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Abstract
The presence of aliasing makes modular verification of object-oriented code dif-

ficult. If multiple clients depend on the properties of an object, one client may break
a property that others depend on.

In this thesis we present a modular verification approach based on the novel ab-
straction of object propositions, which combine predicates and information about
object aliasing. In our methodology, even if shared data is modified, we know that
an object invariant specified by a client holds. Our permission system allows veri-
fication using a mixture of linear and nonlinear reasoning. This allows it to provide
more modularity in some cases than competing separation logic approaches, be-
cause it can more effectively hide the exact aliasing relationships within a module.
We have implemented the methodology into our tool Oprop. We have used Oprop
to automatically verify a number of examples, thus showing the applicability of this
research.
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Chapter 1

Introduction

There are many open problems within the area of object-oriented formal verification. Despite
the work of numerous researchers, significant challenges remain in this area. The presence of
aliasing (multiple references pointing to the same object) makes modular verification of code
difficult. If there are multiple clients depending on the properties of an object, one client may
break the property that others depend on. In order to verify whether clients and implementations
are compliant with specifications, knowledge of both aliasing and properties about objects is
needed.

Statically verifying the correctness of code and catching bugs early on saves time [23], [22].
Bugs are going to be discovered before the program even starts running. Formal verification
saves the programmer time by helping him/her find the errors more quickly. By using an off-
the-shelf formal verification tool instead of generating as many test cases as possible, the quality
assurance process could be made more efficient. In 1987 Boehm stated that ‘finding and fixing
a software problem after delivery is often 100 times more expensive than finding and fixing it
during the requirements and design phase’. In 2001 he revised that statement by saying that
‘the cost-escalation factor for small, noncritical software systems is more like 5:1 than 100:1’,
which is still significant. Their studies show that peer code reviews, analysis tools and testing
catch different problems in the development life cycle of a product - meaning that for best results
formal verification should be used together with other mechanisms for quality assurance. Boehm
states [22] ‘All other things being equal, it costs 50 percent more per source instruction to develop
high-dependability software products than to develop low-dependability ones. However, the
investment is more than worth it if the project involves significant operations and maintenance
costs.’ This supports the idea that using formal verification in the development cycle is cost
effective in the long run.

Creating verification tools for object-oriented programming languages is a worthy endeavor.
According to Oracle [6], the Java platform has attracted more than 6.5 million software devel-
opers to date. The Java programming language is used in every major industry segment and has
a presence in a wide range of devices, computers, and networks. There are 1.1 billion desk-
tops running Java, 930 million Java Runtime Environment downloads each year, 3 billion mobile
phones running Java, 100% of all Blu-ray players run Java and 1.4 billion Java Cards are man-
ufactured each year. Java also powers set-top boxes, printers, Web cams, games, car navigation
systems, lottery terminals, medical devices, parking payment stations, and more.
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We acknowledge that the world is transitioning from single-CPU machines and single-threaded
programs to multi-core machines and concurrent programs. Still, in order to apply a verification
procedure in a multi-threaded setting, we first have to know how to apply it for a single thread.
Moreover, according to Amdahl’s law [14], the speedup of a program using multiple processors
in parallel computing is limited by the time needed for the sequential fraction of the program.
There is a large number of applications that will not benefit from parallelism, such as any al-
gorithm with a large number of serial steps. These algorithms will need to be implemented
sequentially and will need a verification procedure designed especially for them. This thesis
describes how we can use information about aliasing and properties of objects to implement a
robust verification tool for object-oriented code in a single-threaded setting.

The aim of this thesis is to enrich the world with a practical verification tool for object-
oriented programs in single-threaded settings. We present a method for modular verification of
object-oriented code in the presence of aliasing.

The seminal work of Parnas [62] describes the importance of modular programming, where
the information hiding criteria is used to divide the system into modules. In a world where
software systems have to be continually changed in order to satisfy new (client) requirements,
the software engineering principle of modular programming becomes crucial: it brings flexibility
by allowing changes to one module without modifying the others.

When using the object proposition verification system components such as methods and
classes are verified independently of each other. Each method only needs to be aware of the
specifications of other methods and not of the code inside those methods. Each class only needs
to know about the specifications of the public methods in other classes and the predicates of
those classes, it does not need to have access to the fields or other private information of different
classes. In this way the verification also follows the principle of encapsulation. Moreover, for a
particular method, our specifications do not expose the shared data in the data structures of that
method. There are methods where the shared data x is used in multiple places inside the method,
first as part of a data structure A and second as part of another data structure B. Specifications in
separation logic need to expose that x is shared between A and B, while object propositions do
not need to do that. In this sense object propositions have information-hiding properties.

Through the use of object propositions, we are able to hide the shared data that the two data
structures A and B have in common. The implementations of A and B have a shared fractional
permission [25] to access the common data x, but this need not be exposed in their external
interface. Our solution is therefore more modular in some cases than the state of the art (such
as specifications written in separation logic) with respect to hiding shared data, and we have
implemented the object propositions methodology into our Oprop tool.

1.1 Thesis Statement

Object propositions, which statically characterize both the aliasing behavior of program refer-
ences in object-oriented programs and the abstract predicates that hold about the objects, can
be successfully used in single-threaded object-oriented programs to write specifications and to
automatically verify that those specifications are obeyed by the code.

2



1.2 Hypotheses
We can break the thesis statement down into more concrete and measurable hypotheses.

1.2.1 Hypothesis:Formalization
We can develop and formalize a system that will guarantee that a single-threaded program includ-
ing formal specifications obeys those specifications. The programmer could write very simple
specifications and in that case it would be trivial to prove that they are verified, but in this thesis
we focus on specifications that provide meaningful, strong properties about the programs being
verified. If the specifications are not respected, the proof system can be used to signal which part
of the specifications is being broken. Our system should have strong modularity properties: the
specifications of methods or classes should reveal as little as possible about the data structures
used in the programs, methods should rely only on the pre- and post-conditions of other methods.

Validation This hypothesis is validated by the development and formalization of our type
system and dynamic semantics based on object propositions. We have proven that the type
system is sound with respect to its semantics. The soundness of the proof rules means that
given a heap that satisfies the pre-condition formula, a program that typechecks and verifies
according to our proof rules will execute, and if it terminates, will result in a heap that satisfies the
postcondition formula. The specifications in our examples hide the sharing of common objects.

1.2.2 Hypothesis:Practicality
Our verification system can be used to verify object oriented programs with practical designs.

Validation In order to validate this hypothesis, we use the Oprop tool that we implemented to
verify a number of simple Java programs and also programs implementing the composite, state,
proxy and flyweight design patterns, which have been annotated with object propositions. We
chose programs that include updates to shared data structures that have multi-object invariants.
The complex Java programs represent more complicated implementations, such as the various
design patterns that have also been verified with our verification system.

All programs are written such that their syntax matches the syntax of programs that can be
verified using Oprop. We have incorporated as many Java features as possible in the syntax
of the object proposition specification language, but of course we have not been to be able to
incorporate all Java features.

The small programs that we have verified are written by us, but they implement scientifically
significant design patterns. We have verified instances of the state, proxy and flyweight design
patterns. Design patterns have been verified in prior work, but there were challenges, a few of
which we describe below.

Krishnaswami et al. [45] used Idealized ML, a higher-order imperative language and a speci-
fication language based on separation logic for it. They verified the iterator, composite, decorator
patterns, flyweight, factory and subject-observer patterns and tried to use the Coq [17] interac-
tive theorem prover together with its Ynot extension (the extension was used for separation logic
support) to create a machine readable proof. Oprop is a static analysis tool and thus it is very dif-
ferent from an interactive proof assistant like Coq. When using Oprop the programmer needs to

3



write the specifications once and our tool will perform the verification without needing constant
input from the programmer. Moreover, when verifying the iterator pattern, Krishnaswami et al.
were forced to prove ‘some preciseness properties because of the use of binary post-conditions’.
They mention that ‘It is unclear whether the preciseness problem encountered is a limitation of
binary post-conditions in general or the current Ynot implementation; we think it is the latter.
We did not finish the proof for next in this case, either with or without nextvc (without nextvc
the proof became too long for us to finish by hand). New versions of Ynot should provide better
tactic support for such examples.’ We have not encountered such problems with Oprop, that
we built and for which we could extend the implementation if we found that a feature is not
supported.

Blewitt et al. [21] are using Hedgehog, a proof system which attempts to prove that a pat-
tern instance is correctly implemented by a given class or set of classes. Specifying the patterns
as structural and static semantic constraints allows the pattern to be compared directly with the
source code. The main problem with their approach is that it suffers when a pattern’s implemen-
tation does not match that of a known specification. In the case of Oprop, the implementation of
a pattern can deviate from a known specification and we would be able to verify it. Nonetheless,
we acknowledge that when using Oprop the programmer tries to prove that certain properties
that he is interested in hold, while the problem for Blewitt et al. is different as they try to prove
that an implementation correctly implements a design pattern.

Our programs implementing the state, proxy and flyweight design patterns show a few very
common patterns of using object oriented languages. This generality makes them valuable, as
the model of how they have been verified using object propositions can be studied and the ideas
can be applied to entire families of similar programs.

1.3 Contributions of the thesis

The main contributions of this thesis are the following:
• A verification system that unifies substructural logic-based reasoning with invariant-based

reasoning. Full permissions permit reasoning similar to separation logic, while fractional
permissions introduce non-linear invariant-based reasoning. Unlike prior work [25], frac-
tions do not restrict mutation of the shared data; instead, they require that the specified
invariant be preserved.

• A proof of soundness in support of the static and dynamic semantics that represent the
theory of object propositions.

• Another main contribution is our approach to implementing the object propositions sys-
tem, which resulted in our Oprop tool, available online as a web application at the lowcost-
env.ynzf2j4byc.us-west-2.elasticbeanstalk.com address. We have used the Oprop tool to
automatically verify an instance of the composite pattern, which was a challenging en-
deavor. The approach we took to implementing our tool - translating our Oprop language
into the intermediate verification language Boogie [16] and using the Boogie verifier as
a backend - is one of our scientific contributions. Our tool is critical to validating the
hypothesis that our methodology is practical.
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• Validation of the approach by specifying and proving partial correctness of the composite
design pattern, demonstrating benefits in modularity and abstraction compared to other
solutions with the same code structure. We have verified our instance of the composite
pattern using our tool Oprop.

• We have annotated and verified instances of the state, proxy and flyweight design patterns,
thus showing that the object proposition verification system can be used for many kinds
of programs. We have manually translated these three desing patterns into the Boogie
verification language and we have successfully verified the resulting translations using the
Boogie verification tool. We have not automatically verified these examples automatically
using our Oprop tool because it does not support some of the needed features - such as
interfaces. We leave the implementation of such features into Oprop as future work.

A big contribution of our work is related to modularity. Our work is specific to a class: in
each class we define predicates that objects of other classes can rely on. We get the modularity
advantages while also supporting a high degree of expressiveness by allowing the modification
of multiple objects simultaneously. While ‘simultaneously’ usually means ‘concurrently’, in our
case it means that we can temporarily break (and then restore) the invariants of multiple objects.
While prior work on this issue [68] allows invariants that are declared ‘broken’ in a method
specification to not hold before calls to the corresponding methods, the invariants are expected
to be fixed by those methods.

Below we highlight the main differences in modularity compared to existing approaches:
• like separation logic and permissions, but unlike conventional object invariant and ownership-

based work (including [54] and [55]), our system allows “ownership transfer" by passing
unique permissions around (permissions with a fraction of 1). This gives more flexibility
to our system because it allows us to change the predicates that hold for objects, reflecting
the state changes that happen in the program for those objects.

• unlike separation logic and permission systems, but like object invariant work and its exten-
sions (for example, the work of Summers and Drossopoulou [68]), we can modify objects
without owning them. More broadly, unlike either ownership or separation logic systems,
in our system object A can depend on a property of object B even when B is not owned by
A, and when A is not “visible" from B. This has information-hiding and system-structuring
benefits.

• part of the innovation is combining the two mechanisms above so that we can choose
between one or the other for each object, and even switch between them for a given object.
This allows us to verify more programs than either of the two mechanisms can verify on
their own.

1.4 Object Propositions in a Nutshell
Our methodology uses abstract predicates [61] to characterize the state of an object. Parkinson
and Bierman [61] describe abstract predicates in the following way: ‘Intuitively, the predicates
are used like abstract data types. Abstract data types have a name, a scope and a concrete rep-
resentation. Within this scope the name and the representation can be freely exchanged, but
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outside only the name can be used. Similarly abstract predicates have a name and a formula. The
formula is scoped: inside the scope the name and the body can be exchanged, and outside the
predicate must be treated atomically.’

We embed those predicates in a logic and specify sharing using fractions [25]. A fraction can
be equal to 1 or it can be less than 1. If for a particular object in the system there is only one
reference to it, that reference has a fraction of 1 to the object and thus full modifying control over
the fields of the object. If there are multiple references to an object, each reference has a fraction
less than 1 to the object and each can modify the object as long as that modification does not
break a predefined invariant (expressed as a predicate). In case the modification is not an atomic
action (and instead is composed of several steps), the invariant might be broken in the course of
the modification, but it must be restored at the end of the modification.

We introduce the novel concept of object propositions. To express that the object q in Figure
1.1 has full modifying control of a queue of integers greater or equal to 0 and less than or equal to
10, we use the object proposition q@1 Range(0, 10). This states that there is a unique reference
q pointing to a queue of integers in the range [0,10].

We want our checking approach to be modular and to verify that implementations follow
their design intent. In our approach, method pre- and post-conditions are expressed using object
propositions over the receiver and arguments of the method. To verify the method, the abstract
predicate in the object proposition for the receiver object is interpreted as a concrete formula
over the current values of the receiver object’s fields. Following Fähndrich and DeLine [33], our
verification system maintains a key [12] for each field of the receiver object, which is used to
track the current values of those fields through the method. A key o.f → x represents read/write
access to field f of object o holding a value represented by the concrete value x. This information
is useful when reading the example in Section 1.4.1, which is presented to give the reader a flavor
of what the verification of a method looks like.

As an illustrative example, we consider two linked queues q and r that share a common tail
p, in Figure 1.1. In prior work on separation logic and dynamic frames, the specification of any
method has to describe the entire footprint of the method, i.e., all locations that are being touched
through reading or writing in the body of the method. That is, the shared data p has to be specified
in the specification of all methods that access the objects in the lists q and r. Using our object
propositions, we have to mention only a permission q@1 Range(0, 10) in the specification of a
method accessing q. The fact that p is shared between the two aliases is hidden by the abstract
predicate Range(0, 10).

1.4.1 Verification of client code
In this section we present the verification of code that creates objects of type Link and predicates
Range. We present the steps that we go through in order to verify the client code below so that
the reader has a sense, early in the thesis, of how object propositions are used in the verification
of code.
Link la = new (Link(3, null) , Range(0,10));
Link p = new (Link(6, la) , Range(0,10));
Link q = new (Link(1, p) , Range(0,10));
Link r = new (Link(8, p) , Range(0,10));
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Figure 1.1: Linked queues sharing the tail

class Link {
int val; Link next;

predicate Range(int x, int y) ≡ ∃v, o, k
val→ v ⊗ next→ o⊗ v ≥ x ⊗ v ≤ y
⊗ [o@k Range(x, y) ⊕ o == null]

void addModulo11(int x)
this@k Range(0, 10) ( this@k Range(0, 10)

{val = (val + x)% 11;
if (next!=null) {next.addModulo11(x);} } }

Figure 1.2: Link class and Range predicate

r.addModulo11(9);

Π = ·
Link la = new (Link(3, null) , Range(0,10));
We pack la to the predicate Range(0,10) and obtain:
Π = la@1Range(0, 10)

We go on to the next line of client code:
Link p = new (Link(6, la) , Range(0,10));
In order to pack p to the predicate Range(0, 10), we need a k permission to la. This means that we

need to split the permission of 1 to la into two half permissions, and we consume one of those halves
when packing the predicate Range(0, 10) for p. We obtain:

Π = la@1
2) Range(0, 10)⊗ p@1 Range(0, 10)

We apply the same reasoning for q and r: we split a permission of 1 into two permissions only when
needed. After the creation of the four objects la, p, q, r we have the following Π:

Π = la@1
2) Range(0, 10)⊗ p@1

2) Range(0, 10)⊗ q@1 Range(0, 10)⊗ r@1 Range(0, 10)

We go on to the next line of code:
r.addModulo11(9);
The specification of addModulo11() mentions that we need some permission k to r. Since we have

a permission of 1 to it, after returning from the call to addModulo11() we have:
Π = la@1

2) Range(0, 10)⊗ p@1
2) Range(0, 10)⊗ q@1 Range(0, 10)⊗ r@1 Range(0, 10)

In this way we have verified a small example where the programmer wanted to verify that however
the queue is modified, the integers in the queue always are in the range [0,10]. In Section 2.5.2 we discuss
this example in more detail.

1.5 Structure of Dissertation
In the following chapter, Chapter 2, we go over the existing approaches of verifying object oriented code
and then give a detailed description of the object propositions methodology. In the same chapter we
describe a few simple examples written in our simplified version of Java and their Oprop annotations.

Chapter 3 presents the syntax and semantics of the Oprop language, together with the dynamic seman-
tics of the language and a proof of soundness for the proof rules. In Chapter 4 we show the strategy that
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we used in the implementation of our Oprop tool, how we encoded our Oprop language into first order
logic and why this encoding is sound.

In Chapter 5 we describe the examples that we verified using object propositions: instances of the
state, proxy and flyweight design patterns. We have written the translation of these files into Boogie
by hand and we formally verified them in the Boogie tool. Moreover, we present the verification of an
instance of the composite pattern, that we automatically verified using the Oprop tool. We then showcase
a number of simple examples that are useful for illustrating the basic features of both our methodology
and of our tool.

In the following chapters 6, 8 and 9 we present a detailed comparison between object propositions and
other verification approaches such as considerate reasoning and concurrent abstract predicates, we suggest
possible avenues for future work and then present our conclusions.
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Chapter 2

Existing Approaches and Proposed
Approach

2.1 Current Approaches
The verification of object-oriented code can be achieved using the classical invariant-based technique [15].
Object invariants were proposed by Tony Hoare in his paper describing monitors [37] and were crystallized
for the object-oriented paradigm by Bertrand Meyer [52]. When using this technique, all objects of the
same class have to satisfy the same invariant. The invariant has to hold in all visible states of an object,
i.e., before a method is called on the object and after the method returns. The invariant can be broken
inside the method as long as it is restored upon exit from the method. Summers et al. [69] present the
advantages of using object invariants: invariant-based reasoning aids and improves software design, the
way software is designed can be leveraged by invariant-based reasoning, and object invariants allow local
reasoning about global properties.

At the same time, Matthew Parkinson [60] argues that there are two limitations in scaling class in-
variants to real programs: invariants need to depend on multiple objects, thus limiting the specifications
that can be written using the proof language, and invariants need to be temporarily broken and thus the
verification that can be performed is limited. These limitations show themselves in a number of ways.
One sign is: the methods that can be written for each class are restricted because now each method of a
particular class has to have the invariant of that class as a post-condition. This is a problem because there
might be situations where one would like some methods to have one predicates as post-conditions and
other methods to have other predicates as post-conditions. Objects of the same class could start off by
satisfying different invariants and continue to satisfy them throughout the program, depending on which
method is called on those objects. In the class invariants verification system, this scenario is not possible.
Another sign is that the invariant of an object cannot depend on another object’s state, unless additional
features such as ownership are added.

Leino and Müller [49] have added ownership to organize objects into contexts. In their approach using
object invariants, the invariant of an object is allowed to depend on the fields of the object, on the fields of
all objects in transitively-owned contexts, and on fields of objects reachable via given sequences of fields.
A related restriction is that from outside the object, one cannot make an assertion about that object’s state,
other than that its class invariant holds. Thus the classic technique for checking object invariants ensures
that objects remain well-formed, but it needs the help of pre- and post-conditions in order to describe how
objects change over time.
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Separation logic approaches [61], [31], [28], etc. bypass the limitations of invariant-based verification
techniques by requiring that each method describe all heap locations that are being touched through read-
ing or writing in the body of the method and the predicates that should hold in the pre- and post-conditions
of that method. In this way not all objects of the same class have to satisfy the same predicate. Separation
logic allows us to reason about how objects’ state changes over time. On the downside, now the specifi-
cation of a method has to reveal the structures of objects that it uses. This is not a problem if these objects
are completely encapsulated. But if they are shared between two structures, that sharing must be revealed
in the specifications of methods. This is not desirable from an information hiding point of view.

On the other hand, permission-based work, first proposed by Boyland [25] and then adopted by other
works [19], [30] gives another partial solution for the verification of object-oriented code in the presence
of aliasing. By using share and/or fractional permissions referring to the multiple aliases of an object, it
is possible for objects of the same class to have different invariants. This is different from the traditional
thinking that an object invariant is always the same for all objects. What share and/or fractions do is allow
us to make different assertions about different objects; we are not limited to a single object invariant. This
relaxes the classical invariant-based verification technique and it makes it much more flexible.

Moreover, developers can use access permissions, used by Bierhoff and Aldrich [19] and also adopted
by Jan Smans in implicit dynamic frames [67], to express the design intent of their protocols in annotations
on methods and classes. Bierhoff and Aldrich [19] explain that ‘Access permissions systematically cap-
ture different patterns of aliasing. An access permission tracks how a reference is allowed to read and/or
modify the referenced object, how the object might be accessed through other references, and what is cur-
rently known about the object’s typestate. In particular, the full and pure permissions capture the situation
where one reference has exclusive write access to an object (a full permission) while other references are
only allowed to read from the same object (using pure permissions).’

This thesis uses fractional permissions [25] in the creation of the novel concept of object propositions.
The main difference between the way we use permissions and existing work about permissions is that we
do not require the state referred to by a fraction less than 1 to be immutable. Instead, that state has to satisfy
an invariant that can be relied on by other objects. Our goal is to modularly check that implementations
follow their design intent.

The typestate [30] formulation has certain limits of expressiveness: it is only suited to finite state
abstractions. This makes it unsuitable for describing fields that contain integers (which can take an infi-
nite number of values) and can satisfy various arithmetical properties. Our object propositions have the
advantage that they can express predicates over an infinite domain, such as the integers.

Our fractional permissions system allows verification using a mixture of linear and nonlinear reason-
ing, combining ideas from previous systems. The existing work on separation logic is an example of linear
reasoning, while the work on fractional permissions is an example of nonlinear reasoning. In a linear sys-
tem there can be only one assertion about each piece of state (such as each field of an object), while in
a nonlinear system there can be multiple mentions about the same piece of state inside a formula. The
combination of ideas from these two distinct areas allows our system to provide more modularity than
each individual approach. In some cases our work can be more modular than separation logic approaches
because it can more effectively hide the exact aliasing relationships, such as the simulator of queues of
jobs from Section 2.5.1. The examples in the sections 2.5.1 and 2.3 represent instances where object
propositions are better at hiding shared data than separation logic.
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Figure 2.1: Add cells in spreadsheet
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2.2 Example: Cells in a spreadsheet
We consider the example of a spreadsheet, as described in [44]. In our spreadsheet each cell contains an
add formula that adds two integer inputs and produces an output sum. Each cell may refer to two other
cells, by feeding the output sum as an input to each of those cells. The general case would be for each
cell to have a dependency list of cells, but since our grammar does not support arrays yet, we are not
considering that case. Whenever the user changes a cell, each of the two cells which transitively depend
upon it must be updated.

A visual representation of this example is presented in Figure 2.1. In separation logic, the specification
of any method has to describe all the locations that are being touched through reading or writing in the
body of the method. That is, the shared cells a3 and a6 have to be specified in the specification of all
methods that modify the cells a1 and a2.

In Figure 2.2, we present the code implementing a cell in a spreadsheet.
The specification in separation logic is unable to hide shared data. To express the fact that all cells

are in a consistent state where the dependencies are respected and the sum of the inputs is equal to the
output for each cell, we define the predicate below. In the definition below, ∧ and ∨ represent the standard
boolean connectives and and or. Additionally, there are the connectives specific to separation logic: the
binary operator→ takes an address and a value and asserts that the heap is defined at exactly one location,
mapping the given address to the given value. The binary operator ? (separating conjunction) asserts that
the heap can be split into two disjoint parts where its two arguments hold, respectively.

SepOK(cell) ≡ (cell.in1 → x1) ? (cell.in2 → x2) ? (cell.out → o) ? (cell.dep1 → d1) ?
(cell.dep2→ d2) ? (x1 + x2 = o) ? (SepOK(d1.ce) ∧ d1.ce.“in+ input”→ o) ? (SepOK(d2.ce) ∧
((d2.ce.in1→ o ∧ d2.input = 1) ∨ (d2.ce.in2→ o ∧ d2.input = 2))).

This predicate states that the sum of the two inputs of cell is equal to the output, and that the predicate
SepOK is verified by all the cells that directly depend on the output of the current cell. Additionally, the
predicate SepOK also checks that the corresponding input for each of the two dependency cells is equal to
the output of the current cell. This predicate only works in the case when the cells form a directed acyclic
graph (DAG). The predicate SepOK causes problems when there is a diamond structure (not shown in
Figure 2.1) or if one wants to assert the predicate about two separate nodes whose subtrees overlap due to
a DAG structure (e.g. a1 and a2 in Figure 2.1). If the dependencies between the cells form a cycle, as in
Figure 2.3, the predicate SepOK cannot possibly hold.

Additionally we need another predicate to express simple properties about the cells:
Basic(cell) ≡ ∃x1, x2, o, d.(cell.in1→ x1) ? (cell.in2→ x2) ? (cell.out→ o) ? (cell.dep→ d).
Below we show a fragment of client code and its verification using separation logic.

{Basic(a2) ? Basic(a5) ? SepOK(a1)}
a1.setInput1(10);
{Basic(a2) ? Basic(a5) ? SepOK(a1)}
{∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗missing step ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗}
{Basic(a4) ? Basic(a1) ? SepOK(a2)}

a2.setInput1(20);

In the specification above,
SepOK(a1) ≡ a1.in1→ x1 ? a1.in2→ x2 ? a1.out→ o ? x1 + x2 = o ?

(SepOK(a4) ∧ a4.in1 = o) ? (SepOK(a3) ∧ a3.in1 = o)
and
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class Dependency {
Cell ce;
int input;

}
class Cell {

int in1, in2, out;
Dependency dep1, dep2;

void setInputDep(int newInput) {
if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);
else dep1.ce.setInput2(newInput);

}
if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);
else dep2.ce.setInput2(newInput);

}
}

void setInput1(int x) {
this.in1 = x;
this.out = this.in1 + this.in2;
this.setInputDep(out);
}

void setInput2(int x) {
this.in2 = x;
this.out = this.in1 + this.in2;
this.setInputDep(out);
}

}

Figure 2.2: Cell class
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Figure 2.3: Cells in a cycle

SepOK(a2) ≡ a2.in1→ z1 ? a2.in2→ z2 ? a2.out→ p ? z1 + z2 = p ?
(SepOK(a3) ∧ a3.in2 = p) ? (SepOK(a5) ∧ a5.in1 = p)

In separation logic, the natural pre- and post-conditions of the method setInput1 are SepOK(this),
i.e., the method takes in a cell that is in a consistent state in the spreadsheet and returns a cell
with the input changed, but that is still in a consistent state in the spreadsheet. The pre-condition
does not need to be of the form SepOK(this, carrier) where carrier is all the cells involved as
in Jacobs et al.’s work [40]. This is because SepOK is a recursive abstract predicate that states
in its definition properties about the cells that depend on the current this cell and thus we do
not need to explicitly carry around all the cells involved. The natural specification of setInput1
would be SepOK(this)−∗ SepOK(this). The binary operator −∗ (separating implication) as-
serts that extending the heap with a disjoint part that satisfies its first argument results in a heap
that satisfies its second argument.

Thus, before calling setInput1 on a2, we have to combine SepOK(a3) ? SepOK(a5)
into SepOK(a2). We observe the following problem: in order to call setInput1 on a2, we
have to take out SepOK(a3) and combine it with SepOK(a5), to obtain SepOK(a2). But the
specification of the method does not allow it, hence the missing step in the verification above.
The specification of setInput1 has to be modified instead, by mentioning that there exists
some cell a3 that satisfies SepOK(a3) that we pass in and which gets passed back out again.
Thus, if we want to call setInput1 on a2, the specification of setInput1 would have to
know about the specific cell a3, which is not possible.

The specification of setInput1 would become
∀α, β, x . (SepOK(this) ∧ SepOK(this) ≡ α ? SepOK(x) ? β)

⇒ (SepOK(this) ∧ SepOK(this) ≡ α ? SepOK(x) ? β).
The modification is unnatural: the specification of setInput1 should not care about which

are the dependencies of the current cell, it should only care that it modified the current cell.
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This situation is very problematic because the specification of setInput1 involving shared
cells becomes awkward. One can imagine an even more complicated example, where there are
multiple shared cells that need to be passed in and out of different calls to setInput1. It is
impossible to know, at the time when we write the specification of a method, the structure of the
data on which the method will be called.

Another way of addressing this problem in separation logic is by collecting all the object
structure into a mathematical structure and then asserting all the necessary properties using the
separation logic star operator. This approach is taken by Jacobs et al. [40] for the specification
and verification of the composite pattern. Below we show how this approach would apply to our
cells in a spreasheet example:

struct node;
typedef struct node*node;
inductive tree := nil | tree(node, tree, tree);
inductive context :=

|root
|leftcontext(context, node, tree)
|rightcontext(context, node, tree);

predicate tree(node node, context c, tree subtree);

void setInput1(int x);
requires tree(node, ?c, ?t);
ensures tree(node, c, t) * node → in1 → x

struct dep {
struct node * n;
int i;
};

struct node {
struct node *left;
struct node *right;
int in1, in2, out;
struct dep *dep1, *dep2;
};

predicate subtree(node node, tree t) ≡
switch(t) {
case nil: node=0;
case tree(node0, leftNodes, rightNodes):

node=node0*node 6=0 *
node→left→?left*
node→right→?right*
malloc_block_node(node)*

15



subtree(left, leftNodes)*
subtree(right, rightNodes);

};

predicate context(node p, context c) ≡
switch(c) {
case root: p =0;
case left_context(pns, p0, r):

p=p0 * p6=0*
p→left→?left *
p→right→?right *
p→in1→?pin1 *
p→in2→?pin2 *
p→out→?pout *
p→dep1→?pdep1 *
p→dep2→?pdep2 *
malloc_block_node(p) *
context(p, gp, pns) *
subtree(right, r) *
pout=pin1+pin2 *
((pdep1→n→in1 = pin1 * pdep1→i=1 ) ∨
(pdep1→n→in2 = pin2 * pdep1→i=2 )) *
((pdep2→n→in1 = pin1 * pdep2→i=1 ) ∨
(pdep2→n→in2 = pin2 * pdep2→i=2 )) *

case right_context(pns, p0, l):
...analogous...

};

predicate tree(node node, context c, tree subtree)≡
context(node, c) *
subtree(node, subtree);

The above version of separation logic specification is cumbersome because of the extra infor-
mation that has to be kept around, such as the focus node’s subtree and the focus node’s context.

Separation logic approaches will thus have a difficult time trying to verify this kind of code.
This is because in object-oriented design, the natural abstraction is that each cell updates its
dependents, while they are hidden from the outside. The cells in the spreadsheet example is an
instance of the subject-observer pattern, as described in [41], which implements this abstraction.
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2.2.1 Verifying Cells in a Spreadsheet Example using Ramified Frame Prop-
erties

Krishnaswami et al. [44] describe the specification and verification of demand-driven notification
networks. The example of a spreadsheet of cells can be considered as such a notification network.
The implementation of the cells in the spreadsheet using ramified frames is given in Figure 2.4.

Krishnaswami et al. use the idea of stream transducers to model the cells in the spread-
sheet. The spreadsheet is seen as an interactive system that is modeled as a function that takes a
stream of inputs stream(A) and yields a stream of outputs stream(B). The semantics of stream
tranducers is given in Figure 2.5.

The implementation of the spreadsheet using stream transducers is given in Figure 2.6.
The specifications in this section demonstrate how complicated it is to verify programs that

exhibit sharing of state, such as the cells in a spreadsheet, using ramified frame properties. Al-
though this technique is theoretically beautiful, no verification tools that are based on it have
been implemented.

2.3 Modularity Example: Simulator for Queues of Jobs
The formal verification of modules should ideally follow the following principle: the specifica-
tion and verification of one method should not depend on details that are private to the imple-
mentation of another method that is called by the specified method. An important instance of
this principle comes in the presence of aliasing: if two methods share an object, yet their specifi-
cation is not affected by this sharing, then the specification should not reveal the presence of the
sharing.

As shown earlier in this chapter, some of the most popular reasoning techniques available
today — principally those based on separation logic [65] — cannot hide sharing, because the
specification of a method must mention the entire memory footprint that the method accesses. We
back this claim by giving in this section the full specification in separation logic for a simulator
of queues of jobs. Abstract predicates are not sufficient to hide the details because, as we have
seen in Section 2.2 for the separation logic specification of the cells in a spreadsheet example,
there are cases when the different abstract predicates in the pre-condition have to reveal the exact
structure of the cells.

This gives rise to non-modular, and therefore fragile, specifications and proofs. There exist
versions of higher-order separation logics that can hide the presence of sharing to some extent
[44], but their higher-order nature makes them considerably more complicated both for specifi-
cation and verification.

To illustrate the modularity issues, we present here a relatively realistic example. Figure
2.7 depicts a simulator for two queues of jobs, containing large jobs (size>10) and small jobs
(size<11). The example is relevant in queueing theory, where an optimal scheduling policy might
separate the jobs in two queues, according to some criteria. The role of the control is to make
each producer/consumer periodically take a step in the simulation. We have modeled two FIFO
queues, two producers, two consumers and a control object. Each producer needs a pointer to the
end of each queue, for adding a new job, and a pointer to the start of each queue, for initializing
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1 code : ?→ ?
2 code α =©(α× cellset)

3 cell : ?→ ?
4 cell α = {code : ref code α;
5 value : ref option α;
6 reads : ref cellset;
7 obs : ref cellset;
8 unique : N}
9 ecell = ∃α : ?. cell α

10 return : ∀α : ?. α→ code α
11 return α x = [〈x, emptyset〉]
12 bind : ∀α, β : ?. code α→ (α→ code β)→ code β
13 bind α β e f = [letv (v, r1) = e in
14 letv (v′, r2) = f v in
15 〈v′, union r1 r2〉]
16 read : ∀α : ?. cell α→ code α
17 read α a = [letv o = [!a.value] in
18 run case(o,
19 Some v → [〈v, singleton a〉],
20 None→
21 [letv exp = [!a.code] in
22 letv (v, r) = exp in
23 letv _ = [a.value := Some(v)] in
24 letv _ = [a.reads := r] in
25 letv _ = iterset (add_observer pack(α, a)) r in
26 〈v, singleton a〉])
27 getref : ∀α : ref α→ code α
28 getref α r = [letv v = [!r] in 〈v, emptyset〉]
29 setref : ∀α : ref α→ α→ code 1
30 setref α r v = [letv _ = [r := v] in 〈〈〉, emptyset〉]
31 newcell : ∀α : ?. code α→©cell α
32 newcell α code = [letv unique =!counter in
33 letv _ = [counter := unique+ 1] in
34 letv code = newcode α(code) in
35 letv value = newoption α(None) in
36 letv reads = newcellset(emptyset) in
37 letv obs = newcellset(emptyset) in
38 (code, value, reads, obs, unique)]

39 update : ∀α : ?. code α→ cell α→©1
40 update α exp a = [letv _ = mark_unready pack(α, a) in
41 a.code := exp]

42 mark_unready : ecell→©1
43 mark_unready cell = unpack(α, a) = cell in
44 [letv os = [!a.obs] in
45 letv rs = [!a.reads] in
46 letv _ = iterset mark_unready os in
47 letv _ = iterset (remove_obs cell) rs in
48 letv _ = [a.value := None] in
49 letv _ = [a.reads := emptyset] in
50 a.obs := emptyset]

51 add_observer : ecell→ ecell→©1
52 add_observer a pack(β, b) = [letv os = [!b.obs] in
53 b.obs := addset os a]

54 remove_obs : ecell→ ecell→©1
55 remove_obs a pack(β, b) = [letv os = [!b.obs] in
56 b.obs := removeset os a]

Figure 2.4: Implementation of Notification Networks
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1 ST(A,B) = {f ∈ stream(A)→ stream(B) | causal(f)}

2 lift : (A→ B)→ ST(A,B)
3 lift f as = map f as

4 seq : ST(A,B)→ ST(B,C)→ ST(A,C)
5 seq p q = q ◦ p

6 par : ST(A,B)→ ST(C,D)→ ST(A× C,B ×D)
7 par p q abs = zip (p (map π1 abs)) (q (map π2 abs))

8 switch : N→ ST(A,B)→ ST(A,B)→ ST(A,B)
9 switch k p q = λas. (take k (p as)) · (q (drop k as))

10 loop : A→ ST(A×B,A× C)→ ST(B,C)
11 loop a0 p = (map π2) ◦ (cycle a0 p)

12 cycle : A→ ST(A×B,A× C)→ ST(B,A× C)
13 cycle a0 p = λbs. λn. last(gen a0 p bs n)

14 gen : A→ ST(A×B,A× C)→ stream(B)
15 → N→ list (A× C)
16 gen a0 p bs 0 = p̂ [(a0, bs0)]
17 gen a0 p bs (n+ 1) =
18 p̂ (zip(a0 :: (map π1 (gen a0 p bs n))) (take (n+ 2) bs))

Figure 2.5: Semantics of Stream Transducers

the start of the queue in case it becomes empty. Each consumer has a pointer to the start of one
queue because it consumes the element that was introduced first in that queue. The control has
a pointer to each producer and to each consumer. The queues are shared by the producers and
consumers.

Now, let’s say the system has to be modified, by introducing two queues for the small jobs
and two queues for the large jobs, see right image of Figure 2.7. Ideally, the specification of the
control object should not change, since the consumers and the producers have the same behavior
as before: each producer produces both large and small jobs and each consumer accesses only
one kind of job. We will show in this thesis that our methodology does not modify the spec-
ification of the control object, thus allowing one to make changes locally without influencing
other code, while (first-order) separation logic approaches [32] will modify the specification of
the controller.

The code in Figures 2.8, 2.9 and 2.10 represents the example from Figure 2.7.
Now, let’s imagine changing the code to reflect the modifications in the right image of Figure

2.7. The current separation logic approaches break the information hiding principle. Distefano
and Parkinson [32] introduced jStar, an automatic verification tool based on separation logic
aiming at programs written in Java. Although they are able to verify various design patterns and
they can define abstract predicates that hide the name of the fields, they do not have a way of
hiding the aliasing. In all cases, they reveal which references point to the same shared data, and
this violates the information hiding principle by unnecessarily exposing the structure of the data.
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1 ST : ?→ ?→ ?
2 ST(α, β) ≡ cell α→©cell β

3 lift : ∀α, β : ?. (α→ β)→ ST(α, β)
4 lift α β f input =
5 newcell (bind (read input) (λx : α. return (f x)))

6 seq : ∀α, β : ?. ST(α, β)→ ST(β, γ)→ ST(α, γ)
7 seq α β p q input = [letv middle = p input in
8 letv output = q middle in
9 output]

10 par : ∀α,β, γ, δ : ?.
11 ST(α, β)→ ST(γ, δ)→ ST(α× γ, β × δ)
12 par α β γ δ p q input =
13 [letv a = newcell (bind (read input)
14 (λx : α× β. return (fst x))) in
15 letv b = p a in
16 letv c = newcell (bind (read input)
17 (λx : α× β. return (snd x))) in
18 letv d = q c in
19 letv output = newcell (bind (read b) (λb : β.
20 bind (read d) (λd : δ.
21 return 〈b, d〉)))] in
22 output]

23 switch : ∀α, β : ?. N→ ST(α, β)→ ST(α, β)→ ST(α, β)
24 switch α β k p q input =
25 [letv r = newN(0) in
26 letv a = p input in
27 letv b = q input in
28 letv out = newcell (bind (getref r) (λi : N.
29 bind (setref r (i+ 1)) (λq : 1.
30 if(i < k, read a, read b)))) in
31 out]

32 loop : ∀α, β, γ : ?. α→ ST(α× β, α× γ)→ ST(β, γ)
33 loop α β γ a0 p input =
34 [letv r = newα(a0) in
35 letv ab = newcell (bind (read input) (λb : β.
36 bind (getref r) (λa : α.
37 return 〈a, b〉))) in
38 letv ac = p ab in
39 letv c = newcell (bind (read ac) (λv : α× γ.
40 bind (setref r (fst v)) (λq : 1.
41 return (snd v)))) in
42 c]

Figure 2.6: Imperative Stream Transducers
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Figure 2.7:

Below we present two ways of giving the specifications needed to verify the code in Figure 2.7
using separation logic. In the first specification we put the keys representing the actual values of
the fields in the parameters of the predicates. In the second specification the parameters of the
predicates are existentially quantified.

2.3.1 First Specification
The predicate for the Producer class is Prod(this, ss, es, sl, el), where :

Prod(p, ss, es, sl, el) ≡ p.startSmallJobs→ ss ? p.endSmallJobs→ es ?
p.startLargeJobs→ sl ? p.endLargeJobs→ el.

The pre-condition for the produce() method is:
Prod(p, ss, es, sl, el) ? Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100).

Note that one can think of the definition Prod(p) below
Prod(p) ≡ ∃ss, es, sl, el.p.startSmallJobs→ ss ? p.endSmallJobs→ es ?
p.startLargeJobs→ sl ? p.endLargeJobs→ el

to be more modular than Prod(this, ss, es, sl, el) because the predicate exposes fewer parame-
ters, but then the pre-condition for the produce() method would become:

Prod(p) ? ∃ss, sl.(Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100)).
This would remove the connection between the predicates Prod and Listseg in the pre-condition
and would make the pre-condition much less meaningful because the information that ss corre-
sponds to the startSmallJobs field of p and that sl corresponds to the startLargeJobs field of
p would be lost.
The predicate for the Consumer class is

Cons(c, s) ≡ c→ s.
The pre-condition for the consume() method is:

Cons(c, s) ? Listseg(s, null, 0, 10).
The predicate for the Control class is :
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public class Producer {
Link startSmallJobs,

startLargeJobs;
Link endSmallJobs,

endLargeJobs;

public Producer
(Link ss, Link sl,
Link es, Link el) {

startSmallJobs = ss;
startLargeJobs = sl;
...}

public void produce()
{ Random generator = new Random();
int r = generator.nextInt(101);
Link l = new Link(r, null);
if (r <= 10)
{ if (startSmallJobs == null)

{ startSmallJobs = l;
endSmallJobs = l;}

else
{endSmallJobs.next = l;

endSmallJobs= l;}
}
else
{ if (startLargeJobs == null)

{ startLargeJobs = l;
endLargeJobs = l;}

else
{endLargeJobs.next = l;
endLargeJobs = l;}

}
}

}

Figure 2.8: Producer class

public class Consumer {

Link startJobs;

public Consumer(Link s) {
startJobs = s;

public void consume()
{ if (startJobs != null)

{System.out.println(startJobs.val);
startJobs = startJobs.next;}

}

Figure 2.9: Consumer class
public class Control {

Producer prod1, prod2;
Consumer cons1, cons2;

public Control(Producer p1, Producer p2,
Consumer c1, Consumer c2) {

prod1 = p1; prod2 = p2;
cons1 = c1; cons2 = c2; }

public void makeActive( int i)
{ Random generator = new Random();
int r = generator.nextInt(4);
if (r == 0) {prod1.produce();}

else if (r == 1) {prod2.produce();}
else if (r == 2) {cons1.consume();}

else {cons2.consume();}
if (i > 0) { makeActive(i-1);}

}
}

Figure 2.10: Control class
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Ctrl(ct, p1, p2, c1, c2) ≡ ct.prod1→ p1 ? ct.prod2→ p2 ?

ct.cons1→ c1 ? ct.cons2→ c2.
The pre-condition for makeActive() is:

Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss, es, sl, el) ? Prod(p2, ss, es, sl, el) ?

Cons(c1, sl) ? Cons(c2, ss) ? Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100).
The lack of modularity will manifest itself when we add the two queues as in the right image of
Figure 2.7.
The predicates Prod(p, ss, es, sl, el) and Ctrl(ct, p1, p2, c1, c2) do not change, while the predi-
cate Cons(c, s1, s2) changes to

Cons(c, s1, s2) ≡ c.startJobs1→ s1 ? c.startJobs2→ s2.
The pre-condition for the consume() method becomes:

Cons(c, s1, s2) ? Listseg(s1, null, 0, 10) ? Listseg(s2, null, 0, 10).
Although the behavior of the Consumer and Producer classes have not changed, the pre-condition
for makeActive() in class Control does change:

Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss1, es1, sl1, el1) ? Prod(p2, ss2, es2, sl2, el2) ?

Cons(c1, sl1, sl2) ? Cons(c2, ss1, ss2) ? Listseg(ss1, null, 0, 10) ?

Listseg(ss2, null, 0, 10) ? Listseg(sl1, null, 11, 100) ? Listseg(sl2, null, 11, 100)
The changes occur because the pointers to the job queues have been modified and the separation
logic specifications have to reflect the changes. This is an indicator of loss of modularity.

2.3.2 Second Specification

The predicate for the Producer class is Prod(this), where :
Prod(p) ≡ ∃ss : Link, es : Link, sl : Link, el : Link.

p.startSmallJobs→ ss ? p.endSmallJobs→ es ?

p.startLargeJobs→ sl ? p.endLargeJobs→ el.
The pre-condition for the produce() method would then be:

Prod(p) ? ∃ss : Link, sl : Link.(Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100)).
The definition of the predicate Prod(p) exposes fewer parameters and could seem more modular,
but the precondition given above for the produce() method becomes more difficult to prove.
Since this precondition uses existentially quantified variables, it will be very difficult for an
automated theorem prover such as Z3 to prove it.
Moreover, the connection between the predicates Prod and Listseg from the precondition is
removed, thus making the precondition much less meaningful.
The predicate for the Consumer class is

Cons(c) ≡ ∃c : Link.c→ s.
The pre-condition for the consume() method would be:

Cons(c) ? ∃s : Link.Listseg(s, null, 0, 10).
The predicate for the Control class is :

Ctrl(ct) ≡ ∃p1 : Producer, p2 : Producer, c1 : Consumer, c2 : Consumer.

ct.prod1→ p1 ? ct.prod2→ p2 ? ct.cons1→ c1 ? ct.cons2→ c2.
The pre-condition for makeActive() would be:

Ctrl(this) ? Prod(p1) ? Prod(p2) ? Cons(c1) ? Cons(c2)
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? ∃ss : Link, sl : Link.(Listseg(ss, null, 0, 10) ? Listseg(sl, null, 11, 100)).
The precondition for the consume() method becomes:

Cons(c) ? ∃s1 : Link, s2 : Link.(Listseg(s1, null, 0, 10) ? Listseg(s2, null, 0, 10)).
The precondition for consume()reveals that there are two distinct queues each with its ele-
ments in the range [0,10], but one does not know how they relate to Cons(c).
In this version of the specification we do not experience a lack of modularity, but instead the pre-
and postconditions of methods become meaningless, as the connection between the queues and
the Listseg predicate has been removed.
The pre-condition for makeActive() in class Control becomes:

Ctrl(this) ? Prod(p1) ? Prod(p2) ?
∃ss1 : Link, ss2 : Link, sl1 : Link, sl2 : Link.
Cons(c1) ? Cons(c2) ? Listseg(ss1, null, 0, 10) ?
Listseg(ss2, null, 0, 10) ? Listseg(sl1, null, 11, 100) ? Listseg(sl2, null, 11, 100)

The existentially quantified specifications do not change very much although the pointers to
the job queues have been modified, but they do not convey much information either about
the requirements on the queues. We cannot include the Listseg predicate in the definition
of the Prod, Cons or Ctrl predicates because the predicates Prod and Cons have to co-
exist and they refer to the same queue (same memory), say ss. This means that the predicate
List(ss, null, 0, 10) would appear twice when we have Prod(p1) ? Cons(c1), i.e., we would
have List(ss, null, 0, 10) ? List(ss, null, 0, 10). This is not possible in separation logic, unless
it is augmented with fractions.

