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Abstract

It is hard to statically check a system’s conformance to its runtime architectural structure. Previous ap-
proaches address the code architecture, change the language radically, mandate implementation frameworks,
or use dynamic analyses that cannot check all possible program runs.
We propose a static approach that supports existing object-oriented implementations, but relies on program
annotations to encode architectural intent. We statically extract a hierarchical view of the runtime object
graph from the annotated program and map it into an as-built runtime architecture. We then check and
measure the structural conformance of the as-built and the as-designed architectures.
An evaluation on several systems showed that the approach can identify interesting structural non-
conformities.
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1 Introduction

Many architectural views are needed to describe a software system. A code architecture or module view

organizes code entities in terms of classes, packages, layers and modules. A system’s runtime architecture or
runtime view models runtime entities and their potential interactions [10].

Developers have a conceptual model of their architecture that is mostly accurate, but this model may
be a simplification of reality [33, 8]. Thus, checking the conformance of the implementation to its desired
architecture is a practically relevant problem [33, 8]. Previous research addressed the conformance of the
code architecture [33, 35]. But checking the conformance of runtime architectures remains challenging for
object-oriented systems, where a runtime view may bear little resemblance to a module view.

Some approaches delay conformance checking until runtime [37, 36], but a dynamic analysis can only
check a few program runs. To meet certain quality attributes, even an atypical system execution must not
introduce a critical architectural violation. A dynamic analysis cannot prove that a program always satisfies
a particular property. That requires a static analysis, ideally, one that is sound and reveals all entities and
relations that could possibly exist at runtime.

This paper describes an iterative multi-stage approach to statically check the conformance of a system to
an architectural description. We extend the extract-abstract-check strategy [33, 12], and: (a) add annotations
to the code to clarify the architectural intent; (b) extract a representation of the as-built runtime structure;
(c) abstract a representation of the runtime architecture suitable for comparison; and (d) run an analysis to
establish the key differences between the as-built and the as-designed architectures, both visually and through
conformance metrics. The approach uncovered a number of unexpected facts about the implementation of
several real representative object-oriented systems.

The approach builds on some of our previous work. First, we use a static analysis that extracts a
hierarchical representation of the runtime object graph from an annotated program [4]. This paper abstracts
that representation into a standard Component-and-Connector (C&C) runtime view [10]. Second, we adapt
a structural comparison algorithm [6] to conformance checking. Unlike synchronizing two views to make
them identical, conformance checking allows an as-built view to contain low-level details, and does not carry
them over into the as-designed view. To preserve soundness, the analysis still accounts for communication
in the as-built view that is not in the as-designed view.

This paper’s contribution is a semi-automated static approach to check the conformance of a system’s
runtime architecture. The approach uses program annotations instead of radical language extensions [8]
or implementation frameworks [29]. It relates a hierarchical object graph, that represents the instance
structure of source code entities, to an as-designed hierarchical runtime view. This paper also introduces
runtime architectural conformance metrics, qualified by annotation metrics.

Outline. The rest of this paper is organized as follows. Section 2 describes the overall strategy. Section 3
discusses abstracting an as-built runtime architecture. Section 4 discusses checking and measuring the
structural conformance. In Section 5, we evaluate the approach. A discussion and related work (Section 7)
round out the paper.

2 Positioning and Background

As a running example, we use Aphyds, an 8-KLOC Java system. Its original developer drew an as-designed
architecture (Fig. 1). User interface components are in the upper half. A circuit and computational elements
are the lower half. An Architecture Description Language (ADL) can model an informal boxes-and-lines
diagram such as the above. In a runtime view, a tier or group is a conceptual partitioning of functionality

[10]. For example, Aphyds follows a Document-View architecture and has two tiers.

Reflexion Models. Conformance checking relates source code entities to entities in a high-level model
[33]. Reflexion Models (RM), a standard in conformance checking the code architecture [21], works as follows.
In RM, a third-party tool extracts a source model from the source code. A developer posits an as-designed
high-level model and a map between the source and high-level models. RM pushes each interaction described
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Figure 1: Aphyds as-designed architecture.

in the source model through the map to infer edges between high-level model entities. RM then compares
the inferred edges with the edges stated in the high-level model and shows the differences. A developer can
iteratively: (a) modify the high-level model; (b) modify the source model; (c) modify the map; (d) trace a
conformance finding to code; and (e) optionally, change the code to avoid an architectural violation.

The Java RM tool, jRM [17], can map class Circuit to a circuit high-level element in a code architecture.
Assume briefly that RM supports tiers and qualifies an element by its tier using the :: symbol.
class Circuit to MODEL::circuit.

Let us hypothetically apply RM to runtime architectures to better understand the issues that would
arise. For a runtime architecture, the source model must reflect the runtime structure of the source code
entities. A class is not a runtime entity. Hypothetically, the above could indicate that all instances of the
Circuit class map to circuit. But in an object-oriented system, there is usually more than one instance
of any given class, and each instance can map to a different element in a runtime view.

Instead of mapping a class or all of its instances, we need to map runtime objects instead. But a static
analysis knows only about field or variable declarations in a program, which denote references to runtime
objects. For example, Main.circuit, a circuit field declared in class Main, points to an instance of the
Circuit class at runtime. Hypothetically, assume we extend jRM and map:

3



field Main.circuit to MODEL::circuit.

This introduces the issue of the map’s correctness. In an object-oriented system, multiple code elements
could map to the same element in a runtime view. A reference of type Circuit and one of type ICircuit,
an interface that Circuit implements, could alias and point to the same object at runtime. It would be
incorrect to map the same runtime object to multiple high-level elements. Somehow, we must map all the
references that may alias (i.e., refer to the same object), to the same element in the runtime view. In
addition, one must be able to map one code entity to multiple elements in a runtime view. To support
this feature, a previous system defines a context parameter using an annotation in the code, and binds that
parameter to different actual contexts using additional annotations [24]. But that system supports neither
inheritance nor hierarchy.

ADLs support the hierarchical decomposition of a component into a nested sub-architecture [30]. For
example, the Aphyds as-designed architecture shows node and net inside circuit’s sub-structure (Fig. 1). We
would like to model secondary node and net objects as part of the primary circuit object. So we create a
DB tier inside circuit, and map a field node to an element nested in DB:
field Circuit.node to MODEL::circuit.DB::node.

