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Abstract

We investigate the challenges of collecting sensor measurements with mobile
platforms to reveal spatio-temporal insights across our surrounding environments
and enable novel data-driven algorithms. Our efforts aim to take advantage of the in-
creasing ubiquity of mobile platforms are already equipped with sensors. Today, sen-
sor measurements are primarily used in limited settings (outdoor GPS) with coarse-
grain accuracy (geofencing). The goal of this thesis is to investigate developments
towards fine-grain sensor data with centimeter-level accuracy. In particular, we show
that fine-grain sensor maps enable novel data-driven algorithms that leverage aware-
ness of surrounding conditions. In our experience, the biggest challenge is not in
using sensor data but actually ensuring continuously up-to-date sensor maps. There-
fore, this thesis seeks to addresses the key aspects of collecting, analyzing, and using
fine-grain sensor measurements.

Mobile platforms have a distinct advantage over existing data collection efforts
due to recent developments in localization and navigation that allow a device to
capture labeled sensor data. Benefits include lower costs due to reduced dedicated
sensor hardware requirements, reduced human effort due to automatic localization,
and increased measurement diversity from moving around. In this thesis, our contri-
butions focus specifically on wireless and indoor climate sensors, where we contend
with different measurements characteristics. For data collection, we present a data
collection framework for both autonomous robots and cell phones that records data
from available sensors. We also develop two algorithms to generate paths for mo-
bile platforms to execute that prioritize sensor measurement needs. For data analy-
sis, we present a discrete spatio-temporal representation so that we can extract fine-
grain insights. We specifically introduce navigation adjusted grids, which performs
spatial decomposition over the reachable workspace. For data usage, we develop
data-driven wireless handoff algorithms that use fine-grain wireless maps to ensure
accurate and timely wireless handoff decisions.

We demonstrate the value of these efforts with several concrete contributions.
First, we use mobile robots to gather sensor measurements over several months
across two enterprise environments. Through our analysis efforts, we reveal fine-
grain spatio-temporal insights that show wireless conditions (wireless access point
coverage and channel allocation) and indoor climate variations (temperature and
humidity changes due to HVAC policies). We also show that data-driven wireless
handoffs are able to significantly improve wireless performance for our robot that
originally faced intermittent wireless connectivity issues while moving. With the in-
creasing pervasiveness and technological developments of mobile devices, this the-
sis investigates the opportunity to leverage their sensor hardware to better integrate
computing technology with our surrounding environments.
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Chapter 1

Introduction

Our indoor environments today are littered with computing devices equipped with various sen-
sors that closely interact with their surroundings. This includes static sensors like temperature
and humidity for HVAC systems mounted across our environments, mobile phones that humans
carry with them throughout the day, and most recently mobile robots roam around performing
tasks for humans. There is an exciting opportunity to take advantage of these devices to reveal
detailed insights about how our indoor environments vary over both space and time. We believe
that the benefits of such fine-grain insights are not yet fully appreciated due to the challenges of
collecting and maintaining up-to-date sensor maps over time. In this thesis, we seek to address
the full gamut of challenges that include: gathering sensor measurements with mobile platforms,
analyzing the spatially and temporally diverse measurements collected, and then demonstrating
how fine-grain sensor maps enable novel data-driven algorithms.

This thesis did not originally set out to focus on data collection; it emerged as we found that
data-driven algorithms presented a pragmatic solution for improving the operation of our own
autonomous robot as shown in Figure 1.1. We were initially interested in resolving our own
autonomous robot’s intermittent wireless connectivity issues that arose while moving. Remote
telepresence viewers monitoring the robot would lose connectivity for several minutes and be
unaware about the state of the robot. Sometimes the robot would reappear on opposite ends of
the building and other times it would be stuck behind leaves of a potted plant. We uncovered
poor wireless handoffs as the root cause and devised a pragmatic wireless solution that takes
advantage of fine-grain wireless maps to reveal surrounding wireless conditions. Our data-driven
algorithms significantly improved wireless performance within a self-contained solution on the
robot that could be deployed across real wireless networks.

A key assumption of our wireless solution was access to accurate wireless maps; unfortu-
nately, ensuring up-to-date wireless maps became a key challenge during long-term deployment
of our data-driven algorithms as measurements become stale when the surrounding environment
changes. As a result, we started to focus on data collection and noticed that these challenges
are not unique to wireless measurements but also extend to other sensors data like temperature,
humidity, air quality, etc. We first realized that our use of an autonomous robot to capture sensor
measurements was very powerful as we were leveraging their unique localization and navigation
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(a) Robot navigating corridors. (b) Robot with sensors mounted.

Figure 1.1: Autonomous robots in our indoor environments can help collect sensor data.

abilities. Of course, simply collecting large numbers of raw sensor measurements has limited
value so we directed our efforts to extracting spatio-tepmoral insights from them. As one can
see, the pattern of one problem leading to another led to the development of this thesis where we
address a wide range of challenges relating to utilizing sensor data opportunistically gathering
using mobile platforms.

Let us more concretely define the contributions of this thesis. Data collection with a mobile
platform that moves is very different from alternate efforts like static sensor deployments. There
are several key challenges that we focus on in this thesis. First, a data collector that moves is
trading temporal granularity for spatial granularity: a static sensor continuously collects mea-
surements from one location while a moving sensor collects from numerous locations over time.
This affects the entire data collection system with issues that include accurately determining the
location of each sensor measurements and quantifying measurements over both space and time.
Second, mobile data collection platforms like robots whose motion we can control creates the
unique opportunity to direct future measurement collection based on sensor data needs. Finally,
we must also determine how to use fine-grain sensor maps not just for extracting insights about
our environments but also for enabling algorithms to make better decisions.

We provide several contributions in this thesis to address the challenges of using mobile plat-
forms for collecting sensor measurements. First, we develop a general data collection framework
that allows us to effectively recover the spatio-temporal context of sensor measurements collected
as the mobile platform moves across the environment. In their raw form, such fine-grain mea-
surements provide limited value as the sensor values are dependent on location and time. While
some measurements may be highly correlated and differ by as little as a few centimeters and
milliseconds, others may be completely uncorrelated if captured on completely different floors
or disparate times. Our next step is to process these measurements based on spatio-temporal con-
siderations so that we can more effectively quantify and extract insights from the large number
of measurements.
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One time data collection efforts are insufficient as most realistic environments operate in con-
tinuously changing environments. Ensuring up-to-date sensor maps requires that mobile devices
periodically capture measurements from the same location over time. With autonomous robots
whose motion we can control, we have a unique opportunity to have the robot to automatically
move around and collect measurements based on data needs. Given these finite data collection
times, these algorithms need to compute navigation trajectories that effectively use the robot’s
time.

Previous efforts have shown that sensor measurement maps support applications that include
climate control for preserving museum art pieces Michalski [2007], more efficient HVAC control
for building management Agarwal et al. [2010], Pérez-Lombard et al. [2008], and management of
wireless network configurations Bahl et al. [2005]. While more efficient centralized controllers
are valuable, collection of fine-grain sensor maps can also benefit mobile devices operating in
the environment by enabling decentralized, context-specific decision making. As an example,
we specifically highlight how an autonomous robot overcomes the challenges of intermittent
wireless connectivity by simply using a wireless map. This practical solution contrasts traditional
efforts that either modify the wireless infrastructure or wireless protocol.

In summary, this thesis focuses on the task of data collection with mobile platforms including
both cell phones and autonomous robots. To address the key challenges in using these devices for
collecting and maintaining up-to-date sensor maps, our main contributions include a general data
collection framework, a discrete spatio-temporal representation to extract insights, an algorithm
for generating data collection navigation strategies, and a concrete use case showing that fine-
grain sensor maps can help to overcome challenges wireless connectivity issues while moving.

1.1 Thesis Question

This thesis seeks to answer the question,

With the emergence of sensor-equipped mobile platforms across our indoor environ-
ments, how can we collect, maintain, and use insights about fine-grain variations of
our surrounding environments?

Sensors found on a wide range of mobile platforms can collect valuable insights about our
environments. Making sense of these measurements is difficult because our indoor environments
are affected by many factors ranging from building structure to materials as well as building oc-
cupants. Ensuring up-to-date sensor maps is also challenging because our environments change
over time, which necessitates periodic measurement capture and discarding of stale measure-
ments. Finally, utilizing such fine-grain maps requires identifying problems where mobile plat-
forms in our environment benefit from fine-grain understanding of their surroundings.

In this thesis, we show that the emergence of autonomous robots allows us to reveal fine-grain
spatio-temporal insights of our surrounding environments. To mitigate the threat of stale sensor
maps, we develop active trajectory generation algorithms that enables these robots to automati-
cally move across the environment based on data collection needs. Finally, we present a concrete
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example of data-driven algorithms that show how wireless maps can be used to overcome chal-
lenging wireless connectivity issues.

1.2 Approach

We approach the thesis question from multiple directions with a focus on the unique data collec-
tion challenges that arise with mobility. The common theme across our efforts is the obsession
with ensuring accurate and timely fine-grain sensor maps. The four key challenges are: collect-
ing measurements for these maps, creating maps that reveal spatio-temporal trends, generating
trajectories to periodically update maps over time, and showing that fine-grain maps lead to al-
gorithms that can overcome challenging problems.

Collecting measurements with mobile platforms like autonomous robots allows us to uniquely
capture measurements at many more unique locations than alternate efforts. A unique challenge
that arises is accurately estimating the location of each sensor measurement. Fortunately, robots
already localize with high accuracy for navigation, which means we simply need to properly
match sensor measurements with their corresponding location. In contrast, mobile phones lack
these localization abilities but we introduce a map matching approach that is centered around
utilizing the navigation map to reason geometrically about where the device must have traversed.
We develop a general data collection framework that opportunistically captures measurements
from available sensors and then fuses them with continuous localization estimates. Through
such efforts, we are able to see fine-grain variations from long-term data collection across actual
enterprise environments.

Next, we need to process the raw sensor measurements so that we can reveal fine-grain in-
sights about our surrounding environments. The challenge is that the measurements captured
over a nearly continuous space of different locations and times have very different measurement
context. While measurement centimeters apart may be highly correlated, those captured weeks
apart may be completely uncorrelated. Our approach is to group measurements with similar
spatio-temporal context so that we can quantify sensor variations over time and space. We in-
vestigate discrete representations of the environment that are specifically tailored for the limited
regions that the device can reach. By focusing on the device’s navigation map, we are able to
better utilize the finite set of sensor measurements collected.

Ensuring up-to-date maps requires revisiting locations over time and a robot whose move-
ments can be controlled allows us to pro-actively direct future measurement capture when op-
portunities arise. There are two key challenges when pro-actively generating data collection
trajectories: effectively using the robot’s limited data collection time and adapting to changing
measurement needs over time. After all, it is less valuable to capture measurement from a loca-
tion that was recently visited but it might also be important to focus on locations experiencing
more anomalous behavior. We introduce path planning algorithms that that effectively balance
the robot’s time to navigate between locations with the spatio-temporal value of sensor mea-
surements at different locations. We demonstrate these algorithms effectively utilize the robot’s
limited deployment time when given opportunities to perform such pro-active data collection
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efforts.

Finally, we investigate the value of fine-grain sensor maps by showing that we can enable
novel data-driven algorithms. For example, we address the problem of intermittent wireless
connectivity issues that were plaguing our autonomous robot, which manifested in poor remote
telepresence experiences due to frequent interruptions in the remote video stream while moving.
We show that fine-grain wireless maps enables highly accurate and timely wireless handoff de-
cisions that resulted in significantly improved wireless performance. While this application is
very niche, it shows that sensor maps can enable extremely accurate and timely decisions that
will be important as our computing devices become further integrated with the operation of our
environments.

1.3 Contributions

The key contributions of this thesis are the following:

Data Collection Framework from Mobile Devices In Chapter 3, we introduce a data collec-
tion framework for autonomous robots centered around taking advantage of their ability to local-
ize continuously and navigate autonomously. We match each sensor measurement with their cor-
responding location, which allows us to collect large numbers of high granularity measurements
across many locations. To better understand variations across our environments, Chapter 4 shows
how sensor measurements with similar spatio-temporal contexts are grouped together based on
a discrete representation centered around regions where the robot can reach. This allows us to
reveal variations across our environments and quantify differences in measurement needs over
both space and time.

Mobile Phone Trajectory Identification Figuring out where a mobile device has been is
necessary to recover locations of captured sensor measurements. Unlike robots that are equipped
with powerful exteroceptive sensors, localization with cell phones is much more challenging.
In Chapter 6, we develop a robust path identification algorithm that reshapes noisy motion tra-
jectories to the limited navigation trajectories in order to determine where the device must have
traversed. We show that this approach can even overcome slightly incorrect maps.

Pro-active Navigation Based on Measurement Needs Sensor values across our environ-
ments can change unpredictably over time making it a challenge to ensure up-to-date maps. In
Chapter 5, we develop algorithms that opportunistically use robot free time when no higher pri-
ority tasks need to be performed by pro-actively generating trajectories to seek out high priority
measurement locations that effectively make use of the robot’s limited time. We extend our ap-
proach to also incorporate the time value of measurements that inevitably arise due to the periodic
nature of our surrounding environments.

Use of Fine-Grain Sensor Maps for Timely Decision Making To show the benefit of sensor
maps, Chapter 7 shows how we overcome our own robot’s intermittent wireless connectivity
issues as an example of the type of accurate and timely decisions an agent can make when
equipped with such fine-grain maps. After diagnosing the root cause of intermittent connectivity
as poor wireless handoffs, we use the wireless map to pre-compute a wireless handoff plan that
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the robot then uses to seamlessly switch access points in real-time as it traverses wireless handoff
waypoints. Using location to trigger wireless decisions contrasts traditional wireless solutions
that react to noisy signal strength measurements. This example demonstrates the value of fine-
grain sensor maps to enable novel data-driven algorithms that take advantage of knowledge about
the surrounding environment.

1.4 Reading Guide

We summarize each chapter below and also provide a visual overview shown in Figure 1.2.

Chapter 2 - Impact of Sensing on Robots We introduce relevant background on indoor
mobile devices and highlight how their sensor capabilities differentiate their localization and
navigation abilities. We also discuss several types of specific sensors that such mobile devices
can be easily equipped with that inform us about our surrounding environments. We present a
case study on how robots can benefit by better understanding their surroundings.

Chapter 3 - Data Collection with Autonomous Robots We consider the challenges of using
autonomous robots as a data collection platform. We present a data collection framework that
allows us to opportunistically collect measurements from a variety of mounted sensors. We
discuss how such measurements are effectively merged based on timestamp in order to mark
each measurements with their corresponding location. Finally, we highlight the challenges of
with these raw sensor measurements.

Chapter 4 - Representation and Processing of Fine-Grain Measurements We group simi-
lar measurements based on spatio-temporal contexts so that we can easily quantify measurement
differences over time and space. We specifically introduce a discrete representation of the envi-
ronment that is tailored for mobile data collectors as the region boundaries are based on robot
reachable areas. We show detailed insights captured from long-term deployments across two
enterprise environments.

Chapter 5 - Active Navigation of Robots for Measurement Needs We generate navigation
trajectories based on data collection needs that are targeted as mobile robots with limited data
collection opportunities due to interruptions by higher priority tasks. Such trajectories not only
consider the variations in measurement value over space but also incorporate the time value of
measurements.

Chapter 6 - Data Collection with Other Mobile Devices: Cell Phones While the previous
chapters focus on mobile robots, crowd-sourcing sensor measurements from mobile phones is
an alternative approach. The biggest challenge for cell phones is robust localization in order
to properly match each sensor measurement with their corresponding locations. We present a
trajectory snapping approach that reshapes noisy motion trajectories to the limited navigable
trajectories in order to recover the path traversed.

Chapter 7 - Use of Sensor Maps: Mobile Wireless Handoffs One of the benefits of fine-
grain sensor maps is enabling agents in the environment to make context-specific decisions.
As an example, we investigate motion-based wireless connectivity issues that resulted in poor
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telepresence experiences. We highlight how fine-grain wireless maps resulted in significantly
improved wireless handoffs due to better informed wireless decisions based on device context.
In contrast to solutions that typically require modification of infrastructure hardware or protocol
modifications, our practical solution only modifies the handoff algorithm on the target wireless
client.

Figure 1.2: Overview of contributions by chapter.
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Chapter 2

Background on Mobile Platforms and
Sensing Devices

Using mobile platforms for data collection differs from traditional efforts that rely on static sen-
sors. First, collecting sensor measurements while moving to different locations requires accurate
localization to determine where each sensor measurement was captured. Inherent differences in
device capabilities and freedom of movement influences the ability to continuously localize the
device. Second, adding sensor hardware to existing mobile platforms requires consideration of
the device’s existing form factor and power requirements. In addition, specific sensor properties
about capture conditions influences the accuracy and reliability of measurements captured by a
device that moves.

In this chapter, we first introduce relevant background on the fundamental differences be-
tween different types of mobile devices and types of sensor data that can be captured. This
naturally leads to differences in robustness and accuracy in their localization abilities, which ul-
timately affects the challenges in using them for collecting fine-grain sensor measurements. We
then describe how different sensors have different measurement characteristics, which are im-
portant considerations for our efforts that will gather these measurements with mobile platforms
that move around.

Finally, we show why sensor measurements need additional processing in order to be used
effectively. We present a concrete example that involves sharing sensor measurements across
multiple robots to help make real-time decisions for intercepting a moving ball. This task re-
quires that we identify robust pairs of corresponding sensor measurements, compute how to
transform sensor data into the egocentric coordinates of the actuating robot, and fuse these dis-
parate measurements by incorporate computational and communication delays. We hope that
these efforts motivate why the contributions of this thesis need to cover all three challenges of
data collection, analysis, and usage.
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2.1 Mobile Platforms

Mobile platforms today can be separated into the following categories: mobile phones, telepres-
ence robots, and autonomous robots. In order to determine the potential effectiveness of different
mobile platforms as opportunistic data collectors, we need to understand their capabilities and
typical usage. For example, autonomous robots are highly capable data collectors because they
continuously localize with high accuracy and their large form factor enables the addition of var-
ious sensor hardware. Given that these robots roam around performing tasks for humans, they
are perfectly situated to gather valuable sensor data. In contrast, mobile phones localize poorly
and are equipped with a limited set of sensors; however, they are nearly ubiquitous making it
desirable to use them as data collectors.

In this section, we define fundamental differences across these mobile platforms that include
form factor, hardware limitations, movement constraints, and typical usage. We also discuss how
this affects their usage for opportunistic data collection: localization accuracy, sensor hardware
capabilities, freedom of movement, and presence across indoor environments. By trying to un-
derstand the inherent limitations of different devices, we can develop algorithms to work with
their capabilities. For example, Chapter 6 notes that while cell phones lack powerful exterocep-
tive sensors for localization, we can alternately utilize motion trajectories from motion sensors
in order to recover paths traversed.

Mobile Phones

These small, low power devices can be held in a wide range of orientations and can be easily
placed in many locations across our environments. Accompanied with their rapid proliferation,
these devices are ideal for crowdsourcing data from many unique vantage points. They are
often equipped with motion sensors that usually include accelerometers and gyroscopes (IMU),
cellular radios, WiFi radios, GPS, cameras, and barometers. Given their small form factor, a
small battery means low power consumption is important. The low power sensors generally
include the motion sensors, compass, barometers while the higher power consuming sensors
include cellular, WiFi, and GPS. The combination of these constraints makes it very difficult for
cell phones to have accurate contextual awareness in indoor environments.

Telepresence Robots

Teleoperated/telepresence robots are laptops on wheels with an external battery but their oper-
ation completely depends on remote manual control by humans. The biggest difference with
autonomous robots is that they do not require powerful exteroceptive sensors since they only
need the robot to perform basic obstacle avoidance. As a result, the operation of teleoperat-
ed/telepresence robots are completely dependent on the reliability of WiFi connectivity, which
turns out to be a big challenge in practice beam.
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Autonomous Robots

As shown in Figure 2.1, autonomous robots are also laptops on wheels but equipped with high
capacity external batteries and powerful exteroceptive sensors like Kinect and LIDAR. Au-
tonomous robots today are capable of driving large distances across an environment without
human assistance via autonomous navigation and perform various tasks like delivering mes-
sages, packages, and escorting visitors Veloso et al. [2012b]. In contrast to cell phones, au-
tonomous robots are large, heavy and often restricted to movements on a 2D plane, which is suf-
ficient for navigating across indoor, office environments. Autonomous robots can operate without
WiFi connectivity but wireless communication does help with overcoming lack of knowledge by
querying the web Kollar et al. [2012], Samadi et al. [2012], Nardi and Veloso [2013], lack of
computation by offloading to the cloud Ventura et al. [2013], and also enables remote telepres-
ence (real-time video in Figure 2.1b and tracking robot status in Figure 2.1c).

(a) Robot delivering package

(b) Video streaming over WiFi (c) Sensing and location updates over WiFi

Figure 2.1: Autonomous robots perform tasks and use WiFi for remote telepresence.
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2.2 Localization and Navigation

Localization is essential for data collection with mobile platforms in order to properly label each
sensor measurement. In fact, the accuracy of these labels naturally affects the accuracy of the
insights we can extract as will be discussed in Chapter 3. In this section, we provide details
about localization efforts to show why it is difficult to robustly track devices as they move and
also the accuracy of current efforts. Figure 2.2 reiterates hardware differences so we can better
see that exteroceptive sensors are primarily responsible for robots dominating cell phones for
localization. It also show why only robots are capable of autonomous navigation due to the
presence of controllable wheels.

Figure 2.2: Hardware differences between robots and cell phones.

Mobile Phones

Cell phones lack powerful exteroceptive sensors found in robots and have great freedom of move-
ment, which complicated localization. Many efforts have focused on exploiting various on-board
sensors found on cell phones that are combined with localization techniques from robots. Un-
fortunately, cell phone localization remains a challenging problem in realistic environments with
most practical solutions requiring significant human overheads.

Dead reckoning efforts with motion sensors have been unsuccessful due to the accumulation
of drift over time Kelly [2004], Doh et al. [2003]. Some efforts have looked at use particle fil-
ters to correct dead reckoning errors with a known floor plan but are challenged by open spaces
and changing floor plans Chintalapudi et al. [2010], Woodman and Harle [2008]. Alternative
indoor localization efforts try to exploit globally consistent sensor data. WiFi localization via
GPS-like triangulation Bahl and Padmanabhan [2000], Youssef and Agrawala [2005], Lim et al.
[2005], Cheng et al. [2005], Serra et al. [2010] have an accuracy of 3m but remains challeng-
ing in practice since the unpredictability of signal propagation requires arduous collection of
fingerprint maps. Similar challenges are faced with other signals like FM Chen et al. [2012],
ambience Azizyan et al. [2009], and acoustic Nandakumar et al. [2012], Liu et al. [2012]. Some
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approaches combine different types of complementary sensor data to take advantage of high res-
olution motion updates while correcting drift with coarse, globally consistent measurements Rai
et al. [2012], Constandache et al. [2010], Chen et al. [2005].

Many recent efforts have tried to extend SLAM techniques to automatically locate globally
unique landmarks that include WiFi fingerprints and magnetic signatures. Some approaches
build maps from a combination of magnetometers, WiFi, and accelerometers Wang et al. [2012].
Other approaches notice that RSSI values are not consistent across different wireless devices
but that RSSI peaks occur at similar positions. Instead of using all wireless measurements, they
select robust RSSI peaks to correct for motion drift errors Shen et al. [2013]. The best efforts
have an accuracy of 1.6 meters.

Telepresence Robots

The few sensors telepresence robots have (e.g. RGB cameras, basic proximity sensors) are fo-
cused on providing information to assist humans in remotely navigating the robot. These robots
do not localize and so they also do not navigate autonomously.

Autonomous Robots

Robot localization is considered a solved problem for static environments. Particle filters have
been successful for continuously estimating robot location while moving but require a known
floor plan. Particle filters are probabilistic techniques that continuously estimate and track the
pose of mobile robots by using known floor maps Fox et al. [1999], Doucet and Johansen [2009].
Particles sample the posterior of robot poses by combining uncertainties from motion and then
updating the likelihood of observations from the environment. These efforts can accurately lo-
calize within 10 cm by using powerful exteroceptive observations like Kinect and LIDAR. One
of the challenges of particle filters is the computational cost of maintaining sufficiently large
numbers of particles to accurately estimate robot poses. Subsequent efforts have reduced the
computational cost of particle filters to operate robustly in real-time on a tablet Biswas et al.
[2011].

Efforts in SLAM have eliminated the need for floor plans by automatically building a map
while simultaneously localizing the robot Durrant-Whyte and Bailey [2006], Bailey and Durrant-
Whyte [2006]. These efforts estimate the joint state of robot poses and observations of landmarks
by solving an optimization problem Thrun and Montemerlo [2006]. SLAM techniques typically
work best in stationary environments. Some remaining challenges include long-term SLAM
due to growing computational complexity, dynamic environments that change over varying time
scales, and use of RGB cameras instead of highly accurate lasers Aulinas et al. [2008].

13



2.3 Sensing Devices

Every sensor has its own unique sensor measurement considerations. When our data collection
efforts move these sensors to different locations, we subject the sensor to different measurement
conditions that requires awareness of how this may affect the interpretation of these sensor val-
ues. For example, temperature sensors take several minutes to reach equilibrium if the sensor
moves across many locations during that time. In this thesis, we focus on wireless signals and
indoor climate readings because they provide important insights about our environments that can
be re-configured (e.g. wireless network access points can be moved and HVAC can adjust cli-
mate policies) and force us to consider sensors with a range of different behaviors (e.g. time to
reach equilibrium and sensor parameter choices like wireless channels).

Indoor Climate Indoor digital climate sensors return the measured temperature and relative
humidity. Capturing measurements from these sensing devices is straightforward and there are
no sensor parameters to consider. We equipped our robots with the AM2303 and AM2315 sen-
sors that are connected to an Arduino UNO that serially publishes messages to our robot. The
temperature and relative humidity values are updated at a maximum fixed frequency of 0.5 Hz
(1 update every 2 seconds).

