Economic Congruence in Open Source Ecologies:
Aligning Incentives and Architecture

James Herbsleb, Roberto Weber, Yuanfang Cai, and Thomas Finholt *
April 03, 2008
CMU-ISR-08-109

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

*Yuénfang Cai is a Professor at Drexel University, Philadelphia, PA. Thomas Finholt is a professor at University of
Michigan, Ann Arbor, ML

-~ Abstract

This position paper suggests how one could use game theory to describe the incentive structure
of open source ecologies, and shows how the structure and payoffs of the game are dependent on
the architecture of the software. This incentive structure is critical to open source ecologies
which, unlike many individual open source projects, are defined by significant participation by
Afirms. We describe how firm participation in an open source ecology can be modeled as two
games. One is a variety of a weak-link coordination game, in which the payoff to a firm depends
on other firms also deciding to participate. The second is a public goods game, where all firms
benefit from contributions to the public geod, but defectors have an incentive to free ride on the
efforts of others. The structure of both games is crucially dependent on the interdependence
between players, which can be modeled by the software architecture, which determines, for
* example, the extent to which the open source architecture can support independent extension and
evolution of individual components developed by different participants. The incentives for
-contribution will vary greatly among firms, as will the number of players who care about a
particular component, and the payoff from maintaining and enhancing it. Based on prior
- research, all of these factors are highly likely to influence the behavior of participants, and have a

Keywords: Software development, Congruence, Economic Congruence

major impact on the success of the ecology.. We conclude with several research questions raised
by our analysis. :

This effort is partially funded by the National Science Foundation under grant number I1S-0534775, 115-0329090,
and the Software Industry Center and its sponsors, particularly the Alfred P. Sloan Foundation. Effort also
supported by a 2007 Jazz Faculty Grant. The views and conclusions are those of the authors and do not reflect the
opinions of any sponsoring organizations/agencies.

1 OPEN SOURCE: FROM PROJECTS TO ECOLOGIES

Open source ecologies provide a novel, increasingly important, complex, and poorly understood
mode of production for software. Individuals, firms, and foundations with differing motivations
and resources collaborate in the creation of public goods while also serving their individual
interests. Such ecologies are fielding very competitive products, even when matched against
large, successful firms. While open source software ecologies such as Eclipse, Apache, and
Gnome are the most prevalent form of this production mode, there are also well-known and
important examples in other digital domains, such as Wikipedia. While we focus on software, we
also strive to develop a ‘theoretical framework that can be applied to open production more
generally.
Several open source ecologies now have substantial economic importance, but their eventual
long-term impact is hard to determine. Are we observing a novel production mode that will
continue to occupy a small -- but important - place among traditional development
organizations, or are we watching the embryonic stages of an organizational form that will
fundamentally change the industry? Research has made substantial progress in understanding
how individual projects function and why individuals volunteer their Iabor (see next section), but
ecologies are dominated by firms, and are sustained by firm-level decisions. In addition to
practical concerns that drive our interest in open source ecologies, these structures present an
opportunity to understand coordination and incentive structures in a novel context outside the
usual bounds of hierarchies and markets [Malone et al 1993; Powell 1990].
Our preliminary work on the Gnome and Eclipse ecologies is beginning to shed some light on
the benefits organizations derive from their participation. Interviews with Eclipse participants,
for example, indicate that a primary benefit for firms is the opportunity to share the cost of
developing commodity software. Vendors developing new features for an Integrated
‘Development Environment (IDE) would prefer to invest engineering resources in marketable
new features, not in the tedious and costly task of maintaining and enhancing basic
functionality. Collaborating on the basic Eclipse framework allows them to share this cost.
Beyond this cost-sharing benefit of participation, there are others that vary depending on the
company’s business model. Many firms sell proprietary software (a “plug-in”) that works with
Eclipse, providing additional functionality, such as code amalysis or visualizations. Other
companies sell complementary goods whose value is enhanced by Eclipse. IBM, for example,
has a major presence in the web server market, and an IDE that makes it easy to develop web
applications for their platform can be expected to improve their sales. Still other participants
provide installation, customization, or training services for users of Eclipse. A subset' of
- companies cutting across these categories also use the Eclipse community and Eclipse-sponsored
~events as a major marketing channel for their Eclipse-related goods and services. Moreover,
contributing to the free distribution may help to increase Eclipse’s share of the IDE market, at

the expense of proprietary products. Increasing the number of Eclipse users increases the
potential market for any company that sells Eclipse-related products or services. Participation in
Eclipse and contributing to the free distribution can also be a way to expose potential customers
to a basic version of their product, with the hope that many customers will purchase the full
proprietary version. Thus, the ecology is fuelled by complex, inter-related motives, resulting in
both a public good and the creation of markets for complementary goods, proprietary
enhancements, and services.