In summary, this paper generalizes previous maps [33, 24], accounts for inheritance and aliasing, and
relates a hierarchical high-level model to a hierarchical representation of the runtime structure of source code
entities.

2.1 Conformance Strategy.

We extend the extract-abstract-check strategy [33, 12]. The steps are:
1. Document the as-designed runtime architecture;
2. Abstract an as-built view from the implementation:

(a) Add annotations to the code;
(b) Extract a hierarchical representation of the runtime object graph, ideally, one that is sound;
(c) Abstract that representation into an as-built view;

3. Structurally compare the as-built and the as-designed architectures to check their conformance; and
4. Compute a measure of their structural conformance.
In the terminology of Murphy et al. [33], the conformance check identifies:

Convergence: a node or an edge that is both in the as-built view and in the as-designed view;
Divergence: a node or an edge that is in the as-built view but not in the as-designed view;
Absence: a node or an edge that is in the as-designed view but not in the as-built view.

2.2 Abstraction Strategy

At runtime, an object-oriented program can be represented as an object graph: nodes correspond to objects,
and edges correspond to relations between objects. Previous static analyses that do not use annotations
produce low-level non-hierarchical object graphs [16]. Such representations explain runtime interactions in
detail but convey little architectural abstraction ((Fig.2).

We follow Reflexion Models and avoid reverse engineering abstractions that architects do not recognize
[33]. In our approach, a developer guides the architectural abstraction by adding annotations to clarify the
architectural intent in the code. The annotations specify object encapsulation, logical containment and tiers,
which are not explicit constructs in general purpose programming languages. These annotations support
abstract reasoning about data sharing and make the extracted architecture reflect an architect’s design intent
rather than a tool’s heuristic.

The annotations specify and enforce the sharing of state between objects, a key challenge in extracting
a runtime architecture. This state sharing is often not explicit in object-oriented programs but instead, is
implicit in the structure of references created at runtime.

Annotations. The annotations assign each object to a single ownership domain that does not change at
runtime. An ownership domain is a conceptual group of objects with an explicit name and explicit policies
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Figure 2: Thumbnail of the Aphyds object graph obtained at compile-time by Womble [16]. Some node
labels become semi-readable after zooming in by 6400%.
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1 class Circuit {

2 public domain DB; // Declare public domain DB
3 domain OWNED; // Declare private domain OWNED
4 DB Node node; // Declare Node reference in DB
5 // Outer annotation is for container; inner one for its elements
6 OWNED Hashtable<String, DB Node> nodes;

7 }

8 class Viewer<M> { // Declare domain parameter M
9 M Circuit circuit; // Declare Circuit reference in M

10 }

11 class Main {

12 domain MODEL, UI; // Declare top−level domains
13 MODEL Circuit circuit;

14 // Bind domain parameter M to actual domain MODEL
15 UI Viewer<MODEL> viewer;

16 }

Figure 3: Partial Aphyds annotations.

that govern how it can reference objects in other domains [7].
Fig. 3 shows the annotations that a developer might add to some Aphyds classes. The actual annotation

system uses existing language support for annotations. But here, we use a simplified syntax that extends
the language. A developer indicates what domain an object is part of by annotating each reference to that
object in the program (Lines 4,6). One typically chooses domain names to convey architectural intent. We
use capital domain names to distinguish them from other program identifiers.

Ownership domains may be declared at the top level of the application (Line 12) or within an object
(Lines 2,3). Each object can declare one or more public or private domains to hold its internal objects. The
domains within an object express a sub-structure within the object, one that consists of other domains and
objects that represent its parts. Objects inside a private domain such as OWNED are encapsulated. But having
access to a Circuit object gives the ability to access instances of Node and Net inside its public domain DB.
An instance of the Viewer class accesses other objects in the MODEL domain, by declaring a formal domain

parameter M on the Viewer class, and binding that parameter to domain MODEL (Line 15).
Although a domain is declared inside a class, each instance of that class has its own runtime domain,

and whenever our analysis distinguishes two objects, it also distinguishes the domains they contain.
A typechecker validates the annotations, identifies where the annotations are inconsistent, or where the

code violates an annotation. For instance, one cannot have a public method that returns an alias to an
object inside a private domain. This instance encapsulation is stronger than making a field private to
restrict its module visibility.

Object Graph. A static analysis scans the annotated program’s abstract syntax tree and produces a
sound hierarchical representation of all possible runtime object graphs, the Ownership Object Graph (OOG).
Compared to non-hierarchical object graphs, an OOG provides abstraction by ownership hierarchy and by
types [4].

Collapsing many nodes into one is a classic approach to shrink a graph. However, an OOG collapses
nodes based on the actual runtime and ownership structure, not according to where objects were declared
in the program, some naming convention or a graph clustering algorithm.

An OOG is a graph with two node types, domains and objects. The nodes form a hierarchy where each
object node has a unique parent domain, and each domain node has a unique parent object. Edges between
objects correspond to field references or usage relations. The OOG uses a nested-box visualization. Dashed-
border white-filled boxes represent domains, and grey-filled boxes represent objects. A private domain has a
thicker dashed border. Field references are shown as solid edges. We label each object with one of its types.
A (+) symbol indicates an elided sub-structure.
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Example. One Aphyds OOG shows two top-level domains, MODEL and UI, and objects Circuit and Viewer

in those domains (Fig. 4(a)). In an OOG, a Circuit refers to a runtime entity, not the class Circuit, even
when we refer to an object by its type.

Key Properties. We highlight several properties of the OOG and their relevance to conformance checking.
Object Abstraction. Different executions may generate a different number of objects. The OOG

summarizes multiple runtime objects with a canonical object. For instance, there could be many Node objects
at runtime, but only one appears in the DB domain. In a runtime view, one component can represent many
instances at runtime.

The ownership domains type system guarantees that two references in different domains can never alias.
If two variables within the same domain may refer to the same object at runtime, the OOG shows them as
one. A runtime architecture would be deceptive if it showed one runtime entity as two components. For
instance, an architectural security analysis could assign one runtime entity two different values for a key
trustLevel property.