2.4 Detailed Description of Proposed Approach
Our methodology uses abstract predicates [61] to characterize the state of an object, embeds
those predicates in a logical framework, and specifies sharing using fractional permissions [25].

Our main technical contribution is the novel abstraction called object proposition that com-
bines predicates with aliasing information about objects. Object propositions combine predicates
on objects with aliasing information about the objects (represented by fractional permissions).
They are associated with object references and declared by programmers as part of method pre-
and post-conditions. Through the use of object propositions, we are able to hide the shared
data that two objects have in common. The implementations of the two objects use fractions to
describe how to access the common data, but this common data need not be exposed in their
external interface. Our solution is therefore more modular than the state of the art with respect
to hiding shared data.

Our checking approach is modular and verifies that implementations follow their design in-
tent. In our approach, method pre- and post-conditions are expressed using object propositions
over the receiver and arguments of the method. To verify the method, the abstract predicate
in the object proposition for the receiver object is interpreted as a concrete formula over the
current values of the receiver object’s fields (including for fields of primitive type int). Fol-
lowing Fähndrich and DeLine [33], our verification system maintains a key for each field of the
receiver object, which is used to track the current values of those fields through the method. A
key o.f → x represents read/write access to field f of object o holding a value represented by
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the concrete value x. At the end of a public method, we pack [30] the keys back into an object
proposition and check that object proposition against the method post-condition. A crucial part
of our approach is that when we pack an object to a predicate with a fraction less than 1, we have
to pack it to the same predicate that was true before the object was unpacked. The restriction is
not necessary for a predicate with a fraction of 1: objects that are packed to this kind of predicate
can be packed to a different predicate than the one that was true for them before unpacking. The
intuition behind this is that when we hold a full fraction, equal to 1, to an object, we have total
control over it and we can change the prdicate that holds for it.

2.5 Examples with Object Propositions

2.5.1 Cells in a spreadsheet

In Figure 2.12, we present the Java class from Figure 2.2 augmented with predicates and ob-
ject propositions, which are useful for reasoning about the correctness of client code and about
whether the implementation of a method respects its specification. Since they contain fractional
permissions which represent resources that are consumed upon usage, the object propositions
are consumed upon usage and their duplication is forbidden. Therefore, we use a fragment of
linear logic [35] to write the specifications. Pre- and post-conditions are separated with a linear
implication( and use multiplicative conjunction (⊗), additive disjunction (⊕) and existential/u-
niversal quantifiers (where there is a need to quantify over the parameters of the predicates). We
do not use all the linear logic connectives, such as the alternative conjunction &, exponential
modality ! or the multiplicative unit 1. This means that a linear theory is at the center of our
system and not a linear logic. From now on in this thesis we will use the terminology linear
theory.

Newly created objects have a fractional permission of 1, and their state can be manipulated to
satisfy different predicates defined in the class. A fractional permission of 1 can be split into two
fractional permissions which are less than 1 (see Figure 3.1). The programmer can specify an
invariant that the object will always satisfy in future execution. Different references pointing to
the same object, will always be able to rely on that invariant when calling methods on the object.
The critical property of an invariant is that it cannot have parameters that represent the fields of
the current object. This is because invariants are supposed to hold at the boundaries of methods
and if the parameters are changed inside a method, the invariant is broken and other aliases to the
same object cannot rely on the invariant anymore. Thus, the invariant for the cell class is OK(),
while the predicates In1(int x1), In2(int x2), OKdep(int o) cannot be invariants because they
have parameters that refer to the fields of the current object and can change.

A critical part of our work is allowing clients to depend on a property of a shared object.
Other methodologies such as Boogie [16] allow a client to depend only on properties of objects
that it owns. Our verification technique also allows a client to depend on properties of objects
that it doesn’t (exclusively) own. Summers and Drossopoulou’s work [68] accomplishes the
same thing, as they do not have the concept of owner. At the same time, they use the classical
invariant technique and we have previously discussed in Section 2.1 how our work is different
from that line of research.
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class Dependency {
Cell ce;
int input;

}
class Cell {

int in1, in2, out;
Dependency dep1, dep2;

void setInputDep(int newInput) {
if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);
else dep1.ce.setInput2(newInput);

}
if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);
else dep2.ce.setInput2(newInput);

}
}

void setInput1(int x) {
this.in1 = x;
this.out = this.in1 + this.in2;
this.setInputDep(out);
}

void setInput2(int x) {
this.in2 = x;
this.out = this.in1 + this.in2;
this.setInputDep(out);
}

}

Figure 2.11: Cell class
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class Dependency {
Cell ce;
int input;

predicate OKdep(int o) ≡ ∃c, k, i.this.ce→ c⊗ this.input→ i⊗
((i = 1⊗ c@1

2 In1(o)⊗ c@k OK())⊕ (i = 2⊗ c@1
2 In2(o)⊗ c@k OK()))

}
class Cell {

int in1, in2, out;
Dependency dep1, dep2;

predicate In1(int x1) ≡ this.in1→ x1

predicate In2(int x2) ≡ this.in2→ x2

predicate OK() ≡ ∃x1, x2, o, d1, d2.this@1
2 In1(x1)⊗ this@1

2 In2(x2)⊗
x1 + x2 = o ⊗ this.out→ o⊗ this.dep1→ d1⊗ this.dep2→ d2⊗
d1@1 OKdep(o)⊗ d2@1 OKdep(o)

void setInputDep(int i, int newInput) {
if (dep1!=null) {

if (dep1.input == 1) dep1.ce.setInput1(newInput);
else dep1.ce.setInput2(newInput);

}
if (dep2!=null) {

if (dep2.input == 1) dep2.ce.setInput1(newInput);
else dep2.ce.setInput2(newInput);

}
}

void setInput1(int x)
∀k.(this@k OK()( this@k OK())
{ this.in1 = x;

this.out = this.in1 + this.in2;
this.setInputDep(out);

}

void setInput2(int x)
∀k.(this@k OK()( this@k OK())
{ this.in2 = x;

this.out = this.in1 + this.in2;
this.setInputDep(out);

}

}

Figure 2.12: Cell class and OK predicate
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To gain read or write access to the fields of an object, we have to unpack it [30]. After
a method finishes working with the fields of a shared object (an object for which we have a
fractional permission, with a fraction less than 1), our proof rules in Section 3.3 require us to
ensure that the same predicate as before the unpacking holds of that shared object. If the same
predicate holds, we are allowed to pack back the shared object to that predicate. Since for an
object with a fractional permission of 1 there is no risk of interferences, we don’t require packing
to the same predicate for this kind of objects. We avoid inconsistencies by allowing multiple
object propositions to be unpacked at the same time only if the objects are not aliased, or if the
unpacked propositions cover disjoint fields of a single object.

Packing/unpacking [30] is a very important mechanism in our system. The benefits of this
mechanism are the following:

• it achieves information hiding (e.g. like abstract predicates)
• it describes the valid states of the system (similar to visible states in invariant-based ap-

proaches)
• it is a way to store resources in the heap. When a field key is put (packed) into a predicate,

it disappears and cannot be accessed again until it is unpacked
• it allows us to characterize the correctness of the system in a simple way when everything

is packed

Another central idea of our system is sharing using fractions less than 1. The insights about
sharing are the following:

• with a fractional permission of 1, no sharing is permitted. There is only one of each
abstract predicate asserted for each object at run time, and the asserted abstract predicates
have disjoint fields.

• fractional permissions less than 1 enable sharing of particular abstract predicates, but only
one instance of a particular abstract predicate P on a particular object o can be unpacked
at once. This ensures that field permissions cannot be duplicated via shared permissions.

An important aspect of our system is the ability to allow predicates to depend on each other.
Intuitively, this allows “chopping up" an invariant into its modular constituent parts.

Like other previous systems, our system uses abstraction, which allows clients to treat method
pre/post-conditions opaquely: outside the scope where the predicates are defined, clients can only
refer to the names of predicates.

The predicate OK() in Figure 2.12 ensures that all the cells in the spreadsheet are in a consis-
tent state, where the sum of their inputs is equal to their output. Since we use only a fractional
permissions for the dependency cells (such as in c@k OK(), it is possible for multiple predicates
OK() to talk about the same cell without exposing the sharing. More specifically, using object
propositions we only need to know a1@k OK() before calling a1.setInput1(10). Before calling
a2.setInput1(20) we only need to know a2@k OK(). Since inside the recursive predicateOK()
there are fractional permissions less than 1 that refer to the dependency cells, we are allowed to
share the cell a3 (which can depend on multiple cells). Thus, using object propositions we are
not explicitly revealing the shared cells in the structure of the spreadsheet.
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2.5.2 Simulator for Queues of Jobs
The code in Figures 2.13, 2.14 and 2.15 represents the code from Figures 2.8, 2.9 and 2.10,
augmented with predicates and object propositions. The predicates and the specifications of each
class explain how the objects and methods should be used and what is their expected behavior.
For example, the Producer object has access to the two queues, it expects the queues to be shared
with other objects, but also that the elements of one queue will stay in the range [0,10], while
the elements of the second queue will stay in the range [11,100]. Predicate Range is defined in
Figure 1.2.

When changing the code to reflect the modifications in the right image of Figure 2.7, the
internal representation of the predicates changes, but the external semantics stays the same; the
producers produce jobs and they direct them to the appropriate queue, each consumer accesses
only one kind of queue (either the queue of small jobs or the queue of big jobs), and the controller
is still the manager of the system. The predicate BothInRange() of the Producer class is
exactly the same. The predicate ConsumeInRange(x,y) of the Consumer class changes to
ConsumeInRange(x,y) ≡ ∃o1, o2, k1, k2. startJobs1→ o1⊗ startJobs2→ o2

⊗o1@k1 Range(x,y) ⊗o2@k2 Range(x,y).
The predicate WorkingSystem() of the Control class does not change.
The local changes did not influence the specification of the Control class, thus conferring

greater modularity to the code.
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public class Producer {
Link startSmallJobs,

startLargeJobs;
Link endSmallJobs,

endLargeJobs;

predicate BothInRange() ≡
∃o1, o2. startSmallJobs→ o1

⊗ startLargeJobs→ o2
⊗ ∃k1.o1@k1 Range(0,10)
⊗ ∃k2.o2@k2 Range(11,100)

public Producer
(Link ss, Link sl,
Link es, Link el) {

startSmallJobs = ss;
startLargeJobs = sl;
...}

public void produce()
∃ k.this@k BothInRange() (
∃ k.this@k BothInRange() {

Random generator = new Random();
int r = generator.nextInt(101);
Link l = new Link(r, null);
if (r <= 10)
{ if (startSmallJobs == null)

{ startSmallJobs = l;
endSmallJobs = l;}

else
{endSmallJobs.next = l;

endSmallJobs= l;}
}
else
{ if (startLargeJobs == null)

{ startLargeJobs = l;
endLargeJobs = l;}

else
{endLargeJobs.next = l;
endLargeJobs = l;}

}
}

}

Figure 2.13: Producer class

public class Consumer {
Link startJobs;

predicate ConsumeInRange(int x, int y) ≡
startJobs→ o ⊗ ∃ k.o@k Range(x,y)

public Consumer(Link s) {
startJobs = s;

public void consume()
∀ x:int, y:int.
∃ k.this@k ConsumeInRange(x,y)
( ∃ k.this@k ConsumeInRange(x,y)

{ if (startJobs != null)
{System.out.println(startJobs.val);
startJobs = startJobs.next;}

}

Figure 2.14: Consumer class
public class Control {

Producer prod1, prod2;
Consumer cons1, cons2;

predicate WorkingSystem() ≡
prod1→ o1⊗ prod2→ o2

⊗ cons1→ o3⊗ cons2 → o4
⊗ ∃k1.o1@k1 BothInRange()
⊗ ∃k2.o2@k2 in BothInRange()
⊗ ∃k3.o3@k3 in ConsumeInRange(0,10)
⊗ ∃k4.o4@k4 in ConsumeInRange(11,100)

public Control(Producer p1, Producer p2,
Consumer c1, Consumer c2) {

prod1 = p1; prod2 = p2;
cons1 = c1; cons2 = c2; }

public void makeActive( int i)
∃k.this@k WorkingSystem() (

∃k.this@k in WorkingSystem() {
Random generator = new Random();
int r = generator.nextInt(4);
if (r == 0) {prod1.produce();}
else if (r == 1) {prod2.produce();}
else if (r == 2) {cons1.consume();}

else {cons2.consume();}
if (i > 0) { makeActive(i-1);}

}
}

Figure 2.15: Control class
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2.6 Example: Simple Composite

The composite design pattern [1] is used when clients need to treat individual objects and com-
positions of objects uniformly. This pattern is applied when there is a hierarchy of objects and
compositions that is represented as a tree structure. This pattern is used when the differences be-
tween individual objects and compositions of objects are not relevant and the programmer sees
that the code to handle multiple objects is almost the same as the code to handle one object.
The kind of properties that we care about verifying for the composite pattern refer to objects and
composites in a uniform way and are hence general properties, that refer to the whole composite
tree. If we expect the tree to be a binary tree, we could verify that it is indeed the case that at all
times in the program each node has at most two children or it is a leaf node. If we expect the tree
to be a red-black tree, we could verify the properties that such a tree should always satisfy: that
each node is either red or black, that the root is black, that all leaves are black, that if a node is
red then both its children are black and that every path from a given node to any of its descendant
leaf nodes contains the same number of black nodes.

The code for a very simple specification of the composite pattern is given below. Note that
this is not the Composite pattern as proposed by Leavens et al. [46], where any change to the
field count causes all the ancestors to be updated. Instead below we give a simpler version of
the Composite where only the count field of the current object is being updated. The rationale
for introducing this example is to make the reader familiar with our specification and predicates
used for the Composite pattern, for which we give the full implementation and specification in
Section 5.4.

class Composite {
Composite left, right, parent;
int count;

void setLeft(Composite l) {
l.parent=this;
this.left=l;
this.count=this.count+l.count+1;

}

void setRight(Composite r) {
r.parent=this;
this.right=r;
this.count=this.count+r.count+1;

}

}

Figure 2.16: Composite class

The predicates for this class are given in Figure 2.17.
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predicate count (int c) ≡ ∃ol, or, lc, rc. this.count→ c ⊗
c = lc + rc + 1 ⊗ this@1 left(ol, lc)

⊗ this@1 right(or, rc)

predicate left (Composite ol, int lc) ≡ this.left→ ol ⊗(
(ol 6= null ( ol@

1

2
count(lc))

⊕ (ol = null ( lc = 0)
)

predicate right (Composite or, int rc) ≡ this.right→ or ⊗(
(or 6= null ( or@

1

2
count(rc))

⊕ (or = null ( rc = 0)
)

Figure 2.17: Predicates for Simple Composite

With the help of those predicates, the specification of the method setLeft is written as fol-
lows:
∃c1, c2.this@1 count(c1)⊗ l@1 count(c2)( this@1 count(c1 + c2 + 1).
Below there is an example that can be verified using separation logic, but can also be verified

using object propositions.

...
{}

Composite a = new Composite();
{a@1 count(0)}

Composite b = new Composite();
{b@1 count(0)⊗ a@1 count(0)}

Composite c = new Composite();
{c@1 count(0)⊗ b@1 count(0)⊗ a@1 count(0)}

a.setLeft(b);
{a@1 count(1)⊗ c@1 count(0)}

a.setRight(c);
{a@1 count(2)}

...

As can be seen in the example above, all the fractional permissions are equal to 1, meaning
that there is no sharing of data in this example. Because the data structure does not have sharing
of data and there is no danger of exposing any shared data, it is very suitable to verification
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using separation logic. But it can also be verified using object propositions. The notion of a
fractional permission of 1 is incorporated in object propositions, which basically means that
data is not shared and can be changed only from one reference point. Because all the fractional
permissions in this example are equal to 1, in the verification using object propositions we do not
need invariants. In fact, since all the predicates count, left and right have parameters that refer
to the fields of the current object, they cannot be invariants.
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Chapter 3

Formal System

The programming language that we are using is inspired by Featherweight Java [38], extended
to include object propositions. We retained only Java concepts relevant to the core technical
contribution of this thesis, omitting features such as inheritance, casting or dynamic dispatch
that are important but are handled by orthogonal techniques.

In this chapter we first present the grammar of our new Oprop language. We then discuss
our permission splitting rules and the static proof rules that we use in the verification of object
oriented code. We continue by describing the dynamic semantics rules and how they are used
to prove the soundness of the object proposition rules. Finally in sections 3.5 and 3.5.4 we state
and prove the preservation theorem that is the basis for the soundness of our system.

3.1 Grammar

Below we show the syntax of our simple class-based object-oriented language. In addition to the
usual constructs, each class can define one or more abstract predicatesQ in terms of concrete for-
mulas R. Each method comes with pre- and post-condition formulas. Formulas include object
propositions P , primitive binary predicates, conjunction, disjunction, keys, and quantification.
We distinguish effectful expressions from simple terms, and assume the program is in let-normal
form. The pack and unpack expression forms are markers for when packing and unpacking oc-
curs in the proof system. References o and indirect references l do not appear in source programs
but are used in the dynamic semantics, defined later. In the grammar, r represents a reference to
an object and i represents an integer. The variable z represents a metavariable for fractions and it
has type double. In a program, a fraction can be a constant of type double or it can be represented
by a metavariable.
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Prog ::= ClDecl e
ClDecl ::= class C { FldDecl PredDecl MthDecl }

FldDecl ::= T f
PredDecl ::= predicate Q(T x) ≡ R
MthDecl ::= T m(T x) MthSpec { e; return e }

MthSpec ::= R( R
R ::= P | R ⊗ R | R ⊕ R |

∃x:T.R | ∃z:double.R | ∃z:double.z binop t⇒ R |
∀x:T.R | ∀z:double.R | ∀z:double.z binop t⇒ R |
t binop t⇒ R

P ::= r@k Q(t) | unpacked(r@k Q(t)) |
r.f → v | t binop t

k ::= n1
n2

(where n1, n2 ∈ N and 0 < n1 ≤ n2) | z
e ::= t | r.f | r.f = t | r.m(t) |

new C(Q(t)[t])(t) |
if (t) { e } else { e } | let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r@k Q(t)[t]in e | unpack r@k Q(t)[t]in e

t ::= v | n | null | true | false
v ::= r | i

binop ::= + | − | % | == | ! = | ≤ | < | ≥ | >
T ::= C | int | boolean | double | void

3.2 Permission Splitting
In order to allow objects to be aliased, we must split a fraction of 1 into multiple fractions less
than 1 [25]. The fraction splitting rule is defined in Figure 3.1. An invariant of the rules is that
a fraction of 1 is never duplicated. We also allow the inverse of splitting permissions: joining,
where we define the rules in Figure 3.2.

3.3 Proof Rules
This section describes the proof rules that can be used to verify correctness properties of code.
The judgment to check an expression e is of the form Γ; Π ` e : ∃x.T ;R. This is read “in valid
context Γ and linear context Π, an expression e has type T with postcondition formula R”.This
judgment is within a receiver class C, which is mentioned when necessary in the assumptions of
the rules. By writing ∃x, we bind the variable x to the result of the expression e in the postcon-
dition. Γ gives the types of variables and references, while Π is a pre-condition in disjunctive
normal form. The linear context Π should be just as general as R.

type context Γ ::= · | Γ, x : T
linear context Π ::=

⊕n
i=1 Πi

Πi ::= · | Πi ⊗ P | Πi ⊗ t1 binop t2 |
Πi ⊗ r.f → x | Πi ⊗ ∃z.P | Πi ⊗ ∀z.P

The static proof rules also contain the following judgments: Γ ` r : C, Γ; Π ` R and
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k ∈ (0, 1]

r@k Q(t) ` r@k
2 Q(t)⊗ r@k

2 Q(t)
(SPLIT)

Figure 3.1: Rule for splitting fractions

ε ∈ (0, 1) k ∈ (0, 1] ε < k

r@ε Q(t1)⊗ r@(k − ε) Q(t1) ` r@k Q(t1)
(ADD1)

ε ∈ (0, 1) k ∈ (0, 1] ε < k

unpacked(r@ε Q(t1))⊗ r@(k − ε) Q(t1) `
unpacked(r@k Q(t1))

(ADD2)

Figure 3.2: Rules for adding fractions

Γ; Π ` r.T ;R. The judgment Γ ` r : C means that in valid type context Γ, the reference r
has type C. The judgment Γ; Π ` R means that from valid type context Γ and linear context Π
we can deduce that object proposition R holds. The judgment Γ; Π ` r.T ;R means that from
valid type context Γ and linear context Π we can deduce that reference r has type T and object
proposition R is true about r. The ⊗ linear logic operator is symmetric. Thus in the rules for
adding fractions, we can have a rule symmetric to (ADD2) that adds the fraction of a packed
object propositions to the fraction of an unpacked object proposition.

Before presenting the detailed rules, we provide the intuition for why our system is sound
(the formal soundness theorem is given below in Section 3.5). The first invariant enforced by
our system is that there will never be two conflicting object propositions to the same object.
The fraction splitting rule can give rise to only one of two situations, for a particular object:
there exists a reference to the object with a fraction of 1, or all the references to this object have
fractions less than 1. For the first case, sound reasoning is easy because aliasing is prohibited.

The second case, concerning fractional permissions less than 1, follows an inductive argu-
ment in nature. The argument is based on the property that the invariant of a shared object (one
can think of an object with a fraction less than 1 as being shared) always holds whenever that ob-
ject is packed. The base case in the induction occurs when an object with a fraction of 1, whose
invariant holds, first becomes shared. In order to access the fields of an object, we must first
unpack the corresponding predicate; by induction, we can assume its invariant holds as long as
the object is packed. But we know the object is packed immediately before the unpack operation,
because the rules of our system ensure that a given predicate over a particular object can only
be unpacked once; therefore, we know the object’s invariant holds. Assignments to the object’s
fields may later violate the invariant, but in order to pack the object back up we must restore its
invariant. For a shared object, packing must restore the same predicate the object had when it
was unpacked; thus the invariant of an object never changes once that object is shared, avoiding
inconsistencies between aliases to the object. (If at a later time we add the fractions correspond-
ing to that object and get a fraction of 1, we will be able to change the predicates that hold of
that object. But as long as the object is shared, the invariant of that object must hold.) Although
theoretically an object may have several different invariants, in all our examples in this thesis
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Γ,Π ` R Γ ` R == R’
Γ,Π ` R’

(EQUAL)

Figure 3.3: Rule for equality of linear formulas

each object has only one invariant. In future work we would like to support multiple invariants
for the same object, but this thesis does not deal with this case.

This completes the inductive case for soundness of shared objects. The induction is done
on the steps when a predicate is packed or unpacked. All of the predicates we might infer will
thus be sound because we will never assume anything more about that object than the predicate
invariant, which should hold according to the above argument. We need the rule in Figure 3.3 to
express the fact that when two propositions are equivalent in linear logic they are also equivalent
in our system, where == is pure (linear) logical equivalence.

In the following paragraphs, we describe the proof rules while inlining the rules in the text.
In the rules below we assume that there is a class C that is the same for all the rules.

The rule TERM below formalizes the standard logical judgment for existential introduction.
The notation [e′/x]e substitutes e′ for occurrences of x in e. The FIELD rule checks field accesses
analogously.

Γ ` t : T Γ; Π ` [t/x]R

Γ; Π ` t : ∃x.T ;R
TERM

Γ ` r : C r.fi : T is a field of C
Γ; Π ` r.fi → ri Γ; Π ` [ri/x]R

Γ; Π ` r.fi : ∃x.T ;R
FIELD

NEW checks object construction. We get the new object, a key for each field and the remain-
ing linear context.

fields(C) = T f Γ ` t : T

Γ; Π ` new C(t) : ∃z.C; z.f → t⊗Π
NEW

IF introduces disjunctive types in the system and checks if -expressions. A corresponding⊕ rule
eliminates disjunctions in the pre-condition by verifying that an expression checks under either
disjunct.

Γ; (Π⊗ t == true) ` e1 : ∃x.T ;R1

Γ ` t : bool Γ; (Π⊗ t == false) ` e2 : ∃x.T ;R2

Γ; Π ` if(t){e1}else{e2} : ∃x.T ;R1 ⊕R2
IF

LET checks a let binding, extracting existentially bound variables and putting them into the
context (a limitation of our current system is that universal quantification is supported only in
method specifications).
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Γ; Π ` e1 : ∃x.T1; Π2

(Γ, x : T1); Π2 ` e2 : ∃w.T2;R2

Γ; Π ` let x = e1 in e2 : ∃w.T2;R2
LET

Γ; Π1 ` e : ∃x.T ;R1 Γ; Π2 ` e : ∃x.T ;R2

Γ; (Π1
⊕

Π2) ` e : ∃x.T ;R1 ⊕R2
⊕

The CALL rule simply states what is the object proposition that holds about the result of the
method being called. This rule first identifies the specification of the method (using the helper
judgment MTYPE) and then goes on to state the object proposition holding for the result. Our
system is using a linear theory, which does not have the contraction or the weakening rules. This
means that resources, such as object propositions, cannot be duplicated, and also that unpacked
object propositions cannot be dropped when we infer one formula from another (for example
Π1 ` Π2). In this way we make sure that object propositions and the predicates associated with
them are not lost in our proof derivations.

The reader might see that there are some concerns about the modularity of the CALL rule:
Π1 shouldn’t contain unpacked predicates. Indeed, it is important that the CALL rule tracks all
shared predicates that are unpacked. It does not track predicates that are packed, nor unpacked
predicates that have a fractional permission of 1. The normal situation is that all shared predicates
are packed, and any method can be called in this situation. In the intended mode of use, we only
make calls with a shared unpacked predicate when traversing a data structure hand-over-hand as
in the Composite pattern, and we claim that modularity problems are minimized in this situation.
The fact that we do not allow Π1 to have unpacked predicates does represent a limitation in
our system, however, it is one that goes hand in hand with the advantage of supporting shared
predicates.

Γ ` r0 : C0 Γ ` t1 : T
Γ; Π ` [r0/this][t1/x]R1 ⊗Π1

mtype(m,C0) = ∀x : T .∃result.Tr;R1( R
Π1 cannot contain unpacked predicates

Γ; Π ` r0.m(t1) : ∃ result.Tr; [r0/this][t1/x]R⊗Π1
CALL

class C{...M...} ∈ CL
Tr m(Tx)R1( R {e1; return e2} ∈M
mtype(m,C) = ∀x : T .∃result.Tr;R1( R

MTYPE

The rule ASSIGN assigns an object t to a field fi and returns the old field value as an existential
x. For this rule to work, the current object this has to be unpacked, thus giving us permission to
modify the fields.
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Γ; Π ` t1 : Ti; t1@k0 Q0(t0)⊗Π1

Γ; Π1 ` r1.fi : Ti; r
′
i@k

′ Q′(t′)⊗Π2

Π2 ` r1.fi → r′i ⊗Π3

Γ; Π ` r1.fi = t1 : ∃x.Ti;x@k′ Q′(t′)⊗ t1@k0 Q0(t0)
⊗ r1.fi → t1 ⊗Π3

ASSIGN

The rules for packing and unpacking are PACK1, PACK2, UNPACK1 and UNPACK2. As men-
tioned before, when we pack an object to a predicate with a fraction less than 1, we have to
pack it to the same predicate that was true before the object was unpacked. The restriction is not
necessary for a predicate with a fraction of 1: objects that are packed to this kind of predicate
can be packed to a different predicate than the one that was true for them before unpacking.
For example, in Figure 2.12, the method setInput1 has as pre-condition the object proposition
this@k OK(). Since the fraction k is universally quantified and can be less than 1, the this
object in the post-condition must be sure to satisfy the predicate OK() (which happens to also
be an invariant in this example). The judgment |= in the last premise of the UNPACK2 rule is
different than the normal ` judgment because when stating Π |= r 6= r′ we do not simply use the
object propositions from Π, but instead we state that no two unpacked object propositions in Π
refer to the same object.

Γ; Π ` r : C; [t2/x]R2 ⊗ unpacked(r@1 Q1(t1))⊗Π1

predicate Q2(Tx) ≡ R2 ∈ C predicate Q1(T1x) ≡ R1 ∈ C
Γ; (Π1 ⊗ r@1 Q2(t2)) ` e : ∃x.T ;R

Γ; Π ` pack r@1 Q2(t2) in e : ∃x.T ;R
PACK1

Γ; Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ; Π ` pack r@k Q(t1) in e : ∃x.T ;R
PACK2

As mentioned earlier, we allow unpacking of multiple predicates, as long as the objects don’t
alias. We also allow unpacking of multiple predicates of the same object, because we have a
single linear write permission to each field. There can’t be any two packed predicates containing
write permissions to the same field.
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Γ; Π ` r : C; r@1 Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C
Γ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@1 Q(t1))) ` e : ∃x.T ;R

Γ; Π ` unpack r@1 Q(t1) in e : ∃x.T ;R
UNPACK1

Γ; Π ` r : C; r@k Q(t1)⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@k Q(t1)) ` e : ∃x.T ;R
∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ Π⇒ Π |= r 6= r′)

Γ; Π ` unpack r@k Q(t1) in e : ∃x.T ;R
UNPACK2

We have also developed rules for the dynamic semantics, that are used in proving the soundness
of our system. The next section describes in detail the dynamic semantics rules and the soundness
theorem.

3.4 Dynamic Semantics and Soundness
The dynamic semantics for our language is given in Figure 3.4. Below we describe the definitions
used for dynamic semantics support.

C(o) ∈ OBJECTS

v ::= o
(values)

µ ∈ OBJECTREFS ⇀ OBJECTS

(stores)

ρ ∈ INDIRECTREFS ⇀ VALUES

(environments)

F (Π) ::= (INDIRECTREFS ∪ OBJECTREFS ∪ VARIABLES) ⇀ OBJECT PROPOSITIONS

(propositions)

Σ ::= OBJECTREFS ⇀ PREDICATE/INDEX PAIRS

(field store)
Expressions in the language evaluate to values, i.e., object references o. Stores µ associate

object references to objects. The dynamic semantics also uses a second heap, the environment
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µ, ρ, l → µ, ρ, ρ(l)
LOOKUP

o /∈ dom(µ) µ′ = µ[o→ C(ρ(l))]

µ, ρ, new C(l) → µ′, ρ, o
NEW

µ, ρ, e1 → µ′, ρ′, e′

µ, ρ, let x = e1 in e2 → µ′, ρ′, let x = e′ in e2
LET-E

l /∈ dom(ρ)

µ, ρ, let x = o in e2 → µ, ρ[l o], [l/x]e2
LET-O

v ∈ {n, true, false}
µ, ρ, let x = v in e2 → µ, ρ, [v/x]e2

LET-V

µ(ρ(l1)) = C(o) fields(C) = Tf

µ, ρ, l1.f = l2 → µ[ρ(l1) [ρ(l2)/oi]C(o)], ρ, oi
ASSIGN

µ, ρ, if(true, e1, e2) → µ, ρ, e1
IF-TRUE

µ, ρ, if(false, e1, e2) → µ, ρ, e2
IF-FALSE

µ(ρ(l1)) = C(o)
method(m,C) = Tr m(x){return e}
µ, ρ, l1.m(l2) → µ, ρ, [l1/this, l2/x]e

INVOKE

µ(ρ(l)) = C(o) fields(C) = Tf

µ, ρ, l.fi → µ, ρ, oi
FIELD

µ, ρ, pack r to R1 in e1 → µ, ρ, e1
PACK

µ, ρ, unpack r from R1 in e1 → µ, ρ, e1
UNPACK

Figure 3.4: Dynamic Semantics Rules
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ρ, that connects variable references and the object store µ. The main interesting feature is the
use of indirect references, a proof technique adapted from the work of Wolff et al. [70]. Object
references and indirect references point to runtime objects: object references correspond to heap
pointers, while indirect references are an artifact that make type safety easier to prove. In the
source language two variables could refer to the same object in the store, but each can have
different fractional permissions to that object. The environment ρ keeps track of these differences
at runtime, by mapping indirect references l to values v. The use of the ρ enviroment allows us
to distinguish references that came from different variables, because they will have different
indirect references l.This is useful for preservation, because the original variables may have had
different permissions, and we need to preserve those different permissions when the variables
are substituted with indirect references. Σ maps a reference to a predicate. Σ will contain actual
values for the arguments of the predicates, since Σ is used at runtime.

We keep track of object propositions in F (Π): for all indirect references, object references
and variables that point to the same object, F (Π) will say which is the object proposition that
they point to, whether that object proposition is packed or unpacked. The difference between Π
and F (Π) is that Π uses ⊗ as the operator that concatenates its resources (which can be object
propositions, but not only), while F (Π) is a map from references to object propositions.

Formally, we defined the linear context Πi in the following way, where Πi is only one of the
disjunctions in the general linear context Π:

Πi ::= · | Πi ⊗ P1 | Πi ⊗ t1 binop t2 |
Πi ⊗ r.f → x | Πi ⊗ ∃z.P2 | Πi ⊗ ∀z.P3

where P1 is equal to r1@k1Pred1(t1), P2 is equal to r2@k2Pred2(t2),
P3 is equal to r3@k3Pred3(t3). We define F (Πi) to be

F (Πi) ::= · | F (Πi); r1  r1@k1Pred1(t1)
| F (Πi); r2  r2@k2Pred2(t2) | F (Πi); r3  r3@k3Pred3(t3)

where all the formal parameters have been substituted with actual parameters, and the exis-
tentially and universally quantified variables have also been substituted with actual values.

Finally in the field store Σ, for each object reference field we keep track of which is the
predicate that holds a key to it, and which conjunction that predicate is in. Since we write a
formula in disjunctive normal form, we need Σ in order to know the index of the conjunction
where to find the predicate for a specific field.

The semantics is a mostly-standard small-step operational semantics; the rules are com-
plete except for standard rules to reduce binary and logical operators. We define the judgment
µ, ρ, e → µ′, ρ′, e′ as a transition between store/environment/expression triples. The envi-
ronment supports the proof of type safety by keeping precise track of the outstanding object
propositions associated with different references to objects at runtime.

The LET-O rule shows that when the left-hand expression of a let reduces to a reference
o, instead of substituting o for x, we allocate a fresh indirect reference l, and add a mapping
from l to o in an environment ρ. The LOOKUP rule later reduces l to an o, so that execution is
isomorphic to a standard substitution-based semantics. However, the use of the ρ environment
allows us to distinguish references that came from different variables, because they will have
different indirect references l. This is useful for preservation, because the original variables may
have had different permissions, and we need to preserve those different permissions when the
variables are substituted with indirect references.
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The ` Prog represents the judgment that a program Prog is well formed, meaning that all
methods obey their specification. The necessary helper judgments are presented below:

` CL
` 〈CL, e〉

PROGRAM

`C M
` class C { Tf Q(x) = RM}

CLASS

MS = R1( R2

this : C, x : T ;R1 ` e : Tr;∃x.R2

`C Tr m(T x) : MS = e
METHOD

Similar to the work of Wolff et al. [70], the type safety proof must verify that the outstanding
object propositions for object o are mutually compatible. Figures 3.5, 3.6, 3.7 and 3.8 present the
definitions needed for this. Figure 3.5 represents the outstanding object propositions that exist
for different references to objects, at runtime. The fieldProps, ctxProps and envProps functions
accumulate information for objects in the store from the fields of objects, the resource context Π
and the environment respectively. The objProps function selects the object propositions for a par-
ticular object reference o. These definitions use square brackets to express list comprehensions
and ++ to mean list concatenation.

The objProps function is used to define reference consistency, defined in Figure 3.7, the judg-
ment that an object in the store and all references to it are compatible. This judgment defines
the consistency of the heap and environment along with the semantics of predicates, it is written
µ,Σ, F (Π), ρ ` o ok and verifies three key properties. First, all assertions from the current pred-
icate of this object (tracked in Σ) about primitive values of fields hold (primitivesok). Second,
we gather up all object propositions to this object and check them for consistency. In order to
prove that the HeapInvariants(P ) hold, where P = objProps(µ,Σ,Π, ρ, o), the conditions in
Figure 3.6 have to hold, i.e., the heap should be well formed.

The lookup(Σ(o′), C)(fi) function first uses Σ to obtain the predicate Pred(t) that holds of
o′. It then looks up the defintion of the predicate Pred in the class C and substitutes the formal
parameters in the definition of the predicate with the actual ones. Finally, for each field in the
predicate body, it returns the object propositions that hold for that field. We need a way to obtain
these interior object propositions because our predicates are recursive.

The intuition behind the first heap invariant from Figure 3.6 is that for each object, at most
one predicate is unpacked for that object. The second invariant states that at all times the sum
of all packed and unpacked permissions to a particular predicate on a particular object is equal
to one, and the third invariant states that when looking at a snapshot of the heap at any time one
should see that the predicates that are packed do not share field references.

The rules in Figure 3.9 perform variable binding and checking of primitive expressions taken
from the definitions of predicates. All the primitive expressions are ok if the expressions made
of the values that the fields point to check in the Π context. Figure 3.9 presents judgment rules
for checking of terms that are in a binary expression, for checking of the simultaneous occurence
of values in an expression in our linear theory, for the binding of fields and of variables. The
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objProps(µ,Σ,Π, ρ, o) = [P |o : P ∈ props(µ,Σ,Π, ρ)]
props(µ,Σ,Π, ρ) = fieldProps(µ) + + envProps(Σ,Π, ρ) + + ctxProps(Π)
fieldProps(µ,Σ) = + +o′∈dom(µ) [oi : Pi|µ(o′) = C(o), Pi ∈ lookup(Σ(o′), C)(fi)]
envProps(Σ,Π, ρ) = [o : P | ρ(l) = o, l : P ∈ F (Π)]

ctxProps(Π) = [o : P | o : P ∈ F (Π)]

Figure 3.5: Outstanding Object Propositions

• Pi = unpacked(o@k1 Q) ∈ P ⇒ @Pj 6=i ∈ P such that Pj = unpacked(o@k2 Q)

• ∀o,Q (
∑

oi=o,Qi=Q
ki) == 1, where ki is the fraction in oi@ki Qi ∈ P or unpacked(oi@ki Qi) ∈

P

• ∀i, j such that pred(Pi) 6= pred(Pj), fields(def(pred(Pi), C)) ∩ fields(def(pred(Pj), C)) =
∅, where fields(o.f → o′) = f , pred(o.f → o′) = ∅, pred(o@k Q) = Q and
pred(unpacked(o@k Q)) = Q

Figure 3.6: Definition for HeapInvariants(P )

bindF ields() function does not perform the computation. It is only a rewriting function that
replaces the formal variables with actual values for everything in a formula R representing the
body of a predicate, except for the object propositions, which are not considered primitives. More
specifically, in the rules Ri is rewritten to R′i, where formal parameters are replaced by actual
values.

Finally, we check consistency for each reference o in Figure 3.8. Global consistency es-
tablishes the intrinsic compatibility of a store-environment-context triple. It checks that every
object reference in the store satisfies reference consistency, that every reference in the object
proposition context F (Π) is accounted for in the store and environment, and that indirect refer-
ences ultimately point to object references. In Figure 3.8, by ran(f) we refer to the range of the
function argument f and by dom(f) we refer to the domain of function f .

µ(o) = C(o′)
|o′| = |fields(C)|

objProps(µ,Σ,Π, ρ, o) = P
primitivesok(Π, lookup(Σ(o), C), µ, o)

HeapInvariants(P ) hold

µ,Σ, F (Π), ρ ` o ok

Figure 3.7: Reference Consistency
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ran(ρ) ⊂ dom(µ)
dom(F (Π)) ⊂ dom(ρ) ∪ dom(µ)
{l|(l : P ) ∈ F (Π)} ⊂ {l|ρ(l) = o}

µ,Σ, F (Π), ρ ` dom(µ) ok

µ,Σ, F (Π), ρ ok

Figure 3.8: Object Proposition Consistency

bindF ields(R,R, µ, o) ≡ ⊕(⊗ (v1 binop v2)⊗ (v1 binop v2)⇒ v3)

Π ` ⊕(⊗ (v1 binop v2)⊗ (v1 binop v2)⇒ v3)
R is the definition body of a packed predicate

primitivesok(Π, R, µ, o)
primitivesok

bindF ields(ti, R, µ, o) ≡ vi i = 1, 2

bindF ields(t1 binop t2, R, µ, o) ≡ v1 binop v2
binopok

bindF ields(Ri, R, µ, o) ≡ R′i i = 1, 2

bindF ields(R1 ⊗ R2, R, µ, o) ≡ R′1 ⊗R′2
andok

bindF ields(Ri, Ri, µ, o) ≡ R′i i = 1, 2

bindF ields(R1 ⊕ R2, R, µ, o) ≡ R′1 ⊕R′2
orok

bindF ields(ti, R, µ, o) ≡ vi i = 1, 2
bindF ields(R3, R, µ, o) ≡ R′3

bindF ields((t1 binop t2)⇒ R3, R, µ, o) ≡ (v1 binop v2)⇒ R′3
impliesok

bindF ields(f → x,R, µ, o) ≡ v
fieldignored

µ[o, f ] = v
f → x ∈ R

bindFields(x,R, µ, o) ≡ v
varok

bindF ields(r@k Q(t), R, µ, o) ≡ _
objprop1ignored

bindF ields(unpacked(r@k Q(t)), R, µ, o) ≡ _
objprop2ignored

Figure 3.9: Rules for primitivesok
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3.5 Soundness Proof of Formal Object Proposition Rules
Now we state the main preservation theorem that underlies the soundness of our system:
Theorem 1. (Preservation)

If Γ,Π ` e : T ;∃x.R and µ,Σ, F (Π), ρ ok and µ, ρ, e → µ′, ρ′, e′ and ` Prog then there
exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` e′ : T ;∃x.R and µ′,Σ′, F (Π′), ρ′ ok.

The proof given below uses induction over the derivation of µ, ρ, e→ µ′, ρ′, e′ in the standard
way.

Our system inherits a Progress property from related object calculi such as Featherweight
Java. In the following sections we first present the Substitution Lemma and its proof, the Memory
Consistency lemma and its proof and finally the proof of the Preservation Theorem.

3.5.1 Substitution Lemma
Lemma 1. (Substitution) If Γ;R1 ` e : T ;∃x.R and Γ ` l : T1 and Γ ` y : T1 then
Γ; ([l/y]R1) ` [l/y]e : T ;∃x.[l/y]R, where l replaces all the formal variables y in e.

Proof of Substitution Lemma
The proof is by induction on the derivation of Γ;R1 ` e : T ;∃x.R. Note that there is a clear

correspondence between the structure of e and which rule is used to type it. Thus the cases are on
the structure of e rather than the rule by which the typing judgement was defined. In the proof,
R1 and R do not contain the ⊕ symbol. If the ⊕ symbol was added to these contexts, it would
be straightforward to use induction to prove the lemma using the rule ⊕.

1. e is a value v. The values that e can take in this case are n|null|true|false. We know
Γ;R1 ` v : T ;∃x.R. Since v is a value, [l/y]e = v. We now have to prove that
Γ; ([l/y]R1) ` v : T ; [l/y]R. We trivially obtain this by simply renaming y to l, assuming
that l are fresh variables.

2. e is a variable z, z 6= xi. The proof in this case is very similar to Case 2.

3. e is the variable y. In this case we have only one variable y and one variable l. Now
[l/y]e = l and T1 = T .
From the premise we know that Γ ` l : T and that Γ;R1 ` R. By renaming y to l
we obtain that Γ; [l/y]R1 ` [l/y]R. We use the static rule (TERM) and we obtain that
Γ; ([l/y]R1) ` l : T ;∃x.[l/y]R.

4. e is r.fi. We know that Γ;R1 ` r.fi : T ;∃x.R. We also know by inversion that R1 `
r.fi → ri and that Γ;R1 ` [ri/x]R. Using the induction hypothesis we have: ([l/y]R1) `
[l/y](r.fi → ri) and Γ; ([l/y]R1) ` [l/y][ri/x]R. Since r.fi is just the syntactic rep-
resentation of a field, the substitution will happen in ri: ([l/y]R1) ` (r.fi → [l/y]ri).
Also, we can rewrite [l/y][ri/x]R as [([l/y]ri)/x][l/y]R and so we have Γ; ([l/y]R1) `
[([l/y]ri)/x][l/y]R. Using the rule (FIELD), we obtain that Γ; ([l/y]R1) ` [l/y]r.fi :
T ;∃x.[l/y]R, exactly what we wanted.

5. e is new C(t1). We know Γ;R1 ` new C(t1) : ∃z.C;R, where R is equal to z.f →
t1 ⊗ R1. We also know by inversion that Γ ` t1 : T . Using the induction hypothesis we
have Γ ` [l/y]t1 : T . Using the rule (NEW), we obtain that
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Γ; ([l/y]R1) ` [l/y]new C(t1) : ∃z.C; z.f → [l/y]t1 ⊗ [l/y]R1, which means
Γ; ([l/y]R1) ` [l/y]new C(t1) : ∃z.C; [l/y](z.f → t1 ⊗R1)

exactly what we wanted.

6. e is if(t1){e1}else{e2}. We know Γ;R1 ` if(t1){e1}else{e2} : ∃x.T ;R3 ⊕R2.
We also know by inversion that Γ; (R1 ⊗ t1 = true) ` e1 : ∃x.T ;R3 and that Γ; (R1 ⊗
t1 = false) ` e2 : ∃x.T ;R2. Using the induction hypothesis, we have Γ; ([l/y]R1 ⊗
t1 = true) ` [l/y]e1 : ∃x.T ; [l/y]R3 and that Γ; ([l/y]R1 ⊗ t1 = false) ` [l/y]e1 :
∃x.T ; [l/y]R2. By applying the (IF) rule, we obtain that Γ; ([l/y]R1) ` if(t1){e1}else{e2} :
∃x.T ; [l/y]R3⊕ [l/y]R2. Since [l/y]R3⊕ [l/y]R2 is equal to [l/y](R3⊕R2) we obtain that
Γ; ([l/y]R1) ` if(t1){e1}else{e2} : ∃x.T ; [l/y](R3 ⊕R2), exactly what we wanted.

7. e is let x = e1 in e2. We know Γ;R1 ` let x = e1 in e2 : ∃w.T ;R. We also know
by inversion that Γ;R1 ` e1 : ∃x.T1;R2. Using the induction hypothesis, we obtain that
Γ; ([l/y]R1) ` [l/y]e1 : ∃x.T1; [l/y]R2. We also know by inversion that (Γ, x : T1);R2 `
e2 : ∃w.T ;R. By applying induction to this judgment we obtain that (Γ, x : T1); [l/y]R2 `
[l/y]e2 : ∃w.T ; [l/y]R. Now, we can apply the (LET) rule and we obtain that Γ; ([l/y]R1) `
[l/y](let x = e1 in e2) : ∃w.T ; [l/y]R, which is exactly what we wanted.

8. e is pack r@k Q(t1) in e1, with 0 < k < 1. We know that Γ;R1 ` pack r@k Q(t1) in e1 :
∃x.T ;R. We also know by inversion that Γ; (R1 ⊗ r@k Q(t1)) ` e1 : ∃x.T ;R.
Using the induction hypothesis we obtain that Γ; [l/y](R1 ⊗ r@k Q(t1)) ` [l/y]e1 :
∃x.T ; [l/y]R, i.e.,
Γ; [l/y]R1 ⊗ ([l/y]r)@k Q([l/y]t1) ` [l/y]e1 : ∃x.T ; [l/y]R. The other two premises of
the (PACK2) rule can also be obtained by inversion. From the first premise Γ;R1 ` r :
C; [t1/x]R2 ⊗ unpacked(r@k Q(t1))⊗ Π1 we can deduce by induction that
Γ; ([l/y]R1) ` [l/y]r : C; [l/y]([t1/x]R2 ⊗ unpacked(r@k Q(t1))⊗ Π1), i.e.,
Γ; ([l/y]R1) ` [l/y]r : C; [l/y]([t1/x]R2)⊗unpacked(([l/y]r)@k Q([l/y]t1))⊗([l/y]Π1)

The second premise is predicate Q(Tx) ≡ R2 ∈ C.
So now we can apply the (PACK2) rule and we get that
Γ; ([l/y]R1) ` (pack ([l/y]r)@k Q([l/y]t1)) in [l/y]e1 : ∃x.T ; [l/y]R.
Thus, Γ; ([l/y]R1) ` [l/y](pack r@k Q(t1) in e1) : ∃x.T ; [l/y]R, exactly what we
wanted.