In order to function, an open source ecology must provide two different types of economic
incentives. First, there must be adequate incentives for participation in the ecology. There must
be ways for firms to earn adequate returns by offering products or services tied to the open
source software. In the absence of such incentive, the open source project may continue to exist
or even thrive, but the firm-driven economic activity of an ecology will not develop. Second,
there must be adequate incentives for producing, maintaining, and enhancing the public good. As
with all software, maintenance of the open source version of the software is necessary if it is to
continue to be viable. It must be made to run on new operating systems, interact with new
hardware, acquire new features to compete in the market place, and have the inevitable bugs
fixed quickly. If inadequate resources are devoted to maintenance, the software will lose out to
competitors. '

Underlying both incentive problems, and giving them their particular shape within an ecology, is
the modular structure of the software architecture. For example, the extent to which various
components within an architecture are loosely coupled determines how easily the participants
can improve each component independently or extend the system with new features without
perturbing other parts of the system. Moreover, software architecture determines the extent to
which different participants will rely on various parts of the core and the gradient of such
reliance, i.c., whether a few firms rely heavily, and others not at all, or whether reliance is a
slowly decreasing function. Those with a high reliance on a particular component are more likely
to help maintain it. Finally, it dictates numbers of participants who have a potential interest in
maintaining parts of the core. In some cases, large numbers or even all participants have a
substantially equal stake in some central components, while in other cases only one or a small
number will have substantial reliance. All of these factors, of course, can play a very large role in
shaping the payoffs various actors can achieve, and their willingness to act.

In the next sections, we show how game theory and architectural analysis techniques can be used
to understand these incentives for participation in the ecology.

2 INCENTIVES IN OPEN SOURCE ECOLOGIES

First, it is important to point out that incentives in open source ecologies are fundamentally
unlike those governing project participation by individual volunteers. Researchers have, for
example, considered the role of ideology [Stewart et al 2006], skill development, entertainment
and personal use [Lakhani et al 2005, Ghosh 2005], and achieving status or "signaling” their
value in the labor market to current or future employers [Lermer & Tirole 2002]. There appears
to be an interplay of intrinsic and extrinsic motivations [Roberts et al 2006]. While these results
shed considerable light on why individual volunteers participate in open source projects, we need
different approaches for understanding when, why, and how firms participate and contribute to
public goods.

Game theory provides analytic tools for understanding the complex incentive structure of open
source ecologies. It has provided an important theoretical basis for understanding cooperation
and competition as represented by simple games such as Prisoner's Dilemma [Axerlrod 1984],
how incentive structures govern contributions to public goods [Groves & Ledyard 1977}, and
how independent agents coordinate their activity [Van Huyck, Battalio and Beil 1990].

As a first step in modeling firms' incentives using game theory, we note, as described in the
previous section, that a firm can be regarded as potentially participating in two games involving
the decision to participate in the production and distribution of an open source good. These
games model similar, though subtly different, components of firms' decisions, and understanding
how both games represent a particular ecology is valuable for understanding what determines
success.

The first game involves firms' decisions to invest in products or services that are tied to the open
source software. The return on such an investment is crucially linked to the contributions of other
members. For example, the firm might build an application that enhances the functionality of the
open source product, using a specific Application Programming Interface (API) to communicate
with it. Many vendors, for example, build plug-ins for the Eclipse development environment that
perform useful operations such as code analyses or report generation. Since they are built for
Eclipse, the natural market for such a firm's products or services is the installed base of the open
source product.

