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Abstract

Creating realistic virtual worlds requires fast, detailed physical simulations. Traditional
simulation techniques based on discretization in time and space must trade speed for de-
tail. Frequently, this tradeoff results in either coarse, unrealistic simulation, or slower-than-
realtime response. Data-driven simulation techniques avoid this tradeoff by operating on
compact representations of simulation state, which can be updated quickly due to their small
size. These representations are learned from training simulations that resemble the runtime
output we want the simulation to produce. In this thesis, we greatly expand the scope of data-
driven simulation in practical applications by answering three important questions. First, how
can we reconfigure simulation domains at runtime? While simple forms of data-driven sim-
ulation operate in a monolithic fashion, we show how one important data-driven simulation
technique can be extended to create modular simulation tiles that can be rearranged at run-
time. Second, how can we simulate a wide variety of phenomena? One popular data-driven
simulation method, Galerkin projection, only works for simulations with polynomial dynam-
ics. We present an extension of Galerkin projection to dynamics that include division and
roots, enabling its application to new phenomena. Finally, how can we ensure that we se-
lect appropriate training data? Selecting good training data is critical to ensure good speed
and realism from data-driven simulations. We describe a method for building continually-
improving data-driven simulations that use recordings of user interactions to guide their se-
lection of training data, guaranteeing that the simulation is trained with data appropriate to
its actual runtime use. These contributions move us closer to the ability to create detailed,
immersive, interactive simulations of any phenomenon.
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Chapter 1

Introduction

Creating convincing virtual worlds requires high-quality simulation. For nearly as long as there have been
graphical displays, there have been interactive simulations of physics. Over the past 50 years, interactive
physical simulation has advanced from simple 2D projectile motion to beautiful, highly detailed simula-
tions of phenomena including rigid bodies, smoke, water, and cloth. These simulations have enabled the
creation of entirely new forms of art and genres of games.

Such simulations, while beautiful, are often incapable of running at interactive rates, especially at visually
convincing resolutions. The short film Geri’s Game [Pixar 1997] was released in 1997 and featured
realistic simulated cloth; Quake 2 [id Software 1997], released just weeks later, featured low-polygon
characters with clothing no more complex than texture maps. Meanwhile, interactive cloth simulation has
only recently become practical, while the state of the art in offline simulation has continued to advance
rapidly.

There are exceptions, such as rigid-body motion, and the number of such exceptions continues to grow
as computing power increases, but simulation is in no danger of running out of room at the top: new
simulation techniques to handle new phenomena and new interactions are constantly being developed,
and these new techniques tend to be quite expensive. Furthermore, two simultaneous trends ensure that
the gap between computing power available offline and computing power available in typical interactive
contexts will remain large for the foreseeable future. The ready availability of huge amounts of cloud
computation power makes enormous offline computations viable, and even inexpensive, and accessible
to virtually anyone. However, the devices that people interact with directly are increasingly not PCs,
but low-powered mobile devices or appliances. While the computational capabilities of these devices is
rapidly improving over time, these capabilities will remain sharply limited compared to those of the cloud.
Bringing detailed interactive simulation to these low-powered devices – decoupling simulation speed and
detail from the resources available on the simulation platform – requires new simulation techniques.

One such class of simulation techniques are data-driven simulations, which use compact representations
of simulation state in order to produce detailed interactive simulations. So why does data help?

The reason why we have to choose between speed and detail in most simulations is that most simulation
techniques follow a standard rubric based on discretizing continuous equations from physics. We begin
with a collection of partial differential equations from physics and discretize them both in time and in
space, producing a system of ordinary differential equations. These equations can be integrated to obtain
motion. Computing complex dynamics on low-powered devices, interactive performance requires that we
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choose a coarse discretization, so that the number of equations to be integrated is small. Since most simu-
lations operate on volumetric or surface data, the number of simulation elements in a given discretization
has a quadratic or cubic dependence on the resolution. Coarse discretizations do not produce detailed or
accurate motion, though, and increasing the resolution can often drop the simulation speed to slower than
interactive rates. Adaptive discretization can partially combat this problem by discretizing finely where
the additional detail is noticeable, however, the speed improvements that this produces are usually insuf-
ficient to bring an offline-only simulation reliably into real-time range. Choosing good discretizations,
then, is not sufficient to achieve real-time simulation of complex phenomena.

Data-driven simulations take advantage of a technique called model reduction to avoid this dilemma.
Creating detailed, interactive simulations requires algorithms that do not depend on fine discretization in
order to provide detail, but instead use compact simulation representations, called reduced representations,
that encode fine detail without explicitly storing information at high spatial resolution. Model reduction
techniques allow simulations to perform their time updates directly on reduced representations, without
ever returning to the full representation. Since well-designed reduced representations do not contain
much data, they can be fast to process and update – but because they contain less information than a full
representation, they must exclude the vast majority of possible simulation states. This exclusion is not
necessarily problematic, since users will never experience the vast majority of possible states, but it is
critical to choose the reduced representation such that it is capable of representing the simulation outputs
that users will be interested in.

There are many possible structures for reduced representations. Most are based on combining or replaying
snapshots of simulation states. Possible structures include: linear combinations of simulation snapshots,
playback of recorded simulation trajectory snippets, and interpolation of long recorded simulation runs.
Selecting a structure is usually not difficult given a good sense of the runtime constraints. However, in the
complex simulation scenarios typical of graphics applications, it is not typically possible to find a good
set of snapshots and trajectories using analytic methods.

Data-driven simulation techniques obtain these snapshots and trajectories by recording the output of of-
fline training simulations. This empirical method for constructing reduced representations allows them
to represent even complex behavior effectively. Larger volumes of training data lead to higher-quality
reduced representations and thus more accurate simulations. Data-driven simulations, then, provide not
only a way to generate fast, interactive simulations, but also a pathway for using ever-larger amounts of
offline cloud computational power to directly improve interactive experiences.

1.1 Contributions

While data-driven simulations can achieve great speed, they come with some limitations that significantly
limit their utility for practical applications. In this document, we answer three questions about how these
limitations can be addressed:

1. How can we reconfigure simulation domains at runtime? One of the most important factors in
setting up any simulation is the choice of simulation boundary conditions, such as the arrangement
of obstacles in a fluid simulation. Data-driven simulation techniques can easily handle static bound-
ary configurations – even very complex ones – but usually cannot handle dynamically changing
boundaries. This inability to handle dynamic boundaries not only prevents the simulation of highly
dynamic scenes and of scenes containing deformable objects, but also prevents the construction of
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simulation domains larger than or with boundaries different from those contained in the training
data. Chapter 3 shows how to overcome this limitation by constructing many simulation tiles, each
containing a data-driven simulation, that can be coupled and reconfigured at runtime. By replacing
or adding tiles, the boundaries can be rearranged or the simulation domain can be expanded at run-
time. The key technical challenge in constructing a simulation from tiles is ensuring that invariants
in the simulation dynamics are preserved across tile boundaries. By using a technique called con-
straint reduction, we can guarantee that tiles can be coupled at runtime while enforcing important
variants and constraints. We also show how to use apply our modular simulation technique to fluid
simulation in order to construct massive, reconfigurable simulations of fluid flow.

2. How can we simulate a wider variety of phenomena? Data-driven simulation techniques learn
reduced representations for simulation dynamics, and typically rely on model reduction methods
to perform the simulation directly on those reduced representations. One popular model reduction
technique, Galerkin projection, provides a straightforward technique for converting simulations that
use conventionally discretized simulation representations to use reduced representations instead.
However, Galerkin projection works only for dynamics that can be represented as systems of poly-
nomial equations. This constraint severely limits the types of simulations to which Galerkin projec-
tion can be applied. Many interesting phenomena are non-polynomial, especially in the presence of
continuously deformable geometry. These phenomena include fluid dynamics, light transport, and
inverse-polynomial force laws such as electromagnetism and gravitation. Chapter 4 describes an
extension of Galerkin projection to non-polynomial simulation dynamics, along with applications
of this non-polynomial Galerkin projection to global illumination and fluid flow in the presence of
deforming geometry.

3. How can we ensure that we select appropriate training data? While data-driven simulation
techniques allow us to find good reduced representations for complex simulations, choosing appro-
priate training simulations is often more art than science. We want the training data to resemble the
simulation output that users will be interested in. This goal presents two major difficulties: first,
complex simulation dynamics make it difficult to analyze ahead of time exactly how interesting sim-
ulation states will evolve, so while we may be able guarantee that we have captured a large set of
interesting states, we cannot guarantee that we have captured all of their successors. Second, since
we wish to construct interactive simulations, we cannot predict ahead of time exactly what inputs
simulation users will provide. It is crucial to choose these training simulations well, since, if we
choose them poorly, our data-driven simulation runtime will produce inaccurate results. Chapter 5
presents self-refining games, which record player interaction with a data-driven simulation and use
the resulting data to continuously expand and improve the simulation’s reduced representation over
time. We show that this technique can be used to create a realistic 3D liquid simulation game with
high-quality rendering, even on very low-powered hardware.

The answers to these three questions greatly expand data-driven simulation’s versatility, greatly expanding
the number of simulation applications and the complexity of the scenes to which it can be applied.

The next chapter reviews related work in data-driven simulation. Chapters 3 through 5 answer the three
questions posed above, and Chapter 6 closes the document with some concluding thoughts on the current
state and future of data-driven simulation.
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Chapter 2

Related Work

This chapter provides context and a review of prior work for data-driven and interactive simulation tech-
niques in graphics. §2.1 provides an overview of the types of data-driven simulation used in the graphics
literature and §2.2 reviews other, non-data-driven, approaches to real-time simulation of the applications
we show for the techniques presented in this document: fluid flow and light transport. Prior works more
specifically related to the individual advances we present in this document are discussed in the appropriate
chapters.

2.1 Data-Driven Simulation

A variety of different types of data-driven simulation have been applied to simulation problems in graph-
ics. This section reviews some of the most prominent categories of these simulations, their characteristics,
and their applications. The simulation techniques differ from each other in two principal ways: their
reduced representations, and the methods by which they update their states.

Galerkin projection. Galerkin projection transforms simulation dynamics to operate on linear combina-
tions of simulation snapshots. Typically, the reduced representation used with Galerkin projection is found
by running PCA on a large number of simulation state snapshots generated using traditional simulation
techniques. In graphics, it has been used to construct simulations of deformable solids [Baraff and Witkin
1992; Barbič and James 2005; Hauser et al. 2003; James and Pai 2002; Pentland and Williams 1989] and
fluid flow [Treuille et al. 2006; Gupta and Narasimhan 2007; Barbič and Popović 2008; de Witt et al.
2012]. Outside of graphics, it is frequently used in many engineering applications, typically involving
fluid dynamics [Ausseur et al. 2004; Couplet et al. 2005; Holmes et al. 1996; Lumley 1970; Marion and
Temam 1989; Rowley et al. 2006; Sirisup et al. 2005; Sirovich 1987], but it has also been used for other
purposes, such as control systems [Banks et al. 2000]. In engineering, when combined with the use of
PCA to select the simulation subspace, it is also known as proper orthogonal decomposition (POD) or
Karhunen-Loève decomposition.

Galerkin projection has historically only provided significant speedups when applied to simulations rep-
resentible in terms of polynomial equations, or when it is combined with sampling-based approaches to
function evaluation. In chapters Chapter 3 and Chapter 4, we extend Galerkin projection to allow Galerkin-
projected simulations to be reconfigured and scaled to huge domains (Chapter 3), and to allow them to
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accelerate simulation dynamics including division and roots (Chapter 4) without recourse to sampling.

Cubature. Like Galerkin projection, cubature (as a model reduction technique) relies on linear combi-
nations of simulation snapshots to represent simulation state. It differs from Galerkin projection in that it
does not transform the simulation equations by directly projecting them onto the new representation, but
instead, at each timestep, exactly evaluates the simulation dynamics at a handful of points in the domain
and uses them to estimate the value of the simulation state everywhere. Unlike Galerkin projection, cuba-
ture is not limited to polynomial simulation dynamics. However, for good accuracy, it requires not only a
good selection of simulation snapshots to form its reduced representation (like Galerkin projection does),
but also a good selection of points in space at which to evaluate the full simulation dynamics.

Cubature performs well when the simulation dynamics are complex but sparse, and has been used to model
nonlinear deformable body dynamics [An et al. 2008] with online updating of the basis [Kim and James
2009] and domain decomposition [Kim and James 2011], thin shell dynamics [Chadwick et al. 2009], and
fluid dynamics [Kim and Delaney 2013]. James et al. proposed a method for simulating sound synthesis
and propagation that is conceptually similar to cubature [2006].

One substantial disadvantage of both Galerkin projection and cubature is that it is often difficult to place
meaningful bounds on the error that a simulation user will perceive in the complex simulation scenarios
typical of computer graphics. The self-refining games described in Chapter 5 enable the construction of
data-driven simulations with bounded, predictable error. These games use a different underlying reduced
representation: state graphs.

State graphs. This reduced model consists of a graph of simulation trajectories, which are replayed at
runtime to produce fast, interactive simulation. Edges in the graph represent simulation trajectories, and
vertices represent choice points, where different trajectories can be selected based on user input. Since
the dynamics in this model are discrete, the only dynamics computation required at runtime is selecting
which new edge (i.e., recorded simulation trajectory) to follow upon reaching a new vertex of the graph.
Consequently, state graph-based models are capable of efficiently representing any simulation dynamics.

Kim et al. [2013] demonstrated how a state graph model could be used to represent cloth dynamics, by
essentially “unrolling” a motion graph through simulation to form the state graph. Chapter 5 demonstrates
the efficient construction of state graphs for liquid simulation, informed by user input, which allows us to
guarantee that the data in these graphs is relevant to the simulation states that users will actually want to
see.

Other approaches. Of course, a wide variety of different reduced representations are possible, beyond
those mentioned earlier in this section. Raveenendran et al. [2014] present a method for for interpolating
liquid simulations parameterized by a low number of degrees of freedom, allowing many variations of
a liquid simulation to be created from a coarse sampling of the parameter space. It is also possible to
use data to assist in mapping from coarsely discretized underlying simulation representations to finely
detailed output. For example, Chai et al. [2014] proposed a coarsely discretized hair simulation model
with a data-driven refinement step to generate detailed hair motion.

