
Pricing Online Metric Matching Algorithms on Trees

Aditya Krishnan

CMU-CS-18-112

August 2018

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Anupam Gupta, Chair

Anil Ada

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science

Keywords: online algorithm, matching algorithm, metric matching, pricing mechanism, tree metric,

monotone

1

Abstract

The online metrical matching problem is a well studied paradigm in online algorithms. The

problem is defined on an underlying metric space with k special points called servers. Requests

arrive in an online fashion on the metric space and the objective is to match requests to yet

unmatched servers while minimizing the total cost of the matching. Research into posted price

algorithms for online metrical matching was initiated in Cohen at al. (2015) as part of a line of

research to study the use of posted price algorithms to minimize social cost in a setting with

selfish, autonomous agents instead of requests. They gave a post-price algorithm that “mimics”

the log(k)-competitive algorithm for line metrics by Gupta and Lewi (2012). We investigate the

post-price setting for tree metrics by characterizing the properties of post-price algorithms and

discuss how to give a poly-log(k) competitive post-price algorithm on tree metrics.

2

3

Acknowledgments

I have a long list of people to grateful to. Firstly, I am very grateful to my advisor Prof. Anupam

Gupta for his guidance, advice and motivation. I wouldn’t have been able to complete this thesis

without his support. I am especially grateful for his patience with me in times that could have

easily led to frustration.

While Prof. Kirk Pruhs is neither my official advisor nor a member of my thesis committee, he has

acted as a second advisor to me. I thank Prof. Pruhs for being a supportive mentor and guiding me

through times when this problem seemed insurmountable.

More than learning about online algorithms, I learned how to be a better researcher from Prof.

Gupta and Prof. Pruhs. I thank them for being helpful mentors.

I would also like to thank Prof. Anil Ada for being a selfless mentor and an invaluable voice of

guidance in times when I’ve needed support as a young researcher. He has inspired me to pursue

my further studies in theoretical computer science.

I would be remiss if I didn’t acknowledge those who gave me emotional support and guidance

to complete this thesis. My parents have been my pillar of support, not only for this year but

throughout my life. They are an invaluable source of wisdom on how to maneuver the hardships of

life. Thank you Amma and Appa, you have my sincerest gratitude for your unwavering support.

This problem has not only been technically challenging but completing it has been emotionally

challenging too. Noshin Nova, thank you for your emotional support through this year and thank

you for making my life richer.

My friends have been a great source of academic inspiration. Sidhanth Mohanty, Nicholas Sieger,

Ainesh Bakshi and Roie Levin thank you for the many fun discussions. I would especially like to

thank Sidhanth Mohanty for being the peer I am inspired by and for being an amazing friend.

Last but not least, I would like to thank Tracy Farbacher for bearing with all the problems and

hiccups with my thesis.

4

5

Contents

1 Introduction 8

1.1 Prior Related Work . 8

1.2 Our Contribution . 9

2 Notation and Preliminaries 10

2.1 Graph Notation . 10

2.2 Preliminary Definitions . 11

2.3 Hierarchical Clusterings and Scaled Trees . 11

3 Outline 12

3.1 Priceable ⇐⇒ Monotone . 12

3.2 poly(log(k))-competitive Monotone Algorithm on Tree Metrics 13

3.2.1 Clustering the Input Tree Metric . 13

3.2.2 HTMatch: A Divide and Conquer Algorithm 14

3.2.3 Conquer Algorithm on Spiders and Trees . 14

3.2.4 poly(log(k))-competitive Algorithm on Tree metrics 14

4 Pricing Monotone Algorithms 15

4.1 Pricing Deterministic Monotone Algorithms . 15

4.2 Randomized Algorithms . 16

5 Embedding Trees into Scaled Trees 21

6 Our Algorithm 22

6.1 HTMatch: A Divide and Conquer Algorithm . 22

6.2 Matching on Spiders . 23

6.3 From Spiders to Trees . 24

6.4 Analyzing our Algorithm . 24

6.4.1 Monotonicity of HTMatch . 25

7 Conclusion 26

6

7

1 Introduction

Imagine we had to design a parking system that made available a set of parking spots for drivers

while trying to minimize the amount of time and fuel spent by drivers in trying to find a parking

spot. The goal of the system is to design a pricing system that achieves these objectives. There are

several parking systems such as the San Francisco’s SFPark and Calgary’s ParkPlus system that

have tried to achieve this.

The problem of centrally assigning drivers to parking spots to minimize time and wasted fuel is

naturally modeled by the online metrical matching problem. Let M = (M,dM : M → R+) be a

metric space and let S : [k] → M be a set of k special points, known as servers. For an online

sequence of requests ~r = (r1, ..., rk) that arrive at points in M , upon the arrival of each request ri,

we must make an irrevocable matching of ri to a server S denoted by f(ri) ∈ S such that f : ~r → S

is a bijection. The goal is to minimize the total sum of distances between each request and its paired

server,
∑k

i=1 dM (ri, f(ri)). We will refer to this sum as the cost of the algorithm on the sequence of

requests ~r.

In order to be implementable within the context of the parking system, online algorithms need

to be posted-price algorithms. In this problem we again control a set of k servers S, but now we

maintain a pricing function pi : S → R at every time step i ∈ [k]. At the arrival of each request

ri the requests are now automatically matched to whichever unused server s := f(ri) minimizes

d(ri, s) + p(s). Again, the goal of the algorithm is to minimize the total sum of distances between

each request and its paired server,
∑k

i=1 d(ri, f(ri)).

[CEFJ15] gave an O(log n)-competitive randomized posted-price algorithm for a line metric. The

goal of our research was to determine whether one can extend this result to a tree metric. Before

stating our results, we will review the most relevant related results in the literature.

1.1 Prior Related Work

We start by summarizing results known about online algorithms for online metric matching in

general metric spaces. There is a deterministic online algorithm that is (2k − 1)-competitive for

any metric space, and no deterministic online algorithm can achieve a better competitive ratio

in a star metric [KP93, KMV94]. An O(log k)-competitive randomized algorithm for O(log k)-

HST’s (Hierarchically Separated Trees) is given in [MNP06]. By combining this result with results

about randomly embedding metric spaces into HST’s [Bar96, Bar98, FRT04], [MNP06] obtained an

O(log3 k)-competitive randomized online algorithm. Following this general approach [BBGN14] later

obtained an O(log2 k)-competitive randomized online algorithm by giving an O(log k)-competitive

randomized algorithm for 2-HST’s.

For certain natural types of metric spaces better competitive ratios are achievable. For a line

metric, an O(k.59)-competitive deterministic online algorithm was given in [ABN+14]. Later an

O(log2 k)-competitive deterministic online algorithm for a line was given in [NR17]. It is known

that the competitive ratio of every deterministic algorithm for the line is at least 9.001 [FHK05].

Several different O(log k)-competitive randomized online algorithms for a line are given in [GL12]

8

that leverage special properties of HST’s constructed from a line metric. [GL12] also showed that

the natural Harmonic algorithm, which always picks one of the two free servers on either side of

a request, with the probability of picking each serving being proportional to its distance to the

request, is O(log ∆)-competitive. Here ∆ is the aspect ratio of the server locations.