9. e is pack r@1Q2(t2) in e1. The proof in this case is analogous to the one for the previous
case, but the fraction k will be replaced by 1 across the proof.

10. e is unpack r@k Q(t1) in e1 for 0 < k < 1. We know that
Γ;R1 ` unpack r@k Q(t1) in e1 : ∃x.T ;R. We also know by inversion that Γ; (Π1 ⊗
[t1/x]R2 ⊗ unpacked(r@k Q(t1)) ` e1 : ∃x.T ;R.
Using the induction hypothesis, we obtain that
Γ; [l/y](Π1 ⊗ [t1/x]R2 ⊗ unpacked(r@k Q(t1)) ` [l/y]e : ∃x.T ; [l/y]R, i.e.,
Γ; [l/y]Π1 ⊗ [[l/y](t1/x)]R2 ⊗ unpacked([l/y]r@k Q([l/y]t1) ` [l/y]e : ∃x.T ; [l/y]R

The other premises of the (UNPACK2) rule can also be obtained by inversion. From the
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first premise Γ;R1 ` r : C; r@k Q(t1) ⊗ Π1 we obtain by induction that Γ; ([l/y]R1) `
[l/y]r : C; [l/y](r@k Q(t1)⊗ Π1), i.e.,
Γ; ([l/y]R1) ` [l/y]r : C; [l/y]r@k Q([l/y]t1)⊗ [l/y]Π1

The second premise is predicate Q(Tx) ≡ R2 ∈ C.
Now we can apply the (UNPACK2) rule and we get that
Γ; ([l/y]R1) ` unpack [l/y]r@k Q([l/y]t1) in [l/y]e1 : ∃x.T ; [l/y]R. Thus Γ; ([l/y]R1) `
[l/y](unpack r@k in Q(t1)) in [l/y]e1 : ∃x.T ; [l/y]R, exactly what we wanted to prove.

11. e is unpack r@1 Q(t1) in e1. The proof in this case is analogous to the one for the
previous case, but the fraction k will be replaced by 1 across the proof.

12. e is r0.m(t1). We know that Γ;R1 ` r0.m(t1) : Tr;R where R is
∃ result.Tr; [r0/this][t1/x]R⊗Π1. We know by inversion that Γ;R1 ` [r0/this][t1/x]R1⊗
Π1. Using the induction hypothesis, we obtain that Γ; ([l/y]R1) ` [l/y]([r0/this][t1/x]R1⊗
Π1). This is equivalent to writing Γ; ([l/y]R1) ` [r0/this][[l/y]t1/x][l/y]R1 ⊗ [l/y]Π1.
By inversion we know that Γ ` r0 : C0 and Γ ` t1 : T . Using the induction hypothesis
we obtain that Γ ` [l/y]r0 : C0 and Γ ` [l/y]t1 : T . Also by inversion we know that
mtype(m,C0) = ∀x : T .∃result.Tr;R′1( R2.
We can infer that mtype(m,C0) = ∀x : T .∃result : Tr.R1( R2 will hold for [l/y]t1 : T
(because of the ∀ quantifier of the (MTYPE) judgement). We can now apply the (CALL)
rule and we obtain that Γ; ([l/y]R1) ` (([l/y]r0).m([l/y]t1)) :

∃ result.Tr; [[l/y]r0/this][[l/y]t1/x][l/y]R⊗ [l/y]Π1.
Since r0.m([l/y]t1) is equal to [l/y](r0.m(t1)) and [r0/this][[l/y]t1/x][l/y]R is equal to
[l/y]([r0/this][t1/x]R), we obtain that
Γ; ([l/y]R1) ` [l/y](r0.m(t1)) : ∃ result.Tr; [l/y]([r0/this][t1/x]R ⊗ Π1). This is exactly
what we wanted to prove.

13. e is r1.fi = t1. We know that Γ;R1 ` (r1.fi = t1) : ∃x.Ti;x@k′ Q′(t′)⊗ t1@k0 Q0(t0)⊗
r1.fi → t1 ⊗ Π3. We know by inversion that Γ;R1 ` t1 : Ti; t1@k0 Q0(t0) ⊗ Π1. Using
the induction hypothesis, we obtain that Γ; ([l/y]R1) ` [l/y]t1 : Ti; [l/y](t1@k0 Q0(t0)).
This means that [l/y](t1@k0 Q0(t0)) = ([l/y]t1)@k0 [l/y]Q0(t0). The other premises of
the (ASSIGN) rule can also be obtained by inversion.
From the second premise Γ; Π1 ` r1.fi : Ti; r

′
i@k

′ Q′(t′) ⊗ Π2 we get by induction
that Γ; ([l/y]R1) ` r1.fi : Ti; [l/y](r′i@k

′ Q′(t′) ⊗ Π2). From the third premise Π2 `
r1.fi → r′i ⊗ Π3 we get by induction that ([l/y]Π2) ` r1.fi → [l/y]r′i ⊗ [l/y]Π3. So
now we can apply the (ASSIGN) rule and we get that Γ; ([l/y]R1) ` r1.fi = [l/y]t1 :
∃x.Ti; [l/y](x@k′ Q′(t′))⊗ [l/y](t@k0 Q0(t0))⊗ r1.fi → [l/y]t1). Since (r1.fi = [l/y]t1)
is equal to ([l/y](r1.fi = t1)) and [l/y](x@k′ Q′(t′)⊗[l/y](t1@k0 Q0(t0))⊗r1.fi → [l/y]t1
is equal to [l/y](x@k′ Q′(t′)⊗ t@k0 Q0(t0)⊗ r1.fi → t1), we finally obtain that
Γ; ([l/y]R1) ` [l/y](r1.fi = t1) : ∃x.Ti; [l/y](x@k′ Q′(t′) ⊗ t1@k0 Q0(t0) ⊗ r1.fi →
t1 ⊗ Π3). This is exactly what we wanted to prove.
We have now gone through all the induction cases and we have completed the proof of the
Substitution Lemma.
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3.5.2 Framing Lemma
If Γ, Π1 ` e : T ; Π2 and Π3 contains no unpacked predicates, then Γ,Π1⊗Π3 ` e : T ; Π2⊗Π3.

The proof is straightforward following familiar patterns, similar to the proof of Lemma 8
from page L18.6 of Prof. Frank Pfenning’s Lecture 18 on linear logic [63].

3.5.3 Memory Consistency Lemma
We also need to define the Memory Consistency lemma below, which could be seen as a framing
lemma that proves that the execution context for each step in the execution is sound. The cases of
the Memory Consistency lemma follow the dynamic semantics rules, except for the ommission of
the (LET-E), (LET-V), (IF-TRUE) and (IF-FALSE) cases. We ommitted the (LET-E) case because
the Preservation Theorem, that we prove by induction on the dynamic semantics rules, uses the
inductive argument and the Substitution Lemma in its (LET-E) case and thus we do not need the
help of the Memory Consistency lemma. Similarly we use the Substitution lemma in the proof of
the (LET-V) case of the Preservation Theorem. In the (IF-TRUE) and (IF-FALSE) cases we start
with a larger context that is restricted by one branch or the other of the if statement, and hence it
is still sound.
Lemma 2. (Memory Consistency)

1. (LOOKUP) If µ, (Σ, l  Q), (F (Π), l  R), ρ ok then µ, (Σ, ρ(l)  Q), (F (Π), ρ(l)  
R), ρ ok, where R = x@k Q.

2. (NEW) If µ,Σ, F (Π), ρ ok and o /∈ dom(µ), then
µ′ = µ[o C(ρ(l))],Σ′ = (Σ), F (Π′) = F (Π), ρ ok.

3. (LET-O) If µ, (Σ, l  Q), (F (Π), l  R), ρ ok and l′ /∈ dom(ρ) then µ, (Σ, l′  
Q), (F (Π), l′  R), ρ[l′  ρ(l)] ok, where R = x@k Q.

4. (PACK-2) If µ, (Σ1,Σ2), (F (Π1 ⊗ Π2)), ρ ok and
unpacked(r@k Q(t1)) ∈ Π1, then µ, (Σ2, r → Q(t1)), (F (Π2), r  r@k Q(t1)), ρ ok.

5. (PACK-1) If µ, (Σ1,Σ2), (F (Π1 ⊗ Π2)), ρ ok and
unpacked(r@1 Q1(t1)) ∈ Π1, then
µ, (Σ2, r  Q2(t2)), (F (Π2), r  r@1 Q2(t2)), ρ ok.

6. (UNPACK-2) If µ, (Σ0,Σ2), (F (Π0 ⊗ Π2)), ρ ok and r@k Q(t1) ∈ Π0

and predicate Q(T x) ≡ R1 ∈ C and
∀r′, x : ( unpacked(r′@k′ Q(x)) ∈ (Π0 ⊗ Π2) ⇒ Π0 ⊗ Π2 ` r 6= r′) then µ,Σ′ =
(Σ2, r  unpacked),
F (Π′) = (F (Π2), F ([t1/x]R1 ⊗ unpacked(r@k Q(t1)))),

ρ ok.
7. (UNPACK-1) If µ, (Σ0,Σ2), (F (Π0 ⊗ Π2)), ρ ok and r@1 Q(t1) ∈ Π0

and predicate Q(T x) ≡ R1 ∈ C
then µ,Σ′ = (Σ2, r  unpacked),
F (Π′) = (F (Π2), F ([t1/x]R1 ⊗ unpacked(r@1 Q(t1)))),

ρ ok.
8. (FIELD) If µ,Σ, F (Π), ρ ok and µ(ρ(l)) = C(o) and fields(C) = Tf then µ,Σ′ =

(Σ, oi  Q), F (Π′) = (F (Π), oi  R), ρ ok, where R = x@k Q.
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9. (ASSIGN) If µ,Σ = (Σ0, l2  Q′(t′)), F (Π) = (F (Π0), l2  l2@k
′Q′(t′)⊗x@k0Q0(t0)), ρ ok,

l1.fi → x and ρ(l2) = o2, then when l1.fi = l2 we have:
µ′ = µ[ρ(l1) [o2/oi]C(o)],Σ′ = (Σ, o2  Q′(t′)),
F (Π′) = (F (Π), o2  o2@k

′ Q′(t′)⊗
x@k0 Q0(t0)), ρ ok

10. (INVOKE) If µ,Σ, F (Π), ρ ok where Π = (R1⊗Π1) and R1( R, then µ,Σ′, F (Π′), ρ ok
where Π′ = (R⊗Π1) and Σ′ corresponds to Π′. Π1 does not contain unpacked predicates.

Proof of memory consistency lemma
1. (LOOKUP)

Assuming µ, (Σ, l  Q), (F (Π), l  R), ρ ok we need to show that µ, (Σ, ρ(l)  
Q), (F (Π), ρ(l)  R), ρ ok, where R = x@k Q. Memory does not change. The
only object potentially affected is ρ(l), which is equal to o, say. Since props(µ, (Σ, l  
Q), (F (Π), l  R), ρ, o) = props(µ, (Σ, o Q), (F (Π), o R), ρ, o), we can conclude
that µ, (Σ, ρ(l) Q), (Π, ρ(l) R), ρ ` o ok, and therefore µ, (Σ, o Q), (F (Π), o 
R), ρ ok.

2. (NEW)
Assuming µ,Σ, F (Π), ρ ok and o /∈ dom(µ), we have to show that
µ′ = µ[o  C(ρ(l))],Σ′ = (Σ), F (Π′) = F (Π), ρ ok. It must be that ρ(l) = o′ for some
objects o′. The objects o′ are being referred to from one more place now, from the fields
of o but their object propositions do not change. The only objects affected are o, o′. Since
µ(o′) = µ′(o′) and
props(µ,Σ, F (Π), ρ, o′) = props(µ′,Σ′, F (Π′), ρ, o′) we can deduce that
µ′,Σ′, F (Π′), ρ ` o′ ok.
The heap invariants are satisfied and we can deduce that µ′,Σ′, F (Π′), ρ ` o ok. Thus,
µ′,Σ′, F (Π′), ρ ok.

3. (LET-O)
Assuming µ, (Σ, l  Q), (F (Π), l  R), ρ ok and l′ /∈ dom(ρ), we have to show that
µ, (Σ, l′  Q), (F (Π), l′  R), ρ[l′  ρ(l)] ok, where R = x@k Q. The only object
affected can be ρ(l). By the same argument above, that the props sets are identical, we can
conclude that µ, (Σ, l′  Q), (F (Π), l′  R), ρ[l′  ρ(l)] ok.

4. (PACK-2)
Assuming Ω1 = [µ,Σ = (Σ1,Σ2), F (Π) = (F (Π1 ⊗ Π2)), ρ] ok, we have to show that
Ω2 = [µ,Σ′ = (Σ2, r  Q(t1)), F (Π′) = (F (Π2), r  r@k Q(t1)), ρ] ok. Let’s take an
arbitrary o. Since µ and ρ don’t change, the only changes in the objProps corresponding
to Ω1 and to Ω2 come from the different o  R extracted from Π and from Π′. We have
to show that the heap invariants are preserved by the different o  R in F (Π′), knowing
that the invariants are preserved by the different o R in F (Π1 ⊗Π2). Knowing this, we
deduce that the invariants cannot be broken by the assertions in Π2. Thus, we only have to
see if r  x@k Q(t1) is in contradiction with any assertions about r in Π2. We also know
that unpacked(r@k Q(t1)) is in Π1.
Since Ω1 ok, the only object propositions in Π2 about r have to be of the form r@k1 Q(t1)
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such that the sum of k and the k1 fractions is at most 1. Π2 could also contain object propo-
sitions of the form unpacked(r@k1 Qi()), with Qi 6= Q, but the fields in the predicates are
disjoint, according to the heap invariants. Thus, (Π2, r  r@k Q(t1)) satisfies the heap
invariants, Σ′ is compatible with Π′ and the primitives are preserved, so µ,Σ′,Π′, ρ ok.

5. (PACK-1)
Assuming Ω1 = [µ, (Σ1,Σ2), F (Π1 ⊗ Π2), ρ] ok, we have to show that Ω2 = [µ,Σ′ =
(Σ2, r  Q2(t2)),

F (Π′) = (F (Π2), r  r@1 Q2(t2)), ρ] ok,
where [t2/x]R2 ∈ Π1, with predicate Q2(T x) ≡ R2 ∈ C. Let’s take an arbitrary o.
Since µ and ρ don’t change, the only changes in the objProps corresponding to Ω1 and
to Ω2 come from the different o  R extracted from F (Π1 ⊗ Π2) and from (F (Π2), r  
r@1 Q2(t2)). We have to show that the heap invariants are preserved by the different
o  R in (F (Π2), r  r@1 Q2(t2), knowing that the invariants are preserved by the
different o  R in F (Π1 ⊗ Π2). Thus, we only have to see if r  r@1 Q2(t2) is in
contradiction with any assertions about r in F (Π2).
Since Ω1 ok and unpacked(r@1 Q1(t1)) ∈ Π1, there are no more object propositions
about r and the predicate Q2 in Π2. Π2 could also contain object propositions of the
form unpacked(r@k1 Qi()), with Qi 6= Q, but the fields in the predicates are disjoint,
according to the heap invariants. Thus, (Π2, r  r@1Q2(t2)) satisfies the heap invariants,
Σ′ is compatible with Π′ and the primitives are preserved, so µ,Σ′,Π′, ρ ok.

6. (UNPACK-2)
Assuming Ω1 = [µ,Σ = (Σ0,Σ2), F (Π) = F (Π0 ⊗ Π2), ρ] ok, we have to show that
Ω2 = [µ,Σ′ = (Σ2, r  unpacked),

F (Π′) = (F (Π2), [t1/x]R1), ρ] ok.
Let’s take an arbitrary o. Since µ and ρ don’t change, the only changes in the objProps
corresponding to Ω1 and to Ω2 come from the different o R extracted from F (Π0⊗Π2)
and from F (Π′). We have to show that the heap invariants are preserved by the different
o  R in F (Π′), knowing that the invariants are preserved by the different o  R in
F (Π0⊗Π2). Knowing this, we deduce that the invariants cannot be broken by the assertions
in Π2. Thus, we only have to see if r  unpacked(r@k Q(t1)) and [t1/x]R1 are in
contradiction with any assertions about r in F (Π2).
Since ∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ (Π0∪Π2)⇒ Π0,Π2 ` r 6= r′) the heap invariants
allow us to infer that Π2 does not contain any object that is unpacked from the predicate
Q and aliases with r. We also know that r@k Q(t1) ∈ Π0. Using the heap invariants,
we deduce that if there is an object proposition referring to r in Π2, this object proposition
must be r@k1 Q(t1) with the sum of fractions being less than 1. Π2 might also contain
r@k1 Q2(t2) such that the field keys of Q2 and Q are disjoint.
The formula [t1/x]R1 corresponds to r, after it got unpacked. In this formula there might
be object propositions referring to r or to other references that appear in Π2. Since r was
packed to Q, using object propositions from Π0, right before being unpacked and since
Q(x) = R1, we deduce that [t1/x]R1 will only contain object propositions that are already
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in Π0. This means that the different o  R extracted from F (Π0 ⊗ Π2) are compatible
with each other and with r  unpacked(r@k Q(t1)) ( same reasoning as in the previous
paragraph).
The heap invariants hold of Π′ because there is no object that aliases with r that is un-
packed from Q in Π′, and also because r  unpacked(r@k Q(t1)), r@k Q(t1) and
[t1/x]R1 do not contain object propositions or primitives that are not compatible. Note
that when we unpack a predicate we do not get information if the recursive internal object
propositions of that predicate are packed or not, we only get the corresponding fraction.
Thus, µ,Σ′, F (Π′), ρ ok

7. (UNPACK-1)
The proof of this case is very similar to the proof of the previous case UNPACK-2.

8. (FIELD)
Assuming µ,Σ, F (Π), ρ ok and µ(ρ(l)) = C(o) and
fields(C) = Tf , we have to show that µ,Σ′ = (Σ, oi  Q), F (Π′) = (F (Π), oi  
R), ρ ok, where R = x@k Q. The only object affected is oi. Because of the way
fieldProps(µ,Σ′) is defined, any object proposition about oi will be extracted from the
object propositions referring to µ(ρ(l)), which are already in Π.
This means that props(µ,Σ, F (Π), ρ, oi) = props(µ,Σ′, F (Π′), ρ, oi) and µ,Σ′, F (Π′), ρ `
oi ok. Thus µ,Σ′, F (Π′), ρ ok.

9. (ASSIGN)
Assuming µ,Σ = (Σ0, l2  Q′(t′)), F (Π) = (F (Π0), l2  l2@k

′ Q′(t′)), ρ ok and
ρ(l2) = o2, we have to prove that µ′ = µ[ρ(l1) [o2/oi]C(o)],Σ′ = (Σ, o2  Q′(t′)),

F (Π′) = (F (Π), o2  o2@k
′ Q′(t′)), ρ ok. The only object that changes is oi.

By being able to assign to a field it means that the object proposition from which the field
was taken is already unpacked. By changing the value of that field we only influence that
unpacked predicate. Nevertheless the primitives have to be ok only for packed predicates,
as the unpacked predicates can have their primitive operations not hold temporarily.
Since props(µ,Σ, F (Π), ρ, oi) = props(µ′,Σ′, F (Π′), ρ, oi) and
µ,Σ, F (Π), ρ ` oi ok, we can conclude that
µ′,Σ′, F (Π′), ρ ` oi ok and thus µ′,Σ′, F (Π′), ρ ok.

10. (INVOKE) We first want to prove that the three heap invariants still hold. The first invari-
ant will hold because Π1 does not contain any unpacked predicates and R is obtained by
entailment from R1 which satisfies the ok judgment.
For the second invariant: the fractions that we get out in the post-condition R are the
same as the fractions that we put in the pre-condition R1 and we know that µ,Σ, F (R1 ⊗
Π1), ρ ok.
For the third invariant: there is no change in the definition of the predicates and hence this
heap invariant will hold.
Since we do not allow unpacked predicates in Pi1 and we know that the primitives were
holding for the pre-condition R1, the primitives will hold.
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This was all that we needed to prove reference consistency as defined in Figure 3.7 and
hence µ,Σ′, F (Π′), ρ ok.

3.5.4 Proof of Preservation Theorem
The proof for the Preservation Theorem is done by induction on the dynamic semantics rules.

Case (LOOKUP)
To prove: If Γ,Π ` l : ∃ x.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, l → µ, ρ, ρ(l) and ` Prog

then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` ρ(l) : ∃ x.T ;R and µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` l : ∃ x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, l → µ, ρ, ρ(l)

2. By inversion on 1a

(a) Γ = (Γ1, l : T )

(b) F (Π) = (F (Π1), l R), where R = x@k Q

(c) Σ = (Σ1, l Q), where Σ1 is the field store corresponding to Π1.

3. µ, (Γ1, l : T ), (F (Π1), l R), (Σ1, l Q) ok -by 2

4. ρ(l) = o, for some o - by Object Proposition Consistency from Figure 3.8

5. (Γ, o : T ), (Π1, o R) ` o : ∃x.T ;R -by the (TERM) proof rule

6. Let Γ′ = (Γ, ρ(l) : T ), F (Π′) = (F (Π1), ρ(l) R) and Σ′ = (Σ1, ρ(l) Q)

7. Γ′,Π′ ` ρ(l) : ∃x.T ;R -by 6,5

8. µ, (Σ1, ρ(l)  Q), (F (Π1), ρ(l)  R), ρ ok -by 3,4, the LOOKUP case of the Memory
Consistency lemma

9. µ,Σ′, F (Π′), ρ ok -by 6, 8

10. q.e.d -by 7, 9

Case (NEW)
To prove: If Γ,Π ` new C(l) : ∃y.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, new C(l) → µ′, ρ, o

and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` o : ∃y.T ;R and µ′,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` new C(l) : ∃y.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, new C(l)→ µ′, ρ, o

(d) o /∈ dom(µ)

(e) µ′ = µ[o → C(ρ(l))]. The intuition here is that if the notation l denotes l1, l2, ..., ln
then ρ(l) denotes ρ(l1), ρ(l2), ..., ρ(ln).

2. By inversion on 1a
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(a) ∃y.T ;R = ∃z.C; z.f → t⊗ Π1

(b) Γ = (Γ1, l : T )

(c) fields(C) = T f

3. Let Γ′ = (Γ, o : C), F (Π′) = (F (Π1), o  (o.f → t)), where this means o.f1 → t1 ⊗
o.f21→ t2 ⊗ ....

4. Let Σ′ = (Σ, o unpacked)

5. Γ′,Π′ ` o : ∃z.C; z.f → t⊗ Π1 -by (TERM)

6. µ[o C(ρ(l))], (Σ, o unpacked), (F (Π1), o (o.f → t)), ρ ok -by memory consis-
tency lemma

7. q.e.d. -by 5, 6
Case (LET-O)
To prove: If Γ,Π ` let x = o in e2 : ∃ w.T2;R3 and µ,Σ, F (Π), ρ ok and µ, ρ, let x =

o in e2 → µ, ρ[l  o], [l/x]e2 and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ `
[l/x]e2 : T ;∃ w.T2;R3 and µ,Σ′, F (Π′), ρ[l o] ok.

1. By assumption

(a) Γ,Π ` let x = o in e2 : ∃ w.T2;R3

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, let x = o in e2 → µ, ρ[l o], [l/x]e2

(d) l /∈ dom(ρ)

2. By inversion on 1a

(a) Γ; Π ` o : ∃x.T1;R1 ⊗ Π2

(b) (Γ, x : T1); (R1 ⊗ Π2) ` e2 : ∃w.T2;R3

3. Γ = (Γ1, o : T1), F (Π) = (F (Π2), o R1) -by inversion on 2a

4. Also, Σ = (Σ1, o Q1), where R1 = x@k Q1

5. Let Γ′ = (Γ, l : T1), F (Π′) = (F (Π2), l  R1), Σ′ = (Σ2, l  Q1) , where Σ2 corre-
sponds to Π2

6. (Γ, l : T1); (Π2 ⊗R1) ` [l/x]e2 : ∃w.T2; [l/x]R3 -by 1d, 2b, Substitution Lemma

7. Γ′,Π′ ` e2 : ∃ w.T2;R3 -by 6

8. µ, (Σ2, o Q1), (F (Π2), o R1), ρ ok -by 2a

9. µ, (Σ2, l  Q1), (F (Π2), l  R1), ρ[l  o] ok -by the LET-O case of the Memory Con-
sistency lemma

10. µ,Σ′, F (Π′), ρ[l o] ok

11. q.e.d. -by 10, 7
Case (LET-E)
To prove: If Γ,Π ` let x = e1 in e2 : ∃w.T2;R3 and µ,Σ, F (Π), ρ ok and µ, ρ, let x =

e1 in e2 → µ′, ρ′, let x = e′ in e2 and ` Prog then there exists Π′ , Γ′ and Σ′ such that
Γ′,Π′ ` let x = e′ in e2 : ∃w.T2;R3 and µ′,Σ′, F (Π′), ρ′ ok.
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1. By assumption

(a) Γ,Π ` let x = e1 in e2 : ∃w.T2;R3

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, let x = e1 in e2 → µ′, ρ′, let x = e′1 in e2

(d) µ, ρ, e1 → µ′, ρ′, e′

2. By inversion on 1a

(a) Γ,Π ` e1 : ∃x.T1;R1 ⊗ Π2

(b) (Γ, x : T1); (R1 ⊗ Π2) ` e2 : ∃w.T2;R3

3. By induction on 1b, 1d, 2a

(a) ∃Γ0; Π′ such that Γ0,Π
′ ` e′ : ∃x.T1;R1 ⊗ Π2

(b) ∃ Σ′ such that µ′,Σ′, F (Π′), ρ′ ok

4. Let Γ′ = Γ ∪ Γ0

5. Γ′; Π′ ` let x = e′1 in e2 : ∃w.T2;R3 -by 3a,2b, the (LET) static semantics proof rule

6. q.e.d. -by 3b,5

Case (LET-V) To prove: If Γ,Π ` let x = v in e2 : ∃ w.T2;R3 and µ,Σ, F (Π), ρ ok and
µ, ρ, let x = v in e2 → µ, ρ, [v/x]e2 and ` Prog then there exists Π′ , Γ′ and Σ′ such that
Γ′,Π′ ` [v/x]e2 : T ;∃ w.T2;R3 and µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` let x = v in e2 : ∃ w.T2;R3

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, let x = v in e2 → µ, ρ, [v/x]e2

(d) v ∈ {n, true, false}
2. By inversion on 1a

(a) Γ; Π ` v : ∃x.T1; Π

(b) (Γ, x : T1); Π ` e2 : ∃w.T2;R3

3. Γ = (Γ1, v : T1) -by inversion on 2a

4. Let Γ′ = Γ, F (Π′) = F (Π), Σ′ = Σ

5. Γ; Π ` [v/x]e2 : ∃w.T2; [v/x]R3 -by 2b and Substitution Lemma

6. µ,Σ′, F (Π′), ρ ok

7. q.e.d. -by 6, 5

Case (PACK)
Subcase: the static semantics rule corresponding to (PACK) is (PACK2).
To prove: If Γ,Π ` pack r@k Q(t1) in e1 : ∃x.T ;R and
µ,Σ, F (Π), ρ ok and µ, ρ, pack r to R1 in e1 → µ, ρ, e1 and ` Prog then there exists Π′ ,

Γ′ and Σ′ such that Γ′,Π′ ` e1 : ∃x.T ;R and µ,Σ′, F (Π′), ρ ok.

1. By assumption
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(a) Γ,Π ` pack r@k Q(t1) in e1 : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, pack r@k Q(t1) in e1 → µ, ρ, e1

2. By inversion on (PACK2)

(a) Γ; Π ` r : C.[t1/x]R1⊗
unpacked(r@k Q(t1))⊗ Π1

(b) Γ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

(c) predicate Q(Tx) ≡ R1 ∈ C
(d) 0 < k < 1

3. Let F (Π′) = (F (Π1), r  r@k Q(t1)), Σ′ = (Σ1, r  Q(t1), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  Q(t1)), (F (Π1), r  r@k Q(t1)), ρ ok -by the (PACK-2) case of the Memory
Consistency lemma

6. q.e.d. -by 4, 5

Subcase: the static semantics rule corresponding to (PACK) is (PACK1).
To prove: If Γ,Π ` pack r@1Q2(t2) in e : ∃x.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, pack r to R1 in e →

µ, ρ, e and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` e : ∃x.T ;R and µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` pack r@1 Q2(t2) in e : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, pack r@1 Q2(t2) in e→ µ, ρ, e

2. By inversion on (PACK1)

(a) Γ; Π ` r : C; [t2/x]R2 ⊗ unpacked(r@1 Q2(t2))⊗ Π1

(b) Γ; (Π1 ⊗ r@1 Q2(t2)) ` e : ∃x.T ;R

3. Let F (Π′) = (F (Π1), r  r@1 Q2(t2)), Σ′ = (Σ1, r  Q2(t2)), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  Q2(t2)), (F (Π1), r  r@1 Q2(t2)), ρ ok -by the (PACK-1) case of the Mem-
ory Consistency lemma

6. q.e.d. -by 4, 5

Case (UNPACK)
Subcase: the static semantics rule corresponding to (UNPACK) is (UNPACK2).
To prove: If Γ,Π ` unpack r@k Q(t1) in e : ∃x.T ;R and µ,Σ, F (Π), ρ ok and
µ, ρ, unpack r from R1 in e → µ, ρ, e and ` Prog then there exists Π′ , Γ′ and Σ′ such

that Γ′,Π′ ` e : ∃x.T ;R and µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` unpack r@k Q(t1) in e : ∃x.T ;R
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(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, unpack r@k Q(t1) in e→ µ, ρ, e

2. By inversion on (UNPACK2)

(a) Γ; Π ` r : C; r@k Q(t1)⊗ Π1

(b) Γ; (Π1 ⊗ [t1/x]R1⊗
unpacked(r@k Q(t1))) ` e : ∃x.T ;R

(c) ∀r′, t : ( unpacked(r′@k′ Q(t)) ∈ Π ⇒ Π ` r 6= r′), meaning that there is no other
unpacked predicate Q for r or any alias of r

(d) predicate Q(x) ≡ R1 ∈ C
(e) 0 < k < 1

3. Let F (Π′) = (F (Π1 ⊗ [t1/x]R1)),

r  unpacked(r@k Q(t1))),
Σ′ = (Σ1, r  unpacked), Γ′ = Γ, where Σ1 corresponds to Π1

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  unpacked), (F (Π1 ⊗ [t1/x]R1)),

r  unpacked(r@k Q(t1))), ρ ok -by the case (UNPACK-2) of the Memory Consistency
lemma

6. q.e.d. -by 4, 5

Subcase: the static semantics rule corresponding to (UNPACK) is (UNPACK1).
To prove: If Γ,Π ` unpack r@1 Q(t1) in e : ∃x.T ;R and µ,Σ, F (Π), ρ ok and
µ, ρ, unpack r from R1 in e → µ, ρ, e and ` Prog then there exists Π′ , Γ′ and Σ′ such

that Γ′,Π′ ` e : ∃x.T ;R and µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` unpack r@1 Q(t1) in e : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, unpack r@1 Q(t1) in e→ µ, ρ, e

2. By inversion on (UNPACK1)

(a) Γ; Π ` r : T1; r@1 Q(t1)⊗ Π1

(b) Γ; (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@1 Q(t1))) ` e : ∃x.T ;R

(c) predicate Q(x) ≡ R1 ∈ C
3. Let F (Π′) = F (Π1 ⊗ [t1/x]R1 ⊗ unpacked(r@1 Q(t1))),

Σ′ = (Σ1, r  unpacked), Γ′ = Γ

4. Γ′,Π′ ` e : ∃x.T ;R -by 2b, 3

5. µ, (Σ1, r  unpacked), F (Π1⊗[t1/x]R1⊗unpacked(r@1Q(t1))), ρ ok -by the (UNPACK-
1) case of the Memory Consistency lemma

6. q.e.d. -by 4, 5
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Case (IF-TRUE)
To prove: If Γ,Π ` if(true){e1}else{e2} : ∃x.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, if(true, e1, e2) →

µ, ρ, e1 and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` e1 : ∃x.T ;R and
µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` if(true){e1}else{e2} : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, if(true){e1}{e2} → µ, ρ, e1

(d) ∃x.T ;R = ∃x.T ;R1 ⊕R2

2. By inversion on the static semantics rule (IF): Γ,Π ` e1 : ∃x.T ;R1

3. Let Γ′ = Γ,Π′ = Π,Σ′ = Σ

4. R1 ⊕R2 is true if R1 holds or if R2 holds

5. Γ′,Π′ ` e1 : ∃x.T ;R1 ⊕R2 -by 2,3,4

6. µ,Σ′, F (Π′), ρ ok -by 3,1b

7. q.e.d. -by 5,6

Case (IF-FALSE)
To prove: If Γ,Π ` if(false){e1}else{e2} : ∃x.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, if(false, e1, e2) →

µ, ρ, e2 and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` e2 : ∃x.T ;R and
µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` if(false){e1}else{e2} : ∃x.T ;R

(b) µ,Σ, F (Π), ρ ok

(c) µ, ρ, if(false){e1}else{e2} → µ, ρ, e2

(d) ∃x.T ;R = ∃x.T ;R1 ⊕R2

2. By inversion on the static semantics rule (IF): Γ,Π ` e2 : ∃x.T ;R2

3. Let Γ′ = Γ,Π′ = Π,Σ′ = Σ

4. R1 ⊕R2 is true if R1 holds or if R2 holds

5. Γ′,Π′ ` e2 : ∃x.T ;R1 ⊕R2 -by 2,3,4

6. µ,Σ′, F (Π′), ρ ok -by 3,1b

7. q.e.d. -by 5,6

Case (FIELD)
To prove: If Γ,Π ` l.fi : ∃x.Ti;R and µ,Σ, F (Π), ρ ok and µ, ρ, l.fi → µ, ρ, oi and ` Prog

then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` oi : ∃x.Ti;R and µ,Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` l.fi : ∃x.Ti;R
(b) µ,Σ, F (Π), ρ ok
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(c) µ, ρ, l.fi → µ′, ρ, oi

(d) µ(ρ(l)) = C(o)

(e) fields(C) = Tf

2. By inversion on the static semantics rule (FIELD)

(a) l.fi : Ti is a field of C

(b) Γ; Π ` [oi/x]R

(c) l.fi → oi

3. Let Γ′ = (Γ, oi : Ti), F (Π′) = (F (Π), oi  R)

4. Let Σ′ = (Σ, oi  Q), where R = x@k Q

5. Γ′,Π′ ` oi : ∃x.Ti;R -by the (TERM) proof rule

6. µ,Σ′ = (Σ, oi  Q), F (Π′) = (F (Π), oi  R)), ρ ok -by the (FIELD) case of the
Memory Consistency lemma

7. q.e.d. -by 5,6

Case (ASSIGN)
To prove: If Γ,Π ` (l1.f = l2) : ∃x.T ;R and µ,Σ, F (Π), ρ ok and µ, ρ, l1.f = l2 →

µ[ρ(l1)  [ρ(l2)/oi]C(o)], ρ, oi and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ `
oi : ∃x.T ;R and µ[ρ(l1) [ρ(l2)/oi]C(o)],Σ′, F (Π′), ρ ok.

1. By assumption

(a) Γ,Π ` (l1.f = l2) : ∃x.T ;R

(b) µ,Σ,Π, ρ ok

(c) µ, ρ, (l1.f = l2) →
µ[ρ(l1) [ρ(l2)/oi]C(o)], ρ, ρ(l2)

(d) µ(ρ(l1)) = C(o)

(e) fields(C) = Tf

2. By inversion on 1a using the static semantics rule (ASSIGN)

(a) Γ; Π ` l2 : Ti; l2@k0 Q0(t0)⊗ Π1, where T is equal to Ti
(b) Γ; Π1 ` l1.f : Ti; r1@k

′ Q′(t′)⊗ Π2

(c) Π2 ` l1.f → r1 ⊗ Π3

(d) ∃x.T ;R = ∃x.Ti;x@k′ Q′(t′)⊗ l2@k0 Q0(t0)⊗ l1.f → l2 ⊗ Π3

3. ∃ o2 such that ρ(l2) = o2, by Object Proposition Consistency from Figure 3.8

4. Let Γ′ = (Γ, o2 : Ti), F (Π′) = (F (Π⊗ l2@k0 Q0(t0)), o2  o2@k
′ Q′(t′)), Σ′ = (Σ, o2  

Q′(t′)).

5. Γ′,Π′ ` o2 : ∃x.Ti;R -by the (TERM) static semantics rule

6. µ′ = µ[ρ(l1)  [ρ(l2)/oi]C(o)],Σ′, F (Π′), ρ ok -by the ASSIGN case of the Memory
Consistency lemma

7. q.e.d. -by 5, 6
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Case (INVOKE)
To prove: If Γ,Π ` l1.m(l2) : ∃x.Tr;R′ and µ,Σ, F (Π), ρ ok and µ, ρ, l1.m(l2) →
µ, ρ, [l1/this, l2/x]e and ` Prog then there exists Π′ , Γ′ and Σ′ such that Γ′,Π′ ` [l1/this, l2/x]e :
∃x.Tr;R′ and µ,Σ′, F (Π′), ρ ok.

(a) By assumption

i. Γ,Π ` l1.m(l2) : ∃x.Tr;R′

ii. µ,Σ, F (Π), ρ ok

iii. ` Prog
iv. µ, ρ, l1.m(l2) → µ, ρ, [l1/this, l2/x]e

v. µ(ρ(l1)) = C(o), meaning that l1 is an indirect reference to an object of class C
which has o1, o2, ... as fields

vi. method(m,C) = Tr m(x){return e}
(b) By inversion on the static semantics rule (CALL)

i. Γ ` l1 : C and Γ ` l2 : T

ii. Γ; Π ` [l1/this][l2/x]R1 ⊗ Π1

iii. mtype(m,C) = ∀x : T .∃result.Tr;R1( R

iv. ∃x.T ;R′ = ∃ result.Tr; [l1/this][l2/x]R ⊗ Π1, where Π1 does not contain un-
packed predicates

(c) From 7(a)iii we know that the body {return e} of the method m implements its
specification, so the result will be of the type ∃x.Tr;R′, given the arguments of the
right type.

(d) By the Substitution Lemma and Framing Lemma, we know that [l1/this, l2/x]e will
be of the type ∃x.Tr;R′. By the (INVOKE) case of the Memory Consistency lemma
we know that µ,Σ′, F (Π′), ρ ok, where F (Π′) is equal to F ([l1/this][l2/x]R ⊗ Π1)
and Σ′ corresponds to F (Π′).

(e) q.e.d., by 7d, 7(a)iii.

The cases LET-V, BINOP, AND, OR, NOT are trivial and they preserve soundness. After hav-
ing proved the Preservation Theorem, we should prove the Progress Theorem for our soundness
proof to be complete. Since our system is similar to Featherweight Java and we did not add
new features to the language, the Progress Theorem automatically holds. This concludes out
soundness proof.
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Chapter 4

Implementation

We wanted to prove that the object proposition methodology was not only modular and sound,
but also automatable. We have thus implemented the many aspects of our theory into our Oprop
tool, accessible online at lowcost-env.ynzf2j4byc.us-west-2.elasticbeanstalk.com, which can be
used to statically verify a variety of programs annotated with the Oprop annotations.

In this chapter we first discuss the possible sources of nondeterminism for the object proposi-
tion inference algorithm and how we have dealt with each of them. Nondeterminism is unwanted
because it can lead to different behaviors of the inference algorithm for different runs on the
same program that we want to verify. The inference algorithm does not infer specifications for
methods of a program; instead users (programmers) write the pre- and post-conditions before
the body of methods, and they write the pack and unpack annotations at various points inside
the body of methods. All these specifications are written by users before passing the program to
Oprop to be verified. For the inference algorithm to run without asking users to write annotations
between every two statements we must propagate object propositions throughout the program,
and if this is not done carefully nondeterminism can arise.

Then we introduce the Oprop tool and the formal rules of translation from the Oprop language
into the Boogie intermediate verification language. We discuss the most interesting rules and the
peculiarities of their implementation in the tool. Our presentation of the rules and our discussion
are accompanied by simple examples, meant to facilitate the reader’s understanding. We go
on to present some alternative approaches of logical encodings, created by other researchers.
We also present a comparison between our Oprop tool and the JavaSyp [7] tool and explain
why we found it necessary to implement Oprop independently, using different technologies. In
subsection 4.5 we present the theorem that expresses the fact that our Boogie translation and the
original Oprop program are semantically equivalent. We conclude this chapter with an informal
soundness argument.

4.1 Object Proposition Inference Algorithm

The proof rules presented in the section 3.3 are deterministic because at each point in the program
there is a unique rule that can be applied. The proof rules were not written in this deterministic
form from the beginning. For example, the rule PACK2 was first written as below:
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Γ; Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ; (Π′ ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ; Π⊗Π′ ` pack r@k Q(t1) in e : ∃x.T ;R
PACK2

The above rule is not deterministic because there is a context split that has to be guessed. The
tool Oprop would have to guess which part of the linear context in the conclusion is Π and which
part is Π′. We have rewritten the PACK2 rule to make it deterministic and to eliminate the need
to split contexts. The current form of the rule is:

Γ; Π ` r : C; [t1/x]R1 ⊗ unpacked(r@k Q(t1))⊗Π1

predicate Q(Tx) ≡ R1 ∈ C 0 < k < 1
Γ; (Π1 ⊗ r@k Q(t1)) ` e : ∃x.T ;R

Γ; Π ` pack r@k Q(t1) in e : ∃x.T ;R
PACK2

In order to manage context splits, we have used resource management techniques for lin-
ear proof search [27].These techniques add an additional output, the “leftover” resources, to
judgments. The idea of resource management is that we can make context splits deterministic
by sending all resources for proving the first premise, then use the leftover resources to prove
the second premise, then use the leftover resources from the second premise to prove the third
premise, and so on.

Another source of non-determinism is that object propositions can be split an arbitrary num-
ber of times and merged back together. The formal system “guesses” exactly how a given per-
mission inside of an object proposition has to be split up and merged in order to satisfy different
object propositions (for example in order to satisfy a pre-condition). For example, a fractional
permission of 1 can be split into two fractions 1

4
and 3

4
, or into two fractions of 1

2
. In this case, we

would have the following constraints C for the fractions k1 and k2: k1 + k2 = 1, k1, k2 ∈ (0, 1).
We track constraints C together with the current linear context Π. The constraints accumulated
during the verification procedure allow us to know everything about the permissions needed in-
side a piece of code. In order to prove that a program is correct, we will have to prove that
the constraints are satisfiable. As discussed in [18], Fourier-Motzkin elimination can be used to
check the satisfiability of the fractional constraints.

One final source of non-determinism comes from situations where multiple proof rules of our
linear theory are applicable. For example, for proving the choice P1 ⊕ P2 there are two proof
rules that can be applied:
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Γ; Π ` P1

Γ; Π ` P1 ⊕ P2
⊕L

Γ; Π ` P2

Γ; Π ` P1 ⊕ P2
⊕R

There are two options when multiple proof rules can be applied: we can either use backtracking
or we can use forward reasoning. Backtracking would mean that we arbitrarily choose one of the
applicable rules and if it turns out that the chosen rule does not work, we roll back and try the
other one.

In our setting, backtracking is not the best solution. We are trying to verify an entire program.
For doing this, we have to prove linear theory predicates for every method call and object con-
struction. Whenever such a proof does not succeed, we would have to backtrack to the last call
or construction site in the program where we made a choice. Similarly to [18], our tool imple-
ments a dataflow analysis. Backtracking to the last call or construction site as part of a dataflow
analysis is difficult because we would have to roll back the entire state of the flow analysis. Due
to these reasons, we choose to carry all possible choices forward, knowing that we pay the cost
in the time of verification.

4.2 The Oprop Tool

We implemented the object proposition system in our Oprop tool, as a static dataflow analysis for
the Oprop language. The purpose of the tool is to show that the object proposition methodology
is automatable and can be used to automatically verify both simple programs and complex ones
such as the composite instance. In the remainder of this section we discuss practical details of the
implementation. The Oprop tool is able to verify the correctness of single-threaded programs.
The extension of Oprop into a tool that can verify multi-threaded programs is left as future work.

In order to specify method pre- and post-conditions using object propositions, developers
need to use annotations that can express linear theory concepts and fractional permissions. An-
notations are the main way in which developers interact with Oprop.

The Oprop tool first translates the code and specifications into the intermediary language
Boogie, which is also used as an intermediary language by Dafny and Chalice of the RiSE group
at Microsoft Research [16]. We then use that translation as the input to the Boogie tool, which
sends it to the Z3 theorem prover [29] to obtain the final verification result.

The Boogie verifier tool uses Z3 as its backend to prove properties about integers. The
Z3 theorem prover is perfect for us, since our abstract predicates use integers to express the
properties of fields. Reasoning about integers in an automated way can be difficult, but Z3 is one
of the most prominent satisfiability modulo theories (SMT) solvers and it is used in related tools
such as Boogie [16], Dafny [48], Chalice [47] and VCC [28]. We counteract the problems that Z3
has in finding the witnesses for the existentially quantified variables by having the programmer
specify those witnesses.
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4.3 Encoding Our Linear Theory into First Order Logic with
Maps

In order to use Z3 for the verification of the generated conditions, we need to encode our extended
fragment of linear logic, i.e., our linear theory, into Boogie, which is based on first order logic
and uses maps as first class citizens of the language. By ‘extended fragment of linear logic’ we
mean the fragment of linear logic containing the operators ⊗ and ⊕, that we extend with the
specifics of our object propositions methodology. Specifically, we need to encode R described in
the grammar in Section 3.1. The crux of the encoding is in how we treat the fractions of the object
propositions, how we keep track of them and how we assert statements about them. For object
propositions, we encode whether they are packed or unpacked, the amount of the fraction that
they have and the values of their parameters. Fractions are intrinsically related to keeping track
of resources, the principal idea of linear logic. The challenge was to capture all the properties of
the Oprop language and soundly translate them into first order logic statements. We were able to
use the map data structure that the Boogie language provides to model the heap and the fields of
each class. The maps were also helpful for keeping track of the fractions associated with each
object, as well as for knowing which object propositions were packed and which were unpacked
at all points in the code.

4.3.1 The Formal Translation Rules

The example SimpleCell.java in Figure 4.1 shows an Oprop class. The language used,
Oprop, is a simplified version of Java augmented with the object propositions annotations. This
example differs from our pure theory in a number of ways: every Oprop input file has to have the
declaration of the enclosing package as first statement, each object proposition uses the symbol #
instead of @ because the symbol @ is already used in Java for writing annotations in the code, the
linear conjunction and disjunction that we use in our formal grammar in Figure 3.1 are replaced
by && and || in the Oprop code.

When the object c is created in the main() method, we have to specify the predicate that
holds for it in case the object becomes shared in the future. Since the predicate PredVal has
one existentially quantified variable and the Boogie tool cannot instantiate existential variables,
we give the witness 2 for the variable int v existentially quantified in the body of the predicate
PredVal. In general, whenever there is an existential Oprop statement in the code, we pass the
witnesses for that statement explicitly.

