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Abstract

Intentional non-compliance in providing accurate income tax returns, also known as ‘tax eva-
sion’ or ‘intentional error’, has been studied from both attitudinal and socio-demographic
perspectives. A significant portion of previous research employs a common set of indicators,
which we can exploit by pooling meta-analytically with the hopes of obtaining a unified,
well-predicting model of intentional error. Towards this end, we turn to a large, nation-
ally representative data source, namely the Census Bureau’s Public-Use Microdata Samples
(PUMS), as our source of covariance between the socio-demographic covariates of interest.
Additionally, the same source offers data on potential opportunities of evasion for each PUMS
respondent (or agent), in certain line item/taxpayer categories, allowing us to construct dis-
tinct error models for these categories. Furthermore, we extend the error model to include
attitudinal meta-analysis, by linking the General Social Survey (GSS) to the PUMS through
imputation of a GSS covariate that identifies respondents who are more likely to break the
law. Our meta-analysis requires an in-depth re-analysis of the selection of previously pub-
lished results on non-compliance. The result is a comprehensive model of non-compliance
that fits historical, published data and that can be applied generically and to specific tax
issues.
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1 Introduction

Taxation is one of the oldest and most common collective action dilemmas in human history.
Most of us do not enjoy paying taxes and, if given the choice to forego paying (legally) for,
say, the past calendar year, most of us would gladly embrace the boon. The burden of the
taxpayer, which is to relinquish a portion of earned resources towards the efficacy of the state,
or society, is so diffuse over a large population that the temptation to avoid paying — or, in
game-theoretic terms, to ‘free-ride’ — is ever-present, especially in taxation systems that are
partly or wholly voluntary such as the United States’. A lá the ‘tragedy of commons’ (Hardin,
1968), tax evasion, though illicit, is locally rational; that is, it is easy to understand how
one might justify the behavior when the consequences of a single act is minimal. However,
repeated acts and increasing prevalence (and increasing seriousness of the act) will render
the behavior systemically irrational, as it can then significantly undermine the government’s
effectiveness and diminish the fidelity of society’s infrastructure, an outcome unwanted by
everyone, including the tax evaders.1

Over the past few decades, researchers have examined the variety of conditions — psy-
chological motives and predispositions, structural or social influences, socio-demographic
correlates, etc. — that might explain why (or at least predict when) individuals end up
purposely evading, above and beyond the mere ‘rational’ excuse. That is, while the incli-
nation to evade is a foregone conclusion for most, how and why the act materializes is not
so trivially understood. Furthermore, there remains the minority of individuals for whom
taxpaying is not only civic duty, but privilege as well.2

As a purported collective action dynamic, tax evasion ought to be regarded as one of a
specific brand of ‘free-riding’, or ‘defection’ (another game-theoretic term), commonly known
is ‘criminal behavior’, instead of being treated as a special behavior isolated to certain
income classes and uniquely dealing with economic loss; that is to say, evasion, generally
placed under the umbrella of ‘white collar crime’, should not be compartmentalized to a
specific class or subgroup or even definition, such that it imposes the presumption that the
underlying motives are esoteric (Hirschi and Gottfredson, 1987; Knight and Knight, 1992).
In fact, Mason and Calvin (1978) observed that 1/3 of their evading respondents would not
be considered ‘white collar’, by any definition of the phrase.

As with most counter-cooperative behaviors, the norming of both evasion and compliance
have been realized through social influence. At the interpersonal level, researchers consis-
tently find peer influence to be associated with evasion (Collins et al., 1992; Elffers et al.,
1987; Webley et al., 2001; Vogel, 1974). On the other hand, wider norming effects are evident
in cohesive communities especially those rooted in religion, such as a church, which main-
tains a relatively high standard of ethical conduct. While Andreoni et al. (1998) outlines
such a mechanism, Torgler (2006) and Grasmick et al. (1991) empirically find religiosity to be
linked to tax compliance, specifically through the threat of public shaming, while Stack and
Kposowa (2006) report mixed findings. Still, the threat of emotional pain through shaming

1We are not considering here those individuals who wish to effect a radical change in the structure of
society.

2To recall the phrase, “buying a civilization.”
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has been verified to be a potent effector (or constraint) of behavior (Coricelli et al., 2007),
and researchers have recently been formally modeling the social interaction effect on evasion
(Cowell, 1992; Fortin et al., 2007).

Conversely, some evidence shows that, absent the imposition of a strong moral norm
or community, tax evasion becomes generally regarded as only a minor offense to law and
society, standing mid-way in a list of criminal offenses containing the most heinous (e.g.
murder) to the most innocuous (e.g. jay-walking) (Burton et al., 2005), all this a natural
consequence of diffused responsibility and part and parcel to collective dilemmas. That non-
compliance is considered so light an offense allows any temptation or inclination to commit
it to be susceptible to a myriad of external conditions, excuses, or rationales. For instance,
disaffection with the tax system, or with the behavior of its authorities, and disbelief in its
fairness are all well-observed antecedents to non-compliant behavior (Frey and Feld, 2002;
Webley et al., 2001; Porcano, 1988).

Unlike the canonical, unrestricted ‘commons’, there does often, in most nation-states,
exist systems and institutions for enforcing tax compliance, namely through the execution
of punitive measures on the more egregious evaders. As such, any inclination to evade
is countered by the fear of having one’s non-compliant behavior being formally discovered
through an audit (e.g. Mason and Calvin, 1978). Since the rate of audits tend to be quite
low, their preventative effect is perceptual, often based on hearsay, well-publicized cases,
and, of course, whether an evader was personally audited or not. Still, there seems to be
enough accuracy in the perceived risk such that a change in actual audit rates can affect non-
compliance rates (Klepper and Nagin, 1989; Dubin et al., 1990; Andreoni et al., 1998). Since
successful detection is often dependent on the ability for tax authorities to observe or verify
the act of non-compliance, a significant change in the manner of income acquisition, e.g. from
unmatchable sources such as investments, can contribute to non-compliance (Bloomquist,
2004).

However, the human decision-making process is fickle, prone to both predictable and
unpredictable irrationalities, often borne out of temporary or persistent emotive states. So,
not surprisingly, the assessment of one’s risk of being audited, despite actually being low,
can become exaggerated as a response to salient or frequent samples (of auditing events),
a dynamic espoused by prospect theory (Kahneman and Tversky, 1979) and confirmed by
Alm et al. (1992). Also, in accordance to prospect theory, Robben et al. (1990) find that
how the tax is framed (i.e refund vs. payment, or gain vs. loss) can determine the level of
compliance. And, as a tempting risk, tax evasion is undoubtedly connected to opportunity;
that is, individuals with more, and more conducive, opportunities are more likely evade
(Wahlund, 1992; Collins et al., 1992; Porcano, 1988); this is obvious.

Also expected and believable is the existence of personality types that are prone to
non-normative behaviors such as tax evasion. Both psychological and sociological literature
point to fixed predispositions or personalities that promote the commission of non-normative
and risk-seeking behaviors, such as tax evasion. These individuals are said to be tolerant
of deviant and/or illicit behaviors in themselves and others (Elffers et al., 1987; Wahlund,
1992; Collins et al., 1992) and also, self-oriented, as a result of selfishness or competitiveness
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(Elffers et al., 1987); this point is highlighted in the New York Times by Goleman (1988)
who accuse evaders of being “selfish to the bottom line”.

Despite the variety in motivations behind tax evasion, evaders tend to fall into certain
socio-demographic categories; these patterns (summarized later in this paper) are more-or-
less consistent across the reviewed literature and clearly point to associations between the
socio-demographic type and latent factors behind tax compliant behavior, both external
(such as income) and internal (such as personality). While many of the surveyed papers ig-
nore the role of socio-demographic indicators, a sufficient number of investigators deem them
important enough to warrant their inclusion in their statistical models. These papers offer
the advantage of aligned comparison as well as meta-analysis; findings from the behavioral
and attitudinal variables in most of the sources cannot be directly compared.

As such, we seek to infer a model of intentional non-compliance (i.e. intentional error)
incorporating findings from many of the aforemented literature, which span several decades
and survey both U.S. and non-U.S. populations. Our model makes predictions of error from
gender, age, education, and income class, as these were the primary socio-demographic pre-
dictors examined in prior research. An extension of the model explores the effect of one
particular, relevant attitudinal covariate: an individual’s tolerance of law-breaking. Fur-
thermore, the model is being expanded to include other socio-demographic indicators, such
as marital status and self-employment, and also behavioral indicators, such as the use of
a paid preparer, all of which have been demonstrated to be significantly predictive of non-
compliance.

Our main approach comprises a meta-analytic pooling of results from past studies into a
single, comprehensive logistic regression model, while concurrently matching those empirical
results as best as possible. We employ a variety of numerical approaches including Newton-
Raphson optimization as our primary instrument for fitting models to the multiple marginal
reports of empirical error (i.e. the reported proportion of error from sub-populations, e.g.
males or high school graduate). More complicated study results, arising from, in one case,
a large regression model and, in another, a large structural equation model, require us to
resort to more flexible, heuristic optimization, such as simulated annealing and other variants
of gradient descent (stochastic and expectation maximization), in order to transform the
empirical results into usable estimates.

Furthermore, our source of unbiased covariance among the predictor variables, necessary
for the meta-analysis, is the U.S. Census Bureaus Public-Use Microdata Samples (PUMS),
which also provides us with population samples of seven taxpayer categories of interest. From
these samples, we generate separate line item/taxpayer category error models. Additionally,
we refer to several data years of the General Social Survey (GSS) to supplement parts of
our prediction, e.g. from tolerance of law-breaking, using weaker inference, like multiple
imputation, due to the absence of these covariates in the PUMS.
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2 Data Sources

2.1 Empirical Rates of Error

We survey a collection of studies, most of which employ socio-demographic indicators in
predicting non-compliance. The empirical error rates, obtained from multiple countries and
across several decades, exhibit considerable variance:

% Error n Source Country Notes
10% 284 Houston and Tran (2000) Australia
19.6% 188 Antonides and Robben (1995) Netherlands
22-25% N/A Collins et al. (1992) United States review of

18 surveys
23.7% 125 Porcano (1988) United States
24.8% 800 Mason and Calvin (1978) United States
25% 1797 Vogel (1974) Sweden
29.9% 125 Porcano (1988) United States
37% 1427 Wahlund (1992) Sweden
50% 240 Collins et al. (1992) United States

Naturally, these rates are dependent on kinds of non-compliance studied, the common ones
being under-reporting of income, over-reporting of deductions, and non-filing; not all studies
explore the same types. But, even when controlling for the type of error, there still remains
a noticeable range, which has been acknowledged by others including Clotfelter (1983) who
estimated a range of 20–58% of taxpayers who evade taxes.

2.2 Summary of Findings

The following table enumerates the covariates examined in the studies of interest; we incor-
porate most of these into our meta-analysis:

Source Pop. Age Sex Educ Inc S.E. Occ Prep Net Mar
Erard ? X ? X
Antonides and Robben X X X X
Porcano X X X ? X X
Wahlund X X X X ? X
Mason and Calvin X ? X ? ?
Houston and Tran X X X X X X X
Collins et al. X X X X X X
Vogel X X X X ? X ? X

where

X = study employs covariate ? = Coarse inference possible
Pop. = Population Rate of Error Net = Social Network Effect
S.E. = Self-Employment Mar = Marital Status
Occ = Occupation Type/Prestige Prep = Paid Preparer Use
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For the most part, there is a high degree of consistency in these papers’ findings, which we
summarize here:

• Sex/Gender - males are consistently more likely to evade, purportedly due to self-
confident, competitive, and anti-authoritarian attitudes.

• Age - older individuals are less likely to evade, partly due to increasing risk aversion.

• Education - education reduces propensity to evade; however a curvilinear effect has
been detected in one study.

• Income - low income and very high income individuals more likely to evade, partly
due to increased opportunities from either under-the-table income or investment-based
income.

• Self-Employment - confers increased opportunity to evade.

• Professional Preparer Use - studies show higher non-compliance when professional pre-
parer is employed.

• Social Network - there is a higher likelihood to evade when peers evade (measured
probabilistically).

2.3 Public-Use Microdata Samples (PUMS)

For all of the error models in this paper, we require a basis of covariance between the key
socio-demographic indicators. Since our source papers, at best, provide marginal rates, we
resort to a separate, relatively unbiased source of data/covariance: the U.S. Census Bureau’s
Public-Use Microdata Samples, which contain the socio-demographic covariates of interest
as well as additional indicators that allow us to infer certain taxpayer categories (e.g. tips,
self-employment, farm ownership, etc.), thus providing us with a tax evasion opportunity
structure.3 Despite containing only individuals residing in housing units, we suspect this
qualification adequately reflects the population sampled in our source papers. In order to
compromise between computation time and generalizability from a robust (i.e. large) data
set, we sample from the PUMS a nationally representative data set of size, nPUMS = 10,000;
in later sections, when n is unspecificed, we imply nPUMS. Also, for generalizability and
compatibility to the data in our source papers, we impose a discrete categorization, or ‘bins’,
of the PUMS covariates:

3For further information, refer to the PUMS documentation (United States Census Bureau, 2003).
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covariate bin # description

Sex
{ 0 Female

1 Male

Age

{ 0 < 30
1 30 – 60
2 60+

Education


0 Less than High School
1 At Least a High School Graduate
2 Bacheler’s Degree
3 Post-Graduate

Income



0 No Earnings or Less than $0
1 < $15,000
2 < $30,000
3 < $50,000
4 < $80,000
5 < $120,000
6 ≥ $120,000

2.4 The General Social Survey (GSS)

The General Social Survey has been administered almost yearly since the 1970s and as-
sesses various cultural, behavioral, attitudinal, and socio-demographic trends in the non-
institutionalized, adult household population of the United States.4 In several survey years,
data was collected on taxpaying attitudes as well as another important indicator, attitudes
towards obedience to the law. We will employ both of these covariates in constructing our
error models.

3 Terminology and Notation

We offer a brief primer on the specific terms and various statistical and mathematical notation
and symbols used throughout this paper:

• The term ‘intentional error’ is completely interchangeable with ‘tax evasion’. Its use
stems from the IRS’ classification of incorrect portions of tax returns as being one of two
type of errors: intentional or inadvertent. While we use the term ‘non-compliance’ also
synonymously with ‘intentional error’, in other writings, it might be used to indicate
either kind of error.

• A bold-typed variable, e.g. X, or a set of values held within a set of parentheses, e.g.
(x0, . . . , xn), denotes a vector of values.

4Additional information on the GSS maybe found at the website: http://www.norc.org/GSS+Website
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• N(µ, σ2) denotes the Normal distribution (also known as a Gaussian) with parameters
mean µ and variance σ2.

• logit[x] is the log odds of x, log

[
x

1− x

]
; conversely, logit−1[x] represents the inverse-

logit,
exp(x)

1 + exp(x)
=

1

1 + e−x

• L denotes the likelihood and L denotes the log of a likelihood, or log-likelihood.

• X ∼ Y can denote that random variable X is distributed as defined by distribution
Y , or it can denote the likelihood (i.e. probability or density) of the value X being
drawn from distribution Y , depending on the context. For example, x ∼ N(µ, σ2) is
equivalent to N(x|µ, σ2) or L = log[N(x|µ, σ2)]. So, naturally, if we have a vector X
and X ∼ N(µ, σ2) then the log-likelihood of the fit is L =

∑
i log[N(Xi|µ, σ2)].

• The significance stars in regression models follows the standard nomenclature:

p <


0.001 if ‘***’
0.01 if ‘**’
0.05 if ‘*’
0.1 if ‘ˆ’

• σ denotes standard deviation.

• p is a probability, while ρ (rho) is a Pearson correlation.

• Non-italic sub/super-scripts is a variable label while italicized ones are variables; e.g. in
xi,tp, tp is a placeholder for one of eight taxpayer categories and xi,tp is flag of whether
or not agent i qualifies for taxpayer category tp. ntp

i indicates the number of taxpayer
categories agent i falls under; here, ‘tp’ merely indicates that n is a count of something
related to taxpayer categories.

• We often employ the indicator function I(. . .) in which ‘. . .’ denotes some true/false
conditional:

I(. . .) =

{
1 if . . . (i.e. conditional is true)
0 otherwise

• We will, on occasion, denote a mean with a functional expression, mean(x), rather
than the symbolic over-line, x, especially when paired with the functional expression
for standard deviation, sd(x). On occasion we will employ the symbolic functional
expressions: µ(x) and σ(x).
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4 Meta-Analysis

In this paper, we attempt to infer a statistical model of intentional error by combining
findings (notably marginal statistics) from similar, overlapping covariates found our source
empirical papers. Generally, we will relegate the details for any intermediate analytical steps,
particularly ones in which we align a paper’s results to our desired model, to Appendix A.

Our primary model, which we will call the ‘generic error model, is a single logistic regres-
sion model employing the socio-demographic covariates common to our studies. In particular,
we seek a set of coefficients:

β = (β0, β1, β2, β3, β4)

duly labeled

β = (βIntercept, βSex, βAge, βEducation, βIncome)

such that a logistic regression prediction will best fit whichever empirical data and findings
we see fit to include in the meta-analytical model:

logit[p(y > 0)] = β0 + β1xSex + β2xAge + β3xEduc + β4xInc (1)

where

y = the number of acts of intentional error by a single individual

and so

p(y > 0) = the probability of commission of at least one intentional error

4.1 Fitting to Marginals

4.1.1 Simple Example

One of our main fitting strategies exploits the marginal statistics reported in most of the
sources; that is, we seek a model that best concurrently fits these marginal statistics. For
instance, our sources offer several different error commission rates by males. The marginal
statistic is:

pMale = p(y > 0|xSex = 1), where xSex = 1 is equivalent to xSex = Male

and the data we have is:

pMale nMale Source
0.323 709 Vogel (1974)
0.067 171 Houston and Tran (2000)
0.293 377 Mason and Calvin (1978)
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Naturally, we employ the normal approximation to the logit of the probability to find the
maximum-likelihood estimate, p̂Male:

L =
∑

s∈{Vogel,
Houston,
Mason}

log
[
N
(
logit[p̂Male]|µ = logit[ps,Male], σ

2 = σ2
s

)]

where the variance is the standard variance surrounding the logit of a probability:

σ2
s =

1

(ns)(ps,Male)(1− ps,Male)

For this example, we will provide a bit of elaboration of the inner term for the first summand
(i.e. Vogel), which offers the likelihood of our estimate for males p̂Male fitting Vogel’s marginal
probability:

N(logit[p̂Male|µVogel = logit[0.323], σ2
Vogel = [709 · (1− 0.323) · 0.323]−1)

=
1

σVogel

√
2π

exp

{
−(p̂Male − µVogel)

2

2σ2
Vogel

}

= 61.85 · exp

{
−(p̂Male − (−0.740))2

8.32× 10−5

}

While it is possible to algebraically obtain the maximum-likelihood estimate of p̂Male for this
simple example, we will need to resort to numerical optimatization methods when we later
solve for multiple marginals and multiple β coefficients. So, here, we employ the Newton-
Raphson optimization and obtain the following solution:

logit[p̂Male] = −0.868 and σMale = 0.0640 (i.e. the standard error around logit)

p̂Male = 0.295 and σMale = 0.0133 (i.e. the standard error around prob.)

The normal approximation to the logit of a binomial is just that, an approximation, and has
its limitations, especially for probabilities close to the extremities (0 or 1) or for low sample
sizes. In this example, the low probability of pHouston,Male results in a slight mismatch to the
real solution which can be obtained in one of three ways:

method p σ Notes
weighted binomial 0.2792 0.01265
logistic regression 0.2778 0.01265 converted from logit:

µ = −0.955, σ = 0.0629
beta approximation 0.2792 0.01265 using Newton-Raphson
normal approximation 0.2956 0.01333 using Newton-Raphson

The normal approximation to the logit results in a |0.2956− 0.2792|/0.2792 = 0.059 or 5.9%
error. We expect that the error in our estimates will be lower due to larger sample sizes as
well as estimating from probabilities higher than 10%.5

5The beta approximation is more accurate and will be employed in future versions of the model.
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4.1.2 General Marginal Model

The general expression for the marginal likelihood of our covariates across all sources is as
follows:

logit[qjk|xj = k] ∼ N(µ = logit[pijk|xj = k], σ2 = [nijkpijk(1− pijk)]−1) (2)

where i indexes our sources that report some of the marginal intentional error rates and j
indexes our covariates of interest, i.e.

i ∈ {Houston, Mason, Vogel}
j ∈ {Sex, Age, Education, Income}

and k indexes separate bins/categories for each covariate (wherever applicable),

k ∈


{0, 1} if j = Sex
{0, 1, 2} if j = Age
{0, 1, 2, 3} if j = Education

{0, 1, 2, 3, 4, 5, 6} if j = Income

and

nijk = # of respondents falling in bin k of covariate j in source i

pijk = reported intentional error probability for bin k of covariate j in source i

qjk = average predicted/fitted probability of error for bin k of covariate j

xj = refers to the values of covariate k of our PUMS sample

Finally, we have our predicted mean marginal probability for the covariate category:

qjk =

∑i=n
i=1 I(xij = k) · logit−1[βx̂i]∑i=n

i=1 I(xij = k)

where we incorporate the intercept multiplier of 1:

x̂i = (1,xi) = (1, xi,Sex, xi,Age, xi,Education, xi,Income)

and our prediction for each agent i is then

βx̂i = β0 + β1xi,Sex + β2xi,Age + β3xi,Educ + β4xi,Inc

and the indicator function, applying the prediction to those agents whose category j has
value k,

I(xij = k) =

{
0 if xij 6= k
1 if xij = k

and, xi and n, above, respectively refer to the respondents in and size of our PUMS sample.
Refer to the Appendices A.1, A.2, and A.3 for further details on how we obtain the marginal
data from the source papers.
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4.2 Fitting to Sample Population Error Rates

Several of the studies also report overall intentional error rates for their sample population;
we incorporate these into the likelihood, assuming they are not automatically inferred from
the covariate meta-analysis. Antonides and Robben (1995) report a sample tax evasion rate
of 19.6% in their 188 respondents. Also, Wahlund (1992) reports 37% of his 430 respondent
pool evaded taxes.6 And finally, 50% of the respondents from Collins et al.’s study report
some evasion.7 Hence, we incorporate each of these population sample error rates into our
estimation:

logit[p(y > 0)] ∼ N(µ = logit[pi], σ
2 = [nipi(1− pi)]−1)

where i ∈ {Antonides, Wahlund, Collins} and

pAntonides = 0.196 and nAntonides = 188

pWahlund = 0.370 and nWahlund = 430

pCollins = 0.500 and nCollins = 240 · κnC

and our PUMS population sample error rate is:

p(y > 0) =

∑n
i=1 logit−1[βxi]

n

Later, we will discuss differentially weighting the empirical rates based on how relevant and
similar the sampled population is to the PUMS; thus, the Collins sample, which is both
recent and U.S.-based, will receive a special weighting κnC. So now, the log-likelihood from
fitting these population error rates are added together, and added eventually to the overall
log-likelihood:

LPop =
∑

i∈{Antonides,
Wahlund,
Collins}

log[N(p(y > 0)|µ = logit[pi], σ
2 = [nipi(1− pi)]−1)]

4.3 Fitting to Empirical Coefficients

Instead of marginal covariate error rates, Collins et al. (1992) report multiple regression coef-
ficients predicting counts of evasion per respondent. Since we cannot fit our predictive means
to to any corresponding empirical means, we instead fit our expected/predicted regression
coefficients β directly onto those of Collins et al.:

β−0 ∼ N(β−0,Collins,σ
2
Collins)

6We eschew the fit to Wahlund’s population sample error rate when we include the ‘obey law’ covariate,
in Section 8, since fitting to the latter already includes the former.

