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Abstract

Networks, and the nodes within them, are often characterized using a series of metrics.
Illustrative graph level metrics are the characteristic path length and the clustering co-efficient.
Illustrative node level metrics are degree centrality, betweenness centrality, closeness centrality,
and eigenvector centrality. A key issue in using these metrics is how to interpret the values; e.g.,
is a degree centrality of .2 high? With normalized values, we now that these metrics go between
0 and 1, and while 0 is low and 1 is high, we don't have much other interpretive information.
Here we ask, are these values different than what we would expect in a random graph. We report
the distributions of these metrics against the behavior of random graphs and we present the 95%
most probable range for each of these metrics. We find that a normal distribution well
approximating most metrics, for large slightly dense networks, and that the ranges are centered at
the expected mean and the endpoints are two (sample) standard deviations apart from the center.
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1 Introduction

In social network analysis, we summarize many features of networks in numerical forms. Some
representative measures we use are degree centrality, betweenness centrality, closeness centrality,
and eigenvector centrality at the node-level, and we add the characteristic path length and clustering
coefficient at the graph-level. Degree centrality shows the connectivity of each node to other nodes
in the network; betweenness centrality shows a node’s relative position through being an inter-
connected node of at least one pair of nodes; closeness centrality shows the inverse of the sum of
distances from a node to the rest of the nodes in the network; and eigenvector centrality shows
a node’s importance in the network accounting for the connectedness of its’ neighboring nodes.
[Wasserman & Faust(1994)]

These network statistics should be interpretive, and we find it best to set a random graph as a
benchmark to represent the typical ranges of metrics and compare with any network data. In
(this version of) ORA, we report the distributions of above-mentioned graph metrics so that one
could check input network data against the behavior of random graphs. We present the 95% most
probable range of these metrics. As we find a normal distribution well approximating most metrics
of large networks, the ranges are centered at the expected mean and the endpoints are two (sample)
standard deviations apart from the center. For centralizations, it is to measure the overall mean of
the spread from the maximum centrality value. Hence, we have skewed distribution toward lower
values.

2 Data

We simulate random graphs given a fixed number of nodes and density based on the probabilistic
formation of links. In a random graph, each link is present independent of other links with a fixed
probability p. If there are /V nodes in a graph, and each node is connected to an average of k other
nodes, then it is easy to show that p = ﬁ which for large N is usually approximated by %

We generate 250 random graphs each of size N = 10, 25, 50, 100, 250, 500, and 1000 and each
density d = 0.01,0.02,0.05,0.1, 0.3, and for each size N = 10, 25, 50, 100 we also have 250 ran-
dom graphs with density d = 0.5,0.7, and 0.9. We represent a graph GG in an N x N adjacency
matrix. In the G(i, j) entry we have either O to represent the absence of a link or 1 to represent
the presence of a link between the *" node and the j*" node. Hence, an undirected graph renders a
symmetric (adjacency) matrix, and a directed graph not.

Using ORA, we calculate the standard network metrics of these graphs. From the collection of
these values, we derive distributional properties of the network centralities, centralizations, char-

acteristic path length, and clustering coefficient.



3 Methods of Testing Normality of a Distribution

From our data generation, we have 250 values of each graph-level measure, as we created 250
graphs for a given network size and density. We also have 250 times /N values of node-level mea-
sures, for IV is the size of network or the number of nodes in the network.

When we obtain these values, we may plot histograms to glance at the overall shape of a dis-
tribution and also Quantile-Quantile plot (so called, Q-Q plot) in order to prove or disprove the
normality of the distribution. For Q-Q plots we have the ordered sample on the vertical axis and
the normal theoretical quantiles on the horizontal axis. When the data is distributed normally, a
match of ordered sample and proposed theoretical normal quantiles forms a straight line. Regard-
less of a few points at the tails, we see a linearity relationship near the center. For example, in
Figurel the Q-Q plots of characteristic path lengths becomes linear as the density increases. In the
bottom-right, when d = 0.1, the sample distribution does follow a normal distribution. In the case
of bottom-left, when d = 0.05, the middle 95% of the distribution (within 2 standard deviations
from ’0°) follows the straight theoretical normal quantile values, so we could well approximate this
distribution with a normal, also. However, for the cases of the top two Q-Q plots they are highly
non-linear, so we do not use a normal distribution to approximate.
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Figure 1: Example of Q-Q plots: checking the normality of characteristic path length distributions
when network size is 50 and the density varies from 0.01 up to 0.1.