2.2 Applications

This section discusses prior implementations of two major types of simulations that we use as sample
applications in this document: fluid flow and global illumination.
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2.2.1 Fluid Simulation

Fluid simulation in computer graphics has focused on three basic fluid representations: grid and mesh-
based Eulerian simulations, meshless Lagrangian methods, and model reduction. An important step in
Eulerian fluid simulation was the introduction of an unconditionally stable advection step by Stam [1999].
Improvements to this method based on hierarchical space decomposition [Losasso et al. 2004] and non-
uniform meshes [Elcott et al. 2005; Feldman et al. 2005a] have produced impressive results, but do not
typically allow real-time simulation. A number of Eulerian methods have been mapped to the GPU,
including stable advection [Wu et al. 2005], pressure projection [Bolz et al. 2003; Goodnight et al. 2003;
Krüger and Westermann 2003], Lattice Boltzmann methods [Li et al. 2003], and liquids using a variety
of representations: regular grids [Crane et al. 2007], heightfields (shallow-water methods) [Chentanez
and Müller 2010; Št’ava et al. 2008; Thurey et al. 2007], and hybrid techniques [Chentanez and Müller
2011]. These implementations enable real-time performance for medium-sized fluid domains. However,
unlike the data-driven techniques we discuss in this document, they fundamentally have the same time
complexity as their CPU variants.

Lagrangian particle representations such as vortex methods [Angelidis and Neyret 2005; Angelidis et al.
2006; Park and Kim 2005; Pfaff et al. 2012; Selle et al. 2005] and smoothed particle hydrodynamics
[Adams et al. 2007; Keiser et al. 2005; Müller et al. 2003; Solenthaler and Pajarola 2009] do not depend
on grid resolution, but the effective resolution of the fluid depends on the particle density, and detailed
results are typically not feasible for real-time use. SPH has also been demonstrated to be feasible for real-
time fluid simulation at moderate resolutions [Goswami et al. 2010; Macklin and Müller 2013]. However,
significant computational power is still necessary to obtain detailed results.

A variety of hybrid methods also exist, perhaps the most popular being FLIP [Ando et al. 2013; Zhu and
Bridson 2005], which performs advection using marker particles but solves the pressure equation on a grid,
sharing the stability of grid-based methods with the simple advection and fine detail resolution of particle-
based techniques. Other hybrid methods include Eulerian velocities with vortex particles [Golas et al.
2012], and a FLIP-spectral hybrid that enables the use of very large grid cells by representing pressure
and velocity fields using high-order polynomials in each cell [Edwards and Bridson 2014].

Data-driven techniques for fluid simulation were introduced to graphics by Treuille et al. [2006]. Gupta
and Narasimhan [2007] used a reduced-space representation to accelerate the simulation and rendering
of dynamic participating media, such as smoke and snow, and Popović and Barbič [2008] used data-
driven methods to control fluid dynamics. de Witt et al. [2012] suggested improved methods for basis
construction for real-time simulation.

2.2.2 Global Illumination

Accurate illumination of dynamic scenes has been a long-standing goal in computer graphics. Existing
reduced-order global illumination techniques, such as Precomputed Radiance Transfer [Sloan et al. 2002],
cannot accurately model the effect of general continuous large-scale scene deformations on nonlocal ra-
diance transfer. James and Fatahalian [2003a] allowed for deformable objects, but only for a certain set
of physics-based deformations. Sloan et al. [2005] accounted for changes in local light transport arising
from a more general set of deformations. More recent models allow discrete scenes to be composed with-
out requiring additional precomputation [Loos et al. 2011; Loos et al. 2012], but do not allow for general
continuous change in shape. Numerous methods [Hanrahan et al. 1991; Drettakis and Sillion 1997] have
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been proposed to accelerate the computational speed of radiosity for dynamic scenes. However, most
previous methods are limited to rigid transformations, such as inserting, deleting, and moving objects in
the scene.

The application of data-driven techniques to global illumination is also not unprecedented. Many tech-
niques have seen widespread use, including ambient occlusion [Zhukov et al. 1998; Ren et al. 2006],
virtual point lights [Keller 1997], and hierarchical methods [Hanrahan et al. 1991; Durand et al. 1999].
However, these methods all have limitations: ambient occlusion accounts only for very local effects,
achieving low error in complex scenes rapidly becomes very expensive with virtual point lights, and hier-
archical methods do not handle large changes in the scene geometry well. There are also many reduced-
order techniques for global illumination, such as Precomputed Radiance Transfer [Sloan et al. 2002; Sloan
et al. 2005], however, they cannot accurately model the effect of general continuous large-scale scene de-
formations on nonlocal radiance transfer.
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Chapter 3

Modular Simulations With Constraint
Reduction

This chapter shows how data-driven simulations can be extended to reconfigurable domains on huge
scales. For example, consider computing the detailed flow of wind through an entire city. Training sim-
ulations for a domain as extensive as an entire city would be prohibitively expensive, and would fix the
simulation domain such that buildings could not be added, deleted, or moved after the fact. By allowing
large simulations to be composed from multiple smaller simulations, it becomes possible to run large,
interactive simulations that can be reconfigured at runtime.

This chapter uses fluid simulation on large domains as a motivating example. Large data-driven simu-
lations are constructed from modular simulation tiles that capture fluid behavior given specific boundary
conditions such as the presence of an obstacle. Each tile contains a data-driven liquid simulation, im-
plemented using Galerkin projection (§2.1,§3.2) according to the method of Treuille et al. [2006] from
high-resolution training data. Like most data-driven simulations, the simulations in these tiles are very
fast and have runtime complexity independent of the grid resolution. Tiles can be assembled at runtime to
simulate novel fluid configurations, and §3.7 shows results demonstrating that such tilings can scale to very
large domains. We show that simulation operators can be precomputed, decomposed, and reconfigured
at runtime based on the tiling, thus enabling novel tile configurations without additional precomputation.
Simulation is fast because the dynamics operate entirely on the reduced representations of the data-driven
simulations. We also show that the tiles can be constructed so as to maintain pairwise consistency between
adjacent tiles at runtime.

The main technical difficulty we encounter in presenting this method is treating tile coupling correctly.
In general, data-driven simulations have so few degrees of freedom that maintaining consistency quickly
over-constrains the system. This can lead to severe artifacts at tile boundaries and unnatural behavior
in the interior of the coupled tiles. We address this problem by introducing constraint reduction, an
algorithm that modifies fluid tiles so that they can exactly fulfill a large number of linear constraints in
the full-dimensional space. We show that this technique generalizes to arbitrary linear constraints; like
simulation, constraint satisfaction can be solved entirely in the reduced space. These techniques enable
flexible assembly of complex simulations on a scale previously unattainable in computer graphics.

Before discussing the details of modular simulations and our constraint reduction technique, this chap-
ter presents a review of other work in creating modular data-driven simulations (§3.1) and of Galerkin

9



projection (§3.2), the data-driven simulation technique that forms the foundation for this chapter and the
next.

3.1 Related Work

Our method is based on constructing reconfigurable fluid simulation tiles. Perhaps the best known exam-
ples of reconfigurable tiles in computer graphics are Wang tiles [Cohen et al. 2003] which can be arranged
to produce non-periodic textures or complex geometric scenes. Similarly, for fluids, Chenney [2004] in-
troduces flow tiles, which produce divergence-free flows so long as the tiles are appropriately combined.
In contrast to flow tiles, which are static vector fields, our method enables dynamic simulation.

Our tile representation requires explicit consistency constraints. A similar need to maintain consistency
across simulation domains is encountered in finite element simulations of fluids, where the technique is
called domain decomposition. To enforce coupling constraints arising on the boundaries between subdo-
mains, one can add penalty terms [Farhat et al. 2001; Farhat et al. 2003; Tezaur et al. 2008; Zhang et al.
2006], or enforce strict compliance via Lagrange multipliers [Babuška 1973; Farhat et al. 2000; Tezaur
and Farhat 2006]. Toselli and Widlund [2005] provide a good overview of these techniques. Finite ele-
ment methods use analytic basis functions which are specifically designed such that boundary constraints
can be satisfied. By contrast, the basis vectors used in our model are more expressive, but do not satisfy
coupling constraints by construction.

To our knowledge, there is little work on coupling model reduced fluid simulations. LeGresley and Alonso
[2003] decompose the simulation domain into a model reduced fluid simulation but use full resolution fluid
simulation to capture fine scale features in certain areas. However, this work does not address the case
of coupling two separately computed reduced simulations. Borggaard et al. [2006] tackle the problem
of performing singular value decomposition (SVD) on a very large fluid simulation spatially partitioned
across a set of processors. Their intent is to produce a single basis from this data, not a set of coupled
reduced models. Perhaps the closest work to our own is that of Lucia and King [2002], who perform
domain decomposition to isolate regions that contain shockwaves and then combine a set of model reduced
simulations in order to capture shockwaves in high-speed flow fields. They use a penalty-based method to
enforce continuity across boundaries, but do not address the problem of creating bases that can be spatially
reconfigured while fulfilling continuity constraints at runtime.

Domain decomposition has been applied to other model-reduced data-driven simulations in graphics.
In particular, several works in graphics have coupled model-reduced simulations of deformable objects.
Barbič and Zhao [2011] built reduced models for objects with tree-like topologies, and Zhao and Barbič [2013]
used this technique to quickly construct reduced models of plants. Kim and James [2011] used penalty
forces to couple multiple components of character models.

Contrary to existing work on reduced fluid models which relies on SVD to compute the basis, we use SVD-
based models as a starting point, and then modify the basis to enable coupling of previously incompatible
tiles. Our technique uses the data-driven simulation technique Galerkin projection as its foundation, so
we review its basic operation in the next section.
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3.2 Galerkin Projection

Galerkin projection is a popular data-driven simulation technique that translates polynomial dynamics
directly into a chosen linear subspace. Since its mechanics are fundamental to the next two sections, we
present here a basic overview of its operation.

Suppose we wish to evaluate a function y = f(x) where the input x ∈ Rn and output y ∈ Rm are
very high-dimensional. We seek a reduced approximation ŷ = q̂(x̂), where the reduced input x̂ ∈ Rn̂
and output ŷ ∈ Rm̂ lie in much lower-dimensional spaces: n̂ � n and m̂ � m. The first step is to
linearly dimension-reduce the state vectors, which means finding a pair of orthonormal bases Bx,By

which convert reduced vectors to full vectors: x = Bxx̂ and y = Byŷ. We can project from the full
to the reduced space through multiplication by the transpose: x̂ = BT

xx, and ŷ = BT
y y. The second

step is to model-reduce the transformation f , which means finding an efficient reduced approximation
q̂ : Rn̂ → Rm̂ operating entirely in the reduced space. The standard approach is Galerkin projection,
which works well if f is polynomial but can be inefficient otherwise.

We will address these steps in order: first, we will sketch the process of basis construction, and then we
will discuss how to use the bases to reduce simulation dynamics. We limit the class of reduced functions
to the polynomials, since that limitation is inherent to traditional Galerkin projection. In Chapter 4 we
discuss our work on lifting this limitation.

Notation. In the remainder of this document, scalars appear in lower case: x, vectors in bold lower case:
x, and matrices and tensors in bold upper case: X. We write Q ⊗a M to denote tensor multiplication
of the tensor Q by the matrix or vector M along the axis with index a, and Q ⊗a...b M to denote the
repeated tensor product Q ⊗a M ⊗a+1 M . . . ⊗b M. We number tensor axes starting from 0. For clarity,
we sometimes employ the matrix notation BTQ to denote multiplication along the zeroth axis, Q ⊗0 B,
and the notation QB to denote multiplication along the first axis, Q⊗1 B. If Q is a matrix, this notation
preserves the usual meaning of BTQ and QB. We refer to multiplication of a tensor by a vector as tensor
contraction, an operation which reduces the tensor order by one.

3.2.1 Basis Construction

As mentioned above, to reduce a function y = f(x), we require bases By and Bx for y and x. We build
these bases from snapshots of example states. To build bases for the dynamics y = f(x), we collect a
set of representative inputs X = [x1, . . . ,xn], then evaluate f(x) for each of these inputs to obtain a set
of representative outputs Y = [y1 . . . ,yn]. We then construct the bases Bx and By using PCA. If we
desire bases of ranks kx and ky, then Bx is the first kx principal components of Bx, and By is the first ky
principal components of By.

This basis construction method has a number of important consequences. First, since the accuracy of the
reduced dynamics is limited by the expressive power of the bases, it is critical that the example inputs
[x1, . . . ,xn] be chosen carefully. Second, since the method is snapshot-based, the dynamics are reduced
monolithically: the system is treated as a whole, even if it may have recognizably loosely-coupled parts.
This means that very large systems, or systems with a large range of behaviors, may require very large
bases in order to give good performance.
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3.2.2 Polynomial Galerkin Projection

The next step is to restate the simulation dynamics in terms of these bases. Traditional Galerkin projection
is only efficient when applied to polynomial functions, so we will assume that our dynamics are given by
a polynomial y = q(x). A degree-d polynomial q(x) can be represented as a d+ 1th-order tensor Q. For
example, if some polynomial p(x) has degree 3 and x is of length n, then we can write the components
of p(x) as

pi(x) =

n∑
j=1

n∑
k=1

n∑
`=1

cijk`xjxkx`

where cijk` are the coefficients of the polynomial p(x). The 4th-order tensor P simply consists of the
polynomial coefficients: Pijk` = cijk`, and we can write p(x) = P ⊗1...3 x. Likewise, we can evaluate
the degree-d polynomial q(x) by contracting its corresponding d+ 1th-order tensor Q:

q(x) = Q⊗1...d x.

To compute the Galerkin projection of the polynomial

y = Q⊗1...d x

we start by substituting the reduced variables:

Byŷ ≈ Q⊗1...d Bxx

(We write ≈ to remind ourselves that ŷ has too few degrees of freedom to ensure that this equation has an
exact solution.) We then multiply by BT

y :

ŷ = BT
y (Q⊗1...d Bxx) . (3.1)

We can compute the value of ŷ at runtime quickly as ŷ = Q̂⊗1...d x̂, where

Q̂ = BT
yQ⊗1...d Bx, (3.2)

and the product BT
yQ denotes the product of Q with By along the tensor axis corresponding to the result

vector ŷ. Q̂ is called the Galerkin projection of Q. Intuitively, Q̂ transforms the reduced input x̂ into the
full space using Bx, applies Q, then projects back into the reduced space using BT

y . The final projection
incurs some accuracy cost, but it unambiguously specifies ŷ, so we can write Eq. 3.2 with an equals sign.
The projection is fast: evaluating Q̂ takes the same number of contractions as evaluating Q, although each
contraction is now with a vector of length n̂ instead of length n.

3.3 Fluid Tiles

The central idea of the modular approach is to cover the simulation domain with a small set of simulation
primitives, called tiles. Each tile consists of a velocity basis representing the possible flow within its
subdomain. For example, if one tile represents the fluid flow around the Empire State Building, then
its basis spans a subset of possible flows around this obstacle. The boundaries between subdomains
correspond to tile faces. Associating a small set of boundary bases with the tile faces allows us to satisfy
constraints that cross them. As long as adjacent faces share the same boundary basis, this construction
guarantees that all constraints within the tiling can be satisfied.
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3.3.1 Monolithic Fluid Reduction

In this algorithm, each tile corresponds to a spatially-localized linear model of fluid velocities. In this
section, we briefly review the necessary basics of data-driven fluid simulation using Galkerin projection,
and refer the reader to [Treuille et al. 2006] for more details.