7We maintain the Collins’ population error rate, even when we include the Collins covariates due to
omission of the intercept.
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where −0 subscript indicates that we omit the intercept. The log-likelihood is then:

LCollins =
4∑
i=0

log[N(βi|βi,Collins, σ
2
i,Collins)]

where i ∈ {1, 2, 3, 4} maps on to {Sex, Age, Education, Income}. Details on how we obtain
β−0,Collins and σ−0,Collins may be found in Appendix A.4.

4.4 Meta-Analytical Log-Likelihood

The complete log-likelihood is then the sum of the aforementioned log-likelihoods, L:

L = LMarginal + LPop + LCollins

Note, LMarginal was not explicitly reported but easily derived from Eq. 2.

5 Results of Meta-Analysis

Since several of our empirical sources do not survey a recent U.S. population sample, hence
their marginals and estimates may not be generalizable to our PUMS sample, it behooves
us to weight their findings during our estimation process such that greater weight is given
to those populations which are recent and/or U.S.-based. As such, we introduce two scaling
factors/multipliers, κnC and κnM, applied to the sample sizes of the Collins et al. and Mason
and Calvin studies (both U.S.-based), where nCollins = 240 and nMason = 800, respectively.
Since the Collins et al. study occurred recently (and has a relatively low sample size), we offer
it a weight of κnC = 8, while doubling the influence of the Mason and Calvin study, κnM = 2.
Furthermore, the Vogel study reported a curvilinear (i.e. inverted V-shape) prediction from
‘education’ on intentional error. We believe this effect to be significant enough to warrant
investigation a separate model.

So, in Table 1, we present the four model variants, obtained by fitting the two sets of
κn and two treatments of ‘education’ with our n = 10,000 PUMS sub-sample. The second
model of each pair (b) highlights Vogel’s curvilinear effect from ‘education’; while this model
is superior to the first model, the difference in log-likelihood indicates only a marginally better
fit for the unweighted fit. However, for the weighted condition, the non-linear ‘education’
model is a substantially better fit, obliging us to consider this variant as being closer to the
‘true’ model. We obtain the predicted probabilities, p, by applying each model, β, to the
covariate values for each of our PUMS sample agents, x̂i, while not forgetting the intercept
prefix:

pi = p(yi > 0) = logit−1[βx̂i]

And, we can offer the summary statistics for the distribution of predicted probabilities from
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Unweighted: κnC = 1, κnM = 1 : Weighted: κnC = 8, κnM = 2 :
nCollins = 240, nMason = 800 nCollins = 1920, nMason = 1600︷ ︸︸ ︷ ︷ ︸︸ ︷

Predictor Model #1a Model #1b Model #2a Model #2b
Intercept −0.922*** −0.842*** −0.415*** −0.230ˆ

(0.141) (0.145) (0.108) (0.118)

Sex 0.411** 0.383** 0.339*** 0.377***
(0.141) (0.116) (0.087) (0.088)

Age −0.583*** −0.598*** −0.531*** −0.522***
(0.114) (0.110) (0.089) (0.091)

Education 0.080 −0.045
(0.133) (0.070)

|Educ− 1| −0.220ˆ −0.472***
(0.113) (0.113)

Income 0.065 0.141* −0.026 −0.028
(0.142) (0.070) (0.055) (0.047)

L −92 −90 −324 −316
n 10000 10000 10000 10000

Table 1: Four Model Variants

each model:

Summary Statistics for p(y < 0)
Min. 25% Median Mean 75% Max.

Model #1a 0.1102 0.2041 0.2774 0.2694 0.3229 0.5130
Model #1b 0.0631 0.1797 0.2431 0.2497 0.3121 0.5959
Model #2a 0.1488 0.2482 0.3040 0.3069 0.3684 0.4811
Model #2b 0.0558 0.1930 0.2272 0.2655 0.3203 0.5367

Interestingly, the non-linear ‘education’ covariate confers a greater range of fitted probabil-
ities for committing non-compliance, while reducing the mean, suggesting that the strictly
linear model might be biased. While we expect the mean error rate to climb under the
weighted models due to the imposition of the Collins’ error rate, the non-linearity in the (b)
models mitigates this effect.

6 Intentional Error in Line Items/Taxpayer Categories

We now wish to predict intentional error occurring from several sources of opportunity on the
tax return, particularly errors in line items pertaining to several taxpayer categories. We aim
to express distinct ‘line item’ error models for each of these categories, but first, we introduce
our approach with a single category. For the analyses in this section, we employ the same
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PUMS sub-sample, supplemented with taxpayer category assignment flags for each agent.
While some of these categories are taken directly from the PUMS respondent data (e.g. self-
employment), others were strongly inferred (e.g. tip-earners from appropriate occupations),
while the remaining are moderately presumptive (e.g. EIC/EITC line items flagged for all
who qualify).8

6.1 Univariate Solution

Given that our intentional error model involves multiple covariates, we can easily infer the
change in error commission probability of any one of the taxpayer categories across a single
covariate. Essentially, the remaining covariates, not involved in the univariate inference,
provide enough covariance structure to allow us to make some statement on the impact of
the focal covariate on the commission of error in a particular line-item category.9 We offer
several examples before moving on to the multivariate solution.

In our first example, we focus on the first taxpayer category ‘Tips’ and infer the näıve
probability that an individual who falls into that category will commit an error from a line-
item associated with that category; here, there is no predictive covariate. We first observe
the following when we apply the PUMS sub-sample to our predictive, generic error model
from Eq. 1:

p(y > 0|xTips = 0) = 0.253

p(y > 0|xTips = 1) = 0.355

where y is the number of intentional errors. Essentially, we observe that the mean probability
of some error given no ‘Tips’ is 25.3% and with ‘Tips’ is 35.5%; the socio-demographic error
model already predicts higher non-compliance for tip earners. So, we define two sources
of intentional error, ‘Tips’ and ‘–Tips’, where the latter denotes error from any non-‘Tips’
source, and elaborate on the above estimates:

p(y > 0|xTips = 0) = 0.253 = 1− (1− p(y−Tips > 0))

p(y > 0|xTips = 1) = 0.355 = 1− (1− p(yTips > 0) · (1− p(y−Tips > 0))

We easily solve for p(yTips > 0) and obtain 0.137; that is, assuming independence, a taxpayer
who falls under the ‘Tips’ category has a 13.7% chance of committing an intentional error in
line-items related to ‘Tips’ and a 25.3% chance of committing an error through non-‘Tips’
line-items.10

We can extend this approach to assess the impact of gender/sex on the proclivity towards
intentional error commission of, again, ‘Tips’. Essentially, we wish to find the parameters

8EIC/EITC is the acronym for the Earned Income (Tax) Credit.
9It remains to be seen how this constriction on the covariance, due to use of a direct logit model, influences

the validity of the results.
10There is some evidence, particularly from Collins et al. (1992) and Wahlund (1992), that there is modest

dependency between errors; one explanation is that an individual with multiple opportunities is likely to
commite more errors. We will relax the independence assumption in later writings.
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for the following model:

logit
[
p(yTips > 0|xTips = 1)

]
= β0 + β1 ·xSex (3)

Our data provides us with the following summary statistics:

Sample Size, n Mean Error Rate, p
Sex

0 = F 1 = M

Tips
0 4889 4806
1 230 75

Sex
0 = F 1 = M

Tips
0 0.191 0.316
1 0.296 0.536

Firstly, we observe more females than males earn tips, which is what we would expect from
an unbiased sample. However, in accordance to the intentional error model, male tip-earners
are more likely to commit acts of non-compliance than female tip-earners (i.e. 0.536 > 0.296).
We elaborate on the mean error rate table:

Given xSex = 0:

p(y > 0|xTips = 0) = 0.191 = 1− (1− p(y−Tips > 0))

p(y > 0|xTips = 1) = 0.296 = 1− (1− p(yTips > 0) · (1− p(y−Tips > 0)

Given xSex = 1:

p(y > 0|xTips = 0) = 0.316 = 1− (1− p(y−Tips > 0))

p(y > 0|xTips = 1) = 0.536 = 1− (1− p(yTips > 0) · (1− p(y−Tips > 0)

Solving for each xSex conditional, we obtain:

p(yTips > 0|xTips = 1, xSex = 0) = 0.130

p(yTips > 0|xTips = 1, xSex = 1) = 0.322

giving us the following solution for Eq. 3:

β0 = −1.901 = logit[0.130]

β1 = 1.156 = logit[0.322]− logit[0.130]

We can continue this analysis and infer the effect of sex/gender on non-‘Tips’ error com-
mission. However, we must admit a weakness to this method: the covariance afforded by
our intentional error model can only go so far, being effective for only univariate or small
multivariate models. Our goal of inferring line-item error commission using all of the key
covariates (i.e. Sex, Age, Education, and Income) is non-sensical with the above method,
because our intentional error model neither 1) is contingent on taxpayer category nor 2) does
it have additional sources of covariance. So, for any unique socio-demographic category, de-
fined by a combination of the four covariates, the predicted error is identical for categorical
or non-categorical taxpayers, alike. Therefore, we must turn to a different approach if we
wish to offer a predictive line-item model that employs all four socio-demographic covariates.
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6.2 Multivariate Solution

As with the univariate inference, we first obtain error probabilities for our subsample using
the intentional error model on the socio-demographic covariates: Sex, Age, Education, and
Income. Our goal is to construct separate predictive models for each of the taxpayer cate-
gories using the same socio-demographic covariates as the intentional error model; that is,
each of the models will reflect the probability of intentional error occurring in the line-items
associated with each taxpayer category.

Our nomenclature for the taxpayer categories (tp) of interest is as follows, noting pre-
sumptive categories:

Taxpayer/Line-Item
Category, tp, . . . comprises individuals who . . .
Tips receive tips
SEmp are self-employed or pay self-employment tax
EIC (probably) take the Earned Income (Tax) Credit
SLns (might) have student loans
Cap report capital gains (i.e. own a house)
Frm own a farm
SSB receive social security benefits (due to appropriate age)

In Figure 1, we present, graphically, the proportions for each of the taxpayer category for
several sub-samples for comparison purposes and to demonstrate the modest degree of vari-
ance across cities and sample sizes. We present our models, reiterating Eq. 1 as the source of
the dependent data. A similar formulation is employed for the predictive component, which
fits specifically for only categorical taxpayers:

logit(pi) = β0 + βSex ·xi,Sex + βAge ·xi,Age + . . . (4)

logit(qtpi |x
tp
i = 1) = αtp0 + αtpSex ·xi,Sex + αtpAge ·xi,Age + . . . (5)

where pi is shorthand for p(yi > 0), the probability of commission of at least one intentional
error for agent i, and qtpi (similarly abbreviated) is the predicted probability that an error
occurs in the line-item(s) associated with a single taxpayer category, tp, where tp ∈ {Tips,
SEmp, EIC, SLn, Cap, Frm, SSB, Misc}, given that agent i falls in that particular category.
As such, the second model fits only those agents who can possibly commit error from one of
the seven categories.

Note, in addition to the explicit taxpayer categories, we include a miscellaneous category,
‘Misc’, since we will also have to model errors occurring in line-items not covered in the seven,
aforementioned taxpayer categories.11 Hence, the model for tp = ‘Misc’ will be close to the
intentional error model; the intercept will be the only parameter we fit in the estimation

11An alternative simpler approach assumes that all errors will occur in the provided line-item categories.
However, since our data contains agents who do not fall into any of the seven taxpayer categories, we
can estimate the rate of error incurred through line-items outside those categories and avoid this over-
simplification.
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Figure 1: Taxpayer/Line-Item Categories. The error bars represent the nominal standard devia-
tion surrounding a proportion. The third bar of each set represents the proportions from our main
n = 10,000 subsample. The latter three bars represent data from specific city samples, labeled by
their City ID #.
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process. While, realistically, the rate of ‘Misc’ error likely covaries with the rate of error from
the explicit categories, we have no way of modeling this; hence, we assume independence
across all categories, including ‘Misc’.

The second model, Eq. 5, predicts the probability of error commission for each category.
Since, at this stage, we assume independence, we can directly calculate the probability of at
least one error as:

pi ≈ qi = 1−
∏
tp

(1− qtpi ) (6)

where, again, tp ∈ {Tips, SEmp, EIC, SLn, Cap, Frm, SSB, Misc} and i refers to a specific
agent/PUMS respondent. Basically, the probability of some error is the probability of the
non-occurrence of no errors. If an agent does not qualify for taxpayer category tp, the
probability is naturally 0, i.e. qtpi = 0|xtpi = 0. So, essentially, we are seeking a matrix of
coefficients/estimates (i.e. a model for each of the seven plus one categories):

α =


αTips

0 αTips
1 . . . αTips

4
...

. . . . . .
...

αSSB
0 αSSB

1 . . . αSSB
4

αMisc
0 αMisc

1 . . . αMisc
4


Out of 168 unique socio-demographic combinations, our sample contains 158.12 With number
of bins per covariate, reiterated here:

Covariate
Sex Age Educ Inc

mCovariate 2 3 4 7

we indicate each unique agent combination using a unidimensional scalar, uidi:
13

fuid(xi) = uidi = xi,SexmAgemEducmInc + xi,AgemEducmInc + xi,EducmInc + xInc (7)

= xi,Sex(3)(4)(7) + xi,Age(4)(7) + xi,Educ(7) + xi,Inc

= (84)xi,Sex + (28)xi,Age + (7)xi,Educ + xi,Inc

Conversely, xuid indicates a vector (xSex, xAge, xEduc, xInc) corresponding to to the uid scalar.
Now, we collate the predicted probabilities qi for all agents i who have the same uid:

Quid = {qj,uid} where j ∈ {fuid(xi) = uid}

Giving us the fitting likelihood for each agent within a given uid:

logit[Quid] ∼ N(logit[puid], σ
2
uid) (8)

12In future writings, we will perform our inference with a much larger PUMS sub-sample, which will likely
contain more socio-demographic combinations.

13Note that we distinguish ‘uid’, a function label, and ‘uid’, an identifier variable/value.
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where σ2
uid can be one of a) the standard error surrounding the fit for xuid or b) the variance

of the logit of the predicted generic error fit (i.e. logit[puid]) computed with the count of data
points in the PUMS that constitute the uid. More specifically, each of these variance sources
are:

a)
4∑
i=0

(xuidi )2Var(xuidi ) + 2
4∑

i,j;i<j

xuidi xuidj Cov(xuid
i , xuid

j ); here, we employ the covariance (and

variance) of the generic error Model #2a in Table 1.

b) [nuidpuid(1− puid)]−1 where nuid = |xuid|, the count of PUMS agents that fall under uid.

However, since we are dealing with probabilities, that is, the binomial distribution, the final
log-likelihood ought to consider just the mean fit for each uid, computed across all uid’s,
rather than each individual qi:

Quid =

nuid∑
i=1

I(fuid(xi) = uid) · qi,uid

nuid

where our count of PUMS agents per uid is nuid =
∑
I(fuid(xi) = uid). And now, the new

likelihood substitutes Quid for the vector Quid in Eq. 8.
Furthermore, we employ two additional fits, which account for the higher chance of error

commission given more opportunities. The first fits the Pearson correlation of opportunity
as defined by the number of taxpayer categories an agent falls into, and the second, fits
specifically the probability of error committed by those self-employed, as we have direct
empirical data for this taxpayer category. First, we claim that the number of taxpayer
categories for which a single agent qualifies, not counting ‘Misc’, adequately serves as a
proxy for the degree of opportunity to commit error. So, for each agent i:

ntp
i =

∑
tp

I(xi,tp = 1)

From an analysis of Wahlund’s findings (see Appendix A.5), we obtain a correlation of
ρW = 0.329 between the degree of opportunity and at least one act of evasion. However,
since there is some uncertainty as to how accurate this correlation is for taxpaying population
of the United States in the year 2000, we consider a modification to the canonical variance
around ρ when fitting our line item error models:14

ρ̂ ∼ N

(
µ = ρW, σ

2 = (κρW)2 · 1− ρ
2
W

nW − 2

)
14However, we can say with high certainty that there ought to be both a positive and a moderate to large

correlation.
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where

nW = the size of Wahlund’s sample, 430

κρW = a presumptive scaling factor/multiplier of the standard deviation of ρ

ρ̂ = our predicted correlation between the vector of counts of

opportunity, ntp, and the probability of error P for all agents

In our next addition, we fit our joint line item predictions to the marginal rates of error for
self-employment, such that these predictions conform to their empirical analogue:

logit
[
qSEmp=j

]
∼ N

(
µ = logit

[
pSEmp=j
s

]
, (σSEmp=j

s )2 = [nSEmp=j
s p(1− p)]−1

)
where the mean marginal prediction of error for self-employment status is:

qSEmp = j =

∑
i qi · I(x

SEmp
i = j)∑

i I(x
SEmp
i = j)

and the marginal rates of error for each source and each self-employment status are:15

s j pSEmp
s nSEmp

s

Vogel 0 0.279 967
Vogel 1 0.371 106

Houston 0 0.084 144
Houston 1 0.188 79

That is, we are fitting our self-employment predictions to four likelihoods, two for each self-
employment status times two for each source. Furthermore, we examine the same fit to
self-employment, but under the Beta distribution:16

qSEmp=j ∼ Beta
(
α = pSEmp=j

s nSEmp=j
s + 1, β = (1− pSEmp=j

s )nSEmp=j
s ) + 1

)
6.3 Methodology

Due to the large parameter space, inferring a set of line item error models requires two steps:

1. We employ a gradient descent/stochastic maximization algorithm to reach a solution
sufficiently close to the mode of the multivariate distribution. Using a predefined shape
parameter, s, for each of the forty β coefficients. This will confine the size of the jump
to a new value; typically, s = 0.001 seems sufficient:

(a) Draw a random ‘jumping’ delta from a Gaussian: δ ∼ N(0, s2).

(b) Obtain the L (i.e. fit of the entire set of line item models) for each of
(β − δ, β, β + δ), three values.

15This data is reproduced from Appendices A.1 and A.3.
16In fact, we employ the beta fit for our reported line item error models.
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(c) Select the change (or no change) that corresponds to the highest L.

(d) Repeat (a)–(c) until no changes are accepted for the entire set of coefficients.

2. Then, we employ the Newton-Raphson optimization procedure, using the result of the
stochastic maximization as our initial point, in order to find the true mode as well as
the variance surrounding the mode, under the assumption of normality.17

7 Line Item Model Results

We present summary results for several different approaches and parameterizations towards
fitting the set of line item models in Table 2. These variations/condition include:

1. varying the weight on the Collins data by increasing the sample size by the multiplier,
κnC ∈ {1, 4, 8}.

2. fitting to the means (and standard error) for each uid (µ) or the overall mean of the
log-likelihoods from the former fits, (L).

3. relaxing the variance around each uid fit (i.e. µ) so that they are proportional to the
variance around each logit, ∝σ2, or equalizing the variance, =σ2, which assumes all
uid’s are represented by the same number of data points.

4. imposing different priors, Cauchy or normal, on the model coefficients, varying the
shape or variance. Refer to Appendix C for a comparison of the different priors.

5. varying the uncertainty around the opportunity/evasion correlation ρ with a multiplier
κρW.

Predicted error probabilities for each line item are computed using Eq. 5 in the same manner
as we generated the generic error probabilities. The predicted ‘any’ error probability is
easily calculated with Eq. 6, the summary of which we present in Table 2. One notable
observation in Table 2 is that an increase in the error probability spread seems necessary
for the opportunity/error correlation to fit. In Figure 2, we naturally see that expanding
the variance around the original prediction (right plot), increases the spread of the line item
model predictions, with the consequence of less fitting means for each uid. Furthermore,
we can easily see the distinction in error between males and females. For further detail,
we report the line item error models fitted to three of the above conditions. The first one
employs the mean fit (µ) to the standard error, while increasing the uncertainty around the

17While the posterior distributions might possibly depart widely from the normal, we suspect the diver-
gence is not serious, obviating the need to employ MCMC Bayesian inference methods.

