Tradeoffsin Byzantine-Fault-Tolerant
State-M achine-Replication Protocol Design

Michad G. Merideth

March 2008
CMU-ISR-08-110

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Many state-machine-replication protocols perform the esaasks of tolerating Byzantine faults
and guaranteeing consistency in an asynchronous envirdnnt&owever, each protocol seems
uniquely complex in part because commonalities are losestdptions of the protocols. In this
paper, we identify Byzantine quorum systems as a unifyingpfan the design of each protocol.
Leveraging this, we present a framework of high-level, dagjphases, which may be optimistic or
pessimistic, as a path to understanding: the number of Iser@quired; the number of faults that
can be tolerated; and the number of rounds of communicatigplayed by each protocol. Our
framework highlights a tradeoff between the number of reuaficommunication required and
the maximum number of faults that can be tolerated. Furtbegmt highlights an independent
tradeoff between an additional round of communication aossibly unnecessary computation.
We use the framework to describe three mainstream statbineaceplication protocols and their

variants.

This work was partially supported by NSF grant CCF-0424422.

Keywords: Distributed systems, Byzantine fault tolerance, state maafeplication, quorum
systems, survey

1 Introduction

State machine replication [18] is a way to implement a fanliérant stateful service. It involves
replicating the service (i.e., running multiple copies)ielguaranteeingonsistency-the illusion

of a single centralized service. Conceptually, the opematfmrovided by the service are mapped
to the state transitions of a deterministic state machimehEeplica runs a copy of the state ma-
chine. The state-machine-replication protocol maintaorssistency by ensuring that each replica
processes the same requests in the same order.

Byzantine-fault-tolerant state-machine-replicationtpcols (e.g., [16, 8, 4, 17, 3, 20, 10, 15,
1]) are powerful because of their ability to work even if upbtof the n total replicas and any
number of the clients are faulty such that they behave ariditror maliciously (i.e., Byzantine
faults [11]). Unfortunately, due to the Byzantine fault mbde single replica or client can be
trusted independently to provide the same ordered sequéctient requests to all replicas.

Instead, the non-faulty replicas work together to chooses#me request ordering and to ensure
that they all receive the same requests. However, this iptoated by arasynchronous timing
mode] i.e., one in which messages might be delayed for arbitrangths of time. In such an
environment, it is impossible to ensure consistency whneitaneously ensuring availability (i.e.,
allowing for operations to complete) [8].

A number of state-machine-replication protocols (e.g.1[4 20, 10, 15, 1]) choose to guaran-
tee consistency in an asynchronous environment while gxgsavailability only during periods of
synchrony in which messages to/from non-faulty replicasdalivered in a timely fashion. These
protocols maintain consistency by using Byzantine quorustesys [13], which require only any
qguorum (subset) of the replicas to be involved in any openatinherently, the use of Byzantine
guorum systems allows the protocols to maintain consigtesdle making progress even if some
replicas never receive or process requests.

Despite the commonalities of the protocols, some such as BH&afd its derivatives like [17,
20, 10]) are commonly labeled atomic-broadcast protoauiisers like Q/U [1] look more like
Byzantine-quorum system protocols, while still others Hed3 Paxos [15] seem to fall somewhere
in between.

However, as we show, the common use of Byzantine quorum sgstethese protocols pro-
vides a basis for their comparison. We present a framewofkwofhigh-level phases: propose;
accept; update; and verify. The framework allows us to comgze designs of the protocols, and
to see the tradeoffs made in terms of the number of servetsree the number of faults that
can be tolerated, and the number of rounds of communicatiquired. The accept and update
phases may be either optimistic or pessimistic. An optimigtcept phase requires an opaque
guorum system construction, and therefore at |dast 1 servers; a pessimistic accept phase can
use dissemination or masking quorum systems, and thera$desv assb + 1 servers, but requires
at least one additional round of communication. An optimispdate phase allows replicas to
process requests that may later be given a different ogtegipessimistic update phase requires

Lntuitively, this is because one cannot distinguish betwaéaulty replica that is not responding, and a non-faulty
replica that is slow in responding or from which messagesdetayed. Therefore, a non-faulty replica generally
cannot wait for more than — b responses from different replicas before proceeding,s& B$k waiting indefinitely.

an additional round of communication, but allows replicabé confident that the request ordering
is permanent before processing.

2 Prdiminaries

We begin with: (i) the system model; (ii) a summary of the itatun behind common set sizes like
n — b and2b + 1; and (iii) a review of the three types of quorum systems eeldb the protocols
we survey.

2.1 System Mod€

The system consists of a univergef n replicas, and an arbitrary, but bounded, number of clients.
There is a seB C U that represents thefaulty replicas; the composition db is known by the
faulty clients and replicas, but not by the non-faulty ondse remaining: — b replicas, i.e.[/ \ B,

are non-faulty. Faulty replicas and clients can behaverariy (i.e., Byzantine faults [11]), but, as

is typical, are computationally bound such that, e.g., te@ynot subvert cryptographic primitives
(e.g., cryptographic hash functions) used in the protocdlse protocols maintain consistency
without assumptions about the processing rates of notyfaliénts and replicas or the message
delays of the network (asynchronous timing model). Howeleeravailability, these delays must
be finite, and the processing rates must be non-zero.