First, consider a simulation with only one tile. This is simply a standard simulation implemented using
Galerkin projection, where the entire domain is spanned by a single velocity basis. The full-dimensional
simulation state is represented by a vector u ∈ RN consisting of the velocities defined at sample points.
The reduced order model operates in an m-dimensional space spanned by basis states B = [b1 . . .bm].

As demonstrated in [Treuille et al. 2006], the Navier-Stokes equations can be reduced to

dû

dt
=

(
µ4̂+

∑
i

Âiûi

)
û, (3.3)

where µ is the diffusion coefficient, 4̂ denotes the reduced diffusion operator, and Âi is a reduced linear
operator that advects û using the velocity field bi. To render the advection operator amenable to Galerkin
projection, consider the matrices Âi as slices of an advection tensor Â of order three:

dû

dt
=
(
µ4̂+ Â⊗2 û

)
û. (3.4)

Because the basis B spans only divergence-free velocity fields, incompressibility need not explicitly be
enforced, unlike traditional Eulerian fluid simulations.

Treating the advection velocities as constant throughout each time step, Eq. 3.4 can be integrated analyt-
ically, leading to an integration that is both unconditionally stable and energy-preserving if the fluid is
inviscid. Given a time step ∆t, the next reduced state is computed as

ût+∆t = e∆t(µ4̂+Â⊗2û)ût. (3.5)

This matrix-vector product can be computed using iterative Taylor or Padé approximation, making the
integration fast even for high-dimensional reduced models.

3.3.2 Tiled Fluid Reduction

The monolithic reduction described above is fast but does not allow for domain reconfiguration. Even
small changes to the simulation domain require complete recomputation of the model. Replacing the
monolithic basis with a modular set of tiles that can be assembled at runtime enables reconfigurability
through tile replacement and rearrangement. These tiles are obtained through decomposing the simulation
domain. The fluid flow within each subdomain is computed using a standard Galerkin projected fluid
simulation.

Fig. 3.1 shows an illustration of domain decomposition. Consider a discretized domain split into two parts
A and B as shown in Fig. 3.1. The Navier-Stokes equations include the constraint that the divergence
must be zero across the simulation domain. This constraint must still be enforced in the split domain. If
cells are split by the decomposition, the divergence constraints lead to constraints involving all adjacent
tiles (see Fig. 3.1, left). If the decomposition splits the domain such that velocities normal to the interface

13



Figure 3.1: Domain decomposition: Left: Decomposition into two domains, inducing divergence con-
straints in cells split betweenA andB. Right: Duplication of boundary values leads to equivalent equality
constraints for duplicated values. The divergence of the cells can be enforced in each tile separately.

are defined on the boundary, then boundary velocities can also be duplicated, as shown in Fig. 3.1, on the
right. In this case, the aforementioned divergence constraints can be enforced in each tile separately. In
order for the discretization to be consistent, the velocities twice defined on the boundary need to be equal,
leading to equality constraints. Both interpretations are equivalent. The following sections will use the
second convention, since it simplifies that algorithmic description. We will now discuss how to compute
tensors for a tiled domain, before returning to the contraints in §3.4.

Computing the necessary tensors for simulation using tiles can be treated as a special case of standard,
monolithic Galerkin projection. Consider two Galerkin-projected simulations A and B corresponding to
domains DA and DB as in Fig. 3.1. A reduced basis BA of A covers only DA, and it can be considered
to be zero everywhere else. The same holds for BB . The two bases can be combined into a basis of size
m = mA +mB:

B =

[
BA 0
0 BB

]
. (3.6)

Then, the state of the complete system can be written as û = [ûTA, û
T
B]T . Diffusion and advection operators

can now be computed as before. In particular, for the basis in equation (3.6), the diffusion operator
becomes

4 =

[
4AA 4AB

4BA 4BB

]
, (3.7)

where the interior terms4AA and4BB depend only on BA or BB , respectively, while the coupling terms
4AB and4BA depend on both BA and BB .
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(a) (b) (c)

Figure 3.2: (a) Decomposition of a spacecraft model. The domain is split into six subdomains. Two parts
are empty, while the other subdomains contain the wings, the body and the tail, respectively. (b) Slices
through the velocity basis of the spacecraft body. (c) Basis vectors from the boundary basis between body
and tail of the spacecraft. Blue and green represent positive and negative flow across the boundary.

The situation for the advection tensor Â is similar. However, since Â is a rank three tensor, it has eight
components ÂAAA, ÂAAB, . . . , ÂBBB . The six blocks with mixed superscripts are coupling terms. Be-
cause the full-dimensional diffusion and advection operators are sparse and highly localized in space, the
cost of computing the coupling terms is proportional only to the size of the interface, not the full dimension
N .

This construction can be generalized to arbitrary tilings of the domain. Because the adjacency graph
between spatial subdomains is sparse, the combined advection and diffusion operators are also block-
sparse.

3.4 Constraints

As described in 3.3.2, velocities are defined twice along the interface F between adjacent subdomainsDA
and DB . Keeping the simulation consistent between tiles requires the enforcement of equality constraints

DAuA = DBuB (3.8)

where DA and DB are matrices selecting only the elements of uA and uB that lie in F . These constraints
can be assembled into a constraint matrix C which is satisfied when CBû = 0. The system is overcon-
strained as soon as the number of samples in F , Nb, exceeds the number of combined degrees of freedom
mA + mB . Solving for û will therefore yield the trivial solution û = 0. A naı̈ve solution turns these
constraints into a penalty by solving for the updated state û′ that minimizes

‖CBû′‖2 + α‖û− û′‖2. (3.9)

The regularization parameter α balances between constraint satisfaction and state modification. Large
values of α allow inconsistent boundary velocities, leading to serious simulation artifacts. On the other
hand, as α → 0, large corrections are applied to achieve an admissible state. If the tiles are too different,
this leads to locking: only a very low-dimensional subspace of states can be represented by adjacent tiles,
and the simulation will be locked into this subspace.

3.4.1 Constraint Reduction

To solve this problem, we introduce the constraint reduction method. This method modifies the basis
vectors B to allow exact constraint satisfaction while preserving sufficient degrees of freedom for the

15



simulation.

Consider again the two adjacent tiles A and B. The mixed constraints between those tiles (i.e. the
constraints depending on values from bothA andB) are the equality constraints Eq. 3.8. These constraints
can be written as:

CBû = DABAûA −DBBBûB = eA − eB = 0. (3.10)

Both eA and eB are of dimension Nb, the number of velocity samples on the interface. If eA and eB lie
in the same linear space S with low dimension s < m, only s degrees of freedom are needed to fulfill
the constraints. This condition can be enforced for all basis vectors. To achieve this goal, construct a new
basis B̃A = [b̃A1 , . . . , b̃

A
mA

] such that

DAb̃
A
i ∈ S ∀i ∈ {1 . . .mA}, (3.11)

and similarly for BB . In this case, the space S represents the allowed boundary states at the interface
between A and B.

S is constructed as a low-dimensional model of observed boundary states. The boundary values of all
bases that should be made compatible are extracted and stored in a database E. In this example involving
only two bases, the database is E = [DAb

A
1...mA

,DBb
B
1...mB

]. Next, given E, an Nb × s boundary basis
can be computed for S: S = pcas{E}, where pcas takes the s leading singular vectors of its argument.
See Fig. 3.2 (c) for an example. Often, more than two tiles share a compatible boundary. In these cases,
E is assembled from all bases involved, or form a different set of examples representative of the flow
patterns across the boundary.

Given the boundary basis, modified bases B̃A and B̃B can be computed as follows. For each basis vector,
first project each of its faces into the appropriate boundary basis. Since this breaks the zero-divergence
constraints inside the domain, the next step is to fix the boundaries and find the closest divergence-free
field given the boundary conditions by Helmholtz-Hodge decomposition. Finally, reorthonormalize the
basis using the standard Gram-Schmidt process.

This modified basis now satisfies Eq. 3.11, and so the constraint satisfaction problem can be solved. Since
the constraint violations eA and eB lie in S , they can be represented using a basis for S by rewriting
Eq. 3.10 as

STCB̃r = Mr = 0, (3.12)

where the constraints are recombined into one system C using the combined modified basis B̃. M is an
s×m matrix, revealing the effective dimension of the constraints applied to the modified basis. Note that
the constraints have not been compromised — all constraints are fulfilled exactly. Instead, the bases have
been modified in order to allow for exact constraint satisfaction, potentially losing optimal reconstruction
properties of the PCA-based construction.

A state that satisfies the constraints can now be found by solving Eq. 3.12. m and s are chosen such that
enough degrees of freedom are left even if a tile is constrained from all sides. In a three dimensional tiling
of space, there will be three constrained boundaries per tile. For m dimensions per tile and s dimensional
boundary bases, it must be the case that m > 3s to avoid locking. When building large scenes from many
coupled tiles, the reduced constraint matrix M is block-sparse as only adjacent tiles have non-zero entries.
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3.5 General Constraints

Before turning to the algorithmic details in §3.6, we discuss the case of general linear constraints. Assume
a set of linear constraints involving a number of reduced models Ai with bases BAi :∑

i

DAiBAi x̂Ai = 0. (3.13)

As before, each basis BAi can be modified such that each DAiBAi x̂i lies in a small space S with dimen-
sion s < mAi . Note that the constraints do not need to be spatially localized or sparse. Potentially, all
components of BAi x̂Ai could be referenced in each constraint. However, it is crucial that the bases BAi

can be modified such that the constraint violations for each reduced model Ai lie in a small subspace S .
In the general setting, the next step is to find bases B̃Ai = [b̃Ai

1 . . . b̃Ai
m ] such that

DAib̃
Ai
j ∈ S ∀j ∈ {1 . . .mAi}, (3.14)

while minimizing the distortion to the bases:

‖b̃Ai
j − bAi

j ‖. (3.15)

Note that DAi can include constraints only affecting a single basis BAi , such as zero-divergence con-
straints.

The two-step technique described in §3.4.1 finds an approximate minimum of Eq. 3.15 while fulfilling the
constraints exactly. Since the modifications to each basis vector are typically small, not exactly finding
the global minimum does not lead to noticeable artifacts.

3.6 Algorithmic Details

Algorithm 1 summarizes the necessary steps to set up a tiled simulation. For each of the t tiles, first
compute ne examples by taking snapshots of a full simulation within the domain of the tile which has N
degrees of freedom (line 2). Then, distill these examples into a raw basis of dimension m as described
in §3.3.1 (line 4). Using a sampling-based approach, the principal components can be computed in time
linear in n.

The boundary bases are computed in a similar fashion. Extract the boundary velocities relevant to each
boundary type j from the raw bases and collect these boundary states in a matrix Ej which is of size
Nb×O(tm), whereNb is the number of samples in a boundary face. Then, use PCA to extract a boundary
basis Sj of dimension mb (line 7).

The raw bases and boundary bases are then combined into tiles. For each raw basis Bi, choose boundary
bases for each face that will be coupled to other tiles. Given these boundary bases, constraint reduction can
be applied to compute a modified basis B̃i (line 9). As described in §3.4.1, this process requires solving a
sparse linear system for each basis vector, yielding a total cost of O(mN4/3) using conjugate gradients1.

Finally, compute advection and diffusion operators for the tile bases B̃i (line 11). Computing the interior
advection tensors ÂAAA for each tile dominates the computational cost. The interior diffusion tensors

1The cost for solving a linear system of size N representing a 3D finite difference discretization of an elliptic boundary value
problem can be solved inO(N4/3) time using conjugate gradients [Shewchuk 1994]. The systems treated herein are of this type.
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// Decompose domain, choose basis dimension m
1 forall the raw bases Bi do
2 Compute examples UBi O(neN

4/3)
3 Compute raw basis Bi = pcam{UBi} O(n2

eN + n3
e)

4

5 forall the boundary types Sj do
// Collect boundary states Ej from all relevant Bi, choose s

6 Compute boundary basis Sj =pcas{Ej} O((tm)2Nb+(tm)3)
7

8 forall the tiles k do
// Choose basis i and boundary types j1 . . . j6

9 Compute modified basis B̃k O(mN4/3)

10 Compute interior tensor blocks ÂAAA and 4̂AA O(m3N)
11

12 forall the pairs of tiles (B̃1, B̃2) do
13 Compute coupling tensors between B̃1 and B̃2 O(m3Nb)

Algorithm 1: Tile creation from examples.

1 if not initialized or connectivity changed then
2 Assemble tensors Â and 4̂ O(k)

3

4 Contract advection tensor M̂A = Â⊗2 û O(km3)

5 Assemble M̂ = ∆t(M̂A + µ4̂) O(km2)

6 Compute preliminary state û′ = eM̂û O(km2)

7 Project state: solve Eq. 3.9 for new state û O(k4/3m8/3)
8 Advect particles O(np(m+ k))

Algorithm 2: Computations performed in each time step.

4̂AA require only O(m2N) time. The coupling terms must be computed for each pair of tiles that is to
be coupled; for k tiles, there are O(k2) such pairs. However, the coupling tensor computation involves
iterating over the boundary region only, yielding the more favorable O(m3Nb) time complexity (line 13).

Once a good set of boundary bases has been computed, new tiles can be added to the library without
having to touch existing tiles. After choosing appropriate existing boundary bases, constraint reduction
and computation of interior tensors are performed only on the new tile (lines 9 and 11). Enabling coupling
to all existing tiles requires the computation of O(k) coupling tensors (line 13).

Algorithm 2 summarizes the computations during runtime. Given the adjacency graph between tiles, the
global tensors are assembled from their precomputed parts at the start of the simulation and whenever the
adjacency graph changes (lines 1–2). Each time step begins with contracting the global advection tensor.
Since each tile instance has only a fixed number of neighbors (six in three dimensions), the assembled
global operators are block-sparse with 7m entries per row or column, leading to a total cost of O(km3)
for evaluating line 4. Time integration is performed using Eq. 3.5. The matrix-vector multiplication with
the matrix exponential (line 6) is approximated using Taylor expansion. This requires only one sparse
matrix-vector multiplication and one vector addition per iteration. Empirically, the Taylor approximation
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of the matrix exponential converges to machine precision in fewer than 20 iterations.