Research into posted price algorithms for online metrical matching was initiated in [CEFJ15], as

part of a line of research to study the used of posted price algorithms to minimize social cost. As a

post-price algorithm is a valid online algorithm, one can not expect to obtain a better competitive

ratio for post-price algorithms that what is achievable by online algorithms. So this research line

has primarily focused on problems where the optimal competitive ratio achievable by an online

algorithm is (perhaps approximately) known, and seeks to determine when a similar competitive

ratio can be (again perhaps approximately) achieved by a post-price algorithm.

Within this line of research, two algorithmic design paradigms have emerged. The first design

paradigm is what we will call mimicry. A post-price algorithm A mimics an online algorithm B if

the probability that B will take a particular action is equal the the probability that a self-interested

agent will choose this same action when the prices of actions are set using A. Mimicry is used in

[CEFJ15] in the context of online metric matching when the metric space is a line. [CEFJ15] shows

how to set prices to mimic the O(log k)-competitive Harmonic algorithm for online metric matching

on a line metric. In the context of minimizing makespan on related machines, [FFR17] shows how

to mimic the O(1)-competitive algorithm Slow-Fit from [AAF+97, AKP+97]. For some problems it

is not possible to mimic known online algorithms using posted prices. For such problems, another

algorithmic design paradigm is what we will call monotonization. In the monotonization approach,

one first seeks to characterize online algorithms that can be mimicked, and then designs such an

online algorithm. In the known examples this characterization involves some sort of monotonicity

property. Monotonization is used in [CEFJ15] to obtain an O(k)-competitive posted-price algorithm

for the k-server problem on a line. Monotonization is used in [IMPS17] to obtain an O(1)-competitive

posted-price algorithm for minimizing maximum flow time on related machines. Another algorithmic

design approach is to just directly design a pricing algorithm, as in done for metrical task systems

in [CEFJ15].

1.2 Our Contribution

We first observe that one can mimic the Permutation algorithm from [KP93, KMV94] to obtain

a posted-price algorithm that is also (2k − 1)-competitive. We then observe that, even for tree

metrics, it is not possible to set prices to mimic any of the online algorithms that are based on

HST’s as HST’s by their very nature lose too much information about the structure of the metric

space. Thus in our search for a poly(log(k))-competitive post-price algorithm for a tree metric, we

turn to the monotonization approach. We first identify a monotonicity property that characterizes

mimicable online algorithms for a tree metric. We show that an online algorithm A on a tree metric

is mimicable if and only if the probability that a server s handles the next request if it arrives at

location r1 is at least as great as the probability that s handles the next request it arrives at r2 if r1
is on the path between s and r2 in the tree.

9

The bulk of the thesis is devoted to showing that priceable algorithms and monotone algorithms

are equivalent. Our proofs fall short of giving a poly(log(k)) monotone algorithm for any request

sequence. Instead, we discuss some techniques and approaches on how one might go about giving a

a poly(log(k))-competitive algorithm that is monotone.

The approach we suggest starts by embedding the tree into what we call a scaled Tree (ST), which

is a refinement of an HST that retains more information about the original metric space. Roughly

speaking the root of a ST is a tree where the cost of each edge is the diameter of the metric space

divided by a parameter α. Level i of a ST consists of a collection of trees, where there is a bijection

between each tree on this level and the nodes in the next higher level of the ST. Further the cost of

each edge on this level is the diameter of the tree metric space divided by αi. There is a bijection

between the vertices of the original metric space and the leaves of the ST. Our construction of a ST

starts with a Low Diameter Decomposition (LDD) of the metric space. A LDD is a partition of the

vertices of the metric space. In an ST there is one vertex on the top level for each partition in the

LDD. The construction of the lower levels of the ST then proceeds recursively on the partitions in

the LDD.

We then note that we can assume with any loss of generality that each tree in the ST is a spider.

A spider is a tree with at most one vertex of degree greater than 2, which we call the root of the

spider. Further, we will pick the node to be the root of the spider in a particular way based on

the topology of the original tree metric. We then suggest a reduction from trees to spider graphs

arguing that it is sufficient to give and analyze an algorithm on a spider. Finally, we discuss how

one might go about analyzing the competitiveness of an algorithm designed by this approach and

then argue that it is sufficient to show that the algorithm on the spider is monotone for the entire

algorithm to be monotone.

2 Notation and Preliminaries

2.1 Graph Notation

We start by giving some graph notation in order to talk about the problem.

We denote the input tree metric by T = (V,E, dT : E → R+). Notice that a request sequence is

defined completely by the vertices it arrives on. Hence for the entirety of the thesis, when there

isn’t any ambiguity, let us assume that the input request sequence is a sequence of vertices given by

〈u1, . . . , uk〉.

Given a rooted tree, T = (V,E) with root ρ ∈ V , let the height of T be the maximum number of

vertices on a path from ρ to a leaf.

Definition 2.1. A spider graph T = (V,E), with root ρ ∈ V and unit edge weights, is a tree

satisfying the property that no vertex other than ρ has degree greater than 1. We will refer to the

degree d of the spider by the degree of its root and we will denote the height of (T, ρ) by H.

10

2.2 Preliminary Definitions

In order to characterize posted-price algorithms on tree metrics, we first define monotone algorithms.

Definition 2.2 (Monotonicity). For a tree metric T = (V,E, dT), let Pu,v be the vertices on the

path from u to v for any two vertices u, v ∈ V (T). Let a matching problem on T have a set of

servers S : [k]→ V (T). For a given matching algorithm A and request sequence ~r, let us denote Si
to be the set of servers after i− 1 requests are matched. We say A is monotone at time i on input

T , server set Si and request sequence ~r if algorithm A has the property that:

∀s ∈ Si, u ∈ V and v ∈ Pu,s, Pr [u→A s] ≤ Pr [v →A s]

Where Pr [u→A s] is the probability that A matches a request on u to s.

We say an algorithm is monotone on T with servers S and request ~r if it is monotone at every time

step i ∈ [k] for all valid subsets Si (valid as per all the possible random choices of algorithm A on

the first i requests of ~r).

We say an algorithm is monotone if it is monotone over all possible input tree metrics, servers on

the metric and request sequences on the input.

2.3 Hierarchical Clusterings and Scaled Trees

Given a tree T = (V,E, dT) rooted at some node ρ, we embed it into a probability distribution over

“scaled” trees. The ideas are fairly standard, but we give the details here for concreteness, since we

need to be precise about the constants.

First, we define a hierarchical clustering with parameter α as a sequence (C0,C1,C2, . . . ,CD) of

partitions of V , with the following properties:

1. Each Ci = {(U i1, vi1), ..., (U iki , v
i
ki

)} where U ij is a subset of vertices, and vertex vij belongs to

U ij and is called its root. The partition C0 = {(U0
1 = V, v01 = ρ)} is the trivial partition.

2. The sets U i1, . . . , U
i
ki

form a partition of the vertex set; that is,
⋃
j U

i
j = V and U ij1 ∩ U

i
j2

= ∅
for all j1 6= j2. Moreover, each U

(i)
j induces a connected component of T .