When we unpack a predicate we check that the provided witness is the right one; we do not
assume that the programmer provided the right witness. We implemented the translation strat-
egy in this way because the programmer might make a mistake and provide the wrong witness.
There are other tools like the PVS verification system [58] where the programmer provides the
witnesses and the tool verifies that they are correct. In the PVS Language Reference [59] at page
39 it is stated that a proof obligation is generated with the provided witness in place of the exis-
tential variable, which is then verified. We also explicitly verify that the witness is correct when
we pack a predicate thus making our translation strategy symmetrical for packing and unpacking.
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1 package x ;
2
3 c l a s s S i m p l e C e l l {
4 i n t v a l ;
5 S i m p l e C e l l n e x t ;
6
7 p r e d i c a t e PredVal ( ) = e x i s t s i n t v : t h i s . v a l −> v && v <15
8
9 p r e d i c a t e PredNext ( ) = e x i s t s S i m p l e C e l l o b j :

10 t h i s . n e x t −> o b j && ( o b j #0 .34 PredVal ( ) )
11
12 vo id changeVal ( i n t r )
13 ~ do ub l e k : r e q u i r e s ( t h i s #k PredVal ( ) ) && ( r <15)
14 e n s u r e s t h i s #k PredVal ( )
15 {
16 unpack ( t h i s #k PredVal ( ) ) [ t h i s . v a l ] ;
17 t h i s . v a l = r ;
18 pack ( t h i s #k PredVal ( ) ) [ r ] ;
19 }
20
21 vo id main ( ) {
22 S i m p l e C e l l c = new S i m p l e C e l l ( PredVal ( ) [ 2 ] ) ( 2 , n u l l ) ;
23 S i m p l e C e l l a = new S i m p l e C e l l ( PredNext ( ) [ c ] ) ( 2 , c ) ;
24 S i m p l e C e l l b = new S i m p l e C e l l ( PredNext ( ) [ c ] ) ( 3 , c ) ;
25
26 unpack ( a #1 PredNext ( ) ) [ c ] ;
27 unpack ( b#1 PredNext ( ) ) [ c ] ;
28 c . changeVal ( 4 ) ;
29 }
30 }

Figure 4.1: SimpleCell.java
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1 t y p e Ref ;
2 c o n s t n u l l : Ref ;
3 v a r v a l : [ Ref ] i n t ;
4 v a r n e x t : [ Ref ] Ref ;
5 v a r packedPredNex t : [ Ref ] boo l ;
6 v a r f r a c P r e d N e x t : [ Ref ] r e a l ;
7 v a r packedPredVa l : [ Ref ] boo l ;
8 v a r f r a c P r e d V a l : [ Ref ] r e a l ;
9

10 p r o c e d u r e PackPredNext ( o b j : Ref , t h i s : Ref ) ;
11 r e q u i r e s ( packedPredNex t [ t h i s ]== f a l s e ) &&
12 ( ( ( f r a c P r e d V a l [ n e x t [ t h i s ] ] >= 0 . 3 4 ) ) ) && ( n e x t [ t h i s ]== o b j ) ;
13 p r o c e d u r e UnpackPredNext ( o b j : Ref , t h i s : Ref ) ;
14 r e q u i r e s packedPredNex t [ t h i s ] &&
15 ( f r a c P r e d N e x t [ t h i s ] > 0 . 0 ) ;
16 r e q u i r e s ( n e x t [ t h i s ]== o b j ) ;
17 e n s u r e s ( ( ( f r a c P r e d V a l [ n e x t [ t h i s ] ] >= 0 . 3 4 ) ) ) && ( n e x t [ t h i s ]== o b j ) ;
18
19 p r o c e d u r e PackPredVal ( v : i n t , t h i s : Ref ) ;
20 r e q u i r e s ( packedPredVa l [ t h i s ]== f a l s e ) &&
21 ( ( v <15) ) && ( v a l [ t h i s ]== v ) ;
22 p r o c e d u r e UnpackPredVal ( v : i n t , t h i s : Ref ) ;
23 r e q u i r e s packedPredVa l [ t h i s ] &&
24 ( f r a c P r e d V a l [ t h i s ] > 0 . 0 ) ;
25 r e q u i r e s ( v a l [ t h i s ]== v ) ;
26 e n s u r e s ( ( v <15) ) && ( v a l [ t h i s ]== v ) ;
27
28 p r o c e d u r e S i m p l e C e l l ( v : i n t , n : Ref , t h i s : Ref )
29 m o d i f i e s nex t , v a l ;
30 e n s u r e s ( ( v a l [ t h i s ]== v )&&(n e x t [ t h i s ]== n ) ) ;
31 e n s u r e s ( f o r a l l x : Ref : : ( ( x != t h i s ) ==>( n e x t [ x ]== o l d ( n e x t [ x ] ) ) ) ) ;
32 e n s u r e s ( f o r a l l x : Ref : : ( ( x != t h i s ) ==>( v a l [ x ]== o l d ( v a l [ x ] ) ) ) ) ;
33 { v a l [ t h i s ] : = v ;
34 n e x t [ t h i s ] : = n ; }
35
36 p r o c e d u r e changeVal ( r : i n t , t h i s : Ref )
37 m o d i f i e s packedPredVal , v a l ;
38 r e q u i r e s ( t h i s != n u l l ) && ( ( ( packedPredVa l [ t h i s ] ) &&
39 ( f r a c P r e d V a l [ t h i s ] > 0 . 0 ) )&&(r <15) ) ;
40 e n s u r e s ( ( packedPredVa l [ t h i s ] ) &&
41 ( f r a c P r e d V a l [ t h i s ] > 0 . 0 ) ) ;
42 r e q u i r e s ( f o r a l l x : Ref : : packedPredVa l [ x ] ) ;
43 e n s u r e s ( f o r a l l x : Ref : : packedPredVa l [ x ] ) ;
44 e n s u r e s ( f o r a l l x : Ref : : ( f r a c P r e d V a l [ x ]== o l d ( f r a c P r e d V a l [ x ] ) ) ) ;

Figure 4.2: simplecell.bpl
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50 {
51 assume ( f o r a l l y : Ref : : ( f r a c P r e d V a l [ y ] >= 0 . 0 ) ) ;
52 c a l l UnpackPredVal ( v a l [ t h i s ] , t h i s ) ;
53 packedPredVa l [ t h i s ] := f a l s e ;
54 v a l [ t h i s ] : = r ;
55 c a l l PackPredVal ( r , t h i s ) ;
56 packedPredVa l [ t h i s ] := t r u e ;
57 }
58
59 p r o c e d u r e main ( t h i s : Ref )
60 m o d i f i e s f r a c P r e d N e x t , f r a c P r e d V a l , nex t ,
61 packedPredNext , packedPredVal , v a l ;
62 r e q u i r e s ( f o r a l l x : Ref : : packedPredNex t [ x ] ) ;
63 r e q u i r e s ( f o r a l l x : Ref : : packedPredVa l [ x ] ) ;
64 {
65 v a r c : Ref ;
66 v a r a : Ref ;
67 v a r b : Ref ;
68 assume ( c != a ) && ( c != b ) && ( a != b ) ;
69 assume ( f o r a l l y : Ref : : ( f r a c P r e d N e x t [ y ] >= 0 . 0 ) ) ;
70 c a l l S i m p l e C e l l ( 2 , n u l l , c ) ;
71 packedPredVa l [ c ] := f a l s e ;
72 c a l l PackPredVal ( 2 , c ) ;
73 packedPredVa l [ c ] := t r u e ;
74 f r a c P r e d V a l [ c ] := 1 . 0 ;
75 c a l l S i m p l e C e l l ( 2 , c , a ) ;
76 packedPredNex t [ a ] := f a l s e ;
77 c a l l PackPredNext ( c , a ) ;
78 f r a c P r e d V a l [ c ] := f r a c P r e d V a l [ c ] − 0 . 3 4 ;
79 packedPredNex t [ a ] := t r u e ;
80 f r a c P r e d N e x t [ a ] := 1 . 0 ;
81 c a l l S i m p l e C e l l ( 3 , c , b ) ;
82 packedPredNex t [ b ] := f a l s e ;
83 c a l l PackPredNext ( c , b ) ;
84 f r a c P r e d V a l [ c ] := f r a c P r e d V a l [ c ] − 0 . 3 4 ;
85 packedPredNex t [ b ] := t r u e ;
86 f r a c P r e d N e x t [ b ] := 1 . 0 ;
87 c a l l UnpackPredNext ( c , a ) ;
88 f r a c P r e d V a l [ c ] := f r a c P r e d V a l [ c ] + 0 . 3 4 ;
89 packedPredNex t [ a ] := f a l s e ;
90 c a l l UnpackPredNext ( c , b ) ;
91 f r a c P r e d V a l [ c ] := f r a c P r e d V a l [ c ] + 0 . 3 4 ;
92 packedPredNex t [ b ] := f a l s e ;
93 c a l l changeVal ( 4 , c ) ;
94 }

Figure 4.3: simplecell.bpl - cont.
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The Oprop class in the file SimpleCell.java is a point of reference through the presentation
of the translation rules. Even though the class is written in the Oprop language, the extension of
the file remains .java. The translation into the Boogie language is given in Figures 4.2 and 4.3.

Translation of fractions

This is a general description of the way we treat fractions in the translation of Oprop into Boogie.
For each predicate Pred we have a map fracPred declared as follows

var fracPred : [Ref] real. You can see two such maps on lines 6 and 8 of Figure
4.2 representing the fraction maps for the predicates PredNext and PredVal

For each object obj, this map points to the value of type real of the fraction k that is in the
object proposition obj@k Pred(t). The map fracPred represents all the permissions on
the stack. Since fracPred is a global variable it always contains the values of the fractions for
all objects. An important distinctions is that in a method we only reason about the values stored
in fracPred for locally accessible objects (objects that are mentioned in the precondition of
that method). As we go through the body of that method, the value of fracPred for the objects
that are touched in any way changes; these are objects that we get out of a parent object while
unpacking, or objects that we put into a parent when packing, or objects that we pass to a method
call. Say fracPred for object obj is specified in the precondition of a method to have a certain
value val. If in the body of that method we unpack an object proposition recursively containing
obj@k Pred(t), we add k to fracPred[obj]. On the other hand, if in the body of that
method we pack an object proposition recursively containing obj@k Pred(t), we subtract k
from fracPred[obj]. When we call another method inside the body of a method, we do not
subtract or add the fractions appearing in the pre- or postcondition of the called method because if
fracPred was modified in the called method, fracPred will be part of the global variables
mentioned in the modifies clause of that method and the modifications will appear in the
postcondition of the called method. If fracPred is indeed modified in the called method but
it does not appear in the postcondition, we assume that the programmer does not know exactly
what happens to that fraction and hence we add fracPred[obj] := 0.0 after the called
method, for soundness reasons.

Translation of our linear theory into first order logic

The translation of our linear theory (LL) into first order logic (FOL) is given in the following
paragraphs of this subsection, where we present the rules of translation of our Oprop language
into the Boogie intermediate verification language. Each non-terminal from the grammar in
the previous section has a corresponding translation rule. For each rule we point to the lines
where it appears in the result of the translation in Figures 4.2 and 4.3. If a verification involves
multiple Oprop files, they need to be written in the same Boogie .bpl file. The Oprop tool at
lowcost-env.ynzf2j4byc.us-west-2.elasticbeanstalk.com does this concatenation of the translated
files automatically.
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f u n c t i o n e x t r a c t P r e d i c a t e s ( ClDecl [ ] ) r e t u r n s S t r i n g {
S t r i n g r e s u l t = " " ;
f o r each ( predName i n p r e d i c a t e s ( ClDecl [ ] ) ) {

r e s u l t += " v a r packed " + predName + " : [ Ref ] boo l ; " ;
r e s u l t += " v a r f r a c " + predName + " : [ Ref ] r e a l ; " ;
f o r each ( paramName : paramType of p a r a m e t e r s ( predName ) t h a t

do n o t c o r r e s p o n d t o a f i e l d ) {
r e s u l t += " v a r param " + predName + paramName + " : [ Ref ] "

+ paramType + " ; " ;
}

}
r e t u r n r e s u l t ;

}

Figure 4.4: extractPredicates(ClDecl[]) translation helper function

Object references

At the start of each Boogie program we declare the type Ref that represents object references,
as can be seen on line 1 in the SimpleCell example. We declare a map from a reference r to
a real representing the fraction k for each object proposition r@k Q(t). We declare a second
map from a reference r to a boolean, keeping track of which objects are packed. Each key points
to true if and only if the corresponding object proposition is packed for that object. For each
predicate Q, we have a map keeping track of fractions and a map keeping track of the packed ob-
jects. The result of these translation rules is shown on lines 5 to 8 in the SimpleCell example.
We have defined using pseudocode the helper translation function extractPredicates(ClDecl[]) in
Figure 4.4 that looks inside all the input classes, given as a parameter array, and extracts the pred-
icate names for the purpose of declaring the maps packed and frac for each predicate. Figure
4.5 presents a slightly more detailed version of the same helper function. The function extract-
Predicates(ClDecl[]) also generates maps for each predicate parameter that does not correspond
to any field (such a parameter could be a bound value an a field).

It is important to generate all these maps in the beginning of the translation because pred-
icates can be recursive and can refer to other predicates (and thus they might access the maps
corresponding to those predicates). If not all the global maps are declared in the beggining of the
.bpl file, we might encounter the situation where such a map is accessed before having been
declared.

trans(Prog) ::= type Ref;
const null : Ref;
extractPredicates(ClDecl[])
trans(ClDecl) trans(e)

Class declarations

A class declaration is made of the field, predicate, constructor and method declarations.
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f u n c t i o n e x t r a c t P r e d i c a t e s L o n g V e r s i o n ( ClDecl [ ] ) r e t u r n s S t r i n g {
S t r i n g r e s u l t = " " ;
s e t < S t r i n g > p r e d i c a t e S e t ;
f o r each c : C l a s s from ClDecl [ ] {

f o r each p : P r e d i c a t e {
add p . name t o p r e d i c a t e S e t ;

}
}
f o r each ( pName i n P r e d i c a t e S e t ) {

r e s u l t += " v a r packed " + pName + " : [ Ref ] boo l ; " ;
r e s u l t += " v a r f r a c " + pName + " : [ Ref ] r e a l ; " ;
f o r each ( paramName : paramType of p a r a m e t e r s ( pName ) t h a t

do n o t c o r r e s p o n d t o a f i e l d ) {
r e s u l t += " v a r param " + pName + paramName + " : [ Ref ] " +

paramType + " ; " ;
}

}
r e t u r n r e s u l t ;

}

Figure 4.5: extractPredicatesLongVersion(ClDecl[]) translation helper function

trans(ClDecl) ::= trans(FldDecl) trans(PredDecl)
trans(ConstructorDecl) trans(MthDecl)

Each field is represented by a map from object references to values, representing the value of
that field of that object. You can see the maps declared for the fields val and next on lines 3
and 4.

trans(FldDecl) ::= var f: [Ref]trans(T);

Declarations of abstract predicates
The declaration of an abstract predicate has several steps. The first procedure is used for packing
the predicate Q, while the second one is used for unpacking it.

trans(PredDecl) ::=
procedure PackQ(x : trans(T), extractExistentials(Q), this:Ref);
requires (packedQ[this] == false);
requires removePacked(trans(R));
procedure UnpackQ(x : trans(T), extractExistentials(Q), this:Ref);
requires packedQ[this];
ensures removePacked(trans(R));

The procedure PackQ is called in the code whenever we have to pack an object proposi-
tion, according to the pack(...) annotations that the programmer inserted in the code. Right after
calling the PackQ procedure, we write packedQ[this] := true; in the Boogie code. We
do this right after calling PackQ, instead of in the PackQ postcondition, because only the for-
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f u n c t i o n e x t r a c t E x i s t e n t i a l s L o n g V e r s i o n ( S t r i n g p r e d i c a t e 1 )
r e t u r n s SetOfVariableNameAndType {

SetOfVariableNameAndType s e t P a i r s ;
f o r each ( e x i s t e n t i a l V a r i a b l e v i n p r e d i c a t e 1 ) {

add v t o s e t P a i r s ;
}
r e t u r n s e t P a i r s ;

}

Figure 4.6: extractExistentialsLongVersion() translation helper function

f u n c t i o n e x t r a c t E x i s t e n t i a l s ( S t r i n g p r e d i c a t e 1 )
r e t u r n s SetOfVariableNameAndType {

r e t u r n {v : T | " e x i s t s v : T" a p p e a r s i n p r e d i c a t e 1 } ;
}

Figure 4.7: extractExistentials() translation helper function

f u n c t i o n removePacked ( S t r i n g t r a n s l )
r e t u r n s t r a n s l from which a l l m e n t i o ns

o f packedQ [ ] o r ( packedQ [ ] == f a l s e ) a r e removed ,
f o r any Q;

}

Figure 4.8: removePacked() translation helper function
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mer alternative actually changes the value in the packedQ map. We tried to add ensures
packedQ[this] to the postconditions of the PackQ procedure and it has lead to contradic-
tions in the resulting Boogie proof. This is the reason why packedQ[this] is not in the
post-condition for the procedure PackQ. After calling the PackQ procedure, we also write the
statements that manipulate the fractions that appear in the body of the predicate that we are
packing. When packing a predicate, we subtract from the current value of fractions.

Whenever there is a packed object proposition in the body of a predicate, for example in the
body of the predicate P we have the packed object proposition r1@k Q(), we model it in the
following way: in the procedures UnpackP and PackP we have requires (fracQ[r1]
> 0.0) and ensures (fracQ[r1] > 0.0) respectively. We do not have requires
packedQ[r1] and ensures packedQ[r1] respectively, in the body of a predicate. The
intuition here is that we assume the object propositions appearing in the initial definition of a
predicate are unpacked. For the pre- and pos-conditions of procedures our methodology guaran-
tees that if an object proposition is unpacked, it will appear in the specifications as unpacked. The
reasoning is that in the case of a predicate we have a pointer to an object proposition, that might
be packed or not. It could be that this object proposition is unpacked at the moment, but will
be packed at a later time. For all procedures where we might have unpacked object propositions
in the pre-conditions of that procedure, we add a statement of the form requires (forall
y:Ref :: (y!=obj1) ==> packedQ[y]). This statement states that all the object
propositions that are not explicitly mentioned to be unpacked will be considered packed. For the
requires forall statement just mentioned, assume that the object obj1 has been explicitly
mentioned in an unpacked object proposition. The upside is that we can rely on such ensures
forall statements but we also need to prove them as post-conditions of procedures.

In Figure 4.7 we have written using pseudocode the helper translation function extractExis-
tentials( ). This pseudocode is similar to the function that we wrote in the translation code in our
Oprop tool and it extracts all the existentially quantified variables in the predicate Q and adds
them to the list of parameters of both the PackQ and UnpackQ procedures. After adding the
existential parameters we also add the parameter this:Ref to the list of parameters, represent-
ing the callee of the respective procedure. This callee will be replaced with the actual callee in
the body where the PackQ or UnpackQ procedures are called.

We have observed that it is very difficult for the Boogie tool to prove something of the form
∃ x:int :: formula(x). The Boogie tool does not know and cannot find out which is
the right instantiation value, even if the formula is very simple. Because of this, the programmer
has to specify in the Java code the right instantiation value whenever there is a variable that
is existentially quantified in the Oprop annotations. In the case of the SimpleCell.java
example you can see the explicit mention of the existentially quantified variables on lines 22-
24 and 26-27 of Figure 4.1 when the constructor is called and when the unpacking happens,
respectively. You can see the procedures PackPredNext and PackPredVal for predicates
PredNext and PredVal on lines 10 to 12 and 19 to 21 respectively.

Similarly, the procedure UnpackQ is called in the code whenever we need to unpack an ob-
ject proposition, whenever we need to access the field of an object or we need to add together
fractions in order to get the right permission (usually when we need a permission of 1 in order to
modify a predicate). The procedure UnpackQ is inserted in the code whenever the programmer
inserted the unpack(...) annotation in the Java code. Right after calling the procedure UnpackQ,
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we write packedQ[this] := false; in the code. We also write the statements that manip-
ulate by addition the fractions that appear in the body of the predicate that we are packing. You
can see the procedures UnpackPredVal and UnpackPredNext for predicates PredVal
and PredNext on lines 22 to 26 and 13 to 17. In the ensures statement of the predicate
PredNext we did not write fracPredNext[this] >= 0.34. This not needed because
we are going to add this fraction in the caller, right after calling UnpackPredNext.

For each class we write a constructor. For the class SimpleCell the translation of the
constructor is on lines 28 to 34.

trans(ConstructorDecl) ::= procedure ConstructMyClass(x,this:Ref);

ensures (f [this] == x)
After calling the constructor in the code we add
packedQ[this] := true && fracQ[this] := 1.0
assuming the object that is being constructed is packed to the predicate Q. The user specifies

to our tool which predicate they intend to pack to by adding the name of that predicate and the
parameters to that predicate, if there are any, in the call to the constructor. This can be seen
on lines 22-24 in Figure 4.1 right after the name of the constructor SimpleCell. For our
SimpleCell example the constructor is called multiple times in our main function and you
can see one such call and the statements that are written right after the call on lines 70 to 74 in
the .bpl translation. The user specifies to our Oprop tool which predicate they intend to pack
to by writing the name of the predicate, together with any parameters that the predicate needs, in
the call to the constructor.

Translation of a method

A method is translated into a procedure in Boogie. When specifying a method, we have
to specify the variables that it modifies, its precondition and its postcondition. We define the
method changeVal in the SimpleCell class on lines 36 to 57. For each method we have
added two kinds of statements that we call requires forall and ensures forall. We
present the way we construct each of these statements in the helper functions in Figure 4.9 and
4.11. In Figures 4.10 and 4.12 we present the longer versions of the same two functions, but now
with more technical details and closer to the actual code existant in our Oprop tool.

The requires forall statement explicitly states the object propositions that are packed
at the beginning of a method, which are almost all object propositions in most cases. Since
there are no unpacked object propositions in the preconditions of the method changeVal,
the requires forall states that all the object propositions for the PredVal predicate are
packed. Each requires forall or ensures forall statement refers to a single predi-
cate and thus each method might have multiple such statements.

The modifies clause of a procedure in Boogie has to state all the global variables that this
procedure modifies, through assignment, and all the variables that are being modified by other
procedures that are called inside this procedure.

The modifies clause that Boogie needs for each procedure is a very insidious clause: it
tells Boogie that all the values of a certain field have been modified, for all references. This leads
to us not being able to rely on many properties that were true before entering a procedure. We
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f u n c t i o n c o n s t r u c t R e q u i r e s F o r a l l ( S t r i n g methodName1 )
r e t u r n s S t r i n g {

S t r i n g r e s u l t = " " ;
f o r a l l p r e d i c a t e s P t h a t a p p e a r unpacked i n
p r e c o n d i t i o n s ( methodName1 ) {

r e s u l t += " r e q u i r e s ( f o r a l l param : :
( param != r1 && . . . && param != rN ) ==> packedP [ param ] ) "

where r1 . . . rN a r e t h e r e f e r e n c e s
c o r r e s p o n d i n g t o t h e unpacked o b j e c t p r o p o s i t i o n s

}
f o r a l l p r e d i c a t e s P t h a t a p p e a r on ly i n packed form i n
p r e c o n d i t i o n s ( methodName1 ) {

r e s u l t += " r e q u i r e s ( f o r a l l param : : packedP [ param ] ) "
}
r e t u r n r e s u l t ;

}

Figure 4.9: constructRequiresForall() translation helper function

counteract the effect of the modifies by adding statements of the form ensures (forall
y:Ref :: (fracP[y] == old(fracP[y]) ) ) and

ensures (forall y:Ref :: (packedP[y] == old(packedP[y]) ) ), for
all fracP, packedP or global fields maps that were mentioned in the modifies clause of
the current procedure. Of course, if the value of the maps fracP, packedP, etc. does change
in the method we do not add these ensures forall statements. The exact algorithms for in-
ferring the requires forall and ensures forall statements for the packedQ global
variables are given in Figures 4.9 and 4.11.

Figure 4.13 gives the intuition of how the set of modified variables for each method is cal-
culated while Figure 4.14 presents a more detailed view. In Figure 4.14 the implementation of
the addition of list2 to list1 in line add the modifies list list2 of mc2 to
list1 is done with a least fixed point in the case of recursion.

trans(MthSpec) ::= modifies getModifiesVariables();
requires (this!=null) && trans(R);
constructRequiresForall(m)
ensures trans(R);
constructEnsuresForallPacked(m)

Below we give the translation of a method declaration.
trans(MthDecl) ::= procedure m( trans(T) x ) returns (r:trans(T))

trans(MthSpec)
{ assume (forall y:Ref :: (fracQ[y] >= 0.0) );
trans(e1) ; var r := trans(e2); return r; }

We explicitly assume in the beginning of the body of each method that all fractions that are
mentioned in the pre- or post-conditions of that method are larger than 0. We need to explicitly
add these assumptions because the Boogie tool does not have any pre-existing assumptions about
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f u n c t i o n c o n s t r u c t R e q u i r e s F o r a l l L o n g V e r s i o n ( S t r i n g methodName1 )
r e t u r n s S t r i n g {

S t r i n g r e s u l t = " " ;
m a p P r e d i c a t e O b j e c t mapPredObjUnpacked ;
s e t P r e d i c a t e O b j e c t s e t P r e d O b j P a c k e d ;
f o r e a c h ( o b j e c t P r o p o s i t i o n o b jP r o p 1

i n p r e c o n d i t i o n s ( methodName1 ) {
i f ( ob j P r o p 1 i s unpacked ) {

mapPredObjUnpacked [ o b j P ro p 1 . p r e d i c a t e ] . add ( o b j P r op 1 . o b j e c t
) ;

}
i f ( ob j P r o p 1 i s packed ) {

add ( o b j P r o p 1 . p r e d i c a t e , o b j P r op 1 . o b j e c t )
t o s e t P r e d O b j P a c k e d ;

}
}
f o r e a c h ( p r e d i c a t e key1 i n mapPredObjUnpacked ) {

r e s u l t += " r e q u i r e s ( f o r a l l param : : ( " +
" ( param !=" + mapPredObjUnpacked [ key1 ] [ 0 ] + " ) " ;

i n t s i z e = mapPredObjUnpacked [ key1 ] . s i z e ( ) ;
f o r e a c h ( o b j e c t 1 = mapPredObjUnpacked [ key1 ] [ 1 ]

u n t i l mapPredObjUnpacked [ key1 ] [ s i z e −1])
{

r e s u l t += "&& ( param !=" + o b j e c t 1 + " ) " ;
}

r e s u l t += " ) ==>
packed " + p a i r 1 . p r e d i c a t e + " [ param ] ) ; " ;

}
f o r e a c h ( p r e d i c a t e O b j e c t p a i r 1 i n s e t P r e d O b j P a c k e d ) {

r e s u l t += " r e q u i r e s ( f o r a l l param : : " +
" packed " + p a i r 1 . p r e d i c a t e + " [ param ] ) ; " ;

}
r e t u r n r e s u l t ;

}

Figure 4.10: constructRequiresForallLongVersion() translation helper function
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f u n c t i o n c o n s t r u c t E n s u r e s F o r a l l P a c k e d ( S t r i n g methodName1 )
r e t u r n s S t r i n g {

S t r i n g r e s u l t = " " ;
f o r a l l p r e d i c a t e s P t h a t a p p e a r i n m o d i f i e s S e t ( methodName1 )
and a p p e a r i n p o s t c o n d i t i o n s ( methodName1 )
and a p p e a r i n p r e c o n d i t i o n s ( methodName1 ) {

i f P on ly a p p e a r s a s packed i n p o s t c o n d i t i o n s ( methodName1 ) {
r e s u l t += " e n s u r e s ( f o r a l l param : : packedP [ param ] ) " ;

} e l s e {
r e s u l t += " e n s u r e s ( f o r a l l param : :

( param != r1 && . . . && param != rN )
==> packedP [ param ] ) " ;

where r1 . . . rN a r e t h e r e f e r e n c e s c o r r e s p o n d i n g t o o b j e c t
p r o p o s i t i o n s c o n t a i n i n g P t h a t a p p e a r packed i n t h e
p r e c o n d i t i o n s b u t unpacked i n t h e p o s t c o n d i t i o n s

}
}
r e t u r n r e s u l t ;

}

Figure 4.11: constructEnsuresForallPacked() translation helper function

our global maps representing fractions.
In the translation of predicates, when fractions are existentially and universally quantified, it

means that the value of the map fracQ for the appropriate key is strictly greater than zero.
In our notation below we are using the separator ‘|’ to separate the translation for the grammar

pieces, in the same order as they are specified in Section 3.1. To help the reader, we reproduce
the definition of R from the Oprop grammar:

R ::= P | R ⊗ R | R ⊕ R |
∃x:T.R | ∃z:double.R | ∃z:double.z binop t⇒ R |
∀x:T.R | ∀z:double.R | ∀z:double.z binop t⇒ R |
t binop t⇒ R

The translation of R is:
trans(R) ::= trans(P) | translateAnd(R,R) |

trans(R) || trans(R) |
addExistential(trans(R), t:trans(T)) |
addExistentialFrac(trans(R), k:trans(double)) |
addExistentialFracBinop(trans(R), k:trans(double), k binop t) |
var t:trans(T);trans(R) |
var k:real;trans(R) |
var k:real;k trans(binop) t ==>trans(R) |
t trans(binop) t ==> trans(R)

In our system, we will assume that all the formulas R are in disjunctive normal form. A
formula R of our system is in disjunctive normal form if and only if it is an additive disjunction
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f u n c t i o n c o n s t r u c t E n s u r e s F o r a l l P a c k e d L o n g V e r s i o n ( S t r i n g methodName1 )
r e t u r n s S t r i n g {

p o s t c o n d 1 = p o s t c o n d i t i o n ( methodName1 ) ;
p recond1 = p r e c o n d i t i o n ( methodName1 ) ;
S t r i n g r e s u l t = " " ;
f o r e a c h ( p r e d i c a t e p1 i n m o d i f i e s S e t ) {

i f ( p1 i s men t ioned i n p o s t c o n d 1
f o r a l l o b j e c t s ob j1 f o r which
p1 ( ob j1 ) i s i n p recond1

{
i f ( a l l p1 ( ob j1 ) i n p o s t c o n d 1 a r e packed ) {

r e s u l t += " e n s u r e s ( f o r a l l param : :
packed "+ p1 +" [ param ] ) " ;

} e l s e {
l e t ob j2 be t h e o r d e r e d s e t o f o b j e c t s f o r which
packedp1 [ ob j2 ]== f a l s e i n p o s t c o n d 1 ;
r e s u l t += " e n s u r e s ( f o r a l l param : : ( " +

" ( param !=" + ob j2 [ 0 ] + " ) " ;
i n t s i z e = ob j2 . s i z e ( ) ;
f o r e a c h ( o b j e c t 1 = ob j2 [ 1 ] u n t i l ob j2 [ s i z e −1])
{

r e s u l t += "&& ( param !=" + o b j e c t 1 + " ) " ;
}
r e s u l t += " ) ==>

packed " + p1 + " [ param ] ) ; " ;
}

}
}
r e t u r n r e s u l t ;

}

Figure 4.12: constructEnsuresForallPackedLongVersion() translation helper function

f u n c t i o n g e t M o d i f i e s V a r i a b l e s ( S t r i n g method1 )
r e t u r n s L i s t {

l i s t = v a r i a b l e s l f 1 t h a t a p p e a r i n
a s s i g n m e n t s t a t e m e n t s l f 1 := r f 1 i n method1 ;

add t o l i s t a l l t h e m o d i f i e s V a r i a b l e s o f
methods c a l l e d i n method1 ;

r e t u r n l i s t ;
}

Figure 4.13: getModifiesVariables() translation helper function
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f u n c t i o n g e t M o d i f i e s V a r i a b l e s L o n g V e r s i o n ( S t r i n g method1 )
r e t u r n s L i s t O f V a r i a b l e N a m e s {

L i s t O f V a r i a b l e N a m e s l i s t 1 ={}
f o r e a c h ( s t a t e m e n t s t 1 i n method1 ) {

i f ( s t 1 i s o f form l f 1 := r f 1 ) {
add l f 1 t o l i s t 1 ;

}
}
f o r e a c h ( method c a l l mc2 i n method1 ) {

add t h e m o d i f i e s l i s t l i s t 2 o f mc2 t o l i s t 1 ;
}
r e t u r n l i s t 1 ;

}

Figure 4.14: getModifiesVariablesLongVersion() translation helper function

f u n c t i o n a d d E x i s t e n t i a l ( t r a n s (R) , t : t r a n s ( T ) )
{

M e t h o d O r P r e d D e c l a r a t i o n r e s u l t ;
l e t methodOrPred ( params ) be t h e method
or p r e d i c a t e i n t h e body of which R i s found ;
u p d a t e methodOrPred ( params ) t o be

methodOrPred ( params , t : t r a n s ( T ) ) ;
r e t u r n t r a n s (R) ;

}

Figure 4.15: addExistential() translation helper function

f u n c t i o n a d d E x i s t e n t i a l F r a c ( t r a n s (R) , k : t r a n s ( do ub l e ) )
{

M e t h o d O r P r e d D e c l a r a t i o n r e s u l t ;
l e t methodOrPred ( params ) be t h e method
or p r e d i c a t e i n t h e body of which R i s found ;
u p d a t e methodOrPred ( params ) t o be methodOrPred ( params , k : r e a l ) ;
r e t u r n t r a n s (R) ;

}

Figure 4.16: addExistentialFrac() translation helper function
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f u n c t i o n a d d E x i s t e n t i a l F r a c B i n o p ( t r a n s (R) , k : t r a n s ( do ub l e ) , k b inop t )
{

M e t h o d O r P r e d D e c l a r a t i o n r e s u l t ;
l e t methodOrPred ( params ) be t h e method
or p r e d i c a t e i n t h e body of which R i s found ;
u p d a t e methodOrPred ( params ) t o be methodOrPred ( params , k : r e a l ) and
add " a s s e r t k b inop t ; " ( o r " k b inop t " ) t o body of methodOrPred ;
r e t u r n t r a n s (R) ;

}

Figure 4.17: addExistentialFracBinop() translation helper function

f u n c t i o n t r a n s l a t e A n d ( R1 , R2 ) r e t u r n s FOLFormula {
l e t R = DNF( R1 c r o s s R2 )
l e t R’ = FOL( c o a l e s c e (R) )
r e t u r n t r a n s A t o m s (R ’ ) }

where
DNF(R) c o n v e r t s l i n e a r f o r m u l a R t o d i s j u c t i v e normal form
c o a l e s c e (R) merges atoms i n t h e same c o n j u n c t i o n by ad d in g f r a c t i o n s
FOL(R) r e p l a c e s l i n e a r c o n n e c t i v e s wi th f i r s t −o r d e r l o g i c

c o n n e c t i v e s
t r a n s A t o m s (R) t r a n s l a t e s t h e atoms of R , l e a v i n g c o n n e c t i v e s

unchanged
}

Figure 4.18: translateAnd() translation helper function
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of one or more multiplicative conjunctions of one or more of the predicates
P, ∃x:T.R, ∃z:double.R, ∃z:double.z binop t⇒ R, ∀x:T.R, ∀z:double.R,
∀z:double.z binop t⇒ R and t binop t⇒ R. In practice if a formula contains quantifiers, we
first move the quantifiers on the outside of the formula and then convert it to disjunctive normal
form. We need the formula to be in fisjunctive normal form when we apply our translation
strategy from Oprop into Boogie, described in Chapter 4.

Let us examine a predicate: let us call it OK and assume it has an existential statement in
its definition. If the OK predicate was originally written "∃ v,d: val -> v ⊗ dbl -> d ⊗ d ==
v*2", in the Boogie translation we eliminate the existential quantifier and the variables v and
d, and instead use the global variables of the fields to refer to the current value of a field. The
implementation of this idea can be seen in the SimpleCell example on line 21, where the
val field is existentially quantified and the Boogie global variable val[this] is used instead
in the definition of the predicate. Figures 4.15, 4.16 and 4.17 express the fact that we side-effect
the method/predicate surrounding formula R to add the existential parameter t. We assume that
the parameter t does not capture any other parameters. This parameter is added to the list of
parameters of the enclosing method/parameter in which the formula is.

Translation of object propositions
An object proposition r@k Q(t) is translated by asserting that the value of the packedQ map
for the parameters t and reference r is true and the value of fracQ for the same parameters
and reference is >= k if k is a constant or is > 0 if k is a bound variable. Figure 4.19 only
looks at object propositions in isolation. According to the grammar in Section 3.1 other formulas
R could be ∃z:double.z ≥ c t ⇒r@z Q(t), or ∀z:double.z ≥ c ⇒r@z Q(t). If there is
no field corresponding to parameter t, we will not add the equality field1[r] == t to the
translation of the object proposition.

When an object proposition r@k Q(t) is unpacked, unpacked(r@k Q(t)) will appear
in the annotations. This syntax is only used in pre- and post-conditions of methods, and when
we need to add the fractions of two object propositions inside a method, one of which is un-
packed. When we do not know the exact value of a field f for object obj, we employ two
tactics. The first one is to use obj.f as the actual parameter (for example, unpacked(op@k1
left(op.left, op.left.count)) ), which means that the value of field f for object
obj is its value at this time, whatever that is. This is similar to the ghost fields idea [48] from K.
Rustan M. Leino’s research. The second one is to use an existentially quantified expression such
as exists c:int (for example) in the pre-condition of a method and use c as the value of the
field obj.f mentioned above. In both cases the value of the parameter is equal to the current
value of the field, the value that the field points to. The current implementation of Oprop does
not equate the value of fraction fracQ[r] with k and instead it simply states that fracQ[r]
> 0.0 when this fraction is a metavariable. This current implementation does not keep track of
the exact value of fractions when they are existentially quantified, but we need to keep track of
their exact value in order for the translation to be sound. All the examples that we have translated
are sound when using fracQ[r] > 0.0 whenever there is an existentially quantified object
proposition in the pre-condition and a separate one in the post-condition. We leave the imple-
mentation of Oprop where we set fracQ[r] to be equal to the metavariable k as future work
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f u n c t i o n t r a n s l a t e O b j e c t P r o p o s i t i o n ( r@k Q( t ) )
r e t u r n s S t r i n g {

S t r i n g r e s u l t = " " ;
r e s u l t += " ( f r acQ [ r ] == k ) " ;
i f ( k i s a m e t a v a r i a b l e ) {

r e s u l t += " && ( k > 0 . 0 ) && ( k < 1 . 0 ) " ;
}
i f p a r a m e t e r t c o r r e s p o n d s t o a f i e l d o f r {

say t h a t f i e l d i s f i e l d 1 ;
r e s u l t += " && ( f i e l d 1 [ r ]== t ) " ;

}
i f p a r a m e t e r t does n o t c o r r e s p o n d t o a f i e l d o f r {

say X i s t h e f o r m a l p a r a m e t e r o f Q c o r r e s p o n d i n g t o t ;
r e s u l t += " && ( paramQX [ r ]== t ) " ;

}

r e t u r n r e s u l t ;
}

Figure 4.19: translateObjectProposition() translation helper function

- the needed implementation changes are minimal and not needed for the translations of all the
examples in this thesis.

The definition of P from the Oprop grammar from Section 3.1 is:
P ::= r@k Q(t) | unpacked(r@k Q(t)) |

r.f → x | t binop t
The translation of P is:

trans(P) ::= packedQ[r] &&
translateObjectProposition(r@k Q(t)) |
(packedQ[r] == false) &&
translateObjectProposition(r@k Q(t)) |
f[r]==x && fFieldPermission[r]==true | t trans(binop) t

If packedQ[r] is true in our implementation it means that we know for sure that the
object that r points to is packed. If packed[r] is false it means that we know for sure that
it is unpacked. When we do not know for sure if the object is packed or unpacked, we do not
use either of the statements packedQ[r] == true or packedQ[r] == false; as you
can see in the translation trans(PredDecl), mentions of packedQ are removed from the body
of predicates.

It could happen that inside a method body a method call uses only a fraction of an unpacked
object proposition about r and the postcondition of the method states that the same object propo-
sition is packed. In cases like these, which appear when there is a method call inside a method
body, the packedQ[r] should be set to false because there is at least a fraction of an object
proposition that is false. This is the only case that can lead to a fraction of the same object
proposition be in the packed state and another fraction be in the unpacked state. The crux of

83



soundness in our system is that an unpacked predicate cannot be unpacked again. Thus even if
only a fraction of an object proposition r@k Q(t) is unpacked, packedQ[r] should be false. This
idea is reflected in the coalescePacked() translation function in Figure 4.21.

The intuition is the following: in the pre-condition of a method, we will have either packedQ[r]
== true or packed[r] == false for a particular object r. If in the body of the method
there is a call to another method m1() that changes packed[r] from true to false, even
if only for a fraction referring to r and predicate Q and not for all the existing fraction, then after
the call to the method m1() packedQ[r] will be equal to false.

We need a map fFieldPermission for each field f of an object, that keeps track of
that field. This is because fields are considered resources and they cannot be duplicated. Since
the translation f[r]==x can also be obtained from translating an object proposition, we need
to distinguish how we express what the current value of a field is from the fact that a field
permission is available to be used. Our current implementation of Oprop does not have maps such
as fFieldPermission because we observed the need for them when proving the soundness
theorem of the translation. It would not be difficult to add these maps and we leave that as future
work.

When we unpack an object proposition that has another object proposition inside its defini-
tion, we only get a fraction to the object proposition inside and thus this case cannot lead to the
same situation just described.

You can see the translation of the packed object proposition obj#0.34 PredVal() both
inside the PackPredNext and UnpackPredNext procedures corresponding to the predicate
PredNext.

A fraction (having a numerator and a denominator) in Oprop is translated to its real represen-
tation in Boogie.

The fracQ global map represents the current fraction we hold to each object for predicate
Q. When verifying a procedure, we start with the fracQ in that procedure’s requires clause.

Let us say we are monitoring fracQ for the object obj and initially we have fracQ[obj]
== 1.0. Whenever we call a Pack procedure for which the requires states that
fracQ[obj] == x, the current value of fracQ[obj] becomes 1.0 - x. If now we call
an Unpack procedure for which the ensures states that fracQ[obj] >= y, the current
value of fracQ[obj] becomes 1.0 - x + y. In this way we keep track of the fraction to
an object through a certain predicate. We start with the fraction from the requires clause
of the current procedure. When a Pack procedure is called that requires a certain fraction, we
subtract that amount from the current fraction. When an Unpack procedure is called that ensures
a certain fraction, we add to the current fraction. For the SimpleCell example you can see that
on line 93 the changeVal method is called. Since both the precondition and the postcondition
of the method require a fraction of k to the predicate PredVal for this object, they cancel
each other and that is why you do not see any statements that manipulate the fractions after the
call to the method changeVal. If the fraction required in the precondition was different that
the fraction ensured by the postcondition, you would see the fraction manipulation statements
after the call.
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Translation of packing/unpacking

When we pack an object to a predicate Q, we write the statement call PackQ(..., this).
Right after this statement, we write packedQ[this] := true. You can see an example of
such a call on lines 71 to 74, together with the statements that assign true to the global packed
map for this object and the statement that subtracts the fraction that is used for the predicate
PredVal and the object c when the packing occurs.

Similarly, when we unpack an object from an object proposition that refers to predicate Q,
we write the statement call UnpackQ(..., this). Right after this statement we write
packedQ[this] := false. You can see an example of such a call on lines 87 to 89.
As opposed to packing, where we usually consume a fraction of an object proposition, when
we unpack an object proposition we obtain a fraction and so we have a fraction manipulation
statement that adds to the current value of a fraction, as seen on line 88.

The fraction k of an object proposition r@k Q((t)) can be retrieved from the global map
fracQ corresponding to the predicate Q, under entry r.

In Figure 4.20, a fraction frac1 can be a metavariable or a constant, and the manipula-
tion of fractions is different depending on this differentiation. In the pseudocode we refer to
precondition(predicate1) and postcondition(predicate1); although a pred-
icate has a single definition, the precondition of a predicate refers to the precondition of the cor-
responding Pack function (or Unpack function, depending which one it is called). The Pack
and Unpack functions corresponding to predicates do have preconsitions and postconditions.

In the first for loop in Figure 4.20 - for fractions appearing in the preconditions of a pred-
icate, if the fraction is a metavariable we divide the current value of the fraction by 2. This is
because when the specification states that a fraction of k will be consumed, we do not know
exactly how much of the fraction will be consumed. We decided to divide by 2 to state that half
of the fraction will be consumed. For metavariable fractions appearing in the postconditions of
a predicate we again do not know the exact value that will be added to the existing value of a
fraction. We could write the symmetrical statement and multiply by 2 the current value of the
fraction that we already have, but the problem with that is that sometimes we start with zero for
a particular fraction (for example in the beginning of a procedure). Even if we multiply by 2,
we would still have 0. That is why we add the 0.1 (0.1 is a random value that we chose) to the
current value of the fraction. When packing a predicate, the fractions that we need to consume
will appear in the preconditions of the Pack procedure for that predicate, so the codepath will go
in the first for loop of Figure 4.20. On the other hand when we unpack a predicate the codepath
will go in the second for loop of Figure 4.20.

Translation of expressions

The definition of e in the Oprop grammar from Section 3.1 is:
e ::= t | r.f | r.f = t | r.m(t) |

new C(Q(t)[t])(t) |
if (t) { e } else { e } | let x = e in e |
t binop t | t && t | t ‖ t | ! t |
pack r@k Q(t)[t]in e | unpack r@k Q(t)[t]in e
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f u n c t i o n w r i t e F r a c t i o n M a n i p u l a t i o n s ( S t r i n g p r e d i c a t e 1 )
r e t u r n s S t r i n g {

S t r i n g r e s u l t = " " ;
f o r e a c h ( o b j e c t P r o p o s i t i o n o b jP r o p 1 i n p r e c o n d i t i o n ( p r e d i c a t e 1 ) {

i f ( f r a c t i o n f r a c 1 i n o b j P r o p 1 i s a m e t a v a r i a b l e ) {
r e s u l t += " f r a c "+ o b j P r op 1 . p r ed i ca t eName + " [ " +

o b j P ro p 1 . o b j e c t + " ] : = " +
" f r a c "+ o b j P r o p 1 . p red i ca t eName + " [ " +
o b j P ro p 1 . o b j e c t + " ] / 2 . 0 ; " ;

} e l s e {
r e s u l t += " f r a c "+ o b j P r op 1 . p r ed i ca t eName + " [ " +

o b j P ro p 1 . o b j e c t + " ] : = " +
" f r a c "+ o b j P r o p 1 . p red i ca t eName + " [ " +
o b j P ro p 1 . o b j e c t + "]−"+
o b j P ro p 1 . f r a c t i o n + " ; " ;

}
}
f o r e a c h ( o b j e c t P r o p o s i t i o n o b jP r o p 1 i n p o s t c o n d i t i o n ( p r e d i c a t e 1 ) {

i f ( f r a c t i o n f r a c 1 i n o b j P r o p 1 i s a m e t a v a r i a b l e ) {
r e s u l t += " f r a c "+ o b j P r op 1 . p r ed i ca t eName + " [ " +

o b j P ro p 1 . o b j e c t + " ] : = " +
" f r a c "+ o b j P r o p 1 . p red i ca t eName + " [ " +
o b j P ro p 1 . o b j e c t + " ] + 0 . 1 ; " ;

} e l s e {
r e s u l t += " f r a c "+ o b j P r op 1 . p r ed i ca t eName + " [ " +

o b j P ro p 1 . o b j e c t + " ] : = " +
" f r a c "+ o b j P r o p 1 . p red i ca t eName + " [ " +
o b j P ro p 1 . o b j e c t + " ]+"+
o b j P ro p 1 . f r a c t i o n + " ; " ;

}
}
r e t u r n r e s u l t ;

}

Figure 4.20: writeFractionManipulations() translation helper function
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f u n c t i o n c o a l e s c e P a c k e d (m: MthDecl ) {
S t r i n g r e s u l t = " " ;
f o r each ( o b j P r o p o b j i n p o s t c o n d i t i o n (m) ) {

l e t r be t h e r e f e r e n c e and Q t h e p r e d i c a t e o f o b j ;
i f ( packedQ [ r ] i s t r u e b e f o r e c a l l i n g m,

b u t packedQ [ r ] i s f a l s e i n t h e p o s t c o n d i t i o n )
{

r e s u l t += " packedQ [ r ] := f a l s e " ;
} e l s e
i f ( packedQ [ r ] i s f a l s e b e f o r e c a l l i n g m,

b u t packedQ [ r ] i s t r u e i n t h e p o s t c o n d i t i o n )
{

r e s u l t += " packedQ [ r ] := f a l s e " ;
}

}
r e t u r n r e s u l t ;

}

Figure 4.21: coalescePacked() translation helper function

The translation of expressions e is:
trans(e) ::= trans(t) | f[r] | f[r]:= trans(t) | call m(r, trans(t));

writeFractionManipulations(m); coalescePacked(m) |
var c: Ref; call C(t3,c); packedQ[c]:=false;
call PackQ(t,c); packedQ[c]:=true;
fracQ[c]:=1.0; | writeFractionManipulations(Q);
call PackQ(trans(t1), trans(t2), c);
packedQ[c]:=true; fracQ[c]:=1.0;
if (trans(t)) { trans(e1) } else { trans(e2) } |
x := trans(e1); trans(e2) |
trans(t) trans(binop) trans(t) | trans(t) && trans(t) |
trans(t) || trans(t) | ! trans(t) |
call PackQ(trans(t), trans(t), this);
packedQ[this]:=true;
writeFractionManipulations(Q); trans(e); |
call UnpackQ(trans(t), trans(t), this);
packedQ[this]:=false;
writeFractionManipulations(Q); trans(e);

In the translation of expressions, e is expression-based, but the object creation case (new)
and the pack and unpack cases do not generate expressions in the Boogie translation. Instead
we translate to A-normal form in these cases.