After integration, the system is projected into the admissible space defined by the constraints. This re-
quires the solution of the block-sparse system Eq. 3.12. Eq. 3.12 is underconstrained, and has an m − s
dimensional solution space. To disambiguate the system, a small regularization term α is added, as in
Eq. 3.9: α = 10−8 for double and α = 10−4 for single precision. Since constraints are restricted to
adjacent tile instances, the number of non-zero entries per row never exceeds 7m, similar to the advection
and diffusion tensors (line 7).

The resulting sequence of reduced states can be used for evaluation or visualization. In our experiments,
we use massless marker particles for flow visualization. For each particle, we need to check which of
the k tile instances currently affect it, and compute the velocity at its current position by computing a
weighted sum of all m basis velocities at the particle position. For np particles, this leads to the total cost
of O(np(m+ k)) for particle advection.

Note that particle advection is the only step that requires the full basis present in memory. All other
computations require only reduced size structures (column “Tensors” in Table 3.1). Note also that particle
advection is trivially parallelizable.

3.7 Evaluation

To evaluate our technique, we have conducted a variety of experiments and comparisons. These experi-
ments demonstrate that our technique is fast, that it does not introduce much new error beyond standard
model reduction, and that it can be used to scalably construct huge simulation domains.

Simulation Error. To measure our algorithm’s approximation error, we perform simple tests in 2D and
3D. In both cases, we ran a simulation of horizontal wind evolving into vortices over 200 frames. We
compare the full simulation at different resolutions to monolithic model reduction [Treuille et al. 2006]
with 32 basis states (64 in 3D), and coupled model reduction over a pair of adjacent tiles with 16 basis
states each (32 in 3D) and a 6-dimensional boundary basis. The results are summarized in Figure 3.3.

Averaging over the whole domain, the errors for tiled and monolithic simulations are similar. In terms of
L2-error, the coupled reduced simulation outperforms a full-scale simulation that is downsampled by a
factor of 16 (8 in 3D). Especially for larger domains, this indicates that reduced models are significantly
faster than full simulations, even if we compare to a downsampled simulation incurring similar errors.
These results measure error in cases where the test case is close to the training data.

2D Boxes. Modular reduced models show simulation errors similar to monolithic reduced models even
in situations where tiles are combined in novel ways. To demonstrate this, we ran a 150 × 50 simulation
of horizontal flow through a domain containing two square obstacles. We then split the domain into three
50× 50 subdomains called, from left to right, A, B, and C. Both A and C contain obstacles; B does not.
Finally, we discard B and compute tiles for A and C independently. The reduced models for A and C are
then coupled to form a tiled simulation (see Fig. 3.4).

For comparison, we ran a full simulation using the same boundary conditions as in the coupled simulation
seen in Fig. 3.4. We also compute a monolithic reduced model from this new full-dimensional simulation.
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Figure 3.3: Simulation Error. Compared to a ground truth simulation. Left: 2D test with 256 × 128
ground truth. Right: 3D test with 64 × 32 × 32 ground truth. Shown is the relative L2 error: δ(x,y) =
||x− y||/||x|| plotted against time for 200 frames.

We then compare the tiled simulation and the monolithic reduced model against the new “ground truth”
simulation. Note that in this experiment, the monolithic model is tested with its own training data, while
the tiled model is not. Nevertheless, both techniques show similar errors. The relative L2 error approaches
one because the reduced models dissipate energy faster than the full simulation (we calibrated the diffusion
in all models be visually similar, leading to higher dissipation in the reduced models).

The L2 error is a crude measure of simulation quality, especially in the case of turbulent flows. Absent
a good error measure, we have visually evaluated the performance of our approach by testing its ability
to transfer vortices across tile boundaries. In order to highlight interesting areas of the flow, we advect a
large number of particles and filter for a subset whose paths have high curvature. These particles tend to
best show the important features of the flow.

Tiled simulation using boundary bases produces results that are far superior to simpler alternatives. With-
out coupling constraints, divergence along the boundary creates severe artifacts. Overlapping the two
bases and blending between their velocities yields an approximately divergence-free flow, but flow fea-
tures such as vortices are not transferred across the tile boundaries. Fulfilling the consistency constraints
approximately without performing constraint reduction leads to a locked simulation (i.e. a small value
for α in Eq. 3.9), or insufficient coupling and divergence artifacts (i.e. a large value for α in Eq. 3.9).
Constraint reduction solves these issues by making the tiles compatible, thus allowing for information
exchange across the boundary while fulfilling the consistency constraints exactly.

Spacecraft. This example demonstrates our algorithm’s ability to recombine pieces of geometry sim-
ulated entirely independently. To compute the tiles for this scene, we ran a total of 15 full dimensional
simulations of incompressible fluid flow on a three million voxel 248× 196× 71 domain. We simulated
five different “wind” directions for each of the three spacecraft designs. We then decomposed each space-
craft into wings, tail, and body. We thus obtained 14 tiles: three wing pairs, three body parts, three tails,
and two additional tiles above the wings.

We created 16-dimensional boundary bases for each of the possible boundaries shown in Fig. 3.2 (a). This
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Reduced Sim Runtime Memory
Name Shape Voxels t m s Precomp. Full Reduced Speedup Full Bases Tensors

Spacecraft 248× 196× 71 3.4M 14 64 16 33h 191s 0.024s 7919× 53MB 5.4GB 128MB
City 5x5 285× 285× 146 12M 7 72 12 26h 436s 0.108s 4029× 181MB 1.5GB 31MB
City 7x7 399× 399× 146 23M 7 72 12 26h ∼850s† 0.250s ∼3400× 355MB 2.3GB 73MB

City 16x16 912× 912× 146 121M 7 72 12 26h ∼4,400s† 1.626s ∼3900× 1.8GB 2.7GB 120MB

Table 3.1: Timing and memory summary. t, m and s denote the number of tiles, reduced dimension
and the dimension of the boundary basis, respectively. “Precomp.” is the precomputation time in hours,
while the “Full” and “Reduced” runtimes are measured in seconds. Memory usage for the full simula-
tion includes velocity and pressure fields, “tensors” includes all coupling terms (even those not used in
the scene). All memory requirements assume single precision floating point storage. †Simulation time
estimated by extrapolation.
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Figure 3.4: 2D Boxes example. Left: Vortices and other features can cross from one tile to another
by virtue of the coupling basis. The dotted line indicates the tile boundary. The two squares are fixed
obstacles. Right: Relative error of monolithic, tiled simulation, with and without smoothness constraints,
plotted against time for 1000 frames.

enables like parts to be interchanged at runtime. Finally, we created 64-dimensional simulation bases for
each of the 14 tiles. This model can accomodate runtime part substitutions and wind variations within a
90◦ range. Our approach captures the turbulent wakes left by this obstacle even for tile combinations not
originally simulated.

City. We simulated a large city, demonstrating that our approach enables interactive simulation on huge
domains. We performed 90 fluid simulations for 200 frames of various 2 × 2 building configurations on
a 114 × 114 × 146 domain. The simulations were initialized with wind from one of the four compass
directions or a turbulent initial state without net wind. For each building type, we extracted time series for
a 57 × 57 × 146 domain from the simulations. We then built two 12-dimensional coupling bases for the
x and y faces, respectively, and computed 72-dimensional simulation bases for each building from these
coupling bases. In this setting, every building can be coupled with every other building. We use these
bases to build a set of cities ranging from 5× 5 to 16× 16 blocks. Again, we visualize flow using filtered
particles. The results in the accompanying video show that our technique captures small scale simulation
features, turbulent wakes that cross tile boundaries, and enables runtime part substitution and simulation
modification such as the introduction of tornadoes or the removal or changing of tiles.
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Table 3.1 shows statistics on scene preparation, precomputation times and runtime performance. Both
the full-dimensional and coupled simulations were performed on a quad-core 1.1 GHz AMD Opteron
with 16GB of RAM. The reported simulation times include simulation of the coupled reduced system
and constraint handling. Timings do not include particle advection, particle filtering, and rendering. The
speedups are approximate and we did not heavily optimize either our full dimensional or our coupled
simulation runtime.

3.8 Summary

This chapter described a method for building scalable, reconfigurable data-driven simulations. The central
idea is to distill high-resolution simulation data into simulation tiles that can be combined in a modular
fashion. Our results demonstrate that tilings can scale to very large domains. Runtime complexity is low
because dynamics and coupling operate entirely in the low-dimensional reduced space. We believe this
technique brings us closer to complex virtual environments endowed with high resolution dynamics.

Our technical contributions relate to coupled simulation and constraint satisfaction across tiles. The tile
representation induces simulation operators which can be precomputed and decomposed, enabling assem-
bly and reconfiguration at runtime. Moreover, the approach enables extensible libraries of tiles: we can
introduce new tiles without recomputing information about existing tiles.

Another contribution is constraint reduction, which enables tile coupling by allowing constraints to be
enforced across tile boundaries. We modify the simulation bases so that they can satisfy a large set of
consistency constraints while preserving sufficient freedom in the representation to prevent locking. This
technique generalizes to arbitrary linear equality constraints on any reduced model. Beyond enforcing
consistency, the method opens up interesting possibilities for adapting reduced models to linear constraints
in a post-process.

Using our method, tiles can be assembled at runtime to produce fluid simulations with obstacles not
contained in the original data. This modularity overcomes one of the principal limitations of data-driven
simulation: the inability to adapt the reduced model once it has been computed.

Otherwise, our approach shares some of the limitations of monolithic data-driven simulation. Depending
on the size of the domain, the memory cost of storing bases can be high. Also, representational limits
of the basis incur greater accuracy costs than full simulation. As expected from a data-driven technique,
these errors are particularly noticeable when the reduced system is presented with inputs far from the
training data. Finally, like other reduced order techniques for fluid simulation, our method cannot be used
to simulate multi-phase flows. In particular, fluids with free surfaces cannot be properly handled.

Generating the simulation data to construct fluid tiles requires some care. It is possible to create funda-
mentally incompatible tiles which lose much of the representational power during constraint reduction.
This suggests a difficult but exciting open problem: can we generate bases that preserve their full repre-
sentational power when subject to coupling?

While our constraint reduction technique is in principle general, and we would like to see it applied to
a wide range of phenomena, in this chapter we have only applied it to fluid simulation. One factor that
limits how widely constraint reduction can be applied is the inflexibility of Galerkin projection: Galerkin
projection in its usual formulation works only for polynomial functions. In the next chapter, we show how
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Galerkin projection can be extended to handle divisions and square roots, allowing for the simulation of a
variety of phenomena – including fluids – in the presence of continuously deforming geometry.
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Chapter 4

Non-Polynomial Galerkin Projection

While the previous chapter focused on allowing discrete reconfigurability of Galerkin-projected simula-
tions, it did nothing to lift one of the most onerous constraints on the use of Galerkin projection: the need
for the simulation dynamics it treats to be expressible in polynomial form in order to achieve substantial
speedups. This chapter addresses the latter concern with an efficient extension to any function composed
of elementary algebraic operations – the four operations of arithmetic plus rational roots – thus expanding
the applicability of this data-driven simulation technique across graphics.

We illustrate the utility of this approach by showing applications to two strikingly different problems:
radiosity rendering and fluid simulation. Although both of these phenomena can be expressed in poly-
nomial form on a fixed mesh, in this chapter we show that allowing geometric deformation requires
non-polynomial operations to express changes to the dynamics and appearance. While applying stan-
dard Galerkin projection to such functions is possible, it is a futile exercise, since it does not yield any
runtime speed improvement. One workaround is to abandon the analytic projection used in creation of
the reduced tensors in favor of sampling-based projection approaches (e.g. [Carlberg 2011]). This new
technique, by contrast, can efficiently model these complex non-polynomial systems without abandoning
analytic projection. Similar to standard analytic Galerkin projection, this approach not only preserves key
optimality guarantees, but also generates a compact, analytic model in the reduced space.

4.1 Related Work

In numerical analysis, Galerkin projection has primarily been used for linear and rational functions. Ra-
tional Krylov methods approximate a rational transfer function in the frequency domain using moment
matching [Olssen 2005; Ebert and Stykel 2007; Gugercin et al. 2006] to find good bases for linear time-
invariant (LTI) systems and extensions thereof. Alternatives include rational function fitting (also known
as multipoint methods) [Liua et al. 2008; Gallivan et al. 1996; Grimme 1997] and balanced truncation [Li
2000; Zhou 2002; Gugercin and Antoulas 2004]. The key difference between these works and the method
presented in this section is that their goal is to reduce linear, time-invariant systems (LTIs) by analyzing
their rational transfer functions, whereas we are interested in the reduction of non-polynomial functions
for their own sake.

Because of the restrictive nature of LTIs, extensions have been proposed for time-varying systems, both
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linear [Phillips 1998; Sandberg and Rantzer 2004; Chahlaoui and van Dooren 2005; Hossain and Benner
2008] and multilinear [Savas and Eldén 2009; Carlberg 2011]. The work closest to this chapter is Far-
hood and Dullerud [2007], who apply rational Krylov methods to linear systems rationally dependent on
time-varying parameters. However, unlike our work, theirs does not guarantee preservation of polynomial
degree for arbitrary compositions of elementary algebraic operations and therefore can become computa-
tionally intractable for complex phenomena. Using an algebraic approach similar to that of Debusschere
et al. [2004] for probabilistic dynamics, we alter Galerkin projection to enable order-preserving reduction
for arbitrary compositions of elementary algebraic operations. To our knowledge, the extension presented
in this chapter is the first work to present a general framework for analytic Galerkin projection of arbi-
trary compositions of elementary algebraic operations while preserving polynomial degree, an essential
property for real-time graphics, and the first work to simulate fluid flow or radiosity on deforming meshes.

Reduced-order fluid models. Previous reduced fluid models in graphics and numerical analysis have
been unable to model complex, continuously-deforming boundaries. A straightforward solution is to
construct separate bases for each possible boundary configuration [Schmit and Glasuer 2002]. However,
this approach cannot scale to continuously deforming boundaries. For flows with periodic boundaries, and
with inherent symmetries within the flow dynamics, it is possible to remove uniform translation modes
[Rowley et al. 2003; Rowley and Marsden 2000]. For a single rotating object, the basis can be constructed
in the object’s frame of reference and then simulated at various angles [Ausseur et al. 2004]. Treuille et
al. [2006] enabled the insertion of rigidly moving boundaries, and, in Chapter 3, we demonstrated how
to allow discrete boundary reconfiguration at runtime. Perhaps the work closest to that presented in this
chapter is that of Fogleman et al. [2004], which enabled linear deformation along a single axis to model
reduce piston and combustion simulation.

