AbstractTutor:
Increasing Algorithm Implementation Expertise
for Novices Through Algorithmic Feedback

Leigh Ann Sudol-DeLyser
CMU-CS-14-145
December 17, 2014

School of Computer Science
Program in Interdisciplinary Education Research
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Mark Stehlik
Sharon Carver
Ken Koedinger

Frank Pfenning
Carsten Schulte

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2014 Leigh Ann Sudol-DeLyser

This work was supported through the Program in Interdisciplinary Education Research (PIER) at Carnegie
Mellon University, funded through Grant R305B040063 to Carnegie Mellon University, from the Institute
for Education Sciences, US Department of Education. The opinions expressed are those of the author and
do not represent the views of the Institute or the US Department of Education.

Keywords: Computer Science Education, Pedagogical IDE, Algorithmic Abstraction,
Novice Feedback

For all novices who thought it was their fault.

v

Abstract

The translation of algorithms and abstractions to formalisms, most often
code, is a fundamental task of a computer scientist. Both novices and experts
use development environments to provide feedback about the code they have
written as a part of the iterative process of solving a problem. Almost all of
the environments available were designed for the expert and his or her feed-
back needs while writing code. In this thesis, I begin with an analysis of the
feedback needs of the novice, and discuss the need for explicit feedback fo-
cused on the algorithmic components novices should use when practicing the
construction of simple array algorithms. As a proof of concept, I pilot test
a model of algorithmic components and feedback for four easily generalizable
problems using think aloud protocols. After validating the model and feedback,
and showing initial gains after practice, I discuss the implementation details
of AbstractTutor, a pedagogical IDE using static analysis techniques to give
pre-compilation feedback to students using the system. The implementation
details include a series of case studies highlighting the successful evaluation of
student code, and discussing the few situations where student mistakes pro-
duce code that is temporarily unable to be correctly parsed by the system.
To increase the granularity, accuracy, and specificity of analysis, I present two
metrics for evaluating student code from a body of submissions. These metrics
represent a new way of thinking about novice progression through a coding
problem, and allow analysis to focus on individual learning components within
the larger algorithm students are constructing. Finally, I detail the result of
two online, multi-institutional studies where novice programmers use the Ab-
stractTutor system. Students who received the algorithmic feedback were more
likely to make productive edits, and less likely to repeat errors on subsequent
problems. This thesis offers contributions to the learning sciences, computer
science, cognitive psychology and computer science education.

vi

Acknowledgments

This thesis, and my PhD have been made possible by a significant number
of people in my life.

First and foremost, my husband Matt DeLyser. Your ongoing partnership
in our marriage has made all that I do possible and I could not be the successful
woman and mom that I am without your continued support, love, encourage-
ment, and friendship, thank you.

My family has taught me the value of hard work, especially my father David
Jervis, who never did anything without care, thoughtfulness, and a work ethic
that I can never match, thank you.

To CMUs Computer Science Department, thank you for taking a risk on me
and being willing to recognize that you are not my target research population.
I am honored to have worked along side you for years.

Thank you to my Pittsburgh people, the Doherty crew who welcomed me
into grad school, and Kami Vaniea, Ciera Jaspan, and Christy McGuire who
helped me overcome my imposter syndrome and realize I had expertise to offer.

Thank you especially to my advisors Mark Stehlik and Sharon Carver. Nei-
ther of you regularly take graduate students but without the individual exper-
tise of both of you this thesis would not have been possible. Sharon, thank you
for holding me to high standards, you have changed the way I write and the
lens I use to look at research opportunities. Mark, your belief in me, continued
support, ongoing challenges, questioning, and late night writing sessions have
made you a PhD advisor anyone would be proud to have, and I am proud and
thankful to be your “one and only ever” PhD student.

viii

Contents

1 Translating Algorithms to Formal Language 1
1.1 Code Production: Expressing Algorithms in Formal Language 2
1.2 Difficulties Novices Face with Translating Algorithms to Code 3
1.3 Existing Feedback Mechanisms Are Not Designed For The Novice 4

1.3.1 Support for Code Production: An Artifact of History 5
1.3.2 Feedback in Integrated Development Environments 6
1.3.3 Feedback in Contextualized Environments 7
1.3.4 Strengths and Weaknesses of Current Feedback Mechanisms . 8
1.3.5 Evidence of Student Difficulties in Understanding Feedback 9
1.4 Research Questions: Improving Feedback by Aligning AbstractTutor with
Algorithm Production Goals 11

2 Using Models of Expertise to Guide Feedback Development 13
2.1 Expertise in Algorithm Abstraction and Production 13
2.2 Algorithmic Abstraction in Code Comprehension 15
2.3 Models of Code and Algorithm Production 19
2.4 Feedback Representing a Model of Algorithmic Construction 22

3 Developing Model of Algorithmic Components for Feedback 23
3.1 Algorithmic Components Assessed for Generation of Feedback 23
3.2 Assessment of Code for Evaluation of Student Knowledge 24
3.3 Assisting Students with Code Writing 26
3.4 Algorithmic Components for Introductory Array Problems 29

3.4.1 Instructional Setting for the Model 29
342 TheModel 33
3.4.3 Mappingto Code 35
3.4.4 Evaluating the Components 35

4 Using Think Aloud Protocols to Understand Student Code Production 37

4.1 Characteristics of Novice Students Thinking Aloud 38
4.1.1 Participantso 38
4.1.2 Self-Efficacy Characteristics 39
4.1.3 Procedures. 41
4.1.4 Problems 41

X

4.1.5 Research Conditions 42

4.1.6 Data e 43
4.1.7 Initial Student Attempts 44
4.1.8 Abstraction Codingo 44
4.2 Analyzing Student Code: Appropriateness of Algorithmic Components . . 47
4.2.1 Correctly Looping Over Elements 48
4.2.2 Selecting Appropriate Elements 50
4.2.3 Updating of State Variables 51
4.2.4 Returning the Answers 52
4.2.5 Algorithmic Components are Expressed 53
4.2.6 Model Appropriateness and Correctness 53
4.3 TImpacting Novice Performance: Evaluating Students 58
4.3.1 Using Algorithmic Components to Evaluate Student Progress Within
Problems 58
4.3.2 Evaluating Across Problem Gains 59
4.3.3 Correlating Abstraction with Proficiency 59
4.3.4 Abstraction Labeling of Statements 60
4.3.5 Abstractions Correlate with Proficiency 61
4.3.6 Transitions Correlate with Proficiency 62
4.4 Proof of Concept: Students Use Algorithmic Components in Code Production 65
Implementing Algorithmic Feedback in AbstractTutor 67
5.1 Automated Testing of Student Code 67
5.1.1 Desirable Components of Feedback Mechanisms 68
5.1.2 Limits on Implementation 69
5.2 Ewvaluating Code Pre-Compilation 70
5.2.1 Determining the Program Components 71
5.2.2 Focusing on Pre-Compilation Feedback 72
5.2.3 Evaluating Code in AbstractTutor. 73
5.2.4 Automated Assessment Mechanism 75
5.3 Confirming Code Evaluation Accuracy 76
5.3.1 Analyzing Existing Think Aloud Data 76
5.4 Case Studies: Code Evaluation 83
5.4.1 Case Study 1: Failure to Access Array 83
5.4.2 Case Study 2: Incorrect Loop Bounds 83
5.4.3 Case Study 3: Mistaken Array Name 86
5.4.4 Case Study 4: Failure to Parse. 86
5.4.5 Case Study 5: No Declaration of State Variable 89
5.4.6 Case Study 6: Bad Variable Update and Return 89
5.4.7 Case Study 7: Alternative Looping 92
5.4.8 Case Study 8: Loop Variable Undeclared 92
5.4.9 Case Study 9: No Semicolon Before Loop 92
5.4.10 Case Study 10: Compile but Algorithmically Wrong 96
5.4.11 Case Study 11: Compile but No Array Access 96

7

5.5 Conclusions

Quantitatively Understanding Student Coding Attempts

6.1 Problem Solving in Complex Spaces
6.1.1 Granularity of Current Methods
6.1.2 Attempt Only Metrics
6.1.3 Raw Correctness on First Attempt
6.1.4 Two Metrics for Assessing Student Submissions

6.2 Probability of Algorithmically Productive Edit
6.2.1 Code Classifications.,

6.3 Probabilistic Distance to Solution
6.3.1 Complex Problem Solving Spaces
6.3.2 Other Within-Problem Set Performance Metrics
6.3.3 Probabilistic Distance to Solution
6.3.4 Computing Predicted Number of Submissions to Solution
6.3.5 Applying PDS
6.3.6 Usefulness of PDS

6.4 Conclusion

Impacting Novice Code Production with Feedback

7.1 Study 1: Likelihood of Productive Edits
7.1.1 Study Designo
7.1.2 Submissions
7.1.3 Individual Submission Analysis
7.1.4 Learning Gains from Practice
7.1.5 Study 1: Conclusions

7.2 Study 2: Full Problem Evaluation
7.2.1 Study Design
7.2.2 TheData
7.2.3 Individual Submission Analysis
7.2.4 Conditional Differences o0
7.2.5 Algorithmic Feedback Results in No Compiler Errors
7.2.6 Probabilistic Distance to Solution

7.3 Case Studies: Impact of Feedback on Individual Students
7.3.1 Case Study 1: Accessing a Single Element
7.3.2 Case Study 2: Return Placement
7.3.3 Case Study 3: Unsure Where to Begin

7.4 Conclusions

Conclusions
8.1 Research Focus
8.1.1 Summary of Contributions
8.1.2 Feedback Regarding Algorithmic Abstractions Produces Better Per-
formance

x1

101
101
101
102
102
103
103
104
109
109
109
113
115
116
117
118

119
119
120
123
125
130
131
131
131
131
133
135
137
138
139
139
140
142
143

8.1.3 Feedback Mechanisms and Code Evaluation for the Novice 148

8.2 Future Work 148
8.2.1 Larger Treatment for Across Condition Gains 149

8.2.2 Additional Problems and Feedback Refinement 149

8.2.3 Models of Student Proficiency 150

8.2.4 Models of Student Problem Solving 150

8.2.5 Ongoing Work for New Products 151

8.3 Acknowledgements 151
Appendix 153
A AbstractTutor Problems and Feedback 153
A.0.1 The Problems and Reference Solutions 154

A.0.2 Feedback Messages 154

B Alignment Vectors Observed and Number of Instances 159
Bibliography 161

xil

List of Figures

1.1
1.2

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1
6.2

7.1
7.2
7.3

8.1

An Example Debugger: Variable Values are Displayed in Upper Right . . . 6
Karel J. Robot Context, . 7
A Model of Student Code Production Practice 20
Two Dimensions of Assistance 27
A Model of Algorithmic Components 33
The Tutoring Screen Used By Participants 42
Looping Over An Array, Percentage of Missing Observations 56
Identify and State Variable Counts, Percentage of Missing Observations . . 56
Return and Compilation States Counts, Percentage of Missing Observations 57
StatementClassifications by Student Proficiency 62
Transitions by Proficiency 63
A Generic AST 76
Human vs. Computer Scoring of Student Code Submissions 81
Comparing Two Student Paths 113
Student Program States — Problem 4 114
Study 1: First Attempt Alignment Vectors (As Percentage) 130
Study 2: Changes in Alignment Vector based on Feedback Received 136
Study 2: First Attempts at Problems 2, 3, and 4 137
Codecademy Novice Practice Environment 151

xiil

Xiv

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
0.4
9.5
0.6
5.7
0.8
2.9
5.10
5.11
5.12
5.13

Student Responses to an Explain in Plain English Question
The Solo Taxonomy
The Block Model for Student Code Explanations

APCS Example and Grading Rubric
Two Incorrect Sums
Sum and Max Descriptions and Solutions

Count and Index Descriptions and Solutions
Code to Model Mapping

Research Questions Mapped to Sections
Entrance Survey Responses (1= highest confidence/ 7 = low confidence) .
Code Submissions by Problem
First Submits by Condition
Categorization of Student Statements
Utterances by Condition and Problem
Algorithmic Components by Condition (N indicates total submissions) .
Statement Codes by Problem
Statement Codes Percentage by Condition
A High Proficiency Student Solving The Count Problem
A Low Proficiency Student Solving the Count Problem

Two Code Examples Difficult to Distinguish by String Matching
Code to Alignment Vector Mapping 1
Code to Alignment Vector Mapping 2
Think Aloud Student Submission Data for all Four Problems
Online Study Student Submission Data
Online Study Student Submission Data
Online Study Student Submission Data
Case Study 1: Failure to Access Array
Case Study 2: Incorrect Loop Bounds
Case Study 3: Mistaken Array Name
Case Study 4: Failureto Parse
Case Study 5: No Declaration of State Variable
Case Study 6: Bad Variable Update and Return

XV

5.14
5.15
5.16
5.17
5.18

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

8.1

Al
A2

B.1

Case Study 7: Alternative Looping 93
Case Study 8: Loop Variable Undeclared 94
Case Study 9: No Semicolon Before Loop 95
Case Study 10: Compile but Algorithmically Wrong 97
Case Study 11: Compile but No Array Access 98
Finding the Sum of the Numbers 104
Duplicate Submission Examples L. 105
Algorithmic Counterproductive and Neutral Edit Examples 107
Algorithmically Productive Edit Examples 108
Traditional Statistics for Think Aloud Data 111
Study 1: Schools with Participating Students 120
Problem Context Examples 121
Study 1: Number of Participants per Condition 122
Study 1: Problem Attempt and Completion Rate by Condition 122
Study 1: Number, Mean, and Median of Submissions per Condition, Number

of Participants available in Table 7.3 124
Study 1: Number and Mean of Submissions per Condition for Participants

Completing 4 Problems L 126
Study 1: Alignment Vector Averages for All Submissions 127
Study 1: Labeling of Code Edits with Percentage of Submissions Per Row . 128
Across Subject Results for Algorithmically Productive Edits 129
Within Subject Results for Algorithmically Productive Edits 129
Within Subject Results for Algorithmically Productive Edits 129
Study 2: Schools with Participating Students 132
Study 2: Number and Mean of Submissions per Condition 132
Study 2: Labeling of Code Edits with Percentage of Submissions Per Row . 133
Study 2: Alignment Vector Sums as Percentage of Points Possible 134
Study 2: Estimated Change to Alignment Vector As a Result of Feedback . 135
Study 2: Mean Alignment Vector Percentage on First Attempt 136
Study 2: Number of Observed AV States and PDS Distance by Problem . 138
Case Study 1: Sarah’s Struggle with Accessing an Element 141
Case Study 2: Incorrect Return Placement 142
Case Study 3: Unsure Where to Begin 144
Contributions and Domains Offered by this Thesis 146
Sum and Max Descriptions and Solutions 155
Count and Index Descriptions and Solutions 156
Count of Alignment Vector Values from Online Study 1 160

XVl

Chapter 1

Translating Algorithms to Formal
Language

In 1967 Herb Simon defined computer science as the study of computers and all the phenom-
ena that surround them. As the discipline of computer science matured over the next half-
century, subdomains including theoretical computer science, artificial intelligence, robotics,
human computer interaction, software engineering, and machine learning have developed
and were recognized by the Computer Science community. Although the field itself has
diversified, a common thread among subdomains, and an important part of many intro-
ductory classes, is the communication of a series of steps, or algorithm, to a computational
device.

A key skill in the development of fluency in constructing and communicating algorithms
is the ability to use specific, often formalized, language to describe the steps of the algo-
rithm to the computational device. Although formalism adds a layer of complexity to the
process, the use of a formalization can help novices think precisely about the algorithmic
components that are often implicit in natural language. As an example, a favorite exercise
in many introductory Computer Science classes is to enact student written directions for
common tasks, such as making a peanut butter and jelly sandwich. Students often rely
on implicit directions when writing the algorithm, and the teacher will take a literal in-
terpretation of the students’ commands to demonstrate the need for absolute clarity and
specificity. For example, the direction “Put the peanut butter on the bread” results in the
peanut butter jar being stacked on the loaf of bread.

The formalized language used by a large majority of introductory courses to construct
and communicate algorithms is a programming language. These languages can range from
industry standards such as Java, to pedagogical languages such as Scratch or Alice. Regard-
less of the language used, the communication of algorithms is done through combinations
of commands expressed through the rules of the formalized system, often called code.

1.1 Code Production: Expressing Algorithms in For-
mal Language

An algorithm can be defined as a “series of instructions for completing a task”. Humans
express algorithms every day in their communications with each other. Giving directions,
sharing a recipe, or laying out tasks for a work product all require that a plan of action for
solving the problem be developed and then be decomposed/partitioned into the subtasks
required for completion, and then effectively communicated to another individual.

Difficulty arises when communicating with a person who speaks another language,
such as Spanish or French, who perhaps comes from a different culture or backround,
where implicit references and idioms are not the same as your own. Communicating with
a computational device or computer has many of the same challenges as communicating
with someone who does not speak your language. Nuance and implicit understanding
are not conveyed and a level of formality and precision is needed in order to express
meaning without misunderstanding. There are many formal languages that can be used
to communicate algorithms. Flow charts, logic or mathematical languages, programming
languages, and even formalized pseudo code can all be used to communicate the steps of an
algorithm. Often in our introductory computer science courses, we use one or more of these
formalizations; however in a vast majority of courses, students are asked to implement their
solutions in a particular programming language.

The formalization of steps or directions is an important component of Computational
Thinking as defined by Wing [91]. Wing states that Computational Thinking is the
“thought processes involved in formulating problems and their solutions so that the so-
lutions are represented in a form that can be carried out by an information processing
agent” [90]. In order to practice representation and formalization, we often ask students to
write programs that implement basic algorithms to gain the repetition and practice needed
to identify the algorithmic patterns that will become abstractions. The abstractions are
formed by the identification of patterns within the specific formalized implementations stu-
dents practice, and then recognizing and re-using those patterns in the solutions to future
problems. Students often do this with little success, especially as novices [53].

The requirements of formality ensure that we use precise descriptions and constrain
the discourse to a specific set of instructions that have been defined for the formalism.
Additionally, especially for programming languages, there is a syntax requirement for the
formalization in order to craft even a basic implementation of the problem solution. The
syntactic requirement means that in addition to the correctness of the sequence of instruc-
tions, you must also include the correct punctuation, potentially the correct spacing, and
often the correct grouping of commands to ensure they are understood.

In order to adopt a common educational practice of leveraging prior knowledge, a
number of studies have been conducted to determine the prior knowledge introductory
students have of some complex algorithms. These studies asked the students to describe
a task in natural language, and then analyzed the responses for appropriate algorithmic
components and structures. With varying degrees of success, students were able to express
algorithms for counting the number of letters in a series of mailboxes [80], selling tickets

2

to a movie(queuing problem) [75], debugging a program [74], and efficiently searching a
space [29].

All algorithms are composed of a series of atomic commands understood by the com-
putational agent. These commands, or algorithmic components, are rigorously defined by
the formalism and are able to be enacted without further explanation or decomposition.
For example, a small list of such commands for a computer may include assignment (a=b),
addition (a+b), decision (if-else), and repetition (while, for). Even this simple list masks a
range of abstract layers, from the lowest level (machine code) to the highest (e.g., repeti-
tion), however most programmers, including novices, work with a programming language
or formalism that contains these abstractions as atomic commands.

The complexity of describing the task faced by novices when producing code that im-
plements algorithms is almost equal to the complexity that the novices themselves face in
their attempts to translate algorithms to code.

1.2 Difficulties Novices Face with Translating Algo-
rithms to Code

Despite being able to express some algorithmic solutions to problems in natural language,
novices often face difficulty expressing the algorithms in the formal language required in
an introductory programming course [53]. As with many academic endeavors, the whole
is greater than, or more difficult than, the sum of its parts. In order to produce code
that implements an algorithm to solve a specified problem, students must first understand
the problem, then associate it with an appropriate abstraction, for example associating
the counting of the votes in an election across precincts with a sum abstraction. After
the abstraction is chosen, the student must then decompose the algorithm into its relative
components, creating a variable to hold the sum, a loop to repeat the process over each
precinct, and a statement to add the precinct’s total to the overall total. The choice of
components can be dependent on language features '; however, within an introductory
course, students often use only a single language and therefore do not need to make the
choice between languages or paradigms.

Once the components are identified, the novice must then translate the mental model
of the component sequence into the formalism required by the programming or practice
environment. For example, the recognition that a variable needs to be initialized to store
the sum would turn into the following code snippet

int sum =0;
in the programming language Java. The formalism in the Java language requires the
specification of a variable type (integer) and a starting value for the variable before it can
be used.

In addition to the components required by the formalism, there are often syntax re-
quirements. For example, assignment statements in Java require that the value for the

'For example, in a functional language, the repetition through the list may be implemented by a
recursive function call instead of a loop.

variable be placed on the right side of the equal sign. For the expert, this happens without
thought; but for the novice, whose experience with variables may come from a mathemati-
cal context where order does not matter, the inversion of the statement to 0=sum provides
a cryptic message that must be interpreted and corrected before receiving feedback about
the larger algorithmic structure. Although computer science education researchers have
not yet explored the specific impact of learning syntax on programming language acquisi-
tion, the impact of syntax on the acquisition of a second natural language (i.e., an English
speaker learning Spanish) has been well studied. A focus on the construction of mean-
ing using appropriate vocabulary over the syntax or structure of novice statements will
produce more efficient learning of new languages [22, 86].

When learning a programming language, the combination of the translational step to
a program and the unforgiving requirements of the formalism, as often enforced by a
compiler, compound the difficulty of implementing an algorithm to solve a problem.

1.3 Existing Feedback Mechanisms Are Not Designed
For The Novice

In the process of becoming a proficient producer of algorithms, novices write code in
order to practice the translation to formalism, find the correct sequence and structure
of commands, as well as learn to think about edge cases and test code for correctness.
Feedback during practice is an important component in the development of fluency or
expertise [38]. Unfortunately, many of the systems used by novices learning to write code
do not offer feedback that is directed at or useful to the novice programmer.

Computer scientists, both novice and expert, employ various tools to provide feedback
during code production. The most common tool for both the novice and professional is the
IDE, or Integrated Development Environment. IDEs provide an editor, an environment for
writing the textual code required, a compiler to provide feedback about syntax, and often
runtime and debugging functionality allowing for testing and debugging of code. Although
IDEs can have advanced features, such as in-code drop down menus for completion of
statements, they are primarily designed to be generalizable and therefore cannot offer built
in problem feedback for the programmer. Problem specific feedback is done through the
creation of test cases that evaluate the output of the code based upon a series of provided
inputs. Often experts create tests that check the behavior of runnable? code by entering a
series of input values they construct themselves and checking to see if the output matches
expectations or requirements. The creation of test cases itself requires a level of expertise
to know what appropriate values are, and what input values are most likely to cause an
error. This feedback is often very helpful to the expert and very unhelpful to the novice.
Novices often lack sophisticated understanding of the algorithm they are trying to produce
so they have trouble determining which of the many components could be responsible for
a change to the output.

2Runnable code indicates no compiler errors.

1.3.1 Support for Code Production: An Artifact of History

An inspection of early expert processes involved in code production can shed light upon
the difficulties of today’s novices. Although the first computers were built to perform
calculations, the execution of those computations by modern day standards was painfully
slow. Early computer programmers could not compile their programs in an instant, so they
followed a process that was heavily influenced by the cost of compilation. Algorithms were
written with extreme care before they were even communicated to the computer through
a keyboard (or other device). Writing a computer program involved careful thought about
a solution. With a compilation and execution time of days or hours, the algorithmic com-
ponents were often verified or hand traced before the code was submitted to the compiler.
The programmer would return to the computer lab a day later to pick up the result of
the execution - either compiler errors or a list of outputs based upon the predetermined
inputs provided by the programmer. Again, with the cost of computation, it was up to the
programmer to unpack this feedback to determine whether the program worked correctly
or not.

With the early model of programming, despite having access to computational tools,
the cost of computation was prohibitive and self reflecting strategies were key to being
successful. Over time, the computational cost of compilation and execution reduced, and
professors of computer science tried to prompt the planning and self reflection in students
through instruction [5, 49]. The tools in a majority of introductory courses, however,
remained the same. Feedback is centered on compilation and output based execution, based
on the idea that what the humans do well is the big picture, the algorithmic abstractions,
and what the computer does well is process the details. While this may be true for the
professional, it is not true for the average novice.

The average novice goes through a very different process in order to plan, write, enter
(type), and execute algorithms in code. First, the novice must unpack the problem state-
ment. In this step, the student must take the high level description of the problem and
decide what algorithms or structures should be applied in the code. As a novice, it is likely
that the student is mostly recalling the worked examples seen in class or a textbook and
is trying to match the problem to one of them. The structures or algorithms must then be
decomposed into the relevant individual components required for the task. These compo-
nents must be ordered correctly, and even more so must have references to each other at
appropriate parts. In a modern computer science class, a novice may enter whatever he or
she remembers and press compile as a way to check the solution.

Notice the difference. The expert or early programmer will read (or even trace with
values) the code that has been written in order to check the correctness of the algorithm
implemented. Novices instead put together what they remember and attempt to use the
compiler or other development tool as a feedback mechanism that can help them correct
errors. The types of feedback both users need to efficiently arrive at a solution is very
different, just as the process both users are going through is different.

5 Debug 32 4k Servers = O] 69: Variables 3 o ¥ =0

Ok | 3R %l 3_5?‘ & 7| Mame Value
[3] MyDebugTest [Java Application] o @ this MyDebugTest (id=17)
& org.kadreg.MyDebugTest at localhost:52301 =] 4

@ Daemon System Thread [Attach Listener] (Running) Qi 5
@ Daemon System Thread [Signal Dispatcher] (Running) 0 k 9
@ Daemon System Thread [Finalizer] (Running)
@ Daemon System Thread [Reference Handler] (Running)
o Thread [main] (Suspended (breakpoint at line 25 in MyDebugTest)
= MyDebugTest.operation(int) line: 25
= MyDebugTest.main(Stringl]) line: 30 i il

. +

]
org.kadreg.MyDebugTest@d2906a

4 1 b I b

[J] ECoinCoinjava A1) BackendParser java [] BackendParsingExcept “MyDebugTestjava &% > =8
® * Copyright (C) 2007 kadreq[] -
package org.kadreg;

public class MyDebugTest {
private int j = 4;

void operation (int i) {
int k = 1 + j:
£zl System.out.println (k):

public static woid main(String[] args) {
MyDebugTest test = new MyDebugTest ():
test.operation(s);

Figure 1.1: An Example Debugger: Variable Values are Displayed in Upper Right

1.3.2 Feedback in Integrated Development Environments

An Integrated Development Environment (IDE) is a piece of software that combines a text
editor with a compiler and other useful tools for writing programs. The feedback offered by
IDEs varies between the environment and the specific purpose for which it was designed.
Some IDEs offer feedback in the form of visualizations built upon the code produced by the
programmer. The visualizations take many forms and can focus on different aspects of the
code structure or operations. Most IDEs provide a view of the structural components of a
program or larger project. In some cases, the structure is represented by a file structure,
possibly including the names of methods (or subprograms) found within the files. The
structure could also be used to display an object hierarchy in languages where appropriate.
The visualizations of file or object structures can help with locating particular methods
or understanding code structure, but they will not often help debug errors arising from
incorrect logic in code.

Imagine trying to determine why a car will not start. You have a diagram of the car
systems. The diagram can light up the systems in the car that are being manipulated in
the car starting sequence. For example, you turn the key and the key lights up, followed
by some lights along the connections from the starter to the battery. Imagine the lights
flash in some sequence and you are left to determine how the flashed sequence is different
from an optimal sequence. Without expert knowledge of how cars operate, the diagram
may help you locate trouble areas, but cannot tell you what to change in order to correct
the problem.

Although structural representations of the program are important, additional represen-
tations are useful when trying to debug unexpected program behavior. A second type of
visualization focuses on the data being stored and manipulated by the program. In its

Figure 1.2: Karel J. Robot Context

simplest form, the feedback is the display of values held by individual variables available
through most debuggers. Figure 1.1 shows an example from a popular IDE. The upper
right panel displays the values held by variables i, j, and k. The upper left panel displays
the stack trace, or series of methods that have been called to arrive at the current code
location. The larger lower window displays the code being debugged, with the highlighted
line the last line to be executed. Each “step” or single line execution is triggered by
pressing a key or button on the screen. The programmer will step through the program
execution, one command or block of code at a time, and watch the variable values change.
This approach is similar to output based feedback, however it allows the programmer to
observe intermediate states within the code and infer correctness based upon those values.
In more sophisticated IDEs, the visualization will extend to an image of the data structure
or even an animation of the construction and changing values within the structure that
is produced during execution of the program. For the novice, although this information
could help troubleshoot a problem, the complexity of the screen, combined with the need
to observe state change over time, is often too difficult to parse and understand.

1.3.3 Feedback in Contextualized Environments

A third type of visual feedback centers on the task or context provided to novice pro-
grammers, either by the problem assignment from the teacher or embedded in the envi-
ronment itself. In these task-based environments, programming fundamentals are taught
and practiced through the contextualization of the concept within problems in a world or
environment. One example of such a context is displayed in Figure 1.2 and makes use of
the Karel J. Robot library and curriculum. In Karel, the primary actor in most programs
is a robot named Karel that completes tasks navigating on a 2D grid. Environments such
as Karel have been shown to be successful at engaging students in an introductory course
[9], learning the basics of objects and fundamental control structures [70], and assisting in

7

the understanding of data handling in objects [25].

The key to the contextualized environments is the ability to describe the desired result
of the program in natural language, and have a visual display (or other cues for the novice)
that creates a pictorial representation that is easily matched to the natural language de-
scription. For example, in Figure 1.2 the robot will need to walk up the stairs and pick up
each beeper (labeled with a 1). The novice should understand the idea behind walking up
the steps (a move in the positive y direction, then positive x direction) and what would
change visually if each beeper is successfully picked up. If Karel does not walk the ap-
propriate path, or does not pick up the beepers, the novice will not only see the incorrect
final state of the environment, but also the series of events (each step the robot makes)
that yielded the incorrect solution. The direct relationship to natural language removes
a barrier of translation from an abstraction or idea to a concrete representation for the
novice and allows for a mental model of the output to be directly tied to the individual
actions of the program. Novices, however, are still left to make the connection between
the visual representation (output) and the code that they have written in order to debug
any algorithmic mistakes. Some environments provide code highlighting during execution
to assist novices in locating where their algorithm deviated from their intended solution
[71], but this feedback can only help the novice determine a potential code location and
not the appropriate algorithmic component or command to use.

1.3.4 Strengths and Weaknesses of Current Feedback Mecha-
nisms

Each of these feedback approaches has its own individual strengths and weaknesses. The
trade-off between generalizability and feedback to support novices has long been a char-
acteristic of the division between IDEs and tutoring systems. From an IDE perspective,
generalizability is important so programmers can use the tool to create software unimag-
ined by the IDE designers. For the novice programmer, however, the generalizability is less
important as many introductory courses focus on similar topics and assign practice tar-
geting similar learning objectives. Pedagogically focused tools do provide more feedback,
often through visualizations to the student, but still are restricted by the need for gener-
alizability across an almost unlimited set of problems. Although they visually represent
the code produced, these tools or contexts still rely on the student to infer the mistake in
the code from the feedback. Additionally, novices must parse and correct compiler errors
before the contexts or visualizations will provide the intended scaffolding.

As described in Chapter 2, the practice programs or exercises assigned to novices often
involve more lines of code or elements than a novice can chunk or hold in working memory.
The generalizable feedback mechanisms offer symptoms of the problems in the student’s
code, and they rely on the student to jump between levels of abstraction in determining (1)
the actual cause of the error (which may or may not directly relate to the error message)
(2) the way to correct the symptom observed by the error message presented, and (3)
the overarching effect of the correction on other aspects of the program. For example, an
error resulting from a lack of variable initialization could be a syntax error, a null pointer

exception during runtime, or an unexpected output value during output-based testing. The
difference between the type of error given for the same underlying cause depends upon the
programming language and the type of variable that was uninitialized. Even if the error
is the most specific, a compiler error indicating the variable was not initialized, the error
message often displays the line number where the variable is used and not necessarily
where the variable was created or needed to be initialized. The novice is left to perform
the complex diagnosis, identifying which variable is at fault, or the reason for the incorrect
value, relying on her own mental model of what the algorithm should be (which may be
faulty) and then attempting to match the code produced to that model.

Depending upon the environment producing the feedback, the task the programmer
is engaged in, and the desired outcome of the activity, there are a number of steps the
programmer employs to make productive edits after receiving feedback from a system.
An expert reads the feedback and then often uses a locator such as a line number to
determine the general area in the code producing the error, reads the code, using cues
from the feedback message to identify the source of the error, and finally conceptualizes
the appropriate modification to fix the error. An important distinction to make is although
feedback is produced in response to a particular error in the code, the feedback in most
cases will not be exact in identifying what needs to be changed in order to make the
code correct. For example, a misspelled variable will not produce feedback indicating a
“spelling” error, as it would in a word processor. Instead, the feedback for a misspelled
variable would most likely indicate that there is a variable that has not been defined. Due
to the need for generalizability, feedback mechanisms in IDEs are often imperfect and have
steep learning curves for novices, since the feedback only exposes a symptom and not the
actual cause of the error.

1.3.5 Evidence of Student Difficulties in Understanding Feed-
back

Feedback can be a powerful tool during practice to promote the shift from novice to expert.
To be most effective, however, the feedback must be comprehensible by the student and
the student must believe that reading the feedback will assist in problem solving efforts. As
previously discussed, many of the IDEs used by students for general practice when writing
code are designed by and for experts. The feedback produced is often only indicative of
a symptom of a problem within the code and not directly related to the algorithm being
produced. This misalignment between novice knowledge and feedback leads to difficulties
that are too challenging to be desirable.

The challenges faced by students with error messages, the most common form of feed-
back during practice, have led to multiple proposed alternatives to the traditional pro-
gramming editor. Drag and drop environments such as Alice [20] and Scratch [51] avoid
errors by only allowing students to “drop” programming blocks in appropriate places. The
inability to use a particular block in a place is in itself a subtle form of feedback, however
the systems do not provide a message as to why the block is incorrect. The implicit feed-
back relies on the novices to spontaneously reflect on the attempted incorrect action and

determine for themselves the source of the error and how to correct it. With regards to
algorithmic components, these systems are similar to other visual contextualized environ-
ments, as the result of the program is most often displayed as an animation on the screen.
Watching the animation, users must make the inference themselves between the actions of
the objects or sprites and the program code.

Other work has focused on evaluating or modifying the messages themselves. One
example of simplified error messages can be seen in the BlueJ environment [40]. The error
messages are displayed one at a time and have been edited to remove some of the message
complexity. For example, when you receive an error in the BlueJ environment, you can
click on the error to take you to the line of code where the error message was triggered
(not always the line containing the error). In a standard IDE, the line number is included
in the error message and then the novice must find the line of code corresponding to the
line number.

Other work has taken a data driven approach, looking at the source of errors in the
Dr. Racket IDE [52]. Authors found common underlying mistakes causing program errors
in novice code, and propose modifying specific error messages based on these data. Again
these efforts are designed to correct student difficulties with compiler messages, and studies
show that even in environments such as BlueJ, where the messages have been modified,
students often struggle and engage in cycles of unproductive edits [34].

Although the analysis of student responses to error messages and the proposed modifi-
cation of the messages is a useful usability endeavor, it is not aligned with a direct learning
goal outcome. When analyzing the ability of students to correctly apply compiler error
messages to code edits, Marceau et al. in [52] observed “It is tempting to interpret these
graphs as indicating students’ conceptual difficulties in the course. This interpretation is
invalid because the error message the student sees is not a direct indicator of the underly-
ing error. For instance, Lab 6 had numerous ‘unbounded-id’ errors, but a careful manual
analysis revealed that many of them were from students improperly using structures, not
merely being bad typists. To further confound matters, the precise error that is shown is a
function of parsing strategies, because many invalid expressions can be flagged in multiple
ways. Therefore, an additional manual analysis is necessary to understand what actual
errors students were making.” As the parsed errors themselves are symptomatic of under-
lying issues with the student code, and vary by the assignment the student is completing,
a rework of the error messages for a generalizable IDE can at best offer students a menu
of options representing potential sources for the error.

In the quote, Marceau et al. refer to the misconception, hidden in an expert blind spot,
that compiler errors often result from students being “bad typists”. This claim would be
similar to asserting that a novice second language learner forms incorrect sentences not
because of a misunderstanding of the new language, but because he made typos that went
uncorrected. Clearly novices will make semantic and syntactic mistakes in a new language
based upon imperfect knowledge more often than mistakes based on typing errors. Yet
in computer science most of the tools students use for practice require that the syntax be
correct before any feedback relating to the meaning of the code can be produced.

The approach of analyzing student attempts to determine appropriate modification
of error messages is an approach to the difficulties by looking only at the observable.

10

By treating the issues as an HCI problem, we can understand the user base and make
changes that impact the easily observable behavior of program edits. The primary goal of
novice practice, however, is not just to reduce the number of unproductive edits. Instead
instructors assign practice problems in order to provide opportunities for a student to apply
the program components (variables, control structures, or data structures) to a variety of
problems and develop abstractions surrounding these components so they may be used
again in future problem solving scenarios. As an instructional designer, I propose focusing
feedback on the desired learning outcomes and not the observable symptomatic difficulties
students have.

1.4 Research Questions: Improving Feedback by Align-
ing AbstractTutor with Algorithm Production Goals

The difficulties that students have translating algorithms into code, combined with inef-
fective feedback mechanisms, have inspired the research questions addressed by this thesis.
Rather than studying the efficacy and modifications of feedback messages produced at
compile time, this work will analyze the addition of a feedback cycle before compiler er-
ror messages when possible. In this cycle, the system uses knowledge of the problem the
student is attempting in order to preliminarily evaluate the potential “meaning” of the
code.

The work presented in this thesis makes contributions to both Computer Science and
Cognitive Science through the construction of the AbstractTutor system, and then the use
of that system to study novice responses to feedback during practice. Similar to an English
teacher checking the outline of an essay before reading the text, AbstractTutor verifies the
existence of specific algorithmic components before checking for syntax or using test cases to
provide output based feedback. The verification and feedback regarding potential meaning
prior to the display of compiler errors has the potential to improve novice learning, and
the alignment of feedback messages regarding algorithmic components with instructional
goals should only strengthen the potential learning gains.

The two main research questions addressed in this work are: (1) Can a pre-compilation
feedback mechanism be constructed that operates with reasonable accuracy
(85% of student generated submissions)? and (2) Will pre-compilation feed-
back regarding algorithmic components produce better (a) within-problem per-
formance and (b) across-problem learning.

Answering these questions required a design exercise and a series of qualitative and
quantitative studies with secondary research questions. Chapter 2 provides the motivation
behind the choice of algorithmic components as a path towards fluency and expertise in
algorithmic construction of code. Chapter 3 presents a brief overview of the inspiration for
the feedback model and its alignment with introductory instructional goals. In Chapter 4,
I present the results of a think aloud study, used to validate the feedback model. Chapter 5
details the technical implementation of the feedback model, as well as contributions to the
learning sciences in the analysis of within problem progress. Chapter 6 presents methods
of assessing student code submissions as a contribution to the Educational Data Mining

11

community. Chapter 7 presents the results of a multi-institutional study where subjects
used the online AbstractTutor system during practice for an introductory computer science
course, where students who saw algorithmic feedback were more likely to make productive
edits. In Chapter 8, I present my conclusions and directions for future work.

