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Abstract

The next-generation Airborne Collision Avoidance System (ACAS X) is intended to be installed
on all large aircraft to give advice to pilots and prevent mid-air collisions with other aircraft. It is
currently being developed by the Federal Aviation Administration (FAA). In this paper we deter-
mine the geometric configurations under which the advice given by ACAS X is safe under a precise
set of assumptions and formally verify these configurations using hybrid systems theorem proving
techniques. We conduct an initial examination of the current version of the real ACAS X system
and discuss some cases where our safety theorem conflicts with the actual advisory given by that
version, demonstrating how formal, hybrid approaches are helping ensure the safety of ACAS X.
Our approach is general and could also be used to identify unsafe advice issued by other collision
avoidance systems or confirm their safety.





1 Introduction
With the growing air traffic, the airspace becomes ever more crowded and the risk of airborne
collisions between aircraft increases. In the 1970s, after a series of mid-air collisions, the Fed-
eral Aviation Administration (FAA) decided to develop an onboard collision avoidance system,
the Traffic Alert and Collision Avoidance System TCAS. This program has had great success,
preventing many mid-air collisions over the years. Some accidents still happened however, for
example a collision over Überlingen in 2002, due to conflicting instructions between TCAS and
the air traffic controller. Airspace management will evolve significantly over the next decade with
the introduction of the next-generation air traffic management system, creating new requirements
for collision avoidance and requiring a costly redesign of TCAS. To meet these new requirements,
the FAA has decided to develop a new system, the Next-Generation Airborne Collision Avoidance
System, known as ACAS X [Fed11, HKO14, KHC12].

Like TCAS, ACAS X avoids collisions by giving vertical guidance to an aircraft’s pilot. A
typical scenario involves two aircraft, the ownship where ACAS X is installed, and another aicraft
called intruder that is at risk of colliding with the ownship. The Collision Avoidance community
defines a Near Mid-Air Collision (NMAC) when the two aircraft are within hp = 500 ft horizontally
and rp = 100 ft vertically [KHC12]. ACAS X is designed to avoid such NMACs. This describes
a volume centered around the ownship, shaped like a hockey puck of radius rp and half-height hp,
such that an NMAC occurs if the intruder enters that puck.

In order to be accepted by pilots and thus operationally suitable, ACAS X needs to strike a
balance between giving advice that helps pilots avoid collisions as needed yet minimizing inter-
ruptions to pilots’ normal activities. These goals oppose each other, and cannot both be perfectly
met in the presence of uncertainty like undetermined pilot and intruder aircraft behavior, for ex-
ample. This paper focuses on precisely characterizing the circumstances in which ACAS X gives
advice that is safe. An integral part of the ACAS X development process, this work is intended
to help ensure that the design of ACAS X is correct, potentially by identifying ways it should be
adjusted.

1.1 Airborne Collision Avoidance System ACAS X
In order to prevent an NMAC with other aircraft, ACAS X uses various sensors to determine the
position of the ownship, as well as the positions of any intruder [Fed14a]. It computes its estimate
of the best pilot action by linearly interpolating a precomputed table of actions that optimize a
Markov Decision Process. If appropriate, ACAS X alerts the pilot issuing an advisory to avoid
potential collisions [Fed14b] through a visual display in the cockpit and a voice message.

An advisory is a request to the pilot of the ownship to alter or maintain her vertical speed.
ACAS X advisories are strictly vertical, no advisories request the ownship to turn. ACAS X
can also communicate Clear of Conflict (COC) to the pilot when no action needs to be taken.
Besides COC, ACAS X can generate any of 16 advisories, summarized in Table 1. For example,
the advisory Do Not Climb (DNC) requests the pilot to not climb, and the advisory Climb 1500
(CL1500) requests the pilot to start a climb at more than 1500 ft/min. Other advisories include
Maintain Climb (MCL) and Subsequent Climb 2500 (SCL2500), which always follows a previous
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Table 1: Advisories and their modeling variables

ACAS X Specification [KC10] Our model
Vertical Rate Range Strength Delay (s)

Advisory Min (ft/min) Max (ft/min) ar dp w ḣf (ft/min)
DNC2000 −∞ +2000 g/4 5 −1 +2000
DND2000 −2000 +∞ g/4 5 +1 −2000
DNC1000 −∞ +1000 g/4 5 −1 +1000
DND1000 −1000 +∞ g/4 5 +1 −1000
DNC500 −∞ +500 g/4 5 −1 +500
DND500 −500 +∞ g/4 5 +1 −500
DNC −∞ 0 g/4 5 −1 0
DND 0 +∞ g/4 5 +1 0
MDES −∞ current g/4 5 −1 current
MCL current +∞ g/4 5 +1 current
DES1500 −∞ −1500 g/4 5 −1 −1500
CL1500 +1500 +∞ g/4 5 +1 +1500
SDES1500 −∞ −1500 g/3 3 −1 −1500
SCL1500 +1500 +∞ g/3 3 +1 +1500
SDES2500 −∞ −2500 g/3 3 −1 −2500
SCL2500 +2500 +∞ g/3 3 +1 +2500
COC −∞ +∞ Not applicable

advisory. To comply with an advisory, the pilot needs to adjust her vertical rate to match the
corresponding vertical rate range specified in Table 1. Based on previous research [KC10], the
pilot is assumed to do so using a vertical acceleration of strength at least ar starting after a delay
of at most dp after the advisory has been announced by ACAS X.

At the heart of the system is the ACAS X table whose domain describes a grid of possible
configurations for the current state, and whose range is a set of scores for each action that can be
taken [KC10, KM13]. The table is obtained from a Markov Decision Process (MDP) approximat-
ing the dynamics of the system by a discretization on that grid, and optimized using dynamic pro-
gramming to maximize the combined value of events over all future paths for each action [KC10].
States representing a near mid-air collision (NMAC) are given large negative weights and actions
are given small negative weights. The policy is then to choose the actions with highest value from
a multilinear interpolation of grid points in this table. ACAS X uses this table, along with some
heuristics, to determine the best action to take for the geometry in which it finds itself.