21



Summary of Error: p(y > 0)︷ ︸︸ ︷
fitting prior κρW = 1st 3rd

κnC method dist. shape σρ× Min Qu. Med µ Qu. Max. ρ
1 µ N 3 2 0.09 0.17 0.23 0.24 0.30 0.78 0.049
4 µ N 3 2 0.10 0.16 0.23 0.23 0.28 0.82 0.066
8 µ N 3 2 0.09 0.17 0.23 0.24 0.28 0.85 0.072
8 µ N 10 5 0.10 0.18 0.23 0.23 0.28 0.78 0.043
8 L Cauchy 10 5 0.09 0.17 0.23 0.23 0.27 0.69 0.046
8 µ Cauchy 10 1 0.09 0.15 0.20 0.23 0.27 0.99 0.137
8 µ Cauchy 3, 2.5 1 0.09 0.15 0.21 0.24 0.28 0.91 0.128
8 µ Cauchy 3, 2.5 0.01 0.00 0.07 0.15 0.23 0.32 1.00 0.329
8 µ,∝σ2 Cauchy 3, 2.5 1 0.06 0.10 0.18 0.24 0.29 0.93 0.258
8 L,∝σ2 Cauchy 3, 2.5 1 0.03 0.11 0.19 0.23 0.30 0.85 0.274
8 µ,∝σ2 Cauchy 3, 2.5 0.1 0.00 0.07 0.18 0.23 0.34 0.98 0.328
8 µ,=σ2 Cauchy 3, 2.5 1 0.06 0.14 0.20 0.25 0.29 0.94 0.206

Table 2: Summary of Error Prediction Distributions from Line Item Models for Different Fitting
Parameterizations. The spread of predicted probabilities arising from the line item models is shown
for each of the different model conditions. The predicted error/opportunity correlation, ρ, is also
reported.
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(a) Original Fit (b) Wider Variance

Figure 2: Line Item Fit. Each graph plots the line item prediction (as a probability on the X-axis)
against the accompanying generic error model for each uid (Y-axis). The original fit corresponds
to the first line in Table 2, wherein the line item models aim to remain within the standard error
of each generic fit. The right plot incorporates a wider variance around the fits as determined by
the number of data points that exist. The black points depict our predicted mean for each agent uid
category and the green line shows the where the perfect fit would lie. The sizes of the red ♀ (female)
and blue ♂ (male) points are exponentially proportional to number of data points that exist for the
category.
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correlation to opportunity:

κnC = 8, fit = µ, κρW = 2
prior dist. = N(0, σ2 = 32)

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept −1.34 −0.46 −3.10* −2.48* −1.55 −0.21 −0.95 −1.12***

(2.25) (1.84) (1.35) (1.10) (1.45) (2.61) (2.62) (0.20)

Sex −0.21 −0.30 −0.13 0.18 0.75 0.16 −0.29 0.39***
(2.75) (1.85) (2.16) (0.64) (1.00) (2.50) (2.19) (0.09)

Age −0.83 −0.90 −0.96 −0.41 −0.87 −0.85 −1.77 −0.44***
(2.42) (1.39) (2.44) (0.57) (1.47) (1.91) (1.49) (0.12)

Education −0.48 −0.66 −0.83 −0.12 −0.84 −0.06 −0.02 −0.09ˆ
(2.24) (1.12) (1.75) (0.40) (1.11) (1.54) (1.39) (0.05)

Income −0.80 −0.16 −0.53 −0.06 −0.25 −0.05 −0.29 0.01
(3.00) (0.57) (3.30) (0.24) (0.46) (1.10) (0.88) (0.03)

The next two incorporates several enhancements: 1) fitting to the empirical variance (pro-
portional or equal), 2) a Cauchy prior to the coefficients, 3) canonical deviation around the
opportunity correlation:

κnC = 8, fit = {µ,∝σ2}, κρW = 1
prior dist. = Cauchy(x0 = 0; γ0 = 3, γ−0 = 2.5)

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept −0.71 −0.74 −1.74** −1.49 0.15 0.02 −0.85 −2.73***

(1.89) (1.76) (0.62) (1.05) (1.07) (1.98) (2.04) (0.77)

Sex 0.04 −0.35 0.49 0.35 0.72 0.10 −0.06 0.35
(1.77) (1.59) (0.60) (0.58) (0.92) (1.70) (1.45) (0.42)

Age −0.51 −0.66 −1.58 0.01 0.13 −0.13 −1.32 0.04
(1.60) (1.50) (1.25) (0.59) (0.79) (1.62) (1.29) (0.46)

Education −0.23 −0.74 −0.75 −0.19 −0.67 −0.18 0.15 −0.07
(1.53) (1.64) (0.84) (0.42) (0.82) (1.55) (1.20) (0.32)

Income −0.47 0.04 −0.26 −0.00 −0.15 0.31 −0.14 0.09
(1.85) (0.73) (0.58) (0.22) (0.32) (1.38) (0.77) (0.15)
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same as above except fit = {µ,=σ2}
Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept 0.09 −0.33 −3.59ˆ −1.36 0.46 0.06 −0.98 −1.77***

(1.84) (1.76) (2.16) (1.09) (1.03) (1.99) (1.95) (0.34)

Sex −0.46 −0.44 0.32 0.19 0.79 −0.12 0.05 0.40ˆ
(1.74) (1.56) (0.96) (0.55) (0.83) (1.69) (1.04) (0.22)

Age −0.22 −0.59 0.19 −0.05 0.17 −0.26 −0.93 −0.45*
(1.57) (1.46) (1.03) (0.56) (0.86) (1.53) (0.98) (0.21)

Education −0.11 −0.56 0.00 −0.23 −1.08ˆ −0.19 0.12 −0.09
(1.28) (1.20) (0.52) (0.48) (0.65) (1.35) (0.61) (0.16)

Income −0.60 −0.23 −0.69 −0.11 −0.55ˆ 0.04 −0.23 0.11ˆ
(0.69) (0.51) (1.80) (0.19) (0.31) (0.96) (0.39) (0.06)

The broad standard errors reflects the variance in both the empirical marginal statistics and
the opportunity structure (i.e. the covariance in the PUMS between the taxpayer categories
and the socio-demographics). With a few exceptions, the direction of the coefficients align
with the generic error model. Those exceptions are insignificant and, at best, might indicate
a possible reversal in trend; for instance, we find that females who receive tips and social
security benefits are more likely to commit error than their male counterparts, which may
or may not be an artifact of their over-representation in these categories.

8 Error Models with Obey Law

There is considerable evidence that links an individual’s attitudes to crime and obedience to
the law to tax evasion. The background analysis for connecting intentional error to both ‘atti-
tudes to crime’ and ‘obedience to the law’ may be found in Appendices A.6.1 through A.6.3,
with the aggregation of empirical findings reported A.6.2 and the estimation/imputation
approach detailed in the A.6.3.

8.1 Predicting with Imputation

In this section, we examine several different ‘obey law’ models:

1. The ‘Basic’ model is the original, generic error model, which omits ‘obey law’.

2. ‘No Obey’ includes the imputed ‘obey law’ only as a covariate (i.e. we do not fit to
the inferred obew law/evasion correlation). This condition also employs the beta prior
during imputation

3. ‘No W’ includes obey law as a covariate and fit; however, it ignores the Wahlund
population error rate fit as it is redundant. As above, this condition also employs the
beta prior during imputation.

4. ‘Prior’ employs the beta prior during imputation and both the ‘obey law’ and Wahlund
population error fit.
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5. ‘M.I.’ executes multiple imputation without the beta prior (i.e. drawing ‘obey law’
from a binomial parameterized by the GSS uid means); the Wahlund population error
rate is also included.

6. ‘Mean’ dichotomizes each agent’s predicted obey law probability, p > 0.5, to obtain
the 0/1 obey law response; this condition is offered as a control or näıve case.

In the Table 3, we first present results for the unweighted condition, κnC = 1, κnM = 1, i.e.
the Collins and Mason estimates are treated as equally as important as the findings from
other countries. We notice that Age’s contribution towards error is apparently unaffected

Predictor Basic No Obey No W Prior M.I. Mean
Intercept −0.922*** −0.515 −0.068 −0.031 −0.027 0.101

(0.141) (0.717) (0.177) (0.178) (0.176) (0.219)

Sex 0.411** 0.368* 0.328* 0.322* 0.311* 0.051
(0.141) (0.160) (0.152) (0.153) (0.153) (0.150)

Age −0.583*** −0.577*** −0.576*** −0.573*** −0.568*** −0.376**
(0.114) (0.124) (0.126) (0.127) (0.125) (0.128)

Education 0.080 0.000 −0.048 −0.040 −0.077 −0.245ˆ
(0.133) (0.192) (0.140) (0.140) (0.140) (0.147)

Income 0.065 0.064 0.046 0.040 0.054 −0.011
(0.142) (0.144) (0.147) (0.147) (0.146) (0.141)

Obey Law −0.770 −1.514*** −1.521*** −1.516*** −1.358***
(1.355) (0.142) (0.143) (0.144) (0.200)

L −92 −91 −120 −126 −127 −141
n = 10,000 (for all)

Table 3: Unweighted Obey Law Models: κnC = 1, κnM = 1

by the inclusion of ‘obey law’. Instead, the effect sizes of intercept and sex are diminished,
hinting that these are the active areas of the covariance between ‘obey law’ and the socio-
demographic covariates. This is confirmed in the ‘No Obey’ model, in which the mere
inclusion of the imputed ‘obey law’ covariate, fitted to the original likelihood, impacts the
original coefficients; the lack of the ‘obey law’ likelihood renders the covariate insignificant.
Not surprisingly, once we engage the ‘obey law’ likelihood, the covariate attains prominence
in both significance and effect size.

We see the same pattern when we weight the U.S.-based data (i.e. κnC = 8, κnM = 2) in
Table 4. Curiously, ‘education’ attains prominence in the ‘obey law’ models, partly as a
response to the jump in the intercept, and perhaps partly due to the inherent connection
between it and ‘obey law’; they are significantly correlated. Furthermore, the increased
weight on the Collins et al. likelihood lends to the increase in effect size for the ‘education’
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Predictor Basic No Obey No W Prior M.I. Mean
Intercept −0.415*** 0.034 0.519** 0.534*** 0.550*** 0.837***

(0.108) (0.495) (0.158) (0.159) (0.159) (0.191)

Sex 0.339*** 0.285** 0.228* 0.225* 0.217* −0.205ˆ
(0.087) (0.106) (0.096) (0.097) (0.097) (0.114)

Age −0.531*** −0.515*** −0.517*** −0.515*** −0.506*** −0.268**
(0.089) (0.093) (0.099) (0.099) (0.098) (0.103)

Education −0.045 −0.141 −0.253** −0.252** −0.291*** −0.634***
(0.070) (0.133) (0.080) (0.081) (0.083) (0.111)

Income −0.026 −0.027 −0.031 −0.032 −0.023 −0.026
(0.055) (0.056) (0.056) (0.056) (0.056) (0.056)

Obey Law −0.796 −1.626*** −1.631*** −1.642*** −1.886***
(0.862) (0.148) (0.149) (0.151) (0.205)

L −324 −324 −341 −342 −343 −345
n = 10,000 (for all)

Table 4: Weighted Obey Law Models: κnC = 8, κnM = 2

coefficient; their coefficient is comparable to what we are observing here.18 Once, again these
patterns recur with the non-linear ‘education’ covariate, which we highlight:

Unweighted: Weighted:
κnC = 1, κnM = 1 κnC = 8, κnM = 2︷ ︸︸ ︷ ︷ ︸︸ ︷

Predictor Basic No W Basic No W
Intercept −0.842*** 0.076 −0.230ˆ 0.582***

(0.145) (0.189) (0.118) (0.155)

Sex 0.383** 0.375** 0.377*** 0.291**
(0.116) (0.131) (0.088) (0.095)

Age −0.598*** −0.562*** −0.522*** −0.521***
(0.110) (0.122) (0.091) (0.099)

|Education − 1| −0.220ˆ −0.264* −0.472*** −0.522***
(0.113) (0.125) (0.113) (0.123)

Income 0.141* 0.008 −0.028 −0.090ˆ
(0.070) (0.081) (0.047) (0.049)

Obey Law −1.515*** −1.496***
(0.142) (0.137)

L −90 −118 −316 −337
n = 10,000 (for all)

18See Appendix A.4.
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In fact, the fit of the weighted, non-linear eduation model now permits the significance of
‘income’. In Table 5, we review the spread of error probabilities from each of the ‘obey law’

κnC κnM Model V.Ed Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 Basic 11.0 20.4 27.7 26.9 32.3 51.3
1 1 No Obey 7.8 17.2 26.0 27.0 36.9 57.0
1 1 No W 5.3 13.8 24.3 28.4 43.3 61.8
1 1 Prior 5.6 14.2 24.8 28.9 44.1 61.9
1 1 M.I. 5.2 14.1 25.8 28.9 43.8 63.2
1 1 Mean 5.9 17.0 31.7 30.0 38.0 53.8
8 2 Basic 14.9 24.8 30.4 30.7 36.8 48.1
8 2 No Obey 8.9 20.9 30.1 30.7 39.1 57.9
8 2 No W 4.5 14.7 30.5 31.4 46.1 67.8
8 2 Prior 4.6 14.8 30.8 31.7 46.4 68.1
8 2 M.I. 4.5 14.9 30.9 31.7 46.9 68.3
8 2 Mean 2.8 16.8 32.6 32.5 46.4 68.7
1 1 Basic X 7.7 20.1 26.6 27.1 33.7 59.6
1 1 Prior X 4.3 13.1 27.1 29.1 41.9 63.3
8 2 Basic X 8.6 21.8 30.8 31.0 39.3 53.7
8 2 Prior X 3.1 16.8 29.0 32.0 47.7 70.9

Table 5: Summary Statistics for Error as % across Obey Law Models. Statistics are presented
as percentages (%). V.Ed refers to the non-linear treatment of Education. Our flagship model is
bold-typed: κnC = 8, κnM = 2, model=‘No W’.

models. As we expect, the inclusion of both the Wahlund population and ‘obey law’ fits (in
the ‘Prior’ and ‘M.I.’ models) should increase the mean and maximum error probabilities.
However, what we do not necessary expect is for both the mean error and range of probabil-
ities to increase when we substitute the Wahlund fit with the ‘obey law’ fit (i.e. going from
the ‘Basic’ model to ‘No W’), suggesting that ‘obey law’ is considerably informative to error
prediction.

8.2 Predicting with the GSS

Alternatively, we can construct generic error models (with and without ‘obey law’) using
the GSS data aligned to PUMS bins. While there exist some differences in the marginal
proportions of the socio-demographic categories, this does not necessarily mean the predictive
models will differ. So, we perform an identical meta-analytic fit as we perform in Table 1,
using GSS data from the survey years which we employed in the ‘obey law’ analysis of
Appendix A.6.1. In Table 6, we find sufficient parity between the GSS-based models and
the analogous PUMS-based generic error models, with one slight exception. The non-linear
‘education’ coefficient for the unweighted model, here, is insignificant, whereas in the PUMS-
based model, it was not; hence, the differential covariance can affect the model results. We
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Unweighted: Weighted:
κnC = 1, κnM = 1 κnC = 8, κnM = 2︷ ︸︸ ︷ ︷ ︸︸ ︷

Predictor / Ed. V Ed. / Ed. V Ed.
Intercept −0.653*** −0.632*** −0.262* −0.202ˆ

(0.183) (0.156) (0.113) (0.114)

Sex 0.460*** 0.470*** 0.343*** 0.382***
(0.129) (0.116) (0.085) (0.086)

Age −0.619*** −0.596*** −0.646*** −0.513***
(0.105) (0.110) (0.089) (0.094)

Education −0.009 −0.092
(0.104) (0.067)

|Education− 1| −0.074 −0.430***
(0.113) (0.104)

Income 0.017 0.012 −0.042 −0.046
(0.109) (0.069) (0.042) (0.038)

L −91 −91 −320 −312
n = 16,488 (for all)

Table 6: GSS-Based Generic Error Models. We distinguish the standard, linear treatment of
‘education’, ‘/ Ed.’ from the non-linear, ‘V Ed.’.

now include ‘obey law’ in the GSS meta-analysis looking at both the cases when we omit
and include the fit to ‘obey law’ correlation, ‘No Obey’ and ‘No W’, respectively:

Unweighted: Weighted:
κnC = 1, κnM = 1 κnC = 8, κnM = 2︷ ︸︸ ︷ ︷ ︸︸ ︷

Predictor No Obey No W No Obey No W
Intercept −0.040 0.040 −0.103 0.425**

(0.407) (0.204) (0.383) (0.135)

Sex 0.376** 0.353* 0.326** 0.229*
(0.145) (0.144) (0.109) (0.093)

Age −0.610*** −0.595*** −0.638*** −0.621***
(0.119) (0.116) (0.093) (0.096)

Education −0.266 −0.216ˆ −0.174 −0.382***
(0.194) (0.119) (0.156) (0.083)

Income 0.036 0.027 −0.025 −0.016
(0.111) (0.112) (0.042) (0.041)

Obey Law −1.586 −1.499*** −0.417 −1.616***
(1.030) (0.124) (0.841) (0.133)

L −89 −113 −318 −328
n = 4,261 (for all)
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The pattern mirrors our earlier findings with the PUMS-based ‘obey law’ error models. The
additional fit is required for the ‘obey law’ covariate to exhibit significance; interestingly,
its effect size in the unweighted condition, ∼−1.59 is just as large as it is in the weighted,
fitting condition ∼−1.62 suggesting that direct use of the data better specifies the predictive
process, as we would expect in a comparison between actual and imputed data. However,
the high degree of similarity between the earlier imputed models and these models validates
the former approach. Another difference worth mentioning is potency of ‘age’. Finally, we
examine the same models, but with the non-linear treatment of ‘education’:

Unweighted: Weighted:
κnC = 1, κnM = 1 κnC = 8, κnM = 2︷ ︸︸ ︷ ︷ ︸︸ ︷

Predictor No Obey No W No Obey No W
Intercept −0.456 0.217 −0.392ˆ 0.443***

(0.395) (0.192) (0.225) (0.134)

Sex 0.483*** 0.483*** 0.429*** 0.317***
(0.119) (0.129) (0.091) (0.092)

Age −0.577*** −0.523*** −0.532*** −0.425***
(0.114) (0.122) (0.102) (0.102)

|Education− 1| −0.062 −0.149 −0.414*** −0.507***
(0.114) (0.123) (0.107) (0.113)

Income −0.026 −0.126ˆ −0.030 −0.077*
(0.098) (0.074) (0.040) (0.037)

Obey Law −0.338 −1.469*** 0.308 −1.435***
(0.630) (0.125) (0.392) (0.122)

L −90 −114 −311 −330
n = 4,261 (for all)

Once again, with the exception of some differences in the effect sizes of some covariates (such
as ‘age’), these GSS-based models compare well to the PUMS-based model, and with slightly
greater emphasis on ‘income’.

9 Conclusion and Discussion

In this paper, we first sought to meta-analytically infer a unified model predicting taxpayer
intentional error from four socio-demographic and one attitudinal variable. This endeavor
not only required a meta-analytic fit from several empirical sources, but also substantial
modification of the reported statistics such that they were aligned with the PUMS covariates;
the sheer volume of analysis in the appendices is a testament to the complexity of this process.

We find enough consistency in most of the empirical marginal statistics to construct a
moderately predictive model, demonstrated by the significance of some of the model esti-
mates. However, the disparate nature of populations that our source studies surveyed infuses
this endeavor with imprecision as evidenced by some inconsistent patterns between the em-
pirical error commission and the main covariates. Ultimately, we find certain covariates,
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namely ‘sex’ and ‘age’, to consistently retain their significance across the different variants
of generic error models we inferred, while the predictive power of ‘education’ and ‘income’
remain tenuous. Furthermore, much of the power from any of these models is lost when
we attempt to draw out the predictive variance into eight (7+1) separate line item models,
which contains only a handful of significant coefficients. Still, our assumption of indepen-
dence is likely to be found to be partly responsible for this lack of predictive effectiveness;
we will revisit this issue in future writings.

As our models are based off a nationally representative United States population sam-
ple, they can be applied towards measuring non-compliance behavior in specific U.S. sub-
populations, such as different cities or regions, which might vary socio-demographically. Such
comparative analysis would undoubtedly be informative to policy-makers who seek effective
interventions to reduce the tax gap.

In the next stage, we intend to supplement our models with additional findings, particu-
larly those that reflect the evasion behavior of recent, U.S. populations as well as additional
important predictors, which we mention back in Section 2.2, such as marital status, use of
paid preparer, self-employment (as a predictor), and social network effects.19

Appendix

These appendices primarily include the process by which we align reported statistics to the
PUMS covariates as well as additional, necessary inference, such as combining error rates
from specific kinds of non-compliance into a single rate and the inferring correlations between
error and intervening predictors, such as opportunity and ‘obey law’; this material is covered
in Appendix A. Appendix B reviews some of the prior work on the role of social influence
in intentional error; these findings, while not explicitly used in the analysis, will inform our
future work. Appendix C details the priors (or prior distributions) we imposed on our line
item model coefficients, to insure we were able converge on a model.