2.2 Sizesof Sets

The meanings of quantities suchras- b, b + 1, and2b + 1 can be a source of confusion. This is
sometimes compounded in descriptions of the protocols bgtgution of quantities that are not
necessarily equivalent in all contexts. For example, thentjty 2b + 1 has been used for at least
three distinct conceptual purposes (described in morel detaw): (i) the maximum number of
responses for which to wait given the asynchronous timingeh® — b); (ii) a set with a non-
faulty majority b + 1); and (iii) the set size that guarantees at least one ndtyfeaaplica in the
intersection of any two set$((» + b+ 1) /21). As seen in the following equations, these quantities
are equivalent under the BFT assumption that 3b + 1:

[(n+b+1)/2]
=[(3b+1+b+1)/2]
= [(4b+2)/2]
=(20+1).
(n —b)
=3b+1-0)
=(20+1).
However, these quantities are not necessarily equivaleah @ther values fon or other types of
quorum systems. Note in particular that- band|(n + b + 1)/2] depend on the values ofand

2

b while 2b + 1 depends only oh. Because these quantities are very different concepttladiyise
of a single identifier like2b + 1 can make the description of a protocol difficult to decipher.

Guaranteed responses (n — b). Given an asynchronous timing model and a system that can
tolerate up ta faults, a process can wait for up to, but not more than; b responses. This is
becausé replicas may be faulty and may never respond, and it is imiplesd® distinguish between

a faulty process and one that is slow.

Guaranteed non-faulty responses (n — 2b). As described above, one can wait for only- b
responses. Of these respongesiay be from faulty replicas; thiereplicas not represented in the
set of responses may have simply been slower. Note that gpé&roal cases, this may not be
hold. In particular, if one can detect that a response is fidaulty replica based on some property
of the response, then one can wait for an additional respibosea non-faulty replica for each
response from a faulty replica.

At least one non-faulty replica (b + 1). Because there are at mdstaulty replicas, any set of
b+ 1 responses contains at least one response from a non-fapliya.

Non-faulty majority (26 + 1). Because there are at mdstaulty replicas, any set aib + 1
replicas necessarily contains at le@ast 1 non-faulty replicas. As such, the majority of any set of
at leastb + 1 replicas is non-faulty.

Replicain intersection ([(n + 1)/2]). Any two sets of[(n + 1)/2] replicas chosen from the
total replicas contain at least one replica in common.

Non-faulty replicain intersection ([(n + b+ 1)/2]). Any two sets of[(n + b+ 1)/2] replicas
chosen from the: total replicas contain at least one non-faulty replica imopwn.

¢+ 1 non-faulty replicasin intersection ([(n+b+c+1)/2]). For any non-negative constant
any two sets of (n + b+ ¢ + 1)/2] replicas chosen from thetotal replicas contain at least- 1
non-faulty replicas in common.

2.3 Byzantine Quorum Systems

A Byzantine quorum system [13] is a set of quorums (subset®pdicas. As seen in Table 1, the
different types of threshold quorum systems make diffeesstumptions concerning the replicas
that may vote for conflicting candidates (defined below)s tis implications for the number of
servers required as well as the number of rounds of commiimicaeeded to ensure a successful
update. Quorums are small enough to ensure that there igslveavailable quorum (one in
which all replicas respond during periods of synchronyiy thvolves setting the size of quorums

g < n —b. The quorums are used for read and update operations. Tleelapvwn enough non-
faulty replicas to ensure that updates written to one quaterpropagated to other quorums and
cannot be fabricated or corrupted by faulty replicas.

An update that is accepted by a replica yieldsadidateat that replica. A candidate estab-
lishedonce it is accepted by all of the non-faulty replicas in sompdate quorum. As discussed
below, in opaque quorum systems (used by protocols that &awgptimistic accept phase), dif-
ferent non-faulty replicas may have different candidasssied by concurrent updates at a given
instant. (This must be prevented by the protocol if a maskindissemination quorum system is
used.) Moreover, in either masking or opaque quorum systafiagilty replica may try to forge a
concurrent candidate. If there are multiple concurrentitates and one is established, the others
are callecconflicting A replica can try tovotefor some candidate by sending a message claiming
to have accepted it.

Byzantine quorum systems require that a candidate writtem topdate quorum bebserved
in any other quorum; this is how candidates are propagatedoeTmore precise, we say that a
candidate is observed in a read quorum if it receives at e#fsteshold- of votes from different
replicas. Therefore, the number of non-faulty replicashaintersection of the update quorum and
any other quorum falls in the ran@e.q], wherer is greater than the number of replicas that could
vote for a conflicting update. This requires two constraints

The first constraint is that a non-faulty client must obseheelatest established candidate if
such a candidate exists. All three types of quorum systeabs istas follows (wher€) is an update
guorum andy’ is some other quorum):

VQ.Q : |QNQ\B|>r

The second constraint is that a conflicting candidate (whashdescribed above, occurs only if
there is already an established candidate for the sametéimp¥is not observed by any client
(non-faulty or faulty). It requires that the replicas thahosote for a conflicting update are fewer
thanr; the number of such replicas is dependent on the restrectbthe type of quorum system
(i.e., dissemination, masking, or opaque). In generditéigrestrictions that decrease this number
have the benefit of allowing for smaller valuesroin terms ofb, but require additional rounds of
communication in order to satisfy as discussed below.