3. The root vertex vij is often denoted ρ(U ij). If v is a root of its part in Ci, then for every level

i′ > i, v is the root of its part in Ci′ .

4. The partition Ci is a refinement of the partition Ci−1; i.e., for each set U ij there exists a

set U i−1j′ such that U ij ⊆ U i−1j′ . This induces a parent-child relationship between clusters in

consecutive levels.

5. The radius of a cluster U is the maximum distance of any vertex in U from the root of U .

The radius of any child cluster is at most 1
α the radius of its parent.

This clustering induces a scaled tree H(T) with the same edges as T but with different edge costs.

11

Definition 2.3. [scaled Tree] Given a hierarchical clustering C = (C0, . . . ,Cm) with parameter α

of a tree metric T = (V,E, dT), a scaled tree H(T) of T with respect to C has the same vertex and

edge set as T but with different edge lengths. Indeed, for each edge (ui, uj) ∈ E(H(T)), let l be the

smallest index such that ui, uj lie in different parts of the partition Cl. Define the length of the edge

(ui, uj) to be dH(T)(ui, uj) := radius(T,ρ)
αl

.

3 Outline

In this section we outline the layout of the thesis, the different sections and the various components

we discuss. We compartmentalize the work into sections and abstract out the details as much as

possible in order to understand each section separately and how they contribute to the result as a

whole.

At the highest level, we break the problem into two components. Firstly, in Section 4, we show that

all pricing algorithms on tree metrics have the monotonicity property and vice versa and additionally

give an explicit algorithm to construct a pricing algorithm from a monotone one. The proof for the

first component is self contained and independent of the second part in which we discuss how one

could construct a poly(log(k))-competitive monotone algorithm for tree metrics.

3.1 Priceable ⇐⇒ Monotone

Showing that pricing algorithms are monotone is relatively simple. The converse is, although, more

involved.

We first make the observation that every deterministic monotone algorithm can be expressed as a

partition of the vertices of the tree with special properties. Specifically we show,

Lemma 3.1 (Deterministic Monotone Algorithms are Partitions). Let A be a deterministic monotone

algorithm on a tree metric T = (V,E, dT) and let ~r be an arbitrary request sequence. At some

arbitrary time 1 ≤ t ≤ k, let S : [k − t] → V be the set of servers after t − 1 requests have been

matched by A. Then, the algorithm A at time t induces a partition D = (Q1, . . . , Qk−t) of the

vertices of the tree that satisfies the following properties:

(a) There exists a server s ∈ Qi for each nonempty part Qi ∈ D such that all requests that

arrive in Qi are matched to si under A.

(b) Each part Qi ∈ D is connected with respect to the edges E.

We then show that given such a special partition scheme, one can design a pricing scheme that

mimics the matching induced by the partitioning. I.e. We can assign prices to servers such that for

every vertex u ∈ V (T) the vertex matches to the same server under the partitioning scheme as it

does under the constructed pricing scheme.

Lemma 3.2 (Partitions can be Priced). Given tree metric T = (V,E, dT) with servers S : [k]→ V

and a monotone partitioning D = (Q1, . . . , Qk) of T , there is a pricing scheme p : S → R such that

12

for all vertices u ∈ V (T)

∀s ∈ S, Pr[u→D s] = Pr[u→p s]

Since a randomized monotone algorithm is a distribution over deterministic monotone algorithms,

we get our final theorem using Lemma 3.2 from above.

Theorem 3.3 (Pricing Schemes exist for Randomized Monotone Algorithms). Let A be a randomized

monotone algorithm on a tree metric T = (V,E, dT) and let ~r be an arbitrary request sequence. At

some arbitrary time 1 ≤ t ≤ k, let S : [k− t]→ V be the set of servers after t− 1 requests have been

matched by A.

Then, there is an explicit distribution P over pricing mechanisms {p | p : S → R} for time t that

ensures for any request given by a vertex u ∈ V and any server s ∈ S:

Pr[u→p s] = Pr[u→A s]

where p ∼ P

Our proof for Theorem 3.3 constructs the pricing mechanism given the distribution over servers for

each vertex. We construct this by inducting on the size of the tree and constructing a distribution

over the special kinds of partitions discussed above.

3.2 poly(log(k))-competitive Monotone Algorithm on Tree Metrics

The second component of the thesis is a discussion on constructing a poly(log(k))-competitive

monotone algorithm on tree metrics. Given such an algorithm, one can construct a pricing scheme

that mimics it using the procedure from Theorem 3.3. The exploration of this part is done in

Sections 5 and 6.

Instead of giving an explicit distribution over servers to match to at every vertex on the input

metric, we suggest constructing a kind of divide and conquer algorithm. We discuss approaches to

two algorithms, one to divide and the other to conquer.

3.2.1 Clustering the Input Tree Metric

Our divide algorithm uses a clustering subroutine as described in Section 5 and outputs a hierarchical

clustering, with parameter α, given by C = (C0, . . . ,Cm) with the following guarantee:

Lemma 3.4 (Expected Stretch of Scaled Tree). Consider tree metric T = (V,E, dT) with root

vertex ρ and R = radius(T, ρ). For some α > 0, the scaled tree H(T) with respect to the above

hierarchical clustering C guarantees that for all (u, v) ∈ V ,

(1) dH(T)(u, v) ≥ 1/α · dT (u, v), and

(2) E
[
dH(T)(u, v)

]
≤ cα(R) · dT (u, v), where cα(R) is such that αcα(R) = R.

The expectation in property (2) is over the randomness of the low-diameter decomposition.

13

3.2.2 HTMatch: A Divide and Conquer Algorithm

We define our algorithm HTMatch in Section 6.1 that takes a conquer algorithm, which we will

call TreeMatch, and the hierarchical clustering to output an algorithm on the input tree metric.

The algorithm will run an instance of TreeMatch in every cluster at every level of the hierarchical

clustering essentially matching a request to a cluster at every level until it matches it to a server at

the lowest level of the clustering.

3.2.3 Conquer Algorithm on Spiders and Trees

In order to construct TreeMatch we suggest the procedure of first giving an algorithm on spider

graphs, which are defined in Definition 2.1 and then showing a reduction from general trees to spider

graphs.

In Section 6.2 we discuss techniques one could use to give an algorithm on spider graphs with unit

edge weights. Our objective would be to bound the cost of a request sequence as a function of the

height and degree of the spider graph as well as the number of times the optimal algorithm payed

positive cost on ~r.

Following that, in Section 6.3 we suggest how one could reduce general trees to spider graphs.

The objective is to show that if we had a well-defined algorithm on spider graphs for all request

sequences, then we can have a well-defined algorithm for general trees.

3.2.4 poly(log(k))-competitive Algorithm on Tree metrics

In Section 6.4 we discuss how to analyze the divide and conquer algorithm HTMatch. Our objective

is to show the following Lemma

Proposed Lemma 3.5 (Cost Bound on Scaled Trees). Let H(T) = (V,E) be a scaled tree, with

parameter α, set of servers S : [k]→ V and hierarchical clustering (C0 . . . ,Cm). Let ~r = 〈r1, . . . , rk〉
be any online request sequence on H(T).