We enable continuous boundary motion by embedding the fluid in a tetrahedral mesh, similar to Elcott
et al. [2007], and deforming the mesh along with the boundary. This requires a full-dimensional fluid
solver that works for tetrahedral meshes. We considered several classes of solvers including finite element
methods (e.g. [Feldman et al. 2005a; Feldman et al. 2005b]), methods based on discrete exterior calculus
[Mullen et al. 2009; Pavlov et al. 2011], and ALE methods (such as [Klingner et al. 2006]). We chose the
residual distribution scheme [Sewall et al. 2007; Dobes and Deconinck 2006; Deconinck and Ricchiuto
2007], which is akin to a finite-difference fluid approximation [Foster and Metaxas 1996], but generalized
to a tetrahedral mesh, due to its amenability to our non-polynomial Galerkin projection and the fact that it
can be stably integrated in the reduced space.

Kim et al. [2013] apply a similar extension to Galerkin projection in order to construct a reduced fluid
model, although the details of their simulation technique differ from the one we present in this chapter.

4.2 Method

While §3.2.2 describes the application of Galerkin projection to polynomial functions, it is more difficult to
see how one can efficiently apply Galerkin projection to non-polynomial functions. For example, consider
the rational function y = f(x), where x = [x1, x2]T , y = [y1, y2]T , and:

y1 =
x1x2 + x2

2

x2
1

y2 =
x2

1

x2
2

. (4.1)

One could compute the Galerkin projection of this function by transforming reduced vectors into the
full space, applying the full space equations, and projecting the results back to the reduced space, but
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this would yield no speed advantage. Instead, one can use two tensors to express f(x), rewriting it as a
matrix-vector product: [

y1

y2

]
=

[
x2

1 0
0 x2

2

]-1 [
x1x2 + x2

2

x2
1

]
Both the matrix and the vector are polynomial (specifically, quadratic) in x. Therefore one can evaluate
the matrix using a 4th-order tensor Q1, and the vector using an 3rd-order tensor Q2:[

x2
1 0

0 x2
2

]
= Q1 ⊗2 x⊗3 x[

x1x2 + x2
2

x2
1

]
= Q2 ⊗1 x⊗2 x

where Q1 and Q2 are (labeling each tensor slice by its associated polynomial term):

Q1 ⊗2 x⊗3 x =

[
1 0
0 0

]
x2

1+

[
0 0
0 0

]
x1x2+[

0 0
0 0

]
x2x1+

[
0 0
0 1

]
x2

2

and

Q2 ⊗1 x⊗2 x =

[
0
1

]
x2

1 +

[
1
0

]
x1x2 +

[
0
0

]
x2x1 +

[
1
0

]
x2

2

To evaluate f(x), contract Q1 and Q2 as shown above, then invert the matrix Q1 ⊗2 x ⊗3 x, and finally
compute the matrix-vector product. In the form of a single equation:

y = (Q1 ⊗2 x⊗3 x)-1 ⊗1 (Q2 ⊗1 x⊗2 x) (4.2)

This equation is completely equivalent to Eq. 4.1. This form is preferred because it makes the tensor
structure of the computation clear.

More generally, to reduce a non-polynomial function f(x), write f(x) in terms of a collection of tensors
Q1 . . .Qk, to which we apply a series of tensor contractions and matrix operations. This technique can
reduce functions expressible using only the following operations:

(i) Q⊗X, tensor product.

(ii) Q-1, matrix inverse.

(iii) Q
1
n , matrix root. Q is a symmetric positive semidefinite matrix and Q

1
n is uniquely identified as the

positive semidefinite matrix such that (Q
1
n )n = Q.

As §3.2.2 demonstrated, polynomial functions require only one tensor and repeated applications of oper-
ation (i) for evaluation. However, as shown in Eq. 4.1, there are many cases in which it may be necessary
to use multiple tensors and operations beyond (i) to evaluate f(x).

Once one has expressed a function f(x) in terms of tensors Q1, . . . ,Qk and our allowed matrix operations,
the function can be reduced. As a first step, this requires finding bases for every axis of every tensor Qi.
For example, a polynomial y = qi(x1, . . . ,xd) requires separate bases for y,x1, . . . ,xd. After finding
these bases, one can pre-multiply each tensor by its associated bases, as in Eq. 3.2. Computing f̂(x̂) then
follows exactly the sequence of operations used to compute f(x), except that each tensor Qi is replaced
with its reduced counterpart Q̂i. That is, each operation transforms as follows:
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Operation Full Form Reduced Form
(i) Tensor Product Q⊗k X Q̂⊗k X̂= BT

q Q⊗k BxX̂

(ii) Matrix Inverse Q-1 Q̂-1 = (BT
q QBq)

-1

(iii) Matrix Root Q
1
n Q̂

1
n = (BT

q QBq)
1
n

While each reduction is straightforward, these reductions do have implications for basis selection, as
shown in the last column of the table. Since every tensor must be reduced along all of its axes, a basis is
required for each axis of each tensor. Operations (ii) and (iii) require that Q be reduced using the same
basis along both axes. §4.2.2 explains this restriction. If Q̂ is small, which is the case for typical choices
of basis size, then Q̂

1
n can be computed efficiently using eigen-decomposition.

4.2.1 Reduction Example

To reduce the example function (Eq. 4.1) from the previous section, begin by inspecting the tensor form
(Eq. 4.2) to see which bases are required. Reading from right to left, it appears that one requires a basis
Bx for x, a basis Bn for Q2 ⊗1 x ⊗2 x, and a basis By for y. Due to the restriction that an inverted
matrix must be reduced by the same basis along both axes, By = Bn, and we will refer to both as By.
The reduction of Q1 and Q2 is then:

Q̂1 = BT
yQ1 ⊗1 By ⊗2 Bx ⊗3 Bx

Q̂2 = BT
yQ2 ⊗1 Bx ⊗2 Bx

and to evaluate f̂(x̂) at runtime, perform:

ŷ = (Q̂1 ⊗2 x̂⊗3 x̂)-1 ⊗1 (Q̂2 ⊗1 x̂⊗2 x̂)

The only data required to perform this computation are the two reduced tensors Q̂1 and Q̂2. Displaying
the full space result of the computation at runtime will also require By in order to compute y = Byŷ.

4.2.2 Properties

This choice of reduction is not the only one possible for non-polynomial functions. It would have been
possible, for example, to replace each full-space operation with something more complex than the same
operation performed on reduced tensors. The method proposed here does, however, have three principal
advantages. First, it is simple: once a function has been expressed in terms of tensors, the reduction con-
sists only in replacing full-dimensional tensors with corresponding reduced-dimensional tensors. Second,
it is efficient: tensor order is preserved by the reduction, which is important because both tensor storage
costs and evaluation time complexity are exponential in the tensor order. Third, it is optimal: each re-
duction rule is constructed to minimize some measure of error (similar to [Carlberg et al. 2011]), given a
particular decomposition into tensors of the target function. We discuss the optimality properties of each
of these operations in turn.

Tensor product. Given a single tensor Q of order d+ 1 which is contracted d times by a fixed vector x:
y = Q⊗1...d x, minŷ ||Byŷ −Q⊗1...d Bxx̂|| is minimized at ŷ = BT

yQ⊗1...d x, exactly as in the case
of the ordinary polynomial reduction (Eq. 3.1) discussed in §3.2.2.
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Matrix inverse. For the matrix inverse, operation (ii), let y = Q-1x. minŷ ||Bxŷ − Q-1Bxx̂||Q is
minimized at ŷ = (BT

xQBy)
-1. Note that this is not the same as the ordinary Galerkin projection of Q-1,

which would be BT
xQ

-1Bx. One could also allow the bases for x̂ and ŷ to differ, in which case the error
would be minimized at ŷ = (BT

xQBy)
-1BT

yBx. However, setting Bx = By has significant benefits in
practice, such as energy conservation in the fluids application (§4.4.3).

Matrix root. Matrix roots, operation (iii), approximate Q
1
n by first finding the reduced matrix Q̂ that best

approximates
(
Q

1
n

)n
= Q, computing minQ̂ ||BxQ̂x−QBxx||. This reduced matrix is Q̂ = BT

xQBx.

One can then use its nth root, Q̂
1
n , to approximate Q

1
n . Multiplying Q by the same basis along both axes

ensures that Q̂ is also symmetric and positive semidefinite. Again, our reduction differs from the ordinary
Galerkin projection of Q

1
n , which is BT

xQ
1
nBx.

Speed-optimality tradeoff. We restricted the optimality discussion for operation (i) to the case where
the function f(x) is represented using a single tensor. However, in many cases it is possible to represent
a polynomial using multiple tensors. This alternative representation exchanges optimality for speed by
composing polynomials. Suppose q(x) = q1(q2(x)), where q has degree d = ab, q1 has degree a,
and q2 has degree b. One can choose to express q(x) as either Q ⊗1...d x or Q1 ⊗1...a (Q2 ⊗1...b x).
In the full space, these expressions are identical. When reduced, however, these expressions become
(BT

yQ ⊗1...d Bx) ⊗1...d x̂ and (BT
yQ1 ⊗1...a Bz) ⊗1...a ((BT

zQ2 ⊗1...b x̂). The second case can also be
written as:

BT
yQ1 ⊗1...e (BzB

T
zQ2 ⊗1...g Bxx̂)

which is equivalent to:
BT
xq1(BzB

T
z q2(Bxx̂)).

Notice that the composition introduces an extra projection BzB
T
z , which reduces the accuracy of the

reduced result. On the other hand, the reduced composition is faster to compute than the reduced origi-
nal polynomial: the composition replaces one reduced tensor containing n̂eg+1 elements with two much
smaller reduced tensors, one containing n̂e+1 elements, and the other containing n̂g+1.

4.2.3 Summary

We have demonstrated that any function constructable from tensor contraction, matrix inversion, and ma-
trix roots can be easily model-reduced using our non-polynomial Galerkin projection method. Reducing
such a function f(x) can be accomplished by constructing it using a collection of tensors Q1, . . . ,Qk

and applying our tensor and matrix operations. The reduced counterpart f̂(x̂) can then be computed by
simply replacing the tensors Q1, . . . ,Qk with the tensors Q̂1, . . . , Q̂k, and maintaining exactly the same
sequence of operations. This method is simple, efficient, and optimal in the sense described in §4.2.2.

4.3 Fluid Model

As an example of this non-polynomial Galerkin projection method, we describe the reduction of fluid flow
on a deforming tetrahedral mesh. In this system, movement of the mesh boundary exerts force on the fluid,
but forces from fluid motion do not cause the mesh boundary to move. This method attempts to keep the
fluid motion as independent as possible of the motion of the interior of the mesh. The simulation state
consists of fluid velocities u and fluid momenta p, located at the centroid of each element, and of fluid
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begin fullSimStep(ut, ft, gt, gt+1): begin reducedSimStep(ût, f̂t, ĝt, ĝt+1)

flux combination
ġ← gt+1 − gt

f ′ ← ft − h(ġ) f̂ ′ ← f̂t −BT
f Bhĥt

advection (§4.3.1)
diffusion (§4.3.2) u′ ← ut +

∫ t+1
t [V-1(gt)(A⊗2 f ′ − µ∆)]ut û′ ← exp[∆tV̂-1(ĝt)(Â⊗2 f̂ ′ − µ∆̂)]ût

pressure projection
(§4.3.3)

ft+1 ← min ‖u′−V-1(gt+1)(P⊗2 gt+1)f‖V(gt+1)

s. t. Df −Dh(ġ) = 0 and∇ · f = 0

f̂t+1 ← minf̂ ‖û
′−V̂-1(ĝt+1)(P̂⊗2ĝt+1)f̂‖V̂(ĝt+1)

s. t. D̂f̂ − D̂hĥt = 0
convert to velocity ut+1 ← V-1(gt+1)(P⊗2 gt+1)ft+1 ût+1 ← V̂-1(ĝt+1)(P̂⊗2 ĝt+1)f̂t+1

end end

Figure 4.1: Algorithmic summary of the full-dimensional and reduced time steps. Note the close corre-
spondence.

fluxes f through each face. (Ordinarily, one would use only one of these descriptions of fluid flow. As we
shall see, however, non-polynomial Galerkin projection demands separate treatment of these quantities.)
The mesh topology must remain constant, but continuous deformation of the positions of the mesh vertices
denoted, g (Fig. 4.2), is allowed.

Since the fluid is represented on a moving tetrahedral mesh, and not a fixed rectangular grid as in Chap-
ter 3, a different fluid discretization and full-space fluid simulation method is required. We begin from the
incompressible Navier-Stokes momentum equation:

u̇ = −(u · ∇)u− ν∇2u +∇p+ e, (4.3)

where p denotes pressure, ν viscosity, and e external forces, and discretize this equation using the resid-
ual distribution scheme of Dobes, Deconinck, and Ricchiuto [2006; 2007], which is essentially a finite-
differencing method applied to tetrahedral meshes. Then, using “operator splitting”, described in [Stam
1999], the velocity update is divided into advection, diffusion, and pressure projection steps. The algo-
rithm is summarized in Fig. 4.1, where we integrate the full-space equations using a 4th order Runge-Kutta
integrator. We now describe each step in detail.

velocity (u)
momentum (p)

flux (f)

geometry (g)

geometry (g)

geometry (g)

geometry (g)

flux (f)

flux (f)

flux (f)

Figure 4.2: Geometric layout of the simulation variables on a tetrahedral element.

4.3.1 Advection

The advection step transports quantities through the mesh. Each of the x, y, and z components of velocity
is treated separately and transported between mesh elements according to the flux f . This transport is
described by the advection tensor A, which interpolates velocities onto the mesh faces, multiplies the
interpolated velocities by f to find the rate of momentum transport over each face, and finally sums the
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momentum transported over a cell’s faces to find the momentum derivative at that cell as ṗ = (A⊗2 f)u.
For a cell i, A computes:

ṗi =
∑
e

ffie
1

2
(ue + ui), (4.4)

where the sum index e runs over the four face-adjacent cells to i, and fie denotes the index of the (oriented)
face between i and e.

However, the quantity of interest is not momentum ṗ, but velocity u̇. Assuming a constant density (in-
compressible) fluid1, u and p are related by volume. The volume of each cell is a cubic polynomial in the
vertex positions, which must be evaluated to produce a diagonal matrix whose elements are cell volumes.
This evaluation can be achieved using the 5th-order volume tensor V, which computes a matrix-valued
cubic polynomial in the vertex locations:

V ⊗2...4 g =

 v1(g)
. . .

vn(g)

 (4.5)

where vk(g) is the volume of cell k as a function of the vertex positions. For clarity, we will write V(g)
in place of V ⊗2...4 g.

Given V, momentum can be computed: p = V(g)u. This gives us the advection equation:

u̇ = V-1(g)(A⊗2 f)u. (4.6)

Note that this equation depends on the geometry g. If g were constant, V would simply be a constant
matrix, and we could precompute V-1 and absorb it into A. Because we want to simulate the fluid
behavior in the presence of changing geometry, we must explicitly represent V as a tensor which we can
contract to a matrix and invert. This requires our non-polynomial Galerkin projection technique.