The primary risk is that this market will fail to provide sufficient revenue to justify the
investment. This can happen, for example, because not enough others contribute to the
production. Situations such as these are modeled by "weak-link" coordination games, in which
contributing to production is efficient and profitable, but only if enough others do

so [Hirschleifer 1983]. If there is insufficient participation by other vendors, there will not be a
rich selection of applications providing the range and variety of functionality that large
populations of users require. The ecology would risk being overwhelmed by competitors. In
order for a vendor firm to participate, it must conclude that other vendors will also participate.
There are at least two scenarios that make success in such situations more likely. One is if the
project has one very large player that is visibly committed to the community. It is likely that this
was the case with Eclipse, for example, which began with a very large and visible commitment
of resources from IBM. Another plausible scenario, based on our prior work, is when a
community starts out very small, building up an expectation of contribution, which continues as
the project grows, outpacing the level of contribution that can be achieved when a community
starts out large [Weber 2006]. This is arguably the path taken by Apache, which began with a
small group of web administrators who needed to share fixes and enhancements to the suddenly-
unsupported NCSA httpd server, and grew into a large ecology over a period of years [Mockus et
al, 2002]. A third scenario -- motivated by research on "weak-link" games -- involves regular and
- repeated communication among community members, stating their willingness to continue their
involvement with the project and commitment to production [Blume and Ortmann 2007].

The second game governs a firm's decision to "give away" some effort or work products to the
community in order to maintain, update, and enhance the public good, i.e., the "free" version of
the product. This is the product on which everyone in the ecology depends, both for things built
on top of it, and as a "loss leader" to attract new users and grow the market. If the "free” version
is highly attractive and useful, it will be more successful in growing the market. This situation
creates a classic public goods game, which can be thought of as a variation on the Prisoner's
Dilemma (PD). If all players contribute by sharing their effort, everyone makes a (relatively

small) profit. If a firm does not contribute, but other players do, that firm makes a larger profit
since it has lower costs. But if an insufficient number of players contribute, everyone loses as the
software gets out of date and bugs go unfixed. The game becomes complex, as, for example, the
distribution of benefits from contributions differs among the firms. One firm may need a
particular update more badly than do other firms, and hence may be more willing to

- contribute. Thus, symmetry in needs and potential contributions might be an important factor

determining the success or failure of a particular open source ecology. The role of a central
player, such as foundation that owns the software and exerts some control over contributions,
may also have an effect due to its influence on the contributions of other players [Hamman et al
2007]. The size of the aggregate contribution necessary to sustain the software functionality may
also play a crucial role in determining the success or failure of the ecology (Cadsby and Maynes
1999). ,

As mentioned in the previous section, both of these games — the moves, the payoffs, and the
number of participants — are influenced by the architecture of the software. Understanding the
relationship between game-theoretic predictions and laboratory behavior in these games

and architectural features and product qualities in open source ecologies would be a valuable
contribution.

3 ARCHITECTURAL DESIGN: INCENTIVES, COLLABORATION,
AND GOVERNANCE

- In order to investigate the games that we believe provide the incentives for firm participation in

open source ecologies, we need to be able to analyze software products to determine the specific
structure of constraints among components, determine how different parts of the system interact
with each other, and what components will be affected by a change to a given part of the
software.

The ability to analyze architectures is essential for the following reasons: First, it will allow us to
characterize the overall Ievel of modularity of the software, which is a critical factor in its value

‘[Baldwin & Clark 2000, Sullivan et al. 2001]. Second, analysis will help identify the boundaries

and payoffs of games played by the various participants. For example, we will be able to identify
the extent to which various firms have software that depends on particular open source
components, hence motivation to enliance and maintain them. This will give us a way to bound
the participants in the various public goods games, and to identify differences in potential
payoffs among players

Examining documents such as architecture diagrams may be helpful. However, prevailing box-
and-line style design modeling techniques are not designed to generally and comprehensively
capture design decisions, their relations, and the modular structure of software components
[Sullivan et al 2001; Cai 2006; Huynh et al 2008]. We neced a more general design
representation that can reveal the modular structure among design decisions, as well as the
relation among decision-makers. We propose to extend the prior work of design structure
matrices (DSMs) [Steward 1981, Baldwin & Clark 2000] for the purpose of architecture
modeling. '

Design structure matrices (DSMs) [Steward 1981, Baldwin & Clark 2000] are a powerful
mechanism for analyzing both the modular structure of software architectures and how these
dependencies cause change to propagate through the software. A DSM is a square matrix where

the rows and columns are labeled with design dimensions in which decisions have to be made. A
marked cell models the fact that the decision made on the row depends on the decisions made on
the column. DSMs are a straightforward but powerful tool for analyzing relations among
components, and have been applied to software modular structure analysis, capturing the
decomposition of a system into independent modules [Sullivan et al 2001, MacCormack et al
2006, Cai 2006, LaMantia et al 2008].