The algorithm HTMatch on H(T), ~r is a poly(α · cα(R))-competitive algorithm. Where cα(R) is such

that αcα(R) = R

After discussing how to show Lemma 3.5, we discuss how to show that HTMatch is a monotone

algorithm in Section 6.4.1. We argue why it is sufficient to show that TreeMatch is a monotone

algorithm for HTMatch to be a monotone algorithm. Thus, our objective is to show the following

Lemma

Proposed Lemma 3.6 (Algorithm is Monotone). Given an input tree T = (V,E) with servers

S : [k] → V and a request sequence ~r = 〈r1, . . . , rk〉, TreeMatch on T,S and ~r is a monotone

matching algorithm.

Combining Lemma 3.5 with Lemma 3.6 would give us that HTMatch is a poly(log(k))-competitive

monotone algorithm on scaled trees. We can combine this with Lemma 3.4 bounding the stretch of

14

the embedding of a tree into a scaled tree to give us a poly(log(k))-competitive monotone algorithm

on a tree. Specifically, we propose the following Theorem

Proposed Theorem 3.7 (poly(log(k))-competitive Monotone Algorithm). For a tree metric T =

(V,E, dT), the algorithm corresponding to building a scaled tree H((T, ρ)), with parameter α =

poly(log(k)) and radius R, and running HTMatch on H(T) is monotone and a poly(α · cα(R))-

competitive algorithm. Where cα(R) is such that αcα(R) = R

4 Pricing Monotone Algorithms

In this section, we show that matching algorithms on trees that can be implemented as pricing-

based algorithms are exactly those that satisfy the following monotonicity property. This result is

analogous to results for scheduling proved in [IMPS17].

It is not difficult to show that any pricing-based algorithm must be monotone using our techniques in

this section. The converse is more interesting: we give a procedure to price any monotone algorithm.

We first show this correspondence for the deterministic setting, and then extend it to randomized

algorithms.

4.1 Pricing Deterministic Monotone Algorithms

To price a deterministic monotone algorithm, the main idea is to find a suitable partition D =

(Q1, . . . , Qk−t) of the vertices of the tree at time 1 ≤ t ≤ k.

Lemma 3.1 (Deterministic Monotone Algorithms are Partitions). Let A be a deterministic monotone

algorithm on a tree metric T = (V,E, dT) and let ~r be an arbitrary request sequence. At some

arbitrary time 1 ≤ t ≤ k, let S : [k − t] → V be the set of servers after t − 1 requests have been

matched by A. Then, the algorithm A at time t induces a partition D = (Q1, . . . , Qk−t) of the

vertices of the tree that satisfies the following properties:

(a) There exists a server s ∈ Qi for each nonempty part Qi ∈ D such that all requests that

arrive in Qi are matched to si under A.

(b) Each part Qi ∈ D is connected with respect to the edges E.

Proof. Let the partitioning of V given by Q1, ..., Qk−t be defined as Qi := {v : v →A si}. Since A
is a deterministic algorithm, these sets must be disjoint and their union must be V . For any Qi 6= ∅,
it follows that si ∈ Qi. To see this, let u ∈ Qi: since si lies on the path from v to si, it must be

that 1 = Pr[u →A si] ≤ Pr[si →A si] ≤ 1, and therefore si ∈ Qi. Hence for any nonempty Qi we

define si to be its leader. Further, if u, v ∈ Qi then Pr(u→A si) = Pr(v →A si) = 1 and thus any

vertex between u and v must also match to si. Thus these components are connected.

We will call partitioning schemes that satisfy Lemma 3.1 monotone partitions. Monotone partitions

also induce monotone deterministic algorithms, by simply matching any request in each part Qi to

its designated leader, and are hence synonymous with them.

15

Lemma 3.2 (Partitions can be Priced). Given tree metric T = (V,E, dT) with servers S : [k]→ V

and a monotone partitioning D = (Q1, . . . , Qk) of T , there is a pricing scheme p : S → R such that

for all vertices u ∈ V (T)

∀s ∈ S, Pr[u→D s] = Pr[u→p s]

Proof. Recall that the deterministic algorithm induced by the monotone partitioning matches

requests that arrive in part Qito server si := S(i). The following pricing scheme p : S → R
implements this algorithm.

1 DetPrice (D = {Q1, ..., Qk})
2 Set p(s1) = c for any c ∈ R
3 for any Qj adjacent to a part already priced do

4 Let the edge (u, v) ∈ E be such that u ∈ Qi and v ∈ Qj
5 Set p(sj)← p(si) + d(u, si)− d(v, sj)

6 for any Qj = ∅ do

7 Set p(sj)←∞

Observe that the price p(sj) := p(si) + d(u, si)− d(v, sj) satisfies

• d(v, sj) + p(sj) < d(v, si) + p(si)

• d(u, si) + p(si) < d(u, sj) + p(sj).

When all leaders have been priced, price any non-leader servers at ∞. To show that it implements

A, we show that if v →A si (i.e., v ∈ Qi), then d(v, si) + p(si) < d(v, sj) + p(sj) for all j 6= i.

Suppose otherwise that there exists an sj and v with leader si satisfying that d(v, si) + p(si) ≥
d(v, sj) + p(sj). First, consider the case where Qj and Qi are adjacent parts. Then there exists

an edge (ui, uj) that crosses over from Qi to Qj . But we know that d(v, si) ≤ d(v, ui) + d(ui, si)

and that d(v, sj) = d(v, ui) + d(ui, sj). But then by substituting into our assumption we have that

d(v, ui) + d(ui, si) + p(si) ≥ d(v, ui) + d(ui, sj) + p(sj) =⇒ d(ui, si) + p(si) ≥ d(ui, sj) + p(sj), a

contradiction to the second observation of our pricing scheme above.

Thus Qj cannot be adjacent to Qi. However, let Qk be the adjacent part to Qj that crosses the path

from si to sj . Since these two parts are adjacent, there exists an edge (uk, uj) the crosses from Qk to

Qj . We also know that d(uk, sk) + p(sk) ≤ d(u, sj) + p(sj) by design of the pricing scheme: however,

this implies that d(v, sk) + p(sk) ≤ d(v, uk) + d(uk, sk) + p(sk) ≤ d(v, uk) + d(uk, sj) + p(sj) =

d(v, sj) + p(sj). This means that v should have instead matched to sk, a contradiction.

4.2 Randomized Algorithms

Now that we can price monotone deterministic algorithms, we give an explicit algorithm that deter-

mines the probability distribution over monotone deterministic algorithms describing a monotone

randomized algorithm. This algorithm combined with algorithm in Lemma 3.2 will give us an explicit

algorithm for determining a pricing scheme for a randomized monotone algorithm. Specifically, we

show the following Lemma

16

Lemma 4.1. Let A be any monotone matching algorithm on a tree metric T = (V,E, dT : E → R+).

Additionally, let ~r be an arbitrary request sequence and let S : [k − j]→ V be the server set after

some arbitrary number, say 1 ≤ j ≤ k, requests have been matched by A.

