes
142 equalsExcept[c, c’, C$d]
143 c’.p = c.p
144 }
145 }
146

147

148 pred show {
149 }
150

151 // the scope for TraceElement, C and CP has to be one more than the maximum
152 // number of tactics that could be started concurrently
153 run show for exactly 3 S, exactly 3 TAP, 2 D, 3 C, 3 CP, 3 TraceElement

C.2 Delayed Reachability Model

The following listing contains the PLA-SDP Alloy model for computing delayed reachability for

RUBiS.

1 open util/ordering[S] as servers
2 open util/ordering[TAP] as progress // tactic add progress
3 open util/ordering[D] as dimmer
4

5 abstract sig TP {} // tactic progress
6 sig TAP extends TP {} // one sig for each tactic with latency
7

8 abstract sig T {} // tactics
9 abstract sig LT extends T {} // tactics with latency

141

10 one sig IncDimmer, DecDimmer, RemoveServer extends T {} // tactics with no latency
11 one sig AddServer extends LT {} // tactics with latency
12

13 // define configuration properties
14 sig S {} // the different number of active servers
15 sig D {} // the different dimmer levels
16

17 /∗ each element of C represents a configuration ∗/
18 abstract sig C {
19 s : S, // the number of active servers
20 d : D // dimmer level
21 }
22

23 pred equals[c, c2 : C] {
24 all f : C$.fields | c.(f.value) = c2.(f.value)
25 }
26

27 pred equalsExcept[c, c2 : C, ef : univ] {
28 all f : C$.fields | f=ef or c.(f.value) = c2.(f.value)
29 }
30

31

32 fact uniqueInstances { all disj c, c2 : CP | !equals[c, c2] or c.p != c2.p}
33

34

35 /∗
36 ∗ this sig is a config extended with the progress of each tactic with latency
37 ∗/
38 sig CP extends C {
39 p: LT −> TP
40 } {
41 ˜p.p in iden // functional (i.e., p maps each tactic to at most one progress)
42 //#p = #LT // every tactic in LT has a mapping in p
43 p.univ = LT // every tactic in LT has a mapping in p (p.univ is domain(p))
44 p[AddServer] in TAP // restrict each tactic to its own progress class
45 }
46

47

48 pred addServerTacticProgress[c, c’ : CP] {
49 c.p[AddServer] != progress/last implies { // tactic is running
50 c’.p[AddServer] = progress/next[c.p[AddServer]]
51 c’.p[AddServer] = progress/last implies c’.s = servers/next[c.s] else c’.s = c.s
52 } else {
53 c’.p[AddServer] = progress/last // stay in not running state
54 c’.s = c.s
55 }
56

57 // nothing else changes other than s and the progress
58 equalsExcept[c, c’, C$s]
59 (LT − AddServer) <: c.p in c’.p
60 }
61

62 pred oneStepProgress[c, c’ : CP] { // is c’ reachable from config c in one evaluation period?
63 addServerTacticProgress[c, c’]
64 }
65

66 sig Result {
67 c, c’ : CP
68 } {
69 oneStepProgress[c, c’]
70 }
71

72 // this reduces the number of unused configurations
73 fact reduceUsedConfigs {
74 all cp : CP | {some r : Result | r.c = cp or r.c’ = cp
75 }

142

76 }
77

78 pred show {
79 }
80

81 /∗
82 ∗ (numOfTacticsWithLatency + 1) for CP and C to allow the progress for all the tactics with latency + the initial state
83 ∗/
84 run show for exactly 3 S, exactly 3 TAP, exactly 2 D, 2 C, 2 CP, exactly 1 Result

143

144

Appendix D

PLA-SDP Alloy Models for DART

D.1 Immediate Reachability Model

The following listing contains the PLA-SDP Alloy model for computing immediate reachability

for DART.

1 open util/ordering[F] as FO
2 open util/ordering[TraceElement] as trace
3 open util/ordering[A] as AO
4 open util/ordering[TPIA] as TPIAO
5 open util/ordering[TPDA] as TPDAO
6 open util/ordering[T] as TO
7

8 abstract sig TP {} // tactic progress
9 sig TPIA extends TP {} // one sig for each tactic with latency

10 sig TPDA extends TP {} // one sig for each tactic with latency
11

12 abstract sig T {} // tactics
13 abstract sig LT extends T {} // tactics with latency
14 one sig GoLoose, GoTight extends T {} // tactics with no latency
15 one sig IncAlt, DecAlt extends LT {} // tactics with latency
16

17 // define configuration properties
18 sig F {} // the different formations
19 sig A {} // the different altitude levels
20

21 /∗ each element of C represents a configuration ∗/
22 abstract sig C {
23 f : F, // formation
24 a : A // altitude level
25 }
26

27 pred equals[c, c2 : C] {
28 all f : C$.fields | c.(f.value) = c2.(f.value)
29 }
30

31 pred equalsExcept[c, c2 : C, ef : univ] {
32 all f : C$.fields | f=ef or c.(f.value) = c2.(f.value)
33 }
34

35 /∗
36 ∗ this sig is a config extended with the progress of each tactic with latency
37 ∗/
38 sig CP extends C {
39 p: LT −> TP
40 } {

145

41 ˜p.p in iden // functional (i.e., p maps each tactic to at most one progress)
42 p.univ = LT // every tactic in LT has a mapping in p
43 p[IncAlt] in TPIA // restrict each tactic to its own progress class
44 p[DecAlt] in TPDA
45 }
46

47 fact tacticOrdering {
48 TO/first = GoLoose
49 GoLoose.next = GoTight
50 GoTight.next = IncAlt
51 IncAlt.next = DecAlt
52 }
53

54 sig TraceElement {
55 cp : CP,
56 starts : set T // tactics started
57 }
58

59 // do not generate atoms that do not belong to the trace
60 fact {
61 CP in TraceElement.cp
62 }
63

64 pred equals[e, e2 : TraceElement] {
65 all f : TraceElement$.subfields | e.(f.value) = e2.(f.value)
66 }
67

68 fact traces {
69 let fst = trace/first | fst.starts = none
70 all e : TraceElement − last | let e’ = next[e] | {
71 equals[e, e’]
72 equals[e’, trace/last]
73 } or ((incAltTacticStart[e, e’] or decAltTacticStart[e, e’] or goLooseTactic[e, e’] or goTightTactic[e, e’]) and (
74 let s = e’.starts − e.starts | all t : s | validOrder[t, e]))
75 }
76

77 pred validOrder[t : T, e : TraceElement] {
78 all s : T | s in e.starts => !(s in t.nexts)
79 }
80

81 pred incAltCompatible[e : TraceElement] {
82 e.cp.p[IncAlt] = TPIAO/last // IncAlt tactic not running
83 e.cp.p[DecAlt] = TPDAO/last // DecAlt tactic not running
84 }
85

86 pred incAltTacticStart[e, e’ : TraceElement] {
87 incAltCompatible[e] and e.cp.a != AO/last
88 e’.starts = e.starts + IncAlt
89 let c = e.cp, c’=e’.cp | {
90 c’.p[IncAlt] = TPIAO/first
91

92 // nothing else changes
93 equals[c, c’]
94 (LT − IncAlt) <: c.p in c’.p
95 }
96 }
97

98 pred decAltCompatible[e : TraceElement] {
99 e.cp.p[DecAlt] = TPDAO/last // DecAlt tactic not running

100 e.cp.p[IncAlt] = TPIAO/last // IncAlt tactic not running
101 }
102

103 pred decAltTacticStart[e, e’ : TraceElement] {
104 decAltCompatible[e] and e.cp.a != AO/first
105 e’.starts = e.starts + DecAlt
106 let c = e.cp, c’=e’.cp | {

146

107 c’.p[DecAlt] = TPDAO/first
108

109 // nothing else changes
110 equals[c, c’]
111 (LT − DecAlt) <: c.p in c’.p
112 }
113 }
114

115 pred goLooseCompatible[e : TraceElement] {
116 !(GoLoose in e.starts) and !(GoTight in e.starts)
117 }
118

119 pred goLooseTactic[e, e’ : TraceElement] {
120 goLooseCompatible[e] and e.cp.f != FO/first
121 e’.starts = e.starts + GoLoose
122

123 let c = e.cp, c’=e’.cp | {
124 c’.f = FO/first
125

126 // nothing else changes
127 equalsExcept[c, c’, C$f]
128 c’.p = c.p
129 }
130 }
131

132 pred goTightCompatible[e : TraceElement] {
133 !(GoTight in e.starts) and !(GoLoose in e.starts)
134 }
135

136 pred goTightTactic[e, e’ : TraceElement] {
137 goTightCompatible[e] and e.cp.f != FO/last
138 e’.starts = e.starts + GoTight
139

140 let c = e.cp, c’=e’.cp | {
141 c’.f = FO/last
142

143 // nothing else changes
144 equalsExcept[c, c’, C$f]
145 c’.p = c.p
146 }
147 }
148

149 pred show {
150 }
151

152 // the scope for TraceElement, C and CP has to be one more than the maximum
153 // number of tactics that could be started concurrently
154 run show for exactly 3 A, exactly 2 TPIA, exactly 2 TPDA, exactly 2 F, 3 C, 3 CP, 3 TraceElement

D.2 Delayed Reachability Model

The following listing contains the PLA-SDP Alloy model for computing delayed reachability for

DART.