1.2 Identifying Formally Verified Safe Regions
ACAS X involves both discrete advisories to the pilot and continuous dynamics of aircraft, it thus
seems natural to formally verify it using hybrid systems. However the complexity of ACAS X, and
in particular the core use of a large lookup table—defining 29,212,664 interpolation regions within
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a 5-dimensional state-space—makes the direct use of hybrid systems verification techniques in-
tractable. Our approach is different. It identifies safe regions in the state space of the system where
the current positions and velocities of the aircraft ensure that a particular advisory, if followed,
prevents all possible NMACs. Then it compares these regions to the configurations where the
ACAS X table returns this same advisory.

Our results provide independent characterizations of the ACAS X behavior to provide a clear
and complete picture of its performance. Our method can be used by the ACAS X development
team in two ways. It provides a mathematical proof—with respect to a model—that ACAS X is
absolutely safe for some configurations of the aircraft. Additionally, when ACAS X is not safe, it
is able to identify unsafe or unexpected behaviors and suggests ways of correcting them.

Our approach of formally deriving safe regions then comparing them to the behavior of an
industrial system is, as far as we are aware, the first of its kind in the formal verification of hybrid
systems. The approach may be valuable for verifying or assessing properties of other systems with
similar complexities, or also using large lookup tables, which is a common challenge in practice.
Finally, the constraints we identified for safety are fairly general and could be used to analyze other
collision avoidance systems.

The paper is organized as follows. We first create a simple, independent model of aircraft
dynamics using continuous state variables and determine the safe regions for which an advisory is
absolutely safe within that model. After an overview of the method in Sect. 2, we start with a simple
two-dimensional model assuming immediate reaction of the pilot in Sect. 3. We extend the model
to account for the reaction time of the pilot in Sect. 4, and extend the results to a three-dimensional
model in Sect. 5. In Sect. 6, we conduct an initial analysis of ACAS X whereby we compare the
advisory recommended by a core component of ACAS X with our safe regions, identifying the
circumstances where safety of those ACAS X advisories is guaranteed within our model.

2 Overview of the ACAS X Modelling Approach
To construct a safe region of an advisory for an aircraft, imagine following all allowable trajectories
of the ownship relative to the intruder, accounting for every possible position of the ownship and
its surrounding puck at every future moment in time. The union of all such positions of the puck
describes a potentially unsafe region since for each point there exists a trajectory of the ownship
that may cause an NMAC. If the intruder is outside this set, then no NMAC is possible. Dually,
the safe region describes a zone where no circumstances of the encounter can lead to an NMAC in
the model.

Fig. 1 represents an example of a head-on encounter and its associated safe region for the
advisory CL1500, projected in a vertical plane containing both aircraft.1 Fig. 1 is plotted in a
frame fixed to the intruder and centered at the initial position of the ownship. At the beginning of
the encounter, the ownship starts at the origin and the intruder starts at some other location; as time
progresses, the ownship traces out a trajectory following the red curve. The intruder remains fixed
in this reference frame. The ownship, surrounded by the puck, starts on the left at position number

1Throughout this paper, the aircraft drawings are courtesy of http://sweetclipart.com
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Figure 1: Trajectory of ownship (red) and safe region for the intruder (green), immediate response

1. It first accelerates vertically with g/4 until reaching the desired vertical velocity of +1500 ft/min
at position number 3, then climbs at +1500 ft/min, thus respecting the specification of Table 1. The
green safe region indicates starting points in the state space for which the intruder will remain safe
for the entire duration of the encounter. Note that there is no safe region above the trajectory, since
according to the specification of ACAS X in Table 1, the ownship could accelerate vertically at
more than g/4 or past +1500 ft/min.

2.1 Model of Dynamics
Let us consider an encounter between two planes—ownshipO and intruder I , as portrayed in Fig. 2.
Following the notations of [KC10] and the ACAS X community, let r be the horizontal distance
between the aircraft, and h the relative height of the intruder with respect to the ownship. We as-
sume that the relative horizontal velocity ~rv of the intruder with respect to the ownship is constant
throughout the encounter, so from a top view, the planes are both following straight-line trajecto-
ries. (They do not have to be coming straight at each other, but they are not allowed to turn left or
right during the encounter.) Let θv be the non-directed angle between the relative speed ~rv of the
aircraft and the line segment ~r. In the vertical dimension, we assume that the ownship’s vertical
velocity ḣ0 can vary at any moment, while the intruder’s vertical velocity ḣ1 is fixed throughout
the encounter: the intruder has no vertical acceleration. Moreover, we assume that the magnitude
of the vertical acceleration of the ownship cannot exceed ad in absolute value. Finally, recall that
an NMAC is defined as the two aircraft being within rp horizontally and hp vertically.

For a typical encounter, r varies between 0 nmi and 7 nmi,2 h between −4, 000 ft and 4, 000 ft,
rv between 0 kts and 1, 000 kts, and ḣ0 and ḣ1 between −5, 000 ft/min and +5, 000 ft/min. The
acceleration ad is usually g/2, where g is Earth’s gravitational acceleration. The NMAC puck has
radius rp = 500 ft and half-height hp = 100 ft.

2We use units most common in the aerospace community, even though they are not part of the international system,
including nautical miles nmi (1, 852 metres), knots kts (nautical miles per hour), feet ft (0.3048 meter) and minutes
min (60 seconds).
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Figure 2: Top view (left) and side view (right) of an encounter

2.2 Model of Advisories
Recall that ACAS X prevents an NMAC by giving an advisory to the pilot of the ownship. From
Table 1 every advisory, except the clear of conflict (COC), has a vertical rate range of the form
(−∞, ḣf ] or [ḣf ,+∞) for some vertical rate ḣf , which we call the target vertical velocity. We
therefore model any advisory by its corresponding target vertical velocity ḣf , and a binary vari-
able w, whose value is −1 if the vertical rate range of the advisory is (−∞, ḣf ] and +1 if it is
[ḣf ,+∞). Note that this symbolic encoding makes it possible to represent much more advisories
and is therefore robust to changes in the set of advisories that ACAS X allows.

Following the specification of ACAS X [KC10], we assume that the ownship pilot complies
with each advisory within dp seconds, and that they accelerate with at least acceleration ar to bring
the relative vertical velocity in compliance with the advisory.

3 Safe Region for an Immediate Pilot Response
To simplify the presentation, we present a simplified version of the dynamics from Sect. 2.1 in this
section. We then give a hybrid model for the system and prove its safety.