There are situations when the proof has two cases. For example in a binary tree, it might be
that we are going on the right branch or the left branch. This is the case in the Composite exam-
ple, that is described in detail in Section 5.4. The Composite example in this thesis is one possible
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instantiation of the Composite design pattern. Our implementation is as an acyclic binary tree,
where each Composite object has a reference to its left and right children and to its parent. At
some point in the proof of the composite it happens that this==this.parent.left or
this==this.parent.right. In this case, we add an if-else statement as part of the
verification to illustrate the two cases, on lines 124, 137 and 150 in Figure 5.44. This if needs
to be added by the programmer as annotations in the Java code as a normal Java if expression. In
each branch of the if there are different Pack/Unpack annotations and since my Oprop tool
is not inferring the Packing/Unpacking annotations, the programmer is the one that has to
write in each branch of the if the right Pack/Unpack annotations. Also, this separation into
cases happens at a random point in the proof, so Boogie would not have a way to know where to
insert the if.

If we have multiple declarations of the form var c: Ref, var d: Ref, we also add
the assumption statement assume (c!=d) because the Boogie tool does not assume that these
two variables are different, while the Java semantics does assume this.

A term can be a variable or a constant.
t ::= x | n | null | true | false
Variables come in two types: reference variables r and integer variables i.
x ::= r | i
trans(binop) ::= + | − | trans(%) | == | ! = | <= | < | >= | >
Boogie does not have the binary operator modulo %, but it can be represented by the function

modulo and its associated axioms.
function modulo(x:int, y:int) returns (int);
axiom (forall x:int, y:int :: {modulo(x,y)}
modulo(x,y) == x - x/y * y
axiom (forall x:int, y:int :: {modulo(x,y)}
((0<=x)&&(0<y)==>(0<=modulo(x,y))&&(modulo(x,y)<y))&&
((0<=x)&&(y<0)==>(0<= modulo(x,y))&&(modulo(x,y)<-y))&&
((x<=0)&&(0<y)==>(-y<=modulo(x,y))&&(modulo(x,y)<=0))&&
((x<=0)&&(y<0)==>(y<= modulo(x,y))&&(modulo(x,y)<=0)));

The types used in Oprop, according to the grammar in Section 3.1 are
T ::= C | int | boolean | double.
Their translation is: trans(T) ::= Ref | int | bool | real. These are the basic types that

we use, but one can define new ones in Boogie, based on the existing ones.

4.3.2 Other Approaches to Logical Encodings
Other researchers have encoded linear logic or fragments of it into first order logic. In his Ph.D.
thesis [64] Jason Reed presents an encoding of the entirety of linear logic into first order logic.
His encoding does not use fractions, so it is not possible for us to use it without enriching it
with a way to encode fractions. While his encoding is sound, it is too complicated for our needs
(considering that we only need to encode an extended fragment of linear logic). We decided
against using his encoding since we were able to come up with a simpler encoding better suited
for our system and our implementation. The major technical difference between Reed’s encoding
and ours is that he encodes uninterpreted symbols while our encoding is done inside the theory
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of object propositions - the smaller fragment of linear logic on top of which we have added the
object propositions. His encoding is suited to any formula written in linear logic, irrespective of
its meaning, while ours is targeted towards formulas written in our extended fragment of linear
logic, that have a specific semantics.

Heule et al. [36] present an encoding of abstract predicates and abstraction functions in the
verification condition generator Boogie. Their encoding is sound and handles recursion in a way
that is suitable for automatic verification using SMT solvers. It is implemented in the automatic
verifier Chalice. Since our system differs from theirs in the way we handle fractions (they need
a full permission in order to be able to modify a field, while we are able to modify fields even if
we have a fractional permission to the object enclosing the field), we came up with an encoding
that is specific to our needs.

From a technical point of view, their encoding is quite different from ours. ‘Upon a call, the
caller relinquishes the required permissions (the caller exhales the precondition) and transfers
them to the callee (the callee inhales them). Conversely, when a method terminates, the method
exhales its postcondition, while its caller inhales it.’ The exhale operation aggressively havocs
the heap and preserves information only for those locations to which the method holds direct
or known-folded permission after the exhale. The reason they havoc the heap is so they don’t
have to compute transitive modifies clauses–which we have to do. This actually may make their
verification more modular because they can do separate analysis whereas we need all code to be
present in order to do the modifies clause analysis. This is one of the technical differences
that make their encoding to be different than ours.

In their encoding, permissions are tracked using permission masks, which map locations to
booleans. The variable Mask stores the current mask, which represents the direct permissions
held by the current method. The exhale operation recursively traverses the assertion to be ex-
haled, asserting all logical properties, and removing the required permissions from the current
mask. In contrast to exhale, the translation of inhale is parameterized by a mask because it
sometimes operates on primary and sometimes on known-folded permissions stored in a partic-
ular predicate mask. The known-folded permissions of a predicate instance are those for which
the program previously held the direct permission, or which are folded inside a predicate in-
stance that has been retained up to the current program point. The known-folded permissions are
very different conceptually from the fractional permissions that we use for object propositions
and thus they lead to a different way of encoding. In their encoding, in addition to recording
direct permissions, Heule et al. record for each predicate instance those locations to which the
predicate holds known-folded permission.

4.4 Comparison between the JavaSyp Tool and the Oprop Tool
Kevin Bierhoff has implemented a tool called JavaSyp [7] that uses the SMT solver Z3 to for-
mally verify Java code. Since JavaSyp implements a similar permission system, but for types-
tate instead of object propositions, we initially wanted to modify JavaSyp in order to implement
Oprop. That proved to be a difficult task because there are many details that are different between
JavaSyp and what Oprop needs to do:
• JavaSyp uses borrowing and capture/release because the tool does not implement fractional
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permissions. Oprop does not use borrowing, but instead it uses fractional permissions.
Fractions give more precision than the borrowing mechanism and so we have implemented
fractional permissions.

• Oprop will implement the pack/unpack mechanism, while JavaSyp does not implement this
mechanism. JavaSyp implements instead “exposure blocks" that show how fields should
be accessed. These features are closely related: when the fields of an object are unpacked
(when the object proposition that encapsulated them is unpacked), we can think of them
as being “exposed". In Bierhoff’s system, there are “unique" and “immutable" exposure
blocks. Fields can be assigned inside unique exposure blocks, with field reads yielding the
field’s original permission. Inside an immutable block, reading fields results in a weakened
field permission. The technical difference is that in our system we do not have immutable
permissions, but instead one can always write to the fields of an object (in some cases,
one has to make sure that the invariant is preserved). We acknowledge that this is just an
incidental difference and the ideas of pack/unpack vs. exposure blocks are very similar.

• JavaSyp has state invariants, but Oprop will not have them and instead it will have invari-
ants for objects that are shared.

4.5 Equivalence of the Oprop Language and its Translation
into the Boogie Language

The soundness theorem below formally states that if the translation into Boogie of an Oprop
formula holds in first order logic then the initial formula holds in our linear theory. The com-
pleteness theorem below states the opposite direction: if a formula holds in our linear theory then
its translation will hold in first order logic. By proving both the soundness and the completeness
theorems we prove that the formulas of the Oprop language and their translation into formulas
written in Boogie, as described above, are equivalent.

We are not stating that the whole Oprop language is equivalent to its translation into Boogie–
just formulas. Boogie’s semantics is defined via trace sets and the trace set style of semantics is
quite distant from the standard dynamic semantics approach that we use. Furthermore modeling
all the detailed constructs in Java has been done in other settings and is not interesting–but the
semantics of the formulas are at the heart of translating the linear theory down to Boogie so that
is what we chose to focus on for equivalence purposes. Later in Section 4.6 we have a separate,
less formal, discussion of why the other parts of the translation are sound.

We present the semantic rules for our linear theory formulas in Figures 4.22 and 4.23. In these
figures Γ contains typings for term variables, Π0 contains the persistent truths and Π1 contains
the resources. We have adapted these semantic rules from Prof. Frank Pfenning’s 2012 Carnegie
Mellon course on linear logic [63]. We have divided the Π that we used in Section 3.1 into
Π0 and Π1, to separate the persistent truths and the ephemeral resources. In fact the context Π
contains the preconditions of the particular method inside which we have to prove a formula R
and we have the equality Π = Π0; Π1. We have already given a number of semantic rules for
our system in Section 3.3. While the rules in Section 3.3 use entailment, we have not precisely
defined it there as the relationship is mostly standard. We are presenting it in this section to both
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Γ; Π0; Π1 ` r@k/2 Q(t)⊗ r@k/2 Q(t)
Γ; Π0; Π1 ` r@k Q(t)

(OPack1)

Γ; Π0; Π1 ` r@k*2 Q(t)
Γ; Π0; Π1 ` r@k Q(t)⊗ r@k Q(t)

(OPack2)

Γ; Π0; Π1 ` r@k/2 Q(t)⊗ unpacked(r@k/2 Q(t))

Γ; Π0; Π1 ` unpacked(r@k Q(t))
(OUnpack1)

Γ; Π0; Π1 ` R1 Γ; Π0; Π′1 ` R2
Γ; Π0; Π1,Π

′
1 ` R1⊗ R2

(⊗)

Γ; Π0; Π1 ` R1
Γ; Π0; Π1 ` R1⊕ R2

(⊕L)

Γ; Π0; Π1 ` R2
Γ; Π0; Π1 ` R1⊕ R2

(⊕R)

Figure 4.22: Semantics for Linear Theory Formulas

define precisely what it means in our system and allow us to prove properties about it. The rules
in Figures 3.1 and 3.2 are similar to the rules that we present in this section in Figure 4.23, but
they are only simplified versions of the ones in the current section. The details of the rules from
Figure 4.23 are needed in our proof below, that shows that the translation of formulas into Boogie
is both sound and complete.
Theorem 2 (Soundness Theorem). For a formula R that is written in our linear theory and
parses according to the grammar in Section 3.1, if trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL
R.

Proof. The proof will follow the cases of R in the grammar in Section 3.1, but it will be done by
induction on the complexity of formula R, i.e., on the depth of logical connectives in the formula.
For each formula R we have to prove that if trans(R) is true in first order logic then R is true in
our linear theory.

• Case P3

To prove: If trans(Γ; Π0; Π1) `FOL trans(P) then Γ; Π0; Π1 `LL P, where:

1. R = P = r.f → x
2. trans(P) = (f [r] == x) && (fF ieldPermission[r] == true)

Proof: This proof is based on the structure of Π, which shows that r.f → x can only be at
the top level of Π or nested inside a universal or existential quantifier. The definition of Π
is presented in Section 3.3 and reproduced below:
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Γ,M:T; Π0; Π1,R{M/x} ` C

Γ; Π0; Π1, ∃x:T.R ` C
(∃1L)

Γ ` M:T Γ; Π0; Π1 ` R{M/x}
Γ; Π0; Π1 ` ∃x:T.R

(∃1R)

Γ,F:double; Π0,F > 0; Π1,R{F/z} ` C

Γ; Π0; Π1, ∃z:double.R ` C
(∃2L)

Γ ` F:double Π0 ` F > 0 Γ; Π0; Π1 ` R{F/z}
Γ; Π0; Π1 ` ∃z:double.R

(∃2R)

Γ,F:double; Π0,F binop t; Π1,R{F/z} ` C

Γ; Π0; Π1, ∃z:double.z binop t⇒ R ` C
(∃3L)

Γ ` F:double Π0 ` F binop t Γ; Π0; Π1 ` R{F/z}
Γ; Π0; Π1 ` ∃z:double.z binop t⇒ R

(∃3R)

Γ ` m : T ; Γ; Π0; Π1,R{m/x} ` C

Γ; Π0; Π1, ∀x:T.R ` C
(∀1L)

Γ,m : T ; Π0; Π1 ` R{m/x}
Γ; Π0; Π1 ` ∀x:T.R

(∀1R)

Γ ` f:double; Γ,Π0, f > 0; Π1,R{f/z} ` C

Γ; Π0; Π1, ∀z:double.R ` C
(∀2L)

Γ, f:double; Π0, f > 0; Π1 ` R{f/z}
Γ; Π0; Π1 ` ∀z:double.R

(∀2R)

Γ ` f:double; Γ,Π0, f binop t; Π1R{f/z} ` C

Γ; Π0; Π1,∀z:double.z binop t⇒ R ` C
(∀3L)

Γ, f:double; Π0, f binop t; Π1 ` R{f/z}
Γ; Π0; Π1 ` ∀z:double.z binop t⇒ R

(∀3R)

Γ; Π0; Π1 ` t1 binop t2⇒ R
Γ; Π0, t1 binop t2; Π1 ` R

(tbint)

Γ; Π0; Π1,R ` R
(id)

Figure 4.23: Semantics for Linear Theory Formulas - cont.
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type context Γ ::= · | Γ, x : T
linear context Π ::=

⊕n
i=1 Πi

Πi ::= · | Πi ⊗ P | Πi ⊗ t1 binop t2 |
Πi ⊗ r.f → x | ∃z.P | ∀z.P

For (f [r] == x) && (fF ieldPermission[r] == true) to be the conclusion, it must
appear in the context Π. We need the (fF ieldPermission[r] == true) part of the trans-
lation to distinguish from f [r] = x that could come from the translateObjectProposition()
in Figure 4.19. The structure of Π and the translation rules mean that (f [r] == x)&&
(fF ieldPermission[r] == true) can only be at the top level of trans(Π) or nested inside
a universal or existential quantifier. We could imagine an implication being introduced
in the definition of Π above, but it could be easily eliminated and removed from any
proof. So let us assume a cut-free proof, without loss of generality. (f [r] == x) &&
(fF ieldPermission[r] == true) can only come from an identity rule or via a quanti-
fier elimination rule. The identity and quantifier elimination rules are analogous for our
linear theory and FOL, so a structurally equivalent proof must exist in the linear system.
This means that r.f → x can only be obtained via an identity rule or a quantifier elim-
ination rule in the linear theory. In both cases we get that Γ; Π0; Π1 `LL r.f → x, i.e.,
Γ; Π0; Π1 `LL P.

• Case P1
To prove: If trans(Γ; Π0; Π1) `FOL trans(P) then Γ; Π0; Π1 `LL P, where:

1. R = P = r@k Q(t)
2. trans(P) = packedQ[r] && translateObjectProposition(r@k Q(t))

Proof: The definition of the function translateObjectProposition() defined in Figure 4.19
states:

i f p a r a m e t e r t c o r r e s p o n d s t o a f i e l d o f r {
say t h a t f i e l d i s f i e l d 1 ;
r e s u l t += " ( f i e l d 1 [ r ]== t ) " ;

}
i f p a r a m e t e r t does n o t c o r r e s p o n d t o a f i e l d o f r {

say X i s t h e f o r m a l p a r a m e t e r o f Q c o r r e s p o n d i n g t o t ;
r e s u l t += " && ( paramQX [ r ]== t ) " ;

}

This means that trans([r/this]Q(t)) holds in FOL. Using the induction hypothesis we ob-
tain that [r/this]Q(t) holds in LL. Also from the definition of the function translateObject-
Proposition() we know that

r e s u l t += " ( f r acQ [ r ] == k ) " ;
i f ( k i s a m e t a v a r i a b l e ) {

r e s u l t += " && ( k > 0 . 0 ) && ( k < 1 . 0 ) " ;
}

This means that in trans(Π1) there is a value fracQ[r] that corresponds to k. We also know
that in trans(Π1) we have packedQ[r]. Since we devised fracQ[r] and packedQ[r]
to mean exactly the value of the fraction and the packing state corresponding to the object
proposition r@k Q(t), we have all the ingredients showing that r@k Q(t) holds in LL.
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• Case P2
To prove: If trans(Γ; Π0; Π1) `FOL trans(P) then Γ; Π0; Π1 `LL P, where:

1. R = P = unpacked(r@k Q(t))
2. trans(P) = (packedQ[r]==false) &&

translateObjectProposition(r@k Q(t))

Proof:
The definition of the function translateObjectProposition() defined in Figure 4.19 states:

i f p a r a m e t e r t c o r r e s p o n d s t o a f i e l d o f r {
say t h a t f i e l d i s f i e l d 1 ;
r e s u l t += " ( f i e l d 1 [ r ]== t ) " ;

}
i f p a r a m e t e r t does n o t c o r r e s p o n d t o a f i e l d o f r {

say X i s t h e f o r m a l p a r a m e t e r o f Q c o r r e s p o n d i n g t o t ;
r e s u l t += " && ( paramQX [ r ]== t ) " ;

}

This means that the fields of r are equal to the corresponding parameters of predicate Q
in FOL, whether they are the actual fields coming from the parameter of an existential
expression, or they are the formal fields, as discussed when we defined the translation
function translateObjectProposition() in Figure 4.19. Using the induction hypothesis (case
P3) we obtain that those fields point to the values of the corresponding parameters of
predicate Q in LL.
Also from the definition of the function translateObjectProposition() we know that

r e s u l t += " ( f r acQ [ r ] == k ) " ;
i f ( k i s a m e t a v a r i a b l e ) {

r e s u l t += " && ( k > 0 . 0 ) && ( k < 1 . 0 ) " ;
}

This means that in trans(Π1) there is a value fracQ[r] that corresponds to k. We also
know that in trans(Π1) we have packedQ[r]==false. Since we devised fracQ[r]
and packedQ[r] to mean exactly the value of the fraction and the packing state corre-
sponding to the object proposition r@k Q(t), we have all the ingredients showing that
unpacked(r@k Q(t)) holds in LL.

• Case P4
To prove: If trans(Γ; Π0; Π1) `FOL trans(P) then Γ; Π0; Π1 `LL P, where:

1. R = P = t binop t
2. trans(P) = t trans(binop) t

Proof:
For all but the modulo binary operator, it is straightforward to see that if the translation
of the binary expression holds in FOL, then the original expression holds in LL. Because
division and modulo are defined differently in different source languages, Boogie provides
syntax for the operators and % but gives them no meaning. Instead, the meaning of these
operators can be axiomatized according to their desired meaning, as can be seen below.
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We have taken the definition of the modulo operator from the official Boogie manual
[50] available online at http://research.microsoft.com/~leino/papers.
html, and one can see that if the axioms below are holding in FOL, then x%y ==
modulo(x, y).
function modulo(x:int, y:int) returns (int);
axiom (forall x:int, y:int :: {modulo(x,y)}
modulo(x,y) == x - x/y * y
axiom (forall x:int, y:int :: {modulo(x,y)}
((0<=x)&&(0<y)==>(0<=modulo(x,y))&&(modulo(x,y)<y))&&
((0<=x)&&(y<0)==>(0<= modulo(x,y))&&(modulo(x,y)<-y))&&
((x<=0)&&(0<y)==>(-y<=modulo(x,y))&&(modulo(x,y)<=0))&&
((x<=0)&&(y<0)==>(y<= modulo(x,y))&&(modulo(x,y)<=0)));

• Case R⊗
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = R1 ⊗ R2
2. trans(R) = translateAnd(R1,R2)

Proof:
The definition of the translateAnd() function in Figure 4.18 first rewrites the initial formula
R1 ⊗ R2 into disjunctive normal form (DNF). Since we have a formula in DNF, we will
have a number of conjunctions combined with || operators. Within each conjunction
the coalesce() function in the translation adds the fractions in all the appearances
of ri@_ Qi(ti). Whether ri@_ Qi(ti) is packed or unpacked, the corresponding
fractions are summed up into ri@ki Qi(ti). After this rewrite, the translation of each
conjunction has the form
trans(r1@(k1+k’1) Q1(t1)) && trans(r2@(k2+k’2) Q2(t2)) && .. &&
trans(rn@(kn+k’n) Qn(tn)) && trans(R1leftover) && trans(R2leftover).
By the induction hypothesis we get that the component formulas hold in LL, i.e., the formu-
las r1@(k1+k’1) Q1(t1), r2@(k2+k’2) Q2(t2), .., rn@(kn+k’n) Qn(tn),
R1leftover, R2leftover simultaneously hold in LL. The induction hypothesis above
considers each disjunct separately. The only case where a conjunction would not hold in
LL when it holds in FOL is because the same resource is used twice; and the coalescing
done in the translation rule ensures that the resources used in each part of the conjunction
are different.
Finally, the formula
r1@(k1+k’1) Q1(t1)⊗ r2@(k2+k’2) Q2(t2)⊗ ..⊗ rn@(kn+k’n) Qn(tn)
⊗ R1leftover⊗ R2leftover holds in LL, i.e., using the⊗ linear theory rule we ob-
tain that the formula R1 ⊗ R2 holds in LL.

• Case R⊕
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = R1 ⊕ R2
2. trans(R) = trans(R1) || trans(R2)

Proof:
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If trans(R1) || trans(R2) holds in FOL, it means that trans(R1) or trans(R2) holds in FOL.
Let’s assume that trans(R1) holds in FOL, since the proof is similar if trans(R2) holds. By
the induction hypothesis, we know that R1 holds in LL. By the ⊕L linear theory rule, this
means that R1 ⊕ R2 holds in LL.

• Case R∃1
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = ∃x:T.R1
2. trans(R) = trans(R1); addExistential(trans(R1), x:trans(T))

Proof:
We know that trans(R1); addExistential(trans(R1), x:trans(T)) holds in FOL. This
means that the formula R1 is first translated and then the translation function addExistential(),
for which we present the definition below, adds the parameter x:trans(T) to the signature of
the method or predicate in which R1 is found. Adding the existentially quantified variable
x to the surrounding method has the effect, from the point of view of the formula, of ex-
tending the context with x. From the induction hypothesis we know that R1, that contains
the x variable, holds in LL. The addExistential() writes the type of the variable x
and it bounds it to the enclosing method or predicate. This does not change the semantics
of the R1 formula, which still holds in LL. Thus we obtain that ∃x:T.R1 holds in LL, i.e.,
Γ; Π0; Π1 `LL R.

f u n c t i o n a d d E x i s t e n t i a l ( t r a n s ( R1 ) , x : t r a n s ( T ) )
{

M e t h o d O r P r e d D e c l a r a t i o n r e s u l t ;
l e t methodOrPred ( params ) be t h e method
or p r e d i c a t e i n t h e body of which R i s found ;
u p d a t e methodOrPred ( params ) t o be methodOrPred ( params , t :

t r a n s ( T ) ) ;
r e t u r n t r a n s (R) ;

}

• Case R∃2
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = ∃z:double.R
2. trans(R) = trans(R); addExistentialFrac(trans(R), z:trans(double))

Proof:
We know that trans(R); addExistentialFrac(trans(R), z:trans(double)) holds in
FOL. This means that the formula R is first translated and then the function
addExistentialFrac(), for which we present the definition below, adds the param-
eter k:real to the enclosing method or predicate signature. By the induction hypothesis
we obtain that R holds in LL. We then see that the value fracQ[r] is the witness for z
needed by the formula ∃z:double.R in LL. Thus this formula holds in LL.

f u n c t i o n a d d E x i s t e n t i a l F r a c ( t r a n s (R) , k : t r a n s ( do ub l e ) )
{

M e t h o d O r P r e d D e c l a r a t i o n r e s u l t ;
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l e t methodOrPred ( params ) be t h e method
or p r e d i c a t e i n t h e body of which R i s found ;
u p d a t e methodOrPred ( params ) t o be methodOrPred ( params , k : r e a l

) ;
r e t u r n t r a n s (R) ;

}

• Case R∃3
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = ∃z:double.z binop t⇒ R
2. trans(R) = trans(R);

addExistentialFracBinop(trans(R), z:trans(double), z binop t)

Proof:
The proof in this case is very similar to the proof in the R∃1 case, except that we have
the extra condition fracQ[r] binop t on the value fracQ[r]. The definition of the
translation function addExistentialFracBinop() is given below, and it shows that the only
difference between this function and the translation function in the R∃1 case is the extra
condition on k.

f u n c t i o n a d d E x i s t e n t i a l F r a c B i n o p ( t r a n s (R) , k : t r a n s ( do ub l e ) , k
b inop t )

{
M e t h o d O r P r e d D e c l a r a t i o n r e s u l t ;
l e t methodOrPred ( params ) be t h e method
or p r e d i c a t e i n t h e body of which R i s found ;
u p d a t e methodOrPred ( params ) t o be methodOrPred ( params , k : r e a l

) and
add " a s s e r t k b inop t ; " ( o r " k b inop t " ) t o body of

methodOrPred ;
r e t u r n t r a n s (R) ;

}

• Case R∀1
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = ∀t:T.R
2. trans(R) = var t :trans(T); trans(R)

Proof:
We know that trans(R) holds in FOL, for every t :trans(T). Using the induction hypothesis,
we obtain that R holds in LL for all t : T . This means that ∀t:T.R holds in LL.

• Case R∀2
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = ∀z:double.R
2. trans(R)= var z : real; trans(R)

Proof:

97



We know that trans(R) holds in FOL, for every z : real. Using the induction hypothesis,
we obtain that R holds in LL for all z : double. This means that ∀z:double.R holds in LL.

• Case R∀3
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = ∀z:double.z binop t⇒ R
2. trans(R) = var z : real; z trans(binop) t ==> trans(R)

Proof:
We know that trans(R) holds in FOL, for every z : real, for which z trans(binop) t holds.
Using the induction hypothesis, we obtain that R holds in LL for all z : double for which
z binop t holds. This means that ∀z:double.z binop t⇒ R holds in LL.

• Case R⇒
To prove: If trans(Γ; Π0; Π1) `FOL trans(R) then Γ; Π0; Π1 `LL R, where:

1. R = t1 binop t2⇒ R
2. trans(R) = t1 trans(binop) t2 ==> trans(R)

Proof:
We know that trans(R) holds in FOL when t1 trans(binop) t2 holds. Using the induc-
tion hypothesis, we obtain that R holds in LL when t1 binop t2 holds. This means that
t1 binop t2⇒ R holds in LL.

Theorem 3 (Completeness Theorem). For a formula R that is written in our linear theory and
parses according to the grammar in Section 3.1 and assuming that the right witnesses are chosen
for the existentially quantified variables in R and knowing the aliasing relations in R, i.e., which
references present in R point to the same object, if Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL
trans(R).

Proof. The proof will be done by induction on the derivation that R is true in our linear theory.
For this we use the rules in Figures 4.22 and 4.23. For each formula R we have to prove that if
R is true in the linear theory then trans(R) is true in first order logic.

• Case OPack1
To prove: If Γ; Π0; Π1 `LL P then trans(Γ; Π0; Π1) `FOL trans(P) where:

1. P = r@k Q(t)
2. trans(P) = packedQ[r] && translateObjectProposition(r@k Q(t)) and

3.
Γ; Π0; Π1 ` r@k/2 Q(t)⊗ r@k/2 Q(t)

Γ; Π0; Π1 ` r@k Q(t)
(OPack1)

Proof:
From the OPack1 rule we know that
if Γ; Π0; Π1 `LL r@k Q(t) then Γ; Π0; Π1 `LL r@k/2 Q(t) ⊗ r@k/2 Q(t) . Us-
ing the induction hypothesis, we know that trans(Γ; Π0; Π1) `FOL trans(r@k/2 Q(t) ⊗
r@k/2 Q(t)). Using the definition of the translateAnd() function from Figure 4.18, we
obtains that trans(Γ; Π0; Π1) `FOL trans(r@(k/2 + k/2) Q(t)), i.e., trans(Γ; Π0; Π1) `FOL
trans(r@(k) Q(t)). This means that if P holds in LL then trans(P) holds in FOL. Q.E.D.
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• Case OPack2
To prove: If Γ; Π0; Π1 `LL P then trans(Γ; Π0; Π1) `FOL trans(P) where:

1. P = r@k Q(t)
2. trans(P) = packedQ[r] && translateObjectProposition(r@k Q(t)) and

3.
Γ; Π0; Π1 ` r@k*2 Q(t)

Γ; Π0; Π1 ` r@k Q(t)⊗ r@k Q(t)
(OPack2)

Proof: From the OPack2 rule we know that
if Γ; Π0; Π1 `LL r@k Q(t)⊗ r@k Q(t) then Γ; Π0; Π1 `LL r@k*2 Q(t) .
Using the definition of the translateAnd() function from Figure 4.18, we obtain that
trans(r@k Q(t)⊗r@k Q(t)) is equal to trans(r@(k+k) Q(t)), which is equal to trans(r@(k*2) Q(t)).
We now have to prove that trans(Γ; Π0; Π1) ` trans(r@k*2 Q(t)).
Using the induction hypothesis we obtain that trans(Γ; Π0; Π1) `FOL trans(r@k*2 Q(t)),
which is exactly what we needed to prove. Thus if P holds in LL then trans(P) holds in
FOL. Q.E.D.

• Case OUnpack1
To prove: If Γ; Π0; Π1 `LL P then trans(Γ; Π0; Π1) `FOL trans(P) where:

1. P = unpacked(r@k Q(t))
2. trans(P) = (packedQ[r]==false) &&

translateObjectProposition(r@k Q(t)) and

3.
Γ; Π0; Π1 ` r@k/2 Q(t)⊗ unpacked(r@k/2 Q(t))

Γ; Π0; Π1 ` unpacked(r@k Q(t))
(OUnpack1)

Proof:
From the OUnpack1 rule we know that
if Γ; Π0; Π1 `LL unpacked(r@k Q(t)) then
Γ; Π0; Π1 `LL r@k/2 Q(t)⊗ unpacked(r@k/2 Q(t)) .
Using the induction hypothesis we obtain that trans(Γ; Π0; Π1) `FOL trans(r@k/2 Q(t)⊗
unpacked(r@k/2 Q(t))). Using the definition of the translateAnd() function from Fig-
ure 4.18, we obtain that trans(r@k/2 Q(t)⊗ unpacked(r@k/2 Q(t)) is equal to
trans(unpacked(r@k Q(t)). This means that trans(Γ; Π0; Π1) `FOL trans(unpacked(r@k Q(t)).
Thus if P holds in LL then trans(P) holds in FOL. Q.E.D.

• Case ⊗
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = R1 ⊗ R2
2. trans(R) = translateAnd(R1,R2)

3.
Γ; Π0; Π1 ` R1 Γ; Π0; Π′1 ` R2

Γ; Π0; Π1,Π
′
1 ` R1⊗ R2

(⊗)

Proof:
From the ⊗ rule we know that Γ; Π0; Π1 ` R1 Γ; Π0; Π′1 ` R2 . By induction and
using the translation rules we know that trans(Γ; Π0; Π1) ` trans(R1) and trans(Γ; Π0; Π′1)
` trans(R2). Using the rules of FOL we obtain that trans(Γ; Π0; Π1,Π

′
1) ` trans(R1) &&

trans(R2). If R1 and R2 both represent object propositions about the same reference and
same predicate (also the same parameters for that predicate), the fractions of these two
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object propositions will be added. This is the point in the proof where we need to know the
aliasing relations in R1 and R2, i.e., which references present in R1 and R2 point to the
same object. If R1 and R2 are general formulas they can be rewritten in their disjunctive
normal form and only then the corresponding object propositions in each conjunction will
have their fractions added. Thus the formula trans(R1) && trans(R2) is equivalent to the
formula translateAnd(R1,R2), except that in translateAnd(R1,R2) the fractions are added.
But we know that Π1 ` R1 and Π′1 ` R2, which means that the fractions related to R1
are in Π1 and the fractions related to R2 are in Π′1. When Π1 and Π′1 are put together in
Π1,Π

′
1, the fractions of the object propositions are added, which means that Π1,Π

′
1 will

contained the summed fractions necessary to prove translateAnd(R1,R2). So if R holds in
LL then trans(R) holds in FOL. Q.E.D.

• Case ⊕L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = R1 ⊕ R2
2. trans(R) = trans(R1) || trans(R2)

3.
Γ; Π0; Π1 ` R1

Γ; Π0; Π1 ` R1⊕ R2
(⊕L)

Proof: If the additive disjunction R1 ⊕ R2 holds in LL then R1 holds in LL, from the
(⊕L) rule. Using the induction hypothesis, we obtain that trans(Γ; Π0; Π1) `FOL trans(R1).
Using the || rule from FOL we obtain that trans(Γ; Π0; Π1) `FOL trans(R1) || trans(R2).
This is exactly what we needed to prove. Q.E.D.

• Case ⊕R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = R1 ⊕ R2
2. trans(R) = trans(R1) || trans(R2)

3.
Γ; Π0; Π1 ` R2

Γ; Π0; Π1 ` R1⊕ R2
(⊕R)

Proof:If the additive disjunction holds in the linear theory then the translation into the first
order logic disjunction holds. The proof in this case is very similar to the ⊕L case.

• Case ∃1R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = ∃t:T.R
2. trans(R) = trans(R1); addExistential(trans(R1), t:trans(T))

3.
Γ ` M:T Γ; Π0; Π1 ` R1{M/t}

Γ; Π0; Π1 ` ∃t:T.R1 (∃1R)

Proof:Whenever there is an existential formula in our linear theory, the way we translate
it in first order logic in Boogie is by adding the existentially quantified variable to the
variables of the enclosing method or predicate where R1 is found. When that method or
the packing or unpacking procedures of that predicate are called, the programmer will have
to give a witness for the variable t. This is because the performance of the Boogie tool is
extremely poor when it has to instantiate an existentially quantified variable on its own.
If the existential formula is true in the linear theory then according to the rule ∃1R, there
exists a witness M:T for it. By induction, there exists a witness trans(M):trans(T) for the
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translated formula in FOL. The statement of the Completeness Theorem assumes that the
witness is chosen correctly by the programmer. If the witness is chosen incorrectly by the
programmer, the formula will be true in the linear theory but not in first order logic. By
applying the existential rule in FOL, we obtain that if the existentially quantified translated
first order logic formula is true then the existentially quantified linear theory formula is
true.

• Case ∃1L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = ∃t:T.R
2. trans(R) = trans(R1); addExistential(trans(R1), t:trans(T))

3.
Γ,M:T; Π0; Π1,R{M/x} ` C

Γ; Π0; Π1,∃x:T.R ` C
(∃1L)

Proof:Whenever there is an existential formula in our linear theory, the way we translate
it in first order logic in Boogie is by adding the existentially quantified variable to the
variables of the enclosing method or predicate where R1 is found. When that method or
the packing or unpacking procedures of that predicate are called, the programmer will have
to give a witness for the variable t. This is because the performance of the Boogie tool is
extremely poor when it has to instantiate an existentially quantified variable on its own.
If the existential formula is true in the linear theory then according to the rule ∃1LC will be
true and the same C will be true when we have R{M/x} instead of the existential formula.
We can choose the witness M:T for the existential formula ∃x:T.R. The statement of the
Completeness Theorem assumes that the witness is chosen correctly by the programmer. If
the witness is chosen incorrectly by the programmer, the formula will be true in the linear
theory but not in first order logic. By induction, there exists a witness trans(M):trans(T) for
the translated formula in FOL. By applying the existential rule in FOL, we obtain that if
the existentially quantified translated first order logic formula is true then the existentially
quantified linear theory formula is true.

• Case ∃2R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∃z:double.R1
2. trans(R) = trans(R1); addExistentialFrac(trans(R1), z:trans(double))

3.
Γ ` F:double Π0 ` F > 0 Γ; Π0; Π1 ` R1{F/z}

Γ; Π0; Π1 ` ∃z:double.R1 (∃2R)

Proof:This case is similar to the one above. If no restriction is given on the fraction z we
assume that it can be any fraction that is greater than zero. If R1 uses the fraction z, the
translation of R1 will instead state that the value of frac for the corresponding predicate
and reference is greater than zero, for all the occurrences of z in R1.
The inductive proof is similar to the proof for case ∃1R.

• Case ∃2L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∃z:double.R1
2. trans(R) = trans(R1); addExistentialFrac(trans(R1), z:trans(double))
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3.
Γ,F:double; Π0,F > 0; Π1,R{F/z} ` C

Γ; Π0; Π1,∃z:double.R ` C
(∃2L)

Proof:This case is similar to the ∃1L case above. If no restriction is given on the fraction z
we assume that it can be any fraction that is greater than zero. If R1 uses the fraction z, the
translation of R1 will instead state that the value of frac for the corresponding predicate
and reference is greater than zero, for all the occurrences of z in R1.
The inductive proof is similar to the proof for case ∃1L.

• Case ∃3R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∃z:double.z binop t⇒ R1
2. trans(R) = trans(R1);

addExistentialFracBinop(trans(R1), z:trans(double), z binop t)

3.
Γ ` F:double Π0 ` F binop t Γ; Π0; Π1 ` R1{F/z}

Γ; Π0; Π1 ` ∃z:double.z binop t⇒ R1 (∃3R)

Proof:Similarly to the case above, the proof for this case also relies on replacing all the
occurrences of z in R1 with a concrete formula, for which we have z binop t in this
case. As opposed to the case above where we were implicitly assuming that z > 0, here
we have a specific condition that has to hold for z: z binop t .
The inductive proof is similar to the proof for case ∃1R.

• Case ∃3L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∃z:double.z binop t⇒ R1
2. trans(R) = trans(R1);

addExistentialFracBinop(trans(R1), z:trans(double), z binop t)

3.
Γ,F:double; Π0,F binop t; Π1,R{F/z} ` C

Γ; Π0; Π1,∃z:double.z binop t⇒ R ` C
(∃3L)

Proof:Similarly to the ∃1L case above, the proof for this case also relies on replacing all
the occurrences of z in R1 with a concrete formula, for which we have z binop t in
this case. As opposed to the case above where we were implicitly assuming that z > 0,
here we have a specific condition that has to hold for z: z binop t .
The inductive proof is similar to the proof for case ∃1L.

• Case ∀1R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = ∀t:T.R1
2. trans(R) = var t : T ; trans(R1)

3.
Γ,m:T; Π0; Π1 ` R1{m/t}

Γ; Π0; Π1 ` ∀t:T.R1 (∀1R)

Proof: This case together with the following cases use the universal quantifier. The way
the universal quantifier is translated into Boogie is by declaring the universally quantified
variable as a variable in the program. From the ∀1R rule we know that if the formula
∀t:T.R1 is true in LL then R1{m/t} will be true, with m being declared of type T. After the
declaration of variable t, if the formula R is true then the FOL translation of the formula
R1 is true, following our inductive proof. Thus, trans(Γ; Π0; Π1) `FOL trans(R).
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• Case ∀1L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = ∀t:T.R1
2. trans(R) = var t : T ; trans(R1)

3.
Γ ` m:T; Γ; Π0; Π1,R{m/x} ` C

Γ; Π0; Π1,∀x:T.R ` C
(∀1L)

Proof: The way the universal quantifier is translated into Boogie is by declaring the uni-
versally quantified variable as a variable in the program. Using the ∀1L rule we know that
when ∀t:T.R1 is true in LL, C will be true and m:T can be obtained from Γ which will
make R{m/x} true. By renaming the general variable m to t and following our inductive
proof we obtain that after the declaration of variable t, if the formula R is true then the
FOL translation of the formula R1 is true. Thus, trans(Γ; Π0; Π1) `FOL trans(R).

• Case ∀2R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∀z:double.R1
2. trans(R)= var z : real; trans(R1)

3.
Γ, f:double; Π0, f > 0; Π1 ` R{f/z}

Γ; Π0; Π1 ` ∀z:double.R (∀2R)

Proof:This case is very similar to the ∀1R case above, but instead of the variable t we
have the variable z that designates fractions. The only difference is that for a fraction, we
declare it as having type real and we assume that it is greater than zero. If the formula R
is true then the translation of the inner formula R1 is true.
The inductive proof is similar to the proof for case ∀1R.

• Case ∀2L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∀z:double.R1
2. trans(R)= var z : real; trans(R1)

3.
Γ ` f:double; Γ,Π0, f > 0; Π1,R{f/z} ` C

Γ; Π0; Π1, ∀z:double.R ` C
(∀2L)

Proof:This case is very similar to the ∀1R case above, but instead of the variable t we
have the variable z that designates fractions. The only difference is that for a fraction, we
declare it as having type real and we assume that it is greater than zero. If the formula R
is true then the translation of the inner formula R1 is true.
The inductive proof is similar to the proof for case ∀1R.

• Case ∀3R
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∀z:double.z binop t⇒ R1
2. trans(R)= var z : real; z binop t ==> trans(R1)

3.
Γ, f:double; Π0, f binop t; Π1 ` R1{f/z}
Γ; Π0; Π1 ` ∀z:double.z binop t⇒ R1

(∀3R)

Proof:This case is very similar to the previous cases ∀1R and ∀2R, the only difference
being that now we have an additional condition on the fraction z, which is z binop t.
The inductive proof is similar to the proof for case ∀1R.
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• Case ∀3L
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R= ∀z:double.z binop t⇒ R1
2. trans(R)= var z : real; z binop t ==> trans(R1)

3.
Γ ` f:double; Γ,Π0, f binop t; Π1R{f/z} ` C

Γ; Π0; Π1,∀z:double.z binop t⇒ R ` C
(∀3L)

Proof:This case is very similar to the previous cases ∀1L and ∀2L, the only difference
being that now we have an additional condition on the fraction z, which is z binop t.
The inductive proof is similar to the proof for case ∀1L.

• Case tbint
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. R = t binop t⇒ R1
2. trans(R) = t binop t ==> trans(R1)

3.
Γ; Π0; Π1 ` t1 binop t2⇒ R1

Γ; Π0, t1 binop t2; Π1 ` R1 (tbint)

Proof:If the linear logic implication will be true then the first order logic implication will
be true. The reasoning in this case is straightforward because on the left side of the impli-
cation we have very simple formulas that do not require a complicated translation. More
importantly, the formulas on the left are not using resources and thus we do not have to
worry about the left side using up a resource that the right side needs.

• Case id
To prove: If Γ; Π0; Π1 `LL R then trans(Γ; Π0; Π1) `FOL trans(R) where:

1. Γ; Π0; Π1,R ` R (id)

Proof: From the (id) rule we know that Γ; Π0; Π1,R ` R and we need to prove that
trans(Γ; Π0; Π1,R) `R, i.e., we need to prove that trans(Γ; Π0);trans(Π1),trans(R) ` trans(R),
which holds according to the identity rule from FOL.

Note that the main caveat to completeness (other than the need for witnesses, which is a
theorem prover limitation) is aliasing. Although the point of linear logic is to signal aliasing by
having an object proposition with a fraction less than 1, in practice there is a need to specify if
two references are pointing to the same object. This relaxes our system: two object propositions,
with fractions less than 1, can coexist in the same formula. This can be advantageous, but may
result in incompleteness in the prover if the aliasing relationships are not properly specified.

4.6 Informal Soundness Argument
In the following paragraphs we give an intuitive explanation of why our translation is sound
beyond the formulas. Throughout the explanation, we use the Composite example as a reference.

When we have an object proposition containing a fraction less than 1 inside the definition
of a predicate, we translate it as a requires statement in the corresponding Pack procedure,
and as an ensures statement in the Unpack procedure. For example, we have the object
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proposition ol#0.5 count(lc) inside the definition of the predicate left from Section
5.4, Figure 5.39. Moreover, the object proposition is preceded by the condition ol != null.
In this case our translation will be (left[this] != null) ==> ((fracCount[ol]
>= 0.5) && (count[ol] == lc)), preceded either by the requires or ensures
keyword, depending if we are inside the Pack procedure or in the Unpack procedure. Note
that the translation does not have the bit packedCount[ol] in it. This is because the fraction
is less than 1 and we cannot be sure that at this point in time the inner object proposition is
packed. We do know for sure that we have a fraction of at least 0.5 to it. Our theory ensures us
that although the inner object proposition might not be packed at this moment, it will be packed
at some point in the future, most likely the boundary of methods.

As opposed to the body of predicates where we do not mention packedPredwhen referring
to a packed object proposition, we do mention whether a predicate is packed or unpacked in
the pre- and post-conditions of methods. This is because the boundaries of methods are places
where we should know for sure whether an object proposition is packed or not.

Our theory states that in the precondition of a method, all the unpacked object proposi-
tions need to be mentioned explicitly. All the others are assumed to be packed. This holds
only for the beginning of a procedure; in the body of the procedure some object propositions
can be unpacked and then packed back again to the same predicate; this is why we are writ-
ing in the first paragraph above that we cannot always be sure that an object proposition is
packed. In order to infuse the Boogie translation with this knowledge, we have to write what
we call requires forall statements. These are statements universally quantified, such
as the following requires (forall x:Ref :: ((x!=this) && (x!=op) ==>
packedCount[x])), taken as an example from the preconditions of the procedure
updateCount. These requires forall statements are generated automatically by look-
ing at the preconditions that the programmer specifies.

The modifies statement that Boogie requires of each method is very strong: for the global
maps representing the fields in a class, these modifies statements act as havoc statements,
thus removing all prior knowledge of the global maps that we had before calling the respective
method. This is why we need statements that we call ensures forall, generated automati-
cally as postconditions to methods. Similarly to the requires forall statements, they are
generated by looking only at the pre- and postconditions that the programmer specified for that
specific method, with a single exception: we do need to differentiate between methods that call
other methods in their bodies or not. The specific rules that we follow to infer the ensures
forall statements are straightforward.

To gather the information to generate them, we only look at pre- and post-conditions. We
only try to infer the ensures forall for the packed or frac maps if there is a men-
tion of them in the postcondition. More specifically, for all the objects obj for which there
was a packedQ[obj] in the precondition, packedQ[obj] must also be mentioned in the
postcondition. If packedQ[obj] is not mentioned in the postcondition for all objects obj
for which packedQ[obj] was mentioned in the precondition, it means that the program-
mer does not know what happens to packedQ for certain objects at the end of this method.
The same reasoning applies to the global variable frac. In these cases we cannot infer the
ensures forall statement. As an insight, the programmer would have to be able to write
all the ensures forall statements manually. If they don’t know what happens to a particu-
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lar packedQ[obj], they would not be able to write the ensures forall. One can see that
if the programmer is not able to write the ensures forall statement, our Oprop tool should
not be able to infer this statement.

There are two kinds of ensures forall that can be inferred for fractions:
ensures (forall y:Ref :: ( (y!=this) ==>

(fracLeft[y] == old(fracLeft[y]) ) ) ) and
ensures (forall y:Ref :: (old(fracParent[y]) > 0.0) ==>

(fracParent[y] > 0.0)).
The second one is more relaxed. If there are calls to any methods in the body of this method,

then we infer the second ensures forall. To generate this ensures forall we check
the specifications of the method to get the objects for which the fractions were > 0.0 in the
precondition but ≥ 0.0 in the postcondition. Note that the user can specify a fraction to be ≥ 0.0
in the postcondition if he knows that all that fraction was consumed in the body of this method.
That could happen if a method that is called inside the body uses up all the fraction that was
specified in the object proposition in the precondition.