1 open util/ordering[F] as FO
2 open util/ordering[A] as AO
3 open util/ordering[TPIA] as TPIAO
4 open util/ordering[TPDA] as TPDAO
5

6 abstract sig TP {} // tactic progress
7 sig TPIA extends TP {} // one sig for each tactic with latency
8 sig TPDA extends TP {} // one sig for each tactic with latency

147

9

10 abstract sig T {} // tactics
11 abstract sig LT extends T {} // tactics with latency
12 one sig GoLoose, GoTight extends T {} // tactics with no latency
13 one sig IncAlt, DecAlt extends LT {} // tactics with latency
14

15 // define configuration properties
16 sig F {} // the different formations
17 sig A {} // the different altitude levels
18

19 /∗ each element of C represents a configuration ∗/
20 abstract sig C {
21 f : F, // formation
22 a : A // altitude level
23 }
24

25 pred equals[c, c2 : C] {
26 all f : C$.fields | c.(f.value) = c2.(f.value)
27 }
28

29 pred equalsExcept[c, c2 : C, ef : univ] {
30 all f : C$.fields | f=ef or c.(f.value) = c2.(f.value)
31 }
32

33 fact uniqueInstances { all disj c, c2 : CP | !equals[c, c2] or c.p != c2.p}
34

35 /∗
36 ∗ this sig is a config extended with the progress of each tactic with latency
37 ∗/
38 sig CP extends C {
39 p: LT −> TP
40 } {
41 ˜p.p in iden // functional (i.e., p maps each tactic to at most one progress)
42 p.univ = LT // every tactic in LT has a mapping in p
43 p[IncAlt] in TPIA // restrict each tactic to its own progress class
44 p[DecAlt] in TPDA
45 }
46

47 pred incAltTacticProgress[c, c’ : CP] {
48 c.p[IncAlt] != TPIAO/last implies { // tactic is running
49 c’.p[IncAlt] = TPIAO/next[c.p[IncAlt]]
50 c’.p[IncAlt] = TPIAO/last implies c’.a = AO/next[c.a] else c’.a = c.a
51 } else {
52 c’.p[IncAlt] = TPIAO/last // stay in not running state
53 c’.a = c.a
54 }
55

56 // nothing else changes other than s and the progress
57 equalsExcept[c, c’, C$a]
58 (LT − IncAlt) <: c.p in c’.p
59 }
60

61 pred decAltTacticProgress[c, c’ : CP] {
62 c.p[DecAlt] != TPDAO/last implies { // tactic is running
63 c’.p[DecAlt] = TPDAO/next[c.p[DecAlt]]
64 c’.p[DecAlt] = TPDAO/last implies c’.a = AO/prev[c.a] else c’.a = c.a
65 } else {
66 c’.p[DecAlt] = TPDAO/last // stay in not running state
67 c’.a = c.a
68 }
69

70 // nothing else changes other than s and the progress
71 equalsExcept[c, c’, C$a]
72 (LT − DecAlt) <: c.p in c’.p
73 }
74

148

75 pred oneStepProgress[c, c’ : CP] { // is c’ reachable from config c in one evaluation period?
76 some tc : CP | incAltTacticProgress[c, tc] and decAltTacticProgress[tc, c’]
77 }
78

79 sig Result {
80 c, c’ : CP
81 } {
82 oneStepProgress[c, c’]
83 }
84

85 // this reduces the number of unused configurations
86 // each cp in CP is either in a pair in a result, or an intermediate one needed for that pair
87 fact reduceUsedConfigs {
88 all cp : CP | {some r : Result | r.c = cp or r.c’ = cp
89 or (incAltTacticProgress[r.c, cp] and decAltTacticProgress[cp, r.c’])
90 }
91 }
92

93 pred show {
94 }
95

96 /∗
97 ∗ (numOfTacticsWithLatency + 1) for CP and C to allow the progress for all the tactics with latency + the initial state
98 ∗/
99 run show for exactly 3 A, exactly 2 TPIA, exactly 2 TPDA, exactly 2 F, 3 C, 3 CP, exactly 1 Result

149

150

Bibliography

[1] Mehdi Amoui, Mazeiar Salehie, Siavash Mirarab, and Ladan Tahvildari. Adap-

tive action selection in autonomic software using reinforcement learning. In Fourth

International Conference on Autonomic and Autonomous Systems (ICAS’08), pages

175–181. IEEE, March 2008. ISBN 978-0-7695-3093-2. doi: 10.1109/ICAS.2008.

35. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4488342. 2.5

[2] Konstantinos Angelopoulos, Vı́tor E. Silva Souza, and John Mylopoulos. Dealing with

multiple failures in Zanshin: a control-theoretic approach. In Proceedings of the 9th

International Symposium on Software Engineering for Adaptive and Self-Managing Sys-

tems - SEAMS 2014, pages 165–174, New York, New York, USA, 2014. ACM Press.

ISBN 9781450328647. doi: 10.1145/2593929.2593936. URL http://dl.acm.org/

citation.cfm?doid=2593929.2593936. 1

[3] Konstantinos Angelopoulos, Alessandro V. Papadopoulos, Vı́tor E. Silva Souza, and

John Mylopoulos. Model predictive control for software systems with CobRA. In Pro-

ceedings of the 11th International Workshop on Software Engineering for Adaptive and

Self-Managing Systems - SEAMS ’16, pages 35–46, Austin, Texas, 2016. ACM Press.

ISBN 9781450341875. doi: 10.1145/2897053.2897054. URL http://dl.acm.org/

citation.cfm?doid=2897053.2897054. 2.4, 9.3, 9.4

[4] Martin F. Arlitt and T. Jin. A workload characterization study of the 1998 World Cup

web site. IEEE Network, 14(3):30–37, 2000. ISSN 08908044. doi: 10.1109/65.

844498. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=844498. 8.2.1

[5] Martin F. Arlitt and Carey L. Williamson. Web server workload characterization. Pro-

ceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems - SIGMETRICS ’96, 24:126–137, May 1996. ISSN 0163-

5999. doi: 10.1145/233013.233034. URL http://dl.acm.org/citation.cfm?

id=233013.233034. 8.2.1

[6] Stanley S. Baek, Hyukseong Kwon, Josiah A. Yoder, and Daniel Pack. Optimal path plan-

ning of a target-following fixed-wing UAV using sequential decision processes. In 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2955–2962.

IEEE, November 2013. ISBN 978-1-4673-6358-7. doi: 10.1109/IROS.2013.6696775.

URL http://ieeexplore.ieee.org/document/6696775/. 9.3, 9.4

[7] Hamid Bagheri and Sam Malek. Titanium: Efficient analysis of evolving Alloy specifi-

151

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4488342
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4488342
http://dl.acm.org/citation.cfm?doid=2593929.2593936
http://dl.acm.org/citation.cfm?doid=2593929.2593936
http://dl.acm.org/citation.cfm?doid=2897053.2897054
http://dl.acm.org/citation.cfm?doid=2897053.2897054
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844498
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844498
http://dl.acm.org/citation.cfm?id=233013.233034
http://dl.acm.org/citation.cfm?id=233013.233034
http://ieeexplore.ieee.org/document/6696775/

cations. In Proceedings of the 2015 24th International Symposium on the Foundations of

Software Engineering (FSE 2016). ACM Press, 2016. 9.3

[8] Chris Baker, Gopal Ramchurn, Luke Teacy, and Nicholas Jennings. Planning search and

rescue missions for UAV teams. In PAIS 2016: Conference on Prestigious Applications

of Intelligent Systems at ECAI 2016, The Hague, NL, 2016. IOS Press. 8.2.3

[9] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learning towards

automating resource allocation and application scalability in the cloud. Concurrency

and Computation: Practice and Experience, 25(12):1656–1674, August 2013. ISSN

15320626. doi: 10.1002/cpe.2864. URL http://doi.wiley.com/10.1002/

cpe.2864. 2.5

[10] Richard Bellman. Some applications of the theory of dynamic programming—a re-

view. Journal of the Operations Research Society of America, 2(3):275–288, 1954. ISSN

00963984. URL http://www.jstor.org/stable/166640. 9.3

[11] Carlo Bertolli, Gabriele Mencagli, and Marco Vanneschi. A cost model for autonomic

reconfigurations in high-performance pervasive applications. In Proceedings of the 4th

ACM International Workshop on Context-Awareness for Self-Managing Systems - CASE-

MANS ’10, pages 20–29, New York, New York, USA, September 2010. ACM Press.

ISBN 9781450302135. doi: 10.1145/1858367.1858370. URL http://dl.acm.org/

citation.cfm?id=1858367.1858370. 2.3

[12] L.F. Bertuccelli and J.P. How. Robust UAV search for environments with imprecise

probability maps. In Proceedings of the 44th IEEE Conference on Decision and Con-

trol, pages 5680–5685. IEEE, 2005. ISBN 0-7803-9567-0. doi: 10.1109/CDC.2005.

1583068. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1583068. 8.1.2

[13] Andrea Bianco and Luca Alfaro. Model checking of probabilistic and nondeter-

ministic systems. In Foundations of Software Technology and Theoretical Com-

puter Science, pages 499–513, Bangalore, India, 1995. Springer Berlin Heidelberg.

doi: 10.1007/3-540-60692-0 70. URL http://link.springer.com/10.1007/

3-540-60692-0_70. 4.1

[14] David P. Biros, Mark Daly, and Gregg Gunsch. The influence of task load and automation

trust on deception detection. Group Decision and Negotiation, 13(2):173–189, March

2004. ISSN 0926-2644. doi: 10.1023/B:GRUP.0000021840.85686.57. URL http:

//link.springer.com/10.1023/B:GRUP.0000021840.85686.57. 7

[15] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger M.