3.1 Model
In this section, we assume that the ownship and intruder are flying head-on (θv = 180◦). We also
assume that the pilot reacts immediately to any advisory (dp = 0 s), and that the advisory COC is
not allowed. The last assumptions will be relaxed in Sect. 4, and the first one in Sect. 5. Finally,
we assume that r is a scalar: if r ≥ 0 then the ownship is flying towards the intruder, otherwise it
is flying away from it.

Since we assume that the ownship and intruder are flying head-on with straight line trajectories,
there exists a vertical plane containing both their trajectories. In this plane, the puck becomes a
rectangle centered around the ownship, of width 2rp and height 2hp, and there is an NMAC if and
only if the intruder is in this rectangle (Fig. 1).
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3.2 Differential Dynamic Logic and KeYmaera
We model our system using Differential Dynamic Logic dL [Pla08, Pla10, Pla12], a logic for rea-
soning about hybrid programs. dL allows discrete assignments, control structures, and execution
of differential equations. dL is implemented in the theorem prover KeYmaera [PQ08], that we use
to verify our safe regions with respect to our models. Our KeYmaera models and proofs can be
found at http://www.cs.cmu.edu/∼jeannin/acasx.zip, and statistics in Appendix A.

The dL formula for the model that we use in this section is given in Eq. (1).

1 hp > 0 ∧ rp ≥ 0 ∧ rv ≥ 0 ∧ ar > 0 ∧ (w = −1 ∨ w = 1) ∧ Cimpl(r, h, ḣ0)→
2 [( ?true ∪ ( ḣf := ∗; (w := −1 ∪ w := 1); ?Cimpl(r, h, ḣ0); advisory := (w, ḣf ) );

3 a := ∗; {r′ = −rv, h′ = −ḣ0, ḣ′0 = a & wḣ0 ≥ wḣf ∨ wa ≥ ar}
4 )∗] (|r| > rp ∨ |h| > hp)

(1)

This formula of the form p→ [α]q says all executions of program α starting in a state satisfying
logical formula p end up in a state satisfying q. It is akin to the Hoare triple {p}α{q} with precon-
dition p and postcondition q. The precondition in Eq. (1) imposes constraints on several constants,
as well as the formula Cimpl(r, h, ḣ0) (defined below) that forces the intruder to be in a safe region
for an initial advisory (w, ḣf ). We cannot guarantee safety if the intruder starts initially in an
unsafe region. The postcondition encodes absence of NMAC. Line 2 expresses the action of the
ACAS X system. The nondeterministic choice operator ∪ expresses that the system can either
continue with the same advisory by doing nothing—just testing ?true—this ensures it always has
a valid choice and cannot get stuck. Otherwise it can choose a new advisory (w, ḣf ) that passes
the safety condition Cimpl(r, h, ḣ0). Line 3 expresses the action of the ownship, first nondetermin-
istically choosing an arbitrary acceleration (a := ∗) then following the continuous dynamics. This
line characterizes the evolutions of the variables r, h and ḣ0 by a differential equation, and requires
(using the operator &) that the ownship evolves towards its target vertical velocity ḣf at acceler-
ation ar (wa ≥ ar), unless it has already reached it (wḣ0 ≥ wḣf ). Finally, the star ∗ on line 4
indicates that the program can be repeated any number of times, allowing the system to go through
several advisories.

3.3 Implicit Formulation of the Safe Region
As explained in Sect. 2, we use a frame fixed to the intruder and centered at the original position
of the ownship (see Fig. 1).

First case: if w = +1 and ḣf ≥ ḣ0. Fig. 1 shows, in red, a possible trajectory of an ownship
following exactly the requirements of ACAS X. This trajectory is the nominal trajectory of the
ownship and will be denoted by N . The pilot reacts immediately, and the ownship starts accel-
erating vertically with acceleration ar until reaching the target vertical velocity ḣf—describing a
parabola—then climbs at vertical velocity ḣf along a straight line. Horizontally, the relative ve-
locity rv remains constant. The ownship position (rt, ht) along the nominal trajectory N is given
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by:

(rt, ht) =


(
rvt ,

ar
2
t2 + ḣ0t

)
if 0 ≤ t <

ḣf−ḣ0

ar
(a)(

rvt , ḣf t− (ḣf−ḣ0)2

2ar

)
if ḣf−ḣ0

ar
≤ t (b)

(2)

Recall that in the ACAS X specification, the ownship accelerates with vertical acceleration at
least ar, then continues at vertical velocity of at least ḣf . Therefore all possible future positions
of the ownship are above the red nominal trajectory. An intruder is safe if it is always to the side
or under any puck centered on a point of the nominal trajectory N , or in other words, if: for all
(rt, ht) along the nominal trajectory N of the ownship, the intruder (r, h) is either strictly to the
right or to the left of the puck (|r − rt| > rp), or it is under the puck (h− ht < −hp). That is,

∀t.∀rt.∀ht.(rt, ht) ∈ N ⇒ |r − rt| > rp ∨ h− ht < −hp (3)

We call this formulation the implicit formulation of the safe region. It does not give explicit equa-
tions for the safe region border, but expresses them instead implicitly with respect to the nominal
trajectory.

Generalization. The reasoning above is generalized to the case where ḣf < ḣ0, and symmet-
rically to the case w = −1. The most general implicit formulation of the safe region is Cimpl in
Fig. 3.

Theorem 1 (Correctness of implicit safe regions). The dL formula given in Eq. (1) is valid. That
is as long as the advisories obey formula Cimpl there will be no NMAC.

3.4 Explicit Formulation of the Safe Region
The implicit formulation of the safe region gives an intuitive understanding of where it is safe for
the intruder to be. Because it still contains quantifiers, its use comes at the extra cost of eliminating
the quantifiers. In this section we derive a quantifier-free explicit formulation of the safe region.
We show that both formulations are equivalent in our setting. As for the implicit formulation, we
derive the equations for one representative case before generalizing them.