The first one can be inferred for methods that have no calls to other methods inside their
bodies. We gather the objects that were not modified inside the body of this method and only for
those objects we ensure that the old fraction which was given in the precondition is equal to the
fraction that we have in the postcondition. Note that the generation of the ensures forall
statement can be made more insightful by parsing the body of the method and seeing if there are
cases when even though a fraction was modified, the resulting fraction is the same as the fraction
that we got in the precondition. This optimization of the implementation is left as future work.

We do need to get minimal help from parsing the body of a method to infer these ensures
forall related to fractions for that method and this is a limitation of our Oprop tool.

For the ensures forall statements for packed, if there is an unpacked object propo-
sition in the postcondition then we infer the ensures forall that compares the value of the
map (whether that map is packed or frac) to the old value, i.e., the value of the variable in
the beginning of the method. If there is no unpacked object proposition in the postcondition
then we infer the ensures forall statement that is similar to ensures forall y::
packedPred[y].

After calling UnpackPred or PackPred in the body of a method, we write the fraction
manipulation statements corresponding to each one. These fraction manipulations are either
additions or subtractions from the current values of the fractions that are mentioned in the body
of the predicates that are inside the predicates that are being packed or unpacked. The Boogie
semantics does not allowed us to use the keyword old to infer ensures or requires for
the procedures UnpackPred or PackPred because these procedures do not have a body or
a modifies clause. That is why we have to write fraction manipulations after invoking these
procedures, but we do not have to use fraction manipulations after invoking other methods (actual
methods that the programmer wrote and we translated into Boogie).
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Chapter 5

Validation and Evaluation

The purpose of this chapter is to show that the object proposition methodology can be used in
the formal verification of general design patterns, thus highlighting the maturity and generality
of our approach. We evaluate the usefulness of object propositions by applying them to verify
a number of small Java programs and also a few more complex programs implementing the
following design patterns: observer, state, proxy, flyweight and composite. The names of the
small programs are SimpleCell, Link, DoubleCount and Share; we describe them in detail later
in this chapter. The purpose of the small examples is to illustrate how our methodology handles
particular verification idioms.

So far, we have described in Section 2.2 how we manually verified an instance of the observer
pattern and in Section 5.4 we are going to show the verification of an instance of the composite
pattern, that we have automatically verified using the Oprop tool. In this section we describe the
verification of three instances of the state design pattern [9], proxy [8] and flyweight pattern [3],
thus showing that object propositions can be used to verify a variety of design patterns. Note
that for these three design patterns, we have manually translated the programs and their Oprop
annotations into the Boogie language, and then verified the translated programs in the Boogie
tool. While we have implemented all the features necessary for our Oprop tool to automatically
verify an instance of the composite design pattern, our tool does not implement all the necessary
features to automatically verify these last three design patterns, such as inheritance, base classes
or derived classes. These patterns are slightly different than the composite pattern, and while it
would not be very difficult to implement these features in Oprop, we leave this as future work.

We chose to verify these design patterns because they represent general coding patterns and
this is the first step in showing that our methodology is general. We chose the state pattern be-
cause it shows how object propositions can be used for the verification of objects whose internal
state changes. Verifying programs showcasing this kind of rapidly changing states highlights
the differences between object propositions and the classical invariant technique. By verifying
the state pattern, we also demonstrate how we can verify programs containing interfaces and
their implementations. By adding this capability to our system, we would be able to verify other
programs that use interfaces. Many improvements can be brought to the Oprop tool that would
allow the formal verification of very diverse design patterns and programs, but we leave that as
future work.

The proxy design pattern is widely used, in a variety of situations (to add access control to an
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existing object, to provide an interface for remote resources, to coordinate expensive operations
on remote resources, etc.). By verifying an instance of this pattern, we are able to say that our
methodology can be used for the verification of many programs, which indicates the applicability
of our approach to many practical programs.

The similarity between the state and proxy patterns reinforces the idea that some patterns
resemble each other, with small variations. For example, the strategy pattern is also similar
to the state pattern. There is also a connection between the proxy and flyweight patterns: in
situations where multiple copies of a complex object must exist, the proxy pattern can be adapted
to incorporate the flyweight pattern to implement a reference counting pointer object. To better
understand this idea, consider a complex object and a proxy object that accesses the complex
object, as an instance of the proxy design pattern. If there is a need for multiple copies of the
complex object, we can add the flyweight pattern to have multiple references to the complex
object, instead of making actual copies of the complex object. The three design patterns that we
chose show how our work improves the state of the art in formal verification. When choosing to
verify the state pattern, the proxy and the flyweight patterns, we stayed away from patterns that
were using inheritance. The support for inheritance in the object propositions methodology is
left as future work.

By analyzing these three design patterns, which are not too simple and not too complex,we
show the differences between our approach and previous ones. It was interesting to verify the
design patterns because it gave us more insight into how the theory of object propositions can
be extended to incorporate more features of the Java language and it gave us the opportunity to
apply our verification system to creative instances of the design patterns.

5.1 Verifying an Instance of the State Pattern
The state pattern allows an object to alter its behavior when its internal state changes. When this
happens, the object will appear to change its class. Programs that include instances of this pattern
have an interface that is implemented by different classes, representing the different states. There
is also a context object that acts as a controller and whose behavior varies as its state object
changes.

5.1.1 Example
In Figure 5.1, inspired from the Wikipedia figure [11], we present the UML diagram of the gen-
eral state pattern . There is a State interface and two classes ConcreteStateA and ConcreteStateB
that implement that interface. The Context class acts as a controller which has a request() method
in which it invokes the method handle() of its field state. Depending on the actual class of the
state field, the method handle() of class ConcreteStateA is called or the method handle() from
class ConcreteStateB. The class StateClient instantiates a field s of type Context. In the formal
verification of our instance of the state pattern, we check that the properties about s stated in
the client code hold. The state pattern implements a state machine using the features of object
oriented code and shows how behavior can vary for the same object based on its internal state.
The state pattern is important because it can be used by an object to change its behavior at run-
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time without resorting to large monolithic conditional or switch statements and thus improve
maintainability.

In the remainder of this subsection we give an intuitive explanation of our instance of the
state pattern, we present the annotated Oprop classes that make up our example and for each
class we detail the more interesting parts.

The Oprop classes used in the state pattern example are: IntCell in Figure 5.3, interface
Statelike in Figure 5.4, StateLive in Figures 5.5 and 5.6, StateSleep in Figures 5.7 and 5.8,
StateLimbo in Figures 5.9 and 5.10, StateContext in Figures 5.11 and 5.12 and StateClient in
Figures 5.13, 5.14 and 5.15. One can think of this system as a machine controller accepting
requests during the day, while being in the StateLive state, transitioning for a short while to the
StateLimbo state and finally being in the StateSleep state during the night when it is not accepting
requests. The interface Statelike represents objects that have an integer field that is a multiple of
3, or a multiple of 2, while the actual classes StateLive, StateLimbo and StateSleep implement
their own versions of the predicates in the interface Statelike. An object of type Statelike can be
in the three concrete states StateLive, StateLimbo or StateSleep, and it can switch back and forth
between these three states.

The way this example works is that when a method is called on an object of type
StateContext, the call is forwarded to the Statelike object, which can actually be of
type StateLive, StateSleep or StateLimbo.
In addition to doing the computation specified in computeResult() or computeResult2()
- depending on which method of StateContext was called - the context is also updated with
the next state that the Statelike object should have.

Figure 5.1: UML Diagram of State Pattern

In Figure 5.2 we show the UML diagram of the classes in our example implementing the
state design pattern. The interface Statelike declares two methods computeResult and
computeResult2, which not only calculate a result, but are also the ones to make the transi-
tions between the Live, Limbo and Sleep of a Statelike object. The classes StateLive,
StateLimbo and StateSleep implement the interface Statelike and they represent each
of the three states that a machine controlled Statelike object can be in. Object propositions - by
modeling the properties that an object can satisfy and the idea that even though an object is
shared, it can be modified as long as an invariant property is satisfied - are perfect for verifiy-
ing programs implementing the state design pattern. The main1() and main2() methods
can be found in the class StateClient and they show the ways in which the verification us-
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Figure 5.2: UML Diagram of Our Example of State Pattern

ing object propositions is different than the classical invariants verification or than verification
done using separation logic. When the method computeResult() is called on an object of
type StateContext, it is forwarded to the Statelike object which is a field of the class
StateContext.

The IntCell class 5.3 has two fields divider and value. The predicate BasicIntCell is there
merely to give us access to the two fields without imposing any properties on them. The predicate
MultipleOf is used to ensure that the field value is a multiple of divider and it is used in our State
design pattern example.

The Statelike interface 5.4 defines the predicates StateMultipleOf3 and StateMultipleOf2 that
need to be defined in each of the classes implementing this interface, as well as the methods
computeResult(), computeResult2(), checkMod3() and checkMod2() that need to be implemented
by classes StateLive , StateLimbo and StateSleep. Moreover the annotations of the methods
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1 c l a s s I n t C e l l {
2 i n t d i v i d e r ;
3 i n t v a l u e ;
4
5 p r e d i c a t e B a s i c I n t C e l l ( i n t va l , i n t d i v i ) =
6 t h i s . d i v i d e r −> d i v i && t h i s . v a l u e −> v a l
7
8 p r e d i c a t e M u l t i p l e O f ( i n t a ) = e x i s t s i n t v :
9 t h i s . d i v i d e r −> a && t h i s . v a l u e −> v &&

10 ( ( v − i n t ( v / a ) ∗a ) == 0 )
11
12 I n t C e l l ( i n t d i v i d e r 1 , i n t v a l u e 1 )
13 e n s u r e s t h i s # 1 . 0 B a s i c I n t C e l l ( va lue1 , d i v i d e r 1 )
14 {
15 t h i s . v a l u e = v a l u e 1 ;
16 t h i s . d i v i d e r = d i v i d e r 1 ;
17 }
18
19 i n t g e t V a l u e I n t ( )
20 ~ do ub l e k :
21 i n t v , i n t d :
22 r e q u i r e s t h i s #k B a s i c I n t C e l l ( v , d )
23 e n s u r e s t h i s #k B a s i c I n t C e l l ( v , d )
24 {
25 unpack ( t h i s #k B a s i c I n t C e l l ( v , d ) ) ;
26 i n t temp = t h i s . v a l u e ;
27 pack ( t h i s #k B a s i c I n t C e l l ( v , d ) ) ;
28 r e t u r n temp ;
29 }
30 }

Figure 5.3: State pattern example - IntCell class
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1 i n t e r f a c e S t a t e l i k e {
2 p r e d i c a t e S t a t e M u l t i p l e O f 3 ( ) ;
3 p r e d i c a t e S t a t e M u l t i p l e O f 2 ( ) ;
4
5 S t a t e l i k e c o m p u t e R e s u l t ( S t a t e C o n t e x t c o n t e x t , i n t num ) ;
6 ~ do ub l e k , k2 :
7 r e q u i r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 3 ( ) )
8 e n s u r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 3 ( ) )
9

10 S t a t e l i k e c o m p u t e R e s u l t 2 ( S t a t e C o n t e x t c o n t e x t , i n t num ) ;
11 ~ do ub l e k , k2 :
12 r e q u i r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 2 ( ) )
13 e n s u r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 2 ( ) )
14
15 b o o l e a n checkMod3 ( ) ;
16 ~ do ub l e k :
17 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
18 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
19
20 b o o l e a n checkMod2 ( ) ;
21 ~ do ub l e k :
22 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
23 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
24 }

Figure 5.4: State pattern example - Statelike interface
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defined in the interface Statelike need to be implied by the annotations of the methods with the
same names in the implementing classes. The methods in the implementing classes can have
stronger annotations but they need to be at least as strong as the corresponding annotations from
the interface.

The class StateLive 5.5 implements the predicates StateMultipleOf3 and StateMultipleOf2 in
a concrete manner: whenever the field in an object of type StateLive should be a multiple of 3,
it will be a multiple of 21 (which is indeed a multiple of 3). Similarly, whenever the field in
an object of type StateLive should be a multiple of 2, it will be a multiple of 4. The function
computeResult() in class StateLive has the same precondition as method computeResult() from
interface Statelike, as seen on line 23 in Figure 5.5. Class StateLive represents one of the three
states that the machine controlled object can be in. The postcondition of the same function in
class StateLive ensures more properties than the postcondition written for the function in inter-
face Statelike, as seen on lines 24-25 in Figure 5.5. It is important for the postconditions of the
methods in the classes implementing the methods declared in the interface Statelike to ensure at
least the properties written in the postconditions of those methods in the interface. The function
computeResult2() is similar conceptually to the function computeResult(), the only difference
being that it refers to the predicate StateContextMultiple2 instead of the predicate StateContext-
Multiple3. The functions computeResult() and computeResult2() control the state of the object
inside the Context parameter and they change it to StateLimbo and StateSleep respectively, ac-
cording to the change of state that we envisioned for the automaton that this example describes.

Method checkMod3() from Figure 5.6 ensures that the caller of this method satisfies the
predicate StateMultipleOf3, as defined in the class StateLive. Similarly, method checkMod2()
ensures that the caller of this method satisfies the predicate StateMultipleOf2, as defined in the
class StateLive.

Similarly to class StateLive, the class StateSleep 5.7 implements the predicates StateMul-
tipleOf3 and StateMultipleOf2 in a concrete manner: whenever the field in an object of type
StateSleep should be a multiple of 3, it will be a multiple of 15 (which is indeed a multiple of 3).
Similarly, whenever the field in an object of type StateSleep should be a multiple of 2, it will be
a multiple of 16. Class StateSleep represents one of the three states that the machine controlled
object can be in. The function computeResult() in class StateSleep also has the same precondition
as method computeResult() from interface Statelike, as seen on line 23 in Figure 5.7. The post-
condition of the same function in class StateSleep ensures more properties than the postcondition
written for the function in interface Statelike, as seen on line 24 in Figure 5.7. The function com-
puteResult2() is similar conceptually to the function computeResult(), the only difference being
that it refers to the predicate StateContextMultiple2 instead of the predicate StateContextMulti-
ple3. The functions computeResult() and computeResult2() control the state of the object inside
the Context parameter and they change it to StateLive and StateLimbo respectively, according to
the change of state that we envisioned for the automaton that this example describes.

Like classes StateLive and StateSleep, the class StateLimbo 5.9 implements the predicates
StateMultipleOf3 and StateMultipleOf2 in a concrete manner: whenever the field in an object of
type StateLimbo should be a multiple of 3, it will be a multiple of 33 (which is indeed a mul-
tiple of 3). Similarly, whenever the field in an object of type StateLimbo should be a multiple
of 2, it will be a multiple of 14. Class StateLimbo represents another state that the machine
controlled object can be in. The function computeResult() in class StateLimbo also has the same
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1 c l a s s S t a t e L i v e implemen t s S t a t e l i k e {
2 I n t C e l l c e l l ;
3
4 p r e d i c a t e S t a t e M u l t i p l e O f 3 ( ) = e x i s t s I n t C e l l c , do ub l e k :
5 t h i s . c e l l −> c && ( c #k M u l t i p l e O f ( 2 1 ) )
6 p r e d i c a t e S t a t e M u l t i p l e O f 2 ( ) = e x i s t s I n t C e l l c , do ub l e k :
7 t h i s . c e l l −> c && ( c #k M u l t i p l e O f ( 4 ) )
8
9 S t a t e L i v e ( )

10 {
11 I n t C e l l temp = new I n t C e l l ( 0 ) ;
12 t h i s = new S t a t e L i v e ( temp ) ;
13 }
14
15 S t a t e L i v e ( I n t C e l l c )
16 e n s u r e s t h i s . c e l l == c ;
17 {
18 t h i s . c e l l = c ;
19 }
20
21 S t a t e l i k e c o m p u t e R e s u l t ( S t a t e C o n t e x t c o n t e x t , i n t num )
22 ~ do ub l e k , k2 :
23 r e q u i r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 3 ( ) )
24 e n s u r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 3 ( ) )
25 {
26 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 3 3 ) [ num∗3 3 ] ) ( 3 3 , num∗33) ;
27 S t a t e L i k e r = new Sta t eL imbo ( S t a t e M u l t i p l e O f 3 ( ) [ i 1 ] ) ( i 1 ) ;
28 c o n t e x t . s e t S t a t e 3 ( r ) ;
29 r e t u r n r ;
30 }
31
32 S t a t e l i k e c o m p u t e R e s u l t 2 ( S t a t e C o n t e x t c o n t e x t , i n t num )
33 ~ do ub l e k , k2 :
34 r e q u i r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 2 ( ) )
35 e n s u r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 2 ( ) )
36 {
37 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 1 6 ) [ num∗1 6 ] ) ( 1 6 , num∗16) ;
38 S t a t e L i k e r = new S t a t e S l e e p ( S t a t e M u l t i p l e O f 2 ( ) [ i 1 ] ) ( i 1 ) ;
39 c o n t e x t . s e t S t a t e 2 ( r ) ;
40 r e t u r n r ;
41 }

Figure 5.5: State pattern example - Statelive class
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1 b o o l e a n checkMod3 ( )
2 ~ do ub l e k :
3 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
4 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
5 {
6 unpack ( t h i s #k S t a t e M u l t i p l e O f 3 ( ) ) ;
7 r e t u r n ( t h i s . c e l l . g e t V a l u e I n t ( ) % 3 == 0) ;
8 pack ( t h i s #k S t a t e M u l t i p l e O f 3 ( ) ) ;
9 }

10
11 b o o l e a n checkMod2 ( )
12 ~ do ub l e k :
13 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
14 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
15 {
16 unpack ( t h i s #k S t a t e M u l t i p l e O f 2 ( ) ) ;
17 b o o l e a n temp = ( t h i s . c e l l . g e t V a l u e I n t ( ) % 2 == 0) ;
18 pack ( t h i s #k S t a t e M u l t i p l e O f 2 ( ) ) ;
19 r e t u r n temp ;
20 }
21 }

Figure 5.6: State pattern example - StateLive class continuation
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1 c l a s s S t a t e S l e e p implemen t s S t a t e l i k e {
2 I n t C e l l c e l l ;
3
4 p r e d i c a t e S t a t e M u l t i p l e O f 3 ( ) = e x i s t s I n t C e l l c , do ub l e k :
5 t h i s . c e l l −> c && ( c #k M u l t i p l e O f ( 1 5 ) )
6 p r e d i c a t e S t a t e M u l t i p l e O f 2 ( ) = e x i s t s I n t C e l l c , do ub l e k :
7 t h i s . c e l l −> c && ( c #k M u l t i p l e O f ( 1 6 ) )
8
9 S t a t e S l e e p ( )

10 {
11 I n t C e l l temp = new I n t C e l l ( 0 ) ;
12 t h i s . c e l l = temp ;
13 }
14
15 S t a t e S l e e p ( I n t C e l l c )
16 e n s u r e s t h i s . c e l l == c ;
17 {
18 t h i s . c e l l = c ;
19 }
20
21 S t a t e l i k e c o m p u t e R e s u l t ( S t a t e C o n t e x t c o n t e x t , i n t num )
22 ~ do ub l e k , k2 :
23 r e q u i r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 3 ( ) )
24 e n s u r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 3 ( ) )
25 {
26 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 2 1 ) [ num∗2 1 ] ) ( 2 1 , num∗21) ;
27 S t a t e L i k e r = new S t a t e L i v e ( S t a t e M u l t i p l e O f 3 ( ) [ i 1 ] ) ( i 1 ) ;
28 c o n t e x t . s e t S t a t e 3 ( s ) ;
29 r e t u r n r ;
30 }
31
32 S t a t e l i k e c o m p u t e R e s u l t 2 ( S t a t e C o n t e x t c o n t e x t , i n t num )
33 ~ do ub l e k , k2 :
34 r e q u i r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 2 ( ) )
35 e n s u r e s ( c o n t e x t #k S t a t e C o n t e x t M u l t i p l e 2 ( ) )
36 {
37 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 1 4 ) [ num∗1 4 ] ) ( 1 4 , num∗14) ;
38 S t a t e L i k e r = new Sta t eL imbo ( S t a t e M u l t i p l e O f 2 ( ) [ i 1 ] ) ( i 1 ) ;
39 c o n t e x t . s e t S t a t e 2 ( r ) ;
40 r e t u r n r ;
41 }

Figure 5.7: State pattern example - StateSleep class
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1 b o o l e a n checkMod3 ( )
2 ~ do ub l e k :
3 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
4 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
5 {
6 unpack ( t h i s #k S t a t e M u l t i p l e O f 3 ( ) ) ;
7 b o o l e a n temp = ( t h i s . c e l l . g e t V a l u e I n t ( ) % 3 == 0) ;
8 pack ( t h i s #k S t a t e M u l t i p l e O f 3 ( ) ) ;
9 r e t u r n temp ;

10 }
11
12 b o o l e a n checkMod2 ( )
13 ~ do ub l e k :
14 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
15 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
16 {
17 unpack ( t h i s #k S t a t e M u l t i p l e O f 2 ( ) ) ;
18 b o o l e a n temp = ( t h i s . c e l l . g e t V a l u e I n t ( ) % 2 == 0) ;
19 pack ( t h i s #k S t a t e M u l t i p l e O f 2 ( ) ) ;
20 r e t u r n temp ;
21 }
22 }

Figure 5.8: State pattern example - StateSleep class continuation
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1 c l a s s S ta t eL imbo implemen t s S t a t e l i k e {
2 I n t C e l l c e l l ;
3
4 p r e d i c a t e S t a t e M u l t i p l e O f 3 ( ) = e x i s t s I n t C e l l c , do ub l e k :
5 t h i s . c e l l −> c && ( c #k M u l t i p l e O f ( 3 3 ) )
6 p r e d i c a t e S t a t e M u l t i p l e O f 2 ( ) = e x i s t s I n t C e l l c , do ub l e k :
7 t h i s . c e l l −> c && ( c #k M u l t i p l e O f ( 1 4 ) )
8
9 S ta t eL imbo ( )

10 {
11 I n t C e l l temp = new I n t C e l l ( 0 ) ;
12 t h i s . c e l l = temp ;
13 }
14
15 S ta t eL imbo ( I n t C e l l c )
16 e n s u r e s t h i s . c e l l == c ;
17 {
18 t h i s . c e l l = c ;
19 }
20
21 S t a t e l i k e c o m p u t e R e s u l t ( S t a t e C o n t e x t c o n t e x t , i n t num )
22 ~ do ub l e k , k2 :
23 r e q u i r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 3 ( ) )
24 e n s u r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 3 ( ) )
25 {
26 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 1 5 ) [ num∗1 5 ] ) ( 1 5 , num∗15) ;
27 S t a t e L i k e r = new S t a t e S l e e p ( S t a t e M u l t i p l e O f 3 ( ) [ i 1 ] ) ( i 1 ) ;
28 c o n t e x t . s e t S t a t e 3 ( s ) ;
29 r e t u r n r ;
30 }
31
32 S t a t e l i k e c o m p u t e R e s u l t 2 ( S t a t e C o n t e x t c o n t e x t , i n t num )
33 ~ do ub l e k , k2 :
34 r e q u i r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 2 ( ) )
35 e n s u r e s ( c o n t e x t #k s t a t e C o n t e x t M u l t i p l e 2 ( ) )
36 {
37 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 4 ) [ num ∗4 ] ) ( 4 , num∗4) ;
38 S t a t e L i k e r = new S t a t e L i v e ( S t a t e M u l t i p l e O f 2 ( ) [ i 1 ] ) ( i 1 ) ;
39 c o n t e x t . s e t S t a t e 2 ( r ) ;
40 r e t u r n r ;
41 }

Figure 5.9: State pattern example - StateLimbo class
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1 b o o l e a n checkMod3 ( )
2 ~ do ub l e k :
3 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
4 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 3 ( )
5 {
6 unpack ( t h i s #k S t a t e M u l t i p l e O f 3 ( ) ) ;
7 b o o l e a n temp = ( t h i s . c e l l . g e t V a l u e I n t ( ) % 3 == 0) ;
8 pack ( t h i s #k S t a t e M u l t i p l e O f 3 ( ) ) ;
9 r e t u r n temp ;

10 }
11
12 b o o l e a n checkMod2 ( )
13 ~ do ub l e k :
14 r e q u i r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
15 e n s u r e s t h i s #k S t a t e M u l t i p l e O f 2 ( )
16 {
17 unpack ( t h i s #k S t a t e M u l t i p l e O f 2 ( ) ) ;
18 b o o l e a n temp = ( t h i s . c e l l . g e t V a l u e I n t ( ) % 2 == 0) ;
19 pack ( t h i s #k S t a t e M u l t i p l e O f 2 ( ) ) ;
20 r e t u r n temp ;
21 }
22 }

Figure 5.10: State pattern example - StateLimbo class continuation

precondition as method computeResult() from interface Statelike, as seen on line 23 in Figure
5.9. The postcondition of the same function in class StateSleep ensures more properties than
the postcondition written for the function in interface Statelike, as seen on lines 24-25 in Figure
5.9. The function computeResult2() is similar conceptually to the function computeResult(), the
only difference being that it refers to the predicate StateContextMultiple2 instead of the predicate
StateContextMultiple3. The functions computeResult() and computeResult2() control the state of
the object inside the Context parameter and they change it to StateSleep and StateLive respec-
tively, according to the change of state that we envisioned for the automaton that this example
describes.

The StateContext class is the controller of the Statelike object in the example, to which
it has a reference, and it is used to change the state of that object between StateLive, State-
Limbo and StateSleep. On lines 4-9 in Figure 5.11 we see the definitions of predicates StateLive,
StateSleep, StateLimbo, StateContextMultiple2 and StateContextMultiple3. Note that predicates
such as StateLive and StateContextMultiple3 referring to the same object obj of type StateCon-
text can exist in the same pre-condition (or post-condition) because they refer to different fields
of the object obj. We keep track of the actual class of the object obj, that implements the inter-
face Statelike, by declaring a field var instanceof : [Ref]int for the objects of type
StateLive, StateLimbo and StateSleep. This field will be equal to 1 if the actual class of obj is
StateLive, 2 if it is StateLimbo and 3 if it is StateSleep.
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1 c l a s s S t a t e C o n t e x t {
2 S t a t e l i k e mySta te ;
3
4 p r e d i c a t e S t a t e C o n t e x t M u l t i p l e 2 ( ) = e x i s t s S t a t e L i k e m, do ub l e k :
5 t h i s . mySta te −> m && (m#k S t a t e M u l t i p l e O f 2 ( ) )
6 p r e d i c a t e S t a t e C o n t e x t M u l t i p l e 3 ( ) = e x i s t s S t a t e L i k e m, do ub l e k :
7 t h i s . mySta te −> m && (m#k S t a t e M u l t i p l e O f 3 ( ) )
8
9 S t a t e C o n t e x t ( S t a t e l i k e n e w S t a t e )

10 e n s u r e s t h i s . mySta te == n e w S t a t e ;
11 {
12 t h i s . mySta te = n e w S t a t e ;
13 }
14
15 vo id s e t S t a t e 2 ( S t a t e l i k e n e w S t a t e )
16 ~ do ub l e k1 , k2 :
17 r e q u i r e s t h i s #k1 S t a t e C o n t e x t M u l t i p l e 2 ( )
18 r e q u i r e s n e w S t a t e #k2 S t a t e M u l t i p l e O f 2 ( )
19 e n s u r e s t h i s #k1 S t a t e C o n t e x t M u l t i p l e 2 ( ) [ n e w S t a t e ]
20 {
21 unpack ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 2 ( ) ) ;
22 t h i s . mySta te = n e w S t a t e ;
23 pack ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 2 ( ) ) [ n e w S t a t e ] ;
24 }
25
26 vo id s e t S t a t e 3 ( S t a t e l i k e n e w S t a t e )
27 ~ do ub l e k1 , k2 :
28 r e q u i r e s t h i s #k1 S t a t e C o n t e x t M u l t i p l e 3 ( )
29 r e q u i r e s n e w S t a t e #k2 S t a t e M u l t i p l e O f 3 ( )
30 e n s u r e s t h i s #k1 S t a t e C o n t e x t M u l t i p l e 3 ( ) [ n e w S t a t e ]
31 {
32 unpack ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 3 ( ) ) ;
33 t h i s . mySta te = n e w S t a t e ;
34 pack ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 3 ( ) ) [ n e w S t a t e ] ;
35 }

Figure 5.11: State pattern example - StateContext class
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1 S t a t e l i k e computeResul tSC ( i n t num )
2 ~ do ub l e k1 , k2 :
3 r e q u i r e s ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 3 ( ) )
4 e n s u r e s ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 3 ( ) )
5 {
6 unpack ( t h i s #k1 s t a t e C l i e n t M u l t i p l e 3 ( ) ) ;
7 S t a t e l i k e temp = t h i s . mySta te . c o m p u t e R e s u l t ( t h i s , num ) ;
8 pack ( t h i s #k1 s t a t e C l i e n t M u l t i p l e 3 ( ) ) ;
9 r e t u r n temp ;

10 }
11
12 S t a t e l i k e computeResul t2SC ( i n t num )
13 ~ do ub l e k1 , k2 :
14 r e q u i r e s ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 2 ( ) )
15 e n s u r e s ( t h i s #k1 S t a t e C o n t e x t M u l t i p l e 2 ( ) )
16 {
17 unpack ( t h i s #k1 s t a t e C l i e n t M u l t i p l e 2 ( ) ) ;
18 S t a t e l i k e temp = t h i s . mySta te . c o m p u t e R e s u l t 2 ( t h i s , num ) ;
19 pack ( t h i s #k1 s t a t e C l i e n t M u l t i p l e 2 ( ) ) ;
20 r e t u r n temp ;
21 }
22
23 b o o l e a n s t a t e C o n t e x t C h e c k M u l t i p l i c i t y 3 ( )
24 ~ do ub l e k :
25 r e q u i r e s t h i s #k S t a t e C o n t e x t M u l t i p l e 3 ( )
26 e n s u r e s t h i s #k S t a t e C o n t e x t M u l t i p l e 3 ( )
27 {
28 unpack ( t h i s #k S t a t e C o n t e x t M u l t i p l e 3 ( ) ) ;
29 b o o l e a n temp = t h i s . mySta te . checkMod3 ( ) ;
30 pack ( t h i s #k S t a t e C o n t e x t M u l t i p l e 3 ( ) ) ;
31 r e t u r n temp ;
32 }
33
34 b o o l e a n s t a t e C o n t e x t C h e c k M u l t i p l i c i t y 2 ( )
35 ~ do ub l e k :
36 r e q u i r e s t h i s #k S t a t e C o n t e x t M u l t i p l e 2 ( )
37 e n s u r e s t h i s #k S t a t e C o n t e x t M u l t i p l e 2 ( )
38 {
39 unpack ( t h i s #k S t a t e C o n t e x t M u l t i p l e 2 ( ) ) ;
40 b o o l e a n temp = t h i s . mySta te . checkMod2 ( ) ;
41 pack ( t h i s #k S t a t e C o n t e x t M u l t i p l e 2 ( ) ) ;
42 r e t u r n temp ;
43 }
44 }

Figure 5.12: State pattern example - StateContext class continuation
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One can say that the predicates in class StateContext from Figures 5.11 and 5.12 are of two
forms: either stateX - such as stateLive, stateLimbo, stateSleep
or of the form stateContextMultipleX - such as stateContextMultiple2,
stateContextMultiple3. Although both of these predicates refer to the field myState,
they refer to different parts, different fields, of myState. Even though we only have one field
permission to myState, both of these kinds of predicates can exist at the same time because
they refer to different fields of myState.

There are two invariants that an object of type Statelike can satisfy: being a multiple of 3
or being a multiple of 2 (as the interface promises). Similarly to an automaton, there are two
paths that the machine controller is programmer to be on: it can be in StateLive, then switch to
StateLimbo and finally to StateSleep - and repeat this process indefinitely, or it can start in the
StateLive state, transition to the StateSleep state and then be go to the StateLimbo state. Notice
that we removed the argument String[] args from the main1() and main2() functions
in Figures 5.14 and 5.15 of all the design pattern examples because the Oprop methodology and
tool do not currently offer support for Strings or arrays. We leave those features as interesting
future work.

The main1() method shows the object scontext1, that transitions between having as
a field a reference to a Statelike object. Although it changes state, it is always a multiple of
3, which is the invariant that is ensured by the computeResult() method, or a multiple of
2, which is the invariant that is ensured by the computeResult2() method. Thus if we
had 2 pointers to the scontext1 object that start off as satisfying the multiple of 3 invariant,
each having a fraction of half, both pointers would be able to rely on the fact that the reference
inside of scontext1 is a multiple of 3, while being able to change its state between StateLive,
StateLimbo and StateSleep, that each has its own implementation of what the predicate multiple
of 3 represents. This is the primary difference between object propositions and separation logic
in this example - the ability of a client to change the state of an object as long as the invariant that
was initially stated is preserved even if that client only has a fractional permission to that object.

The main2() method showcases another scenario where the object scontext2, that tran-
sitions between the three states StateLive, StateSleep and StateLimbo, has as a field a reference
to a Statelike object that is a multiple of 2. The invariant that the object Statelike is a multi-
ple of 2 is enforced by the specifications of the method computeResult2(). For objects of
the Statelike class to be able to satisfy 2 invariants, being either a multiple of 3 or a multiple
of 2, shows the difference between object propositions and classical invariants (or considerate
reasoning [68]).

The state design pattern introduces the interface and implements keywords and ideas to
Oprop. We have manually translated the Oprop classes from figures 5.3, 5.4, 5.5, 5.6 5.7, 5.9,
5.10, 5.11, 5.12, 5.14 and 5.15.

Boogie only accepts a single file as input, so we have concatenated the translated files into
the file
https://github.com/ligianistor/boogie/blob/master/statelatest.bpl that can be verified in Boogie.

The idea is that if a predicate is declared in the interface (only by the name of the predicate,
since the interface will not have the fields declared), then the body of the predicate will be de-
clared in the classes that implement that interface. Since the input to the Boogie verifier has to be
a single Boogie program, each method name or predicate name from the interface Statelike
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1 c l a s s S t a t e C l i e n t {
2 S t a t e C o n t e x t scon ;
3
4 p r e d i c a t e S t a t e C l i e n t M u l t i p l e 2 ( ) =
5 e x i s t s do ub l e k , S t a t e C o n t e x t s : : t h i s . scon−>s && ( s #k

S t a t e C o n t e x t M u l t i p l e 2 ( ) )
6 p r e d i c a t e S t a t e C l i e n t M u l t i p l e 3 ( ) =
7 e x i s t s do ub l e k , S t a t e C o n t e x t s : : t h i s . scon−>s && ( s #k

S t a t e C o n t e x t M u l t i p l e 3 ( ) )
8
9 S t a t e C l i e n t ( S t a t e C o n t e x t s )

10 e n s u r e s t h i s . scon == s
11 {
12 t h i s . scon = s ;
13 }
14
15 b o o l e a n s t a t e C l i e n t C h e c k M u l t i p l i c i t y 3 ( )
16 ~ do ub l e k :
17 r e q u i r e s t h i s #k S t a t e C l i e n t M u l t i p l e 3 ( )
18 e n s u r e s t h i s #k S t a t e C l i e n t M u l t i p l e 3 ( )
19 {
20 unpack ( t h i s #k S t a t e C l i e n t M u l t i p l e 3 ( ) ) [ t h i s . scon ]
21 b o o l e a n temp = t h i s . scon . s t a t e C o n t e x t C h e c k M u l t i p l i c i t y 3 ( ) ;
22 pack ( t h i s #k S t a t e C l i e n t M u l t i p l e 3 ( ) ) [ t h i s . scon ]
23 r e t u r n temp ;
24 }
25
26 b o o l e a n s t a t e C l i e n t C h e c k M u l t i p l i c i t y 2 ( )
27 ~ do ub l e k :
28 r e q u i r e s t h i s #k S t a t e C l i e n t M u l t i p l e 2 ( )
29 e n s u r e s t h i s #k S t a t e C l i e n t M u l t i p l e 2 ( )
30 {
31 unpack ( t h i s #k S t a t e C l i e n t M u l t i p l e 2 ( ) ) [ t h i s . scon ]
32 b o o l e a n temp = t h i s . scon . s t a t e C o n t e x t C h e c k M u l t i p l i c i t y 2 ( ) ;
33 pack ( t h i s #k S t a t e C l i e n t M u l t i p l e 2 ( ) ) [ t h i s . scon ]
34 r e t u r n temp ;
35 }

Figure 5.13: State pattern example - StateClient class
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1 vo id main1 ( )
2 ~ do ub l e k :
3 {
4 I n t C e l l i 1 = new I n t C e l l ( M u l t i p l e O f ( 2 1 ) ) ( 2 1 ) ;
5 S t a t e l i k e s t 1 = new S t a t e L i v e ( S t a t e M u l t i p l e O f 3 ( ) ) ( i 1 ) ;
6 S t a t e C o n t e x t s c o n t e x t 1 = new S t a t e C o n t e x t ( s t a t e C o n t e x t M u l t i p l e 3 ( )

[ ] ) ( s t 1 ) ;
7 S t a t e C l i e n t s c l i e n t 1 = new S t a t e C l i e n t ( s t a t e C l i e n t M u l t i p l e 3 ( ) [ ] ) (

s c o n t e x t 1 ) ;
8 S t a t e C l i e n t s c l i e n t 2 = new S t a t e C l i e n t ( s t a t e C l i e n t M u l t i p l e 3 ( ) [ ] ) (

s c o n t e x t 1 ) ;
9 s c o n t e x t 1 . computeResul tSC ( 1 ) ;

10 s c l i e n t 1 . s t a t e C l i e n t C h e c k M u l t i p l i c i t y 3 ( ) ;
11 s c o n t e x t 1 . computeResul tSC ( 2 ) ;
12 s c l i e n t 2 . s t a t e C l i e n t C h e c k M u l t i p l i c i t y 3 ( ) ;
13 s c o n t e x t 1 . computeResul tSC ( 3 ) ;
14 s c l i e n t 1 . s t a t e C l i e n t C h e c k M u l t i p l i c i t y 3 ( ) ;
15 }

Figure 5.14: State pattern example - main1() function

1 vo id main2 ( )
2 ~ do ub l e k :
3 {
4 I n t C e l l i 2 = new I n t C e l l ( M u l t i p l e O f ( 4 ) ) ( 4 ) ;
5 S t a t e l i k e s t 2 = new S t a t e L i v e ( S t a t e M u l t i p l e O f 2 ( ) ) ( i 2 ) ;
6 S t a t e C o n t e x t s c o n t e x t 2 = new S t a t e C o n t e x t ( s t a t e C o n t e x t M u l t i p l e 2 ( )

[ ] ) ( s t 2 ) ;
7 S t a t e C l i e n t s c l i e n t 3 = new S t a t e C l i e n t ( s t a t e C l i e n t M u l t i p l e 2 ( ) [ ] ) (

s c o n t e x t 2 ) ;
8 S t a t e C l i e n t s c l i e n t 4 = new S t a t e C l i e n t ( s t a t e C l i e n t M u l t i p l e 2 ( ) [ ] ) (

s c o n t e x t 2 ) ;
9 s c o n t e x t 2 . computeResul t2SC ( 1 ) ;

10 s c l i e n t 3 . s t a t e C l i e n t C h e c k M u l t i p l i c i t y 2 ( ) ;
11 s c o n t e x t 2 . computeResul t2SC ( 2 ) ;
12 s c l i e n t 4 . s t a t e C l i e n t C h e c k M u l t i p l i c i t y 2 ( ) ;
13 s c o n t e x t 2 . computeResul t2SC ( 3 ) ;
14 s c l i e n t 3 . s t a t e C l i e n t C h e c k M u l t i p l i c i t y 2 ( ) ;
15 }
16 }

Figure 5.15: State pattern example - main2() function
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Figure 5.16: Diagram of main1() for state pattern

Figure 5.17: Diagram of main2() for state pattern

that is implemented in the classes StateLive, StateSleep or StateLimbo has to be
suffixed with the name of the implementing class, as to not create name duplication. Each time
an object of interface type Statelike calls a method, that call has to be preceded by an if
statement that decides which actual implementation is called depending on the actual class of
the calling object. In the Boogie translation files there is a map instanceof (inspired by the
instanceof keyword from Java that is used to check whether an object is an instance of a specified
type) that points to 1, 2 or 3 for each object of type Statelike, depending on the actual type
of the current object. If we do not know the actual type of an object, we must assume that it can
be any of the three types and we must make sure that the verificaton succeeds in all three cases.

We write an extended grammar to incorporate the notions specific to interfaces. We start
from the grammar in Section 3.1 and make the necessary changes. Below we present only the
rules that have changed.

Prog ::= InterfDecl ClDecl e
InterfDecl ::= interface I { InterfPredDecl InterfMthDecl }

InterfPredDecl ::= predicate Q(T x)
InterfMthDecl ::= T m(T x) MthSpec

ClDecl ::= class C (implements I)? { FldDecl PredDecl MthDecl }
An interface will contain the names of predicates and the specifications of the methods inside

it, but not the definitions of those predicates or the bodies of those methods. The definitions of
the predicates will have to be given in each class that implements that interface and likewise the
implementations of the methods will have to satisfy the specifications given in the interface for
those methods. Note that a class might or might not implement an interface and that is why we
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added the text (implements I) to the grammar, followed by the question mark that makes
this text optional.

The modified judgments for a well formed program and class are given below and they in-
corporate the addition of the interface concept.

` CL ` Interf
` 〈Interf, CL, e〉

PROGRAM

`C M `C interface I{Q(x);MDecl}
M = MDecl1;MBody MDecl1 implies MDecl

` class C implements I { F Q(x) = RM}
CLASS

5.2 Verifying an Instance of the Proxy Pattern
The second design pattern, proxy, is used when we need a representative object (the proxy)
that controls access to another object, which may be remote, expensive to create or compute,
or in need of security. Programs that are instances of this pattern have an interface which is
implemented by two classes: the proxy class and the "real" class. The proxy object can act as
a cache for holding on to data that only needs to be computed once and the "real" object can
be thought of as a server that only does computation that is considered expensive on demand.
This pattern is similar to the state pattern because it also has an interface that is implemented by
multiple classes - two in our example. The difference is that the proxy object can hide information
about the real object from the client. This means that one can modify the real object without the
client knowing it.

The Oprop classes used in the proxy pattern example are: Sum in Figure 5.20, RealSum in
Figures 5.21 and 5.22, ProxySum in Figures 5.23 and 5.24 and ClientSum in Figures 5.25 and
5.26.

5.2.1 Example
In Figure 5.18, inspired from the Wikipedia figure [10], we present the UML diagram of the
general proxy pattern. There is a Subject interface containing the method DoAction() that has
to be coded by all classes implementing it. The classes Proxy and RealSubject implement the
Subject interface. When a client class, represented in the figure by the class Client, asks a Subject
object to perform an action by calling the method DoAction() on it, the proxy object will try to
perform that action or resort to its cache if the action was performed earlier and the results are
stored in its cache. If the proxy is not able to do the computation it will delegate the action to
the object of type RealSubject to which it has a reference to. The RealSubject will perform the
action, which typically is a resource intensive operation, and return the result to the proxy object,
which will report the answer to the client. The formal verification of an instance of this pattern
will check that the returned answer is correct whether the proxy object computes it or the real
subject computes it.
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Figure 5.18: UML Diagram of Proxy Pattern

Figure 5.19: UML Diagram of Our Example of Proxy Pattern

In the remainder of this subsection we give an intuitive explanation of our instance of the
proxy pattern, we present the annotated Oprop classes that make up our example and for each
class we detail the more interesting parts.

In Figure 5.19 we show the UML diagram of the classes in our example implementing
the proxy design pattern. The interface Sum is implemented by the classes ProxySum and
RealSum. When the method calculateSum() is called on an object of type RealSum, the
sum of the first n natural numbers is always calculated; when calculateSum() is called on
an object of type ProxySum, if the sum has already been calculated then the value is taken from
the object of type ProxySum, otherwise the call is forwarded to the RealSum object which
calculates the value. The class ClientSum shows different snippets of code - where we start
with an object of type ProxySum - that showcase the differences between verification using
object propositions versus using classical invariants or separation logic.

Along the same lines, the method addOneToSum() is declared in the interface Sum and
implemented by the classes ProxySum and RealSum. When this method is called on an object
of type RealSum, the sum of the first n natural numbers is always calculated by the method
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1 i n t e r f a c e Sum {
2 p r e d i c a t e B a s i c F i e l d s ( i n t n1 , do ub l e s1 ) ;
3 p r e d i c a t e SumOK ( ) ;
4 p r e d i c a t e SumGreater0 ( ) ;
5
6 do ub l e c a l c u l a t e S u m ( ) ;
7 ~ do ub l e k :
8 i n t n1 , do ub l e s1 :
9 r e q u i r e s t h i s #k B a s i c F i e l d s ( n1 , s1 )

10 e n s u r e s t h i s #k SumOK ( )
11
12 do ub l e addOneToSum ( ) ;
13 ~ do ub l e k :
14 i n t n1 , do ub l e s1 :
15 r e q u i r e s t h i s #k B a s i c F i e l d s ( n1 , s1 )
16 e n s u r e s t h i s #k SumGreater0 ( )
17
18 b o o l e a n sumIsOK ( ) ;
19 ~ do ub l e k :
20 r e q u i r e s t h i s #k SumOK ( )
21 e n s u r e s t h i s #k SumOK ( )
22
23 b o o l e a n s u m I s G r e a t e r 0 ( ) ;
24 ~ do ub l e k :
25 r e q u i r e s t h i s #k SumGreater0 ( )
26 e n s u r e s t h i s #k SumGreater0 ( )
27 }

Figure 5.20: Proxy pattern example - interface Sum

calculateSum from the class RealSum being called, which is then increased by 1; when
addOneToSum() is called on an object of type ProxySum, if the sum has already been calcu-
lated then the value is taken from the object of type ProxySum, otherwise the call is forwarded
to the RealSum object which calculates the value. In the class ClientSum we show a snippet
of code where we start with an object of type ProxySum that will satisfy the invariant sum-
Greater0 throughout the main2() method and thus other objects referencing this object will be
able to rely on this invariant.

The calculateSum() from class RealSum method calculates the sum of the first n pos-
itive integers. This method can be transformed into the iterative version of the sum, instead of
the recursive version, when the Oprop tool implements loop features (such as while, for).

The interface Sum 5.20 declares the predicates BasicFields (which is only defined so that
when unpacked, the caller gets access to the fields of the object of type Sum), SumOK and Sum-
Greater0. All these predicates are implemented in the classes RealSum and ProxySum, where
they could have different implementations. The interface Sum also declares methods calculate-
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Sum(), sumIsOK(), addOneToSum() and sumIsGreater0() that are implemented in the classes
RealSum and ProxySum.

In Figure 5.21 the method calculateSum() in the class RealSum could be replaced
with the iterative computation of the sum of the first n natural numbers and the client or the
Proxy class would not know about that change. The client does not know (or care) that it is
using a proxy rather than the real object. In the state pattern, on the other hand, each state and its
behavior is visible, the client knows about all the states that implement the common interface.

In Figure 5.23, in the pre-condition of the method calculateSum() the predicate BasicFields()
refers to the object this and the predicate SumOK() refers to the object this.realSum. They do
not refer to the same field object and so they can appear in the pre-condition at the same time.
Moreover, the predicate BasicFields() needs to be unpacked so that we have access to the object
this.realSum in the same pre-condition and we can write an object proposition about it.

The method addOneToSum() defined in class ProxySum in Figure 5.23 can have any im-
plementation but its specification will have to be at least as strong as the specification of the
declaration of the same method in the interface Sum. In this way, if the method addOneToSum()
is called on an object obj of type Sum, we can rely on the specifications written in the interface
for this method, although we do not know the concrete class of the object obj - whether it is an
object of type RealSum or ProxySum. Note that all the annotations - definitions of predicates,
pre- and postconditions, the calls to unpack in order to get access to the fields of an object, the
calls to pack that are needed to pack back to a predicate that is satisfied - have to be written
by the programmer. He is the one that decides all the annotations, while the object proposition
methodology and our Oprop tool will decide whether those specifications are satisfied.

