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Abstract

Observed associations in a database may be due in whole or part to variations in unrecorded
(“latent”) variables. Identifying such variables and their causal relationships with one another is a
principal goal in many scientific and practical domains. Previous work shows that, given a partition
of observed variables such that members of a class share only a single latent common cause, standard
search algorithms for causal Bayes nets can infer structural relations between latent variables. We
introduce an algorithm for discovering such partitions when they exist. Uniquely among available
procedures, the algorithm is (asymptotically) correct under standard assumptions in causal Bayes
net search algorithms, requires no prior knowledge of the number of latent variables, and does not
depend on the mathematical form of the relationships among the latent variables. We evaluate the
algorithm on a variety of simulated data sets.
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1 Introduction

In this work, we study approaches to learn from data which hidden common causes could explain
the association of observed variables.

For instance, suppose you are given the following induction problem: discover the causal re-
lationships among variables measuring characteristics of a specie of small mammals in different
habitats. There are variables such as increase in height per year (in some scale), increase in length
of fur per year (in some other scale), approximate age where each animal achieved sexual maturity,
degree of humidity of its habitat, degree of sunlight, amount of a specific kind of leaf that is the
staple food of such animals, and so on. A sample of individuals and their respective habitats,
measured over those features, is provided.

A further investigation tells you that such variables were originally chosen for a study relating
the effects of environment in the growth of such animals. Things become more clear when you see
such variables as indicators of a couple of unobserved, or latent, variables such as “enviromental
quality” and “rate of maturity”. A candidate model can be as simple as the one depicted in Figure
1.

However, a structure based only in background knowledge may not be satisfactory, and questions
about the validity of some relationships will have to be tested. For example, in the model of Figure
1, is our abstract latent variable Environmental quality good enough to account for the associations
between its indicators, or one has to consider a variable such as Sunlight measure as a direct cause
of Food availability? What about the relation between the latents?

The study of latent variable models is a widely interdisciplinary enterprise affecting different
fields of science, such as econometrics and social sciences, natural sciences and psychology (Harman,
1967; Cattel, 1978; Rayment and Joreskog, 1993; Bartholomew et al., 2002; Malinowski, 2002).
A large number of such models adopt, implicitly or explicitly, what we call the measurement
assumption: observed variables are indicators of latent variables, i.e., observed variables are caused
by latent variables, and such latents can be not only physical concepts that were not measured
because of some pratical constraint, but also abstract factors hard to quantify with a single measure.
Observed variables can be direct causes of other indicators, but not causes of latent variables. While
it is easy to come up with examples where this requirement does not hold, many studies are designed
in order to fulfill this assumption, such as in the questionnaires used in social sciences research and
marketing, and in psychometrical measurements.

The measurement assumption is not merely an artifact for mathematical adequacy, but a stan-
dard principle for a variety of data analysis practices. At the end, we have a framework that
approachs a problem by dividing it into two parts: a measurement model, which describes how
latents affect indicators, and a structural model, describing how latents affect other latents.

Another motivation for explicitly creating a measurement model are the consequences of mea-
surement error (Bollen, 1989). For instance, suppose we want to quantify the causal effect of
exposure to lead in children’s cognitive functions. There are direct and indirect mechanisms that
might explain this effect, and the issues raised by such problem appear in many research contexts.

Researchers in policy analysis are interested in this type of problem because they need to control
the environment in order to achieve the desired effects: should we intervene in how lead is spread
in the environment? But what if it does not actually affect cognitive skills of children, but there
is some hidden common cause that explains this dependency? How to quantify it? These are
typical questions in econometrics and social sciences. But also researchers in artificial intelligence
and robotics are attentive to such general problems. How does the world affect my agent/robot?
How can it manipulate its environment in order to achieve its goals? If one does not know how to
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Figure 1: A causal model of enviromental effects on the biological growth of some animal specie.
Edges marked with a “?” indicate relations in which the available prior knowledge is less certain.

quantify such effects, it is hard to believe in any decision theoretic machinery used as a criterion
for action, since the prediction of the effects of a manipulation will be wrong. In order to perform
sound prediction of manipulations, causal models are necessary. Usually such models are not readily
available, and algorithms are necessary to learn them from data.
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Figure 2: In (a), the underlying hypothetized phenomenon. In (b), how the model assumptions
relates the measurements.

A simple causal model for the lead (L) and cognitive skills (C') problem is a linear regression
model where L causes C, and they are related by the linear equation' C = BL + ¢, where € is the
usual zero-mean, normally distributed random variable. Figure 2(a) illustrates this equation as a
causal graphical model. There is one important problem: one usually does not have well-defined
criteria for quantifying what “lead exposure” and “cognitive skills” should be. The usual approach
is relying on indirect measures, such as Blood level concentration (BL), which is an indicator of lead
exposure. And cognitive functionality is probably one of the most ill-defined concepts in existence.
Measures such as IQ Tests (IQ) have to be used as indicators of C. Our regression model has to
be something along the lines of IQ) = BBL + €j¢q. Figure 2(b) illustrates the new graphical model
representing this regression.

However, if the measurement error of L through BL is not zero, i.e., ¢ # 0, we cannot get
a consistent estimator of § under the linear regression model. Without a consistent estimator,
one would not be able test if § is zero, for instance. That happens not because regression is a

!We assume that both are centered at its mean.



defective method, but because this problem fails to meet its assumptions. By Figure 2(b), we see
that there is a common cause between BL and IQ (Lead), which is strictly against one of the main
assumptions in regression: if one wants consistent estimators of causal effects, there cannot be any
hidden common cause between the regressor and the predictor.

The common cause problem does not happen if one is willing to perform randomized experi-
ments, where children are exposed to varying degrees of lead on purpose. However, such experiments
are unethical, and only observational data can be used. Techniques such as the ones described in
Spirtes et al. (2000) and Pearl (2000) are necessary. Also, even if one has considerable control of
its environment, such as an intelligent agent in an idealized world, manipulation may be expensive
and cheap observational data should be used as much as possible.

One solution is fully modeling the latent structure. Additional difficulties arise in latent variable
models, though. For instance, due to parameter identifiability reasons, we may require multiple
indicators per latent (Bollen, 1989; Scheines et al., 1999). Other implications have to be considered.
In our example, suppose we take into account a common cause between lead and cognitive abilities:
the parent’s attentiveness to home environment (P), with multiple indicators Py, P,, P3 (Figure 3).
We want to test if L is independent from C' given P and, if so, conclude that lead is not a direct
cause of alterations in children’s cognitive functions. If these variables were observed, well-known
methods of testing conditional independencies for certain families of probability distributions could
be used. This is not the case. Some (flawed) existing solutions perform a test of conditional
independence of Blood Level and I() given a function of the indicators Py, Py, P3, a so-called scale of
P. Alook at the graphical model in Figure 3 tells us that the only way such scale would d-separate?
BL and I(Q) was if it was an invertible deterministic function of P, which one should not expect to
happen in practice.
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Figure 3: A graphical model with three latents.

In this report we do not discuss how to learn the causal relationships among the latents, as
it was done in (Silva, 2002a). Even thought this is one of our main motivations, there are still
many applications where knowing the measurement model alone is important. For example, in
data mining applications we may want to know how the different measures cluster together and

’D-separation is a graphical criterion equivalent to conditional probabilistic independence under our axiomatic
system of causality. Details are given in Pearl (1988).



how they can be interpreted as abstract factors with more interesting semantics. Factor analysis,
for instance, is a standard latent variable model for this kind of exploratory data analysis, but
requiring stronger assumptions and rather arbitrary rotation methods. A lower dimensional space
could also be used for creating predictive models based in such abstract factors.

Other fields of applications include cognitive sciences, also interested in learning general factors
that explain observed measurements of behavior and brain activity (factor analysis was originally
motivated by studies in psychometrics). In artificial intelligence and knowledge engineering, learn-
ing underlying unknown factors is related to the concept of ontology learning. Such latent variables
can be used as new concepts in large human-designed knowledge bases.

2 Problem statement and assumptions

The goal of learning measurement models is identifying abstract or unmeasured concepts ( “factors”)
that causally explain the associations measured over a set of observable random variables. The
language of graphical models (Jordan, 1998), a graphical causality calculus and the concept of
d-separation will be used as a formal language for our models. If the reader is not familiar with
the concept of d-separation and causal models, books such as Pearl (1988, 2000) and Spirtes et
al.(2000) present the definitions in full detail. The following definitions introduce the families of
measurement models of interest. A random variable and a node in a graph are treated as a single
entity when both have the same name.

Definition 1 (Measurement model) A directed acyclic graph (DAG) containing a set of latent
variables L, a set of error variables €, a set of observed variables O, two set of edges Eo and
E., forms a measurement model M (L, O, ¢, Eq, E.) if each latent in L is a parent of at least one
variable in O, none of the observed variables is a parent of any variable in L Ue, all nodes in O
are children of some node in L, any node in € is a common parent of at least two nodes in O and
is d-separated from every element of L. Also, all edges in Eg have at least one endpoint in O and
no endpoint in €, and all edges in E, have at least one endpoint in e.

The definition of a measurement model specifies in which way observed variables are indicators
of common latent factors while not considering how such factors are causally connected, since
no directed path between two latents is intermediated by an observed variable. Not allowing an
observed variable to be a cause of a latent is stronger than not allowing causal paths among latents
be intermediated by non-latent variables, but such (widely adopted) assumption will allow us later
to derive stronger conclusions about such models. Variables in e are also latent variables, but
we refer to them as error variables, in a similar role to error terms in regression analysis. They
represent uncertainty in the measurement. We do not exclude the possibility of different error
terms being linked by paths. It is a standard practice to represent associations due to dependent
errors when visually depicting a directed graph by using double-directed edges, which is the usual
representation in structural equation models (Bollen, 1989) and causal models (Pearl, 2000; Spirtes
et al., 2000). Another variation is to completely ignore error variables when drawing graphs, and
any double-directed edges that would exist among them will be drawn among the observed variables
that are descendants of such error terms.

Unless it is stated otherwise, we do not include the error variables in the figures depicting
graphical models across this document, but we will include any necessary double-directed edges.
In Figure 4 we have an example of a graphical model that is a measurement model and one that is
not. Relations among latents are not considered.
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Figure 4: In the graphs above, white nodes represent observed variables and black nodes are latents.
Figure (a) is an example of a measurement model. Relations among latents are just ignored. Error
nodes are not represented. Figure (b) is an example of a graphical model that is not a measurement
model.

The previous definition does not specify which is the parametric relationship between a variable
and its direct causes. In this work, we will focus in the following class of measurement models:

Definition 2 (Linear measurement model) A measurement model is linear if each observed
variable is determined by a linear combination of its parents and an additive error term. A linear
measurement model is defined by a set of equations O; = Zj XijLj + > mikOk + Do, Ve€e + €5,
VO; € O, where any L; is in L, all €. is in €, and e; is an extra error term with non-zero variance
independent of every other variable in the measurement model.

We assume for simplicity that all variables have zero mean. The reason for the extra error term
is because we want to exclude deterministic relations among elements in our models. The next
definition describes an important subclass of measurement models.

Definition 3 (Pure measurement model) A measurement model M (L, O, ¢, Eo, E¢) is pure if
for every O; € O, O; is d-separated from every element in (L — L;) U (O — O;) conditioned in some
L; € L such that L; is a parent of O; in M.

Figure 5 depicts a pure and an impure measurement model. In a pure measurement model,
e = (), E. = (). Notice that each observed variable is still a non-deterministic function of its parents
in linear measurement models, since a extra error term exists.

We say that a graph G is faithful to a joint probability distribution f(V), where V is a set of
random variables and for every V € V there is a corresponding node in G, when every conditional
(or marginal) independence statement about variables in 'V holds in f(V) if and only if it also
holds in G according to the graphical criterion of d-separation. The assumption of faithfulness is
very common in causal models (Spirtes et al., 2000) and is described by Pearl (2000) under the
name of stability. The following definition makes use of this assumption.

Definition 4 (Latent variable graph) Given a set of latent variables L, a set of error vari-
ables €, a set of observed variables O, three sets of edges Eo, Er, and E, a latent variable graph
G(L,0,¢,Ey,Eo,E,) is a directed acyclic graph faithful to the joint distribution f(L U O U ).
Also, all edges in Ex1, have both endpoints in L, and the directed acyclic graph defined by the tuple
(L,0,¢,EQ, E,) forms a measurement model.
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Figure 5: The graph in Figure (a) is not a pure model: O; and O; are d-connected given their
latent parents, O3 and Os have more than one parent. On the other hand, the graph in Figure
(b) is a pure measurement model: every observed variable is d-separated from other indicators and
latents given its (unique) latent parent.

We will also say that, given a latent variable graph, the tuple (L, O, ¢, Eg, E,) is its measurement
model. The definition of pure latent variable graph and linear latent variable graph are analogous:
they should have pure/linear measurement models. Pure graphs are important for reasons that will
be explained later, and it is useful to know how to obtain a pure graph out of an impure one.

Definition 5 (Purification) Given a latent variable graph G(L, O, ¢, Er, Eo,E.), a purification
1s a pure latent variable graph obtained from G by a sequence of deletions of elements from O and
all elements from e.

This definition requires that every observed node in the purification has just one latent parent
in G. Since the output should be a faithful graph, this deletion cannot be arbitrary. The purpose
of this definition is to identify pure measurement models that are a function of GG, where each
observed variable is d-separated from every other observed node given its (unique) latent parent,
conditioning on an observed node can never d-connect indicators unconditionally disconnected,
and such d-separations also hold in G. For instance, the graph in Figure 5(a) has a purification
containing variables { Oz, O4, Og, O7} and any subset of this set. Notice that if O; is in a purification,
then Og cannot be in the same graph even if we remove O7: in this case, O; would be d-separated
from Og in this graph conditioned on the latent parent of O1, but the graph would not be faithful
since O is still dependent in Og given the latent parent of O;.

In this report we introduce approaches that, given the covariance matrix of a set of random
variables, discover the measurement model of some marginal of the distribution. We must formally
define the set of assumptions by which we are able to prove the correctness of our method. The
following definition specify the special class of latent variable graphs that corresponds to our primary
assumptions.

Definition 6 (Purifiable linear latent variable graph) A purifiable linear latent variable graph
G(L,0,¢,Ey,Eo,E, Gg) is a graphical model such that (L, O, ¢, EL,EqQ,E.) is a linear latent
variable graph and Ggs is a non-empty set of purifications of G such that, in every graph Gg € Gsg,
all latent nodes have at least three observed children in Gg.

The motivation for requiring at least three observed children per latent in purifications of G
comes from identifiability issues. This will be evident in the next sections, where we introduce



an algorithm for learning families of measurement models (equivalence classes) that fit a given
covariance matrix ¥ of a set of variables O. The assumptions by which this algorithm work are:

e observed variables are continuous;

e ¥ is faithfully generated by an unknown purifiable linear latent variable graph
G(L7 Oa €, EL, Eo, E, GS)a

e the distributions of O, L and € have second moments;

Notice that this assumes faithfulness and linearity of the measurement model, and that by
faithfulness no variable has zero variance. However, it does not assume which is the specific family
of probability distributions for O, L or e. We will also implicitly assume that each latent is
correlated to at least one other latent and there are at least two latents. These last assumptions
are not essential. They are made only for the sake of keeping the algorithm slightly simpler and
can be removed in later extensions of this report.

We do not expect being able to identify every possible component in a model (i.e., find every
edge with every possible orientation, assigning a proper cluster for each observed node, and so on).
In Section 3 we define classes of equivalent solutions, or equivalence classes, for our problem: a
representation that includes the correct measurement model given the assumptions, plus a set of
other possible measurement models that could not be distinguished by our algorithm. The output
of our procedure is an equivalence class. After the explanation of the algorithm in Section 4 and
Section 5 for the case where X in known, in Section 6 we explain which statistical tests can be used
for the (usual) case where all we have is a covariance matrix obtained from finite samples. We also
discuss heuristics for dealing with the fact that we have to perform sequential hypothesis testing
that is prone to commit several mistakes. Section 8 shows some empirical results. Appendix C
provides a proof of correctness for our approach.

Concerning which kinds of problems for which our methodology is appropriate or not recom-
mendable, the general criterion should be: apply it when one believes that the underlying common
causes have some unique indicators, i.e., its own direct effects that are not direct effects of other
latents. For instance, many case studies in social sciences and econometrics follow that pattern
(Bartholomew et al., 2002). On the other hand, if the problem suggests that most observed vari-
ables are measures of a large variety of common latent causes, then the proposed approach should
not be able to identify much structure on it. The following list describes some examples of problems
that are not prone to be solved with our method:

e general blind source separation problems, where measures are usually indicators of most of
the latents (i.e., sources) at the same time;

e some chemometrics problems (Malinowski, 2002) for identifying chemical components in sam-
ples that contain mixtures of many different elements;

e a common model in analysis of text data: latent semantic analysis (Hofmann, 2001), where
documents are considered to be generated by a mixture of different semantical topics.

On the other hand, there are natural scenarios for our algorithms:

e in econometrics, social sciences, psychometrics and natural sciences, it is important to describe
the observed measures as indicators of a few, common latent concepts. By describing the



relationship of observations through latents, one is able to take in account the consequences
of measurement error (Bollen, 1989) and better quantify the effects of theoretical concepts
on the observed measures. It also provides building blocks for the creation of new theories
and concepts that explain observed phenomena, as well as relating previously known concepts
to those obtained through empirical analysis of measurement models. Althought one has to
carefully evaluate how to interpret, reify or discard the discovered latent concepts, this is an
important step that no science proceeds without 3.

e in general, through data mining one wants to gain insight in a given data generation process
in order to implement effective policies. Automatic discovery of measurement models can
at least provide a quick and dirty exploratory data analysis tool for coming up with such
insights.

e one of the most important problems in artificial intelligence is building large systems of
common sense knowledge. Designing knowledge bases by grouping the many concepts of
common sense by abstract, latent common causes may reduce this task to a more manageable
size.