Appendices D–E detail some earlier work, which we deem to be ‘background material’.
These latter sections illustrate earlier approaches, some of which are more precise, but less
practical, than the methods employed in the body of the paper, and others which are too
imprecise, but demonstrates the evolution of our methodology.

A Adjusting Empirical Findings for Meta Analysis

In order to fit our intentional error model to all data sources, we need to align them such that
we are fitting to consistent covariates. Primarily, educational categories across the source
nations require mapping to U.S. categories and income of respondents in these different
countries need to be converted into 2000 U.S. dollars.

19For a discussion on social network effects on tax evasion found in the literature, refer to Appendix B.
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A.1 Houston and Tran (2000)

Houston and Tran report under-reporting of income and over-reporting of deductions sep-
arately. From their reports of non-compliance, we can infer some estimate of joint error
commission, which we require for our intentional error model that focuses on, instead, some
commission of either or both forms of non-compliance:

Prop. under-reporting income = 5.5%
Prop. over-reporting deductions = 6.5%
Prop. committing either = 7.1%

These proportions break down as follows:

Over-reporting
Deductions
No Yes Total

Under-reporting No 0.929 0.016
Income Yes 0.006 0.049 0.055

Total 0.065 0.071

And, with a sample size n = 284, the table yields a rather high correlation of ρRR =
0.790 (p < 0.001) between under-reporting income and over-reporting deductions. When we
examine the authors’ direct-questioning (DQ) responses, we obtain a much lower correlation,
ρDQ = 0.299 (p < 0.001). Note that Wahlund (1992) finds the correlation between the two
behaviors to be ρW = 0.16. For now, we will use the mean ρ = 0.416 as our estimate of joint
non-compliance behavior for the Houston and Tran data.

The following table reiterates the Houston/Tran estimates and summarizes covariate
categories, adjusted to reflect both any level non-compliance as well as further concordance
to our data (e.g. 2000 U.S. dollars for income).20

20For education categories, the Australian “non-tertiary” and “tertiary” categories map to “no college”
and “at least some college”. For income, we employ the AUS–to–USD exchange rate in 1992, averaged over
all months, which is 0.680, and the CPI conversion factor for 1992–to–2000 USD, which is 1.192.
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Proportion Committing ...
Covariate Under- Over- Either/

Covariate Categories reporting claiming Both σAny n

Sex
Female 0.083 0.112 0.150 (0.0532) 101
Male 0.040 0.039 0.062 (0.0355) 180

Age
18–45 0.063 0.102 0.128 (0.0494) 111
46+ 0.050 0.041 0.071 (0.0370) 170

Education
No college 0.064 0.094 0.122 (0.0439) 138
At least some college 0.048 0.038 0.067 (0.0403) 142

Income
≤ $30,781.47 USD 0.069 0.036 0.083 (0.0370) 175
> $30,781.47 USD 0.036 0.022 0.046 (0.0456) 104

Self-Employed
No 0.036 0.075 0.088 (0.0411) 144
Yes 0.165 0.092 0.197 (0.0629) 79

Paid Preparer
No 0.008 0.008 0.013 (0.0582) 57
Yes 0.062 0.074 0.105 (0.0339) 223

The above table employs a ρ = 0.416, the mean of the correlations of Wahlund, Houston
RR, and DQ. The inclusion of DQ is debatable and an equally valid construction com-
prises Wahlund and Houston RR, or just Houston RR. The randomized-response data do
not exhibit typical standard deviations for proportions. Instead, due to the nature of the
questioning, they incur wider uncertainty. We take the mean of the biased variance, as
measured by Eq. 11 in Appendix D.1, for both under-reporting income and over-reporting
deductions.21 Interestingly, in this data, females commit more acts of non-compliance than
males, which is opposite of what the other studies have found. Furthermore, the proportion
of respondents committing some non-compliance falls far below similar proportions reported
in the other studies. The omission of other types of non-compliance in this study cannot ac-
count for this difference; that is, even the rates of specific types of non-compliance are lower
for this study than say Mason and Calvin’s work, suggesting some other hidden variable is
responsible; perhaps Australians are far more honest than Europeans or Americans?

Our intentional error likelihood model will strive to fit coefficients taking into account
the above proportions for each category, along with estimates from the other studies, which
will be incorporated in a similar fashion; we detail this in Section 4. For instance,

logit[p(y > 0 |xSex = ‘Female’)] ∼ N
(
µ = logit(0.150), σ2 = 0.4172

)
logit[p(y > 0 |xSex = ‘Male’)] ∼ N

(
µ = logit(0.062), σ2 = 0.6102

)
where σ2 for the Houston marginals is derived using the standard deviation of a logit for
Any (or Either/Both):

σ2 =

(
σAny

p(Any) · (1− p(Any))

)2

21We might also examine a maximum-likelihood estimate, which is likely to be equivalent to some weighted
mean.
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A.2 Mason and Calvin (1978)

Mason and Calvin administered a survey of tax evasion behavior to n = 800 adults in the
state of Oregon.

Mean covariate for any violation
Covariate Bins Non-Evader Evader
Sex 1=male, 2=female 1.56 1.43
Age groups 1 to 6 4.53 4.02
Income groups 0 to 13 8.52 7.96

We can easily transform the gender breakdown into rates of error for each sex for the ‘Any
Violoation’ category. Given that we have µNon-Evasion = 1.56 and µEvasion = 1.43, where Male
= 1 and Female = 2, and p(y > 0) = 0.242, we seek the breakdown proportions (a, b, c, d):

Sex
Female Male

No Evasion a b
Evasion c d

where

2a+ 1b

a+ b
= 1.56

2c+ 1d

c+ d
= 1.43

c+ d = 0.242

a+ b+ c+ d = 1

We obtain the solution:

a = 0.42448, b = 0.33352, c = 0.10406, d = 0.13794

Hence,

pMale = d/(b+ d) = 0.13794/(0.33352 + 0.13794) = 0.2925805

pFemale = c/(a+ c) = 0.10406/(0.42448 + 0.10406) = 0.1968820

nMale = 800(a+ c) = 423

nFemale = 800(b+ d) = 377

We now have the within category error rates for gender:

Covariate Bins % Tax Evasion n

Sex
Female 19.7 377
Male 29.3 423

Converting the other Mason/Calvin covariates, particularly Age and Income, is not trivial
since, the paper employs custom bins, which the authors neglected to document. One method
of obtaining error estimates is to employ gradient descent on a simulated data set, as we do
in the Wahlund analysis in Appendix A.5. We will attend to this exercise at a later date.
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A.3 Vogel (1974)

Vogel studied tax evasion behavior and attitudes for a sample of the Swedish population.
Here, we reproduce the portions of his data which are relevant to our work. Fortunately, his
paper reports marginal statistics which we can directly employ in this paper.

Covariate Bins % Tax Fraud n

Sex
Female 21.7 506
Male 32.3 709

Age

20-29 38.8 288
30-39 31.5 230
40-49 29.5 258
50-59 19.6 226
60-70 16.5 214

Education
Less Than H.S. 24.4 649
High School 33.9 287
College 30.1 276

Self-Employment
No 27.9 967
Yes 37.1 106

A.4 Collins et al. (1992)

The authors report marginal proportions from each of the socio-demographic covariates;
however, their proportions (reported here as %) and those of our PUMS sample substantially
differ:

Sex Age
Source Female Male <25 25-44 45-65 65+
Collins 39 60 7 44 31 18
PUMS 51 49 13 42 30 14

Education
Some College Post-

Source <H.S. H.S. college graduate graduate
Collins 9 23 32 19 17
PUMS 20 27 23 22 9

Income (K = $1,000)
Source ≤15K (15K,30K] (30K,50K] (50K,75K] (75K,100K] >100K
Collins 15 36 32 10 3 4
PUMS 50 27 14 5 1 2

As one can easily verify, the categorical breakdown of Collins sample departs from our PUMS
sample. We explored subsampling from the PUMS by assigning weights such that drawn
subsamples yield breakdowns identical to the Collins data; however, we found that this
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process yielded a variety of covariance structures. Hence, we choose the weighting solution
that yields a similar covariance as the PUMS data, thereby producing coefficients close to
what we would if we use the uncorrected PUMS sample.

We employ simulating annealing to find weights for each unique combination of our
discrete covariates, which correspond to a sampling of which marginal proportions correspond
to those of the Collins data.22 A δ parameter controls the rate at which we alter the weights
(via multiplication or division) We offer a statistical summary of our ten sampled sets of
weights for two settings of δ:

Sample δ Min. 1st Qu. Median Mean 3rd Qu. Max.
Wide 0.90 0.0424 0.4783 1.0000 2.8010 2.0910 114.6000
Restricted 0.99 0.1740 0.5527 0.9044 1.6420 1.6360 27.8500

Each sample weight assigned to a unique covariate combination is divided in the PUMS
sample by the corresponding frequency of that combination. For instance, if the weight for
the combination {Sex = 0, Age = 1, Educ = 1, Income = 5} is 1.3 and there are 13 such
individuals, then the weight for each individual is 1.3

13
or 0.1.

A.4.1 Zero-Inflated Poisson

Collins et al. report that 50% of their respondents commit some form of evasion while the
mean number of acts is 1.65. As it is, a unimodal distribution (i.e. single peak) cannot
account for these results. So, we naturally assume a zero-inflated Poisson, or ZIP, distribu-
tion for the counts of non-compliant acts for their respondents. The maximum-likelihood
estimation for obtain θ and λ which, respectively, denote the probability of some error and
the count of errors, given some error, is detailed here:

p ∼ N

(
0.5, σ2 =

(1− 0.5) · 0.5
240

)
µ ∼ N

(
1.65, σ2 =

1.8752

240

)
where

p = 1− θ + Pois(0|λ)

= 1− θ + e−λ

and

µ = (1− θ) ·
∞∑
n=1

n · e
−λλn

n!

22Instead of finding weights for all 240 combinations, we opt to weight only the 190 combinations found
in our PUMS sample.
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We find the maximum-likelihood at θ = 0.478 and λ = 3.161 and draw n = 9482 count
samples from the ZIP, using the multinomial, and randomly assign these counts of non-
compliance to the PUMS sample; the PUMS sample is smaller as we ignore teenagers under
the age of eighteen. We employ simulated annealing to find maximally fitting permutations
of these assignments. In order to asssess the fit, we regress the assigned data, y, similarly to
Collins et al, with:23

y = β0 + β1xSex + β2xAge + β2xEduc + β3xIncome

and fit to normal likelihood surrounding each of the non-intercept coefficients:

β̂−0 ∼ N(β−0,σ
2
−0)

where (as Collins et al. report) β−0 = (0.279,−0.089,−0.392,−0.169) and (we assume)
σ−0 = β−0 · (0.8, 0.8, 0.5, 0.8); we base the standard errors on the reported significance of
each coefficient, a näıve assumption to be sure.

Since these results are applicable to a Collins weighted sample, we need to reverse the
weights. So, we infer a Collins error model with data that reflect the PUMS, not Collins,
marginal, by employing a weighted logistic regression, using converse weights:

Both
Variable Restricted Wide Both (n = 240)
Intercept 0.920*** 0.955*** 0.937*** 1.005

(0.134) (0.228) (0.188) (0.739)

Sex 0.224* 0.239 0.231ˆ 0.272
(0.089) (0.157) (0.127) (0.478)

Age −0.064 −0.081 −0.073 −0.059
(0.054) (0.101) (0.081) (0.325)

Educ −0.339*** −0.350*** −0.345*** −0.399ˆ
(0.035) (0.059) (0.049) (0.222)

Income −0.143*** −0.140** −0.142*** −0.150
(0.027) (0.053) (0.042) (0.209)

ndraws 200 200 400 400
nsample 9482 9482 9482 240

Naturally, the estimates and their significance will appear relatively similar to the original
Collins numbers, as the categorizations between the PUMS sample and Collins data are
similar.

23We cannot control for the other covariates in the Collins et al model since they do not occur in our
PUMS data. Hence, we resort to treating them independent from our four key socio-demographic covariates
and assume the Intercept will subsume their effects.
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A.4.2 Mixture Model

Alternatively, we can tease out the process that produces the zero-inflation into a separate
model.

logit[p(yc = 1)] = α0 + α1xSex + α2xAge + α2xEduc + α3xIncome

log(y) = γ0 + γ1xSex + γ2xAge + γ2xEduc + γ3xIncome

µ = p(yc = 1) · log(y)

p = p(yc = 1)(1− e−λ)
µ = β0 + β1xSex + β2xAge + β2xEduc + β3xIncome

β̂ ∼ N(β−0,σ−0
2)

We defer this analysis to future writings.

A.4.3 Intercept

Finally, in lieu of the intercept, β0, we eventually fit the overall rate of 50% of error commis-
sion found by Collins et al. in the main likelihood model:

logit[p(y > 0)] ∼ N
(
µ = logit[0.5], σ2 = [µ(1− µ)nCκ

n
C]−1

)
A.5 Wahlund (1992)

In his paper, (Wahlund, 1992) reports a structural equation model (in the form of path
coefficients) that includes two covariates which directly predict tax evasion: ‘opportunity’
to evade taxes and ‘attitudes to crime’. We offer some approaches towards isolating the
correlation between these covariates and intentional error.

A.5.1 Evasion and GSS Obeying the Law

The author reports correlative effects among a battery of covariates in a (large) structural
equation model (SEM). The ‘attitudes to crime’ is found to be directly linked to tax evasion
with a correlation ρ = −0.21. Here, we employ the reported path coefficient as a direct
correlation when, in fact, it is being controlled by other covariates; we will later attempt
to infer the actual correlation, so for, now the results obtained in this section are slightly
inaccurate and offered for the purposes of illustrating some methods we use throughout the
paper. In incorporating this finding into our model, we make two assumptions:24

1. Correlations hold when both items are scaled as binary.

2. Attitudes to crime is sufficiently correlative to the GSS Obey Law item.

24We will address these assumptions later in this appendix.
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In addition to the correlation, we also know the marginal probabilities: 14% for under-
reporting income and 43% for absolute adherence to the law; the latter proportion is obtain
from the GSS; note, we are not addressing general tax evasion, but a specific kind of non-
compliance. We also estimate our sample size n ≈ 600.25 With this information we can
construct and solve the following contingency table:

Tax Evasion
0 1

Obey 0 m00 = n · p00 m01 = n · p01

Law 1 m10 = n · p10 m11 = n · p11

We know that:
p10 + p11 = 0.43

and
p01 + p11 = 0.14

We note the marginal sums: n1 = m10 +m11 and m1 = m01 +m11. Thus far, we have three
unknowns and only two constraints/equations.26 The third constraints comes in the form of
the Pearson correlation:

ρ =
E[(X − µX)(Y − µY )]

σXσY

for which we have all the pieces:27

µX = n1/n

µY = m1/n

σ2
X =

∑1
i=0(mi0 +mi1)(i− µX)2

n

σ2
Y =

∑1
i=0(m0i +m1i)(i− µY )2

n

E[. . .] =
1∑
i=0

1∑
j=0

mij(i− µX)(j − µY )

The constraints reduce to the following:28

m10 = n1 −
n1m1

n
−

(
nρ ·

√
m1(n−m1)

n2
·
√
n1(n− n1)

n2

)
25The SEM is based on data obtained from one of the four surveys reported in the paper, the size of which

was not reported. Instead, the author reports the range of sample sizes, the mean of which was originally
computed as 600. This estimate is incorrect and latter supplanted with 430. However, the use of the incorrect
n does not affect the findings in this section.

26Recall that p00 + p10 + p01 + p11 = 1, and so m11 = n− (m00 +m10 +m11).
27The Pearson correlation employs the population standard deviation rather than the sample standard

deviation; hence, n instead of n− 1 appears in the denominator.
28We resort to Mathematica to perform the algebraic simplification for us.
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and we obtain the following rounded contingency table:

Tax
Evasion
0 1

Obey 0 272 70
Law 1 244 14

which offers a ρ = −0.2146. Our proportions for tax evasion for each Obey Law category is
70

272+70
= 0.205 and 14

244+14
= 0.054, which can also be described by a logistic regression

logit[p(y > 0)] = τ0 + τ1 · xObeyLaw

with the following parameters:

τ0 = −1.357, στ0 = 0.134

τ1 = −1.501, στ1 = 0.306

A.5.2 Multiple Types of Evasion

The author also offers the following data:

7% admitted having made illegal deductions.
14% admitted to not having declared some income.
The correlation between the two behaviors is 0.16.

We can employ the same deductive method as we used in the previous section to infer the
contingency table for the two non-compliant behaviors and obtain:

Income
Evasion
0 1

Illegal 0 1162 66
Deduction 1 165 34

We calculate the Pearson correlation for the above inferred table to be ρ = 0.159. The
joint non-compliance rate is 34

1427
= 0.024, which is more than double the expected rate of

0.07× 0.14 = 0.010, assuming independence.

A.5.3 Opportunity vs. Evasion

When we employ the path coefficient (stnadardized) between opportunity and evasion as a
correlation, ρ = 0.21, and assume that those with no opportunity do not evade:

Opportunities:
None Some

0 1
No Evasion 0 a b

Evasion 1 0 c
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where c = 0.37 (the correct error rate for any kind of tax evasion), according to Wahlund’s
findings; hence a + b = 1 − 0.37 = 0.63. The algebraic solution is a = 0.07 and b = 0.56,
giving us an evasion rate of 0.37

0.37+0.56
≈ 0.40. Accordingly, this solutions yields 93% of the

population as having some opportunity of error. However, if we employ the inferred ρ = 0.329
(obtained later in this appendix), we instead obtain a = 0.16 and b = 0.47 which leads to
an intentional error rate of 0.37

0.37+0.47
= 0.44, given some opportunity. The proportion of

opportunity from this solution is a lower 0.37 + 0.47 = 0.84 which is surprisingly concordant
with the line-item-based opportunity rate from our PUMS data: 0.825.

A.5.4 Obey Law and Wahlund Crime

As mentioned earlier, Wahlund finds in his structural model that one of the five variables
directly impacting tax evasion is “attitudes to crime” variable, which measures a respondent’s
leniency towards crime:

Attitudes to crime: The more lenient attitudes towards crime, the lower the
value.

We assume that this variable sufficiently mirrors the GSS’ Obey Law(s) items and attempt
to infer this proxy Obey Law’s impact on tax evasion using Wahlund’s variable. Wahlund
reports, in his path diagram, that the impact of “attitudes to (c)rime” on tax (e)vasion
is ρ = −0.21, controlling for four other covariates: “(o)pportunity”, “(t)ax avoidance”,
“(p)erceived opportunity”, and “perceived (r)isk”; hence, the effect of solely “crime” (or
“obey law”) on evasion ought to be noticeably stronger than −0.21. Wahlund’s path diagram
(Fig. 3) contains enough linkages around these five covariates for us to be able to construct
a lower bound on the direct effect, but not enough for us to triangulate the exact, full
correlation, at least not through analytic means.

Figure 3: Path Diagram from Wahlund (1992). The five directly effecting covariates are shown
along with the significant paths. Reprinted without permisson.

Inferring the lower bound on the actual “crime/tax evasion” correlation, as best as the
data will allow, requires several steps. We use the following notation to enhance readability:
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1. (x, y|z) denotes the reported path prediction (i.e. the path coefficient shown in the
diagram) from x to y controlling for z (x → y ← z). We will sometimes use (x, y)
as shorthand implying the path coefficient from x to y under the assumption that
other covariates are controlled for. This is identical to standardized regression model
y = bx · x+ bz · z.

2. (̂x, y) is our inferred total correlation between x and y.

A näıve lower bound considers only the paths from “crime” to “evasion”:

(̂c, e) = (c, e) + (o, c)(o, e) + (o, c)(o, t)(t, e) + (p, c)(p, e) + (p, c)(p, r)(r, e)

= −0.21 + (−0.10)(0.21) + (−0.10)(0.48)(0.11) + (−0.14)(0.16)

+ (−0.14)(−0.15)(−0.17)

= −0.26225

We can augment this approach by recognizing that the true correlations between “crime” and

the other covariates, x, (i.e. (̂c, x)), reside near the path coefficient. Furthermore, we assume
that these correlations do not diminish but instead likely increase within their respective

valences, unless they are close to zero. For example, (o, c) = −0.10 implies that (̂o, c) <
−0.10. We specify a mean and variance around each adjustment:

(̂c, o) = (o, c)− N(µ, σ2)

(̂c, p) = (p, c)− N(µ, σ2)

Since both paths are negative, we assume the true correlation will increase in degree but
not sign. For the other covariates lacking a path from c, we resort to using the indirect
path/correlation:

(̂c, t) = (c, o)(o, t)− N(µ, σ2)

(̂c, r) = (c, p)(p, r) + N(µ, σ2)

Finally, we can compute the total effect (̂c, e):

(̂c, e) = (c, e) + (̂c, o)(o, e) + (̂c, p)(p, e) + (̂c, t)(t, e) + (̂c, r)(r, e)

The known values, obtained from Figure 3, are:

(o, c) = −0.10 (o, e) = 0.21
(p, c) = −0.14 (p, e) = 0.16
(o, t) = 0.48 (t, e) = 0.11
(p, r) = −0.15 (r, e) = −0.17

(c, e) = −0.21

When we employ µ = 0.05, σ = 0.04, we obtain a distribution summarized as follows:
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Min. 1st Qu. Median Mean 3rd Qu. Max.
−0.3368 −0.3036 −0.2946 −0.2950 −0.2857 −0.2494

Hence, our estimated, total correlation between ‘attitudes to crime’ (i.e. obey law) and tax
evasion is the mean ρ = −0.295.

A.5.5 Inferring ρ Using Heuristic Optimization

Alternatively, we attempt to infer the direct association between “Attitudes to Crime” and
“Tax Evasion” by searching for an assignment of values to the 22 covariates in Wahlund’s
path diagram using heuristic optimization (e.g. simulated annealing) such that a) the paths
derived from our covariate assignment coincides with Wahlund’s and b) 37% of our simulated
population exhibits some tax evasion.