There exists a distribution P over monotone partitions of T , such that Pr[v →P si] = Pr[v →A si]
for all vertices v ∈ T and all servers si ∈ S.

Proof. Without loss of generality we can assume that j = 0 since the value of j does not change our

proof. Given a tree T with k servers, assign each vertex v a vector πv := (πv(1), . . . , πv(k)), such

that πv(i) = Pr[v →A si]. For the rest of the proof, we assume that each vertex has such a vector,

and want to get a distribution over monotone partitions that is consistent with these probability

values. I.e. our objective is to find a distribution P over monotone partitions of T such that for all

vertices u ∈ V (T) and servers si ∈ S, PrD∼P [u→D si] = πu(i)

The proof is via induction on the number of vertices of the tree: at each step we contract a leaf

(and its servers) into its neighbor, update the probability vectors for the vertices in the contracted

tree, inductively find a distribution over partitions, and then extend these partitions to the original

tree. Note that a vertex may have multiple co-located servers.

The base case is the case of a single vertex v containing all k servers on it. In this case, each possible

partition of the singleton vertex tree contains just one part, containing that one vertex with one of

the k servers chosen as a leader. Given that the partition corresponding to the part with leader si
is denoted by Di, we assign partition Di a probability of πv(i). This gives the desired distribution

P over monotone partitions.

For the inductive step, consider a tree T . Pick some leaf u (with t co-located servers, say) and

contract it into its neighbor vertex to get a smaller tree T ′. The probability vector π′ for each vertex

in v ∈ V (T ′) is the following:

π′v(i) = πv(i)

Let PrP(D) denote the probability that partition D is chosen under the distribution P. Let

Dxi (T) := {partition D of T | v →D si} denote the set of all monotone partitions on T that cause

vertex x ∈ V (T) to be mapped to server si ∈ S. We inductively assume that we have a probability

distribution P ′ over monotone partitions of T ′ such that
∑

D∈Dxi (T ′) PrP ′(D) = π′x(i) = πx(i) for all

vertices x ∈ V (T ′) and servers si ∈ S.

s1, ..., st

s1, ..., st

Figure 4.1: An example of a contraction

Given a partition F of T ′ in the support of P ′, we extend F to a partition on the tree T . If we

extend partition F into, say, m partitions of T corresponding to F1, . . . , Fm, we distribute the

probability PrP ′(D′) among the m new partition(s). Doing this for all monotone partitions F of T ′

in the support of P ′ gives us a new distribution P over partitions of T . We additionally maintain

17

the invariant that for ever vertex and server pair given by x ∈ V (T), si ∈ S the probability that x is

matched to si under P is πx(i). Specifically, we maintain the following equalities

∀partitions F of T ′
m∑
i=1

Pr
P

(Fi) = Pr
P ′

(F) (4.1)

∀x ∈ V (T), si ∈ S
∑

D∈Dxi (T)

Pr
P

(D) = πx(i) (4.2)

While inducting, let us assume that we contracted the leaf u ∈ V (T) with t co-located servers

s1, . . . , st onto its neighboring vertex v ∈ V (T) so as to get T ′. Let us consider a partition F of T ′

in the support of P ′. We need to extend F so as to get partitions of the tree T . There are two cases

to consider when extending F :

Case 1: One of s1, . . . , st is a leader of its part in F . I.e. F is a partition in Dv
i (T

′) such that

i ∈ [t].

s1, ..., st

F1

s1, ..., st

F

vv

u

Server(s)

Vertex

Part in partition

Partitioning of tree

Figure 4.2: An example of a Case 1 extension. A red filled server is the leader of its part

In this case, only one new partition F1 will be created from F and will inherit its probability:

PrP(F1) = PrP ′(F). Hence, if F is a partition in Dv
i (T

′) such that i ∈ [t], F extends to its

corresponding partition in Dv
i (T) ∩Du

i (T). We satisfy Equation 4.1 by noticing that for a specific

F1 extended from F , no other partition F ′ of T ′ can be extended to give F1. This can noted by

noticing that any partition F ′ of T ′ that can be extended to F1 must be in Dv
i (T ′) (i.e. partitions

in Case 1).

Case 2: The leader of the partition F is s′ 6∈ {s1, ..., st}. I.e. F is a partition in Dv
i (T ′) such that

i ∈ [k]\[t].

Let us assume F ∈ Dv
i (T ′) such that i ∈ [k]\[t], then we will extend F into t+ 1 new partitions of

T . For partitions F1, ..., Ft, we will extend the partitioning such that u is in a singleton part and sj
is the leader of Fj ∈ {F1, . . . , Ft}. The partition Fj ∈ {F1, . . . , Ft} will correspond to a partition in

Dv
i (T) ∩Du

j (T). The final partitioning Ft+1 created from F extends the part of si to include u and

the t servers. I.e. F is extended to its corresponding partition in Dv
i (T) ∩Du

i (T). Examples of the

two extensions have been given in Figure 4.4 and Figure 4.5 respectively.

18

s1, ..., st

F

s′

v

Figure 4.3: An example of a Case 2 partition in T ′

s1, ..., st

s′

s1, ..., st

FFi

s′

vv

u

Figure 4.4: An example of Case 2 extension of F to Fi for 1 ≤ i ≤ t

s1, ..., st

s′

s1, ..., st

FFt+1

s′

vv

u

Figure 4.5: An example of Case 2 extension of F to Ft+1

We are left to show how we assign probabilities to partitions extended in Case 2. We will assign

probabilities to partitions of T while simultaneously arguing that these probabilities will satisfy

Equations 4.1 and 4.2.

If we show that Equation 4.1 is satisfied for all partitions of T ′ that we extend, since Equation 4.2

is satisfied for tree T ′ and distributions P ′ and π′, the distribution P satisfies Equation 4.2 for all

vertices in V (T)\{u} and servers in S. Hence, we only need to show that P satisfies Equation 4.1

and Equation 4.2 for vertex u ∈ V (T) which we contracted in the inductive step.

We first assign probabilities to partitions in Du
i (T) and prove that Equation 4.2 holds for vertex u and

19

servers si ∈ S\{s1, . . . , st}. To that end, for some i ∈ [k]\[t], we define ∆i :=
∑

D∈Dvi (P ′) PrP ′(D)−
πu(i) = πv(i) − πu(i). Notice that by the monotonicity property, since i ∈ [k]\[t], we have

πv(i)− πu(i) ≥ 0.

Fix some i ∈ [k]\[t]. For partitions F ∈ Dv
i (T ′) (i.e. Case 2 partitions), we extend it to some t+ 1

partitions F1, . . . , Ft+1 such that Ft+1 ∈ Du
i (T). Initially, we set PrP(Ft+1) := PrP ′(F)for all such

F ∈ Dv
i (T

′). Then, we greedily remove ∆i amount of mass from the probabilities of partitions

in Du
i (T) without violating the constraint that all partitions in Du

i (T) must have non-negative

probability. After completing this, we have that∑
D∈Dui (T)

Pr
P

(D) =
∑

D∈Dvi (T ′)

Pr
P ′

(D)−∆i = πu(i)

We now assign probabilities to partitions in Du
j (T) and prove that Equation 4.2 holds for vertex u

and servers sj ∈ {s1, . . . , st}. Specifically, for some j ∈ [t], we want:

∑
D∈Duj (T)

Pr
P

(D) =
∑

F∈Dvj (T ′)

Pr
P

(F1) +
∑
i>t

∑
F∈Dvi (T ′)

Pr
P

(Fj) = πu(j). (4.3)

Notice that the probabilities in the first summation in (4.3) have already been assigned in Case

1 and sum to πv(j). So we must ensure that the probability we assign to partitions Fj such that

F ∈ Dv
i (T ′) satisfies both Equation 4.1 and Equation 4.3.