Masking quorum systems. Though not used by any of the three protocols that we review in
detail, masking quorum systems make relatively simplerapsions: faulty replicas can vote for
conflicting candidates, but non-faulty replicas cannot.

Table 1: Threshold quorum systems.

| minimumn | used by e.g., | conflicting candidate
opaque 5b+1 Q/U [1], FaB Paxos [15] any server
masking 4b+ 1 PASIS [7] faulty server
dissemination|| 3b + 1 BFT [4], SINTRA [3] no server

Masking quorum systems require > 4b. They provide the property that any two quorums
intersect in at least + 1 non-faulty replicas (enough to outnumber the faulty regsjc Quorums
are of sizef(n + 2b+1)/2].

For example, quorums are of size+ 1 if n = 4b + 1. An update quorum of siz& + 1 from
4b + 1 means thab replicas do not observe the update (it is possible that tregsecas are not
faulty). Furtherp replicas from the&db + 1 may be faulty. This means that oril{y+ 1 non-faulty of
then total replicas are certain to have observed the update.dthanquorum o8 + 1 responses,
it is the case thak may be from the replicas that were not part of the update gquphowever,
these replicas cannot vote for a conflicting candidate byraption. Anotheb responses may be
votes for a conflicting candidate from faulty replicas. Téfere, it is possible that only—+ 1 votes
are for the established candidate. However, these votesimier the votes for any conflicting
candidate. Therefore,can be set td + 1 in order to ensure consistency.

An echo protocol like that in Rampart [16] and Phalanx [14] barused to ensure that non-
faulty replicas do not accept conflicting candidated/ith an echo protocol, an update requires
two phases. First, the client proposes the candidate. Ipleceeis willing to accept the candidate
upon the condition that other non-faulty replicas acceptar@licting candidate, the replica sends
a tentative accept (echo) response. A quorum of echo respg@ngves that no quorum will accept
a conflicting update. This is because every two quorums apenl some positive number of non-
faulty replicas, and no non-faulty replica sends echo ngesstor different conflicting candidates.
In the second phase of the update, the client sends the quafranho messages along with the
candidate. If this is accepted by a quorum of replicas, tltateis complete.

Note that the echo protocol by itself does not provide a wagisbnguish later between votes
for established and conflicting candidates. Even thoughfaolty replicas would accept no con-
flicting candidate, faulty replicas may still forge confilg candidates. Even having the client
digitally sign each candidate would not help, because tdiemy also be Byzantine-faulty and
could provide multiple signed versions of the candidate @stablished one to non-faulty replicas,
and forged versions to faulty replicas).

Opaque quorum systems. Of the three types of quorum systems discussed here, opamgye q
rum systems are the only one appropriate for the situati@rhioh some non-faulty replicas might
accept candidates that conflict with an established catelides such, they can allow for update
operations to complete in a single (optimistic) round of cwmication, even in the face of Byzan-
tine and/or concurrent clients that may e.g., propose atinj candidates to some non-faulty
replicas. In order to provide consistency despite this,gopaguorum systems require that the
number of non-faulty replicas in the intersection of any gumrums is larger than the remainder
of either quorum.

Opaque quorum systems have the disadvantage of requiring 56, which is larger than
required by the two other types. Quorums are of ${ze+ 30 + 1)/2] assuming: = ¢ + b.

2Another way to ensure that non-faulty replicas do not accepflicting candidates is to use unique, verifiable
timestamps for each data item, as done in the PASIS R/W mbi{@t However, unlike the echo protocol, this
method is not used by any of the protocols in our survey.

For example, quorums are of size+ 1 if n = 5b + 1. The non-faulty intersection of any two
quorums of sizelb + 1 is 2b + 1, and, therefore, a majority of any quorum. An update quorum
of size4b + 1 from 5b + 1 means thabt replicas do not observe the update (it is possible that
these replicas are not faulty). Furthgmeplicas from thelb + 1 may be faulty. This means that
only 3b + 1 non-faulty replicas of the total replicas are certain to have observed the update. In
another quorum ofb + 1 responsed, responses may be from the replicas that did not observe the
update. Furthermore, these replicas may have acceptedlethog candidate and therefore vote
for it. Also, b responses may be from faulty replicas that also vote for dmdlicting candidate.
Therefore, it is possible that onBb + 1 responses come from non-faulty replicas that have the
established candidate. However, even in this case, #iesé responses strictly outnumber thie
votes for the conflicting candidate. Thereforesan be set t@b + 1.