12

Chapter 2

Using Models of Expertise to Guide
Feedback Development

Despite the variety of interventions discussed in the last chapter, novices still struggle with
code production. Novice computer science students are often able to express rules for ap-
propriate syntax, translate individual lines of code to English at a very basic level, and
follow pre-written code using tracing strategies. Although the mastery of these individual
skills is highly correlated with increased skill in code production, the combination of mas-
tery in individual tasks does not signal expertise in code production, especially when longer
programs or more complex algorithms are involved. Prior research has demonstrated a dis-
connect between knowledge of individual program components, or the ability to understand
lines of code, and the ability to produce complex code structures or algorithms. The lack of
a strong connection indicates that additional support is needed during learning and practice
to help students make explicit connections between the code components they understand
and the algorithms they are attempting to author. In this chapter I will discuss a variety
of research highlighting the differences between low level code knowledge and the skill of
algorithm production. These studies are framed with two models, the SOLO Taxonomy
and Block Model, derived from experts and novices, showing that experts understand code
at a different level of abstraction than novices. These results are used to motivate a frame-
work for generating within-practice feedback and measuring student progress, detailed in
Chapter 6. The feedback uses language that connects mistakes in the students’ code to
the algorithmic abstractions that I seek to foster through the AbstractTutor system.

2.1 Expertise in Algorithm Abstraction and Produc-
tion

Expert performance in a domain is often characterized by fluency/accuracy, procedural-
ization of common tasks and complex conceptual structures. Additionally, these complex
conceptual structures are organized based upon context and experience as much as topic
within the domain. The complex structures of chess masters, for example, have been shown
to not only provide for problem solving assistance, but also for chunking or encoding board

13

states [14]. The same studies showed an inability to chunk impossible board states, indi-
cating that it was not a pictorial representation borne out of familiarity, but one deeply
rooted in the problem solving embedded in the game of chess. Experts are also more likely
to be able to identify problems of similar types, even when the context of the problem
solving situation has changed [16].

These theories of expertise have important implications for the learning of program-
ming, especially when practice is comprised of complex tasks with interrelated structures.
Just as experts in chess are able to chunk combinations of pieces in representative board
states, so too do computer scientists chunk series of commands into complex interrelated
structures, most often representing algorithms, in working memory. Evidence of this can
be seen not only in experts’ ability to recreate code in a memory test, but also in studies
where students are asked to debug or describe code [73]. In questions that contain algo-
rithms with a slight error or small inconsistency, weaker students are much more likely to
locate the error or identify the changed behavior of the code [2]. Although this seems to
be contrary to theories of expertise, it actually strengthens the argument for chunking by
the expert. The higher accuracy on the part of the novice could indicate a closer scrutiny
on the part of the weaker student in order to form an understanding of the code, while the
expert will make a classification based on the larger structure rather than the individual
details. Similarly, in studies of reading, an expert reader can easily parse a sentence where
the internal characters of words are scrambled and, depending on the severity, will not
even notice, while the novice will struggle with understanding [67].

The size of the conceptual chunks may play a role in students’ ability to not only set
and carry out goals during practice exercises, but also in their ability to learn the complex
abstractions that rely on multiple interacting components of algorithms. If a novice is
working at the token level of abstraction, seeing each variable name, syntactical structure,
and operator as a separate entity, he may not be able to hold the entire task in working
memory. This constraint will make it difficult for the novice to see the whole plan or
algorithm at one time and remember the connective structures from practice when later
assessed. Without directed metacognition after the practice exercise is completed, many
students simply are relieved to have the “correct answer” and do not often reflect on the
components they have assembled in order to arrive at that answer. Instead, students often
express relief or pride at the completion and seek the next goal, homework assignment,
practice attempt, or concept without reflecting on the difficulties they encountered and the
appropriate solutions.

Due to the expression of difficulty and a significant failure or dropout rate from early
courses, educators often debate what can be changed about introductory courses in order
to alleviate the difficulties that students are experiencing, produce a more positive learning
experience, and increase student learning during practice. With self reflection, many faculty
arrive at the conclusion that the difference from their learning experience to the current
introductory curriculum is the programming language, not the concepts, and so debates
over which language to choose are ongoing. Many of the arguments over an appropriate first
programming language center on paradigm (object oriented vs. procedural vs. functional)
and syntactical difficulties are often specified as a reason to choose one language over
another [39]. Spohrer and Soloway in 1986 took a different view, stating

14

Our empirical study leads us to argue that (1) yes, a few bug types account for

a large percentage of program bugs, and (2) no, misconceptions about language

constructs do not seem to be as widespread or as troublesome as is generally

believed. Rather, many bugs arise as a result of plan composition problems -

difficulties in putting the pieces of a program together - and not as a result of

construct-based problems which are misconceptions about language constructs.

[77].
Some pedagogical approaches have targeted the formation of plans, goals, or abstractions
in the form of patterns for the student to follow [6]. This work was inspired in part by the
building architecture literature [4] and has been shown to have impact on student learning
[56]. The relationship between expertise and findings regarding student mistakes and
subsequent debugging attempts have prompted the focus on feedback regarding algorithmic
components in this thesis, as opposed to a study of error messages and their efficacy’.

2.2 Algorithmic Abstraction in Code Comprehension

The attempts to measure novice programmers’ ability to understand and produce complex
programs has resulted in several correlational studies and two models to explain student
reasoning. Similar to the relationship between reading comprehension and writing in natu-
ral language, a positive correlational relationship has been established between the ability
to comprehend code and produce code [50]. In addition, this correlational relationship
is not predictive, indicating there is another skill set required from the identification and
translation of code to the production of lines of code to produce an algorithm [88]. Many
interventions have asked students to explain code and then evaluated the answers for
complexity and indications of algorithmic chunking or abstraction [48, 89]. No prior in-
terventions have looked at the result of feedback containing messages about algorithmic
abstraction on students while writing code.

Although the prior literature has focused on measuring the relationship between profi-
ciency at code writing and the ability to 'translate’ code, little work has connected these
correlational studies with fluency and expertise. The differentiation between fluency and
expertise in problem solving domains is a fine line. Fluency is representative of one’s abil-
ity to translate and converse in the language of the domain, while expertise involves the
ability to reason and transfer the fluent knowledge to new problem solving situations. In
computer programming, novices at the early stages of fluency can accurately describe in-
dividual lines of code, or trace a series of statements, correctly producing an output value
when given particular inputs. These novices, however, cannot be considered experts and
often have difficulty rearranging the lines they have translated into a coherent whole, or
describing the code in perceptual chunks instead of individual lines [21].

A favored assessment item for determining the expertise of students is the “Explain in
Plain English” code comprehension question [57]. In these items, students are presented
with a piece of code, often involving several lines to complete an algorithm, and asked to

! Additional work is being conducted on the efficacy of error messages and the implications for student
problem solving during practice [28]

15

explain what the function of the code is, or the resulting changes to variable states. The
students are often not provided with initial assignment values for the problems, as the goal
of the question is not to produce a numeric output, but instead require the student to use
natural language to describe the parts of the algorithm presented. In a previous study [83],
I recorded open ended responses to similar types of questions. In the question, students
were provided with the code shown below that counted the number of items in a list whose
value was less than the parameter val.

int countLessThan(int myList[], int val){
int ¢=0;
for(int i=0; i<myList.length; i++)
if (myList[i] < val)
c++;
return c;

3

The students were asked to describe the role of the variable 7 in the algorithm presented.
Table 2.1 shows several student responses to the question. Student 1 answered the question
with understanding of the code, but almost a direct translation of the meaning; this answer
shows little descriptive understanding of the purpose of the variable, only its state changes
throughout the looping structure. Students 2 and 3 are slightly more sophisticated in
their answers, connecting the variable i to the idea of an index and even to the use of it
to obtain values from the array myList. Student 4 answers with a much more complete
answer, indicating that while the variable is representative of the indexes of the values
stored, its primary purpose is to access and possibly alter the values stored within the list.
Results of this study also indicated that with feedback connecting the code to abstractions,
students were able to produce more sophisticated open-ended responses over time [82].

Student 1 | “Counts from 0 to length minus 1”

Student 2 | “i acts as a temporary index in the for loop”
Student 3 | “i runs through each index of myList”

Student 4 | “i is used as temp values from 0 to len(mylist)
such that each element in the array mylist can be
accessed and altered.”

Table 2.1: Student Responses to an Explain in Plain English Question

The diversity of student responses, and the need for descriptive categories of explain-
ing these responses has lead to the use of two main schema for classifying open ended
student code descriptions. The Structure of Observed Learning Outcomes, or SOLO, Tax-
onomy [11] has been used on several occasions to map students’ responses to a hierarchy
of complexities [89]. In the SOLO Taxonomy, students move from a Pre-Structural answer
(oversimplified), to an Extended Abstract response. Table 2.2 describes the different lev-
els of the SOLO Taxonomy. From the examples provided above, Student 1 would be in
the Uni-Structural category, Students 2 and 3 would be Multi-Structural, and Student 4
would be Relational. The answer from Student 1 is less abstract and represents a direct

16

translation of the code seen in the problem. Student 4 offers a more abstract explanation,
giving not only the values that i will assume through the loop, but also the purpose that
the variable serves within the algorithm.

Extended Abstract | The previous integrated whole may be conceptual-
ized at a higher level of abstraction and generalized
to a new topic or area.

Relational The different aspects have become integrated into a
coherent whole. This level is what is normally meant
by an adequate understanding of some topic.
Multi-Structural | The student’s response focuses on several relevant
aspects but they are treated independently and ad-
ditively. Assessment of this level is primarily quan-
titative.

Uni-Structural The student’s response only focuses on one relevant
aspect

Pre-Structural The task is not attacked appropriately; the student
has not really understood the point and uses too sim-
ple a way of going about it

Table 2.2: The Solo Taxonomy

The SOLO Taxonomy has limitations because it only employs a single dimension of
complexity in analyzing the student responses to code. A second model for evaluating
student code that is used frequently in the literature is the Block Model [72], outlined
in Table 2.2. The Block Model differs from the SOLO Taxonomy as it includes a second
dimension regarding not only the size of the perceptual chunk used by the student, but also
the interrelational aspects of the code description. The spectrum from text and atoms, to
the macro-structure of a program represents a student’s ability to reason about the blocks
and how they interact with each other (relations). The other axis of the Block model deals
primarily with Duality in terms of Structure and Function. These terms are used differently
than Structure-Behavior-Function Theory [30]? in that Function here refers to the purpose
or goals of the program. The structure of the program refers to the relationship between
the sequence or ordering of the lines and the intended outcome of the program.

Returning to our previous examples of student code descriptions in Table 2.1, Student 1
would be operating at the atom level in the Structure domain. Students 2 and 3 would still
be at the atom level, but focused more in the Function domain. Student 4 would be at the
Relation level in the Structure domain. Student 4 could move to the Function domain if
he/she included statements about the purpose of the overall program; however the question
asked in the example does not prompt the student to describe the larger problem.

In both of the models, the more abstract the student’s reasoning about the code, the
higher on the chart the response will score. The concept of abstraction becomes even more

2Structure-Behavior-Function Theory is a well known theory in cognitive science and is cited here to
illustrate the difference in the language used.

17

Macro (Understanding Understanding Understanding
Structure the) overall | the ”algorithm” | the goal/the
structure of the | of the program purpose of the
program text program (in its
context)
Relations References be- | sequence of || Understanding
tween blocks, e.g.: | method calls | how subgoals are
method calls, | 7Object sequence | related to goals,
object creation, | diagrams” how function
accessing data... is achieved by
subfunctions
Blocks Regions of Inter- | Operation of a || Function of a
est (ROI) that | block, a method || block, maybe seen
syntactically or | or a ROI (as | as sub-goal
semantically build | a sequence of
a unit statements)
Atoms Language ele- | Operation of a | Function of a
ments statement statement. Goal

only understand-
able in context

Text Surface

Program Execu-
tion (data flow
and control flow)

Functions (as
means or as pur-
pose), goals of the
program

H Duality

\ Structure

H Function

Table 2.3: The Block Model for Student Code Explanations

18

important in the development of fluency as we consider numerous studies where significant
correlations were found between students’ ability to produce statements that score highly
on these models, and their ability to produce correct algorithms in code writing tasks
[48, 49, 50, 61]. Despite these correlations, much of the feedback that students receive
while engaged in the practice of code production is focused on the individual details of
the code, or the atoms referenced in the block model. A standard compiler, and most
Integrated Development Environments (IDEs) will only provide feedback about syntactical
errors, such as punctuation out of place, as a student is working. The feedback produced
either by IDEs or through run-time testing creating output based feedback® favors the
expert. The low-level syntax corrections are meant to signal an error that may or may not
be a direct indication of the problem, but instead a symptom of the real issue. An expert
not only understands this relationship but also can use the symptom presented in the error
to diagnose the problem.

Once all the compiler errors are corrected, the student can receive feedback at the
macro-structure level, but she is often left on her own to reason about the relations between
blocks of code. This feedback is once again only an indication or a symptom of something
that may be incorrect and the novice is left to reason about the underlying cause of the
mistake. This process often leads to struggling, and sometimes guessing on the part of
the student. Unless a student engages in unprompted metacognition at the completion of
the problem, there is often a large disconnect between the debugging effort based upon
feedback and the conceptualization of the algorithmic components the student produced
at the start of the problem solving process.

Through the use of this example, previous work, and the descriptions of the models
used to evaluate the complexity of student reasoning, I have illustrated the importance
of addressing multiple levels of abstraction in the student learning process. In the next
section, I present a model of code production that highlights where the difficulty with
low level reasoning and program comprehension can interfere with production, thereby
inhibiting the benefits of practice exercises on student learning. The model of code and
algorithmic production seeks to identify code blocks and potential relations that can be
used to produce feedback for students during problem solving, thereby scaffolding the
jump from atom level (compiler feedback) and macro-structure (output based feedback)
from novice to expert.

2.3 Models of Code and Algorithm Production

Students are often assigned code-writing tasks as practice in introductory computer science
courses. These code writing tasks vary from large, complex programs that build on an
established code base [47], to smaller snippets of code designed explicitly to practice specific
skills or implement common algorithms [41, 59]. There have also been several tutoring
systems focused on the construction of a single line of code or expression and focused on
building student skills over time [27]. The following model, shown in Figure 2.1, is offered

3In run-time testing, a series of values are used to provide initial values for input to the code and then
resulting output is tested against expected output or values.

19

Student Produces Code

(1)

Align Feedback to
Mental Model /1dentify
Source of Error

Compiler/Interpreter
Analyzes Code to
Produce Feedback

1
L} /
\ -_—- Translate Feedback <— /

Figure 2.1: A Model of Student Code Production Practice

for student code production activities, except for those cases where the system focuses on
a single line of production at a time. This flow diagram is an elaboration of the model
presented by Jadud in [34] and includes descriptions of student processes while problem
solving.

In the model, a student will make an initial attempt to construct a solution (1), and
submit the code to a compiler, interpreter, or other construct of the system in order to
check the syntax, and sometimes the output of the program. After the code is submitted,
the system will respond with feedback. The feedback produced can be in response to many
factors, such as a compilation error or a failure of an output-based test, and it can take
many forms, such as text on the screen or a visualization of the program execution. Once
again, this feedback is focused on the line-level or atomic details of the code. It is at this
time that the student must perform the first step in translating the feedback from the
system and aligning it with the mental model of the program he has constructed [44]. The
student then engages in a code comprehension step to determine the appropriate location
in the program where an edit would correct the error conveyed by the feedback. Upon
identifying a location, the edit is made and the cycle begins again.

Regarding the identification /translation of the feedback received by the system, there is
evidence that novices often do not read the error messages with which they are presented,
and often have difficulty understanding the messages they do read [28]. Additionally, in
his work on the compile-edit cycle, Jadud found many different types of student problem
solving patterns, and the difficulties encountered with system messages that often do not
reflect the actual errors in the code [34]. This lack of attention to the feedback presented
by the system often results in an attempt to solve the problem through unfocused, often
unproductive, edits, sometimes referred to as “shotgun debugging”.

20

Regardless of whether the student has fully translated and parsed the feedback, or
simply understood that there is some error (not what the error is), the next stage in the
cycle is one of code comprehension. The code comprehension activity is performed in
order to identify the location within the code for the next edit, in an attempt to correct
the error producing the feedback. As many of the programs that students are working with,
especially in this study, are larger than their working memory [55] this code comprehension
step is not merely a recall of the code produced, but an actual prompt for self explanation®.
If the student only understands the code at the atom level, his self-explanations will be
limited to the low level translational aspect of his understanding. These students will
often struggle with the appropriate modifications to correct their code and may use tracing
strategies® in order to identify the source of the problem. Additionally, the students with
atom-level understanding may be more likely to resort to shotgun debugging, especially if
they lack the self efficacy with regards to their ability to fix the problem to expend the
mental effort to find the exact source of the error.

Once the student has decided where the error in the code exists, he will engage in an
editing process that requires him to decide how to fix the error. This edit is observed in the
compile submissions and will be used to infer, combined with other metrics such as time
between submissions, the effort expended by the student and the intent of the edit. Once
again, an edit can be severely hampered by an atom-level representation of the code if the
student is fixing more than a compiler error. A structural or logical error in the algorithm
may not be easily represented by individual atoms and once again the student is left with
the decision to guess what the appropriate edit may be.

In this model of code production, there are multiple steps that could be influenced with
feedback. I could clarify the messages and highlight the lines of code responsible for errors
as suggested [52] however this approach will only reinforce the line or atom level evaluation
of the code in question. Instead, I offer a strategy where feedback is presented that focuses
on the relational structure of the code, and prior to working with the compilation issues
provides students with information regarding the algorithmic components for the problems
they are solving. The feedback focuses on blocks of code, such as a for loop or if statement,
and the relationships of particular variables in order to bridge the connection between the
atoms and the macro-structure they produce. In the next section, I describe this feedback,
the intended impact on the students’ problem solving process, and a bottom-out feedback
message for students who are still unable to make a productive edit after receiving the
algorithmic component message.

4The Think Aloud protocols collected and analyzed in Chapter 4 provide additional evidence of self
explanation at this step.

STracing strategy: substituting sample values for the inputs and tracing the code to determine output
values.

21

2.4 Feedback Representing a Model of Algorithmic
Construction

The work presented in this thesis aims to help students who are mostly fluent in the coding
structures they are producing and are in the early transition stages to expertise [48]. These
students have completed most of a first course in programming and are working with course
assignments that require the construction of multiple lines of code, making use of variables
and structures that play important parts in the construction of the overall algorithm.
Similar to the goal/plan analysis work of Spohrer and Soloway [76, 77], the feedback will
be generated based upon the usage of algorithmic elements required to complete the task
presented to students. The algorithmic elements and their descriptions will be abstract in
nature, as described in the SOLO Taxonomy and Block models.

The pedagogical IDE (PIDE) developed in this work relies on assessing individual
constraints in order to provide feedback about the algorithmic components that may be
lacking in student code. These constraints rely on parsing the code, and often rely on
knowledge of multiple aspects of the program in order to ascertain if the constraint has
been satisfied. The feedback messages were designed to include language about how the
components either worked together, or about the purpose of the missing constraint in the
larger algorithm. Recognizing that some weaker students may still be unable to parse the
more advanced feedback, the system will provide secondary feedback if the error is still not
corrected in the next testing cycle.

In this chapter I have described two models of algorithmic abstraction from the litera-
ture on expertise. Additionally, I highlighted the disconnect between the current feedback
mechanisms and the practice of the novice. In this thesis I seek to align feedback with the
algorithmic components and algorithmic abstraction as described in the SOLO Taxonomy
and Block Models, in order to help students move from novice to expert. In the next
chapter, I describe a model of algorithmic components appropriate for the problems solved
in this thesis, and then detail a think aloud study in Chapter 4 to validate the model.

22

Chapter 3

Developing Model of Algorithmic
Components for Feedback

3.1 Algorithmic Components Assessed for Generation
of Feedback

Teachers have been evaluating student code, by hand and automatically, as long as pro-
gramming has been an academic subject. The evaluation has served many purposes, includ-
ing the generation of feedback to help novices correct errors and learn from their mistakes.
In order to ensure consistency, award partial credit, or evaluate specific subparts of a larger
problem, teachers often employ a rubric or other codified metric to evaluate code. The
creation of such rubrics often requires pedagogical content knowledge as the rubric should
represent the instructional goals of the assignment, as well as the common mistakes that
students make during the problem solving process.

Although instructors can weigh, through the use of rubric points, the importance of
program subgoals as aligned with instructional focus, many automated assessment systems
treat all errors as equal and focus only on achieving full program correctness. While full
program correctness is usually the overall goal, systems that take a broad approach often
cannot provide feedback for the learner with the appropriate level of abstraction necessary
to promote the most efficient learning. For example, a novice who uses a variable without
declaring it in the Java language would receive the same feedback as an expert who had a
typo, misspelling the name of the variable. These two errors have very different underlying
causes, omission of a key part of the process and a small typo, yet receive the same feedback.
The sacrifice of feedback specificity for the generalizability of the tool often leaves novices
confused and without the support they need to have productive practice.

The balance between generalizability and the construction of tools appropriate for the
novice can be seen in a comparison of automated grading systems. Automated grading
systems and feedback mechanisms employ a number of strategies for the design and imple-
mentation of systems that evaluate student code. In this chapter, I focus on a model used
to decide what feedback messages are appropriate for a particular student code submission.
The components used in the model are aligned with appropriate instructional goals for a

23

novice in a first computer science course in Java. Chapter 5 discusses the implementation
of the system that uses the model and the technical details of the feedback generation. In
this chapter, I present a brief overview of the inspiration for the feedback model and its
alignment with introductory instructional goals.

3.2 Assessment of Code for Evaluation of Student
Knowledge

Instructors in introductory computer science courses give assessment questions requiring
students to read, explain, and write code. The largest standardized assessment of introduc-
tory computer programming in the United States is the Advanced Placement Computer
Science A (APCS) Exam. The APCS exam is taken by approximately 39,500 students in
the United States and abroad in 2014 [1]. The exam has two parts, a multiple choice sec-
tion and a free response section. The free response section is comprised largely of problems
where the student must write code to solve a problem presented. Both the problems and
the assessment methodology in my AbstractTutor system were largely inspired by the free
response part of the APCS exam and its grading methodology.

As an instructor, I participated with the APCS program on a variety of levels. I taught
the course in high schools for 9 years. I am also a certified CollegeBoard consultant,
training other teachers in the best practices of teaching APCS. Additionally, for 7 years I
worked as an APCS exam reader and question leader. As an exam reader, I was responsible
for applying a rubric to hand written student code produced during the exam. During an
average exam reading session of one week I would grade approximately 2,000 exams, and
over 7 years I have developed an expertise in evaluating student code by hand. For three
of the 7 years, I served as a question leader where I was responsible for creating the rubric
used to assess the student code.

The CollegeBoard rigorously evaluates the grading methodology for consistency and
validates the rubrics and problems against college level students using their course grades
and scores on assessment items. Carnegie Mellon is a frequent participant in the piloting of
assessment items for the APCS exam. Based on the rigorous evaluation of the methodology
and my extensive experience with the APCS assessment, I feel confident in applying similar
techniques to the evaluation of student code for the production of feedback related to
algorithmic components. As a national curriculum based on a survey of US colleges and
universities, the common rubric points that are aligned with algorithmic components should
also align with instructional goals in most introductory computer science courses in the
United States.

Table 3.1 shows a solution to a problem from the 2010 APCS exam and the accompa-
nying rubric used in the exam scoring. The problem asked students to access a List storing
CookieOrder objects to “compute and return the sum of the number of boxes of all cookie
orders.” [1] The canonical solution is shown on the left and the rubric on the right.

An important feature of the rubrics used in the scoring of student code is the decom-
position of the algorithm into the relevant components that when combined in the right
structure make a working solution. The rubric must also be generalizable to a variety of

24

Canonical Solution Rubric (5.5 Points Total)

public int getTotalBoxes(){ +1 Consider all CookieOrder objects in
orders

int sum = 0; +1/2 access any element of orders
for(CookieOrder co : orders){ | +1/2 access all elements of orders

sum += co.getNumBoxes();

} +1 1/2 Computes total number of boxes

return sum; +1/2 Creates an accumulator (declare
and initialize)

} +1/2 Invokes getNumBoxes on object of

type CookieOrder
+1/2 Correctly accumulates total num-
ber of boxes

+1/2 returns computed total

Table 3.1: APCS Example and Grading Rubric

different solutions, as the APCS course is taught by a variety of instructors and although
a testable language subset is given, students may use any valid Java code in order to solve
the problem. The scoring rubrics for the APCS exam are used to award partial credit for
code that demonstrates knowledge by evaluating the inclusion of algorithmic components
in student hand written code. Although in an automated system focused on feedback, the
use of partial credit is not a goal of the system, the structure of the rubrics makes them
ideal for evaluating student knowledge for the application of feedback.

Within each problem is embedded many smaller problems, solvable by individual code
atoms, or chunks. These code atoms or chunks represent a single concept, from declaring
a variable to accessing the length of an array, required for a student to produce a working
solution. During initial practice for a novice, exercises that have a singular, specific answer
are used to develop fluency in individual topics. Within a few weeks, however, novices
must engage in programming practice requiring the construction of more complex programs
involving algorithms with multiple lines of code (and containing multiple atoms) arranged
in a particular structure.

As the complexity increases, so too does the answer space of possible correct answers,
and the number of atomic units, or code chunks, necessary to construct a correct solution.
Although it is time efficient and much easier technologically to only categorize the entire
solution as correct or incorrect, the feedback provided by such evaluation lacks the gran-
ularity to be useful for the novice, and the data collected by such a system would be too
course grained to be of use to the educator or education researcher. Instead, I propose
to identify the relevant indicators of mastery of the individual components (code atoms
or chunks) and evaluate each of those pieces individually for correctness and appropriate
placement in the code structure.

Consider the following two incorrect answers to a similar problem to find the sum of
items in a list of numbers, shown in Table 3.2 In both of these examples, the output-based

25

feedback would see the same value for every possible test case. The example on the left
most likely is a typo, or a small misunderstanding on the part of the student, but the
example on the right represents a much larger misconception about what the question is
asking. If the designers of the feedback mechanism knew that code that produced the same
value as the last number in the list was a common wrong answer, they could prepare a
feedback message related to the error. In this case, however, two very different student
submissions would have generated the same output, and the feedback would be about the

output value as opposed to the code produced by the student.

public int findSum(int [JmyList){

public int findSum(int [JmyList){

N O U= W N+

int sum = 0;

for(int i=0; i<myList.length; i++){
sum = myList[i [;

}

return sun;

}

int end = myList.length;
return myList[end];

}

Line number 4 above contains a mis-
take: sum = myList[i]; should be sum
+= myList[i];

There is no one line with an error
here, instead the student shows a
large misconception in not access-
ing every element with a loop before
returning a value.

Output Based Feedback: “When
provided the input [1,2,3,4] your code
returned 4 and should have returned
10.”

Output Based Feedback: “When
provided the input [1,2,3,4] your
code returned 4 and should have re-
turned 10.”

Desired Feedback: “When provided
the input [1,2,3,4] your code returned
4 and should have returned 10.”

Desired Feedback: “The task you
are trying to achieve requires a loop
to access each element in the array.”

Table 3.2: Two Incorrect Sums

The solution presented on the left has many of the necessary algorithmic components
in order to produce a correct solution - the student only needs to change one line of code so
that each item in myList (myListli]) is added to the sum on line 4. The code on the right
however only accesses a single variable, and therefore needs more algorithmic components
- the student should be told that each element of the array needs to be accessed in order
to find the sum of all the elements. The equality of output of these two very different
solutions emphasizes the need for a more fine-grained feedback mechanism than what is
currently employed in many educational tools.

3.3 Assisting Students with Code Writing

There have been many approaches over the last 40 years to assist students with the pro-
duction of code as a pedagogical task. I used two dimensions of assistance in order to

26

The Two Dimensions of Assistance

Model Based

LISPTutor (Anderson et al 1985)
ProFl (Lane & VanLehn 20035)

Cog.Model of OQ (Burkhardt 2006)
ProGuide (Arjeas2007)

Goals/Plans (Soloway 1086)
Pfomﬂfd st ErrorMessages | State
Assistance (Fisler2007) “Evaluation

ProLog Error Analysis (Hong 2004)

PROUST (Johnson & Soloway 1085)

Codelets (Kumar 2010)

Constraint Based

Figure 3.1: Two Dimensions of Assistance

provide a framework for discussing some of the systems used in the past. Figure 3.1 shows
a sample of tutoring systems plotted on a two dimensional axis to highlight the relative
features of each system.

The horizontal dimension of the Assistance Axis deals with the generation of support
or feedback messages to the learner. On the left side of this axis are systems that prompt
the learner for the next step before the learner has entered any code. The prompting is
an excellent strategy for the novice who is unsure of where to start, or for a system that
is used for both practice and instructional purposes. The weakness of a prompting system
is that the learner will eventually need to learn the problem decomposition required to
write algorithms on his own, and the prompting can offer subtle cues about sequence and
structure based on the prompts.

On the right side of the support/feedback axis is the opposite of prompted support,
state evaluation and feedback. In a state evaluation system, the learner is allowed to make
an attempt at writing code to solve the problem, and the system then determines what
feedback is appropriate. AbstractTutor deals specifically with state evaluation, and is not
trying to become a prompted assistance tutor. Instead, in this thesis I focus on student
practice that mirrors professional practice of constructing an algorithm (or solution to a
problem) and then testing it in a system.

The vertical dimension of the Assistance Axis deals with the method by which the
next prompt or the next feedback message is decided. At the top of the axis is a model
based system. Model based systems use some type of model, cognitive or otherwise, to
either infer intent or misconception and provide an appropriate message to move the learner
closer to a correct solution [13, 54]. At the bottom of the axis are constraint based systems.
A constraint based system uses a series of rules related to observable correct or incorrect

27

features of the solution or code in order to select the next feedback message [45]. One major
difference between a constraint and model based approach is the evaluation of the learner.
In a model based approach, the model is an inference about the learner - either in terms
of their intent or knowledge. In a constraint based system there is no evaluation of the
learner, instead only the observable solution is used to determine his intent or knowledge
at any given point.

As with many implementations of theory, there are many systems that are a hybrid
of the two dimensions of assistance. A selection of these systems are plotted and will be
discussed as they relate to the design decisions made for AbstractTutor.

There are a number of systems that offer prompted assistance to students as they learn
to code. ProPL [43], ProGuide [5], Soloway’s Goal/Plan system [76] and Codelets [41]
are just a few. In these systems, a student is prompted for the next step in completing
an algorithm and, based on the answer compared to a model (ProPL, ProGuide) or a
series of constraints (Codelets), feedback is given to help the student arrive at a correct
solution. There are also a few systems that offer the evaluation of student code with no
initial prompting. Systems such as Dr. Java [79], Proust [36], and CodingBat [59] allow
the user to read the problem and make an attempt to construct a complete solution on
his own. After constructing the solution, the system evaluates the code submitted by the
student and either generates feedback based upon a model of desired student behavior or
a series of constraints meant to identify a correct solution.

As discussed in the previous section, the use of constraints focused on algorithmic com-
ponents is inspired by the rubric based grading that expert human raters use when eval-
uating student code. AbstractTutor’s feedback mechanism uses algorithmic components,
allowing the feedback generator to distinguish between very different solutions that produce
the same output. Additionally, AbstractTutor is currently a practice based environment
where students are only interacting with a few problems, therefore the development of a
rich model would be difficult.

The AbstractTutor system uses inspiration from the rubric based grading methodology
of an assessment focused on the knowledge demonstrated by students.The grading method-
ology translates well into a constraint model.The choice of constraints is appropriate as
computer programming is an ill defined domain with a large search space of potential so-
lutions, especially once students begin to write multi-line algorithms to solve problems.
Within the system, I focused on a set of algorithmic components to be used as constraints.
The algorithmic components allow for the generation of feedback that is explicitly tied to
the algorithmic components necessary for the algorithm. The explicit feedback is an im-
portant feature of a novice support system according to Sack and Soloway.” To be effective,
an automatic program debugger must have methods allowing it to both: identify errors in
computer programs, and explain to the student the errors it has found.” [69] Many of the
systems in use today only focus on identifying the errors for students, and not explaining
the errors. In the rest of this chapter, I detail the algorithmic components used by the
system in order to generate feedback messages, and the feedback produced by incorrect
code relating to the component.

28

3.4 Algorithmic Components for Introductory Array
Problems

3.4.1 Instructional Setting for the Model

In order to discuss the model of algorithmic components developed for this thesis, I need
to first discuss the expected preparation of the learner, the desired outcomes from practice,
and the problems provided during practice. The problems in AbstractTutor focus on simple
array algorithms that commonly occur in computer science, specifically calculating a sum,
finding the maximum value in a list, counting the number of values in a specified range,
and returning the index of a specified value. As described in Section 2.4, the problem
space for AbstractTutor was selected to target students toward the end of their first course
in computer science. Although abstractions can be used to describe the atoms or code
chunks used in early program assignments, prior work by the author has demonstrated the
a ceiling effect with novices on easier problems [80]. The simple array algorithms chosen
here are representative of the worked examples and programming practice students engage
in when first encountering algorithms of this complexity, so they would be appropriate for
students in any introductory course with a chapter on arrays and array algorithms [85].

Expected Preparation of the Learner

The problems and feedback evaluated by AbstractTutor are designed to provide assistance
to novice computer programmers in their first course. The topic of simple array algorithms
is not the first topic presented in such a course; in fact, it often appears near the end of
the sequence of topics, as it combines many key skills - variable declaration, looping, using
data types (arrays), and decision structures (if statements).

Students are expected to have attempted, if not completed, practice exercises contain-
ing variable declarations and decision structures prior to encountering the AbstractTutor
topics. Students should also have been exposed to, through reading or lecture, worked
examples containing a loop structure (often a for loop) and how to access all the elements
of an array using a loop. The worked example most students encounter is to print all the
values in the array.

As students in their first course, they may not have mastered any of the above topics.
In fact, many students will still be struggling with a variety of the subtopics involved in the
AbstractTutor system. Although ideal instruction would provide individualized practice
at the particular level of the student, the AbstractTutor system is not currently adaptive
and is meant to provide appropriate feedback and not do problem selection.

The Desired Outcomes from Practice

The desired outcomes from practice in AbstractTutor are twofold. First, the practice should
reinforce the individual concepts required to complete the algorithms specified (variable
declaration, looping structures, decision structures, returning variables). Secondly, the

29

practice should help students understand the composition of the algorithmic components
into a more sophisticated algorithm to process a data set.

With these two outcomes in mind, I designed a model to evaluate student code in order
to produce feedback. The individual algorithmic components were selected to represent
the individual concepts that students would need in order to complete a correct algorithm
in this selected set of problems. In addition to providing feedback about the components
themselves, the feedback messages were designed in order to highlight the way in which
the components can be combined to produce the effective algorithm.

The Problems

The four problems implemented in the system were chosen to have common algorithmic
components for focused practice. The four algorithms participants were asked to implement
were a sum, max search, counting the number of elements in a particular range, and
finding the index of a particular value. Each problem was presented in either a numerical
context (find the sum of all the numbers in the list) or a story context (find the total
price of all items on a receipt). The two contexts were presented as a part of an early
research question attempting to measure whether the story context would be easier or
more difficult for students. In all data collected for this thesis, there was no difference
between the mathematical context and story context, and all results are collapsed from
this point forward. The tables below show the two versions of each problem description,
one with a numerical context and the other with a story context, as well as a potential
solution for each problem.

30

suorinjog pue suoydrIosa(] XeJ\ pue wng :¢'¢ a[qe],

{

{Xew uanigex
{
‘[T]HdWeTOTUSA = Xew
F([T]OdWeTOTYSA>XRW) IT
}(++T UISUST " HINOTOTYSAST (=T 3UT)IO0F
 [0]DdWeT o TyeA=XeW JUT

{{ ‘xew uiniex
{
‘[1]2sTTdum = xeuw
([t]3stTdw > xew)jFrT
}(++T ‘y3dueT-3sTTAW >T {Q=T 3JUT)I0F
‘[0]2sTTdm = xew 3uT

uonn[og
} (DdWeTOTUeA[]
JuT)unuIxeputy Jut otrqnd |}(3STTAW[] AUT)WNUWIXERPUTI 3uT oTTqnd
uordrosa(g
JSITAW AR
“)SI[O} UL POI0)S D) JIN 1S0SIR] O} | -IR 9} Ul PAIO)S SON[RA WINWIXRUI) SUWINY
PUL "SO[OIUSA [RISASS JO D) JN 9Y) SUIRIUOD | -o1 pur Iojouwrered e se JSITAW Pa[[ed SIaq
OIym Aelre we soye) POYIOUW S, "MO[d(| -WNU JO ARIIR Ue S8R} PO 9], "MO[(
WNWIXRPUY POYRW 9} 999[dW0d osed[| WNWIXRNPUY POyl oY) 9)o[duod ased[J XRIN
{ {
‘{ums uIngex ‘ums uIniax
{ {
‘[T]swelT =+ ums ‘[1]3sTTdu =+ ums
}(++T (UIBUST SWOIT>T (=T JUT)I0F |} (++T ‘Uaduer 3sTTAU>T {Q=T 3UT)I0F
{0 = wns jurt {0 = wns 3jut
uornnog
}(swe3t[] Jur)wngputy 3utl otrTqnd }(3sTTAw[] 3jur)wngpury 3ut otrqnd
uordrIosa(J
3d1eoa1 91} uo
SW)T AYY [[® Jo (Wms) [ej0) 9Y) WINJel pue
puy 03 poylew ® 93LIA\ 3dI009I Sofes ' U0 Ael1re o[} Ul PaIO)s sonfeA 9y} [[® JO
Swe)T JO 901Id o) SUIRIU0D SWIL ARLIR O], | WNS o) WIN}SI PUR PUY 0} POYIOUL B dILIA wng
1X09U0)) AI109G IX0JUO)) [ROLIDWINY] | WI[QOIJ

31

Count Please complete the method countLessThan | Please complete the method countLessThan
below. The method takes an array of num- | below. The method takes an array of grades
bers called myList as a parameter and returns | from a midterm exam. Find the number of
the number of non-negative items(including | positive scores (greater than or equal to 0) less
0) less than the parameter value in the array | than the passing grade given.
myList.

Description
public int countLessThan(int []myList,| public int countLessThan(int []scores,
int value){ int passingGrade){
Solution
int count = O; int count=0;
for(int i=0; i< myList.length; i++){ for(int i=0; i<scores.length; i++){
if (myList[i] < = 0) if (scores[i] >=0 && scores[i] < value)
count++; count++
} }
return count,; return count,;
} }

Index Please complete the method indexOf below. | Please complete the method indexOf below
The method takes an array of numbers called | The method takes an array of office numbers as
myList as a parameter and returns the first | a parameter and returns the index of the first
index of the parameter value if it is contained | Office Number that matches the value idno if it
in the array. If it is not contained the method | is contained in the array. If it is not contained
should return -1. the method should return -1.

Description
public int index0f (int [lmyList, public int index0f (int []roomNumbers,
int value){ int idno){
Solution

for(int i=0; i<myList.length; i++){
if (myList[i] == value)
return i;

3

return -1;

}

for(int i=0;i<roomNumbers.length;i++){
if (roomNumbers[i] == value)
return i;

3

return -1;

}

Table 3.4: Count and Index Descriptions and Solutions

32

3.4.2 The Model

The following model specifies the algorithmic components necessary to solve the problems
currently used by the AbstractTutor system. AbstractTutor uses constraints in order to
assess the partial correctness of a student solution. The constraints for the problems are
the detailed description of the algorithmic components necessary to generate appropriate
feedback. The constraints described are represented in a hierarchy based upon the asso-
ciated algorithmic components. Each of the three categories displayed with dependencies
from left to right (for example you cannot check if the code uses the length of the list
to terminate a loop without first having a repetition (loop) structure). The identifying
appropriate elements category also relies on the implementation of some looping structure.

The following sections detail the constraints, as well as the part of the problem solving
process where each constraint is checked. Most constraints are checked upon submission,
before the code is executed, however the checks for correctness are confirmed through the
use of output-based testing. Each submission is an attempt by the student to either confirm
correctness, or seek feedback. Even if the student does not believe that the submission
is completely accurate, it is an attempt to move forward with the problem. It is the
combination of the checking at submission with the output based testing that contributes
to the accuracy of the system, as described in Chapter 5.