Object Lifting. The OOG transitively lifts objects from formal domains into actual domains, to
show all the objects in a given domain, not only those that were declared directly in that domain. Indeed,
the Circuit object in Viewer’s domain parameter M is the same as the Circuit object in the MODEL tier.
Lifting allows mapping multiple code elements to one runtime element. By binding one domain parameter
to different actual domains, lifting can also map one code element to multiple design elements.

Hierarchy. Conformance checking must distinguish between objects that are architecturally irrelevant,
and objects that exist in the implementation but are missing from the as-designed view. Typically, in an
OOG, only primary objects appear in the top-level domains. And each of those objects have more domains
and objects, until low-level objects are reached. For example, a Circuit object encompasses other objects
that are of type Node and Net. Hierarchy enables varying the abstraction level [38], to obtain an as-built
view that a tool can structurally compare to an-designed architecture.

Edge Lifting. Reflexion Models shows an edge from Viewer to FloorPlanUI, only if Viewer declares a
reference to a FloorPlanUI object. In an OOG, a Viewer references a Displayer, and Displayer references
a FloorPlanUI. Viewer holds Displayer in a public domain since it is not a primary object. When Viewer’s
sub-structure is elided, the OOG lifts that relation to Viewer, and shows a summary edge from Viewer to
FloorPlanUI, shown as a dotted edge in the OOG (Figs. 4(a), 4(b)).

Traceability. Each OOG element can be traced to a set of nodes from the program’s abstract syntax
tree.

Soundness. The OOG is proven sound [4].

3 Architectural Abstraction

C&C Definitions. We document the as-designed C&C view in the Acme general purpose ADL [14]. Most
other ADLs also support the following elements [30]. A Component is a unit of computation and state. A
Port is a point of interaction on a Component. A Connector represents an interaction among Components. A
System is a configuration of Components and Connectors. Acme also supports the hierarchical decomposition
of a Component into a nested sub-architecture. A Property is a name and value pair, associated with an
element. A Group is a named set of elements, such as a tier.

Architectural Types. We enrich the base architectural model with types and properties, which improve
the precision of the structural comparison [6]. Two generic Component and Connector types, CompT and
ConnT, respectively, hold properties for the conformance analysis.

A Port that provides services has type ProvideT, and a Port that requires services has type UseT. The
structural comparison uses the type information to avoid matching a ProvideT Port to a UseT Port, for
example.

Mapping an OOG to a C&C View. We represent the as-designed architecture as a C&C view. We
also convert an OOG into an-built C&C view for comparison with the as-designed view. We later refine
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the conversion to generate a more abstracted as-built C&C view, but for now, the base conversion works as
follows.

The root object of an OOG is often an instance of a class that only declares the top-level domains and
objects inside them. So the root object maps to a System, and the top-level domains map to the top-level
tiers in the System.

Each object in the OOG maps to a Component. An ownership domain d in the OOG maps to a Group

g. If an object o in a domain d, the corresponding Component is in Group g. The OOG hierarchy creates
architectural decomposition. If an OOG object declares domains and descendent objects, the corresponding
Component has a sub-architecture.

References between objects create Ports as follows, while excluding uninteresting self-edges. If object A

has a field reference of type T to object B, the corresponding Component A has a Port of type UseT and name
B. The Component corresponding to B has a Port of type ProvideT and name T. And a Connector connects
A to B.

Structural Constraints. To be structurally comparable, both the as-built and the as-designed views
follow similar conventions. In Acme, a Component can be included in more than one Group. But in ownership
domains, an object is in exactly one domain and that domain never changes. So a predicate enforces that
a Component or Connector is in exactly one Group. If Connector c connects two Components that are in the
same Group g, c must be also in g.

Port Directionality. An Acme Port has no built-in directionality. Its type specifies whether it provides
services (ProvideT) or uses services (UseT). In some cases, the as-designed view may have a Connector

between two Components, but the connection in the as-built view may be in the reverse direction. The
conformance check could make the Connector bi-directional, by assigning to the connection’s endpoints both
the ProvideT and UseT types. But this does not fit with showing divergences and absences. Instead, we adopt
unidirectional ports, i.e., the type can be ProvideT or UseT, and never both. For the above example, the
analysis shows a Connector, and ProvideT and UseT Ports, for the communication in the opposite direction.
Such a stylized use of ports also seems easier to understand [8].

Other conventions are possible, as long as both the as-designed and as-built views adopt them. For
example, to reduce clutter, one could have a single ProvideT Port and a single UseT Port per Component.

Abstraction and Conformance. An as-designed view is often an abstracted view of the system’s archi-
tecture. However, to avoid misleading developers, an as-designed view must still represent all communication
that could possibly exist in the as-built system. As long as a program is fully annotated and the annotations
typecheck, its OOG is a sound approximation of its runtime structure. And by construction, so is the as-built
C&C view.

To enable structural comparison, the as-designed and the as-built views must have a similar number
of top-level tiers, a similar hierarchical decomposition, and a similar number of components and tiers at
each hierarchy level. One achieves the desired number of components in the as-built view by refining the
annotations, controlling the OOG or adjusting its conversion to a C&C view.

One refines the annotations by pushing secondary objects underneath primary objects using the strict
encapsulation of private domains, or the logical containment of public domains. One controls the OOG
abstraction by ownership hierarchy and by types. We do not discuss here in detail abstraction by types in
an OOG [4]. For instance, we did not use that feature for Aphyds.

Additional Abstraction. For comparison with a manually generated as-designed view, we control the
conversion of an OOG into a C&C view, in the following ways:

Add types and properties. A developer optionally maps implementation types to architectural
types, to get a richer as-built view with types and properties.

Elide private domains. A developer optionally elides private domains, which typically contain
implementation details. For Aphyds, we elide the OWNED domain on Circuit, which stores Hashtables of
Node and Net objects (Fig. 4(b)). The conversion analysis adds summary edges to account for communication
through elided objects.
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(a) As-designed C&C view. (b) Conformance view. (c) As-built C&C view.

Figure 5: Displaying conformance.