First case: if w = +1, rv > 0, ḣ0 < 0 and ḣf ≥ 0. We are in the case shown in Fig. 1 and
described in details above. The nominal trajectory N is given by Eq. (2)(a) and Eq. (2)(b). The
boundary of the (green) safe region in Fig. 1 is drawn by either the bottom left hand corner, the
bottom side or the bottom right hand corner of the puck. This boundary can be characterized by a
set of equations:

• positions left of the puck’s initial position (r < −rp) are in the safe region;
• then the boundary follows the bottom left hand corner of the puck as it is going down the

parabola of Eq. (2)(a); therefore for −rp ≤ r < −rp − rvḣ0

ar
, the position (r, h) is safe if and

only if h < ar
2r2v

(r + rp)
2 + ḣ0

rv
(r + rp)− hp;
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Implicit formulation

A(t, ht, ḣ0) ≡

(
0 ≤ t <

max(0, w(ḣf − ḣ0))

ar
∧ ht =

war
2

t2 + ḣ0t

)

∨

(
t ≥

max(0, w(ḣf − ḣ0))

ar
∧ ht = ḣf t−

wmax(0, w(ḣf − ḣ0))
2

2ar

)
Cimpl(r, h, ḣ0) ≡ ∀t.∀rt.∀ht.

(
rt = rvt ∧A(t, ht, ḣ0)⇒ (|r − rt| > rp ∨ w(h− ht) < −hp)

)
Explicit formulation

case1(r, ḣ0) ≡ −rp ≤ r < −rp −
rv min(0, wḣ0)

ar

bound1(r, h, ḣ0) ≡ wr2vh <
ar
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

case2(r, ḣ0) ≡ −rp −
rv min(0, wḣ0)

ar
≤ r ≤ rp −

rv min(0, wḣ0)

ar

bound2(r, h, ḣ0) ≡ wh < −min(0, wḣ0)
2

2ar
− hp

case3(r, ḣ0) ≡ rp −
rv min(0, wḣ0)

ar
< r ≤ rp +

rv max(0, w(ḣf − ḣ0))

ar

bound3(r, h, ḣ0) ≡ wr2vh <
ar
2
(r − rp)

2 + wrvḣ0(r − rp)− r2vhp

case4(r, ḣ0) ≡ rp +
rv max(0, w(ḣf − ḣ0))

ar
< r

bound4(r, h, ḣ0) ≡ (rv = 0) ∨
(
wrvh < wḣf (r − rp)−

rv max(0, w(ḣf − ḣ0))
2

2ar
− rvhp

)
case5(r, ḣ0) ≡ −rp ≤ r < −rp +

rv max(0, w(ḣf − ḣ0))

ar

bound5(r, h, ḣ0) ≡ wr2vh <
ar
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

case6(r, ḣ0) ≡ −rp +
rv max(0, w(ḣf − ḣ0))

ar
≤ r

bound6(r, h, ḣ0) ≡ (rv = 0 ∧ r > rp)

∨
(
wrvh < wḣf (r + rp)−

rv max(0, w(ḣf − ḣ0))
2

2ar
− rvhp

)
Cexpl(r, h, ḣ0) ≡

(
wḣf ≥ 0⇒

4∧
i=1

(casei(r, ḣ0)⇒ boundi(r, h, ḣ0))

)

∧

(
wḣf < 0⇒

6∧
i=5

(casei(r, ḣ0)⇒ boundi(r, h, ḣ0))

)

Figure 3: Implicit and explicit formulations of the safe region for an immediate response
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• following this, the boundary is along the bottom side of the puck as it is at the bottom of the
parabola of Eq. (2)(a); therefore for −rp − rvḣ0

a
≤ r ≤ rp − rvḣ0

ar
, the position (r, h) is in the

safe region if and only if h < − ḣ2
0

2ar
− hp;

• then the boundary follows the bottom right hand corner of the puck as it is going up the
parabola of Eq. (2)(a); therefore for −rp ≤ r < −rp − rvḣ0

ar
, the position (r, h) is safe if and

only if h < ar
2r2v

(r − rp)2 + ḣ0

rv
(r − rp)− hp;

• finally the boundary follows the bottom right hand corner of the puck as it is going up the
straight line of Eq. (2)(b); therefore for rp +

rv(ḣf−ḣ0)

ar
< r, the position (r, h) is in the safe

region if and only if h < ḣf

rv
(r − rp)− (ḣf−ḣ0)2

2ar
− hp.

Generalization. The general case is given in the formula Cexpl of Fig. 3. The cases 1-4 and their
associated bounds are for the case wḣf ≥ 0, whereas cases 5 and 6 and associated bounds are
for wḣf < 0. We use KeYmaera to formally prove that this explicit safe region formulation is
equivalent to its implicit counterpart.

Lemma 2 (Correctness of explicit safe regions). If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0 and ar > 0,
then conditions Cimpl(r, h, ḣ0) and Cexpl(r, h, ḣ0) are equivalent.

4 Safe Region for a Delayed Pilot Response
We generalize the model of Sect. 3 to account for a non-deterministic, non-zero pilot delay, and for
periods of time where the system does not issue an advisory (i.e., COC).

4.1 Model
In this section, we still assume that the ownship and intruder are flying head-on (θv = 180◦). We
use the same conventions as in Sect. 3 for r and rv. To model the pilot reaction delay, we add
an initial period of time dp to our trajectory where the ownship accelerates non-deterministically
(within limits) in the vertical direction. We derive the safe regions by considering all possible
positions of the ownship’s puck in all possible trajectories that might evolve in the encounter. We
also use this delay to reason about the safety of the system displaying COC; for this to be safe,
ACAS X has to be able to generate a safe advisory after a time d`, corresponding to the system
delay. This corresponds to finding a safe advisory with a delay equal to the system delay plus the
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maximum pilot’s delay, i.e. dp + d`.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ ar > 0 ∧ ad ≥ 0 ∧ dp ≥ 0 ∧ d` ≥ 0

2 ∧(w = −1 ∨ w = 1) ∧Dimpl(r, h, ḣ0)→
3 [(?true ∪
4 (ḣf := ∗; (w := −1 ∪ w := 1);

5 (d := dp; advisory := (w, ḣf ) ∪ d := dp + d`; advisory := COC); ?Dimpl(r, h, ḣ0));
6 a := ∗; ?(wa ≥ −ad); t` := 0;

7 {ṙ = −rv, ḣ = −ḣ0, ḧ0 = a, ḋ = −1, ṫ` = 1 &

8 (t` ≤ d`) ∧ (d ≤ 0→ wḣ0 ≥ wḣf ∨ wa ≥ ar)}
9 )∗] (|r| > rp ∨ |h| > hp)

(4)