Also, it should be clear that the learning problem especifically treated in this report is a prob-
lem of qualitative nature: the goal is discovering clusters of variables, not quantifying the causal
effect of a latent in each of its indicators. For quantification of effects given the structure, standard
approaches exist for the parametric case where variables are multivariate normal (Bollen, 1989)
and other distributions from the exponential family (Bartholomew and Knott, 1999). Independent
component analysis is the semi-parametric method for the special case where latents are indepen-
dent (and usually the measurement model is error-free, an unlikely case for the problems we are
interested in modeling).

3 Equivalence classes

In our context, an equivalence class is a set of solutions that are admissible given the assumptions
and the specific instance of a problem. For example, when learning DAGs from observational data,
it is common that different DAGs explain the data with exactly the same adequacy. If the true
DAG is A — B — C, given only the observed conditional independencies of {A, B, C}, in general
no algorithm will be able to tell which of the graphs in {A - B - C,A«+ B — C,A «+ B+ C}
is the one that generated that distribution. An useful output would be the complete set of possible
solutions, often expressed in a shortened representation. Pearl (2000) describes an equivalence class
of DAGs by patterns, a chain graph where some edges are not oriented (the pattern for our example
would be A — B — C). A minimal equivalence class would be a class that includes the minimal
possible number of solutions for a problem given the assumptions. The definition of a minimal
equivalence class is independent of the algorithm that may be designed for the problem. For some
cases, we know which should be the minimal equivalence class and which algorithms can be used
to discover the minimal equivalence class of any given instance of our problem (e.g., Meek, 1995).

In our problem, the only input given to us is a set of observed random variables O and some
function of their joint probability distribution. In this report, we will make use only of the co-

3For example, there are half a dozen different fundamental models in superstring theory, all of them with the same
empirical predictive power, but different in their latent structure. However, it is important for physicists to study
this equivalence class of models in order to provide guidance for theories and future experiments that may eventually
reduce this class of equivalent models to a smaller one.



variance matrix Y. of the observed variables, and assume such variables have zero mean. There
will be situations where some specific properties of a measurement model cannot be identified, and
whenever we speak of an equivalence class, it should be implicit this is an equivalence class with
respect to the constraints we evaluate. For example, suppose that a given observed indicator O; of
some latent L; is directly caused by every other indicator in the corresponding latent graph with
the exception of some indicator O;. The algorithm described in the next section uses a specific
family of constraints to identify relationships among these variables, but in this case no constraint
will hold between O; and any of the other variables. We will not be able to tell that Oy is a direct
cause of O; or not, and actually O; will not appear in our measurement pattern.

As another example of feature that we cannot identify, suppose O;, O;, Oy, are indicators of some
latent, and the edges O; — Oj, Oj — Oy are in the underlying latent variable graph, but there is
no edge O; — Og. Our algorithm may be able to identify that there is a path from O; to O that
does not go through their common latent parent, but it will not be able to tell if this is a direct
cause or not. Notice that, with a few more conditions that could be assumed or verified in some
cases, one would be able to detect this chain, but the algorithm here described will not explore this
possibility. We do not claim that the algorithm introduced in this report is complete with respect
to its assumptions, i.e., it will not discover the minimal equivalence class of a measurement model.

The output of the algorithm introduced in the next section is a graph M M with directed and
undirected edges and the following properties:

e the graph M M has a set T of latent variables and observed variables O’ C O, where O is
the original set given as input. Notice that we denote latents in the pattern by T instead of
L, because obtaining a one-to-one mapping from one set to the other is not guaranteed;

e every latent has at least two children;

e some pairs of observed variables may be connected by an undirected edge. Some pairs of
latents are connected by an undirected edge. No latents have parents;

e there are no error nodes;

Let G(L, O,¢,Er, Eg, E., Gg) be a purifiable linear latent variable graph such that the covari-
ance matrix of O is given as input to our algorithm. Then M Mg represents possible measurement
models such that the measurement model of every Gg € Gg is a subgraph of M Mg. Our problem
can be seeing as a clustering problem: identifying how variables are clustered together, where a
cluster in a measurement model is any set of indicators that share a same latent parent. Clus-
ters can overlap in general measurement models. Clusters cannot overlap in pure measurement
models. Sometimes we will refer to the elements of Gg as solution graphs, because they can be
identified, while this is not usually the case for G. The fact that there are no error nodes in the
pattern does not mean that measurement error is not being considered: it is implicity in the linear
parameterization of the model.

The information encoded by M M explains the tested constraints in the covariance/correlation
matrix of the observed variables according to the following properties:

1. if there is no node in M Mg representing a variable O, then there is no possible purifiable
linear latent variable graph Gy(Lg, O, €o, Ery, E0q; Eey; Gs,) where O is included in some
Gg € Gso;



2. if there is a pair of observed nodes O, O2 connected by an undirected edge in M Mg, then
there is no purifiable linear latent variable graph Go(Lo, O, €9, E1y, E0g, Eey, Gs,) that can
include both O; and O in the same Gs € Ggy;

3. if there is a pair of observed nodes O1, Oy that do not appear in any common cluster in M Mg,
then there is no purifiable linear latent variable graph Go(Lo, O, €0, ELy; EQg, Eey, Gs,) that
can include both O; and O, in the same cluster in some G5 € Gg,;

4. let Ct = {11, T3, ..., Ticy|} be a maximal clique among latent nodes in M Mg such that each
T; € Cr has a subset of indicators O; with the following joint properties: (i) Vi, |O;| > 3;
(ii) YO € 04,044 € Oj,1 # j, Ojp and Ojq do not have any common latent parent in M Mg
nor are linked by an undirected edge. Let M M{, be the measurement model containing each
T; € Cr and the respective indicators O;. Then there is a one-to-one relation Lg : Cpo — L
from the set of latents in Ct onto the set of latents L in G. We say that Lg(T) = L,
T € Cr, L € L if and and only if all children of 7' in M M{, are also children of L in G. There
is at least one maximal clique satisfying this property, which will then have size |L|.

Any purifiable linear latent variable graph containing the same observed variables and en-
tailing the same constraints we test will lead to the same output in our algorithm. The set of
such graphs will be called a measurement equivalence class, denoted by MM (O,%). As hinted
at the beginning of this section, we use this representation as a shortened representation for
MM(O, Constraints(X)), where Constraints(X) are those constraints that are tested in our al-
gorithm (in the same vein by which standard DAG equivalence classes are defined with respect
to conditional independence constraints). The graphical representation of the equivalence class
described above is a measurement pattern.

4 An algorithm for learning measurement equivalence classes

The algorithm here described builds a measurement pattern of a unknown purifiable linear latent
variable graph with a known observed covariance matrix 3 by evaluating the validity of tetrad
constraints among sets of four variables. Given the covariance matrix of four random variables
{4, B,C, D}, we have that zero, one or three of the following constraints may hold:

OABOCD = OACOBD
0ACOBD — OADOBC
OABOCD = OADOBC

The importance of tetrad constraints is that they can be used to reduce the set of possible
relationships among the latent parents and their observed variables if the indicators are a linear
combination of its parents. Let G(L, O, ¢, Ey,, Eg,E) be a linear latent variable graph. Define
L(O) € L as one specific latent parent of O € O. The following results are described in Spirtes et
al. (2000):

e if all three tetrad constraints hold for a set of random variables {4, B,C, D} and no one of
these variables is an ancestor of one of the other three, then their respective nodes in the
graph are d-separated by the latent parents of these nodes, independently of the relationship
among the latents (even if they are the same latents);
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e if {A, B,C} are three indicators of some given latent L = L(A) = L(B) = L(C), and L
d-separates any pair in {4, B,C}, and there is a fourth variable D in O such that D is d-
separated from {A, B,C} given L (or some L(D)), then all three tetrad constraints hold in
the set {A, B, C, D}, it does not matter how L interacts with L(D) (or even if L = L(D));

e if {A, B} are two indicators of some given latent L; = L(A) = L(B), {X,Y } are two indicators
of some given latent Ly = L(X) = L(Y), L1 # Lo, every element in {A,B,X,Y} is d-
separated from the others given {L1, Lo}, then just one tetrad constraint will hold among
elements of the set {A, B, X,Y }, it does not matter how L; interacts with Lo;

The proof of the first assertion requires linearity among latents. The other two do not impose
this requirement. An approach for learning a measurement model is finding which variables could
be clustered into one-factor models, which are basically conditional naive Bayes models where
the observed variables are linear indicators of a given latent, and these observed variables are
independent conditioned on the latent. A linear one-factor model has to have at least four indicators
to be able to be identified and tested. All three tetrad constraints hold among variables which form
a linear one-factor model. One could explore the possibility of clustering together variables that
belong to a same one-factor model.

Unfortunately, it is possible to have a set of four variables that satisfies all three tetrad con-
straints, and yet they belong to different clusters. For example, if {X,Y, Z} are pure indicators of
L, (i.e., each one is d-separated from every other variable in the causal graph given L;), and K is
a pure indicator of Lo, the set {X,Y, Z, K} will satisfy all three tetrad constraints. Also, if A is a
pure indicator of Ly, {X,Y} are pure indicators of Ly and B is a pure indicator of L3, the causal
relationships among L1, Ly and L3 are linear, and Lo d-separates L; and Ls, then all three tetrad
constraints will hold in the set {A, B, X, Y }. The challenge is knowing when some set of variables
should or should not belong to the same cluster and putting together this information, which is not
a trivial task.

Yet we present here a feasible approach for this problem. Given a covariance matrix and the
assumptions defined in Section 2, tetrad constraints will be used to find an equivalence class as
described in the previous section. The two main tasks of this algorithm are clustering and impu-
rity identification. Next subsection describes the general approach for accomplishing these tasks,
followed by another subsection that explains how this information is translated to a measurement
pattern.

4.1 Clustering and impurity identification

The goal of clustering is grouping the observed variables into sets such that every element in a
given set is an indicator of one or more latents in GG, but no pair always clustered into different sets
can be indicators of a same latent. A detailed account of this procedure is given in Table 1. The
function T'etradScore(Set; ¥) counts the number of tetrad constraints that hold among elements in
Set, which have a covariance matrix as a submatrix of ¥, and where for no triple {X,Y, Z} C Set
we have pxy.z = 0, the partial correlation of X and Y given Z being zero. If for some triplet we
have pxy.z = 0, the TetradScore is defined to be zero. Denoting the true graph that generated 2
by G(L,O,¢,EL, Eg, E¢, Gg), the outline of such procedure is:

e first of all, identify which variables are uncorrelated. By the faithfulness assumption, it turns
out that such variables cannot be in a same cluster;
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e identify which pairs of variables (X,Y’) cannot form a one-factor model with some other pair.
If it is not possible to find such one-factor model, X and Y cannot be part of any graph in
Gg at the same time, or otherwise we could construct such a one-factor model (for instance,
with two other elements from the cluster of X, if X and Y are not in the same cluster);

e the next step, and the most informative one, is deciding which pairs of variables should not
be in a same cluster by evaluating the predicate Unclustered(Sety, Sete;Y), as defined in
Table 2;

e after we have all this pairwise information, the next step is to identify those groups formed
by variables where no pair was labeled as incompatible by any of the three criteria above.
Finally, a measurement pattern is build out of this clustering and impurity information as
discussed in the next subsection.

The algorithm described in Table 1 represents the pairwise information as an undirected graph
with colored edges, where each pair of nodes may be linked by at most one edge. Initially, we
create a graph where all observed variables are vertices, and every pair is linked by a Black edge.
This colored edge represents we have no information about the relationship of its endpoints: such
variables may or may not belong to the same cluster, and they may or may not appear together in
some pure solution of the underlying true latent model G.

The first learning step (Step 4 in Table 1) is getting rid of the edges linking variables that
are uncorrelated. Throught the execution of this algorithm, the lack of an edge between a pair
will represent that such pair of variables cannot be in a same cluster. For those pairs that cannot
appear together in any one-factor model, the edge is changed to Gray. This will be typically the
case for nodes that are not d-separated by L. Throught the execution of this algorithm, a Gray
edge between a pair will indicate that such pair of variables cannot be at the same time in any pure
model. Those correlated variables that are not impure with respect to each other will be linked by
Blue edges.

Figure 6(a) illustrates a very simple latent variable graph of three latents. Figure 6(b) is the
first auxiliary graphical structure built at Step 3: a complete graph with Black edges, NG. At
the end of Step 4, we remove edges in NG among uncorrelated pairs. That will get rid of all edges
defined by {1,2,3,4} x {9,10,11}. We will also change the color of the edge (in NG) of those pairs
that cannot be part of any one-factor model. In our example, this is indicated by an edge of Gray
color between nodes 3 and 5. The other remaining edges are changed to a different color, Blue.
Figure 6(c) illustrates the NG graph for this problem at the end of Step 4.

In the following step (Step 5 in Table 1), we want to remove those edges that connect variables
that cannot appear in the same cluster. A simple test that guarantees this property is applied:
the Unclustered test. Given two variables to be tested, O, and Oy, the motivation behind it is
as follows: find other four variables (say, O1, Oz, 03, 04) such that {O, Oy, 01,02} forms a one-
factor model, {O, Oy, O3, 04} forms also a one-factor model, but {O,, Oy, 01,03} entails only one
tetrad constraint. If O, and Oy, shared one latent parent, we would have to have all three tetrad
constraints entailed. If we do not have all three, then O, and O, cannot be indicators of a same
latent. More intuition behind this test is discussed in Appendix A.

Also, if O; and O, are two variables that could not be proved to belong to different clusters,
then they will be tested if they cannot appear together in any solution. If not, the edge between
them is changed to Yellow. Throught the execution of this algorithm, a Yellow edge between a
pair will represent that such pair of variables cannot be at the same time in any pure model, but
they may still be d-separated given their latent parents. This may happen when two variables are
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part of some one-factor model with other two variables, but we cannot use Unclustered with them
because there are no other four variables that satisfy the requirements of this test. The relation
between such nodes remains unidentified.

From this point in the execution of the algorithm, a Blue edge means that two variables may
belong to the same true cluster in a pure measurement model induced by the true underlying graph
G (this may still not be true, but we do not have any evidence in contrary). Figure 6(d) illustrates
the NG graph for this problem at the end of Step 5. For instance, the edge between nodes 2 and
6 was removed because the sets {1,2,3} and {6,7,8} satisfy Unclustered({1,2,3},{6,7,8};%). In
order to speed-up the procedure we actually remove all edges in {1,2,3} x {6,7,8} in one step. No
Yellow edge appears in this example.

To conclude the clustering procedure, we split the undirected graph NG into components such
that no pair of variables that appear in different components can appear together in the same
cluster in some purification of a purifiable linear latent variable graph faithfully generating 3. We
accomplish this (Step 6) by generating a set of graphs, where each graph is a component of our
current undirected graph NG where all but Blue edges are removed: there is no possibility that
nodes in different components of such graph will be part of a same cluster. The corresponding
Gray and Yellow edges are added back when the components are generated.

We are now able to generate a clustering, by obtaining the set of all maximal cliques across all
the previously computed components (Step 7) of size two or more. The intuition is that for each
latent, each set of its indicators that appear in some Gg € Gg will appear together in some of the
cliques. Figure 6(e) illustrates the Clustering set of graphs (cliques obtained from components of
NGpiye, with intra-components Gray and Yellow edges added back) for this problem at the end
of Step 7. Notice that the edge between 3 and 5 does not show up here, but will be reappear later
in the algorithm (it is still in NG, but not in Clustering because it is an inter-component edge,
not an intra-component one).

Now that we have a clustering, the next task will be recoding it as a measurement pattern.

4.2 Building the measurement pattern

We have a clustering Clustering and a graph, NG, with all the necessary pairwise information to
build the measurement pattern for O, X. Table 3 describes this process in full detail.

Each cluster C; in Clustering is transformed into a one-factor model, with an unique latent
parent T;. Directed edges from the latent to each of the observed nodes in the cluster will be
added to our output pattern. Nodes that appear in more than one cluster will have multiple latent
parents.

A pattern graph (Vp,Ep), where Ep may contain directed and undirected edges, is built by
grouping together all elements in Clustering. Now, the impurities between nodes of different
clusters have to be identified. Step 3 of Table 3 simply copies the Gray and Yellow edges of NG
back to Ep.

The final step is identifying which clusters cannot appear together in a pure measurement model
that corresponds to the initial assumptions. An edge between two clusters will be added if and only
if there is a subset of six distinct nodes in the combined pair of clusters, three on each, where the
Unclustered test holds. Figure 6(f) is the final measurement pattern for the true graph of Figure
6(a). More examples are given in Appendix B.

The intuition behind this last step should be made clear: typically, we expect to have more
latents in the measurement pattern than in the true (unknown) graph. That can happen because
of impurities: there will probably be nodes with more than one parent; also, a node may not
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Figure 6: A step-by-step demonstration of how the graph in Figure (a) will generate the measure-
ment pattern in Figure (f). Blue edges are represented by bold black edges, and Gray edges are
represented by dotted ones.

be separable from a cluster that is not one of its in the true graph because of other impurities
that makes the predicate Unclustered fails whenever we have that node as part of the predicate
argument. Moreover, as discussed in Section 6, statistical errors due to using finite samples instead
of the true covariance matrix may also induce more latents than those found in the true graph. The
criterion of not linking latents that cannot be part of a pure graph with three indicators will be
enough for identifying the correct number of latents (assuming the true covariance matrix is known)
and creating another kind of output — purified graphs — that is much more robust to statistical
errors (in the case of finite samples).