4.3.2 Diffusion

We discretize viscosity as follows:
u̇ = −µV-1(g)4u, (4.7)

where µ is a viscosity coefficient, 4 is the graph Laplacian (4u)i = −|Ni|ui +
∑

j∈Ni
uj , Ni are

the (usually four) tetrahedra neighboring tetrahedron i, and V is the volume tensor. We have found
that this simple, geometric approximation to diffusion is sufficient in both the full and reduced spaces.
After computing the contribution of both advection and diffusion to u̇, we use an explicit time integration
scheme to update the velocity.

4.3.3 Projection

Given a velocity u, the projection step first generates a flux f that is close to u and satisfies the incom-
pressibility constraint ∇ · f = 0. We can then convert f back to a velocity that corresponds exactly to the
incompressible flux.

1Specifically, a fluid where the density is 1.
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To perform the conversion from flux to velocity, we introduce the tensor P, which sums the volume-
weighted directed fluxes of a cell to obtain the momentum of the cell: p = (P⊗2 g)f . Thus, the velocity
corresponding to f is given by u = V-1(g)(P⊗2 g)f . Note that this relation only holds if the fluxes f are
divergence-free.

Using the flux-to-velocity conversion and a velocity field u, we can find the flux field f that fulfills our
incompressibility constraint ∇ · f = 0, while minimizing the energy of the difference between its corre-
sponding velocity V-1(g)(P⊗2 g)f and u. The energy to be minimized is

1

2
||u−V-1(g)(P⊗2 g)f ||2V(g), (4.8)

where ‖x‖2M = xTMx. We solve the minimization using Uzawa’s method as described in [Benzi et al.
2005].

Again, since we need to perform flux-to-velocity conversions, we have to perform divisions by cell vol-
umes V(g). In this case, these divisions appear in the objective of our optimization.

4.3.4 Fluid-Geometry Coupling

To allow deforming objects to exert forces on the fluid around them, we modify both the advection and
projection steps of our simulation. To model the effect of the moving mesh on advection, we compute and
then subtract the flow h induced by the motion of the mesh. This ensures that velocities do not translate
simply because their discretization element moves through space. We also modify the projection step to
ensure that we never advect fluid across a moving domain boundary.

The movement of face i induces a flux hi(ġ) through that face equal to

hi = Aiċi · ni, (4.9)

where Ai is the area of the face, ni its normal, and ċi the velocity of its centroid. To compensate for mesh
movement, we can simply subtract h(ġ) wherever we use f .

In particular, in the advection step we subtract the effect of advection due to induced fluxes from the effect
of advection due to fluid fluxes: ṗ = A ⊗2 f − A ⊗2 h. In the projection step, we enforce that there
is no flow across the boundary by adding constraints Df + Dh = 0 to the projection, where D is an
operator which selects the boundary faces. These modifications ensure that the flow inside of the domain
is independent of the movement of the mesh, and that there is no flow across (possibly moving) domain
boundaries.

4.3.5 Stability

Our discretization of the fluid equations is stable, meaning that the discrete versions of the partial differen-
tial equation do not inherently gain energy. To see why, let us consider the advection, diffusion, and pro-
jection steps separately. Energy is given by E(u) = 1

2 ||u||2V(g) and its time derivative is Ė = uTV(g)u̇.
Noting that we use oriented fluxes in Eq. 4.4, it is easy to see that the advection matrix A ⊗2 f is anti-
symmetric. Substituting for u̇ according to Eq. 4.6, we can see that the advection step exactly conserves
energy.

Ė = uT (A⊗2 f)u = 0 (4.10)
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Figure 4.3: A cutaway view of a tetrahedral mesh used in our fluid simulation application.

The graph Laplacian4 has only positive eigenvalues, so substituting Eq. 4.7 for u̇ gives us

Ė = uT
(
− µV-1(g)4

)
u < 0. (4.11)

Finally, in the projection step, we minimize the energy difference between the current velocities and
the velocities corresponding to new, divergence free fluxes. Let u be the velocities before projection,
u′ = V-1(g)(P ⊗2 g)f be the divergence-free velocities after projection, and u⊥ be their difference:
u = u′ + u⊥. (This is known as the Helmholtz-Hodge decomposition [Stam 1999].) We use ‖ · ‖V(g)

in our objective function Eq. 4.8, meaning u′ and u⊥ are orthogonal in energy space. So the triangle
inequality is tight: E(u) = E(u′) + E(u⊥), which implies E(u) ≥ E(u′), ensuring that the projection
never gains energy.

Note that this does not mean that the method is unconditionally stable independent of the time integra-
tion method and time step chosen. However, as we show in §4.4.3, our reduced simulation is in fact
unconditionally stable.

4.4 Reduced Fluids

We construct the reduced simulation by applying our non-polynomial reduction rules (§4.2) to the fluid
simulation method from the previous section.

In order to reduce the governing equations, we have to reduce the tensors V, P, A, 4, and D. Because
we require bases for each axis of each of these tensors (last paragraph before §4.2.1), we will need a flux
basis Bf , velocity basis Bu, and momentum basis Bp. Since V and P depend on the geometry, we need
a geometry basis Bg. We also need a basis Bh for the fluxes induced by mesh motion and a basis Bd for
boundary fluxes.

4.4.1 Basis Construction

The quality of the runtime simulation depends significantly on our choice of bases. We build Bf , Bh, Bu,
and Bp using a method similar to [Treuille et al. 2006]. We run a set of full-dimensional simulations and
collect snapshots of simulation quantities into large matrices, where each column represents a simulation
frame. We create bases by running out-of-core Singular Value Decomposition (SVD) on these matrices
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using the method of James and Fatahalian [2003a]. After computing the momentum and velocity bases
independently, we concatenate these bases and re-orthonomalize. This process ensures that Bu = Bp,
which ensures energy preservation in the reduced space (§4.4.3) and complies with the requirements of
matrix inversion reduction (§4.2).

Creating the geometry basis Bg is more difficult. We begin with a sequence of triangle meshes animating
changes to the boundary conditions, such as the flapping wings of a bird. We select an intermediate pose
for the boundary mesh and construct a tetrahedral base mesh discretizing the simulation domain. For
each deformed state of the surface model, we then use Laplacian deformation transfer [Sorkine 2006] to
deform the base mesh so that the embedded surface matches the deformed surface model. Unfortunately,
this step can lead to inverted elements, which would be fatal to the simulation. To fix inversions, we
interleave the following two steps. First, we increase the weights around inverted elements to increase
rigidity during Laplacian deformation and thus avoid inversion. Second, we improve the quality of the
mesh by running Stellar [Klingner and Shewchuk 2007], which we modified to leave surface vertices
unchanged. Unfortunately, the latter step can lead to discontinuities in the animation sequence, where the
configuration of internal vertices rapidly changes between simulation frames. This popping artifact, which
can be seen in our example video, is not fatal, but removing it would likely improve simulation quality
and is an open question for future research. Once we have an inversion-free tetrahedral mesh animation,
we run SVD to create Bg.

4.4.2 Tensor Reduction

Using these bases, we follow the procedure described in §4.2, turning the full space tensors into their
reduced equivalents:

[MS: center this]

Tensor Galerkin Projection
Advection A Â = BT

pA⊗1 Bu ⊗2 Bf

Induced Advection Ah Âh= BT
pA⊗1 Bu ⊗2 Bh

Diffusion 4 4̂ = BT
u4Bu

Flux to momentum P P̂ = BT
pP⊗1 Bf ⊗2 Bg

Volume V V̂ = BT
pV ⊗1 Bu ⊗2...4 Bg

Boundary D D̂ = BT
dDBf

Induced Boundary Dh D̂h= BT
dDhBh

The reduced space simulation procedure is nearly identical to the full space one (Fig. 4.1), although we
do make several small changes. First, we store values of ĥ along deformation trajectories that we will use
at runtime and replay these trajectories to find ĥ, rather than computing h from ˆ̇g. Second, we integrate
advection and diffusion by matrix exponentiation, instead of explicitly as we do in the full space [Treuille
et al. 2006]. In the full space, integration by exponentiation would make sure that the simulation is stable
for any time step; the fact that Bu = Bp ensures that this stability result can be carried over into the
reduced space (§4.4.3).
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4.4.3 Reduced Stability

The definition of energy in the full space E(u) = ||u||2V(g) leads naturally to a definition of reduced en-

ergy Ê(û) = ||û||2
V̂(ĝ)

, and all our stability arguments from §4.3.5 carry over directly with one exception:
advection. In order to ensure energy-preserving advection, we must be careful in basis selection. Con-
structing the reduced equivalent of Eq. 4.10, we see that the derivative in energy due to reduced-space
advection is given by

Ė = ûTBT
p

(
(A⊗2 Bf )⊗2 f̂

)
Buû. (4.12)

If we set Bu = Bp, then ûTBT
p = (Buû)T , and since the full space matrix (A ⊗2 Bf ) ⊗2 f̂ itself is

antisymmetric, we once again are in possession of an energy-conserving discretization. Combined with
analytic integration using matrix exponentiation, this basis choice results in an unconditionally stable
system. To achieve Bu = Bp, we first compute the momentum and velocity bases independently. We
then concatenate them and re-orthogonalize the result. We use this combined basis for both Bu and Bp in
our fluid simulations, which guarantees that the simulations will preserve energy.

4.4.4 Constraints

Fluid simulation requires that we maintain full-dimensional constraints exactly in the reduced-dimensional
simulation. In particular, we must maintain a hard incompressibility constraint in the reduced simulation.
As in [Treuille et al. 2006], all basis vectors of Bf are divergence-free by construction. They remain
divergence-free under geometric deformation, since the units of flux are volume per unit time, which are
independent of the geometry. However, unlike earlier work, we have multiple bases whose relationships
may change with the mesh geometry. In particular, the velocity and momentum bases are not neces-
sarily divergence-free. A reduced projection step is therefore necessary. Reducing the full-dimensional
projection (Eq. 4.8), we obtain:

1

2
||û− (V̂-1(ĝ)(P̂⊗2 ĝ)f̂ ||V̂(ĝ). (4.13)

Since the flux basis guarantees∇ ·Bf f̂ = 0T , we can omit the constraint in the reduced projection.

4.4.5 Fluid-Geometry Coupling

To make the flow independent of the changes in the geometry, we proceed as in the full space. We subtract
the induced fluxes from the fluxes when computing advection, which, since Bf and Bh are different,
requires us to generate two reduced advection tensors Â and Âh (§4.4.2); boundary constraints D̂f̂ +
D̂hĥ = 0 are added to the projection. While the constraints are in the reduced space, we apply constraint
reduction (§3.4.1) to ensure that fulfilling the reduced constraints entails fulfilling the corresponding full
space constraints exactly; this process also gives us our boundary flux basis Bd.

4.4.6 Runtime Visualization

To visualize the flow field, we advect massless marker particles with the flow. Each particle can be
advected separately. Because the velocity state is not necessarily divergence free, we reconstruct advection
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velocities from the flux field. We assume that the velocity is constant in each cell. Whenever we need to
evaluate a velocity in a cell i, we locally compute

ui =
(
V-1(Bgĝ)(P⊗2 Bgĝ)Bf f̂

)
i
. (4.14)

Using this technique, we never need to expand the full representation of the geometry or flux. Instead, for
each particle we remember the cell i that currently contains it. We then evaluate only those parts of the
geometry that are necessary to compute ui. We only have to compute the positions of vertices incident to
the current element and its neighbors, as well as the fluxes across the faces of the current element. We can
then advect the particle with the computed velocity. A particle may leave its current cell, either because
the particle is moved by advection, or because the mesh deforms. In that case, we walk across the mesh
starting at the particle’s last known position, and moving in the direction of the particle’s new position.
We evaluate the mesh geometry only locally, and continue the walk until we have found an element that
contains the particle. For advection, we use explicit Euler integration, with ten substeps per frame for the
examples shown in the accompanying video.

4.5 Fluid Evaluation

We evaluate our reduced fluid simulation in two ways: evaluating its numerical error in a 2D wind tun-
nel domain containing a simple obstacle, and demonstrating its qualitative behavior in two different 3D
domains with complex boundary motion.

4.5.1 Numerical Error Analysis

To assess the accuracy of our method, we measure deviation from a full-dimensional ground truth sim-
ulation for a simple two-dimensional example. We ran full simulations in a domain consisting of a 2D
periodic tunnel-shaped domain containing a single triangular obstacle, and used the simulation frames to
compute bases of different sizes. We show some example frames and basis vectors in Fig. 4.4(a-c).

To give a clear picture of how accurately a reduced model built with velocity basis Bu captures the
simulation dynamics over a range of states, we use a one-step error measurement. To find the one-step
error, we begin with a sequence of velocity snapshots u1, . . . ,uT from a full-dimensional simulation
and project them into Bu using an energy-conserving projection2 to find reduced coordinates r̂1, . . . , r̂T .
From each reduced coordinate, we take a full timestep to obtain uground and we take a reduced timestep
to obtain utest. Let the energy E(u) of a velocity field u be E(u) = 1

2u
TV(g)u. The one-step error is

then E(uground − utest)/E(uground).

Fig. 4.4(d) plots the one-step error over the evolution of a simulation for a range of basis sizes. Fig. 4.4(e)
plots this same error integrated over the entire simulation. In both Fig. 4.4(d) and Fig. 4.4(e), we see that
the error tends to decrease as we add more basis vectors. This reassures us that our method converges to
the ground truth as the number of basis vectors grows to the dimension of the full simulation. While the
decline in error with basis size is monotonic when the error is averaged over time (e), it is not necessarily
so instantaneously (d). Our one-step error measure ensures that each simulation begins each step from as
close an approximation to the same full state as possible, however, simulations with different basis sizes

2The projection is the minimization minr̂t ||ut −Bur̂t||V(gt).
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Figure 4.4: The results of our fluid application error analysis. (a) Frames from the two training simu-
lations: one with a large obstacle, and one with a small obstacle. (b) The corresponding frames from a
reduced test simulation in a domain with a medium-sized obstacle. (c) Selected vectors for the velocity
basis trained from part (a) and used to run part (b). (d) Relative one-step error over the course of 1000
frames for reduced models with different size bases. (e) Integrated one-step error for models with different
size bases. The time-averaged integrated error monotonically decreases with basis size.
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Figure 4.5: Our method simulates this deformable mixing chamber at 70 frames per second (3 frames per
second with rendering).

full simulation reduced simulation

Cavity
Eagle

88671

dimensions runtime basis dimensions #particles memory runtime speedup

300217 149903
13339 17823

28613
2.17s
2.92s

18.4s
18.9s

220s
82.0s

64
70

128
193

5
7

10000 29.7MB
131MB

0.0145s
0.0469s

0.308s
0.0381s

16565⇥
2252⇥

td ta tp mf mu mg ts tpa#cells #faces #vertices

⇠ 9500

Table 4.1: Runtimes and statistics for our examples: The table shows timings for full dimensional defor-
mation td, advection ta and projection tp, as well as reduced simulation ts and particle advection tpa. It
also contains the number of cells, faces and edges determining the dimension of the full simulation, and
the reduced basis dimensions of the flux, velocity, and geometry bases, mf , mu, and mg, respectively.

will start from slightly different initial states due to differences in basis expressivity. Therefore, some
deviation from a monotonic decrease in error at some timesteps should be expected.