Since path coefficients are standardized linear regression coefficients, we need not be
concerned with the actual values that the covariates take on, but rather the number of bins
per covariate. Here, we take our best guess as to the number of bins Wahlund’s covariates
spanned, with the exception of those that are obviously indicator variables and “tax evasion”,
which Wahlund states takes on exactly three values: 0 = no evasion, 1 = evaded once, 2 =
evaded more than once.

covariate # of bins
age (a) 40

income (i) 10
working hours (wh) 50

student (s), retired (r),
and self-employed (se) 2

opportunity (o) 3
attitudes to crime (atc) 3

tax evasion (te) 3
and all others 3

Hence, we assign each of the 430 simulated respondents with uniformly drawn responses
taking on values defined by the bins above. The log-likelihood fit has several components.
First, we fit our predicted path coefficients, βij to Wahlund’s, βWahlund

ij , using the normal
distribution:

βij ∼ N
(
βWahlund
ij , σ2

ij

)
where i is the predicted covariate (recipient of a path) and j is the predicting covariate (source
of a path), one of several in most cases, and arbitrary σij = 0.01 for the main dependent
variable and the directly predicting covariates, i.e. i ∈ {tax evasion, opportunities, tax
avoidance, attitudes to crime, perceived opportunities, perceived risk} and σij = 0.05 for
all other covariates.29 These latter values are assigned arbitrarily giving more importance
to “tax evasion” and those covariates that have direct paths to it. Furthermore, we need

29The rest of the path diagram may be found in Figure 10 of Appendix D.4.
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to ensure that the rate of evasion hovers near 37%, employing the standard error around a
proportion:

p(“tax evasion” > 0) ∼ N
(
p = 0.37, σ2 = (1− p)p/(n = 430)

)
The modal log-likelihood is L̂ = 140.9094+2.8411 = 143.7505, each summand reflecting the
above components respectively. We plot five annealing paths in Figure 4 and present the
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Figure 4: Simulated Annealing Trajectories. Three SA solution trajectories (every fifth data point)
are shown. The left plot shows the triangulation of the Pearson correlation, ρ, between “tax evasion”
and “attitudes to crime”. The right plot shows the proportion of tax evaders, p(“tax evasion” > 0);
the green, blue, and cyan trajectories employ the “tax evasion” covariate initialized to the empirical
proportion.

final resting states and key measures, along with a weighted mean ρ, our new estimate, next
to its weighted standard deviation:

initialized
L ρ prop. prop.?

143.2233 −0.2762 0.3884 no
143.1073 −0.3017 0.3930 no
143.5790 −0.2807 0.3814 yes
142.8848 −0.2979 0.4000 yes
143.4131 −0.2815 0.3884 yes

weighted mean −0.2861 (0.0095)

Alternatively, we can use the annealing trajectory to predict the modal correlation, ρ̂. In
Figure 5, we show the trajectories for the higher log-likelihood (L > −400). We employ a
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Figure 5: Simulated Annealing Trajectories. We display the latter section of the annealing tra-
jectories, i.e. L > −400, for every fifth data point. The backtracking portions of the trajectories
denote the annealer temporarily selecting less fit solutions.

quadratic model (Adj-R2 = 0.6204) to predict the modal ρ̂:

ρ̂ = (̂c, e) = −0.2760 + L · −8.0281× 10−5 + L2 · 4.9344× 10−8

and, when we substitute L = L̂ = 143.7505, we obtain ρ̂ = (̂c, e) = −0.2864 (only four
chains), which is very close to the weighted mean and reasonably close the quantity ob-
tained earlier using Gaussian-based adjustments, i.e. the mean of draws from a set of normal
distributions.

A.5.6 Enhanced Heuristic Inference

When we review the statistics for self-employment in the simulated data sets, we find some
oddities:

L ρatc ρo ρpo ρse µte>0 µse µse=0
te>0 µse=1

te>0

143.223 −0.276 0.325 0.274 −0.031 0.388 0.484 0.396 0.380
143.107 −0.302 0.337 0.296 0.109 0.393 0.479 0.344 0.447
143.579 −0.281 0.324 0.285 0.026 0.381 0.521 0.379 0.384
142.885 −0.298 0.342 0.283 −0.009 0.400 0.519 0.406 0.395
143.413 −0.281 0.325 0.286 0.039 0.388 0.544 0.367 0.406

weighted mean −0.286 0.329 0.285 0.027 0.389 0.512 0.377 0.400
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Specifically, we notice that the rate of self-employment (se) to be rather high, µse ≈ 50%.
Furthermore, the difference in tax evasion (te>0), between those who are self-employed and
not, appears too low, ∼ 3%, leading us to consider including a fit towards self-employment
rates in the likelihood. Fortunately, Vogel also surveyed a Swedish population, albeit in a
different decade. We employ his marginal rates of both self-employment and tax evasion for
each self-employment status, fitting to a Beta distribution, while imposing a scaling factor
or multiplier, κse

V = 0.5, on Vogel’s sample sizes, to acknowledge the uncertainty from the
different decade as well as Vogel’s unknown sampling procedures:30

µse ∼ Beta(αse
V + 1, βse

V + 1)

µse=0
te>0 ∼ Beta(αse=0

te>0 + 1, βse=0
te>0 + 1)

µse=1
te>0 ∼ Beta(αse=1

te>0 + 1, βse=1
te>0 + 1)

where, occasionally omitting the (V)ogel subscript for readibility:

αse
V = (nse=1

V )(κse
V) = 106 · 0.5 = 54

βse
V = (nse=0

V )(κse
V) = 967 · 0.5 = 483.5

αse=0
te>0 = (nse=0

V )(κse
V)(pse=0

te>0) = 967 · 0.5 · 0.279 = 134.90

βse=0
te>0 = (nse=0

V )(κse
V)(1− pse=0

te>0) = 967 · 0.5 · (1− 0.279) = 348.60

αse=0
te>0 = (nse=1

V )(κse
V)(pse=0

te>0) = 106 · 0.5 · 0.371 = 19.66

βse=0
te>0 = (nse=1

V )(κse
V)(1− pse=0

te>0) = 106 · 0.5 · (1− 0.371) = 33.34

Furthermore, we adjust some of the bin sizes:

covariate # of bins rationale
age (a) 72 reflects ages 18-89

opportunity (o) 8 aligns with our taxpayer categories
attitudes to crime (atc) 2 aligns with the GSS’ ‘obey law’

Furthermore, in the following sections, we incorporate additional fits to ensure reasonable
distributions of age, retirement status, and working hours.

A.5.7 Fitting to PUMS Age

The distribution of ages ought to reflect some national sample; so, we employ the PUMS
sample and account for the different nationalities by relaxing its restrictiveness (due to
its sample size) and introducing a scaling factor/multiplier, καW, which we apply to the α
parameter of the multivariate Pólya (i.e. Dirichlet prior on a multinomial):

A ∼ Pólya(α = αPUMS + 1)

30Refer to Appendix A.3 for Vogel sample sizes.
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where the ages are tabulated as follows are:

A = (n18, . . . , n89)

APUMS = (nPUMS
18 , . . . , nPUMS

89 )

αPUMS = καW ·APUMS

and the count of ages in each age category, i, is:

ni =
∑

j I(xa = i) for i ∈ {18, . . . , 89} and xa ∈ {xW
age, x

PUMS
age }

and where subscript ‘a’ denotes ‘age’, xW is our simulated data (430 × 22), and xPUMS is
our 10K PUMS sub-sample. Furthermore, we will need to jointly fit the age distribution for
both retirees and non-retirees as retirement is a function of age

A.5.8 Joint Age and Retirement

The joint age/retirement distribution will need to exhibit a mean retirement age of 62 and
the 1st quartile should be near age 58 as reported by Gendell (1998); these statistics detail
a normal distribution of mean of 62 and standard deviation of ∼5. As such, we ultimately
seek a a function, qr(a) to predict the probability of retirement by a given age a, such that it
reproduces the aforementioned statistics; ‘r’ denotes ‘retired’. For now, we employ the U.S.
age distribution to infer this function that tracks the cumulative probability of retirement
for an individual at a given age, i.e. probability that retirement has occurred at this or a
previous year. To start, we require a function that describes the probability of retirement
at a particular age, pr(a), given that retirement has not yet already occured; this function
needs to be monotonically increasing and perhaps increasing in slope as well given that the
likelihood of retirement grows considerably with age. Hence, we employ a straighforward
polynomial function, with some unknown exponent b:

pr(a) ∝ ab

= ab/89b = (a− 89)b

We simply assume that the probability climbs to 1.0 at age 89.31 So then, the probability of
retirement occurring at or before age a would be:

Fp(a) = 1−
a∏

i=18

(1− pr(i))

= Pr{xra ≤ a}

where xra is an unknown retirement age, past or future. Furthermore, this function is
analogous to a cumulative distribution function (CDF), hence, we use that standard notation,

31We tested a model in which the probability climbs to some value < 1, employing a scaling factor; however
the estimation gravitated towards the scaling factor equalling 1.
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F . Since the probability of retirement function applies to only to the unretired portion of
some sub-population, we compute the proportion of that sub-population, say a cohort, that
exits/retires at each age up to and including the current age, using the following recurrence:

er(a) =


pr(a) if a = 18(

1−
a−1∑
i=18

ei

)
· pr(a) otherwise

The logic here is that the proportion of new retirements at a particular age, a, applies only
to the unretired proportion of the cohort. Hence, er(a) accumulates the proportion of a
cohort, or age group, which has retired by that age, a. Furthermore, er(a) is now our actual
probability distribution function, and its CDF (i.e. Fe(a)) equals Fp(a).

Furthermore, we believe that er(a) is similiar to the probability distribution function
(PDF) for the Gaussian/normal distribution so we introduce an alternative probability dis-
tribution function (and also its accompanying CDF) based simply on the normal distribution
with unknown parameters µ and σ, subsequently normalized to deal with the truncated age
range, 18–89:32

er(a) =
N(a|µ, σ2)∑89
i=18 N(i|µ, σ2)

Fe(a) =
∑a

i=18 er(a)

≈ Φ(a|µ, σ2)

We will test both the polynomial and normal approaches to er(a).
Now, we can calculate the approximate number of retirements at each age, qr(a), by

applying some population structure, in this case the PUMS distribution, APUMS, and we
also calculate the corresponding normalized proportion, q̂r(a):

qr(a) = er(a) ·
89∑
i=a

nPUMS
i

q̂r(a) =
qr(a)∑89
i=18 qr(i)

Essentially, the total number of retirements that occurred at a certain age, a, is some fraction
of the sum of the all individuals who passed through that age (i.e. ≥ a).

32The cumulative distribution function (CDF) for the Gaussian/normal distribution is:

Φ(x) =
1√
2π

∫ x−µ
σ

−∞
e−t2/2 dt
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Now, we find the mean retirement age, qr, and the cumulative probability for a = 58 (i.e.
the proportion of individuals who have retired by age 58), putatively the 1st quartile:

qr =
89∑
i=18

i · q̂r(i)

Fq(a ≤ 58) =
58∑
i=18

q̂r(i)

And also, we compute the % of exits for which the 50–54 and 70+ age brackets are respon-
sible:

q̂50-54
r =

54∑
i=50

q̂Ar (i)

q̂70+
r =

89∑
i=70

q̂Ar (i)

To find the exponent b (for the polynomial approach) as well as µ and σ (for the normal
approach), we fit the following likelihoods using the Newton-Raphson algorithm:

qr ∼ N

(
µ = 62, σ2 =

52

n = 100,000

)
Fq(a ≤ 58) ∼ N(µ = logit[0.25], σ2 = [µ(1− µ)n]−1)

q̂50-54
r ∼ N(µ = logit[0.099], σ2 = [µ(1− µ)n]−1)

q̂70+
r ∼ N(µ = logit[0.026], σ2 = [µ(1− µ)n]−1)

where, here, we use a reduced n = 100,000 rather than 8.7 million, the population of Sweden
in 1992, partly to reflect the uncertainty inherent in applying a U.S. population sample. Also,
for the variance of the logit of the cumulative probability, we employ the approximation of
the variance of the logit which was found, through simulation, to be an adequate.

We find the following modal solutions and overlay the accompanying distributions in
Figure 6:

prob. % of Exits
function parameters qr Fq(a ≤ 58) 50-54 70+ L
pr(a|b) b = 8.656 61.99 0.317 9.9% 21.4% −7857
N(a|µ, σ2) µ = 63.11, σ = 5.06 61.58 0.265 7.0% 5.4% −1786

Gendell (1998) 62.00 0.250 9.9% 2.6%

While both methods fit the mean age quite well, both also exhibit some noticeable shortcom-
ings. Specifically, the polynomial approach fits just the % of Exits from 50–54 modestly well,
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Figure 6: Probability of Retirement. We display the PDFs (left graph) and CDFs (right graph)
that describe the distribution functions for the polynomial approach (black, pr(a|b)) and the normal
distribution (red, N(a|µ, σ)). In each graph, we depict the raw probability functions (solid lines, er)
as well as the data-weighted probability functions (dashed lines, qr). The dotted, vertical lines mark
the the mean age of retirement 62 and the 1st quartile age 58.

while grossly mismatching the other statistics. The normal approach however fits all three
remaining statistics modestly well. These differences in approaches become apparent when
we examine their respective distribution functions in Figure 6. Not surprisingly, the latter
approach corresponds to a far superior likelihood (L) and is our model of choice. We surmise
that some of the lack of fit is due to our employing a sample of the 2000 U.S. population
rather than the Swedish population age distribution in 1992.33

Finally, we need to extend our fit of simulated data (xW) to the base age distribution,
detailed in Section A.5.7, to reflect the distinct age distributions for retirees and non-retirees:

A|xr = 0 ∼ Pólya(α = APUMS
r=0 + 1)

A|xr = 1 ∼ Pólya(α = APUMS
r=1 + 1)

where

APUMS
r=0 = APUMS · (1− Fe)

APUMS
r=1 = APUMS · Fe

and Fe = (Fe(18), . . . , Fe(89)). Basically, we partition the count of agents in each age
category a (i.e. nPUMS

a ) to those who have not retired by that age (i.e. 1− Fe(a)) and those
who have (i.e. Fe(a))

33We will employ the proper age distribution (Swedish poplulation) in later writings, time permitting.
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A.5.9 Working Hours and Retirement

We also constrain the respondent working hours (wh) according to the retirement status
(r), using normative assumptions that non-retirees work close to 40 hours per week, while
retirees work almost zero hours:

xwh|xr = 0 ∼ N(µ = 40, σ2 = 52)

xwh|xr = 1 ∼ Exp(λ = 0.2)

where ‘wh’ denotes ‘working hours’ and ‘Exp’ denotes the exponentional distribution, con-
sidered the appropriate fit for the zero (or few) hours of work engaged by retirees. In Figure
7, we display both distributions.
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Figure 7: Working Hours. Both the non-retiree (black, normal) and retiree (red, exponential)
distributions are graphed. With each type, we also distinguish between the raw distribution (dashed
line) and data-weighted distribution (solid line), in which retirees constitute only 17.4% of the
population. Hence, the area under both solid line distributions should sum to unity, while the area
under each dashed line sums to unity.

A.5.10 Fitting Wahlund and Results

We now resort to a more straightforward optimization heuristic, expectation maximization
(EM), due to the clumsiness of simulated annealing. The algorithm is similar to the stochastic
maximation algorithm introduced in Section 6.3:

1. For each covariate across all respondents (i.e. (n = 430)× (m = 22) = 9460 responses):

(a) Calculate the fit (i.e. L) for every possible new value; e.g. with binary outcomes,
this comprises only one other L while for age, there would be 70 other bin values,
for which we compute each L.
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(b) Choose the value which corresponds to the highest L.

2. Repeat Step 1 until a pass over all responses is made without any quantities altered.

Correlation Between Tax Evasion and . . .
Attitudes To Crime Opportunity︷ ︸︸ ︷ ︷ ︸︸ ︷

alg fit ρatc σatc Adj-R2 ρo σo Adj-R2 n
SA lm −0.2849 9.7×10−5 0.60 − − − 22356
SA lm −0.2851 3.1×10−4 0.57 − − − 2500
SA µ −0.2859 0.0110 − 0.3291 0.0076 − 5
SA µte2 −0.2527 0.0150 − 0.3255 0.0290 − 5

EM lm −0.2901 6.8×10−4 0.67 0.3448 4.0×10−4 0.96 1000
EM µ −0.2918 0.0140 − 0.3464 0.0058 − 10

EM lmte2 −0.2680 0.0011 0.48 0.3308 6.3×10−4 0.90 1000
EM µte2 −0.2701 0.0180 − 0.3358 0.0140 − 10

EM lmte2
o8 −0.2693 0.0010 0.50 0.3317 5.3×10−4 0.92 1000

EM µte2
o8 −0.2733 0.0170 − 0.3351 0.0110 − 10

Table 7: Predicted Correlations ρatc and ρo. The optimization method is noted in the algorithm
(alg.) column.

In Table 7, we offer predicted correlations between ‘tax evasion’ and both ‘attitudes to
crime’ (atc) and ‘opportunity’ (o) from both simulated annealing (SA) and stochastic expec-
tation maximization (EM); the EM models include the latest fits (Vogel’s self-employment,
age, retirement, and working hours), while the SA models do not. We make predictions with
either a quadratic linear model (lm) or weighted mean (µ) over the values corresponding to
the the maximal likelihoods for each chain; the linear model uses a 100 point sub-sample of
each chain with the condition of higher-likelihood: L > −400. Sample sizes for each predic-
tion is denoted by either the combined length of the ten chains or the number of chains, for
weighted means. The standard deviations σ indicate the standard error around the linear fit,
for ‘lm’, or the weighted standard deviation, for ‘µ’. Furthermore, we tested the correlations
with two sets of scales for each of the covariates: ‘tax evasion’, ‘attitudes to crime’, and
‘opportunity’. Since the Wahlund’s ‘tax evasion’ is on a 3-point scale, while our model seeks
prediction for any intentional error, we assessed correlations to a similar, binary dependent
variable (te2). The (SA) models employed a 3-point scale for ‘attitudes to crime’, while the
(EM) models employ a 2-point/binary scale, to maintain similarity with the GSS’ ‘obey law’
item. For ‘opportunity’ we test an ‘opportunity’ scale similar to our taxpayer categories (i.e.
0–7 taxpayer categories = 8 point scale); these predictions are denoted by (o8).

While there is a fair amount of concordance in the correlations between the various ex-
perimental and measurement conditions, we observe that correlations alter by a few points
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depending on the categories/bins employed. Still, the slight variance reassures us that the
precision in our error models will not be greatly affected by our choosing the wrong correla-
tion.

A.6 The General Social Survey’s ‘Obey Law’ Covariate

In this appendix, we examine the ‘Obey Law’ correlate, found in several survey years of the
General Social Survey (GSS), along with several other pertinent variables to explore their
applicability in predicting intentional error.

A.6.1 Obey Law in the GSS

The General Social Survey (GSS) asked several items pertaining to tax evasion as well as
general adherence to the lawful behavior: Obey Law, Tax Cheat, Pay Taxes, and Obey Laws.
We examine these for relevance.34

1158. Obey Law: In general, would you say that people should obey the law
without exception, or are there exceptional occasions on which people should
follow their consciences even if it means breaking the law? (CIRCLE ONE AN-
SWER)

Obey Law Follow Consciences Can’t Choose
count 2414 2079 190
prop. 0.515 0.444 0.041

1377. Tax Cheat: Do you feel it is wrong or not wrong if a taxpayer does not
report all of his income in order to pay less income taxes.

Not Wrong A Bit Wrong Wrong Seriously Wrong
count 103 282 1333 769
prop. 0.041 0.113 0.536 0.309

1464. There are different opinions as to what it takes to be a good citizen. As
far as you are concerned personally on a scale of 1 to 7, where 1 is not at all
important and 7 is very important, how important is it to:

B. Pay Taxes: Never to try to evade taxes.

Not at All Very
Important Important

1 2 3 4 5 6 7
count 28 9 22 64 107 165 1066
prop. 0.019 0.006 0.015 0.044 0.073 0.113 0.730

34For all these analyses, we employ the GSS’ WTSSALL sample weighting variable.
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C. Obey Laws: Always to obey laws and regulations.