Kienle, Marin Litoiu, Hausi A. Müller, Mauro Pezzè, and Mary Shaw. Engineering self-

adaptive systems through feedback loops. In Software Engineering for Self-Adaptive Sys-

tems, volume 5525, pages 48–70. Springer Berlin Heidelberg, 2009. URL http://

link.springer.com/chapter/10.1007/978-3-642-02161-9_3. 1, 2.1,

9.3, 9.4

[16] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and

Frantisek Plasil. DEECo—an ensemble-based component system. In Proceedings of

152

http://doi.wiley.com/10.1002/cpe.2864
http://doi.wiley.com/10.1002/cpe.2864
http://www.jstor.org/stable/166640
http://dl.acm.org/citation.cfm?id=1858367.1858370
http://dl.acm.org/citation.cfm?id=1858367.1858370
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1583068
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1583068
http://link.springer.com/10.1007/3-540-60692-0_70
http://link.springer.com/10.1007/3-540-60692-0_70
http://link.springer.com/10.1023/B:GRUP.0000021840.85686.57
http://link.springer.com/10.1023/B:GRUP.0000021840.85686.57
http://link.springer.com/chapter/10.1007/978-3-642-02161-9_3
http://link.springer.com/chapter/10.1007/978-3-642-02161-9_3

the 16th International ACM SIGSOFT Symposium on Component-Based Software En-

gineering - CBSE ’13, page 81, New York, New York, USA, June 2013. ACM Press.

ISBN 9781450321228. doi: 10.1145/2465449.2465462. URL http://dl.acm.org/

citation.cfm?id=2465449.2465462. 1

[17] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Gior-

dano Tamburrelli. Dynamic QoS management and optimization in service-based sys-

tems. IEEE Transactions on Software Engineering, 37(3):387–409, May 2011. ISSN

0098-5589. doi: 10.1109/TSE.2010.92. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=5611553. 2.2

[18] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. Self-

adaptive software needs quantitative verification at runtime. Communications of the ACM,

55(9):69, September 2012. ISSN 00010782. doi: 10.1145/2330667.2330686. URL

http://dl.acm.org/ft_gateway.cfm?id=2330686&type=html. 1.2, 2.6

[19] Eduardo F. Camacho and Carlos Bordons Alba. Model Predictive Control. Springer, 2013.

ISBN 0857293982. 2.4, 9.3

[20] Javier Cámara, Pedro Correia, Rogério de Lemos, David Garlan, Pedro Gomes,

Bradley Schmerl, and Rafael Ventura. Evolving an adaptive industrial software sys-

tem to use architecture-based self-adaptation. In 2013 8th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages

13–22. IEEE, May 2013. ISBN 978-1-4673-4401-2. doi: 10.1109/SEAMS.2013.

6595488. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6595488. 1

[21] Javier Cámara, Antonia Lopes, David Garlan, and Bradley Schmerl. Impact models for

architecture-based self-adaptive systems. In Proceedings of the 11th International Sym-

posium on Formal Aspects of Component Software (FACS2014), Bertinoro, Italy, 2014.

7.1

[22] Javier Cámara, Gabriel A. Moreno, and David Garlan. Stochastic game analysis and

latency awareness for proactive self-adaptation. In Proceedings of the 9th Interna-

tional Symposium on Software Engineering for Adaptive and Self-Managing Systems -

SEAMS 2014, pages 155–164, New York, New York, USA, June 2014. ACM. ISBN

9781450328647. doi: 10.1145/2593929.2593933. URL http://dl.acm.org/

citation.cfm?id=2593929.2593933. 1.5

[23] Javier Cámara, Gabriel A. Moreno, David Garlan, and Bradley Schmerl. Analyzing

latency-aware self-adaptation using stochastic games and simulations. ACM Transactions

on Autonomous and Adaptive Systems, 10(4):1–28, January 2016. ISSN 15564665. doi:

10.1145/2774222. URL http://dl.acm.org/citation.cfm?id=2872308.

2774222. 1.5, 7

[24] Sagar Chaki and David Kyle. DMPL: Programming and verifying distributed

mixed-synchrony and mixed-critical software. Technical Report CMU/SEI-2016-

TR-005, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

PA, 2016. URL http://resources.sei.cmu.edu/library/asset-view.

153

http://dl.acm.org/citation.cfm?id=2465449.2465462
http://dl.acm.org/citation.cfm?id=2465449.2465462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5611553
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5611553
http://dl.acm.org/ft_gateway.cfm?id=2330686&type=html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6595488
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6595488
http://dl.acm.org/citation.cfm?id=2593929.2593933
http://dl.acm.org/citation.cfm?id=2593929.2593933
http://dl.acm.org/citation.cfm?id=2872308.2774222
http://dl.acm.org/citation.cfm?id=2872308.2774222
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464254
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464254
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464254

cfm?AssetID=464254. 8.2.2

[25] Huoping Chen and Salim Hariri. An evaluation scheme of adaptive configuration tech-

niques. In Proceedings of the Twenty-second IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 493–496, Atlanta, Georgia, USA, 2007.

ACM. URL http://doi.acm.org/10.1145/1321631.1321717. 2.3

[26] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,

Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna

Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs,

Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam

Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias

Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software engineering for self-

adaptive systems: A research roadmap. In Betty H. C. Cheng, Rogério Lemos, Hol-

ger Giese, Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-

Adaptive Systems, volume 5525 of Lecture Notes in Computer Science, pages 1–26.

Springer Berlin Heidelberg, Berlin, Heidelberg, June 2009. ISBN 978-3-642-02160-2.

doi: 10.1007/978-3-642-02161-9. URL http://dl.acm.org/citation.cfm?

id=1573856.1573858. 1, 9.4

[27] Shang-Wen Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-

Adaptation. PhD thesis, Carnegie Mellon University, May 2008. URL http:

//reports-archive.adm.cs.cmu.edu/anon/isr2008/abstracts/

08-113.html. 7, 7, 7

[28] Shang-Wen Cheng and David Garlan. Stitch: A language for architecture-based self-

adaptation. Journal of Systems and Software, 85(12):2860–2875, December 2012. ISSN

01641212. doi: 10.1016/j.jss.2012.02.060. URL http://dl.acm.org/citation.

cfm?id=2381464.2381594. (document), 1, 1.3, 3.4, 7, 7.1, 7.1, 7.1, 9.3

[29] Shang-Wen Cheng, David Garlan, Bradley Schmerl, João Pedro Sousa, Bridget Spitz-

nagel, and Peter Steenkiste. Using architectural style as a basis for system self-

repair. In Software Architecture, pages 45–59. Springer US, Boston, MA, 2002. doi:

10.1007/978-0-387-35607-5 3. URL http://link.springer.com/10.1007/

978-0-387-35607-5_3. 7.1

[30] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Evaluating the effectiveness

of the Rainbow self-adaptive system. In 2009 ICSE Workshop on Software Engineering

for Adaptive and Self-Managing Systems, pages 132–141. IEEE, May 2009. ISBN 978-

1-4244-3724-5. doi: 10.1109/SEAMS.2009.5069082. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069082. 3, 1.2

[31] A. Davtyan, S. Hoffmann, and R. Scheuring. Optimization of model predictive control by

means of sequential parameter optimization. In Computational Intelligence in Control and

Automation (CICA), pages 11–16. IEEE, April 2011. ISBN 978-1-4244-9902-1. doi: 10.

1109/CICA.2011.5945754. URL http://ieeexplore.ieee.org/document/

5945754/. 9.3

[32] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tuto-

154

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464254
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464254
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=464254
http://doi.acm.org/10.1145/1321631.1321717
http://dl.acm.org/citation.cfm?id=1573856.1573858
http://dl.acm.org/citation.cfm?id=1573856.1573858
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/abstracts/08-113.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/abstracts/08-113.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/abstracts/08-113.html
http://dl.acm.org/citation.cfm?id=2381464.2381594
http://dl.acm.org/citation.cfm?id=2381464.2381594
http://link.springer.com/10.1007/978-0-387-35607-5_3
http://link.springer.com/10.1007/978-0-387-35607-5_3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069082
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5069082
http://ieeexplore.ieee.org/document/5945754/
http://ieeexplore.ieee.org/document/5945754/

rial on the cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

ISSN 1572-9338. doi: 10.1007/s10479-005-5724-z. URL http://dx.doi.org/

10.1007/s10479-005-5724-z. 9.3

[33] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin

Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny

Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron

Demarais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Göschka, Alessan-

dra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Antonia Lopes,

Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar

Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Den-

nis B. Smith, João Pedro Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wuttke. Soft-

ware engineering for self-adaptive systems: A second research roadmap. Software Engi-

neering for . . . , pages 1–32, 2013. URL http://link.springer.com/chapter/

10.1007/978-3-642-35813-5_1. 1

[34] Diego Didona, Francesco Quaglia, Paolo Romano, and Ennio Torre. Enhancing perfor-

mance prediction robustness by combining analytical modeling and machine learning.

In Proceedings of the 6th ACM/SPEC International Conference on Performance Engi-

neering - ICPE ’15, pages 145–156, New York, New York, USA, 2015. ACM Press.

ISBN 9781450332484. doi: 10.1145/2668930.2688047. URL http://dl.acm.org/

citation.cfm?doid=2668930.2688047. 9.3, 9.4

[35] Peter A. Dinda. Design, implementation, and performance of an extensible toolkit for

resource prediction in distributed systems. IEEE Transactions on Parallel and Dis-

tributed Systems, 17(2):160–173, February 2006. ISSN 1045-9219. doi: 10.1109/

TPDS.2006.24. URL http://ieeexplore.ieee.org/articleDetails.

jsp?arnumber=1566594. 3.5

[36] Simon Dobson, Franco Zambonelli, Spyros Denazis, Antonio Fernández, Dominique

Gaı̈ti, Erol Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, and Nikita Schmidt.