Elide singleton tiers. In an OOG, each object is in a domain, so a systematic conversion would
create each Component in a Group. Architects typically define tiers only at the top-level, and those map to
the top-level domains. For example, requiring a single DB tier inside circuit would be counterintuitive. Unless
the developer requests otherwise, the conversion does not create a singleton tier inside a Component. Unlike
eliding private domains, the conversion still creates sub-components for the objects in those unmapped
domains. When skipping the private OWNED domain inside Circuit, the conversion creates node and net

directly inside circuit, and does not create a DB tier (Fig. 5.3).
Merge objects. Detecting split or merged nodes is difficult and currently unsupported [6]. A de-

veloper optionally merges selected objects in the OOG into one component, and the conversion merges the
corresponding edges.

Skip objects beyond a certain depth. The mapping converts the OOG up to a user-selected depth,
typically the hierarchical decomposition depth in the as-designed view. Reducing the as-built view size speeds
up the comparison. Restricting the hierarchy depth does not affect conformance, because summary edges
account for the elided substructures in a depth-restricted OOG.

4 Architectural Conformance

A system conforms to its as-designed architecture if the latter is a conservative abstraction of the system’s
runtime structure. The communication integrity principle stipulates that each component in the imple-

mentation may only communicate directly with the components to which it is connected in the architecture

[32, 27].

Assumptions. We compare the as-designed and the as-built architectures using a structural comparison
that works with hierarchical views, does not assume unique identifiers, detects renames and restricted moves
and allows forcing or preventing matches [6]. These assumptions closely match the problems of post-hoc
view synchronization and conformance checking.

Displaying Conformance. Unlike view synchronization, conformance checking does not actually modify
the as-designed view. Instead, the conformance analysis produces a conformance view of the as-designed
architecture, which shows convergences and absences graphically. It represents divergences by showing
additional Connectors that are present in the as-built view but are missing from the as-designed view.

Conformance Properties. All elements have a finding property, set to Convergent( ), Divergent ( ) or
Absent ( ). An element’s visual display is based on its properties.

All elements have a traceability property, a set of filename and line number pairs. The conversion of an
OOG to an as-built C&C view sets each element’s traceability property. For an element with a Convergent

or Divergent value for its finding property, the analysis sets its traceability property in the conformance view
based on its matching element in the as-built view. Based on this information, a developer can trace directly
to the pertinent lines of code, and not have to potentially review the entire code base.
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4.1 Checking Conformance

In conformance checking, the as-designed view is more authoritative than the as-built one. First, it is
an architect’s abstracted view, in that the components she included may be more relevant than those she
omitted. Second, she may have chosen names that convey her architectural intent. The analysis works as
follows:

Highlight differing connections: the analysis matches the components in the as-built view to
those in the as-designed view, and shows differing connections as divergences or absences. For instance, if
the as-built view has a connector between FloorPlanUI and Viewer, and the latter match the as-designed
components floorplanUI and viewerUI, the analysis shows as divergences the additional Ports and Connectors
between floorplanUI and viewerUI.

Use as-designed view names: element names in the as-designed and the as-built views may not
match exactly. The structural comparison can detect renames [6]. E.g., the check correctly matches as-
built Viewer component to as-designed component viewerUI. Unlike view synchronization, however, the
conformance analysis does not propagate the as-built view names to the as-designed view. For example, it
matches floorplanUI to FloorPlanUI and viewerUI to Viewer, and shows communication between floorplanUI

and viewerUI, without renaming them.
Summarize divergent components: If there are components in the as-built that are not in the as-

designed view, the analysis does not directly add them (Fig. 5), to avoid cluttering the as-designed view with
low-level implementation details. To enforce communication integrity, however, the analysis still accounts
for any communication in the as-built view that is not in the as-designed view, including communication
through these unmapped components.

In an as-built view, Node connects to Terminal and Terminal to Net (Fig. 5(c)). The as-designed view
has node and net, but has no component matching Terminal (Fig. 5(a)). The analysis matches node to Node,
and net to Net, respectively. It then shows a Divergent Connector from node to net in the as-designed view,
since one does not already exist (Fig. 5(b)). For emphasis, we decorate a summary Connector, which can be
either Divergent or Convergent, with the symbol.

Viewed differently, a summary Connector represents any objects in the as-built view that do not have
counterparts in the as-designed view. This allows an as-designed view to have a coarser granularity of
components, and optionally abstract multiple interacting objects with a connector.

Check matching sub-structures: As-designed views are often hierarchical. An OOG provides
abstraction primarily through ownership hierarchy by folding low-level objects into higher-level component
instances. Typically, as-built components will have more detailed sub-structures than their as-designed
counterparts. But the conformance check does not analyze the additional substructures, to avoid generating
many false positives. This preserves soundness because both the OOG and the as-built C&C view have
summary connectors that represent any communication through any elided or skipped substructures.

For instance, the as-designed viewerUI does not define a substructure. So the analysis ignores any sub-
structure in the corresponding as-built Viewer. But the as-designed circuit has substructure and matches
the as-built Circuit. In that case, the analysis recursively checks the substructures of circuit and Circuit.
When converting an OOG into a C&C view, we excluded private domains, such as Circuit’s OWNED. Since
OWNED is at the same level as DB, the analysis would have otherwise processed OWNED and generated undesired
divergences.

For each metric, we define: (a) base measures; (b) any derived measures; (c) indicators on how to interpret
those measures; and (d) the overall value or risk [28].

4.2 Measuring Conformance

Similarly to Reflexion Models (RM), we count edge convergences (CE), divergences (DE) and absences (AE).
However, in RM, if the map generates a node that is not the as-designed view, RM automatically adds it to
the as-designed view. As a result, RM has no divergent or absent nodes, and does not compute summary
edges. We count summary edges (SE), as well as node convergences (CN), divergences (DN), and absences
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(a) Graph gA. (b) Graph gB . (c) Editing gA.

Figure 6: Graph edit distance (GED).

(AN). In our approach, AN and DN indicate that the as-designed view omits components from the as-built
view, or uses a different system decomposition (Table 1).

To explain the source of the divergences and summary edges, the conformance check can optionally
show each Divergent Component in the conformance view, but does not show Connectors to such divergent
components.