5 Purification

The algorithm described in the previous section is able to find a measurement pattern provided
the true covariance matrix of the population. The following theorem states the correctness of the

14



function FindMeasurementPattern

inputs O, a set of observed random variables
Y, the covariance matrix of O
output a measurement pattern

1. Let NG(O,E) be an undirected graph having O as vertices and E as edges,
where each edge is colored and there is at most one edge between each pair
of vertices

2. Define NGcolors @8 the subgraph induced by NG containing all of its
vertices and only edges in E that are of some color in Colors

3. Make NG a complete graph with Black edges only

4. while 3{o;,0;} C O such that there is a Black edge between then in NG
if 000, =0
remove the edge between o; and o,
else if 3{04,05} such that {o04,0p,0;,0;} is a clique
in NG{Biack,Biue} and TetradScore(oq,0p,0;,05;%) =3
turn the color of each edge between elements in {Oa,Ob,Oi,Oj} to Blue

else turn the color of the edge (0;,0;) to Gray

5. for all {o;,0;} C O such that there is a Blue edge between then in NG
if 3{o4,0p,0¢,04} such that {o,,0,0;}, {0, 04,0} are two cliques in NG piye
and Unclustered({o,, 0p,0;},{0c,04,0;}; )
remove all edges {04,04,0;} X {0¢, 04,05}
else if —3{o,, 0p,0¢,04} such that {o4,0p,0.}, {04,0i,0;} are cliques in NGpy,
and Unclustered({o,, 0p,0.},{04,0i,05}; X)

turn the color of the edge (0;,05) to Yellow
6. Let Components be the set of disjoint components of the graph NGpye

7. for all C € Components
for all o0;,0; €C
if 0, and o; are connected in NGgrey, add a Gray edge (0;,05) to C
if 0, and o; are connected in NGyyew, add a Yellow edge (0;,05) to C

8. Let Clustering be the set of all maximal cliques in Components of size
two or more

9. return BuildFinalPattern(Clustering, NG)

Table 1: Returns the measurement pattern of an inducible linear pure latent variable graph.
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function Unclustered

inputs 03,02, two disjoint sets of observed random variables
3, a covariance matrix including the covariance matrix of Oj UOq
output a true/false decision

if all covariances in O1 x Oy are zero
return true
else return
VOz,Oy,OZ e 01U Oz,O’omoy # 0 and £0,0,.0, # 0 and
VYO € 04, TetradScore(0,02;%) =3 and
VYO € Og,TetradScore(0,01;%) =3 and

V{04, 0y} C 01,{04,0p} C 02,00,0,00,0, = 00,0,00,0, 7 T0,0,00,0,

Table 2: Returns true only if no variable in O; shares a same parent with any variable in Q3. The
symbol po,0,.0, represents the partial correlation of O, and O, conditioned on O,.

procedure FindMeasurementPattern (Table 1):

Theorem 1 Let G(L,O,¢,Er, Eo, E, Gs) be the purifiable linear latent variable graph that gen-
erates the covariance matriz 2 of a set of observed random wvariables O. Then, G will be in the
measurement equivalence class MM (O, X)), and such class will be given by the measurement pattern
obtained throught FindMeasurementPattern(O,X).

This theorem is proved in Appendix C.

Given an equivalence class of measurement models obtained from FindMeasurementPattern, we
can now perform a purification of this model. This is useful for methods such as the one described in
(Silva, 2002a) if one wants to learn causal relationships among the latent variables in the linear case.
This is also necessary if one wants to know how many latents are in the underlying latent variable
graph that is assumed to have generated the data, since the measurement pattern does not tell
you that directly. Unfortunately, by a simple reduction from 3SAT, finding a pure subgraph given
a measurement pattern is NP-Hard: to see this, recast a 3SAT problem as a measurement pattern
with a cluster for each clause and each literal as an individual node, where each pair of literals
representing different truth assignments for a same variable should be linked by an undirected
edge, each latent has two extra and individual dummy indicators not linked to any other indicator,
and all latents are pairwise linked*.

The algorithm Purify described in Table 4 takes as an input a measurement pattern. We
perform a worst-case exponential search that selects clusters and pure indicators. The output is a
linear pure measurement model for the latents in G (without explicit error nodes) using a subset
of the indicators given as input. The interesting feature of this algorithm is that is able to select
clusters such that each latent in the final solution has a one-to-one correspondence to latents in the
original true graph G, as stated by the next theorem and corollary.

Remember the definition of Lg(-) from Section 3. We define the relationship =usps for two

4This does not exclude the possible existance of some other approach that can solve that polynomially using, for
example, the quantitative information present in the covariance matrix. We do not know if this is possible or not.
We still have to prove that finding the measurement pattern is NP-Hard.
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function BuildFinalPattern

inputs Clustering, a set of complete undirected graphs of observed random
variables
NG, a undirected graph of observed random variables

output a measurement pattern

1. Let Vp =0,E, =0
2. for each C;(Oj, E;) € Clustering
Let 7; be a new latent node
Vp ¢ Vo UO; UT;
for all O € O;
E, < E, U (T;,0), where (T;,0) is a directed edge.
3. for all pairs O; € 01,03 € Oz, where {C1(01,E1),C2(02,E2)} C Clustering
if there is an edge (01,02) in NGgray,veiiow}
Ep, < Ep U (01,02), where (O1,03) is undirected.
4. for all pairs {C;(0Oj, E;),C;(O;j,E;)} C Clustering
if 3{04,0y,0,} C 04,{0q,0p, 0.} C Oj, where {0y, 0y,0,} N{O4,0p,0.} =0
and Unclustered({Og, Oy, 0,},{0q4, O, 0.}; X) = true,
E, < E, U (T1,T), where (T1,T3) is undirected.

5. return (Vp,Ep)

Table 3: Given information about possible clusters and impurities, build the corresponding mea-
surement pattern
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latent variable graphs graphs G1(L1,O1,¢€1,EL,,EQ,,E,) and G2(L2,02,¢2,EL,,EQ,,E.,) as
G1 =pmum G if and only if O; = Og and for each L; € Ly there exists an unique Ly € Lg such
that Lg,(L1) = Le and Lg,(L2) = Li. For two sets of latent variable graphs G and G2, we
have Gy =p G2 if for every G; € Gy there is an unique G € G2 such that G; =5 G2 and
(G1] = |Gz

We define a purification of a measurement pattern MM (Vp,Ep) as a directed acyclic graph
MMpyre(Vy, Ep) where Vi, € Vi, Ef, C Ep, latent nodes in V|, form a maximal clique in MM,
each latent has at least three children in M Mp,,. and no pair of observed nodes in V;, is linked by
an undirected edge in MM and M Mp,,. and no two observed nodes in V;, share more than one
parent in M M. The following results hold:

Theorem 2 Let G(L, O, ¢, E1,Eo, E¢, Gs) be the purifiable linear latent variable graph that faith-
fully generates the covariance matriz X of a set of observed random variables O. Let M Mg be the

measurement pattern corresponding to the equivalence class MM(O,%). Let MMpyre be the set
of all purifications of MMg. Then MMpure = Gs.

Corollary 1 For every possible pair of purifiable linear latent variable graphs G1(L1,0,€1,Egr,,
Eo,,Eq,Gs,) and G2(Lz, 0, €2, Ey,,Eo,, E.,, Gs,) faithfully generating ¥, the covariance ma-
triz of O, we have Gg, =nmm Gs,-

6 Statistical tests and practical implementations

Even though the correctness of FindMeasurementPattern and Purify are guaranteed given the
true covariance matrix, in real applications we cannot know this matrix, and a sample covariance
matrix has to be used. In order to be able to deal with finite samples, we need statistical tests of
tetrad constraints, partial correlations and marginal independencies. Also, one has to consider the
computational cost of such algorithms: in the worst case, they are exponential in the number of
impurities. In the following section we discuss the importance and reliability of computational and
statistical features of our proposed method.

6.1 Statistical robustness

When the distribution of our variables is Gaussian, there are well-known tests of marginal indepen-
dence and partial correlations. Spirtes et al. (2000) use a normal approximation for each sample
tetrad difference rrjrxr — rinrjk, where rxy is the sample correlation coefficient of X and Y.
Mean and variances for such statistics are described in Wishart (1928).

For non-Gaussian distributions, Bollen (1990) describes an asymptotically distribution-free test
of vanishing tetrads and a similar method can be used to create distribution-free tests for partial
correlations. The computational cost of these tests may slow down the procedure considerably.

In pratice, the measurement pattern can have lots of errors, but still induce a correct purified
solution. In our simulated studies reported in Section 8, it was common that the measurement
patterns contained many more clusters than the true graph, but the purified solution was very
close to the optimal one. Given the difficult nature of our statistical problem, this is actually a
good result. Even with measurement patterns widely more complicated than the one that would
be obtained given the true covariance matrix, one can interpret this behavior is a way to achieve
robust response when learning pure measurement patterns: there is a lot of redundancy in the
output of the FindMeasurementPattern algorithm, where many of the cliques among the latents
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function Purify

inputs Pattern, a measurement pattern
Y, a covariance matrix
output a purified measurement pattern

1. Let K be the size of the largest clique among latents in Pattern
2. for all sets S of latents in Pattern that are cliques of size K

3. Let InducedG be the graph formed by S and all children of

each latent in S that are in Pattern, including edges among children
4. Remove from InducedG all nodes with more than one latent parent

5. For any pair from different clusters in InducedG that share a same

parent in Pattern, add an undirected edge in InducedG

6. Let Solutions be the set of all subgraphs of InducedG induced by
removing at least one indicator from all pairs of indicators that are

connected by an edge and where each latent keeps at least three children

7. if Solutions # ()

return some random element in Solutions

8. end for

Table 4: The purification algorithm for choosing a subgraph of the measurement pattern where
each cluster has at least three elements and no impurities.
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have big overlaps. If we find a valid solution among the largests of the many cliques of latents that
appear in the noisy measurement pattern, it is very likely it is a good solution, since it was the
largest subgraph that endured a battery of many tests.

To summarize, we do recommend trusting the measurement pattern, but only after a pure
solution is found. After the Purify algorithm decides which set of latents can be kept together,
one can return to the measurement pattern and add back those indicators that were eliminated
during purification and ignore all latents that were not present in the final estimated pure graph.
This will give a better idea of the overall picture. There is no guarantee whatsoever that all
indicators will appear in the final solution. By the definition of measurement pattern, this may not
happen even given the true covariance matrix.

Heuristic statistical tricks are necessary for a better performance. For example, what should
be done when the number of tetrad constraints in a given test is 27 This is a logical impossibility.
In our implementation (used in the experiments), the solution is parametrically estimating the
corresponding one-factor model, and testing for its statistical significance using a simple test such as
x2. If the model passes the test, we return 3 as the count of valid tetrad constraints. Otherwise, we
return 1. For the initial loop for identification of gray edges (Step 4 of FindMeasurementPattern),
one could decide if all three tetrad constraints hold by also testing one-factor models. For the test
of the Unclustered predicate (in Step 5), we could test if the one factor model does not hold, and
if the pure two-factor model holds. In practice, this may require assuming a parametric form for
the joint distribution of the variables. There are also tests of some joint tetrad constraints that
could be implemented, as described in Bollen and Ting (1993).

Finally, it is very common that we miss some Gray edges among nodes due to the large number
of tests (eventually, some one-factor model containing two impure nodes will hold). A suggested
heuristic is as follows: for each clique of latents that is evaluated in Purify, and for each pair
of indicators of a same latent 77 that are not linked by an estimated impure edge, we look for
a third indicator of the same group, plus a fourth indicator of another latent 75, and test if the
one-factor model holds or not. If there is no third indicator in 77 and fourth indicator in T that
can produce such model, we add the Gray edge. Our heuristic for choosing 75 is choosing the latent
of the largest cluster that is not 7. If the computational cost is not too high, one could make this
verification for every pair of clusters that is compared in BuildFinalPattern.

For the Purify procedure, there is always the risk that none of the largest cliques will induce
a pure graph. The solution is testing all cliques, starting from the largest to the smallest. In our
implementation, we also substitute every clique of size K that fails to produce a result by K — 1
cliques where each new clique is a subgraph of the original one (and put them after the other cliques
of size K in the queue of cliques to be tested). This can lead to an exponential increase of the
number of possible cliques, so some bound should be imposed in the number of expansions a clique
can produce in case its subgraphs still fail to produce a valid result.

6.2 Computational cost

The very worst-case performance of FindMeasurementPattern is nothing short of exponential in
the number of impurity relations (which will be O(2""), n being the number of observed variables,
in a loose upper bound). However, in practice it is hard to quantify how exactly it will scale in
real-world problems, although we conjecture it will not be an important issue in many practical
situations. Worst-case exponential algorithms are the rule, not the exception, in Bayesian network
literature. Algorithms such as the PC algorithm (Spirtes et al., 2000) and GES (Chickering, 2002)
are correct solutions for finding DAGs that in the worst case will take an exponential number of
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steps, but reported experiments with real data usually converged to solutions in reasonable time.
In our case, for instance, if the true latent variable graph does not have any impurities, the actual
execution time FindMeasurementPattern will be polynomial in the number of observed variables.
Also, it is still not totally clear which kind of impurities will lead to extra computational burden:
if all impurities are within each true cluster, our algorithm for learning measurement patterns will
also take polynomial time; if the true graph is identifiable enough to allow us to verify, for every
pair of variables in different true clusters, if they actually belong to different estimated clusters,
and no indicator is a child of more than one latent, the algorithm will also take polynomial time.

Of course, for these later remarks we assumed that no statistical errors will be commited while
learning the pattern. Such idealized sceneario will never happen. Learning from small samples, even
if generated by true graphs that are pure from the beginning, may generate largely complicated
measurement patterns, full of latent cliques that will not have any pure solution. We actually
observed that happening a couple of times in our experiments with true pure graphs reported in
Section 8. Currently, our solution is halting the purification after 100,000 combinations were tried
without success. An expansion of our work is coming up with useful approximation algorithms, but
we still believe that in practice even the “exact” solution of trying all combinations till a solution
is found (or halting after a number of steps and moving for the next latent clique found in the
measurement pattern) might work well in a variety of domains.

One has to consider also the cost of regular steps before finding cliques. Step 5 can take up to
O(n®) steps, where n is the number of observed variables. However, in practice it may be much
faster and not come close to require a full exploration of all pairs of triplets. The loop at Step 5
can be reasonably fast when the graph does not have many impurities due to agressive elimination
of edges in NG. Also, many problems of interest usually do not require more than a few hundred
variables and many others just a few dozens, which is quite feasible for this algorithm. We are still
studying different ways to achieve the same functionality of the Unclustered test, i.e., approaches
for detecting when two variables cannot share a same latent parent.

In our implementation, we also save steps by testing Unclustered throught nested loops where
we do not proceed past the fourth loop for a given variable if the current four elements do not form
a one-factor model. Another practical step that can be implemented is storing the information that
01 and O, were in a valid Unclustered test, when we were focusing in O, Oy. It may be the case
that O; and Os are from the same cluster, and so we will have to enter the second part of Step
5, which will also require O(n%) steps. But if this information was obtained for free from another
test, we will not need to repeat it here. A surpringly large number of steps can be saved with this
implementation trick.

The reason why in the formal definition of our algorithm we used a Unclustered test of two
triplets is because of problems introduced by indicators of multiple latents. Suppose {O1, 02,03}
are indicators of a single latent L, in the true graph, Oy is an indicator of L; and Ly and Os is an
indicator of Lo, and there are no edges between indicators in the true graph. Then the predicate
Unclustered({O1,02,03},{04,05}; %2) will hold (the same Unclustered as defined in Table 2, but
without the tests that are now undefined, eg., choosing one element from the first set against three
from the second). Notice that, while it is true that Oy does not have the same parents as O,
for instance, ideally we would like not to remove the edge between O; and O4 in the NG graph
(because they do share some parent. It is just that O4 has another one). For purification purposes,
we have to add an indication that O4 cannot appear in a final solution, but leaving the algorithm
“as is” will not guarantee that (since it may be possible that, according to the order of tests, there
will be no gray edge between O; and O4). We may compensate for that by checking again, for every
pair (O, Oy), Oy indicator of T;, O, indicator of T}, if there is some set {Oy, O, O, Og}, {Oq, Op}
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indicators of T;, {O., O4} indicators of T; such that Unclustered({Oyz, Oq, Op}, {Oy, O, Og4}) holds.
Some special new steps may be required when trying to get the reconstruct the measurement
pattern after we get the purified graph, if one wants to determine which indicators are children of
multiple latents.

Finally, the initialization of the algorithm (Step 4) requires the evaluation of a considerably
large number of subsets of size four. In the worst case, this first loop will take O(n*) steps. On
average, we expect it to take much less than that, but certainly not less than O(n?).

With all such issues of worst-case complexity and steps that can get up to O(n%) in complexity,
one can wonder why not use the following trivial algorithm to get pure models:

1. Let Triplets be the set of all subsets of size three from O;

2. Let NG be the graph where each node N,,, represents a triplet with variables {X,Y, Z}.
Initialize NG such that it contains no edges;

3. For each pair of nodes (Nyy,, Nape), {X,Y, Z} N{A, B,C} = 0 such that
Unclustered({X,Y, Z},{A, B,C};X) holds, add the edge (Ngy;, Ngpe) to NG;

4. Return the largest clique in NG

Depending on how large is the number of pure graphs induced by our latent graph with respect
to the number of variables, the real computational cost of our algorithm for a given problem can
be much less than the trivial solution. With the trivial algorithm, we will need to evaluate all non-
overlapping triplet comparisons, which only happens as a (presumably unlikely) worst-case scenario
in FindMeasurementPattern. Also, the graph where we look for cliques is expected to contain many
more edges than the one defined in our algorithm. These are some of the largest computational
advantages of using FindMeasurementPattern, besides the fact it can provide information about
the true model without requiring purification, or by putting back (impure) indicators into a pure
model according to the information in the pattern.