A survey of autonomic communications. ACM Transactions on Autonomous and Adap-

tive Systems, 1(2):223–259, December 2006. ISSN 15564665. doi: 10.1145/1186778.

1186782. URL http://portal.acm.org/citation.cfm?doid=1186778.

1186782. 1

[37] Simon Dobson, Roy Sterritt, Paddy Nixon, and Mike Hinchey. Fulfilling the vision

of autonomic computing. Computer, 43(1):35–41, January 2010. ISSN 0018-9162.

doi: 10.1109/MC.2010.14. URL http://ieeexplore.ieee.org/document/

5398781/. 1

[38] Anca D. Dragan, Kenton C.T. Lee, and Siddhartha S. Srinivasa. Legibility and pre-

dictability of robot motion. In 2013 8th ACM/IEEE International Conference on Human-

Robot Interaction (HRI), pages 301–308. IEEE, March 2013. ISBN 978-1-4673-3101-

2. doi: 10.1109/HRI.2013.6483603. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6483603. 7

[39] Subhasri Duttagupta, Rupinder Virk, and Manoj Nambiar. Predicting performance in the

presence of software and hardware resource bottlenecks. In International Symposium on

155

http://dx.doi.org/10.1007/s10479-005-5724-z
http://dx.doi.org/10.1007/s10479-005-5724-z
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_1
http://dl.acm.org/citation.cfm?doid=2668930.2688047
http://dl.acm.org/citation.cfm?doid=2668930.2688047
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1566594
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1566594
http://portal.acm.org/citation.cfm?doid=1186778.1186782
http://portal.acm.org/citation.cfm?doid=1186778.1186782
http://ieeexplore.ieee.org/document/5398781/
http://ieeexplore.ieee.org/document/5398781/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6483603
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6483603

Performance Evaluation of Computer and Telecommunication Systems (SPECTS 2014),

pages 542–549. IEEE, July 2014. ISBN 978-1-4799-5745-3. doi: 10.1109/SPECTS.2014.

6879991. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6879991. 1.1, 8.1.1

[40] Naeem Esfahani and Sam Malek. Uncertainty in self-adaptive software systems. In

Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw, editors, Software

Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer

Science, pages 214–238. Springer Berlin Heidelberg, 2013. URL http://link.

springer.com/chapter/10.1007/978-3-642-35813-5_9. 3.5

[41] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. A learning-based framework for en-

gineering feature-oriented self-adaptive software systems. IEEE Transactions on Software

Engineering, 39(11):1467–1493, 2013. 9.3, 9.4

[42] Peter Feiler, Kevin Sullivan, Kurt Wallnau, Richard Gabriel, John Goodenough, Richard

Linger, Thomas Longstaff, Rick Kazman, Mark Klein, Linda Northrop, and Douglas

Schmidt. Ultra-Large-Scale Systems: The Software Challenge of the Future. Software

Engineering Institute, Carnegie Mellon University, 2006. 1

[43] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-

adaptive software with control-theoretical formal guarantees. In Proceedings of the 36th

International Conference on Software Engineering - ICSE 2014, pages 299–310, Hyder-

abad, India, 2014. ACM Press. ISBN 9781450327565. doi: 10.1145/2568225.2568272.

URL http://dl.acm.org/citation.cfm?doid=2568225.2568272. 9.4

[44] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás D’Ippolito, Ilias

Gerostathopoulos, Andreas Berndt Hempel, Henry Hoffmann, Pooyan Jamshidi, Evan-

gelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic, Alessandro V. Pa-

padopoulos, Suprio Ray, Amir M. Sharifloo, Stepan Shevtsov, Mateusz Ujma, and Thomas

Vogel. Software engineering meets control theory. In Proceedings of the 10th Inter-

national Symposium on Software Engineering for Adaptive and Self-Managing Systems,

pages 71–82, Florence, Italy, 2015. IEEE Press. 9.4

[45] M. Flint, E. Fernandez-Gaucherand, and M. Polycarpou. Cooperative control

for UAV’s searching risky environments for targets. In 42nd IEEE Interna-

tional Conference on Decision and Control (IEEE Cat. No.03CH37475), volume 4,

pages 3567–3572. IEEE, 2003. ISBN 0-7803-7924-1. doi: 10.1109/CDC.2003.

1271701. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1271701. 8.2.3, 9.3

[46] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. Automated verifi-

cation techniques for probabilistic systems. In M Bernardo and V Issarny, editors, Formal

Methods for Eternal Networked Software Systems (SFM’11), volume 6659 of LNCS, pages

53–113. Springer, 2011. 4.1

[47] Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram

Dustdar. On estimating actuation delays in elastic computing systems. In 2013 8th In-

ternational Symposium on Software Engineering for Adaptive and Self-Managing Sys-

156

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6879991
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6879991
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_9
http://dl.acm.org/citation.cfm?doid=2568225.2568272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1271701
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1271701

tems (SEAMS), pages 33–42. IEEE, May 2013. ISBN 978-1-4673-4401-2. doi: 10.

1109/SEAMS.2013.6595490. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6595490. 1, 1.2, 2.3

[48] Nadia Gamez, Lidia Fuentes, and Miguel A. Aragüez. Autonomic computing driven by

feature models and architecture in FamiWare. In 5th European Conference on Software

Architecture, pages 164–179, Essen, Germany, September 2011. Springer-Verlag. ISBN

978-3-642-23797-3. URL http://dl.acm.org/citation.cfm?id=2041790.

2041811. 2.3

[49] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch. Au-

toscale: Dynamic, robust capacity management for multi-tier data centers. ACM Transac-

tions on Computer Systems, 30(4), 2012. URL http://dl.acm.org/citation.

cfm?id=2382556. 2.3

[50] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. Model-

ing the impact of workload on cloud resource scaling. In 2014 IEEE 26th International

Symposium on Computer Architecture and High Performance Computing, pages 310–

317. IEEE, October 2014. ISBN 978-1-4799-6905-0. doi: 10.1109/SBAC-PAD.2014.

16. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6970679. 1.1, 8.1.1, 8.1.1

[51] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. Adap-

tive, model-driven autoscaling for cloud applications. In 11th International Con-

ference on Autonomic Computing, pages 57–64, 2014. ISBN 978-1-931971-11-

9. URL https://www.usenix.org/system/files/conference/icac14/

icac14-paper-gandhi.pdf. 9.3

[52] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of

component-based systems. In Gary T Leavens and Murali Sitaraman, editors, Foundations

of Component-Based Systems, pages 47–68. Cambridge University Press, 2000. 2.1, 7.1

[53] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Pe-

ter Steenkiste. Rainbow: architecture-based self-adaptation with reusable infras-

tructure. Computer, 37(10):46–54, October 2004. ISSN 0018-9162. doi: 10.

1109/MC.2004.175. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=1350726. 2.1, 7.1, 8.1

[54] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. Software architecture-based self-

adaptation. In Yan Zhang, Laurence Tianruo Yang, and Mieso K. Denko, editors, Auto-

nomic Computing and Networking, pages 31–55. Springer US, 2009. URL http://

link.springer.com/chapter/10.1007/978-0-387-89828-5_2. (docu-

ment), 1, 2.1, 3.1, 7.1

[55] Jorge L. Garriga and Masoud Soroush. Model predictive control tuning methods: A re-

view. Industrial & Engineering Chemistry Research, 49(8):3505–3515, April 2010. ISSN

0888-5885. doi: 10.1021/ie900323c. URL http://pubs.acs.org/doi/abs/10.

1021/ie900323c. 9.3

[56] Simos Gerasimou, Radu Calinescu, and Alec Banks. Efficient runtime quantitative ver-

157

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6595490
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6595490
http://dl.acm.org/citation.cfm?id=2041790.2041811
http://dl.acm.org/citation.cfm?id=2041790.2041811
http://dl.acm.org/citation.cfm?id=2382556
http://dl.acm.org/citation.cfm?id=2382556
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6970679
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6970679
https://www.usenix.org/system/files/conference/icac14/icac14-paper-gandhi.pdf
https://www.usenix.org/system/files/conference/icac14/icac14-paper-gandhi.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1350726
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1350726
http://link.springer.com/chapter/10.1007/978-0-387-89828-5_2
http://link.springer.com/chapter/10.1007/978-0-387-89828-5_2
http://pubs.acs.org/doi/abs/10.1021/ie900323c
http://pubs.acs.org/doi/abs/10.1021/ie900323c

ification using caching, lookahead, and nearly-optimal reconfiguration. In Proceedings

of the 9th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems - SEAMS 2014, pages 115–124, New York, New York, USA, June

2014. ACM. ISBN 9781450328647. doi: 10.1145/2593929.2593932. URL http:

//dl.acm.org/citation.cfm?id=2593929.2593932. 2.6, 9.3

[57] Sergio Giro. Optimal schedulers vs optimal bases: An approach for efficient exact solving

of Markov decision processes. Theoretical Computer Science, 538:70–83, 2014. ISSN

03043975. doi: 10.1016/j.tcs.2013.08.020. 1.3

[58] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Resource pool management: Reac-

tive versus proactive or let’s be friends. Computer Networks, 2009. URL http://www.

sciencedirect.com/science/article/pii/S1389128609002655. 2.2,

9.4

[59] Xianping Guo and Onésimo Hernández-Lerma. Continuous-Time Markov Decision Pro-

cesses, pages 9–18. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-

642-02547-1. doi: 10.1007/978-3-642-02547-1 2. URL http://dx.doi.org/10.