In the main1() and main2() methods in Figure 5.26 (we have two such methods in or-
der to differentiate the two usages in client code) we have an object s of type Sum. The first
time when we call calculateSum(), the result is coming from class RealSum. We have
a ClientSum object that has as a field the object s, on which it calls the checking method
checkSum(). The second time when the method calculateSum() is called on the object
s, we do not resort to RealSum to calculate the sum, but instead use the cached copy of the
sum that we have in the object Proxysum. All the times when we call checkSum(), the code
verifies successfully because the invariant sumOK holds whether the sum is obtained using the
ProxySum or using RealSum.

Note that if the two classes ProxySum and RealSum were not entitled as they are, and
instead they were named ClassA and ClassB to distinguish them more, it would be more
meaningful to the reader to know that the invariant sumOK holds whether we go to ClassA or
ClassB to get our result.

Objects that point to the object s can rely on this invariant and change the object s while
preserving the invariant, even if they have only a half fraction to s, as can be seen in this example
and others throughout this thesis. This is the crux of the difference between the verification using
normal separation logic and object propositions.

We have added the predicate sumGreater0 to show that two objects of the class Sum can
have different invariants. This idea is the difference between object propositions and classical
invariants, where all objects of the same class have to respect the same invariant.

The Oprop classes of the proxy example that can be seen in Figures 5.21, 5.22, 5.23, 5.24,
5.25 and 5.26 are translated into Boogie. We have concatenated the translated files into the file
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1 c l a s s RealSum implemen t s Sum {
2 i n t n ;
3 do ub l e sum ;
4
5 p r e d i c a t e B a s i c F i e l d s ( i n t n1 , do ub l e s1 ) =
6 t h i s . n −> n1 && t h i s . sum −> s1 && n1 >0 && s1 >=0
7 p r e d i c a t e SumOK ( ) = e x i s t s do ub l e k , i n t n1 :
8 t h i s #k B a s i c F i e l d s ( n1 , ( n1 ∗ ( n1 +1) / 2 ) )
9 p r e d i c a t e SumGreater0 ( ) = e x i s t s do ub l e k , i n t n1 , do ub l e s1 :

10 t h i s #k B a s i c F i e l d s ( n1 , s1 ) && s1 > 0
11
12 RealSum ( i n t n1 )
13 r e q u i r e s n1 > 0
14 e n s u r e s t h i s # 1 . 0 SumOK ( )
15 {
16 t h i s . n = n1 ;
17 t h i s . sum = 0 ;
18 pack ( t h i s #1 B a s i c F i e l d s ( n1 , 0 ) ) ;
19 t h i s . c a l c u l a t e S u m ( ) ;
20 }
21
22 do ub l e getRealSum ( )
23 ~ do ub l e k :
24 r e q u i r e s t h i s #k SumOK ( )
25 e n s u r e s t h i s #k SumOK ( )
26 {
27 unpack ( t h i s #k SumOK ( ) ) ;
28 b o o l e a n temp = t h i s . sum ;
29 pack ( t h i s #k SumOK ( ) ) ;
30 r e t u r n temp ;
31 }
32
33 do ub l e addOneToSum ( )
34 ~ do ub l e k :
35 i n t n1 , do ub l e s1 :
36 r e q u i r e s t h i s #k B a s i c F i e l d s ( n1 , s1 )
37 e n s u r e s t h i s #k SumGreater0 ( )
38 e n s u r e s r e s u l t > 0
39 {
40 unpack ( t h i s #k B a s i c F i e l d s ( n1 , s1 ) ) ;
41 t h i s . sum = t h i s . sum +1;
42 do ub l e temp = t h i s . sum ;
43 pack ( t h i s #k B a s i c F i e l d s ( n1 , s1 ) ) ;
44 pack ( t h i s #k SumGreater0 ( ) ) [ n1 , t h i s . sum ] ;
45 r e t u r n temp ;
46 }

Figure 5.21: Proxy pattern example - class RealSum
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1 do ub l e c a l c u l a t e S u m ( )
2 ~ do ub l e k :
3 i n t n1 , do ub l e s1 :
4 r e q u i r e s t h i s #k B a s i c F i e l d s ( n1 , s1 )
5 e n s u r e s t h i s #k SumOK ( )
6 e n s u r e s r e s u l t > 0
7 {
8 unpack ( t h i s #k B a s i c F i e l d s ( n1 , s1 ) ) ;
9 t h i s . sum = ( n1 ∗ ( n1 +1) / 2 ) ;

10 do ub l e temp = t h i s . sum ;
11 pack ( t h i s #k B a s i c F i e l d s ( n1 , n1 ∗ ( n1 +1) / 2 ) ) ;
12 pack ( t h i s #k SumOK ( ) ) [ n1 ] ;
13 r e t u r n temp ;
14 }
15
16 b o o l e a n sumIsOK ( )
17 ~ do ub l e k :
18 r e q u i r e s t h i s #k SumOK ( )
19 e n s u r e s t h i s #k SumOK ( )
20 {
21 unpack ( t h i s #k SumOK ( ) ) ;
22 b o o l e a n temp = ( t h i s . sum == ( t h i s . n ∗ ( t h i s . n +1) / 2 ) ) ;
23 pack ( t h i s #k SumOK ( ) ) [ t h i s . n ] ;
24 r e t u r n temp ;
25 }
26
27 b o o l e a n s u m I s G r e a t e r 0 ( )
28 ~ do ub l e k :
29 r e q u i r e s t h i s #k SumGreater0 ( )
30 e n s u r e s t h i s #k SumGreater0 ( )
31 {
32 unpack ( t h i s #k SumGreater0 ( ) ) ;
33 b o o l e a n temp = ( t h i s . sum > 0) ;
34 pack ( t h i s #k SumGreater0 ( ) ) [ t h i s . sum ] ;
35 r e t u r n temp ;
36 }
37 }

Figure 5.22: Proxy pattern example - class RealSum continuation
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1 c l a s s ProxySum implemen t s Sum {
2 RealSum realSum ;
3 do ub l e sum ;
4 i n t n ;
5
6 p r e d i c a t e B a s i c F i e l d s ( i n t n1 , do ub l e s1 ) =
7 e x i s t s RealSum rs , do ub l e k2 :
8 t h i s . rea lSum −> r s && t h i s . sum −> s1 && t h i s . n −> n1
9 && n1 >0 && && s1 >= 0 && ( ( r s != n u l l ) ~=> r s #k2 SumOK ( ) )

10 p r e d i c a t e SumOK ( ) = e x i s t s do ub l e k , i n t n1 :
11 t h i s #k B a s i c F i e l d s ( n1 , ( n1 ∗ ( n1 +1) / 2 ) )
12 p r e d i c a t e SumGreater0 ( ) = e x i s t s do ub l e k , i n t n1 , do ub l e s1 :
13 t h i s #k B a s i c F i e l d s ( n1 , s1 ) && s1 > 0
14
15 ProxySum ( i n t n1 )
16 e n s u r e s t h i s # 1 . 0 B a s i c F i e l d s ( n1 , 0 ) [ n u l l ]
17 {
18 t h i s . n = n1 ;
19 t h i s . sum = 0 ;
20 t h i s . rea lSum = n u l l ;
21 }
22
23 do ub l e c a l c u l a t e S u m ( )
24 ~ do ub l e k1 , k2 :
25 i n t n1 , do ub l e s1 , RealSum ob :
26 r e q u i r e s t h i s #k1 B a s i c F i e l d s ( n1 , s1 ) [ ob ]
27 e n s u r e s t h i s #k1 SumOK ( )
28 {
29 unpack ( t h i s #k1 B a s i c F i e l d s ( n1 , s1 ) ) [ ob ] ;
30 i f ( ob == n u l l ) {
31 ob = new RealSum (SumOK ( ) [ n1 ] ) ( n1 ) ;
32 }
33 t h i s . sum = ob . getRealSum ( ) ;
34 do ub l e temp = t h i s . sum ;
35 pack ( t h i s #k1 B a s i c F i e l d s ( t h i s . n , t h i s . sum ) ) [ ob ] ;
36 unpack ( ob#k2 SumOK ( ) ) ;
37 pack ( t h i s #k1 SumOK ( ) ) ;
38 r e t u r n temp ;
39 }

Figure 5.23: Proxy pattern example - class ProxySum
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1 do ub l e addOneToSum ( )
2 ~ do ub l e k1 , k2 :
3 i n t n1 , do ub l e s1 , RealSum ob :
4 r e q u i r e s t h i s #k1 B a s i c F i e l d s ( n1 , s1 ) [ ob ]
5 e n s u r e s ( t h i s #k1 SumGreater0 ( ) )
6 {
7 unpack ( t h i s #k1 B a s i c F i e l d s ( n1 , s1 ) ) [ ob ] ;
8 i f ( ob == n u l l ) {
9 ob = new RealSum (SumOK ( ) [ n1 ] ) ( n1 ) ;

10 unpack ( ob # 1 . 0 SumOK ( ) ) [ n1 ]
11 }
12 t h i s . sum = ob . addOneToSum ( ) ;
13 do ub l e temp = t h i s . sum ;
14 pack ( t h i s #k1 B a s i c F i e l d s ( n1 , temp ) ) [ ob ] ;
15 pack ( t h i s #k1 SumGreater0 ( ) ) ;
16 r e t u r n temp ;
17 }
18
19 b o o l e a n sumIsOK ( )
20 ~ do ub l e k :
21 r e q u i r e s t h i s #k SumOK ( )
22 e n s u r e s t h i s #k SumOK ( )
23 {
24 unpack ( t h i s #k SumOK ( ) ) ;
25 b o o l e a n temp = ( t h i s . sum == ( t h i s . n ∗ ( t h i s . n + 1) / 2 ) ) ;
26 pack ( t h i s #k SumOK ( ) ) [ t h i s . n ] ;
27 r e t u r n temp ;
28 }
29
30 b o o l e a n s u m I s G r e a t e r 0 ( )
31 ~ do ub l e k :
32 r e q u i r e s t h i s #k SumGreater0 ( )
33 e n s u r e s t h i s #k SumGreater0 ( )
34 {
35 unpack ( t h i s #k SumGreater0 ( ) ) ;
36 b o o l e a n temp = ( t h i s . sum > 0) ;
37 pack ( t h i s #k SumGreater0 ( ) ) [ t h i s . sum ] ;
38 r e t u r n temp ;
39 }
40 }

Figure 5.24: Proxy pattern example - class ProxySum continuation
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1 c l a s s Cl ien tSum {
2 Sum s u m C l i e n t ;
3
4 p r e d i c a t e ClientSumOK ( ) =
5 e x i s t s do ub l e k , Sum s : : t h i s . sumCl ien t−>s && ( s #k SumOK ( ) )
6
7 p r e d i c a t e C l i e n t S u m G r e a t e r 0 ( ) =
8 e x i s t s do ub l e k , Sum s : : t h i s . sumCl ien t−>s && ( s #k SumGreater0

( ) )
9

10 Cl ien tSum (Sum sum1 )
11 e n s u r e s ( t h i s . s u m C l i e n t −> sum1 ) ;
12 {
13 t h i s . s u m C l i e n t = sum1 ;
14 }
15
16 b o o l e a n checkSumIsOK ( )
17 ~ do ub l e k1 , k2 :
18 r e q u i r e s ( t h i s #k1 ClientSumOK ( ) )
19 e n s u r e s ( t h i s #k1 ClientSumOK ( ) )
20 {
21 unpack ( t h i s #k1 ClientSumOK ( ) ) ;
22 b o o l e a n temp = t h i s . s u m C l i e n t . sumIsOK ( ) ;
23 pack ( t h i s #k1 ClientSumOK ( ) ) ;
24 r e t u r n temp ;
25 }
26
27 b o o l e a n checkSumGrea te r0 ( )
28 ~ do ub l e k1 , k2 :
29 r e q u i r e s ( t h i s #k1 C l i e n t S u m G r e a t e r 0 ( ) )
30 e n s u r e s ( t h i s #k1 C l i e n t S u m G r e a t e r 0 ( ) )
31 {
32 unpack ( t h i s #k1 C l i e n t S u m G r e a t e r 0 ( ) ) ;
33 b o o l e a n temp = t h i s . s u m C l i e n t . s u m I s G r e a t e r 0 ( ) ;
34 pack ( t h i s #k1 C l i e n t S u m G r e a t e r 0 ( ) ) ;
35 r e t u r n temp ;
36 }

Figure 5.25: Proxy pattern - class ClientSum
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1 vo id main1 ( )
2 ~ do ub l e k :
3 {
4 Sum s = new ProxySum ( B a s i c F i e l d s ( 5 , 0 ) ) ( 5 ) ;
5 s . c a l c u l a t e S u m ( ) ;
6 Cl ien tSum c l i e n t 1 = new Cl ien tSum ( ClientSumOK ( ) [ ] ) ( s ) ;
7 Cl ien tSum c l i e n t 2 = new Cl ien tSum ( ClientSumOK ( ) [ ] ) ( s ) ;
8 c l i e n t 1 . checkSumIsOK ( ) ;
9 unpack ( s #k SumOK ( ) ) [ 5 ] ;

10 s . c a l c u l a t e S u m ( ) ;
11 c l i e n t 2 . checkSumIsOK ( ) ;
12 }
13
14 vo id main2 ( )
15 ~ do ub l e k :
16 {
17 Sum s2 = new ProxySum ( B a s i c F i e l d s ( 7 , 0 ) ) ( 7 ) ;
18 s2 . addOneToSum ( ) ;
19 Cl ien tSum c l i e n t 3 = new Cl ien tSum ( C l i e n t S u m G r e a t e r 0 ( ) [ ] ) ( s2 ) ;
20 Cl ien tSum c l i e n t 4 = new Cl ien tSum ( C l i e n t S u m G r e a t e r 0 ( ) [ ] ) ( s2 ) ;
21 c l i e n t 3 . checkSumGrea te r0 ( ) ;
22 unpack ( s2 #k SumGreater0 ( ) ) [ 7 , 2 9 ] ;
23 s2 . addOneToSum ( ) ;
24 c l i e n t 4 . checkSumGrea te r0 ( ) ;
25 }
26 }

Figure 5.26: Proxy pattern - class ClientSum continuation

Figure 5.27: Diagram of main1() for proxy pattern

Figure 5.28: Diagram of main2() for proxy pattern - cont.
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https://github.com/ligianistor/boogie/blob/master/proxylatest.bpl that can be verified in Boogie.

5.3 Verifying an Instance of the Flyweight Pattern
The third pattern, flyweight, represents programs that have an immutable object that a large
number of client objects point to. In the example below we show how the verification works
when a new client object is added. We have a comparison to the verification of this example
using the invariant technique - we will come back to this comparison later in this section, and
also to the verification using separation logic with fractions technique described in the paper
"Permission accounting in separation logic" by R. Bornat et al. [24]. Although the referenced
paper is written in the context of concurrency, if we think of each thread that has access to some
common variable as a reference pointing to that common variable, we can apply the separation
logic with fractions methodology in the sequential setting. The difference is that when multiple
threads have access to a common variable with a fraction less than 1, they only have read access
in the separation logic with fractions scenario, while in the object propositions methodology we
allow read/write access to this common object as long as the initial predicate is preserved.

Since the flyweight object is immutable, for the flyweight example it is not important to have
read/write access to the shared data. One could perform the same verification using separation
logic and fractions that one can do with object propositions in the case of the flyweight. The paper
describes their approach for concurrent programs; since sequential verification is a special case
of concurrent verification, their approach would automatically work for sequential programs, but
the reader would have to fill in the details of specializing sequential verification from concurrent
verification. The purpose of us verifying an instance of the flyweight pattern is not to show
our unique characteristics but that we can solve a problem that prior approaches have; the other
examples in this thesis show the unique benefits of our approach. Both scenarios are important:
we want our approach to have unique advantages but not be worse for cases that other systems
already solve.

5.3.1 Example
Each “flyweight” object is divided into two pieces: the state-dependent (extrinsic) part, and
the state-independent (intrinsic) part. Intrinsic state is stored (shared) in the Flyweight object.
Extrinsic state is computed when client objects give the necessary information. This necessary
information is passed to the Flyweight object when its relevant methods are invoked.

The UML diagram of the general flyweight pattern can be seen in Figure 5.29, inspired from
the website [4]. There is a Factory class that acts as a repository and stores objects of type
Flyweight. The client does not create Flyweights directly, and requests them from the Factory.
Each Flyweight cannot stand on its own. Any particular attributes that would make sharing
impossible must be supplied by the client whenever a request is made of the Flyweight. The
Flyweight pattern is useful in cases when the context lends itself to economy of scale (i.e., the
client can easily compute or look-up the necessary attributes).

In the remainder of this subsection we give an intuitive explanation of our instance of the
flyweight pattern, we present the annotated Oprop classes that make up our example and for
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Figure 5.29: UML Diagram of Flyweight Pattern

each class we detail the more interesting parts.
In Figure 5.30 we present the UML diagram of the classes of our example implement-

ing the flyweight pattern. The College objects are the flyweights, which have both an im-
mutable, intrinsic state, represented by the simple collegeNumber field and by the more
complicated field endowment, and a mutable, extrinsic state that is given to the flyweights
through the getNumberFacilities() method called on them. The number of facilities
numFacilities is extrinsic state for a College object.
When objects of class StudentApplication are created using the constructor
StudentApplication(college, campusNumber), the external information
campusNumber will determine how many facilities this particular college has. The map data
structure MapCollege acts as a cache where multiple colleges can be stored and accessed
through the lookup method. We assume that we can use maps in our logic, such as the
MapCollege data structure. The caching is needed because of the endowment field, which
represents a field more difficult to calculate and needs to be stored in the cache. The class
ApplicationWebsite is where the main() method of this example is and where the client
code that can be seen in action.

A College flyweight can satisfy the invariant collegeFacilitiesFew throughout the
program, or it can satisfy the invariant collegeFacilitiesMany. Each invariant is inter-
esting because it is partly over intrinsic state, and partly over extrinsic state which is passed to the
invariant itself as an argument. By offering two different invariants that a flyweight object can
satisfy, we are differentiating the verification using object propositions from the verification using
classical invariants. While a College object satisfies the invariant collegeFacilitiesFew,
client code can call the method
changeApplicationFew that can change the campusNumber that a particular student
wants to apply to - and this change the number of facilities of that college, while still satisfying
the
collegeFacilitiesFew invariant. The intuition is that once a student has decided to apply
to a college that has few facilities, the student can change the actual college campus that he or
she applies to as long as it is a college with few facilities.

Flyweight objects are stored in a factory’s repository. The client restrains herself from creat-
ing Flyweights directly, and requests them from the factory. If the context lends itself to “econ-
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Figure 5.30: UML Diagram of Our Example of Flyweight Pattern
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omy of scale” (i.e., the client can easily compute or look-up the necessary attributes), then the
Flyweight pattern offers appropriate leverage.

In Figure 5.31, instances of the College class will be the Flyweights. The example only
uses numbers because they are readily implemented in our Oprop tool, but future work can
easily add support for Strings or other Java data types. The data structure MapCollege acts as
a factory and cache for College flyweight objects.

The Oprop classes used in the flyweight pattern example are: College in Figure 5.31, Studen-
tApplication in Figures 5.32, 5.33 and 5.34 and ApplicationWebsite in Figures 5.35, 5.36, 5.37
and 5.38. The invariants that a Flyweight object, i.e., an object of type College can satisfy
are
collegeFacilitiesMany or collegeFacilitiesFew. Each of these two invariants
depends on both the intrinsic state of a College and its extrinsic state.

Class College in Figure 5.31 represents the flyweight class. We define three predicates, Col-
legeNumberField, which simply gives access to the field collegeNumber when unpacked, and
CollegeFacilitiesMany and CollegeFacilitiesFew, which state whether this college has many or
few facilties, depending on the parameter numFacilities that gets passed to these predicates. The
constructor computes the endowment value; this value only needs to be computed once, when a
College object is instantiated. All the objects referencing this flyweight object can take advantage
of the fact that the value of the endowment was already calculated. The method getNumberFa-
cilities() has the intrinsic value collegeNumber (the parameter colNum is provided only to check
that it is equal to the value of collegeNumber) and the extrinsic value campNum, which is used
for calculating the return value for the number of facilities.

In Figure 5.33 we can see the two methods changeApplicationFew() and changeApplica-
tionMany() that preserve the predicates StudentAppFacilitiesFew and StudentAppFacilitiesMany,
which are wrapper predicates around the predicates CollegeFacilitiesFew and CollegeFacilities-
Many. While the methods changeApplicationFew() and changeApplicationMany() make changes
to the facilities field of class StudentApplication, in Figure 5.34 one can see the methods check-
FacilitiesFew() and checkFacilitiesMany() that simply check that the predicates StudentAppFa-
cilitiesFew and StudentAppFacilitiesMany hold.

Class ApplicationWebsite in Figure 5.35 contains a field mapOfColleges, which acts as a
cache for colleges. This field is put in this class because each website in our example has its own
list of colleges that users can apply to. The method makeMapNull() is used in the constructor
of ApplicationWebsite in order to initialize the field mapOfColleges. Note that on lines 31-39
in Figure 5.35 and lines 6-12 and 19-25 in Figure 5.36 the code is commented out; this is be-
cause these functions are standard and coming from external libraries. We initially implemented
them to get a better idea of the pre- and post-conditions that should hold, but their implementa-
tions are usually black boxes and when using them in client code, one should only rely on the
specifications provided by the authors of these functions.

The method lookup() from Figure 5.36 returns a reference to the college object from mapOf-
Colleges for which collegeNumber is equal to colNum. As seen in the body of this method, field
mapOfColleges acts as a cache, according to the general idea of the flyweight design pattern.

In the main1() and main2() methods in Figures 5.37 and 5.38, the first part in each
method highlights the differences between the classical invariants verification methodology and
object propositions, while the second part shows the differences between separation logic and
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1 c l a s s C o l l e g e {
2 i n t co l l egeNumber ;
3 i n t endowment ;
4
5 p r e d i c a t e Co l l egeNumberF ie ld ( i n t c ) =
6 t h i s . co l l egeNumber −> c && ( c >0)
7 p r e d i c a t e C o l l e g e F a c i l i t i e s M a n y ( i n t n u m F a c i l i t i e s ) =
8 e x i s t s do ub l e k , i n t c : t h i s #k Co l l egeNumberF ie ld ( c ) &&
9 ( n u m F a c i l i t i e s >= 10 ∗ c )

10 p r e d i c a t e C o l l e g e F a c i l i t i e s F e w ( i n t n u m F a c i l i t i e s ) =
11 e x i s t s do ub l e k , i n t c : t h i s #k Co l l egeNumberF ie ld ( c ) &&
12 ( n u m F a c i l i t i e s <= 4 ∗ c )
13
14 C o l l e g e ( i n t number )
15 e n s u r e s t h i s # 1 . 0 Co l l egeNumberF ie ld ( number ) ;
16 {
17 t h i s . co l l egeNumber = number ;
18 t h i s . endowment = ( number ∗1000) − 5 ;
19 }
20
21 i n t ge tCol l egeNumber ( )
22 ~ do ub l e k :
23 i n t c :
24 r e q u i r e s t h i s #k Co l l egeNumberF ie ld ( c )
25 e n s u r e s t h i s #k Co l l egeNumberF ie ld ( c )
26 {
27 unpack ( t h i s #k Co l l egeNumberF ie ld ( c ) ) ;
28 i n t temp = t h i s . co l l egeNumber ;
29 pack ( t h i s #k Co l l egeNumberF ie ld ( c ) ) ;
30 r e t u r n temp ;
31 }
32
33 i n t g e t N u m b e r F a c i l i t i e s ( i n t campNum , i n t colNum )
34 ~ do ub l e k :
35 r e q u i r e s t h i s #k Co l l egeNumberF ie ld ( colNum )
36 r e q u i r e s campNum > 0 ;
37 e n s u r e s t h i s #k Co l l egeNumberF ie ld ( colNum )
38 e n s u r e s r e s u l t == colNum ∗ campNum ;
39 e n s u r e s r e s u l t > 0 ;
40 {
41 unpack ( t h i s #k Co l l egeNumberF ie ld ( colNum ) ) ;
42 i n t temp = colNum ∗ campNum ;
43 pack ( t h i s #k Co l l egeNumberF ie ld ( colNum ) ) ;
44 r e t u r n temp ;
45 }
46 }

Figure 5.31: Flyweight example - College class
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1 c l a s s S t u d e n t A p p l i c a t i o n {
2 C o l l e g e c o l l e g e ;
3 i n t campusNumber ;
4 i n t f a c i l i t i e s ;
5
6 p r e d i c a t e S t u d e n t A p p l i c a t i o n F i e l d s ( C o l l e g e c , i n t campNum ) =
7 ( t h i s . c o l l e g e −> c ) && ( t h i s . campusNumber −> campNum )
8
9 p r e d i c a t e S t u d e n t A p p F a c i l i t i e s M a n y ( ) =

10 e x i s t s do ub l e k , do ub l e k1 , C o l l e g e co l , i n t campNum ,
11 i n t f a : t h i s . f a c i l i t i e s −> f a &&
12 t h i s #k1 S t u d e n t A p p l i c a t i o n F i e l d s ( co l , campNum ) &&
13 ( c o l #k C o l l e g e F a c i l i t i e s M a n y ( f a ) [ c o l . number ] )
14
15 p r e d i c a t e S t u d e n t A p p F a c i l i t i e s F e w ( ) =
16 e x i s t s do ub l e k , do ub l e k1 , C o l l e g e co l , i n t campNum ,
17 i n t f a : t h i s . f a c i l i t i e s −> f a &&
18 t h i s #k1 S t u d e n t A p p l i c a t i o n F i e l d s ( co l , campNum ) &&
19 ( c o l #k C o l l e g e F a c i l i t i e s F e w ( f a ) [ c o l . number ] )
20
21 S t u d e n t A p p l i c a t i o n ( C o l l e g e co l , i n t campusNum )
22 ~ do ub l e k :
23 i n t co lco lNumber ;
24 r e q u i r e s campusNum > 0 ;
25 r e q u i r e s ( c o l #k Co l l egeNumberF ie ld ( co lco lNumber ) ) ;
26 e n s u r e s ( t h i s # 1 . 0 S t u d e n t A p p l i c a t i o n F i e l d s ( co l , campusNum ) ) ;
27 e n s u r e s ( ( campusNum <= 4) && ( campusNum > 0) ) ~=>
28 ( c o l #k C o l l e g e F a c i l i t i e s F e w ( t h i s . f a c i l i t i e s ) ) ;
29 e n s u r e s ( campusNum >= 10) ~=>
30 ( c o l #k C o l l e g e F a c i l i t i e s M a n y ( t h i s . f a c i l i t i e s ) ) ;
31 {
32 t h i s . c o l l e g e = c o l ;
33 t h i s . f a c i l i t i e s = c o l . g e t N u m b e r F a c i l i t i e s ( campusNum , co lco lNumber )

;
34 t h i s . campusNumber = campusNum ;
35 i f (0 < campusNum && campusNum <= 4) {
36 pack ( c o l #k C o l l e g e F a c i l i t i e s F e w ( t h i s . f a c i l i t i e s ) ) ;
37 } e l s e i f ( campusNum >= 10) {
38 pack ( c o l #k C o l l e g e F a c i l i t i e s M a n y ( t h i s . f a c i l i t i e s ) ) ;
39 }
40 }

Figure 5.32: Flyweight example - StudentApplication class
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1 vo id c h a n g e A p p l i c a t i o n F e w ( i n t newCampusNumber )
2 ~ do ub l e k , k2 :
3 r e q u i r e s newCampusNumber > 0 ;
4 r e q u i r e s t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( )
5 e n s u r e s t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( )
6 {
7 unpack ( t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( ) ) ;
8 t h i s . campusNumber = newCampusNumber % 4 ;
9 unpack ( t h i s . c o l l e g e #k2 C o l l e g e F a c i l i t i e s F e w ( t h i s . f a c i l i t i e s ) ) ;

10 t h i s . f a c i l i t i e s = t h i s . c o l l e g e . g e t N u m b e r F a c i l i t i e s ( t h i s .
campusNumber ) ;

11 pack ( t h i s . c o l l e g e #k2 C o l l e g e F a c i l i t i e s F e w ( t h i s . f a c i l i t i e s ) ) ;
12 pack ( t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( ) ) ;
13 }
14
15 vo id changeApp l i ca t i onMany ( i n t newCampusNumber )
16 ~ do ub l e k , k2 :
17 r e q u i r e s newCampusNumber > 0 ;
18 r e q u i r e s t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( )
19 e n s u r e s t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( )
20 {
21 unpack ( t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( ) ) ;
22 t h i s . campusNumber = newCampusNumber ∗ 10 + 1 ;
23 unpack ( t h i s . c o l l e g e #k2 C o l l e g e F a c i l i t i e s M a n y ( t h i s . f a c i l i t i e s ) ) ;
24 t h i s . f a c i l i t i e s = t h i s . c o l l e g e . g e t N u m b e r F a c i l i t i e s ( t h i s .

campusNumber ) ;
25 pack ( t h i s . c o l l e g e #k2 C o l l e g e F a c i l i t i e s M a n y ( t h i s . f a c i l i t i e s ) ) ;
26 pack ( t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( ) ) ;
27 }

Figure 5.33: Flyweight example - StudentApplication class continuation 1
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1 b o o l e a n c h e c k F a c i l i t i e s F e w ( )
2 ~ do ub l e k :
3 r e q u i r e s t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( )
4 e n s u r e s t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( )
5 {
6 unpack ( t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( ) ) ;
7 b o o l e a n temp = ( t h i s . f a c i l i t i e s <= 4 ∗ t h i s . campusNumber ) ;
8 pack ( t h i s #k S t u d e n t A p p F a c i l i t i e s F e w ( ) )
9 r e t u r n temp ;

10 }
11
12 b o o l e a n c h e c k F a c i l i t i e s M a n y ( )
13 ~ do ub l e k :
14 r e q u i r e s t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( )
15 e n s u r e s t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( )
16 {
17 unpack ( t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( ) ) ;
18 b o o l e a n temp = ( t h i s . f a c i l i t i e s >= 10 ∗ t h i s . campusNumber ) ;
19 pack ( t h i s #k S t u d e n t A p p F a c i l i t i e s M a n y ( ) ) ;
20 r e t u r n temp ;
21 }
22 }

Figure 5.34: Flyweight example - StudentApplication class continuation 2
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1 c l a s s A p p l i c a t i o n W e b s i t e {
2 map< i n t , Co l l ege > mapOfCol leges ;
3 i n t maxSize ;
4
5 p r e d i c a t e MapOfCo l l egesF i e ld ( map< i n t , Co l l ege > m) =
6 t h i s . mapOfCol leges −> m
7
8 p r e d i c a t e KeyValuePa i r ( i n t key , C o l l e g e v a l u e ) =
9 e x i s t s do ub l e k1 , do ub l e k2 , map< i n t , Co l l ege > m : :

10 t h i s #k1 MapOfCo l l egesF i e ld (m) && (m[ key ] == v a l u e ) &&
11 ( v a l u e != n u l l ) ~=> v a l u e #k2 Co l l egeNumberF ie ld ( key )
12
13 vo id makeMapNull ( i n t i , map< i n t , Co l l ege > ma )
14 ~ do ub l e k , k1 , k2 , k3 :
15 r e q u i r e s ( i >= 0) ;
16 r e q u i r e s t h i s #k1 MapOfCo l l egesF i e ld ( ma ) ;
17 r e q u i r e s ( f o r a l l i n t j : : ( ( j <= i ) && ( j >=0) ) => e x i s t s C o l l e g e c : :

t h i s # 1 . 0 KeyValuePa i r ( j , c ) ) ;
18 e n s u r e s ( f o r a l l i n t j : : ( ( j <= i ) && ( j >=0) ) => t h i s # 1 . 0

KeyValuePa i r ( j , n u l l ) ) ;
19 e n s u r e s t h i s #k3 MapOfCo l l egesF i e ld ( ma ) ;
20 {
21 i f ( i ==0) {
22 unpack ( t h i s #k2 KeyValuePa i r ( i , ma [ i ] ) ) ;
23 unpack ( t h i s #k3 MapOfCo l l egesF i e ld ( ma ) ) ;
24 t h i s . mapOfCol leges [ i ] = n u l l ;
25 pack ( t h i s #k3 MapOfCo l l egesF i e ld ( ma ) ) ;
26 pack ( t h i s # 1 . 0 KeyValuePa i r ( i , n u l l ) ) ;
27 } e l s e {
28 t h i s . makeMapNull ( i −1) ;
29 unpack ( t h i s #k2 KeyValuePa i r ( i , ma [ i ] ) ) ;
30 unpack ( t h i s #k3 MapOfCo l l egesF i e ld ( ma ) ) ;
31 t h i s . mapOfCol leges [ i ] = n u l l ;
32 pack ( t h i s #k3 MapOfCo l l egesF i e ld ( ma ) ) ;
33 pack ( t h i s # 1 . 0 KeyValuePa i r ( i , n u l l ) ) ;
34 }
35 }

Figure 5.35: Flyweight example - ApplicationWebsite class
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1 b o o l e a n c o n t a i n s K e y ( i n t key1 )
2 ~ do ub l e k , k2 :
3 r e q u i r e s e x i s t s c1 : C o l l e g e ==> ( t h i s #k2 KeyValuePa i r ( key1 , c1 ) ) ;
4 e n s u r e s ( r e s u l t == t r u e ) ==> ( e x i s t s c : C o l l e g e ==> ( t h i s #k2

KeyValuePa i r ( key1 , c ) )
5 e n s u r e s ( r e s u l t == f a l s e ) ==> ( t h i s #k2 KeyValuePa i r ( key1 , n u l l ) )
6 {
7 b o o l e a n b = t r u e ;
8 unpack ( t h i s #k2 KeyValuePa i r ( key1 , c1 ) ) ;
9 i f ( t h i s . mapOfCol leges [ key1 ] == n u l l ) {

10 b = f a l s e ;
11 }
12 pack ( t h i s #k2 KeyValuePa i r ( key1 , n u l l ) ) ;
13 r e t u r n b ;
14 }
15
16 C o l l e g e lookup ( i n t colNum )
17 ~ do ub l e k :
18 r e q u i r e s (0 < colNum ) ;
19 r e q u i r e s ( e x i s t s C o l l e g e c i n i t : : t h i s #k KeyValuePa i r ( colNum ,

c i n i t ) )
20 e n s u r e s t h i s #k KeyValuePa i r ( colNum , r e s u l t )
21 {
22 b o o l e a n b = t h i s . c o n t a i n s K e y ( colNum ) ;
23 i f ( ! b ) {
24 C o l l e g e c = new C o l l e g e ( Co l l egeNumberF ie ld ( colNum ) ) ( colNum ) ;
25 unpack ( t h i s #k KeyValuePa i r ( colNum , c i n i t ) ) ;
26 t h i s . mapOfCol leges [ colNum ] := c ;
27 pack ( t h i s #k KeyValuePa i r ( colNum , c ) ) ;
28 r e t u r n c ;
29 } e l s e {
30 unpack ( t h i s #k KeyValuePa i r ( colNum , c i n i t ) ) ;
31 C o l l e g e temp = c i n i t ;
32 pack ( t h i s #k KeyValuePa i r ( colNum , c i n i t ) ) ;
33 r e t u r n temp ;
34 }
35 }

Figure 5.36: Flyweight example - ApplicationWebsite class continuation 1
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1 A p p l i c a t i o n W e b s i t e ( map< i n t , Co l l ege > ma )
2 e n s u r e s t h i s . mapOfco l l ege s −> ma ;
3 {
4 t h i s . mapOfco l l ege s = ma ;
5 }
6
7 vo id I n i t i a l i z e A p p l i c a t i o n W e b s i t e ( i n t maxSize1 , map< i n t , Co l l ege > ma

)
8 ~ do ub l e k :
9 r e q u i r e s ( t h i s #k MapOfCo l l egesF i e ld ( ma ) )

10 r e q u i r e s ( maxSize1 >=0) ;
11 r e q u i r e s
12 e n s u r e s ( f o r a l l i n t j : ( ( j <=maxSize1 ) && ( j >=0) ) ~=>
13 t h i s # 1 . 0 KeyValuePa i r ( j , n u l l ) ) ;
14 e n s u r e s t h i s . maxSize −> maxSize1 ;
15 e n s u r e s ( t h i s #k MapOfCo l l egesF i e ld ( ma ) )
16 {
17 t h i s . maxSize = maxSize1 ;
18 t h i s . makeMapNull ( maxSize1 ) ;
19 }
20
21 vo id main1 ( )
22 ~ do ub l e k1 , k2 :
23 {
24 map< i n t , Co l l ege > ma ;
25 A p p l i c a t i o n W e b s i t e w e b s i t e = new A p p l i c a t i o n W e b s i t e (

MapOfCo l l egesF i e ld ( ma ) ) ( ma ) ;
26 w e b s i t e . I n i t i a l i z e A p p l i c a t i o n W e b s i t e ( 1 0 0 , ma ) ;
27 C o l l e g e c o l l e g e = w e b s i t e . lookup ( 2 ) ;
28 unpack ( w e b s i t e #k1 KeyValuePa i r ( 2 , ma [ 2 ] ) [ ma ] ) ;
29 S t u d e n t A p p l i c a t i o n app1 = new S t u d e n t A p p l i c a t i o n (

S t u d e n t A p p F a c i l i t i e s F e w ( ) ) ( c o l l e g e , 3 ) [ 2 ] ;
30 S t u d e n t A p p l i c a t i o n app2 = new S t u d e n t A p p l i c a t i o n (

S t u d e n t A p p F a c i l i t i e s F e w ( ) ) ( c o l l e g e , 2 ) [ 2 ] ;
31 app1 . c h e c k F a c i l i t i e s F e w ( ) ;
32 app1 . c h a n g e A p p l i c a t i o n F e w ( 3 4 ) ;
33 app2 . c h e c k F a c i l i t i e s F e w ( ) ;
34 }

Figure 5.37: Flyweight example - ApplicationWebsite class continuation 2
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1 vo id main2 ( )
2 ~ do ub l e k1 , k2 :
3 {
4 map< i n t , Co l l ege > ma ;
5 A p p l i c a t i o n W e b s i t e w e b s i t e = new A p p l i c a t i o n W e b s i t e (

MapOfCo l l egesF i e ld ( ma ) ) ( ma ) ;
6 w e b s i t e . I n i t i a l i z e A p p l i c a t i o n W e b s i t e ( 1 0 0 , ma ) ;
7 C o l l e g e c o l l e g e 2 = w e b s i t e . lookup ( 5 6 ) ;
8 unpack ( w e b s i t e #k1 KeyValuePa i r ( 5 6 , ma [ 5 6 ] ) [ ma ] ) ;
9 S t u d e n t A p p l i c a t i o n app3 = new S t u d e n t A p p l i c a t i o n (

S t u d e n t A p p F a c i l i t i e s M a n y ( ) ) ( c o l l e g e 2 , 45) [ 5 6 ] ;
10 S t u d e n t A p p l i c a t i o n app4 = new S t u d e n t A p p l i c a t i o n (

S t u d e n t A p p F a c i l i t i e s M a n y ( ) ) ( c o l l e g e 2 , 97) [ 5 6 ] ;
11 app3 . c h e c k F a c i l i t i e s M a n y ( ) ;
12 app3 . changeApp l i ca t i onMany ( 7 8 ) ;
13 app4 . c h e c k F a c i l i t i e s M a n y ( ) ;
14 }
15 }

Figure 5.38: Flyweight example - ApplicationWebsite class continuation 3

object propositions. In the first part we have two objects of type college, with one having
collegeBuildingsFew() as invariant and the other having collegeBuildingsMany
as invariant. The two instances of the same class having two different invariants throughout the
program is the main difference between Oprop and classical invariants.

In the main1() method from Figure 5.37 we construct an object college, that becomes
a field in the StudentApplication objects app1 and app2. When constructing app1
and app2, each adds the extrinsic information to the intrinsic information that college al-
ready has. The intrinsic and extrinsic information are both used in the definition of the predicate
CollegeFacilitiesFew, which holds for both app1 and app2. This invariant predicate
CollegeFacilitiesFew holds for both of these objects, because if relies on the intrinsic
information of the immutable college and also it relies in a fine way on the extrinsic information.
Thus, any reference pointing to app1 or app2, even if that reference has only half a permission
to these objects, can rely on the invariant CollegeFacilitiesFew, and it can also modify
the objects app1 and app2 as long as this invariant holds at the end of the modification.

The Oprop classes of the flyweight pattern example that can be seen in Figures 5.31, 5.32,
5.33, 5.34, 5.35, 5.36 and 5.37 are translated into Boogie.

We have concatenated the translated files into the file
https://github.com/ligianistor/boogie/blob/master/flyweightlatest.bpl that can be verified in Boo-
gie.
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5.4 Composite
The Composite design pattern [34] expresses the fact that clients treat individual objects and
compositions of objects uniformly. Verifying implementations of the Composite pattern is chal-
lenging, especially when the invariants of objects in the tree depend on each other [46], and
when interior nodes of the tree can be modified by external clients, without going through the
root. As a result, verifying the Composite pattern is a well-known challenge problem, with some
attempted solutions presented at SAVCBS 2008 (e.g. [20, 40]). We describe a new formalization
and proof of the Composite pattern using fractions and object propositions that provides more
local reasoning than prior solutions. For example, in Jacobs et al. [40] a global description of
the precise shape of the entire Composite tree must be explicitly manipulated by clients; in our
solution a client simply has a fraction to the node in the tree it is dealing with.

We are able to solve a practical problem that was proposed as a challenge problem by Leav-
ens et al. [46]: the specification and verification of an instance of the composite pattern. As
a downside, the specification of the composite is verbose– we have four predicates that are re-
cursive and depend on each other. The source of this verbosity comes from the the fact that the
composite example itself is complicated and thus necessitates a complicated specification and
verification. Our specification and verification of the composite pattern allows clients to directly
mutate any place in the tree, using predicates that reason about one object in the composite at
a time and treat other objects in the composite abstractly. Note that a simpler specification is
possible in our system but would limit mutation to the root of the tree.

We implement a popular version of the Composite design pattern, as an acyclic binary tree,
where each Composite has a reference to its left and right children and to its parent. The code is
given below.

c l a s s Composi te {
p r i v a t e Composi te l e f t , r i g h t , p a r e n t ;
p r i v a t e i n t c o u n t ;

p u b l i c Composi te
{

t h i s . c o u n t = 1 ;
t h i s . l e f t = n u l l ;
t h i s . r i g h t = n u l l ;
t h i s . p a r e n t = n u l l ;

}

p r i v a t e vo id upda teCountRec ( )
{

i f ( t h i s . p a r e n t != n u l l )
t h i s . upda t eCoun t ( ) ;
t h i s . p a r e n t . upda teCountRec ( ) ;

e l s e
t h i s . upda t eCoun t ( ) ;

}
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p r i v a t e vo id upda t eCoun t ( )
{

i n t newc = 1 ;
i f ( t h i s . l e f t == n u l l )
e l s e

newc = newc + l e f t . c o u n t ;
i f ( t h i s . r i g h t == n u l l )
e l s e

newc = newc + r i g h t . c o u n t ;
t h i s . c o u n t = newc ;

}

p u b l i c vo id s e t L e f t ( Composi te l )
{

l . p a r e n t = t h i s ;
t h i s . l e f t = l ;
t h i s . upda teCountRec ( ) ;

}

p u b l i c vo id s e t R i g h t ( Composi te r )
{

r . p a r e n t = t h i s ;
t h i s . r i g h t = r ;
t h i s . upda teCountRec ( ) ;

}
}

Each Composite caches the size of its subtrees in a count field, so that a parent’s count
depends on its children’s count. The dependency is in fact recursive, as the parent and right/left
child pointers must be consistent. Clients can add a new subtree at any time, to any free position
(where the current reference is null). This operation changes the count of all ancestors, which is
done through a notification protocol. The pattern of circular dependencies and the notification
mechanism are hard to capture with verification approaches based on ownership or uniqueness.

We assume that the notification terminates (that the tree has no cycles) and we verify that the
Composite tree is well-formed: parent and child pointers line up and counts are consistent.

Previously the Composite pattern has been verified with a related approach based on access
permissions and typestate [20]. This verification abstracted counts to an even/odd typestate and
relied on non-formalized extensions of a formal system, whereas we have formalized the proof
system and provide a full proof in the supplemental material [2]. Our verification proves partial
correctness of this version of the Composite pattern.

The Composite pattern has been verified using many different techniques: there were 10 pa-
pers dedicated to this problem in the 2008 workshop ’Specification and Verification of Component-
Based Systems’, Summers et al. proposed a solution in VMCAI 2010 [68] and Rosenberg et al.
did so in 2010 [66]. We do not claim to be the first ones to verify the Composite pattern, but we
want to show that our methodology can be used to verify the Composite pattern.
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5.5 Specification
A Composite tree is well-formed if the field count of each node n contains the number of nodes
of the tree rooted in n. A node of the Composite tree is a leaf when the left and right fields are
null.

The goals of the specification are to allow clients to add a child to any node of the tree that
has no left (or right) child. Since the count field of a node depends on the count fields of its
children nodes, inserting a child must not violate the transitive parents’ invariants.

We use the following methodology for verification: each node has a fractional permission
to its children, and each child has a fractional permission to its parent. We allow unpacking of
multiple object propositions as long as they satisfy the heap invariant: if two object propositions
are unpacked and they refer to the same object then we require that they do not have fields in
common.(Note that the invariant needs to hold irrespective of whether the object propositions are
packed or unpacked.)

The predicates of the Composite class are presented in Figure 5.39.
The predicate count has a parameter c, which is an integer representing the value at the count

field. There are two existentially quantified variables lc and rc, for the count fields of the left
child lc and the right child rc. By c = lc + rc + 1 we make sure that the count of this is equal
to the sum of the counts for the children plus 1. By this@1

2
left(ol, lc)⊗ this@1

2
right(or, rc)

we connect lc to the left child (through the left predicate) and rc to the right child (through the
right predicate).

The predicate left expresses that the predicate count(lc) holds for this.left, the left child of
this. The predicate right expresses that the predicate count(rc) holds for this.right, the right
child of this. The permission for the left (right) predicate is split in equal fractions between
the count predicate and the left (right) child’s parent predicate.

Inside the parent predicate of this, there is a fractional permission to the count predicate
(and implicitly to its count field) of this. The parent predicate contains only a fraction of k < 1

2

to the parent of this so that any clients can use the remaining fraction to reference the node and
add children to the parent. A client can actually use this to update the parent field, but in order to
pack the parent predicate, the client has to conform to the well-formedness condition mentioned
earlier.

If a new node is added to the tree as the left child of this, we need to change the count field
of this. The field left of this must be null and the permission with a half fraction has to be
acquired by unpacking the count predicate of this. This requires us to unpack the parent’s left
predicate, which requires the parent’s count predicate, and so on to the root node. We can only
pack it back when the tree is in a well-formed state. As the notification algorithm goes up the
tree, from the current node to the root, we successively unpack the predicates corresponding to
each node and we pack them back when the tree is well-formed. This ensures that if a new node
is added, in order to pack the predicates again, the count fields must be updated and consistent!