6.3 Metaclustering

A side effect of statistical mistakes is not only introducing errors in the final output, but the fact
that the order by which such tests are applied may affect the outcome. For instance, at Step 5 of
FindMeasurementPattern, we only consider triplets that are cliques in NG pjye, because we know
that given the true covariance matrix, one does not need to spend time considering elements not
connected by Blue edges: they would fail the Unclustered test anyway.

However, it may be the case that one Blue edge connecting a pair of vertices {A, B} was
removed due to a statistical mistake at some point of the execution, and the vertices of that edge
were the only ones that could be able to make a Unclustered test pass for another pair of vertices
{C,D}. This is a case where errors propagate. If we had tested the Unclustered predicate for C
and D before eliminating the edge between A and B, this second mistake would not happen. Trying
to avoid such a problem by considering all pairs of triplets, instead only those that are cliques in
NG pjye, can cause an enormous increase in the number of tests: actually, the main reason why our
algorithm may be computationally feasible even if one has many observed variables is due mostly
to the fact that we discard many tests based on the results of other tests. Also, it is not clear why
doing all tests would be any better, since we can error now on the other side: by coincidence, we
may remove more edges erroneously by chance because we made many more tests.
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Besides statistical mistakes, another source of sensibility to the order of tests in our algorithm
is failure of assumptions. While the measurement assumption and linearity of measurement are
quite reasonable for many studies, the assumption of having a purification that includes all latents
with at least three children per latent is much stronger. It may be the case that you can find
purifications with three indicators per latent for only a subset of the latents at a time, but losing
some of the guarantees of measurement patterns as described in Section 3.

Figure 7 illustrates a case where we can have pure graphs with three children per latent created
from the latent variable graph G({L1, Lo, L3}, O, ¢, Er, Eg, E¢), but where such pure graphs would
include only two latents at a time. A common mistake is thinking that we can actually redefine
the problem as learning the pattern of, for instance, G'({L1, L2}, O, ¢, E1/,Eo’, E./) and use the
same algorithm while expecting the same guarantees. But G’ is not a latent variable graph: there
are elements in O that are not children of L; or Lo. Still, we can learn valuable information
if the true graph is the one depicted in Figure 7(a): Figures 7 (b)—(f) show the progress of our
algorithm given the covariance matrix over variables {1,2,...,9}. Notice that we are still able
to find a pure measurement model that is a subgraph of the original one. For example, we are
able to separate nodes {1,2,3} from {7,8,9}, even if the Unclustered test does not hold for any
combination including at least one element from each set’: the corresponding Yellow edges that
appear in Figure 7(c) are not carried to Clustering, as described by the algorithm in Table 1.

It remains an open question which is the full characterization of measurement equivalence classes
under a weaker assumption that there are two indicators O; and Oy such that no parents of Oy
can appear in a pure measurement pattern with any parents of Os. We conjecture that each latent
appearing in a puried outcome will have at least three children of some true latent and probably
all of its children have a common cause in the true graph: they might not share a same parent,
but a same ancestor, if linearity holds in every path from the common ancestor to each of such
indicators. We also have to better define what a “true” latent is: any (possibly indirect) hidden
common cause of at least three indicators? Should it be part of any pure measurement model with
at least another latent?

In order to minimize the effect of such sources of errors, we recommend the following heuristic,
which we denominate metaclustering: run the clustering/purification algorithm N times, using a
random order of tests each time, and save the purified graph for each run. After that, merge all
graphs as a single one (if two latents in a different pair of graphs has exactly the same children,
treat them as a single node in the merged graph).

Initially, in the merged graph, latents that came from different purified patterns will not have
an edge between them. For each pair of latents L, and L, from different sources and without an
edge, verify if they satisfy the following properties: there is at least one subset Oy of the children
of L, of size three; there is at least one subset Oy of the children of L, of size three; Ox N Oy = 0;
Unclustered(Ox, Oy; 3) holds.

If such properties hold, add an edge between such latents in the merged graph. Unsurprisingly,
these are properties analogous to Property 4 of measurement patterns.

Finally, find the largest clique of latents in the merged graph that satisfy this property. If there
is more than one and computational resources allow for it, one may want also find a clique that
maximizes the number of indicators in the final puried measurement model. We believe that this
heuristic will be reasonably robust and useful, but we cannot provide a principled way to choose
the number N of iterations to be applied. One heuristic is verifying how many ‘“new latents” are

SWe are assuming that the structural relationships among the latents are non-linear. If they were all linear, the
predicate Unclustered({1,4,5},{7,8,9};X) would hold, for example. In this case, we would not have any Yellow
edge, but the final measurement pattern would be the same.
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Figure 7: (a) A true graph that fails to meet the assumptions of three pure children per latent. (b)
The NG graph at the end of Step 4. Notice the dotted edge (representing a Gray color) between
nodes 3 and 7. (c) The NG graph at the end of Step 5 of FindMeasurementPattern. (d) The
Components graph. (e) The final measurement pattern. Notice the lack of edge between T} and T3.
This will have an implication in the purification. (f) An example of measurement model obtained
throught Purify. Notice it could have been the combination of 75 and T3, depending on the order
of the tests.

discovered at every iteration, where a latent counts as new if it has a set of children that is not
contained in the set of children of any other latent discovered in previous iterations, and stop when
this number approaches zero.

7 Related work

In this section, we briefly describe standard techniques for representing measurement models, and
which shortcomings they may have.
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7.1 Factor analysis

Factor analysis (FA) embodies the standard set of tools used for modeling and testing measurement
models. The usual structural assumption is that the each observed variable is a linear combination
of hidden variables (factors), plus an additive error term. Error variables are mutually independent
and independent of latent factors. Latent variables are mutually independent in principle.

When estimating such parameters by maximum likelihood, one usually assumes that latents and
error variables are multivariate normal, which implies a multivariate normal distribution among
the observed variables. Since then, a variety of methodologies were created in order to generalize
standard FA to the case where latents are not necessarily assumed to be Gaussian. For instance,
independent component analysis (ICA) is a family of tools motivated by blind source separation
problems where estimation requires assuming that latents are not Gaussian, and instead some mea-
sure of independence is maximized without making use of strong assumptions about the marginal
distribution of each latent. For instance, Attias (1999) assumes that each latent is distributed ac-
cordingly to a semiparametric family of mixture of Gaussians. Still, at its heart ICA relies heavily
in factor analysis fundamental idea of interpreting observed variables as joint measurements of a
set of independent latents. For problems such as blind source separation such assumptions may
be reasonable in some cases, but for large families of different applications this is certainly not the
case. Other variations of factor analysis, while useful for dimensionality reduction (Minka, 2000;
Bishop, 1998) and data interpretation by visualization, are still limited for more complete insights
and again make the assumption of independence among latents.

For instance, Bartholomew et al. (2002) describe a series of applications of factor analysis in
social sciences. For confirmatory factor analysis, one is usually interested in verifying some a priori
hypothesis about the common causes of the observed variables and quantifying the strength of the
causal effect of each latent on each indicator obtained my methods such as maximum likelihood
estimation (Bollen, 1989). In real world applications, it is common practice to ignore loadings with
absolute values smaller than some threshold.

In exploratory factor analysis, the main goal is discovering the existence of abstract concepts
such as political attitude and socio-economic status as common causes of the indicators. One has
to choose the number of factors and observe which ones correlate more with which indicators.

That also leads to the question of how to choose the number of latents. One standard approach
is testing models with an increasing number of latents till one fits the data at a given significance
level. Bartholomew et al. (2002) claim this is not exactly a good practice because it overstimates
the number of latents, and advocate using criteria from principal component analysis for choosing
the number of factors. These authors also explicitly claim they are not too much concerned if the
model gives a bad fit as long as it provides an intuitive insight of the relationships among observed
variables.

In general, any domain to which one is interested in applying data mining techniques may benefit
from such exploratory procedure, but a more serious shortcoming of standard factor analysis is the
non-identifiability of such models: there is an infinite number of loading matrices that give exactly
the same fit. On the other hand, unlike ICA and variants, there are straightforward heuristics able
to relax the assumption of independence in standard FA.

In order to introduce an more flexible interpretation criterion, there is a large set of approaches
to rotate the factor matrix. Actually, a common complain about the (lack of) objectivity of factor
analysis is that there are too many of such rotation methods. The general idea is it should maximize
the variance of the loadings (usually the variance of the squared loadings to avoid taking signal
differences into account). The idea is unveiling something close to a so-called “simple structure”
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(Harman, 1967): a structure where each indicator loads only in one of the latents, i.e., each indicator
has only one latent cause. That is similar to trying to discover pure measurement models. It seems
intuitive that if the true model is a pure one, such rotation criteria should work very well given
the number of latents is chosen correctly. In an oblique rotation, factors cease to be independent.
Bartholomew et al. (2002) point out that oblique rotation usually gives simpler models, and this
can be a good argument against the assumption of independence. It seems there is no reason at all
to make the assumption of independence among the latents, unless there is very strong belief on it.

It is counterintuitive that one starts fitting a model where latents are independent and then in
the same analysis an oblique rotation is introduced. The usual argument is that both models give
exactly the same fit. But if one takes the point of view of defining learning as searching through
a space of models (Mitchell, 1997), then starting from the assumption of independence and later
throwing away this very idea is not the same of starting with the possibility of dependence from
the very beginning. No surprise that rotation itself is ill-defined, allowing the existance of different
criteria.

7.2 Feature construction

If the goal is to cluster indicators as measurements of latent variables and use this information to
find causal relationships among the hidden variables, then one approach that sounds appealing in
principle is finding such clustering and creating a new feature for each group of indicators. Each
feature is basically a function, eg., the average value of the corresponding indicators. In order to
carry on this approach, one should find a principled way to choose among the available indicators
those that are considered to be indicators of a single latent. In many cases, the choice of indicators
is done before data collection, eg., when designing questionnaries for social studies or marketing
research. Each group should form a one-factor model, or construct. The term scale is commonly
used for a feature build upon the observed variables of a single latent variable (Carmines and Zeller,
1979).

In principle, factor analysis can be used in the design of constructs. Actually, one the the
fundamental ideas used to motivate factor analysis is that a group of random variables can be
clustered accordingly to the strength of their correlations. As put by a traditional textbook in
multivariate analysis (Johnson and Wichern, 1998, p. 514):

Basically, the factor model is motivated by the following argument: suppose variables
can be grouped by their correlations. That is, suppose all variables within a particular
group are highly correlated among themselves, but have relatively small correlations
with variables in a different group. Then it is conceivable that each group of variables
represents a single underlying construct, or factor, that is responsible for the observed
correlations.

Also, Harman (1967) suggests this criterion as an heuristic for clustering variables, achieving
a model closer to a “simple structure”. We argue that the assumption that the simple structure
can be obtained by such criterion is unnecessary. Actually, there is no reason why it should hold
even in a linear model. As an alternative, one could try to find a pure (sub)model, which usually
requires throwing away some indicators to get only pure ones. The groups can then be treated as
individual constructs.

Many construct design techniques start with background theories for selecting the initial set of
indicators to be tested as valid measures of an abstract concept chosen a priori. This is mainly a
confirmatory analysis process, where statistical and theoretical tools here aim at achieving validity
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and reliability assessment. A construct is valid if it actually measures the desired concept, and it is
reliable if, for any given value of the latent variable, the conditional variance of the elements in the
construct is not too high. Since these criteria rely on unobservable quantities, they are not easy to
evaluate.

The methods for evaluating constructs are not approaches for clustering individual indicators
in a set of a unknown number of clusters but basically score functions for quantifying the fitness
of a one-factor model. The procedure itself does make any use of constraints in the observed joint
distribution to decide if one indicator should be grouped with a specific construct or another.

Against the less theoretically-driven exploratory factor analysis approach, Carmines and Zeller
(1979) argue that in general it is difficult for factor analysis to distinguish a model with few factors
against an one-factor model. The argument is that factor analysis may identify a systematic error
variance component as an extra factor. On an example about indicators of self-steem, they write

(p- 67):

In summary, the factor analysis summary of scale data does not provide unambigu-
ous, and even less unimpeachable, evidence of the theoretical dimensionality underlying
these self-steem items. On the contrary, since the bifactorial structure can be a function
of a single theoretical dimension which is contaminated by a method artifact as well as
being indicative of two separate, substantive dimensions, the factor analysis leaves the
theoretical structure of self-steem indeterminate.

Clearly, the criticism is on determining the number of factors based merely in a criterion of
statistical fitness. Again, as already discussed in the previous section, statistical fitness does not
seem to be a strong enough criterion in such applications (Bartholomew et al., 2002). In the self-
steem problem, the proposed solution was relying on an extra set of “theoretically relevant external
variables”, other observed variables that are, by domain-knowledge assumptions, related to the
concept of self-steem. First, a scale was formed for each of the two latents in the factor analysis
solution. Then, for each external variable, the correlation with both scales was computed. Since the
pattern of correlations for the two scales was very similar, and there was no statistically significant
difference between the correlations for any external variable comparison, the final conclusion was
that the indicators were actually measuring a single abstract factor.

The problem with this approach is relying on strong background knowledge and the lack of a
more theoretical, domain-independent, justification for the procedure. Also, it is not clear what
should be done if the pattern of correlations does not match. Still, it uses the idea of determining
clustering by contrasting sets of indicators (summarized by a scale) with indicators from another
factor. Our proposed method of discoverying measurement models tries to overcome such issues by
general, weaker assumptions about the structure of the unknown true model, and then obtaining
clustering by entailment.

7.3 Graphical models

Graphical models became a representation of choice for computer science and artificial intelligence
applications for systems operating under conditions of uncertainty, such as in probabilistic expert
systems (Pearl, 1988). Bayesian networks and belief networks are the common denominations under
such contexts. They have been used also for decades in econometrics and social sciences (Bollen,
1989), usually to represent linear relations with additive errors. Such models are then denominated
structural equation models (SEMs).
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The very idea of using graphical models is to be able to express qualitative information that is
difficult or impossible to express with probability distributions only. For instance, the consequences
of conditional independence conditions can be carried on with much less effort under the language
of graphs than under the probability calculus. It becomes easier to add prior knowledge, as well
as using the machinery of graph theory to develop exact and approximate inference algorithms.
However, perhaps the greatest gain in expressive power is allowing the expression of causal relations,
which seems impossible to achieve (at least in a more general sense) by means of probability calculus
only (Spirtes et al., 2000; Pearl, 2000).

Many standard models can be recast in graphical representations (e.g., factor analysis as a
graph where latents are not connected by any path). Under the graphical modeling literature,
there are several approaches for dealing with latent variables. Many of them are techniques for
fitting parameters giving the structure (Binder et al., 1997; Bollen, 1989) or choosing the number
of latents for a factor analysis model (eg., Minka, 2000).

Elidan et al. (2000) introduce some heuristics for discovering latent variables. But such heuris-
tics have as their sole goal reducing the number of parameters in a Bayesian network for more
robust learning, achieving a better estimation of the observed joint probability distribution. They
do not provide any formal interpretation of what the resulting structure actually is. For causality
discovery and data mining one has to adopt an approach oriented to understanding the structure.

For instance, by assuming a discrete distribution of latent variables and observed measurements
in a hidden Markov model (HMM), Beal et al. (2002) present algorithms for learning the transition
and emission probabilities with very good empirical results. The only assumptions about the
structure of the true graph is that it is a hidden Markov model, but no a priori information on the
number of latents or which observed variables are indicators of which latents is necessary. No tests
of significance for the parameters are discussed, since that was not the point of the paper. However,
if one wants to have qualitative information of independence (as necessary in our axiomatic causality
calculus), such analysis has to be carried on. We are also interested in continuous distributions,
since in such work HMMs are discrete.

While factor analysis and feature construction techniques are not concerned about discovering
relations among latents, there is some work done in graphical models research. A recurring debate
is structural equation modeling literature is whether one should learn models from data by first
finding the measurement model and then proceeding to the structural model, or if both should be
analyzed at the same time (Fornell and Yi, 1992; Hayduk and Glaser, 2000; Bollen, 2000). It should
be clear that our methodology strongly supports a two-step procedure. A good deal of criticism
on two-or-more-steps approaches concerns in choosing a initial number of factors using methods
that suffer from non-identifiability, such as factor analysis. One way to overcome this problem is
by explicitly defining classes of models that empirically undistinguishable, a methodology that is a
key component in Spirtes et al. (2000).

Concerning estimation methods, Bayesian approaches for learning graphical models are well
established (Heckerman et al., 1999), but currently there is no known consistent score function for
such methods when considering general latent variable models (Geiger et al., 2001), unless one is
willing to compute the full posterior by numerical methods. On the practical side, such methods
can be slow, since there no known method of decomposing general latent models into local scores,
as it is can be done for the latent-free case (Chickering, 2002). If one wants to learn the causal
relationships among latents, another approach, described and evaluated in (Silva, 2002a), consists
in comparing nested models, one with a direct edge between two latent variables of interest, where
each latent has at least two pure measures. The problem is that in many times we do not have this
pure measurement model: it would be interesting to learn it automatically from data given only a
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sample of the observed variables and no assumptions about the number of latents, or how they are
causally related.

In a previous report (Silva, 2002a), we introduced the Washdown algorithm as an approach to
find a correct pure measurement model for some unknown linear measurement/structural model,
and a proof of correctness was provided in (Silva, 2002b). This report discusses a variation of the
problem with weaker assumptions and a totally different approach. While in the original method
we required that each latent had at least three indicators that were pure with respect to every other
indicator in the model, here we require that exists a subgraph of the unknown complete graph
where each latent has at least three indicators that are pure with respect only to those indicators
in that subgraph, a much weaker assumption. A theoretical advantage is not requiring knowing
the family of the joint probability distribution of the latents, or even if they are linearly related.
In practice, one may still need to use parametric tests if the sample sizes are not large.