1007/978-3-642-02547-1_2. 2

[60] Vijay Gupta and Ignacio E. Grossmann. Solution strategies for multistage stochastic pro-

gramming with endogenous uncertainties. Computers & Chemical Engineering, 35(11):

2235–2247, 2011. ISSN 00981354. doi: 10.1016/j.compchemeng.2010.11.013. 9.3

[61] Jason J. Haas, J. D. Doak, and Jason R. Hamlet. Machine-oriented biometrics and cocoon-

ing for dynamic network defense. In Proceedings of the Eighth Annual Cyber Security and

Information Intelligence Research Workshop on - CSIIRW ’13, page 1, New York, New

York, USA, 2013. ACM Press. ISBN 9781450316873. doi: 10.1145/2459976.2460014.

URL http://dl.acm.org/citation.cfm?doid=2459976.2460014. 9.4

[62] Marcus Handte, Gregor Schiele, Verena Matjuntke, Christian Becker, and Pedro José

Marrón. 3PC: System support for adaptive peer-to-peer pervasive computing. ACM Trans-

actions on Autonomous and Adaptive Systems, 7(1):1–19, April 2012. ISSN 15564665.

doi: 10.1145/2168260.2168270. URL http://dl.acm.org/citation.cfm?id=

2168260.2168270. 2.2

[63] HAProxy. The reliable, high performance TCP/HTTP load balancer. http://www.

haproxy.org/, 2016. 8.1.1

[64] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A framework

for proactive self-adaptation of service-based applications based on online testing. In 1st

European Conference on Towards a Service-Based Internet, volume 5377, pages 122–133.

Springer Berlin Heidelberg, 2008. URL http://link.springer.com/chapter/

10.1007/978-3-540-89897-9_11. 2.2

[65] Scott A. Hissam, Sagar Chaki, and Gabriel A. Moreno. High assurance for distributed

cyber physical systems. In Proceedings of the 2015 European Conference on Software

Architecture Workshops, pages 1–4, New York, New York, USA, September 2015. ACM

Press. ISBN 9781450333931. doi: 10.1145/2797433.2797439. URL http://dl.

acm.org/citation.cfm?id=2797433.2797439. 8.1, 8.1.2, 8.2.2

158

http://dl.acm.org/citation.cfm?id=2593929.2593932
http://dl.acm.org/citation.cfm?id=2593929.2593932
http://www.sciencedirect.com/science/article/pii/S1389128609002655
http://www.sciencedirect.com/science/article/pii/S1389128609002655
http://dx.doi.org/10.1007/978-3-642-02547-1_2
http://dx.doi.org/10.1007/978-3-642-02547-1_2
http://dl.acm.org/citation.cfm?doid=2459976.2460014
http://dl.acm.org/citation.cfm?id=2168260.2168270
http://dl.acm.org/citation.cfm?id=2168260.2168270
http://www.haproxy.org/
http://www.haproxy.org/
http://link.springer.com/chapter/10.1007/978-3-540-89897-9_11
http://link.springer.com/chapter/10.1007/978-3-540-89897-9_11
http://dl.acm.org/citation.cfm?id=2797433.2797439
http://dl.acm.org/citation.cfm?id=2797433.2797439

[66] C A R Hoare. Programs are predicates. In C A R Hoare and J C Shepherdson, editors,

Mathematical Logic and Programming Languages, pages 141–154. Prentice-Hall, 1985.

5.2.1

[67] F. Hooshmand Khaligh and S.A. MirHassani. A mathematical model for vehicle rout-

ing problem under endogenous uncertainty. International Journal of Production Re-

search, 54(2):579–590, January 2016. ISSN 0020-7543. doi: 10.1080/00207543.

2015.1057625. URL http://www.tandfonline.com/doi/full/10.1080/

00207543.2015.1057625. 9.3

[68] Nikolaus Huber, André van Hoorn, Anne Koziolek, Fabian Brosig, and Samuel Kounev.

Modeling run-time adaptation at the system architecture level in dynamic service-oriented

environments. Service Oriented Computing and Applications, 8(1):73–89, September

2013. ISSN 1863-2386. doi: 10.1007/s11761-013-0144-4. URL http://link.

springer.com/10.1007/s11761-013-0144-4. 1

[69] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing–degrees,

models, and applications. ACM Computing Surveys, 40(3), August 2008. ISSN 03600300.

doi: 10.1145/1380584.1380585. URL http://dl.acm.org/citation.cfm?id=

1380584.1380585. 1.2

[70] R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts,

2014. URL https://www.otexts.org/fpp. 8.1.1

[71] Stefano Iannucci and Sherif Abdelwahed. A probabilistic approach to autonomic security

management. In 2016 IEEE International Conference on Autonomic Computing (ICAC),

pages 157–166. IEEE, July 2016. ISBN 978-1-5090-1654-9. doi: 10.1109/ICAC.2016.12.

URL http://ieeexplore.ieee.org/document/7573127/. 2.3, 2.5

[72] Anne Immonen and Eila Niemelä. Survey of reliability and availability prediction methods

from the viewpoint of software architecture. Software and Systems Modeling, 7(1):49–65,

2008. ISSN 16191366. doi: 10.1007/s10270-006-0040-x. 2.1

[73] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. A proactive approach for run-

time self-adaptation based on queueing network fluid analysis. In Proceedings of the

1st International Workshop on Quality-Aware DevOps - QUDOS 2015, pages 19–24,

New York, New York, USA, September 2015. ACM Press. ISBN 9781450338172.

doi: 10.1145/2804371.2804375. URL http://dl.acm.org/citation.cfm?id=

2804371.2804375. 9.3

[74] Mohammad Islam, Shaolei Ren, Hasan Mahmud, and Gang Quan. Online energy

budgeting for cost minimization in virtualized data center. IEEE Transactions on

Services Computing, PP(99):1–1, 2015. ISSN 1939-1374. doi: 10.1109/TSC.2015.

2390231. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=7006709. 1.1, 8.1.1

[75] Serena Ivaldi, Olivier Sigaud, Bastien Berret, and Francesco Nori. From humans to hu-

manoids: the optimal control framework. Paladyn, Journal of Behavioral Robotics, 3(2):

75–91, January 2012. ISSN 2081-4836. doi: 10.2478/s13230-012-0022-3. 1.3

[76] Daniel Jackson. Software Abstractions: logic, language, and analysis. The MIT Press,

159

http://www.tandfonline.com/doi/full/10.1080/00207543.2015.1057625
http://www.tandfonline.com/doi/full/10.1080/00207543.2015.1057625
http://link.springer.com/10.1007/s11761-013-0144-4
http://link.springer.com/10.1007/s11761-013-0144-4
http://dl.acm.org/citation.cfm?id=1380584.1380585
http://dl.acm.org/citation.cfm?id=1380584.1380585
https://www.otexts.org/fpp
http://ieeexplore.ieee.org/document/7573127/
http://dl.acm.org/citation.cfm?id=2804371.2804375
http://dl.acm.org/citation.cfm?id=2804371.2804375
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7006709
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7006709

2012. 5, 5.2

[77] Gueyoung Jung, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting, and

Calton Pu. A cost-sensitive adaptation engine for server consolidation of multitier ap-

plications. In Jean Bacon and Brian F. Cooper, editors, Middleware 2009, ACM/I-

FIP/USENIX, 10th International Middleware Conference, pages 163—-183, Urbana,

IL, 2009. Springer. URL http://link.springer.com/chapter/10.1007/

978-3-642-10445-9_9. 1.1, 8.1.1, 9.3

[78] Marcin Jurdziński, François Laroussinie, and Jeremy Sproston. Model Check-

ing Probabilistic Timed Automata with One or Two Clocks, pages 170–184.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-71209-

1. doi: 10.1007/978-3-540-71209-1 15. URL http://dx.doi.org/10.1007/

978-3-540-71209-1_15. 2

[79] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and

acting in partially observable stochastic domains. Artificial Intelligence, 101(1):99–134,

1998. ISSN 00043702. doi: 10.1016/S0004-3702(98)00023-X. 9.4

[80] Donald L. Keefer. Certainty equivalents for three-point discrete-distribution approxima-

tions. Management Science, 40(6):760–773, 1994. 3.5, 8.1.2

[81] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-

puter, 36(1):41–50, 2003. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=1160055. 1, 2.1, 3.1

[82] Min Hyuk Kim, Hyeoncheol Baik, and Seokcheon Lee. Response threshold model based

UAV search planning and task allocation. Journal of Intelligent and Robotic Systems:

Theory and Applications, 75(3-4):625–640, September 2014. ISSN 15730409. doi:

10.1007/s10846-013-9887-6. URL http://link.springer.com/10.1007/

s10846-013-9887-6. 8.2.3

[83] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez.

Brownout: building more robust cloud applications. In Proceedings of the 36th Interna-

tional Conference on Software Engineering - ICSE 2014, pages 700–711, New York, New

York, USA, May 2014. ACM. ISBN 9781450327565. doi: 10.1145/2568225.2568227.

URL http://dl.acm.org/citation.cfm?id=2568225.2568227. (docu-

ment), 5, 8.1.1, 9.4

[84] Leonard. Kleinrock and Leonard. Queueing systems. Wiley Interscience, 1975. ISBN

0471491101. 4.3, 5.1

[85] Samuel Kounev and Christofer Dutz. QPME: A performance modeling tool based on

queueing Petri nets. ACM SIGMETRICS Performance Evaluation Review, 36(4):46–

51, March 2009. ISSN 01635999. doi: 10.1145/1530873.1530883. URL http:

//portal.acm.org/citation.cfm?doid=1530873.1530883. 5.1

[86] Heiko Koziolek. Performance evaluation of component-based software systems: A survey.