We modify the model of Eq. (1) to capture these new ideas, and obtain the model of Eq. (4).
The structure, precondition (lines 1 and 2) and postcondition (line 9) are similar. The clock d, if
positive, represents the amount of time until the ownship pilot must respond to the current advisory
to remain safe. Lines 3 to 5 represent the actions of the ACAS X system. As before, the system
can continue with the same advisory (?true). Otherwise it can select a safe advisory (w, ḣf ) to
be applied after at most delay dp; or it can safely remain silent, displaying COC, if it knows an
advisory (w, ḣf ) that is safe if applied after delay dp + d`. In line 6, the pilot non-deterministically
chooses an acceleration, within some limit. The set of differential equations in line 7 describes
the system’s dynamics, and the conditions in line 8 use the clock t` to ensure that continuous time
does not evolve longer than d` without a system response. Those conditions also ensure that when
d ≤ 0 the pilot starts complying with the advisory. The model is structured so that the pilot can
safely delay responding to an advisory for up to dp, and to an advisory associated with COC for up
to dp + d`. Because of the loop in our model (line 9), the safety guarantees of this theorem apply
to encounters whose advisories change as the encounter evolves, encounters with periods of no
advisory, and encounters where the pilot exhibits a range of non-deterministic behavior and delay.

In the rest of the section we use the same approach as in Sect. 3: we first derive an implicit
formulation, then an equivalent explicit formulation of the safe region, and prove that the safe
region guarantees that the intruder cannot cause an NMAC.

4.2 Formulations of the Safe Region
As in Sect. 3.3, let us place ourselves in the referential centered on the current position of the own-
ship and where the intruder is fixed, and let us first assume that the ownship receives an advisory
(w, ḣf ) such that w = +1, and that d ≥ 0. We focus on the period of the reaction time of the pilot,
which we henceforth call delay. During the delay, the ownship can take any vertical acceleration
less than ad in absolute value, therefore its nominal trajectoryNd is to accelerate the opposite way
of the advisory, at acceleration −ad. Horizontally, its speed is constant at rv. It thus describes a
delay parabola, in red on Fig. 4, and its position (rt, ht) along the nominal trajectory for 0 ≤ t < d

is given by (rt, ht) =
(
rvt,−ad

2
t2 + ḣ0t

)
.

After the delay, i.e., after time d, the nominal trajectory Nd is the same as a nominal trajectory
N from Sect. 3, translated by time d and by its position at time d given by rd = rt(d) and hd =

10



Figure 4: Trajectory of the ownship (red) and safe region for the intruder (green), delayed response

ht(d), and starting with vertical velocity ḣd = ḣ0 − add. As in Sect. 3.3, we can now express the
implicit formulation of the safe region:

∀t.∀rt.∀ht.(rt, ht) ∈ Nd ⇒ |r − rt| > rp ∨ h− ht < −hp

Symmetrically, the reasoning of this section extends to the case where w = −1. Moreover, we
can handle cases beyond the reaction time of the pilot where d < 0 by replacing d by max(0, d).
The generalized implicit formulation of the safe region is given as Dimpl in Fig. 5. Note that it
involves the expression A(t−max(0, d), ht−hd, ḣd) from Fig. 3 capturing the implicit safe region
of Sect. 3.3 translated by time max(0, d), vertical height hd, and starting at vertical speed ḣd. It is
proved correct in KeYmaera.

Theorem 3 (Correctness of delayed safe regions). The dL formula given in Eq. (4) is valid. That
is as long as the advisories obey formula Dimpl there will be no NMAC.

Similarly as in Sect. 4, we determine an explicit formulation of the safe region, called Dexpl in
Fig. 5 based on Fig. 3, and prove it correct in KeYmaera.

Lemma 4 (Correctness of delayed explicit safe regions). If w = −1 or w = +1, rp ≥ 0,
hp > 0, rv ≥ 0, ar > 0, ad ≥ 0, dp ≥ 0 and d` ≥ 0 then the two conditions Dimpl(r, h, ḣ0)
and Dexpl(r, h, ḣ0) are equivalent.

5 Reduction from 3D Dynamics to 2D Dynamics
In this section, we show that, with respect to our assumptions, any 3-dimensional encounter can be
reduced to a 2-dimensional encounter without loss of generality.

For the sake of clarity, let us this time work in a reference frame (O,~i,~j,~k) fixed to the ownship
(O). In that reference frame, the position of an intruder I is represented by the tuple (x, y, h), and
the differential equation system that governs its motion is given by ẋ = rx, ẏ = ry, ḧ = a,
where rx, ry and a remain constant as time evolves. Therefore, the motion of the encounter can
be decoupled into a 2-dimensional horizontal encounter in the reference frame (O,~i,~j) (horizontal
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Implicit formulation

B(t, ht, ḣ0) ≡ 0 ≤ t < max(0, d) ∧ ht = −
wad
2
t2 + ḣ0t

const ≡ hd = −
wad
2

max(0, d)2 + ḣ0max(0, d) ∧ ḣd − ḣ0 = −wad max(0, d)

Dimpl(r, h, ḣ0) ≡ ∀t.∀rt.∀ht.∀hd.∀ḣd.(
rt = rvt ∧ (B(t, ht, ḣ0) ∨ const ∧ A(t−max(0, d), ht − hd, ḣd))

⇒ (|r − rt| > rp ∨ w(h− ht) < −hp)
)

Explicit formulation

rd = rv max(0, d) ḣd = ḣ0 − wad max(0, d)

hd = −
wad
2

max(0, d)2 + ḣ0max(0, d)

case7(r) ≡ −rp ≤ r ≤ rp bound7(r, h) ≡ wh < −hp
case8(r) ≡ rp < r ≤ rd + rp case9(r) ≡ −rp ≤ r < rd − rp

bound8(r, h) ≡ wr2vh < −
ad
2
(r − rp)2 + wrvḣ0(r − rp)− r2vhp

bound9(r, h) ≡ wr2vh < −
ad
2
(r + rp)

2 + wrvḣ0(r + rp)− r2vhp

Dexpl(r, h, ḣ0) ≡

(
9∧

i=7

(casei(r)⇒ boundi(r, h))

)
∧ Cexpl(r − rd, h− hd, ḣd)

Figure 5: Implicit and explicit formulations of the safe region for a delayed response

plane) and a 1-dimensional vertical encounter in the reference frame (O,~k). In what follows, we
reduce the horizontal encounter from a 2-dimensional motion to a 1-dimensional motion, thereby
simplifying the problem conceptually and computationally by reducing its number of variables.