8 Empirical results

Evaluating automated knowledge discovery algorithms is often a difficult task because of the lack
of a readily available gold standard by which comparisons could be made. This is especially true
for unsupervised learning techniques such as clustering and causality discovery. In this section, we
will take two approaches: a comparison of our output to random clustering and factor analysis in
a real-world example where domain knowledge is not a crucial requirement for interpreting results;
comparisons with simulated data from models where we know the true underlying structure, and
therefore we can come up with objective measures of success.

8.1 Test anxiety data

We will take a real-world example from Bartholomew et al. (2002). A survey of test anxiety in-
dicators were collected among 335 grade school male students in British Columbia. The survey
consisted in 20 measures on how frequent were determined symptoms of anxiety under test condi-
tions. A brief description of the 20 indicators is shown in Table 5. The covariance matrix of such
variables is given in Bartholomew et al. (2002), p. 163.

One type of analysis that can be done with such data is inferring which are the common
causes that explain the correlation of the given variables. It could be used, for example, to design
policies aiming at reducing anxiety (although this example is too simple to surprise the analysist
with unexpected facts). As it can be noticed from reading the description of the variables, such
indicators are highly correlated®. It is not immediately obvious which, and even how many, latent
factors are there. Many different ways of clustering may sound plausible at first sight.

In order to evaluate our approach, we will perform a simple psychological test. Five candidate
models are given below:

[y

. {mfia r9,T13, z?O}a {l‘Qa Z5,T7, -TIS}; {147 T14,T15, 1‘17}

N

. {$5,$6,$7,$14,$17},{$2,$9,$13,$18},{134,:515,3720}

w

- {:L.Qa T4,T5, .’L'13}, {w9a 214,15, xlg}a {$67$17’$20}

4. {z13,217, 18, T20 }, {5, T6, 9, T15 }, {T2, T4, T17, T14}

5The sample correlation matrix of such items has only positive entries, most of them between 0.30 and 0.50.
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

. Lack of confidence during tests

. Uneasy, upset feeling

. Thinking about grades

. Freeze up

. Thinking about getting through school

. The harder I work, the more confused I get
. Thought interfere with concentration

. Jittery when taking tests

. Even when prepared, get nervous

Uneasy before getting the test back
Tense during test

Exams bother me

Tense/stomach upset

Defeat myself during tests

Panicky during tests

Worry before important tests
Think about failing

Heart beating fast during tests
Can’t stop worrying

Nervous during test, forget facts

Table 5: Indicators of test anxiety described in Bartholomew et al. (2002).
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5. {2, z15, 217,20}, {74, T5, T6, 7,29}, {713, T14, T18}

where symbol z; represents the ith entry in Table 5 and each set between brackets is a different
cluster. Four of such clusters where generated randomly. One of them is the output of our algorithm.
To make things less arbitrary, the random clusters are not completely random: they are partial
rearrangements of our algorithm output, keeping the same number of clusters. The reader is
invited to pick the one he/she thinks it is the most insightful before moving to Section 8.3, where
our analysis is discussed along with a comparison with the factor analysis solution proposed by
Bartholomew et al.

8.2 Simulated data

The data sets we used in this section are synthetic data sets. The importance of synthetic data is
the fact that we know which is each true model that generated the given samples, and therefore we
can calculate precisely some measures of distance from our induced models to the true structure.
To simplify our task, we will evaluate the following features for each pure model we get with respect
to a maximal purified true graph:

e proportion of missing latents, the number of latents in the true graph that do not appear
in the estimated pure graph, divided by the number of latents in the true graph;

e proportion of missing measurements, the number of indicators in the true purified graph
that do not appear in the estimated pure graph, divided by the number of indicators in the
true purified graph;

e proportion of misplaced measurements, the number of indicators in the estimated pure
graph that end up in the the wrong cluster, divided by the number of indicators in the
estimated pure graph;

e proportion of impurities, the number of impurities in the estimated pure graph divided
by the number of impurities in the true (non-purified) graph. Notice that a node that is
impure in the measurement pattern may not be impure with respect to the other nodes in
the purified estimated graph. In this case, we do not count them. For each pair of nodes that
forms a localized impurity (e.g., indicators with correlated errors, or an indicator that is a
direct cause of another, while both are children of a same and single latent), we count this
pair as one impurity, since removing one of them will eliminate that impurity. Each indicator
that has more than one immediate latent ancestor (i.e., a latent ancestor with a directed path
to that indicator that does not include any other element in the latent set) is counted as one
impurity, since it has to be removed from all purified graphs.

To perform the comparison, we should indicate which latent found in the estimation corresponds
to which of the original latents. The straightforward way is making the match according to the
original parent of the majority of the indicators in a given estimated cluster: for example, suppose
we have an estimated latent Lg. If, for instance, 70% of the measures in Lg are measures of the
true latent Lo, we label Ly as Lo in the estimated graph and calculate the statistics of comparison
as described above. Some few ties happened in our experiments, but labeling the latent in one way
or another did not change the final statistics.

In order to better compare with factor analysis, and also to provide an upper-bound of how
good our results can be, for this subsection we generated only multivariate normal indicators, with
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Evaluation of estimated purified models
| 5L/1000E | 5L/5000E | 10L/1000E | 10L/5000E
3 indicators, pure
missing latents | 0.42+0.15 | 0.28+£0.10 | 0.40 +0.08 0.45+0.08
missing indicators | 0.36 £0.16 | 0.26 +£0.10 | 0.37 £ 0.09 0.43 £0.11
misplaced indicators | 0.11 +0.12 | 0.03£0.08 | 0.05+0.08 0.03 £ 0.06
4 indicators, pure
missing latents | 0.0+ 0.0 0.02+£0.06 | 0.07£0.08 0.05 £ 0.07
missing indicators | 0.08 £0.05 | 0.06 £0.07 | 0.11 +0.09 0.10 + 0.06
misplaced indicators | 0.0 £0.0 0.0£+0.0 0.02+0.04 0.0+0.0
5 indicators, pure
missing latents | 0.0 £ 0.0 0.02+£0.06 | 0.02+0.04 0.0+ 0.00
missing indicators | 0.03£0.03 | 0.06 +£0.08 | 0.09+0.07 0.06 £ 0.05
misplaced indicators | 0.0 £0.0 0.0£0.0 0.0£0.0 0.0£0.0
3 indicators 4+ impurities
missing latents | 0.40+0.13 | 0.34 £ 0.16 —— -
missing indicators | 0.40+0.15 | 0.37+0.20 —— ——
misplaced indicators | 0.0 +£0.0 0.01£0.03 —— ——
impurities | 0.06 £0.08 | 0.03 £0.07 - -
4 indicators + impurities
missing latents | 0.0 £ 0.0 0.04 £0.08 —— ——
missing indicators | 0.05+0.08 | 0.14 +0.13 —— -
misplaced indicators | 0.01 & 0.01 0.0£0.0 —— ——
impurities | 0.03 £0.09 0.0+0.0 —— ——
5 indicators 4+ impurities
missing latents | 0.0 £ 0.0 0.0+ 0.0 —— ——
missing indicators | 0.05+0.04 | 0.03+0.03 —— ——
misplaced indicators | 0.0 +£0.0 0.0+ 0.0 —— ——
impurities | 0.03 £0.09 0.0+ 0.0 —— ——

Table 6: Results obtained for estimated purified graphs. Each number is an average over 10 trials,
with an indication of the standard deviation over these trials. The four columns represent the cases
with 5 latents/1000 observations, 5 latents/5000 observations, 10 latents/1000 observations and 10
latents/5000 observations, respectively.

a linear latent structure. We used the Wishart test of tetrad constraints (Spirtes et al., 2000;
Wishart, 1928). Samples were generated using the Tetrad IV program ”. Values for the cofficients
are then uniformly sampled from the interval [—1.5,—0.5] U [0.5,1.5]. Variances for the exogenous
nodes (i.e., latents without parents and error nodes) are uniformly sampled from the interval [1, 3].
The motivation for choosing such intervals is generating artificial models where the causal effects
are not too big or too small. After the full parameterized model is set, independent samples are
pseudoramdonly generated. The pseudorandom number generator used in the following experiments
was the one used in the Java 1.4 virtual machine. The a-value used in all tests in this section was
0.05.

The first batch of experiments concerns true models that are pure: for a given number m of
latents, we add n pure indicators to each latent, where m = 5,10 and n = 3,4,5. We used two
different sample sizes: 1000 and 5000 observations. For a graph with m latents, we added edges

" Available at http://www.phil.cmu.edu/tetrad.
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Figure 8: Example of an impure latent variable graph used in one of the experiments. Black nodes
represent latent variables. The smaller latent node represents one of the error nodes, a common
cause that should not appear in the purified measurement model. Notice that nodes 10 and 14 are
also impure with respect to each other, since 12 is another common cause of them.

among latents aiming at an average degree of h neighbors by latent in the following way: we iterate
through all pairs of latent nodes and add a directed edge 2 if a random number generated uniformly
in the interval [0, 1] was less than % For graphs with 5 latents, we had h = 2. For graphs with
10 latents, we had h = 4. Results are summarized in Table 6.

From the results on Table 6 it is clear that the number of indicators contributes more to the
sucess of the algorithm than the sample size. With exact three indicators per latent, there is little
margin for redundancy and any statistical mistake when evaluating a constraint may be enough
to eliminate a whole cluster. There is a huge leap of quality when latents have four indicators: in
this case, results are extremely good and adding more samples do not change it much. A similar
pattern follows for the case with 5 and 10 latents, althought the case for 10 latents, 3 indicators
per latent and 5000 examples deserves further study.

The second batch of experiments concerns impure models with embedded pure models taken
from the previous case. In other words, from a pure graph with m latents and n indicators per
latent, we create an impure graph by adding 2m more indicators, and making each latent a parent
of these extra indicators. It barely affects the case for 4 and 5 latents, but it was somewhat worse
for the case with three pure indicators per latent graphs.

The third experiment uses the graph in Figure 8. In this case, we have 7 impure nodes that
have to be removed. The result for sample size of 1000, averaged over 10 trials, was: 0 missing
latents, 0.056 (40.047) missing indicators, 0 misplaced indicators, 0.24 (£0.17) impurities. The
result for sample size of 5000, averaged over 10 trials, was: 0 missing latents, 0.032 (+0.065)
missing indicators, 0 misplaced indicators, 0.2 (+0.1) impurities.

We used metaclustering in all experiments, merging clusters out of a cycle of 10 repetitions with
a randomized order of tests. Metaclustering did not help in most of the situations, but in a few
cases it was able to add one or two extra clusters. None of the solutions actually required merging
the output of any of the last 5 runs for each metaclustering. For the metaclustering procedure,
we adopted a slightly different method of verifying if two latents can appear together in the final
model: by fitting a one factor model with six indicators, three from each latent, and verifying it
is not significant. If we passed the first test (i.e., the one-factor model is not significant), we fit a
two-factor model and verify if it is significant. If true, then these two latents can be kept together.

8We define an arbitrary order among the latents, such that an edge is directed only from the node in the lowest
position in this order to the node if the highest position. This avoids circularity.
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The test used was a chi-square test of significance. In practice, we also verified if two indicators
were impure with respect to each other by running the same tetrad tests again, but now using only
indicators from each respective cluster (instead of all indicators). This double-check was useful to
detect some extra impurities in the last experiment.

We also generated factor analysis models for each of the data sets used in these experiments. We
used the PROC FACTOR procedure from SAS v.8e, and two criteria for choosing the number of
latents: the default SAS criterion that basically chooses the number of latents by some thresholding
on the amount of variance explained, and an iterative procedure that chooses the number of latents
by the first statistically significant model when we start from 1 latent and increase the number
by 1 at each iteration. A chi-square test was used®. In order to evaluate the final outcome, we
first perform an oblique rotation (we used the oblimin rotation). We then heuristically cluster the
indicators by associating each one with the latent with the respective highest loading (in absolute
value). Finally, we just examine how the original pure indicators were clustered, and how it matches
the purified true graphs.

The default criterion of choosing the number of latents widely underestimated the true number,
in many times by just keeping half of it. The chi-square criterion worked extremely well. The
combination of the chi-square criterion and the heuristic clustering criterion was close to perfection,
achieving nearly zero error by all our evaluation measures (except impurity detection, which was
not considered. Notice also that there is no problem with missing indicators, since nothing is
discarded). For the last experiment, using samples from Figure 8, SAS failed to find a statistically
significant model before having convergence problems with maximum likelihood estimation. We
then used the default SAS criterion, which in this case did not understimate the minimum number
of latents (4) necessary for perfect clustering.

The very good performance of factor analysis in these data sets was somewhat surprising, but
again the heuristic methods of rotation and clustering do not provide any theoretical guarantee. It
is not clear also how to distinguish what is a pure measure from those that are not, since it is not
uncommon that pure indicators have large loadings (> 0.20) in more than one latent.

8.2.1 Tricking factor analysis

In some sense, the observed agreement with factor analysis should be interpreted as an indication
of soundness of our approach, althought we would be more satisfied by showing examples where
factor analysis heuristics for clustering fail.

One of the motivations for using such heuristics is suggesting that elements in a same cluster are
more strongly correlated than those in different clusters, as quoted in Section 7.2. In this section,
we will artificially generate a graph where this assumption does not hold and evaluate the behavior
of factor analysis clustering under these conditions.

The graph used in this experiment has three latents forming a directed chain (i.e., L1 — Ly —
L3). The structural equations for Le and L3 are Ly = 2L +€r,,, Ly = 2Ly + €1, where L1, €r, and
€, are independent standard normal variables. Each latent has four pure indicators. The first and
fourth indicators of each latent have a loading of 9. The second and third have a loading of 1. This
means, for example, that the first indicator of L; is more strongly correlated to the first indicator
of Ly than to some other indicators of L. Each indicator has an additive standard normal error
term. A typical covariance matrix is shown in Table 7. Correlations tend to be rather strong.

By performing 10 simulations with samples of 5000 observations, we got very good results with

9We compared this criterion against searching with the BIC score and stopping when the score decreases, and the
results were virtually the same.
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1.0 0.707 0.701 0.988 0.888 0.808 0.807 0.888 0.868 0.85 0.848 0.868
0.707 1.0 0.487 0.705 064 0.58 0.585 0.639 0.626 0.616 0.61 0.626
0.701 0.487 1.0 0.7 0625 0571 0.56 0.624 0.608 0.595 0.592 0.607
0.988 0.705 0.7 1.0 0.887 0.808 0.806 0.888 0.868 0.85 0.848 0.868
0.888 0.64 0.625 0.887 1.0 0.907 0.909 0.997 0974 0952 0952 0.974
0.808 0.58 0.571 0.808 0.907 1.0 0.824 0.907 0.887 0.866 0.866 0.887
0.807 0.585 0.56 0.806 0.909 0.824 1.0 0.909 0.888 0.869 0.867 0.888
0.888 0.639 0.624 0.888 0.997 0.907 0.909 1.0 0974 0.952 0.952 0.974
0.868 0.626 0.608 0.868 0.974 0.887 0.888 0.974 1.0 0.977 0976 0.999

0.85 0.616 0.595 0.85 0.952 0.866 0.869 0.952 0.977 1.0 0.955 0.977
0.848 0.61 0.592 0.848 0.952 0.866 0.867 0.952 0.976 0.955 1.0 0.976
0.868 0.626 0.607 0.868 0.974 0.887 0.888 0.974 0.999 0.977 0.976 1.0

Table 7: Correlation matrix for a case where factor analysis clustering heuristics fail.

1234 56 7 8 9 10 11 12 13 14 15 I«¢
\/ ~_

Figure 9: An impure model with a diamond-like latent structure. Notice there are two ways to
purify this graph: by removing 6 and 13 or removing 6 and 15.

our algorithm as expected. In three times the algorithm failed to include one indicator overall, and
in one time it did not include one indicator from each cluster. No misplaced indicators, no lost
latents.

A scree plot of each simulated data set would strongly suggest just one factor (or at most
2). Applying maximum likelihood estimation and principal component analysis with three factors
would cluster the indicators of Ly together, and indicators of Lo and L3 together, where no variable
would be clustered with the third factor. It was also interesting to observe that we needed at least
four factors to get a significant fit with maximum likelihood. Even with four latents, our suggested
heuristic clustering would make use of only two of the four factors.

We do not know yet how realistic this example can be, but a similar outcome happened in the
analysis of non-simulated data discussed in Section 8.3.