802.11 WiFi As nearby wireless devices transmit wireless data, a WiFi monitor captures the
received signal strength (RSSI) of each wireless packet. In many environments today, we can
capture wireless packets at rates over 300 Hz. To understand the why such measurements are
important, we start by describing basic properties of wireless signals transmitted by wireless
device, then the importance of access points (APs) for wireless connectivity, and finally explain
the difficulty of good wireless performance while roaming.

Unlike wired data that is transmitted over a controlled medium, wireless signals are trans-
mitted over the air and subject to interference, reflections, and attenuation from both materials
and other devices in the surrounding environment. In realistic environment, any of these factors
could influence wireless signals, which makes it even more difficult to fully understand WiFi
performance in practice.

We refer to WiFi devices that wish to connect to the wireless network as wireless clients. To
connect to enterprise Wifi networks, WiFi clients find and connect to one of the enterprise’s WiFi
infrastructure access points (APs). WiFi APs are statically mounted throughout the building to
provide WiFi clients at various locations in the environment with a wireless link to the network.
These APs are connected to the enterprise’s wired network in order to provide Internet connec-
tivity. Due to their limited range, these APs are carefully placed throughout the environment
to ensure that at least one AP is visible at all locations. They are also centrally managed by a
controller to ensure that they cooperatively utilize the shared wireless medium.

When WiFi devices move around an environment, AP handoffs are necessary to ensure sus-
tained WiFi connectivity. Since device movement requires AP handoffs, the overheads and in-
efficiencies of poor AP handoffs accumulates results in significantly degrade WiFi performance.
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Scan-based AP handoffs algorithms are used by most mobile devices today because they work
ubiquitously across most WiFi networks. It has been shown that poor handoffs can be the rea-
son for degraded WiFi performance while moving Raghavendra et al. [2007]. Previous efforts
have considered many approaches for improving AP handoffs that include improved handoff
protocols, handoff prediction, and vehicular handoffs.

Acoustic/Audio Acoustic signals have the same propagation properties as wireless signals ex-
cept they are transmitted over audible frequencies that humans can hear and they are generally
not used for data transmission. This means that acoustic signal can also be used for localization
with meter level accuracy Nandakumar et al. [2012]; in fact, one can even localize similarly for
FM signals as well Chen et al. [2012]. As a sensor, acoustic signals are unique as they can be
used for application like speech recognition Benzeghiba et al. [2007] and human robot interac-
tion Fong et al. [2003].

2.4 Benefits of Fine-Grain Measurements

Previous efforts with dense static sensor deployments have shown the value of fine-grain sensor
measurements Bahl et al. [2005]. Mobile platforms are not only a pragmatic solution for collect-
ing such measurements but more importantly collect even more fine-grain measurements because
they can move across numerous locations over time. We believe that these data collection efforts
are mutually beneficial to the mobile platforms collecting the measurements but also to others in
the surrounding environment. As an example, we enumerate concrete examples of applications
that benefit mobile robot data collectors as well as wireless network administrators.

Wireless experts can use robots to better monitor the difficulties of wireless connectivity in
practice:

• Reveal Environment-Specific Wireless Conditions - effective management of wireless
networks requires understanding wireless signal propagation, which autonomous robots
can help to reveal via fine-grain data collection

• Serve as a Robust Wireless Testbed - enable repeatable testing and evaluation of different
wireless configurations using not only just static wireless devices but also devices that
move

• Investigate Extreme Mobility Challenges - few other devices push the boundaries of
wireless connectivity in terms of continuous streaming of real-time video while moving
quickly across an environment

Mobile robots benefit from these same wireless measurements because connectivity is essen-
tial for numerous value-add applications (e.g. remote telepresence and cloud-based computing):
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• Differentiate Wireless Hardware Performance - subject different wireless hardware to
repeatable conditions to objectively evaluate wireless performance in practice as opposed
to theoretical performance claims posted by manufacturers

• Identify Wireless Connectivity Issues - a variety of wireless issues can lead to poor wire-
less performance in practice making it important to equip robots with tools to identify the
root cause

• Assist with Wireless Network Management - the wireless infrastructure serves as the
backbone of robust wireless performance so helping network administrators to quickly
diagnose the wireless network helps both the robots and the admins

As we can see, sensor data collection with mobile platforms create many mutually beneficial
applications for both. In these examples, not only are robots pushing the boundaries of wireless
connectivity, they have an interest in revealing these wireless challenges so that experts can
help to resolve them. More generally, as we continue to see the rise of mobile platforms in
our environments, it benefits both the device itself and surrounding devices to better understand
context-specific variations across our environments.

2.5 Case Study: Collecting, Sharing, and Using Sensor Mea-
surements

We present a concrete case study to not only show the potential value of sensor measurements but
also highlights the challenges of effectively using sensor measurements. We want to show that the
reason sensor data is not more widely used today is not because of a lack of trying, it is primarily
due to the data processing in order to use sensor data well. For example, this case study focuses
on sharing visual information across two robots for a time critical task. Challenges include
combining sensor measurements from different devices, contending with stale measurements
that no longer apply to current conditions, and understanding the impact of computational and
communication delays for a time sensitive application. While the remaining chapters of this
thesis focus on sensor maps in particular, similar challenges remain because we need to align
sensor measurements along map coordinates, ensure sensor maps are up-to-date, and effectively
time when and where these measurements are used. We hope the example presented in this
section motivates why this thesis tries to build a complete data collection system touching a
range of topics including collection, analysis, and usage.

For this case study, our goal is to help a robot overcome its limited actuation speed and range
of vision to more successfully perform the task of intercepting a moving ball by utilizing a team-
mate’s view. Relying on its own vision is insufficient because sensor uncertainty and hardware
limitations lead to either untimely or inaccurate decisions that result in failure. Sensor mea-
surements shared are ball observations within each robot’s own local frame. To combine these
ball observations, we must discover the relative geometric transform between the two robots via
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correspondences. To ensure reliable and fresh correspondences, we using a switching kalman
filter to identify high confidence correspondences. Our empirical results show the importance of
effectively using the shared sensor measurements to increase the success of achieving the goal.

Utilizing Teammate Views

We decided to use ball observations alone with the assumption that there are insufficient other
identifiable objects within overlapping views of both robots. This is realistic for many natural
surfaces like soccer fields where everything is covered with grass. Our approach accumulates
correspondence points from simultaneous ball observations over time to overcome the assump-
tion of a sparse object environment. We also assume that the robots remain stationary while
accumulating correspondence points. As shown in Figure 2.3, two robots viewing the same
object should be able to recover a reasonable relative transform between one another. The prob-
lem is that raw measurements are inaccurate due to noise and false ball identifications so we
first track the state of the object to detect robust correspondences and then compute the robot’s
relative transform.

Figure 2.3: Simultaneous ball observations in each robot’s egocentric coordinates.

Identifying Known Object States with Confidence To extract high confidence correspon-
dences, we track the state of the ball as either stationary or moving with fixed velocity. With
these two simple motion models, we use a Switching Kalman Filter (SKF) Murphy [1998], a
Markov Model composed of several Kalman Filter models, to differentiate between these two
ball states. The SKF maintains the likelihood of each Kalman Filter model so we can wait until
there is high confidence regarding the state of the ball and record the simultaneous observations
from each robot as a correspondence.
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Computing the Relative Localization Provided the matched correspondence points, relative
localization is computed with the shape matching algorithm of Procrustes Analysis Ross [2004]
because it is fast to compute and correspondences are already matched. The resulting translation
centers the rotated points of one robot around the other robot’s correspondence points. The two
robots with their relative transform can now freely use each other’s sensor data as long as they
remain stationary.

Evaluating Benefit of Teammate Views

We empirically show the benefit of using teammate views by evaluating the task of altering the
path of a ball moving towards a robot using its feet. We describe the evaluation task presented to
the robot, show how teammate observations are beneficial with our computed relative localiza-
tion, and highlight the importance of considering the condition of wireless communication.

Evaluation Scenario To evaluate our computation of relative localization, a ball is rolled down
a ramp towards the intercepting robot as depicted in Figure 2.4(a) with an abstract representation
in the robot’s own egocentric coordinates and in Figure 2.4(b) with an actual overhead view. In
the robot’s egocentric coordinates, the robot itself is located at (0, 0) and the ball is originally
observed on the right of the robot at (190, 0). The ramp is raised to three different heights to
present the robot with different ball speeds: Slow, Medium, and Fast. The robot must estimate
ball trajectory, project an interception point directly in front or in back, and then walk to this point
in time to influence the motion of the ball with its feet. The Nao’s have an approximately 180◦

forward facing horizontal field of view as depicted within the two semicircles, where objects
too close or too far are difficult to capture. This is a difficult task for the robot because the ball
approaches almost directly from its right, which is close to the limit of its perceivable range. The
teammate robot will be placed with an approximate relative position of (80, -45) and angle of 0◦

with an excellent view of the entire path of the ball.

Figure 2.4: Evaluation scenario depicted abstractly (left) and actual overhead view (right).
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Using Teammate Views Figure 2.5 depicts ball trajectory estimates of an actual instance of our
evaluation scenario relying on each robot’s individual sensor data in (a) and (b) with the actual
ground truth ball trajectory in blue. The robot on its own in Figure 2.5(a) reveals that its raw
sensor data in black is noisy when far away and fails to perceive the ball when close due to its
cameras being occluded by its own shoulder. To project when and where to alter the path of the
ball, the estimated ball trajectory by the robot on its own in green is short lived and provides only
a few frames for the robot to capture an accurate ball trajectory and then make a good decision.
This places an enormous burden on the SKF to capture accurate trajectory estimates from little
evidence; however, it can be aided by a teammate robot with a much better view.

Figure 2.5: Ball observations for both robots.

Our algorithm computes the teammate robot to be at a relative location of (82.3654, -44.9545)
and angle of 2.89◦ during the calibration step. The transformed teammate sensor data is shown
in Figure 2.5(b), where it is evident that the teammate captures many more raw ball observations
during the entire path of the ball. In fact, unapparent from the intercepting robot’s observations
is a slight unevenness in the floor slightly influencing the ball’s trajectory more in the y-direction
as reflected in the ground truth path. The teammate captures a much more complete and accurate
set of trajectory estimates as shown in red.

Suppose teammate sensor data had been transformed using our desired relative localization
of (80, -45) and 0◦ angle. We can see in Figure 2.6(d) and (e) that the intercepting robot would
then have an estimate of the state of the ball that poorly follows from the ground truth path.

Clearly, teammate sensor data transformed with our computed relative localization helps the
intercepting robot to better capture the state of its surrounding environment for making better
informed decisions as shown in Figure 2.7.

With a relative transform, the intercepting robot has the benefit of using both its own and its
teammate’s sensor data. Listing 2.1 shows the decision process made by the intercepting robot.
Ball trajectory is estimated with a SKF providing ball position and velocity estimates.

The intercepting robot is presented with three different ball speeds to see if there are any
differences in success rate as faster moving balls demand even more accurate trajectory estimates
with less sensor data to work with. Each ball speed type using a particular set of sensor data is
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Figure 2.6: Poor fusion of ball observations resulting in erroneous trajectory estimates.

function AlterBallPath(Obs1, Obs2)
BestObs = RobotClosestObs(Obs1, Obs2);
if (BestObs == Obs2)

BestObs = BallTransform(Obs2);

BallState, BallPos, BallVel = SKF(BestObs);

if BallState == MOVING {
BallIntcptTime, BallIntcptDist =

ProjectIntercept(BallPos, BallVel);
RobotIntcptTime = ComputeTimeToWalk(BallIntcptDist);
DiffIntcpTime = RobotIntcptTime − BallIntcptTime;

if LittleTimeToReact(DiffIntcpTime)
Walk(BallIntcpDist);

}

Listing 2.1: Intercepting robot uses observations from robot currently closest to the ball, projects
the estimated trajectory of ball, then decides when and where to walk to in order to alter the path
of the ball.
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Figure 2.7: Combined ball observations resulting in accurate trajectory estimation.

evaluated 25 times each for a total of 225 instances of the task performed. While we attempt to
have identical execution, factors like uneven floors results in the ball crossing robot within a range
of ±20 cm requires that the robot correctly captures the state of the ball. We have a very strict
criteria for an instance of the task to be considered a success. Figure 2.8 is an instance of the robot
successfully altering the path of the ball and demonstrating a good projected ball interception
point. In this example, the ball was moving at medium speed and effectively utilize teammate
sensor data by incorporate computational and communication delays. The initial decision to
actuate occurs at 1.0 s. The robot’s right foot kicks ball immediately before 2.0 s. Finally, the
robot’s body settles at 3.0 s indicating good projection of ball trajectory.

Figure 2.9 shows an example of ball moving at a slow speed also using teammate sensor
data. It is considered a failure because the robot’s stopping location shows poor projected ball
interception point. This suggests that when the robot made the interception decision, it did not
have an accurate estimate of the state of the ball. The robot actuates just after 1.0 s and ball just
happens to luckily hit robot’s foot at 2.0 s. The robot eventually settles at 3.5 s, which is very far
from the point where it should have intercepted the ball.

In Figure 2.10, it is evident that the success rate using only the intercepting robot’s sensor
data in green is dominated by nearly 10% when also taking advantage of teammate sensor data
in red. For the slow moving ball, teammate sensor data has an impressive success rate of nearly
60%. When the time delay of processing teammate sensor data is also considered, the success
rate dominates the intercepting robot using only its own sensors by nearly 30%. These trends
suggest that teammate sensor data, especially when used effectively, helps a robot to better cap-
ture the state of the environment leading to better decisions and ultimately allow the robot to
more successfully perform difficult tasks.

Accounting for the Time Delay of Teammate Sensor Data When the intercepting robot re-
ceives teammate sensor data, it was taken from a different time than the robot’s own current
observations. A number of factors contribute to this delay like network communication, process-
ing, etc. The wireless network over a single router introduces almost negligible overheads of 3-5
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Figure 2.8: Robot successfully altering path of ball using teammate sensor data.
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Figure 2.9: Failure because robot show poor projection of the ball interception point.
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Figure 2.10: Success rate under different ball speeds.

ms. The stunning difference in success rates by considering delays in Figure 2.10 is the result
of considering the total delay by the time teammate observations are actually processed by the
intercepting robot. Our estimates of processing delay from our robot’s control loop in addition
to network communication delay of approximately 100 ms. This is a reflection of the limited
compute of the Nao humanoids but does not indicate that the robot cannot work with this limita-
tion. By recognizing the delay in processing of teammate sensor data, the intercepting robot can
overcome this limitation by either delaying processing of its own observations or projecting past
teammate sensor data forward in time by this delay. We choose to project teammate sensor data
forward using trajectory estimates by our SKF. The success rate in Figure 2.10 when considering
delay, especially with fast ball speeds, suggests that processing delay is incredibly important for
successfully performing difficult tasks by effectively taking advantage of teammates with better
views.

2.6 Summary

In this chapter, we introduce background on different types of mobile platforms that could be use
for data collection. We explain why this leads to differences in localization abilities, which is es-
sential for accurately labeling sensor data. We also introduce different types of sensor hardware
and key factors to consider. Finally, we present a case study showing that raw sensor mea-
surements need to be carefully processed in order to be used effectively. This motivates why the
remainder of this thesis covers all aspect of collecting, analyzing, and using sensor measurements
captured by mobile platforms.
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Chapter 3

Data Collection with Autonomous Robots

Autonomous robots can be valuable data collectors. Their ability to navigate autonomously and
continuously localize allows them to overcome the most tedious aspect of human data collection
efforts: collecting sensor measurements across many locations and accurately estimating the
location of each measurement. By equipping the robot with a few sensors, we should be able
to frequently deploy the robot and capture sensor measurements about our surroundings. Unlike
existing data collection approaches, an autonomous robot is uniquely equipped to capture both
high granularity and high accuracy measurements. In order to effectively use autonomous robots
for this purpose, we need to consider the unique challenges that arise from using a mobile data
collection device. These challenges include understanding the accuracy of sensor measurements
while moving, managing availability of sensors across long-term deployments, and ensuring data
collection efforts do not negatively impact the robot’s normal operation.

In this chapter, we first define how robots fall within the overall data collection design space.
We then introduce a flexible data collection architecture supporting a variable number of sensing
devices and analyze sensor measurements under a different static and mobile configurations. We
follow by discussing how to recover accurate location estimates for each sensor measurement
captured from different locations. We then show that although we collect a large number of raw
sensor measurements, we will need additional processing in order to fully extract insights about
our environments. Work in this chapter serves as the foundation upon which subsequent chapters
further investigate how to reveal spatio-temporal insights (Chapter 4), generate robot navigation
strategies based on measurements needs (Chapter 5), use other more limited mobile devices for
data collection (Chapter 6), and enable time-critical decision making via fine-grain sensor maps
(Chapter 7).

3.1 Data Collection Design Choices

With the recent emergence of robots due to recent developments in robot technology, it is an
exciting opportunity to use robots for collecting sensor measurements. We want to show why
use of autonomous robots as data collectors provide a unique combination of advantages over
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existing approaches. To begin, we first define the set of data collection efforts and then the set of
key measurement trade-offs.

We consider the following data collection methodologies:

• Manual - humans tediously carry sensing devices around the environment and stop pe-
riodically to mark their location on a given map Bahl and Padmanabhan [2000], Youssef
and Agrawala [2005] (also called a site survey in the wireless domain)
• Dense Sensor Deployments - static sensors mounted at numerous locations
• Crowd-sourcing - exploit cell phones that humans already carry with them
• Robotic Testbeds - robotic systems that can move sensors across our environments (au-

tonomous robots are a specific type of robot that operate without human assistance)

Key measurement trade-offs include the following:

• Density - distance between groups of nearby measurements
• Timeliness - time between successive measurements at the same location
• Cost - combination of hardware requirements, installation costs, and operational costs
• Effort - amount of additional human assistance required
• Accuracy - combination of localization, procedural, and repeatability
• Adjustability - ease of changing the locations where subsequent sensor data is captured

3.1.1 Measurement Trade-offs

We define how each of the data collection approaches performs according to each of the key
measurement properties. For each measurement factor, we state what is desirable from a data
collection perspective and then where different collection methods fall within the possible design
space.

Density and Coverage Measurement density refers to the distance between nearby measure-
ments. We define low density to be measurements 5-10 meters apart while high density refers to
a few centimeters. Naturally, high density is desirable as it shows detailed variations across our
environments.

We consider manual data collection and static sensor deployments to have low measurement
density because they scale poorly as the number of unique measurement locations increases.
Manual efforts have low density since the amount of human effort increases exponentially with
measurement density. Based on our empirical observations of our own wireless network ad-
ministrators performing site surveys, measurement samples several meters apart is common for
manual data collection. It seems surprising that we define dense static deployments to have low
density but keep in mind that these terms are relative. After all, dense deployments are more
dense than traditional static sensors that might be placed tens of meters apart (e.g. many building
have small number of climate sensors per floor). Our definition of high measurement density as

26



mere centimeters apart is even more fine-grain than large numbers of static sensors can pragmat-
ically achieve.

Figure 3.1: Trading off measurement coverage versus timeliness

Crowd-sourcing and robotic testbeds are considered high density as these devices can capture
sensor measurements while moving across numerous unique locations. By passively capturing
sensor measurements as humans move, crowd-sourcing efforts can easily achieve high measure-
ment density. Robotic testbeds can be actively moved across numerous locations in order to
achieve the same result. It is important to note that many of these robot testbeds operate in con-
strained spaces due to the reliance on either overhead cameras to localize Fish et al. [2006], lines
marked of the ground Rensfelt et al. [2011], or humans assistance to move the robots between
measurement regions Sen et al. [2012]. With the recent development of autonomous robots that
navigate with little setup required, robot data collection will soon be capable to coverage even
larger areas of our buildings.

Timeliness Timeliness refers to the time between consecutive measurements at the same loca-
tion. High frequency measurement updates at the same location are desirable as we can better
see exactly how our environments change over time.

The most infrequent approach is manual data collection because it usually takes so much time
and effort to collect sensor measurements. In fact, manual efforts are often one-time occurrences
repeated sporadically only when needed (e.g. investigating possible wireless dead spots when
faced with connectivity issues). Moderately frequent measurement update efforts include robotic
testbeds where timeliness is limited by limited deployment opportunities due to finite battery life
but increasing the number of robots can potentially help to increase measurement timeliness.
Crowd-sourcing is a passive operation where timeliness cannot be guaranteed but scales quickly
as the number of users increases. Finally, static sensors excel at ensuring timely measurements
since they always remain at the same location and therefore continuously collect sensor data.
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Figure 3.2: Trading off measurement cost versus human effort

Cost There are both installation and operational costs across both hardware and software. In-
tuitively, lower cost efforts are desired and helps make it easier to deploy across realistic envi-
ronments.

Low cost approaches include manual efforts and crowd-sourcing. Manual efforts require the
least amount of hardware costs (as a single sensor is manually moved to different locations) that
might be offset by human labor costs if performed periodically. Crowd-sourcing opportunisti-
cally collects measurements from devices that humans already have, which effectively makes
these efforts mostly free.

Robots are a moderately expensive approach. While there is little cost in operating the robot,
there is a steep initial cost for the powerful sensors, computing hardware, and structure. We
are hoping that emergence of robots for other purposes will similarly make data collection with
robots effectively free (just like it is for crowd-sourcing today).

Dense static deployments have high hardware costs (one sensor for each location) and high
maintenance costs (either initial wiring for installation or periodic batter replacements).

Effort Humans do not like performing tedious tasks, labor is expensive, and introduction of hu-
mans errors is always a potential threat so fewer humans in the loop is better. The only approach
requiring significant human effort is manual data collection. It could be argued that deployments
of dense static sensors requires some human assistance for installation.

Accuracy Accuracy covers several factors: localization, procedure, and repeatability. For lo-
calization, we define 2 to 3 meters as low accuracy and 10 cm as high accuracy. Procedural
accuracy addresses the possibility of introducing human or environmental errors (e.g. humans
accidentally wrapping hands around sensor during collection). Repeatability refers to capturing
measurements at the same location in the same way each time (e.g. same sensor orientation and
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position). Accuracy along all of these factors provides confidence and reliability in the sensor
measurements captured.

Figure 3.3: Trading off measurement accuracy versus adjustability

Manual and crowd-sourcing data collection are low accuracy for several reasons. Both suffer
from poor localization although cell phones may be able to increase their localization accuracy as
technology improves Youssef and Agrawala [2005], Wang et al. [2012], Rai et al. [2012]. Nev-
ertheless, they both suffer from possible introduction of procedural errors introduces by human
influence of sensor measurements. In one of our experiments, human participants inadvertently
wrapped their hands around the climate sensor, which resulted in erroneous measurements. Both
efforts also exhibit poor repeatability as humans are not well-suited to ensure consistent measure-
ment conditions over time. These types of inaccuracies are inevitable for these two approaches
because the devices interact so closely with humans.

In contrast, dense deployments and robotic testbeds do not require the direct involvement of
humans. In fact, static sensors and robots can afford to have bulky form factors, which provides
the opportunity to create structural designs that can actively prevent humans from accidentally
influencing the captured sensor measurements. Localization accuracy can be achieved for both.
Static sensors do not move so we can perform highly accurate one-time localization for each
device. Robots continuously localize as it is essential for their ability to navigate autonomously.

Adjustability Adjusting the measurement locations over time is desirable because measure-
ment needs may change over time. If a particular location suddenly experiences abnormal vari-
ations, it would be helpful to capture additional measurements around that location. Low flex-
ibility means that it requires significant cost or effort to change measurement locations. High
adjustability is desirable as it allows us to seamlessly change data collection strategies over time.

Dense deployments and crowd-sourcing offer little adjustability. Static sensors are fixed to a
location while one has little influence over where crowd-sourced users end up moving.
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Manual efforts and robots provide high adjustability. Humans can effortlessly changes where
subsequent measurements are captured from. Robot testbeds can easily adjust where to collect
measurements with a little bit of programming.

3.1.2 Advantages of Autonomous Robots

Now that we have defined the properties of each approach, we see how different approaches
occupy different segments of the overall data collection design space. While no single approach
provides all of the desired properties, autonomous robots provide a powerful mix of desirable
properties that include high measurement density, high accuracy, high adjustability, low cost, and
low effort. The one limitation is low timeliness because a single robot cannot simultaneously
capture measurements from multiple locations. With these advantages, it is clear that use of
robots for data collection presents a pragmatic solution to help capture sensor measurements
from our surrounding environments.

3.2 Collecting Sensor Measurements

Given that autonomous robots can be valuable data collectors, we need to create a system that can
harness these advantages. Our goal is to develop a long-term data collection system that provides
fine-grain insights about our environments. To the best of our knowledge, few other efforts
target such extensive coverage across large enterprise environments while capturing sensor data
with centimeter-level accuracy by using a mobile platform that moves. Robot mobility is not
only a key enabler for achieving these goals but also introduces a unique set of challenges for
us to address. In this section, we introduce a data collection framework that supports passive
measurement capture from a variety of sensing devices while also controlling where the robot
collects measurements from. We also highlight the importance of understanding sensor specific
configurations and parameters as well as the reliability of sensor values captured while moving.

Data Collection as a Side Effect

The design of our data collection framework is influenced by the fact that the robot can passively
gather sensor measurements as it performs its various other tasks. Our goal is to seamlessly
operate in the background without affecting the robot’s normal operation. This would make data
collection with robots effectively free if they already exist in our environments. We can build a
non-intrusive data collection systems because it primarily depends on recording relevant robot
localization data and corresponding sensor measurements. Only when we wish for the robot to
pro-actively move around based on sensor measurement needs does the data collection system
publish navigation commands that affect the robot’s operation. Our system is designed to be a
mostly standalone system with minimal interfaces.
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3.2.1 System Design

Our data collection system is divided into two core components: data acquisition and data anal-
ysis. As depicted in Figure 3.4, data acquisition is the execution piece that continuously records
where the robot is and any available sensor measurements. Data analysis is an offline process
that extracts and updates insights about our environment that may also influence future robot
navigation based on measurement needs. Having a separate online and offline process provides
several advantages. First, we ensure that real-time data collection remains computationally light
to minimize the effect on higher priority processes like robot vision. Second, offline data analysis
allows us to defer how exactly we process the sensor measurements, which provides additional
flexibility. Finally, a simple feedback loop creates the opportunity for results of data analysis to
influence where the robot goes to collect subsequent sensor measurements.