Dissemination quorum systems. Dissemination quorum systems are the most constrained of
the three types of quorum systems. They provide the propleatyany two quorums overlap in at
least one non-faulty replica. Since a quorum may contairerfenslty replicas than this (up t9,
dissemination quorum systems are suitable onls#éit-verifyingdata, i.e., data for which a single
instance proves that it is an established candidate.

Dissemination quorum systems require- 3b. Quorums are of sizf(n + b + 1) /2].

For example, quorums are of si2é + 1 if n = 3b + 1. An update quorum of sizeb + 1
from 3b 4+ 1 means thab replicas do not observe the update (it is possible that tregdicas are
not faulty). Furtherp replicas from theb + 1 may be faulty. This means that only+ 1 non-
faulty of then total replicas are certain to have observed the update. yigaarum of2b + 1
responsed; may be from the replicas that did not observe the update., Alsgplicas may be the
faulty replicas. Therefore, it is possible that only oneomsse is from a non-faulty replica with
the established candidate. However, no replica can vota tmnflicting candidate, and socan
be set tal.

Liskov and Rodrigues [12] provide a protocol that shows hoertsure self-verifying updates
despite Byzantine-faulty or concurrent clients. The protases a modified echo phase similar
to that described above for masking quorum systems. Therdiite is that the quorum of echos
is stored by replicas and provided to clients along with sdtg a candidate. Non-faulty clients
consider a vote for a candidate only if the vote is accommghhiea matching quorum of echos.
Therefore, even faulty replicas cannot vote for conflictiagdidates because it is impossible to
gather a quorum of echos for a conflicting candidate.

3 A Framework for Protocol Operation

We present a framework for comparing and contrasting Bymasfault-tolerant state-machine-
replication protocols that highlights a number of tradsaiff protocol design. We introduce the
framework with a high-level operational description of thay such protocols work in general.

3.1 Operational Description

Byzantine-fault-tolerant state-machine-replicationtpcols must ensure replica coordination of
non-faulty replicas. Roughly, they do this as follows. Eaebuest is assigned@ermanent se-
guence numbethat exists from the time of assignment through the life efglistem and is never
changed. We use the term sequence number to indicate that there isléytotdered chain of
requests; however, the sequence number might be implethasilogical timestamp [1] or other
suitable device. Each permanent sequence number is agd$masinglerequest. Therefore, due
to the Byzantine fault model, permanent sequence numben®tha assigned by a single replica
or client, which might assign the same permanent sequembearnio multiple requests.

In order to get a permanent sequence number, a request ssisigned groposed sequence
number Unlike permanent sequence numbers, the same proposeehsegquumber may be as-
signed to multiple requests. Therefore, a proposed sequamnober can be selected by a single
client or replica in isolation. The assignment of permarsagfuence numbers takes place by per-
forming an update consisting of the proposed sequence mandeequest together as a candidate
to the replicas, which act as a quorum system. Each nornyfefiica accepts the update only
if it has not accepted a different (conflicting) update witle same proposed sequence number.
This ensures that each sequence number is assigned onlintearequest. In addition, sequence
number assignments are preserved by the quorum systemfdtesrthey are never changed (e.qg.,
during repair, discussed below). As such, a sequence nuisipermanent if and only if it has
been accepted by a quorum of replicas.

The type of quorum system used for accepting proposed sequemmbers implies a lower
bound onn in terms ofb as discussed in Section 2.3. For example, an opaque quorstensy
requires at leasib + 1 replicas, but can accept a proposed sequence number inle ingd of
communication. On the other hand, dissemination and mgskiorum systems need oriy + 1
and4b + 1 replicas, respectively, but require two rounds of commatnn (assuming an echo
phase is used) in order to accept proposed sequence numbers.

A non-faulty replica executes a request only after all losequence numbers are assigned
permanently and it has executed their corresponding régjuéthe system is not making progress
because a non-faulty replica is waiting to execute a requasesponding to a lower sequence
number, action is taken so that the replica obtains the ngsgquest. Individual replicas send
responses to the client upon executing the request.

The client determines the correct result from the set ofalses received by determining that
the result is due to a permanent sequence number assignneefoan at least one non-faulty
replica. This works because each non-faulty replica thatates a request with a permanent
sequence number returns the same, correct result to tme. dHewever, faulty replicas and non-
faulty replicas that execute requests without permaneqiesece numbers (an optimization em-
ployed by some protocols) may return incorrect results.

Because of the use of the quorum system for sequence numizgrassts, none of the proto-
cols surveyed in this paper become inconsistent in the fhaeByzantine-faulty proposer. How-

3We choose the passive voice in this description becausésdsteh as which clients/replicas are involved in
assigning the sequence number are protocol-specific.

Phase la: | | Phase 1b: Phase 2a: | | Phase 2b: Phase 3a: | | Phase 3b: Phase 4:
Get State | | Propose Verify Accept Leam Update Verify
(Execute)

I J1 J1 | J

1) Propose 2) Accept 3) Update 4) Verify

Figure 1: The stages of Byzantine-quorum state-machinigagipn protocols.

ever, the protocols each requireepair phase in order to continue to be able to make prodress.
The processes performing repair read from the quorum sygiesnsure that no permanent se-
guence number assignments are lost or changed. Repairusskstfurther in Section 5.