Fig. 6 depicts a top view of a generic encounter. We denote by ~r the position, and ~rv the
velocity, of the intruder relative to the ownship, and by rv ≥ 0 the norm of ~rv.

First suppose rv > 0. The idea is to choose a reference frame (O′,~i′,~j′) in which one axis ~i′
is aligned with ~rv, such that no relative motion happens in the other direction ~j′. Its fixed center
O′ is defined as the orthogonal projection of point O onto the direction of ~rv. The unit vector~i′ is
defined as ~rv

rv
, and ~j′ is a unit such that (O′,~i′,~j′) is positively oriented.

Let ~v|O (resp. ~v|O′) denote the coordinates of a vector ~v relative to the reference frame (O,~i,~j)

(resp. (O′,~i′,~j′)). Then, the coordinates for ~r and ~rv are: ~r|O = (x, y), ~rv|O = (rx, ry), ~r|O′ = (s, n)
and ~rv|O′ = (−rv, 0). The scalar product ~r · ~rv and the cross product ~r × ~rv are independent of the
horizontal reference frame, therefore:

xrx + yry = −srv xry − yrx = nrv (5)

12
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Figure 6: Top view of the two reference frames

Given rx and ry, Eqns. (5) imply that the coordinates (x, y) are uniquely determined by the choice
of (s, n), as long as rv 6= 0 (with r2v = r2x + r2y). For any 2-dimensional configuration, the
encounter can thus be considered a head-on encounter where s plays the role of r and where a new
puck radius, denoted sp, plays the role of rp.

Let us now determine the radius sp of the dimension-reduced encounter, and prove that the
absence of NMAC in (O,~i,~j)—characterized by r2 > r2p—is equivalent to the absence of NMAC
in (O′,~i′,~j′)—characterized by s2 > s2p. Using (5):

r2vr
2 = r2v(x

2 + y2) = (xrx + yry)
2 + (xry − yrx)2 = r2v(s

2 + n2) .

Since rv 6= 0, this implies r2 = s2 + n2. Therefore, r2 > r2p if and only if s2 + n2 > r2p or
equivalently s2 > r2p − n2. If r2p − n2 < 0, the direction of the vector ~rv does not intersect the
puck, the inequality s2 > r2p − n2 is trivially true, and the encounter is safe. If r2p − n2 ≥ 0, we
choose the new puck radius sp for the dimension-reduced encounter as sp =

√
rp2 − n2 ≥ 0, and

the safety condition in (O′,~i′,~j′) becomes s2 ≥ s2p. When θv = 180◦, one has s = r, n = 0 and
sp = rp as used in the previous sections.

As the encounter evolves in (O,~i,~j) along ẋ = rx, ẏ = ry, its dimension-reduced version
evolves in (O′,~i′,~j′) along the differential equations ṡ = −rv, ṅ = 0, obtained by differentiat-
ing Eqns. (5) and canceling rv. The following proposition, proved in KeYmaera, combines both
dynamics and shows that the absence of an NMAC of radius rp in (O,~i,~j) is equivalent to the
absence of an NMAC of radius sp in (O′,~i′,~j′).

Proposition 5 (Horizontal Reduction). The following dL formula is valid(
xrx + yry = −srv ∧ xry − yrx = nrv ∧ x2 + y2 = n2 + s2 ∧ r2v = r2x + r2y

)
−→ [ẋ = rx, ẏ = ry, ṡ = −rv, ṅ = 0]

(
x2 + y2 > r2p ←→ s2 > r2p − n2

)
(6)

Observe that the (horizontal) NMAC condition in (O′,~i′,~j′) only depends on the change of one
variable rather than two. The proposition also applies to the special case rv = 0. In this case,
the origin O′ is no longer defined, Eqns. (5) are trivially true. The variables s and n are constants
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Table 2: Summary of the points of the state space at which we examined ACAS X.

Range Relative speed Angle Relative Vertical rates Previous
r (ft) rv (ft/s) θv (degrees) altitude h (ft) ḣ0, ḣ1 (ft/s) advisory

Min value 1,500 100 180◦ -4,000 -41.67 None
Max value 200,000 2,200 180◦ 4,000 41.67 None
# values 80 10 1 33 132 1

(ṡ = 0, ṅ = 0), their initial values are only restricted by the condition n2 + s2 = x2 + y2 in the
assumption of the proposition, but they are not unique. When the relative position between the
ownship and the intruder does not evolve over time, if the intruder is at a safe distance initially, the
encounter is safe for all time.

6 Initial Examination of the Safety of ACAS X
In this section, we use Theorem 1 to check the safety of the first advisory that ACAS X would give
for the same geometrical configuration of the encounter. More precisely, we focus on Run 12 (July
2014) of the optimized logic tables, a core component of ACAS X. The full policy of the system
is built on these lookup tables and incorporates additional components to accommodate various
operational scenarios.

We compare the ACAS X table to the (explicit) safe regions where the pilot reacts immediately
(Sect. 3). For a given initial state of an encounter, we query the first advisory issued by ACAS X
and check its safety as identified in Theorem 1. In a real scenario, the ACAS X logic could later
strengthen or reverse the first advisory as the encounter evolves. The safety of the first advisory is
however critical from an operational prospective as later changes of advisories are undesirable.

Our initial analysis considers a nominal set of discrete states—summarized in Table 2—of the
ACAS X MDP model where no advisory has yet been issued. All examined states are head-on
encounters: in a sense, they are the most obviously dangerous configurations. For those states,
the ACAS X advisories are compared against the safe regions stated in Fig. 3. Overall, 4, 461, 600
discrete states were examined, among which 44, 306 states (1.2%) did not meet the conditions
of Fig. 3: 11, 524 of these were unresolvable, i.e., the intruder was too close for any advisory to
avoid NMAC; while 32, 782 could have been resolved with a different safe advisory that satisfies
Theorem 1.