Figure 3.4: Data flow diagram of our mobile data gathering system.

Data acquisition records sensor readings so that data analysis can recover an accurate view of
the environment offline. The goal of this module is to be computationally lightweight, record
sensor measurements in a consistent format across long-term deployments, and properly control
sensor specific parameters. Achieving these goals requires careful attention to the sensor hard-
ware being used. For example, certain sensors have unique measurement behaviors that may
take time to reach convergence (e.g. climate sensors). Others may have multiple sensor parame-
ters to consider (e.g. dozens of wireless channels). Optional goals include directing the robot’s
navigation based on measurement needs (e.g. prioritize less recently visited locations).

Data analysis uses the data collected by the robot to build a model of the sensor observations
of the monitored area. This is the focus of Chapter 4, where we try to make sense of fine-grain
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sensor measurements that vary over both time and space. Keeping data analysis as a separate
offline module allows us more time to evaluate a myriad of spatio-temporal techniques while the
robot is already in the process of long-term data collection.

3.2.2 Sensor Specific Measurement Records

A robot collects sensor measurements under different conditions (e.g. stationary or moving). Un-
derstanding how robot operating conditions influences these sensor values establishes confidence
in the conclusions reached from insights that are extracted from the measurements collected. In
this section, we discuss the wireless monitors and indoor climate sensors that are used in this the-
sis. Through these very different sensors, we encounter a number of challenges that we believe
is representative of a wide range of other sensors.

Figure 3.5 provides an overview to show how logs are recorded by combining sensor mea-
surements and robot context that are updated at different frequencies. Each stream of sensor
measurements is annotated with a corresponding timestamp so that we can merge these data
streams offline. With our design, we can easily add different sensor hardware where all we need
is an agreed upon sensor message type.

Figure 3.5: A common sensor message interface supports log records from a variety of sensors.

3.2.3 Wireless Monitors

Wireless measurements are characterized by extremely fast update rates, where robot motion in-
troduces negligible effects when moving at speeds of up to 1 m/s. Collecting wireless measure-
ments requires that we consider what data to record, how to configure the device, and how robot
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motion affects wireless measurements. Contending with the large number of wireless measure-
ments and controlling wireless channel switches are unique challenges when collecting wireless
measurements.

Wireless Records

The number of wireless samples depends on wireless usage by surrounding devices. In our
deployments, we were capturing wireless samples at rates of over 300 Hz, which required careful
attention to what fields to record in an effort to preserve disk space.

Each wireless measurement collected is accompanied with numerous fields. The set of fields
that we record include channel frequency, data bit rate, received signal strength indicator (RSSI),
source MAC address, destination MAC address, and base station service identifier (BSSID).
These fields were chosen for several reasons. Addresses are important because RSSI depends
on the distance between the transmitting and receiving device (where the receiving device is our
wireless monitor). We found it important to record addresses as integers instead of strings to
reduce the number of bytes for each measurement record. Bit rate and channel information are
fields relevant for understanding wireless usage by surrounding devices.

Additional disk saving arose by filtering out wireless measurements irrelevant for our pur-
poses. Recall that a wireless monitor passively captures bi-directional packets. In general, the
wireless infrastructure APs serve as the backbone for providing wireless connectivity. Our thesis
work focuses on the wireless infrastructure so we only record packets transmitted from wireless
access points. To filter just these packets, we check that BSSID and source address fields match
and that the SSID matches those of our target wireless network. If we suspected that interference
from other users was the source of our connectivity issues, we would have applied a different
filter targeted at transmissions from wireless users instead of APs. Of course, wireless measure-
ments from users would be more difficult to analyze because users move around and tend to be
more transient. In contrast, APs are generally stationary so long-term data collection efforts can
accumulate a more consistent set of measurements over time.

Channel Switching

A wireless device can only be set to one of many possible wireless channels at a time so chan-
nel switching is needed to fully capture the wireless environment. Switching between wireless
channels is one of the parameters that we need to control for effective data collection. The basic
idea is to quickly iterate through the set of wireless channels.

Unfortunately, channel switching is not instantaneous so the device needs to spend enough
time on each channel to capture a sufficient number of wireless samples but also switch fast
enough so that the robot does not move a significant distance between successive samples on the
same channel. With 35 channels and a robot limited to speeds of .75 m/s, channel switching at
a fixed rate of 30 Hz will only take 1.2 seconds to cycle through all channels in which time the
robot will move less than 1 meter. We found such a strategy sufficient for capturing dense spatial
coverage across all channels after multiple traversals.
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Wireless Infrastructure Configurations

The wireless infrastructure is a collection of access points that are directly connected to the wired
backbone that provides Internet connectivity. Even though APs do not move, there are parameters
that affects how transmitted wireless signals propagate across the environment. There parame-
ters include transmit power and wireless frequency. Many networks today have controllers that
automatically adjust these parameters over so our surrounding wireless conditions are continu-
ously changing. In general, it is a challenge to disambiguate actively controlled changes (e.g. AP
re-configurations) from environmental variations (e.g. doors opening and closing and furniture
adjustments). Tracking fine-grain variations over time may help to reveal such re-configurations
over time.

Effects of Robot Motion

We need to verify that neither the robot’s structure and materials nor its mobility affects the ac-
curacy of the wireless measurements. Unfortunately, there is no source of ground truth wireless
measurements so we find other ways to measure the reliability of the measurements. Because the
robot uses the same sensor hardware mounted at same location on itself, we are most concerned
about the relative accuracy of the measurements. This includes understanding if the robot’s ori-
entation introduces any abnormal effects as well as relative calibration across different sensor
hardware options. With this knowledge, we will be able to recover a consistent set of measure-
ment values even if collected from different sensor hardware mounted on different robots.

Effect of Orientation on Wireless RSSI We place the robot in various orientation to show that
there are no abnormal effects by either the robot’s structure or various materials. As long as any
effects introduced by the robot consistently affect the measured signal strength, we can correct
these later on through calibration. Previous efforts showed that human bodies have little impact
on RSSI because while it is true that humans affect the direct line of sight component of wireless
signals, these are largely mitigated by multipath effects Sen et al. [2012]. As a result, we do not
expect that robot orientation introduces significant effects on wireless RSSI measurements.

Figure 3.6 shows how RSSI for three different APs at three different locations vary as the
robot spins in place. RSSI is shown in polar coordinates where distance from the origin is
RSSI (lower is better) and angle reflects the global orientation of the robot. Notice there is
little variation as the robot spins, regardless of whether or not the robot is near or far from the
AP. These observations indicate that wireless measurements captured at a single location are
consistent regardless of our robot’s orientation. Therefore, the remainder of this work does not
incorporate the dimension of robot orientation during subsequent measurement analysis.

Comparing Sensor Hardware Different sensor hardware under identical conditions may re-
turn different sensor values. Comparing these differences while the robot moves provides several
valuable insights. This includes understanding systemic differences due to capabilities, relative
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Figure 3.6: RSSI as the robot spins in place for 3 different locations and APs

calibration like scaling or offsets between sensors, and any aberrations in sensor values. Un-
derstanding sensor hardware differences allow us to better understand how reliably the wireless
monitor reflects surrounding wireless conditions.

We perform a simple experiment that simultaneously captures wireless measurements from
two different wireless monitors mounted right next to one another on the robot. The wireless
monitors using different hardware with one being a wireless-N dongle equipped with a 3x3
MIMO antennae while the other is a Nexus S cell phone equipped with a single antennae.

Figure 3.7a and 3.7b compares the RSSI for two APs captured as the robot moved across the
environment that are typical of most outcomes that we see. Overall, measurements from both
devices correspond well and follow the same general shape suggesting general agreement about
surrounding wireless conditions. In addition, the robot seems to collect slightly fewer wireless
samples than the phone.

Upon closer inspection, we do see some clear differences that cannot be completely attributed
to simple calibration issues. For example, while RSSI matches well in Figure 3.7a, there is a
RSSI offset difference in Figure 3.7b. The goodness of RSSI correspondences seems to de-
pend on the AP being captured. These different behaviors likely arise from the more advanced
wireless-N dongle that is taking advantage of its 3x3 MIMO antennae to better aggregate multi-
path effects. As a result, one cannot simply mix and match measurements from different wireless
monitors because technological differences may result in different values.

By comparing simultaneous measurements, we could compare the sensitivity and precision
of different sensors, understand differences in the sampling rate from passively collected sig-
nals, and show that both these devices effectively capture the surrounding wireless environment
although additional efforts is require to merge measurements from different hardware.
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(a) AP #1 - Matching RSSI (b) AP #2 - Higher Robot RSSI

Figure 3.7: Simultaneous RSSI comparing WiFi dongle and a cell phone for two APs.

3.2.4 Indoor Climate Sensors

Climate sensors measure temperature and humidity of the surrounding environment. These mea-
surements update at a slow rate and take time for the readings to reach equilibrium. This requires
careful consideration about how the robot moves around for collecting such measurements. Un-
like wireless monitors, there are no parameters to control (e.g. switching wireless channels).
Therefore, the biggest challenge in collecting climate sensor data will be controlling the robot’s
navigation to ensure reliable measurements.

In our experiments, we used two different digital temperature and humidity sensors, the
AM2303 and AM2315, connected to an Arduino UNO that serially publishes messages for our
autonomous robot to record. Both sensors capture temperature and relative humidity values that
are updated at a maximum fixed frequency (0.5 Hz in our case). We now show how long it takes
indoor climate measurements to reach equilibrium and then discuss how movement affects these
sensor values.

Time to Reach Equilibrium

Accurate temperature and humidity measurements require time for the measurements to reach
equilibrium. This may necessitate that the robot move extremely slowly or remain completely
stationary in the worst case. We perform two experiments to better understand the convergence
of climate measurements. First, we expose the sensor to a heat source to see how long temper-
atures return to equilibrium. Next, we compare climate measurements between a stationary and
mobile robot to see if sensor values might be affected from being moved around. The idea is to
understand how quickly climate sensors react to changing conditions as well as how accurately
they capture surrounding conditions.

Convergence After Exposure to External Heating Source By exposing the sensor to an ex-
ternal heat source, we can see exactly how long it takes for the sensor reach equilibrium. This
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will let us know in the worst case environments with extreme climate variations how long the
robot would need to remain stationary to collect highly accurate climate measurements.

Results from a simple experiment exposing the robot’s climate sensor to a heat lamp is shown
in Figure 3.8. The dashed line indicates when the heat lamp was turned on and then solid line in-
dicates when the heat lamp was turned off. Notice it takes about 400 seconds for the temperature
sensor to reach the highest temperature. It takes 300 seconds to reach equilibrium after the heat
lamp is turned off. Climate controlled environments are unlikely to have such extreme tempera-
ture variations so the robot may not need to spend so much time waiting in practice. Given that
people often perceive a stopped robot as broken, our compromise is to direct the robot to move
at its slowest speed of 0.25 m/s when collecting climate measurements.

Figure 3.8: Climate sensor after heat lamp turned on (dashed) and then off (solid).

Reliability of Measurements Captured by a Mobile Device When we initially started testing
the indoor climate sensors in the wild, we were surprised at the variability of temperature and
humidity over time. Unfortunately, it was difficult to know if these variations arose from poor
sensor hardware or that our indoor climates do in fact vary wildly across different locations. It
was also unclear if these were systemic variations across the entire building or location specific
climate differences. To investigate these issues, we simultaneously deploy two robots with iden-
tical climate sensors where one remains stationary while the other moves around. Both devices
start and end at the same location so we will see if sensors values agree even after one of the de-
vice has been moving around. Our results show that indoor climate varies across a single location
over time and that there are differences across multiple locations.

Figure 3.9 shows results of a 2 hour experiment comparing temperature and humidity mea-
surements. The mobile robot starts and ends at the same location as the static robot (highlighted
in gray) but also visits 24 unique waypoint locations (spaced roughly 1.5 meters apart). The
mobile robot remains at each waypoint for 5 minutes.

Given that the sensor values match well when both robots are at the same location, we can
be confident that differences at the waypoints can be attributed to differing climate conditions.
There are some notable insights we can gather. First, while humidity variations are quite small
for the stationary device, relative humidity differs by over 1% at different waypoints suggesting
that conditions differ based on location. In contrast, temperature varies in a periodic manner by
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nearly 1◦C for the stationary device. Temperatures differ by nearly than 1.5◦C depending on
the location. These results show that there are actually a lot of differences in temperature and
humidity across our environments.

(a) Temperature

(b) Humidity

Figure 3.9: Indoor climate comparison from a stationary and mobile data collector.

Effects of Robot Motion

Similar to the wireless monitor, we need to understand how measurement values differ depending
on the climate sensor being used. In Figure 3.10a, we compare two climate sensors (the AM2303
and AM2315) that measure temperature and humidity while the robot moved across the environ-
ment. Over 2 hours, the relative changes across the measurements seem to correspond fairly well
and perhaps could be calibrated with simple scaling and offset alignments. Similar to the wire-
less monitors, both sensor values captured by both sensors reflect similar relative changes. One
clear difference is the small number of erroneous measurements captured by the AM2303. As a
result, the AM2315 is definitely the slightly preferred sensor due to more reliable measurements.

3.3 Processing Sensor Measurement Records

Our data collection framework records separate streams of sensor data and robot localization at
different rates. In order to match each sensor measurement with their corresponding location, we
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(a) Temperature (b) Humidity

Figure 3.10: Simultaneous temperature and humidity from AM2303 and AM2315 sensors.

merge this information by using timestamps based on the robot’s internal clock so that all data
streams have a common reference. We first discuss the theoretical accuracy of location estimates
for each sensor measurement and then present the matching algorithm used in this thesis.

3.3.1 Measurement Location Accuracy

The accuracy of measurement capture location is dictated by both the robot’s localization ac-
curacy and the update rate of robot localization and sensor measurements. If we represent the
update frequency of robot localization as freqlocalization and sensor updates as freqsensor, then
the number of localization samples for each sensor measurement is:

# localization samples

1 sensor update
=
freqlocalization
freqsensor

(3.1)

The location accuracy of each sensor measurement is then bounded by the maximum distance
between successive sensor samples Si, Si+1 and robot localization noise ε, which is 10 cm for
our robot.

errorpos < 2 ∗ ε+ L2norm(S[i]pos, S[i+ 1]pos) (3.2)

For more accurate sensor position estimates, a ratio below 1 is desired since the location error
is bounded primarily by the robot’s localization accuracy. With a ratio above 1, then we have
uncertainty due to multiple position estimates corresponding to one sensor measurement. For ex-
ample, our robot localization updates at 20 Hz, temperature/humidity sensors at 0.5 Hz, and WiFi
monitors at 100 Hz. The WiFi monitor updates much more frequently that the robot’s localization
so localization accuracy accounts for most of the positional errors. For the temperature/humidity
sensor, 2 seconds can pass between successive samplings. Our robot is limited to speeds of up to
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0.75 m/s so the total positional errors for each sensor measurement is 2 ∗ .01 + 0.75 ∗ 2 = 1.52
m. To mitigate the effects of inaccurate climate measurement locations, we limit the speed of the
robot when collecting climate data to 0.25 m/s to reduce location inaccuracies. In contrast, the
robot’s speed is not an issue that we focus on when collecting wireless measurements.

3.3.2 Matching Sensor Measurements with Corresponding Locations

All sensor streams are marked with the robot’s internal timestamp that will be essential for merg-
ing with localization data. For example, we have a sequence of robot localization measurements
as pairs of time and position (timel,1, pos1),(timel,2, pos2) ... (timel,n, posn) and a sequence
of sensor measurements as a pair of time and data value(s) (time1, data1),(time2, data2) ...
(timem, datam). With different update rates, these two sequences can have different number of
entries. Algorithm 1 shows how a single pass is sufficient for matching each sensor measurement
with a corresponding location.

Algorithm 1 Merge localization and sensor measurement records by timestamp.
Require: Robot localization records R as sequence of (time, pos) pairs. Sensor records S as se-

quence of time, data) pairs.

1: function MERGEBYTIMESTAMP(R,S)
2: merged← []

3: idxrobot ← 0

4: idxsensor ← 0

5: while idxrobot < R.length do
6: while S[idxsensor]time > R[idxrobot]time do
7: merged+ = {S[idxsensor], R[idxrobot]}
8: idxsensor++

9: end while
10: idxrobot++

11: end while
return merged

12: end function

3.4 Challenges in Making Sense of Fine-Grain Measurements

We collect a large number of fine-grain sensor measurements when using robots for data col-
lection. Unfortunately, the value of these measurements in their raw form is limited without
additional analysis like those described in Chapter 4. In this section, we wish to show why
this seemingly large amount of raw data is actually quite small once one starts to drill down on
various factors (e.g. location, time of day, wireless access point, etc.).
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Experiment Setup To support our claims, we use sensor measurements collected from actual
robots during long-term deployments across large environments. We performed two lengthy
measurement collection studies across two buildings: the Gates Hillman Center (GHC) in Pitts-
burgh, PA and the MetroTech Center (NYU) in Brooklyn, NY. As shown in Table 3.1, we col-
lected extensive amounts of WiFi data in GHC across five weeks in which the robot was in
operation for over 40 hours and moved over 70 kilometers. In NYU, the robot collected data
across 3 weeks and traveled over 60 kilometers.

Floor 6th 7th 8th 9th Total
Time (hours) 12.3 14.4 7.9 7.2 41.9
Distance (km) 22.4 27.7 14.0 12.4 76.5

Table 3.1: Duration and distance of the robot’s 5 week deployment in the GHC building.

Data, Data, Everywhere But Here Despite the large aggregate number of measurements col-
lected, the number of measurements measurements after drilling down into a particular location
and sensor configuration is inevitably limited when collecting measurements with robots that
move around. Repeated traversals over the same area across multiple deployments help to in-
crease measurement density.When we consider that environments change over time and robots
have limited data collection time due to battery life, measurement sparsity is an inherent limi-
tation that can be mitigated mostly be adding more data collection devices. We now illustrate
wireless measurement sparsity from our own data collection experiences across four floors of the
Gates Hillman Center (GHC).

We begin by looking at aggregate statistics that show how the number of wireless samples
differs across APs. As shown in Figure 3.11, some APs are measured frequently (e.g. one AP has
over 1400 samples). while others APs have fewer than 50 samples. These differences arise be-
cause we cannot pick and choose which AP we collect measurements from; instead, our wireless
monitor simply passively collects whatever wireless measurements happen to be transmitted.
APs with many measurements are being heavily used by wireless users for connectivity. APs
with few measurements are capturing the sparse number of beacon packets that APs periodically
broadcast to announce their presence. As we have begun to show, the total number of wireless
samples begin to look small once we begin to segment them (by AP in this case).

Figure 3.11: Number of wireless samples collected for each AP.
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Next, we want to to see if more frequently visited locations result in more wireless samples.
Figure 3.12 compares the number of visits with and without wireless samples being collected for
one of the AP’s with a total of 542 samples. We show the number of visits with wireless samples
(green) and the total number of visits (blue, unstacked). These results show that frequently
visiting a location does not guarantee measurement capture.

The key takeaway is that as we continue to further refine our analysis, the sparseness of
measurements becomes more and more apparent. In fact, it may not be something we can easily
controlled by simply visiting certain locations more frequently. The number of samples for
certain sensors like wireless monitors are fundamentally limited due to their dependence of other
devices transmitting packets.

Figure 3.12: Number of visits to each location with and without wireless samples.

3.5 Next Steps

The work described in this chapter forms the foundation for the subsequent chapters of this thesis.
We showed the problem of measurement sparsity once one begins to segment sensor measure-
ments based on various factors. First, Chapter 4 tries to take advantage of the high spatial gran-
ularity of measurements collected in order to extract more meaningful spatio-temporal insights.
Next, Chapter 5 prioritizes where the robot should collect additional measurements so that we
more effectively utilize data collection opportunities and mitigate the measurement sparsity chal-
lenges. In addition, Chapter 6 investigates the challenges of using alternate mobile platforms like
cell phones whose large numbers may help to provide additional measurement samples. These
efforts will try to make better use of the measurements, more intelligently collect measurements,
and consider the use of other devices. Finally, Chapter 7 presents a concrete application to show
the benefits of data-driven algorithms that utilize these fine-grain sensor measurements.

3.6 Summary

In this chapter, we began by discussing the unique advantages of using autonomous robots for
data collection when compared to existing techniques. We then showed how specific sensors

42



behave when collected by a mobile platform. We presented a data collection framework that
seamlessly collects sensor measurements while the robot performs its routine tasks. Based on
actual data collected by robots, we notes that measurement sparsity is a fundamental challenge
that we hope to mitigate in next few chapters.
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Chapter 4

Representation and Processing of
Fine-Grain Measurements

In this chapter, our goal is to extract insights about our environment from the fine-grain sensor
measurements collected by a mobile platform. These measurements may differ by a little as a
few centimeters or milliseconds or be from completely different spatio-temporal contexts. The
key challenge is computing context-specific conclusions based on sensor data where no two mea-
surements are captured at the same location or time. Data analysis must overcome the challenges
of spatio-temporal measurement sparsity (as previously discussed in Chapter 3), where the num-
ber of measurements captured becomes small as we drill down on more and more specific times
and locations. In this chapter, we present a discrete approach to quantify sensor measurement
values over both space and time. We present a spatial representation that decomposes the en-
vironment into discrete regions specifically tailored for a mobile data collection platform. We
show the fine-grain insights we can extract about our environments based on real data collected
after long-term deployments of our autonomous robots.

4.1 Representation and Processing Choices

Unlike fixed static sensors, a mobile data collector collects measurements from numerous unique
locations over time. Given that sensor values are affected by their measurement context (where
and when they were collected), making sense of spatio-temporal correlations is very important
for sensor data collected by a mobile platform. In this section, we discuss the trade-offs between
different approaches for analyzing spatio-temporal data. We will see that how one decides to
spatial-temporally represent the environment dictates how one can then analyzes the data in
order to gain insights.

One can represent an environment discretely or continuously. With a discrete representation,
one clearly divides the environment into clearly marked spatial boundaries (e.g. grids, areas,
regions) and time slots (e.g. hourly, daily, weekly). Advantages of clear measurement group-
ings enable computationally light weight data analysis where one can apply a wide range of
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traditional statistical techniques. The primary disadvantage of discrete region boundaries occurs
where either excessively large boundaries group less correlated measurements that lead to in-
formation loss or excessively small boundaries that suffer from insufficient data. As a result,
discrete approaches depend on specifying appropriate boundaries.

In contrast, continuous representations preserve fine-grain locations and times but require
more sophisticated analysis to extract insights. Geostatistical techniques like Kriging Phillips
et al. [2012], Riihijarvi et al. [2008] and Gaussian Processes Ferris et al. [2007] perform inter-
polation over both space and time. The most significant benefit of a continuous space represen-
tation is that they are robust to small measurement variations and perform an exact interpolation
that minimizes the squared error. Disadvantages include poorly handling small amount of data,
estimating smoother models than reality, and suffering from uncertain knowledge. In additon, a
known covariance model, which specifies the similarity of measurements within a neighborhood,
is essential for accurate interpolation. Unfortunately, these covariance models are generally un-
known in real environments.

We choose to use a discrete representation due to the characteristics of sensor measurements
captured by a mobile platform, the repeated nature of sensor data collected by a mobile platform,
and simpler usage of measurement insights.

To combat the challenge of measurement sparsity, a discrete representation has the flexibility
to tune the size and shape of regions in order to ensure data analysis from sufficient measurement
density. For a continuous representation, this would be embedded in the covariance model that is
more difficult for humans to modify. Second, a mobile platform can only collect measurements
from one location at a time. Our surrounding environment may also be simultaneously changing
over time as well and these variations depend on the sensor values being captured. For example,
indoor climates tend to vary periodically over the course of a day while wireless configurations
changes abruptly after several weeks. With the combination of discontinuous sensor updates over
time and a changing environment, it is difficult for both discrete and continuous representation to
make sense of the sensor measurements. However, the discrete approach is both more computa-
tionally light than the continuous approach while also providing more manageable visualization
of variations over both time and space.

Data collection with mobile platforms is intended to operate repeatedly over time. Given
that it is inexpensive and easy to change where additional measurements are collected from, it is
important to quickly and effectively compute where and when subsequent data collection efforts
should occur. After all, if we notice sudden anomalous readings from a certain location, it would
be desirable to focus data collection around that location. These goals align very well with a
discrete representation where data analysis is fast to compute but might possibly introduce some
information loss. We envision these types of efforts that ensure up-to-date sensor maps align
well with desirable usage of this sensor data. After all, all sensor data being used will inevitably
be historical (whether by an hour, a day, or several weeks). When devices make decisions based
on sensor data, they must reflect existing conditions or else be effectively useless. While perhaps
not as accurate as continuous analysis, a discrete approach is entirely capable of discriminating
trends of space and time while also fast to compute.

In summary, a discrete representation is well-suited for sensor data collected by a mobile
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platform. Due to the sparseness of sensor measurements across location and time and repeated
nature of such collection efforts, it is important that we quickly react to changes in the envi-
ronment in order to better focus subsequent data gathering efforts as well as best ensuring that
devices make decisions using up-to-date view of the environment. Analysis over a discrete space
allows us to use light-weight computations that provide the opportunity to react quickly as our
environments change.