3.2 TheFramework

The framework depicted in Figure 1 consists of four higrelgphases totaling seven sub-phases.
In phase 1, a proposed sequence number is chosen for théscliEgquest and sent to (at least)
a quorum of replicas. In phase 2, a quorum of replicas actbptproposed sequence number
(doing so might involve an echo phase as described in Se2t®)n If no quorum accepts the
proposed sequence number assignment, a new proposal ntustlend the system may require
repair (see Section 5). In phase 3, the request is executedditng to the sequence number, and
in phase 4 the client chooses the correct result. Phases dad23a can be viewed as optional, as
they are omitted by some protocols; however, omitting thesiimplications as discussed below.
The remainder of this section explores each of the phasé® dfamework in greater detail.

Phase1: Propose. Phase 1 is where a proposed sequence number is selectediént aszjuest;
this is done by g@roposer which, dependent on the protocol, is either a replica oremtlIin some
protocols, it is possible that the state of the system has bpéated without the knowledge of the
proposer (for example due to contention by multiple propgsén this case the proposer may first
need to retrieve the up-to-date state of the system, inojuearlier permanent sequence number
assignments. This is the purpose of phase 1a. Phase 1b is thiegproposed sequence number
and request are sent to (at least) a quorum of replicas.

Phase 2: Accept. Phase 2 is where the proposed sequence number is eithetextoepejected.
As discussed in Section 2.3, depending on the type of quopsters, this may require a round
of communication (corresponding to an echo phase) for tlpgse of ensuring that non-faulty

“In this paper, we do not classify protocols based on themirgghases. Therefore, we do not distinguish between
BFT and Sintra [3], for example.

replicas do not accept different conflicting proposals fer $ame sequence-number. If it requires
this round of communication (phase 2a), the protocol is sa@mploy gpessimistic accepthase,
otherwise, it is said to employ amptimistic accepphase. In phase 2b, the sequence number
assignment becomes permanent if and only if a quorum ofo@&phccepts it.

The primary benefit of an optimistic accept phase is that oned of communication (phase 2a)
involving at least a quorum of replicas is avoided. The disathge is the need for an opaque quo-
rum system, which requires > 5b.

Phase 3: Update. Phase 3 is where the update is applied, typically resultirthe execution of
the requested operation. Like phase 2, this phase can lgg pébsimistirequiring phase 3a), or
optimistic (omitting phase 3a). Phase 3a allows the execution repiickesarn that the sequence
number assignment has been accepted by a quorum of repdicds s such, has become per-
manent) before performing the update. If this is not done siquence number assignment may
change and the request may need to be executed again.

Since an optimistic update phase requires no additionaldoficommunication before execu-
tion, it can lead to better performance. The disadvantagethat, as described below, clients must
wait for a quorum of responses instead of justl to ensure that the sequence number assignment
is permanent, and that computation may be wasted in the lcasthe proposed sequence number
does not become permanent.

Phase 4. Verify. Phase 4 is where the client receives a set of responses. i€hermlust verify
that the update was based on a permanent sequence numbanessi and performed by at least
one non-faulty replica (in order to ensure that the resworsect). In general, this requires waiting
for a quorum of identical responses indicating the sequanoger, where the size of the quorum
is dependent on the quorum system construction. Howevgha$e 3 is pessimistic, then no non-
faulty replica will execute an operation unless the assigmns permanent. In this case, the client
can rely on non-faulty replicas to verify that the sequengalper is permanent, and so clients need
wait for only b + 1 identical responses.

4 TheProtocols

The protocols that we consider in this section are BFT [4], PaRos [15], and Q/U [1]. As
summarized in Table 2, these protocols span the four pesstohbinations of pessimistic and
optimistic accept and update phases (i.e., phases 2 ande3)ladsify the protocols accordingly.

4.1 Pessmistic Accept and Update

BFT (without optimizations). BFT [4] is a prominent example of a Byzantine-fault-tolerant
state-machine-replication protocol that employs a passitraccept phase (with a dissemination
guorum system) and a pessimistic update phase. As suckplv@s communication in all four
phases of our framework. Figure 2 shows the phases of aneupstiest of the BFT protocol in

Phase 1aj | Phase 1b: Phase 2a|| Phase 2b: Phase 3g:| Phase 3bj Phase 4:
Retrieve Propose Verify Accept Learn Execute Verify
State Request/ (n+b+1)/2 (n+b+1)/2 b+1
Pre-prepare Prepares Commits Responses
Client

Replica % \ L
i N =
1

M Update //
Replicaz \ﬂl ’m
Replica: \\ W ’L—‘ m ’T‘ //
| Log T pdate
N T
Figure 2: BFT.

the fault-free case. The operation is very similar to a protpresented by Bracha and Toueg [2]
also used by other protocaols, e.g., [17, 3, 20, 10].