4.5.2 3D Results

In these results, we used a 110-node cluster with 2.2 GHz SMT quad-core AMD Opteron processors for
precomputation, and a 2.6 GHz 8-core Intel Xeon processor with 24GB of memory for realtime simulation,
rendering and timing comparison. Our precomputation wall-clock timing results include both PCA and
tensor premultiplication time. We used a serial PCA implementation to compute each basis, so only the
tensor premultiplication was fully parallelized across the cluster. Our runtime timing results (Table 4.1)
include both simulation and particle advection runtime.

Deforming cavity. The cavity model (Fig. 4.5) consists of a large central cavity and three adjacent smaller
ones, connected with thin tunnels. Each of the small cavities can be individually compressed, causing the
fluid inside them to flow into the central cavity, which changes its volume accordingly. We designed the
cavity using simple level set primitives, and then tetrahedralized the interior of the isosurface using CGAL
[cga ].3 We generated a sequence of example deformations by analytically compressing the outer cavities

3Due to the regular shape of the domain, we were able to use a simpler method than the one described in §4.4.1 for generating
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while renormalizing the volume and used these deformations to generate 14 full-space simulations, each
capturing the compression and re-inflation of one or two small cavities. Not all deformations seen in
the video are part of the original training set (for instance, the training set contains no examples where
one cavity expands while another remains compressed). Precomputation for this example took 12 hours
of wall-clock time, of which approximately the last half hour consisted of tensor premultiplication. At
runtime, we can simulate at 70 frames per second, however, due to the dense coverage of particles in the
simulation, advecting and rendering particles decreases the frame rate to 3 frames per second. Various
forms of optimization which we have not pursued, such as parallelization, could certainly increase the
frame rate further.

Eagle. Our eagle example (Fig. 4.3) shows a different use case. Here we started with 266 frames of
a triangle mesh animation of a flying eagle flapping its wings and soaring left and right. We built a
deformable tetrahedral mesh as described in §4.4.1, generating the base mesh by using Tetgen [Si 2007]
to tetrahedralize the space around the eagle with fully extended wings. We used snapshots from a full
space simulation run on these same 266 animation frames to build a reduced model. Precomputation for
this example took approximately 4 hours of wall-clock time, of which again approximately the last half
hour consisted of tensor premultiplication.

Note that the specific deformation sequence need not be preordained; in principle, this method could be
extended to model the deformations in an entire motion graph, with the actual character motion determined
at runtime. In order to compute a good geometry basis, we do not need more examples or keyframes than
it takes to animate a movement sequence. Therefore, no additional modeling work is necessary to turn a
rigged model into a reduced deformable fluid model — all steps to create the necessary simulation meshes
and bases are fully automated.

4.6 Radiosity

We now apply our model reduction technique to real time computation of global illumination (radiosity) on
diffuse deformable objects under varying lighting. As before, we first reformulate the radiosity equation
in terms of tensor contractions and matrix operations, and then apply the projection rules in §4.2 to obtain
a reduced model. We use this reduced model to interactively explore illumination design in architectural
environments.

Following Goral et al. [1984], we divide the scene into discrete patches, and compute radiosity as:

b = (I− ρF)-1 e (4.15)

where b is a vector of total face radiosity, ρ is a diagonal matrix of albedos, e is a vector of incident
lighting intensities, and F is a matrix of form factors: Fij describes the fraction of light incident on
face j that is reflected to face i. Notice that, unlike fluid simulation, radiosity requires modeling dense
interactions between scene components, which increases the computational complexity in a scene with n
faces to O(n2).

the tetrahedral mesh.
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4.6.1 Tensor Formulation of Radiosity

Ordinarily, Eq. 4.15 describes a straightforward linear relationship between direct lighting and radiosity.
However, if objects in the scene move or deform, this equation becomes highly nonlinear. The crucial
term is the form factor matrix F, which we sample at the centroid of each face to obtain

Fij =
(ni · (cj − ci)) (nj · (ci − cj)) Vis (i, j)

π (ci − cj)
4Ai

, (4.16)

where Vis(i, j) is 1 if faces i and j are visible to each other and 0 otherwise, Ai is the area of face i, ci is
the centroid of triangle i, and ni is computed as the vector cross product of two of i’s edges.

centroid (cj)
area (Aj)area (Ai)

centroid (ci)

normal (ni)

angle (�i)

normal (nj)

angle (�j)

Figure 4.6: Geometric layout of the illumination variables on two triangles.

In order to model reduce this equation using our non-polynomial Galerkin projection method, we need
to represent it as a composition of tensor products, matrix inverses, and matrix roots. This composition
requires more tensors than our fluids application, however, the use of each tensor tends to be simpler. We
arrive at this composition by breaking Eq. 4.15 down into progressively smaller parts. These parts are
summarized in Table 4.2.

Before we begin, we need to define some notation. Our tensor representation requires that we be able to
unroll F ∈ Rn×n into a vector p ∈ Rn2

by re-indexing: pk = Fij , where k = ni+ j and n is the number
of faces in the mesh. We also need the transpose index kT = nj + i, so that pkT = Fji.

The first step in decomposing Eq. 4.15 is to compute the matrix I−ρF. We begin by unrolling F ∈ Rn×n
into a vector p ∈ Rn2

by re-indexing: pk = Fi,j , where k = ni + j and n is the number of faces in the
mesh. We also need the transpose index kT = nj+ i, so that pkT = Fj,i. The tensor form of the radiosity
equation (Eq. 4.15) is then:

b = (I−E⊗2 p)-1e, (4.17)

where E is the 3rd-order tensor that transforms the unrolled form factor vector p back into the form factor
matrix F and left-multiplies F by the face albedos ρ.

Our task is now to compute p, the vector of form factors. At this stage, we choose to separate the factor
of area in the denominator of Eq. 4.16, making this stage a division of area-free form factors, denoted by
d, by the square roots of squared areas, where we denote squared areas by a:

pk = dk/
√
ai. (4.18)
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We implement this division using a tensor P:

p = (P⊗2 a)−
1
2d. (4.19)

a is a simple function of the normals n: ak = ni ·ni. (Recall that ni is the normal of the ith face, making
it a 3-vector.) We define a tensor N to implement these dot products:

a = N⊗1...2 n. (4.20)

Returning to d, the next factor we separate is visibility, which gives us the expression

dk = ckVis(i, j), (4.21)

where c are visibility-free form factors. We define the visibility vector v such that vk = Vis(i, j). We
treat v(g) as a function of geometry directly, and reduce the computation of Vis(i, j) using a non-Galerkin
method which we describe in more detail in §4.6.3.

Now we can write c as an element-wise product of two vectors:

ck =
1

π
hkhkT , (4.22)

where

hk =
ni · (cj − ci)

||ci − cj ||2
. (4.23)

We call h half form-factors, and define a tensor C implementing Eq. 4.22:

c = C⊗1...2 h. (4.24)

Next, we rewrite both parts of the quotient in Eq. 4.23:

hk =
sk
rk
, (4.25)

where
rk = ||ci − cj ||2 (4.26)

and
sk = ni · (cj − ci). (4.27)

r is a vector of squared distances between face centroids. s is a vector of scaled cosines: sk is the cosine
of the angle between ni and cj − ci, multiplied by face area and the distance between face centroids. We
use a tensor H to construct a diagonal matrix, with r as its entries, which we invert to find h:

h = (H⊗2 r)-1s. (4.28)

While s is polynomial in g, and so it would be possible to compute it directly as a from g by contracting
a single tensor, we can reduce the polynomial degree of this system from 3 to 2 (and the maximum tensor
order from 4 to 3) by decomposing s one step further. Note that Eq. 4.27 is bilinear in n and c, the latter
of which is linear in g. Therefore, we can define a tensor S such that

s = S⊗1 n⊗2 g. (4.29)
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Intermediate Component Full Space Full Space Result Galerkin Projection
Element Notation Tensor Notation Basis

Geometry (vertex positions) g Bg

Normals ni = (gi,1 − gi,0)× (gi,2 − gi,0) n= N⊗1...2 g Bn N̂= BT
nN⊗1...2 Bg

Scaled Cosines sk = ni · (cj − ci) s = S⊗1 n⊗2 g Bs Ŝ = BT
s S⊗1 Bn ⊗2 Bg

Squared Distances rk = (ci − cj)T (ci − cj) r = R⊗1...2 g Br R̂ = BT
r R⊗1...2 Bg

Half Form Factors hk = sk/rk h= (H⊗2 r)-1s Bh Ĥ= BT
s H⊗1 Bh ⊗2 Br

Visibility-Free Form Factors ck = hkhkT c = C⊗1...2 h Bc Ĉ = BT
c C⊗1...2 Bh

Visibility vk = Vis(i, j) v = v(g) Bv Learned model: see §4.6.3.
Area-Free Form Factors dk = dkvk d= D⊗1 c⊗2 v Bd D̂= BT

d D⊗1 Bc ⊗2 Bv

Squared Areas ai = ni · ni a = A⊗1...2 n Ba Â = BT
a A⊗1...2 Bn

Form Factor Vector pk = dk/
√
ai p= (P⊗2 a)−

1
2 d Bp P̂ = BT

d P⊗1 Bp ⊗2 Ba

Incident Illumination e Be

Radiosity bi =
∑n

j=0 (I− ρF)-1
ij ej b= (I−E⊗2 p)-1e Bb Ê = BT

e F⊗1 Bb ⊗2 Bp

Table 4.2: Bases, operators, and Galerkin projections used in our reduced form factor implementation.
Radiosity rendering consists of computing this table from top to bottom, either in the full space (columns
2 and 3) or the reduced space (column 5). Note that while the fluids application required only 4 bases,
computing the radiosity form factors requires 9 (there are 12 bases listed here, but we constrain Bs = Bh,
Bd = Bp, and Bb = Be).

This leaves us with only n to compute. The normals are given by

ni = (gi,2 − gi,0)× (gi,1 − gi,0), (4.30)

where gi,` is the `th vertex of face i and × is the vector cross product. This expression is a low-degree
(quadratic, in fact) polynomial in geometry, and so we can complete the decomposition with a final tensor
N such that

n = N⊗1...2 g (4.31)

With the tensors defined above, we can now compute radiosity as described in Table 4.2 given only the
scene geometry g and the incident illumination e. Computing b consists simply of evaluating each row
of Table 4.2 in order. Note that the tensor form of the radiosity equation (Eq. 4.17) is the final row of
Table 4.2.

This completes the decomposition of Eq. 4.15 into tensors. Now that it is in tensor form, we can reduce it
using our non-polyomial Galerkin projection technique.

4.6.2 Reducing the Radiosity Equation

We begin with a set of mesh deformations G = {g1, . . . ,gm} and for each deformation compute the
intermediate vector quantities described in columns 2 and 3 of Table 4.2. We run PCA on each of these
vector quantities to obtain the corresponding 10 bases (column 4). Using these bases, we apply our non-
polynomial Galerkin projection technique §4.2 to compute reduced form factors p̂. This reduction consists
of replacing every tensor in column 3 of Table 4.2 with its reduced equivalent in column 5.

4.6.3 Reduced Visibility

It is not clear how to write a binary discontinuous function like visibility using our tensor formulation, so
we handle it separately. Note that computing the visibility of a new deformation at runtime is too slow and
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would defeat the purpose of model reduction. Instead, we use the following strategy: first, we compute
the visibilities V = {v1, . . . ,vm} corresponding to the deformation set G, and run PCA on them to form
the visibility basis Bv. Then, we determine the reduced visibility v̂test of a new deformation ĝtest as a
convex combination of the visibilities in the training set. We find the convex combination x of training
deformations that best predicts ĝtest:

arg min
x

||ĝtest −BT
gGx|| (4.32)

v̂test = BT
vVx is the convex combination of reduced visibility vectors with the same coefficients. Note

that BT
gG and BT

vV can be precomputed and that their sizes do not depend on the number of vertices
in the mesh. This is a reasonable strategy, since two deformations with similar reduced geometry will
have similar full-space geometry, and therefore will also have similar visibilities and we are primarily
concerned with low-frequency interreflections under area lighting.

4.7 Radiosity Evaluation

We demonstrate our reduced radiosity method by demonstrating an interactive method for exploring a
space of architectural designs in order to achieve certain desired lighting conditions, similar to [Dorsey
et al. 1991]. Creating a pleasingly-illuminated space requires careful selection of room arrangements,
room sizes, window placements, orientation of the space relative to natural lighting sources, and so forth.

We modeled a scene with a living room and bedroom, consisting of 5012 faces. The living room is
brightly-lit with light colored walls, and the bedroom is more dimly-lit with darker walls. In the scene, the
sizes of the skylight, windows, and doors can be changed interactively, and the living room ceiling can be
tilted.

Our training set for this scene consists of 540 samples, including extremal positions along the axes of the
configuration space and samples drawn from the space’s interior. We ran PCA on the examples to select
basis vectors capturing 99.9% of the variance of each intermediate quantity (Table 4.2, column 4), up to a
maximum of 60 vectors. The visibility basis Bv, the area-free form factor basis Bd, and the form factor
basis Bp reached the 60 vector cap; all of the others were able to capture 99.9% of the variance using fewer
than 60 vectors. As with fluid simulation, we merged and orthogonalized pairs of bases to comply with our
matrix inverse and matrix root basis requirements. The basis pairs we merged are Bs and Bh, and Bd and
Bp. We used identical 120-vector bases for Be and Bb. We ran the basis selection and precomputation
on a 8-node Amazon EC2 cluster composed of 8-core 2.67GHz Intel processors with 67.5GB RAM4,
however, both stages were primarily limited by cluster I/O bandwidth. Precomputation took 5 hours 1
minute wall-clock time for PCA, and 1 hour 36 minutes wall-clock time for tensor premultiplication. We
rendered two simulation sequences, of 420 and 500 frames, using our reduced model, and compared them
with full-space renderings (Fig. 4.7). We rendered each sequence twice, using two different methods for
computing the direct illumination. The first method was to compute the direct illumination outside of
our reduced radiosity at runtime using physically-based sky model; the second was to compute direct
illumination inside of our model by placing area lights in the windows. Fig. 4.8 shows the relative error
of these results, which varies from 3% to 11% over the course of the test animations for both methods.