To get one conformance metric, we combine edge divergences and absences, using the notion of graph edit

distance (GED) (Fig. 6). GED models inconsistencies by transforming one graph into another [11]. Typical
edit operations include the deletion, insertion and relabeling of nodes and edges. Each edit operation is
assigned an application-dependent cost. Here, renames have a zero cost. The edit distance of two graphs
gA and gB is the sequence of edit operations with the minimum cost that transform gA into gB . Fig. 6(c)
transforms gA into gB with 2 edge insertions (I) and 1 edge deletion (D) in dotted lines, i.e., GED = 3.

Computing the GED is NP-hard, except for graphs with unique node labels [11], which is not the case
for architectural views. Having a mapping between the nodes in the two graphs, which we obtain using
structural comparison, is like having unique labels.

CCM. The Core Conformance Metric (CCM) counts the number of unique edge deletions (D) and
insertions (I), i.e., the absences (AE) and divergences (DE), respectively, that would make the as-built view
account for all communication in the as-designed view. To get a percentage, we divide by the total number
of edges and subtract from 100%. It is better to have fewer absences and divergences. So a higher CCM
value indicates a higher structural conformance.

CCM = 1 −

AE + DE

CE + AE + DE

Annotation Metrics. Reflexion Models tracks unmapped entries in the source model. Similarly, we
qualify our conformance metrics with measurements of the program annotations. To measure the percentage
of the program that lacks annotations, we use a derived measure, WARN, namely the number of annotation
warnings that the annotation typechecker generates. Except for some defaults for immutable objects, such
as those of type String, every field, variable declaration, or method return, that is a reference to an object,
and has a missing or incorrect annotation, generates a warning (we mostly avoid multiple warnings due to
one missing annotation). The metric WARN% normalizes WARN by the number of object references the
program declares. WARN% is an indicator of how many annotations are missing to make the OOG soundly
represent the as-built runtime architecture. A lower WARN% is better. For a program without annotations,
WARN% will be high. As valid annotations are added, WARN% decreases. For Aphyds, WARN% is 5%.

All the subject systems we studied still have warnings that require refactoring the code or increasing the
type system’s expressiveness. We manually examined the warnings and believe they do not contribute to
missed architectural violations.
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5 Evaluation

The evaluation aimed to answer the research question: Can the approach identify interesting architectural

structural non-conformities in real object-oriented systems?

5.1 Tool Support

We developed several Eclipse plugins to relate C&C views, OOGs and Java source files:
AcmeStudio is an Acme modeling environment [14];
ArchDomJ typechecks the annotations;
ArchRecJ recovers an OOG from annotated code;
ArchCog maps an OOG to a C&C view (Section 3);
ArchConf checks the conformance between two C&C views and computes the metrics (Section 4);
CodeTraceJ loads the traceability of an element selected in a C&C view, opens the corresponding Java
files, and highlights the appropriate lines of code;
ArchMod modifies the original as-designed view to actually add a selected Connector marked as Diver-

gent, or delete a Connector marked as Absent.

5.2 Methodology

Typically, the developer iterates one or more steps in the process. In Eclipse, the developer uses the AcmeStu-
dio perspective to build the as-designed architecture. She then switches to the Java development perspective,
loads the implementation project, adds ownership domain annotations to the code as Java 1.5 annotations,
and invokes ArchDomJ. She double-clicks on a warning in the Eclipse problem window to go to the offending
line of code. Once the program is mostly annotated, she uses ArchRecJ to extract an OOG, and refines
the annotations until the OOG has a number of top-level components roughly comparable to that in the
as-designed view.

The developer then invokes ArchCog to convert the extracted OOG into an as-built C&C view. ArchCog
allows her to map implementation types to architectural types, elide private domains and restrict the projec-
tion depth. She then points ArchConf to the as-built and as-designed views, and examines the comparison
results.

In ArchConf, the developer accepts the comparison results or manually forces or prevents matches between
the two views and reruns the comparison. ArchConf then creates a conformance view of the as-designed
architecture, and displays the conformance metrics in an output window. In the AcmeStudio perspective, the
developer examines the conformance view, and investigates unexpected divergences. She uses CodeTraceJ
to confirm a convergence or trace a divergence to the code. If the divergence is critical, she may modify the
implementation to eliminate the architectural violation.

ArchConf does not modify the original as-designed view, but creates a conformance view as a copy. A
developer can use ArchMod to commit a selected divergence or absence to the as-designed view.

In some cases, it may be difficult to find a documented as-designed runtime architecture for an existing
system. In that case, getting an abstracted as-built C&C view may have value in itself. If a manually
generated as-designed view is missing or out-of-date, the developer could take an as-built C&C view, elide
unwanted detail from it, and treat it as an as-designed view.

Experience Overview We evaluated the end-to-end approach on three representative real systems to-
taling 38 KLOC. The study’s subject (one of us, hereafter “we”) developed several of the tools, but none
of the subject systems. We iteratively annotated the code, extracted as-built views and related them to
diagrams drawn by the original developers. The as-designed architectures we studied omitted connections,
components or entire subsystems.
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Figure 7: Aphyds conformance results.

5.3 Extended Example: Aphyds

We now complete the evaluation of the Aphyds system.

As-Designed Architecture. We based the Aphyds as-designed architecture on the informal diagram
(Fig. 1), but iterated it a few times. We initially forgot to add a Connector joining two Components inside
a Group g to that same Group g. This resulted in badly matched connectors. We also forgot to reverse
the direction of arrows in the developer’s diagram when adding some connectors [8, p. 192]. Because the
structural comparison does not detect splitting or merging, we represented one component labeled “Place +
Route” in the informal drawing (Fig. 1) as two separate components, placeRouteUI and channelRouteUI.

Annotations. We also iterated the program annotations, the OOG extraction, the conversion to a C&C
view, and the conformance check. Table 1 shows how the conformance metrics evolved between the two
iterations.

Iteration 1. We initially organized the Aphyds objects into two top-level domains. UI holds a Viewer

object and several subsidiary user interface objects. MODEL holds a Circuit object and computational objects
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that act on it, such as Floorplanner. We also defined several private domains to hold objects encapsulated
by their parent, such as Hashtable objects inside a Circuit object.