8.2.2 Nonlinear latent structure

In this section we perform a first experiment with a nonlinear latent structure and non-normally
distributed data. The graph in Figure 9 is parameterized by the following nonlinear structural
equations:

L2 = L% + €12
Ly = +/Li+e¢€s
L4 = sin (Lg/Lg) + €14

where L is distributed as a mixture of two beta distributions, Beta(2,4) and Beta(4, 2), where each
one has prior probability of 0.5. Each error term €y, is distributed as a mixture of a Beta(4,2) and
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1.0 -0.683 -0.693 -0.559 -0.414 -0.78 -0.369 -0.396 -0.306 0.328 -0.309 -0.3 -0.231 0.227 0.276
-0.683 1.0 0.735 0.603 0.442 0.64 0.389 0.425 0.347 -0.363 0.338 0.339 0.243 -0.238 -0.282
-0.693 0.735 1.0 0.603 0.426 0.637 0.378 0.408 0.348 -0.365 0.341 0.337 0.236 -0.239 -0.279
-0.559 0.603 0.603 1.0 0.357 0.524 0.316 0.334 0.282 -0.298 0.279 0.287 0.18 -0.196 -0.222
-0.414 0.442 0.426 0.357 1.0 0.789 0.761 0.811 0.19 -0.203 0.197 0.194 0.356 -0.371 -0.429

-0.78 0.64 0.637 0.524 0.789 1.0 0.713 0.757 0.284 -0.304 0.289 0.284 0.354 -0.364 -0.429
-0.369 0.389 0.378 0.316 0.761 0.713 1.0 0.734 0.171 -0.183 0.174 0.174 0.321 -0.333 -0.387
-0.396 0.425 0.408 0.334 0.811 0.757 0.734 1.0 0.175 -0.188 0.184 0.183 0.326 -0.34 -0.402
-0.306 0.347 0.348 0.282 0.19 0.284 0.171 0.175 1.0 -0.858 0.821 0.818 0.199 -0.191 -0.239

0.328 -0.363 -0.365 -0.298 -0.203 -0.304 -0.183 -0.188 -0.858 1.0 -0.848 -0.843 -0.212 0.204 0.256
-0.309 0.338 0.341 0.279 0.197 0.289 0.174 0.184 0.821 -0.848 1.0 0.805 0.201 -0.19 -0.238

-0.3 0.339 0.337 0.287 0.194 0.284 0.174 0.183 0.818 -0.843 0.805 1.0 0.211 -0.2 -0.246
-0.231 0.243 0.236 0.18 0.356 0.354 0.321 0.326 0.199 -0.212 0.201 0.211 1.0 -0.654 -0.898

0.227 -0.238 -0.239 -0.196 -0.371 -0.364 -0.333 -0.34 -0.191 0.204 -0.19 -0.2 -0.654 1.0 0.78

0.276 -0.282 -0.279 -0.222 -0.429 -0.429 -0.387 -0.402 -0.239 0.256 -0.238 -0.246 -0.898 0.78 1.0
-0.278 0.282 0.284 0.227 0.439 0.438 0.401 0.41 0.239 -0.25 0.237 0.244 0.777 -0.787 -0.92

Table 8: An example of a sample correlation matrix of a sample of size 5000.

the symmetric of a Beta(2,4), where each component in the mixture has a prior probability that
is uniformly distributed in [0, 1], and the mixture priors are drawn individually for each latent in
{Lqa, L3, Ls}. The error terms for the indicators also follow a mixture of betas (2,4) and (4, 2), each
one with a mixing proportion individually chosen according to a uniform distribution in [0, 1]. The
linear coefficients relating latents to indicators and indicators to indicators were chosen uniformly
in the interval [—1.5,—0.5] U [0.5,1.5].

To give an idea of how nonnormal the observed distribution can be, we submitted a sample
of size 5000 for a Shapiro-Wilk normality test in R 1.6.2 for each variable, and the hypothesis of
normality in all 16 variables was strongly rejected, where the highest p-value was at the order of
107!, Figure 14 depicts histograms for each variable in a specific sample. We show a randomly
selected correlation matrix from a sample of size 5000 in Table 8.

In principle, the asymptotic distribution free test of tetrad constraints from (Bollen, 1990)
should be the method of choice if the data does not pass a normality test. However, such test
uses the fourth moments of the empirical distribution, which can take a long time to be computed
if the number of variables is large (since it takes O(mn*) steps, where m is the number of data
points and n is the number of variables). Caching a large matrix of fourth moments may require
secondary memory storage, unless one is willing to pay for multiple passes through the data set every
time a test is demanded or if a large amount of RAM is available. Therefore, we also evaluate the
behavior of the algorithm using the Wishart test (see Spirtes et al., 2000 for details), which assumes
multivariate normality!?. Samples of size 1000, 5000 and 50000 were used. Results are given in
Table 9. Such test might be useful as an approximation, even though it is not the theoretically
correct way of approaching such kind of data.

The results are quite close to each other, although the Bollen test at least seems to get better
with more data. Results for the proportion of impurities vary more, since we have only two
impurities in the true graph. The major difficulty in this example is again the fact that we have
two clusters with only three pure latents each. It was quite common that we could not keep the
cluster with variables {5,7,8} and some other cluster in the same final solution because the test
(which requires the evaluation of many tetrad constraints) that contrasts two clusters would fail
(Step 4 of BuildFinalPattern). To give an idea of how having more than three indicators per
latent can affect the result, running this same example with 5 indicators per latent (which means at
least four pure indicators for each latent) produce better results than anything reported in Table 9
with samples smaller than 1000. That happens because Step 4 of BuildFinalPattern only needs

10We did not implement yet distribution-free tests of vanishing partial correlations. In these experiments we will
be using the tests for jointly normal variables, which did not seem to affect the results.
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Evaluation of estimated purified models
| 1000 | 5000 | 50000

Wishart test

missing latents | 0.20 £ 0.11 | 0.20+0.11 | 0.18 £ 0.12
missing indicators | 0.21 +£0.11 | 0.22£0.08 | 0.10+0.13

misplaced indicators | 0.01+0.02 | 0.0+0.0 0.0+0.0
impurities | 0.0 £ 0.0 0.0£0.0 0.1+0.21
Bollen test
missing latents | 0.18 £0.12 | 0.13+0.13 | 0.10£0.13
missing indicators | 0.15+£0.09 | 0.16£0.14 | 0.14 £0.11
misplaced indicators | 0.02+0.05 | 0.0x0.0 0.1£0.03

impurities | 0.15+0.24 | 0.10+0.21 | 0.0£0.0

Table 9: Results obtained for estimated purified graphs with the nonlinear graph. Each number is
an average over 10 trials, with an indication of the standard deviation over these trials.

one triplet from each cluster, and the chances of having at least one triplet from each group that
satisfies its criterion increases with a higher number of pure indicators per latent.

Again, factor analysis with oblique rotation and heuristic clustering performed surprisingly
well here (ignoring how to interpret the loadings of the known impure indicators), with only an
occasional indicator ending up in a wrong cluster. The major difference was the instability of
the maximum likelihood estimator, which assumes multivariate normality: in many cases it would
require as many as ten random restarts to converge, or not even converge in this given number of
trials. Whenever it was possible, significant fits would happen with 6 latents, which makes sense
since there are six nodes with children in the true graph (excluding error terms). Using principal
component analysis was never a problem, although the SAS default criterion would never choose
more than three components. That would usually result in two groups being clustered together,
while the other two would remain separated. Other experiments with a larger variety of impurities
will be performed in a future work.

8.3 Test anxiety revisited

One of the reasons why we chose the test anxiety data to illustrate our methodology was due to the
similarity among items. A quick examination may even suggest that clustering can be arbitrary
without much loss of insight, adding difficulty to this otherwise simple example.

And yet we expect to propose a meaningful model, reinforcing the usefulness of exploratory
model-building algorithms. We do not expect that everyone will agree with us!! when we say that
the output of the algorithm, which is the second clustering among those proposed in Section 8.1,
is the most meaningful one, but we do believe it gives quite detailed aspects of the unknown data
generating process. In this case, there is evidence that variables are approximately multivariate
normal.

For instance, cluster {zs,zg, %7, 14,217} seems to reflect how the student’s own thoughts in-
terfere with his performance. Cluster {z2, z9, 13,18} shows a more distinct grouping of psycho-
logical /physiological conditions induced by stress. Cluster {z4,z15, %20} is interesting because it

11n part, also, to the fact that such clusters were not completely random, by derived from the variables selected
by our algorithm.
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contains the more extreme psychological reactions to an exam. The results may not surprise any-
one, but it must be stressed that they were obtained with no prior knowledge (except, of course,
that such variables were related under the more general aspect of “test anxiety”).

Notice this is a purified model. We know, for instance, that the original latent that had
{zs5,%6,%7, 714,217} as its children also had z3 (an item which, interestingly, is also about stu-
dent’s thoughts about his success). As discussed in Section 6.1, if we just ignore those latents that
did not appear in the final pure measurement model and if we add back the deleted indicators from
the latents in the pure model, we will have the following set of indicators:

® T3,T5,%6,L7,L14,T17
® T1,T2,%8,%9,%10yL115,L12,L13,L165L18
® T4,%12,%15,7220

The second latent variable as defined by the list above has a much less understandable meaning,
which may be an artifact of statistical variability or unidentifiability of the pattern. In a future work
we will explore different ways of doing metaclustering in order to take into account what happens
when we group together not only the purified latents from each run of the algorithm, but the full
set of indicators per latent. Our clustering was generated using 10 cycles of metaclustering. Unlike
the simulated data of previous section, metaclustering seems to have made a practical difference,
increasing the number of clusters from 2 to 3 by combining clusters from two different runs'?, but
in this case that can also be explained by the rather small number of latents we have here.

Conclusions derived from factor analysis, as described in Bartholomew et al. (2002), re-
veal some subtle differences. Using oblique rotation and two factors, all loadings were quite far
from zero. Assigning a cluster to each indicator by choosing the one with the highest loading
will give a cluster with z3, x5, g, T7, 14 and x17, and a second cluster with the remaining ones,
T1,%2, %4, L8, -y L13, T15,T16, L18, T19, L29- Lhe authors interpret the largest cluster as a factor of
“emotionality”, i.e., “reactions evoked by the nervous system”, while the smaller one would be in-
dications of a type of anxiety categorized as “worry” (but notice how variable 214 ended up in the
large cluster, where it was just thrown away in our approach as an impurity). The smaller cluster is
virtually one of those we got from our analysis. We divided the larger cluster into two subcategories,
one containing the more extreme “emotionality” factors. The authors could have used three factors
(or more!) as well, but two were enough according to their criteria of fitness, which was done by
basically looking at a scree plot. In general, both analysis agree in the most essential points of this
simple example. However, we should stress that our approach requires less subjective decisions:
no need for picking the number of latents in advance, no need of choosing some rather arbitrary
rotation method, no need of choosing some theoretically unjustified method of clustering indicators
by using the strenght of the loadings. For instance, if we perform a chi-square test of statistical
fitness using the given covariance matrix, the factor analysis implementation in SAS reveals that
just one factor is enough with a p-value of 0.09. This is also the result that minimizes BIC. The
default criterion used by SAS also chooses 1 factor only. This is not the kind of insight one would
want from such analysis.

As a sidenote, one important fact pointed out by Bartholomew et al. is that orthogonal rotation
is hopeless in this data set if the goal is unveiling any kind of “simple structure”. That reinforces
the notion that assumptions about the independence of latents are not desirable except in very
especialized domains.

2We also ran metaclustering independently three times (which means 30 runs of the algorithm, but grouping
results into groups of 10) achieving the same result.
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9 Discussion and future work

The results described in the previous section should be considered as very promising. With sample
sizes that are not very large given the number of variables (e.g., 1000 points for 32 variables, and
could possibly be less than that for similar results), fewer than usual assumptions, theoretically
rigorous algorithms, the algorithm exceeded expectations, considering the previous results presented
in (Silva, 2002a). Constraint-satisfaction techniques for learning graphical models performed better
than score-based approaches described in this previous work. It does not mean that new and efficient
score-based algorithm using approximate Bayesian scores cannot be designed for this problem, but
there are some theoretical issues that have to solved, such as how to define a consistent score of a
latent graph without evaluating the full posterior. There are computational issues, such as how to
efficiently compute the score of a new candidate since latent variable graphs are not decomposable.
Another fundamental problem is how to structure the search space in a way a solution can be found
by greedy search. One still has to consider how to make this search as distribution-free as possible.

Considering the generality of the problem, the solution here presented should be of practical
applicability for many scenarios. However, there is still a lot of improvements that can be done,
and the following topics can be considered as immediate starting points for more research:

e since this report introduced our first approach for this problem, we did not worry about
optimization in order to make the algorithm as simple as possible, but in future versions
we may be concerned to improve its scalability at the expense of possibly missing exact
solutions. We currently researching alternative algorithms that can reduce its computational
complexity. For instance, the work by Bansal et al. (2002) describes approximation algorithms
for problems closely related to some of the clustering tasks we need to accomplish;

e there are a large number of alternatives when one intends to increase the statistical robustness
of this approach. For example, using false discovery rate procedures instead of Bonferroni
adjustments within each set of three tetrad constraints that are tested, or scoring compo-
nents of the final model (for example, using a x? score assuming some parametric form for
the joint distribution) in order to detect wrong decisions, or bootstrapping the statistical
tests. Important attention should be paid to the case where the computational cost may be
prohibitive;

e one specific way of improving robustness is exploring redundancy in tetrad constraints. One
of the reasons why experiments with models with four pure indicators worked much better
than the ones with three was due to the extra amount of redundancy. A starting point is
using the ideas from Bollen and Ting (1993) in order to specify how to use redundancy to
perform more reliable decisions;

e 3 more extensive experimental evaluation, including more tests with non-Gaussian data and
real-world data, as well as simulations where assumptions do not hold;

o designing alternatives that use weaker assumptions. For instance, determining which iden-
tifiability guarantees we have when the pure models do not include all latents, or when we
have three pure indicators per pair of latents, instead with respect to the whole set of latents.
This seems to be one of the most important practical extensions of this procedure and a way
to provide formal justification for the Metaclustering procedure;
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e creating similar approaches for discrete data. The factor analysis framework discussed in
Bartholomew and Knott (1999) describes how to use factor analysis for any exponential
family distribution, and that can be a starting point;

e complementary approaches for maximizing the number of measures we keep in a pattern (for
better ontology learning and data mining, for instance), as well as trying to identify the nature
of the impurities (direct causes, error correlations, etc.);

e pure models are identifiable. Which reliable estimation techniques can be designed for esti-
mating the effects of latents into their indicators in pure model without assuming a parametric
distribution for the observed variables?

e since this method uses only the second moments of the distribution, one could also explore
how kernel methods could be integrated into this problem;

o we will also work in the problem of learning the structure among the latents. Current methods
(e.g., Silva (2002a)) makes use of the assumption that latents are linearly related. Can we
use the techniques here describe to generalize this method?
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Appendix

A More about the Unclustered test

The core of our methodology is the procedure to detect when two indicators cannot share a same
parent, which we called the Unclustered test. In Appendix C we prove its correctness for the
general case where a latent can be a non-linear function of its parents. In this section, we will give
an intuition of why it works in the special case where the relationships among latents are linear.

Under the assumption we have a linear causal graph faithful to a distribution, the Tetrad
Representation Theorem described in Spirtes et al. (2000) and Shafer et al. (1993) gives a graphical
condition that holds if and only if a tetrad constraint holds. Given four random variables, A, B, C
and D, the constraint cacopp = capopc is entailed by a linear causal graph faithful to their
distribution if and only if there is a choke point between the pair {A, B} and {C, D}.

Before defining choke points, we will first introduce the concept of treks in a directed graph.
Let a trek in a directed acyclic graph be any path where no two consecutive edges in the path point
to the same node. A directed path A — B — C — D is an example of a trek. A path with a single
source such as A < B <~ C — D is an example of a trek, where C is the source'3. A path with a
collider such as A — B < C < D is not a trek, where B is the collider.

13 A was the source in the previous example. Essentially, a source node should have a directed path from it to each
of the other nodes in the path.
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Figure 10: (a) X1 as a choke point for {X9, X3,Y1}. We represent the fact that X; may be only
an ancestor instead of a parent by a sequence of two edges ——. (b) Another example of how X;
chould be a choke point among the same elements. In (c), the global picture when L is a choke
point for {X7, X9, X3,Y1} and {X1,Y7,Y2,Y3}. (d) A case where all conditions for Unclustered
holds, with the exception of #1.

If CP is a choke point of the pair of pairs {{A, B},{C, D}}, then every trek between an el-
ement of {4, B} and an element of {C,D} has to include CP'*. Given two sets of variables
X ={X1,X5,X3},Y ={11,Y5,Y3}, a covariance matrix ¥ that includes the covariance matrix of
X UY, we define Unclustered(X,Y;¥) as true if and only if every element in X is uncorrelated
with every element in Y or the following conditions hold:

1. for all {A,B,C} C XUY,pap.c #0 and pap # 0;
2. forall Y € Y,TetradScore(XUY; %) = 3;

3. for all X € X, TetradScore(Y U X;X%) = 3;
4. for all {Xa,Xb} C X, {Ya,Y;,} C Y70-XaYa0-Xb)/b = 0X,Y,0X,}Ys 7é 00X, X,0Y,Y,

The claim is: if Unclustered(X,Y;X) = true, then no element in X can share a parent with
any element in Y. We will show here an intuitive demonstration of this argument using the Tetrad
Representation Theorem.

Suppose X1 and Y; share a same latent parent, L. Since all three tetrads hold in { X1, X», X3,Y1},
there must be a choke point between any two elements of this set. But the trek X; «+ L - Y}
exists, so the choke point must be X1, L or Y;. Suppose it is X1. So, given any pair in {Xs, X3,Y1},
all treks must be intermediated by X;. Figures 10a and 10b illustrate two typical cases. In all
this cases, every pair in {X2, X3,Y1} is d-separated by X, which contradicts Condition #1 in the
definition of Unclustered. Therefore, X; (nor Y1) can be the choke point.

Since L is a choke point in {X7, X3, X3,Y7}, L is in every trek among elements of such se
Since L is a choke point in {X1,Y7,Ys,Y3}, then L is in every trek among elements of such set.
Therefore, as Figure 10c suggests, L is in every trek among elements in { X1, X9, Y1, Y2}, which by

15,

14The definition of choke point also requires it being on a given “side” of each trek, but to keep the exposition
simple, we will not comment further on it. Shafer et al. (1993) give a rather complete coverage of the topic.

15 Also, since L cannot be a descendant on an indicator, then L is an ancestor of every one of such nodes, which
is the reason why we should not worry about which “side” of each trek L should be, as suggested in the previous
footnote.
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the Tetrad Representation Theorem will imply ox,v,0x,y, = 0X,¥,0X,Y; = O0X1X,0Y1Y,- Contra-
diction.