Using the length

N of the List Usea Loop
Correctly Looping | Including a - Variable to Access
Over Elements Repetition Structure 5 Reference any >
-
element with [] o Only Access
-
Current Element
ldentifying
ﬁF'_Df'ﬂDf"lEtE Y Making a Comparison 5 | Utilizing an Elementin
I:fler_nenrs with an If the Comparison
(within loop)

Initializing State
Variable

h

Updating of State

Variables o
- Using the State
Variable
Correct Place for
Return
Returning the —_—
Answers ? Attempt any Return
—_— Returning the Correct
Value

Figure 3.2: A Model of Algorithmic Components

33

Correctly Looping Over Elements

Five of the algorithmic components are focused on looping over, or iterating through, the
entire list of elements. In order to assess proficiency in this skill, I define the following
components observable from the code. The components are:

Including a Repetition Structure - Within each problem students are presented with
an array of undefined size. In order to solve each problem correctly, students will
need a repetition structure in their code.

Using the length of the List - The number of items in the array is not specified in
the problem statement, therefore a correct solution should use the length property
of the array to correctly access all the elements.

Referencing Any Element From the List with [| - A looping structure’s primary
purpose in the problems chosen is to assist in the access of each element in the array.
This model state checks for at least one element being accessed within the code.

Using the Loop Variable to Access - Once we determine that students have attempted
to access any element (component 3) we then need to make sure they can potentially
access every element in the array. The use of the loop variable inside the [] ensures
the potential to access every element.

Only Accessing the Current Element - This is the only component where evidence
results in a fail state. All of the algorithms can be implemented while only considering
one element at a time. This state checks for an attempt to access multiple array values
in one loop step.

The model states for looping over the array are common to all problems for this work, as
well as generalizable to a larger set of problems common in introductory computer science.

Identifying Appropriate Elements

In three of the required algorithms (max search, count, and indexOf), the correct code
requires a decision structure. The structure most often used for this type of decision is an
if statement. For example, in the counting algorithm, participants need to use a decision
structure in order to determine if the current array element is greater than or equal to
0 and less than the provided parameter value. There are three algorithmic components
corresponding to this part of the algorithm.

Making A Comparison with an If - Code receives credit for this component when it
contains a decision structure inside the looping structure.

Utilizing an Element in the Comparison - Code receives credit for this component if
an element of the array is used for comparison inside the decision structure.

Correctly Identifying with an If - Code receives credit for this component if it correctly
identifies the appropriate elements as tested. This model state is confirmed with
output-based testing.

LA recursive structure could also be used to solve the problems, however a recursive approach is not
supported by the current system.

34

Updating of State Variables

Three of the required algorithms (sum, max search, and count) require the use of a state
variable in order to implement the algorithm correctly. The state variable maintains a
value, for example the sum of all the elements encountered so far, while the array is being
processed. For the algorithms in this study, it also holds the return value when the loop has
completed. There are three algorithmic components for the correct use of state variables.

e Initializing State Variable - Before the variable can be used, it needs to be declared
and initialized before the looping structure in the algorithm.

e Using the State Variable - The state variable needs to be updated within the looping
structure in order to maintain an appropriate state.

e Correctly Updating for Algorithm - Depending upon the algorithm, the state needs
to be assigned a value (max search) or added to (sum, count). This model state is
tested using output based testing.

Returning the Answers

The structure of the code writing problems presented to the participants require that
they implement the solution as a method and return the resulting value produced by the
algorithm. For example, when calculating the sum of all of the numbers in the array, the
return value is the computed sum. There are three algorithmic components that correspond
to returning the correct answer.

e Attempting Any Return - Code receives credit for this algorithmic component if there
is any return statement within the implementation.

e Correctly Placing the Return - There must be a return statement after the execution
of the loop for both algorithmic, and compilation reasons. Credit is received for this
component if a return statement exists after the looping structure in the code.

¢ Returning the Correct Value - Credit is received for this component only if the code
passed all of the output based testing specified for the problem.

3.4.3 Mapping to Code

Table 3.5 shows a student created solution, and the accompanying model components
marked as present or absent for the code above.

3.4.4 Evaluating the Components

In the next chapter, I will detail a study to evaluate the model of algorithmic components
proposed here for array algorithms. The model will be evaluated for appropriateness and
completeness (i.e., does it cover the space of student answers?) and correctness (i.e., can it
be used to accurately represent the types of errors that students make?). The study pre-
sented will focus on (1) the analysis of code in AbstractTutor using the described model,
and (2) the use of abstraction by novices in the construction of solutions to array algorithm

35

public int findSum(int [ImyList)}

int total = O;

for(int index = 1; index < 10; index++)

total += 5;

return total;
}
Including a Repetition Structure Present
Using the Length of the List Absent
Referencing Any Element From the List with [] Absent
Using the Loop Variable to Access Absent
Only Accessing the Current Element Absent
Making a Comparison With An If Absent
Utilizing an Element in the Comparison Absent
Initializing State Variable Present
Using the State Variable Absent
Attempting Any Return Present
Correct Place for Return Present
Correct Return Value Absent

Table 3.5: Code to Model Mapping

problems. In the study I demonstrate the appropriateness of the model, as it relates to
common errors made by students. The validation of the described model is important for
the computer science contribution of this thesis. Additionally, I demonstrate differences be-
tween high and low proficiency students and the increased frequency of transitions between
statements of high and low abstraction during problem solving. The use of abstraction by
novices is useful in supporting the learning sciences contribution, and supporting the use
of abstractions in feedback messages to help improve student performance.

36

Chapter 4

Using Think Aloud Protocols to
Understand Student Code
Production

In Chapter 3, I specified the algorithmic components that are used as a model for analyzing
student code and producing feedback for practice problems wherein students are asked to
write simple array algorithms. Although the components were inspired by the Advanced
Placement Computer Science rubrics, no similar models have been tested by having stu-
dents interact with a computer system to determine their completeness and appropriateness
in categorizing student coding attempts. In this chapter, I present the design and results
of a proof of concept study focused on (1) the use of the proposed model to analyze student
code in a computer system, and (2) the potential for abstract feedback to impact novice
performance in AbstractTutor. The two focuses of this study tie into the main research
questions of the thesis, whether (1) Can a pre-compilation feedback mechanism be con-
structed that operates with reasonable accuracy? and (2) Will pre-compilation feedback
regarding algorithmic components produce better (a) within-problem performance and (b)
across problem learning?

The proposed model was used to generate feedback messages based upon the presence
or absence of algorithmic components in student code. In order for the feedback to be
useful for the students, the model had to generate the messages at the appropriate time
and represent common errors that students make in the problem solving process. In this
chapter, I evaluate the model with novice students in order to answer 5 specific sub-research
questions. The first four questions focus on the use of the model to analyze student code,
and relate to the validity of the model for constructing accurate pre-compilation feedback.
Two of these questions are focused on the appropriateness of the algorithmic components in
the model as a basis for providing feedback to students. The other two research questions
analyze student submissions using the model as a measure of proficiency and learning. The
final question focuses on the abstractions students use in their verbalizations, correlating
abstractions with expertise, and is offered as evidence that algorithmic feedback can impact
student learning.

1. Do the algorithmic components each represent errors that a student is likely to make

37

while problem solving?

2. Do the algorithmic components together represent a model that covers the space of
common algorithmic errors students make while problem solving?

3. Are the proposed algorithmic components useful for evaluating student progress
within a single problem?

4. Are the proposed algorithmic components useful for evaluating learning across mul-
tiple problems?

5. Does the verbal expression of abstraction correlate with student proficiency?

In order to evaluate the research questions, a series of think alouds were conducted with
students from Pittsburgh area universities. The following sections detail the subjects, the
data collected, and the evidence for answers to the research questions.

Research Question SubQuestion Data Section
Analyze Code Representing Errors Transcriptions 4.2
Analyze Code Covering Common Errors | Code Submits 4.2
Analyze Code Evaluating Progress Code Submits 4.2
Impact Performance | Evaluating Learning Code Submits 4.3
Impact Performance | Expressing Abstraction Transcriptions 4.3

Table 4.1: Research Questions Mapped to Sections

4.1 Characteristics of Novice Students Thinking Aloud

In this section, I describe the characteristics of the participants, the structure of the think
alouds, and the questions presented to the subjects, as well as the data collected by the
system.

4.1.1 Participants

This study was conducted with 24 students who had either recently completed an introduc-
tion to programming course, or were in the final month of such a course. The four problems
presented in the online system focus on simple array algorithms, a topic usually presented
at the end of introductory programming classes. Although the system was online, students
only interacted with a beta version of the system in the researcher’s office as a part of this
study.

Participants were recruited from Carnegie Mellon University and the University of
Pittsburgh. The participants were solicited through an email forwarded from the instructor
of the introductory course they had completed or in which they were enrolled. Participants
did not receive any course credit for the study, but were compensated for their time with
$20. Participants varied in the amount of time to solve the four problems. The average time
of the think aloud including the directions was approximately 39 minutes (median time 36

38

minutes). Six participants completed the task in under 20 minutes, with the shortest time
being approximately 8 minutes. Five participants took over an hour to complete the task,
and the longest time was approximately 1 hour and 40 minutes.

The respondents were both graduate and undergraduate students and a mix of genders
(M=18, F=6). One additional respondent was disqualified after completing the entrance
survey wherein he indicated that he had completed several programming classes, so he is
not counted in the above numbers. Six (6) of the participants took the introductory course
using Processing - a special subset of the Java language, focused on art and visual design
as well as computer programming fundamentals.

4.1.2 Self-Efficacy Characteristics

Upon entering the session, participants completed a survey with questions about demo-
graphics, prior coursework, expected (or received) grade in the introductory programming
class and a self efficacy scale [66]. Of the 24 participants, 15 indicated they received or
anticipated receiving a grade of an A or A- for the appropriate programming class. Nine
(9) participants indicated they would receive a grade less than A, or were unsure of the
grade since they were currently enrolled in the class. No participants indicated that they
would or had received a failing grade for the class.

A self efficacy scale was used to collect information regarding students’ self confidence
in programming. The scale has been previously validated [66] to strongly correlate with
student outcomes in an introductory computer science course. The self efficacy scale had
33 questions regarding a wide range of topics usually covered in an introductory course.
It required students to select a number from 1 (absolutely able to complete this task) to 7
(unable to complete this task).!

Table 4.2 shows the results of the self efficacy scale for questions that explicitly reference
skills relevant to the problems students solved as a part of this study. Students’ responses to
individual self efficacy questions were correlated with the total number of submits necessary
to solve all problems, a rough measure of proficiency. The correlations were calculated using
the number of submits the participant required to answer the questions correctly, which
correlated with their self efficacy rating for the question stated in Table 4.2. A positive
correlation indicates that the confidence of the student matched with the proficiency, as
measured by the number of submits, during the think aloud. It is unsurprising that the
first four statements correlate with the number of submissions. These statements directly
address the tasks required to solve the problems presented in the think aloud.?

It is interesting, however, that there is essentially no significant correlation between the
statements regarding correcting all errors, completing an assignment with built-in help,
and overcoming problems. These are general skills employed by the participants when
solving programming problems and may be too broad to analyze well in self reflection.

IFor purposes of correlation analysis, the original responses were rescaled so 1 would indicate most
confidence and a 7 would indicate least confidence.

2Although participants are not asked to complete a program to find an average, they are asked to
compute a sum which is a part of the average algorithm.

39

Statement Mean | Median | Correlation With
Total Number of
Submits (p)

I could write syntactically cor- | 4.8 5 0.43 (.04)
rect Java statements.
I could write a Java program | 5.77 |7 0.50 (.02)

that computes the average of
three numbers.

I could write a Java program | 532 |6 0.58 (.004)
that computes the average of any
given number of numbers.

I could write a small Java pro- | 5.18 | 5.5 0.40 (.06)
gram given a small problem that
is familiar to me.

I could debug (correct all the er- | 4.14 | 4.5 -0.10(.6)
rors) a long and complex pro-
gram that I had written and
make it work.

I could complete a programming | 3.68 | 4 -0.2 (.36)
project if I had just the built-in
help facility for assistance.
While working on a program- | 4.68 |5 0.006 (.97)
ming project, if I got stuck at a
point I could find ways of over-
coming the problem.

Table 4.2: Entrance Survey Responses (1= highest confidence/ 7 = low confidence)

40

The number of submits is a direct indication of the participants’ ability to correct er-
rors with the built in help. And yet, there is no significant correlation between efficacy
statements regarding this skill and the actual number of submits the students used to
answer the question. This finding may be a further indication that the feedback messages
previously provided to novices are not appropriate to help novices either correctly finish a
single problem, or provide the metacognitive prompts to help students learn across prob-
lems. Students had less self efficacy about their ability to debug, to use the built-in help
in their development environments, and to find ways to overcome a problem when stuck.
The lower ratings here could indicate that students understand that better pedagogical
tools are needed in order to focus on learning goals and make appropriate progress during
practice.

4.1.3 Procedures

After completing the survey, participants were introduced to the study and given a de-
scription of the task. They were asked to “think out loud and describe any code they
were writing or choices they were considering”. Participants interacted with a web-based
environment on a desktop computer at the researcher’s desk.

The environment shown in Figure 4.1 contains an editable text window, a submit
button, and a feedback area. When starting a problem, the text window, or code area,
contains a stub, or partial implementation of a program. In the stub, there is a line of
code for the class and a line for the method header?, providing participants with the name
of any parameters * needed to solve the problem presented. The code stub also contained
a comment® that described the problem to the student. The submit button was used
to compile and test the code entered in the code window. The feedback area presented
the appropriate feedback for the code the student submitted and would show below the
Compile and Test message and button.

During the think aloud, the researcher sat in a chair slightly behind the participant.
The participants’ verbalizations were recorded on a digital recorder, and the online system
recorded the code when the participant pressed submit.

4.1.4 Problems

The four problems presented by the system were chosen to assess participants’ ability to
write code in the Java programming language that implemented a common array algo-
rithm. Although half of the participants saw a contextualized problem description, all
participants were required to complete the same four algorithms in the same order. The
four algorithms participants were asked to implement were: sum, max search, count, and

3The class and method header provide initial lines of code setting up the space for the student to
implement the algorithm.

4A parameter is a variable whose values are defined in another part of the program. The values are
passed to the method, and code within the method can act upon those values through the parameter name.

5A comment is text contained within the code that the system does not try to compile or execute.

41

FC www‘tuturle(hn.alogles‘(am‘i-‘ 80/codetrainer/ApplicationCTReview.html#problem:fr, 16112 {:{-
CodeTrainer se:

public class Maximum

/*Please complete the method findMaximum below. The method takes an array of
numbers called myList as a parameter and returns the maximum value stored in the array
myList.

b

public int findMaximum(int [JmyList)

{

}

}

Press the button to compile & test your code. Compile and Test

Figure 4.1: The Tutoring Screen Used By Participants

index of. The exact problem stubs as well as contextual descriptions are available with
solutions in Appendix A.

4.1.5 Research Conditions

Because the study was conducted while the system was still in development with the pur-
pose of assessing the appropriateness of the algorithmic model for evaluating any student
answer, rather than testing the between condition effects, participants were not assigned to
conditions randomly. Participants were assigned to one of four research conditions based
on the order they responded to the study advertisement in order to assess the parts of the
system as they were being constructed. The four research conditions represented a com-
bination of two factors of the student’s experience in the study. Half of the participants
received only output-based feedback, and half of the participants received feedback regard-
ing the algorithmic components necessary for completing the assignment, based upon the
model described in Chapter 3, in addition to the output based feedback. The output-based
feedback messages used were similar to messages produced by other practice systems such
as CodingBat or myProgramminglLab. The feedback was produced by executing the stu-
dent code with particular input and comparing the output to a correct answer. An example
of output based feedback for this study would be “When your code was executed with the
values [1,2,3,4,5] it returned a value of 10 when 15 was expected.”

The second factor impacting the student experience was the use of a contextualized
problem description. Students without a contextualized problem description had the pa-
rameter described as an “array of numbers” and were asked to write a specific algorithm
such as “find the sum of all the numbers in the array.” Students with a contextualized
problem description had the array described in terms of a context for the numeric values.
For example, instead of asking students to find the sum of all the numbers in the array,
the contextual description told students the array held the price of items on a sales receipt

42

and asked the students to find the total bill.

The first 6 participants completed the problems without contextual problem descrip-
tions and with output-based feedback only. The next 7 participants completed the problems
without contextual problem descriptions and with algorithmic component feedback®. The
algorithmic component feedback was read/shown to the participants after they pressed the
submit button if the code submitted should have generated the feedback’. Feedback was
read/shown to the participants as data collected from the submits in the think aloud was
used to refine the automatic feedback mechanism that was used in subsequent studies.

Participants 14-19 completed the problems with a contextual problem description, and
with output-based feedback only. The final 5 participants completed the problems with a
contextual condition and received algorithmic component feedback presented to them on
small slips of paper with only one message at a time. After completing the four problems,
participants were thanked for their time and compensated.

4.1.6 Data

Data for this study were collected in two ways. First, the online system recorded the
participants’ code every time they pressed submit. The code was hand scored based on the
constraints the AbstractTutor system will use for automatic analysis.® During the think
alouds, participants entered 482 submissions across the four problems. Table 4.3 details the
number of submissions by problem for all participants (ALL), as well as the total number of
submissions made by participants in each condition (MO - Mathematical Problems, Output
Based Feedback, MA - Mathematical Problems, Algorithmic Feedback, CO - Contextual
Problems, Output Based Feedback, CA - Contextual Problems, Algorithmic Feedback).

Problem | ALL MO MA CO CA
(N=24) | (N=6) | (N=T7) | (N=6) | (N=b)

1 117 22 21 39 35

2 175 91 20 26 38

3 106 50 15 28 13

4 84 35 18 16 15

Total 482 198 74 109 101

Table 4.3: Code Submissions by Problem

Second, while the participants were completing the problems, they were asked to think
out loud, describing the code they were writing and the choices they were making. The

6An extra participant was included in the non-contextual/algorithmic feedback condition as the con-
textual problem statements were being coded into the system.

"Feedback was produced based on the constraints listed in chapter 3.

8 Although the automatic scoring of model states is a part of the larger thesis work, hand scoring was
used at this time for purposes of accuracy. Data from the think alouds were used to refine the automatic
scoring mechanism. At the time of this study, students would not have received appropriate error messages
with high frequency. Chapter 7 - discusses the automated scoring results, but all results presented in this
chapter rely on the hand scoring.

43

audio from the session was recorded, and then later transcribed for coding purposes. The
transcriptions were then separated into utterances (segments of speech) and coded for
abstractions as detailed in Section 4.1.8. Additionally, exemplar statements were identified
for use in evaluating the algorithmic components in section 4.2.

4.1.7 Initial Student Attempts

Although no formal pretest was administered to participants, the accuracy of the first
submit to the system, before any feedback was received, can be considered a measure of
students’ ability at the start of the problem. The first problem that students encountered
was to find the sum of the numbers in an array. When done correctly, a solution to the
problem would contain 11 of the algorithmic components described in Chapter 3 in the
code?. Table 4.4 shows the number of subjects per condition, the average number of al-
gorithmic components that were correct on first submit (F'S Average), and the percent of
algorithmic components that were correct on first submit. An ANOVA showed no signifi-
cant difference in the number of algorithmic elements in the first submits of subjects when
compared by Feedback condition (p=0.76). The ANOVA did show a significant (p<0.01)
factor of Contextual condition; however because subjects were not randomized to condi-
tion, we cannot determine if this difference was from the contextual problem description
or participant differences. The further exploration of this difference is recommended for
future work.

Condition | Number of Subjects | FS Average | F'S Percent
MO 6 8.3 75.8
MA 7 9.9 89.6
CO 6 7.2 65.2
CA 5 4.6 41.8

Total 24 7.7 70.1

Table 4.4: First Submits by Condition

4.1.8 Abstraction Coding

The think aloud statements students made while completing the programming tasks were
recorded and transcribed. Due to the lack of a formal “answer”, the statements made by
the students often do not make complete sentences or thoughts, and they are not easy
to separate. In order to do data analysis, however, the text needed to be divided into
individual statements for coding.

Student statements were divided into individual data points by looking for either a
pause in the speech, a clear step to a new idea or topic, or a change in the problem or
sub task the student was coding. Overall, 2,950 individual statements were identified from

9Calculating the sum of the numbers does not require the selection of individual elements because you
use all elements in the sum.

44

Category Label | Description Example

No Abstrac- | NA | These statements refer | “int count =07, “We want it

tion specifically to the code. | to be greater than or equal
They do not include state- | to 07, “That is myList dot
ments that generalize. length”

Block Label- | BL | These statements refer to a | “I need to define an int pa-

ing block of code with a label as | rameter named sum”, “So if
opposed to the character be- | both of these are true, then
ing typed. we add one to the counter”

Macro MR | These statements connect | “So after we are doing with

Structure or elements or relate an ele- | the for loop we want to re-

Relations ment to its purpose in the | turn the counter”, “I think I
algorithm. may need to use bubble sort

to sort the..”

Feedback FR | These statements refer to | “Um, I don’t know what

Response the feedback messages or the | that means”, “So it was
specific debugging elements | looking for a 12 but re-
in the problem solving pro- | turned..”, “Ok, forgot a
cess. semicolon”

Not Code | NC | These statements are fo- | “Ok, I want to try it”, “I

Specific cused on the student’s feel- | think that’s right”

ings or progress, not on the
code.

Table 4.5: Categorization of Student Statements

45

the transcriptions. Table 4.6 shows the number of utterances made by participants in each
condition per problem.

Problem | ALL MO MA CO CA
(N=24) | (N=6) | (N=T7) | (N=6) | (N=b)
1 861 295 120 212 234
2 969 479 124 101 265
3 626 279 108 126 113
4 494 245 57 101 91
Total 2950 1298 409 540 703

Table 4.6: Utterances by Condition and Problem

Each statement was classified based on the categorization shown in Table 4.5. The
classification scheme is a modification of the SOLO taxonomy designed specifically for this
data set.

The purpose of the classification was to determine the relative number of abstract
statements made by students, not the degree of abstraction in the entire problem and
therefore the original SOLO Taxonomy was modified to the classification scheme presented
in Table 4.5 and described below. The classification is helpful in indicating if the student
was thinking only about the individual code elements and syntax, or if attempting to
connect the larger program goals to the code being written. Also, previous work in self
explanation [63] indicates that connections to the abstract ideas or larger goals of the
problem are important, and the coding scheme is designed to specifically highlight the
percentage of time students spend connecting the code statements they are writing to
these abstract ideas.

The first category, NA (No Abstraction), was used to classify statements that involved
no abstraction beyond an individual line of code. This aligned with the SOLO categories
Unistructural and Multistructural. The NA Category also aligns with the first column
of the Block Model. The difference between the two categories in SOLO represents the
student understanding of the problem being asked or expressing some misconceptions. The
statements made in this study are difficult to judge for accuracy, and the accuracy is less
important than the level of abstraction for the analysis presented here. Due to those
factors, the two SOLO categories are collapsed into one.

The second category, BL (Block Labeling), was used to classify statements that move
beyond the simple reiteration of the code presented. Students who engage in Block Labeling
often connected pieces of code in their statements as shown in the examples in Table 4.5.
The BL classification aligns closely with a part of the Relational classification for SOLO.
The BL classification also aligns with the second column of the Block Model, where the
structure of the program is explicit.

The MR (Macro Relational) category was used for statements that demonstrated a
connection to a macro relationship between elements of the code and the abstract nature
of the problem. Statements about the problem itself, without any reference to code were
also classified as MR; this type often emerged at the beginning of each section as the student

46

read the problem aloud. The MR classification encompasses the Extended Abstract SOLO
response, however some statements could be classified as relational under SOLO if there
is no larger connection to another problem. The MR classification aligns with the third
column of the Block Model, where students call out not only the code, and its relationship
to the code structure, but also the function that it serves in the algorithm.

The category labeled FR is used to classify statements made by the participant directly
referencing the feedback the student was shown. The statements are separate from the MR,
BL, and NA category in that the student may have simply read the feedback message on
the screen or made a statement about the code that was directly prompted by the feedback
statement.

The final category, NC, is used to classify statements that are not related to the problem,
or its solution. Although SOLO has a Prestructural category that is not represented in
the coding used here, the NC category does not require the expression of a misconception,
only a statement not directly related to the code of the problem.

Although SOLO is helpful to connect this work to prior work of the Computer Science
Education community, the granularity of analysis is not the same between this work and
prior uses of SOLO. The SOLO taxonomy applied to novice programmers as described
in [49] was used to categorize an entire answer, or description of an entire problem by a
student. In this work, we are categorizing individual statements during a problem solving
task. The individual statements are of a much finer granularity, and therefore I used a
coding scheme based on SOLO without replicating it exactly. For that reason, I consider the
modification of the coding scheme and the evaluation of student statements at a different
granularity a contribution of this thesis.

In order to verify the classification accuracy of the primary author, an interrater relia-
bility analysis was performed to assess the assignment of categories to student statements.
A second expert rater was trained in the classification scheme and used the categories to
rate 40 random statements from the data set. Kappa was computed for agreement [17].
The ratings produced by the primary author and second expert generated a Cohen’s kappa
of 0.601, a good agreement [37]. After evaluation, the raters discussed the differences and
all differences but 1 were mutually agreed to realign with the primary author’s answers.

4.2 Analyzing Student Code: Appropriateness of Al-
gorithmic Components

With this qualitative analysis, I seek to inform the primary research question “Can a pre-
compilation feedback mechanism be constructed that operates with reasonable accuracy?”
Specifically, in this section I focus on the alignment of the statements students make and
the code they submit with the model of algorithmic components described in Chapter
3. This section focuses on the sub-questions of: (1) Do the algorithmic components each
represent a model that can be used to evaluate errors a student is likely to make while
problem solving? and; (2) Do the algorithmic components together represent a model that
covers the space of common algorithmic errors students make while problem solving?; and

47

(3) Are the proposed algorithmic components useful for evaluating learning within a single
problem?

In order to answer that question, the audio recordings of the programming think alouds
were transcribed and coded for the verbalization of each algorithmic component. In this
section, I present the number of subjects that expressed an algorithmic component, either
prior to their first submission to the system, or in response to feedback regarding an
incorrect answer. Additionally, I present examples of each algorithmic component from
the audio recorded. Finally, I discuss aggregate data evaluating student progress within
problems.

4.2.1 Correctly Looping Over Elements

Including a Repetition Structure: All but one participant (23) recognized immediately the
need for a looping structure in order to access all of the elements of the array. Participants
verbalized the need for a for loop as a part of their problem solving process. Some examples
of participant statements include “I think I have to use a for loop to add elements of array
mylist” (A3) and “So I would want to use a for loop that goes through the equal number
of times as there are entries in the array.”(A7). The one student who did not use a for
loop in her code expressed that she needed an “if loop” in order to accomplish her task.
Anecdotally, in the experience of the author, this is a common misconception among novice
students, who mistake a decision structure with a looping structure.

Using The length Property Of The List: The language used to express the need to use
the length of the list as a termination condition for the looping structure varied based upon
the level of abstraction used by the participant in describing the loop bounds. Participants
who expressed a high level of abstraction chunked the details of the for loop into a single
statement while typing the correct code. An example of this is found in the statement: “I
know we need to loop over all the elements in the array so I will make the for loop.” (A4).
Other participants were more concrete with their verbalizations and used language that
explicitly listed the components of the loop they were typing, for example “for i=0, oh
variable i, int i, for i = 0 i <mylist, capital L, mylist length and i++"(A6). In the second
example, the student included each part of the loop, verbalizing even the capital letter 'L’
from the parameter myList. Often the weaker participants, as measured by accuracy of the
first program submission (prior to feedback), would express the code in more detail. This
finding is consistent with prior work regarding code comprehension activities [73] where
students who were able to “chunk” code into the more abstract algorithms when reading
code, performed better on code production tasks.

Referencing Any Element From The List With []: Similar to the use of length to de-
scribe the bounds of the loop, we see varying levels of abstraction as participants expressed
the need to reference an element from the list with the characters [|. Participants used
the word bracket, or the computer science term “sub”, to indicate the access of an element
from the list. For example, subject A1l used the language “so.. the sum will equal each
of the items sub I” to indicate the access of each element, and this particular subject also
used a similarly low level of abstraction when talking about the for loop, explicitly stating
the components of the for loop. Other subjects were much more abstract in their language,

48

including the elements of the array as a singular concept such as “and for each iteration
of the for loop, I would just want to add the current value in the array to some sort of
int sum, start at 0.”(A7). In the example “the current value in the array” does not even
use the name of the variable to be accessed, instead abstracting the statement to a more
general statement about the array.

Using The Loop Variable To Access: The use of a loop variable to access the array in
student statements followed the same pattern as the previous algorithmic component. If
the participant used an abstract statement to reference the “current value in the array”,
that language included both the variable and the array access in a single statement. Some
participants did struggle at first indicating that they needed to use some value to access
an individual element (thereby satisfying the prior algorithmic component) but not using
the loop control variable. Here is an example of a student in the output based feedback
condition with problem context, working through a mistake where they used a 1 in the [|
instead of their loop control variable i.

“so we’ll go if vehicleMPG 1 is greater than max um
then max is vehiclempg @

then we will return that
submission: compile error
semicolons

hm..

line 9

uh oh

submit it again

Submission: compile error
less than

let’s see

Submission: Incorrect Output

oh. so we have to do 1, just a trip up on wvehi-
cleMPG”(A9)

At the beginning of the quote, the participant’s construction of the first attempt, as
well as the reaction to the feedback provided by the system. The participant used a 1
in the first line of the passage (inserting the 1 in the if statement), however used i in
the assignment statement on line 2. Because of the paradigm of output-based feedback,
this participant needed to fix two compiler errors in order to get feedback, in the form
of incorrect output, that helped him fix the main error with his code. In the algorithmic
feedback condition, the participant would have seen immediate feedback surrounding the
use of the 1 instead of i.

Only Accessing The Current Element: The algorithmic component of only accessing
the current element is different from all other components in the entire model in that a
participant who produces the correct solution will not use any language or explanation
referring to NOT accessing neighboring elements. The “current” or “element at i” will
be used, to compare to the state variable, the “max so far”. The following example is a
participant who struggled with this concept.

49

“ “when this one is bigger, is less than, next one then the
next one is ..

I don’t know whether there is a maximum function to
compare the two variables so I just write like this

so I think if I take .. if max is equals to the bigger one..
and if bigger is equal then I will take the bigger one.

So let me see

first I count 0, when 0 is less than -1 then I take -1 or I
take my mylist 0 and when the next come -1 hm..

so I need to take this n, I need to make a comparison with
n.

so this is n

this is n

and if n .. if n less than mylist i1+1 then it goes to
mylist..” (A2)

The participant used the phrase “mylist i + 1”7 in order to compare with “the next”
element. Participants were most likely to make this mistake when completing the second
problem, requiring them to find the largest number in a list. The second problem was the
only problem involving a comparison between multiple elements of the list. Five partici-
pants (21%) made at least one submission (mean = 17, median = 14) containing code with
a reference to an element that was not the current element!®. Students making this error
often verbalized the algorithm as checking an item against the “next” item or an item’s
“neighbor”.

4.2.2 Selecting Appropriate Elements

Making A Comparison With An If: In three of the problems students were asked to solve,
they were required to use a decision structure or if statement in order to identify appropriate
array elements for use in the algorithm. A variety of terms were used by participants in
both conditions to describe the selection code including “use a conditional”, “compare each
one”, “if statement”, and “check that it’s less than the passing grade”. Some participants
were abstract in their language and used an English “if” instead of stating their code. One
example from a participant solving problem 2 (max search) is “In this case we have to use
a conditional to test if the element we are looking at in the current moment in the for loop
is greater than the minimum.” (A4)

Utilizing An Element In The Comparison: The purpose of the decision structure within
the algorithm is to identify the elements of the array that help answer the problem posed
to the student. For example, problem 3 asked the student to count the number of values
between 0 and a parameter. The comparison within the decision structure is used to
check to see if the current element is between the two values. Examples can be found

1ONote: The use of a constant, such as in the example for Using the Loop Variable to Access would not

be counted as referencing a non-current element. The non-current element is only triggered by the use of
+ or - in a mathematical expression to calculate another element’s location.

50

of participants who expressed the algorithmic component abstractly, as in the previous
paragraph, as well as more explicit examples about the code they were writing “If myList
of x is less than value and myList of x is greater than .. lets say negative 17 (A5).

Correctly Identifying With An If: Identifying the correct element is also a part of the
same statements used to express the need for an if statement, as well as using an element in
the comparison. In the example at the end of the last paragraph, the participant correctly
identified an element greater than or equal to 0 and less than the appropriate parameter
value. Participants sometimes missed edge cases, such as not including the 0. The output
based testing helped participants understand if they had made an error in their logic, just
as it will be used to assess the program code in the system.

4.2.3 Updating of State Variables

Initializing State Variable: An algorithmic component specifically assessing the initializa-
tion of the state variable was added to the model in response to a number of participants
who either submitted code without the component, or who had to go back during the
think aloud to initialize such a variable. The observation leading to the addition of the
component was made during the first set of think alouds when participants were receiv-
ing output-based feedback only, therefore the addition should not impact the outcome of
the analysis as its inclusion would not have impacted the think-alouds before its addition.
Overall, 15 participants (63%) had at least one submission where the code was missing the
initialization of the state variable.

Over all the participants, six (6) participants had two or fewer submissions where the
initialization was missing, the other 9 participants had as few as 3 submissions and as
many as 52 submissions (mean = 12.1, median = 6) across all 4 problems. For example,
the following is an excerpt from a participant who had to go back to define the state
variable after he had already typed his for loop. During that problem, the subject declared
the loop first, and had to go back, before the loop code, in order to declare an “int to store
the sum”.

“Ok, so going to make a for loop having i equal the length
of the array minus 1, because that would be how many
items are on the sales receipt. I'm going to have that
go while it is less than the length so that it is only that
number, and increment it by one every time, and I'm
going to need an int to store the sum. So.. the sum will
equal each of the items sub i.”(A11)

Using the State Variable: The problems in this study that need the use of state variables
(sum, max search, and count) require the state variable to be updated within the looping
structure. An example of a participant vocalizing exactly what he was typing is “sum
plus equals myList access the element” (A5). An example of a participant refering to the
state variable not by the name he gave it in the code, but instead by its role in the
algorithm expressing an abstraction is, “So if both those are true, then we add one to the
counter” (A3).

51

Correctly Updating For Algorithm: Many participants had the correct update for the
algorithm if they attempted to update the state variable at all in their code. One par-
ticipant had an incorrect update that was caught by the output based feedback from the
problem. The following quote occurs right before the participant submitted the program
to the system, and his reaction to the feedback from the output based testing. “So, if it
satisfies the two things, total plus equals that element, and then after it’s done we will just
return whatever the total is.” At this point the participant engages in a debugging session.
First he checks his code and find nothing visibly wrong, and then he rereads the question
and respond "I see it now, I thought it meant return the sum of all those numbers, it just
wanted the total number of those numbers. I see the difference” (A8).

4.2.4 Returning the Answers

Attempting Any Return: The methods the students are asked to write in these activities
require the code to return a value that is the result of their algorithms. The return value is
designated in the code with an explicit statement, and participants used the word return
to indicate this action in their think aloud sessions. There are a multitude of examples of
this, such as, “it’s going to return the total”,“just return sum”, “return -1 outside of it”,
and “return max value”.

Correct Place For Return: The return statement will end the method, causing any
other code to not be executed. It is important to put the statement in the correct place for
the algorithm being implemented. In three of the algorithms the participants are asked to
implement, the return statement belongs at the end of the code, while in the last algorithm
a return statement can be placed inside of the loop once the correct element is identified.
Fourteen participants who included the return statement always put it in the right place.
One participant verbalized his decision making process by saying

“If room numbers in the index position is equal to .. and
this is the double equal sign because you are checking
equality .. to idno which is the identification variable
which is passed into the method. If that is equal to .. then
we can go ahead, go ahead and return, um, negative.. can
I do that? No, that’s wrong, you want to return i because
that’s the index position, I was about to return negative
1 which is what I do if I don’t find it. So outside the for
loop I can return negative 1.”(A10)

Of the other 10 participants, when a return statement was included there was, on
average, 3.2 submissions that did not have the return statement in the correct place (me-
dian=3).

Correct Return Value: Similar to the correct update for the algorithm, the correct
return value is also checked with the output based testing. For example one participant
had an incorrect loop bound and received feedback that his maximum search algorithm
was incorrect. “So what I did there, while I was adjusting the parameters in my for
loop, I made length minus 1 which I didn’t need to do.”(A2) No participant solved every

92

problem correctly on the first try, so every participant had at least one submission without
a recorded correct return value.

4.2.5 Algorithmic Components are Expressed

As demonstrated by these data and examples, the algorithmic components proposed in the
model presented in Chapter 3 can be found in student statements while they are thinking
aloud. During the analysis of the student statements, it became clear that students used
various levels of abstraction within a given problem and across the algorithmic compo-
nents. A student may have been very abstract, not using a literal reading of the code,
with the initialization and update of the state variable, as initialization and mathematical
calculations with variables are often taught quite early in the course allowing for significant
practice before the end, while being more literal in his verbalizations of the loop or array
access. Looping and arrays often fall later in the course, and therefore students have had
less time to master those statements.

Overall, there is evidence from the student statements that the algorithmic components
are a part of the thought processes used by novices during problem solving. As a part of
student thought processes, feedback regarding these components should be beneficial to
the novice. As a next step, I validate the completeness and correctness of the set of
components to ensure the model has the components necessary to address student errors
and misconceptions.

4.2.6 Model Appropriateness and Correctness

In order for the model of algorithmic components to be considered appropriate and correct
for mapping student solutions of the problem, there should be evidence that the students
(1) can submit code lacking each of the components and (2) demonstrate progress through
the various components through successive code submissions.

Table 4.7 shows the number of times each component appeared correctly in a student
submission for each problem. The table includes the data for an entire condition, as well as
the values per problem. Overall there were 482 submissions for the 24 users while solving
4 problems. The data from the table are used to generate the graphs and in the discussion
of each algorithmic component in the following sections.

Correctly Looping Over Elements

All of the algorithmic components for correctly looping over the elements of an array meet
the two criteria for evidence above. Figure 4.2 shows the percent of submissions where an
algorithmic component was missing from the code submitted. The darker bar indicates
the percentage across all submissions while the lighter bar indicates the percentage across
first attempts (FA Percent) or the first submission made by each participant for each
problem. The state for the inclusion of a looping structure (loop-for) is the component
most likely to appear in student’s code, with only one(1) participant excluding a loop from
the submission.