These annotations produce an OOG that is hierarchical, as the (+) sign indicates (Fig. 4(a)). But that
OOG still has many objects in the top-level domains, and so does the C&C view that ArchCog generates
from that OOG suffers.

Conformance Metrics. The conformance check does not produce good conformance metrics (Table 1).
For example, because Circuit, Node and Net are at the same level in the as-built C&C view, the conformance
check marks as Absent the node and net components inside circuit (2 node absences).

The as-built C&C view has many more components in the top-level tiers than the as-designed view,
hence the high node divergences. Moreover, the conformance analysis generates many summary connectors
to account for possible transitive communication, and this accounts for the high number of edge divergences.
For example, Displayer communicates with Terminal, and Terminal with Placer. In reality, Terminal is
part of Circuit, and Circuit already communicates with Placer. Ideally, the analysis should just mark as
convergences the connection between Displayer and Circuit, and the one between Circuit and Placer.
Instead, since the analysis lacks information about logical containment, it shows a divergent summary con-
nector from Displayer to Placer, and many others (97 in total). This almost turns the conformance view
into a fully-connected graph and makes it unreadable.

Iteration 2. Using the as-designed architecture as a guide (Fig. 1), we defined several public domains.
Some of these domains contain objects that we are trying to hide from the top-level tiers. For example,
Viewer has a DISPLAY public domain to hold a Displayer object that other UI objects, such as FloorPlanUI,
reference. But Displayer is not in the developer’s diagram (Fig. 1).

Public domains can also abstract low-level objects into higher-level components. For example, Circuit
holds objects such as Node and Net inside its DB public domain, to reflect the as-designed architecture
(Fig. 1). Refining the annotations to define public domains required mostly local and incremental changes
to the annotations.

With the revised annotations, many objects that were in the MODEL top-level domain, such as Node, Net
and Terminal, moved into public domains of other objects, such as Circuit (Fig. 4(b)). This OOG has
a system decomposition close to one in the desired architecture (Fig. 1), and by construction, so does the
as-built C&C view.

Conformance Check. Iteration 2 matched the components better, with 0 node absences and 1 node
divergence, which corresponds to Terminal. The analysis now marks as Convergent, both node and net

inside circuit, as well as the connectors between them (Fig. 5.3). In the as-built system, node and net do
not communicate directly, but only do so through Terminal. So the two Convergent Connectors inside circuit

have the summary decoration (the earlier explanation and example of summary connectors in Fig. 5 were
in fact adapted from this part of Aphyds).

Study Findings. The as-designed architecture (Fig. 1) is only about 60% accurate, based on the CCM
metric. Indeed, there are several divergences between viewerUI and other UI components, between UI and
MODEL components, and among MODEL components. Many uni-directional arrows turned out to be bi-
directional in reality. A developer could use ArchMod to update the as-designed architecture with some of
the divergent connectors.

One divergence that crosses tiers, from placer in MODEL to placeRouteUI in UI, was a red flag (the dark
colored connector in Fig. 5.3). As a multi-threaded application, Aphyds must respect certain framework-
specific conventions to call back from a worker thread executing a long-running operation into the user
interface thread. We used CodeTraceJ to trace this divergence to a PlaceRouteUI field inside class Placer,
and inspected the code to make sure that it handled the callback correctly.
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Table 1: Aphyds conformance metrics.
Iteration CN DN AN CE DE AE SE CCM

1 11 11 2 23 89 0 97 21%

2 13 1 0 16 11 1 2 57%

Performance. For Aphyds, the OOG extraction takes around 10 seconds, and the structural comparison
takes between 57 seconds (Iteration 1) and 33 seconds (Iteration 2). We measured these times on an
Intel Core 2 Quad Processor (2.40GHz) with 4GB of RAM running Windows XP.

Discussion. Aldrich et al. previously studied Aphyds, and identified similar architectural violations, but
only after they re-engineered it to ArchJava [8]. They manually defined, in code, over 20 component classes
and over 80 ports, refactored the program to neither take as argument nor return any reference to an instance
of a component class, and inadvertently injected several defects [8].

In a C&C view extracted from ArchJava, Component a appears inside Component b if a instantiates b

as one of its fields. So it may not be enough to simply convert a Java class into an ArchJava component

class: one may need additional component classes just to capture the intended system decomposition.
Using our annotation-based approach, one can achieve the desired decomposition with private and public
ownership domains, and without defining additional classes. During our Aphyds evaluation, we just added
annotations to the original Java program, without refactoring it, and followed the rest of the approach.

Adding ownership annotations to an existing system is less invasive than re-engineering it to ArchJava
to expose its architecture [5]. The annotations, unlike ArchJava, do not change the system’s runtime seman-
tics. The annotations also support common object-oriented idioms, including passing references to objects.
Moreover, an ArchJava component class cannot have public fields. When using ownership annotations,
such legal Java fields can be placed in public domains. Aldrich et al. added ownership types to 3,500 lines
of Aphyds in 4 hours, a quarter of the time they spent re-engineering Aphyds to ArchJava [8].

We also conducted a field study to more reliably estimate the annotation effort. The first author spent
35 hours adding annotations to extract an OOG from a 30-KLOC module of a 250-KLOC system (WARN is
still high, however). The architects did not provide us with an as-designed runtime architecture, however,
so we could not check its conformance [3]. We could not have re-engineered that module to ArchJava in the
same few days. So, for existing systems, annotations seem more adoptable than language extensions.

5.4 Extended Example: JHotDraw

JHotDraw (Version 5.3) has around 200 classes and 15,000 lines of Java. JHotDraw is a significant example
in the object-oriented community, that is open source, rich with design patterns, uses both composition and
inheritance heavily, and has evolved through several versions.

As-Designed Architecture. As is the case for many legacy systems, we were unable to find a documented
execution architecture for JHotDraw. We did find however a documented abstracted code architecture [2,
Fig.6]. Of course, the execution architecture may be significantly different from the code architecture. We
used the code architecture as an estimate to be refined by the conformance checking step. For each class in
the code architecture, we created a component instance. Then, for each association in the class diagram, we
created a connection between the corresponding components.