Performance Evaluation, 67(8):634–658, 2010. ISSN 0166-5316. doi: http://dx.doi.org/

10.1016/j.peva.2009.07.007. 2.1

160

http://link.springer.com/chapter/10.1007/978-3-642-10445-9_9
http://link.springer.com/chapter/10.1007/978-3-642-10445-9_9
http://dx.doi.org/10.1007/978-3-540-71209-1_15
http://dx.doi.org/10.1007/978-3-540-71209-1_15
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://link.springer.com/10.1007/s10846-013-9887-6
http://link.springer.com/10.1007/s10846-013-9887-6
http://dl.acm.org/citation.cfm?id=2568225.2568227
http://portal.acm.org/citation.cfm?doid=1530873.1530883
http://portal.acm.org/citation.cfm?doid=1530873.1530883

[87] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural challenge. In 2007

Future of Software Engineering (FOSE ’07), pages 259–268. IEEE Computer Society,

2007. ISBN 0769528295. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=4221625. 1, 2.1

[88] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and

Christian Becker. A survey on engineering approaches for self-adaptive systems. Perva-

sive and Mobile Computing, 17, Part B:184–206, October 2014. ISSN 15741192. doi: 10.

1016/j.pmcj.2014.09.009. URL http://www.sciencedirect.com/science/

article/pii/S157411921400162X. 1, 2.1, 2.2, 3

[89] D. Kumar, A. Tantawi, and L. Zhang. Estimating model parameters of adaptive software

systems in real-time. Run-time Models for Self-managing . . . , 2010. URL http://

link.springer.com/chapter/10.1007/978-3-0346-0433-8_3. 8.1.1

[90] V. Kumar, B.F. Cooper, and K. Schwan. Distributed stream management using utility-

driven self-adaptive middleware. In Second International Conference on Autonomic Com-

puting (ICAC’05), pages 3–14. IEEE, 2005. ISBN 0-7965-2276-9. doi: 10.1109/ICAC.

2005.24. URL http://ieeexplore.ieee.org/document/1498048/. 1

[91] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei

Jiang. Power and performance management of virtualized computing environments

via lookahead control. Cluster Computing, 12(1):1–15, October 2008. ISSN 1386-

7857. doi: 10.1007/s10586-008-0070-y. URL http://link.springer.com/10.

1007/s10586-008-0070-y. 2.4

[92] Marta Kwiatkowska and David Parker. Automated verification and strategy syn-

thesis for probabilistic systems. In Proceedings of the 11th International Sympo-

sium on Automated Technology for Verification and Analysis (ATVA’13), pages 5–

22. Springer, 2013. URL http://link.springer.com/chapter/10.1007/

978-3-319-02444-8_2. (document), 1.3, 3.3

[93] Marta Kwiatkowska and David Parker. Automated verification and strategy synthesis for

probabilistic systems. In 11th International Symposium on Automated Technology for Ver-

ification and Analysis (ATVA), pages 5–22, Hanoi, Vietnam, 2013. Springer International

Publishing. doi: 10.1007/978-3-319-02444-8 2. URL http://link.springer.

com/10.1007/978-3-319-02444-8_2. 4.1

[94] Marta Kwiatkowska, Gethin Norman, and David Parker. Verifying randomized distributed

algorithms with PRISM. In Proc. Workshop on Advances in Verification (Wave’2000), July

2000. 4.1

[95] Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic symbolic model

checking with PRISM: A hybrid approach. In Proceedings of the 8th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS

’02), pages 52–66. Springer-Verlag, 2002. URL http://link.springer.com/

chapter/10.1007/3-540-46002-0_5. 1.3, 4

[96] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: verification of prob-

abilistic real-time systems. In 23rd international conference on Computer Aided Veri-

161

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221625
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221625
http://www.sciencedirect.com/science/article/pii/S157411921400162X
http://www.sciencedirect.com/science/article/pii/S157411921400162X
http://link.springer.com/chapter/10.1007/978-3-0346-0433-8_3
http://link.springer.com/chapter/10.1007/978-3-0346-0433-8_3
http://ieeexplore.ieee.org/document/1498048/
http://link.springer.com/10.1007/s10586-008-0070-y
http://link.springer.com/10.1007/s10586-008-0070-y
http://link.springer.com/chapter/10.1007/978-3-319-02444-8_2
http://link.springer.com/chapter/10.1007/978-3-319-02444-8_2
http://link.springer.com/10.1007/978-3-319-02444-8_2
http://link.springer.com/10.1007/978-3-319-02444-8_2
http://link.springer.com/chapter/10.1007/3-540-46002-0_5
http://link.springer.com/chapter/10.1007/3-540-46002-0_5

fication, pages 585–591. Springer-Verlag, July 2011. ISBN 978-3-642-22109-5. URL

http://dl.acm.org/citation.cfm?id=2032305.2032352. 2.6, 4.1

[97] P. Lalanda, J. A. McCann, and A. Diaconescu. Autonomic Computing. Springer-Verlag

London, 2013. URL http://link.springer.com/content/pdf/10.1007/

978-1-4471-5007-7.pdf. 1

[98] A. Lew and H. Mauch. Dynamic Programming: A Computational Tool. Studies in Com-

putational Intelligence. Springer Berlin Heidelberg, 2007. ISBN 9783540370147. 5.1

[99] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor S. Ramos, Antonio A. F. Loureiro, and

Qiang Wang. Energy efficient GPS sensing with cloud offloading. In Proceedings

of the 10th ACM Conference on Embedded Network Sensor Systems - SenSys ’12,

page 85, New York, New York, USA, November 2012. ACM. ISBN 9781450311694.

doi: 10.1145/2426656.2426666. URL http://dl.acm.org/citation.cfm?id=

2426656.2426666. 1

[100] LQNS. Layered Queueing Network Solver. http://www.sce.carleton.ca/

rads/lqns, 2011. 5.1, 9.2

[101] Jian Lü, Yu Huang, Chang Xu, and Xiaoxing Ma. Managing environment and adapta-

tion risks for the internetware paradigm. In Zhiming Liu, Jim Woodcock, and Huibiao

Zhu, editors, Theories of Programming and Formal Methods: Essays Dedicated to Jifeng

He on the Occasion of His 70th Birthday, pages 271–284. Springer, Berlin, Heidelberg,

2013. doi: 10.1007/978-3-642-39698-4 17. URL http://link.springer.com/

10.1007/978-3-642-39698-4_17. 1

[102] Lasse Maatta, Jukka Suhonen, Teemu Laukkarinen, Timo D. Hamalainen, and Marko

Hannikainen. Program image dissemination protocol for low-energy multihop wireless

sensor networks. In 2010 International Symposium on System on Chip, pages 133–

138. IEEE, September 2010. ISBN 978-1-4244-8279-5. doi: 10.1109/ISSOC.2010.

5625550. URL http://ieeexplore.ieee.org/articleDetails.jsp?

arnumber=5625550. 1

[103] Sam Malek, George Edwards, Yuriy Brun, Hossein Tajalli, Joshua Garcia, Ivo Krka,

Nenad Medvidovic, Marija Mikic-Rakic, and Gaurav Sukhatme. An architecture-

driven software mobility framework. Journal of Systems and Software, 83(6),

2010. URL http://www.sciencedirect.com/science/article/pii/

S0164121209002842. 9.3

[104] Ming Mao and Marty Humphrey. A performance study on the VM startup time

in the cloud. In 2012 IEEE Fifth International Conference on Cloud Comput-

ing, pages 423–430. IEEE, June 2012. ISBN 978-1-4673-2892-0. doi: 10.1109/

CLOUD.2012.103. URL http://ieeexplore.ieee.org/articleDetails.

jsp?arnumber=6253534. 3

[105] Julie A. Mccann and Markus C. Huebscher. Evaluation issues in autonomic computing. In

Hai Jin, Yi Pan, Nong Xiao, and Jianhua Sun, editors, Grid and Cooperative Computing,

volume 3252 of Lecture Notes in Computer Science, pages 597–608, Berlin, Heidelberg,

2004. Springer Berlin Heidelberg. ISBN 978-3-540-23578-1. doi: 10.1007/b100775. 2.3

162

http://dl.acm.org/citation.cfm?id=2032305.2032352
http://link.springer.com/content/pdf/10.1007/978-1-4471-5007-7.pdf
http://link.springer.com/content/pdf/10.1007/978-1-4471-5007-7.pdf
http://dl.acm.org/citation.cfm?id=2426656.2426666
http://dl.acm.org/citation.cfm?id=2426656.2426666
http://www.sce.carleton.ca/rads/lqns
http://www.sce.carleton.ca/rads/lqns
http://link.springer.com/10.1007/978-3-642-39698-4_17
http://link.springer.com/10.1007/978-3-642-39698-4_17
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5625550
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5625550
http://www.sciencedirect.com/science/article/pii/S0164121209002842
http://www.sciencedirect.com/science/article/pii/S0164121209002842
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6253534
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6253534

[106] Andreas Metzger, Osama Sammodi, and Klaus Pohl. Accurate proactive adaptation of

service-oriented systems. In Javier Cámara, Rogério de Lemos, Carlo Ghezzi, and Antónia

Lopes, editors, Assurances for Self-Adaptive Systems, volume 7740, pages 240–265.