Although in the beginning stages of the implementation there will be pack/unpack specifi-
cations in the code, we do not intend to have them in the final version of our implementation.
A predicate of an object has to be unpacked when there are statements (such as assignments)
that modify (or read) from the fields of that object. When we finish accessing those fields, we
can pack back the predicate. Thus, there is a clear way of inferring when to pack or unpack a
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predicate count (int c) ≡ ∃ol, or, lc, rc. this.count→ c ⊗

c = lc + rc + 1 ⊗ this@
1

2
left(ol, lc)

⊗ this@1

2
right(or, rc)

predicate left (Composite ol, int lc) ≡ this.left→ ol ⊗(
(ol 6= null ( ol@

1

2
count(lc))

⊕ (ol = null ( lc = 0)
)

predicate right (Composite or, int rc) ≡ this.right→ or ⊗(
(or 6= null ( or@

1

2
count(rc))

⊕ (or = null ( rc = 0)
)

predicate parent () ≡ ∃op, c, k . k <
1

2
⇒ this.parent→ op ⊗

op 6= this ⊗ this@
1

2
count(c) ⊗((

op 6= null ( op@k parent() ⊗

(op@
1

2
left(this, c)

⊕ op@
1

2
right(this, c))

)
⊕

(op = null ( this@
1

2
count(c))

)
Figure 5.39: Predicates for Composite
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predicate and we do not to explicitly state the pack/unpack expressions.
The proof of partial correctness of the Composite pattern is presented in the supplemental

material [2]. We had initially written the proof by hand, but we were finally able to automatically
verify our instance of the Composite pattern using our Oprop tool. Our tool can be found online
at lowcost-env.ynzf2j4byc.us-west-2.elasticbeanstalk.com as a very user friendly web application.
The source code of Oprop is open-source and can be found at
https://github.com/ligianistor/Oprop. The Composite.java input file, annotated with the Oprop
specifications, can be found in the following pages of this thesis, but it is also included in the
examples.zip folder that can be downloaded from the first page of the Oprop web application.
In order to see the formal verification of the Composite.java example, the user should input 1 in
the input textarea on the first page of the web application, then upload the Composite.java file
found in the examples.zip folder (that the user has to unzip) and then press Verify on the next
page. On the final page of the web application, the user will see the link inputboogie.bpl which
contains the translation of the Oprop file Composite.java into the Boogie language. The result.txt
file contains the result of the Boogie verification that uses inputboogie.bpl as input, and the final
answer to the question ‘Does our Composite.java file satisfy its specifications?’.

The full Composite.java file, including the Oprop annotations, is given in Figures 5.40,
5.41, 5.42, 5.43 and 5.44.

The constructor of the class Composite returns half of the permission for the left and right
predicate, and half of a permission to the parent predicate.

The method updateCountRec() takes in a fraction of k1 to the unpacked parent predicate
and a half fraction to the unpacked count predicate of this, and it returns the k1 fraction to the
packed parent predicate. This means that after calling this method, the parent predicate holds
for this.

In the same way, the method updateCount takes in the unpacked predicate count for this
object and it returns the count predicate packed for this. Thus, after calling updateCount(), the
object this satisfies its count predicate.

The method setLeft(Composite l) takes in a fraction to the parent predicate of this, a
fraction to the parent predicate of l and the left predicate of this with a null argument (saying
that the left field of this is null and thus a client can attach a new left child here). The post-
condition shows that after calling setLeft, some of the permission to the parent predicate of
this has been consumed, while the fraction to the predicate parent of l stays the same.

5.6 Description of Smaller Examples
We have formally verified a number of small examples, each meant to showcase a feature of
Oprop: the DoubleCount.java example illustrates invariants, SimpleCell.java is about manipu-
lating fractions, Link.java shows how we handle predicates that have parameters and Share.java
uses objects that have a reference to a shared common object. Note that the Link example was
previously mentioned in Section 1.4 and Chapter 2.

The class DoubleCount.java is given in given in Figure 5.45. The DoubleCount example has
been briefly covered in the AI4FM’14 workshop [57]. There we only presented a sketch of a man-
ual translation while here the example is translated automatically by our Oprop tool. The class
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1 package t e s t c a s e s . c a g e r . j e x p r ;
2
3 c l a s s Composi te {
4 i n t c o u n t ;
5 Composi te l e f t ;
6 Composi te r i g h t ;
7 Composi te p a r e n t ;
8
9 p r e d i c a t e l e f t ( Composi te ol , i n t l c ) =

10 e x i s t s Composi te op :
11 t h i s . p a r e n t −> op &&
12 t h i s . l e f t −> o l &&
13 ( o l == n u l l ~=> ( l c == 0) ) &&
14 ( o l != n u l l ~=> ( ( o l # 0 . 5 c o u n t ( l c ) ) && ( o l != t h i s ) && ( o l != op ) ) )
15
16 p r e d i c a t e r i g h t ( Composi te or , i n t r c ) =
17 e x i s t s Composi te op :
18 t h i s . r i g h t −> or &&
19 t h i s . p a r e n t −> op &&
20 ( o r == n u l l ~=> ( r c == 0) ) &&
21 ( o r != n u l l ~=> ( ( o r # 0 . 5 c o u n t ( r c ) ) && ( or != t h i s ) && ( or != op ) ) )
22
23 p r e d i c a t e c o u n t ( i n t c ) =
24 e x i s t s Composi te ol , Composi te or ,
25 i n t l c , i n t r c :
26 t h i s . c o u n t −> c &&
27 ( c == l c + r c + 1)
28 && ( t h i s # 0 . 5 l e f t ( o l , l c ) )
29 && ( t h i s # 0 . 5 r i g h t ( or , r c ) )
30
31 p r e d i c a t e p a r e n t ( ) =
32 e x i s t s Composi te op , i n t c , do ub l e k :
33 t h i s . p a r e n t −> op &&
34 ( op != t h i s ) &&
35 ( t h i s # 0 . 5 c o u n t ( c ) ) &&
36 ( op != n u l l ~=> ( op#k p a r e n t ( ) ) ) &&
37 ( ( ( op != n u l l ) && ( op . l e f t == t h i s ) ) ~=>
38 op # 0 . 5 l e f t ( t h i s , c ) ) &&
39 ( ( ( op != n u l l ) && ( op . r i g h t == t h i s ) ) ~=>
40 op # 0 . 5 r i g h t ( t h i s , c ) ) &&
41 ( op == n u l l ~=> ( t h i s # 0 . 5 c o u n t ( c ) ) )

Figure 5.40: Composite.java
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42 Composi te ( i n t c , Composi te l , Composi te r , Composi te p )
43 e n s u r e s ( t h i s . c o u n t == c ) && ( t h i s . l e f t == l )
44 && ( t h i s . r i g h t == r ) && ( t h i s . p a r e n t == p )
45 {
46 t h i s . c o u n t = c ;
47 t h i s . l e f t = l ;
48 t h i s . r i g h t = r ;
49 t h i s . p a r e n t = p ;
50 }
51
52 vo id upda t eCoun t ( )
53 ~ do ub l e k , do ub l e k1 , do ub l e k2 :
54 i n t c , Composi te ol , Composi te or , Composi te op ,
55 i n t c1 , i n t c2 , i n t c3 :
56 r e q u i r e s ( ( op != n u l l ) ~=>
57 ( unpacked ( op#k1 l e f t ( op . l e f t , op . l e f t . c o u n t ) ) | |
58 unpacked ( op#k2 r i g h t ( op . r i g h t , op . r i g h t . c o u n t ) ) ) ) &&
59 t h i s . p a r e n t −> op &&
60 unpacked ( t h i s # 1 . 0 c o u n t ( c ) ) &&
61 ( t h i s # 0 . 5 l e f t ( o l , c1 ) ) &&
62 ( t h i s # 0 . 5 r i g h t ( or , c2 ) ) &&
63 ( op != n u l l ~=> unpacked ( op#k c o u n t ( c3 ) ) )
64 e n s u r e s ( t h i s # 1 . 0 c o u n t ( c1+c2 +1) ) &&
65 ( ( op != n u l l ) ~=> ( unpacked ( op#k1 l e f t ( op . l e f t , op . l e f t . c o u n t ) ) | |
66 unpacked ( op#k2 r i g h t ( op . r i g h t , op . r i g h t . c o u n t ) ) ) ) &&
67 ( op != n u l l ~=> unpacked ( op#k c o u n t ( c3 ) ) ) &&
68 ( t h i s # 0 . 0 l e f t ( t h i s . l e f t , t h i s . l e f t . c o u n t ) ) &&
69 ( t h i s # 0 . 0 r i g h t ( t h i s . r i g h t , t h i s . r i g h t . c o u n t ) )
70 {
71 i n t newc ;
72
73 newc = 1 ;
74 unpack ( t h i s # 0 . 5 l e f t ( o l , c1 ) ) [ op ] ;
75 i f ( t h i s . l e f t != n u l l ) {
76 unpack ( o l # 0 . 5 c o u n t ( c1 ) ) [ o l . l e f t , o l . r i g h t ,
77 o l . l e f t . count , o l . r i g h t . c o u n t ] ;
78 newc = newc + t h i s . l e f t . c o u n t ;

Figure 5.41: Composite.java - cont. 1
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79 pack ( o l # 0 . 5 c o u n t ( c1 ) ) [ o l . l e f t , o l . r i g h t ,
80 o l . l e f t . count , o l . r i g h t . c o u n t ] ;
81 }
82 pack ( t h i s # 0 . 5 l e f t ( o l , c1 ) ) [ op ] ;
83
84 unpack ( t h i s # 0 . 5 r i g h t ( or , c2 ) ) [ op ] ;
85 i f ( t h i s . r i g h t != n u l l ) {
86 unpack ( o r # 0 . 5 c o u n t ( c2 ) ) [ o r . l e f t , o r . r i g h t ,
87 o r . l e f t . count , o r . r i g h t . c o u n t ] ;
88 newc = newc + t h i s . r i g h t . c o u n t ;
89 pack ( o r # 0 . 5 c o u n t ( c2 ) ) [ o r . l e f t , o r . r i g h t ,
90 o r . l e f t . count , o r . r i g h t . c o u n t ] ;
91 }
92 pack ( t h i s # 0 . 5 r i g h t ( or , c2 ) ) [ op ] ;
93 t h i s . c o u n t = newc ;
94 pack ( t h i s # 1 . 0 c o u n t ( newc ) ) [ ol , or , c1 , c2 ] ;
95 }
96
97 vo id upda teCountRec ( )
98 ~ do ub l e k1 , do ub l e k , do ub l e k2 , do ub l e k3 :
99 Composi te opp , i n t l c c ,

100 Composi te ol , Composi te or ,
101 i n t l c , i n t r c :
102 r e q u i r e s unpacked ( t h i s #k1 p a r e n t ( ) ) &&
103 t h i s . p a r e n t −> opp &&
104 ( opp != t h i s ) &&
105 ( ( opp != n u l l ) ~=> ( opp#k p a r e n t ( ) ) ) &&
106 ( ( ( opp != n u l l ) && ( opp . l e f t == t h i s ) ) ~=>
107 ( opp # 0 . 5 l e f t ( t h i s , l c c ) ) ) &&
108 ( ( ( opp != n u l l ) && ( opp . r i g h t == t h i s ) ) ~=>
109 ( opp # 0 . 5 r i g h t ( t h i s , l c c ) ) )
110 &&
111 ( ( opp == n u l l ) ~=> ( unpacked ( t h i s # 0 . 5 c o u n t ( l c c ) ) ) )
112 &&
113 unpacked ( t h i s # 0 . 5 c o u n t ( l c c ) ) &&
114 ( t h i s # 0 . 5 l e f t ( o l , l c ) ) &&
115 ( t h i s # 0 . 5 r i g h t ( or , r c ) )
116 e n s u r e s ( t h i s #k2 p a r e n t ( ) ) &&
117 ( ( opp != n u l l ) ~=> ( opp#k3 p a r e n t ( ) ) )
118 {
119 i f ( t h i s . p a r e n t != n u l l ) {
120 s p l i t F r a c ( opp#k p a r e n t ( ) , 2 ) ;
121 unpack ( opp#k / 2 p a r e n t ( ) ) [ opp . p a r e n t , opp . c o u n t ] ;
122 unpack ( opp # 0 . 5 c o u n t ( opp . c o u n t ) ) [ opp . l e f t , opp . r i g h t ,
123 opp . l e f t . count , opp . r i g h t . c o u n t ] ;

Figure 5.42: Composite.java - cont. 2
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124 i f ( t h i s == t h i s . p a r e n t . r i g h t ) {
125 addFrac ( opp # 0 . 5 r i g h t ( t h i s , l c c ) ,
126 opp # 0 . 5 r i g h t ( opp . r i g h t , opp . r i g h t . c o u n t ) ) ;
127 unpack ( opp # 1 . 0 r i g h t ( t h i s , l c c ) ) [ opp . p a r e n t ] ;
128 addFrac ( unpacked ( t h i s # 0 . 5 c o u n t ( l c c ) ) ,
129 t h i s # 0 . 5 c o u n t ( l c c ) ) ;
130
131 t h i s . upda t eCoun t ( ) [ l c c , o l , or , opp , l c , rc , opp . c o u n t ] ;
132 pack ( t h i s #k2 p a r e n t ( ) ) [ opp , l c + r c + 1 ] ;
133 pack ( opp # 1 . 0 r i g h t ( t h i s , l c + r c + 1) ) [ opp . p a r e n t ] ;
134
135 t h i s . p a r e n t . upda teCountRec ( ) [ opp . p a r e n t , opp . count , opp . l e f t ,
136 t h i s , opp . l e f t . count , l c + r c + 1 ] ;
137 } e l s e {
138 addFrac ( opp # 0 . 5 l e f t ( t h i s , l c c ) ,
139 opp # 0 . 5 l e f t ( opp . l e f t , opp . l e f t . c o u n t ) ) ;
140 unpack ( opp # 1 . 0 l e f t ( t h i s , l c c ) ) [ opp . p a r e n t ] ;
141 addFrac ( unpacked ( t h i s # 0 . 5 c o u n t ( l c c ) ) ,
142 t h i s # 0 . 5 c o u n t ( l c c ) ) ;
143
144 t h i s . upda t eCoun t ( ) [ l c c , o l , or , opp , l c , rc , opp . c o u n t ] ;
145 pack ( t h i s #k2 p a r e n t ( ) ) [ opp , l c + r c + 1 ] ;
146 pack ( opp # 1 . 0 l e f t ( t h i s , l c + r c + 1) ) [ opp . p a r e n t ] ;
147
148 t h i s . p a r e n t . upda teCountRec ( ) [ opp . p a r e n t , opp . count ,
149 t h i s , opp . r i g h t , l c + r c + 1 , opp . r i g h t . c o u n t ] ;
150 }
151 } e l s e {
152 addFrac ( t h i s # 0 . 5 c o u n t ( l c c ) , unpacked ( t h i s # 0 . 5 c o u n t ( l c c ) ) ) ;
153 t h i s . upda t eCoun t ( ) [ l c c , o l , or , opp , l c , rc , opp . c o u n t ] ;
154 s p l i t F r a c ( unpacked ( t h i s # 1 . 0 c o u n t ( l c c ) ) , 2 ) ;
155 pack ( t h i s #k2 p a r e n t ( ) ) [ t h i s . p a r e n t , l c + r c + 1 ] ;
156 }
157 }
158
159 vo id s e t L e f t ( Composi te l )
160 ~ do ub l e k1 , do ub l e k2 , do ub l e k , do ub l e k3 :
161 r e q u i r e s ( t h i s != l ) && ( l != n u l l ) &&
162 ( t h i s . l e f t != t h i s . p a r e n t ) &&
163 ( l != t h i s . p a r e n t ) && ( l != t h i s . r i g h t ) &&
164 ( t h i s != t h i s . r i g h t ) && ( t h i s != t h i s . l e f t ) &&
165 ( t h i s #k1 p a r e n t ( ) ) && ( l #k2 p a r e n t ( ) )
166 e n s u r e s ( t h i s #k p a r e n t ( ) ) && ( l #k3 p a r e n t ( ) )
167 {
168 unpack ( l #k2 p a r e n t ( ) ) [ l . p a r e n t , l . c o u n t ] ;

Figure 5.43: Composite.java - cont. 3
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169 i f ( l . p a r e n t == n u l l ) {
170 l . p a r e n t = t h i s ;
171 unpack ( t h i s #k1 p a r e n t ( ) ) [ t h i s . p a r e n t , t h i s . c o u n t ] ;
172 unpack ( t h i s # 0 . 5 c o u n t ( t h i s . c o u n t ) ) [ n u l l , t h i s . r i g h t , 0 ,
173 t h i s . r i g h t . c o u n t ] ;
174 addFrac ( t h i s # 0 . 5 l e f t ( n u l l , 0 ) , t h i s # 0 . 5 l e f t ( n u l l , 0 ) ) ;
175 unpack ( t h i s # 1 . 0 l e f t ( n u l l , 0 ) ) [ t h i s . p a r e n t ] ;
176 t h i s . l e f t = l ;
177 t h i s . l e f t . c o u n t = l . l e f t . c o u n t ;
178 pack ( t h i s # 1 . 0 l e f t ( l , l . l e f t . c o u n t ) ) [ t h i s . p a r e n t ] ;
179 s p l i t F r a c ( t h i s # 1 . 0 l e f t ( l , l . l e f t . c o u n t ) ) ;
180 pack ( l #k2 p a r e n t ( ) ) [ l . p a r e n t , l . l e f t . c o u n t ] ;
181 t h i s . upda teCountRec ( ) [ t h i s . p a r e n t , t h i s . count , l , t h i s . r i g h t ,
182 l . l e f t . count , t h i s . r i g h t . c o u n t ] ;
183 } e l s e {
184 pack ( l #k2 p a r e n t ( ) ) [ l . p a r e n t , l . c o u n t ] ;
185 }
186 }
187
188 }

Figure 5.44: Composite.java - cont. 4

DoubleCount represents objects which have a field val and a field dbl, such that dbl==2*val.
This property represents the invariant of objects of type Doublecount. We want to verify that
this invariant is maintained by the method increment. The tilde sign in the specification of the
increment method in Figure 5.45 is there to differentiate between variables k used for frac-
tions and other variables that are used as parameters to predicates.

The Boogie translation of DoubleCount.java is given in Figure 5.46. We have global map
variables for the fields of the class, for keeping track of which objects are packed and for the
fraction corresponding to each object proposition. We have the translation of the constructor
ConstructDoubleCount, procedures PackOK and UnpackOK that are being called when
an object has to be packed or unpacked. In the specification of procedure increment, we
require that all objects are packed on the entrance to the procedure. In our methodology, all the
objects that are not explicitly unpacked are considered packed. The ensures forall and
requires forall specifications act as frame conditions and restrict the number of objects
that the Boogie verifier assumes have changed at method boundaries. We need this restriction
because of the modifies that Boogie needs for each method: the modifies is very general
and assumes that all the global variables have been changed, thus nullifying any previous (old)
properties about those variables.

Examples SimpleCell.java, Link.java and Share.java can be seen on the GitHub website under
the src/testcases/cager/jexpr directory. The current version of the code behind Oprop can be
found on GitHub [5]. We created the SimpleCell example to illustrate how we add fractions in
the cases when we need a larger fraction to an object proposition than we currently have. This
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class DoubleCount {
int val; int dbl;
predicate OK() = exists int v, int d :

this.val -> v && this.dbl -> d && d == 2*v
void increment()

~double k:
requires this#k OK()
ensures this#k OK()

{ unpack(this#k OK());
this.val = this.val + 1;
this.dbl = this.dbl + 2;
pack(this#k OK()); } }

Figure 5.45: DoubleCount.java

type Ref;
const null: Ref; var val: [Ref]int; var dbl: [Ref]int;
var packedOK: [Ref] bool; var fracOK: [Ref] real;
procedure ConstructDoubleCount

(val1 :int, dbl1 :int, this: Ref);
ensures (val[this] == val1) && (dbl[this] == dbl1);

procedure PackOK(this:Ref);
requires packedOK[this]==false &&

((dbl[this]==(2*val[this])));
procedure UnpackOK(this:Ref);

requires packedOK[this] &&(fracOK[this] > 0.0);
ensures ((dbl[this]==(2*val[this])));

procedure increment(this:Ref)
modifies dbl,packedOK,val;
requires packedOK[this] && (fracOK[this] > 0.0);
ensures packedOK[this] && (fracOK[this] > 0.0);
requires (forall x:Ref :: packedOK[x]);
ensures (forall x:Ref::

(packedOK[x] == old(packedOK[x])));
{ call UnpackOK(this); packedOK[this] := false;
val[this]:=val[this]+1; dbl[this]:=dbl[this]+2;
call PackOK(this); packedOK[this] := true;}

Figure 5.46: doublecount.bpl
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example is explained in detail in Section 4.3.
The example Link illustrates how we deal with predicates that have parameters. This is where

we implemented the Range predicate which has two parameters. When constructing an object
of type Link we write the following line:

Link l1 = new Link(Range(0,10)[3, null])(3, null);
When the object l1 is created, we have to specify the predicate that holds for it in case the

object becomes shared (or aliased) in the future. Since the predicate Range has two existentially
quantified variables and Boogie cannot successfully instantiate existential variables, we give the
witnesses 3 and null for the two variables int v, Link o existentially quantified in the
body of the predicate Range.

We created the Share example to exemplify objects that have a reference to a shared com-
mon object. In the main() method of this example there are two Share objects and each has
a fraction of 0.1 to a common object dc0 of type DoubleCount. Since the Share.java
file uses the file DoubleCount.java, we specify to Oprop that there are 2 files that need to
be translated into Boogie and we give the names of the files one after the other in the list of
arguments; the arguments for Oprop when running this example would be:
2 DoubleCount.java Share.java. Oprop will produce a single output file because
Boogie needs all its input code to be in a single file in order for it to do the verification.

The result of the automatic translation of these examples can also be seen on GitHub under
the same directory src/testcases/cager/jexpr. In the same directory one can see the *.interm file
corresponding to each *.bpl file, which is the intermediate representation of the initial Oprop
program into an abstract syntax tree, annotated with the type of each node.
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Chapter 6

Related Work

This chapter first does a general comparison to existing relevant related work. In Section 6.1 we
go into detail about the differences between our object proposition verification versus considerate
reasoning and concurrent abstract predicates.

There are two main lines of research that give partial solutions for the verification of object-
oriented code in the presence of aliasing: permission-based work and separation logic approaches.

Bierhoff and Aldrich [19] developed access permissions, an abstraction that combines type-
state and object aliasing information. Developers use access permissions to express the design
intent of their protocols in annotations on methods and classes. Our work is a generalization of
their work, as we use object propositions to modularly check that implementations follow their
design intent. The typestate [30] system has certain limits of expressiveness: it is only suited to
finite state abstractions. This makes it unsuitable for describing fields that contain integers and
can take an infinite number of values and can satisfy various arithmetical properties. Our object
propositions have the advantage that they can express predicates over an infinite domain, such as
the integers.

Access permissions allow predicate changes even if objects are aliased in unknown ways.
States and fractions [25] capture alias types, borrowing, adoption, and focus with a single mech-
anism. In Boyland’s work, a fractional permission means immutability (instead of sharing) to
ensure non-interference of permissions. We use fractions to keep object propositions consistent
but track, split, and join fractions in the same way as Boyland. Similarly, in [24] the fractional
permissions are treated as in Boyland’s work: when a fraction is 1 there is write access, but when
a fraction is less than 1 there is only read access to the shared resource. This is very different
from our work because we allow multiple clients to write to a common resource even if the frac-
tional permission is less than 1. The trick is that those clients can only write to the resource if
they maintain an invariant on the resource.

Boogie [16] is a modular reusable verifier for Spec# programs. It provides design-time feed-
back and generates verification conditions to be passed to an automatic theorem prover. While
Boogie allows a client to depend on properties of objects that it owns, we allow a client to depend
on properties of objects that it doesn’t own, too.

Krishnaswami et al. [44] show how to modularly verify programs written using dynamically-
generated bidirectional dependency information. They introduce a ramification operator in higher-
order separation logic that explains how local changes alter the knowledge of the rest of the heap.
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Their solution is application specific, as they need to find a version of the frame rule specific for
their library. Our methodology is a general one that can potentially be used for verifying any
object-oriented program.

Nanevski et al. [56] developed Hoare Type Theory (HTT), which combines a dependently
typed, higher-order language with stateful computations. While the HTT language is meant to be
an expressive and explicitly annotated internal language which offers a semantic framework for
elaborating more practical external languages and verification tools, our work targets Java-like
languages and does not have the cognitive complexity overhead of higher-order logic. The more
difficult a verification system is to understand, the higher the entry barrier is for the programmers
that want to use it.

Summers and Drossopoulou [68] introduce Considerate Reasoning, an invariant-based ver-
ification technique adopting a relaxed visible-state semantics. Considerate Reasoning allows
distinguished invariants to be broken in the initial states of method executions, provided that
the methods re-establish the invariant in the final state. The authors demonstrate Consider-
ate Reasoning based on the Composite pattern and provide the encoding of their technique in
the Boogie intermediate verification language [16], facilitating the automatic verification of the
Composite pattern specification. Despite the fundamental differences in underlying methodol-
ogy (visible-state invariants vs. abstract predicates) and logic between Considerate Reasoning
and our approach, there are interesting analogies in the specification of the Composite pattern.
For instance, the method that triggers the bottom-up traversal of the Composite to update a com-
posite’s count field in the Considerate Reasoning specification does not expect the composite
invariant in the method’s initial state. This is similar to our method updateCountRec() which
requires the predicates parent and count to be unpacked.

Cohen et al. [28] use locally checked invariants to verify concurrent C programs. In their
approach, each object has an invariant, a unique owner and they use handles (read permissions)
to accommodate shared objects. The disadvantage is their high annotation overhead and the need
to introduce ghost fields. We do not have to change the code in order to verify our specifications.

Our work uses abstract predicates, similar to the work of Parkinson and Bierman [61] and
Dinsdale-Young et al. [31]. The abstraction makes it easy to change the internal representation
of a predicate without modifying the client’s external view of it. The main mechanism is still
separation logic, with its shortcomings. Unlike separation logic, we permit sharing of predi-
cates with an invariant-based methodology. This avoids non-local characterizations of the heap
structure, as required (for example) in Bart Jacob’s Composition pattern solution [40].

There exists a set of verification methodologies for object-oriented programs in a concurrent
setting [31, 39, 42, 47]. These approaches can express externally imposed invariants on shared
objects, but only for invariants that are associated with the lock protecting that object. In many
cases, it may be inappropriate to associate such an invariant with the lock: for example, in a
single-threaded setting, there is no such lock. Even in multi-threaded settings, a high level lock
may protect a data structure with internal sharing, in which case specifying that sharing in the
lock would break the modularity of the data structure. Thus, these systems do not provide an
adequate solution to the modular verification problem that we are considering.

There are a number of tools [13], [51], [26] that verify concurrent programs using model
checking techniques. They prove that a program running on a relaxed (or weak) memory model
is sequentially consistent, meaning that there is a total order on the instructions of all processes
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and the per-process program order. A weak memory model would be a model where not all of
the following orderings are preserved: write-to-read order (meaning that store instructions are
not reordered after load instructions), write-to-write order, read-to-read/write order and write
atomicity (meaning that all writes to a location should appear to all processors to have occurred
in the same order). Model checking has the drawback that state explosion can happen during the
verification. Nevertheless, it is a technique that is orthogonal to the static verification described
in this thesis and is used successfully in many scenarios.

The work by Kassios and Kritikos [43] is done in a concurrent setting, by using invariants
and permissions. Their idea is to extend separation logic by adding backpointer conditions (state
conditions that involve heap objects that point to the reachable part of the heap). They tackle the
problem of observational disjointness: ‘the structure pretends that it supports mutually disjoint
mutable sequences of integers, even though it uses data sharing under the hood, to enhance per-
formance’. By extending separation logic with backpointer conditions and a reference counting
mechanism, the result is similar to abstract predicates: the ability to hide shared data and enhance
modularity (whether it is at the level of methods as in our work, or at the thread level, as in their
work). While we use fractional permissions to ‘loosen the heap disjointness requirement’, they
use counting permissions. (‘A counting permission is a natural number n, or -1. At any given
execution time, there is one thread that holds a non-negative counting permission n to a heap
location and n threads that hold a -1 counting permission.’) Although the work of Kassios and
Kritikos is done for concurrent programs, their solution is orthogonal to our object propositions.

Peter Müller et al. [53] created the Viper toolchain, that also uses Boogie and Z3 as a back-
end, and can reason about persistent mutable state, about method permissions or ownership, but
they also need a full permission to modify shared data. There are other formal verification tools
for object oriented programs, such as KeY [12], VCC [28] or Dafny [48], that implement other
methodologies.

6.1 Detailed Comparison to Related Work
In Figure 6.1 we present the code and object propositions specifications for a class Link that
is used to create a linked list. We want all the elements of the list to be integers in the range
[0,10]. The method addModulo11 adds an integer to each element of the list, but it makes sure
to take the modulo 11 of the result, such that the elements of the list remain in the range [0,10].
In the following two sections we present a detailed comparison of object propositions versus
considerate reasoning and, of object propositions versus concurrent abstract predicates.

6.1.1 Considerate Reasoning
A solution that uses considerate reasoning has been given to the verification of the Composite
pattern in [68]. The considerate-style specification in Java is given in Figure 6.2.

The solutions for the Composite pattern using object propositions or considerate reasoning
are similar because for both the burden lies in coming up with the appropriate specifications.
When using object propositions, the programmer has to come up with exactly the right predicates.
When using considerate reasoning, the programmer has to come up with the right invariants, to
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class Link {
int val;
Link next;

predicate Range(int x, int y) ≡ ∃v, o, k
val→ v ⊗ next→ o
⊗ v ≥ x ⊗ v ≤ y
⊗ [o@k Range(x, y) ⊕ o == null]

void addModulo11(int x)
this@k Range(0, 10) ( this@k Range(0, 10)
{val = (val + x)% 11;
if (next!=null) {next.addModulo11(x);}
}

}

Figure 6.1: Link class and range predicates using object propositions

declare certain invariants as structural and to define the broken declarations along with method
specifications. Note the analogy between the broken invariants in considerate reasoning and
unpacked predicates in our system. In considerate reasoning the broken invariants have to be
restored by the end of the method addToTotal in Figure 6.2; in our system unpacked predicates
have to be made to hold again before they can be packed back up. Both broken invariants in
considerate reasoning, and unpacked predicates in our system, allow the specifier to express
which are the predicates that cannot be relied on at a certain moment because their fields are
being updated. This is essential to verifying the Composite pattern because by showing which
predicates (invariants) are broken, the specification is kept consistent with the implementation
when a Composite object is being updated.

Structural invariants in considerate reasoning are very similar to object proposition invari-
ants. ‘Structural invariants can only be violated within unreliable blocks which explicitly declare
that they might be. Structural invariants may be depended on to accurately predict the concerns
of a field update only outside the scope of such blocks. Furthermore, any structural invariants
violated within an unreliable block should be re-established by the end of the block’. In the
same way object proposition invariants can be broken inside methods, but they have to be re-
established by the end of the methods and before they are packed back again. The difference
between structural invariants and other invariants that can be broken in considerate reasoning is
that structural invariants can be broken only for a handful of consecutive statements at a time,
while other invariants can be broken for arbitrarily long code fragments (so long as no method
boundaries are reached). Intuitively these ‘structural invariants’ are broken just while the nec-
essary field updates can all be made, to modify the intended parent-components relation in the
Composite example. There is an interesting relationship between structural invariants and our
use of a resource-based linear theory: structural invariants are broken when the implementation
updates the resources (the fields). Thus structural invariants are mirrors of the state of resources
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class Composite {
private Composite parent;
private Composite[] comps;
private int count=0;
private int total=1;

// Inv1(o): 1 ≤ o.total ∧ 0 ≤ o.count
// Inv2(o): o.total = 1 +

∑
0≤i≤o.count o.comps[i].total

// Inv3(o): ∀0 ≤ i < o.count : o.comps[i].parent = o
// Inv4(o): o.parent 6= null⇒ ∃0 ≤ i < o.parent.count : o.parent.comps[i] = o
// Inv5(o): ∀0 ≤ i 6= i < o.count : o.comps[i] 6= o.comps[j]

// requires: c 6= null;
// requires: c.parent = null;

public void add(Composite c) {
comps[count] = c;
count++;
c.parent = this;
addToTotal(c.total);
}

// broken: Inv2(this)
// requires: this.total + p = 1 +

∑
0≤i≤o.count o.comps[i].total

public void addToTotal(int p) {
total+=p;
if (parent!=null) parent.addTotal(p);
}

}

Figure 6.2: Composite example using considerate reasoning
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in the program.
While considerate reasoning is capable of giving a solution to the verification of the compos-

ite pattern, there are example programs that it cannot verify. This is because the invariants of
the class have to hold for every instance of the class, the invariants are not optional and thus the
considerate reasoning methodology becomes more rigid than we would want.

Below we present the Link class and Range predicates using considerate reasoning. Consid-
erate reasoning does not have abstract predicates and it is not as flexible as one would want. In the
example below Inv1 could be extended in the following way: Inv1(o, x, y) : val ≥ x∧val ≤ y.
This would extend considerate reasoning and give it more flexibility, but it would also pose prob-
lems because there would be a family of abstract predicates that should hold for the objects of
class Link. This goes against the principles of considerate reasoning where the same invariant
has to hold for all objects of a certain class.
class Link {

int val;
Link next;

Inv1(o): val ≥ 0 ∧ val ≤ 10

void addModulo11(int x)
{val = (val + x)% 11;
if (next!=null) {next.addModulo11(x);}
}

}

The problem is that the invariant Inv1 has to hold for every instance of the class Link and
thus it constrains the instances of class Link more than we would want. Considerate reasoning
wouldn’t be able to specify the example in Section 2.3. This is because in that example there
are two objects of type Link, one depicting a simulator for a queue of jobs containing large
jobs (size>10) and another one depicting a simulator containing small jobs (size<11). The class
Link would need two invariants I1(o) : val ≥ 0 ∧ val ≤ 10 and I2(o) : val ≥ 11 ∧
val ≤ 100 such that some objects satisfy I1 while others satisfy I2. This is not expressible in
considerate reasoning because all objects would have to satisfy a single invariant, either I1 or I2.
Object propositions are able to specify this example in Subsection 2.5.2 because different object
propositions and different invariants can be defined for objects of the same class.

6.2 Alternate Verification of Producer-Consumer Example Us-
ing Considerate Reasoning

One idea is to incorporate the Range predicate in the Control class of the simulator of queues
of jobs example (which would specify the range of the contents of each of the links) in order to
make that example verifiable using considerate reasoning.

The invariant in the considerate reasoning variant would be
Inv1(control):
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control.prod1.startSmallJobs.val > 0∧
control.prod1.startSmallJobs.val < 10∧
control.prod2.startLargeJobs.val > 10∧
control.prod2.startLargeJobs.val < 100∧
control.cons1.startJobs.val > 0∧
control.cons1.startJobs.val < 10∧
control.cons2.startJobs.val > 10∧
control.cons2.startJobs.val < 100

This would be the invariant of the Control class, which would have to be satisfied both in
the pre- and postcondition of the method makeActive.

One can see that although we are able to write the invariant Inv1 in the considerate reasoning
style, this invariant is not as modular as the predicates written using object propositions. When
changes will be made to the Control class, the invariant Inv1 above will also have to be
completely rewritten, which is a major inconvenience.

6.2.1 Concurrent Abstract Predicates

In [31], Parkinson et al. ‘present a program logic for reasoning abstractly about data structures
that provides a fiction of disjointness and permits compositional reasoning.’ By ‘fiction of dis-
jointness’, Parkinson et al. mean that the predicates can be used as if each abstract predicate
represents disjoint resources, whereas in fact resources are shared between predicates. ‘The in-
ternal details of a module are completely hidden from the client by concurrent abstract predicates
(CAP). They reason about a module’s implementation using separation logic with permissions,
and provide abstract specifications for use by client programs using concurrent abstract predi-
cates’.

The great benefit of CAP is that it allows fine-grained abstraction in a concurrent environ-
ment. Their strength comes from combining three lines of research: abstract predicates for ab-
stracting the internal details of a module or class; deny-guarantee for reasoning about concurrent
programs; and context logic for fine-grained reasoning at the module level.

The specification of the Link example using CAP is given below.

Range(x, l,u) ≡ ∃r, k.
∃v, n.(x.val→ v ∧ l ≤ v ≤ u) ∗ x.next→ n ∧ n 6= null⇒ Range(n, l, u) r

I(x,l,u)

* [UPD]rk * [TAIL]rk
I(x,l,u) ≡ UPD: x.val→ _ x.val→ v ∧ l ≤ v ≤ u

TAIL: x.next→ _ x.next→ n ∗Range(n, l, u)

In this example concurrent abstract predicates are able to accomplish what object propositions
do by defining the shared region assertion

∃v, n.(x.val→ v ∧ l ≤ v ≤ u) ∗ x.next→ n ∧ n 6= null⇒ Range(n, l, u) r
I(x,l,u)

and the permission assertions [UPD]rk and [TAIL]rk. CAP works in a concurrent setting; thus
the shared state is indivisible so that all threads maintain a consistent view of it. Although object
propositions are defined for single threaded programs, one of our main concerns is modularity.
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Achieving modular verification in one thread is analogous to achieving correct verification in an
environment where multiple threads interact.

The shared region assertion specifies that there is a shared region of memory, identified by
label r, and that the entire shared region satisfies ∃v, n.(x.val → v ∧ l ≤ v ≤ u) ∗ x.next →
n∧n 6= null⇒ Range(n, l, u). The possible actions on the state are declared by the environment
I(x, l, u).

The permission assertions [UPD]rk and [TAIL]rk specify that the thread has permission k to
perform actions UPD and TAIL over region r, provided the action is declared in the environ-
ment. The permission k can be the fractional permission k ∈ (0, 1), denoting that both the thread
and the environment can do the action, or the full permission, k = 1, denoting that the thread
can do the action but the environment cannot. This is very similar to the way we use fractional
permissions in our system.

Concurrent abstract predicates can indeed do the work that object propositions can do, but
they are more difficult to automate than object propositions. This is because the logical frame-
work of CAP is quite complicated: the programmer would have to understand and implement (in
the program specifications) abstract predicates, deny-guarantee logics and context logics. An-
other reason why automation of CAP is difficult is the use of resource permissions: permissions
must ensure that a predicate is self-stable (that is, immune from interference from the surround-
ing environment). To automatically show that a predicate is self-stable seems to be a difficult
task.

In [31], Parkinson et al. first present an implementation of a concurrent set using a single
global lock. This meant that only a single thread at once could access the entire set. They go on
to refine the locking strategy by presenting the verification of a set implementation that uses a
sorted list with one lock per each node in the list. This allows many threads to access the list at
once, ensuring that the threads do not violate the safety properties of other threads. Since object
propositions work in a more well-behaved setting where we do not have concurrency, we are able
to call Unpack (the equivalent of Unlock from [31]) twice on the same object, as long as the two
predicates that we are unpacking at once refer to disjoint fields of the object that we are referring
to. In [31] a thread can only release a lock once without locking it again and this restricts the
verification scenarios that CAP can be applied to, while object propositions have more flexibility
because they do not deal with concurrency.
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Chapter 7

Limitations of the Object Propositions
Verification System

The limitations of our system are the following:

1. The programmers that want to use object propositions need to become familiar with lin-
ear logic and with the semantics of Oprop. Although we do not think it is difficult to
understand the theory of object propositions, programmers might benefit from tutorials or
interactive presentations if we want them to use it. This is a minor limitation that slightly
affects the practicality claim of the thesis because there is a hurdle that programmers need
to overcome in order to use our verification system, but it is the same kind of hurdle that
they would have to surpass when they need to learn a new programming language.

2. Programmers might need to add many annotations in their programs in order to prove their
desired properties. For example, they need to specify in the Java code the right instantiation
value whenever there is a variable that is existentially quantified in the Oprop annotations.
Usually it is not difficult to know what witness to chose for a quantified variable, but it
does require extra effort. This limitation appears in our Oprop tool because the Boogie
tool (which in turn uses the SMT solver Z3) that we use as a back end is not capable of
reasoning when presented with existentially quantified variables. This is a problem for
all SMT solvers, but as the research progresses in that field, the need for the annotations
in Oprop will decrease. This is a limitation that is intrinsic to our approach because it is
tightly connected to the tools that we chose as a base for our implementation and to the
fact that our formalism uses existentially quantified variables.

3. We only allow multiple object propositions to be unpacked at the same time if the objects
are not aliased, or if the unpacked propositions cover disjoint fields of a single object.
We do this to avoid inconsistencies and preserve the soundness of our system, even if it
means that it makes the theory of object propositions more complicated. This restriction is
a fundamental part of the approach that might be considered a major shortcoming because
it limits the expressivity of the verification language, but it is a necessary restriction for
soundness.

4. The specifications can become too verbose in some cases, depending on the properties that
we want to prove. Usually if the properties are more difficult to prove, the specifications
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will be more verbose. We think it is natural that the specifications become more compli-
cated as the properties that the programmer wants to verify become more difficult, but we
still see it as a drawback for the adoption of Oprop in industry. Although this verbosity
does not affect the claims of the thesis, if we ever wanted to commercialize Oprop the first
step would be to reduce the number of annotations that the programmer has to write. The
Oprop tool would need to be able to infer more annotations at each point of the program,
based on the existing annotations and the surrounding program statements. We think this
is a worthwhile effort, but a major one nonetheless.

5. Since Java is a garbage collected language, we have to be able to remove unrequired asser-
tions from the linear context. The solution is to add an annotation statement release(r@1
Pred(t)), that the programmer can write as a program statement. Only object propositions
that have a fraction of 1 should be removed from the system, when the programmer knows
that an object is not needed anymore and it will be garbage collected. This relies on the
programmer being sure that an object proposition is not needed from that moment on. If the
programmer is wrong and later on that object proposition is needed, then the verification
will fail at the point where the discarded object proposition is actually needed. The objects
in our examples are not garbage collected until the end of the programs and this scenario
does not affect us. We leave the implementation of this feature as future work. The Oprop
implementation of this feature requires a moderate amount of work. Nevertheless it is im-
portant because it strenghtens the modularity claims of the thesis: object propositions that
are not needed in the verification are discarded and thus the linear contexts do not carry all
the object propositions that were used so far, making sure that this information is hidden
in the client code and not accessed by mistake.

6. We have not added to Oprop features such as inheritance, casting or dynamic dispatch
that are important but are handled by orthogonal techniques. Hence a limitation of our
system is that it cannot verify programs that use these features. For example, if we wanted
to support inheritance we would define some predicates in the base class, and the same
predicates in all the derived classes would be redefined knowing that they have to be at
least as strong as the predicates in the base class. We would need to define the proof rules
to support inheritance, to show that the system is still sound, implement the translation into
Boogie that would allow the programmers to reason about programs using inheritance, and
finally verify an example program that uses inheritance. Although this is a major limitation
of our work, it can be addressed with additional work. The fact that not all features of the
Java language are supported by Oprop marginally affects the claims of the thesis, since our
verification system is not as complex and general as it could be. We believe that it would
be the work of at least another Ph.D. thesis to be able to support all the features of the Java
language.
A discussion is warranted here: the need to support inheritance is debatable. The De-
sign Patterns: Elements of Reusable Object-Oriented Software book by Ralph Johnson
et al. [41] discusses at length replacing implementation inheritance (extends) with inter-
face inheritance (implements). One of the problems with inheritance is that explicit use of
concrete class names locks the programmer into specific implementations, making future
changes unnecessarily difficult. We have already added theoretical support for interfaces
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and we have also manually translated examples that use interfaces, such as our program
implementing the state design pattern. Adding full support for interfaces is the natural next
step that would improve the Oprop tool.

7. Our Oprop tool does not implement all the necessary features to automatically verify
the state, proxy and flyweight design paterns, such as interfaces, base classes or derived
classes. Nonetheless, we have manually translated our examples for each of these patterns
into Boogie and verified them with the Boogie tool. An interesting piece of future work
could be to implement these features into Oprop and automatically verify the instances of
the three design patterns. This limitation is minor and can be addressed by extending the
implementation of Oprop to support interfaces.

171



172



Chapter 8

Future Work

Future work can be divided into two categories: improvements that are natural extensions of this
thesis and projects that would require significantly more work.

In the first category we have the work needed to augment the features of the Oprop language,
which would lead to the improvement of the Oprop tool. Now Oprop is a variant of Featherweight
Java. In order for the Oprop tool to be used in industry, Oprop would have to be as close to Java
as possible.

In order to be able to verify a number of practical programs, we have added the necessary fea-
tures in the implementation of our tool. In the future we would like other contributors to be able
to add features to the target language Oprop. If someone wanted to add a new feature to Oprop,
they would first have to change the lexer and parser parts of the tool located in the JExpr.java file.
The next step would be to add the necessary methods to the class ContextVisitor.java, which tra-
verses the generated abstract syntax tree in order to add types. The last step would be to modify
the class BoogieVisitor.java that represents the implementation of the translation rules for each
node in the AST. We have written many comments in the code of the Oprop tool that we believe
will be very useful for future contributors. As mentioned in the previous chapter, supporting
the automatical verification of the three design patterns state, proxy and flyweight is a natural
continuation of our work.

When verifying a program using Oprop, if a property is not satisfied it could be because the
specifications are not quite right or because there is an actual error in the programmer’s code.
In order to help the programmer debug the problem, we would like to add an assert statement
to the language Oprop. The Boogie language already has an assert statement that can be used
for debugging and we would like to allow the programmers to access that statement through the
assert in the Oprop language. This would allow the programmer to test assertions at any point
in their program and see if they hold. This is a minor implementation effort and we think would
improve the usability of the Oprop tool.

In the second category there is the work needed for Oprop to be extended for multi-threaded
programs. Oprop can only verify single-threaded programs, but we hope that it will be a starting
point for writing a tool that verifies multi-threaded Java programs. There are numerous programs
that can be verified in the Oprop system, but one particularly interesting area is privacy and
security applications. The modularity focused approach of Oprop can be especially valuable for
those applications, since it provides the information hiding needed for these applications. Some
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particularly fascinating questions are: how can the verification be done more automatically, how
can we reduce the number of annotations that the programmers have to write and how can the
tool infer these annotations? These are questions that require significant work in order to be
answered.

A possible approach for the extension to concurrency is for us to add synchronized methods
for the times when an object is unpacked until it is packed again. We would have a different syn-
chronized method for the unpacking/packing of each predicate. Such a method would be similar
to the following code: public synchronized void unpackAndPackPredA(double
k){ unpack(this@k PredA()); ...;pack(this@k PredA());}. We would make
the synchronization be reentrant because if there are two predicates that are packed for the same
object, but each predicate refers to different fields of the object, we would like to be able to un-
pack both predicates at the same time if the need arises. We would not want to unpack the same
predicate twice for the same object, but that would not be possible because by the time we want
to unpack the same object the second time, it would already be unpacked and the conditions of
unpacking it (i.e., that it needs to be packed) would not be satisfied.

This thesis sets the stage for future work in verification by presenting a modular way of veri-
fying single threaded object-oriented programs. Our work can be used as the basis for verifying
security and privacy applications that benefit from the hiding of information in specifications.
The computing of the future is cloud computing, automation/robotics on a large scale, increased
networking, Internet of Things. Whether we need to verify that the software as a service that was
sold to a customer actually performs as expected, that an Amazon robot interacts well with the
other robots, or that the smart devices in our homes respect our wishes, object propositions (or
future systems inspired by them) could be used to achieve our formal verification goals.
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Chapter 9

Conclusion

In conclusion, we created a verification system that is used for single-threaded object-oriented
programs. The object proposition methodology uses abstract predicates and fractional permis-
sions. Developers will first annotate their programs using object propositions and then use the
Oprop tool to automatically verify their annotated programs. We present the theory of object
propositions in Section 3.1 and the proof that our system is sound in Section 3.5.

In Chapter 4 we showed the strategy that we used in the implementation of our Oprop tool,
how we encoded our Oprop language into first order logic and why this encoding is sound.
We hope that by using Oprop developers will be able to prove that their programs satisfy their
specifications.

We have studied how instances of a number of design patterns can be verified using object
propositions: the composite design pattern in Section 5.4, the producer-consumer in Section 2.3,
the subject-observer design pattern in Section 2.5.1, and the state, proxy and flyweight design
patterns in Chapter 5. Throughout the thesis, all these examples were compared to existing
approaches such as the classical invariant technique, verification using separation logic, ramified
frame properties, and we showed that object propositions provide a more modular verification
in some cases. Each instance program of these design patterns had particular properties that
we were able to verify using object propositions. This demonstrates that our methodology is
widely applicable and general, and that it has enough features to verify various properties of
a number of very different design patterns. We look forward to other people potentially using
object propositions to verify instances of other design patterns.
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