In the common case, there is a single proposer (callegptimeary) that itself is a replica;
therefore, phase lais unnecessary—the proposer alreadss kihe next unused sequence number.
In phase 1b, the proposer unilaterally chooses a proposg@isee number for the request (a non-
faulty proposer should choose the next unassigned sequendeer) and sends the request along
with the proposal to the other replicas in a message called PRIEPARE.

The verification done in phase 2a is equivalent to an ech@pob{though the responses are
sent directly to all other replicas instead of through theppiser). This guarantees that non-faulty
replicas do not accept different candidates with the sameqsed sequence numbers. Each replica
other than the proposer sends a PREPARE (i.e., echo) messhg#ing the proposal to all other
replicas. If a replica obtains a quorum of matching PREPARE RR&-PREPARE messages
(including its own), it is guaranteed that no other non4fauéplica will accept a proposal for the
same sequence number but with a different request. SucHiearepcalledprepared A prepared
replica accepts the request in phase 2b, and stores thenqudéfdaREPARE and PRE-PREPARE
messages. The sequence number assignment is permanedtdhlgnf a quorum of replicas
accept the proposed sequence number in phase 2b.

In phase 3a, prepared replicas send COMMIT messages to all mplicas. A COMMIT
message includes the quorum of PREPARE and PRE-PREPARE messagesl{os) so that the
sequence number assignment is self-verifying (which iessary for a dissemination quorum sys-
tem as discussed in Section 2.3). Because the update phassimistic, in phase 3a, replicas wait
to receive a quorum of COMMIT messages to make certain thatipeence number assignment is

Table 2: Protocol Classification

Update
Accept optimistic \ pessimistic
o Q/U,
optimistic (opaque quorum) FaB Paxos w/ TE FaB Paxos
pessimistic (dissemination quorum)BFT w/ TE BFT

10

permanent. Having received a quorum of matching COMMIT mgss#or sequence numbgra
replica executes the request only after executing all rieigumrresponding to permanent sequence
number assignments.. i — 1.

Since BFT employs a pessimistic update phase, the cliens veaibnly b + 1 identical results
in phase 4. This does not require waiting for more th@an- 1 replies.

4.2 Optimistic Accept, Pessimistic Update

One way to avoid a round of communication is to employ an ogtimaccept phase (i.e., to skip
phase 2a).

FaB Paxos. In relation to our framework, FaB Paxos [15], can be viewe&&$ with an opti-
mistic accept phase (provided by the use of an opaque quorstens). It is seen in the lower half
of Figure 3. Compared with BFT, FaB Paxos uses larger quoruchsegjuires more replicas, but
saves a round of communication.

4.3 Pessmistic Accept, Optimistic Update

Another way to avoid a round of communication is to employ phimistic update phase (i.e., to
skip phase 3a).

BFT w/ Tentative Execution. Castro and Liskov [4] detail an optimistic update optimiaati
for BFT called tentative execution (TE). In tentative exémut phase 3a is omitted; however,
the dissemination quorum system remains the same. Compatedmwoptimized BFT, tentative
execution saves a round of communication. However, sinesonse from a non-faulty replica
no longer necessarily corresponds to a permanent sequantdaen assignment, the client must
wait for a quorum of identical responses in phase 4. In aultitieplicas that execute a request
corresponding to a non-permanent sequence number assigtimae later changes (e.g., due to
repair) may need to re-execute the request later.

Figure 3 shows the stages of the BFT protocol with the tergagkecution optimization, com-
pared with FaB Paxos [15].

4.4 Optimistic Accept and Update

Two protocols use both optimistic accept and optimisticaipghases. Q/U [1] is a Byzantine-
fault-tolerant state-machine-replication protocol lthee opaque quorum systems. FaB Paxos,
which normally employs only an optimistic accept phase a&suleed above, can, like BFT, also
employ an optimistic update optimization known as tengaéixecution. Since both Q/U and FaB
Paxos with tentative execution skip phase 2a, neither pobttan use fewer thabb + 1 replicas.

In addition, since they also skip phase 3a, both protocajsire the client to wait for a quorum
of identical responses in phase 4 to make certain that thut iedased on a permanent sequence

11

Phase 1aj | Phase 1b: Phase 2a|| Phase 2b: Phase 3a | Phase 3b] Phase 4:
Retrieve Propose Verify Accept Execute Verify
State Request/ (n+b+1)/2 (n+b+1)/2
Pre-prepare Prepares Responses
Client \‘
Replica %
N E i
Replicaz \\ j ;r Log Update //
Replica: \ % Log Update /
Replicas Log Update

(BFT w/ Tentative Execution)

Phase 1aj | Phase 1b: Phase 2a|| Phase 2b: Phase 3a| | Phase 3bj Phase 4:
Retrieve Propose Verify Accept Learn Execute Verify
State Request (n+3b+1)/: (n+3b+1)/.
Responses
Client
Replica 2 Lo TT| Update 4
I EN Y =
Replicaz- \\\\ Log oo Update //
Replica \\ Log Update
| o EE Il
Replica4 \\ Log Update
" 1 .|
Replica5 \ Log Update
"
Replic Log ¥ Update

(FaB Paxos)

Figure 3: Optimistic update (BFT w/ tentative-executionimation), compared to optimistic
accept (FaB Paxos).