Analyzing these encounters, we identified unexpected behavior in the ACAS X lookup tables.
In some cases, the ACAS X advisory seems to induce an NMAC (Fig. 7), i.e., if the initial advisory
is not strengthened or reverted later, an NMAC will occur. In other cases, the advisory does not
seem to have any benefit, that is flying at vertical rates disallowed by the advisory would actually
avoid NMAC while not all allowed vertical rates are safe. Notice that these behaviors are not
necessarily all deemed undesirable, as ACAS X tends to minimize alerting the pilot unless it has
to do so; for some cases, ACAS X will strengthen the advisory later and hence does not issue a
disruptive alert immediately. Fig. 7 depicts a typical example where the ACAS X advisory
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Figure 7: Original ownship path (cyan) and intruder path (red) vs. ownship responding to a do-not-
climb (DNC) advisory (green dotted line) issued by the ACAS X tables in starting state: r = 4, 000
ft, rv = 200 ft/s, θv = 180◦, h = 600 ft, ḣ0 = 1, 980 ft/min, ḣ1 = −1, 500 ft/min.

induces an NMAC. The ownship is flying from the left and the intruder from the right. As time
counts down, the intruder evolves towards the ownship and an NMAC happens at t = 0. The
original path of the ownship does not lead to an NMAC. However, ACAS X gives a Do-Not-Climb
advisory. If the pilot, following this advisory, decides to stop climbing, its trajectory will cause an
NMAC. (Other examples are illustrated in Appendix D.)

The development of the safe regions gave an insight into possible improvements for the ACAS X
system. Although we are not analyzing the complete system, nor the subsequent advisories, we
automatically pointed out some subregions of the state space worth looking at. Some of those prob-
lems were independently identified by the ACAS X team using simulation-based testing, and will
be addressed in subsequent revisions of the system. When extended to check contiguous regions
of the state space, our approach will have the potential for a complete analysis of the system over
all potential encounter configurations, thereby reducing vulnerability to the sampling of encounter
scenarios.

7 Related Work
In [KC10] Kochenderfer and Chryssanthacopoulos describe the design of the ACAS X lookup-
tables. Their principled approach, based on optimizing an MDP, guarantees the selection of optimal
advisories according to a cost model. The state space as well as the dynamics are discretized. Their
notion of optimality depends on costs assigned to various events. In contrast, we use continuous
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dynamics to assess when the system meets a clear, specific safety property.
Von Essen and Giannakopoulou [vEG14] used probabilistic model-checking to analyze a sim-

pler MDP based on [KC10]. They study the impact of varying the granularity of the discretization
used to generate the lookup table, and investigate the probability of several undesirable events
occurring. Because they ostensibly analyze an MDP, their work inherits many of the same as-
sumptions of ACAS X, including discretized dynamics. Moreover, their analysis depends heavily
on the MDP considered and thus needs to be redone on every version of the actual MDP used for
ACAS X. Our approach, however, generates conservative safe regions that assess the safety of an
advisory with respect to the assumed dynamics. Therefore, only the comparison part needs to be
redone for the future versions of the systems, the safety regions remain unaltered.

Lygeros and Lynch [LL97] use hybrid techniques to formally verify the TCAS conflict reso-
lution algorithms. TCAS is the industrial aircraft collision avoidance system that was developed
in the 1970s, a few decades before ACAS X. They consider the simplified case of two aircraft,
both TCAS-equipped, with no horizontal acceleration and both pilots complying after some de-
lay; this differs from us in that we only require the ownship to be equipped with ACAS X. More
importantly, they assume—rather than prove—that the TCAS system ends up in a state where one
aircraft has a climbing advisory and the other a descending advisory. Under those assumptions,
they prove (by hand) a lower bound—dependent on initial conditions—on the vertical separation
of both aircraft at the point of closest approach. In contrast, we construct universal safe regions
that we compare to the ACAS X system’s decisions; and we do not need to assume anything about
those decisions, but rather determine which decisions are safe. Moreover we prove separation us-
ing the puck, whose dimensions are fixed independently from initial conditions; this separation is
valid for all times—not just at the point of closest approach—including during the delay and ac-
celeration phases, which significantly complicates our equations. Finally, our proofs are not only
by hand but also mechanized in the KeYmaera theorem prover.

Holland et al. [HKO14] and Chludzinski [Chl09] simulate large numbers of encounters, includ-
ing tracks from recorded flight data, to evaluate the performance of ACAS X. These simulations
account for high-fidelity details of an encounter, but they only cover a finite set of the continuous
state space with no formal guarantees.

Tomlin et al. [TPS98], Platzer and Clarke [PC09], Loos et al. [LRP13] and more recently
Ghorbal et al. [GJZ+14] use hybrid systems approaches to design safe horizontal maneuvers for
collision avoidance. Dowek et al. [DMC05] and Galdino et al. [GMA07] describe and verify in
the PVS theorem prover a collision avoidance system of their design called KB3D.

Overall, our approach is different from previous complementary work in that:

• unlike [vEG14, KC10], we rely on an independent model from the one used to design
ACAS X;

• unlike [DMC05, GMA07, LRP13, PC09, TPS98, GJZ+14] we analyze an independent in-
dustrial system and not a safe-by-design system;

• unlike [DMC05, vEG14, GMA07] our analysis uses realistic, continuous dynamics;

• unlike [Chl09, HKO14, KEKG08, LL97, TPS98], we provide formal, mechanized proofs for
the correctness of our model;

16



• unlike [LL97] who verify TCAS, we verify the ACAS X conflict resolution algorithms.

8 Conclusion and Future Work
We developed a general strategy for analyzing the safety of complicated, real-world collision
avoidance systems, and applied it to ACAS X, currently under development. This strategy identi-
fies conditions on resolution advisories for each geometric configuration that are proved to always
keep the aircraft clear of NMAC as long as the considered assumptions hold. We identified discrete
states where ACAS X is provably safe, and fed back others showing unexpected behaviors to the
ACAS X development team. The identified safe regions are independent from the actual version
of ACAS X and could be used to assess the safety of future versions. In future, we plan to extend
our hybrid model to account for curved trajectories of both aircraft as well as vertical acceleration
of the intruder.
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Figure 8: Trajectory of the ownship (red) and safe region for the intruder (green)

A KeYmaera statistics
This appendix shows some statistics on our different KeYmaera proofs. The proof are available at
http://www.cs.cmu.edu/∼jeannin/acasx.zip.