Not at All Very
Important Important

1 2 3 4 5 6 7
count 5 2 18 52 141 263 986
prop. 0.003 0.001 0.012 0.035 0.096 0.179 0.672

Unfortunately, joint analysis is restricted since only two of these items were asked in the
same survey year:

Year Tax Cheat Pay Taxes Obey Law Obey Laws

1985 X
1990 X
1991 X
1996 X
1998 X
2004 X X
2005 X

As a comparison exercise, we fit a logit model to different partition thresholds employing the
same covariates we do for the error model.35 The dependent variable achieved through the
partitioning predicts towards attitudes that would be consistent in individuals who commit
intentional error, with increasingly precise anti-tax attitudes with the decreasing threshold.
So first, we examine the first tax evasion item (Tax Cheat) by dichotomizing at different
thresholds and employing a logistic regression:

y = Tax Cheat, n = 2476
Variable y < 4 y < 3 y < 2
Intercept 0.948*** −1.405*** −2.380***

(0.114) (0.141) (0.251)

Sex 0.159ˆ 0.319** 0.455*
(0.092) (0.117) (0.211)

Age −0.084 −0.425*** −0.323*
(0.068) (0.089) (0.153)

Education −0.195** −0.154ˆ −0.716***
(0.061) (0.083) (0.169)

Income 0.053 0.065 0.002
(0.032) (0.042) (0.079)

AIC 3503 2460 1005
µ 0.691 0.155 0.042

35That is, we re-categorize the GSS covariates and align them with the PUMS’.
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We find that the direction of the significant predictors is consistent with those reported
in most of the empirical studies. Specifically, sex (or being male) increases the likelihood
of evasion while increasing age and education has a reducing effect. A cursory comparison
between these three models and our inferred error models, earlier reported in Table 1, reveals
that the ‘tax cheat” cut-off best coinciding with actual intentional error resides somewhere
between y < 2 and y < 3, which maps to “A Bit Wrong” and “Wrong”. One facile implication
is that a majority of evaders consider their actions to be at least a bit wrong. However, if
we look at the proportion of the respondents in each parition, µ, we find that the region of
interest lies between y < 4 and y < 3. That is, our presumptive rate of evasion of ∼25% lies
in between the µ’s corresponding to the two first two models. Next, we examine a similar
covariate, “Pay Taxes”:

y = Pay Taxes, n = 1457
Variable y < 7 y < 6 y < 5 y < 4 y < 3 y < 2
Intercept −0.728*** −1.304*** −2.224*** −2.868*** −3.439*** −3.357***

(0.153) (0.182) (0.244) (0.355) (0.456) (0.498)

Sex 0.403*** 0.434** 0.954*** 1.322*** 1.287*** 1.283**
(0.122) (0.147) (0.198) (0.298) (0.383) (0.425)

Age −0.367*** −0.361** −0.321* −0.328 −0.289 −0.300
(0.097) (0.115) (0.146) (0.202) (0.257) (0.280)

Education −0.077 −0.191* −0.166 −0.672*** −0.638** −0.918**
(0.079) (0.097) (0.126) (0.193) (0.246) (0.289)

Income −0.013 0.015 −0.084 0.027 0.009 −0.014
(0.038) (0.046) (0.061) (0.084) (0.108) (0.125)

AIC 1510 1176 763 469 308 271
µ 0.269 0.163 0.087 0.044 0.026 0.021

Again, with a different GSS tax-related covariate, “Pay Taxes”, we find the model pre-
dictions, valence-wise, coincide with the “Tax Cheat” as well as our own error models. Here,
the models coincident to our error models are the first three y < 7, y < 6, and y < 5, which
refer to a belief that it is at least moderately important for a good citizen to never evade
taxes, while the first two models’ µ’s bound our predicted intentional error rate. We now
look into some similar GSS covariates that deal with obedience to the law: “Obey Law” and
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“Obey Laws”.

Obey Law, y = Obey Laws, n = 1462
n = 4659 ︷ ︸︸ ︷

Variable y > 1 y < 7 y < 6 y < 5 y < 4 y < 3
Intercept −0.267*** −1.111*** −2.112*** −3.012*** −4.215*** −2.648***

(0.079) (0.149) (0.199) (0.311) (0.561) (0.765)

Sex 0.256*** 0.586*** 0.473** 0.769** 0.886ˆ −0.755
(0.063) (0.117) (0.157) (0.249) (0.453) (1.000)

Age −0.233*** −0.334*** −0.284* −0.299 −0.271 −0.935
(0.048) (0.094) (0.126) (0.188) (0.334) (0.653)

Education 0.489*** 0.275*** 0.184ˆ 0.084 −0.095 −1.599*
(0.044) (0.074) (0.098) (0.154) (0.282) (0.780)

Income 0.032 0.017 0.033 −0.097 −0.038 −0.719
(0.021) (0.036) (0.047) (0.076) (0.135) (0.586)

AIC 6632 1622 1025 523 204 64
µ 0.553 0.319 0.138 0.050 0.015 0.004

While sex and age predict disobedience to the law in similar directions as the tax items,
education’s prediction is opposite. This, however, is not entirely surprising since an expres-
sion of disobedience does not necessarily imply malfeasance or a lack of ethics but often
civic conscientiousness, which some would argue is a product of higher education. One item
of concern is that, at best, the partition of the newer “Obey Laws” covariate yields only a
30-70 split while the original “Obey Law” item maintains an almost 50-50 split. Since “Obey
Laws” both coincides with Wahlund’s “Attitude to Crime” and tax evasion, we examine the
relationship (i.e. Pearson correlation):

Statistic PayTaxes ObeyLaws PayTaxes < 7 ObeyLaws < 7
µ 6.39 6.47 0.269 0.319
σµ 1.26 0.94 0.012 0.012

ρ (σρ) 0.373*** (0.024) 0.393*** (0.024)

The scaled (left) and dichotomized (right) correlations are similar. The dichotomizations
occur where they best correspond to empirical rates of evasion and the alternate “Obey Law”
proportions (i.e. y < 7 for both). We will use these correlations along with the estimated
Wahlund correlation (next section) to infer a better correlation between obedience to the
law and tax evasion, or intentional error.

A.6.2 Combining Obey Law Correlates from GSS and Wahlund

We can now combine both the GSS Obey Law findings with our inferred Wahlund correlation
for “attitudes to crime” covariate. We employ ρWahlund = −0.2864 and ρGSS = −0.393. First,
we impose a constraint of Obey Law distribution using the GSS Obey Law on the Wahlund
crime covariate:
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GSS Obey Law
Follow Conscience Obey Law

0.5373 0.4627

We do this in order to obtain an exact solution for the 2× 2 contingency table which yields
ρWahlund = −0.2864:

Obey Law︷ ︸︸ ︷
Follow

Conscience Obey Law

Evade Taxes

{
No 0.2439 0.3861
Yes 0.2934 0.0766 0.37

0.4627

We add the Wahlund and GSS contingency tables to reach a joined correlation, using two
sample sizes for Wahlund, for one survey year (n = 430, i.e. phone interviews) and all
four survey years (n = 1427, i.e. total follow-up surveys) and the one sample of the GSS
(n = 1461):

n = 430 n = 1427
Additive MLE Additive MLE

ρBoth −0.3753 −0.3703 −0.3498 −0.3425
σBoth (0.0213) (0.0214) (0.0174) (0.0175)

There remains some imprecision in the use of the GSS contingency table esp. that the
GSS’ 2004 “Obey Laws” dichotomy does not match the multi-year “Obey Law” outcomes.
Furthermore, we assume there is perfect alignment between Wahlund’s “Attitudes to Crime”
and the GSS’ “Obey Law” and have not taken into account any mismatch. One way to
address this is to simply expand the standard error surrounding of correlation.

A.6.3 Obey Law Imputation

We can now estimate the impact of Obey Law on intentional error by several methods of
imputation, primarily by estimating the Obey Law response of the PUMS agents using the
relationship between the GSS’ Obey Law and socio-demographic covariates. We first analyze
a simple case of predicting intentional error with just one socio-demographic covariate, sex,
along with Obey Law, in order to uncover any differences between numerical estimation of
the model coefficients and imputation.

µ(logit−1[y|xk = `]) ∼ Beta(α = pk`n
k
` + 1, β = (1− pk` )nk` + 1) (9)

where k ∈ {Sex,Obey}; and l ∈ {0, 1}; and

y = β0 + βSex ·xSex + βObey ·xObey
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and pSex and nSex is taken directly from Vogel’s data:

xSex

stat 0 = Female 1 = Male Description

pSex 0.217 0.323 probability of evasion

nSex 506 709 sample count from Vogel

and pObey and nObey is inferred from Wahlund’s path coefficients and GSS’ Obey Law, de-
scribed in Appendix A.6.2, where ρBoth(‘Obey Law’,‘Tax Evasion’) = 0.352 yields:

xObey

stat 0 = Not Always 1 = Always Description

pObey 0.5282 0.1874 probability of evasion

nObey 230.38 199.62 sample count for
obey law category

Since we are primarily interested in intentionl error rates within each gender sub-group, we
can arbitrarily assign a population size n which applies to each female and male sub-group.
So now, we obtain the weighted mean probability of intentional error for each of the gender
sub-groups (i.e female and male) and each of the obey law sub-groups (i.e. not always and
always obey), contingent on some pre-defined partitioning of disobedience within each gender
group, indicated by m:

µ̂(logit−1[y]|xk = `,m,β) =
(u
n

)
logit−1[y|x = (a, b)] +

(v
n

)
logit−1[y|x = (c, d)] (10)

where our unknown parameters are β = (β0, βSex, βObey). Our known parameters include
x = (xSex, xObey); ` ∈ {0, 1}. The marginal y prediction is contingent on the covariate k as
well as the choice of sub-group combination:

(u, v, a, b, c, d) =

{
( m` , n−m` , `, 0, `, 1) if k = Sex
(m0 + n`− 2m0`,m1 + n`− 2m1`, 0, `, 1, `) if k = Obey

and m = (m0,m1) ≤ n is the count of “disobeyers” for each gender sub-group, each of size
n; that is,

m` =
n∑
i=1

I(xi,Obey = 0|xi,Sex = `)

Hence, (n−m) gives us the counts of ‘obeyers’. We define Lk(`,m) as the likelihood from
(9) substituting the µ(logit−1[y|xk = l]) with a µ̂ from (10). Now, we obtain the likelihood
for a given partition of disobedience, m, within each gender group:

Lµ(m) =
∏

k∈{Sex,
Obey}

∏
`∈{0,1}

Lk(`,m)
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We parameterize the likelihood of m with the cross-tabulation of the GSS Obey Law and
Sex covariates, in the matrix, z:

z =

Obey Law
0 1

Sex
0 1166 1199
1 1248 880

which we index as zs,o, e.g. z0,0 = z{Sex=0,Obey=0} = 1166. The likelihood, for each gender
group ` is then:36

m` ∼
∫ 1

θ=0

Beta(θ|α = z`,0 + 1, β = z`,1 + 1) · Binomial(m`|n, θ) dθ

∼ BetaBinomial(n, α = z`,0 + 1, β = z`,1 + 1)

or, more succintly, for both m:

Lm(m) =
∏

`∈{0,1}

BetaBinomial(m`|n, α = z`,0 + 1, β = z`,1 + 1)

We can now express the entire likelihood, summing across all combinations of sub-parti-
tions:37

L = log

[
n∑
i=0

n∑
j=0

Lm(m = (i, j)) · Lµ(m = (i, j))

]

In short, we are ascertaining a weighted likelihood across all the possible ways two groups
(i.e. female/male), each having n individuals, can be partitioned into two sub-groups (i.e.
disobey and obey law). So now, for a pre-defined n, we can seek our unknown β parameters
using Newton-Raphson. The alternative approach is to employ imputation/Monte Carlo
simulation and randomly draw each m` (from the beta-binomial); we employed 100 sets
of draws for m under each n condition. We present results from both approaches, while
curtailing the n for the numerical/MLE analysis due to the increasing number of calculations

36The beta-binomial (i.e. binomial with a beta prior) is the natural distribution to employ here, given that
both our known and unknown parameters are discrete quantities; the former defines a distribution of latent
probabilities θ, while the latter specifies a discrete outcomes from all the θ.

37The normalization of Lm is unnecessary as it produces identical results.
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required:38

Numerical Imputation
n β0 βSex βObeyLaw β0 βSex βObeyLaw

10 −0.2021 0.3689 −1.5809 −0.3678 0.3260 −1.6011
25 −0.2878 0.4087 −1.6071 −0.4845 0.4255 −1.5359
50 −0.3565 0.4072 −1.5911 −0.4688 0.3963 −1.5317

100 −0.4130 0.4048 −1.5625 −0.4997 0.4172 −1.5148
500 −0.4717 0.4028 −1.5241 −0.4949 0.4047 −1.5087

1000 −0.4797 0.4026 −1.5184 −0.4920 0.4054 −1.5118
5000 −0.4862 0.4024 −1.5138 −0.4913 0.4030 −1.5107

Under both the numerical and imputation approaches, there is adequate convergence and
similarity. Not surprisingly, the imputation approach requires far less computation time. We
now inspect the inference of the standard errors around the estimated β:39

Numerical Imputation
n σ0 σSex σObeyLaw σ0 σSex σObeyLaw

10 0.2239 0.3337 0.2302 0.4057 0.5301 0.4097
25 0.1901 0.2862 0.2293 0.2026 0.2739 0.2625
50 0.1705 0.2272 0.2299 0.1675 0.2224 0.2406

100 0.1548 0.1900 0.2288 0.1493 0.1896 0.2313
500 0.1376 0.1577 0.2249 0.1345 0.1551 0.2245

1000 0.1352 0.1537 0.2241 0.1337 0.1526 0.2239
5000 0.1332 0.1504 0.2235 0.1321 0.1485 0.2232

The standard errors converge and coincide in the same manner as the estimates. In conclu-
sion, there appears to be adequate parity between the imputation and numerical approaches,
which permits us to employ either method. However, due to the computational expense of

38E.g. when n = 100, there 101 × 101 = 10201 possible partitions, each of which requires, from the
Newton-Raphson differencing approach, 2m+ 2m+ 4m (where m = # of parameters = 3) = 24 likelihood
calculations per step resulting in 244,824 total calculations.

39The total variance, T , of an estimate, say β = βSex, combines the between-sample and within-sample
variances:

T = W +
K + 1
K

B

where K is number of simulations (here, 100) and

B =
1

K − 1

K∑
k=1

(
βk − β

)
and

W =
1
K

K∑
k=1

σ2
k

60



the numerical approach, we will employ the imputation method of estimating ‘obey law’ for
the PUMS agents.

In Figure 8, we display the logit of the mean of the empirical Obey Law response for
each uid, alongside the linear model prediction (which employs all four socio-demographic
covariates).40 These point estimates are bounded by the appropriate standard deviation,
which in the case of the empirical logit indicates the sub-sample size of each uid. This figure
tells us that the linear fit, while modestly accurate in the mean rates of obey law, does
not capture the uncertainty surrounding particular uid’s. So, for imputing the Obey Law
response for our n = 10,000 PUMS agents, we can either 1) employ the empirical mean
or 2) draw each agent’s response from the beta-binomial distribution instead of numerically
exploring the space of all possible uid partitions, of which there are 4.52×10222 combinations!
Each Obey Law response draw depends on the agent’s uid, and corresponding certainty
afforded by the GSS:

xObey
uid ∼ BetaBinomial(n = 1, α = nObey=1

uid + 1, β = nObey=0
uid + 1)

where

nObey=o
uid =

nGSS∑
i=1

I(xi,Obey = o, fuid(xi) = uid)

Recall, we define the function fuid : x → uid in (7). For those uids lacking corresponding
types in the GSS (20 of them), we employ the linear prediction with uncertainty defined by
one of a) an α and β pair that matches the fitted value’s standard deviation, which assumes
a uid sample size similar to the data, and b) a value of 1, to indicate the source is not directly
empirical and exhibits high uncertainty. Yet, another alternative would be to simply use the
GSS with covariates aligned to PUMS categories. This will be explored in further writings.

B Accounting for Social Influence Effects

Since the predictive models for line-item intentional error are designed to be used in a multi-
agent information diffusion model, we attempt to partial out the peer influence effects from
our models. The literature offers the following findings:

• Collins et al. (1992) report in their regression model of counts of non-compliance a
significant coefficient of 0.163 on friends’ non-compliance (3 point scale).

• Elffers et al. (1987) find a correlation ρ = .22 (p < 0.01) between the perceived
prevalance of peer non-compliance (a 3-point scale) and 2-year self-report of evasion
and the same correlation (i.e. identical ρ and p) perception of support (also a 3-point
scale) and 2-year self-report. However, there is no significant correlation between these
social covariates with documented non-compliance or amount of tax evaded.

40Refer to A.6.1 for the actual logistic regression model.
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(b) Linear Model Ordered

Figure 8: Ordering of Obey Law Mean Probabilities. The “obey law” mean probabilities (as logit)
and s.d.’s are plotted alongside the linear model prediction for each of the 139 socio-demographic
category, subscripted by a unique identifier (i.e. uid). In the upper plot, we order by the empirical
means and, in the lower, by the linear model predictions. In neither plot does the x-axis map to the
uid’s.
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• Webley et al. (2001) find in their logit models that for Oslo (Norway) and Exeter
(UK) respondents the perceived prevalence of friends’ non-compliance (as a %) has
a 0.38 (p < 0.05) effect on respondents’ hypothetical non-compliance; for Paris and
London respondents there is a similar 0.50 (p < 0.05) effect. Meanwhile, perceived
peer support has a 0.76 (p < 0.005) effect on self-reported evasion for the former pair
of sub-populations and a 0.65 (p < 0.05) effect on the hypothetical evasion for the
latter pair.

• Vogel (1974) reports that 36.2% of respondents acquainted with non-compliant tax-
payers also self-report non-compliance while only 21.8% of those who have no such
acquaintances commit evasion: a 14.4% peer effect, not necessarily causal however.

While these findings are varied, they offer convincing evidence that peer effect has a promi-
nent role in intention error commission. The integration of these findings into our error
models will appear in future writings.

C Cauchy and Normal Priors on LR Coefficients

In the earlier line item models, we imposed a prior on the model coefficients in order to
prevent them from obtaining degenerate values, say, |β| > 5. The first attempt employed a
normal prior; however, Gelman et al. (2008) argues for Cauchy priors on logistic regression
coefficients. In Figure 9, we compare our initial prior, N(µ = 0, σ2 = 9), to the Cauchy
recommended by Gelman et al. We offer the intercept more leeway by using a slightly larger
scale parameter, γ = 3, than the one recommended by Gelman, γ = 2.5, which we apply
to the non-intercept coefficients. For further comparison, we display a normal with the
equivalent variance (σ2 = 26) of the latter Cauchy to demonstrate the Cauchy’s narrower
density.

D Background Work on Transforming Empirical Find-

ings

D.1 Houston and Tran (2000)

The authors surveyed Australian adults and inferred from n = 223 of them that 16.5% of
self-employed respondents have under-reported their income while only 3.6% of non-self-
employed respondents have done so. They report the sizes of each group, n1 = 144 for
non-self-employed and 79 or self-employed, as well as the z-score to assess the significance
of the difference in evasion rates: z = 1.68. Calculation of unbiased variance (σ2) for each
proportion, p, is straightforward:

σ2
unbiased = p(1− p)/n
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Figure 9: Cauchy and Normal Priors on β Coefficients. The black line denotes a normal distribu-
tion with standard deviation, σ = 3; the red and green lines denote Cauchy distributions with scale
parameters, γ = 3 and 2.5, respectively; and the black dotted line denotes a normal distribution
with the same variance as the latter Cauchy distribution.
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The biased variance is not as straightforward due to their use of a randomized-response survey
design for sensitive content. As such, the variance needs to account for the uncertainty in
the chosen questions respondents answered:

σ2
biased = λ(1− λ)/nq2

s (11)

where λ = the observed proportion of ‘yes’ responses and qs = the probability of a respondent
answering the targeted sensitive question. Since

λ = pqs + (1− qs)qns

where p = estimated proportion of evasion (from above) and qns = the known proportion of
‘yes’ responses to the non-sensitive question, we obtain:

λ = p · 0.7 + (1− 0.7) · 1
3

= 0.2155 (self-employed) and 0.1252 (non-)

and
σbiased = 0.0661 and 0.1252

Before inferring the regression coefficients, we transform the proportion with the logit func-
tion, log(x/1 − x), which more accurately models the error surrounding a proportion. The
uncertainty surrounding the proportions are also “logitized”:

σbiased,logit =
σbiased

p (1− p)
= 0.480 and 1.135

Since our covariates are simply 0 and 1, we can easily find α0 and α1:

α0 = logit(p0) α1 = logit(p1)− α0

= −3.288 = logit(p1)− logit(p0)

= 1.666

where p0 and p1 are the estimated proportions of evasion from non-self-employed and self-
employed respondents, respectively.

Under normality, we have to assume constant variance; hence, we can obtain σ2
α by

appropriately weighting the variance surrounding the logits of p0 and p1:

σ2
α =

n0

n
σ2

0 +
n1

n
σ2

1

where σ0 is the σlogit for non-self-employed (either biased or unbiased) and σ1 is for self-
employed.41 We obtain:

σα,biased = 0.9558

σα,unbiased = 0.4021

41We can demonstrate the above numerically but have not managed to do so algebraically, as of yet.
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D.2 Mason and Calvin (1978)

The authors employ a discriminant analysis to assess tax evasion behavior for 800 adults
in Oregon. The respondents’ ages were aggregated into six categories of values 1 to 6 and
standardized. For their under-reporting of income model, the age effect is:

dage = −0.83, F = 25.26

We estimate the error surrounding the discriminant coefficient using the F -statistic. The
F -test is parameterized by two type of degrees of freedom. For a discriminant analysis they
are calculated as:

df1 = m · dfeffect

df2 = s ·
[
dferror −

m− dfeffect + 1

2

]
−
[
m · dfeffect − 2

2

]
where m = # of predictor variables = 6 and dfeffect = (number of groups - 1). Since the
prediction involves two groups, under-reporters vs. non-under-reporters, this is just 2−1 = 1.
dferror = number of groups times (n− 1) = 2 · 799 = 1598. Also:

s =

√
m2 · df2

effect − 4

m2 · df2
effect − 5

We obtain df1 = 5 and df2 = 1594 which, when combined with the F -stat = 25.62, yield an
extremely low p-value of 6.189× 10−25. The equivalent t-statistic is 10.49 corresponding to
a standard error for dage: σdage = 0.0791.42

However, their analysis involved a standardized model which, for our purposes, needs to
be “unstandardized”. Without further details on the age categories or the quantities involved
in the standardization, we are left to estimate these details with outside data. Specifically,
we use the age distribution in the 1985 GSS to unstandarize the dage = −0.83 effect.

logit(punderreport) = β̂0 +
xage − µage

σage

· dage

=

(
β̂0 −

µage

σage

)
+
xage · dage

σage

= β0 +
xage · dage

σage

where we use the GSS data to estimate the mean and standard deviation for the six age
categories: µage = 2.11 and σage = 1.714. We set:

β1 =
dage

σage

=
−0.83

1.714
= −0.484

42We maintain some reservations that this is the correct way to estimate the standard error, but it seems
reasonable for now.
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and

σβ1 =

∣∣∣∣β1

t

∣∣∣∣ =

∣∣∣∣−0.484

10.49

∣∣∣∣ = 0.0461

The intercept, β0, is unknown, so we use the known information to model it:

β0 ∼ N
(
logit(p)− β1 · xage, σ

2
p + σ2

dage

)

For the Newton-Raphson fit, we use the six age categories, coded in the GSS as 0 through 5,
for xage and compare the aggregated probability of under-reporting for each age group to the
population rate of under-reporting, p = 0.145, reported by the authors in their paper; we
employ the standard variance for a binomial: σp =

√
p(1− p)/n = 0.01244. The logitized

quantities are logit(p) = −1.774 and σlogit(p) = 0.1004.
We obtain β0 = −0.977 and σβ0 = 0.1177. With these, we confirm the population rate

of under-reporting with our model:

0.145 =
5∑
i=0

logit−1 (β0 + β1 · i) · qi

=
5∑
i=0

logit−1 (−0.977 +−0.484 · i) · qi

= 0.1450057

where logit−1(x) is the inverse logit function (i.e. exp(x)/(1+exp(x))) and q represents the
GSS distribution of the age categories: q ∈ {0.222, 0.143, 0.146, 0.134, 0.126}.