4.2 Navigation Adjusted Grids (NAG) for Data Collection

Having decided to use a discrete representation, we are faced with the very important task of
defining spatio-temporal boundaries. While discrete times are fairly straightforward, a key chal-
lenge will be deciding how to spatially divide the environment into small enough regions that
measurements are well correlated but large enough so that each region has a sufficient number
of samples. While previous efforts include spatial decompositions that include grids and voronoi
cells, we introduce navigation adjusted grids (NAG) that are specifically tailored to be centered
around where the robot can actually reach. We show that NAG’s better distribute measurements
in space. We then show insights that can be reached based on actual sensor measurements col-
lected by an autonomous robot.

4.2.1 Spatio-Temporal Data Collection Matrix

We introduce a discrete spatio-temporal representation that we refer to as a data collection matrix.
We will define the parameters of this matrix as a combination of regions and time slots. As we
receive a stream of sensor measurements, they will be grouped into the appropriate cell based on
their corresponding location and time. Visualized as a 2D matrix in Figure 4.1, we see that each
column corresponds to a particular time slot so that all spatial entries within a particular column
form a spatial snapshot (e.g. all sensor data collected between 2-4 AM).

We first define a set of time slots TSLOTS. Each non-overlapping time slot ti forms the set
{t0, t1, ..., tn} ∈ TSLOTS and is composed of a start and end time such that {start, end} ∈ ti.
Depending on how the sensor values are expected to change over time, one could use a set of
time slots within a global time frame (e.g. time since epoch) or a periodic time frame (e.g.
time of day, day of week). A periodic time frame provides the opportunity to more densely fill
the data matrix across multiple data collection opportunities in order to mitigate the problem of
measurement sparsity over space and time.

Next, we define a set of regions REGIONS. Each non-overlapping region ri forms the set
{r0, r1, ..., rm} ∈ REGIONS. Each collected measurement is matched with a corresponding re-
gion whose boundaries it falls within. The goal is for each region to simultaneously be small
enough to ensure spatial locality but also large enough to contain a sufficient number of mea-
surements.

With regions and time slots on each axis of a matrix, we can define data collection matrix
DMATRIX as a set of bins {b0,0, b1,0...bn,m} ∈ DMATRIX. Each bin bi,j corresponds to a specific
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Figure 4.1: Spatio-temporal discretization of the environment.

pair of region and time slot (ri, tj) ∈ bi,j as visualized in 2D matrix in Figure 4.1.

4.2.2 Disaggregating a Stream of Sensor Records

We now define how a stream of sensor measurements are grouped into their corresponding cells
of the data collection matrix. Define each sensor measurement s to be a tuple with time t,
location (x, y), and sensor value q so that (t, (x, y), q) ∈ s. Instead of assigning each indi-
vidual measurement s directly to its corresponding bin, we actually want to record a collection
record wk. Each record wk is a start and end time indicating when the robot passed through
bin bi,j as well as a corresponding list of sensor measurements {s0, s1...} ∈ slist so that we get
(start, end, slist) ∈ wk. Therefore, each entry in our data matrix bin bi,j is a list of these collection
records {w0, w1...} ∈ wlist. Choosing to store measurement records will be important later on
when computing coverage metrics because time the mobile platform spend at a location can be
independent of the number of measurements captured.

4.2.3 Generating Navigation Adjusted Grids (NAG)

We introduce navigation adjusted grids (NAG), which are specifically targeted at discretizing the
space in which the robot can reach. NAGs are better suited for data collection because they align
grid regions to the robot’s underlying navigation graph, ensure non-overlapping coverage, divide
the environment into identically sized regions, and use a simple bounding box computation for
matching measurement locations with their corresponding grid region. Alternate efforts in spa-
tial discretization are not as well-suited for data collected by a mobile platform. Many do not
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separate the environment into similar sizes regions (Voronoi diagrams and cellular decomposi-
tion). Others apply rigid boundaries unaware of where measurements can actually be captured,
which results in poor distribution of sensor measurements (metric grids).

Definitions

Let us define the NAG, which is essentially a set of square grid cells. Define each grid cell ri
as a square region with bounding box points: top left (xtl, ytl) and bottom right (xbr, ybr) so the
boundaries can be defined as (xtl, ytl, xbr, ybr) ∈ ri. The dimensions of the square are bound by
some size SIZE that we assume is the same across all locations REGIONS such that abs(xtl −
xbr) == SIZE and abs(ytl − ybr) == SIZE. The robot’s navigation graph NAV is the set of
vertices vi and edges ei,j that the robot can traverse. During execution, robots can often deviate by
some distance DISTwander from the edge for a variety of reasons that include obstacle avoidance
and following human tendencies to move on the right-hand side of hallways. We extend the
navigation graph NAV by subdividing each edge ei,j and then extending each perpendicularly by
DISTwander as shown in Figure 4.2b. We call this the extended graph NAVcoverage.

Generating Regions with Non-Overlapping Coverage

First, we generate a set of non-overlapping grids that covers only the regions that the mobile
platform can reach as shown in Figure 4.2c. As shown in Algorithm 2, we achieve this by first
applying a metric grid across a 2D map and then filter those that overlap with the extended
navigation graph NAVcoverage. This takes advantage of the property that metric grids generate a
set of non-overlapping grid regions.

Algorithm 2 Filtering Grids that Cover Robot Navigation

1: REGIONScvg ← {}
2: for x← Xmin to Xmax by SIZE do
3: for y ← Ymax to Ymax by SIZE do
4: bbox← {(x, y, x+ SIZE, y + SIZE)}
5: for edge in NAV do
6: if isIntersect(edge, bbox) then
7: reg← (x, y, x+ SIZE, y + SIZE)
8: REGIONScvg ← REGIONScvg + reg
9: end if

10: end for
11: end for
12: end for
13: return REGIONScvg

Define a fixed metric grid as the number of columns correspond to the number of non-
overlapping square of size SIZE between (Xmin, Xmax) and similarly for rows (Ymin, Ymax).
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(a) Nav. Graph (b) Extended Nav. Graph

(c) Fixed Grid (d) Nav. Adjusted Grid

Figure 4.2: Generating navigation adjusted grids from the navigation graph.
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Define each square grid cell ci,j as denoted as the corresponding row and column, which corre-
sponds directly to a region rk. For example, region r0 corresponds to grid cell c0,0 with bounding
box {Xmin, Ymin, Xmin + SIZE, Ymin + SIZE}. Starting from (Xmin, Ymin), we keep grid re-
gions that intersect with any edge in the navigation graph NAV. We refer to this set of regions
as {r0, r1...rm} ∈ REGIONScoverage. The problem with REGIONScoverage is that all grid cells
are aligned to the initial grid position (Xmin, Ymin) and grid cell size SIZE. As a result, there
are likely to be many grid cells that just barely cover some reachable areas and result in uneven
distribution of measurement samples.

Grid Adjustment Options

The next step is to re-position these grid cells so that they are better aligned with reachable areas
as shown in by NAVcoverage. We want to ensure that these adjustment retain the properties of
avoiding region overlap while maintaining coverage over all reachable areas. Our approach first
determines which groups of cells can be adjusted, which direction they should be shifted, and
then applies the adjustments. We introduce an incremental approach that repeatedly chooses and
commit a set of cells to adjust as described below.

Algorithm 3 Identify Grid Cell Adjustment Direction

1: AMATRIX← {}
2: for i← 0 to N do
3: for j ← 0 to M do
4: nhoriz← GetNHorizontal(CMATRIX, i, j)
5: nvert← GetNV ertical(CMATRIX, i, j)
6: if nhoriz == nvert then
7: AMATRIX[i][j]← Both
8: else if nhoriz < nvert then
9: AMATRIX[i][j]← Horizontal

10: else
11: AMATRIX[i][j]← V ertical
12: end if
13: end for
14: end for
15: return AMATRIX

The first step is to identify which group of grid cells can be shifted together. The idea is that
cells need to be shifted as a contiguous group. Two adjacent cells that share a border must be
shifted together or else we risk creating coverage gaps that do not fully cover the reachable areas.
We consider cell adjustments in either vertical or horizontal directions. Once shifted in a partic-
ular direction (e.g. vertical), we can no longer shift them in the other direction (e.g. horizontal)
as it creates the potential for overlapping coverage. Given this constraint, we encourage more
adjustments by trying to adjust smaller contiguous sequences of cells. This is implemented in
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Algorithm 4 Shift Vertical Grids Cells

1: V ertSets← {}
2: V ertCells← {}
3: for i← 0 to N do
4: for j ← 0 to M do
5: if AMATRIX[i][j] == null then
6: V ertSets← V ertSets+ V ertCells
7: V ertCells← {}
8: else
9: V ertCells← V ertCells+ (i, j)

10: end if
11: end for
12: end for
13: for V ertCells ∈ V ertSets do
14: ysint← GetY Intersects(V ertCells)
15: yscells← GetY Coords(V ertCells)
16: yint← (max(ysint) +min(ysint))/2
17: ycells← (max(yscells) +min(yscells))/2
18: yshift← yint − ycells
19: RepositionY (V ertCells, yshift)
20: end for
21: return DMATRIX
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Algorithm 3 where we create an adjustment matrix AMATRIX that assigned each grid cell a di-
rection (horizontal or vertical) based on the smaller number of contiguous cells in each direction.

The next step is to identify which groups of contiguous grid cells to adjust. We cannot
arbitrarily adjust cells in any direction so we look for contiguous grid cells that agree on the same
direction in the adjustment matrix AMATRIX. Algorithm 4 shows how we search for vertical
adjustments by first identifying contiguous sequence of cells V ertCells that agree on direction
as shown in lines 4-11. Next, we shift V ertCells around the mean of the most extreme reachable
y-axis points of NAVcoverage covered within the set of cells. After the set of cells in V ertCells
has been adjusted, they can no longer be re-positioned so we nullify the direction of each cell
in the adjustment matrix AMATRIX. We also nullify cells diagonal to the two endpoint cells as
it create potential overlaps. Over time, the number of readjustment options shrinks as cells are
re-positioned. Once no options remain, we reach the final NAG that is much better aligned to the
underlying reachable areas.

4.2.4 Evaluating Navigation Adjusted Grids

Opportunistic data collection wherever the robot happens to go will inevitably create highly
skewed measurement coverage in practice. To address these fundamental limitations when col-
lecting measurements with a mobile platform, we need to better make sense of sensor data and be
more pro-active about where sensor measurements are collected. Our results here will show that
NAG’s lead to better distribution of sensor data across discrete regions in our environment. Better
distribution ensures that each grid region has more sensor measurements so that we have more
samples to compute more statistically significant insights. Chapter 5 will discuss how we can
generate more intelligent navigation trajectories that effectively incorporate sensor measurement
priorities.

Even if we instruct the robot to execute the same coverage cycle over a long period time,
there is still biased measurement coverage due to navigational constraints of the environment
(e.g. bottleneck bridge more often crossed versus hallway dead-end). Our NAG’s better spatially
segment the environment because regions are better aligned to the robot’s navigation graph. This
is important because the effectiveness of discrete efforts depends on the effectiveness of their
discrete boundaries.

Figure 4.3a shows the distribution of measurements per region when using fixed grids versus
NAG. These measurements were collected during the 5 week deployment in GHC. There are
a total of 343 square grids for both representations and over 900,000 wireless measurement
samples. Notice that NAG shows a 20% larger proportion of measurements per region with non-
zero measurements despite using the same number of measurements. This suggests the NAG
results in significantly fewer regions with little coverage of the robot’s reachable locations.

We can further see how the distribution of measurement samples spatially differs. In Fig-
ure 4.3b and 4.3c, strong red grid cells indicates 0 measurements while strong black indicates at
least 1500 samples. We notice poor measurement distribution is ubiquitous across all hallways
(partially due to the robot’s impressive precision while navigation) and the NAG helps to signif-
icantly improve measurement distribution. Clearly, there are still numerous locations with very
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few sensor measurements that more adaptive data collection trajectories in Chapter 5 will help to
address.

(a) CDF Measurements Per Grid

(b) Fixed Grid Heatmap (c) NAG Heatmap

Figure 4.3: Comparing distribution of sensor data when using fixed grids versus NAG.

4.3 Measurement Scoring Metrics

With a discrete representation, sensor measurements are grouped according to spatio-temporal
context. We will be able to apply a wide range of traditional statistical techniques to each group
of measurements without needing to consider the dimensions of time and location. This results
in fast computations to characterize the behavior of each group so that we can direct our focus to
differentiating spatio-temporal trends across groups. We first discuss metrics that can be applied
to groups of measurements. We then show how to analyze spatio-temporal trends across different
groups.

Recall that our discrete representation groups sensor measurements into a data matrix bin bi,j
composed of a set of collection records wk. Recording data as collection records is a subtle but
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significant decision as specifying start and end times for each record wk enable us to support
time-dependent metrics (e.g. number of samples based on total visit time). This is important
because a mobile platform does not uniformly distribute its data collection time so metrics that
incorporate the amount of time spent are valuable. We introduce several types of simple scoring
metrics one can use to characterize a group of measurements.

Total Visit Time Total visit time is the sum of differences in end and start time across all visit
records:

tvisit(bi,j) =

wq∈bi,j [wlist]∑
wq[end]− wq[start] (4.1)

Number of Visits The number of unique visits:

nvisit(bi,j) = len(bi,j[wlist]) (4.2)

Visit Frequency We define the visit frequency to be the proportion of data acquisition oppor-
tunities dedicated to this particular grid slice compared to the entire deployment time:

fvisit(bi,j) =
tvisit(bi,j)∑n

0

∑m
0 tvisit(bn,m)

(4.3)

Data Variance Variance can be directly computed as:

dvar(bi,j) = var(

wq∈bi,j [wlist]⋃
0

wq[slist]) (4.4)

Data Entropy Sensor data uncertainty can also be used to differentiate measurement value.
One can approximate entropy using a histogram-based approach, where pi is the frequency of
unique sensor value k.

dentropy(bi,j) =

k∈set(bi,j [wlist][slist])∑
0

−pklog(pk) (4.5)

Notice that there are generally two types of metrics: measurement coverage metrics and data-
specific metrics. Measurement coverage metrics include total visit time, number of visits, and
visit frequency that are computed without looking at sensor values. In contrast, data-specific
metrics focus explicitly on the sensor values in order to compute features like data variance and
data entropy. Regardless of what metrics we wish to compute, our collection records wk define
the data in a way that allows us to quantify groups of sensor measurements in many different
ways.

55



Benefits of Quantifying Sensor Measurements Applying these scoring metrics across our
discretized sensor measurements gives flexibility when attempting to extract insights about our
environments. There are many different techniques one could apply so let us present a simple
representative example. For this example, our goal is to understand how wireless signal propaga-
tion for an access point differs in space. Recall that wireless signals generally do not propagate
idealistically due to various environmental effects (structure, materials, etc.). The idea is to apply
clustering as a scoring metric to see which regions do in fact follow idealistic signal propagation
models.

Raw wireless measurements are shown in Figure 4.4a, where we are not able to draw many
conclusions from the visualization. We can only conclude that RSSI decreases as one moves
farther away from location (-10,5), where the access point is located. Next, we might attempt
to cluster regions together based on signal strength as shown in Figure 4.4b. Unfortunately, we
can draw few insights from these clusters as they have little spatial coherence. This leads to the
clusters shown in Figure 4.4c, where we utilize wireless domain knowledge about wireless signal
propagation. These clusters combine regions based on how well they fit parameters of the signal
propagation model. Notice that the eventual clusters follow know trends where signal generally
propagate similarly along hallways and then diverge at intersection.

To identify clusters, we use region growing techniques borrowed from image segmenta-
tion Adams and Bischof [1994] but instead of comparing RGB values, we compare fit with a
given sensor model. The idealistic wireless signal propagation used is:

RSSI(locsample) = (4.6)
α ∗ 10∗log(dist(locap, locsample)) + β

RSSI for some AP at (x,y) location locsample is a function of the path loss exponent α, distance
between the AP’s location locap and measurement location locsample, and some constant β. The
sensor measurements provide us location locsample and RSSI so the unknown parameters are
location of the AP locap, path loss exponent α and constant β.

During region growing, we incrementally combine grid measurements to find the best fitting
parameters and then compute standard deviation of the fit. The resulting clusters are shown in
Figure 4.4c where different groups of grids indicates different sets of signal propagation behav-
iors. Sensor measurements belonging to the brown cluster are shown in Figure 4.4d. Measure-
ments for a single grid are highlighted in green, which shows that only by combining measure-
ments across multiple grids can we robustly identify reasonable parameters for the model. To
show the importance of fitting models for each group of regions, we also overlay all other wire-
less measurements in black. Notice that attempting to fit a single model to all of this wireless
data would have resulted in a much worse and noisier fit.

The key takeaway is that our discretization of the environment enables us to apply a variety
of scoring metrics so that we can better understand how our environments vary over individual
slices of both time and space. In this section, we showed that one can even perform operations
across groups of grids to extract coarse-grain insights. We believe there is great potential to
perform these types of data analysis techniques as sensor measurements become more widely
available in the future.
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(a) Raw Measurement Heatmap (b) Clustering by RSSI

(c) Clustering by Propagation Model

(d) Cluster 1

(e) Cluster 2
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4.4 Spatial and Temporal Insights

We wish to show that fine-grain sensor measurements collected by mobile platforms can reveal
valuable insights about our surrounding environments. Using data collecting from long-term
sensor gathering efforts with our autonomous robot, we will be able to understand the spatio-
temporal variations of our buildings. We first present results collected by the wireless monitor
and then the indoor climate sensors.

4.4.1 Wireless Measurements

We first analyze wireless measurements spatially and then temporally. Recall that RSSI of wire-
less signals depends on the location of the transmitting device. Although the total number of
wireless measurements collected is large, the number of samples become smaller as we direct
our focus towards specific wireless devices. Our analysis will focus on wireless access points
(APs) because they form the backbone of wireless connectivity for users and they are perma-
nently fixed so we do not need to consider the possibility of movement. Our spatial insights will
show how the wireless medium is being used by our wireless networks and then show how they
actually are re-configured change over time.

Spatial Insights

Our spatial analysis of wireless measurements reveals valuable information about how the wire-
less spectrum is being managed and allocated by the wireless network. First, we try to understand
how wireless signals vary across our environment and what we should expect to see. Next, we
show how the wireless network is serving wireless users in the environment by looking into
AP coverage, channel allocation, and throughput samples. Our results will show that sensor
measurements collected by autonomous robots can be processed to reveal extremely fine-grain
insights about our wireless networks that our own administrators do not have available.

Wireless Signals The received signal strength indicator (RSSI) measures the received energy
of incoming wireless packets. We begin by trying to understand how RSSI varies across our
environment. We look at how RSSI varies while stationary, whether or not variance depends on
mean RSSI, and how RSSI relates to throughput.

We first show wireless measurements under idealistic situations when continuously collected
at the exact same location. RSSI values generally fall within the range of -90 dBm (weak signal)
to -20 dBm (strong signal). Figure 4.5 shows stationary RSSI measurements captured when the
WiFi device at four different distances from the AP. These measurements were captured by the
robot in a hallway with no people walking around. There are intermittent outlier measurements
but typically RSSI varies by no more than 2 dBm when stationary.

Next, we investigate how mean RSSI affects variance. This will show if high RSSI might
result in lower variance. By using our discretization of the environment into 1m x 1m grid
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(a) 0 meters (-36.07 dBm ± 1.23) (b) 5 meters (-44.42 dBm ± 1.15)

(c) 10 meters (-53.51 dBm ± 1.70) (d) 15 meters (-58.8 dBm ± 1.74)

Figure 4.5: Stationary RSSI measurements at different distances from transmitting device.

regions, we can see in Figure 4.6 how that there is little correlation between mean RSSI and
variance. The same trends are observed for additional APs. These results suggest that stronger
wireless signals are not any less variable than weaker ones.

Figure 4.6: Mean RSSI versus RSSI variance for each 1m x 1m grid

Next, we show the impact of information loss due to the discretization of our environment.
Figure 4.7 further inspects RSSI variance across the same 1m grid regions for all observed APs
after the 5 week deployment of our robot across four floors. The average standard deviation
for each floor is 2.88, 2.82, 2.94, and 2.78 dBm for GHC6, GHC7, GHC8, and GHC9, respec-
tively. Notice that RSSI variance is higher than those measured while stationary because we are
grouping measurements within 1m grid regions.

Finally, we show how RSSI relates to throughput while moving. This is a unique benefit
of mobile platforms because wireless performance while moving faces unique challenges. Fig-
ure 4.8 shows that higher RSSI is only weakly correlated with higher throughput. Throughput is
measured as the useful number of megabits successfully transferred per second (ignoring over-
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Figure 4.7: CDF of RSSI variability for each 1m x 1m grid across all APs.

heads like packet headers) as samples using the iperf tool (TCP). We can see that ensuring RSSI
remains above -80 dBm is needed to ensure reasonable wireless performance. The key takeaway
is that high RSSI is a pre-requisite for high throughput but not a guarantee of strong wireless
performance. Chapter 7 will show in more detail what causes poor wireless performance while
moving.

Figure 4.8: Heatmap to show RSSI versus throughput.

AP Coverage Recall that the goal of strong AP coverage is to ensure that every location has
at least one high RSSI AP available. Strong AP coverage is a big concern for wireless network
administrators who devote a lot of time and effort to resolving any wireless dead zone issues.
Wireless measurements collected by a robot reveals much more fine-grain AP coverage insights
than our own administrators can gather due to their reliance on manual efforts. Using our discrete
representation, we will be able to both quantify and show the distribution of RSSI across our
environment.

Figure 4.9 quantifies the distribution of the highest RSSI AP across each grid of our envi-
ronment where the robot could reach. We can see that our environment has strong coverage
throughout. While our own network administrators target a minimum of -60 dBm, our results
show that our building has at least -70 dBm at all locations which is quite strong. Due to our
efforts, we are able to quantitatively show that our building has strong AP coverage across all
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floors and that wireless dead zones are not a significant problem.

(a) GHC6 (b) GHC7 (c) GHC8 (d) GHC9

Figure 4.9: Histogram showing median RSSI of the best AP across four floors.

The sensor measurements collected can provide alternate perspectives of AP coverage. Fig-
ure 4.10 illustrates RSSI spatially where green indicates high RSSI and red indicates low RSSI
of the highest median RSSI for each 1m grid region. With this perspective, we are able to see
where the few low RSSI locations occur. We can see low RSSI situation are found primarily
along the bridge where few wireless users are found.

Due to these fine-grain sensor measurements captured by our robot, we are able to view
AP coverage from multiple perspectives and better understand the availability of our wireless
network.

Figure 4.10: Spatial AP coverage across the four floors.

Channel Assignments Wireless measurements can be further segmented along different pa-
rameters like wireless channels to shed light on how the wireless spectrum is being allocated.
Recall that each AP can be assigned to one of several wireless channels (11 channels for 2.4 Ghz
and 23 channels for 5 Ghz) and the wireless network has the ability to adjust these channel assign-
ments. Wireless channel assignments are important because a potential cause of poor wireless
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performance is interference due to simultaneous wireless transmissions on the same frequency
in overlapping areas. A general solution is to partition the environment to minimize overlap-
ping regions using the same wireless channel. Unfortunately, these partitioning decisions are
often made by combining coarse wireless samples (collected from APs throughout the environ-
ment Reis et al. [2006], Mahajan et al. [2006]) with simple wireless models that have unknown
fidelity to actual wireless conditions of the environment. With fine-grain wireless measurements
collected by a robot, we can directly show exactly how wireless conditions for each channel vary
over space.

In Figure 4.11, we show several wireless channels across two environments. We can see
several RSSI trends regardless of the environment. First, concentrations of strong RSSI (as
indicated in green) help to suggest where APs may be located. We can easily guess how many
unique APs there are for each channel: seven in GHC on channel 6, one in GHC on channel
8, and two in NYU on channel 48. Notice that signal propagation is not purely a function of
distance as hallways appear to influence the range of wireless signals. While typically difficult to
predict in realistic environments, we are no longer faced with these issues since we have actual
wireless measurements collected across numerous locations.

(a) Channels 6 and 8 for GHC 7. (b) Channel 48 at NYU.

Figure 4.11: Comparison of RSSI trends across different wireless channels.

It is somewhat strange that there are many APs assigned to channel 6 while only a single AP
on channel 8. It is recommended that APs are assigned to either 1, 6, and 11 for 2.4 Ghz because
they are non-overlapping (simultaneous wireless transmissions without interference). While the
APs on channel 6 are cooperatively using the wireless spectrum, the rogue AP on channel 8
introduces potential interference for nearby wireless transmissions on both channel 6 and 11,
which is an inefficient usage of the limited wireless spectrum. With our wireless maps, we are
able to expose these rogue APs and even help to pinpoint where it is located. Without the map,
our own network administrators would be using RSSI gradient tracking tools on site.
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Throughput Samples Finally, we highlight the unique opportunity to explore sensor variations
that arise with motion. Recall that high RSSI is only a pre-requisite for good wireless perfor-
mance while throughput reflects the rate of data transfer. We already showed that there is strong
AP coverage across our building but Figure 4.12 shows that median throughput for each 1m
grid region is highly variable and low throughput overall with the exception of a few select hall-
ways. While stationary wireless performance suggested strong throughput at different locations
in the environment, throughput measurements collected while moving demonstrate clearly poor
wireless connectivity while moving. The opportunity to quantify sensor measurement variations
while moving is a unique advantage when using robots for data collection.

Figure 4.12: Throughput samples captured by a mobile platform while continuously moving.

Temporal Insights

We show how wireless measurements can help to reveal how the wireless medium changes over
time. While our infrastructure APs remain stationary, the wireless network can re-configure their
transmit power and channel assignments, which ultimately affects the wireless conditions across
our environment. By tracking changes across fine-grain wireless maps over time, we will be able
to spatially identify which APs are reassigned to different wireless channels over time and infer
why these changes are being made.

Figure 4.13 shows weekly snapshots of RSSI on channel 11 over four weeks. Notice how
the number of APs begin at 6 in week 1, reduces to 5 by week 3 and finally 3 in week 4. These
changes are likely a response to the rogue AP on channel 8 in Figure 4.11a. By transitioning APs
on channel 6 and 11 away from the overlapping region, the network is able to better use the WiFi
medium.
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Figure 4.13: Evolution of APs on channel 11 for GHC over four weeks.