Using DSM as the core model, prior work has shown that the degree of modularity —i.e, the
extent to which components can be developed, changed, and even replaced independently — has a
major impact on the value of the software [Baldwin & Clark 2000; Sullivan et al 2001; LaMantia
et al 2008]. According to Baldwin and Clark’s (2000) theory, modularity adds value in the form
of real options: a module creates an option to invest in a search for a superior replacement and to
replace the currently selected module with the best alternative discovered, or to keep the current
one if it is still the best choice. Thus, more modular products should, other things being equal,
provide more value to ecology participants [Sullivan et al 2001; MacCormack et al 2006].
Researchers currently build large-scale DSM models from source code, using direct syntactic
references as the only source of dependencies [MacCormack et al 2006, LaMantia et al 2008].
However, source code DSMs do not explicitly model implicit design-level decisions and do not
express complex logical constraints among the components [Sullivan et al 2001; Huynh et al
2008]. We have shown that manually constructing design level DSMs with design decisions are
time consuming and error-prone [Cai and Sullivan 2005, Cai 2006].

- We plan to extend current DSM modeling and value-based analysis techniques to account for the
relation among incentives, collaboration and governance. Thus, we will first develop the formal
foundation of DSM modeling, building on our prior work of augmented constraint network
(ACN) [Cai and Sullivan 2003, Cai 2006] to logically represent software design decisions and
their constraints, enable automatic change impact analysis, and automatically derive DSMs from
this. We also plan to extend current DSM/ACN research to explicitly explore the relation
between architectural design decisions and the dynamics of communication between the
participants. Based on the extended DSM/ACN model, we will identify an interesting variety of
- games, i.e., clusters of closely-related components and the participants who have contributed to
it. We will then use the contribution and communication data -- who has actually contributed
what code and what discussions -- to test hypotheses about who will make contributions, and
how they differ with differing game size, history, modularity and incentive structure.

4 RESEARCH QUESTIONS

This analysis naturally leads to several fundamental questions-about incentives in open source
ecologies, and how they are structured by software architecture:

* How does software architecture shape the scope and payoffs of games creating incentives for participation and
for public good creation in open source ecologies?

e What characteristics of ecologies (e.g., one large, visibly committed player; game that starts small and grows)
lead to games supporting successful evolution?

* How can we measure, and eventually predict, the degree to which an architecture can effectively support an
open source ecology? .

* How can we predict what kinds of contributions will and will not be made to the public good and by what kind

of ecology member?

Addressing these questions would require a combination of qualitative and quantitative empirical
approaches, as well as advances in design analysis techniques.

5 ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates they had developed.

6 REFERENCES

1. Axelrod, R. (1984). The Evolution of Cooperation, New York: Basic Books.

2. Baldwin, C. Y. & Clark, K. B. (2000). Design Rules, Vol. 1: The Power of Modularity. The
MIT Press.

3. Blume, A. & Ortmann, A. (2007). The effects of costless pre-play communication:
- Experimental evidence from games with Pareto-ranked equilibria. Journal of Economic Theory,
127, 1, 274-290.

4. Cadsby, C. B. & Maynes E. (1999). Voluntary provision of threshold public goods with
continuous contributions: experimental evidence. Journal of Public Economics 71, 1, 53-73.

5. Cai, Y. (2006). Modularity in Design: Formal Modeling and Automated Analysis. PhD
thesis, University of Virginia.

6. Cai, Y. & Sullivan, K. (2005). Simon: A tool for logical design space modeling and analysis.
Proceedings of the 20th IEEE/ACM International Conference on Auromated Software
Engineering, 329-332.