D.3 Mason/Calvin Revisited

It turns out that a direct logistic regression treatment of discriminant analysis coefficients
can only be appropriate if the structure of the permits it; and this appears to be the case
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fortunately.

LDA Model LR Models
Predictor Empirical Simulated #1 Simulated #2
Intercept 6.393*** 6.339***

(0.647) (0.730)

Fear of −0.400*** −0.397*** −0.381***
Appreh. (0.084) (0.049) (0.058)

Income −0.140 −0.135*** −0.134***
(0.291) (0.025) (0.032)

Age −0.830*** −0.803*** −0.801***
(0.080) (0.077) (0.078)

Sex −0.330** −0.338ˆ −0.344
(0.117) (0.194) (0.234)

Occup. −0.030 −0.029*** −0.029***
Prestige (0.638) (0.005) (0.007)

We compute standard errors from the reported LDA coefficients and F-statistics using the
method described in Appendix D.2. Also, we can directly predicted group membership (i.e.
non-evader vs. evader) probabilities. We generate two kinds of simulated datasets: one that
samples uniformly (#1) and another that samples from the GSS (#2), in order to maintain
some empirical relationship between the predictors as well as achieve a distribution whose
group means resemble the Mason/Calvin data.43 The Mason/Calvin LDA coefficients tells
us the predicted Bernoulli probabilities for group membership, which we simulate alongside
the data set generation.

The resulting logistic regression (LR) coefficients surprisingly coincide with the LDA co-
efficients, which can occur for certain data structures.44 However, the simulated significance
differs greatly for some predictors; this is not a huge concern as long as we employ the
empirical standard errors in our meta-analysis/imputation process.

D.4 Background Work on Wahlund’s Correlation Inference

In this section, we attempted to continue the analytical inference of Wahlund’s correlation
between ‘attitudes to crime’ and ‘tax evasion’. However, it became increasingly clear that
the complexities inherent in this approach would forbid us from reaching a final estimate.
Still, we report the analysis for illustrative purposes. In Figure 10, we display the lower
portion of Wahlund’s path diagram, segments of which we refer to in this analysis.

In the first stage, we want the full correlation between (o)pportunity and (p)erceived
opportunity. However, the reported partial coefficient controls for the effects from (s)elf-
employment and (a)ge; notationally, this is (o, p|s, a). Hence, we will need to reintegrate the

43The GSS contains no information on Fear of Apprehension; hence we are unable to properly model this
covariate.

44We explored different example coefficients and the closest explanation we have found is that a decent
spread in the predicted probabilities (i.e. covering 0 to 1) results in similar LDA and LR coefficients.
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Figure 10: Bottom of Path Diagram from Wahlund (1992). The “perceived marginal tax” atop
points to “opportunity” in the earlier figure. The 0.32 coefficient from “Self-employed” is received
by “perceived opportunity”. The path on the far left leads from “age” to “opportunity”. Reprinted
without permisson.
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effect of o → p explained by a and s. We do this by backtracking the paths of a → o and
a→ p. However, we are missing a direct path between s and o (i.e. s→ o or o→ s), which
in turn will account for some of the variance in a→ s, and we account for the missing effect
with a placeholder, εo,s. These latter paths and others which we will address can be found
in Fig. 10 appearing the end of this section.

(̂o, p) = (o, p|a, s) + (a, p|s) · (̂a, o) + (s, p) ·
[
(̂a, o)(a, s) + εo,s)

]

where

εo,s = [(o, a)(a, s|o) + (o, s|a)]− (o, a)(a, s)

and (a, s|o) and (o, s|a) are hypothetical predictions of s from both o and a. Hence, the
minuend represents the true effect while the subtrahend is what is reported by Wahlund.
Since Wahlund does not report a direct self-employment/age correlation, (a, s), we employ

the GSS’ correlation of 0.075. Finally, (̂a, o) is the total effect between age and opportunity,
an unknown at this point.

We now solve for age’s full effect on opportunity, (̂a, o). There is a set of lengthy paths
from age to the “perceived marginal tax” (pmt) which is the source of the other, 0.10 partial
correlation path into opportunity; however, each of these paths is narrow, meaning we can
calculate the correlation between age and “perceived marginal tax” with a minimal number
of unknowns. The intervening covariates of one path are student (st), income (in), “actual
marginal tax” (amt). A second path includes “self-employed”, “perceived tax rates” (ptr).
Both these predict pmt. A third path takes us from “self-employed” through “tax knowledge”
(tk) and into ptr.

We first solve for the total age effect on income:

(̂a, in) = (a, in) + (a, st) · (st, in|a) + (a, s) · (s, in|a)
= 0.30 +−0.17 · −0.14 + 0.075 · −0.13

= 0.314

Next we, collapse “self-employed” and “tax knowledge” for a single age correlation to “per-
ceived tax rates”:

̂(a, ptr) = (a, s) · (s, ptr|tk) + (a, tk) · (tk, ptr|s) + εa,ptr

= 0.075 · 0.17 + 0.15 · 0.13

= 0.03225 + εa,ptr

where εa,ptr is variance/correlation left unexplained due to the absence of the (a, ptr) path.
Again, this placeholder accounts for the difference between the reported effects and the path
coefficients if there existed also a direct path between a and ptr. Given there is only one
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path between income and “actual marginal tax”, our estimate between age and amt also
contains an unknown:

̂(a, amt) = 0.88 · (̂a, in) + εa,amt

= 0.88 · 0.314 + εa,amt

= 0.27632 + εa,amt

Now we can compute the correlation between age and “perceived marginal tax”:

̂(a, pmt) = ̂(a, amt) · (amt, pmt|ptr) + ̂(a, ptr) · (ptr, pmt|amt) + εa,pmt

= (0.27632 + εa,amt) · 0.55 + (0.03225 + εa,ptr) · 0.34 + εa,pmt

= 0.151976 + 0.010965 + 0.55εa,amt + 0.34εa,ptr + εa,pmt

= 0.162941 + 0.55 · εa,amt + 0.34 · εa,ptr + εa,pmt

= 0.162941 + εâ,pmt

where
εâ,pmt = 0.55 · εa,amt + 0.34 · εa,ptr + εa,pmt

and εa,pmt accounts for the lack of a direct path between a and pmt. Next, we compute the
total age effect on opportunity:

(̂a, o) = (a, o) + ̂(a, pmt) · (pmt, o)

= −0.25 + ̂(a, pmt) · 0.10

= −0.25 + (0.162941 + εâ,pmt) · 0.10

= −0.2662941 + εâ,pmt · 0.10

We can now insert (̂a, o) into the expression for the total correlation between “opportunity”

and “perceived opportunity”, (̂o, p):

(̂o, p) = (o, p|a, s) + (a, p|s) · (̂a, o) + (s, p) ·
[
(̂a, o)(a, s) + εo,s)

]
= 0.25 +−0.11 · (−0.2662941 + (0.10)εâ,pmt)

+ 0.23 ·
[
(−0.2662941 + (0.10)εâ,pmt) · 0.075 + εo,s

]
= 0.2746988 + [(−0.11)(0.10) + (0.23)(0.10)(0.075)]εâ,pmt + (0.23)εo,s

= 0.2746988 + (−0.009275)εâ,pmt + (0.23)εo,s

E Background Meta-Analysis

We combine findings from multiple papers which show tax evasion to be tied to attitudinal,
behavioral, and socio-demographic covariates. While many of these studies focused primarily
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on only a single type of predictor, we aim to construct a predictive model of tax evasion
incorporating all three types of covariates. In order to achieve this goal, we conduct both a
meta-analysis of the findings from these studies and imputation in applying these findings
to our focal data set, the GSS.

We first offer a simplified model for continuous data to outline the approach as well as its
complications. In this section, we consider three distinct data sources, two of which contains
the dependent variable, tax evasion, and only one type of covariate, while the third contains
just the two types of covariates found in the first two sources. The linear model equations
here refer to the first two hypothetical data sources:

x = α0 + α1θ + εα (12)

y = β0 + β1φ+ εβ (13)

In (12) and (13), x and y denote tax evasion behavior from the first two distinct data
sources; θ is a significant attitudinal predictor and φ is a significant socio-demographic
predictor. These models reflect, say, the works by Elffers et al (as well as Webley et al) and
the summary of findings in Houston et al, respectively. The third data source lacks a tax
evasion variable but contains both the attitudinal and socio-demographic covariates, θ and
φ, much like the GSS. Accordingly, we can predict one of these covariates with the other to
some, unknown, degree of significance:

θ = γ0 + γ1φ+ εγ (14)

φ = ψ0 + ψ1θ + εψ (15)

However, what we require is a model that predicts tax evasion from both covariates:

z = δ0 + δ1θ + δ2φ+ εδ (16)

So now, we want to use (12) - (15) to determine the unknown parameters δ0, δ1, and δ2,
allowing us to predict z from θ and φ. First, ignoring the error terms (ε’s) for the moment,
we derive the coefficients in (12) and (13) in terms of the unknown δ’s and the model of
just the covariates (i.e. (14) and (15)). For example, when we substitute (14) into (16), we
obtain:

z = δ0 + δ1(γ0 + γ1φ) + δ2φ (17)

and after grouping the terms

z = (δ0 + δ1γ0) + (δ2 + δ1γ1)φ

Essentially, we have derived a predictive model for just φ on tax evasion behavior, which is
identical to (13), with the first term referring to the intercept β0 and the second the slope
coefficient, β1. These substitutions yield the following equalities (again ignoring error for
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now):

α0 = δ0 + δ2ψ0 (18)

α1 = δ1 + δ2ψ1 (19)

β0 = δ0 + δ1γ0 (20)

β1 = δ2 + δ1γ1 (21)

We have four equations to solve three unknowns δ’s, hence we only require three of these
equations and the fourth is superfluous. For example, using (19), we set δ1 in terms of δ2:

δ1 = α1 − δ2ψ1

We obtain:

δ2 = β1 − (α1 − δ2ψ1)γ1

= β1 − α1γ1 + δ2ψ1γ1

δ2(1− ψ1γ1) = β1 − α1γ1

δ2 =
(β1 − α1γ1)

(1− ψ1γ1)

We can now obtain δ0 and δ1 using eqns. 18 and 19.
In order to obtain the standard errors for the δ’s, we will first derive the distribution of

residuals, εδ, by inserting the error terms into (17):

z = δ0 + δ1(γ0 + γ1φ+ εγ) + δ2φ+ εδ

= (δ0 + δ1γ0) + (δ2 + δ1γ1)φ+ δ1εγ + εδ (22)

Again, this equation resembles the prediction of tax evasion using only φ:

y = β0 + β1φ+ εβ

We assume all the the residuals to be distributed normally, that is:

εβ ∼ N(0, σ2
β)

εγ ∼ N(0, σ2
γ)

εδ ∼ N(0, σ2
δ )

So, the variance of the residuals in (22) (i.e. δ1εγ + εδ) is equivalent to the variance for the
residuals εβ (i.e. σ2

β). And, since we can derive the variance for the sum of two independent
normal distributions of known variance, we obtain:45

σ2
β = δ2

1σ
2
γ + σ2

δ

45Proof can be demonstrated through convolution of two normal densities. Additionally, we consider α to
be independent on ψ; that is, how θ relates to x is ex-ante independent of how θ relates to φ.
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Similarly, we can also substitute φ with (15) into (16) and obtain:

σ2
α = δ2

2σ
2
ψ + σ2

δ

giving us two equivalent forms for σ2
δ :

σ2
δ = σ2

α − δ2
2σ

2
ψ = σ2

β − δ2
1σ

2
γ

We can know compute the standard errors for the δ coefficients, by first computing the
Fisher information matrix (showing only the diagonal and upper triangle since the matrix is
implicitly symmetric):

I(δ) = −


n
σ2

δ

P
θ

σ2
δ

P
φ

σ2
δP

θ2

σ2
δ

P
θφ

σ2
δP
φ2

σ2
δ


where n is the number of data points and each summation occurs over the appropriate data
(e.g.

∑
θ =

∑n
i=1 θi). The inverse of −I(δ), solved numerically, gives us the covariance

matrix for the δ coefficients:

Σδ =

 σ2
δ0

Cov(δ0, δ1) Cov(δ0, δ2)
σ2
δ1

Cov(δ1, δ2)
σ2
δ2


Since our information sources comprises reported findings, we will often not have enough
information to calculate the summations (e.g.

∑
θ or

∑
θφ) in which case we will estimate

them from alternate data source such as the General Social Survey.

E.1 Meta-Analysis with Generalized Linear Models

E.1.1 Two Covariates: Self-Employment and Age

Houston and Tran (2000) find self-employment to be a significant predictor of tax evasion,
specifically under-reporting of income. Using their reported findings, we construct a logistic
regression model to predict under-reporting contingent on a single covariate.46

Unbiased Biased
α0 =−3.288, σα0 = 0.447 1.135
α1 = 1.666, σα1 = 0.540 1.232

The authors report that the variances around the proportions of tax evasion, for both the self-
employed and non-self-employed groups, are inflated due to a mistake in their randomized
response survey design. We report both the expected unbiased standard error (σ) as well as
the biased one, based on the variance calculated from their paper. With the unbiased errors,

46Refer to Appendix D.1 for details.
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both the intercept and coefficient are significant, while the biased errors render the effect of
the covariate insignificant (t-statistic = 1.666

1.232
= 1.352).

Mason and Calvin (1978) conduct a discriminant analysis to assess the relationship be-
tween socio-demographic covariates and under-reporting of income. For this example, we
focus on their standardized age variable, to inform our model. We determine the following
unstandardized logistic model:47

β0 =−0.977, σβ0 =0.1177
β1 =−0.484, σβ1 =0.0461

Since self-employment (θ) is a binary variable, we need to model it appropriately:

logit(θ) = γ0 + γ1φ

θ = logit−1(γ0 + γ1φ)

or

θ =
eγ0+γ1φ

1 + eγ0+γ1φ

giving us:

γ0 =−2.058, γ1 =0.0831

Inference of the δ’s is now complicated, since the equation:

z = δ0 + δ1 ·logit−1(γ0 + γ1φ) + δ2φ

cannot be algebraically reduced to the form: z = A + Bφ. Similarly, the age categories
constitute an ordinal variable, which we define with θ using an ordinal logistic regression,
also known as a proportional odds model.

p(φ <= i) = logit−1(ψαi − ψβθ)

So, instead, we numerically solve the δ’s using both θ and φ predictions in the likelihood:

δ0 + δ1θ + δ2φ ∼ N(α0 + α1θ, σ
2
θ,φ) · N(β0 + β1φ, σ

2
φ,θ)

Actually the likelihood is this:

L(δ0, δ1, δ2|α0, α1, β0, β1) =
1∏
θ=0

5∏
φ=0

p(δ0 + δ1θ + δ2φ|α0 + α1θ, σ
2
φ) · p(δ0 + δ1θ + δ2φ|β0 + β1φ, σ

2
θ)

47Refer to Appendix D.2 for details.
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where

σ2
φ = 1/pθ(1− pθ)nHθ,φ
σ2
θ = 1/pφ(1− pφ)nCφ,θ

and
nθ,φ = nHθ · qφ,θ pθ = nθ/N

H
θ

nφ,θ = nCφ · qθ,φ pφ = nCφ /N
C
φ

and

qφ,θ =


logit−1(ψαφ + ψβθ)− 0 if φ = 0
logit−1(ψαφ + ψβθ)− logit−1(ψαφ−1 + ψβθ) if 0 < φ < 5
1− logit−1(ψαφ + ψβθ) if φ = 5

and
qθ,φ = logit−1(γ0 + γ1φ)

We can easily do this due to the discrete nature of θ and φ and easily derivable error around
the logistic dependent variable:

σφ =
1√

p(1− p)n
= {0.397, 0.202, 0.501, 0.249, 0.518, 0.269}

where
p = logit−1(β0 + β1φ)

and φ ∈ {0, 1, 2, 3, 4, 5} (i.e. age categories) and n ∈ {183, 178, 115, 117, 107, 101} (i.e. the
GSS age category tabulation normalized by the number of respondents in the Mason/Calvin
study (n = 800)). That is, each φ is associated with a unique logit variance σ2

φ. We compute
σθ similarly and obtain {0.447, 0.303}.

We now have sufficient information to infer our logistic regression model of under-
reporting incorporating the findings from the Houston and Tran (2000) and Mason and
Calvin (1978) papers, θ and φ, respectively. We report results using both the unbiased and
biased variances from the Houston and Tran study.

δ Coefficients for
Predictor Unbiased Biased Sampled
Intercept −1.161*** −1.039*** −1.156***

(0.137) (0.142) (0.137)

θS.E. 0.256 0.125 0.257
(0.240) (0.276) (0.240)

φAge −0.399*** −0.444*** −0.402***
(0.067) (0.073) (0.067)

L −22.249 −23.980 −22.096
n 1023 1023 1023
pGSS 0.1404 0.1455 0.1404

(0.0109) (0.0110) (0.0190)
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Houston and Tran’s findings imply 8.2% of the population commit under-reporting while
Mason and Calvin’s paper report 14.5%; some of this difference may be due to different
nationalities of the respondents (Australian vs. American) and/or the year of the study
(2000 vs. 1978). Also, according to the GSS, self-employment and age category are almost
independent; the correlation is quite low (ρ = 0.048) yet mildly significant (p < 0.10). Hence,
we see that only one of the coefficients resemble its original value, namely φ and β1.

Fitting the model to the GSS data (pGSS), we obtain the projected proportions of under-
reporting in the GSS sample, 14.04% and 14.55%.48 These are similar to the proportion
of under-reporting reported by Mason and Calvin; as a result of a large sample size, their
parameters exhibit higher confidence. Another reason for the high proportion is that there
are relatively fewer self-employed respondents in the GSS compared to the Houston/Tran
data. Also, we note that the unbiased model exacts tighter errors bounds for Houston data
resulting in the overall proportion of under-reporting drifting down towards the proportion
reported in the Houston paper.

E.1.2 Sampled Results

Alternatively, we can estimate the δ coefficients via Monte Carlo sampling. We first draw
sample of age categories, φ, for the Houston data set as well as the under-reporting committed
by its respondents, x, using the known paramters. Then, we draw a sample of the self-
employment covariate, θ, for the Mason/Calvin data as well as the under-reporting for its
respondents, y. We then apply a logistic regression on the combination data set. The
procedure conforms to the following generalized linear models:

logit(x)|θ ∼ N(α0 + α1θ, [σ
H
θ ]2)

φH|θ ∼ Multinom(q.,θ,nθ,.)

logit(y)|φ ∼ N(β0 + β1φ, [σ
C
φ ]2)

logit(θC)|φ ∼ N(γ0 + γ1φ, [σ
C
φ ]2)

Also, we can substitute draws from the data reflecting empirical proportions, rather than the
GLMs, to obtain our φH and θC since all covariates are discrete. We display the δ estimated
through this additional layer of sampling alongside our findings from the GLM specification.
We perform 1000 of draws of each of the procedures to estimate δ and its accompanying

48These are all unweighted results; we will look at weighted data later.
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standard errors, σδ:

Bootstrapped
Predictor GLM φH , θC

Intercept −1.270*** −1.261***
(0.138) (0.140)

θS.E 0.259 0.258
(0.246) (0.246)

φAge −0.397*** −0.401***
(0.068) (0.066)

n 1023 1023
pGSS 0.1285 0.1289

(0.0105) (0.0105)

The coefficients between the analytical model and the sampled/bootstrapped models differ
due to low probabilities, both predicted and empirical, associated with the occurrence some
θ, φ combinations.

E.1.3 Three Covariates: Obey Law

We introduce a third covariate that reflects respondents’ attitudes towards the law. Wah-
lund finds respondents’ attitudes to crime to be correlated to tax evasion behavior; specifi-
cally, a more lax attitude is associated with higher likelihood of evading taxes. The General
Social Survey captures this attitude in its Obey Law item in which respondents are asked:

“In general, would you say that people should obey the law without exception, or
are there exceptional occasions on which people should follow their consciences
even if it means breaking the law?”