4.4.2 Climate Measurements

We now turn our attention to analyzing climate sensors both spatially and temporally. We col-
lected climate measurements simultaneously with the wireless measurements discussed above
and will perform similar discrete analysis. Temperature and humidity values fundamentally dif-
fer from wireless signal strength so our analysis will naturally focus on segmenting the mea-
surements in different ways to reveal interesting behavior across our environment. We show that
while climate measurements have little variations in space, there are fairly significant changes
over time.

Spatial Insights

We wish to first highlight the value of knowing the spatial context of climate measurements. We
previously showed in Figure 3.9 how temperature and humidity vary as the sensor is moved to
different locations. The same measurements could have been collected without the help of a
robot (although perhaps not with the same accuracy and precision). However, we are missing
the spatial context that allows us to see how measurements at these different locations should be
correlated. Fortunately, the data collection with mobile platforms excel at adding accurate and
precise spatial context for each sensor measurement.

Figure 4.14a shows several 30 minute snapshots of fine-grain temperature and humidity maps
collected across our environment. We can see that there are no major variations in sensor val-
ues across different locations, which suggests that temperature and humidity is fairly consistent
across a building. We do see clear differences across snapshots making it seems like trends over
time should yield interesting insights.
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(a) Morning temperatures (b) Evening temperatures (c) Humidity

Figure 4.14: Indoor climate maps showing temperature and humidity from 30 minute snapshots.

Temporal Insights

Even though a single robot has limited visibility of the environment at any point in time, the
accumulation of measurements over time provides valuable temporal insights. Because climate
sensors exhibit consistent periodic variations based on the time of the day, we can aggregate
measurements from deployments over many days and extract fine-grain temporal insights. Using
climate measurements collected during a 3 week deployment at NYU, we discretely characterize
climate trends based on the time of the day. We are able to show consistent rise in temperature
and humidity starting around 6 pm that were later found to be intentional efforts in turning off
the HVAC system for energy savings.

We discretize our environment spatially into 20m grid regions and temporally into 30 minutes
slots over different times of the day. We begin by comparing average temperature and humidity
collected by the AM2315 sensor as shown in Figure 4.15. The most significant variation occur
consistently at 6 pm with simultaneous increases in temperature and decreases in humidity, which
is associated with turning off the HVAC system. More interestingly is that while temperature
remains fairly consistent during the work day, humidity experiences more significant variations
suggesting that the HVAC system optimizes primarily for temperature alone. Interestingly, the
comfort level humans feel is actually a combination of temperature and humidity so this may
explain why occupants in certain offices felt colder than others.

The variations in humidity might be explained either by measurements collected across dif-
ferent days or across different locations. We first further segment our measurements based on
the day of capture as shown in Figure 4.16. Notice that temperatures are pretty consistent across
different days. In contrast, humidity differs considerably in some cases by nearly 3-4 percent
depending on the date of capture. Clearly, our indoor climates follow the same general trend
across different days but humidity stands out as varying the most.

Finally, we consider the different in climate based on region by simply separating the mea-
surements based on the 20m x 20m regions uniquely numbered in Figure 4.17. In this case,
we affirm our previous observations that there are few obvious differences in climate based on
location. Looking at the trends a bit more carefully, we can see minor differences. For exam-
ple, region #10 tends to have consistently higher temperatures than region #9 suggesting minor
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(a) Overall average temperature (b) Overall average humidity

Figure 4.15: Average temperature and humidity within one standard deviation in NYU.

(a) Temperature (b) Humidity

Figure 4.16: Raw temperature and humidity values separated based on measurement date.
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spatial differences.

(a) Temperature (b) Humidity

Figure 4.17: Average temperature and humidity of non-overlapping 20m grid regions.

With discrete analysis over data collected by a robot, we are able to first reveal meaningful
trends in time. By further segmenting sensor measurements based on when and where they were
collected, we are able to better understand possible reasons to explain where differences might
arise across our environments.

4.5 Summary

In this chapter, we introduced a discrete representation to extract spatial and temporal insights
from the stream of fine-grain sensor measurements captured by a mobile platform. We specif-
ically developed a discrete spatial discretization centered around locations where the robot can
actually reach for more effective distribution of sensor measurements captured while moving
around. With measurements grouped based on similar spatio-temporal contexts, we could easily
apply simple statistical metrics to differentiate trends across our buildings. We show how these
efforts reveal insights from actual sensor data to better see exactly how our buildings vary in
space and change over time.
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Chapter 5

Active Navigation of Robots for
Measurement Needs

Autonomous robots are unique because we can control their movements and pro-actively seek
out subsequent sensor measurement locations. Where and when the sensor measurements are
collected depends entirely on where the robot navigates. Relying on measurements opportunis-
tically captured at locations traversed when executing traditional robot service tasks results in a
skewed incomplete measurement coverage. We present two approaches for generating trajecto-
ries when the robot has limited data collection time. Our first approach called navigation-based
trajectories focuses on making data collection efforts indiscernible from normal robot navigation.
Our second approach called grid-based trajectories allows the robot more flexibility to wander
along hallways in a zig-zag manner that clearly indicate the robot is focused on gathering sensor
measurements.

Both approaches need to effectively utilize the robot’s limited data collection opportunities
by focusing its efforts on sensor measurement priorities. Because measurement priorities change
over time, our algorithms will end up generating different trajectories over time. The idea is treat
time as a cost and measurement priorities as a reward. By generating the highest reward path
given limited time, we are able to strike a balance between collection time and sensor measure-
ment needs. For the navigation-based trajectories, rewards are distributed along the edges of the
robot’s navigation graph where we find that the discounted-reward traveling salesman problem
(DRTSP) algorithm is able to generate effective data collection trajectories. For the grid-based
trajectories, rewards are distributed across discrete grid regions resulting in a much larger search
space that we address with ant colony optimization (ACO). Our results show that these trajecto-
ries allow the robot to automatically navigate around the environment based on spatio-temporal
sensor measurement needs.
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5.1 Navigation-Based Data Collection Trajectories

Navigation-based trajectories aim to preserve existing navigation behavior (e.g. primarily straight
movements with sporadic in-place turns along the robot’s underlying navigation graph shown in
Figure 6.1b) so that data collection efforts are opaque to nearby humans. This is motivated by
the desire for robots that operate cooperatively in the environment (e.g. moving at predictable
speeds and few sudden stops).

We formulate the planning problem as a reward collecting traveling salesman problem (TSP).
Even if deployed from the same starting location, different paths will be generated over time
because the algorithm uses a history of data collection efforts over time to influence measurement
priorities as shown in Figure 5.1. We evaluate our framework under several variations of the
traveling salesman problem and find the discounted-reward TSP performs well when even faced
with operational uncertainties (e.g. data collection time).

5.1.1 Path Planning for Data Collection

Our approach computes trajectories at the beginning of each active data collection deployment
by combining the robot’s starting location, expected deployment time, and the measurement
value of different locations. Should the robot have sufficient time to complete the entire path,
we simply compute another path based on the updated measurement priorities (e.g. if targeting
measurement coverage, we update the time since last visit).

Because we want these trajectories to traverse naturally along the robot’s underlying naviga-
tion graph, our goal is to generate paths that traverse the edges of this graph. We discriminate
navigation paths by assigning costs (e.g. time to traverse) and one-time rewards (e.g. time since
last visit) along each edge of the navigation graph. We use one-time rewards as they are supposed
to reflect measurement priorities. Once an edge is visited, it should have lower reward so that the
trajectories do not endlessly traverse the same edge. By readjusting these one-time rewards be-
tween deployments, this will enable two successive deployments from the same starting location
to have completely different navigation strategies like the example show in Figure 5.1.

70



(a) Deployment #1 (b) Deployment #2 (c) Deployment #3 (d) Deployment #4

Figure 5.1: Different navigation path choices across multiple deployments.

5.1.2 Formulation as Prize Collecting TSP

We assume that the robot wants to visit all measurement locations if time permits. With uncertain
deployment time, the robot needs to identify paths that effectively utilize the robot’s time even
if interrupted earlier or later than expected. Each edge emeas of the robot’s navigation graph is
attached with a corresponding cost and reward parameters 〈ei, ci, ri〉. With this representation,
was can apply variants of the prize collecting traveling salesman problem to compute navigation
trajectories. Greedily visiting edges based on highest measurement priority is likely to be sub-
optimal because it takes time to navigate from edge to edge. An effective algorithm will balance
the cost and rewards to best utilize the robot’s limited deployment time.

Cost-Reward Parameters

The robot’s active data collection strategy can be influenced by adjusting the cost and reward
parameters.

There are two types of costs for each measurement location: navigation cost cnav and mea-
surement cost cmeas. The navigation cost is based on traversal time, the time to cover the shortest
distance across the edge at normal speeds. Measurement cost can be much higher for reasons
like slower speeds for more accurate sensor measurement locations. As a result, the total cost ci
of an measurement location is either its navigation cost or measurement cost ci = {cnav|cmeas}
depending on whether the robot is simply driving through or capturing measurements along the
edge.

Rewards discriminate the relative importance of different measurement locations. The robot
collects one-time rewards for each measurement location ri for each deployment that are either:
no reward rno, low priority reward rlow, or high priority reward rhigh. The total reward is simply
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the sum of these rewards ri = rno + rlow + rhigh. As an example, the low priority rewards can
be the difference in time from the current time and time since last visit to help bias unvisited
locations. The high priority rewards provide additional flexibility to further influence the robot’s
navigation for particularly important measurement locations. For example, if we wish for a
location to be visited once a week, then we adjust rhigh based on this condition.

TSP for Computing Paths

With the formulation of each edge as 〈ei, ci, ri〉, we can construct a tour to visit all reward-
producing edges. We explain why this is suitable for variants of the prize-collecting traveling
salesman problem. First, the traditional traveling salesman problem (TSP) only considers finding
the shortest path cycle so it does not incorporate the different rewards across edges. The TSP is
really only well-suited when the robot has enough time to visit all reward-producing edges.

min
∞∑
0

ci (5.1)

In contrast, the prize collecting TSP (PCTSP) incorporates rewards collected over time. One
variant is called the orienteering problem, which finds the maximum reward path within a fixed
time limit MAX COST . The orienteering problem only computes a path within the given time
limit so it is best when the exact deployment time is known.

max

j∑
0

ri

s.t.

j∑
0

ci ≤MAX COST

(5.2)

Another variant called the discounted-reward TSP (DRTSP) finds the maximum discounted re-
ward path. Essentially, rewards are weighted with a discount rate γ depending how much cost
has been accumulated up to that point. The idea is that the longer it takes to collect rewards
at a certain location, the lower the expected reward should be because of the increased likeli-
hood of the deployment being interrupted. The discounted-reward generates path traversing all
reward-producing edges that may be longer than those generated by the TSP if higher cumulative
rewards are collected earlier along the path.

max

∞∑
0

ri
(1 + γ)ci

(5.3)

Selecting an appropriate discount rate γ is very important parameter. Equation 5.4 shows how
one can select an appropriate discount rate γ by providing the proportion of reward p that should
remain after some expected deployment time t. For example, in our evaluation, we aim to dis-
count the reward by 50% of the original value by the time 20 minutes have passed. As a result,
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we use a discount rate of 1.2%. By adjusting the discount rate, one can influence how important
it is for measurements to be collected earlier or later during a deployment.

1

(1 + γ)t
= p

γ = e
ln( 1p ))

t − 1

(5.4)

Solving these variants of the TSP is NP-hard but we are working with metric maps, which
is the special case Euclidean TSP. As long as costs are only based on distance, we can use the
minimum spanning tree heuristic in combination with the triangle inequality to find paths within
a factor of two optimal Jaillet [1988]. Using this heuristic, we are able to quickly compute
navigation trajectories that effectively prioritize sensor measurement needs.

Adjusting Rewards Across Deployments

Our original goal was to adjust trajectories over time in response to changing measurement needs.
Notice that the DRTSP will generate the same trajectory given the same inputs. By readjusting
rewards after each deployment, we can ensure that the robot reacts to changing measurement
needs. For example, if we are targeting measurement coverage then rewards will be higher for
less recently visited locations. By computing the DRTSP with different sets of rewards across
deployments, we are able to generate intelligent and reactive navigation strategies that adapt over
time.

5.1.3 Evaluation

In our evaluation, we compare the DRTSP against other variants of the TSP and show that it is
best suited to handle uncertain deployment time. We first compare how different TSP variants
balance the tradeoffs between cost and rewards during a single deployment. We then show
how DRTSP distinguishes itself across multiple deployments because it computes navigation
trajectories that react to changing measurement needs over time.

Single Deployment Path Strategies

We want to distinguish how effectively the different algorithms use the robot’s limited data col-
lection time. Presented with a specific situation, we show how much reward each approach would
collect if it had been interrupted after different amounts of time.

In our example, we consider a robot with an expected deployment time of 20 minutes. From
a real navigation map of an enterprise environment, we have marked 25 high priority hallway
segments assigned uniform expected measurement reward value of 1. Low priority hallways can
be optionally visited with a reward of .01 to incentivize traversals across different hallways.

The orienteering algorithm is provided a 20 minute limit while the DRTSP uses a discount
rate of 1.2% computed from the expected deployment time of 20 minutes. Figure 5.2 shows the
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accumulated rewards by the three approaches. There are clear differences in how each planner
prioritizes the order in which to visit these locations. First, the original TSP naturally finds a path
that takes the least amount of time since it only consider the costs. As a result, it has the lowest
total reward collected by the 20 minute time limit but will be the first path to reach the maximum
reward. Both the orienteering problem and discounted-reward TSP (DRTSP) incorporate rewards
so it is no surprise they find paths with high total reward by the 20 minute mark.

Figure 5.2: Total reward collected over time for one path by the three variants of the TSP.

The orienteering solution excels when the exact deployment time is known but has no contin-
gency plan should there be additional time. In essence, the orienteering problem succumbs to the
same limitations as greedy approaches that locally navigate to the next highest reward location
without considering the effect on the remaining reward collection opportunities. Of course, the
orienteering solution does have a slightly longer greedy time horizon that it considers.

In contrast, the DRTSP has a plan for additional deployment time so it will continue travers-
ing the rest of the environment until all locations are visited. Notice that the total reward before
the 20 minutes time limit remains consistently higher than the others, which means the DRTSP
will collect higher rewards even if interrupted early. This arises due to the DRTSP placing a
higher value on rewards collected earlier during the deployment. An additional benefit of the
DRTSP is the opportunity to motivate exploration of different routes. With the small .01 reward
for low priority locations, we see that DRTSP covers an additional unique 14.16 meters over the
shortest path TSP in exchange for traveling an additional 33.22 meters as shown in Figure 5.3.
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Figure 5.3: Total distance traveled versus # unique locations visited.

Across Multiple Deployments

We investigate how navigation paths evolve across multiple deployments due to readjustment of
rewards after each deployment. We apply a simple situation where high priority locations are
assigned reward 1 if not visited in the last three deployments and reward .1 for the remaining low
priority locations.

First, we show what it means to adjust navigation strategies over time. Figure 5.1 shows how
the three algorithms perform when the robot is given a fixed 20 minute time limit each deploy-
ment when starting from the same initial position. High priority locations (stars) have not been
visited in the previous three deployments versus low priority locations (diamond) have been re-
cently visited. The starting position indicated with the circle S. The navigation order is indicated
by the gradient from green to red as well as select arrows. It takes at least three deployments to
fully cover the environment requiring effective usage of data collection opportunities. As we can
see, adjusting the rewards allows the robot to react to its previous data collection efforts.

Next, we show how effective these algorithms perform across multiple deployments with
uncertain deployment times. We consider deployment times randomly generated from Gaussian
distribution with mean of 20 minutes and standard deviation of 10 minutes when starting from the
same initial location. Rewards are adjusted after each deployment as before. Orienteering is once
again given a 20 minute time limit and DRTSP is given a 1.2% discount rate. Figure 5.4 shows
the proportion of measurement locations visited within the last three deployments. It is desirable
to have higher proportion of recently visited measurement locations as it indicates more thorough
measurement coverage. Since the TSP does not consider rewards, it simply executes the same
navigation path and serves as a baseline. The orienteering solution is able to maintain a higher
proportion of recently visited locations but it fails to take fully advantage of situations where the
robot has additional time. The DRTSP is most effective at ensuring fresh measurements since it
emphasizes paths that collect rewards early while also having a plan in case the robot is deployed
longer than the expected deployment time.
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Figure 5.4: Percentage of measurement locations visited in the previous three deployments.

5.2 Grid-Based Data Collection Trajectories

If we allow the robot to more freedom to move around (e.g. abrupt stops and zig-zag motions) for
targeted data collection, then we can collect higher granularity sensor measurements to better dis-
tinguish fine-grain variations (e.g. more measurements within corridors). No longer constrained
by the coarse-grain navigation graph, we can generate detailed trajectories across a grid-based
representation of measurement priorities. Given the larger search space, traditional variants of
the TSP are unable to scale effectively so we turn to stochastic efforts like ant colony optimization
for generating trajectories. Our evaluation will show that such heuristics are able to effectively
utilize the robot’s limited data collection time while also incorporating the spatio-temporal value
of sensor measurements.

5.2.1 Trajectories for Spatial Measurement Needs

We first consider trajectories when given a spatial snapshot of measurement needs. Given a
discrete spatial representation (e.g. our navigation adjusted grids) where some cells are marked
with one-time rewards as shown in Figure 5.5a, a fixed deployment time, and a starting location,
we are once again faced with the prize collecting traveling salesman problem (PCTSP) Kantor
and Rosenwein [1992]. Known to be NP-hard and facing a large search space, we turn to the
ant colony optimization (ACO) heuristic because it is an incremental algorithm that scales better
than alternate efforts and quickly finds reasonable solutions Montemanni et al. [2011] like those
shown in Figure 5.5b.

We first define the search space and then discuss how ACO generates navigation trajectories.
Our search space is a set of vertices and edges. Each grid cell ca,b is vertex vi and grid cell
adjacencies correspond to an edge ei,j . The distance cost di,j is defined to be distance between
midpoints of adjacent regions. Reward ri is attached to each vertex vertexi We also have a
heuristic value ηi,j for each value representing the reward of reaching vertex vj by traveling over
the edge, ηi,j =

rj
di,j

. We are once again faced with a search space of costs and rewards over a
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(a) Reward Snapshot (b) Two Ant Trails

Figure 5.5: Example of rewards distributed across environment and ant trails.

graph over which we wish to compute a maximum reward path.

In ACO, simulated ants move across grids in the environment (represented as a graph of
vertices V and edges E), leaving phermones τi,j along the edges traversed. These phermones
placed along edges of the graph provide information to subsequent ants reflecting the desirability
of the trail. Each time an ant reaches a vertex vi, it chooses between possible edges to traverse
from these phermones. According to the probability of exploitation Pexploit, either the ant 1)
explores by randomly selecting an edge based on a weighted probability of these phermones or
2) exploits by selecting the most desirable path. Over time, edges ei,j leading to higher rewards
end up having more phermones τi,j , which in turn encourages more ants to follow. The result
of this algorithm are navigation trajectories that effectively utilize the robot’s time for collecting
high priority sensor measurements.

Ant Colony Optimization Algorithm

We discuss the ACO algorithm in more detail as shown in Algorithm 5. At the high level, we
track the best path discovered across multiple ant colony iterations antiters as shown in line 2. For
each ant colony, we create a set of ants AntToRun that are given an initial start location locstart
and collection time timecollect as shown in line 4. The ant colony enters a loop where each ant
takes turns adding an additional vertex to its path. Each ant randomly decides to either explore
or exploit phermone information in line 9-12. The choice is based on a given probability of
exploration Pexploit.
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Algorithm 5 Ant Colony Optimization

1: PhermoneMap← {}{}
2: BestPath← {}
3: for i← 0 to NIterations do
4: AntToRun← CreateAnts(locstart, timecollect)
5: AntsDone← {}
6: while len(AntToRun) != 0 do
7: ant← AntToRun.pop()
8: decision← random()
9: if decision < Pexploit then

10: vnext← ant.Explore()
11: else
12: vnext← ant.Exploit()
13: end if
14: ant.applyLocalPhermones(vnext)
15: if ant.isDone then
16: AntsDone← AntsDone.push(ant)
17: else
18: AntstoRun← AntToRun.push(ant)
19: end if
20: end while
21: for ant ∈ AntsDone do
22: ant.applyGlobalPhermones()
23: BestPath←Max(ant.Path,BestPath)
24: end for
25: end for
26: return BestPath

The ant decides which vertex to move to next based on immediate neighbors that have not
been visited. Suppose the ant’s current vertex is vi. From the set of adjacent edges ei,j , the ant
filters out edges it has already visited. If the ant decides to explore, then it randomly selects
based on a weighted probability pexplore defined as desirability across all options.

pexplore =
τi,j · ηi,j∑k∈NBRSi

0 τi,k · ηi,k
(5.5)

If the ant decides to exploit, then it selects the edge with maximum desirability.

argmaxk∈NBRSi(τi,k · ηi,k) (5.6)

Once the next vertex vj has been decided, we create a path from vi along edge ei,j . In line 14,
the ants apply a local update phermones applyLocalPhermones along edge ei,j to discourage
subsequent ants from following to create path diversity. This phermone update uses a learning
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rate ulocal to decide how quickly to degrade the phermone. τ0 is defined to be the total reward
collected from the best initial path generated pftinit Schilde et al. [2009].

(1− ulocal) · τi,j + ulocal · τ0 (5.7)

Once the set of ants has completed their paths, we perform a global phermone update uglobal be-
fore spawning another set of ants. While the local phermone update decreases the attractiveness
of edges traversed, the global phermone update increases the attractiveness if the ant identified
a path with high rewards. Each ant computes the total reward collected along its path pfttot and
then we identify the path resulting in the maximum total reward pftbest. Along edges of the best
path, we apply the following global phermone update applyGlobalPhermones.

(1− uglobal) · τi,j + uglobal · pftbest (5.8)

The output of ACO is the overall best path PathBest across all iterations. This path will best
utilize the robot’s time for the purpose of data collection.

Evaluation

We want to show how ACO better prioritizes where the robot should navigate for sensor mea-
surement needs. For this experiment, we randomly distribute binary rewards across different
proportions of regions across the environment. Each approach is given starting location in the
center at coordinates (0, 0) and given enough time for the robot to cover 150 grid regions.

We compare several different algorithms. We run ACO with 20 colonies using 10 ants each
and both local and global phermone updates set to be 10%. For ACO, we vary the percentage
of exploitation between 0% and 100%. 0% creates a colony of ants that always explore based
on a weight sum of phermone information. 100% creates a colony of ants that ants always
perform exploitation; in essence, following the initial randomly generated path computed without
phermone information. The greedy algorithm selects the neighboring vertex with hihgest reward,
which makes it a greedy local search algorithm. The random algorithm differs from ACO in that
it always randomly selects vertices uniformly at random.

In Figure 5.6, we keeping the data collection time fixed but vary the amount of rewards
distributed across the regions. Naturally, all approaches collect more rewards as the amount of
rewards to collect increases. Randomized approaches like ACO quickly distinguish themselves
from greedy efforts operating off of local reward information. ACO further separates itself from
purely random efforts as the amount of rewards increase, showing the benefit of information
captured by phermones shared across simulated ants.

Notice that ACO improves after multiple iterations of colony refinement by converging to
better paths. This is evidenced by poor performance of ACO with 100% exploitation. The other
ACO approaches outperform the purely uniformly random approach, especially as the amount
of rewards increases. This suggests that information shared by the phermone map is valuable
in finding high reward paths. This makes sense as the random approach generates paths in an
undirected fashion while ACO takes advantages of history. These approaches do not converge
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even when the environment is fully covered by rewards because we are using one-time rewards.
When paths end up in situations like dead end hallways, then paths are sometimes forced to pass
through already visited vertices that no longer provide rewards. As we can see, ACO is a simple
yet effective solution for generating data collection trajectories when given a spatial snapshot of
sensor measurement needs.

Figure 5.6: Total reward collected as more rewards distributed across the environment.

5.2.2 Trajectories for Temporal Measurement Needs

Measurement value of a particular location may also vary over time (e.g. wireless usage may
decrease when classes end). Generating trajectories that incorporate the time value of measure-
ments are traditionally called the orienteering problem with time windows (OPTW) Kantor and
Rosenwein [1992]. Our formulation of discrete rewards for each time slot simplifies the search
since we know measurement rewards will change together at specific times. We assume that
sensor measurements collected in one time slot have no affect on the value of measurements in
another time slot. For example, we assume that rewards for measurements at a location within the
11 AM to 1 PM time slot are independent of those within the 1 PM to 3 PM time slot. Therefore,
the idea is to independently run a separate trajectory search across each unique reward snapshot
with the additional constraint that the starting position of iteration i + 1 is the ending position
of iteration i. By combining the trajectories into a single one, we effectively have a path that
incorporates both spatial and temporal measurement needs.

Evaluation

We want to show the importance of efforts that consider the time value of measurements. If
one continues to execute a trajectory based on reward snapshots that no longer apply, then it is
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inevitable that their trajectories will fail to effectively utilize the robot’s limited collection time.

In our experiment, the robot is given enough time to traverse 300 grid regions. We randomly
distribute binary rewards across 50 of these grids for each spatial reward snapshot. When there
are multiple time slots, we generate independent spatial reward snapshots for each time slot.
Efforts that do not consider the time value of measurements compute paths from only the initial
reward snapshot to compute a path.

Figure 5.7: Total reward as time value of measurements changes more frequently.

In Figure 5.7, we keep the total data collection time fixed but vary the number of time slots
each with their own independent spatial reward snapshots. Efforts that incorporate the time
value of measurements quickly distinguish themselves from the others by not relying on stale
reward snapshots. As the frequency of time slot changes increase, the opportunity to collect
more rewards similarly increases since each spatial reward snapshot is generated independently.
When executing paths based on stale reward snapshots, the robot is essentially hoping to stumble
upon a high reward locations, which effectively results in strategies no better than random reward
collection. In contrast, ACO with time considerations is able to significantly direct its search
towards appropriate regions and make the best use of its opportunity.