Springer Berlin Heidelberg, 2013. URL http://link.springer.com/chapter/

10.1007/978-3-642-36249-1_9. 2.2

[107] Stefan Mitsch and André Platzer. ModelPlex: Verified Runtime Validation

of Verified Cyber-Physical System Models, pages 199–214. Springer Inter-

national Publishing, Toronto, ON, Canada, 2014. ISBN 978-3-319-11164-3.

doi: 10.1007/978-3-319-11164-3 17. URL http://dx.doi.org/10.1007/

978-3-319-11164-3_17. 9.4

[108] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Proactive

self-adaptation under uncertainty: a probabilistic model checking approach. In Pro-

ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering - ES-

EC/FSE 2015, pages 1–12, New York, New York, USA, August 2015. ACM Press.

ISBN 9781450336758. doi: 10.1145/2786805.2786853. URL http://dl.acm.org/

citation.cfm?id=2786805.2786853. 1.5, 1

[109] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Efficient

decision-making under uncertainty for proactive self-adaptation. In 2016 IEEE Inter-

national Conference on Autonomic Computing (ICAC), pages 147–156, Wuerzburg, Ger-

many, July 2016. IEEE. ISBN 978-1-5090-1654-9. doi: 10.1109/ICAC.2016.59. URL

http://ieeexplore.ieee.org/document/7573126/. 1.5, 1, 7, 8

[110] David J. Musliner. Imposing real-time constraints on self-adaptive controller synthesis.

Self-Adaptive Software, 1936:143–160, 2001. URL http://link.springer.com/

chapter/10.1007/3-540-44584-6_12. 2.3, 9.4

[111] Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris, Panagiotis Katsaros,

Dimitrios Tsoumakos, Ioannis Konstantinou, and Spyros Sioutas. Dependable horizontal

scaling based on probabilistic model checking. In 15th IEEE/ACM International Sympo-

sium on Cluster, Cloud and Grid Computing, pages 31–40. IEEE, May 2015. ISBN 978-

1-4799-8006-2. doi: 10.1109/CCGrid.2015.91. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=7152469. 2.5, 9.3, 9.3

[112] OPERA. Optimization, Performance Evaluation and Resource Allocator. http://www.

ceraslabs.com/technologies/opera, n.d. 5.1, 8.1.1, 9.2

[113] Ivan Dario Paez Anaya, Viliam Simko, Johann Bourcier, Noël Plouzeau, and Jean-Marc

Jézéquel. A prediction-driven adaptation approach for self-adaptive sensor networks. In

Proceedings of the 9th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems, pages 145–154. ACM, 2014. ISBN 9781450328647. URL

http://hal.archives-ouvertes.fr/hal-00983046/. 1, 9.3

[114] Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara, and David Garlan. Hybrid plan-

ning for decision making in self-adaptive systems. In 2016 IEEE 10th International

Conference on Self-Adaptive and Self-Organizing Systems (SASO), pages 130–139. IEEE,

September 2016. ISBN 978-1-5090-3534-2. doi: 10.1109/SASO.2016.19. URL http:

163

http://link.springer.com/chapter/10.1007/978-3-642-36249-1_9
http://link.springer.com/chapter/10.1007/978-3-642-36249-1_9
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dl.acm.org/citation.cfm?id=2786805.2786853
http://dl.acm.org/citation.cfm?id=2786805.2786853
http://ieeexplore.ieee.org/document/7573126/
http://link.springer.com/chapter/10.1007/3-540-44584-6_12
http://link.springer.com/chapter/10.1007/3-540-44584-6_12
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7152469
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7152469
http://www.ceraslabs.com/technologies/opera
http://www.ceraslabs.com/technologies/opera
http://hal.archives-ouvertes.fr/hal-00983046/
http://ieeexplore.ieee.org/document/7774394/
http://ieeexplore.ieee.org/document/7774394/
http://ieeexplore.ieee.org/document/7774394/

//ieeexplore.ieee.org/document/7774394/. 9.4

[115] Manish Parashar and Salim Hariri. Autonomic computing: An overview. In Jean-

Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors, Uncon-

ventional Programming Paradigms, Lecture Notes in Computer Science, pages 257–269.

Springer Berlin Heidelberg, 2005. URL http://link.springer.com/chapter/

10.1007/11527800_20. 2.2

[116] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A systematic survey

on the design of self-adaptive software systems using control engineering approaches.

In 2012 7th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), pages 33–42. IEEE, June 2012. ISBN 978-1-4673-1787-

0. doi: 10.1109/SEAMS.2012.6224389. URL http://ieeexplore.ieee.org/

articleDetails.jsp?arnumber=6224389. 1.2

[117] Ryan R. Pitre, X. Rong Li, and R. Delbalzo. UAV route planning for joint search and track

missions—an information-value approach. IEEE Transactions on Aerospace and Elec-

tronic Systems, 48(3):2551–2565, July 2012. ISSN 0018-9251. doi: 10.1109/TAES.2012.

6237608. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6237608. 9.3

[118] Vahe Poladian, David Garlan, Mary Shaw, M. Satyanarayanan, Bradley Schmerl, and

João Pedro Sousa. Leveraging resource prediction for anticipatory dynamic configura-

tion. In Self-Adaptive and Self-Organizing Systems, pages 214—-223. IEEE, July 2007.

ISBN 0-7695-2906-2. doi: 10.1109/SASO.2007.35. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4274905http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4274905. 2.2,

3.2, 3.5

[119] Warren B. Powell. Perspectives of approximate dynamic programming. Annals of Op-

erations Research, February 2012. ISSN 0254-5330. doi: 10.1007/s10479-012-1077-6.

URL http://link.springer.com/10.1007/s10479-012-1077-6. 9.3

[120] M. L. Puterman. Dynamic programming. Encyclopedia of Physical Science and Technol-

ogy, 4:673–696, 2002. URL http://puterman.chcm.ubc.ca/bams517_518_

08/dynamicprogramming.pdf. 1.3, 5.1.1

[121] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming.

John Wiley & Sons, Ltd, 2014. (document), 1.3, 3.3

[122] Kashifuddin Qazi, Yang Li, and Andrew Sohn. Workload prediction of virtual ma-

chines for harnessing data center resources. In 2014 IEEE 7th International Confer-

ence on Cloud Computing, pages 522–529. IEEE, June 2014. ISBN 978-1-4799-5063-8.

doi: 10.1109/CLOUD.2014.76. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6973782. 1.1, 8.1.1

[123] Rahul Raheja, Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Improving

architecture-based self-adaptation using preemption. In Self-Organizing Architectures,

pages 21–37. Springer-Verlag, September 2010. ISBN 3-642-14411-X, 978-3-642-14411-

0. URL http://dl.acm.org/citation.cfm?id=1880569.1880572. 3.4

164

http://ieeexplore.ieee.org/document/7774394/
http://ieeexplore.ieee.org/document/7774394/
http://ieeexplore.ieee.org/document/7774394/
http://link.springer.com/chapter/10.1007/11527800_20
http://link.springer.com/chapter/10.1007/11527800_20
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6224389
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6224389
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6237608
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6237608
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4274905 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4274905
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4274905 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4274905
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4274905 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4274905
http://link.springer.com/10.1007/s10479-012-1077-6
http://puterman.chcm.ubc.ca/bams517_518_08/dynamic programming.pdf
http://puterman.chcm.ubc.ca/bams517_518_08/dynamic programming.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6973782
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6973782
http://dl.acm.org/citation.cfm?id=1880569.1880572

[124] J.B. Rawlings. Tutorial overview of model predictive control. IEEE Control Systems

Magazine, 20(3):38–52, June 2000. ISSN 02721708. doi: 10.1109/37.845037. URL

http://ieeexplore.ieee.org/document/845037/. 2.4

[125] Magnus J.E. Richardson and Tamar Flash. On the emulation of natural movements by

humanoid robots. In IEEE-RAS International Conference on Humanoids Robots, Cam-

bridge, Massachusetts, USA, 2000. 1.3

[126] RUBiS. RUBiS: Rice University Bidding System. http://rubis.ow2.org/, 2009.

1.1

[127] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research

challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2):1–42, May

2009. ISSN 15564665. doi: 10.1145/1516533.1516538. URL http://portal.acm.

org/citation.cfm?doid=1516533.1516538. 1, 1.2, 2.1, 2.2, 1

[128] Kristin E. Schaefer, Deborah R. Billings, James L. Szalma, Jeffrey K. Adams, Tracy L.

Sanders, Jessie Y. Chen, and Peter A. Hancock. A meta-analysis of factors influencing the

development of trust in automation: Implications for human-robot interaction. Technical

report, Army Research Lab, Aberdeen Proving Ground, 2014. 7

[129] Bradley Schmerl, Javier Cámara, Jeffrey Gennari, David Garlan, Paulo Casanova,

Gabriel A. Moreno, Thomas J. Glazier, and Jeffrey M. Barnes. Architecture-based self-

protection: Composing and reasoning about denial-of-service mitigations. In HotSoS

2014: 2014 Symposium and Bootcamp on the Science of Security, Raleigh, NC, USA,

2014. 1, 1.2, 7, 7.2, 7.2.1

[130] D. Seto, B. Krogh, L. Sha, and A. Chutinan. The simplex architecture for safe online

control system upgrades. In Proceedings of the 1998 American Control Conference.