4 Probable Ranges of Random Digraph Metrics

4.1 Clustering Coefficients

For directed random graphs in our simulated data see Figure 2, the clustering coefficient converges
to the true density of the network as the network size grows. Also, we see in Figure 3 the standard
deviation decreasing as a function of network size. From our testing, it exhibits an exponential
decay in a following form (see Table 1 for specifics):

,U/cc:d

o2 =kxexp > +c  where d = density and N = graph size.

We test the normality of the data and see them pass when N x d > 5. Since we have learned
that the mean is independent of the network size, the center of the probable range is d. The width
of the range is 2 X (dy, N)) (sample standard deviation) as the normal distribution has 95% of the
area under the curve fall within two standard deviations. Then, we obtain a 95% probable range
of the clustering coefficient for a given network size NV (at fixed density 0.01, 0.02, 0.05, 0.1, 0.3,
and 0.5) as d+ 20.. (4, N)- See Tablel for a specific (density, size) pair standard deviation 74, n),
and see Figure3 for the shape of the sample standard deviation functions.

Table 1: Network (density, size) pair clustering coefficient standard deviations

Density (d), Sizes (V) Standard Deviation (64 n)) | 95% Probable Range
0.01 25-1,000 9.281 x 10 3 exp~ 25 | 0.01 & 26(0.01, )
0.02 25-200 2.2226 x 10 2exp~mar | 0.02 + 26002, n)

200-1,000 | 1.86 x 10~* + 1.0645 x 10~2 exp™~ 150
0.05 25-100 5.9281 x 10 2exp-mom | 0.05 + 26005, n)
100-1,000 | 1.28 x 107 4 1.3094 x 10~ 2 exp™ 100
0.1 25-250 734 x 104 exp = | 0.1+ 26001, v
0.3 25-250 3.26 x 10 *exp™2 | 0.3+ 2503, n)
0.5 25-250 1.20 x 107 exp™5 | 0.5+ 2605, n)
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Figure 2: Convergence of clustering coefficients to a network’s true density. From left to right,
each graph shows the random graph density set at 0.01, 0.02, and 0.05 respectively with a blue
horizontal line. Means of 100 clustering coefficients for each /N are marked with ”0”, and the
range of each distribution is shown by the vertical line. We see the range of clustering coefficients
shrinking almost exponentially as N grows.

O _ Te]
o — -
- O e N © 7] n < -
O O o © | o g
173} — n 0 : ]
| 4 3 | | ©
[S] — _] o ] [S) -
O o o O o O o
S o S |
o | | | | | [ g _I | | | | [ g | | | | | [
0 400 800 0 400 800 0 400 800
Network Size Network Size Network Size
o]
_ S 4
0 — 4
- 87 m 8 4 o ©
n 9 0w S 7} -
| S - | |
(&) _] (&) = ) O «+H — o
(&) o 4 ) o o (&) 8 |
o o : o
o T T T T T o T T T T T © T T T T T
© 50 150 250 © 50 150 250 50 150 250
Network Size Network Size Network Size

Figure 3: Interpolation of clustering coefficient standard deviations at fixed densities. Going
clockwise from top-left the densities are d = 0.01, 0.02, 0.05, 0.5, 0.3, and O.1.



S Probable Ranges of Undirected Network Graph-level Met-
rics

5.1 Clustering Coefficient

The clustering coefficient C' for the whole network is the average of all nodes’ clustering coeffi-
cients, C; for i € {1,..., N}, which is defined to be the ratio between the degree (actual number
of linked neighbors) and the number of possible links to form a clique with the neighbors. That is,
C; = % = 7= where d; is the degree of node i and C' = Z . Just as in the case of di-
rected random graphs for undirected random graphs the clustering coefﬁc1ent converges to the true
density of the network as the network size grows. They behave the same because the directional
property of connectedness does not contribute to the count of links. The clustering coefficient’s
standard deviation again decays exponentially as the network size grows, and when the network
size is big (N > 200), it remains close to a very small constant (< 0.005).
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Figure 4: Distributions of clustering coefficients by network size(10 < N < 100) and density. For
each panel we have density from top-left to right and down 0.01, 0.02(right), 0.05, 0.1(right), 0.3,
0.5(right) and 0.7, 0.9(right).

Except for the case where the network size and density are both small (N x d < 5), the
distributions of the clustering coefficients are normal. Hence, the 95% probable intervals of the
random network clustering coefficients are as described in Tablel.