5.3 Summary

While autonomous robots can collect sensor measurements as they perform user specified tasks,
it is desirable for robots to pro-actively navigate to locations of high measurement value when
they have spare time. Given a set of measurement priorities across different locations, we pre-
sented two approaches for generating pro-active data collection trajectories that differ in how the
robot should move across the environment. When we want the robot to move normally along its
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existing navigation paths, we showed that the discounted reward traveling salesman problem best
utilizes the robot’s limited data collection time. When we want more fine-grain data collection
based on a grid-based representation of the environment, we allow the robot to execute more tar-
geted data collection. We showed that ant colony optimization generates paths that incorporate
both the spatial and temporal value of sensor measurements.
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Chapter 6

Data Collection with Other Devices:
Mobile Phones

There are many different types of mobile platforms and they are not all equally capable as data
collectors. A key differentiator is the ability to continuously localize accurately. Naturally, a
robot excels at this due to its large form factor that affords powerful sensors, constrained nav-
igation along a 2D plane, and permissive power requirements. Unfortunately, localization is a
fundamental challenge for devices like mobile phones that have small form factors, have the free-
dom to move in many directions, and cannot use power hungry sensors. Despite these challenges,
it is desirable to utilize mobile phones for collecting sensor measurements because of their ubiq-
uitous presence across our environments today. In this chapter, we investigate how to effectively
recover the locations of sensor measurements captured while mobile devices move across our
environments. Instead of relying powerful exteroceptive sensors only found on robots, we focus
on using simple motion sensor data that are available on most mobile devices today. In addition,
whereas the goal of localization is online location tracking, we focus on the easier problem of
offline path identification because sensor data collection does not require continuous, real-time
sensor updates.

Our approach is based on the idea that indoor environments are generally fairly constrained
(e.g. narrow hallways, small number of intersections). As the device proceeds to move further
along, there are fewer possible paths that it could have traversed. For example, if the device
moved in a straight line 100 m and there is only one hallway 100 m long, then we can uniquely
identify which hallway the device is in but no the direction. If the device proceeds to turn left
and this is only possible in one direction along the hallway, then we can uniquely identify where
the device must be. Our algorithm essentially takes the device’s noisy motion trajectory and
performs map matching with a known map of possible navigation trajectories to determine the
most likely path the device could have traversed. We first apply this trajectory snapping approach
to wheeled robots in order to see if it is possible recover paths traversed from motion trajectories
alone and then extended this to mobile phones. Our evaluation shows that trajectory snapping is
robust in recovering paths traversed and can even overcome map errors. These results support
the idea that less capable mobile platforms like cell phones can be used for collecting sensor
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measurements across our indoor environments.

6.1 Trajectory Snapping for Robots

Our first step is to see if one can recover the path traversed by a mobile device in an indoor envi-
ronment using only motion sensor data. We will test the hypothesis that our indoor environments
have sufficiently limited navigation trajectories such that we can uniquely identify where the
mobile device must have gone. The challenge in relying on motion trajectories is that dead reck-
oning accumulate significant drift over time, resulting in poor location estimates. The intuition
of trajectory snapping is to incrementally force motion trajectory segments to follow the navi-
gation graph that specifies where the device can actually go. The algorithm is inspired by map
matching that has been applied successfully for outdoor, vehicular GPS. Our approach applies
this technique to an indoor setting where we need to overcome the fundamental differences be-
tween globally accurate GPS measurements and locally motion trajectory data. We demonstrate
trajectory snapping can robustly recover the paths traversed even when map errors exist.

We divide our algorithm into several pieces. First, we divide the entire motion trajectory into
smaller, piecewise linear trajectory segments. Next, we perform map matching by iteratively
snapping each trajectory segment to hallways specified by a given navigation graph. This process
eliminates unlikely paths based on a known sensor noise model of the motion data. We then
consider map errors by reasoning about where the motion trajectory stop and resumed following
the given navigation map. Our evaluation shows that trajectory snapping is robust to sensor noise
and that it can handle imperfect maps.

6.1.1 Trajectory Segmentation

Trajectory segmentation partitions the motion trajectory into piecewise segments. This effec-
tively separates the trajectory into forward motions and turns so that map matching can map
them to edges of the given navigation graph. In this section, we will define relevant background
and definitions: the topological map, segmented trajectory, and sensor noise model. We also
define dead reckoning to highlight the difficulty of recovering paths traversed in the presence of
sensor noise.

Environment Maps

There are different types of map representations. A common map representation is an obstacle
map like the one shown in Figure 6.1a that shows where walls in our environment can be found.
This map was generated from a 2D blue print where each wall is represented as a line segment.
In contrast, a navigation map is a graph showing which routes a device can traverse. In indoor
environments, this would be hallways and intersections. In outdoor environments, this would be
roads and junctions. The navigation map representation has played a pivotal role in the success
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of outdoor GPS navigation algorithms so it is natural that our approach uses navigation maps in
an indoor setting.

(a) Geometric obstacle map. (b) Navigation map.

Figure 6.1: Examples of obstacle and navigation map of the GHC building.

Let us more concretely define the navigation graph. If we consider an indoor office-like en-
vironment, then a node is an intersection and an edge is a hallway, where edges allow transitions
between pairs of nodes. Such a representation assumes that the device commits to following a
particular topological edge until an intersection point is reached. We will define a node as an
intersection point (x, y) in global map coordinates. An edge is a transition between two nodes
((x1, y1), (x2, y2)).

Dead Reckoning

There are many possible paths that a device can traverse. Dead reckoning refers to the process
of estimating the device’s position by integrating its motion data across the entire trajectory. We
will see in the definition of dead reckoning how drift errors can accumulate over time due to
integration errors that accumulate rapidly.

We will define a device’s pose to be a particular position (x, y) and heading h in the coor-
dinates of the topological map (x, y, h). Given an initial pose, dead reckoning will recursively
update its pose from the arriving motion updates. Dead reckoning computes its current pose
xi, yi, hi using its prior pose xi−1, yi−1, hi−1 and current motion update dmi, dri. It computes the
global displacement from the motion update and then adds it to the prior pose.
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xi = xi−1 + sin(hi−1 + dri) ∗ dmi

yi = yi−1 + cos(hi−1 + dri) ∗ dmi

hi = hi−1 + dri

Due to the recursive computation, we can see why errors can accumulate very rapidly, result-
ing in significant drift over time.

Segmented Trajectory

Given the difficulty of dead reckoning, our approach will first separate the motion trajectory
into trajectory segments. We describe our approach to generating trajectory segments from the
motion data. Each odometry update u is the change in forward motion dm and rotation dr since
the previous update. The trajectory t is then a sequence of motion updates (u1, u2, ...) ordered by
time. Odometry updates typically occur very frequently (20 Hz for our robot) and capture very
small changes in motion as shown in Figure 6.2.

u = (dm, dr)

t = u1, u2, ...

With such high resolution motion data, each update is insignificant on its own. Therefore, we
turn the trajectory into a much smaller set of significant changes in motion U . This assumes that
the device’s motion can be characterized as a single, significant motion forward dM followed
by a rotation dR. This is reasonable in office-like indoor environments where forward motions
occurs while traversing a hallway followed by rotations to transition at an intersection. Figure 6.3
shows the segmentation of a trajectory, which appears to already significantly reduce drift. The
result is a much shorter segmented trajectory T that will be computationally feasible for our
algorithm to recover route candidates.

U = (dM, dR)

T = (U1, U2, ...)
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Figure 6.2: Raw motion sensor data (green) compared to the ground truth from LIDAR (blue).

Sensor Noise Model

To generate the sensor noise model, we want to compare the ground truth trajectory to the noisy
trajectory from motion data. As shown in Figure 6.3, we can directly see the effect of drift when
performing dead reckoning from noisy motion data. Instead of map matching on each of these
fine-grain motion update, we will apply it to the segmented trajectory that we can see continues
to preserve the shape of the motion trajectory. Let us now define the sensor noise model for the
trajectory segments.

Figure 6.3: Turning raw motion trajectory into trajectory segments for map matching.
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We define the error of a single pair of motion updates to be (εMi, εRi), which is the percent-
age difference of distance traveled εMi and the difference in rotation εRi.

εMi =
dM expect

i − dMactual
i

dM expect
i

εRi = Rexpect
i −Ractual

i

We define the error over the entire route (ηMroute, ηRroute) to be maximum over the entire
sequence of motion segments. As a result, the noise required to reshape a trajectory is related
to the worst behaving snap and not the total sum of noise errors. This will ensure that we can
compare errors across routes of different lengths.

The noise model provided to our algorithm will also be the pair (ηMmodel, ηRmodel). Our
algorithm searches for all routes that fit within the noise model. As a result, the noise model
must account for deviations from both odometry errors and the maximum deviation from the
topological map. Its values must bound the worst case snapping errors.

ηM = max(εM1, εM2, ...)

ηR = max(εR1, εR2, ...)

6.1.2 Indoor Map Matching with Navigation Maps

The snapping algorithm assumes that we are given the topological map, sensor noise model,
and segmented motion trajectory. The algorithm prunes possible paths that fall outside the given
sensor noise model and then ranks the remaining paths based on errors across the entire trajectory.
The key contribution is fully utilizing the entire motion trajectory to determine where the device
must have gone.

The snapping algorithm essentially searches across all possible paths and snaps them to the
motion trajectory segments. A snap refers to matching a trajectory segment to some edge in the
navigation graph from some starting state. For example, consider the top left starting location in
Figure 6.3 comparing the segmented trajectory versus the ground truth path. We need to make
two modifications so that the first trajectory segment snaps to the ground truth edge: a slight
clockwise rotation around the starting position and then a minor stretch. Once modified, we are
not at a new position and orientation and proceed to repeat the process until every trajectory
segment is snapped to a map edge.

Unfortunately, there are often multiple different map edges to snap to so we use a search
tree to explore all possible choices that follow the given sensor noise model. Each level in the
tree corresponds to the corresponding index of the motion update in the trajectory segment. It
is effectively a brute force search where the maximum depth of the search tree is bounded by
the number of trajectory segment updates. There are several key reasons why this algorithm
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is computationally feasible. First, because trajectory segments represent coarse-grain motion
updates, we have significantly fewer segments to snap when compared to the total number of
fine-grain motion updates captured at 20 Hz. Second, branches can be pruned when a snap falls
out of bounds of the given sensor noise model; therefore, devices with more restricted sensor
noise have a reduced the search space. Finally, we only consider navigation edge choices that are
direct neighbors of the end point of the previously snapped trajectory segment. This ensures that
the final path recovered is contiguous and heavily limits the number of map edges to consider
(because most intersections in indoor environments only connect to a small number of hallways).

Let us more concretely define the search space with the following rules:

1. A node’s value is the device’s current pose (x, y, h).

2. A node’s pose position (x, y) should correspond to an intersection in the topological map.

3. A parent node at level i can only have child nodes at level i+ 1.

4. The position of a parent node (xp, yp) and child node (xc, yc) must have a connecting edge
in the topological map.

5. A parent at level i with pose (xp, yp, hp) can have a child node with pose (xc, yc, hc) if
applying the motion update (dMi, dRi) results in a snapping error (εMi, εRi) within the
bounds of the given noise model (ηMmodel, ηRmodel)

The algorithm begins by creating a set of root nodes at level 0 initialized to one
of the intersection points in the topological map. For each node, we then recursively compute
the reachable intersections in the topological map from the node’s current pose. A child node is
created if the error in the expected and actual motion updates are within the sensor noise model
(ηMmodel, ηRmodel). If the search reaches a depth where there are no more motion updates, then
all trajectory segments have been successfully snapped. Once the search completes, we have a
set of successfully snapped routes from which we can select the optimal.

Too restrictive of a noise model may not successfully recover the actual route. A more per-
missive sensor noise model will naturally increase the size of the search space; however, it does
not reduce the quality of the routes discovered. In fact, it may discover many alternate routes,
which is not necessarily undesirable because we know about the error bounds (ηM, ηR) for each
route. If there is one route that has a snapping error significantly lower than all others, then it
is very likely that it is the actual route. In contrast, if several routes have similar errors, then
the best route is now more ambiguous. The strength of our algorithm is the ability to effectively
quantify confidence in the recovered routes.

6.1.3 Overcoming Navigation Map Errors

A limitation of our snapping algorithm is the assumption of a perfect navigation map. Unfor-
tunately, it is inevitable that errors will be present in the map so it would be desirable for our
algorithm to gracefully handle these situations.
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For example, a missing navigation edge has two possible outcomes: either we recover an
incorrect path or fail to recover a path. One way to reduce missing navigation edges is to auto-
matically connect all intersection points with visibility to one another. An example is shown in
Figure 6.4, where open areas are densely covered with numerous edges. In exchange for a larger
search space, we mitigate the possibility of missing navigation edges.

Figure 6.4: Example of navigation graph with unmarked edge.

Unfortunately, it is still possible to have missing navigation edges. For example, suppose
we are missing the hallway edge shown in Figure 6.4. One approach to is to soften the hard
constraint that a parent and its child must be connected at their ending and starting position,
respectively. This property ensure contiguous paths but means that if an edge is missing, we
cannot recover the path. The solution is to set a user specified limit on the number of nodes
where this property does not need to hold.

This simple extension allows our algorithm to be flexible enough to address a few missing
navigation edges while still taking advantage of connectivity in the topological map to find only
the most likely routes and also remaining computationally feasible.

6.1.4 Evaluation: Trajectory Snapping Robot Motion

In our evaluation, we record odometry and localization data from an autonomous, omni-directional
wheeled robot Veloso et al. [2012a] equipped with odometry, LIDAR, and Kinect sensors. The
robot is directed to visit a sequence of waypoints throughout the environment. Each waypoint
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corresponds to a node on the topological map. The recorded odometry trajectory segments are
given to our algorithm to see if it can recover the route.

This setup allows us to evaluate our algorithm on repeatable, real odometry sensor data for
which we have the ground truth. It also introduces additional challenges for our algorithm be-
cause the robot’s autonomous behavior in avoiding obstacles or wall following may violate the
assumptions of direct motion between waypoints. We will show that our algorithm can still
successfully recover all routes in the presence of such challenges.

Figure 6.5: Possible routes and their corresponding snapping modifications.

Recovered Routes With the given sequence of trajectory segments from the robot’s odometry,
our algorithm returns a set of all recovered routes. Figure 6.5 shows a set of routes recovered
from the trajectory segments from Figure 6.3. Notice that the recovered routes shown looks
remarkably similar except for a select few highlighted segments, which are all located in an open
area where there were several possible choices. This similarity means we can be fairly confident
that we have correctly identified most of the actual route. If the algorithm would have found
routes with completely different start and end positions, then it would be more difficult to be
confident about choosing a particular route. These types of conclusions are made possible only
because our algorithm is able to provide us with the set of all candidate routes for the particular
trajectory and map. Such conclusions would not be possible with other approaches including
particle filters that must work with a much larger search space.

Optimal Routes The robot was directed to follow the sequence of waypoints specified by
the actual routes shown in Figure 6.6. Each route was repeated for five iterations to evaluate
repeatability of our algorithm. Without any corrections, the recorded trajectory segments result
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Figure 6.6: Example routes that trajectory snapping is able to recover.

in fairly poor routes with many being completely outside the map. Drift errors for the routes
differ depending on a combination of difficulty and length of the route, directions of turns, and
other autonomous behaviors.

Iter Route
1 2 3 4 5

1 2 (6) 3 (6) 1 (24) 1 (9) 1 (96)
2 1 (6) 3 (6) 2 (24) 1 (18) 1 (96)
3 1 (6) 3 (6) 1 (24) 1 (9) 1 (96)
4 1 (6) 3 (6) 1 (24) 1 (18) 1 (96)
5 1 (6) 3 (6) 2 (24) 4 (18) 1 (96)

Figure 6.7: Rank of ground truth path among feasible routes.

Each route was repeated for five iterations. The algorithm was given a very permissive noise
model of (eM, eR) = (65%, .8radians). From the set of recovered routes, we rank them based
on a simple sum of squared distance on the maximum snapping error of each route

√
eM2 + eR2.

Figure 6.7 shows the ranking of the actual route to the total number of recovered routes. Ranking
is computed with a sum of squared difference of snapping errors. In most cases, the actual route
has the highest rank. As shown in Figure 6.5, while the number of alternative routes appears
large, many of them are small variations of the overall actual route. Nevertheless, the success of
our simple ranking algorithm affirms the observation that the actual route will typically have the
most conservative snapping error bounds.
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6.2 Trajectory Snapping for Mobile Phones

Extending trajectory snapping to mobile phones is challenging because phones have more de-
grees of freedom and lack powerful exteroceptive sensors found on robots so we need to make
some assumptions. We assume that users continuously move across the environment and carry
their cell phones under consistent conditions (e.g. phone flat against shirt pocket or held in hand)
and continuously move across the environment. By carefully extracting motion data in the form
of steps and heading, we are able to recover the underlying path traversed by the user under
different phone orientations.

The two major challenges in extending trajectory snapping from robots to mobile phones are
robust extraction of trajectory segments from cell phone motion data and ensuring that trajectory
snapping continues to be robust when using even noisier motion data. In this section, we focus
on extracting trajectory segments by focusing on identifying steps and heading based on mobile
phone motion data. This is challenge because user activity, device type, and phone position on
the body all contribute to the difficulty of robustly extracting motion trajectories. We discuss
how we are able to extract both steps and heading of the mobile device as long as the cell phone
is held in a fixed orientation relative to the walker (i.e. in the hand or in a pocket). Our evaluation
shows that trajectory snapping continues to be robust despite the more permissive sensor noise
model that mobile devices are subject to.

6.2.1 Step Extraction

Instead of directly using the 3-dimensional acceleration signal, we use the magnitude of accel-
eration normalized to zero-mean. Thus, if a(t) = (ax(t), ay(t), az(t)) denotes the acceleration
signal of the phone at time t, we consider the quantity a′(t) = |a(t)| − |a(t)|. We denote the
corresponding array of normalized acceleration measurements {a′(t1), . . . , a′(tn)} by A.

Naive Threshold Crossings The most naive approach would identify steps as zero-crossings
of the normalized acceleration; unfortunately, this is unreliable in practice due to noisy sensor
measurements. A slightly better approach applies a lower and upper threshold that the normal-
ized accelerations must both cross in order to register as a step. This method is efficient and does
not require advance knowledge about the period of each step; however, it assumes that the step
signal is sinusoidal. It will not be able to cope with more complex accelerometer signals.

An example is shown in Figure 6.8 where lower and upper thresholds are shown with horizon-
tal, dashed grey lines. The vertical lines indicates the estimate of where each step begins, where
green indicates correct registrations and red incorrect steps. For example, Figure 6.8a shows how
the threshold crossing approach is fairly accurate when the phone is held in the hand. In contrast,
Figure 6.8b shows how such an approach fails when the device is placed in the pocket, resulting
in over-counting of steps.
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(a) Correct

(b) Incorrect

Figure 6.8: Counting steps with naive threshold crossing.

Template Matching for Steps With template matching, we assume a periodic function be-
tween acceleration and time but we do not manually design conditions based on prior assump-
tions about the shape of the acceleration signal. Instead, our template-matching algorithm auto-
matically learns the periodic function and identifies steps based on a learned template.

There are three major steps: estimating the periodicity of steps, identifying the initial tem-
plate, and then counting the number of repetitions of the template. Periodicity arises in the
normalized acceleration signal as the human takes turns between stepping with their left and
right foot (so each template identifies two steps). We apply a Fast Fourier Transform (FFT) to
the signal to extract the period P of these two steps.

To identify an initial step template, we look at an initial time interval I0 = [t0, t0 +P ], where
t0 is the initial time when the human started walking. Within interval I0, we find time tm ∈ I0
that maximizes the acceleration signal because is usually corresponds to the person’s foot hitting
the ground. Roughly estimating that each step takes the same amount of time, we then choose
the time interval [tm − P

4
, tm + 3P

4
] to represent the step template.

Finally, we count steps across the entire normalized acceleration signal by finding step tem-
plate matches. For each step i, we search for the time interval Ii = [ti, ti + P ] during which
the step occurred. While human steps are not perfectly synchronized, we expect that the starting
time for step i will quickly follow the end of the previous step, {ti−1 + P < ti < ti−1 + 5P/4}.
We optimize for the best starting time ti by minimizing the mean squared error of the template
match. This process is repeated for each step until the entire normalized acceleration signal is
processed.
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Figure 6.9 shows the result of applying template matching to the same readings from Fig-
ure 6.8. Template intervals are indicated by dashed grey lines and the template is overlayed
in blue. Nevertheless, these results indicate that template matching can tolerate many different
shapes of steps as long as the acceleration data is periodic. In addition, it can adjust to variations
over time including slight stops and changes in pace. This explains the minor gaps between
several of the template as the algorithm adapts to imperfectly synchronized steps.

(a) Correct

(b) Incorrect

Figure 6.9: Counting steps by template matching.

6.2.2 Identifying Turns

We also wish to extract changes in heading regardless of phone orientation. Compass readings
are useful only if the relative orientation of the phone and body are known for all measurements.
Additionally, compass errors may result from local magnetic fields or device misalignment. Ac-
cording to Gusenbauer et al. [2010], typical mobile device compass errors, when compared to
known headings, are at least 5 degrees. We therefore use both gyroscope and accelerometer data
to get a raw estimate of the headings.

Assuming that the main component of acceleration is gravity (true in our context), the di-
rection of acceleration can be used to determine where the ground is, no matter the orientation
of the phone. We then approximate the angular velocity of the turning of the user’s body using
the acceleration-direction component of the gyroscope reading. The following equation demon-
strates the relationship between ω, the estimated angular velocity of the turning of the user, and
the gyroscope and accelerometer data:
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ω =
ωxax + ωyay + ωzaz√

ax2 + ay2 + az2
,

where ωx, ωy and ωz are the measures of angular velocity in the three axes of the phone.

The angular velocity ω is a good measure of the turning of the device carrier if the phone is
not shaking severely relative to the carrier’s body. No knowledge about how the phone is placed
is required so the user may change the phone’s position throughout the data collection period
(e.g. taking the phone from the pocket and holding it in the hand). However, in our experiments
this method will still perform poorly if the user swings their arms significantly or places the
phone in a very loose pocket.

6.2.3 Segment Identification for Cell Phones

We regard a series of consecutive steps with small total change in heading as a straight walk
and a series with larger change of heading as a turn. Explicitly, consider a sequence of steps
{xi}mi=1 with respective headings {ψi}mi=1, let τ > 0 denote the turning threshold, and w, an
odd integer greater than 3, the window length parameter. For each i, consider the window Wi

of w consecutive steps centered at step i (restricting the window size for i near 1 and m as
necessary), and let dψi be the largest difference between all headings in Wi. Given a consecutive
sequence dψi, . . . , dψi+k, k ≥ 0, each of which is greater than τ , we say a turn occurred at index
median({i, . . . , i+k}). After the turns are identified, the segments are calculated as the summed
length of the steps between two turns and the angles of the segments are calculated as difference
in headings between consecutive turns.

Regarding the choice of parameters, w should be larger when the space is more open. For
example, in a shopping mall with wide intersections, people may take more steps to finish a turn
than in office environments. However, with a large w the window sometimes can contain more
than one turn, resulting in mis-identification of turns. On the other hand, the turning threshold
τ should be small enough to recognize turns, but much larger than the error in individual step
headings, so avoid over-counting turns.

Note that the task of separating turns and straight walks can be ambiguous due to the difficulty
in defining a turn. One can walk in a curve along a straight hallway and in a straight line along a
shallow-angled intersection. This kind of ambiguity can lead to error in segment identification,
but a flexible topological map can account for this. In general, we would rather consider two real
segments as one rather than break one actual segment into two. For example, in Figure 6.10, the
segment identification algorithm ignored two small turns. The modification of the topological
map is to actually allow some intersections that pass through walls to be connected by artificial
“hallways”. To build this topological map, one can first connect all adjacent intersections without
passing through walls, and then artificially connect non-adjacent (but close) intersections which
don’t require a big turn to reach one from the other.
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6.2.4 Evaluation

We implement the snapping algorithm in NYU’s Center for Urban Science and Progress, which
occupies the 19th floor of 1 MetroTech Center in downtown Brooklyn, NY. This setting is the
floor of an indoor office building, with narrow corridors, offices, and cubicles. Most hallways are
between 5 and 50 meters long, and most angles between corridors are right angles. Figure 6.10
shows both the underlying map of CUSP, along with the actual 12-segment long path traversed,
as well as the topological map used for snapping.

Figure 6.10: Trajectory from real cell phone motion data at NYU.

Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

Segment 1 2 2 1 1 1 1 1 1 1 1 1
Segment 2 2 2 1 1 1 1 1 1 1 1 1
Segment 3 - 2 1 1 1 1 1 1 1 1 1
Segment 4 - - 1 1 1 1 1 1 1 1 1
Segment 5 - - - 2 2 1 1 1 1 1 1
Segment 6 - - - - 3 1 1 1 1 1 1
Segment 7 - - - - - 2 1 1 1 1 1
Segment 8 - - - - - - 1 1 1 1 1
Segment 9 - - - - - - - 2 2 2 2
Segment 10 - - - - - - - - 2 2 2
Segment 11 - - - - - - - - - 3 2
Segment 12 - - - - - - - - - - 1
Full path 2 2 1 2 3 2 1 2 2 3 2

Data was collected from an Android application installed on the second author’s handheld
Samsung Galaxy S4 smartphone and converted into a segmented motion trajectory that also
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appears in Figure 6.10. We used dm1 = 0.25, dm2 = 5, and da = 0.8, roughly π
4

radians, as
error thresholds. We took the window length parameter w = 5 and the turning threshold τ = 0.4
radians. We also assumed a length of 0.8 meters for every two user steps when converting the
raw input data into a segmented trajectory.