ACC (IEEE Cat. No.98CH36207), pages 3504–3508 vol.6. IEEE, 1998. ISBN 0-7803-

4530-4. doi: 10.1109/ACC.1998.703255. URL http://ieeexplore.ieee.org/

document/703255/. 9.4

[131] Jens Steiner, Ursula Goltz, and Jochen Maaß. Self-management within a Software Ar-

chitecture for Parallel Kinematic Machines, pages 355–371. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011. ISBN 978-3-642-16785-0. doi: 10.1007/978-3-642-16785-0

20. URL http://dx.doi.org/10.1007/978-3-642-16785-0_20. 9.4

[132] Christian Stier, Anne Koziolek, Henning Groenda, and Ralf Reussner. Model-Based En-

ergy Efficiency Analysis of Software Architectures, pages 221–238. Springer International

Publishing, Cham, 2015. ISBN 978-3-319-23727-5. doi: 10.1007/978-3-319-23727-5

18. 2.1

[133] Ryohei Suzuki, Fukiko Kawai, Chikashi Nakazawa, Tetsuro Matsui, and Eitaro Aiyoshi.

Parameter optimization of model predictive control by PSO. Electrical Engineering in

Japan, 178(1):40–49, January 2012. ISSN 04247760. doi: 10.1002/eej.21188. URL

http://doi.wiley.com/10.1002/eej.21188. 9.3

[134] SWIG. Simplified Wrapper and Interface Generator. http://www.swig.org/, 2017.

8.2.2

165

http://ieeexplore.ieee.org/document/845037/
http://rubis.ow2.org/
http://portal.acm.org/citation.cfm?doid=1516533.1516538
http://portal.acm.org/citation.cfm?doid=1516533.1516538
http://ieeexplore.ieee.org/document/703255/
http://ieeexplore.ieee.org/document/703255/
http://dx.doi.org/10.1007/978-3-642-16785-0_20
http://doi.wiley.com/10.1002/eej.21188
http://www.swig.org/

[135] Andrew Symington, Sonia Waharte, Simon Julier, and Niki Trigoni. Probabilistic tar-

get detection by camera-equipped UAVs. In 2010 IEEE International Conference on

Robotics and Automation, pages 4076–4081. IEEE, May 2010. ISBN 978-1-4244-5038-

1. doi: 10.1109/ROBOT.2010.5509355. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=5509355. 8.1.2

[136] Genci Tallabaci and Vı́tor E. Silva Souza. Engineering adaptation with Zanshin : an expe-

rience report. In Proceedings of the 8th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, pages 93–102. IEEE Press, May 2013. ISBN

978-1-4673-4401-2. URL http://dl.acm.org/citation.cfm?id=2663546.

2663563. 1

[137] B. Trushkowsky, P. Bodı́k, A. Fox, and M. J. Franklin. The SCADS direc-

tor: Scaling a distributed storage system under stringent performance requirements.

In Proceedings of the 9th USENIX Conference on File and Stroage Technolo-

gies (FAST’11), pages 163—-176, San Jose, California, 2011. USENIX Associa-

tion. URL http://static.usenix.org/legacy/events/fast11/tech/

full_papers/Trushkowsky.pdf. 2.4

[138] Sebastian Vansyckel, Dominik Schafer, Gregor Schiele, and Christian Becker. Config-

uration management for proactive adaptation in pervasive environments. In 2013 IEEE

7th International Conference on Self-Adaptive and Self-Organizing Systems, pages 131–

140. IEEE, September 2013. ISBN 978-0-7695-5129-6. doi: 10.1109/SASO.2013.

28. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6676500. 1

[139] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation environment.

In Proceedings of the 1st International Conference on Simulation Tools and Techniques

for Communications, Networks and Systems Workshop, Marseille, France, 2008. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing). ISBN 978-963-9799-20-2. URL http://dl.acm.org/citation.cfm?id=

1416222.1416290. 8.1.1

[140] Michael J. Veth. Advanced formation flight control. Technical report, Air Force Institute

of Technology, 1994. 8.1.2

[141] Norha M. Villegas, Gabriel Tamura, and Hausi A. Müller. Dynamico: A reference

model for governing control objectives and context relevance in self-adaptive software

systems. Software Engineering for . . . , 2013. URL http://link.springer.com/

chapter/10.1007/978-3-642-35813-5_11. 1

[142] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das. Utility func-

tions in autonomic systems. In International Conference on Autonomic Computing, 2004.

Proceedings., pages 70–77. IEEE, 2004. ISBN 0-7695-2114-2. doi: 10.1109/ICAC.2004.

1301349. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1301349. 1

[143] Chen Wang and Jean-Louis Pazat. A two-phase online prediction approach for ac-

curate and timely adaptation decision. In 2012 IEEE Ninth International Conference

166

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509355
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509355
http://dl.acm.org/citation.cfm?id=2663546.2663563
http://dl.acm.org/citation.cfm?id=2663546.2663563
http://static.usenix.org/legacy/events/fast11/tech/full_papers/Trushkowsky.pdf
http://static.usenix.org/legacy/events/fast11/tech/full_papers/Trushkowsky.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676500
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676500
http://dl.acm.org/citation.cfm?id=1416222.1416290
http://dl.acm.org/citation.cfm?id=1416222.1416290
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://link.springer.com/chapter/10.1007/978-3-642-35813-5_11
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301349
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301349

on Services Computing, pages 218–225. IEEE, June 2012. ISBN 978-1-4673-3049-

7. doi: 10.1109/SCC.2012.26. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6274147. 2.2

[144] Ji Zhang, Zhenxiao Yang, Betty H. C. Cheng, and Philip K. McKinley. Adding safe-

ness to dynamic adaptation techniques. In Proceedings of the ICSE 2004 Workshop on

Architecting Dependable Systems, Edinburgh, Scotland, 2004. 2.3

[145] Jiheng Zhang and Bert Zwart. Steady state approximations of limited processor shar-

ing queues in heavy traffic. Queueing Systems, 60(3-4):227–246, November 2008.

ISSN 0257-0130. doi: 10.1007/s11134-008-9095-4. URL http://dl.acm.org/

citation.cfm?id=1484953.1484959. 8.1.1

[146] Tao Zheng, Murray Woodside, and Marin Litoiu. Performance model estima-

tion and tracking using optimal filters. IEEE Transactions on Software Engi-

neering, 34(3):391–406, May 2008. ISSN 0098-5589. doi: 10.1109/TSE.2008.

30. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4515874. 8.1.1, 9.3

[147] Parisa Zoghi, Mark Shtern, and Marin Litoiu. Designing search based adaptive sys-

tems: a quantitative approach. In Proceedings of the 9th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems - SEAMS 2014, pages

7–16, New York, New York, USA, 2014. ACM Press. ISBN 9781450328647. doi:

10.1145/2593929.2593935. URL http://dl.acm.org/citation.cfm?doid=

2593929.2593935. 9.3, 9.3

167

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6274147
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6274147
http://dl.acm.org/citation.cfm?id=1484953.1484959
http://dl.acm.org/citation.cfm?id=1484953.1484959
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4515874
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4515874
http://dl.acm.org/citation.cfm?doid=2593929.2593935
http://dl.acm.org/citation.cfm?doid=2593929.2593935

	1 Introduction
	1.1 Motivating Example
	1.2 Thesis
	1.3 Solution Approach
	1.4 Research Claims
	1.5 Contributions
	1.6 Dissertation Outline

	2 Related Work
	2.1 Self-Adaptive Systems
	2.2 Proactive Adaptation
	2.3 Adaptation Latency
	2.4 Model Predictive Control
	2.5 MDP-Based Adaptation Decisions
	2.6 Runtime Quantitative Verification

	3 Proactive Latency-Aware Adaptation
	3.1 Approach Overview
	3.2 Adaptation Decision Problem
	3.3 Markov Decision Process
	3.4 Adaptation Tactics and Concurrency
	3.5 Environment Model
	3.6 Summary

	4 Probabilistic Model Checking Approach
	4.1 Probabilistic Model Checking
	4.2 Adaptation Decision Overview
	4.3 Formal Model
	4.4 Environment Model
	4.5 System and Tactic Models
	4.5.1 System Model
	4.5.2 Tactic Models

	4.6 Adaptation Decision
	4.7 Summary

	5 Stochastic Dynamic Programming Approach
	5.1 Adaptation Decision
	5.1.1 Stochastic Environment
	5.1.2 Handling Latency

	5.2 Computing Reachability Predicates
	5.2.1 Delayed Reachability
	5.2.2 Immediate Reachability

	5.3 Algorithm
	5.4 Speedup Evaluation
	5.5 Summary

	6 Support for Alternative Notions of Utility
	6.1 Adaptation Goal Composition
	6.2 PLA-SDP Formulation Extension
	6.3 Summary

	7 Strategy-based Proactive Latency-Aware Adaptation
	7.1 Background
	7.2 Approach
	7.2.1 Strategy Scoring
	7.2.2 Adaptation Decision

	7.3 Effectiveness
	7.4 Scalability Analysis
	7.5 Summary

	8 Validation
	8.1 Validation Systems
	8.1.1 RUBiS
	8.1.2 DART

	8.2 Claims Validation
	8.2.1 Effectiveness Improvement
	8.2.2 Applicable to Different Kinds of Systems
	8.2.3 Scales to Systems of Realistic Size

	8.3 Summary

	9 Discussion and Future Work
	9.1 Analysis of the Contributions of the Elements of the Approach
	9.2 The Rationale for Two Main Solutions Approaches
	9.3 Limitations
	9.4 Future Work
	9.5 Summary

	10 Conclusion
	10.1 Contributions
	10.2 Summary

	A PLA-PMC PRISM Model for RUBiS
	B PLA-PMC PRISM Model for DART
	C PLA-SDP Alloy Models for RUBiS
	C.1 Immediate Reachability Model
	C.2 Delayed Reachability Model

	D PLA-SDP Alloy Models for DART
	D.1 Immediate Reachability Model
	D.2 Delayed Reachability Model

	Bibliography