Time (s) Memory (MB) Steps Dimensions
Implicit regions, no delay (Theorem 1) 76.2 104.8 310 10
Explicit regions, no delay (Lemma 2) 68.0 79.1 749 13
Implicit regions, with delay (Theorem 3) 214.5 347.1 1835 16
Explicit regions, with delay (Lemma 4) 181.4 127.2 2118 16
Horizontal reduction (Prop. 5) 2.3 40.3 17 8

B Safe Region for a Delayed Pilot Response
In this appendix we give more intuition for the explicit formulation of the safe regions presented
in Fig. 3.

Second case: if w = +1, rv > 0 and ḣ0 < ḣf < 0 This case is represented in Fig. 8, and the
nominal trajectory N is still given by Eq. (2)(a) and Eq. (2)(b). In Fig. 8, the green safe region’s
boundary is drawn by the bottom left hand corner of the puck, and can be characterized by the
following set of equations:

• as in the first case, all the positions left of the initial position of the puck (r < −rp) are in
the safe region;
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• then the boundary follows the bottom left hand corner of the puck as it goes down the
parabola of Eq. (2)(a); therefore for −rp ≤ r ≤ −rp + rv(ḣf−ḣ0)

ar
, the position (r, h) is safe if

and only if h < ar
2r2v

(r + rp)
2 + ḣ0

rv
(r + rp)− hp;

• finally the boundary follows the bottom left hand corner of the puck as it is going down the
straight line of Eq. (2)(b); therefore for −rp + rv(ḣf−ḣ0)

ar
< r, the position (r, h) is in the safe

region if and only if h < ḣf

rv
(r + rp)− (ḣf−ḣ0)2

2a
− hp.

C Safe Region for an Immediate Pilot Response
In this appendix we give some intuition for the explicit formulation of the delayed safe regions
presented in Fig. 5.

Figure 9: The most common configuration of the delay cusp.

As in Sect. 3.4, let us derive the explicit formulation of the safe zone during the delay. Again,
let us assume that w = +1 and d ≥ 0, then generalize. During the delay, the nominal trajectory is
given by (rt, ht) =

(
rvt,−ad

2
t2 + ḣ0t

)
, and looking at Fig. 9, the safe region describes a cusp and

its boundary can be characterized by a set of equations:

• all the positions left of the initial position of the puck (r < −rp) are in the safe region;

• a position (r, h) is in the safe region only if it is to the right, left, or under the puck at time
0; therefore for −rp ≤ r ≤ rp, a position (r, h) is in the safe region only if h < −hp;

• a position (r, h) is in the safe region only if it is to the right, left, or under the trajectory
drawn by the bottom right hand corner of the puck during the climbing phase of the delay
parabola; therefore for rp < r ≤ rd + rp, a position (r, h) is in the safe region only if
r2vh < −ad

2
(r − rp)2 + rvḣ0(r − rp)− r2vhp;
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• a position (r, h) is in the safe region only if it is to the right, left, or under the trajectory
drawn by the bottom left hand corner of the puck during the descending phase of the delay
parabola; for −rp < r ≤ rd − rp, a position (r, h) is in the safe region only if r2vh <
−ad

2
(r + rp)

2 + rvḣ0(r + rp)− r2vhp;

• a position (r, h) is in the safe region only if it is to the right, left, or under the puck at time d;
therefore for rd−rp ≤ r ≤ rd+rp, a position (r, h) is in the safe region only if h−hd < −hp.

We can again generalize those equations to the cases where w = −1 and d < 0. We put together
the different explicit boundaries according to their respective cases, and link it to the formula Cexpl

of Fig. 3 translated by horizontal distance rd, height hd and starting at vertical speed ḣd. Doing this
we realize that the last condition of h − hd < −hp when rd − rp ≤ r ≤ rd + rp is unnecessary
because already implied byCexpl(r−rd, h−hd, ḣd). We thus create formulaDexpl of Fig. 5. Finally,
we formally prove using KeYmaera that this explicit formulation of the safe region is equivalent to
its implicit counterpart (Lemma 4).

Note that, contrarily to the safe region for an immediate reaction of the pilot, the different cases
of the safe region for a delayed reaction of the pilot overlap. This is due to a number of possible
configurations, happening especially when rv is small. Examples are shown in Fig. 10 and 11.

Figure 10: An example of a degenerate cusp, caused by a very small relative velocity. Final height
is below the starting point.

D Examples of Identified ACAS X Behavior
Fig. 7 from Sect. 6 illustrated a geometry where the comparison of our safety theorem to ACAS X
identified behavior that may induce an NMAC.

Fig. 12 depicts a different case, where the benefit of the advisory issued by the ACAS X lookup
tables is unclear and may reduce safety although it does not directly induce an NMAC. In this
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Figure 11: An example of a degenerate cusp, caused by a very small relative velocity. Final height
is above the starting point.

scenario, the lookup tables issue an alert not to descend at more than 2,000 ft/min (DND2000).
However, the ownship can still fly within the limits of this advisory and cause an NMAC, as
illustrated in the figure where the ownship climbs at 1,180 ft/min. If the ownship were restricted
not to climb (DNC) an NMAC would not occur under straight-line assumptions. Thus, an NMAC
would also not occur if the ownship were restricted to rates lower than -2,000 ft/min, the range of
rates being disallowed.

Fig. 13 depicts a case where the advice issued by the ACAS X tables did not meet the conditions
of our safety theorem, but it may be desirable based on the goals of ACAS X. ACAS X issues a do-
not-climb (DNC) approximately 28 seconds from potential collision. This advice is less disruptive
to the pilot and flight path than something stronger like descend-1500 (DES1500). A stronger
advisory may not be necessary because the intruder may reduce its rate of descent. At the same
time, ACAS X may be able to effectively issue a stronger advisory in a few seconds if necessary.
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Figure 12: Ownship flying within the limits of a do-not-descend-2000 (DND2000) advisory issued
by the ACAS X tables in starting state: r = 3, 000 ft, rv = 110 ft/s, θv = 180◦, h = −600 ft,
ḣ0 = 1, 500 ft/min, ḣ1 = 2, 500 ft/min, no previous advisory.

Figure 13: Ownship complying with a do-not-climb (DNC) advisory issued by the ACAS X tables
in starting state: r = 34, 000 ft, rv = 1, 200 ft/s, θv = 180◦, h = 1, 000 ft, ḣ0 = 0 ft/min,
ḣ1 = −2, 000 ft/min, no previous advisory.
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