Could we simplify the definition of Unclustered? Figure 10d illustrates a case where Conditions
#2, #3 and #4 hold while #1 does not, yet X; and Y; share a same latent parent. If we are
interested only in verifying if one given pair of nodes share a same parent (as suggested by the way
loops are organized in the FindMeasurementPattern algorithm), then it will not be necessary to
check all those tetrad constraints: for X; and Y7, we can check only if ox, x,0x,v; = 0x,x:0x,v; =
0X1Y10X,5Y3, OY1Y20Y3X: = 0Y1Y30Y>X; = 0Y1X,0Y3Y3 and 0X1Y10X,Y> = 0X1Y20X,Y; # 0X1X20Y1Ys-
It is not clear if this approach can actually save computational time (since we still need to deal with
six nodes at a time anyway) or if it increases statistical robustness. In preliminary experiments,
it was actually harmful in both ways: not only it was prone to make more statistical mistakes
of separating nodes that were actually children of the same latent, but it took considerably more
computational time, since we only eliminate edges among two nodes at a time while we still keep
looking at six nodes in a single test. Intermediate approaches, such as evaluating only the tetrads
that allow us to decide when a subset of X is separated from a subset of Y, could be evaluated in
the future.

It remains as an open question if we can come out with a considerably different way of deciding
when two nodes do not share a same latent parent, or even proving that is not possible and all
such approaches should test essentially the same constraints as Unclustered does. Also, it would
be interesting to come up with a test of deciding when two nodes do share a common latent parent.
The way by which we are able to accomplish this in the present work requires having the global
picture, i.e., knowing the measurement pattern and then using the assumption of existance of a
pure measurement model including all latents with at least three children. It is unclear right now
how to relax this assumption, if possible, while guaranteeing the same identifiability results of pure
measurement models.

An interesting variation would be deciding when two nodes do not share some common parent.
While the Unclustered test is general enough to the point it does not need to consider if there are
other common parents, we may try to get a different test that separates nodes that cannot have at
least one parent in common, but that may affect other properties of the algorithm.

B More examples

In this subsection, we illustrate how the algorithm works by describing step-by-step solutions for
two more simple cases.

Our first example is depicted in Figure 11. The true model (Figure 11a) consists of two latents
with 6 indicators each, where many pairs of indicators have correlated errors. Adopting the repre-
sentation ({cluster;},{clustera}) to indicate graphs in Gg for the given problem, the possible in-
duced pure measurement models are: ({1,2,3},{10,11,12}); any subgraph of ({1, 2,4, 5,6}, {10, 11,
12}) with at least three members from each cluster; any subgraph of ({4, 5,6}, {7,8,10,11,12}) with
at least three members from each cluster; and, finally, ({4,5,6},{7,8,9}).

The initial step is depicted in Figure 11b, which shows the initial configuration of our clustering
after Step 3 of FindMeasurementPattern. Here, solid edges correspond to the Black edges described
in Table 1. After the first pass, Step 4 will change the color of some edges to Blue and Gray. Figure
11c shows the NG gjue graph at the end of this step (Blue edges are represent by bold solid edges),
while Figure 11d shows NGgrqy (dotted edges). At Step 5, edges such as the ones between elements
in {4,5,6} and elements in {10,11,12} are removed. Notice the presence of Yellow edges (3,7),
(3,8) and (3,9) (represented as dashed edges in Figure 11e, the outcome of Step 5). This happens
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because, for instance, nodes 3 and 7 never appear together in any solution graph, yet they are not
impure with respect to each other. Situations like that are the main responsible for the existence
of many maximal cliques that overlap other maximal cliques in Clustering. It will not be the
case here, thought: Components, the set of disjoint graphs shown in Figure 11f actually finds
the right partition with a one-to-one correspondence to each latent in the true graph. Figure 11g
corresponds to Clustering, the graph obtained when we put back the Gray and Yellow edges
withing each disjoint component. Figure 11h shows the first sketch of a measurement pattern as
computed at the end of Step 2 of BuildFinalPattern. Step 3 of BuildFinalPattern simply adds
the cross-construct impurity edges (Figure 11i), while the final step evaluates which pairs of latents
could be part of an induced pure measurement model. Figure 11j shows the final measurement
pattern as computed by our algorithm.

Our next example is depicted in Figure 12a. Only a handful pairs of impurities exists, as illus-
trated by Figure 12b, where the only Gray edges are (2,5),(2,6),(3,5). Let’s assume the relation-
ship among the latents is linear. With linear latents, the predicate Unclustered({2,7,8},{9,10,11})
will hold because Lo d-separates Ly from L3 (Spirtes et al., 2000). This will cluster together indica-
tor 2 with measures {5,6,7,8}. Figure 12c shows that we have two disjoint components, but three
maximal cliques. Clustering will be equal to {1,2,3,4,5},{2,5,6,7,8} and {9,10,11}. Figure
12d depicts the final measurement pattern. The presence of 2 and 5 in different clusters indicates
that a variety of latent variable graphs may have generated that pattern. For example, we cannot
tell if indicator 5 is a measure of T7, T5 or both (it is an indicator of both in the true graph, but
if the edge between 3 and 5 was double-edged, the pattern would still be the same). Fortunately,
when we purify the measurement pattern we are guaranteed to have a correct model, in the sense
of having proper clustering assignments, as explained in Section 5.

C Proofs

Before presenting proofs for the lemmas and theorems stated in the body of this text, we will
introduce the following notation. Let oxy denote the covariance of any two random variable X
and Y and pxy.z denotes the partial correlation of X and Y given Z.

Also, let X = A\yoL + Zf Azi7; and Y be random variables with zero mean, L being another
random variable with zero mean. We define oxy, the “covariance of X and Y through L”, as
oxyr = ApoE[LY]. This concept is going to be used in Lemmas 3 and 4. The definition of trek is
also used in the proofs and can be found in Appendix A.

We will consistently make use of polynomial identities defined by the entailed tetrad constraints
in such graphs. The variables in such polynomials are the free linear parameters linking each
observed node to its parents. The results hold almost surely with respect to a Lebesgue measure
over the free linear coeflicients. Therefore, these results may fail in sets with a Lebesgue measure
of zero, but so does the faithfulness assumption in linear parameterization of graphs (Spirtes et
al, 2000). In a similar way, we will assume that such cases of probability zero are of practical
irrelevance.

Also, most of the times we will not explicitly represent the extra independent error term that
is included in the definition of linear measurement models: without loss of generality, we will treat
them as regular parents with a dummy linear coefficient that is always set to 1, but that will be
represented by some arbitrary symbol. The only exception will be in Lemma 5.

Lemma 1 Let G(L,O,¢,Ex,,Eq, E,) be a linear latent variable graph. Let {A,B} C O be nodes
of G. If cop =0, then A and B do not share a same parent in G.
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Proof of Lemma 1: Assume o4p = 0. Suppose A and B have a common parent L in G.
Let the structural equations for A and B be A = aL + ) ,a;A;, B = bL + Z]- b;B;, where
{a,a1,a9,...,a4.4,b,b1,b2,...,bup} are real coefficients, {L, A1, Ag, ..., Ay} are all parents of A in
G and {L, By, By, ..., By} are all parents of B in G. Then the following holds:

oap = E[AB] = abo? + f(G,A,B) =0 (1)

The polynomial f(G, A, B) cannot possibly contain any term with the product ab. Since this
polynomial is identically zero, we have to have abo? = 0. Since a # 0,b # 0 and by faithfulness,
02 # 0, this is a contradiction. O

Lemma 2 Let G(L, O, ¢, Er, Eo, E.) be a linear latent variable graph. For any set O' = {A,B,C,D}
C O, if G entails caopocp = cacosp = 0Apopp and for no set {X,Y, Z} C O’ we have pxy.z =0
and pxy # 0, then no element in Q' is a descendant of another element of Q' in G.

Proof of Lemma 2: Since G is acyclic, then at least one element in O’ is not an ancestor in G
of any other element in this set. By symmetry, we can assume without loss of generality that D is
such node. Since the measurement model is linear, we can write A, B,C, D as linear functions of
their parents:

= Zp apAp
> biBi
Zj ¢;Cj
= Ek dy Dy,

where on the right-hand side of each equation we have the respective parents of A, B,C and D.
Such parents can be latents or another indicators, but each indicator has at least one latent parent.
Since each indicator is always a linear function of its parents, by composition of linear functions
we have that each X € O’ will be a linear function of its immediate latent ancestors, i.e., latent
ancestors'® Ly, of X such that there is a directed path from Lx, to X in G that does not contain
any other element of L. The equations above can then be rewritten as:

A = Zp )\APLAP
B = Ez A, Lp;
Cc = Zj )\Cj LCJ.
D = Zk Ap,Lp,

OQW =
|

where on the right-hand side of each equation we have the respective immediate latent ancestors of
A,B,C and D and the A parameters are functions of the original coefficients of the measurement
model.

Assume C' is an ancestor of D. Let L be a latent parent of C, where the edge from L into C is
labeled with ¢, corresponding to its linear coefficient. We can rewrite the equation for C as

C=cL+) XL (2)
J

where by an abuse of notation we are keeping the same index j to represent the other latent
ancestors of C. Moreover, L can appear again in the summation if there is more than one directed

18We will also treat error nodes as latent parents in this lemma.
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path from L to C. In this case, the corresponding coefficient A is modified by subtracting c. What
is important here is that the symbol ¢ does not appear in ) jAc; Ly
By a final abuse of notation, rewrite A, B and D as

A=cw, L+ Ep AApLAp
B = cwpL + 21 AB; LB,
D = cwyL + Zk ADkLDk

Each w, symbol is a polynomial function of all (possible) directed paths from C to X, €
{A, B, D}, as illustrated in Figure 13. The corresponding Ax,, coefficient for L is adjusted in the
summation. Again, L may appear in the summation if there are directed paths from L to X, that
do not go through C. If C' has more than one parent, then the expression for w, will appear again
into some \yx,,. However, the symbol ¢ cannot appear again into any Ax,,, since w, summarizes
all possible directed paths from C' to X,. This remark will be very important later when we will
factorize the expression corresponding to the tetrad constraints. Notice that while is possible to
have w, = 0 or wp = 0, by assumption wq # 0.

Another important point to be emphasized is that no term inside wq can appear in the expression
for A and B. That happens because D is not an ancestor of A, B or C, and at least the edges from
the parents of D to D cannot appear in any trek between any pair of elements in {4, B,C} and
every term inside wy contains the label of one edge between a parent of D and D. This remark
will also be very important later when we will factorize the expression corresponding to the tetrad
constraints.

By the definitions above, we have:

OAB = CQWaWbU%‘FC‘UaZ/\BiULBiL+Cwbz)\Ap‘7LA,,L+ZZ/\AP’\B¢ULAFLBi
ocp = CQWdU%-l_CZ)\Dko-LDkL-I_deZ)\Cjo-LCjL+ZZ)\Cj)\Dk0L0jLDk
gAc = CQWaO%"'CWaZ/\CjULch+cz/\Apo'LApL+ZZ)‘Ap>‘Cj0'LAchj
oBpp = Cwawdo-%+Cwbz)\Dko-LDkL+dez>‘BiaLBiL+EZ>\B7;)\DkO-LBiLDk

Since the polynomial identity o aopocp — cacopp = 0 should hold for every set of parameters
in the measurement model, then the sum of every term including the product c¢?wg; should vanish
to zero, where wy; is some term inside the polynomial wy.

Before using this result, we need to identify precisely which elements of the polynomial c gpocp—
oacopp can be factored by c?wg, for some arbitrary wg;. This will clearly include elements from
any term that will explicitly include c®wy when multiplying the covariance equations above. No-
tice that some A4, will be functions of wy;: every immediate latent ancestor of C' is an immediate
latent ancestor of D. Therefore, for each common latent ancestor parent L, of C and D, we have
that Ag, = wgl, +1t(Lg, D) = waphe, + (Wg — war) A, + t(Lg, D), where t(Lg, D) is a polynomial
representing other directed paths from L, to D that do not go through C.

For example, consider the expression c?

wa (X Ani015,1) (5 Ag15,1), which is an additive
term inside the product o agocp. If we group only those terms inside this expression that contain
wat, we will get Cwaway (Z AB;OL B, L) > Ac; OLg, L) where the index j runs over the same latent
ancestors as in (2). As discussed before, no term in wg can be a factor inside any Ap,. For the
same reason, it cannot appear inside wy.

When one writes down the algebraic expression for o gpocp — cdacopp as functions of As, ¢,
Wq, Wh, Wat, the terms
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Fwin[o7 333 A AB L, Ly, + WaWho ] D D0 A ACyOLo; Lo, + Wa 22 ABOLy,L 22 AC; OLg; L+
Wh DS AA,OL 4, LD AC;OLe, L=

C2wdt[wb0'% >N )\ApACja-LApLCj + waa% > >\B]‘ )\CjO-LBiLCj + wawp Y ACjaLch > ACjULCjL‘F
D A4,0L,4,L 2 ABOLy L]

will be the only ones being multiplied by c?wg;. Since this has to be identically zero and wg; # 0,
we have the following relation:

f1(G) = f2(G) (3)

where

fl(G) = 02[0'% Z Z AApABiO-LApLBi —l—wawba% Z Z ’\CjAleo'LojLCj, +w, E ABio-LBiL E)‘CjaLch+
wbz)\ApULApLZ)\CjULCjL]

f2(G) = CQ[wa% >3 >\Ap>\Cj ULAchj +wa0% > )\Bj )xcj O-LBZ-LCj +wawp )\Cj ULCjL > )\Cj ULCjL+
2 AAOL, LY ABOLp, L]

Similarly, when we factor terms multiplying cwg; (i.e., the power of ¢ in the term has to be 1),
we get the following expression as an additive term of o qpocp — dacoBD:

cwit[wa Y5 AB Ly LYY Ac; Acy OLg,Lc, +wp Do AA,0L,,L 25D A Ac, OLg; Lo, +
2)2¢0L0,L 220 My ABOL A, L]~

cwgt[wa Y Ac; OLg,L 222 ABAg, OLp, Lo, + Do AATL LD D ABAC OLp, Lo, +

Wh DS AC;OLe, L D2 AaAC OLay Loy + 22 ABOLE LD D AN AC; 0L, Lo, ]

for which we must have:

91(G) = g2(G) (4)

where
91(G) = clwa 2o AB; 0Ly, 1 2D AC;AC;H Ol Loy, + Wb Do AATLL, L Y2 D ACAC; OLo; Lo, +
2> 0¢0Le;L 22 22 AApABOL 4, L, ]

92(G) = clwa 32 A, 010, L 223 ABAC 0Ly Lo, + 22 AA,0L4,L 22 ABAC; 0L Lo, +
wh Y, )\CjULCjL > )\Ap)\CjULApLCJ. + 2 ABOLg L D)) )\A,,)\CjULApLCJ.]

Finally, we look at terms multiplying wg without ¢, which will result in:
h1(G) = ha(G) (5)

where

m(G) =D A AB.0La, Lo, D Y ACACHTLe,Le,
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ho(G) = Z Z A4, AC;OL g, L, Z Z ABAC; 0Ly, L,

Writing down the full expression for o4copc and J?;a 4 will result in:

04coBc = P(G) + walfo(G) + 92(G) + ho(G)] (6)
060an = P(G) + walf1(G) + 91(G) + h(G)] (7)
where
P(GQ) = c'wwy(0})? + Cwawpol Y Ag; OLo, L + Awaol Y ABOLy L+

3 2 2

C WaWp0T, Z)\CjJLCjL +c Wq, E :AC]'O-LCjL § :)\BiaLBiL-i_
3 2 2

C’wpoT, > )\APO'LAPL—I-C wp Y )‘CjULch > >\Apo-LApL

By (3), (4), (5), (6) and (7), we have:

2 2\—1
OACOBC = 000AB = 04B — 0AcoBc(08)  =0= papc =0

Contradiction. Therefore, C cannot be an ancestor of D. By symmetry, neither are A and B.

Among A, B and C, at least one element is not an ancestor of the others since the graph is
acyclic. By symmetry, assume without loss of generality that C is not an ancestor of A and B.
Therefore, C' is not an ancestor of any node in O', and by symmetry with D, we have that A and
B cannot be ancestors of C.