5.2 Characteristic Path Length (Average Distance)

The characteristic path length L has a lower bound 2d where the network density is d [Lovejoy & Loch(2003)].
If we look at Figure 5, for example, when d = 0.9, the characteristic path length already piles up
around 1.1 =2 —0.9at N = 10; when d = 0.7, L is also piled up at 1.3 for networks size N = 10
and up; and when d = 0.5, it stays around 1.5 starting from a network size N = 25. As the random
network size grows and/or the density grows, we get a smaller standard deviation of the charac-
teristic path length because of the law of large numbers (on the number of connected paths), and
the distributions move strongly toward the lower bound [Lovejoy & Loch(2003)]. Also, by the
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Central Limit Theorem the distribution of characteristic path lengths is well approximated normal
as the random network size grows and/or the density grows. Under the condition that N x d > 25,
the rule of thumb is to set distribution mean as 2 — d and standard deviation o < 1. In Figure 6 we
plot the 95% probable range of clustering coefficients C' for d = 0.01 and 0.02 in red and green
set of lines respectively with the mean curve in the middle. Note that the standard deviations are
much smaller for larger densities. Therefore, these 95% probable ranges are set apart far from each
other in the case of clustering coefficients. Therefore, there is very little confusion identifying the
equivalent density and size pair networks’ clustering coefficients in the case of random graphs.
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Figure 5: Distributions of characteristic path lengths by network size and density

For a smaller density networks 0 < d < 0.1, we could get a consistent pattern of an inverse
relationship with network size between 200 and 1,000 (%). The specific patterns of characteristic
path lengths are described in following:

when p = 0.005, L = 2.47 + 1982.96% N =500 — 1,000;
when p = 0.01, L =237+ 847.29% N =200 — 1,000;
when p = 0.02, L =2.30 + 323.38% N =100 — 1,000;
when p = 0.05, L =2.13 + 97.62% N =25 — 1,000;
when p = 0.10, L =1.87+ 32.97% N =25 — 1,000.
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5.3 Interpretation of Network Centralizations

Centralizations, a graph-level measure for , range between a value 0 and 1. The larger the value
is, the more likely it is that a single actor is quite central in the network with remaining nodes
considerably less central. Hence, we may look at it as how heterogenous the network is or how
variable each node’s centralities are. Therefore we expect random graph’s centralization values to
be closer to O than 1 as all nodes behave more or less like the rest of the nodes.

( [Newman et al.(2000)Newman, Strogatz, & Watts])

5.4 Betweenness Centralization

Betweenness centralization distributions are skewed leaning toward lower values, as we see in
most of the following figures 9, 10, and 11. With a relatively constant 6:1 ratio of sample means
to sample standard deviations, the distribution can be well approximated by a gamma distribution
with the shape parameter 36 = 62 and scale parameter that sets the mean as we calculated in Table
2 (see Appendix9.2 for details). From Figure 7, we find betweenness centralizations converging
to a value regardless of the density (or the degree distribution) as the network size grows large.
For example, when N = 200 and density 1%, the mean of 1250 random graphs’ betweenness
centralization is 0.0676, but the mean drops below 0.01 as the density grows to 5% and greater.
On the other hand, when N = 1,000 and while d > 1%, all graphs have means below 0.001. This
is due to the nature of random graphs, where no particular nodes stand out as better connectors
of any other two nodes in the network with a uniform probability of link formation. Hence, the



betweenness centralization occupies very small values with even smaller standard deviations. The
largest mean predicted of betweenness centralization is 0.25 when N = 25 and d = 0.1 and the
sample standard deviation 0.08.

The 95% probable range of betweenness centralization has an uneven length of wings about
the expected mean. It should be about two standard deviations below the mean and 2.3 standard
deviations above the mean due to its longer tail for the higher values according to the gamma
distribution quantile profile. So we write it as (fi(4, n) — 25t gAma(d’ N)» fi(a, Ny + %57@, ~))- With the
6:1 ratio of /i to o, we can simplify the expression as % it % i1, and we approximate i for N > 200
as:

Between

400 600 800 1000

Network Size

Figure 7: Betweenness centralization means against network size interpolated with an 1/N rela-
tionship