JHotDraw’s architecture posed another challenge. From a previous study, we knew that a Drawing was
actually implemented as a Figure, contrary to the as-designed code architecture [1]. So the OOG, and thus by
transformation, the as-built view, represented both Drawing and Figure with one runtime component. Had
we modeled Drawing and Figure as separate in the as-designed view, the structural comparison would not
have detected the splitting or merging [6]. This led us to merge Drawing and Figure into one DrawingFigure
component in the as-designed view.
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Figure 8: JHotDraw as-designed architecture documented in Acme.

Annotation Process. An often cited article discusses how JHotDraw follows the Model-View-Controller
design pattern [18]. The JHotDraw package structure does not reveal that fact, since all the core types are
in the same package. We added annotations to JHotDraw without refactoring, and organized objects into
the following domains [2]:

Model: consists of Drawing, Figure, Handle objects, etc. A Drawing is composed of Figures. A
Figure has Handles for user interactions;
View: consists of DrawingEditor, DrawingView, etc.;
Controller: Tool, Command and Undoable objects. DrawingView uses a Tool to manipulate the
Drawing.

Results. ArchConf detected many renames and a few missing components, such as an Undoable in
Controller and an UndoManager in Model Many connections, we thought to be unidirectional, such as
between components DrawingView and DrawingEditor, turned out to be bi-directional (Fig. 10).

There was however one big surprise: there were no callbacks from Model into Controller! In the base
MVC pattern, a controller registers itself with the model and receives notifications. Since there is no controller
component, we suspected that the view acts also as controller, a common implementation optimization.
Indeed, in the JHotDraw “CRC Cards View”, the designers mention that DrawingView “handles input
events” [13, Slide #10], a controller responsibility.

We looked more closely at the as-built C&C view and noticed a connection between Handle in Model

and Undoable in Controller. But since Undoable did not connect to Tool, the conformance check did not
add a summary connector between Handle and Tool. This example justifies the need for richer conformance
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Figure 9: JHotDraw as-built architecture documented in Acme.

Table 2: JHotDraw conformance metrics.
System CN DN AN CE DE AE SE CCM

JHotDraw 9 8 0 23 49 0 72 32%

JHotDraw (no summaries) 9 8 0 16 7 0 0 70%

metrics that reflect the entire as-built view and not just divergences.
In fact, the as-designed architecture focused on the domain model and ignored the application model,

which includes UndoManager and Undoable. These components are a later addition, part of a somewhat
independent subsystem to implement undo, not mentioned in the documentation.

Metrics. The low CCM indicates a large proportion of divergences and absences (Table 2). This was to
be expected because of how we obtained the as-designed view. Moreover, the as-designed view is missing
several top-level components, in each of the tiers.
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Figure 10: JHotDraw conformance results, with summary edges.

5.5 Extended Example: HillClimber

HillClimber is a 15,000 line Java application that was originally developed by undergraduates. HillClimber
is interesting because it uses a framework, and its architectural structure had degraded over the years [2].

As-Designed Architecture. We based the as-designed HillClimber architecture on available documen-
tation. In HillClimber, the application window uses a canvas to display nodes and edges of a graph to show
the output of a computational engine. Based on a hint from one of the original framework developers, we
posited that the engine component need not connect to window or canvas.

Annotation Process. The ownership annotations organized objects into a data domain to store the
graph, a ui domain to hold user interface objects, and a logic domain to hold the engine, search objects,
and associated objects. While adding annotations to HillClimber, we refactored the code to reduce coupling
between ui and data objects [2]. The refactoring however did not affect the relationships between object in
the logic and ui tiers.

Results. The conformance check confirms that engine connects to both window and canvas, contrary to
the as-designed architecture (Fig. 14).

Metrics. The CCM is high since very few edges were affected (Table 3). The high node divergence is due
to an as-designed view that has fewer elements at the top-level than the as-built view. The developer must
either enrich the as-designed view by representing additional components in the logic tier, or refine the
annotations to push more components in the logic tier into engine’s substructure.
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Figure 11: JHotDraw conformance results, without summary edges.

Figure 12: HillClimber as-designed view.

Table 3: HillClimber conformance metrics.
System CN DN AN CE DE AE SE CCM

HillClimber 4 14 0 10 2 0 12 83%
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Figure 13: HillClimber as-built view.

Figure 14: HillClimber conformance results.

6 Limitations

We discuss some limitations of the approach.
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Annotations. Ownership inference is a separate problem and an active area of ongoing research [31, 26].
Previous ownership inference techniques can infer encapsulated objects in private domains and unaliased
objects [25]. But they do not infer public domains, do not infer domain parameters [25] or infer too many
parameters. So we used medium-sized programs under 50KLOC that we annotated manually.

Until there are better tools for adding annotations, our approach does not have the characteristic of
Reflexion Models that third-party users can easily run on large bodies of code [33]. As a result, a study with
an outside developer would be difficult given the nature of the approach. It may take a novice participant a
least a week to learn the technique, add the annotations mostly manually, and apply the rest of the approach
on a medium-sized system.

Architectural Extraction. The extracted C&C view is an approximation of the actual execution struc-
ture, one that is conservative and may show more communication than any system execution may have, by
virtue of using a sound static analysis. Our evaluation indicates that the extracted architectures do not
suffer from too much or too little abstraction [4]. However, our approach handles neither heterogeneous or
distributed systems, nor dynamic architectural reconfiguration [34].

Structural Comparison. If the views are very different, the structural comparison may fail to match any
components in the as-built view to the as-designed view. In that case, the comparison will not be useful
since all components will be absences. One can then manually match the as-built and the as-designed view
elements at the cost of additional effort. Finally, the algorithm is quadratic in the view sizes. So, while it
scales to up to a few thousand nodes [6], very large architectures may be intractable.

7 Related Work

Hierarchical Views. Reflexion Models (RM) uses non-hierarchical high-level models and maps. Koschke
et al. extended RM with hierarchical models [22]. The OOG is hierarchical and so is the as-built C&C view.

Edge Lifting. Many approaches that handle hierarchical models also account for substructure by lifting
edges [22]. For example, in a code architecture, a summary edge is lifted from a function call to a module
[39]. We use edge lifting in several places. By construction, an OOG lifts object relations from child objects
to their parents. Converting an OOG to a C&C view also lifts some relations.