Between A and B, one element cannot be an ancestor of the other since the graph is acyclic.
By symmetry, assume without loss of generality that B is not an ancestor of A. Therefore, B is
not an ancestor of any other one in O’, and by symmetry with D, we have that A cannot be an
ancestor of B. O

Lemma 3 Let G(L,0O,¢,Ey,Eo, E.) be a linear latent variable graph. Let A, B,C and D be four
elements in O such that no element in {A,B,C, D} is an ancestor of any other element of this
set in G, and A has a parent L in G, and no element of the covariance matriz over A,B,C
and D is zero. If cacopp = ocapopc is faithfully entailed by G, then cacr = ocapr = 0 or
04cL/0ADL = 0Ac/0AD = 0BC/0BD-

Proof of Lemma 3: Since G is a linear latent variable graph, we can express A, B, C and D as
linear functions of their parents as follows:

A = alL+} ,ap4,
B = Y.bB;
C = >,¢C;
D = Y, diDy

where on the right-hand side of each equation the uppercase symbols denote the respective parents
of each variable on the left side.
Given the assumptions, we have:

0ACOBD = OADOBC

E[a Z_j CjLCj + Zp Z]- apCjApCj]O'BD = E[a Zk dp LDy, + Zp Zk apdkApDk]OBc

a(zj CjO’LC].)O'BD + Zp Ej apCj0A,C;OBD = a(zk deLDk)O'BC + Zp Zk apdkO'ApDkUBC
a[(X2;¢iorc;)oBp — (X dkorpy)oBe)] + D2, 325 apcioa,c;oBp — 32, ) apdkoa,p0Bc] =0

444
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Since no element in {4, B,C, D} is an ancestor of another element of this set, then there is no
trek among elements of {B,C, D} containing both L and A, and therefore the symbol a cannot
appear in Zp Zj apCiTA,C;OBD — Zp >k @pdroa,p,0Bc When we expand each covariance as a
function of the parameters of G. Therefore, since this polynomial is identically zero, we have to
have the coefficient for a equal to zero, which implies:

a(d_cjore,)onp = a()_ dkoLp,)oBC = 0ACLOBD = TADLOBC
J k

Since no element in X gcp is zero, then gacr, = 0 & oapr, = 0. If gacr # 0, then
oacL/0apL = 0ac/0ap = 0Bc/oBp- O

Lemma 4 Let G(L,0,¢,Er,Eqg, Gs,E) be a linear latent variable graph and ¥ the covariance
matriz of O with two triplets X = {X1,X2,X3} C O,Y ={¥1,Y2,Y3} C O, XNY =0, such that:
(i) for every triplet {A,B,C} C XUY, pap.c # 0,pap # 0 (ii) VY € Y, TetradScore(X1, Xo, X3,
Y; %) = 3; (iii) VX € X, TetradScore(Y1,Y2,Ys, X;¥) = 3. Then, if V{X;, X;} C X,{Y), Yy} C
Y,axiypaxqu = 0X,;Y,0X,Y, # X, X;0Y,Y,, We have that VX €e X, Y € Y, X and Y do not have a
common parent in G.

Proof of Lemma 4: Suppose X; and Y7 have a common parent L in G. Let X; = aL + Zp apAp
and Y7 = bL + ), b;B;, where each A,, B; are parents in G of X; and Y, respectively.

By Lemma 2 and the given tetrad constraints, for any pair of elements in X UY, no element
in this pair can be an ancestor of the other. By definition, ox,vr = (a/b)oy, v for some element
V, and therefore ox,v = 0 & oy, = 0. Since by assumption ox, x,0yv; x; = 0x,Xx30y; X, and
00X 1Y,0Y1Ys = 0X1Y30Y,Yas then by Lemma 3 we have O0X1 XL = (IR=S OX,X3L = 0 oY1 XoL = 0
OY; X3L = 0 and also OX1Yol = 0 OX1YsL = 0 OY Yl = 0 OY YL = 0.

By 0X1Y10XsYy = 0X1Y20X2Y;y WE have oxiviL = (IR=S OX1YoL = 0 and oxXiviL = 0 OXoviL =
0, which will imply ox,v,, =0 & ox,v; = 0.

Assume ox,y,1, = oy, x,r, = 0. Let Xo = Z]- b;Cj and Yy = ), dipDy. Since by assumption
ox,v,0x;Y, for all p € {1,2,3},q € {1,2,3}, we have:

0X1Y10X5Ys = 0XoY10X1Y,
2
(aboy, + Zp > apbio A, B;)OXsvs = OXavi0X1Ys

Again, this identity should hold for all values of a. Since a does not appear in any other
term than abo?ox,y, (because ox,v,;r, = Ovix,z, = 0 and no element is an ancestor of the
other), then abo?ox,y, = 0. But a # 0,b # 0,02 # 0,0x,y, # 0, which is a contradic-
tion. A similar result will follow if we assume ox,x,r, = 0. Therefore, assume no element in
{0X1 X201, OX1 X3L, OY1 X2, OV1 X3 Ly OX1 YLy TX1Y3Ly OV1YaLy OY1Y3L ) 1S Z€TO.

From the assumed entailed constraint oy, x,0v,v3 = 0v;v,0x,y; and Lemma 3, we have

OviX; _ OYiXoL
oY  OviYaL

From the assumed entailed constraint ox,v,0x,x; = 0x,x,0x,v; and Lemma 3, we have

oxixor _ oo (b/0)ovixon o ovix
TX\ V5L " (b/a)ovivar oy
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which implies
OX1X20Y1Ys = OX1Y>0Y1 X
Contradiction. The result follows for all pairs in X X Y by symmetry. O

Lemma 5 Let G(L, O, ¢, E1,,Eq, E.) be a linear latent variable graph. Let {A,B,C} C O be some
triplet such that A and B have parents Ly and Lo, respectively (where it is possible that Ly = Ly),
and C' is not an ancestor of A or B. Then, if or,1, # 0, it follows that pxy.z # 0.

Proof of Lemma 5: Let the structural equations for A, B and C be A = aL; + ), a; A; + eq,
B = bLy + Ej bjBj + ey and C = Y, cxCk + €., where €4, ¢, and e, are independent random
variables, and independent of every other random variable in G besides A, B and C, respectively.

We have that papc # 0 & UABO'%« —oacope # 0. We will prove that UABO%« —oacoBe # 0.
From the above equations, we have that o4pc% — cacopc = [abor, 1, + Fi(4, B)|(F2(C) + v.) —
oAcoBc, where no term in Fj(A, B) can contain the product ab, every term in F5(C) contains
some variable c; as well as every term in o4copc, and 1. is the variance of e.. The term oy, 1,
cannot contain any variable ¢, since C is not an ancestor of A or B. Therefore, no term in this
polynomial can cancel the term aboyr, 1,,%¢, and since abor, 1,1, 7# 0, it follows that pap.c # 0. O

Theorem 1 Let G(L, O, ¢,EL,Eq, E, Gg) be the purifiable linear latent variable graph that gen-
erates the covariance matriz ¥ of a set of observed random wvariables O. Then, G will be in the
measurement equivalence class MM (O, X)), and such class will be given by the measurement pattern
obtained throught FindMeasurementPattern(O,Y).

Proof of Theorem 1: Step 4 of the algorithm FindMeasurementPattern cannot remove edges
among elements in the same cluster in G by Lemma 1. If two nodes O;, O; belong to some solution
Gs € Gg, there will be some set of four variables where all three tetrad constraints hold and by
Lemma 5 there will be no vanishing partial correlations among such elements, so the edge between
these variables cannot be turned into Gray, but Blue instead. Also, during our search for two
extra nodes Oy, Oy, we do not need to consider those that are linked to each other or to O;, O; with
a Gray edge, since we know by construction that not all three tetrad constraints can hold if one of
these nodes is included in the set of four that is tested.

On Step 5, if for two nodes O;, O; there are four others Oy, Oy, O, O4 such that Unclustered({O,,
Ob, 0;},{0¢,04,0;}; E) holds, we know by Lemma 4 that O; and O; cannot be in the same
cluster. Also, during our seach for four extra nodes O, Op, Oq, Oy, we do not need to con-
sider those linked by Gray or Yellow edges, since by construction they would not satisfy the
conditions for the Unclustered predicate. Analogously, if two nodes O;,O; are pure indica-
tors of a same cluster in some solution graph Gg € Gg, then there is a third node O, in
the same cluster, and three others Oy, O., O4 that are pure indicators of a different latent, and
Unclustered({0;, O, 04}, {Op, Oc, Og}; L) holds by entailment, where all necessary conditions are
guaranteed by Lemma 5 if those latents are correlated. Therefore, if two nodes are linked by a
Yellow edge, they never appear together in some solution graph. Since only Gray and Yellow
edges will be transformed to undirected edges among indicators in the output of the algorithm,
therefore property 2 of measurement patterns will be satisfied.

Now, if we consider only the Blue edges of NG, we know from the previous paragraphs that any
set of indicators of a same latent that appear in some purified solution graph Gs € Gg will appear
together in some connected component, since they will form a clique in NG pgjye. Only components
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of NG pjye of size 1 will be removed, which implies that if some variable Y does not appear in
any graph in Clustering, then Y cannot appear in any graph in Gg. Therefore, property 1 of
measurement patterns will be satisfied by our algorithm.

Given two latents 77 and 15, if both latents contain three distinct indicators and all six indicators
appear in a same solution graph, then such latents will be linked at Step 4 of BuildFinalPattern.
Now we have to prove that the last two properties of a measurement pattern are satisfied by the
output of our algorithm. By the previous paragraphs, we know that for each triplet of variables
that are indicators of a single latent in a pure graph Gg € Gg there will be at least one cluster in
the pattern graph containing them and there will be at least one cluster for each latent in G. Since
indicators in different clusters under some Gs € Gg cannot be linked by any edge at the end of
the algorithm, they will not be in any common cluster in the pattern, and so there is at least one
clique of size |L| among latent variables in the pattern (Op, Ep) that satisfies property 4. Property
3 follows from the argument above.

Now suppose there is another clique C% of size |L| among latents in the pattern M M¢g(Op, Ep)
such that each T; € Cr has a subset of indicators O; with the following properties: (i) Vi, |O;| > 3;
(ii) YO4p € 04,044 € 05,1 # 7, Oy and O}, do not have any common latent parent in M Mg nor are
linked by an undirected edge. Suppose the graph composed by C% and their respective indicators
in O1 UO2 U ...U Oy, does not satisfy property 4 because one of the latents in this clique, T3,
cannot be mapped to a latent in G, as defined by the function Lg(-) (see Section 3): O; contains
indicators of at least two different latents in L. Because elements in different Oj; sets do not share
any latent parent and are not linked by an edge, that means they were not linked by any edge at
the end of the clustering procedure, which can only happen if the Unclustered condition separates
them. But then, by Lemma 4, no other of the |L| —1 sets Oj, j € {1,2, ..., |L|} — i can contain any
indicator of the same latents represented by Oj, which means that we have indicators of at most
|L| — 2 different latents to distribute in the remaining |L| — 1 sets. This means that at least one
latent of the remaining |L| — 2 ones will have to be a parent of indicators in at least two triplets
Op, Oq, p # ¢, which is a contradiction.

Now suppose the same scenario from the previous paragraph holds, but property 4 fails because
the mapping from Ct to L is not one-to-one, i.e., two elements 77,75 of Ct are mapped to the
same latent in L. But then they could not possibly be separated, because they share a common
latent parent in G.

Similarly, now suppose the maximal cliques among the latents in (Op, Ep) that satisfies prop-
erty 4 of the measurement pattern definition are of size |L|+ &,k > 0. Again, that leaves indicators
of at most |L| latents to be distributed among |L| 4+ k > |L| clusters which is not possible unless a
same latent is a parent of indicators in Op, Og, p # ¢, which is a contradiction. O

As a sidenote, a situation where the measurement pattern will have more than one maximal
clique among estimated latents is when, for instance, a latent has two disjoint set of indicators,
01 and O3, both pure with respect to indicators of other latents and within each Oj set, but with
the property that every element in O is impure with respect to every element in Oz (e.g., having
correlated error terms). Such latent will be represented by two estimated latents in the pattern,
but they will not be linked together.

Lemma 6 Let G(L, O, ¢, Er,EQ, E) be a linear latent variable graph. For any set O' = {A, B, C,
D} C O, if G entails capocp = cacoBp = oapopp and for every set {X,Y,Z} C O' we have
pxy.z # 0 and pxy # 0, and A and B have a common parent in G, then A and B cannot have
any other common parent in G.
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Proof of Lemma 6: Assume I,y and Lo are two common parents of A and B in G. Let the graph
G' have the same structure as G, but without all edges from other possible parents of A and B
not in {Lq,Ls}. Since G’ is more constrained than G, if a tetrad constraint holds in G, then it
holds in G’. By Lemma 2, no element in O’ is an ancestor of any other element in this set. Let the
structural equations for A, B,C and D in G’ be:

A = o1l +asls
B = piLy+ B2Ls
Cc = Ej ¢;Cj

D = ), diDy

Since the tetrad constraint o 4gocp = ocacopp holds in G’, we have o sgocp —ocacogp = 0 =
(041,310%1+01520L1L2 +042510L1L2+042520%2)00D—(0t1 22 €ioc; L2 Y3 ¢ioc;,) (B Yoy dkop, L, +
B2 3ok dkop,1,) = 0= a1fi(07,00p — (2 ¢joc;,) (X, dkopyr,)) + f(G) = 0, where

F(@) = (0182011, + @2B10L, 1, + 02f20%,)0cD — @2 Y ¢joc;1,(B1 Y drop,L, + B2 Y dkoD,L,)
i k k

When fully expanding f(G) as a function of the linear parameters of G, the product o1 /3 cannot
possibly appear, since no element in O’ is an ancestor of any other element in this set, Therefore,
since the polynomial constraint is identically zero and nothing in f(G) can cancel the term a1/,
we have:

2
01,0cD = Z CjoC; Ly Z dyop, L, (8)
] k

Using a similar argument for the coefficients of a1 2, asf1 and ao (2, we get:

OLiL,0CD = Y ¢0C;Ly Y AkOD, Ly (9)
j k
OL1L,0CD = Z CjOC; Lo Z dkO Dy L, (10)
j k
2
01,000 = Y, ¢joc;L, Y koD, L, (11)
j k

From (8),(9), (10), (11), it follows:

ocacoap = [a1) ;¢i00L, + a2 cjocny)len g dkop, L, + @2 Yo dko D, L]
= af )0, ¢g00; L1 2ok k0D, + 100 Y55 CoC 1y Yoy kO DL,
Q10 Zj CjOC; L Zk drop,L, + O‘% Zj CjOC; L, Zk dkO Dy Ly

_ 2 2 2 2
= [Oélo'Ll + 2a100071,1, + a20'L2]O'CD

2

which implies ccp — ocAco 4D (0%)_1 =0= pcp.4 =0. By Lemma 5, C and D have no correlated
parents, which entails ccp = 0 in G’. Since all treks between C and D in G are preserved in G’,
that implies o¢cp = 0 is entailed by G. Contradiction. O
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Theorem 2 Let G(L,O,¢,Eyr, Eo, E., Gs) be the purifiable linear latent variable graph that faith-
fully generates the covariance matriz 3 of a set of observed random variables O. Let M Mg be the
measurement pattern corresponding to the equivalence class MM(O,Y). Let MMpyre be the set

of all purifications of MMg. Then MMpyre =mm Gs.-

Proof of Theorem 2: MMpyre is not empty, because by definition of measurement pattern
there are at least three indicators per latent that can satisfy the requirements of purification. Let
M Mpye be some element of MMpyre. By the definition of measurement pattern and the definition
of purification of a measurement pattern, M Mp,,. has as many latents as any element in Gg and
all indicators of a latent in M Mp,,.. are children of a same latent in G, and there is an one-to-one
mapping from latents in M Mpy,.. to latents in L.

No pair of indicators {O,, Oy} in MMpy,, are linked by an undirected edge in M Mg. That
means that for each pair there exists another pair {Og, Oy} C O such that TetradScore({Oy, Oy, O,
Op};X¥) = 3. By Lemma 2, no element in {O,, 0y, 0,4, Op} is an ancestor of another element in
the same set. Therefore, no indicator in M Mp,,. can be an ancestor of another indicator of
MMpy,e in G. By Lemma 6, no two indicators in a same cluster in M Mp,,. can have another
common parent in G besides their common latent parent. By construction and Lemma 3, no two
indicators in different clusters can have a common parent in G. Therefore there are no impurities
in M Mpy.e, and by mapping the estimated latents of this graph to the true latents in G, we have
MMpyre = Gg for some Gg € Gg.

Now, let Gg be some element of Gg. By property 1 of measurement patterns, all indicators
in Gg have to be in the measurement pattern M Mg. Let I; and Iy be two indicators in Gg. By
Lemma, 4, if I; and I are indicators of a same latent in G, then they have to be indicators of a same
latent in M M¢. Suppose now they are indicators of different latents. Since they are in Gg, there
are four other indicators {I3, I4, I, I } such that Unclustered({I1, I3, Is},{I2, I4, Is }; ¥) holds, and
by the algorithm they cannot be under a same latent parent in M M. Also, there cannot be an
undirected edge between I; and I in M Mg because there exists another pair of indicators {I3, I4}
in Gg such that TetradScore({I1,Is,1Is,14};¥) = 3. It follows that for each latent L in Gg, there
is some latent T in M Mg such that Gp(L) = T. By construction of the algorithm, these latents
form a clique in MMg. So Gg is a subgraph of M Mg with |L| latents inducing subgraphs that
satisfy Property 4 of measurement patterns, i.e., there is some M Mpy,e € MMpyre such that
Gs =um MMpyre- O

Corollary 1 For every possible pair of purifiable linear latent variable graphs G1(L1, O, €1, Ey,,
Eo,,E.,Gs,) and G2(Lga,0,€2,E1,,EQ,,E.,, Gs,) faithfully generating X, the covariance ma-
triz of O, we have Gg, =pm Gs,.

Proof of Corollary 1: By Theorem 1, both graphs fall under the same equivalence class M M (O, ¥),
since they provide the same input for the algorithm FindPattern. The result follows immediately
from Theorem 2. O
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Figure 11: A step-by-step demonstration of how the graph in Figure (a) will give rise to the
measurement pattern in Figure (j).
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Figure 12: Another example where two of the measures are positioned in two clusters at the same
time.

Figure 13: (a) The symbol wy is defined as the sum of the product of the labels of each edge that
appears in a directed path from C to D. Here the bold edges represent edges in such directed paths.
(b) An example: we have two directed paths from C to D. The symbol wy then stands for a; +asazs,
where each term in this polynomial corresponds to one directed path. Notice that it is not possible
to obtain any additive term that forms wy out of the product of some A4, Ap;, Ac;, since D is not
an ancestor of any of them: in our example, a; and as cannot appear in any Ag,Ap;Ac; product
(a3 may appear if X is an ancestor of A or B).
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Figure 14: Univariate histograms for each of the 16 variables (organized by row) from a data set
of 5000 observations sampled from the graph in Figure 9. 30 bins were used.
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