Table 2: Estimation of betweenness centralization means and standard deviations

Size N Density d(%) Mean /i Std. dev &
200-1,000 1 —0.20 + 231 £
2 —0.07 + 55 s
5 —0.02 + 2627 o
10 L o2
30 L gen
50 L 027
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viating from normality as both tail ends lift away from the theoretical Standard Normal Quantiles.
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5.5 Closeness Centralization

For closeness centralization, the distributions are skewed leaning toward lower values (see Figures
13, 14, and 15) just like betweenness centralization distributions. But unlike the betweenness
centralization, the distributions are multi-modal. We observe this from Q-Q plots in Figure 12a
and 12b, where the sample values appear like a step-function. A reason for observing such stacks
of points is due to the small deviations from the expected connectedness of the networks. When
the density gets greater, it translates to a higher probability of link existing between two nodes.
Hence, the expected number of connected nodes have little deviations, which results into having
repeated values.

For the 95% probable range of closeness centralization, we may set out an even length of wings
about the expected mean because the Q-Q plots show that the deviation from the standard normal
quantiles start around or beyond the +2¢ (standard deviations) reading it from the x-axis. To be
more specific, the whole range spans two standard deviations about the mean, and we write it as
(fia, Ny £ 23igAma(d, N)). With little clues to take the expectation of the closeness centralizations,
we just use the spline methods to interpolate the values for different densities shown in Figure 13.
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Figure 13: Histograms of closeness centralization by network size and densityjk
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The 95% probable ranges have little overlap when d > 0.1 as the network size differs. We should
further investigate the reasons behind this.
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Figure 16: Closeness centralization mean values by network size and density The greater the
network size, the smaller the closeness centralization values are. mean dips down when the network
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6 Probable Ranges of Undirected Network Node-level Metrics

In this section we explain the derivation of distributional quantities of a variety of network metrics
on node level, for random graphs node size 25-1,000. These graphs are assumed to be random,
which means that all nodes have an equal probability of being connected to all other nodes, there-
fore all nodes in a network behave similarly as one another.

As we increase the network size, the overall shape of the metric distributions are not only
smoother on a continuous scale but also more consistent (with a tighter range of metric values,
hence smaller standard deviations). We capture such a tendency in the following analysis assum-
ing a fixed density for a set of networks and increasing the network size. However, degree centrality
and centralization are exceptions in fixed density because in a random graph generation there is a
clear relationship between degree centrality/centralization and the network density and size pair.

In all graphs: ’Eig’ is for eigenvector centrality; 'Bet’ is betweenness centrality; and *Clo’ is
closeness centrality. These graphs show the generated networks’ centrality means and the standard
deviations with overall trends shown in blue and green curves. We run a regression on every pair
of network centrality measures and density we have by randomly selecting 250 values from each
network size data. The plotted values are the overall mean of network centrality measures with
a fixed density and size. For standard deviations, we run a regression on four up to seven values
that we obtained from the centrality values of 250 x N data points. (See more in Appendix-More
Graphs section.)

6.1 Degree Centrality

The number of links connected to a node is called the degree £ of that node, and has a probability

distribution pj, given by
= 1— ~
Pr (k>p (1-p) 1

where the second equality becomes exact in the limit of large N. This distribution we recognize
as the Poisson distribution. Hence, the random graph’s degree centrality follows a Poisson distri-
bution.

When we normalize the degree centrality by dividing node degrees by the graph size, /N, we rather
obtain a continuous distribution of the normalized degree centrality as N — oo, instead of a
discrete distribution. By the Central Limit Theorem we also approximate the normalized degree
centrality distribution - Bin (N, p) by Norm (p, 22220).

For a symmetric adjacency matrix, the in-degree and out-degree are the same, as well as the row
and column degree and the total degree centrality. So, we take a look at the total degree centrality
to represent all the degree distributions.

As it is derived above, the mean of the normalized degree centrality is the network density p, and
the variance is 212 o ) where N is the network size. For the 95% most probable interval of random
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Figure 17: Standard network metrics’ 95% probable intervals: (expected mean + 2(standard
deviation)) for random networks of size 200-1,000 at density 1% (top) and 2% (bottom row).
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graph node’s mean behavior, we get p+2 2=p) 1n other words, I can be sure that the 95% of the

N
: S [o(1—p) [p(1—p)
random graph nodes’ degree centrality will fall in between p — 24/ %2 and p + 24/ 52

example, if we have N = 100 and p = 0.05, then the 95% probable interval for a node’s degree
distribution is (0.0064, 0.0936).