Phase 1aj | Phase 1b: Phase 2a| | Phase 2b: Phase 3g:| Phase 3bj Phase 4:
Retrieve Propose Verify Accept Learn Execute Verify result
State Request (n+3b+1)/.
Responses
- \N /f \\\« — —
Replica \\\\/ \\\ Log Update
Replicaz \\X/ \\ Log Update ///
Replica \l/ \\ Log Update //
Replica4 L / x Log Update /
Replica5 Log Update
Reol
p

Figure 4: The Q/U protocol (optimistic accept and update).

number assignment; this quorum is larger than the quorunsgstems that employ pessimistic
accept.

Q/U. Figures 4 and 5 show the Q/U protocol. In phase 1, clientsagraposers and directly
issue requests to the replicas. Since there are multipleopsss, a proposer may not know the
next sequence number (implemented as a logical timestafm@refore, the client first retrieves
the update history (called a replica history set) from a gooof replicas (phase 1a). A quorum
of replica history sets is called an object history set. dnitfies the latest completed update, and,
therefore, the sequence at which the next update shoulddie@yp The client sends the object

12

Phase 1aj | Phase 1b: Phase 2a|| Phase 2b: Phase 3g:| Phase 3bj Phase 4:
Retrieve Propose Verify Accept Learn Execute Verify resylt
State Request (n+3b+1)/;
Responses
Client
Replica \ \ Log Update //
Replicaz-
P \ \ Log Update / / /
Replica
Pl \\ Log Update /
Replica4 & Log Update
Replica5 Log Update
Replic
(Q/U w/ Pipelined Optimization)
Phase 1a] | Phase 1b: Phase 2a|| Phase 2b: Phase 3a| | Phase 3bj Phase 4:
Retrieve Propose Verify Accept Learn Execute Verify
State Request (n+3b+1)/:
Responses
Client
Replica & Lo Update 4
Primary \ [Baichl [paate]
Replica: \\\\ Log Update //
Replica \\\ Log Update
. o el
Replica4 \\ Log Update
icas
Replic X Log Update
.
Replic Log Update

(FaB Paxos w/ Tentative Execution)

Figure 5: Optimistic accept and update in Q/U and FaB Paxath (@ptimized).

history set along with the request to a quorum of replicaagphlb). In phase 2b, each replica
verifies that it has not executed any operation more receamt tiat which is reflected in the the
object history set, and then accepts the update. Havingtentéhe update, the acceptor executes
the request (phase 3b)Because Q/U is an optimistic execution protocol (it skipsgehda), the
client must wait for a quorum of responses in phase 4.

In a pipelined optimization of Q/U (shown in Figure 5), clisrwache object history sets after
each operation. As such, clients can avoid phase 1a if no ottemts have since updated the
system.

FaB Paxosw/ Tentative Execution. The tentative-execution optimization for FaB Paxos works
as it does in BFT—a replica executes the request upon acgeapgrsequence number assignment
for itin phase 2b (assuming it has also executed the rego@stssponding to all earlier permanent
sequence numbers). Because this sequence number assignayenéver become permanent, it
may need to be rolled back. Therefore, clients must wait fQuarum of identical responses in
phase 4. Figure 5 highlights the similarities between Q/thie pipelined optimization described
above and FaB Paxos with the tentative-execution optimnoizat

STechnically, the log step in phase 2b happens after the estigp in phase 3b. However, as there are no messages
between these steps, from an external perspective thgmsecste be viewed as an atomic unit here.

13

5 Other Tradeoffs

BFT and FaB Paxos use a single proposer (the primary), andsorcié phase 1a. On the other
hand, Q/U allows clients to act as proposers, and thereéapaires phase 1a. The use of a single
proposer has two potential performance advantages. &icbent sends only a single request to the
system (in the common case) as opposed to sending the requesentire quorum. Therefore,
since the single proposer is likely physically closer thiaa tlients to the replicas, the use of a
primary might be more efficient, e.g., on a WAN with relativéhrge message delays. Another
advantage is that request-batching optimizations can Ipdogedd because the primary is aware of
requests from multiple clients. However, the use of a prjnmarolves an extra message delay (for
the request to be forwarded to the primary).

Because a proposer may be Byzantine-faulty, a repair phaséenagcessary in order for the
service to make progress in the presence of faults. In sgsseich as BFT and FaB Paxos that
use a dedicated proposer, the repair phase is used to choese @oposer. In Q/U, this phase
may also result from concurrent client updates, and is usethke sure that non-faulty replicas no
longer have conflicting sequence number assignments. In BETFaB Paxos, repair is initiated
by non-faulty replicas that have learned of some requeshdiLihave executed it after a specified
length of time proactive repaij. In Q/U, repair is initiated by a client that has learned tthe
system is in a state from which no update can be completedodeanftlicting proposed sequence
number assignmentaéed-based repgir Because it is based on timeouts, proactive repair might
sometimes be executed when it is not actually of help, e lgervthe network is being slow but the
primary is not faulty.