In Appendix A.5, we infer parameters for predicting tax evasion, which we can now incor-
porate into our predictive model. Each of the predictive GLMs are updated to include this
new covariate, ω:

θ = logit−1(γ0 + γ1φ+ γ2ω)

p(φ <= i) = logit−1(ψαi − ψ
β
1 θ − ψ

β
2ω)

ω = logit−1(λ0 + λ1θ + λ2φ)

The compound model has the following distribution:

δ0 + δ1θ + δ2φ+ δ3ω ∼ N(α0 + α1θ, σ
2
θ,{φ,ω}) · N(β0 + β1φ, σ

2
φ,{θ,ω}) · N(τ0 + τ1ω, σ

2
ω,{θ,φ})
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We present the analytical and bootsrapped results:

Predictor MLE Bootstrapped
Intercept −1.190*** −1.257***

(0.124) (0.124)

θSelf-Employed 0.125 0.165
(0.193) (0.188)

φAge −0.213*** −0.237***
(0.049) (0.049)

ωObeyLaw −0.489** −0.534**
(0.165) (0.168)

L −83.284 NA
n 1623 1623
pGSS 0.1450 0.1314

(0.0144) (0.0139)

Due to the collinearity between φ and ω, ρ = 0.181 (p<0.001), their effects are diminished
from original models.

F Earlier Meta Analysis Results

nCollins = 9482 nCollins = 240︷ ︸︸ ︷ ︷ ︸︸ ︷
Predictor Model #1a Model #1b Model #2a Model #2b
Intercept −0.465*** −0.403*** −1.070*** −1.021***

(0.093) (0.100) (0.136) (0.140)

Sex 0.287*** 0.313*** 0.419** 0.412***
(0.080) (0.081) (0.137) (0.112)

Age −0.532*** −0.544*** −0.599*** −0.604***
(0.074) (0.074) (0.111) (0.105)

Education −0.219*** 0.030
(0.055) (0.133)

|Education− 1| −0.356*** −0.121
(0.104) (0.110)

Income −0.047 −0.089** 0.098 0.127ˆ
(0.037) (0.034) (0.140) (0.068)

L −160 −162 −102 −101
n 10000 10000 10000 10000
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Summary Statistics for p(y < 0)
Min. 25% Median Mean 75% Max.

Model #1a 0.0819 0.1814 0.2288 0.2501 0.3151 0.4557
Model #1b 0.0662 0.1791 0.2452 0.2547 0.3075 0.4774
Model #2a 0.0882 0.1764 0.2457 0.2435 0.3006 0.4990
Model #2b 0.0780 0.1828 0.2420 0.2444 0.3035 0.5386
Previous 0.0000 0.0200 0.0962 0.2507 0.4231 0.9796

G Background Line Item Analysis

Before we offer our likelihood model, we need to estimate some empirical rate of error incurred
through the ‘Misc’ category of line-items, that is some line-item not covered by the seven
explicit taxpayer categories. In the left equation below, we estimate ‘Misc’ error commission
using non-categorical agents in our subsample, and in the right, we estimate, using the free
parameter αMisc

0 , the predicted rate of ‘Misc’ error commission among categorical agents:

pMisc =

∑
i (pi ·I

p
i )∑

i I
p
i

and qMisc =

∑
i

(
qMisc
i ·Iqi

)∑
i I

q
i

where we employ indicators, Ipi and Iqi , to sequester non-categorical and categorical taxpay-
ers, respectively. In short, the sum of the former indictaor yields the count of non-categorical
taxpayers while the sum of the latter yields the count of categorical taxpayers:

Ipi =

{
0 if

∑
tp xi,tp > 0

1 if
∑

tp xi,tp = 0
and Iqi =

{
0 if

∑
tp xi,tp = 0

1 if
∑

tp xi,tp > 0

We compute pMisc from our sampled data and estimate it to be 0.114. Next, we notationally
assign P = (. . . , pi, . . . , ) and Q = (. . . , qi, . . .), where i ∈ arg (Iqi = 1), restricting our
analysis to only categorical taxpayers.49 There are two components of the likelihood model.
The first piece,

logit[Q] ∼ N

(
logit[P ],

1

P (1− P )

)
(23)

fits the combined rate of taxpayer categorical errors, qi, as determined by all the free α
parameters to the predicted error rates, pi, from the intentional model.50 Concurrently, the
second component:

qMisc ∼ N

(
pMisc,

pMisc · (1− pMisc)∑
i I

p
i

)
(24)

fits the mean of the ‘Misc’ error rate of the categorical taxpayers to that of non-categorical
taxpayers, while employing the standard deviation of a typical binomial. Below, we offer the

49This notation for collecting the appropriate i’s is my own shorthand and will require amendment.
50We employ the canonical variance for the logit of a probability, p: 1

p(1−p)n . However, since we are fitting
each data point individually, our n becomes 1.
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maximum-likehood parameter fits for the first model, using (23). Again, these parameters
correspond to the α coefficients from (5) and our model fits to the data for agents who
fall under at least one of the taxpayer categories; hence the sample size of these models
(n = 8,251) is less than the size of our original sample (n = 10,000):

Taxpayer/Line-Item Categories
α/Predictor Tips SEmp EIC SLns Cap Frm SSB
Intercept −2.320 −1.369 0.679***−0.544 −1.769** −1.450 −1.775

(1.767) (1.139) (0.148) (0.834) (0.613) (2.459) (1.142)

Sex 1.006 1.611ˆ 1.164*** 1.780*** 1.449** 1.351 1.396***
(1.482) (0.936) (0.128) (0.436) (0.523) (2.352) (0.303)

Age 0.072 −0.187 −0.348***−0.387 −0.250 −0.354 0.382
(1.044) (0.571) (0.083) (0.360) (0.350) (1.515) (0.558)

Education −1.877 −1.886***−1.827***−2.293*** −1.716***−1.766 −1.842***
(1.423) (0.555) (0.112) (0.667) (0.374) (1.743) (0.274)

Income 0.060 −0.369 −0.817***−0.431* −0.134 −0.225 −0.377*
(0.761) (0.274) (0.081) (0.172) (0.198) (0.962) (0.176)

αMisc
0 −0.0213 qMisc 0.133 L −20294

(0.112) (0.210) n 8251

Alternatively, we can express the first piece of the likelihood using only the taxpayer cate-
gories, requiring us to adjust the predicted probability of any error to include the probability
of a ‘Misc’ error:51

logit
[
Q-Misc

]
∼ N

(
logit

[
1− P

1−QMisc

]
,

(1−QMisc)

(1− P )(P −QMisc)

)
(25)

51Initially, we implemented this alternative model because a) it worked and the other did not and b)
initially, we did not parameterize the ‘Misc’ intercept αMisc

0 , and instead provided a fixed estimate which
arguably should be included on the right side of the equation. However, since now both approaches work
and give slightly different results, we need more compelling arguments for selecting one over the other.
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Here are the results when we employ the alternative model, using (25), in lieu of (23):

Taxpayer/Line-Item Categories
α/Predictor Tips SEmp EIC SLns Cap Frm SSB
Intercept −2.098* −1.346ˆ 0.630***−0.467 −1.875***−1.375 −1.493*

(1.027) (0.770) (0.086) (0.639) (0.415) (1.527) (0.636)

Sex 0.691 1.488* 1.056*** 1.765*** 1.336*** 1.076 1.359***
(0.936) (0.622) (0.087) (0.318) (0.353) (1.431) (0.223)

Age 0.193 −0.193 −0.324***−0.388 −0.217 −0.438 0.263
(0.687) (0.411) (0.060) (0.272) (0.240) (1.093) (0.308)

Education −2.110* −1.814***−1.755***−2.244*** −1.613***−1.761 −1.825***
(0.996) (0.392) (0.080) (0.513) (0.259) (1.151) (0.212)

Income 0.132 −0.285 −0.744***−0.438** −0.002 −0.044 −0.348*
(0.539) (0.209) (0.058) (0.139) (0.146) (0.683) (0.144)

αMisc
0 −0.306** qMisc 0.114 L −20397

(0.117) (0.190) n 8251

With the exception of several insignificant coefficients, most of them differ by only a few
percentage points across the two models. Still, while the first model based on (23) yields
a higher likelihood, the second, alternative model, based on (25), not only offers more sig-
nificant coefficients but the mean probability of commission in ‘Misc’ line-items (i.e. qMisc)
falls closely to the rate inferred for non-categorical agents (i.e. pMisc = 0.114). While it is
tempting to recommend the second model over the first, the straightforward nature of the
first model also makes it a compelling candidate. At this point, the only explanation we
have for the more tightly bound coefficients in the alternative model is that the probabilities
to be fitted are such that the median variance is smaller than the primary model.

G.1 Line Item Model Revisited

Here, we offer an earlier line item model with Tips that assumed a restrictive marginal error
difference:

∆ptp,uid ∼ N(µ = 0.05, σ2 = 0.022)

where ∆ptp,uid = ptp,uid − p−tp,uid
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MLE Results SA Results
Variable Tips Misc Tips Misc
Intercept −2.623*** −1.092*** −1.602*** −1.088***

(0.145) (0.039) (0.313) (0.053)

Sex 0.108 0.427*** 0.641* 0.434***
(0.120) (0.033) (0.296) (0.048)

Age −0.142ˆ −0.598*** −0.397ˆ −0.580***
(0.081) (0.022) (0.218) (0.037)

Educ 0.008 0.034ˆ 0.475ˆ 0.062*
(0.073) (0.018) (0.244) (0.031)

Inc 0.024 0.099*** 0.180 0.151***
(0.046) (0.014) (0.156) (0.019)

n 10000 10000 10000 10000

G.2 Using Opportunities

Houston and Tran and Vogel both predict an approximately 10% increase in tax evasion
for self-employed individuals. One simple approach is to apply this difference across all
opportunity categories (i.e. taxpayer categories). However, Wahlund’s correlation of 0.21
confers up to a possible 37% increase in evasion due to self-employment, when we incorpo-
rate the 8.5% rate of self-employment in our PUMS sample; when we employ the inferred
correlation, via simulation, of ρ = 0.329, the increase in error reduces 20%, under Vogel’s
self-employment rate of 9.9%. However, when we assume that no opportunity strictly yields
no error, we find the error increase to be either 40% or 47% depending on which ρ we
employ.52 The following models differ in the uncertainty surrounding this 10% difference,
as controlled by the n portion of the standard deviation around a proportion, denoted as nLI:

1. nLI = 1

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept −1.48 −0.32 −3.22** −2.41* −1.95ˆ −0.53 −1.01 −1.38***

(1.48) (1.16) (0.90) (0.94) (1.14) (1.75) (1.70) (0.16)

Sex −0.19 −0.07 −0.01 0.12 0.55 0.12 −0.26 0.44***
(1.84) (1.19) (1.41) (0.76) (1.06) (1.85) (1.53) (0.08)

Age −0.82 −0.81 −0.73 −0.50 −1.11 −0.74 −1.54 −0.53***
(1.54) (0.91) (1.32) (0.67) (1.26) (1.46) (1.02) (0.10)

Education −0.52 −0.49 −0.72 −0.18 −0.96 −0.10 −0.07 0.05
(1.62) (0.68) (1.37) (0.58) (1.20) (1.52) (1.04) (0.05)

Income −0.76 −0.13 −0.83 −0.06 −0.17 −0.03 −0.31 0.12***
(1.62) (0.36) (1.67) (0.29) (0.45) (1.09) (0.82) (0.03)

52Refer to Appendix A.5.3 for the analysis.
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2. nLI = 2

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept −1.46 −0.30 −3.23** −2.41* −1.94ˆ −0.58 −1.00 −1.39***

(1.47) (1.15) (0.89) (0.94) (1.13) (1.71) (1.70) (0.15)

Sex −0.18 −0.08 −0.02 0.11 0.56 0.10 −0.25 0.44***
(1.84) (1.18) (1.41) (0.76) (1.05) (1.87) (1.52) (0.08)

Age −0.81 −0.81 −0.72 −0.49 −1.13 −0.73 −1.53 −0.53***
(1.53) (0.90) (1.31) (0.66) (1.26) (1.48) (1.01) (0.10)

Education −0.51 −0.49 −0.71 −0.18 −0.95 −0.16 −0.06 0.05
(1.61) (0.67) (1.37) (0.58) (1.19) (1.52) (1.01) (0.05)

Income −0.73 −0.13 −0.86 −0.06 −0.18 −0.08 −0.31 0.12***
(1.61) (0.36) (1.67) (0.28) (0.45) (1.13) (0.80) (0.03)

3. nLI = 15

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept −1.24 −0.26 −3.22** −2.45* −1.83ˆ −0.65 −0.79 −1.42***

(1.42) (1.15) (0.88) (0.90) (1.05) (1.65) (1.67) (0.14)

Sex −0.03 −0.12 −0.10 0.08 0.67 0.06 −0.11 0.45***
(1.86) (1.20) (1.34) (0.71) (0.91) (1.88) (1.35) (0.09)

Age −0.81 −0.82 −0.61 −0.41 −1.18 −0.73 −1.54 −0.52***
(1.45) (0.89) (1.15) (0.59) (1.19) (1.50) (0.96) (0.10)

Education −0.31 −0.50 −0.61 −0.11 −0.90 −0.24 0.04 0.05
(1.44) (0.67) (1.30) (0.49) (1.07) (1.52) (0.75) (0.05)

Income −0.47 −0.12 −1.08 −0.04 −0.19 −0.14 −0.30 0.12***
(1.18) (0.35) (1.56) (0.25) (0.40) (1.11) (0.61) (0.03)

4. nLI = 900

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept 0.39 0.94 −3.50***−2.21*** 0.54 −0.58 4.15***−2.56***

(1.06) (1.31) (0.34) (0.38) (0.44) (1.75) (0.88) (0.16)

Sex −0.51 −1.02 0.92*** 0.28 0.26 −0.38 0.47ˆ 0.41***
(1.63) (1.03) (0.23) (0.21) (0.60) (1.86) (0.23) (0.10)

Age −2.01ˆ −1.93ˆ −1.10***−0.68** 0.20 −0.74 −2.66***−0.31**
(1.16) (0.94) (0.25) (0.24) (0.42) (1.53) (0.38) (0.11)

Education −0.27 −0.32 −0.07 0.15 −0.86** −0.02 0.11 0.07
(1.05) (0.61) (0.14) (0.14) (0.31) (1.50) (0.11) (0.05)

Income −0.93 −0.06 1.22*** 0.05 −4.08***−0.31 −0.64** 0.26***
(0.67) (0.31) (0.16) (0.10) (0.95) (1.12) (0.19) (0.04)
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nLI = 150

Variable Tips SEmp EIC SLns Cap Frm SSB Misc
Intercept −0.51 −0.13 −3.75***−2.45***−0.34 −0.60 1.13 −1.81***

(1.26) (1.32) (0.58) (0.59) (0.62) (1.70) (1.15) (0.17)

Sex −0.13 −0.46 0.78ˆ 0.24 0.09 −0.14 0.46 0.42***
(1.76) (1.13) (0.39) (0.38) (0.71) (1.87) (0.43) (0.10)

Age −1.24 −1.09 −0.95* −0.60 −0.06 −0.71 −1.87** −0.46***
(1.25) (0.95) (0.39) (0.39) (0.61) (1.52) (0.53) (0.11)

Education −0.05 −0.34 −0.14 0.07 −0.75 −0.22 0.13 0.05
(1.11) (0.69) (0.27) (0.24) (0.47) (1.56) (0.22) (0.06)

Income −0.60 −0.05 0.97*** 0.02 −2.66* −0.21 −0.38 0.17***
(0.79) (0.34) (0.24) (0.15) (1.04) (1.10) (0.26) (0.03)

H Schemes and Credits

We briefly explored specific schemes and/or credits that taxpayers have been known to be
involved in. The presumptive sociodemographic constraints for each of the schemes and
credits (as outlined in Brian’s slides) are as follows:

Scheme/Credit < $30K College+ Black Children Middle-Aged–
Generic Scheme
Slavery Reparation + +
Home-Based Office – +
Generic Credit
EITC + +
Education Credit + +

The operationalization of each of these constraints as an indicator variable/flag requires
a heavy negative coefficient for the antithesis of the constraint . For example, a respondent
who is not black will not be involved with the ‘slavery reparation’ scheme; hence, the reverse
of the indicator (being non-black) will have a high negative coefficient, say −40, so that the
logistic regression will render the probability nil. Being black is tantamount to no negative
contribution from the (reversed) indicator, so that the rest of the coefficients can determine
the probability of involvement.

Enumerating each of these constraints into separate flags will allow for coding of a single
model that expects coefficients for the general set of sociodemographic coefficients plus all
the flags. Otherwise, we would require either several models or coding of additional ‘if-then’
conditions for each of the schemes/credits. The coefficients, particularly the ones for the
intercept and the flags, will vary per scheme/credit prediction. Hence the flags should be as
follows:

Income Education Race # Children Age
< $30K, > $30K < College Not Black No Children > Middle Age
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The β coefficients on these flags will be some large negative value, like −40. Note that we
require two flags for income; the first one is relevant to the ‘home-based office’ scheme, while
the second is revelant to both both ‘slavery reparation’ and EITC. If we allow all acts of
non-compliance to fall under one of the six scheme/credit categories, the total probability of
at least one scheme/credit occurring should approach our population estimate of 25%:

ppop
evade ≈ 1−

6∏
i=1

(
1− pscheme/credit

i

)

H.1 Two Variable Example

This section underscores the basics of the inference process using just the covariates for
sex, income, and race to infer models for involvement in one of the schemes and one of
the credits: the ‘slavery reparation’ scheme and EITC credit abuse. We first start with
a truncated version of the overall intentional error model, which predicts the logit of the
probability of one or more acts of non-compliance:

β0 = −1; βmale = 1.6; βincome = −0.96

where xincome ∈ {0, 1, 2, 3, 4} which corresponds to the income levels:

0 1 2 3 4
$0 – $15K $15 – $30K $30 – $50K $50 – $80K > $80K

The above coefficients yield a population intentional error rate of 25.8%.53

The predictive models for ‘slavery reparation’ (SR) and EITC credit are as follows:

logit(pSR) = α0 + α1 ·xmale + α2 ·xincome + α3 ·I(xrace 6= Black) + α4 ·I(xincome > 1)

logit(pEITC) = γ0 + γ1 ·xmale + γ2 ·xincome + γ3 ·I(xrace 6= Black) + γ4 ·I(xincome > 1)

in which we set the flag coefficients α3 = α4 = γ4 = −40 and γ3 = 0, since race matters only
to slavery reparation while income matters to both. We now set up the likelihood model to
solve for the α’s and the γ’s:

logit(pSR) ∼ N(logit(µSR = 1/1290 ≈ 0.001), σ2 = 1001)

logit(pEITC) ∼ N(logit(µEITC = 4.5/129 = 0.0349), σ2 = 29.7)

We take a moment to explain our mean parameters µSR and µEITC. In 2000, the IRS processed
129 million individual returns. And, according to one source, the 2001 estimate of the number
of returns containing attempts to obtain ‘slavery reparation’ refunds is 100,000; we round
the proportion to the nearest thousandth.54 Furthermore, in 1999, there were an estimated

53Here, we employ the 1985 General Social Survey as our source of covariance.
54We do this, in part, because we can find a solution with 0.001; so far, the Newton-Raphson does not

converge for the actual estimate.
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9 million returns containing EITC overclaims; we apply earlier findings from literature that
about half the errors (4.5 million) are intentional and the other half, inadvertent. The high
variance for each distribution is warranted considering our likelihood model fits each data
point, rather than a summary statistic such as average population commission of either
scheme/credit.

Finally, these two acts of non-compliance constitute only 3.6% of all returns or 13.9%
of all non-compliant returns, assuming independence of non-compliance conditional on the
covariance structure:

p{SR and/or EITC} = µSR + µEITC − µSR ·µEITC

0.036 =
1

1000
+

4.5

129
− 1

1000
· 4.5

129

This leads us to the final component of the likelihood model:

logit(p{SR and/or EITC}) ∼ N(logit(0.036), σ2 = 0.241)

The maximum likelihood fit, using both the 1985 and 2004 survey years of the GSS, yields
the following coefficients:55

General Social Survey Year
Parameter Predictor 1985 2004 Both

Slavery
Reparation



α0 Intercept −6.76 −6.52 −6.59
(40.00) (28.65) (23.16)

α1 Male 2.78 2.80 2.77
(41.43) (27.97) (23.06)

α2 Income −1.20 −0.86 −0.98
(36.78) (18.01) (16.71)

pSR 0.0003 0.0005 0.0004
nSR 63 150 213

EITC



γ0 Intercept −3.24*** −3.11*** −3.16***
(0.86) (0.71) (0.55)

γ1 Male 0.67 0.79 0.74
(1.06) (0.84) (0.66)

γ2 Income −0.36 −0.44 −0.41
(1.07) (0.85) (0.66)

pEITC 0.0277 0.0248 0.0259
nEITC 610 833 1443

L 109 165 274
nSR + nEITC 985 1688 2646

55We have used these two survey years in this paper for convenience; they have primarily informed our
social network inference. For studying non-compliance, we only require robust covariance between our socio-
demographic (non-network) variables, so their use here is arbitrary. Thus, it would behoove us to look at
other survey years, particularly 2000.
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While the coefficients are more-or-less similar across the survey years, indicating that the
covariance structure is consistent, we lose much of the predictive power, as evidenced by
the lack of significance, resulting in the predicted probability for ‘slavery reparation’, pSR,
falling short of the empirical estimate; these concerns will receive attention in the subsequent
analyses, in which we estimate models for the rest of the schemes and credits. One glaring
limitation is the lack of data points for ‘slavery reparation’; we might look to including other
GSS years to enhance the covariance structure.
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