To that end, for some j ∈ [t], let us define Γj := πu(j)−
∑

F∈Dvj (T ′) PrP(F1) = πu(j)− πv(j), which

must be non-negative by the monotonicity property. We then greedily assign the Γj probability mass

across all {Fj |F ∈ Dv
i (T

′), i 6∈ {1, ..., t}} such that we don’t violate Equation 4.1 for any partition

F ∈ Dv
i (T

′) of server i ∈ [k]\[t] by assigning too much probability mass to F ’s extension Fj in T .

Then by definition of Γj , for j ∈ [t], we have satisfied equation 4.3.

By doing the above, we have satisfied Equation 4.2 for vertex u and all servers i ∈ [k]. Note that, if

we show Equation 4.1 holds for P, Equation 4.2 is maintained for every other vertex just by the

inductive hypothesis.

Notice that we already showed Equation 4.1 for partitions F ∈ Dv
i (T

′) where i ∈ [t] as per the

description for Case 1. It is left to argue that Equation 4.1 holds after greedily removing ∆i from

partitions in Du
i (T) for each i ∈ [k]\[t] and adding Γj mass to partitions in {Fj |F ∈ Dv

l (T
′), l ∈

[k]\[t]} for each j ∈ [t]. Notice that in the process of adding the Γ values, we maintained the

inequality

t+1∑
l=1

Pr
P

(Fl) ≤ Pr
P ′

(F) (4.4)

for all F ∈ Dv
i (T ′) such that i ∈ [k]\[t].

In order to show equality in the above equation, first, notice that we can express the vector πu as in

the equation below by referring to the process by which we assigned probability values to partitions

of T .

20

πu = πv + (Γ1, ...,Γt,−∆t+1, ...,−∆k) (4.5)

Since both πu and πv are probability distributions,
∑k

i=1 πu(i) =
∑k

i=1 πv(i) = 1. Thus,

t∑
j=1

Γj =

k∑
i=t+1

∆i

For partitions in Dv
i (T

′) where i ∈ [k]\[t], inequality 4.4 combined with the equality above allows

us to conclude that the amount of mass we removed is the same (the ∆ values) is the same as the

mass we added back to it (the Γ values) hence giving Equation 4.1 for these partitions.

Thus we achieve our main theorem:

Theorem 3.3 (Pricing Schemes exist for Randomized Monotone Algorithms). Let A be a randomized

monotone algorithm on a tree metric T = (V,E, dT) and let ~r be an arbitrary request sequence. At

some arbitrary time 1 ≤ t ≤ k, let S : [k− t]→ V be the set of servers after t− 1 requests have been

matched by A.

Then, there is an explicit distribution P over pricing mechanisms {p | p : S → R} for time t that

ensures for any request given by a vertex u ∈ V and any server s ∈ S:

Pr[u→p s] = Pr[u→A s]

where p ∼ P

Proof. Lemma 4.1 gives us that A can be decomposed into a distribution over monotone partitions,

each of which is separately priceable by Lemma 3.2. By letting P be the distribution of pricing

schemes induced by the distribution of monotone partitions given by Lemma 4.1, we have that

Pr[ri →P sj] = Pr[ri →A sj]

5 Embedding Trees into Scaled Trees

In this section, we show how we embed the input tree metric into a scaled tree. Recall from

Definition 2.3 that for a tree metric T = (V,E, dT), it is sufficient to give a hierarchical clustering

C = (C0, . . . ,Cm) with parameter α.

Given any tree T ′ rooted at ρ′ and a parameter α, define its low-diameter decomposition as follows.

Define R := radius(T ′, ρ′). Let r.v. X be uniform in the range (0, (R/α)]. Delete all edges (u, v) in

T ′ such that for some integer z ∈ Z≥0,

dT ′(ρ′, u) < z(R/α) +X ≤ dT ′(ρ′, v).

Define the root of each connected component to be the vertex that used to be closest to the root ρ′.

Note that the radius of each component is now smaller than R/α.

21

Now the hierarchical clustering C for T is easy. Let C0 = (V, ρ). Perform the above low-diameter

decomposition on T with root ρ to get clusters of radius at most radius(T, ρ)/α. This gives C1. Now

repeat this operation on each connected component (with its root as defined above) to get the next

level C2, and so on, until each part in the partition consists of only singletons.

Lemma 3.4 (Expected Stretch of Scaled Tree). Consider tree metric T = (V,E, dT) with root

vertex ρ and R = radius(T, ρ). For some α > 0, the scaled tree H(T) with respect to the above

hierarchical clustering C guarantees that for all (u, v) ∈ V ,

(1) dH(T)(u, v) ≥ 1/α · dT (u, v), and

(2) E
[
dH(T)(u, v)

]
≤ cα(R) · dT (u, v), where cα(R) is such that αcα(R) = R.

The expectation in property (2) is over the randomness of the low-diameter decomposition.

Proof. It suffices to show the properties for each edge (u, v) of T . For property (1), let l be

the smallest index such that u, v lie in different clusters in Cl, hence they belonged to the same

component in Cl−1. The radius of clusters in Cl−1 is at most R/αl−1, and hence dT (u, v) ≤ R/αl−1.

Now Definition 2.3 prescribes the length of edge (u, v) in H(T) to be R/αl ≥ dT (u, v)/α. This

proves property (1).

For property (2), let Ei be the event that (u, v) gets cut at level i. If it has been cut at some level

j < i, it will be cut with probability zero. Else the radius of the level-(i− 1) component containing

(u, v) is at most R/αi−1. So the probability of the low-diameter decomposition cutting (u, v) at

level i is Pr[Ei] ≤ dT (u, v)/(R/αi). Hence

E
[
dH(T)(u, v)

]
=

cα(R)∑
i=1

Pr [Ei] · (R/αi) ≤
cα(R)∑
i=1

dT (u, v)

R/αi
· (R/αi) = cα(R) · dT (u, v).

Hence the proof.

We record one final fact about the low-diameter decomposition procedure.

Fact 5.1 (Cluster Trees have Small Height). Consider the tree obtained by contracting the components

obtained by running the low-diameter decomposition procedure on T rooted at r, and adding back the

deleted edges. The height of this tree is at most α+ 1.

6 Our Algorithm

In this section, we discuss a proposal of how one could give a poly(log(k))-competitive monotone

algorithm for our matching problem on scaled trees. In order to give a competitive algorithm on the

original metric, we first embed our tree metric T into a scaled tree H(T) as described in Section 5.