We have plotted the result of the snapping algorithm in the lower right panel of Figure 6.10,
which conforms quite closely to the actual traversed path, although direction of motion is not
indicated. The snapping algorithm correctly snapped all twelve segments to their best match.
In this implementation there were two output paths that were admissible within the given error
thresholds, but given multiple admissible paths, we rank them by total percentage error (the sum
of percent angular and percent length errors over all trajectory segments) and the correct path is
selected when choosing the lowest-error path.

Next, we examine how uncertainty in the snapped path varies with the addition of new seg-
ments. In particular, we look at both how the total number of possible snapped paths varies, as
well as how the number of possible matches for a given segment varies.

First, we introduce some notation to facilitate a discussion of uncertainty in the snapped
trajectory as the number of segments in a path increases. For a topological map M , a set of error
thresholds E, and an input trajectory of n segments, Γn =

∑n
k=1(Sk, θk) as above. We define

- ρj(Sk) = the number of matches for segment Sk, considered as a segment in Γj , where
j ≥ k, when Γj is snapped to M with thresholds E.

- ρ(Γj) = the number of trajectories for Γj that snap to M with thresholds E.

Figure 6.11: Possible paths after snapping a short, three segment partial path.

We expect ρj(Sk) to monotonically not increase as j increases, for a fixed k. That is, adding
additional constraints to Γj can only decrease the number of possible matches for Sk. Intuitively,
segments early in a trajectory become “locked in” as newer segments are added, although the
overall path may retain ambiguity. We observe this behavior also by looking at the number of
matches for segment Sk, k = 1, . . . , 12 in the context of the path traversed at CUSP.

This is displayed in the table in Figure 6.11, where the number of matches for any given
segment Sk only stays the same or decreases as the number of segments in the path it belongs
to increases. The (i, j) entry in the table above shows the number of possibilities for Segment i
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in the partial path Γj , where 1 ≤ i ≤ 12 and 2 ≤ j ≤ 12. The jth entry in the last row in the
table gives the total number of possible matches for Γj , i.e. the maximum of all entries in the jth

column of the table. Note that each of the first twelve rows is monotonically non-increasing as
j increases, illustrating that earlier segments are “locked in” as new segments are added to the
path. The three plots give an illustration of this for Γ3 and Γ4. Specifically, the two left plots
demonstrate the two possible matches for Γ3, and the two possibilities for Segments 1, 2, and
3 in Γ3. The right plot demonstrates that the addition of Segment 4 gives a unique result for
Γ4, and hence there is now only one possible match for Segments 1, 2, and 3 in Γ4. Explicitly,
S3, for example, has two possible matches in Γ2 and Γ3, then has only one possible match in
Γ4, . . . ,Γ12, as illustrated in the plots in Figure 6.11.

On the other hand, ρ(Γj) may fluctuate non-monotonically as j increases from 1 to n. For
example, ρ(Γj) < ρ(Γj+1) may occur if Sj+1 matches several segments in the topological map
within given error thresholds. On the other hand, ρ(Γj) > ρ(Γj+1) if the addition of Sj+1

eliminates possible matching trajectories for Γj . We observe this behavior in the 12-segment
path traversed at CUSP, in the last row of the table. The total number of matches varies between
1 and 3, and increases and decreases as more segments are added.

6.3 Summary

We wanted to use alternative mobile devices like cell phones for collecting sensor measurements
that are less capable than autonomous robots but much more ubiquitous. We addressed one of
the biggest challenges in collecting meaningful measurements with these devices, which is the
difficulty of robust recovery of paths traversed. We introduced a trajectory snapping approach
based on outdoor GPS map matching that takes advantage of the limited navigation options due
to the structure of indoor environments. We showed this approach works robustly for robot
motion data and even overcomes navigation maps with errors. We extended these efforts to
motion data from mobile phones and showed that trajectory snapping successfully recovers the
paths traversed even when the phone is placed in many different configurations. These efforts
suggest that we should be able to utilize a wide range of mobile platforms to help collect sensor
measurements about our indoor environments.
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Chapter 7

Use of Sensor Maps: Mobile Wireless
Handoffs

We have now reached the point where we can ensure up-to-date sensor maps due to a combi-
nation of data collection (Chapter 3 and Chapter 5) and data analysis (Chapter 4) efforts. In
this chapter, we want to show that fine-grain sensor maps can be valuable for algorithms that
take advantage of environment-specific awareness of surrounding conditions. For example, ap-
plications include efficient HVAC control from awareness of building occupancy Agarwal et al.
[2010], Pérez-Lombard et al. [2008], climate control for preservation of museum pieces Michal-
ski [2007], and effective wireless network management from knowledge about wireless dead
spots Mahajan et al. [2006]. Such environment-specific algorithms are in limited use today be-
cause it is challenging to ensure up-to-date and fine-grain sensor maps. Our belief is that there
remains many opportunities to develop context-aware algorithms. We present a concrete example
where wireless maps helped to resolve our autonomous robot’s own intermittent wireless connec-
tivity issues. This type of wireless usage pushes the fundamental limitations of existing wireless
handoff algorithms, resulting in poor wireless experiences. We introduce map-based wireless
handoff algorithms that overcome these challenges by simply using fine-grain awareness about
surrounding wireless conditions. We hope this chapter demonstrates the exciting opportunity to
transform traditionally difficult problems into more manageable ones via data-driven algorithms
that effectively utilize fine-grain sensor maps.

The two primary contributions of this chapter are diagnosis of problems that arise with mo-
tion by tracking sensor variations and map-based algorithms that utilize fine-grain sensor maps.
We specifically use wireless connectivity as an example to show how a mobile platform enables
us to determine the root cause of our wireless connectivity issues and then produce a wireless
solution that does not require modifying other wireless devices. This chapter is structured as fol-
lows. First, we discuss why wireless conditions are difficult to predict across real environments
in order to motivate the need for fine-grain wireless data collection. Next, wireless connectivity
issues that arise intermittently while moving can arise from a variety issues (e.g. wireless dead
spots, device mis-configuration). By searching for reoccurring patterns that emerged from track-
ing wireless performance while moving, we are able to identify the root cause of intermittent
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wireless connectivity. We then develop map-based wireless handoff algorithms that use fine-
grain wireless maps to determine which AP to switch to. Unlike many alternate solutions, our
approach does not require that we overhaul existing wireless infrastructure or protocol. Nev-
ertheless, our evaluation demonstrates that our handoff algorithm significantly improves actual
wireless performance in practice. This is just one example showing the potential practical im-
plications of data-driven algorithms that we hope encourages future efforts to effectively utilize
fine-grain sensor maps.

7.1 Challenges of Understanding Wireless Connectivity

In this section, we motivate the need for collecting wireless maps and highlight the difficulty
of understanding wireless performance especially when moving. We showed in Chapter 4 that
wireless conditions vary wildly across different locations because wireless signal propagation
depends on where the wireless device was located. First, we further explain why wireless sig-
nals are difficult to predict in practice. As a result, it is more reliable to directly gather wireless
measurements like we show in Chapter 3. High RSSI is only a pre-requisite for wireless perfor-
mance so we introduce other important factors that influence wireless connectivity. This includes
wireless channels that enable simultaneous wireless transmissions without interference; the finite
wireless spectrum means that it is important to utilize the limited number of wireless channels
effectively. In addition, while throughput is a much better reflection of actual data transmission,
it depends on the proper operation of multiple network layers. As a result, it is helpful to sep-
arately consider RSSI and throughput measurements and isolate the layer in which connectivity
failures arise.

Wireless Signal Propagation

Wireless signals have limited range because their energy decays as a function of distance. Many
efforts have modeled the signal propagation of WiFi signals when there is clear line of sight and
found the received power to decay logarithmically with increasing distance from the transmis-
sion source Iskander and Yun [2002], Bahl and Padmanabhan [2000]. Realistic environments
introduce additional effects on wireless signals including reflection, diffraction, and scattering
as shown in Figure 7.1. There are also small-scale fading effects where the signal strength can
vary several magnitudes by just moving fractions of a wavelength. In realistic environments,
these factors are difficult to directly measure and their combined effects are difficult to accu-
rately predict because they are so dependent on static and dynamic factors in the surrounding
environment Andersen et al. [1995]. Illustrative examples are shown in Figure 7.1 where APs
are represented with squares and WiFi clients with circles. WiFi clients marked with an X reflect
devices that cannot communicate with the AP.
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(a) Attenuation
over distance

(b) Attenuation
by objects

(c) Reflection at
an angle

(d) Diffraction
around an object

(e) Scattering in
many directions

Figure 7.1: Illustrating the various environmental effects on WiFi signal propagation.

Bands and Channels

Recall that 802.11 wireless signals are transmitted over the 2.4 Ghz and 5 Ghz bands that are
further subdivided into 12 and 23 channels, respectively. Each channel is centered around a spe-
cific frequency. Multiple WiFi channels allows us to perform frequency-division multiplexing,
where simultaneous WiFi transmissions on different non-overlapping channels can occur with-
out affecting WiFi performance. There are 23 non-overlapping channels for 5 Ghz but only 3 for
2.4 Ghz (channels 1, 6, and 11). Since many older devices only support 2.4 Ghz, the 2.4 Ghz
band is a scarce resource that needs to be shared efficiently. As a result, wireless APs are often
re-configured intermittently to adapt to changing wireless conditions and usage patterns.

When multiple WiFi devices transmit simultaneously on the same channel, the transmitted
wireless signals may interfere with one another and cause the transmisions to be undecipherable
by all receivers, which effectively wastes an opportunity for transmitting wireless data. This type
of WiFi interference can significantly degrade WiFi performance. A natural solution is for each
WiFi device to transmit at a different time. In 802.11 WiFi, there is no centralized coordination
to allocate transmission time like there is for cellular. Instead, 802.11 WiFi uses carrier sense
multiple access with collision avoidance (CSMA/CD), where each WiFi device transmits WiFi
data when it senses that the channel is idle and waits when it senses other transmissions. 802.11
employs exponential backoffs, where the WiFi device will wait a multiplicatively increasing
amount of time each time it tries to transmit but detects other transmissions.

As the number of WiFi devices using a single channel increases, so does the likelihood of
interference. Increased interference leads to longer wait times before WiFi devices attempt to
transmit. This results in poor WiFi performance and inefficient usage of the WiFi medium. A
common example of poor WiFi due to interference is apartment complexes with uncoordinated
2.4 Ghz WiFi routers all operating on the limited set of channels over the same areas resulting in
poor WiFi connectivity for all users. Therefore, enterprise management of the WiFi medium is
important to reduce erroneous sources of interference and ensure proper allocation of WiFi chan-
nels for encouraging more efficient usage of the wireless medium Ramachandran et al. [2006].
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Throughput

As shown earlier in Figure 4.8, higher RSSI does not guarantee high throughput but is a pre-
requisite for strong wireless performance. Throughput defined as the useful number of megabits
successfully transferred per second. Overheads like packet headers and other negotiation packets
are not included in these measurements. This contrasts bandwidth, which usually reflects the
theoretical maximum rate of data transfer. Throughput is a practical although imperfect estimate
of the actual quality of a link. In this section, we measure throughput with the iperf tool over TCP.
We recognize that TCP is not a perfect indicator of link capacity because it depends on the proper
operation of multiple network layers. For example, wireless connectivity requires the wireless
device to associate with a nearby AP and ensure the AP is properly configured to forward the
device’s packet to the wired backbone. On top of this, flow control algorithms at the TCP layer
requires some time to ramp up to actual link speeds. Therefore, throughput measurements are
affected by multiple factors so many of our results will try to isolate where connectivity failures
stem from.

7.2 Diagnosing Connectivity Issues with a Mobile Robot

Wireless connectivity issues could arise from a variety of reasons: poor AP coverage, bad wire-
less handoffs, interference from surrounding devices, etc. Diagnosing the wireless problems for
a specific wireless device in practice is difficult because they depend on environment-specific
factors like structure, materials, users, wireless devices, etc. Mobile robots can be a pragmatic
solution in searching for the root cause by replicating problematic wireless situations with au-
tonomous navigation and also revealing wireless performance variations. In this section, we first
provide relevant background on wireless handoffs and then show how we identified poor wireless
handoffs as the cause of the robot’s intermittent wireless connectivity.

7.2.1 Importance of Wireless Handoffs

Wireless usage can generally be characterized as portability or mobility. Portability is the use of
wireless connectivity while stationary at a small number of different locations. Strong wireless
performance requires that there are no wireless dead spots at these small sets of locations. Mo-
bility is wireless usage while moving across the environment. Real-time applications that require
continuous wireless updates push the boundaries of wireless connectivity because there cannot
be any dead spots along the entire path. They also require seamless wireless handoffs as the de-
vice moves in and out of range of different wireless access points. We first describe 802.11 WiFi
handoff algorithms used in nearly all mobile devices today. We then introduce related research
efforts to improve the performance of these algorithms.
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802.11 WiFi Handoff Process

When a wireless client wants to connect to the wireless network, it needs to first identify nearby
APs that it can connect to. This is often performed by a scan where the WiFi device broadcasts
probe requests and then accumulates responses from nearby APs. As illustrated in Figure 7.2a,
a scan often takes 3 to 5 seconds. From the scan results, the wireless clients will identify and
connect with the best AP available. The connection is established by exchanging authentication
and association frames with the selected AP, which usually takes around 60 ms as shown in
Figure 7.2b. If successful, the wireless client will be associated with the AP and can proceed
to exchange data across the network. If the wireless client should move out of range of its
current AP, it will need to disassociate with its current AP and repeat the process of finding and
associating to another AP.

Notice that disassociation occurs before a scan, which means the WiFi device has no connec-
tivity during a scan. This is due to the inability of WiFi devices to simultaneously iterate through
all WiFi channels while also communicate with its associated AP on a separate WiFi channel.
These switches between APs are called AP handoffs.

(a) 802.11 Handoff Timings (b) 802.11 Handoff Protocol

Figure 7.2: 802.11 scan-based wireless roaming process.

Related Work in Wireless Handoffs

Previous efforts for improving wireless handoffs can be categorized as either improved wire-
less protocols, handoff predictions, and vehicular handoffs. Our approach presented in the next
section differs because we do not require modifying the wireless protocol and use much more
fine-grain data-driven efforts for enabling the device to make more intelligent handoff decisions.
Many of these efforts like faster handoffs are orthogonal to our efforts that could further optimize
wireless performance.
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Improved Handoff Protocols Significant modifications of the 802.11 AP handoff protocol can
reduce the overheads of scans and promote more seamless switches between APs. In 802.11r Ban-
golae et al. [2006], the WiFi client’s current AP provides the WiFi client with a set of APs to
transition to. The WiFi client then directly negotiates the transition with its current AP before
switching to the next AP for a seamless transition. Similar efforts modify the handoff protocol
so that the WiFi client’s current AP informs it about the next set of APs to consider when the
device moves out of range Pack et al. [2007]. The WiFi client only performs a scan when it has
exhausted the list of potential APs to consider. Another approach assigns time slots staggered by
channel for APs to broadcast beacon frames Ramani and Savage [2005]. During the appropriate
time slots, WiFi clients periodically listen on the corresponding channel to find observable APs.
This enables continuous monitoring of surrounding APs, which effectively amortizes the cost
of scans for more seamless switches between APs. Unfortunately, improved wireless protocols
require significant modifications to all wireless devices, which makes these efforts impractical in
the short term.

Handoff Prediction Alternate efforts better enables the WiFi client to make better wireless
handoff decisions. Some efforts apply machine learning techniques to predict and trigger hand-
offs by looking at fine-grain metrics like RSSI changes and frequency of handoffs Javed et al.
[2011]. Others anticipate handoffs and then react by multicasting data to nearby base stations in
advance Seshan et al. [1997]. One can also react to handoffs by prefetching data before the WiFi
client leaves a high bandwidth connection Drew and Liang [2004], Javed et al. [2011]. Most of
these efforts use coarse-grain features that do not use fine-grain awareness of the surrounding
environment. Efforts based on using location-based decision making rely upon fairly imprecise
sensors like GPS outdoors and Place Lab indoors achieve a localization accuracy of only 20 to
30 meters Nicholson and Noble [2008].

Vehicular handoffs Unlike most traditional WiFi devices, vehicles move extremely fast, which
makes AP handoffs even more difficult due to rapidly changing WiFi conditions Mahajan et al.
[2007]. Some efforts focus on opportunistically taking advantage of fleeting WiFi connectivity.
They employ techniques that focus on fast connections by reducing scan times and limiting
retry timeouts Eriksson et al. [2008]. Other efforts focus on sustained WiFi connectivity for
vehicles that remain within range of a private WiFi network. Instead of only using a single AP
for connectivity, these efforts take advantage of nearby APs that help opportunistically forward
wireless data to mitigate the effects of changing WiFi conditions Balasubramanian et al. [2008].

7.2.2 Reproducing Wireless Issues Due to Motion

In our initial investigation, our robot’s connectivity issues seemed to arise sporadically. There
were no specific locations where the robot always had no connectivity nor did the robot lose
connectivity at the same location when moving across the same path. Our robot uses an off-
the-shelf wireless device so these wireless challenges are not unique to robots. Unlike many
mobile devices equipped with WiFi, our robot’s unique abilities will allow us to track exactly
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how wireless performance varies over both time and space. We methodically subject the wireless
device to identical motion in order to extract the similar patterns that lead to poor connectivity
situations. Let us now show that tracking fine-grain variations enables us to confidently attribute
our robot’s actual wireless challenges to poor wireless handoff decisions.

We used a simple evaluation path that instructed the robot to follow a three-quarter loop path
around three hallways in the environment, as shown in Figure 7.3. The path was chosen based
on several factors. First, it needed to be long enough to ensure that the robot would definitely
face connectivity issues. Next, we also instruct the robot to move both clockwise (Figure 7.3b
and 7.3d) and counter clockwise (Figure 7.3a and 7.3c) directions to see if direction of motion
plays a role. Finally, we ensure the robot traverses the environment at consistent speeds and
covers each location at most once so that we can easily match wireless performance variations
over time with 2D maps over space.

(a) Run #1 RSSI (b) Run #2 RSSI (c) Run #3 RSSI (d) Run #4 RSSI

(e) Run #1 Tput (f) Run #2 Tput (g) Run #3 Tput (h) Run #4 Tput

Figure 7.3: Poor wireless performance after moving across the same path four times.

(a) Coverage AP A (b) Coverage AP B (c) Coverage AP C (d) Coverage AP D

Figure 7.4: AP coverage to show range of available APs.

Figure 7.3 shows several samples of actual data collected by the robot as it was driven along
the same path. During execution, the wireless device simultaneously captured RSSI, throughput,
and the associated AP while the robot recorded timestamps and locations. Four noteworthy runs
are shown in Figure 7.3 that shows RSSI (top), throughput (middle). In the RSSI maps (top),
the unique shapes (squares, circles, and pentagons) reflect the location where the device first
associated with the corresponding AP as identified by the color and shape. The numbered labels
identify the order in which they were visited. We show AP coverage for each of these uniquely
identified APs (bottom). Corresponding throughput while moving (middle) is also shown where
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large stretches of white space reflect absence of connectivity. Runs 1 (7.3a) and 3 (7.3a) began in
the bottom left corner with the robot moving counterclockwise while Runs 2 (7.3b) and 4 (7.3d)
started in the top left and moved clockwise. Numbered labels reflect the first point of association
with each AP while the shape and color reflect a unique AP whose corresponding coverage map
is shown in Figure 7.4.

7.2.3 Diagnosis as Poor Wireless Handoffs

Based on this data, we can conclude poor wireless performance stems from poor wireless hand-
offs. These failures stem from several poor wireless decisions: remaining associated with an
AP that is already out of range, being too slow in switching away from an out-of-range AP, and
poorly selecting which AP to switch to. Let us explain specifically how we make these conclu-
sions based on these four runs.

Eliminating Possible Causes

With fine-grain tracking of wireless variations, we can rule out AP coverage since there are no
clear dead spots. Also notice that RSSI varies gradually across several meters and eliminates the
possibility of small and sudden dead zones. The direction of motion does not seem to be a factor
because RSSI captured matches well with the corresponding AP coverage map, suggesting poor
wireless performance must be occurring elsewhere. We cannot definitively rule out the effects
of interference from other devices but wireless handoffs appear to be a more likely cause of our
issues.

Poor AP Handoff Timing

There seems to be evidence supporting the hypothesis that associating with APs that are out of
range is a big reason for the poor throughput. For example, run #1 and #2 remained associated
with the same AP for the duration of the traversal and the wireless device naturally lacks con-
nectivity when out of range. This suggests the need for switching APs as supported by run #3
and #4 that have connectivity in parts of the path where run #1 and #2 could not. However, the
failure of all runs to sustain connectivity suggests that switches must be performed frequently
and accurately.

Poor AP Selection

While both run #3 and #4 switch APs, the AP switch benefits run #3 more than #4 because run #4
switches to an AP that is already almost out of range. This likely stems from AP selection from
stale measurements. Since scans for surrounding APs take several seconds, the device simply
does not realize that the surrounding wireless environment has changed. We can confirm that
this is not a coverage issue since there is at least one high RSSI AP along every location on the
path.
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The
reason these connectivity issues are so prevalent for our robot is that few other devices stretch
the boundaries of mobility (e.g. streaming real-time video while moving quickly); instead, most
devices use wireless connectivity for portability (e.g. stationary data consumption at a desk). As
a result, the robot is pushing the boundaries of wireless connectivity and revealing the limitations
of wireless connectivity when subjected to continuous motion. We can see this manifest as poor
timing of AP handoffs and poor decision in selecting APs to switch to. With fine-grain tracking
of wireless performance over both space and time, we were able to clearly show that the robot
was suffering from poor wireless handoffs.

7.3 Data-Driven WiFi Protocols for AP Handoffs

Our robot is clearly suffering from intermittent wireless connectivity due to poor wireless hand-
offs. Existing wireless handoff algorithms suffer from delayed and inaccurate decisions because
they rely on reactive strategies based on immediate wireless measurements and scans. We pro-
pose an intelligent, data-driven handoff algorithm that uses fine-grain wireless maps to overcome
our robot’s poor wireless handoff problems. The intuition is that if the handoff algorithm uses
knowledge about surrounding wireless conditions, then it will be able to better select APs and
determine where they should occur. By improving the wireless handoff algorithm for the robot’s
wireless device, our approach works with the existing 802.11 WiFi protocol and does not require
modifying other wireless devices.

As shown in Figure 7.5, our data-driven wireless handoffs use several pieces of information:
where the robot is (localization), where it will go (navigation), and what are the surrounding
wireless conditions (wireless snapshot). Access to an accurate wireless snapshot of current wire-
less conditions is essential (previously discussed in Section 4). In this section, we first introduce
several handoff algorithms that differ in how they use fine-grain wireless maps. One notable
handoff algorithm we focus on is the look-ahead planner that pre-plans an AP handoff plan. Fi-
nally, our evaluation shows that map-based handoffs significantly improve wireless performance
over existing scan-based handoffs.
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Figure 7.5: Data flow of our data-driven wireless handoffs algorithm.

7.3.1 Wireless Map Based Handoff Algorithms

Wireless handoff algorithms make two key decisions: when to disassociate with an AP and which
AP to select next. We present several variations of informed wireless handoff algorithms to see
what information and switching strategies result in the most significant improvements in wireless
performance. The four algorithms in order of increasing complexity are: aggressive disassoci-
ation, location-based AP selection, highest RSSI AP policy, and look-ahead planning as
summarized in Table 7.1. We first highlight key differences between these handoff algorithms
and then discuss each in more detail.

Table 7.1: Table of handoff algorithms.

Handoff Algorithm AP Dissasociation AP Selection
Aggressive
Disassociations When RSSI falls below threshold

Issue wireless scan for highest
RSSI AP

Location-Based
AP Selection When RSSI falls below threshold

Query wireless map for highest
RSSI AP at current location

Highest RSSI
AP Policy

When current AP is not the highest
RSSI AP from wireless map

Query wireless map for highest
RSSI AP at current location

Look-Ahead Plan When arriving at next waypoint
location in AP handoff plan

Query AP handoff plan for
current waypoint AP

Aggressive disassociations serves as a baseline to compare against traditional reactive, scan-
based algorithms discussed earlier in Section 7.2.1. The key difference is that we lower the
threshold RSSI for disassociating to test the hypothesis that perhaps the threshold RSSI is not
tailored for extremely mobile devices. Our next three algorithms are more informed because
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they combine the robot’s location with the wireless map. Location-based AP selection evaluates
the impact of using a wireless map for selecting APs but continues to use a reactive threshold
for disassociating. Higher RSSI AP policy relies completely on location and the wireless map
for both disassociation and selection decisions. Finally, look-ahead planning incorporates the
device’s pre-planned navigation route to further optimize where and when wireless handoffs
occur.

Aggressive Disassociation This algorithm shown in Algorithm 6 mimics the default, scan-
based handoff algorithm (Section 7.2.1) that disassociates when RSSI of the current AP falls
below some threshold. Given strong AP coverage across our environment, we use an aggressive
RSSI threshold TRSSI of -70 dBm. This threshold is chosen based on the RSSI histogram in
Figure 4.8 that showed consistently high RSSI across most locations in our environment. This
serves as a baseline and disabuses the idea that more aggressive disassociations would resolve
the wireless connectivity issues.

Algorithm 6 Aggressive Disassociations: disassociate when RSSI below threshold and then scan
for APs
Require: Current state S with RSSI of associated AP SRSSI. Given a minimum threshold RSSI

with AP, TRSSI.
1: function AGGRESSIVE(S, T )
2: if SRSSI ≤ TRSSI then
3: APs← APScan()
4: APcurr ←maxRSSI(APs)
5: Connect(APcurr)
6: end if
7: end function

Location-Based AP Selection Instead of scanning for surrounding APs, this algorithm shown
in Algorithm 7 queries the given wireless map for the best available AP at the device’s current
location. By using a wireless map, this approach removes the uncertainty of scans by provid-
ing the device with the actual highest RSSI AP at its current location. We continue to use the
threshold-based disassociations to better isolate the impact of more intelligent AP selection and
reduced overheads of scans on wireless performance. Our evaluation will show that the most sig-
nificant wireless performance improvement arises from using the wireless map to select which
AP to associate with.