7. Cataldo, M., Wagstrom, P., Herbsleb, J.D., Carley, K. (2006). Identification of coordination
‘requirements: Implications for the design of collaboration and awareness tools. Proceedings of
ACM Conference on Computer-Supported Cooperative Work, 353-362.

8. Ghosh, R.A. (2005). Understanding Free Software Developers: Findings from the FLOSS
Study. Making Sense of the Bazaar: Perspectives on Open Source and Free Software, Joseph
Feller, Brian Fitzgerald, Scott Hissam and Karim Lakhani (eds.). Cambridge: MIT Press.

9. Groves T. & Ledyard, J. O. (1977). Optimal Allocation of Public Goods: A Solution to the |
"Free Rider” Problem. Econometrica, Econometric Society, vol. 45(4), 783-809.

10. Hamman, J., Weber, R. and Woon, J. (2007). “Endogenous leadership in public goods.”
Working paper. 7
11. Herbsleb, J.D., Mockus, A., Roberts, J.A. (2006). Collaboration in Software Engineering

Projects: A Theory of Coordmatlon Proceedings of International Conference on Information
Systems.

“12. Hirshleifer, J. (1983). From weakest-link to best-shot: The voluntary provision of public
goods. Public Choice, 41, 371-386.

13. Huynh, S., Cai, Y., Song, Y. & Sullivan, K. (2008). Automatic Modularity Conformance
- Checking. Proceedings of the 30th International Conference on Software Engineering (To
appear).

- 14. Lakhani, K. R. & Wolf, R. G. (2005). Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects. Perspectives on Free and Open
Source Software, edited by Joe Feller, Brian Fitzgerald Scott Hissam and Karim Lakhani.
Cambridge, Mass: MIT Press, 2005.

15. LaMantia, M. J., Cai, Y., MacCormack, A. D., & Rusnak, J. (2008). Analyzing the evolution
of largescale software systems using design structure matrices and design rule theory: Two

exploratory cases. Proceedings of the 7th Working IEEE/IFIP International Conference on o

Software Architectures (To appear).

16. Lerner, J. & Tirole, J. (2002). Some simple economics of open source. J. of Inglustrial
Economics, 50, 2, 197-234.

17. MacCormack, A., Rusnak, J. & Baldwin, C. Y. (2006). Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code. Managemenr
Science 52, n0. 7.

18. Malone, T.W., Yates, J. & Benjamin, R.I (1993). Electronic markets and electronic

hierarchies, In T.J. Allen & M.S.S. Morton (Eds.). Information Technology and the Corporation
of the 1990s: Research Studies. New York, NY: Oxford University Press, pp. 61-83.

19. Mockus, A., Fielding, R., & Herbsleb, J.D. (2002). Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11 (3), 309-346.

20. Powell, W. W. (1990). Neither Market nor Hierarchy: Network Forms of Organization.
Research in Organizational Behavior, edited by B. Staw and L. L. Cummings. Greenwich, CT:
JAT Press. 295-336.

- 21. Roberts, J. A., Hann, I. & Slaughter, S. (2006). Understanding the Motivations, Participation,
and Performance of Open Source Software Developers: A Longitudinal Study. Management
Sczence 52 (7), 984-999, .

22. Steward, D. V. (1981). The design structure system: A method for managing the design of
complex systems. IEEE Transactions on Engineering Management, 28(3) 71-84.

23. Stewart, K. J. & Gosait, Sanjay (2006). The Impact of Ideology on Effectiveness in Open
Source Software Development Teams. MIS Quarterly (30:2), 291-314.

Sullivan, K., Griswold, W. J., Cai, Y., & Hallen, B. (2001): The structure and value of

modularity in software design.
24. Steward, D. V. (1981). The design structure system: A method for managing the design of
complex systems. IEEE Transactions on Engineering Management, 28(3), 71-84.

25. Stewart, K. J. & Gosain, Sanjay (2006). The Impact of Ideology on Effectiveness in Open
Source Software Development Teams. MIS Quarterly (30:2), 291-314.

Sullivan, K., Griswold, W. J., Cai, Y., & Hallen, B. (2001). The structure -and valﬁe of
modularity in software design.

Institute for S.oftware Research « Carnegie Mellon University « 5000 Forbes Avenue * Pittsburgh, PA 15213-3890 '