6.1 HTMatch: A Divide and Conquer Algorithm

HTMatch is the overarching algorithm that uses a conquer algorithm, TreeMatch, defined for trees

on the scaled tree. To that end, we describe HTMatch in the rest of Section 6.1.

22

Let (C0,C1, . . . ,Cm) be the output of our hierarchical clustering as per the construction in Section

5. When a request rt arrives at time step t, let (Ul−1, v) ∈ Cl−1 be the cluster and root on level

l − 1 that rt arrives at and let this be the lowest level (largest index) of the hierarchical clustering

such that rt has unused servers in its cluster. In the construction of the hierarchical clustering, the

LDD subroutine is applied to every cluster. Consequently, let U = {U0, U1, . . . } be the sub-clusters

at level l formed by applying LDD to Ul−1. Without loss of generality, let U0 be the cluster on level

l in which rt arrives and let us denote Uv ∈ {U0, U1, . . . } to be the cluster such that v ∈ Uv.

By the construction of the hierarchical clustering, the sub-clusters {U0, U1, . . . } induce a tree with

edges of weight radius(T)
αl

. We construct the tree TU induced by these clusters by assigning a vertex for

each sub-cluster and then placing as many servers on the vertex as contained in the corresponding

sub-cluster in U .

The “conquer” algorithm TreeMatch for trees will be used to match rt to a vertex u ∈ V (TU)

corresponding to matching rt → U such that U ∈ U . By maintaining an instance of TreeMatch

for every cluster at every level of the hierarchical clustering, this induces a recursive algorithm for

matching rt to a server because the path from rt to U arrives at a sub-cluster of U from which

we run the same process as if the request rt arrived at this sub-cluster. We denote this recursive

algorithm by HTMatch.

6.2 Matching on Spiders

In this section, we discuss how one might approach giving an algorithm for spider graphs. Let us

call this algorithm SpiderMatch for convenience. Assume we have some input spider graph metric

T = (V,E, dT : E → R+) with root ρ ∈ V , degree d, height H, servers S : [k]→ V and some request

sequence ~r given by the sequence of vertices 〈u1, . . . , uk〉.

In order to design a competitive algorithm, we first analyze the properties of the requests for which

we pay positive cost. To that end, we first define some notation; let η : V → N and At : V → N be

functions defined for each time step t ∈ [k] such that η(u) is the number of servers at vertex u ∈ V
before any requests arrived and At(u) is the number of requests that have arrived at u by time t.

We say a request ut is non-colocated if η(ut)−At(ut) ≤ 0.

By matching a non-collocated request that arrives at ut to a server on some vertex u 6= ut we

are creating a hole at u – essentially, we used up a server on u that could potentially be used to

serve a request that arrives at u. In essence, the algorithm’s objective is to find the right home

for every non-colocated request that arrives. Whenever it sends the non-colocated request to a

vertex, it creates a hole at this vertex on which another request might arrive causing us to send

this new request to another vertex which will create a hole at this new vertex and so on. The

objective in designing the algorithm is to bound the length of the sequence of holes created by every

non-colocated request.

Let there be M non-colocated requests in sequence ~r, our objective would be to bound the expected

number of times we pay positive cost in terms of M , the degree d and the height H of the spider.

23

6.3 From Spiders to Trees

In this subsection we suggest a reduction from general trees to spider graphs. Given an input tree

metric T = (V,E) with root ρ, unit edge distances and servers S : [k]→ V , our objective is to give

a spider graph TS = (VS , ES) with root ρS , servers S′ : [k′] → VS and mapping γ : VS → V from

the vertices of the spider to the tree.

For a request sequence ~r = 〈u1, . . . , uk〉 on T , we give an alternate request sequence ~r′ = 〈u′1, . . . , u′k′〉
on TS and use the matching on TS of ~r′ combined with the mapping γ to give a matching on T of ~r.

Let us first define the spider TS . For a server s ∈ S, let Ps be the path from ρ to s on T . For every

server s ∈ S such that Ps = ρ, v1, . . . , vs is not completely contained in Ps′ for every other s′ ∈ S,

we create a path ρS , v
′
1, . . . , v

′
s in TS and set γ(v′i) := vi. Naturally, we set γ(ρS) := ρ

We now give the alternate request sequence ~r′ and the corresponding matching on T . When a

request arrives on vertex v in T , we pick a vertex v′ in TS such that γ(v′) = v and send a request

there on TS . Assuming SpiderMatch matches the request to s′ in TS , we match the request on T

to γ(vs′) where vs′ is the vertex on TS which contains s′. We then send a request to every v′ ∈ VS
such that γ(v′) = γ(vs′) so as to ensure no “copy” of s is unused on TS .

Using this scheme, we know that any time when a server s′ is used on TS all the servers s” such that

γ(s”) = γ(s′) are used. And that if s′ is unused then all servers s” with γ(s”) = γ(s′) are unused.

Also notice that whenever we pay positive cost on T , we pay positive cost on TS . Hence analyzing

the cost for SpiderMatch on spider graphs is sufficient to give a cost bound on trees.

6.4 Analyzing our Algorithm

In this section we discuss how one might go about analyzing the algorithm HTMatch which has the

properties that we discussed in Sections 6.2 and 6.3. Our objective is to show the following Lemma

Proposed Lemma 3.5 (Cost Bound on Scaled Trees). Let H(T) = (V,E) be a scaled tree, with

parameter α, set of servers S : [k]→ V and hierarchical clustering (C0 . . . ,Cm). Let ~r = 〈r1, . . . , rk〉
be any online request sequence on H(T).

The algorithm HTMatch on H(T), ~r is a poly(α · cα(R))-competitive algorithm. Where cα(R) is such

that αcα(R) = R

HTMatch maintains an instance of TreeMatch in every cluster at every level of the hierarchical

clustering. For every level i and every cluster and root (U, v) ∈ Ci at that level, let Mout(U) be the

number of requests that were matched to cluster U by TreeMatch at level i. Similarly, we define

M in(U) to be the number of non-colocated requests that arrived in U and for which the highest

level (smallest index) they were non-colocated is level i + 1. Note that the holes created due to

these M in(U) non-collocated requests never exit U .

For every level and for every cluster U at that level, we bound the cost incurred by the M in(U) +

Mout(U) requests in U . Recall that in Section 6.2 we designed SpiderMatch such that every non-

colocated request created a hole by matching to a vertex it did not arrive on and by doing so, created

24

a sequence of requests that matched to vertices they did not land on. Hence, it is sufficient to

bound the cost of creating the sequence of holes, across levels, that non-colocated requests (requests

contributing to M in(U)) create.

Potentially, a proof for Lemma 3.5 would involve some recurrence that, using the cost bound for

TreeMatch on a particular level, would bound the total cost across levels.

6.4.1 Monotonicity of HTMatch

Recall that we want to give an algorithm that is monotone because, as we will show in the next

section, one can construct a pricing scheme that mimics a monotone algorithm. Our objective is to

show the following Theorem

Proposed Lemma 3.6 (Algorithm is Monotone). Given an input tree T = (V,E) with servers

S : [k] → V and a request sequence ~r = 〈r1, . . . , rk〉, TreeMatch on T,S and ~r is a monotone

matching algorithm.