53

Looping Sec. 4.2.1

Selecting Sec. 4.2.2

State Var Sec. 4.2.3

Return Sec. 4.2.4

Loop | Loop | Loop | Loop | Loop | Identify | Iden. | Iden. | State | State | State | Rtn | Rtn | Rtn
For | Length | List | Ref. | Cur. | Comp. | Use | Correct | Init | Use | Correct | Any | Place | Val.
All(N=482) | 480 452 450 | 438 | 395 353 342 238 281 367 328 422 | 390 | 101
1 115 105 92 84 114 0 0 0 91 101 89 82 78 25
2 175 163 169 | 168 | 103 168 160 81 85 160 136 162 | 158 24
3 106 100 106 | 106 | 101 102 102 78 105 106 103 98 93 25
4 84 84 83 80 7 83 80 79 0 0 0 80 61 27
MO(N=198) | 198 196 196 | 196 | 113 170 170 97 106 161 140 186 | 167 | 29
1 22 21 22 22 20 0 0 0 17 22 21 16 15 6
2 91 91 89 89 20 89 89 21 39 89 69 86 85 6
3 50 49 50 50 45 46 46 42 50 50 50 49 46 8
4 35 35 35 35 28 35 35 34 0 0 0 35 21 9
MA(N=74) 74 74 74 70 74 52 52 52 44 56 55 73 71 30
1 21 21 21 17 21 0 0 0 16 21 21 21 21 8
2 20 20 20 20 20 19 19 19 13 20 20 20 20 7
3 15 15 15 15 15 15 15 15 15 15 14 14 12 7
4 18 18 18 18 18 18 18 18 0 0 0 18 18 8
CO(N=109) | 108 99 88 85 108 65 58 37 7 80 67 82 79 24
1 38 36 21 21 38 0 0 0 35 35 25 26 26 6
2 26 19 24 24 26 22 18 17 15 17 16 19 18 6
3 28 28 28 28 28 28 28 8 27 28 26 24 24 6
4 16 16 15 12 16 15 12 12 0 0 0 13 11 6
CA(N=101) | 100 83 92 87 100 66 62 52 54 70 66 81 73 18
1 34 27 28 24 35 0 0 0 23 23 22 19 16 5
2 38 33 36 35 37 38 34 24 18 34 31 37 35 5
3 13 8 13 13 13 13 13 13 13 13 13 11 11 4
4 15 15 15 15 15 15 15 15 0 0 0 14 11 4

Table 4.7: Algorithmic Components by Condition (N indicates total submissions)

o4

The algorithmic components for only accessing the current element (loop-current) il-
lustrates an interesting phenomenon. The graph shows that there is a higher percentage
of observations where the participant incorrectly attempted to access multiple elements
of the array in all observations (18%) compared to first attempts (6%). There are two
factors that contribute to this phenomenon for the loop-current component. First, the
loop-current component is a fail state, meaning that it is assumed to be correct unless
there is evidence, in the form of incorrect code, present in the submission. This means
that a participant who did not use [| to access an element of the array could not have an
incorrect loop-current component assigned.

Secondly, some participants introduced the access of multiple elements as they were
attempting to correct other problems with their code. This indicates that students were
actually more accurate on their first attempt and then introduced errors in response to
feedback provided during the problem solving process. This phenomenon happened for
3 students in the output based feedback condition, and one student in the algorithmic
feedback condition. The output based feedback tells the student that the code is not
correct, but no further information about why the code is not correct. The student will
then often resort to complicated reasoning or shotgun debugging (guess and change things)
in order to try to get the feedback to indicate the code is correct. Unfortunately, because
most output based feedback mechanisms are unable to measure whether a change makes
you closer to a correct solution or not, the student is just left with the idea that it is
“wrong”’. The one student in the algorithmic feedback condition revised the mistake after
one submit (with appropriate algorithmic feedback) while the three students in the output
based feedback condition took 46, 6, and 13 submits each to correct the problem.

An extreme case of this would be a subject in the output based/mathematical context
condition in the think aloud study. She was originally correct in her access, using myList/[i]
in her code; but after receiving the output based feedback, she modified it to myList[i+1]
in order to compare neighboring items to find the max (a common misconception and
the reason for the accessing the current element model state).!! She has three correct
submissions (including her first) of this model state, and 40 incorrect submissions.

Selecting Appropriate Elements

The percentage of missing algorithmic components for selecting the appropriate elements
from the array were among the most observed components in the data. Figure 4.3 shows
the states as identify-compare, identify-use, and identify-correct. The identify-correct com-
ponent is judged by output based testing and therefore requires the code to compile before
it can be marked as correct. Also, similar to the loop-current component, there are more
instances of an incorrect across all submissions (34%) than in first attempts (20%). In
addition to participants modifying code to render it incorrect with regards to the model,
there are also a number of incorrect submissions resulting from compiler errors introduced
as a part of the debugging process.

Her method was storing the index and comparing the index against the array values, instead of using
the max index to access the appropriate element in the array.

55

Loop States Missing in Code

12

HPercent

| FA Percent
8 -
&
4 4
2 4
0 T T T T |

Loop-for Loop-length Loop-ist Loop-reference Loop-current

Percent of Observations
Al
=]

Figure 4.2: Looping Over An Array, Percentage of Missing Observations

Using the State Variable

The percentages of missing algorithmic components for the declaration and use of state
variables are also shown in Figure 4.3. The large number of incorrect declaration and
initialization of the state variable (state-init) prompted the addition of an algorithmic
component particularly focused on this concept. The component was added to the model
after the observations were made during the first 13 participants, who received output based
feedback only. In the think aloud sessions where participants received algorithmic feedback,
the state-init component was used as a part of the model, and appropriate algorithmic
feedback was presented when appropriate. The figure shows the missing percentage of
submissions over all think aloud participants.

Identify and StateVariable States Missing in Code
40

35

30

25

20 4 HPercent
FA Percent

15

10

Identify-compare Identify-use Identify-correct State-init State-use State-correct

Percent of Observatoins

w

o

Figure 4.3: Identify and State Variable Counts, Percentage of Missing Observations

56

Returning the Answers

The percentages of missing algorithmic components for returning the appropriate answer,
as well as the percentage of code that did not compile, are in Figure 4.4. Similar to the
identify-correct and state-correct components, the components for returning the correct
value (return-value) are also checked with output based testing and therefore can only be
checked with code that compiles. Once again the data show that participants can both
(1) submit code that does not contain each of the indicated components for returning the
answers, and (2) make changes to their code that includes those components over time.

Return and Compilation States Missing in Code

w
=1

=]
=1

-
=]

@
=

w
=]

BPercent
FA Percent

Percent of Observations
[~ (%] e
= = =

-
=

' B

Return-any Retumn-place Retumn-value Compiled

Figure 4.4: Return and Compilation States Counts, Percentage of Missing Observations

Model Evaluation

In section 4.2 T showed the percentage of missing observations of model components in
student code in order to answer the question: ”Do the algorithmic components each repre-
sent a model that can be used to evaluate errors a student is likely to make while problem
solving?”. For each model state, at least one student submitted at least two attempts
missing each of the model states. The student submissions demonstrate that the model
can be used to represent student programs and evaluate the errors a student is likely to
make. Additionally, when taken together, the components represent a model that covers
the space of the common algorithmic errors students make while problem solving.

57

4.3 Impacting Novice Performance: Evaluating Stu-
dents

In this Section I discuss evidence that AbstractTutor has the potential to produce student
learning, and can measure the learning using the algorithmic components model. This
section focuses on the two sub-questions of (1) Are the proposed algorithmic components
useful for evaluating learning across multiple problems, and (2) Does the verbal expression
of abstraction correlate with student proficiency?

4.3.1 Using Algorithmic Components to Evaluate Student Progress
Within Problems

The construction of a correct algorithm in computer code requires a student to combine
the required skills of writing correct syntax, as well as apply the knowledge of algorithmic
components in order to produce compilable and correct code. Often the difficulties involved
in constructing accurate program code result in shotgun debugging, a process by which
random changes are made in the hopes of producing desired output. This behavior is
similar to guessing strategies shown in other technological-supported systems where inputs
are guessed in order to get to help or feedback that will allow the student to progress
through the system [7]. Within this study, participants also made attempts to submit code
that did not result in progression towards a correct solution. Overall, I observed 387 edits
that were submitted to the system. Over half of the submissions made by students did not
result in a significant change or improvement to the program the students were working
on. Of the 387 edits, only 183 (47%) resulted in a change to the algorithmic components
of the model used as a rubric for scoring attempts. Of those 183 edits, 13 (7%) resulted
in a submission with fewer observed algorithmic components, i.e., a less correct solution
attempt.

These data imply that a simple count of the number of submissions would grossly exag-
gerate either the fixing of compiler errors or the use of guessing as progress in completing
the program. The use of targeted feedback and its evaluation therefore requires a finer
grained measurement of student performance. The algorithmic components offer a way to
determine if a submission is a productive edit - moving the student closer to a solution,
or an unproductive edit'2. Unproductive edits may still be thoughtful, or upon closer ex-
amination reveal a knowledgeable attempt on the part of the student. Although human
evaluation of program code is the most accurate, it is a lengthy and costly process. The
use of the algorithmic component model in AbstractTutor is an intermediate step between
the use of inaccurate and overly generalized metrics of student proficiency, such as number
of submissions, and human evaluation. As described in the following sections, the model is
useful for disaggregating the individual concepts with which students struggle and, as de-

12 An unproductive edit here is defined as an edit that does not correct an incorrect algorithmic compo-
nent of the code. I recognize that fixing compiler errors is also productive, but if the remainder of the code
is correct, the fixing of compiler errors will result in the output-based algorithmic elements to be marked
as correct.

58

scribed in Chapter 6, is useful for tracking students across multiple submissions to evaluate
within problem progress.

4.3.2 Evaluating Across Problem Gains

The first attempt at a problem by a participant can be seen as an indication of the knowl-
edge the participant had at the time of problem solving. By evaluating the algorithmic
components marked as correct at the first submissions for each problem, we can observe an
estimate!® of the algorithmic elements the participants included in their solutions. When
we compare the first attempts across all four problems, we can see evidence of learning
gains. For a simple initial measure, I counted the number of missing algorithmic elements
for each participant and calculated the average for each problem. Problems 1 and 2 had
relatively the same number of missing elements with averages of 3.85 out of 10 elements
(38.5%) and 4 out of 13 elements (30.8%), respectively. Problem 3 showed a significant de-
crease with an average of 2.22 out of 13 elements (16.9%), and problem 4 also was improved
with an average of 1.96 out of 11 elements (17.8%).(p<.01)

4.3.3 Correlating Abstraction with Proficiency

This section seeks to address the research question “Does the verbal expression of abstrac-
tion correlate with student proficiency?”, specifically looking at the relationship between
the abstract statements student make and their ability to solve the simple array problems
presented in the study. Measures of student abstraction are often correlated with student
proficiency at writing algorithms in code. There are many ways to indicate student profi-
ciency at writing algorithms in code. I considered two possibilities for this work, a scoring
of each first submission made in attempt of the problem (analogous to performance on
an assessment in the absence of feedback [48]), and a count of the number of submissions
required by the student in order to solve the problem.

The first submission score is a snapshot of the student’s performance, taken only a part
of the way through the problem solving process. The statements collected and analyzed are
from the entire problem solving session. Ultimately all students completed every problem
within the system as a part of the study, and the measure of their proficiency should match
the time frame for which the statements are collected.

There is a weaknesses in using the number of submissions, as students sometimes strug-
gled with compiler errors that slightly increased the number of submits, but had no bearing
on the student’s understanding of the abstractions involved in the algorithm. Despite the
weakness, the number of submits is the best measure of student proficiency throughout the
problem solving process available at this time so I will use it as the measure of proficiency
throughout the analysis in this section.

13Some students may use an incremental approach to the problem, submitting small programs that are
not complete, but can be checked for syntax and basic structure, however none of the think aloud subjects
verbalized this strategy during the study.

59

Problem | NA | BL | MR | FR | NC | Total
Condition
1] 305 | 8 | 194 | 61 | 212 | 861
MO | 133 | 45 | 50 | 12 | 55 | 295
MA | 40 16 32 10 | 22 120
CO | 60 13 | 63 | 22 | 54 | 212
CA| 72 15 49 17 | 81 234
2| 310 | 216 | 239 | 40 | 164 | 969
MO | 168 | 121 | 86 22 | 82 479
MA | 26 32 54 0 12 124
CO | 33 7 40 7 14 | 101
CA | 83 56 | 59 | 11 | 56 | 265
31243 | 72 | 18 | 35 | 90 | 626
MO | 114 | 31 | 76 | 19 | 39 | 279
MA | 27 15 | 48 2 16 | 108
CO | 48 13 | 42 9 14 | 126
CA | 54 13 20 5 21 113
41 166 | 67 | 170 | 26 | 65 | 494
MO | 85 40 | 66 | 19 | 35 | 245
MA 18 12 23 1 3 57
CO | 20 9 57 4 11 101
CA | 43 6 24 2 16 91
Total | 1024 | 444 | 789 | 162 | 531 | 2950

Table 4.8: Statement Codes by Problem
Table Key: NA - No Abstraction, BL - Block Labeling, MR - Macro Structure, FR -
Feedback Response, NC - Not Code Specific (as detailed in Section 4.1.7), MO -
Mathematical Problems, Output Based Feedback, MA - Mathematical Problems,
Algorithmic Feedback, CO - Contextual Problems, Output Based Feedback, CA -
Contextual Problems, Algorithmic Feedback (as detailed in Section 4.1.6)

4.3.4 Abstraction Labeling of Statements

The data contain 2950 statements made by 24 subjects across the four problems they were
solving. Table 4.8 shows the aggregate count of each code broken down by problem the
students were solving at the time the statement was made, as well as aggregate totals'4. The
most frequently used code was NA, making up 35% of the statements made by students.
Surprisingly, 20% of the statements were NC or Not Code Specific (i.e., “I wish this window
was larger”), not focusing on the code the student was writing for the problem. The
particular problem students were working on was not a significant factor (F(1,22)=57.4,
p>0.05) in the breakdown or total number of statements made, and therefore the problems
are collapsed for analysis after Table 4.8 (as shown in Table 4.9).

14

60

Condition NA BL MR FR NC Total
MO | 500 (38.5%) | 237 (18.3%) | 278 (21.4%) | 72 (5.5%) | 211 (16.3%) | 1298
MA | 111 (27.1%) | 75 (18.3%) | 157 (38.4%) | 13 (3.2%) | 53 (13.0%) | 409
CO | 161 (29.8%) | 42 (7.8%) | 202 (37.4%) | 42 (7.8%) | 93 (17.2%) | 540
CA | 252 (35.8%) | 90 (12.8%) | 152 (21.6%) | 35 (4.8%) | 174 (24.8%) | 703

Table 4.9: Statement Codes Percentage by Condition

During the session, students were engaged in the task of writing code which involved
the typing of the actual syntax, so it is unsurprising that many of their statements were
made about the code itself and were labeled NA. Additionally, students also needed to
parse problem descriptions in order to determine the appropriate code to write, and so the
high percentage of abstract (MR) statements is also to be expected [19]. The next section
details the relationship between the statements of each type (No Abstraction, Block Level,
and Macro Relation) and a rough estimate of the proficiency of the student as measured
by the number of submissions it took to solve the problems.

4.3.5 Abstractions Correlate with Proficiency

The initial expectation based upon prior work with explain in plain English (EiPE) ques-
tions [49, 50, 57, 82], was that students with a higher proficiency would use more abstract
statements and fewer non-abstract statements when thinking aloud while programming.

There was a correlation between the number of submits and the raw number of state-
ments made in each category (NA, BL, MR), however this is not an accurate metric for
determining the difference between students. A student who took more submits to solve
the problem often spent more time solving the problem and therefore talked for a longer
period of time, making more statements in general. The raw data were transformed to
represent the percentage of statements made by the student in each category, and the
transformation is used for the remainder of the analysis in this chapter. An aggregate
table of submissions per research condition is shown in Table 4.9.

An Analysis of Variance (ANOVA) showed no significant relationship (p=.38) between
the raw proficiency of the student (as measured by number of submits to solve each of the
4 problems) and the percentage of statements made at each level. Although the number
of statements made in total was high, the number of students in the study was relatively
low and a lack of power may account for the lack of significance. As a discipline, we often
categorize students into high and low performers, and a similar categorization proved useful
for analysis here.

The median number of submits across all four problems for all students was 15.5. Stu-
dents were classified as high proficiency (fewer submits than the median) or low proficiency
(more submits than the median). The median score of the high proficiency students was
8.5, while the median of the low proficiency students was 25.

As shown in Figure 4.5, there was no significant difference (p>.1) between the per-
centage of NA or BL statements made by students of high or low proficiency. There was,
however, a significant difference between the mean percentage of MR statements made by

61

students of high (Mean=.35) and low (Mean=.27) proficiency students (p <.05, SD=.12,
.14). This finding would indicate that higher proficiency students are more likely to use
abstract statements during the self explanation process.

0.4-

Proficiency
Low

High

Mean Percentage of Statements

0.1

0.0-

I I I
MRP NAP BLP

Statement Classification Category

Figure 4.5: StatementClassifications by Student Proficiency

4.3.6 Transitions Correlate with Proficiency

There is an additional dimension to the data beyond the percentages of statements students
make at various levels of abstraction. The statements were also coded for transitions
between classification categories. A transition is defined as a statement that was coded
differently from immediately prior statements. For example, if a student said “So after we
are done with the for loop, we want to return the counter”, it was coded as MR. In the
next statement, the student may have verbalized typing the return statement with “return
¢, semicolon” which would be coded as NA and marked as a transition statement.
Statements coded as NC or FR were not considered transitions. It was common for a
student to express a feeling or read a piece of feedback as a part of the problem solving
process without changing the level of abstraction in the surrounding statements. For
example, a student could be typing a for loop and make the statement “that is mylList
dot length” (NA), and then say “I remember this from the last class” (NC), and return
to a statement “i plus plus parenthesis” (NA). The student inserted a contextual cue, or

62

statement focused on something outside the problem scope, but still continued to act at
the same level of abstraction as prior to the statement. A sequence of codes such as NA,
NC, MR would have the last MR marked as a transition as it represented a change in
category from the NA.

Similar to the original classification of statements, the raw number of transitions is
skewed towards students who took longer to solve the problems. To normalize the num-
ber of transitions, the percent of statements which were transitions between classification
categories in all of the following analysis were used.

Figure 3 shows a comparison box plot between high and low proficiency students and the
percentage of statements they made which transitioned between classification categories.
There is a significant (p<.01) difference between the percentage of transitions in low and
high proficiency students. High proficiency students transitioned between categories on
average in 38.3% of statements, while low proficiency students transitioned between cate-
gories, on average, only 30.2% of the time.

0855
|

040 045 0.50
|

Percentage of Transitions

030 035

'
R E—

020 028

Low Proficiency High Proficiency
(High # of Submits) (Low # of Submits)

Figure 4.6: Transitions by Proficiency

The increase in the percentage of transitions indicates that students of higher profi-
ciency move between the concrete code they are writing and the more abstract problem
or relationship between an individual line of code and the entire algorithm more often.
Examples from the think alouds indicate that students were engaging in self explanation,
connecting the specific code to the larger goals of the problem.

For example, a high proficiency student engaged in the following dialog where he was
able to transition between the specific code he was writing, to the relationship to the larger
problem as he progressed. The dialog from the student, along with category classifications
is shown in Table 4.10. Dialog from a low proficiency student at a similar point in the
same problem is shown in Table 4.11.

63

Statement Category
for int i, so check out the for loop NA
at first
just so I am understanding, this ar- MR
gument passed in, this is the num-
ber that each element in the array
has to be less than? ok

Ok, I'm pretty sure the loop is right NC

on
myList i is greater than or equal to NA
0

and less than value NA
I see it now NC

I thought it meant to return the MR
sum of all those numbers, it just
wanted the total number of all those
numbers. I see the difference

Table 4.10: A High Proficiency Student Solving The Count Problem

Statement Category
0 less than scores.length i plus plus NA
so if, I'm just checking the condition NA
if scores dot of I hm, ok. NA
is less than 0 NA
so that I won’t get confused if I use NC
places

and scores of I is greater NA
and 0 also comes under that NA
so 0 to greater than or equal to 0 NA
and less than passing grade NA

Table 4.11: A Low Proficiency Student Solving the Count Problem

64

In the same part of the problem, the low proficiency student did not relate the code he
was writing verbally back to the larger problem, or the abstract nature of the algorithm
he was attempting to write.

When looking at the difference in the percent of transitions, 8% may seem small. How-
ever, when the relative amount of time spent on each problem is considered, combined with
the higher use of MR statements by the high proficiency students, low proficiency students
will spend a significantly longer amount of time discussing the individual code elements
and syntax while engaging in practice.

4.4 Proof of Concept: Students Use Algorithmic Com-
ponents in Code Production

This study addressed 5 research questions in the validation of the algorithmic compo-
nents using student problem attempts and think aloud transcripts. This chapter sought
to provide evidence to answer five research questions with data from a think aloud study
conducted with novice programmers. The analysis included both qualitative and quanti-
tative work using the student statements during the think aloud, as well as the code that
was written and submitted to an online system.

Although arguments can be made for the addition (or removal) of components based
upon different languages or different levels of student ability, for the population evaluated
in this study, data indicate that the components are appropriate and cover a majority
of student errors with regards to algorithm construction. Each of the components were
observed to be incorrect in at least one participant’s submission, demonstrating the ability
for students to make such an error and supporting the need for each of the listed algorithmic
components in a feedback model.

In addition to observing the components initially proposed, research questions 2 and
3 also focused on evaluating the completeness of the set of algorithmic components. As
a result of evaluating the think aloud transcripts and student submissions, two additional
components were added to the feedback model after the initial 6 participants'®. Initially,
I hypothesized that declaring and initializing a variable to keep track of the state of the
algorithm (i.e., the sum of the array elements encountered so far within the for loop) was
a skill that students would have mastered by the last month of the course. A number of
submissions made by students were missing the declaration or correct initialization of a
state variable, and so a component was added to the model to check for this omission. I
also observed a misconception in the use of +1 to access the "next” element as a part of
the ongoing evaluation of array elements as discussed in section 5.5.2. The loop-current
algorithmic component is the only component focused on a misconception specifically, how-
ever it was observed frequently enough to indicate the appropriateness of the component’s
inclusion in the feedback model.

While evaluating research question 1, in addition to observations about the model to

15The initial 6 participants received output based feedback, so the addition of additional algorithmic
components would not have changed any of their interactions during the think aloud.

65

be used to generate algorithmic component feedback (as detailed in Chapter 5), analysis of
the students’ use of abstraction provides additional evidence supporting the evaluation of a
hypothesis of this thesis: Feedback regarding algorithmic components presented to students
pre-compilation will produce better (a) within-problem performance and (b) across-problem
learning. The transition to abstraction when describing the algorithmic components in
code was more prevalent in students of higher proficiency.

As reported in Section 4.3, the decrease of errors in first attempts at the problems
indicates that student learning occurred during the interaction with the system. Indications
of learning could mean two things: (1) that the practice problems were of appropriate
difficulty - causing mistakes to be made but not so difficult as to prevent learning over
time and (2) that the model can be used to show progress towards expertise in student
practice. The demonstration of student learning from the practice problems also answers
the question of whether learning can be observed over a short practice session. Although
the problem order was fixed, the required algorithmic components of each problem are
mostly the same, and the appearance of appropriate components at first submit indicates
an increase in student understanding of when the models must be applied.

Not only can learning be observed, the algorithmic components also appear to be a
viable way to evaluate the difference in student submissions across problems. Because
many of the problems share similar algorithmic components, the consistency provides for
a measure of student progress despite the difference in algorithms the students are asked
to produce. A more sophisticated discussion of measures of student progress and the use
of the algorithmic components for additional measures can be found in Chapter 6.

In this and previous chapters for this thesis, I have laid out the theoretical foundation for
the development of a pre-compilation feedback mechanism using algorithmic components
and abstractions (Chapters 1-2), and described (Chapter 3) and tested (Chapter 4) a model
of algorithmic components useful for practice problems using simple array algorithms. In
the next chapters I move forward with an analysis of the mechanism that is used to generate
feedback in AbstractTutor (Chapter 5), a discussion of metrics for measuring student
performance in AbstractTutor (Chapter 6) and the results of online studies evaluating the
effectiveness of the feedback (Chapter 7).

66

Chapter 5

Implementing Algorithmic Feedback
in AbstractTutor

I have presented evidence from literature and data supporting the case for the construc-
tion of a pedagogical integrated development environment (IDE) to support novice pro-
grammers. Drawing from the literature surrounding expertise and models of abstraction
(Chapter 2) and building upon personal expertise and task analysis (Chapter 3), I de-
signed a model of algorithmic components to be used to produce feedback for novices
while they practice writing code to construct simple array algorithms. Having validated
the algorithmic components in the model and demonstrated the potential usefulness for
tracking student progress in a pilot study with a prototype of AbstractTutor (Chapter 4),
I now detail the technical aspects of the feedback mechanism implementation for a fully
implemented online AbstractTutor.

5.1 Automated Testing of Student Code

There are numerous approaches to the automatic generation of feedback messages for
programmers. The evolution of professional tools such as compilers and IDEs is well
documented. Educational tools offer a more diverse set of feedback categories, and therefore
employ a wider range of methods to produce the feedback. In Chapter 1, I described
several types of feedback in development environments, as well as some structural or visual
attempts to supplement the feedback provided by the compiler. In this chapter, I focus on
the mechanism behind the feedback production in AbstractTutor. The analysis presented
here, as well as the results of testing against student code, speak directly to the research
question: Can a pre-compilation feedback mechanism be constructed that operates with
reasonable accuracy (85% of student generated submissions)? To answer the question, I
present the design of the feedback mechanism of AbstractTutor and the results of data
analysis used to refine the feedback mechanism with respect to simple array problems.

67

5.1.1 Desirable Components of Feedback Mechanisms

At the core, feedback mechanisms communicate structure and state to the user. Structure is
important to the programmer for many reasons. Structure can be used to describe a macro
relationship between the files, objects, or methods used in code, and the dependencies that
exist. Structure can also be used to describe a more micro view of the code, specifically
looking at the scope and relationship of individual lines of code, or even variables and
expressions, within a particular algorithm. Both types of structure can be very useful
to the expert who has a mental model of the interworking parts of the solution they are
trying to express in code. State refers to the stored result of computation performed in
code. The state associated with programs or code segments can be useful in comparing
expected values with actual outputs. Both structure and state can be difficult to determine
if code produced by a novice does not conform to minimum standards necessary for the
environment to parse.

Many current environments focused on languages entered by typing, ! which have been
used in introductory computer science courses, rely on feedback mechanisms designed for
and by the professionals the language was built to support. For an expert, the most
important feedback comes when she tests her code against input and output values, often
with carefully thought out examples of “edge cases” - or unique situations that could
produce unexpected behavior. Compiler errors are most often produced by a typo, or
a misreading of documentation, and are easily understood and corrected. This testing
behavior is very different from the behavior of the novice. A novice often requires feedback
just to produce minimally executable code, and is looking not to test edge cases, but the
overall performance of the program or algorithm. The errors a novice makes that result in
a compiler error occur just as often from a misunderstanding of semantics or appropriate
program structure as from a simple typo [52].

In addition to the gap in knowledge and skills between a novice and expert, there is also
a significant difference in the primary purpose of writing code for a novice and an expert.
In most cases, when an expert writes code, he is attempting to build and test a solution
to a problem. Often that problem will not have an acceptable previously implemented
solution; otherwise the expert would simply use the existing solution. And although the
expert may not have a mental model of an absolutely correct solution to the problem he
is addressing, he often will have a correct implementation of an approximate solution. For
example, if an expert programmer is trying to create an application to display a user’s
twitter feed with the most important messages first, he may not know how best to choose
the “most important” messages, but for the criteria he has decided upon, he will know a
way to implement a program that displays a messages from a users’ twitter feed or how to
find packages and documentation providing worked examples the expert can understand
and use to solve the problem. The challenge of the problem lies not in implementing the
code once decisions are made, but instead modifying and testing that solution in a process
of iterative refinement.

The testing a potential solution to a coding problem has a different purpose for the
novice. In contrast to the expert, the novice writes code to implement a working solution

Las opposed to drag and drop languages such as Alice or Scratch

68

to a well defined problem. A significant part of the struggle for the novice is not only
the implementation or code production, but also the formulation of a mental model of
the algorithm itself. The code writing exercise itself is an assigned practice in the imple-
mentation of specific concepts, and the novice is expected to learn from the experience,
implying that she is not proficient before the exercise. The novice uses the environment
and its feedback as a learning mechanism, therefore expecting assistance with, not just
correction of, the code being written. The difference between the needs of the novice and
expert would indicate that novices would benefit from a feedback mechanism focused on
the content of the problem in addition to the language.

5.1.2 Limits on Implementation

There are two main barriers to designing a perfect feedback mechanism for novices. The
barriers are generalizability of the tool to different problems and difficulty in proving cor-
rectness of a student solution. Although better feedback can be obtained through the use
of problem knowledge, and matching against a correct solution, the structure needed to
have this knowledge limits the generalizability of the tool to the problems defined within its
structure. Additionally, by comparing to a correct solution, the students are constrained to
a particular solution space, although Computer Science is a domain that is celebrated for
its creative thinking and problem solving features. Although these arguments make sense
when compared against the needs of the expert, for the novice the goal is not flexibility,
but practice and learning.

The second barrier to designing a perfect feedback mechanism is the difficulty for a
computer to prove the correctness of an arbitrary solution. With the difficulty of proving
correctness, many methods have been developed to test the correctness of computer code.
Educators have adopted methods such as unit testing [24, 60] and verification [62] to
automate the grading of student programs. In addition to reducing the time it takes to
verify and score student work, automated testing can also shorten the feedback loop and
provide novices with a more rigorous validation of the code they have produced [58].

Automated testing treats the student’s code as a black box and determines accuracy
based on comparing expected outputs against output generated by a student’s code. Imag-
ine testing a function that finds the sum of two numbers. You could put in a 3 and 5 and
receive an 8 for an answer. Although at the surface, this appears to validate the perfor-
mance of the code, perhaps the code always returns 8, or has a more difficult bug to catch
such as always returning a positive number. The ability to construct output-based tests
to test all possible cases is itself a very difficult problem, especially for novices [58].

Verification strategies have been used to provide a more rigorous evaluation of student
code while problem solving [62]. The verification mechanism, however, suffers from some
of the same issues as a generalized compiler. First, students need to write assertions in
a language the computer can understand, in order for the generalizable mechanism to
provide appropriate feedback for the particular solution the student is trying to write.
This addition of a level of complexity ensures that the student understands the problem,
but does little for the novice who is having algorithmic difficulties and cannot produce
correct assertions.

69

In addition to the difficulty of testing all possible cases, such testing also focuses only
on the output. Although this type of testing is useful in industry, where experts care
mostly about expected behavior and not the details of implementation, output based test-
ing cannot be used efficiently to generate feedback regarding the individual components of
student code. Additionally, the construction of unit tests focuses the feedback on particu-
lar problems and limits the generalizability of the practice environment. The algorithmic
component approach used by AbstractTutor will allow for future development of similar
problems about array algorithms without needing to develop new feedback mechanisms or
statements.

Another possible way to test student code is to treat the code as text and use tech-
niques such as string matching or regular expressions to check for predetermined commands
within student generated code [78]. These methods of checking for a predetermined set
of commands impose a rigidity on student solutions that is more applicable to domains of
recall such as spelling, than to subjects involving complex problem solving.

Alone, neither output based feedback, nor a rigorous inspection of the novice’s code is a
viable strategy for producing feedback about the algorithmic components in student code.
Despite the prior work in using unit testing and other mechanisms to evaluate student code,
the application of these mechanisms to the algorithmic components of code, specifically for
the purposes of feedback during code production, is new and a contribution of this thesis.

5.2 Evaluating Code Pre-Compilation

AbstractTutor operates with the knowledge of the problem the user is attempting to solve
in order to provide the most detailed feedback about appropriate components. Although
there is a solution space for correct answers, novices will create an unreasonably large space
of incorrect answer attempts for feedback generation mechanisms to handle efficiently or
accurately [77]. In this section, I discuss several approaches to the analysis of student code
for either grading or more detailed feedback purposes, and the strengths and weaknesses
of each approach as it applies to the goals of the AbstractTutor system.

As noted in Chapter 3, there have been many prior attempts to create feedback mecha-
nisms for student-produced code. Almost immediately, researchers agreed that enumerat-
ing all of the possible correct and buggy states for student produced code was an impossible
task.

“Clearly, one can’t possibly enumerate beforehand the space of program inter-
pretations: there are just too many ways to construct correct and buggy pro-
grams. Rather, starting with the problem specification and a database of cor-
rect and buggy plans, transform rules, and bug-misconception rules, PROUST
constructs and evaluates interpretations for the program under consideration.
In effect, the goal decomposition and the plan analysis of the program evolve
simultaneously.” [36]

70

5.2.1 Determining the Program Components

Computer science programming problems pose more difficulty for determining the correct
aspects of a partially correct solution than many other domains, except perhaps essay
writing. While not trivial, it is usually within the range of the average computer science
instructor’s ability to write output based test cases to determine correctness for the pro-
grams they assign at the introductory level, so this practice has become a standard in
many CS classrooms [23, 61]. At the introductory level, treating the program as a black
box, these forms of output-based testing require that the student, or an automated sys-
tem, provide input to the student’s code and then based upon the output of the program
determine if it is operating correctly. Sometimes when a program gives incorrect output, a
probable cause of the bug can be inferred from the output. This approach, however, only
works for a small subset of the possible solutions attempted by students.

A detailed analysis of the actual code authored by the student is needed in order to
more accurately determine the source of the incorrect result. The code produced by a
student is essentially text, and prior work has shown the text-based evaluation of code
through string matching to be effective in a constrained environment |78, 80] where the
solution space is limited due to the nature of the questions. This approach of matching
the exact letters that a student uses will not work except for problems where students
are writing small code segments. In larger problems, students have the ability to name
variables as they choose, which introduces variability that makes string matching difficult.
For example, a variable to keep track of the sum of all the numbers in a list could be named
sum, s, sumOfNumbers, or even myCatFluffy. All of the examples are valid variable names
and represent just a small fraction of the almost infinite space from which students choose.

Additionally, it is not only important that a particular line of code appears in a solution,
it is also important where it appears, and how that line fits within the larger structure of
the code. Consider the two examples in Table 5.1. I have added appropriate spacing make
the code easier to read; however, the spacing has no effect on the program execution. In
the examples, the code appears to be very similar, and in fact the only difference is the
addition of { and } in the left hand example. By adding the braces, the return statement
will be considered part of the loop and will return the value stored in s after only the
first item has been added to it. A string-matching evaluation of the code could ascertain
this detail, but it would be very difficult to determine all of the possible combinations of
algorithmic structures with this methodology.

The most useful way to map the code would include both a representation of variables
that did not depend on the variable name, and a structural representation that would be
useful in determining the relative placement of algorithmic components. Abstract Syntax
Trees (AST) meet both of these specifications and have been used by others to evaluate
student code in computer science environments [41, 68]. AbstractTutor uses abstract
syntax trees in order to evaluate not only the algorithmic components of student code,
but also their relationship to each other in the program structure in order to provide the
appropriate feedback to students.

The contributions of AbstractTutor lie in the application of abstract syntax trees to
infer algorithmic structure of student programs and provide feedback that not only identifies

71

Table 5.1: Two Code Examples Difficult to Distinguish by String Matching

int s=0; int s=0:
for(int i=0; i< myList.length; i++
{or(ln * 1S myList.leng 1+4) for(int i=0; i< myList.length; i++)

s = s + myList[i];

s = s + myListli];
Y [1] return s;

return s;

the presence of appropriate code, but its existence within the structure of the student-
produced algorithm. Additionally, AbstractTutor then applies the research on abstraction
to the development of the feedback messages, encouraging students to consider the way
the algorithmic components must work together in order to achieve the desired result. No
other feedback systems in the literature review explicitly use feedback attempting to have
the students think abstractly about the components of their code.

5.2.2 Focusing on Pre-Compilation Feedback

Abstract Syntax Trees are a form of static analysis [32] to evaluate code prior to execution.
Static analysis techniques were developed in professional environments to combat some of
the same issues facing our development of a system to provide feedback to novices [92].
Pradel and Jaspan created a system for professionals learning new software frameworks
using static analysis techniques to validate code against framework constraints [65]. The
system maintains generalizability through the use of javadoc comments provided by the
programmer to cue the validation of code.

Although Jaspan’s work focused on feedback for professionals who are experts at pro-
ducing algorithms and need assistance identifying constraints that are required by a library,
the work is a precedent for the application of static analysis to feedback mechanisms in
computer science.

In AbstractTutor, the static analysis techniques allows for pre-compilation feedback
regarding algorithmic structure. As discussed in Section 1.2, the focus on syntax early
in the problem solving process is contrary to research on efficient second language learn-
ing [22, 86]. Additionally, as shown in the case studies at the end of this chapter and in
Chapter 7, compiler errors are often generated by incorrect algorithm implementations, or
student misconceptions. Focusing on fixing the errors through compiler messages without
addressing the underlying cause, when they are produced by a deficiency in student knowl-
edge, does little to aid the student in making productive edits, and eventually arriving at
a well thought out solution.

The production and display of feedback regarding the algorithmic components prior to
compiler errors gives the opportunity for students to focus on the macro and ensure the
structure is correct, and stays that way, before worrying about the atom level, which should

72

reduce the number of symptomatic corrections that do not relate to the larger algorithmic
problem.

The following sections detail the code evaluation process used to generate the pre-
compilation feedback in AbstractTutor.

5.2.3 Evaluating Code in AbstractTutor

In the AbstractTutor system, student code is parsed to produce an Abstract Syntax Tree
(AST) and the tree is checked for evidence of appropriately located algorithmic compo-
nents. The system generates a series of 1’s and 0’s representing the appearance (1) or
absence (0) of each algorithmic component in student code. I describe the set of 1’s and
0’s produced by the evaluation as an alignment vector. The alignment vector is produced
with a consistent ordering of the algorithmic components and therefore alignment vectors
can be compared across submissions. Tables 5.2 and 5.3 show two code snippets and the
corresponding alignment vector relative to the feedback model described in Chapter 3.

The first code snippet, show in Table 5.2, has a repetition structure (for) containing
a statement using the length of the list (myList.length) as a bound. Additionally, inside
the structure there is a reference to an element from the list (myList|index|) and it uses
index, the loop variable, in the reference. The code only accesses the current element
(there is no [index + or - 1]). The algorithm is implementing a sum, which does not
select any particular elements, therefore there are 3 0’s for the components related to
selecting appropriate elements. The code does not initialize a state variable (the fourth 0),
and therefore although the student wrote total += myList[index] we cannot observe the
attempt to use, or correct update of the state variable. Finally, there is a return statement,
and it is in the appropriate place for the algorithm (the next two 1’s in the vector), but
the output cannot be observed to be correct because this code will not compile without
declaring the total variable.

Three of the alignment vector bits are checked by the system at runtime: Correctly
identifying with an if, Correctly Updating for Algorithm, and Returning the Correct Value.
These three components are checked when the system compares return values from the
method with both predetermined edge case values and randomly generated values and
answers. In the current version of the system, all three components are checked at the
same time and are marked as 1 or 0 simultaneously. There are plans for future work to
disaggregate test cases that would indicate a specific error with either the if statement
or the update to the state variable. The Returning the Correct Value bit is used as a
final check to ensure that, even if a student has all of the right components, there is not
additional code that would yield an incorrect algorithm.

Although the student did presumably attempt to use a state variable without declaring
or initializing it, the constraint for using the state variable is tied to the declaration. The
feedback the student receives in this situation is about the initialization; and once the
line of code “int total = 0;” is added to the beginning of the algorithm, the use of the
state variable can be observed and assessed. Feedback is presented in the order of the
constraints, so the first constraint that the student fails will trigger that feedback message.
The constraints in the alignment vector are ordered so that declarations, initializations, or

73

public int findSum(int [ImyList){
for (int index = 0; index<myList.length;
index++)
total += myList[index];
return total;

}

Including a Repetition Structure

Using the Length of the List

Referencing Any Element From the List with [|
Using the Loop Variable to Access

Only Accessing the Current Element

Making a Comparison With An If
Utilizing an Element in the Comparison
Initializing State Variable

Using the State Variable

Attempting Any Return

Correct Place for Return

Correct Return Value

O R = OO OO = ===

Table 5.2: Code to Alignment Vector Mapping 1

public int findSum(int []myList)}
int total = O;
for(int index = 1; index < 10; index++)
total += 5;
return total;

by

Including a Repetition Structure

Using the Length of the List

Referencing Any Element From the List with [|
Using the Loop Variable to Access

Only Accessing the Current Element

Making a Comparison With An If
Utilizing an Element in the Comparison
Initializing State Variable

Using the State Variable

Attempting Any Return

Correct Place for Return

Correct Return Value

O R RO, OO oo o o+

Table 5.3: Code to Alignment Vector Mapping 2

74

other dependencies will receive feedback messages first, before feedback related to the use
of a particular item. For example, students cannot receive feedback indicating that they
should use a loop variable to access an item in the list without first having constructed a
repetition structure with an appropriate looping variable.