Highest RSSI AP Policy A device that is continuously aware of its location and has access to
accurate wireless maps does not need to react to immediately collected wireless measurements
so we present full, location-based handoffs. This algorithm shown in Algorithm 8 continuously
queries the highest RSSI AP based on its current location and switches whenever they do not
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Algorithm 7 Location-Based AP Selection: aggressively disassociate and then select AP using
a wireless map
Require: Current state S with RSSI of associated AP SRSSI and device’s location SLOC. Given

a minimum threshold RSSI with AP, TRSSI. Previously collected wireless map MWiFi

1: function INFORMED(S, T,M )
2: if SRSSI ≤ TRSSI then
3: APs← APsAtLocation(SLOC ,MWiFi)
4: APcurr ←maxRSSI(APs)
5: Connect(APcurr)
6: end if
7: end function

Figure 7.6: Highest RSSI AP per Region.

112



match. Notice there is no need for a threshold RSSI for disassociation as this decision is now
driven directly from the wireless map. An example wireless map showing the highest RSSI AP
across our environment is shown in Figure 7.6. This simple algorithm avoids the need to specify
disassociation thresholds and AP selection is simply. This approach focuses on the importance of
having the highest RSSI at all times. Our evaluation will show this algorithm introduces exces-
sively frequent handoffs that are significant due to the non-negligible overheads of performing
handoffs.

Algorithm 8 Highest RSSI AP Policy: continuously associate with the highest RSSI AP using a
wireless map
Require: Current state S with device’s location SLOC and current AP SAP. Previously collected

wireless map MWiFi.
1: function RADIO(S,M )
2: APs← APsAtLocation(SLOC ,MWiFi)
3: APcurr ←maxRSSI(APs)
4: if SAP 6= APcurr then
5: Connect(APcurr)
6: end if
7: end function

7.3.2 Look-Ahead Planning

The look-ahead planner is a unique algorithm tailored for autonomous robots that plan their
movements in advance. Unlike the previous algorithms, the look-ahead planner has two steps:
an offline handoff planner that pre-computes which AP to associate with along its path and an
online execution of this handoff plan when the device moves. The offline planner is shown in
Algorithm 10 where the goal is to minimize the total number of handoffs along the device’s
navigation path while ensuring strong, continuous connectivity with nearby APs. An example
of the pre-computed AP assignment plan used in our evaluation is shown in Figure 7.7b. The
online execution of the plan is shown in Algorithm 9, where the algorithm tracks and reacts to
changing AP assignments as it passes waypoint locations along its path. Although this two-step
algorithm is more complex than the others, our evaluation will show that it achieves the best
wireless performance.

Pre-computing the AP Handoff Plan

The handoff planner has two steps: computing the minimum AP handoff plan and then further
refining the plan to optimize where the handoffs are executed along the device’s path. The algo-
rithm for pre-computing the minimum AP handoff plan is shown in Algorithm 10. The function
genHandoffP lan is given the robot’s future path, wireless map, and a minimum threshold
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Algorithm 9 Look-Ahead Plan: follow a precomputed a sequence of AP transitions along a
known path.
Require: Current state S with device’s location SLOC. Given a precomputed queue QLOC,AP

of AP assignments for each location along device’s given planned path from Algorithm 10.
1: function LOOKAHEAD(S,Q)
2: if isAtLocation(QLOC , SLOC) then
3: APcurr ← QAP

4: Connect(APcurr)
5: Q← Q.next()
6: end if
7: end function

RSSI. The path is represented as a sequence of discrete waypoint locations (2m between con-
secutive waypoints in our case). Using the wireless map, we first compute the set of APs that
exceed a minimum threshold RSSI for each location along the specified path. Next, we perform
a breadth first search expansion of an AP graph to find the minimum number of AP handoffs that
ensure connectivity along the entire path. We reach the goal when we have a plan that assigns an
AP for all waypoint locations along the device’s navigation path.

(a) Navigation path (b) Look-Ahead Handoff Plan

Figure 7.7: Look-ahead planner computes an AP handoff plan for a given path.

Generating Minimum Handoff Plan

Figure 7.8 presents a visualization of the navigation PATH represented as a sequence of waypoint
locations and the wireless MAP represented as a set of access point parameters (id, channel, rssi)
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Algorithm 10 Pre-computing an AP handoff plan based on the device’s future path.
Require: Device’s PATH, wireless MAP, minimum threshold RSSI.

1: function GENHANDOFFPLAN(PATH,MAP,RSSI)
2: idxstart← 0
3: idxend← PATH.length
4: APS← {}
5: for i in range(idxstart, idxend) do
6: APS[i]← getAPsAtLoc(PATH[i],MAP,RSSI)
7: end for
8:
9: NODEScurr ← []

10: for AP in APS[idxstart] do
11: nodeinit← newNode(idxstart, AP )
12: NODEScurr.add(nodeinit)
13: end for
14:
15: while True do
16: NODESnext← []
17: for nodecurrinNODEScurr do
18: apcurr ← getAP (nodecurr)
19: idxcurr ← getIdx(nodecurr)
20: idxnext← getNextIdxfromAP (apcurr,idxcurr,APS)
21: if idxnext == idxend then
22: return nodecurr
23: end if
24: for AP in APS[idxnext] do
25: nodenext← NODEcurr.step(idxnext, AP )
26: NODESnext.add(nodenext)
27: end for
28: end for
29: NODEScurr ← NODESnext
30: end while
31: end function
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for each grid region introduced earlier in Chapter 4. From a simple matching based on location,
we compute APS that determines which access points are available along each waypoint of the
path. This corresponds to lines 5-7 of Algorithm 10. We filter out access points that fall below
a target threshold RSSI because the entries of APS should represent access points that would
provide strong connectivity.

Figure 7.8: Determining available APs along path waypoints by using a WiFi map.

The plan is generated using a forward tree search across sequences of possible AP handoffs.
Each node (idx,AP[i]) in this tree is assigned a waypoint index along the device’s path as well as
the corresponding access point it should be transitioning to at this step. Our visualizations more
explicit each node as (idx,APfrom,APto)

Initially, we populate the search tree with APs that can be reached from the starting waypoint
location as shown in line 9-13 of Algorithm 10. This is visualized in Figure 7.9a where the
initial AP tree is populated with two nodes. On the left, APS illustrates the set of access points
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available at each waypoint location. Therefore, the initial two nodes reflect the possibility of
either associating with AP1 or AP2 at waypoint 0. The colored lines in APS correspond to each
leaf node in the tree. It will help to highlight how far the search has proceeded along each unique
branch.

(a) Initial search tree: identifies APs available at the first path waypoint.

Subsequent steps of the search correspond to line 16-29 of Algorithm 10. This is a simple
breadth first search expansion of the tree based on possible AP handoffs. In Figure 7.10a, we
explore the two possible branches. If we start off from waypoint 0 associated with AP1, we
can remain associated until waypoint 2 where we have the option to then switch to either AP2
or AP3. We can see how this naturally results in two additional nodes. If we start off from
waypoint 0 associated with AP2, we are not forced to switch until waypoint 4, where there is
only one option. Note that each level of our AP tree reflects the number of handoffs performed.
We are not performing an expansion of unique AP assignments across each waypoint, which
constrains the size of the search space.

We proceed through subsequent steps of the expansion until we reach a leaf node(s) that
achieves an AP assignment for all waypoints. In Figure 7.11, we find two possible plans that
require the same number of handoffs. Both of these plans are preferred to the alternate branch that
will require more than three handoffs. With this forward expansion, we have quickly narrowed
the set of possible AP handoffs the device can perform while following the given path.

Optimizing Handoff Points

Two challenges remain from our minimum handoff planner: timing where the handoff should
occur and choosing among several possible handoff plans. While all plans generated will ensure
conenctivity above the given threshold RSSI, we have the opportunity to further refine the plan
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(a) After one step: based on possible initial AP assignments, determine how far device can remain con-
nected to AP

Figure 7.10: Initial breadth first expansion of AP graph tree

to increase RSSI along the overall path. For this step, we take the sequence of AP switches
from each plan and try to optimize the waypoint where the handoff will occur based on RSSI. In
addition, we can use RSSI across the entire path to identify the best available handoff plan when
we have multiple options.

Figure 7.12 shows how we further refine the two possible minimum handoff plans found
above. We first take the original plan and expand it into AP assignments along the entire set of
navigation waypoints. From this plan, we can easily determine the source AP and destination
AP for each waypoint. A simple lookup will tell us what the corresponding RSSI is for each of
these two AP choices. The optimal AP assignment is allows to transition early to the destination
AP when RSSI is higher than the source AP. Notice that for both plans, the final optimized plan
has higher overall RSSI than the original.

The same idea allows us to choose the best plan when several choices exist. There are many
different metrics one could use to differentiate these paths. In this example, we can see that AP
plan #2 sustains much higher overall RSSI along the entire path making it a better choice. Future
work could use this same approach to enable the device to select between several possible nav-
igation paths based on wireless connectivity requirements. For example, our robot’s navigation
paths are generated based on shortest distance. If the robot wanted to optimize for connectivity,
the robot might prefer slightly longer paths that result in much fewer handoffs.

118



(a) After two steps: continues forward search for AP handoff options

(b) After three steps: two possible AP handoff plans for the device’s entire path

Figure 7.11: Subsequent steps showing breadth first expansion of AP handoff tree
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Figure 7.12: Differentiating possible handoff plans and further refining where handoffs occur.
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7.4 Evaluating Impact of Handoffs on WiFi Performance

Our data-driven AP handoffs significantly improve wireless performance while moving. We
show how wireless performance is affected by different variations in our proposed handoff algo-
rithms. We first magnify fine-grain variations in wireless performance across a single, identical
path to reveal differences across the handoff algorithms. We then perform a thorough comparison
across many repeated executions of scan-based versus location-based handoffs at three different
speeds. The result is significant improvements in wireless performance while moving because
fine-grain sensor measurements enable accurate, real-time decision making.

7.4.1 Fine-Grain Improvements in Wireless Performance

To show wireless performance differences across the four different handoff algorithms, we sub-
ject the wireless device to identical traversals of a complex path that requires the device to make
many challenging AP handoffs. The path is shown in Figure 7.7a with starting location (S) and
end location (E) marked. The numbers indicate the order that intermediate waypoints are vis-
ited. The device traverses each location at most once to make it easier to inspect performance
variations with wireless maps.

Overall performance for one iteration is summarized in Table 7.2. We see that location-based
AP selection actually minimizes the number of AP handoffs, highest RSSI policy ensures high-
est median RSSI, and look-ahead planning achieves highest median throughput. Unsurpris-
ingly, all three of our location-based handoffs clearly dominate the scan-based efforts. This
suggests that we can significantly improve wireless performance by eliminating the overheads of
wireless scans and intelligently selecting APs. As we will show, more complex algorithms using
more information can continue to improve wireless performance.

Aggressive
Disassociations

Informed
AP Selection

Radio
Planning

Handoff
Planning

Mean RSSI (dBm) -61.8 -59.4 -53.1 -55.3
Med RSSI (dBm) -61.0 -59.0 -53.0 -55
Mean Tput (Mbps) 29.13 41.47 43.60 45.44
Med Tput (Mbps) 33.00 46.00 46.53 48.51
# Gaps 6 4 8 5
Gap Time (s) 35.50 10.62 18.30 10.26

Table 7.2: Summary of aggregate measurements across four handoff algorithms.

Figure 7.14 and 7.15 shows variations in wireless performance by time and locations. On
top, we show how RSSI varies spatially while moving to different locations. We show corre-
sponding variations over time for both RSSI (middle) and throughput (bottom). The labeled
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numbers correspond to the location waypoints on top with both time-varying RSSI (middle) and
throughput (bottom) over time. RSSI of -65 dBm is marked with a gray line as a reference.

There are several key takeaway from this data. First, we can see exactly why reactive, scan-
based efforts fare poorly. Notice that aggressive disassociations experiences two lengthy periods
without connectivity that we see corresponds to RSSI lingering at levels of low RSSI. This is a
result of poor AP selection from noisy scans. Next, reactively deciding to disassociate based
on RSSI thresholds cannot achieve the level of wireless performance that knowledge about the
wireless surroundings can provide. This is shown by highest RSSI AP policy and look-ahead
planning being most successful at ensuring consistently high RSSI across the entire path. Fi-
nally, there are clearly overheads in switching APs so reducing the number of handoffs is equally
important. Look-ahead planning outperforms highest RSSI AP policy despite experiencing
slightly lower RSSI due to much fewer handoffs.

(a) CDF of RSSI

(b) CDF of throughput

Figure 7.13: Comparing aggregate WiFi performance along the same path.

These detailed measurements show why location-based handoffs are able to overcome sys-
temic problems with scan-based efforts. We also see further opportunities for optimizing hand-
offs. For example, throughput in some cases is higher despite lower RSSI, suggesting other
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factors like congestion or interference may play a role. In addition, we can see for location-
based AP selection how less frequent handoffs sometimes results in less jittery throughput so
the duration of handoffs may be an important consideration in the future.

(a) Aggressive Disassociation (b) Location-Based AP Selection

Figure 7.14: Tracking wireless performance along same path.

7.4.2 Aggregate Improvements in Wireless Performance

We perform a robust comparison of scan-based and location-based handoff algorithms under
continuous motion at several different speeds. In particular, we compare aggressive disassoca-
tions against highest RSSI policy. We select a 150 m path and perform four iterations of each
speed and handoff algorithm combination for a total of 3.6 kilometers. The length of each path
was chosen such that both algorithms could be run sequentially for every speed before the robot’s
battery needed to be charged to minimize the impact of the environment changing over time.

Figure 7.16 shows a cumulative distribution function (CDF) showing the distribution of how
throughput varies along the path. The entire path was divided into 2 meter segments for which
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(a) Highest RSSI Policy (b) Look-Ahead Planning

Figure 7.15: Tracking wireless performance along same path.
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we computed the average throughput. The CDF shows the cumulative throughput for each of
these segments. Notice the scan-based efforts do not have wireless connectivity for significant
proportions of the path due to a combination of 3-5 second overheads for scans and increasingly
frequent handoffs due to poor AP selection. Even when moving at the slowest speed, scan-based
efforts are without connectivity for 10% of the path, which is intolerable for applications like
telepresence. WiFi performance for scan-based handoffs improves as the device moves more
slowly due to less frequent changes in surrounding WiFi conditions.

Figure 7.16: CDF showing the % of path above some throughput for different speeds.

Our data-driven wireless handoffs have superior cumulative WiFi performance at any speed.
This shows that many of the interruptions in connectivity for scan-based handoffs arise from a
combination of scan overheads and poor AP selection. As we can see, eliminating scans entirely
and more intelligently selecting access points can significantly improve wireless performance.
We showed that data-driven wireless handoffs can ensure reliable wireless connectivity for de-
vices like mobile robots with strenuous wireless demands. Informed handoffs are also a prag-
matic solution as they do not require modifying hardware or software on surrounding wireless
devices and work seamlessly with the existing 802.11 WiFi protocol.

7.4.3 Discussion

Our evaluation results only shows marginal wireless performance improvements for the look-
ahead planner when compared to the other handoff algorithms. There are scenarios where the
look-ahead planner will outperform the others due to additional foresight about where the device
will move in the future. This allows the look-ahead planner to generate handoff plans that more
effectively break ties when selecting between possible access points and choosing access points
that reduce the total number of handoffs.
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Breaking Ties Between Access Points Suppose we are faced with the scenario shown in Fig-
ure 7.17 where the device is at point P1 and there are three equidistant access points. Except
for the look-ahead planner, all other handoff algorithms would have no way to differentiate them
due to identical RSSI measurements. Suppose that we know the device will be moving towards
AP2. In this situation, the device should select AP2 so as to avoid an additional handoff. This is
only possible with the look-ahead planner that can break ties by looking forward into the future
based on what subsequent handoffs will be required in the future.

Figure 7.17: Scenario in which all access points appear equally good

Selecting Access Points that Reduce Handoffs Suppose that the wireless device follows the
path shown in Figure 7.18a by moving repeatedly from point P1 to P2. We can see that AP2
fully cover this path but that signal strengths are quite low around points P1 and P2. Only
the look-ahead planner has the opportunity to realize that it can avoid any handoffs by remaining
associated with AP2. The handoffs that disassociate when RSSI falls below some given threshold
are likely experience momentarily low RSSI at the endpoints P1 and P2, resulting in a subsequent
disassociation. Because these reactive efforts do not know that the device will immediately turn
back around, they will end up performing excessive handoffs. Similarly, as shown in the wireless
map in Figure 7.18b, the highest RSSI AP policy would switch excessively along this path with a
total of four handoffs for each traversal. Only the look-ahead planner has the necessary foresight.

7.5 Summary

Fine-grain sensor measurements collected by mobile devices can be extremely valuable for over-
coming a wide range of problems. Not only did we diagnose challenging motion-based wireless
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(a) Coverage Map for AP2 (b) Highest RSSI AP along Path

Figure 7.18: Sample path with corresponding wireless conditions

connectivity issues by recreating the problematic situations but we also resolved them by intro-
ducing wireless map-based solutions so that the robot could make accurate and timely handoffs
decisions. We were able to identify and propose a solution to significantly improve our own
autonomous robot’s intermittent wireless connectivity issues in a real enterprise wireless en-
vironment. In the future, there are opportunities to extend these data-driven efforts to further
differentiate navigation paths based on alternate metrics like wireless connectivity.

127



128



Chapter 8

Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis, describe opportunities for future
work, and recap key takeaways from this work.

8.1 Contributions

The key contributions are:

Data Collection with Mobile Platforms We introduce a data collection framework that col-
lects sensor measurements while moving. We specifically investigate how specific sensors be-
have when collected by a moving robot. We show the key limitation of data collection with
mobile platforms is measurement sparsity when drilling down by specific factors that subsequent
contributions try to address.

Spatio-Temporal Analysis of Fine-grain Sensor Measurements We present a discrete
spatio-temporal representation to address the challenge of sensor measurements captured across
different locations and times. Navigation adjusted grids spatially segmented the environment
based on regions where the robot can actually reach to ensure better spatial distribution of sen-
sor measurements. We show this discretization is able to reveal fine-grain insights about our
surrounding environments.

Navigation Trajectory Optimized for Sensor Measurement Needs Mobile platforms have
limited data collection opportunities making it important to develop intelligent navigation strate-
gies. We explore two types of active navigation strategies: one where the robot navigates natu-
rally along hallways and another where the robot moves to specific small grid regions in a more
zig-zag manner. We develop algorithms that effectively utilize the robot’s data collection time
while also prioritizing measurements needs over both time and space.

Determining Paths Traversed Using Motion Trajectories Mobile devices like cell phones
lack powerful exteroceptive sensors that robot use to continuously and accurately localize but
their ubiquitous presence makes it desirable to use them for data collection. We apply map
matching to indoor environments and show the ability to robustly to recover paths traversing
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from motion trajectories.

Using Fine-Grain Sensor Maps Intermittent wireless connectivity issues plagued our robot
due to poor wireless handoff decisions that are used in most mobile devices today. These prob-
lems are not surprising given that robots push the boundary of mobile wireless usage. We in-
troduce map-based handoff algorithms that resolve these wireless issues by effectively using
wireless maps.

8.2 Future Work

In this thesis, we addressed several key challenges in using mobile platforms as data collectors.
We explored topics like active navigation based on measurement needs and utilizing mobile plat-
forms like cell phones equipped with less capable sensors. Ideally, we would like these data
collection efforts to seamlessly gather measurements across all potential data sources in our en-
vironments, automatically analyze measurements to summarize trends and highlight anomalies,
intelligently control mobile platforms for collecting measurements, and fully integrate usage of
these sensor maps. While our efforts touch on a lot of these problems, it would be desirable to get
to the point where data collection efforts are fully integrated into the operation and management
of our indoor environments. Some directions for future work include:

Fusion of Heterogeneous Data Collection Sources This thesis focused on mobile platforms
that collect sensor measurements while moving; however, static platforms can capture equally
valuable sensor measurements as well. Developing a centralized platform that fuses and aggre-
gates measurements across all these sensors would help to ensure even more timely and dense
sensor maps.

Large Scale Sensor Measurement Analysis Extending data analysis efforts to combine
measurements across heterogeneous sensors will require additional sensor calibration efforts. It
would also be beneficial for data analysis algorithms to automatically extract spatio-temporal
sensor trends and detect anomalies by learning trends across multiple environments. The ability
to characterize the behavior of sensors across different environments would be valuable to help
better understand how building structure, materials, and dynamic objects influence the behavior
of our buildings.

Real-Time Updates of Sensor Measurement Needs Using Teams of Mobile Robots Di-
recting subsequent data collection efforts to focus on sensor needs is powerful as it allows us
to pro-actively resolve situations where additional data would be helpful. As we move towards
using teams of mobile robots for data collection, there is an opportunity to explore strategies in
distributed data collection efforts that quickly react to any environmental changes.

Inference About the Surrounding Environment There are some locations where we may
not be able to directly capture sensor measurements (e.g. offices inaccessible for the robot or
within walls of a building). With fine-grain sensor data, we may be able to infer the materials
and structures behind these uncertain areas based on domain knowledge.

Discriminating Possible Paths Based on WiFi Conditions We showed that when given
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some path, we can compute a handoff plan that will minimize handoffs and optimize when to
switch between access points. We can extend these efforts to decide between different possible
paths depending on the desired wireless conditions. For example, one path might minimize the
total number of handoffs while another might target higher minimum received signal strengths.

Applications in Using Fine-Grain Sensor Measurements We believe that algorithms that
effectively use sensor data have only begun to emerge because access to up-to-date sensor maps
has only recently been practical. This creates the opportunity for algorithms to use contextual
information about the environment that enable simple algorithms to overcome traditionally diffi-
cult problems (like our map-based wireless handoffs). With the recent emergence of the Internet
of Things (IoT), it seems likely that we have only just begun to fully appreciate the benefits of
environment-specific algorithms.
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D. Gusenbauer, C. Isert, and J. Krösche. Self-contained indoor positioning on off-the-shelf
mobile devices. In Indoor Positioning and Indoor Navigation (IPIN), 2010 International Con-
ference on, pages 1–9, Sept 2010. doi: 10.1109/IPIN.2010.5646681. 6.2.2

Magdy F Iskander and Zhengqing Yun. Propagation prediction models for wireless communi-
cation systems. Microwave Theory and Techniques, IEEE Transactions on, 50(3):662–673,
2002. 7.1

Patrick Jaillet. A priori solution of a traveling salesman problem in which a random subset of the
customers are visited. Operations research, 36(6):929–936, 1988. 5.1.2

Umar Javed, Dongsu Han, Ramon Caceres, Jeffrey Pang, Srinivasan Seshan, and Alexander Var-
shavsky. Predicting handoffs in 3g networks. In Proceedings of the 3rd ACM SOSP Workshop
on Networking, Systems, and Applications on Mobile Handhelds, page 8. ACM, 2011. 7.2.1

Marisa G Kantor and Moshe B Rosenwein. The orienteering problem with time windows. Jour-
nal of the Operational Research Society, pages 629–635, 1992. 5.2.1, 5.2.2

Alonzo Kelly. Fast and easy systematic and stochastic odometry calibration. In Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on,
volume 4, pages 3188–3194. IEEE, 2004. 2.2

Thomas Kollar, Mehdi Samadi, and Manuela Veloso. Enabling robots to find and fetch objects
by querying the web. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 3, pages 1217–1218. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012. 2.1

Hyuk Lim, Lu-Chuan Kung, Jennifer C Hou, and Haiyun Luo. Zero-configuration, robust indoor
localization: Theory and experimentation. 2005. 2.2

135



Hongbo Liu, Yu Gan, Jie Yang, Simon Sidhom, Yan Wang, Yingying Chen, and Fan Ye. Push
the limit of wifi based localization for smartphones. In Proceedings of the 18th annual in-
ternational conference on Mobile computing and networking, pages 305–316. ACM, 2012.
2.2

Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Analyzing the mac-level be-
havior of wireless networks in the wild. ACM SIGCOMM Computer Communication Review,
36(4):75–86, 2006. 4.4.1, 7

Ratul Mahajan, John Zahorjan, and Brian Zill. Understanding wifi-based connectivity from mov-
ing vehicles. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,
pages 321–326. ACM, 2007. 7.2.1

Stefan Michalski. The ideal climate, risk management, the ashrae chapter, proofed fluctuations,
and towards a full risk analysis model. Experts roundtable on sustainable climate management
strategies, 2007. 1, 7

R Montemanni, D Weyland, and LM Gambardella. An enhanced ant colony system for the team
orienteering problem with time windows. In Computer Science and Society (ISCCS), 2011
International Symposium on, pages 381–384. IEEE, 2011. 5.2.1

K.P. Murphy. Switching kalman filters. Dept. of Computer Science, University of California,
Berkeley, Tech. Rep, 1998. 2.5

Rajalakshmi Nandakumar, Krishna Kant Chintalapudi, and Venkata N Padmanabhan. Centaur:
locating devices in an office environment. In Proceedings of the 18th annual international
conference on Mobile computing and networking, pages 281–292. ACM, 2012. 2.2, 2.3

Thomas Kollar1 Vittorio Perera2 Daniele Nardi and Manuela Veloso. Learning environmental
knowledge from task-based human-robot dialog. June 2013. 2.1

Anthony J Nicholson and Brian D Noble. Breadcrumbs: forecasting mobile connectivity. In
Proceedings of the 14th ACM international conference on Mobile computing and networking,
pages 46–57. ACM, 2008. 7.2.1

Sangheon Pack, Jaeyoung Choi, Taekyoung Kwon, and Yanghee Choi. Fast-handoff support in
IEEE 802.11 wireless networks. IEEE Comms Surveys and Tutorials, 9(1-4):2–12, 2007. 7.2.1
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