For example, an OOG can have an edge from Displayer to Node inside Circuit’s public domain DB.
But the C&C view lifts that relation to circuit and shows a connector from Displayer to circuit.

Transitive Relations. Ommering et al. create a second module view that displays the transitive closure of
a relation in one module view [39]. We compute the transitive closure of object relations, in the conformance
view, and show them as summary connectors. Such a connector summarizes several connected objects with
an edge. Similarly, when converting an OOG into a C&C view, we may add transitive edges to account for
elided private domains.

Automated Mapping. Koschke et al. proposed semi-automated clustering algorithms to build an RM
map [9]. In an evaluation on a code architecture, the engineer spent significant effort to derive a good
partial mapping, and fine-tune the clustering parameters. An automated clustering may not always derive
an architecture that is structurally comparable to a manually generated one. Our Aphyds evaluation showed
how crucial that can be for a meaningful conformance check (21% vs. 57% CCM in Table 1).

Although better algorithms are needed, ownership annotations are amenable to type inference [25]. With
precise and scalable inference tools, we believe our approach can scale to large systems.
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Graph Comparison. Few conformance checking approaches compare the as-built and the as-designed
view using a structural comparison. For instance, RM assumes that node names and optional token types
match exactly. Unique node identifiers simplify the graph comparison considerably [11]. But without that
assumption, our analysis can detect renames between the as-built and the as-designed views. This feature
ensures that the conformance check is not sensitive to object labels. For example, an object in the OOG
merges several field or variable declarations in the program. Each object reference that the program declares
could have a different name or type. And the OOG nondeterministically selects a label for a given object o

based on the name or the type of one of the object references that o represents.

Code Architecture. Several approaches capture various structural constraints on the code architecture.
Sangal et al. enforce constraints on a module view using package dependency rules [35]. Feijs et al. check
rules such as cycles [12] in a code architecture. Lague et al. compute metrics that compare the layers in the
as-designed and the as-built code architectures [23]. Our approach is complementary, focuses on the runtime
architecture, and computes metrics to relate the as-designed and the as-built runtime architectures.

Architectural Recovery. No previous technique recovers a hierarchical runtime view from a program in
a general purpose language, entirely statically. Most approaches use a mix of dynamic and static analysis.
As mentioned earlier, a dynamic analysis cannot prove that a program always satisfies a particular property.
Our approach relies on machine-checkable ownership annotations, which enable it to soundly approximate
the runtime instance structure, at compile-time.

In many approaches, the architectural abstraction is based on information such as directory structures,
naming conventions, or various clustering algorithms [19], which take parameters that a developer can adjust.
In our approach, a developer finely controls the abstraction with user-specified annotations. When we convert
an OOG into an as-built C&C view, we exploit features such as the ownership hierarchy and the semantic
distinction between private and public domains. In ARMIN, scripts can aggregate information, usually based
on naming conventions, and produce higher-level views [20]. Currently, merging or splitting OOG objects
into as-built C&C view components requires user interaction. More general user abstraction rules, similar
to ARMIN, could be added in future work.

Language Solutions. Language-based solutions enforce conformance to a runtime architecture using a
type system [8]. Similarly, the C2 ADL mandates a specific architectural framework [29]. But without
following style guidelines, developers can still introduce architectural violations.

Conformance By Design. Generating an implementation from an architecture guarantees initial con-
formance [32]. Maintaining conformance requires always changing the specification then re-generating the
implementation from the updated specification. Such approaches are often too restrictive and do not handle
legacy code. Our post-hoc conformance checking handles legacy systems.

Object Graphs. Several analyses extract non-hierarchical object graphs statically without annotations
[16]. Such an object graph does not convey architectural abstraction, and cannot be converted into an
as-built view that is structurally comparable to an as-designed view.

Several dynamic analyses infer hierarchical object graphs without using annotations [15], but their results
describe only the structure for those program runs. They also adopt a restrictive form of ownership. In
ownership domains, an annotation can push almost any object underneath any other object in the ownership
hierarchy. This expressiveness is crucial to avoiding an architecture with many objects in the top-level tiers.
Our evaluation showed how crucial that can be for a meaningful conformance check.

Lam and Rinard proposed a type system and an analysis (which we call LR) that uses non-ownership
annotations to extract a design from code [24]. LR extracts non-hierarchical object graphs that do not
convey architectural abstraction. For Aphyds, LR would produce an object graph with even more top-level
objects than Fig. 4(a).
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Dynamic Analyses. DiscoTect [36] recovers from a running system an as-built C& view with archi-
tectural types. DiscoTect does not require annotations, but its results reflect only the particular inputs
and exercised use cases. DiscoTect generates non-hierarchical C&C views that show one component for
each instance created at runtime. Our OOG extraction and OOG-to-C&C conversion produce hierarchical
as-built views that represent all possible program runs, as long as the annotations typecheck. DiscoTect

does not check the conformance of the extracted views. The rest of our approach could apply to C&C views
produced by DiscoTect.

Even though the cost of adding annotations is high, it is incurred once. In contrast, the cost of a dynamic
analysis is incurred each time the analysis is run. The annotations can remain the program, and evolve with
it. As the developers add new code or modify existing code, they can incrementally add annotations to the
new code, and ensure that the annotations still typecheck.

View Synchronization. Our conformance analysis specializes our view synchronization work [6]. The
key changes include processing the view differences asymmetrically (Section 4) and computing conformance
metrics. For instance, even though the structural comparison detects renames, the conformance analysis
rolls back the detected renames, to represent additional communication in the as-built view in terms of the
as-designed view.

The hierarchical data used by the structural comparison now includes Groups, i.e., a Component or
a Connector is a child of its owning Group. This extra level of hierarchy improves the precision of the
comparison, and enables it to distinguish better between the Connectors within a given tier (which would
belong to the same Group) and the ones that cross tiers (which would not be inside a Group).

8 Conclusion

We presented a semi-automated approach for statically checking the conformance between an as-designed
and an as-built runtime architecture. The approach found interesting structural non-conformities in several
real systems.

The approach uses annotations, supports existing object-oriented languages and designs, and does not
require language extensions or implementation frameworks.
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