In the second code snippet, shown in Table 5.3, the student did include a repetition
structure (for), however did not use the length of the list to appropriately bound the loop.
The code does not contain a reference to the list in the loop body, and therefore cannot
use the loop variable in that access. In not accessing any element, the student has not
accessed more than the current element, so the constraint focused on only accessing the
current element is upheld. The constraint for the current element is the only "fail” state in
the model - requiring the observation of incorrect code in order to be incorrect. An empty
submission will still uphold this constraint. As in the last example, there is no need to
implement a selection of particular elements, so there are three 0’s for those constraints.
The state variable is initialized (1) and updated in some fashion during the loop execution
(1) but as the result of the code when checked against output based testing is not correct,
this code does not get a correct update for the variable (0). There is a return statement
(1), it is in the appropriate place (1), however it will not produce the correct value when
checked against output based testing (0).

In the alignment vector, the correct update and the correct return are checked with
output based testing; in the AbstractTutor system that is done by comparing expected
outcomes against random and specific test cases. A more detailed description of the output
based testing is found in the next subsection.

5.2.4 Automated Assessment Mechanism

The AbstractTutor system was implemented to operate in a web browser, and uses the
Janino framework for program compilation, Abstract Syntax Tree (AST) creation, and
program execution against test cases. As discussed in Section 2.1, the variability of indi-
vidual student code solutions requires an intermediate step to evaluate student code against
the algorithmic components used to generate feedback in the system. In AbstractTutor,
the intermediate representation of student code is an Abstract Syntax Tree (AST).

An AST is a structural representation of student code that allows for the removal of
identifiers whose name is not salient to the solution. Figure 5.1 shows an AST representa-
tion of a generic problem in AbstractTutor. The generic representation was used to help
design the AST walker - a java program that took the completed AST and looked for the
appropriate algorithmic components in expected places in the student code submission.

Extraneous code that does not affect the structure of the code is ignored by the AST
evaluation?. If the extraneous code impacts the correctness of the algorithm, the elements

of the alignment vector concerned with the correctness of the output based feedback will
be affected.

2The AST will still contain the code, the evauluator will just not use it when constructing the alignment
vector

5

Statement
Jequence
State Variable
Declaration+
Initidlization
—_—
| |

Repetition
Structure

Return

Condition I Body
| I

loopwvar<
mylList.length

Decision

Condition I if body
I l

comparewith
myList

assignment

S
| _ I

Statevar ‘ myList[]

|— loopvarin(] ‘

Figure 5.1: A Generic AST

5.3 Confirming Code Evaluation Accuracy

An important part of feedback for the novice is the accuracy of the feedback messages.
In this section, I present the results of a study with goals of (1) to evaluate the efficacy
of an AST approach to code evaluation and (2) to provide opportunities to fine tune the
feedback mechanism to provide the most accurate feedback possible. These two goals
contribute to the overall design of the tutor and an evaluation of its accuracy for the main
thesis research question: Can a pre-compilation feedback mechanism be constructed that
operates with reasonable accuracy (85% of student generated submissions)?

5.3.1 Analyzing Existing Think Aloud Data

Novice programmers can produce erroneous code, and while some common misconceptions
and errors exist, the full extent of student mistakes is difficult to produce artificially. It is
therefore essential that we evaluate and fine tune the feedback mechanism on code written
by the novice. In this section I explain a detailed assessment of the AbstractTutor code
evaluation mechanism based on hand evaluated code, and an analysis of a large data set

76

Code

public int countLessThan(
int [JmyList, int value){
int x;
for (x = 0;
x < myList.length; x++){
value += 1;

+
return(myList.length - value);
Statement
Sequence
il
Variable
Declaration+
Initialization
,:I:_I
Repetition e ‘
Structure
Condition Body
x < mylist.length Body
assignmert
r—_1—1
Value ‘ Value+1
AST
Alignment 11001-00-00-110
Vector

of automatically evaluated code.

To determine the accuracy of the automated assessment mechanism, I used the sub-
missions gathered by the system during the think aloud study described in Chapter 4.
These data were produced by 24 subjects solving 4 problems for a total of 482 submis-
sions. Table 5.4 shows a breakdown of the data by feedback condition. Students in the
think aloud were placed in one of two conditions, as described in Chapter 4. One group
relied only on the feedback automatically produced by the system equivalent to a standard
IDE (compiler and output based testing), and the other group had algorithmic feedback
read to them at appropriate times. Each row of Table 5.4 gives a particular statistic (like
average submissions) for a particular group of students (either by feedback condition or
for all participants). For the analysis of the think aloud data I was assisted by Alexandra
Johnson, an undergraduate research assistant.

For a larger and more diverse dataset we use data collected in the Spring of 2011 from
a web-based study. The full details of the dataset are described in Chapter 7 with regards
to participant recruitment and engagement. For this assessment of AbstractTutor, we
were only concerned with the performance of the parser and therefore used the student
submissions from the study to evaluate the system accuracy. During the study, 160 students

7

Algorithmic | System All
Feedback | Feedback | Participants
Average Submissions 14.5 25.6 20
Max Submissions 26 72 72
Min Submissions 6 7 >
Unique Alignment 54 37 75
Vectors Observed

Table 5.4: Think Aloud Student Submission Data for all Four Problems

made 4730 submissions to the AbstractTutor system while solving 4 problems. Table 5.5
shows the details of the dataset.

Per Problem | Per Four Problems
Average Submissions 8.7 28.1
Median Submissions 3 14.5
Maximum Submissions 248 315
Min Submissions 6 4
Unique Alignment N/A 121
Vectors Observed

Table 5.5: Online Study Student Submission Data

Table 5.6 shows some of the most frequent Alignment Vectors (more than 80 observa-
tions) with a description of the errors students make to produce the Alignment Vector,
and, where appropriate, the problems most likely to cause the state to be observed. The
largest majority of vectors are those that have all the appropriate algorithmic components
for the algorithm (25%) but do not pass the output based testing. In these cases, the
student will often be struggling with a compiler error preventing the code from compiling,
or a detail of the implementation focused on an edge case of the algorithm (not including
0 in the count of numbers for problem 3). The feedback for students in this case would
either be the compiler errors generated by their code, or the output based testing result
(expected and resultant values with a given input). A more complete description of the
model states and the transitions between them appears in Chapters 6 and 7 when I focus
on student learning outcomes.

The goals of this analysis are three fold. First, I evaluated the ability of the Abstract-
Tutor parsing mechanism to accurately categorize student code solutions with respect to
the Algorithmic Component Model proposed in Chapter 3 using the Think Aloud data
from Chapter 4. Second, I compared the accuracy of the AbstractTutor parsing mecha-
nism to unit testing, as a proxy for output based feedback, with an expert human rater
using a subset of the Think Aloud Data. Finally, I used the online submissions to eval-
uate the accuracy of AbstractTutor over a large data set, including the conditions where
AbstractTutor failed to accurately parse the student code submissions.

78

Alignment Vector

Count

Description

11111-11-11-110

935

This vector represents almost correct code. The sub-
mission has all of the appropriate algorithmic com-
ponents but does not pass the output based testing.
There may be a problem with an edge case, a loop
bound, or other detail in the algorithm that causes
it to fail the output based testing.

11111-00-11-110

015

The vector shown on the left is a solution that does
not contain an if statement, and does not pass the
output based testing. Since problem 1 did not re-
quire an if statement (sum of all numbers) all but
15 of the observations of the vector (from 3 partici-
pants) were from problem 1.

11111-11-00-100

181

The vector shown on the left is a solution without
an update for a state variable, and where the code
is missing a final return, and has not yet passed out-
put based testing. The majority of these submissions
(165) came from problem 4 (return the index of a
number in the list) which can be solved without a
state variable. Eight users, representing 16 submis-
sions, obtained this vector on problems other than
4.

11111-11-11-000

115

This vector is produced by code with no return state-
ment, a common error among students. This error
was distributed across problems 2 and 3, as problem
1 without a return produced the vector 11111-00-
11-000 (observed 51 times) and problem 4 without
a return produced the vector 11111-11-00-000 (ob-
served 14 times). The converse vector (only a return
- 00000-00-00-100 or 00000-00-00-110) was observed
34 times.

11111-11-00-110

83

This vector is produced by code without a state vari-
able correctly declared or updated, and that has not
passed output based testing. A majority of the sub-
missions resulting in this vector came from problem
4 (62) since it does not require a state variable. The
remaining submissions (21) were from 13 users and
a review of the data showed most of the submissions
did have a state variable, but did not declare it cor-
rectly before the loop.

Table 5.6: Online Study Student Submission Data

79

Accurate Categorization

I, as an expert human rater, coded each submission from problem 3 in the think aloud data
set for alignment with the model of program components. Problem 3 was chosen because
it uses all of the states from the algorithmic component model described in Chapter 3.

In the coding phase, the program submission was evaluated for the presence or absence
of a component from the perspective of a human rater evaluating against the rubric the
alignment vector was based upon, with each component was marked with a 1 or 0 based on
this standard and no partial credit was possible per component. The 1/0 scoring produces
a human generated alignment vector. This form of rubric based grading is used by the
Educational Testing Service (ETS) to consistently evaluate thousands of exams each year.
All judgements of accuracy for the AbstractTutor system are based on a comparison against
the standard set by the evaluation of the AP Computer Science exam, as the largest human
rating effort for computer programs available.

An automated script was used to evaluate the student produced code and generate the
alignment vectors for each individual student submission. The automated script used the
same framework as the web system in order to generate an AST for each student submis-
sion, and then evaluate the AST for the necessary algorithmic components to produce the
alignment vector.

In preparation for the data analysis for this thesis, I inspected approximately 1/3 of
the student code submissions visually looking for specific reasons for the code not to parse,
examples of model states, and case studies for the current chapter and Chapter 7. In early
versions of the online tutor, the parser and alignment vector generator was not tuned to
recognize while loops and made incorrect alignment vectors for 25 submissions (creating
vectors of all 0, looking like a failure to parse). Later versions of AbstractTutor included
appropriate parsing for while structures.

Anecdotally, no other instances have yet been found where the code parsed, generating
an alignment vector, but parsed incorrectly, creating an alignment vector that was not
equivalent to the ideal alignment vector produced by the author. I recognize that instances
of incorrect vectors may exist, but they appear to be very rare.

Partial Credit Assessment Compared to Unit Testing

Although the accuracy of the abstract syntax tree parser is very good, perhaps perfect,
the metric alone does not provide an accurate comparison with either a human rater or
the current standard of unit testing. In order to determine accuracy and do a comparison,
unit tests were designed to test as many parts of the algorithm for correctness as possible.
Forty nine responses from the think aloud were selected to compare against a human rater,
an AST, and unit testing. The forty nine responses represent all submissions for problem
3 of the think aloud described in chapter 4, from the first 18 participants in the study. The
first 18 participants were chosen because those were the participants who had completed
the think alouds before the study was done to validate the AST mechanism. Although
this is a partial data set, the results are useful to emphasize the difference between the

80

Human vs. Computer Scoring

14

12

10

B EHuman

6 AST

Points Awarded

M Unit Testing

0 .

Human AST Unit Testing

Figure 5.2: Human vs. Computer Scoring of Student Code Submissions

accuracy of output based unit testing® and ASTs.

Figure 5.2 shows the average results of the human rating, the AST rating and the unit
testing for the 49 responses. In all but one of the cases the human and AST awarded
similar partial credit score for the code submission. One of the cases was a failure to parse,
and the AST awarded a 0. Unit testing was unable to approach the accuracy of the AST

or human rater, often awarding 0 points as the code failed to compile and therefore could
not be tested.

In the think aloud data for all problems (355 submits over 4 problems by 18 users) at
the time, only 222 of the submissions compiled (63%). Of the 222 compiled solutions, 77
of them were judged to be correct solutions to the problem. This means that the output
based feedback was only able to provide information about the structure of the students’
code, specific to the problem they were trying to solve, 145 times or 40.8% of student
submissions. In the other 133 non-compilable submissions (37%), the student needed to
work with generic feedback before correcting any problem specific errors. To clarify further,
in only 32 (out of 132, 24%) cases was the output based feedback sufficient, causing the
student to submit a correct solution on the next attempt.

Overall, these data show that while output based testing can be useful in a percentage of
student submissions, it is unable to provide reliable feedback in a majority of submissions.
Additionally, the lack of granularity as demonstrated by the comparison of the AST, human
rater, and output based feedback will make it difficult for a tutoring system to accurately
determine which subskills the student has mastered while solving complex problems.

3Unit testing refers to the testing of individual methods using input data and checking the method’s
return value against known answers.

81

Accuracy over a large dataset

Novice students are especially good at producing unexpected attempted solutions to prob-
lems they are solving. In order to check the accuracy of the feedback mechanism in
AbstractTutor, the large internet dataset was used. From this dataset I observed 4730
submissions from users across four problems. Although not all students in the online study
were in the algorithmic feedback condition, the system still recorded the alignment vector
for each submission. For all submissions, there were 869 total submissions that recorded
an all-zero alignment vector when code was present (18%). I call this state a “failure to
parse” as the code contained an error that was severe enough to prevent the formation of
an abstract syntax tree to be translated into an alignment vector. Case Study 4 at the end
of the chapter provides an example of code that failed to parse.

Reason Number of Submits | Number of Users
For Statement Errors 128 22
Errors with { and }, method not 127 27
closed properly

No statement inside loop 106 18
Used Enhanced for loop 98 12
Errors inside loop caused no 86 12
parsable statements

Undetermined Errors 64 13
Attempt to access array incorrectly 64 10
([JmyList or others)

No ; before for statement 56 16
Errors with if statement parenthesis 36 7
Use of a while loop 25 8
Code outside of the method 25 5)

Table 5.7: Online Study Student Submission Data

Table 5.7 shows all reasons for a failure to parse with 25 or more submits. Other reasons
for failure to parse included renaming the method, incorrect use of relational operators (<,
>, etc.) and other errors seen fewer than 10 times. The errors that occurred fewer than
10 times were each committed by a single (but different) user and were recovered within a
few submissions.

The online study where the 4730 submissions were recorded was not the final study,
and its results were used to fine tune the AST generator and the feedback mechanism. An
error encountered by approximately 200 users was the appearance of an illegal character
in the code. T hypothesize that the character was added by certain browsers as an End of
Line (EOL) or End of File (EOF) marker. In future iterations of AbstractTutor, student
submissions are first checked for any characters outside the language subset, removing any
characters that may cause a failure to parse, and then generating ASTs and alignment
vectors.

82

Additionally, code was added to correctly identify and parse code containing a while
structure. The enhanced for loop, unfortunately, could not be handled by the compiler
version used in AbstractTutor, however an error message was added informing students
that enhanced for loops were not supported by the system.

5.4 Case Studies: Code Evaluation

This section presents several case studies of actual student submissions and output pro-
duced by AbstractTutor. In the case studies, a description of the student’s code, the
Alignment Vector (AV), and actual output are shown. Additionally, I discuss the ideal
Alignment Vector as well as feedback. Cases are presented where AbstractTutor correctly
parsed the student code, as well as cases where AbstractTutor could not have provided cor-
rect algorithmic feedback to the student*. For comparison purposes, Appendix A contains
reference solutions to each problem in AbstractTutor.

These case studies are meant to specifically highlight the code evaluation mechanism
for the purposes of producing the algorithmic feedback as a computer science contribution
of this thesis. Therefore, I focus specifically on the features of the code related to the
generation of feedback, and not the knowledge or learning of the student.

5.4.1 Case Study 1: Failure to Access Array

A clear example of when output based feedback and algorithmic component feedback would
evaluate student code differently is the case where the student does not access the array
inside the loop structure as a part of the code submission. In the countLessThan problem,
students are asked to count the number of positive items in the array that are less than a
certain value. The student whose code is shown in Table 5.8 is not only missing an access
of the array, but also a conditional statement to evaluate if each element is less than the
value.

Although this participant’s code did not compile, the parser was able to determine the
appropriate alignment vector and provided the student with appropriate algorithmic com-
ponent feedback, where the output based feedback would have been the compiler message
shown.

5.4.2 Case Study 2: Incorrect Loop Bounds

Novice students often produce code that is incorrect in both expected and unexpected
ways. The example shown in Table 5.9 demonstrates three errors in student reasoning, two
common misconceptions, and a third unexpected error. The two common misconceptions
are the use of = instead of == in the if statement, and the ability to return inside the loop
without a default return on the outside. The unexpected error is the use of

myList[i] .getLength

4There are case studies presented where they student saw the correct feedback for their condition
(output based) despite an incorrect parse by AbstractTutor

83

Attempt

This was the third (3rd) problem completed by the user,
and the code displayed was the first submit.

Start-End Time

21:58 - 28:43

Condition

Algorithmic Feedback

Code

public int countLessThan(int []myList,
int value){
int x;
for (x = 0; x < myList.length; x++){
value += 1;
}

return(myList.length - value);

AV (Actual)

11001-00-00-110 Compile bit: 0

AV (Desired)

11001-00-00-110 Compile bit: 0

Statement
Sequence

Variable

Declaration+
Initiaization

':I:_I

Repetition
Structure

Condition | Body

x < myList.length Body

_l

assignment

Return ‘

——
AST ‘ ‘
Output-Based Undeclared Identifier value
Feedback
Algorithmic The loop you wrote supports accessing each element in
Feedback your array (myList), yet you do not access the array
(Given) myList within the loop. These components must work

together for the problem to be solved.

Table 5.8: Case Study 1: Failure to Access Array

84

Attempt

This was the 4th problem completed by the participant,
and their first submit for the problem.

Start-End Time

30:35 - 33:31

Condition

Output-Based Feedback

Code

public int indexOf (int [ImyList,
int value){
for(int i=0; myList[i].getLength; i++)
if (myList[i] = value){
return value;

}

AV (Actual)

10101-10-00-100 Compile bit: 0

AV (Desired)

10101-10-00-100 Compile bit: 0

Statement Sequence
Repetition Structure

Condition | Body

[error) Body Decision ‘

Condition |

myList[1] =Value ‘ Return

AST _

Output-Based Your code did not compile and generated the following
Feedback errors: Line 8: int cannot be dereferenced, 9: incompat-
(Given) ible types found :int required: boolean

Algorithmic The variable myList is a parameter. This means another
Feedback part or parts of the program decide what is stored in it,

and it may change every time code is run. Use a variable
in the loop combined with a property of myList in order
to determine the number of steps for the loop to take.

Table 5.9: Case Study 2: Incorrect Loop Bounds

85

as a loop bound without a comparison.

Rather then speculate about the student thought processes for each answer, I focus
here on the parse and generation of feedback by AbstractTutor. The system correctly
identifies the errors as they relate to the algorithmic components. In the algorithmic
feedback condition, the student would have been prompted to look at the loop bound. Each
feedback message has a secondary message if the student does not correct the problem, and
the secondary message would have directed the student to “Use myList.length to determine
the number of steps for the loop to take.”, giving the student the example of how to access
the length of the list. This particular student may have continued to struggle, however, as
an error message was not prepared to focus on the lack of a comparison as a part of the
loop bound.

5.4.3 Case Study 3: Mistaken Array Name

In the third case study shown in Table 5.10, the participant incorrectly used the name of
the method (indexOf) instead of the name of the array (roomNumbers). AbstractTutor
correctly parsed the student’s code to indicate that it did contain a loop structure (for),
but the code does not use the array parameter (roomNumbers) in order to determine the
bounds for the loop. Although the code submitted by this participant generates the same
feedback message as Case Study 2, the reason behind the message is quite different. The
compiler error points the student at the first incorrect usage of “indexOf”, the name of the
method, instead of “roomNumbers” the actual name of the array. The student does not
actually want to declare a variable for indexOf, which is the normal correction for a “cannot
find symbol” error message. The ability for the system to generate messages directing the
student to the correct location of the code to be modified despite very different mistakes,
is a strength of the constraint-based approach to analyzing the student code.

5.4.4 Case Study 4: Failure to Parse

AbstractTutor did have a special case that caused the parser to fail with reasonably well
formed code submissions, as seen in Table 5.11. Although the abstract syntax tree parser
is robust to many compile errors, making it possible to generate pre-compilation feedback,
it still relies on the code submitted to contain cues as to the structures for the syntax tree.

In the Table 5.11 example, the code does not contain any code that compiles after the for
statement. Without any code inside of the loop, the parser could not correctly determine
what was a part of the loop and what was not. AbstractTutor then generated a message
beginning with “Your code could not parse for better feedback. The compiler says: 7 and
included any compiler messages the system returned. Although this is a failure to generate
the appropriate algorithmic feedback, the student still received the same feedback he/she
would have gotten outside of AbstractTutor; and often by correcting the syntax errors
mentioned in the compiler feedback, the student will also be fixing the code to the point
where a correct parse could happen.

Additionally, the example in Table 5.11 also exposes a weakness in the AbstractTutor
evaluation. Although the student does use myList.length to access the length of the array,

86

Attempt

This was the 4th problem seen by the participant, and
the code represents the second submit for the problem.

Start - End Time

33:23 - 35:53

Condition

Ouput-Based Feedback

Code

public int index0f (int []roomNumbers,
int idno){
for(int i=0; i<indexO0f.length; i++){
if (idno == index0f[i])
return idno;
else
return -1;

AV (Actual)

10001-10-00-100 Compile bit: 0

AV (Desired)

Compile bit: 0

Statement Sequence

Repetition Structure

Condition Body

‘ i< indexOf length Decision

Condition Else
Then |

idno==index0f[1] Return Return

AST

Output-Based Your code did not compile and generated the following
Feedback errors: Line 9 cannot find symbol, symbol: variable in-
(Given) dexOf

Algorithmic The variable myList is a parameter. This means another
Feedback part or parts of the program decide what is stored in it,

and it may change every time code is run. Use a variable
in the loop combined with a property of myList in order
to determine the number of steps for the loop to take.

Table 5.10: Case Study 3: Mistaken Array Name

87

Attempt

This code is the participants’ first attempt at the first
problem.

Start - End Time

2:00 - 6:57

Condition

Algorithmic Feedback

Code

public int findSum(int [ImyList){
for(int index=0;
index > myList.length; index++)
int total
total+=myList [index]

AV (Actual)

00000-00-00-000 Compile bit: 0

AV (Desired)

11111-00-00-000 Compile bit: 0

Statement Sequence

Repetition Structure

Condition Body

‘ i< indexOf length

Decison

Condition Else
Then |

idno==index0f[1] Return Return

AST

Output-Based 9: ".class’ expected, 9: not a statement, 10: ’;" expected
Feedback

Algorithmic Your code could not parse for better feedback. The com-
Feedback piler says: 9: ".class’ expected, 9: not a statement, 10: ’;’
(Given) expected

Table 5.11: Case Study 4: Failure to Parse

88

the comparison with index uses the wrong relational operator (>instead of <). Abstract-
Tutor does not currently check for these logical errors in the recompilation testing, and the
student would need to rely on feedback from the output based testing to determine the
source of error in their code.

5.4.5 Case Study 5: No Declaration of State Variable

The student code submission shown in Table 5.12 illustrates a dependency in the Alignment
Vector and AST that is useful to present for clarity. In the code, the student did not declare
the type of the variable maximum; it should be preceded with the type int. As a result,
the AST parser for AbstractTutor did not give the student credit for correctly declaring
and initializing the state variable (the second 0 in the AV). Although the student did use
maximum inside the if statement in an appropriate way (to maintain state through the
algorithm), because it was not correctly declared, AbstractTutor will not give credit in the
AV for the update (the third 0).

Although this decision can be applauded for awarding, or noting the absence of, the
state update part of the AV, the dependance upon the proper initialization has greater
benefit with fewer adverse effects. First, the student was in the algorithmic feedback
condition and received a message about the declaration or assignment of maximum, which
was similar to message a student in the output based condition would have seen from the
compiler error focused on that problem. In the system, the student corrected the error on
the next submission, and the AV was updated to include both the initialization as well
as the update components, thereby producing no possible error in the feedback messages
communicated to the student from AbstractTutor. The only detriment of this approach
is the sequential evaluation of the student submits as it appears he corrected two AV
components on the single submit instead of just one.

5.4.6 Case Study 6: Bad Variable Update and Return

The code and feedback presented in Table 5.13 is intended to highlight the different ways
that a compiler and AbstractTutor handle undefined variables. In the code submission,
there are no definitions for any of the local variables used (i or count). Since a general
compiler is reactive in nature, it reacts to an error in the code once encountered so it can
only say that count is undefined the first time it encounters the variable (on line 10)°.

Because AbstractTutor has knowledge of the problem the student is trying to solve,
it reacts before seeing count in the loop. Instead, it identifies that the code should have
a variable defined before the for statement and will respond with feedback stating that a
state variable was not declared or initialized properly. Had the participant not corrected
the error before the next submission, AbstractTutor would say: “Create and initialize a
variable before the loop.” providing a clear and explicit direction for the correction of the
code.

5The code in the computer window included the comments about the problem and therefore had more
lines than appears in the case study tables.

89

Attempt

This code is the participants’ fourteenth attempt at the
second problem.

Start - End Time

48:03 - 54:02

Condition

Output Based Feedback

Code

public int findMaximum(int []JvehicleMPG){
maximum = vehicleMPG[O0];
for(int i=0; i<vehicleMPG.length; i++){
if (vehicleMPG[i] > maximum){
maximum = vehicleMPGI[i];
}
return maximum;
}
+

AV (Actual)

11111-11-00-100 Compile bit: 0

AV (Desired)

11111-11-00-100 Compile bit: 0

Statement Sequence

——

maximums=vehicleMPG[0]

i< vehicleMPG length Decision Structure Return maximum

Condition Body

maximum =vehicleMPG[i] o,

vehicleMPG[i]>maximum

AST

Output-Based 9: Your code did not compile and generated the following

Feedback errors: Line 7: Cannot find symbol, Symbol: variable
maximum

Algorithmic In order to solve your problem you need to maintain a

Feedback particular state in a variable. This state will give you the

(Given) answer you are seeking. You have not correctly created

or assigned a starting value to the state variable.

Table 5.12: Case Study 5: No Declaration of State Variable

90

Attempt

The code presented here is the participant’s fourth at-
tempt at the second problem.

Start - End Time

4:29 - 4:55

Condition

Output-Based Feedback

Code

public int countLessThan(int []myList,
int value){
for(i=0; i<myList.length; i++){
if (myList[i]<value)
count++;
else return O;

AV (Actual)

11111-11-00-100 Compile bit: 0

AV (Desired)

11111-11-00-100 Compile bit: 0

Statement Sequence

[

Repetition Structure

Condition Body

i<myList.length Decision

Condition Else
| Body | |

Return

I— Count#++ L 0

imyList[i]<value

AST

Output-Based Your code did not compile and generated the following
Feedback errors: Line 8: cannot find symbol, symbol: variable i,
(Given) 10: cannot find symbol, symbol: variable count
Algorithmic In order to solve your problem you need to maintain a
Feedback particular state in a variable, this state will give you the

answer you are seeking. You have not correctly created
or assigned a starting value to the state variable.

Table 5.13:

Case Study 6: Bad Variable Update and Return

91

5.4.7 Case Study 7: Alternative Looping

Although the reference solutions to the problems presented in Appendix A use a for struc-
ture to loop over the array, it is possible to correctly solve the problems using a while
structure as seen in the example in Table 5.14. This participant was in the output based
feedback condition, and although the abstract syntax tree did not recognize the looping
structure, the student received feedback that she was correct because the code passed all of
the output-based testing. In recognition that students will create solutions that are unique,
the AbstractTutor system will allow a student to receive credit for, and advance past a
problem that passes all of the output-based testing, even if it is missing a model state.
The system was modified after this example was collected to recognize while structures in
addition to for structures as a looping mechanism.

5.4.8 Case Study 8: Loop Variable Undeclared

The example shown in Table 5.15 is interesting for two reasons. First, although there are
errors within the for statement (not declaring i), the loop and subsequent code parsed
correctly. The student in the output based condition would be focused on declaring i to
be a variable, at which point the code would execute and an infinite loop would ensue.

In the algorithmic feedback condition, the student would be prompted to use the array
(myList) and its length in order to control the number of executions of the loop. Even
if the student did produce an infinite loop, AbstractTutor has a time out feature. If the
code requires more than 10 seconds to run any individual test case (with a maximum of 20
numbers), the student receives a message indicating that an infinite loop may be present.
The feedback regarding infinite loops is provided to students in both the algorithmic and
output based feedback conditions as a usability issue. If a web-based system just does not
return any feedback, it is difficult to know if the system or the network has a problem. The
infinite loop feedback is provided to students so that they can fix the error and continue
to work with code that will provide output based feedback where appropriate.

5.4.9 Case Study 9: No Semicolon Before Loop

Case Study 9 shown in Table 5.16 highlights another special case of an error that causes
the parser to fail. The student’s code is reasonably well formed, however it is missing a
semicolon on the line before the for statement. A semicolon is an indicator of a statement
to the java compiler, and as such the parser assumes the for statement is a part of the
assignment made on the line before. Ideally, the above code would generate an algorithmic
feedback message asking the student to use the length of the array as a bound for the for
loop (the student is currently only using vehicleMPG instead of vehicleMPG.length).
Although the failure to parse in this instance could be an issue, the system is designed
for fast recovery. The student receives the compiler message that a semicolon is missing
(the same feedback as the output based condition) and if the error is fixed, the code will
parse correctly and algorithmic feedback will resume. When the parser fails, the student is
no worse off than the current standard of output based feedback; and as each submission

92

Attempt

The code presented here is the participant’s second at-
tempt at the first problem. The first attempt had ()
instead of [| for the array access.

Start - End Time

27:31 - 31:25

Condition

Output-Based Feedback

Code

public int findSum(int [JmyList)

{
int x = 0;
int sum = O;
while(x < myList.length) {
sum += myList[x];
X++;
}
return sum;
}

AV (Actual)

01111-11-00-111 Compile bit: 1

AV (Desired)

11111-11-00-111 Compile bit: 1

AST

Statement Sequence

i=0 i=myList[i] Return

Output-Based
Feedback
(Given)

Correct

Algorithmic
Feedback

Correct

Table 5.14: Case Study 7: Alternative Looping

93

Attempt

The code presented here is the participant’s first attempt
at the third problem.

Start - End Time

592:57 - 63:19

Condition

Algorithmic Feedback

Code

public int countLessThan(int []myList,
int value)

{
for(i=0;i>=0;i++){
i=myList[i];
}
return i;
}

AV (Actual)

10111-00-00-110 Compile bit: 0

AV (Desired)

10111-00-00-110 Compile bit: 0

Statement Sequence

Condition

[|
i>=0 i=myList[i] | Return

AST

Output-Based Your code generated the following syntax error: Line 6,
Feedback Column 30: Expression ”i” is not an rvalue

Algorithmic The variable myList is a parameter. This means another
Feedback part of parts of the program decide what is stored in it,
(Given) and it may change every time code is run. Use a variable

in the loop combined with a property of myList in order
to determine the number of steps for the loop to take.

Table 5.15: Case Study 8: Loop Variable Undeclared

94

Attempt

The code presented here is the participant’s third at-
tempt at the second problem.

Start - End Time

35:02 - 35:18

Condition

Algorithmic Feedback

Code

public int findMaximum(int [JvehicleMPG){
int temp = 0
for(int i = 0; i < vehicleMPG; i++) {
if (vehicleMPG[i] > temp){
temp = vehicleMPG[i];
}
+
return temp;

by

AV (Actual)

00000-00-00-000 Compile bit: 0

AV (Desired)

10111-11-11-110 Compile bit: 0

AST

The code did not parse so no tree was created.

Output-Based

Your code generated the following syntax error: Line 7,

Feedback Column 44: Operator ”;” expected

Algorithmic It appears you have a poorly structured for loop or a
Feedback syntax error. Unfortunately in this version of the system
(Given) we are unable to support for-each loops. Please refor-

mat your loop and resubmit. Your code generated the

9,9

following syntax error: Line 7, Column 44: Operator ”;
expected

Table 5.16: Case Study 9: No Semicolon Before Loop

95

is evaluated independently, a failure only affects the current submission. The student in
the case study took three edits to correct the missing semicolon; and once the semicolon
was added, the parser evaluated his code correctly.®

5.4.10 Case Study 10: Compile but Algorithmically Wrong

The submission shown in Table 5.17 demonstrates an example of a student who has pro-
duced compiled code that illustrates either a significant misunderstanding of what algo-
rithm the question is asking for, or a weakness with Java semantics. The student completed
questions 1-3 in two submits each, fixing only a minor syntax error before moving on, im-
plying a level of expertise with the content. For question 4, however, the student did not
even attempt to loop over the elements in the array. The student submitted similar code
(only an if statement checking various properties of the list against the parameter value)
however gave up after 10 submissions - moving to the next problem without correctly solv-
ing the indexOf problem. Seven (7) of the submissions included output based feedback
with numerical values.

This case study not only highlights a successful evaluation by the parser, but also an
instance where the output based feedback did not provide adequate information to even a
relatively sophisticated novice about the code he produced.

5.4.11 Case Study 11: Compile but No Array Access

Case Study 11 shown in Table 5.18 again shows a student solution that compiles but is not
correct. The student did not access the array, named items, inside of the for loop, therefore
creating a situation where he could not possibly calculate the correct answer. This case is
another example of very different feedback from the output based and algorithmic feedback
conditions. Although the student fixed the error on the next edit, she submitted code in the
next two problems with errors around the access of a single element from the array inside
the loop. The AST generated here shows how an evaluation of the individual states can
be useful in identifying common student problems and providing appropriate information
to the system designers to refine feedback.

6A recommendation for future versions of AbstractTutor include line numbers displayed to the side
of the code editor so students can more easily identify syntax errors. Although the student received the
missing semicolon error, he made two edits in other locations before adding the semicolon in the correct
place. He had initially left a semicolon off the line temp=vehicleMPG]i] as well.

96

Attempt

The code presented here is the participant’s 10th attempt
at the fourth problem.

Start - End Time

35:02 - 35:18

Condition

Algorithmic Feedback

Code

public int indexOf (int [ImyList,
int value){
if (myList.length >= value){
return value;
Yelsed{
return -1;

}

AV (Actual)

00000-00-00-100 Compile bit: 1

AV (Desired)

00000-00-00-100 Compile bit: 1

Statement Sequence

Condition Else

AST

Output-Based Your indexOf method returned the wrong value when I

Feedback passed it [23, 51, 46, 74, 57, 22, 45, 79, 25, 61, 31, 13, 21,

(Given) 52,93, 36, 22, 17, 97, 50]and a value of 36. Your method
should have returned 15 but it returned -1

Algorithmic In order to accomplish the task assigned, you need to ac-

Feedback cess every element in the array. Try to implement (write

code for) a control structure that allows you to repeat a
task over many times. You will use this with other vari-
ables in order to complete your task. You also need to
write at least one line of code inside the structure.

Table 5.17: Case Study 10: Compile but Algorithmically Wrong

97

Attempt

The code presented here is the participant’s third at-
tempt at the first problem.

Start - End Time

35:02 - 35:18

Condition

Algorithmic Feedback

Code

public int findSum(int [Jitems){
int sum = 0;
for (int 1 = 0; i < items.length;
i++){
sum += sum;
}

return sum;

b

AV (Actual)

11001-00-11-110 Compile bit: 1

AV (Desired)

11001-00-11-110 Compile bit: 1

Statement Sequence

AST

Output-Based Your findSum method returned the wrong value when I

Feedback passed it [2, 92, 4, 28, 51, 84, 22, 87, 41, 36, 68, 42,

(Given) 66, 21, 85, 68, 23, 34, 18, 14]: Your method should have
returned 886 but it returned 0

Algorithmic The loop you wrote supports accessing each element in

Feedback your array (items), yet you do not access the array items

within the loop. These components must work together
for the problem to be solved.

Table 5.18: Case Study 11: Compile but No Array Access

98

5.5 Conclusions

To be effective, a feedback mechanism must reliably provide students with feedback specific
to the submission they have entered. For this thesis, I postulate that an 85% accuracy
rate of algorithmic feedback for the AbstractTutor system will be a contribution. The 85%
represents over double the possible accuracy of the current standard of output based testing
as measured in the think aloud data. Additionally, in the instances where AbstractTutor is
unable to provide the appropriate algorithmic based feedback, it defaults to displaying the
compiler message for the code submitted. This feature makes AbstractTutor equivalent
to the output based feedback in the instances where the specialized algorithmic feedback
mechanism fails.

In order to determine the overall accuracy of the algorithmic feedback mechanism,
the large online study data was used. Of the 4730 submissions made to the system, 869
were classified originally as a failure to parse, therefore preventing AbstractTutor from
displaying the appropriate algorithmic feedback. From the 869 failures, 98 of the failures
were due to the use of an enhanced for loop, a feature not supported at the time by the
Janino framework, but a feature that has since been added. Additionally, 25 of the failures
were due to the use of a while loop, which has been corrected in the implementation of the
feedback mechanism and tested in the final study detailed in Chapter 7. This leaves us
with 749 (15.8 % of all submissions) instances where the system failed to parse the code
submitted.

Although not quite passing the 85% threshold, many of the submissions made to the
system were sequential duplicates - the student pressed the submit button multiple times
without making a change to the code. In the think aloud, this phenomenon was often
ascribed to two particular cases. First, the output based feedback (unit tests) used a
random set of generated numbers, therefore repeat submissions will provide the user with
additional data regarding the code. Also, students may press the submit button multiple
times if they believe their code is correct but that there is a flaw in the system - especially
if there is a lag in the web browser. One particular student in the large online study made
50 sequential submissions within a short period of time. Removing just 49 of those 50
identical submissions gives us 700 instances where the system failed to parse the code out
of 4681 submissions a 14.6% accuracy rate. Although the 14.6% accuracy rate is not exact
as there are other instances of duplicate code submission, I offer this result as indication
that the 85% threshold is approached, if not crossed in a large diverse dataset.

In this chapter, I have shown the underlying mechanism for the production of algo-
rithmic feedback and used multiple data sets to estimate the accuracy of the feedback
on actual student code submissions. The unique combination of a representation of the
algorithmic components in an Abstract Syntax Tree, combined with output based testing
has yielded an accuracy rate providing the possibility for algorithmic component feedback
during novice practice. Overall, the tutor feedback mechanism performs significantly bet-
ter than is possible by output based feedback, and it results in not only the opportunity
for more specific feedback for the novice, but also for the evaluation of the individual parts
of the student solution for each submission. In the next chapter, I detail how the use of
the analysis of each submission for individual algorithmic components can provide a more

99

robust measure of student progress across submissions, within problems, and even across
problems in the AbstractTutor system.

100

Chapter 6

Quantitatively Understanding
Student Coding Attempts

6.1 Problem Solving in Complex Spaces

In Chapter 3, I detailed a model of algorithmic components to be used to evaluate student
code for the purpose of providing feedback. Chapter 4 detailed the results of a think aloud
study to validate those model components and highlight their usefulness in evaluating
student code. The work presented in Chapter 5 analyzed the implementation and accuracy
of the feedback mechanism, and the importance of the algorithmic model to that accuracy.
In this chapter, I offer an analysis of methods for evaluating student coding attempts to
determine student proficiency. I postulate that “correctness on first attempt”, or “number
of submits for a problem”, are too course grained to use for analyzing student problem
solving in complex multi-attempt spaces. Instead, I offer two metrics that are used in this
thesis to evaluate student problem solving in a programming environment. A portion of
this work was published in [81] with Thomas K. Harris and Kelly Rivers.