6 Related Work

Our framework for comparing protocols finds inspirationhie framework of Wiesmann et al. [19]
who compare (non-Byzantine-fault-tolerant) replicatienhiniques for databases and distributed
systems.

We distinguish state-machine-replication protocolspe®se that use quorum systems, from
other protocols for quorum systems [13, 7] that are desigmadpport read-write shared-variable
semantics with idempotent operations. In protocols fod+eate shared variables, updates are
idempotent, and, therefore, do not necessarily all have xbcuted. That is, more recent updates
can be applied as soon as they arrive. If older updates datiee they do not need to be applied
to modify the state, as the more recent updates make thestlterunnecessary. In contrast, state-
machine-replication protocols must guarantee that alatgsiare applied in order, because if a
replica skips an update applied at other replicas, it mighehinconsistent state as a result.

An alternative approach [16, 8] to state machine replicaBdo assume that all non-responsive
replicas are faulty and, therefore, to remove them from #teofall replicas. However, such an
approach requires the replicas to agree on the set of faapticas.

Martin and Alvisi [15] prove that any consensus protocohwito or fewer rounds of commu-
nication requires at leasb + 1 replicas. Our observations support this, and provide risigr

14

why this is the case for Byzantine-fault-tolerant state-nvae-replication protocols (which imply
consensus).

7 Conclusion

We have presented a framework of high-level, logical ph&sethe comparison of Byzantine-
fault-tolerant state-machine-replication protocolst thaarantee consistency in an asynchronous
environment. Our framework centers on the use of Byzantirwewqu systems in each protocol,
highlighting tradeoffs made by the protocols in terms ofrienber of replicas required, the num-
ber of faults that can be tolerated, and the number of rouhdsromunication required.

Since the original drafting of this document, new protocelg., [5, 9]) have been introduced.
We hope that our framework will facilitate understanding thtuition behind these protocols.

8 Acknowledgments

Thanks to David O’Hallaron and Michael Reiter for helpfuldéeack on drafts of this paper.

References

[1] M. Abd-EI-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, dnd. Wylie. Fault-scalable Byzan-
tine fault-tolerant services. IBymposium on Operating Systems Principl@stober 2005.

[2] G. Bracha and S. Toueg. Asynchronous consensus anddastagrotocols.Journal of the ACM
32(4):824-840, 1985.

[3] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication enirtternet. Ininternational
Conference on Dependable Systems and Netwpédgges 167-176, 2002.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance.Symposium on Operating Systems
Design and Implementatio999.

[5] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. IFplication: A hybrid quorum pro-
tocol for Byzantine fault tolerance. Bymposium on Operating Systems Design and Implementation
Nov 2006.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of disiired consensus with one faulty
process.Journal of the ACM32(2):374-382, 1985.

[7] G.R.Goodson, J.J. Wylie, G. R. Ganger, and M. K. Reiter. EfficByzantine-tolerant erasure-coded
storage. Innternational Conference on Dependable Systems and Netwhrke 2004.

[8] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRingtpcols for securing group
communication. IrHawaii International Conference on System Scienpages 317-326, 1998.

[9] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Spéative Byzantine fault
tolerance. IlSymposium on Operating Systems Principtegyes 45-58, New York, NY, USA, 2007.
ACM.

[10] R. Kotla and M. Dahlin. High throughput Byzantine fault toleranaeInternational Conference on
Dependable Systems and Netwopage 575, June—July 2004.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine generaldgon. ACM Transactions on
Programming Languages and Systed(8):382—401, July 1982.

15

[12] B. Liskov and R. Rodrigues. Byzantine clients rendered harml@ésshnical Report MIT-LCS-TR-
994, MIT Laboratory for Computer Science, July 2005.

[13] D. Malkhi and M. Reiter. Byzantine quorum systerisstributed Computingl11(4):203-213, 1998.

[14] D. Malkhi and M. Reiter. Secure and scalable replication in PhaldnxSymposium on Reliable
Distributed Systempages 51-58, October 1998.

[15] J.-P. Martin and L. Alvisi. Fast Byzantine consenslisEE Transactions on Dependable and Secure
Computing 3(3):202-215, 2006.

[16] M. K. Reiter. Secure agreement protocols: Reliable and atomic gmulpcast in Rampart. In
Conference on Computer and Communication Secp#ages 68—80, November 1994.

[17] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstractmmmprove fault tolerance. In
Symposium on Operating Systems Principh€91.

[18] F. B. Schneider. Implementing fault-tolerant services using the statbinegapproach: A tutorial.
ACM Computing Survey22(4):299-319, 1990.

[19] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.etstanding replication in data-
bases and distributed systems Iiternational Conference on Distributed Computing Systerages
264-274, April 2000.

[20] J.Yin, J.-P. Matrtin, A. Venkataramani, L. Alvisi, and M. Dahlin. Segiang agreement from execution
for Byzantine fault tolerant services. 8ymposium on Operating Systems Principbegies 253-267,
October 2003.

16