. For

6.2 Eigenvector Centrality

Another way to measure the importance of a node in a network is to obtain a positive eigenvector
for adjacency matrix and collect the eigenvalues. These values ranging between -1 and 1 show
relative scores of nodes where high-scoring nodes have links that are central connectors to the rest
of the network than low-scoring nodes where the links may be many but isolated ones.

Table 3: Estimation of eigenvector centrality mean and standard deviation

Density size (d, N) Mean Standard deviation
0.005 500-1,000 | 0.1549 + 2.546 x 10~ N 0.1874 — 3.656 x 10™° N
0.01 200-1,000 | —0.6147 + 0.1671 In(N) | 0.1724 + 2574898 x 10 °N
0.02 —0.5499 + 0.17559 In(NV) | 0.1390 + &]\,184.312 x 1075 N
0.05 10-1,000 —0.1916 + 0.1367 In(V) 0.5375 — 0.0699 In(N)
0.1 10 -1,000 0.1208 In(N) 0.30
(200-1,000) 0.0443 + 14.0071 %

0.3 0.3380 + 0.0829 In(NV) 0.31

0.0224 + 8.3643 %
0.5 0.4972 + 0.0659 In(NV) 0.28

0.0133 + 5.3929
0.7 10-100 0.7843 +5.615 x 1071 N
0.9 0.9049 +2.579 x 1074 N

The overall distribution is not smooth nor normal, but the middle 75% behaves very much like a
normal where we observe this from Q-Q plots (even from the N < 100). See Figure x. Hence, we
give a smaller 65% probable range for this centrality measure by providing (jiq, n) % sigAma(CL N)).
We already encounter trouble distinguishing which density range the potential eigenvector cen-
trality measure mean should fall into as the standard deviation is around 0.1, if not greater for
200 < N < 1,000. See Figure 18 where the iso-line intervals are only about 0.1 apart.

16



e
—
«Q
o
o]
o
(6]
2 o |
C O
@
2
L
< —— 50%
S —a— 30%
—— 10%
2%
g - o 1%
I I I I I
0 200 400 600 800 1000

Network size
Figure 18: Iso-graph of eigenvector centrality means by density.

6.3 Betweenness Centrality

Betweenness centrality distributions are well approximated with a normal distribution when N >
25 and d > 0.4. However, note that when N = 25 and d = 0.5, the left tail is cut off by 0.

1—d
,ubet(d, N) = T
%
Opet(d, N) = 0.0019 * 3'°¢2 when d = 0.4
= 0.0011 % 310&1% when d = 0.5
= 0.0004 % 31%1% when d = 0.7
100
— 0.0001 s 3los2" when d = 0.9

When d is small (that is, d < 0.1), there are too many isolated nodes in networks. Hence, the
betweenness centrality piles up near 0. Only when N x d > 25, the distribution starts spreading
out evenly to the left and right.
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Figure 19: Iso-graph of betweenness centrality means by density.

6.4 Closeness Centrality
Normality is observed, when d = 0.3,0.5,0.7, and 0.9 (i.e. d is greater than 0.3)

feio = (characteristic path length) ™!

Oelo = 1—]30 when d = 0.3
_ % when d = 0.5
= 2—]\7[0 whend = 0.7
= 2—]36 when d = 0.9

When d is small (that is, d < 0.1), we observe many isolated nodes in graphs. Hence, the closeness
centrality of nodes from a network size N is heavily piled on % and NLH We find more interesting
distributions, when N = 25 and d = 0.1, N = 50 and d = 0.05, N = 100 and d = 0.02, there are
not only huge spikes at % but also another peak to the right of %
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Figure 20: Iso-graph of closeness centrality means by density.

7 Non-square Adjacency Matrix Network Metrics’ Distribu-
tions

We encounter a case where personnel is linked to resource or knowledge, each representing row or
column. The number of rows and the number of columns may differ. So, we represent this case
in a K x N adjacency matrix where each entry (¢, j) has 1 for the presence of a link and O for the
absence of a link between ' and j*" nodes. Such adjacency matrices are obviously not symmetric,
thatis a 1 in (4, j) entry does not imply a 1 in (7, ) entry and vice versa.

7.1 Degree Centrality and Centralization

We would like to examine whether links in real scenarios occur more or less at random or not.
Hence, we derive the distributions of degree metrics of non-square random networks where we as-
sume a presence of a link at random across the matrix cells (i.e. the presence of a link is equiprob-
able for all pairs of nodes). Then we summarize its row degree and column degree distributions
and provide the 95% most probable interval of each metric.