6.1.1 Granularity of Current Methods

Current methods of evaluating student progress in tutoring or practice systems focus on
student attempts as a means of progressing towards correctness. In AbstractTutor, students
are focused on the production of multipart algorithms and often require feedback about
various parts before arriving at a correct solution. Additionally, as discussed in Chapter
2, current feedback mechanisms require the novice to extrapolate the connection between
an error and the source of the error in code. Student attempts therefore have been shown
to represent a cycle of compilation (feedback seeking) and edits [34]. Although the word
edit implies a thoughtful change, it has also been shown that students engage in ”shotgun
debugging”! and in this Chapter I demonstrate that students also engage in multiple

!Shotgun debugging is similar to Gaming the System [7] where students attempt to achieve correctness

through random edits. Each edit represents a guess as opposed to a thoughtful change. For example, a
student may just add } characters in random locations in the code hoping for a successful compilation.

101

duplicate submissions.

The combination of multiple expected edits and duplicate submissions (41% in a large
online study) offer an initial warning that each submit may not represent an attempt at
a thoughtful change and therefore a raw accounting of attempts may not represent an
appropriate granularity for measuring within problem process or proficiency.

In this section, I offer data from a large online study as supporting evidence of insuf-
ficient granularity of “attempt only” or “correctness” metrics in understanding student
proficiency. The large online study has been referenced in Chapter 5, and learning out-
comes and recruitment details will be presented in Chapter 7. For the next sections, we
will use only the users who completed all four problems in the system. There were 73
users, out of 160, who correctly answered all four problems in the system.

6.1.2 Attempt Only Metrics

In the cognitive tutoring literature, it has been demonstrated that students sometimes
attempt to “game the system” by guessing or “hint-mining” [7]. This behavior has been
shown to result from a dislike for the subject, a lack of educational self-drive, and frustration
[8]. In many cases, the set of appropriate tokens for solutions to academic tutoring software
limit the potential search space and students are able to arrive at a correct solution through
a guess and check process.

In complex, multipart problems, like the production of code to implement a computer
algorithm, the solution space is not easily constrained, and therefore a guess and check
strategy is often unproductive without minimum proficiency in the domain. In the large
online study, the minimum number of submits to solve all four problems was four (one
submit per problem). No user was able to solve all four problems in four submits, however
one user managed 5 submits. The maximum number of submits to solve all four problems
was 315. The difference between the mean (34.6) and the median (17) number of submits
indicate a number of outliers on the high end. Most students (40) managed to complete the
four problems in under 20 submits. The students who employed guess and check strategies
are the likely outliers, as demonstrated in the sections below.

6.1.3 Raw Correctness on First Attempt

In many tutoring systems, each submission is an opportunity to fully answer a problem,
or take a step in a larger multi-step problem being solved. These opportunities are often
of sufficient granularity that a user who has mastered the concept can construct a correct
answer on his first attempt. If a correct answer is not submitted, in most cases there exists
feedback (or hints) that are designed to help the user reach a correct solution within one
submit, as opposed to guiding the student through repeated edits.

The construction of a multi-part algorithm is often a multi-step process, even for an
expert. Because of the formalisms required in writing computer code, as described in
Chapter 1, even experts use tools such as IDEs or editors to check the code they write
for errors. Due to the complexity of constructing algorithms, novices also use tools to
provide feedback during the algorithm construction process. It would be unrealistic to

102

assume that the first attempt of a novice is able to be scored as completely correct or
incorrect and provide appropriate information about learning over multiple problems. Even
among proficient novices, the probability of a completely correct answer is very low on first
submission [53]. Even within this thesis, I have replicated those results in Table 4.5. Table
4.5 shows a breakdown of participants in the Think Aloud study and the percentage of
correct components in their first submits. Overall, participants had a first submit average

of 70%.

6.1.4 Two Metrics for Assessing Student Submissions

For the purposes of this thesis, I am especially interested in the appropriate algorithmic
components necessary to produce algorithms to solve the array problems presented to
students. Although the correction of a missing semicolon demonstrates an understanding
of the required syntax of the programming language, it does not represent a modification
to improve an incorrect algorithm. I therefore offer two metrics to focus specifically upon
edits that modify the alignment vector corresponding to student submitted code, both of
which better reflect the state of the algorithm.

First, I explore the probability of an algorithmically productive edit. This metric is
meant to be a singular snapshot, similar to the metric used in many intelligent tutoring
systems of “correct on next submit” [18]. Although the algorithmically productive edit
does not require a full, complete correct answer, it can be thought of as completing a part
of a multi-step problem. I will detail the metric and provide some initial data analysis
with submits from the think aloud study presented in Chapter 4.

Second, I look beyond the single snapshot with Probabilistic Distance to Solution
(PDS). Unlike the single attempt analysis of probability of an algorithmically produc-
tive edit, PDS is a metric designed to encapsulate the entirety of the student’s problem
solving over the whole problem. Since publication in 2012, the paper in which this first
appears has been cited 6 times in relevant literature reviews.

6.2 Probability of Algorithmically Productive Edit

Intelligent tutoring systems have used probabilistic measures to assess student learning
and within-problem progress for numerous years. Multistep problems have been a feature
of many complex tutoring systems, however practice involving tutoring in the construction
of algorithms with the writing of large segments of code offers a new challenge. Although
the construction of an algorithm can be seen as a multi-step problem, novices rarely take
a linear approach to the writing of a program or the acquisition of feedback regarding the
solution they are writing.

Although the non-linearity may be an artifact of the feedback mechanism with which
the students are familiar, it nonetheless exists as a phenomenon. Students will often
produce what they believe to be a complete (if not correct) solution before engaging with
the feedback mechanism. And, in the production of algorithms where multiple interacting
parts make stepwise refinement difficult, this approach is not dissimilar from the expert.

103

Finding the Sum

public int findSum(int [JmyList){
int sum = O;
for(int i=0; i < myList.length; i++){
sum = sum + myList[i];
+

return sum;

Table 6.1: Finding the Sum of the Numbers

Consider the algorithm to find the sum of the numbers in a list shown in Table 6.1. As
an expert, if I was forcing myself to do stepwise refinement, I may declare a sum variable,
initialize it to 0, and then return that variable to ensure accuracy of my code. For step two,
it would be difficult to do anything other than produce the for loop to iterate over the list
and update the sum variable as appropriate. The alignment vector for this problem checks
for 11 distinct algorithmic components as defined in Chapter 3, and as an expert I still
would have difficulty breaking the problem solving process into more than two submits.
This fact implies that each individual submit requires consideration of multiple algorithmic
components.

Also, since students often construct a full attempt at the problem solution before press-
ing submit, it means that they will make edits on multiple parts of the problem in order to
attempt to correct a faulty solution. Measuring edits and effectively using that measure-
ment to infer knowledge or competency cannot be as straightforward as looking for the
“next correct step” in a single edit.

6.2.1 Code Classifications

In order to look at the effect of a single edit, I propose a classification of edits to allow
for focus on algorithmic components before syntax, and the ability to discount multiple
submissions. Because of the desirability of automation, as these metrics may eventually
be applied for real-time evaluation of student knowledge, it is also important that the
classification be able to be assigned with accuracy by a computation and not by a human
rater. I therefore propose a classification of five distinct types of submits from a user: First
Attempt, Duplicate Submission, Algorithmically Counterproductive Edit, Algorithmically
Neutral Edit, and Algorithmically Productive Edit. First Attempt is categorized as its
own label because we are unable to judge a modification until we have received an original
submission.

I label a code submission that does not produce any change to the code as a Duplicate
Submission. A segment is labeled Duplicate Submission (DS) when the code submitted
is the same (ignoring white space - extra returns, etc.) as the previous submission. A
submission will NOT be marked DS if the code matches any prior submission, only if it

104

Num | Code Submission Label
1 Not DS
for(int i=0; i<scores.length; i++){
if (scores[i]>=0){
if elseq{
return sum;
2 DS
for(int i=0; i<scores.length; i++){
if (scores[i]>=0){
if elsed{
return sum;
3 Not DS
for(int i=0; i<scores.length; i++){
if (scores[1]>=0){
else{
return sum;
4 Not DS
for(int i=0; i<scores.length; i++){
if (scores[1]>=0){
else if{
return sum;
5 Not DS
for(int i=0; i<scores.length; i++){

if (scores[1]>=0){
else{
return sum;

Table 6.2: Duplicate Submission Examples

105

matches the submission immediately preceding the submission being labeled. Although an
argument could be made for including any matching submission, students may arrive at a
prior submission after an unproductive edit without realizing the two submissions are the
same. Table 6.2 shows a sequences of code from a participant and marks each submission as
DS or not DS. The user was solving the countLessThan problem and for space constraints
the initial code stub is left out of the submission data.? Although submission number 5
is the same as 3, it is not marked as a Duplicate Submission because there is an edit in
between the two submissions.

The second category of submission is an Algorithmically Counterproductive Edit. An
Algorithmically Counterproductive Edit (ACE) is an edit that results in a submission
having an alignment vector with fewer correct algorithmic components than the previous
edit. A counterproductive edit is indicative of an error being introduced as the student is
attempting to process and address feedback. Table 6.3 has examples of ACE and other
edits from a participant. Table 6.3 shows and example of an Algorithmically Counterpro-
ductive Edit in a series of participant submissions. In the table, code submission number
4 demonstrates the ACE. The student is struggling with the appropriate way to access
an individual item in the array. He mistakenly believes that .length is required (possibly
because of the items.length used in the for statement) and tries different combinations of
using the [i] index to get to a singular item.

The Algorithmically Neutral Edit (ANE) does not match the previous submission (DS),
but does not result in a change to the alignment vector from the previous submission.
Although students may make a productive edit by correcting a compiler error, this would
not be considered a change to the algorithm except in a few instances where the compiler
error clarified the structure of the algorithm. The exceptions occur when the code is initially
unparsed, and the edit modifies the code structure so that an Abstract Syntax Tree (AST)
can be constructed, or if the code does not compile, and the edit allows for compilation
and passage of output based testing. In both exception cases, the edit is not focused on a
specific algorithmic component, however would result in a change to the alignment vector.

The fifth category of submission is Algorithmically Productive Edit. An Algorithmically
Productive Edit (APE) results in a change to the alignment vector from the previous
submission, indicating that the student made an edit that added algorithmic correctness
to the submission. The APE is the most desired of all edits. Table 6.4 shows a series of
student submissions with alignment vectors and appropriate labels. The submissions were
for the findMaximum method and the common code stub and method header are removed
for space purposes.®

2The method header was public int countLessThan(int [Jscores, int passingGrade)
3The method header was public int findMaximum(int [JvehicleMPG).

106

Num | Code Submission AV Label

1 11001-00-11-110 | ANE
{int sum=0;
for(int i=0; i<items.length; i++){
sum += items.length;}
return sum,;

}

2 11001-00-11-110 DS
{int sum=0; All code is the
for(int i=0; i<items.length; i++){ same.
sum += items.length;}
return sum;

3 11111-00-11-110 | APE
{int sum=0; Participant has
for(int i=0; i<items.length; i++){ referenced any
sum += items[i].length;} element from the
return sum; list with || and

used the loop
variable (i) in
that reference.

4 11001-00-11-110 | ACE
{int sum=0; Participant has
for(int i=0; i<items.length; i++){ removed the [i

sum[i] += items.length;}
return sum;

from code.

Table 6.3: Algorithmic Counterproductive and Neutral Edit Examples

107

Num | Code Submission AV Label

1 00000-00-00-000 FA
{int max = 0; Code does not
for(int i=0;i<vehicleMPG.length;i++){ | parse, missing .
if (vehicleMPG[i]>max){
max=vehicleMPG[i];

}else{max=max;}

2 11111-11-11-000 APE
{int max = 0; Code will now
for(int i=0;i<vehicleMPG.length;i++){ | parse, and AV
if (vehicleMPG[i]>max) { is correct. Only
max=vehicleMPG[i]; missing return.
Yelse{max=max;}}

3 11111-11-11-000 | ANE
{int max = 0; Still no return.
for(int i=0;i<vehicleMPG.length;i++){
if (vehicleMPG[i]>max){
max=vehicleMPG[i];

Yelse{max=max;}}

4 11111-11-11-110 APE
{int max = 0; Student adds
for(int i=0;i<vehicleMPG.length;i++){ | return, but code
if (vehicleMPG[i]>max){ does not perform
max=vehicleMPG[i]; as expected
telse{max=max;}} with negative
return max; numbers.

5 11111-11-11-111 APE

{int max = -1000000;

for(int i=0;i<vehicleMPG.length;i++){
if (vehicleMPG[i]>max){
max=vehicleMPG[i];

Yelse{max=max;}}

return max;

Solution is now
correct.

Table 6.4: Algorithmically Productive Edit Examples

108

6.3 Probabilistic Distance to Solution

In section 6.2, I focused on a single submission granularity, explaining a categorization
scheme used on each individual code submission made by the participant. In this section, I
focus on a metric, Probable Distance to Solution, that is used to look at the entire problem
solving process of a student, from initial starting code stub to final solution.

6.3.1 Complex Problem Solving Spaces

Complex problem spaces are problems with multiple components where there is not an
exact ordering or prescribed process for completing each individual step. In complex prob-
lem spaces like the problems in my studies, novices will often attempt several unique edits
and approaches in order to create a finished correct solution. The model of algorithmic
components is used by AbstractTutor to generate feedback for student attempts based on
desired components in a solution. The codification of student submissions using the algo-
rithmic components can be seen as an opportunity to apply data mining or classification
techniques.

Modern data mining and classification techniques allow for increasingly complex so-
lution spaces to be automatically modeled and assessed. For example, automated essay
grading [87], mathematical proofs [35], and even complex computer programs [33] can be
analyzed for completeness and scored. Although the models, feedback strategies and mech-
anisms used by each domain vary, it is still important for researchers to assess students’
progress and make comparisons between research conditions in order to refine and improve
such pedagogical systems.

In complex problem solving spaces, such as natural language production or computer
programming, students may make edits or submit attempts that are not directly related
to the specific learning outcomes of the tutoring task [34]. For example, in computer
programming, a student may struggle with a compilation error, such as having a parenthesis
out of place, which is not reflective of their understanding of the desired learning goal.
Students may also produce submissions that progress through multiple skills, creating a
complex path to solution, with many possible states [77]. In this thesis, the focus of
the feedback and analysis is on the algorithmic components necessary to construct simple
array algorithms. The placement of semicolons and parenthesis, although possible learning
objectives for somewhere in the course, represent skills that are not the central learning
outcomes. Therefore, counting additional submissions where students are correcting typos
will artificially introduce variability in the measurement of student progress.

6.3.2 Other Within-Problem Set Performance Metrics

Measures of performance focused within the problem solving activity are sometimes used
by tutoring systems instead of running pretests and posttests outside of the tutor, when the
creator of the tutor wants more immediate learning feedback. Some within-tutor metrics
have already been created and used effectively; for example, number of submissions and
amount of time taken to get to a correct state were used in a system focused on improving

109

math scores [26]. These metrics are not as effective in complex problem solving domains
where the solution contains multiple parts produced simultaneously, due to the variety of
strategies used to solve problems and the difficulty of merging them [43].

Other Intelligent Tutoring Systems use constraint-based modeling to determine how
well a program matches the expectations of the problem; for example, Mitrovic built an
ITS for SQL that used over six hundred constraints to provide accurate and useful hints to
students [54]. Le and Menzel also describe techniques for building constraint-based tutors
in ’ill-defined domains’, similar to the complex domains described [46]. However, both of
these approaches require that the author of the I'TS generate the constraints by hand, which
becomes very time-consuming when applied to a broad domain (such as programming).
The metric we propose aims to improve on these models by examining more fine-grained
aspects of the problem states.

In this section, I detail a new metric, Probabilistic Distance to Solution (PDS) and
describe its implementation in assessing student progress in the AbstractTutor problems.
We then apply this metric to the think aloud dataset described in Chapter 4 and highlight
cases where PDS offers additional insight into misconceptions and problem solving paths.

For this thesis, the metric is applied after the full data set is collected in Chapter
7, as a way of analyzing the difference between students in different research conditions.
For potential future work, the metric can be automated and used in real time to provide
additional feedback to students about probable progress through the problems.

Traditional Measures of Performance

Before applying PDS to the think aloud data, a description of the traditional measures of
student performance in the pedagogical system is offered to provide clarity and contrast.

In Table 6.5, T tested the similarity of the problems given during the think aloud
study described in Chapter 4, by analyzing student performance per question. We found
that Problem #2, finding the maximum, required the most submissions to complete on
average due to outliers, but that the other three problems had very similar submission
patterns. The outliers on problem #2 required over 45 submissions each, while every
other participant took less than 20 submissions to complete the task. Students tended to
reduce overall time taken to solve problems as they moved through the set of problems
(see Table 6.5, where SD is the standard deviation of total submissions for the indicated
problem). Students were performing think-aloud protocols while completing the problems,
making the time to submit slightly exaggerated due to verbalization. Qualitative data
(from think-aloud observations) suggest that the speed-up was due in part to difficulty with
the interface rather than differences between the problems. A linear regression model on
the number of submissions did not indicate significance for problem number, but indicated
marginal significance between students. This regression indicates that the four problems
were approximately the same difficulty, and applicable to group for this work.*

The ability level of individual participants varied greatly, with some participants sub-
mitting final solutions with minimal modifications from their first attempt, while other

4We acknowledge the low power involved in this study, and will continue to evaluate cross-problem
difficulty as more data is gathered.

110

Problem # Mean/Median | Min | Max | SD
1 4.06 / 3 1 14 | 3.13
of 2 7.44 /4 1 49 | 11.35
Submits 3 4.56 / 2 1 23 | 5.71
4 3.61/3 1 9 2.45
1 625 / 452 93 | 2121 | 510
Overall 2 571 / 364 134 | 1795 | 490
Time 3 437 / 331 103 | 1438 | 349
in Seconds 4 363 / 315 53 | 1199 | 279

Table 6.5: Traditional Statistics for Think Aloud Data

participants struggled and progressed through multiple incorrect model states before ar-
riving at a correct solution. Individual participants were consistent in their performance
across problems, either doing well or struggling with all of them. The traditional mea-
surement metrics can be used to separate participants into two groups: high performers
(students who were able to quickly solve the problems), and low performers (students who
needed more time and several attempts to get a problem right).

Of the seven students requiring more than six submissions to solve at least one problem,
only two averaged fewer than six submissions per problem. These seven students also
tended to take more than 500 seconds (8.33 minutes) overall to solve their problems,
apart from the two mentioned above, who have individual outliers above that line. This
disjoint grouping suggests that I can subdivide the low performing group into students
who performed uniformly badly (5 participants) and students who struggled only with a
specific problem (2 participants).

The eleven high performers all averaged four or fewer submissions to reach a correct
answer, and all clustered under an average of 400 seconds (6.66 minutes), with the exception
of one student who took nearly eighteen minutes to finish the first problem, but only needed
to submit once. The increased time could be a factor of the think aloud protocol, as the
student spent time describing the code he had produced as a part of the think aloud
process.

Although it becomes evident that there are differences among individuals, The use of
number of submits and time do not offer sufficient granularity or analysis power to discuss
the actual difficulty students had with the problems. Using the metrics above, there is no
inherent way to evaluate the multiple learning objectives present in the complex problem
or the difference between a student struggling with a compiler error, simply being cautious
about correct code (as with the high performing outlier who took 18 minutes), or struggling
with the algorithmic concepts of the algorithm.

Two similar solutions

In multiple places throughout this thesis, I have postulated that students take different
paths to constructing a correct solution, yet I have not modeled those pathways. An im-
portant distinction between the paths that students take and the submissions they make,

111

is that two students may use the same number of submissions but take demonstrably
different routes to the correct solution. The analysis of the solution route can provide ad-
ditional detailed information to the researcher regarding the specific difficulties the student
is having.

Figure 6.1 illustrates a very simple example of two participants’ paths from an empty
start state to a correct finished state. The figure shows each code submission as a circle
with a letter for reference. The letters are only for reference, with S indicating an empty
starting state, and F representing the finishing state. The ordering of the states is based
upon the order of student submissions and position is not relative to the accuracy of the
code submission.

For the PDS metric, an extra bit was used to distinguish between code that compiled
and code that did not compile with the same alignment vectors. Two code submissions with
the same alignment vector, one that compiled and one that did not, would have separate
states in the diagram. State A represents code that has all of the correct algorithmic
components, is compilable, but does not return the appropriate value. The Alignment
Vector for State A is 1111-11-11-110. State B represents code that has all of the correct
algorithmic components, but does not compile, so it cannot check the final return state.
The Alignment Vector for B is the same as A 11111-11-11-110.

Participant 5 (the solid line and upper pathway) corrected a sign error (step 2) which
introduced a compiler error, then corrected the compiler error (step 3), and finally another
sign error (step 4), which resulted in a correct solution.

Participant 12, on the other hand, initially submitted code that did not contain a return
statement, indicating a misunderstanding about how information is communicated back
from the function. The Alignment Vector for State C is 11111-11-11-000, and the code
did not compile®. The participant then made a small change resulting in the same model
state for the code (step 2), then added a return statement based on a compile message
(step 3), and finally fixed another compile error and submitted a correct solution (step 4).
Although these two participants have the same number of submissions, the reasons for,
and the nature of, the submissions are very different and a more detailed analysis of the
steps expose a misconception about return statements by Participant 12.

Because each submit may represent multiple edits or steps in the problem solving
process, simply counting the number of submits as a measure of errors across steps is not
informative enough to express the difference between students who make errors with regard
to the learning goals of the activity, and students whose errors do not inform measures of
desired learning outcomes.

Through these data and example, I have demonstrated the lack of granularity in perfor-
mance metrics used in traditional learning environments. It could be suggested to look at
each alignment vector component individually, recording number of submissions and time
to complete each piece, to obtain a more detailed picture of student problem solving. Un-
fortunately, decoupling the alignment vector components will strip away their relationship
to each other and make it difficult to look at each problem as a whole.

>The missing return caused a compile error.

112

Participants

#5

Figure 6.1: Comparing Two Student Paths

6.3.3 Probabilistic Distance to Solution

In order to visualize students in the programming and problem solving process, I use each
student’s submission as a stepping stone of the longer pathway each student follows. The
submissions represent a student-dictated attempt at a correct solution or request for feed-
back. The alignment vector used to produce feedback is a representation of the state of the
program, and since the alignment vector was designed to align with the instructional goals
of the student’s practice, the representation and subsequent visualization have meaning for
discussing student knowledge and learning.

To draw generalizations about how program states correspond to student performance
and other latent factors such as learning, I aggregated all student submission paths for each
problem into a network (see Figure 6.2 for an example using Problem 4). The network
nodes Sy ---S,_1 are possible program states with a finish state node F', and the edges
are the observed transitions between states. This is similar to what is shown in Figure
6.1, and, in visualizations of the network, student code submissions are represented by
circles (nodes) and connected by lines (edges) based upon the series of submissions made
by any one student. Each alignment vector representation produces a different node in
the network. If two students submit code with the same alignment vector, that would be
represented by the same node in the network. Figure 6.2 shows the network constructed
from student submissions to Problem 4 in the think aloud study described in Chapter 4.
Each node represents an observed alignment vector, where the F-states are the alignment
vector components. A solid green box indicates the component was correctly present in
student code (1), and a white box indicates the component was not correctly present in
student code (0). Notice that SO has no correct alignment vector components - this is the
starting state and represents the empty starter code provided to students, and S56 has all
green boxes representing a correct final state®.

From any given node representing a student submission, theoretically a student could

6The S-states in Figure 6.2 are not completely sequential as all four problems were computed together
and state numbers were assigned as states were encountered in the dataset. The numbers of each state
(S0..Sn) are assigned as the algorithm encounters a particular alignment vector and are provided only for
reference.

113

I Compile Error
[Start
Bl Correct

T Not Correct

F2 F4 F6 F7 F8 F9 F10 | F11 | F12 | F13 | F14 | P(distance)

S0 3.67
7.78
4.78

Figure 6.2: Student Program States — Problem 4
Student program states for problem 4. Table columns Fx are alignment vector features.
Table rows Sx are observed alignment vectors in program submissions. Only observed
states (nodes) and transitions (edges) are shown. Node self-transitions also exist in the
model, but they are not shown here. The thicknesses of the edges are proportional to the
log of observed transitions in the data. The lengths of the edges are arbitrary and do not
relate to the model.

114

produce any other alignment vector on the next submission. Many of the potential align-
ment vectors, however, are not likely to be observed as a next step in the student problem
solving process. Instead I see common pathways emerging between fixed alignment vector
representations (nodes) which can be seen by the thicker lines in the network in Figure 6.2.

For example, five students in the think aloud completed problem 4 in only one submis-
sion. These data are represented in the thick line in Figure 6.2 between S0, the starting
state, and S56, the final correct state. A second example visible in the diagram is the SO,
S55, 560, and S56(Final) path. We know the path is not trivial (one student) because
of the thickness of the lines. By looking at the alignment vector, I can see that from
the starting state, students then submitted code missing component F8, a correct return
statement, that did not compile. Some students transitioned to other states (S57, S62,
and S56), however a number of them fixed the compiler error, but still did not achieve a
correct return value, and arrived at state S60. From S60 it was a common transition to
S56, the final state.

For each node, I use our observations of transitions to compute a Maximum Likelihood
Estimate (MLE) transition probability to every other node. Given the number of observed
transitions from node x to node y (7},), I estimate the probability of being in node y at
time ¢, with the MLE:

p(Sy(t)) = P(Sy(t)]S:(t — 1)) = (6.1)

This is equivalent to a Markov chain estimate with a 1-state history.”

6.3.4 Computing Predicted Number of Submissions to Solution

As a complex, non-linear, problem solving space, the number of submissions between any
given point in the students’ process and a final completed project is not computable based
only on a measurement of an individual submission. Although the alignment vector gives
us a representation of the completeness of the students’ code, there is not a one-to-one
correspondence between the alignment vector value and the number of submissions needed
to produce the value, or the number of submissions from that value to a finished program.
Instead, a probabilistic approach can be applied using student data.

A classic problem in computer science is the random walk. Given some network of nodes
and edges, if an entity randomly chooses any edge to walk on from any node, how long
will it take the algorithm to reach a designated final state? Although student submissions
may appear random, there are some common, and mostly logical, pathways students take
during the process, especially for the more sophisticated novice. Each outgoing edge from
a given node can be given a weighted probability, so that the chance of walking on that
node is more likely based on observed data. I have applied that method to the networks
described to calculate a Probable Distance To Solution, referring to the number of likely

I believe that the student’s node transitions will be better represented by a higher-order Markov
process; however our current data set is too small to provide appropriate power for more than a first-order
analysis.

115

edits it will take a student from any given node (alignment vector state) to a final state
(complete solution).

By modeling each edge as a transition probability and single unit of distance between
states, I use a set of linear equations to calculate a mean distance from each state to the
finish (successful completion) state. With

e n — 1 non-terminal states S ---S,_1 and an end state F’,

e and with each state S having transition probabilities P --- P ,—1 and P ¢,

¢ and transition distances Dy -+ Dy 1 and Dy ¢,
a system of equations for the mean distance to the finished state d(5) is:

di(Sy) = nz_jll Py (D s+ df(SS))] + P Dy g (6.2)
dp(S2) = nz_:ll Py o(Dy s + df(SS))] + Pyt Dy (6.3)
(6.4)

di(Sno1) = ni:l Pn—l,s<Dn—1,s+df(Ss>)1
:;;_l,fDn_l,f (6.5
dy(F) = 0 (6.6)

For the case where I am interested only in the mean number of submissions to the
finish state, each D, , = 1, and the calculation simplifies to the following system of dot
products:

de(S1) = Preds(S)+1 (6.7)
de(Sy) = Preds(S)+1 (6.8)
: (6.9)
de(Sp_1) = P,_eds(S)+1 (6.10)
de(F) = 0 (6.11)

6.3.5 Applying PDS

The PDS metrics accompanied by the transition graph are rich sources of information about
the paths that participants pursued in order to arrive at a correct solution. Figure 6.2 shows
a Program States Graph for problem #4 from the data collected during the think aloud
study described in Chapter 4. Each circle (node) represents a unique Alignment Vector
(AV) observed in the data. Each line is a transition between states, observed when students
in a state (the thin side of the line) made a single edit which produced the AV for the second
state (at the thick side of the line). The thickness of the line indicates the number of times

116

the transition was observed over all students. For example the transition between SO (the
starting state) and S4 has a relatively thick line, indicating it was observed more frequently
than the transition between SO and S32. The thickness of the line underscores the common
problem solving pathways, and it can be used to help identify intermediate states in the
process. All lines are single directional - indicating a transition from the thin side of the
line to the thick side.

Figure 6.2 includes a table illustrating the observed model states in the binary vector,
as well as the PDS for each state. In problem 4, S56 is the solution state and SO the initial
starting state. Before even evaluating the student paths, we can observe that an additional
state, S63, was also a terminal state for a participant. This participant located a bug in
the evaluation system that has since been corrected.®

By looking at the PDS combined with the Program State Graph (PSG) I can identify
more productive edits by participants. For example one participant’s first submission was
observed as S55 (PDS 2.99), and next state was S57 (PDS 4.43). This edit would be less
productive as it resulted in a transition to a state with a greater probabilistic number of
submits required to obtain a correct solution.

With the possibility of including terms in the algorithm for syntactic but not model
changes (i.e. two states that are identical except for a compilation error would not be
counted as a full step), PDS can be adapted to focus on model state transitions that indicate
misconceptions of not only the students but also of the researchers as well. For example,
instructors may believe that novices all take similar pathways to solve the problems given,
using techniques demonstrated in worked examples from lecture. The diversity of the PDS
graphs however, indicate that students take very different paths, and although there are a
finite set of paths, students do not use a logical stepwise refinement process to produce a
solution.

6.3.6 Usefulness of PDS

Within these early results, I have already identified model states on productive and unpro-
ductive PDS paths. Using the actual PDS values, I can determine if a student is making
a productive edit, engaging in either guessing behavior, or pursuing a misconception. An
edit resulting in an observed state with a higher PDS than the prior submission indicates
a move away from a correct answer.

These results can be invaluable to tutor designers as they seek to develop feedback and
support tools for complex solution domains. Within computer programming tutors, the
PDS could offer implications for more-than-compiler support, and perhaps even prompt
the introduction of a similar worked example or code comprehension problem highlighting
the incorrect features of the model.

Although tested against data from a computer programming dataset, I believe that the
PDS metric could be valuable across many domains with complex solutions demonstrating
multiple skills, as illustrated in references to this work [81] papers related to computer

8The bug was identified as a part of the think aloud protocol, however the PDS and Student Program
States Graph would have identified the bug as well.

117

programming [42], a logic tutor, survey administration [31], and a simulation-based as-
sessment task [10]. In the next chapter, I will use the PDS values and network graphs to
evaluate students in different tutoring conditions to determine if algorithmic based feedback
produced different pathways in the student problem solving process.

6.4 Conclusion

In this chapter I have presented the framework for two analyses of student data. First, I
disaggregated student submits based upon a classification of the type of edit made from the
previous submission, using the model of algorithmic components not only as a mechanism
for generating feedback, but also as a method of assessing student code. In the following
chapter I will use these metrics to assess differences within and across problems for students
participating in online studies.

118

Chapter 7

Impacting Novice Code Production
with Feedback

The studies in this chapter are the culmination of the work presented in this thesis. My
theoretical foundation supports explicit feedback regarding algorithmic components for the
novice programmer (Chapters 1 and 2). The model of algorithmic components that I pre-
sented and validated (Chapters 3 and 4) is used to generate feedback for the participants
in an online system, whose implementation was described in Chapter 5, and then used
to analyze the progress participants make through problems in the tutor (Chapter 6). In
this chapter, I seek to answer the research question Will pre-compilation feedback
regarding algorithmic components produce better (a) within-problem perfor-
mance and (b) across-problem learning?

To answer the research question, I use data from two online experiments with novice
programmers across the country. In Study 1, I use the Algorithmically Productive Edit
(APE) metric, and for Study 2, I use both APE and Probabalistic Distance to Solution
(PDS) discussed in the last chapter. Analysis will be both quantitative, working with
aggregate information from student submits, as well as qualitative, showing case studies
of a series of submits, to describe observed phenomena.

7.1 Study 1: Likelihood of Productive Edits

In the Spring of 2012, I conducted a large online study to test the effects of algorithmic
feedback on novices learning to program. This section details the methodology used in
the study, the participants who completed activities, and an analysis of the data collected.
All participants logged into the AbstractTutor system from the internet and feedback was
generated automatically and in real time while they were solving problems involving simple
array algorithms.

119

School State | Number Problems
Registered | Completed
Bismark State University ND 3 6 (50%)
Johns Hopkins University MD 14 27 (48%)
Loyola University MD 16 13 (20%)
Mt. Saint Mary’s University MD 22 60 (68%)
North Carolina State A&T University | NC 14 3 (5%)
Otterbein University OH 1 0 (0%)
Southern Polytechnic State University | GA 4 7 (44%)
William Penn University IA 58 136 (59%)
Wooster College OH 28 72 (64%)

Table 7.1: Study 1: Schools with Participating Students

7.1.1 Study Design

In the Spring of 2012, I recruited participants from colleges and universities with faculty
on the ACM Special Interest Group in Computer Science Education list serv. I sent a
message to the list asking faculty who teach an introductory computer science course to
respond if they would be willing to ask students to complete four problems in an online java
programming practice environment. Nine (9) faculty responded and were provided with an
access code so students could establish online accounts in the AbstractTutor system. Each
faculty member presented the activity in a different way, some requiring participation for
a homework grade while others offered it as extra review before the final exam.

From the 9 universities that received an access code, 160 students created online ac-
counts and attempted at least one problem. Table 7.1 shows the universities and the num-
ber of registered users from each university. Not every student who created an account
completed the activity, and Table 7.1 also shows the number of students who successfully
completed at least 1 problem, and percentage of possible problems (4 per student) that
were completed. Faculty members who requested could receive an email list of usernames
for students who registered and the number of exercises completed in the system for grading
purposes in their courses.

When participants created a user account with the given access code, they were ran-
domized to one of four conditions. Half of the participants saw problems in a mathematical
context, while half of the participants saw problems in a story based context as described
in Chapter 4. Table 7.2 shows examples of a mathematical context and story context
problem; the full set of problems with suggested solutions is available in Appendix A.
Half of the participants received only compiler error messages and output based feedback
providing input and output values from the method. The other half of the participants
were placed in the algorithmic feedback condition, with the potential for pre-compilation
algorithmic feedback when appropriate.

Each participant saw the sum problem first (Table 7.2), with wording appropriate to
the contextual condition (Math or Story) of the participant. Problem 1 (sum) was shown
to all participants first because it was a relatively simple algorithm, and one most likely

120

Mathematical Context

Story Context

Write a method to find and return
the sum of all the values stored in

The array items contains the price
of items on a sales receipt. Write a

method to find and return the total
(sum) of all the items on the receipt.

the array.

public int findSum(int [JmyList){ | public int findSum(int [Jitems){

Table 7.2: Problem Context Examples

to have been seen by students in the worked examples covered in their course. Problem 1
was also the only problem that did not require an if statement to select specific elements
from the array. Each student then saw a random ordering of problems 2-4 (max, count,
index). After completing the four questions with feedback appropriate for their condition,
the participants then saw a fifth question with directions that they were only going to be
given one chance to answer the question and no feedback (either algorithmic or compiler).
The fifth question was used as a post test for the session and asked students to find the
sum of the even numbers contained within the array. All students received the post-test
question worded for the math context.

Although students were distributed evenly across conditions, the assignment took place
when the user first created a login to the system. Unfortunately, not every student who
created a login observably attempted a problem. I am defining an observable attempt
as a participant who created a login, consented to participation in the study, and then
made at least one submission for the first problem. Table 7.3 displays the number of users,
by condition, who made an observable attempt at each problem in the system. The first
section of the table is divided by the problem the participants saw and the conditions
they experienced (Mathematical vs. Story context and Algorithmic vs. Output Based
feedback). The second section of the table shows the number of participants per problem
they attempted. For example, in the first column, 32 participants in the Math Context with
Output Based Feedback condition made an observable submission for the first problem they
saw in the system (Sum). In the same research condition, 24 students made an observable
submission for the second problem they encountered, which was randomly chosen from
Max, Count, and Index.

Overall, 21 participants only attempted problem 1 (left without attempting problem 2).
Fourteen (14) participants attempted only two problems, and 14 participants attempted
only three problems. One hundred and eleven (111) participants attempted all four prob-
lems in the system. Overall, most of the participants completed all four problems, and an
inspection of the incomplete attempts shows students who were engaged with the task (not
submitting blank code or irrelevant text). Not all of the professors required the students
to complete problems (as evidenced by requests for registered users), and so many factors
may contribute to the attrition rate.

121

Problem | Math Context | Math Context | Story Context | Story Context | Total
Output-Based | Algorithmic | Output Based | Algorithmic
Feedback Feedback Feedback Feedback
Sum 32 43 51 34 160
Max 24 35 41 31 134
Count 24 31 40 27 122
Index 25 31 37 29 122
Order
1 32 43 51 34 160
2 27 35 46 31 139
3 24 34 38 29 125
4 22 28 34 27 111
Table 7.3: Study 1: Number of Participants per Condition
Condition Num Ave Problems | Ave Problems | Ave Time
Students | Attempted Completed | To Complete
Math Context 75 3.28 1.96 19:55
Story Context 85 3.42 2.10 25:09
Algo Feedback 7 3.40 1.75 20:50
Output Feedback 83 3.31 2.30 23:42

Table 7.4: Study 1: Problem Attempt and Completion Rate by Condition

122

7.1.2 Submissions

The 160 participants entered a total of 4835 submissions into the system, including 115
submissions for the post test question!'. Each non post-test submission (4720) represents an
attempt to either submit a potential correct solution, or receive additional feedback about
a partial solution. When the participants submitted their code, they received a feedback
message from the system that contained information about the mistakes in the program,
or whether the code was correct. The content of the feedback message varied based upon
the assigned feedback condition. Participants also had a next problem button they could
use to move to the next problem, even if they had not correctly solved the problem they
were viewing.

Unfortunately, during the study, a bug in the code prevented AbstractTutor from pro-
viding algorithmic feedback in instances where students had a compiler error. The bug
triggered a default message normally given when the code does not parse; however, due to
the error, the message was shown any time the student had a compiler error. Although the
error message started “Your code could not parse for better feedback,” it then provided the
appropriate compiler messages. An ANOVA comparing subjects in the faulty algorithmic
feedback condition and output based condition showed no significant impact of the type of
feedback [F(1,158)=1.4, p=.24] on the number of submissions made by any user, implying
that the addition of the message “Your code could not parse” did not impact the users’
ability to read and use the compiler errors.

Although the error in the feedback mechanism prevents us from aggregate comparisons
across conditions, as much of the feedback that participants saw was the same, the data
can still be useful. Within the Algorithmic Feedback condition, 300 submissions generated
appropriate algorithmic feedback, so although the treatment was not as intensive as desired,
the data are still potentially useful. Each single instance of algorithmic feedback can be
seen as an intervention, and the performance of students in (1) their immediate next action,
and (2) over the remainder of the problem can tell us about the impact the feedback had
on the participants’ problem solving process.

When conducting an analysis of the data, the number of submissions is only a rough
estimate of the difficulty a participant has with the conceptual understandings of a problem.
Table 7.5 shows the total number, mean, and median number of submissions for users from
each research condition and by problem. The obvious difference in Table 7.5 of the Story
Context problems with output based feedback is mostly the product of a single user who
needed 152 submits on the sum problem, 44 submits on the max problem, 102 submits
on the count problem, and 17 submits on the Index problem. Numbers in Table 7.5 with
an asterisk (*) indicate a single user contributed over 100 submits to the problem count.
The mean and median number of submissions per user are also reported as more stable
measures of comparison.

Recall that the Sum problem was offered first, and not randomly as a part of the series,
because it was hypothesized to be the easiest problem (not requiring an if statement) to
solve, however a one-way within subjects ANOVA was conducted to compare the number
of submissions per problem number (based on the order in which the problems were seen)

!Two students skipped the fourth problem but did enter an attempt at the post test question.