We first argue that it is sufficient to show that TreeMatch is monotone in order to show HTMatch is

monotone. For the sake of convenience, we denote TreeMatch with T and HTMatch by HT.

Let H(T) be a scaled tree with parameter α and hierarchical clustering (C0, . . . ,Cm). Let v1, v2 be

vertices in H(T) and s be a server on H(T) such that v2 lies on the path from v1 to s. We need to

show that

Pr[v1 →T s] ≤ Pr[v2 →T s]

If v1 = v2, then we are done. Else, let level i+1 be the highest level (smallest index) of the clustering

in which v1 and s lie in different clusters. Recall that there is an instance of SpiderMatch defined in

each cluster, across levels, such that algorithm will match into lower and lower levels until it arrives

at an individual server. Let Us = (U s1 , . . . , U
s
m), U1 = (U1

1 , . . . , U
1
m) and U2 = (U2

1 , . . . , U
2
m) denote

the sequence of clusters that s, v1 and v2 belong to respectively in the hierarchical clustering. We

then have,

Pr[v1 →HT s] =
∏
`≥i

Pr[U1
` →T U

s
`]

≤
∏
`≥i

Pr[U2
` →T U

s
`]

= Pr[v2 →HT s]

where the second line follows from the assumption that TreeMatch is monotone on all tree metrics

and request sequences. One would still have to give a proof for the monotonicity of TreeMatch

depending on the specific details of the algorithm. In which case, we would get the final concluding

Theorem

Proposed Theorem 3.7 (poly(log(k))-competitive Monotone Algorithm). For a tree metric T =

(V,E, dT), the algorithm corresponding to building a scaled tree H((T, ρ)), with parameter α =

25

poly(log(k)) and radius R, and running HTMatch on H(T) is monotone and a poly(α · cα(R))-

competitive algorithm. Where cα(R) is such that αcα(R) = R

Using Lemma 3.4 in conjunction with Theorem 4 from [Bar96] and Lemma 3.5 will give us that

our algorithm is a poly(α · cα(R))-competitive algorithm on tree metrics. For an input metric,

Theorem 4 from [Bar96] argues that embedding the metric into another metric with at most α

factor distortion in expectation combined with a β-competitive algorithm in the embedded metric

gives an α · β-competitive algorithm in the original metric. Lemma 3.6 would concludes that the

algorithm is monotone.

7 Conclusion

The result on the equivalence of monotone algorithms and pricing algorithms is useful. Monotonicity

is a simple and intuitive property one would expect any competitive algorithm would have for

the online metric matching problem. Yet, after several attempts at solving this problem, it is not

completely clear to us how to design a competitive monotone algorithm.

While we are unable to give the details for the poly(log(k))-competitive monotone algorithm on

trees, our work has indicated strongly that the Lemmas presented in Section 6 are true. The

core roadblocks are in giving a competitive algorithm for the spider graph and arguing that it

is monotone. Approaches we tried for the algorithm on spiders had two components; first, we

maintained a non-trivial distribution over “holes” on the spider graph and updated this distribution

as requests arrived. Second, we tried to argue that an actual matching algorithm can be faithful to

this distribution.

An interesting question that arises from our approach to giving a poly(log(k))-competitive monotone

algorithm is whether the monotonicity property admits a poly(k) runtime algorithm. I.e. Whether

there is an algorithm that has polynomial runtime at each time step.

A natural extension of this problem is to characterize priceability for all graph metrics. I.e. what

properties must a priceable algorithm have on general finite metrics? The monotonicity property is

ill-defined for algorithms on general graph metrics because there could be several paths from a point

to a server. Even if we defined the monotonicity property such that the path from the vertex of

choice to server of choice is the shortest path, there are monotone algorithms that aren’t priceable

under this definition of monotonicity. One can construct simple counter-examples on cycles.

References

[AAF+97] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line routing of virtual

circuits with applications to load balancing and machine scheduling. Journal of the ACM, 44(3),

May 1997.

[ABN+14] Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michele Scquizzato. A o(n)-

competitive deterministic algorithm for online matching on a line. In Workshop on Approximation

and Online Algorithms, pages 11–22, 2014.

26

[AKP+97] Yossi Azar, Bala Kalyanasundaram, Serge A. Plotkin, Kirk Pruhs, and Orli Waarts. On-line load

balancing of temporary tasks. Journal of Algorithms, 22(1):93–110, 1997.

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In

Symposium on Foundations of Computer Science, pages 184–193, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrics by tree metrics. In ACM Symposium on Theory

of Computing, pages 161–168, 1998.

[BBGN14] Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Naor. A randomized O(log2 k)-

competitive algorithm for metric bipartite matching. Algorithmica, 68(2):390–403, 2014.

[CEFJ15] Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Lukasz Jez. Pricing online decisions: Beyond

auctions. In ACM-SIAM Symposium on Discrete Algorithms, pages 73–91, 2015.

[FFR17] Michal Feldman, Amos Fiat, and Alan Roytman. Makespan minimization via posted prices. In

ACM Conference on Economics and Computation, pages 405–422, 2017.

[FHK05] Bernhard Fuchs, Winfried Hochstättler, and Walter Kern. Online matching on a line. Theoretical

Computer Science, 332(1-3):251–264, 2005.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary

metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004.

[GL12] Anupam Gupta and Kevin Lewi. The online metric matching problem for doubling metrics. In

International Colloquium on Automata, Languages, and Programming, pages 424–435, 2012.

[IMPS17] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein. Minimizing maximum flow time

on related machines via dynamic posted pricing. In European Symposium on Algorithms, pages

51:1–51:10, 2017.

[KMV94] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for weighted

bipartite matching and stable marriages. Theoretical Computer Science, 127(2):255–267, 1994.

[KP93] Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. Journal of Algorithms,

14(3):478–488, 1993.

[MNP06] Adam Meyerson, Akash Nanavati, and Laura J. Poplawski. Randomized online algorithms for

minimum metric bipartite matching. In ACM-SIAM Symposium on Discrete Algorithms, pages

954–959, 2006.

[NR17] Krati Nayyar and Sharath Raghvendra. An input sensitive online algorithm for the metric bipartite

matching problem. In Symposium on Foundations of Computer Science, pages 505–515, 2017.

27

	Introduction
	Prior Related Work
	Our Contribution

	Notation and Preliminaries
	Graph Notation
	Preliminary Definitions
	Hierarchical Clusterings and Scaled Trees

	Outline
	Priceable -3mu Monotone
	poly(log(k))-competitive Monotone Algorithm on Tree Metrics
	Clustering the Input Tree Metric
	HTMatch: A Divide and Conquer Algorithm
	Conquer Algorithm on Spiders and Trees
	poly(log(k))-competitive Algorithm on Tree metrics

	Pricing Monotone Algorithms
	Pricing Deterministic Monotone Algorithms
	Randomized Algorithms

	Embedding Trees into Scaled Trees
	Our Algorithm
	HTMatch: A Divide and Conquer Algorithm
	Matching on Spiders
	From Spiders to Trees
	Analyzing our Algorithm
	Monotonicity of HTMatch

	Conclusion