The derivation is similar to the symmetric adjacency matrix case. We fix a node from the
row lineup and know that its probability distribution of the degree (number of links or neighbors)
follows a Binomial distribution with a fixed possible number /N linkages and probability p. Hence,
the row degree centrality would follow a Bin(N,p). If we normalize row degree centrality, the
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distribution will be divided by N, and the expected mean centrality is p, and the standard deviation
is v/p(1 — p). By the same reasoning, the column degree centrality would follow a Bin(K, p)
because a column node could link to each K elements with a fixed probability p. If we normalize
column degree centrality, the distribution will be divided by K, and the distribution is the same as
that of the normalized row degree centrality. See Table4 for summary.

Table 4: K x N Non-square matrices normalized degree distribution summary

Degree metrics Distribution Mean | Standard Deviation
Row degree centrality %Bz’n (N, p) P V(1 —p)
Row degree centralization | Norm (Np, W) p Np (Il(_p )
Column degree centrality +Bin (K, p) P p(1—p)
Column degree centralization | Norm (Kp, W) P \/ W

8 Final Remarks

9 Appendix

9.1 Notation

¢ N: network size.

d: network density.

p: probability 0 < p < 1.

Norm(y, 0%): normal distribution with mean 4 and standard deviation o.

Eig/ eig: Eigenvector (centrality);Bet/ bet: Betweenness (centrality); Clo/ clo: Closeness
(centrality).

9.2 Terminology

* The terminology graph and network are used interchangeably. In most cases we tried to
stick to use the term network so that there is less confusion in our daily use of language.
However, in the literature of mathematics, random graph is coined by mathematicians Erdos
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and Renyi and has been widely used ever since. Therefore, occasionally graph will mean a

general network.
» Adigraph is a directed graph.

* Gamma(a, % ) probability density function:

f(z]a, B) = Fﬁ(a)xa_l exp P, 0<z<oo, aB>0
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Figure 21: Gamma distributions with various parameter values o and (5. These are skewed
toward lower values.

If we draw 1,000 sample from a gamma distribution with the shape parameter o = 36 and
the scale parameter (3 such that % is the expected mean, we may set 3 to ...
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9.3 Additional Graphs
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Figure 22: Network measure means and standard deviations against network size when
d=0.005. The first row shows when the measures’ means, and the second row is the variances.
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Figure 23: Network measure means and standard deviations against network size when d =
0.01 and 0.02. The top half shows the measures’ means, and the bottom half reports the standard
deviations. The first and the third rows are when the density is fixed at 1%, and the second and the
fourth rows are at 2%. For the mean interpolations: eigenvector centrality is well explained by a
log transformation of network size; betweenness centrality is very well captured by 1/(Network
size) transformation; closeness centrality holds a linear relationship at first then a logarithmic
transformation of network size.
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Figure 24: Network measure means against network size when d = 0.05, 0.1, 0.3, and 0.5. The
first row shows when the density is fixed at 0.5%, the second row is at 10%, the third at 30%, and
the last row is at 50%. Eigenvector centrality has values plateauing as the network size grows, yet
a log transformation is not a great fit; betweenness centrality is very well captured by 1/(Network
size) transformation except when the density is low and network size small; closeness centrality
seems to also plateau at a certain point, but the relationship is yet uncertain.
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Figure 25: Network measure standard deviations against network size when d = 0.05, 0.1, 0.3,
and 0.5. The first row shows when the density is fixed at 5%, the second row is at 10%, the third
at 30%, and the last row is at 50%. Eigenvector centrality stdev. decreases as 1/(Network size)
with increasing size; betweenness centrality and closeness centrality stdev. also show a similar
behavior except when the network density is at 5%; when the network size is small (;100) the
standard deviation grows on log(N) scale as we see in the top right.
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Figure 26: Network measure means against network size when d = 0.7 and 0.9 The top half
shows the measures’ means, and the bottom half reports the standard deviations. The first and
the third rows show when the density is fixed at 70%, and the second and the fourth rows are at
90%. Since the density is very high, we only look at network size up to 100. For this small range
of sizes, means of eigenvector centrality grows linearly with network size; that of betweenness
centrality is very well captured by 1/(Network size); however, closeness centrality does not show
a clear relationship. For standard deviations, eigenvector centrality gives no clear relationship ;
betweenness and closeness centralities are explained by 1/(Network size) overall.
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