123

Table 7.5: Study 1: Number, Mean, and Median of Submissions per Condition, Number of Participants available in Table

7.3

Problem Math Context | Math Context | Story Context | Story Context | Total
Output-Based | Algorithmic | Output Based | Algorithmic
Feedback Feedback Feedback Feedback

Sum 333 319 856* 237 1745
(Mean/Median) 104 /3 74 /4 16.8 / 4 70/3 109 / 4

Max 130 183 309 222 844
(Mean/Median) 54 /4 52 /3 75/ 3 72 /3 6.3/3

Count 169 178 394 265%* 1006
(Mean/Median) 7.0 /4 5.7/ 3 99 /3 9.8 /3 82/3

Index 249 276 383* 225 1133
(Mean/Median) 10.0 / 8 89/5 103 /6 7.8 /4 93 /5.5

Order

1 333 319 856* 237 1745
(Mean/Median) 104 /3 74 /4 16.8 / 4 70/3 109 / 4

2 206 187 432 232 1057
(Mean/Median) 76 /5 53/3 9.4 /4 75/3 7.6 /4

3 216 189 491%* 162 1058
(Mean/Median) 9.0 /4 56 /3 12.9 / 4 5.6 /3 85/3

4 126 261* 165 318* 870
(Median) 5.7 /4 93 /2 46 /4 11.7 /3 78/3

* indicates a large number of submissions from one user

124

and no significant effect of problem number was found [F(1,3)=.996, p=.39]. These data,
however, include submissions from students who attempted a problem but did not complete
it, or who completed some problems, but not all.

Table 7.6 shows the number and median submissions per user for participants who
completed all four problems within the system. In total, 72 participants completed all four
problems successfully. They were distributed across conditions as follows: Math/OBF:
17, Math/AF: 14, Story/OBF: 23, Story/AF: 18. Again, a one-way within subjects
ANOVA found no difference for Problem Number [F(1,70)=0.402, p=.53], Problem Name
[F(3,70)=1.80, p=0.16], Feedback Condition [F(1,70)=.32, p=.57] or Context [F(1,70)=.063,
p=.80]. The results indicate the number of submissions did not change significantly among
users as they progressed through the four problems. Although the lack of significance in
the Feedback Condition does not aid in positively answering the primary research ques-
tion of the thesis, it would indicate for these data that the feedback mechanism did not
significantly negatively impact the students in the abstract feedback condition.

Using the raw number of submissions does imply that practicing the four problems had
no measured effect on student proficiency at solving the problems in AbstractTutor. A
closer evaluation of the actual submissions, however, tells a different story.

7.1.3 Individual Submission Analysis

Although an analysis of the number of submits did not yield a significant difference for
problem or condition, in Chapter 6 I presented evidence that the raw number of submits
is not an appropriate measure of student proficiency. The raw correctness of an attempt
is also a poor measure, as most (86%) of submissions are incorrect on first attempt. For
this analysis I use the full dataset of any student who made at least two submissions to
any problem, giving them the chance to receive feedback and perform an edit.

The submits for the problems students attempted to solve in the AbstractTutor system
can be disaggregated using the model of algorithmic components proposed in Chapter 3.
Each algorithmic component can be seen to represent an individual piece of a correct solu-
tion, and as discussed in Chapter 5, the combination of the components into an Alignment
Vector can provide a detailed aggregate of each submission. Table 7.7 shows the average
percentage of correct algorithmic components in alignment vectors for each submission.

Although the disaggregation of submits by alignment vectors offer more granularity
than raw submits or correctness on first attempts, it does not give us a picture of stu-
dent progress over time. In Chapter 6, I discussed a categorization of student attempts
into Duplicate Submissions (DS), Algorithmically Productive Edits (APE), Algorithmically
Neutral Edits (ANE), and Algorithmically Counterproductive Edits (ACE). Categorizing
the type of edits made by participants can also give us a more detailed view of the partici-
pants’ struggles while solving the problem. Table 7.8 shows the distribution of all submits
by the problems based on condition and problem number.

A within subjects ANOVA of submissions that were not First Attempts (n= 4165)
yielded significant results for a number of factors both across and within subjects. Prior

submissions were coded into one of three possible categories: Algorithmic Feedback (244),
Output Based Numeric Feedback (555), and Other Feedback (3366). Algorithmic feedback

125

Problem Math Context | Math Context | Story Context | Story Context | Total
Output-Based | Algorithmic | Output Based | Algorithmic
Feedback Feedback Feedback Feedback

N=17 N=14 N=23 N=18 N=72

Sum 183 107 318* 115 723
(Mean/Median) 108 /3 76 /5 13.8 /4 6.4/3 10.0 /3

Max 95 95 161 122 473
(Median) 5.6 /4 6.8 /3 70 /3 6.8 /3 6.6 /3

Count 144 97 167 120 528
(Median) 85 /4 6.9 /4 72 /3 6.7 /3.5 7.3/ 4

Index 158 198* 288* 157 801
(Median) 9.3/ 6 14.1 /3 12.5 / 4 87/35 |11.1/4

Order

1 183 107 318* 115 723
(Mean/Median) 10.8 /3 76 /5 138 / 4 6.4 /3 10.0 / 3

2 156 114 259 125 654
(Mean/Median) 92 /5 81/5 11.3 / 4 69/35 | 9.1/4

3 151 86 268* 88 593
(Median) 8.9 /4 6.1/ 3 11.7 /3 49/25 | 82/3

4 90 190* 89 186 555
(Median) 53 /3 13.6 / 2 39/3 10.2 / 3.5 7.7/3

* indicates a large number of submissions from one user)

Table 7.6: Study 1: Number and Mean of Submissions per Condition for Participants Completing 4 Problems

126

Problem | Math Context | Math Context | Story Context | Story Context | All
Output-Based | Algorithmic | Output Based | Algorithmic
Feedback Feedback Feedback Feedback

Sum 69.3 52.0 34.7 57.4 47.6

Max 62.7 69.3 54.4 50.3 57.8

Count 67.0 72.1 60.0 41.6 58.5

Index 48.8 61.5 66.8 89.1 66.0
Order

1 69.3 52.0 34.7 57.4 47.6

2 60.6 68.1 58.8 52.8 59.5

3 50.8 72.3 66.4 75.5 65.6

4 64.7 61.6 49.4 55.8 57.6

Table 7.7: Study 1: Alignment Vector Averages for All Submissions

refers to instances where students received the feedback resulting from the model presented
in Chapter 3 and detailed in Appendix A. Output Based Numeric Feedback refers to
submissions where students code compiled and they received feedback regarding a series
of numbers as input to the method, and the resulting value from the code, as well as
the expected correct resulting value. The Other Feedback encompasses all other feedback

provided to the students, this included compilation errors, infinite loops, and exceptions?.

Tables 7.9 and 7.10 show the results of a within-subjects repeated measures ANOVA.
The effects of being in the mathematical context condition, algorithmic feedback condi-
tion, the current sum of alignment vector components, the type of feedback received for
the previous submission, the name of the problem, and the number of the problem?® were
calculated for the likelihood of having produced an Algorithmically Productive Edit. Al-
though there was no large effect for being in the algorithmic feedback condition, this is
unsurprising since the feedback mechanism failed and the treatment was significantly di-
luted (i.e., there were many instances where participants should have seen algorithmic
feedback, but where instead they received a compiler error message). There was however a
significant effect of the type of feedback received in the prior submission on the likelihood
of an Algorithmically Productive Edit.

Table 7.11 shows the coefficients of the model for the types of feedback received imme-
diately prior to the current submission. The coefficients, combined with the significance
shown in Tables 7.10 and 7.11, can be used to evaluate the additive impact of algorithmic
feedback. The coefficient of 0 for algorithmic feedback is assigned as a reference number
(since alphabetically ”algorithmic” is the first name of the type of feedback). All of the
other coefficients represent a change from the reference point of Algorithmic Feedback.

2An exception in Java is generated at run-time when the code behaves in an unexpected way based
upon the state of any variables. Common exceptions from introductory programming include attempts to
divide by zero, or trying to access an index past the length of an array.

3First, Second, Third, or Fourth problem seen by the user.

127

Duplicate | Algorithmically | Algorithmically | Algorithmically First
Submission Counter Neutral Productive Attempt
Condition Edit Edit Edit
Math/OBF 335 50 274 141 135
(N=32) 35.8% 5.35% 29.3% 15.8% 14.4%
Math/AF 357 66 264 150 169
(N=43) 35.4% 6.6% 26.2% 14.9% 16.8%
Story /OBF 809 107 660 224 209
(N=51) 40.3% 5.33% 32.85% 11.15% 10.4%
Story/AF 441 48 251 113 150
(N=34) 43.8% 4.8% 25.0% 11.3% 15.0%
Problem
Order
1 691 109 549 223 169
(N=160) 39.7% 6.3% 31.5% 12.8% 9.7%
2 365 51 326 167 147
(N=139) 34.6% 4.8% 30.9% 15.8% 13.9%
3 479 53 268 126 130
(N=125) 45.4% 5.0% 25.4% 11.9% 12.3%
4 407 58 181 112 112
(N=111) 46.8% 6.7% 20.8% 12.9% 12.9%
Total 1942 271 1324 628 558
(N=160) 41.1% 5.7% 28.0% 13.3% 12.9%

Table 7.8: Study 1: Labeling of Code Edits with Percentage of Submissions Per Row

128

ANOVA Df | F Value | P Value
Mathematical Context | 1 9.2 .002
Algo Feedback 1 0.01 94
AV Sum 1 13.6 <.001
Previous Feedback 5 5.2 <.001
Problem Name 3 .67 D7
Problem Number 4 .85 .50

Table 7.9: Across Subject Results for Algorithmically Productive Edits

ANOVA Df | F Value | P Value
AV Sum 1 393.7 <.001
Previous Feedback | 5 102.8 <.001
Problem Name 3 3.65 0.01
Problem Number 3 2.98 0.03

Table 7.10: Within Subject Results for Algorithmically Productive Edits
A positive coefficient indicates a contributing factor for making a productive edit

Across Users

Type of Feedback Coefficient
Algorithmic 0
Compiler -0.017
Correct -0.29
First Attempt 0.10
Output Based Feedback .01
Failed to Parse 28
Within Users

Algorithmic 0
Compiler -0.15
Correct -0.35
First Attempt -0.32
Output Based Feedback -0.35
Failed to Parse .08

129

Table 7.11: Within Subject Results for Algorithmically Productive Edits

First Submit Alignment Vector as Percentage

1.0

- —_— —_— —_—

0.6
1

Percentage AV Correct
0.4
I

0.2

0.0

Problem Number

Figure 7.1: Study 1: First Attempt Alignment Vectors (As Percentage)

As argued in previous chapters of this thesis, the general compiler-based feedback re-
ceived by students does not necessarily translate to productive edits of code. Compiler
messages, messages regarding infinite loops, and other code-based feedback for partici-
pants, were the least likely to generate Algorithmically Productive Edits, having negative
coefficients for both within and across user effects in the model. Additionally, the align-
ment vector percentage was a significant positive effect for both within and across users.
The alignment vector is an approximate measure of algorithmic completeness of the algo-
rithm, and therefore it is unsurprising that a participant who is closer to a correct solution
will be more likely to make productive edits.

These results offer supportive evidence that exposure to algorithmic feedback improves
students’ within problem performance.

7.1.4 Learning Gains from Practice

As shown in Section 7.1.3, the raw number of submits is not an ideal measure of within
problem student performance, and the use of number of submits or raw correctness on first
attempt would also not be a good measure of student learning across problems. Figure 7.1
shows a box plot of the alignment vector at first submit for each problem students saw.
The Alignment Vector is transformed from a raw number to a percentage to compensate
for the fact that Sum and Index only have 10 necessary components in their relative
alignment vectors. An ANOVA indicates a significant positive effect of problem number
on the alignment vector of participants’ first submission. [F(1,1)=8.6, p<.01] The increase
in alignment vector totals at first submission indicate that algorithmic learning is taking
place across problems, despite our inability to detect a difference using only the raw number
of submissions. These results do not offer an answer to the research question regarding the
effect of algorithmic feedback on across problem learning; however due to the failure of the
feedback mechanism, the treatment was significantly diluted.

130

7.1.5 Study 1: Conclusions

Although the feedback mechanism did not produce algorithmic feedback in all of the in-
stances where it is desired, an analysis focused on the individual submission level shows
the algorithmic feedback is not only beneficial, but has a greater impact on the likelihood
that students will make a productive edit. The algorithmic feedback provided through
AbstractTutor in the large online study has a positive impact on student performance,
both within an individual subject and across the data set. In the next section, I describe
a study wherein the algorithmic feedback was produced at expected levels and I evaluate
not only submission level student outcomes, but differences across condition as well.

7.2 Study 2: Full Problem Evaluation

After the malfunction of the feedback mechanism in the previous study, I designed and
executed a second study in the fall semester of 2012. Students again participated in the
problems previously described and the feedback mechanism operated appropriately for
student submissions.

7.2.1 Study Design

In the Fall of 2012, I recruited participants from colleges and universities with faculty
on the ACM Special Interest Group in Computer Science Education list serv. I sent a
message to the list asking faculty who teach an introductory computer science course to
respond if they would be willing to ask students to complete four problems in an online
practice environment. 12 faculty responded and were provided with an access code to give
to students to set up online accounts in the AbstractTutor system. Each faculty member
presented the activity in a different way, some requiring participation for a homework grade
while others offered it as extra review before the final exam.

From the 12 universities that received an access code, 61 students created online ac-
counts. Table 7.12 shows the universities and the number of registered users from each
university. Not every student who created an account completed the activity, and Table
7.12 also shows the number of students who successfully completed at least 1 problem,
and percentage of possible problems (4 per student) completed. Faculty members who
requested could receive an email list of usernames for students who registered and the
number of exercises completed in the system for grading purposes in their courses.

When participants created a user account with the given access code, they were ran-
domized to one of two conditions. As no previous effects of math or story based problem
description were found, all participants saw a mathematical context for the problems they
completed.

7.2.2 The Data

Overall 36 students from 4 schools visibly attempted at least one problem in the online
tutor. Students were randomly assigned by the tutor to a feedback condition upon creation

131

School State | Number Problems
Registered | Completed
Olivet Nazarene University IL 14 53 (95%)
Ilinois Valley Community College | 1L 5 9 (45%)
Johns Hopkins University MD 15 41 (68%)
Portland Community College OR 2 1 (13%)

Table 7.12: Study 2: Schools with Participating Students

Problem Math Context | Math Context | Total
Output-Based | Algorithmic
Feedback Feedback
(N=21) (N=15) (N=36)
Sum 93 85 178
(Mean/Median) 6.2/4 4/3 4.9/4
Max 54 67 121
(Median) 5/4 4/3 4.3/3
Count 112 53 165
(Median) 10/6 4/2 6.3/2
Index 113 57 170
(Median) 11/3 4/1 7.4/3

Table 7.13: Study 2: Number and Mean of Submissions per Condition

of a username with the AbstractTutor system, however not all students who created a user-
name consented to the study or observably attempted a problem. The 36 participants were
divided amongst conditions as follows: Ouput Based Feedback 21 students, Algorithmic
Feedback 15 students. Although a more balanced student distribution across conditions is
desirable, it is impossible to know when students will persist or leave the system.

The 36 participants generated 634 submissions in the online system. Table 7.13 shows
the distribution of submissions by problem and condition. All students saw all problems in
the same order, Sum, Max Search, Count in Range, and IndexOf. In the larger Study 1 from
this chapter, there were no effects of algorithm the participants were trying to implement,
similarly, there were no effects of problem on student performance in the smaller study.

Again the student submissions were categorized based upon Algorithmically Productive,
Neutral, and Counterproductive edits as described in Chapter 6. The distribution of edits
is seen in Table 7.14. Although it appears that students in the Algorithmic Feedback
condition make fewer Algorithmically Productive Edits to their code, students will also
make fewer Algorithmically Counterproductive Edits or Neutral edits in the algorithmic
feedback condition. The lower percentages were balanced by an increased number of first
attempts and duplicate submissions in the algorithmic feedback category. It is possible that
students in the algorithmic feedback condition either did not understand the algorithmic
feedback, or were attempting to get the second level hints and therefore submitted the
same code multiple times in a row.

132

First Duplicate | Algorithmically | Algorithmically | Algorithmically
Attempt | Submission Counter Neutral Productive
Condition Edit Edit Edit Edit
Math/OBF 20 23 8 32 26
(n=21) 18.3% 21.1% 7.3% 29.4% 23.9%
Math/AF 20 18 1 20 15
(n=15) 27.0 % 24.3% 1.4% 27.0% 20.3%

Table 7.14: Study 2: Labeling of Code Edits with Percentage of Submissions Per Row

7.2.3 Individual Submission Analysis

In this section, I focus on analyzing the within-problem solving differences, attempting to
answer the research question Will pre-compilation feedback regarding algorithmic
components produce better within-problem performance? Similar to the analysis
performed in Section 7.1, I use an individual submission granularity to assess the impact
of algorithmic feedback on students’ immediate actions after receiving feedback.

In order to estimate the effect of each type of feedback in a single attempt, each sub-
mission was labeled with the type of feedback the user had seen on the prior attempt.
Consider the following sequence from a participant in the output based feedback condi-
tion, a participant submits a first attempt to a problem (1) and then receives a compiler
error message. The participant makes an edit to the program and resubmits (2). The
resubmit has no compiler errors, but is not correct and the user sees a message describing
the numbers in the array, the expected answer, and the resulting value calculated by the
participant’s code. The participant then makes a third edit and resubmits the code (3)
which is judged to be correct. Attempt (1) is labeled a First Attempt as the participant
saw no feedback that prompted the code he wrote. Attempt (2) is is labeled Compiler,
as the participant saw a compiler error message before editing and resubmitting the code.
Attempt (3) is labeled OBF for Output Based Feedback as the user saw a message about
the output produced by his function.

The type of feedback seen by the participant had a significant relationship with the like-
lihood that the participant would make a change classified as an algorithmically productive
edit. A mixed effects ANOVA shows a significant effect of the previous feedback on the
expectation that students will make a productive edit, or APE [F(4,489)=11.8, p<.001].

Although the coefficients of the model can inform how each type of feedback impacted
the likelihood, a more fine grained analysis is possible if we look at the magnitude of the
edits with relationship to the feedback seen. A linear mixed effects model, including an
error term for each subject, was used to estimate the effects of each type of feedback on
the alignment vector components.

Each submission was evaluated by the AbstractTutor system for the appearance of
each algorithmic component in the model as described by Chapter 3 and 5. The sum
of the components was then used similar to a rubric score to create an alignment vector
score for each submission. For example, a blank submission would receive a score of 0,
while a completely correct solution for a Sum problem would receive a score of 10. A

133

Problem | Min Score | Max Score | Mean Score | Median Score
1 0% 100% 46% 60%
2 0% 100% 68% 83%
3 0% 100% 72% 90%
4 0% 100% 76% 90%
All 0% 100% 65% 83%

Table 7.15: Study 2: Alignment Vector Sums as Percentage of Points Possible

correct solution for a Max problem would receive a score of 12, as there are two more
algorithmic components required for a correct implementation of Max. Table 7.15 shows the
distribution of alignment vector scores as a percentage of points possible for the problems
solved in the tutor.

Each subsequent submission has the chance of providing a productive edit. The mag-
nitude of that edit can be seen by the overall increase in the alignment vector sum. Not all
submissions, however, have the same potential for productive edits, as some submissions
are very close to correct, missing only one alignment vector component (perhaps having a
score of 11 out of 12), while other submissions have many areas for improvement (perhaps
having a score of 0 or 1 out of 12). To normalize the value of each edit made, the change
to alignment vector resulting from an edit was calculated as a percentage of the possible
change (the difference between the previously submitted value and the possible correct
value). The actual number of alignment vector points is slightly skewed as some of the
problems (sum, index) could be correct with only 10 alignment vector components, while
the other two problems (max and count) required all 12 alignment vector components.

Figure 7.2 shows the result of different types of feedback (x axis) on the percentage
improvement to submitted code after an edit. Each blue line represents the comparative
effect of a particular type of feedback, using algorithmic feedback as the baseline. The
grey boxes show the 95% confidence intervals for each category. The means and confidence
intervals were determined based on the coefficients of a Linear Mixed Effects model fit by
REML in the statistical package R (shown in Table 7.16). Algorithmic feedback has no
confidence interval (grey box) as all of the other lines are produced as a difference from the
baseline. A feedback category would therefore be significantly different from Algorithmic
feedback if the red line (added for reference) lies outside the grey confidence interval for
any particular type of feedback.

To relate the graph to a particular student submission, let us consider a student who has
just submitted a piece of code for problem one, finding the sum. The last feedback message
the student saw was an Output Based Feedback message, such as “Your countLessThan
method returned the wrong value when I passed it [71, 41, 29, 10, 76, 63, 15, 31, 56, 32,
0, 35, 4, 3, 68, 67, 51, 62, 31, 97] and a value of 89: Your method should have returned 19
but returned 18”. In the example, the student did not count the 0 (used a strictly greater
than operator instead of greater than or equal to when comparing to 0). According to
the model, the student is not likely to make a productive edit, and on average will make
an edit that makes the program, on average, 1% further from correct than the previous
submission.

134

Type of Feedback Graph Label | Coefficient Value | p-value
Algorithmic Feedback AF 121 N/A
Correct C -0.281 0.026
Compiler Error Compile 0.053 0.12
Output Based Feedback OBF -0.135 <.001
Failure to Parse Parse -0.140 0.024

Table 7.16: Study 2: Estimated Change to Alignment Vector As a Result of Feedback

The same student submits a different piece of code for either the same or a different
problem (problem was not a significant factor), and sees a piece of algorithmic feedback.
That student is now likely to make a productive edit, NS the edit will on average improve
the AV by 12% (.121). Table 7.16 shows the coefficients and significance for each of
the categories of feedback presented to participants. There is no p-value for Algorithmic
Feedback because it is the baseline value.

Across students, there was still no significant effects of condition (feedback or context)
or problem number. A model selection process was used to refine the model and minimize
the AIC value as a measure of fit. The model selection was done by first including all of
the potential variables (feedback condition, problem number, problem name, and story or
math context) and then removing the variable with the highest p-value at each iteration.
The A Information Criteria (AIC) value was used as a measure of model fit [3] and at each
iteration the removal of the variable produced model with better explanatory power. The
resulting model was used to generate the graph shown in Figure 7.2 and Table 7.16

Supportive of the claims of this thesis, students who saw feedback regarding the algo-
rithmic components in their code were likely to produce a positive edit, and that positive
edit is significantly greater than edits produced by output based feedback messages.

7.2.4 Conditional Differences

One of the hypotheses of the thesis was that students in the algorithmic condition would
show across problem learning, increasing the sophistication of their answers at first attempt,
or completing the problems in less time. There were no significant effects of being in the
feedback condition on either the number of submits it takes to solve a problem (p=.25), or
the sum of components in the alignment vector of the first attempt(p=.68) at a problem.

Figure 7.3 shows a boxplot of the sum of alignment vector components, as a percentage
of the AV points available for max, count, and index of, on the first attempts of participants.
The plot was constructed using all the first attempts from all users on problems 2, 3, and 4.
The plot labeled FALSE is students in the output based feedback condition, while the plot
labeled TRUE represented students in the algorithmic feedback condition. The boxplot
illustrates the lack of significance between the two conditions, although there may be a
ceiling effect happening as the novices become more proficient over time. Table 7.17 shows
the mean first attempts by algorithmic feedback condition for each problem.

135

0.5

Change in Alignment Vector Percent
0

%e 8 o - 1 Y ame S¢ wel oo L
0
OI' —
T T T T T
AF C Compile OBF Parse
LastFeedback

Figure 7.2: Study 2: Changes in Alignment Vector based on Feedback Received
Key: AF = Algorithmic Feedback, C = Correct, OBF = Output Based Feedback,
Parse = Failure to Parse Message

Algorithmic Feedback Output Based Feedback
Mean SD Mean SD
Max 0.65 0.38 0.69 0.32
Count 0.76 0.39 0.77 0.33
Index 0.72 0.36 0.75 0.40

Table 7.17: Study 2: Mean Alignment Vector Percentage on First Attempt

136

Difference in First Attempt on Problems 2,3,4

e
o
=]
2 o
3]
o o
© |
o |
@ - I
= 1
g 9 | _
= = |
[|
. R —
0]
©
1 = |
g o
]
>
-
S
o~
= { _
c o
=2
<
o |
o o o
I l
Standard Feedback Algorithmic Feedback

Algorithmic Feedback Condition

Figure 7.3: Study 2: First Attempts at Problems 2, 3, and 4

7.2.5 Algorithmic Feedback Results in No Compiler Errors

In Chapters 1 and 2, I discussed work implying that novice programmers encounter com-
piler errors as an artifact of larger structural issues, as opposed to mistakes in typing. The
participants in this study, while novices in the larger discipline of copmuter programming,
have still had almost an entire semester of practice in the syntactical structures of the
Java programming language. The data below from the online study confirm the claim that
student difficulties arise not out of syntactical struggles, but algorithmic ones.

In the study, 23 of the 372 submissions from participants in the algorithmic feedback
condition were unable to parse due to a syntax error (11 submissions from 1 user). Aside
from the failure to parse messages, no compiler messages needed to be shown. Students in
the algorithmic feedback condition not only corrected any algorithmic errors based on the
algorithmic feedback, but produced syntactically correct code as they did it. In comparison,
participants in the output based feedback condition saw compiler messages 102 times out
of 262 submissions (40%).

These data support the claim that the widely reported and studied struggles of novices
with compilers is not an result of the struggles novices face with syntax, but instead with
semantics. This finding could help refocus the nature of pedagogical tool design research in
the CS Education community, as much of the current research [12, 28, 52| is on categorizing
the type of compiler errors students receive during practice and attempting to modify the
feedback produced as a result of compiler errors to be more useful for students. These works

137

Algorithmic Feedback Output Based Feedback
States PDS from SO States PDS from S0
Sum 15 6.62 14 4.05
Max 16 4.77 15 4.29
Count 13 9.64 10 3.60
Index 20 11.80 13 4.14

Table 7.18: Study 2: Number of Observed AV States and PDS Distance by Problem

focus not on the actual types of errors the students make, but instead a categorization of
what students see as a result of current feedback mechanisms (mostly compilers).

7.2.6 Probabilistic Distance to Solution

The Probabilistic Distance to Solution (PDS) algorithm described in Chapter 6 was applied
to the data from Study 2. Table 7.18 shows the number of distinct states observed, and
the PDS from start (provided code header) to a complete solution. Surprisingly, students
in the output based feedback condition had fewer states, and a shorter PDS for every
problem.

In Section 7.2.3, I show evidence that students in the Algorithmic Feedback condi-
tion(AFC) are more likely to make Algorithmically Productive Edits (APEs) than students
in the Output Based Feedback condition (OFC). The analysis from the start state PDS
and the number of observed alignment vector states would indicate participants in the
AFC made edits that resulted in additional intermediate states before arriving at a final
answer. This is evidenced especially in the final two problems when the PDS is more than
twice the size for Count and Index in the AFC, compared to OFC.

Although the PDS results seem to counter the hypothesis that algorithmic feedback will
produce better problem solving, consider that there was no significant difference between
the number of submits for users in either condition or the alignment vector sum for the
first attempts at problems. What appears to be occurring is that the algorithmic feedback
focuses students on one particular problem with the code, which they fix relatively quickly,
and then address the next incremental change. In the output based feedback condition,
the student makes syntax changes resulting from compiler errors and then is forced to deal
with the feedback regarding the resulting values of the algorithm, which may be related
to several algorithmic mistakes. Students then struggle with the output based feedback,
often engaging in various forms of shotgun debugging, trying lots of code mutations that
have little foundation in actual syntax or algorithmic structure, until they find a mutation
that satisfies the code requirements.

With two very different models of practice, I hypothesize that different learning is
taking place. In the next section, I offer case studies that present a clear picture of
one OFC participant engaging in shotgun debugging, and a second and third instance
where algorithmic feedback targeted the specific error a student was having and produced
an immediate fix to the problem. The case studies highlight the focus provided by the
algorithmic feedback and help to clarify the iterative process all three students take.

138

7.3 Case Studies: Impact of Feedback on Individual
Students

Throughout this thesis I have made the argument that novices have difficulty connecting the
output based feedback to the required algorithmic components necessary to solve common
practice problems. In this section, I present examples of students with both Algorithmic
and Output-Based feedback. In the examples, the feedback received by the student is
shown, and the student misconceptions or difficulties are discussed to demonstrate the
problem solving process taken by each student.

In each case study I will detail what problem the student is working on, how many
submissions occurred prior to the given submissions, and how many submissions after the
given submissions the participant needed to solve the problem. I have created names for
the participants in each case study to make it easier to refer to them in the qualitative
analysis. These names are not the real names of the student and selected by the author,
the gender of the name has no meaning.

7.3.1 Case Study 1: Accessing a Single Element

The goal of the first case study is to demonstrate the impact of the mismatch between
compiler messages and output based feedback with a common student misconception. The
first case study focuses on Sarah, a student who is solving the first problem, finding a sum,
and who is in the output based feedback condition and seeing story context problems.
Sarah is struggling with accessing a single element of her array in order to accumulate a
sum of all the items. The correct code for accessing a single element is items[i]. It has
taken Sarah 145 submissions to get to this point, 42 of those submissions were duplicate
from the immediately previous submission. (The duplicates were distributed across the 145
submissions with the longest consecutive set of duplicates being 7 submissions.) During
those submissions, Sarah struggled with placement of } and { characters to appropriately
mark the bounds of her code, and constructing the for loop. It took her 14 tries to get an
initial submission that compiled (just a declaration and return of a sum variable) and then
she took another 116 tries to get another compilable solution (struggling with placement
of } and { as well as how to access the length of the array for a for loop).

In Table 7.19, I show the series of submissions where Sarah struggles specifically with
the correct way to access an element from the list. Notice that she is using items.length as
the value to add to her sum in submission 1. From subsequent submissions it appears that
she believes the .length is necessary for any use of items. The two submissions made (1
and 2) were 46 seconds apart, indicating that it was not just a quick button press causing
a duplicate. Notice that the output based feedback produced a different set of numbers
for the two duplicate submissions (1 and 2). Each submission was checked against 100
randomly generated data sets, as well as additional data sets that were specified when
creating the problems to check for edge cases.

Sarah recognized that her method returned the same value each time (400) although
the numbers in the array had changed. This lead her to make a change on submit 3 and

139

include the [i] as a part of the sum statement. Unfortunately, she still left the .length
and produced a compiler error about dereferencing an integer value. The error is because
you cannot find the .length of an integer (the number stored in items|i], however Sarah
moves the [i] to the sum instead of removing the .length. It took Sarah 3 more submits to
solve the problem, first resubmitting code exactly the same as submission 1. Sarah’s other
two submissions first removed the .length from items, and then adding the [i] for a correct
solution.

Sarah’s attempts highlight the mismatch of the feedback regarding syntax and the
mistakes commonly made by novices. In the first two examples, Sarah had code that
compiled, however did not correctly access each individual element to add to the sum.
Because the compiler is meant to be generic, it cannot assume that Sarah wanted to access
each element, and so all it could provide was a comparison between an expected output
and actual output. If Sarah was in the Algorithmic Feedback condition she would have
received a message indicating that she needed to use the brackets ([]) along with the
array and the loop variable in order to access each element. The algorithmic feedback
presented could have helped Sarah identity the problems she was having and produce a
more efficient problem solving process.

7.3.2 Case Study 2: Return Placement

The second case study of Noel, is intended to demonstrate a common student miscon-
ception, and the benefit of algorithmic feedback. Noel was in the algorithmic feedback
condition and incorrectly placed the return statement for the algorithm in problem 4 (find
and return the index of a particular value). Noel’s code is shown in Table 7.20. In the
large online study, there were 254 submissions where students either omitted the return
statement completely, or placed it in an inappropriate place for the algorithm. Of the 254
submissions, 159 were similar to Noel’s in that all of the other alignment vector components
prior to the placement of the return are correct, distinguishing those students who have
achieved a reasonable correctness and only need to move an already present statement.

Of the 159 submissions, 92 were made by subjects in the output based feedback con-
dition. The 92 submissions were made by 16 different users, 5 of whom made mistakes on
at least two problems. The average number of submissions to recover from the error after
seeing an error message from the compiler was 4.4, but 48 submissions were made by one
user. With the outlier removed the average number of submissions is 2.2.

In the smaller study described in section 7.2, there were 33 submissions with a matching
alignment vector, made by 10 users. Three of the users were in the Output Based Feedback
condition and saw compiler error messages, and three of the compiler error messages were
focused on the return statement* Of the three users who saw compiler error messages, one
user replicated the error on multiple problems (Count and then Index). Of the seven users
who saw the Algorithmic feedback, no user replicated the error on multiple submissions.
On his next edit, Noel moved the return statement outside of the loop, correcting the

4The compiler processes error messages in a different order then the algorithmic feedback. The other
messages seen included incompatible types, and messages regarding mismatched { and }.

140

JUOWId[H UR SUISSIOOY [[JIM 9[SSNIIG S, yeIeg T Apnjg ase)) :61°L 9[qel,

ur‘Aue
0} pordde aq jouued +
I0jeredo :g ‘punoj jur
g ‘pexmber Aerre g
DU :SIOL SUIMO[[O]
o) pojeIouss puer ofid
-Wod JOU PIP 9POd INOX

OTT-TT-00-TOOTT

‘ums uanaex

{{ya3ueT - sweatT =+ [T]UmS

}(++T {yalueT sweqI>T {Q=T 3UT)I0F
‘o=wns Jut}

jur
‘Aue 09 pordde o jouued
+ 103e10do :9 ‘pedusIo
-JoIop 9 jouurd Ul :Q
QUL :SIOLID SUIMO[[O]
o) pojeIouss pur ofid
-uod Jou PIP 9POd INOX

OTT-TT-00-TTTTI

‘ums uInaex

{{ya3ueT’ [T]SwWelT =+ UMS

}(++T ‘{yadueT sweqI>T {Q=T 3UT)I0F
‘o=uwmns Jut}

00F pouanjor 1 g
N@@ .@@Qhﬁp@p ®>®£ UMSOQm
poyseuwr mog :[19 ‘z¢ ‘G
‘0C ‘ST ‘G¢ ‘9F ‘¢ 9T ‘I¥
‘9¢ ‘¥E ‘T ‘6L 9T ‘2S ‘78
'€ ‘06 ‘1] 91 possed [worm
ONJeA SUOIM ST} PIULINISI
poyjowr wngpuy JINox

OTT-TT-00-TOOTT

‘{uns uanjgex

{{y33ueT SwelT =+ uUMS

}(++T fyaBueT swe3I>T {Q=T 3UT)JI0F
{o=wms qut}

00F pouny
-0I ﬁ pSQ hO@ .@@QHSP
-0I ®>®£ .ESOQ@ @OQ@@S
mox :[eT ‘6T ‘1L ‘T€ V¢
TLOTT ‘PL P9 ‘ST TS
‘TG ‘89 ‘9 ‘89 ‘08 ‘9¢ ‘OF
‘Gz “9F) a1 pessed [uam
oneA SUOIM 9} PouLINol
poyjewr wngpuy INox

OTT-TT-00-TOOTT

{

‘fums uIngex

{{yaBueT swelT =+ UMS

}(++T {yaBuseT sweaI>T {Q=T 3UT)JI0F
‘0=ums 3urtr}

yoeqpooq

AV

UOISSTqNG 9po))

141

Code

Submis- {int count = 0;
sion for(int count = 0; count < myList.length; count++){
if (myList [count] == value)
return count;
else
return -1;
T}
AV 11111-11-11-100

Feedback | Your return statement is not in an appropriate place for the
algorithm, or you are missing a return statement at the end. If
you place the return too early in the code, any code that comes
after it will not be executed. Check your code, perhaps trace it
with a few values to determine the correct place.

Table 7.20: Case Study 2: Incorrect Return Placement

algorithmic error, and modified his code in two more submissions with the appropriate
statement inside the if statement, and then achieved a correct solution.

Noel’s code provides an example of one of two common student mistakes or miscon-
ceptions. In Noel’s code, he is checking to see if he has found the appropriate value in
the array (myList[count]==value). If he does not find the right value in the first location,
instead of moving on to check the second location, Noel’s code will return -1 right away.
Negative 1 is the indicator that the value was not found anywhere in the list. The other
common mistake is to return inside the for loop, when the algorithm requires a return at
the end of the code.

The algorithmic feedback lets the user know that the return statement is simply in the
wrong place. The comparable output-based feedback will say ”Missing return statement.”
Although the code does contain a return statement, it is possible for it not to execute®, and
the compiler reacts as if there is no return statement in the method. This message is often
confusing for the novice, who can see the return statement in the code, when it appears that
the computer cannot. The placement of a return, and the feedback about that placement,
is an excellent example of how professional level tools rely on algorithmic expertise in order
for a user to translate the error message into an understanding of incorrect code.

7.3.3 Case Study 3: Unsure Where to Begin

The third case study focuses on Jon, a participant from Study 2 described in this chapter.
On the first problem (Sum), Jon struggled with many of the components of the alignment
vector during his problem solving process. Table 7.21 shows a progression of Jon’s code
through the problem solving process and the algorithmic feedback he received.

SFor example if myList.length == 0 the loop will never execute and the return will never be encountered.

142

Jon’s first submission was just to return the myList array, and was done incorrectly.
Instead of giving Jon feedback about the algorithm, the compiler would have told him
that he had an incompatible return type, which also would be been fixed by Jon’s second
submission. The second submission in an Output Based Feedback Condition would have
told Jon that is code returned the wrong value, expecting perhaps 1154 but returning 90
with the array [90, 70, 49,...].

On line 4, output based feedback would have told Jon that he made a syntax error in
his return statement - Cannot find symbol variable a (on the line number of the return
statement). Algorithmic feedback recognized that Jon had initialized the variable in the
incorrect place for the algorithm and Jon was able to correct the error and submitted a
correct solution on his next attempt.

Jon’s case study highlights how a novice could struggle with the mismatch between clas-
sic compiler messages and output based feedback and the algorithmic mistakes commonly
made by novices.

7.4 Conclusions

The studies presented in this chapter focus on the research question: Will pre-compilation
feedback regarding algorithmic components produce better (a) within-problem

performance and (b) across problem learning? Both online studies confirm that stu-

dents who get an algorithmic feedback message are likely to make a productive edit and

more likely to make a productive edit than those who receive output based feedback.

The productive edits are a good measure of within problem performance, as a measure

of student progress towards a correct solution. Additionally, students in the algorithmic

feedback condition in Study 2 did not need to correct any compiler errors after correcting

algorithmic errors.

There are no direct measures which indicate that students had increased across prob-
lem learning, as both groups showed non-significant differences in the first attempt score of
problems in the sequence. Although this seems to be counter to the second part of the hy-
pothesis, there seems to be the need for additional fine grained assessment of the individual
knowledge components contained within each problem. Although the PDS on the smaller
study shows an increase in the number of states and a larger overall PDS to obtain a
correct solution, this result and the increased likelihood of a productive edit, together with
case studies such as Number 2, could be an indication that algorithmic feedback prompts
a more incremental problem solving process. This incremental problem solving process al-
lows students to focus on the construction of the algorithm, and potentially could explain
the lack of repetition of errors for students in the algorithmic feedback condition. This lack
of repetition of errors for students in the algorithmic feedback condition is evidence of an
increase in across problem performance by students in the algorithmic feedback condition,
however additional studies are warranted to confirm this statement.

In the next chapter I present the conclusions and contributions of the entire thesis and
offer ideas for future work.

143

Code Submission

AV

Feedback

{return myList[]; }

0000000 00 000

In order to accomplish the task assigned,
you need to access every element in the
array. Try to implement (write code for)
a control structure that allows you to re-
peat a task over many times. You will use
this with other variables in order to com-
plete your task. You also need to write at
least one line of code inside the structure.

{int a=myList[0];
return a;

}

00000-00-00-110

The task you are trying to achieve re-
quires a loop to access each element in
the array. Write a for loop in your code.
If you already have a loop, you need at
least one statement - a command followed
by a ; in order it to work completely.

13 additional submissions where Jon strug-
gles to format a for loop

N/A

Jon saw repeats of the previous message.

{for(int x=0; x<myList.length; x++){
int a = a + myList[x];
}

return a;

}

11111-00-00-110

In order to solve your problem you need
to maintain a particular state in a vari-
able. This state will give you the answer
you are seeking. You have not correctly
created or assigned a starting value to the
state variable.

Table 7.21: Case Study 3:

Unsure Where to Begin

144

Chapter 8

Conclusions

8.1 Research Focus

The research presented in this thesis focuses on the design, implementation, and testing of
an academic intervention to help novice programmers develop expertise in writing simple
array algorithms. Although practice is necessary for the development of expertise, appro-
priate feedback during novice practice can be used to help students see the algorithmic
abstractions in the code they are implementing.

The two main research questions addressed in this thesis are: (1) Can a pre-compilation
feedback mechanism be constructed that operates with reasonable accuracy
(85% of student generated submissions)? and (2) Will feedback regarding al-
gorithmic components presented to students pre-compilation produce better
(a) within-problem performance and (b) across-problem learning?

To answer the research questions, this thesis presents research with contributions to the
Computer Science, Learning Sciences, and Computer Science Education domains. I used
qualitative and quantitative analyses to validate a model of problem components and likely
student errors (Chapter 4), and I used quantitative analysis with multiple student generated
datasets to evaluate and refine the feedback mechanism (Chapter 5). I developed new
quantitative methodologies and evaluated them with student data (Chapter 6). Finally,
I conducted two online studies to evaluate the efficacy of algorithmic feedback and offer
evidence that students who see an algorithmic feedback message make significantly more
algorithmically productive edits than students who see output based feedback.

8.1.1 Summary of Contributions

The research presented in this thesis offers contributions, both large and small, to the fields
of Computer Science, Learning Sciences, and Computer Science Education. Table 8.1 lists
the contributions of the research presented in Chapters 4-7 and indicates the relevant
fields for each contribution. Subsequent subsections provide increased detail about each
contribution and implications for the relevant literature.

145

Learning
Sciences

Computer
Science

CS

Education

Major Contributions

I demonstrated that students who see feedback
regarding algorithmic abstractions are more
likely to make a productive edit than students
who see traditional output based feedback.

X

I applied static analysis techniques for pre-
compilation feedback generation.

I designed an implementation of a model of
complex, non-linear problem spaces (PDS) and
applied the model to compare research condi-
tions.

I discovered that students of different pro-
ficiency levels both use abstract, and non-
abstract statements when describing a pro-
gramming task, however students with a higher
proficiency level transition between types of
statements more frequently.

Minor Contributions

I discovered that students who correct code
based on algorithmic feedback will also correct
compiler errors.

I created and used a model for evaluating ab-
straction at statement level (instead of whole
paragraph or answer).

I defined and validated a model of algorithmic
components for simple array algorithms, and
used the model components to measure within
problem progression and performance.

I performed an HCI exercise in case studies il-
lustrating the inappropriateness of standard er-
ror messages compared to actual novice errors.

I examined and used within problem progress,
increasing the granularity of the compile-edit
cycle.

10

I modified the SOLO taxonomy to use at the
utterance level of granularity.

X

Table 8.1: Contributions and Domains Offered by this Thesis

146

8.1.2 Feedback Regarding Algorithmic Abstractions Produces
Better Performance

In this thesis, as a contribution to the Learning Sciences, I seek to answer the question
Will feedback regarding algorithmic components presented to students pre-
compilation produce better (a) within-problem performance and (b) across
problem learning? Although students are able to express algorithms in natural language
[75], prior work has demonstrated that students struggle with code production [34] and
the writing of algorithms in formal language [53, 77]. Related work has shown that a
correlation exists between students’ ability to abstract when describing code [49, 72] and
proficiency at code production [48]. Measures of proficiency in the abstraction studies have
often relied on the researcher hand scoring the student produced code against a rubric. In
this work I create a model inspired by such rubrics and use an automated assessment
mechanism to compare student code to the rubric-based model.

The abstractions measured in prior work have been explicitly tied to students’ ability
to describe algorithmic components and the role of those components in an algorithm.
Abstractions about a domain have long been linked to expertise [15], however little work
has been done in Computer Science Education, or the Learning Sciences to connect explicit
instruction in abstractions with measures of performance. In prior work, I demonstrated
that instruction in this specific type of abstraction produced more sophisticated answers,
both when students write answers in a text box and in the selection of multiple choice
items [82].

Underlying much of the abstraction research is the notion that students will develop
these abstractions as a result of course instruction [48]. Yet much of the instruction focuses
on the individual components of the algorithm (if statements, loops, arrays) and relies on
students to build the expert structures over time. In current methods of practice, students
struggle with tools that provide low level feedback and need to infer the algorithmic cor-
rections necessary to construct complete algorithms. In this work I addressed the expert
blind spot of many computer scientists, that the algorithmic components can be taught
separately without direct instruction on the algorithmic placement and usefulness and still
have students apply and use the components together in meaningful ways.

In this thesis, I have taken abstraction and proficiency correlation research further and
shown that feedback containing information about algorithmic components can be useful
for novices’ programming problems, by producing more efficient edits of code (Contribu-
tions 1, 7, 9). Additionally, the algorithmic component feedback produced an unexpected
result. Participants in the final study, who were in the algorithmic feedback condition,
did not see a single error message from the compiler after correcting all of the algorithmic
errors in their code'(Contribution 5).

The approach taken in this thesis offers a variety of contributions to the CS education
community. As recent as the summer of 2014, researchers have continued to focus on the

!Students did see compiler messages in 23 out of 372 feedback instances for the Algorithmic Feedback
Condition when the code was unreadable by the algorithmic parser. Eleven (11) of those messages were to
a single user, and 6 of the messages were corrected with one edit. Students went on to correct algorithmic
errors after reaching parsable code.

147

type of compilation errors received by students as an important research question, and
look for ways to improve generic compiler messages as a means to improve novice practice
[12]. At the same time, the community is also focused on research questions at a very
large granularity, attempting to predict course level outcomes with grades on assignments
or assessments with multiple learning objectives or parts [64]. The work conducted in
this thesis presents an example of identifying a model of multiple components in a single
problem type, and a fine-grained analysis of student performance, not based upon aggregate
scores but a quantitative metric showing within-problem progression (Contributions 3, 9).

8.1.3 Feedback Mechanisms and Code Evaluation for the Novice

In this thesis, as a contribution to Computer Science, I seek to answer the question Can
a pre-compilation feedback mechanism be constructed that operates with rea-
sonable accuracy (85% of student generated submissions)? Despite evidence that
students struggle with the writing of code in modern computer programming languages
[34], much of the research into the creation of pedagogical IDEs has focused on correcting
the compiler error messages received by students during practice [28]. Fisler et al. even
received a best paper award in 2011 from SIGCSE? for measuring the types of error mes-
sages encountered by students while programming. The contributions of this thesis are in
the development of a pre-compilation feedback mechanism, as well as the postulation that
pre-compilation feedback would be useful to the novice and produce more efficient practice.

As a computer science contribution, I applied static analysis techniques to imperfect,
student-generated code submissions to generate pre-compilation feedback (Contribution 2).
The evaluation of student code against an algorithmic model, not for absolute correctness,
but instead for the mere presence of algorithmic components is a unique approach. The
model and feedback generation mechanism was created with generalizability in mind, so
that it could be adapted to other problems with similar array components, and used with
additional output based tests specific to the intent of the code.

While analyzing student code submissions, it became clear that a count of the num-
ber of submissions or the ability of a student to produce a correct solution in a future
submission were not granular enough measures of student knowledge or problem solving.
With generalizability in mind for non-linear problem solving situations, the Probablistic
Distance to Solution (PDS) metric described in Chapter 6 and published in [81] was de-
signed and implemented (Contribution 3). The publication of PDS has been cited at least
6 times since publication and used outside of computer science education research.

8.2 Future Work

Because of the diverse nature of this thesis, there are a variety of directions future work
could take. In this section, I offer two lines of research and a connection to current tools
being built. At a macro level, the contributions to Educational Data Mining and the

2SIGCSE has a conference attendance of 1200+ faculty practioners and CS Education researchers.

148

unique approach of offering pre-compilation feedback on algorithmic components will, I
hope, inspire research outside of the direct line of my work.

8.2.1 Larger Treatment for Across Condition Gains

Although algorithmic feedback produced significant improvement in the likelihood a partic-
ipant would make an algorithmically productive edit, there was no effect of the algorithmic
condition on the measured outcomes. In a future study, I would like to increase the dosage,
including more problems for students to complete over multiple sessions with the tutor.

An online experiment could be created where students had to solve 1-3 problems a
week over multiple weeks. Faculty could assign the work as a part of weekly problem sets,
and problems would only become visible at the appropriate time, preventing students from
solving all the problems in one sitting.

I hypothesize that continued exposure to the algorithmic feedback would increase the
effect on both within and across problem outcomes. Additionally, a second think aloud
study could be conducted to determine if students change the frequency of their transi-
tions between No Abstraction statements and Macro Relational statements as described
in Chapter 4.

8.2.2 Additional Problems and Feedback Refinement

In the studies presented in this thesis, students were solving the same four problems regard-
ing simple array algorithms. There is a much larger set of array algorithms that students
could be asked to write that still use the same set of algorithmic components. Additional
problems could be added to the AbstractTutor system and a variety of studies could be
run to evaluate student learning. Additionally, isomorphic problems could also be tested.
Currently each of the four problems represent a slightly different algorithm; another exten-
sion would be to include the same algorithm, but with different variable names or contexts
as a part of the series.

First, a small learning gain was shown by looking at the first submission alignment
vectors (Figure 7.1). Although there are obvious differences between problems 1, 2 and 3,
by problem 4 it appears the curve has leveled off. Additional studies with more problems
could be used to determine if there is an optimal number of problems for students to
solve for practice in one or multiple sittings. Findings from such a study could be useful,
especially for textbook writers who often include 15-20 exercises at the end of each chapter.

Second, although there were no effects of problem name on student performance, it
would be interesting to compare problems with exactly the same pattern of alignment
vector to each other. For example, the sum problem did not require the use of an if
statement, while the other problems did. What would be the effects of eliminating the
sum problem from the sequence? What would be the effects of including more problems
without if statements? I hypothesize that additional problems with the same pattern of
alignment vector will produce little to no difference from the current study. Both studies
presented in Chapter 7 show a decreased effect of problem number after the second problem,
indicating that after students struggled with the first problem there was little to no gain

149

between subsequent problems. Yet, students were not submitting algorithmically correct
code for the final problems and a more detailed study of what recurring errors persist could
help create better practice for novices.

Third, in this thesis I classified student errors by the type of feedback they prompted
from the AbstractTutor system. Although the classification was useful for the evaluations
of the algorithmic feedback, it was not completely descriptive of the type of errors the
students were making. Many students struggled with the semantics of the Java language,
resulting in either an error from the compiler or an algorithmic feedback message. A more
detailed analysis and categorization of the types of errors students make, using multiple
submissions and think alouds to help infer student purpose could be useful for refining
feedback and practice.

Finally, the feedback messages themselves were never fine tuned in this thesis, except
for clarity during the think aloud (some grammar and tenses were changed). Additional
studies should be conducted to find the appropriate wording for the algorithmic components
and accompanying abstractions to produce the most efficient student practice.

8.2.3 Models of Student Proficiency

In this thesis I use several models of student proficiency to both categorize and quanti-
tatively measure student performance. In Chapter 4, I use the number of submissions a
student makes as a rough measure of proficiency that can help categorize students into
high and low performers. Additionally, I use the sum of alignment vector components
to measure the “correctness” of a particular submission throughout the problem solving
process. The strategy of using the alignment vector sum is similar to the way instructors
will grade student work by adding rubric points to provide a score to a particular stu-
dent answer. Neither of these methodologies provide detailed information about student
proficiency, although the alignment vector itself can be used to infer student knowledge.

In Chapter 6, I define two ways to measure changes to the correctness of a solution in
the problem solving process. By looking for algorithmically productive edits, and student
progression through a problem to a correct solution, I can infer the algorithmic components
a student is focused on learning in a particular problem.

In future work it would be interesting to try to order the algorithmic components in a
learning progression. To find a learning progression, a model of student proficiency could
be developed that takes into account both the static evaluation of student code and the
modifications the student makes over time.

8.2.4 Models of Student Problem Solving

The problem solving process exposed by the Probabilistic Distance to Solution metric
prompts an interesting question. Students in the algorithmic feedback condition were
more likely to make small, productive edits during problem solving, while students in the
output based feedback condition made unproductive edits for a time and then fixed a large
number of problems in a few edits. This phenomenon of unproductive edits replicates
the observations made in [34]. I hypothesize that the second model, a large number of

150

Python

script.py

Go With the Flow

Just like in real life, sometimes we'd
ike our code to be able to make
decisions.

The Python programs w
far have had one-track

over the other.

Control flow gives us this ability to
hoose tcomes based off

what els

program.

nstructions

Check out the code in the editor. You'll

Figure 8.1: Codecademy Novice Practice Environment

unproductive edits followed by a large edit, is similar to insight problem solving. The
student struggles with the code until she has an insight (or help seek from another source)
and then produce a mostly correct answer.

An interesting research question for future work would be the exploration of the im-
plications of the “insight” problem solving on student metacognition and learning. If
students need to have an insight as opposed to methodically applying modifications, does
that change their ability to reflect on the individual components and impair their learn-
ing? Additionally, what effect on student motivation does the constant unproductive edits
cause? These questions could help provide information to the ongoing questions in the CS
Education community surrounding student attrition from majors and low performance in
early courses.

8.2.5 Ongoing Work for New Products

Over the past two years, there has been an explosion of online “learn to code” tools and
companies. Almost all of the tools simply embed output based feedback mechanisms from
professional level tools into an instructional website. For example, the codecademy website
[84] has a coding window placed on the right of an instructional pane. The coding window
has an error message provided in the upper right corner as shown in Figure 8.1.

The work presented in this thesis could be used to create feedback more appropriate to
the novice in these environments by aligning feedback with instructional goals instead of
compiler errors.

8.3 Acknowledgements
This work was supported through the Program for Interdisciplinary Education Research

(PIER) at Carnegie Mellon University, funded through Grant R305B040063 to Carnegie
Mellon University, from the Institute of Education Sciences, US Department of Education.

151

The opinions expressed are those of the author and do not represent the views of the
Institute or the US Department of Education.

Additionally, I would like to thank the founding team of TutorTechnologies, Thomas
Harris, Christy McGuire and Jonathan Steinhart. Without TutorTechnologies the Ab-
stractTutor platform would have been much more simplistic. I would also like to thank
the AlphaLab Pittsburgh accelerator for funding TutorTechnologies.

A large thank you goes to the SIGCSE community for offering access to students. Thank
you to the teachers who facilitated the online studies by distributing registration codes and
asking students to participate. Additionally, a special thank you to Mark Guzdial whose
blog post helped advertise the opportunity.

152

Appendix A

AbstractTutor Problems and
Feedback

153

A.0.1 The Problems and Reference Solutions
A.0.2 Feedback Messages

Each algorithmic component that was evaluated pre-compilation had two feedback mes-
sages associated with it. The participant would see the first feedback message after the
first time the error was detected on a problem submission as the primary error (Next error
to be corrected). If the participant was unable to correct the error, they then saw the
secondary message.

Including a Repetition Structure

e Primary Message - In order to accomplish the task assigned, you need to access every
element in the array. Try to implement (write code for) a control structure that allows
you to repeat a task over many times. You will use this with other variables in order
to complete your task. You also need to write at least one line of code inside the
structure.

e Secondary Message - The task you are trying to achieve requires a loop to access
each element in the array. Write a for loop in your code. If you already have a loop,
you need at least one statement - a command followed by a ; in order for it to work
correctly.

Using the length of the List

¢ Primary Message - The variable myList is a parameter. This means another part of
parts of the program decide what is stored in it, and it may change every time code
is run. Use a variable in the loop combined with a property of myList in order to
determine the number of steps for the loop to take.

e Secondary Message - Use myList.length to determine the number of steps for the
loop to take.

Referencing Any Element From the List with [|

¢ Primary Message - The loop you wrote supports accessing each element in your array
(myList), yet you do not access the array myList within the loop. These components
must work together for the problem to be solved.

e Secondary Message - You must access myList[] within the context of the loop by
using your variable inside the [] (for example myList|i]).

Using the Loop Variable to Access

e Primary Message - The loop you wrote supports accessing each element in your array
(myList), yet you do not use the loop variable when accessing your array. These
components must work together for the problem to be solved.

154

suorn[og pue suordLoso(] XeJ\ pue Wng Iy 9[qr],

{

{Xew uanigex
{
‘[T]HdWeTOTUSA = Xew
F([T]OdWeTOTYSA>XRW) IT
}(++T UISUST " HINOTOTYSAST (=T 3UT)IO0F
 [0]DdWeT o TyeA=XeW JUT

{{ ‘xew uiniex
{
‘[1]2sTTdum = xeuw
([t]3stTdw > xew)jFrT
}(++T ‘y3dueT-3sTTAW >T {Q=T 3JUT)I0F
‘[0]2sTTdm = xew 3uT

uonn[og
} (DdWeTOTUeA[]
JuT)unuIxeputy Jut otrqnd |}(3STTAW[] AUT)WNUWIXERPUTI 3uT oTTqnd
uordrosa(g
JSITAW AR
“)SI[O} UL POI0)S D) JIN 1S0SIR] O} | -IR 9} Ul PAIO)S SON[RA WINWIXRUI) SUWINY
PUL "SO[OIUSA [RISASS JO D) JN 9Y) SUIRIUOD | -o1 pur Iojouwrered e se JSITAW Pa[[ed SIaq
OIym Aelre we soye) POYIOUW S, "MO[d(| -WNU JO ARIIR Ue S8R} PO 9], "MO[(
WNWIXRPUY POYRW 9} 999[dW0d osed[| WNWIXRNPUY POyl oY) 9)o[duod ased[J XRIN
{ {
‘{ums uIngex ‘ums uIniax
{ {
‘[T]swelT =+ ums ‘[1]3sTTdu =+ ums
}(++T (UIBUST SWOIT>T (=T JUT)I0F |} (++T ‘Uaduer 3sTTAU>T {Q=T 3UT)I0F
{0 = wns jurt {0 = wns 3jut
uornnog
}(swe3t[] Jur)wngputy 3utl otrTqnd }(3sTTAw[] 3jur)wngpury 3ut otrqnd
uordrIosa(J
3d1eoa1 91} uo
SW)T AYY [[® Jo (Wms) [ej0) 9Y) WINJel pue
puy 03 poylew ® 93LIA\ 3dI009I Sofes ' U0 Ael1re o[} Ul PaIO)s sonfeA 9y} [[® JO
Swe)T JO 901Id o) SUIRIU0D SWIL ARLIR O], | WNS o) WIN}SI PUR PUY 0} POYIOUL B dILIA wng
1X09U0)) AI109G IX0JUO)) [ROLIDWINY] | WI[QOIJ

155

Count Please complete the method countLessThan | Please complete the method countLessThan
below. The method takes an array of num- | below. The method takes an array of grades
bers called myList as a parameter and returns | from a midterm exam. Find the number of
the number of non-negative items(including | positive scores (greater than or equal to 0) less
0) less than the parameter value in the array | than the passing grade given.
myList.

Description
public int countLessThan(int []myList,| public int countLessThan(int []scores,
int value){ int passingGrade){
Solution
int count = O; int count=0;
for(int i=0; i< myList.length; i++){ for(int i=0; i<scores.length; i++){
if (myList[i] < = 0) if (scores[i] >=0 && scores[i] < value)
count++; count++
} }
return count,; return count,;
} }

Index Please complete the method indexOf below. | Please complete the method indexOf below
The method takes an array of numbers called | The method takes an array of office numbers as
myList as a parameter and returns the first | a parameter and returns the index of the first
index of the parameter value if it is contained | Office Number that matches the value idno if it
in the array. If it is not contained the method | is contained in the array. If it is not contained
should return -1. the method should return -1.

Description
public int index0f (int [lmyList, public int index0f (int []roomNumbers,
int value){ int idno){
Solution

for(int i=0; i<myList.length; i++){
if (myList[i] == value)
return i;

3

return -1;

}

for(int i=0;i<roomNumbers.length;i++){
if (roomNumbers[i] == value)
return i;

3

return -1;

}

Table A.2: Count and Index Descriptions and Solutions

156

e Secondary Message - Use your loop variable inside the [| after myList (for example
myList[i]).

Only Accessing the Current Element

e Primary Message - You are attempting to access a neighboring array element with
a +1. For this algorithm you should be able to correctly and efficiently implement
your code while only accessing one element at a time. Think about how you could
solve the problem only looking at one number from the list at a time.

e Secondary Message - Do not use a +1 in the [|]. Instead update your state variable
(what is keeping track of the answer through the problem) only for each individual
element.

Making A Comparison with an If

e Primary Message - The problem you are trying to solve requires that you only work
with SOME of the information in the array, not all if it. In order to accomplish this
you will need to select some of the information using a comparison of your code.
Think about how to make a comparison with each element to determine which ones
are relevant to the problem you are solving.

e Secondary Message - Write an if statement inside the loop to check for relevant items.

Utilizing an Element in the Comparison

e Primary Message - The problem you are trying to solve requires that you only work
with SOME of the elements in the array, not all of them. In order to accomplish this
you will need to check each individual element to see if it is relevant to the solution.
Think about how and where you would need to access each element in order to check
to see if it is useful.

e Secondary Message - Access each element inside the if statement by using the name
of the array and [] along with the loop control variable.

Initializing State Variable

e Primary Message - In order to solve your problem you need to maintain a particular
state in a variable this state will give you the answer you are seeking. You have not
correctly created or assigned a starting value to the state variable.

e Secondary Message - Create and initialize a variable before the loop.

Using the State Variable

e Primary Message - In order to solve your problem you need to maintain a particular
state in a variable this state will give you the answer you are seeking. With each

157

element in the array you need to update that state to reflect the changes required by
the current element.

e Secondary Message - Update your state variable within the loop in order to keep
track of required information.

Attempting Any Return

¢ Primary Message - The method you are writing requires that you return a value as
your answer. Look over your code carefully and decide at what point do you have
your final answer, and return that value.

e Secondary Message - After the loop has executed, type the word “return” and the
name of the variable that has the answer to the problem.

Correctly Placing the Return

e Primary Message - Your return statement is not in an appropriate place for the
algorithm, or you are missing a return statement at the end. If you place the return
too early in the code, any code that comes after it will not be executed. Check your
code, perhaps trace it with a few values to determine the correct place.

e Secondary Message - After the loop has executed, type the word “return” and the
name of the variable that has the answer to the problem.

158

Appendix B

Alignment Vectors Observed and
Number of Instances

This appendix contains a table with all of the observed alignment vectors with more than
20 observations and a count of the times they appeared in the large online study (Study 1
of Chapter 7). This is a more complete list of the vectors found in Table 5.6.

159

Alignment Vector | Count
11111-11-11-110 935
11111-00-11-110 515
11111-11-00-100 181
11111-11-11-111 144
11111-11-11-000 115
11111-11-00-110 83
11111-11-00-111 74
11001-00-11-000 67
11111-11-11-100 60
11111-10-11-110 54
11111-00-11-000 51
11001-10-11-110 50
10111-00-11-110 49
11001-10-11-000 46
11111-00-11-100 46
10001-00-00-000 40
11001-00-00-000 40
01111-00-11-110 39
10001-00-11-110 35
11001-00-00-110 35
11111-00-00-110 34
11111-00-00-100 28
00101-00-11-000 26
10111-11-11-110 23
10111-11-00-100 22
00000-00-00-100 20

Table B.1: Count of Alignment Vector Values from Online Study 1

160

Bibliography

1]
2]

[9]

Ap computer science a exam, free response questions. Accessed from the Web (Septem-
ber 2013), May 2010.

Beth Adelson. When novices surpass experts: The difficulty of a task may increase

with expertise. Journal of Experimental Psychology:Learning, Memory and Cognition,
10:483-495, 1984.

Hirotugu Akaike. A new look at the statistical model identification. IEEFE Transactions
on Automat, 19(6):716-723, 1974.

Christopher Alexander, S Ishikawa, and M Silverstein. Pattern languages. Center for
Environmental Structure, 2, 1977.

C. Areias and A. Mendes. A tool to help students to develop programming skills. Pro-
ceedings of the 2007 International Conference on Computer Systems and Technologies,
2007.

Owen Astrachan, Garrett Mitchener, Geoffrey Berry, and Landon Cox. Design pat-
terns: an essential component of cs curricula. SIGCSE Bull., 30:153-160, March 1998.

R.S. Baker, A. Corbett, K. Koedinger, and A. Wagner. Off-task behavior in the
cognitive tutor classroom: When students “game the system”. In Proceedings of the
ACM Conference on Computer-Human Interaction, CHI 2004, 2004.

R.S. Baker, J. Walonoski, N. Heffernan, I. Roll, A. Corbett, and K Koedinger. Why
students engage in " gaming the system” behavior in interactive learning environments.
Journal of Interactive Learning Research, 19(2):185-224, 2008.

Byron Weber Becker. Teaching csl with karel the robot in java. SIGCSE Bulletin,
33:50-54, February 2001.

[10] Yoav Bergner, Zhan Shu, and Alina A von Davier. Visualization and confirmatory

[11]

[12]

[13]

clustering of sequence data from a simulation-based assessment task. 2013.

J.B. Biggs and K.F. Collis. Fvaluating the Quality of Learning: The SOLO Tazonomy
(Structure of the Observed Learning Outcome). Academic Press, 1982.

Neil C.C. Brown and Amjad Altadmri. Investigating novice programming mistakes:
Educator beliefs vs. student data. In Proceedings of the Tenth Annual Conference on
International Computing Education Research, ICER 14, pages 43-50, New York, NY,
USA, 2014. ACM.

Jean-Marie Burkhardt, Francoise Détienne, and Susan Wiedenbeck. Mental represen-

161

[14]

[15]

[17]

[18]

[19]

[24]
[25]

[26]

[27]

28]

tations constructed by experts and novices in object-oriented program comprehension.

CoRR, abs/cs/0612018, 2006.

N. Charness. Memory for chess positions: Resistance to interference. Jounral of
Experimental Psychology: Human Learning and Memory, 2:641-653, 1976.

N Charness, R Krampe, and U Mayr. The role of practice and coaching in en-
trepreneurial skill domains: An International comparison of life-span chess skill ac-
quisition, pages 51-80. Erlbaum, 1996.

Michelene Chi, Miriam Bassok, Matthew Lewis, Peter Reimann, and Robert Glaser.
Self-explanations: How students study and use examples in learning to solve problems.
Cognitive Science, 13:145-182, 1989.

JA Cohen. A coefficient of agreement for nominal scales. Fducational and Psychological
Measurement, 70(4):213-220, 1960.

Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition
of procedural knowledge. User modeling and user-adapted interaction, 4(4):253-278,
1994.

Q. Cutts, S. Esper, M. Fecho, S. Foster, and B. Simon. The abstraction transistion tax-
onomy: developing desired learning outcomes through the lens of situated cognition.

ICER ’12: Proceedings of the ninth annual International conference on Computing
Education Research, pages 63-70, 2012.

Wanda P. Dann, Stephen Cooper, and Randy Pausch. Learning To Program with
Alice. Prentice Hall Press, Upper Saddle River, NJ, USA, 2 edition, 2008.

Paul Denny, Andrew Luxton-Reilly, and Beth Simon. Evaluating a new exam question:
Parsons problems. In Proceedings of the Fourth international Workshop on Computing
Education Research, pages 113-124. ACM, 2008.

Heidi C Dulay and Marina K Burt. Natural sequences in child second language ac-
quisitionl. Language learning, 24(1):37-53, 1974.

Stephen H Edwards. Rethinking computer science education from a test-first perspec-
tive. In Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 148-155. ACM, 2003.

Stephen H. Edwards. Using software testing to move students from trial-and-error to
reflection-in-action. SIGCSE Bull., 36(1):26-30, March 2004.

Dave Feinberg. A visual object-oriented programming environment. SIGCSE Bull.,
39(1):140-144, March 2007.

Mingyu Feng, Neil T Heffernan, and Kenneth R Koedinger. Predicting state test scores
better with intelligent tutoring systems: developing metrics to measure assistance
required. In Intelligent Tutoring Systems, pages 31-40. Springer, 2006.

Eric Fernandes and Amruth Kumar. A tutor on subprogram implementation. The
Journal of Computing Sciences in Colleges, 20:36-46, 2005.

Kathi Fisler, Guillaume Marceau, and Shriram Krishnamurthi. Measuring the effec-

162

[29]

tiveness of error messages designed for novice programmers. In Proceedings of the
Special Interest Group on Computer Science FEducation, 2011.

Michelle Friend and Robert Cutler. Efficient egg drop contests: How middle school
girls think about algorithmic efficiency. In Proceedings of the Ninth Annual Interna-

tional ACM Conference on International Computing Education Research, ICER 13,
pages 99-106, New York, NY, USA, 2013. ACM.

Cindy Hmelo-Silver and Merave Pfeffer. Comparing expert and novice understanding
of a complex system from the perspective of structures, behaviors, and functions.
Cognitive Science, 28:127-138, 2004.

[-Han Hsiao, Shuguang Han, Manav Malhotra, Hui Soo Chae, and Gary Natriello.
Survey sidekick: Structuring scientifically sound surveys. In Intelligent Tutoring Sys-
tems, pages 516—-522. Springer, 2014.

IEEE, editor. IEEE Standard Glossary of Software engineering Terminology, volume
610.12. IEEE Standard, 1990.

Petri Thantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppéla. Review of recent
systems for automatic assessment of programming assignments. In Proceedings of the
10th Kolv Calling International Conference on Computing Education Research, Koli
Calling ’10, pages 86-93, New York, NY, USA, 2010. ACM.

Matt Jadud. A first look at novice compilation behavior using bluej. Computer Science
Education, 15(1), 2005.

Matthew Johnson and Tiffany Barnes. Visualizing educational data from logic tutors.
In Proceedings of the 10th International Conference on Intelligent Tutoring Systems -
Volume Part 11, ITS'10, pages 233-235, Berlin, Heidelberg, 2010. Springer-Verlag.

W. Lewis Johnson and Elliot Soloway. Proust: Knowledge-based program understand-
ing. IEEE Transactions on Software, 1985.

GG Koch JR Landis. The measurement of observer agreement for categorical data.
Biometrics, 33(1):159-174, 1977.

Ken Koedinger and Vincent Aleven. Exploring the assistance dilemma in experiments
with cognitive tutors. Educational Psychology Review, 19(3):239-264, 2007.

M. Kolling. The problem of teaching object-oriented programming, part 1: Languages.
Journal of Object-Oriented Programming, 11:8-15, 1999.

Michael Kolling and John Rosenberg. An object-oriented program development envi-
ronment for the first programming course. SIGCSE Bull., 28(1):83-87, March 1996.

Amruth Kumar. Learning programming by solving problems. Proceedigns of IFIP
Working Group, Working Conference on Informatics Curricula, pages 152-164, 2002.

Rohit Kumar. Cross-domain performance of automatic tutor modeling algorithms. In
Workshop on Graph-Based Educational Data Mining.

H. Chad Lane and Kurt Vanlehn. Teaching the tacit knowledge of programming to
novices with natural language tutoring. Computer Science Education, 15:183-201,

163

[44]

[45]

[46]

[47]

[48]

2005.

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. Program
comprehension as fact finding. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ESEC-FSE 07, pages 361-370, New York, NY,
USA, 2007. ACM.

Nguyen-Thinh Le and Wolfgang Menzel. Constraint-based error diagnosis in logic
programming. In ICCE, pages 220227, 2005.

Nguyen-Thinh Le and Wolfgang Menzel. Using constraint-based modelling to describe
the solution space of ill-defined problems in logic programming. In Advances in Web
Based Learning—ICWL 2007, pages 367-379. Springer, 2008.

Marcia C. Linn and Michael J. Clancy. The case for case studies of programming
problems. Commun. ACM, 35(3):121-132, March 1992.

Raymond Lister. The neglected middle novice programmer: Reading and writing
without abstracting. In Proceedings of the 20th Annual Conference of the National
Aduvisory Committee on Computing Qualifications, 2007.

Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrom, Kate Sanders, Otto
Seppéld, Beth Simon, and Lynda Thomas. A multi-national study of reading and
tracing skills in novice programmers. SIGCSE Bull., 36:119-150, June 2004.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. Relationships
between reading, tracing and writing skills in introductory programming. In ICER "08:

Proceeding of the Fourth international Workshop on Computing Education Research,
pages 101-112, New York, NY, USA, 2008. ACM.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The scratch programming language and environment. Trans. Comput. Educ.,
10(4):16:1-16:15, November 2010.

G. Marcau, K. Fisler, and S. Krishnamurthi. Measuring the effectiveness of error
messages designed for novice programmers. SIGCSE’11, March 2011.

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz

Wilusz. A multi-national, multi-institutional study of assessment of programming
skills of first-year cs students. SIGCSE Bull., 33:125-180, December 2001.

A. Mitrovic, K. Koedinger, and B. Martin. A comparative analysis of cognitive tutor-
ing and constraint-based modeling. Lecture Notes in Computer Science, 2702:313-322,
2003.

Briana B. Morrison. Using cognitive load theory to improve the efficiency of learning
to program. In Proceedings of the Ninth Annual International ACM Conference on
International Computing Education Research, ICER 13, pages 183-184, New York,
NY, USA, 2013. ACM.

164

[56]

[57]

[58]

= v
=)

o)
S

[62]
[63]

[64]

Orna Muller. Pattern oriented instruction and the enhancement of analogical rea-
soning. In Proceedings of the first international workshop on Computing education
research, ICER ’05, pages 57-67, New York, NY, USA, 2005. ACM.

Laurie Murphy, Renee McCauley, and Sue Fitzgerald. ’explain in plain english’ ques-
tions: Implications for teaching. Proceedings of the fourty-third ACM Special Interest
Group on Computer Science Education, 2012.

E. Odekirk-Hash and J. Zachary. Automated feedback on programs means students
need less help from teachers. Proceedings of the thirty-second SIGCSE Technical Sym-
posium on Computer Science Education, 2001.

Nick Parlante. Codingbat: Practice java and python problems.
Nick Parlante. Codingbat:code practice. Website, 2011.

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens
Bennedsen, Marie Devlin, and James Paterson. A survey of literature on the teaching
of introductory programming. In ACM SIGCSE Bulletin, volume 39, pages 204-223.
ACM, 2007.

Frank Pfenning. Teaching imperative programming with contracts at the freshmen
level. Accessed from http://www.cs.cmu.edu/ fp/papers/picll.pdf 7/11/2014.

P. Pirolli and M. Recker. Learning strategies and transfer in the domain of program-
ming. Cognition and Instruction, 12:235-275, 1994.

Leo Porter, Daniel Zingaro, and Raymond Lister. Predicting student success using fine
grain clicker data. In Proceedings of the Tenth Annual Conference on International
Computing Education Research, ICER ’14, pages 51-58, New York, NY, USA, 2014.
ACM.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. Statically
checking api protocol conformance with mined multi-object specifications. In Proceed-

ings of the 34th International Conference on Software Engineering, ICSE ’12, pages
925-935, Piscataway, NJ, USA, 2012. IEEE Press.

Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. Self-efficacy and
mental models in learning to program. pages 171-175, 2004.

Graham Rawlinson. The significance of letter position in word recognition. Ph.D.
Thesis, Nottingham University, 1976.

Kelly Rivers and Kenneth Koedinger. Automatic generation of programming feedback:
A data driven approach. The First Workshop on AI Supported Education for Computer
Science (AIEDCS 2013), 2013.

W. Sack and E. Soloway. From meno to proust to chiron: Ai design as iterative
engineering: Intermediate results are important! Proceedings of the Invited Workshop
on Computer-Based Learning Environments, 1998.

Dean Sanders and Brian Dorn. Classroom experience with jeroo. J. Comput. Sci.
Coll., 18(4):308-316, April 2003.

165

[71]

[72]

73]

[79]
[80]

[81]

[82]

Dean Sanders and Brian Dorn. Jeroo: a tool for introducing object-oriented program-
ming. SIGCSE Bull., 35:201-204, January 2003.

Carsten Schulte. Block model: an educational model of program comprehension as a
tool for a scholarly approach to teaching. Proceedings of the Fourth Annual Workshop
on Computer Science Education, 2008.

Carsten Schulte, Teresa Busjahn, Tony Clear, James Paterson, and Ahmad
Taherkhani. An introduction to program comprehension for computer science edu-
cators. In ITiCSE ’10: Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education, pages 108-112, New York, NY, USA,
2010. ACM.

Beth Simon, Dennis Bouvier, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney,
and Kate Sanders. Common sense computing(episode 4): Debugging. Computer
Science Education, 18:117-133, 2008.

Beth Simon, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney, and Kate Sanders.
Commonsense computing: what students know before we teach (episode 1: sorting). In

ICER ’06: Proceedings of the second international workshop on Computing education
research, pages 29-40, New York, NY, USA, 2006. ACM.

Elliot Soloway. Learning to program = learning to construct mechanisms and expla-
nations. Communications of the ACM, 29:850-858, 1986.

James Spohrer, Elliot Soloway, and Edgar Pope. A goal/plan analysis of buggy pascal
programs. Human Computer Interaction, 1:463-207, 1985.

LA Sudol-DeLyser; S. Carver;M. Stehlik. Learning looping: The relationship between
implicit language and code. In Proceedings of American Education Research Associ-
ation Annual Conference, 2013.

Brian Stoler. A framework for building pedagogic java programming environments.
Master’s thesis, Rice University, 2002.

Leigh Ann Sudol. Teaching students to loop, the effect of worked examples. Edbag
Seminar, 2010.

L. A. Sudol-DeLyser, K. Rivers, and T. Harris. Calculating probabilistic distance
to solution in a complex problem solving domain. &th International Conference on
Educational Data Mining, pages 144-147, 2012.

L.A. Sudol-DeLyser, M. Stehlik, and S. Carver. Code comprehension problems as
learning events. Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, 2012.

Leigh Ann Sudol-DeLyser and Jonathan Steinhart. Factors impacting novice code
comprehension in a tutor for introductory computer science. 4 2011.

Codecademy Learning System. Code academy online instructional system. Webpage,
December 2014.

Allison Tew and Mark Guzdial. Devoping a validated assessment of fundamental csl
concepts. Proceedings of the 41st ACM Technical Symposium on Computer Science

166

[89]

Education, 2010.

John Truscott. The case against grammar correction in 12 writing classes. Language
learning, 46(2):327-369, 1996.

Salvatore Valenti, Francesca Neri, and Alessandro Cucchiarelli. An overview of current
research on automated essay grading. Journal of Information Technology Education:
Research, 2(1):319-330, January 2003.

Anne Venables, Grace Tan, and Raymond Lister. A closer look at tracing, explaining
and code writing skills in the novice programmer. In ICER °09: Proceedings of the
fifth international workshop on Computing education research workshop, pages 117—
128, New York, NY, USA, 2009. ACM.

Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P. K. Ajith Kumar, and Christine Prasad. An australasian study of reading and
comprehension skills in novice programmers, using the bloom and solo taxonomies. In
Proceedings of the 8th Austalian conference on Computing education - Volume 52, ACE
‘06, pages 243-252, Darlinghurst, Australia, Australia, 2006. Australian Computer
Society, Inc.

Jeannette Wing. Computational thinking. J. Comput. Sci. Coll., 24(6):6-7, June
20009.

Jeannette M. Wing. Computational thinking. Communications of the ACM, 49(3):33—
35, 2006.

Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P Hudepohl,
and Mladen A Vouk. On the value of static analysis for fault detection in software.
Software Engineering, IEEE Transactions on, 32(4):240-253, 2006.

167