A comprehensive analysis of the space and time requirements for full-space and reduced methods for
radiosity depends on the particular algorithm and implementation used. We only discuss relative benefits

4Instance type m2.4xlarge.
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Radiosity Direct Illumination Indirect Illumination

(a) Model Reduction

Radiosity Difference Image Indirect Illumination

(b) Ground Truth

Figure 4.7: Results from our architectural rendering example. The scene consists of two rooms, a brightly-
lit living room with light colored walls linked by a door to a dimmer bedroom with darker-colored walls.
The scene is illuminated by an overcast sky through two windows and a skylight. The scene mesh consists
of 5012 faces, and the sizes of the skylights, windows, and doors can be changed interactively. In addition,
the living room ceiling can be tilted. (a) Results generated by our model reduced radiosity implementation.
(b) Results generated by a full space radiosity implementation. Notice the qualitative similarity between
the ground truth and model reduced renderings. Notice the bright spots near the cubes and the foot of the
bed, as well as below the windows. There are artifacts in both the reduced and full space renderings due
to the coarse meshing near the edges.
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Figure 4.8: Relative error over the course of the two radiosity animation sequences for direct illumina-
tion included and excluded from the model reduction process. Our radiosity basis computation sampled
brighter scenes more heavily than dimly lit scenes, so brighter scenes are represented more accurately in
the final results.

with respect to classical radiosity for an interactive application. Our full-space radiosity implementation
requires no precomputation time, runs at 0.2 frames per second and requires 200 MB of memory. Our
reduced radiosity implementation requires 6 hours and 37 minutes of precomputation time, runs at 22.7
frames per second, and requires only 50 MB of memory. In this setting, our method achieves a runtime
speedup of 113 times. If we precompute the form factors, we can load them from disk at 0.4 frames per
second, reducing the speedup to 57 times, but at the cost of substantial precomputation time and required
storage which, unlike for our reduced method, will grow with the number of frames viewed. Much of the
execution time (around 80%) of our method is devoted to computing visibility, which we do not perform
using our non-polynomial Galerkin projection technique. We expect that improved methods for computing
visibility could dramatically improve our reduced radiosity implementation’s performance.

4.8 Limitations

As a data-driven technique, the success of non-polynomial Galerkin projection is limited by the represen-
tational power of the precomputed subspaces. If these subspaces do not capture the underlying dynamics
well, then the reduced results will likely diverge from the full space results. Both of our applications are
particularly susceptible to this form of error, since evaluating our model reduced system at each timestep
involves multiple matrix inverses (Fig. 4.1, Table 4.2), each of which minimizes error using a scaled norm
that can vary over time and may or may not be well suited to the application at hand (§4.2.2). On the
other hand, non-polynomial Galerkin projection is more widely applicable than previous methods, and
our results demonstrate that our technique captures complex flow structures and lighting effects in real
time. Moreover, error can always be decreased by increasing the size of the basis, at a corresponding
polynomial runtime cost.

Our fluid simulation method can compensate for changes in the geometry of the underlying discretization,
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and therefore can compute flow through deforming meshes. However, the topology of the discretization
must remain fixed. This requires finding a single mesh topology which can accommodate all deforma-
tions experienced by the contained geometry. In our experience, using mesh improvement [Klingner and
Shewchuk 2007] to create a good base mesh, and applying optimization-based smoothing to obtain good
meshes after deformation, can work well — but for extreme deformations, constructing a usable mesh
becomes difficult. In particular, we have noticed that at particular points in the eagle animation sequence,
large numbers of tetrahedra will suddenly “pop” into new configurations. While our mesh construction
methods usually avoid inverting any tetrahedra during this popping, the existence of this behavior suggests
that it may not be always be possible to represent every desired deformation using a single mesh topol-
ogy. An exciting avenue for future work would be to break up the deformation into shorter deformation
sequences and use meshes with different topology for each sequence. This might allow us to capture even
more drastic deformation, but would require reduced resampling operators to convert the fluid from one
geometry basis to another at runtime. Meshing is much easier in the radiosity case, since that application
only requires triangle meshes.

We select bases using PCA because it provides good representational fidelity and reasonable results in
practice. Unfortunately, PCA bases do not allow us to provide any explicit guarantees about long-term
simulation error generated by Galerkin projection, nor error arising from polynomial composition. In the
fluids case, using modal bases derived from the simulation operators, as in [de Witt et al. 2012], which
uses the modes of the Laplacian as a simulation basis, could allow us to more specifically describe the
characteristics of the error.

4.9 Summary

This chapter has shown that Galerkin projection can be extended from polynomials to the much broader
class of compositions of elementary algebraic operations, enabling the analytic approximation of func-
tions containing addition, subtraction, multiplication, division, and roots, all in closed form. Unlike
standard Galerkin projection, our non-polynomial Galerkin projection is guaranteed to preserve poly-
nomial degree, essentially bounding the computational complexity of the approximation. Because of the
widespread use of model reduction in graphics, we present non-polynomial Galerkin projection in general
mathematical terms without specific reference to physical simulation. We believe that our approach can
be broadly applied to Galerkin-project functions which previously could not be efficiently approximated.

We showed two different examples of such non-polynomial systems: global illumination of deformable
objects, and fluid flow on deforming meshes. Standard Galerkin projection cannot be applied to these
phenomena. We demonstrated that non-polynomial Galerkin projection can be applied to both of these
phenomena. We also showed that non-polynomial Galerkin projection enables, for the first time, interac-
tive simulations of high-resolution fluid flow around deforming geometry, such as a flying bird, as well as
interactive radiosity for lighting design. We believe that this technique could also find use in design and
engineering to give interactive feedback about the dynamic effects of geometric changes.

While non-polynomial Galerkin projection can produce marked speed improvements, in practical appli-
cation it requires careful basis construction to deliver high-quality results. If the system inputs cause the
simulation to deviate too far from the regions of the state space explored in the training data, then the
resulting simulation can be of poor quality. In the next chapter, we show how to automatically construct
high-resolution, interactive simulations that learn to reduce the error that users experience. Specifically,
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we demonstrate the construction of a high-resolution, interactive liquid simulation which improves over
time to optimize quality for the simulation behaviors that users are most interested in.
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Chapter 5

Self-Refining Games

One of the most difficult tasks in constructing any data-driven simulation is selecting which training data
will be used in simulation construction.

This chapter describes our work to construct self-refining games, which address the problem of how to
select training data for data-driven simulations, and which can produce real-time interactive simulations
of almost any phenomenon. Precomputing interactive simulations raises the challenge of anticipating
the user: we must precompute training data for all of the simulation states that the user will want to
see. However, even with vast computational resources, dynamical spaces are so large that we cannot
precompute everything. Fortunately, exhaustive precomputation is unnecessary: user interactions are
typically structured and thus explore only a vanishingly small subset of the configuration space. The
main challenge is to automatically discover structure from crowdsourced interaction data and exploit it to
efficiently sample the dynamical state space.

To address this challenge, we have developed a model self-refining game whose dynamics improve as
more people play. The gameplay, controls, and objective are simple: the player tilts their mobile device
and tries to cause a simulated liquid to splash through a target area of the domain (Fig. 5.1). Points are
awarded according to the volume of the fluid passing through the target. Although the game is simple, the
dynamics are not: free-surface fluids exhibit rolling waves, droplet sprays, and separating sheets which
cannot be simulated and rendered in real time on today’s mobile devices.

This data-driven solution is general, applicable to any dynamical system whose controls can be represented
as a selection of discrete choices at discrete time intervals. The game is modeled as a state graph whose
vertices are states and whose edges are short transitions between states. At runtime, the control (in this
case, phone tilt) determines which transition to follow. Typically, each transition is simulated, but because
we can only precompute a finite number of transitions, some edges blend simulations, returning to a
previously computed state. Following Kim et al. [2013], the precomputation process interactively grows
the state space by successively replacing blend edges with real simulation edges and new states.

The question then becomes: which states should we explore? We show that naı̈ve growth strategies
construct vast state graphs that only barely overlap with states explored by real players; these graphs
also contain significant visual errors. Using player data, however, enables a novel form of crowd-based
sampling which concentrates on those states players actually visit, building significantly better state graphs
with far fewer visual artifacts.
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Figure 5.1: An illustration of the gameplay in our liquid game. The player tilts their device left and right
to slosh the water back and forth in the box. When the water passes through a goal region in the top center
of the box (highlighted in yellow in the middle image), the player scores points.

Figure 5.2: Our data-driven approach enables the high quality interactive simulation of free-surface
fluids on a mobile device.

5.1 Related Work

Self-refining games use crowdsourced gameplay data to improve the accuracy and fidelity of the game
dynamics. Crowdsourcing has become a major research topic with applications including text recogni-
tion [von Ahn et al. 2008], drawing classification [Eitz et al. 2012], and performing user studies [Kittur
et al. 2008]. An important subgenre of this research studies games which intrinsically motivate players
to perform tasks from labeling images [von Ahn and Dabbish 2004; von Ahn et al. 2006] to designing
biomolecules [Cooper et al. 2010; Lee et al. 2014]. Crowdsourcing has also been used improve game-
play experience. Zook et al. [2014] tune game parameters based on gameplay traces, the DrawAFriend
game [Limpaecher et al. 2013] uses data from previous players to build a drawing improvement engine
for later players, and Microsoft Research’s Drivatar uses traces from a racing game to improve in-game
driving controllers [Microsoft 2013]. Smith et al. [2011] describe a spectrum of different player models;
in their taxonomy, our bootstrap model (§5.3.1) is a Universal Synthetic Generative Action model, and our
learned model (§5.3.2) is a Universal Induced Generative Action model. Learned player-specific models
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have been used to build player-adaptive AI [Houlette 2003], and to generate customized levels [Zook
et al. 2012] and stories [El-Nasr 2007; Thue et al. 2007]. Crowdsourced data has also seen application to
animation beyond games. McCann and Pollard [2007] used gameplay traces to select transition from a
fixed motion graph, and Cooper et al. [2007] focused on computer-in-the-loop sampling of human motion
capture data for a fixed set of known objectives. In contrast, we learn models of human player behavior in
order to refine game dynamics through adding new transitions to a continually-expanding state graph.

Our playback mechanism is similar to video textures [Schödl et al. 2000], although we are not limited to
a single fixed input video. It is also reminiscent of the video-playback mechanics of Dragon’s Lair [Cin-
ematronics 1983], although since we do not depend on human animators we are capable of generating
vastly larger data sets.

The simulation technique underlying self-refining games, the state graph technique described in §2.1,
works by tabulating arbitrary dynamics and rendering in an offline process. This approach was pioneered
by James and Fatahalian [2003b] who tabulated the dynamics of deformable models driven by a small
palette of impulse forces. Kim et al. [2013] extended this approach to cloth dynamics and used far greater
computational resources to form a near exhaustive portrait of clothing motion on a moving character. The
graph structure and growth process are similar to those of Kim et al., although we adapt these ideas to
liquids using a new similarity measure and blend function.

To the best of our knowledge, the only work in graphics on attempting to minimize error in a data-driven
simulation in a principled way is by Kim and James [2009], who solves this problem by incrementally
building a reduced model for a specific simulation trajectory. By contrast, self-refining games attempt
to capture an entire space of trajectories through a continuous state sampling process which uses game
analytics to focus on that subset of the dynamics that players really explore. Self-refining games achieve
this goal by estimating state visit probabilities using an algorithm, STATERANK, which computes the
stationary distribution of a Markov chain [Feller 1968] with transition probabilities derived from a player
model, similar to the PAGERANK algorithm of Page et al. [1999].

5.2 State Graphs

I now describe a method for creating self-refining games based on learned player behavior. The foundation
for these games is the state graph, whose vertices are game states, and whose edges are transitions induced
by player actions. These graphs are similar to the secondary motion graphs of Kim et al. [2013]. A game
could be represented by a single graph, or could use multiple graphs to represent different areas, levels,
or challenges. To initialize a new state graph we use a heuristic player model to bootstrap synthesis of
a minimally playable experience. Then, we make the game available to players and collect traces of the
paths they take through this graph during play. We use these paths to learn a model of player behavior that
is used to prioritize graph growth, adding states and increasing fidelity in those regions players are most
likely to visit. By repeatedly collecting player data, updating our player model, and using the updated
model to grow the graph, we create a game that continually improves over time. This process is general,
and can be applied to any precomputed game with discrete control.

In this section, we describe our game model and the mechanics of graph growth. In the next section (§5.3),
we describe how we learn player behavior models from collected player data. The following section (§5.4)
applies this general framework to free-surface fluid simulation.

In a state graph, each edge is associated with an animation connecting its source and destination states.
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Figure 5.3: State graph initialization and growth. Solid edges correspond to simulations and dashed
edges correspond to blends. Left: We initialize the graph by sampling a tree of simulation data. Center:
We transform the tree into a complete state graph by replacing dead-end edges with blends. For example,
ec is formed by blending dead end e5 with e1. Right: We expand the graph to remove error along blend
ec by removing ec, re-inserting e5, and simulating new animations from e5 for each control. The new
simulations form new dead ends that are blended to create ee and ef . A self-refining game repeats this
last step continuously.

The format of these animations is application-dependent, but they could be video clips, sequences of
triangle meshes, or any other encoding of the dynamics that we wish to display. We consider games that
sample player input from a set of N discrete controls, so that each vertex has N outgoing edges. At
runtime, the system replays edge animations, determining which branch to take based on player control.
If the transition edges are sufficiently short (1/3 of a second in our application) the game feels interactive.
We discuss the choice of transition edge durations further in §5.7.

To initialize a new state graph, we begin at a start state and simulate every possible outgoing transition.
We continue this process, generating N new simulations from each state until we create a small N -ary
tree (Fig. 5.3, left). Leaf edges represent dead ends in the state graph which we eliminate by blending
with interior edge transitions leading back to an internal node. This blending procedure turns the tree into
a complete state graph (Fig. 5.3, center). Since we begin with only a small tree, it is likely that many of
these blends were between dissimilar edges, and therefore of low quality.

We improve the quality of the graph by growing it using new simulation data, similar to [Kim et al. 2013].
We grow the graph by replacing blend edges with simulation edges. To add a simulation edge e to the
graph, we simulate the N outgoing transitions which follow e and blend these simulations into interior
simulation edges (Fig. 5.3, right) selected to minimize an estimate of the perceptual error of the blend.
Growing the graph can be a continuous process, going on as long as we have space to store the results of
new simulations. The key challenge is determining which blend edges to replace.

We can view this question as one of graph quality evaluation. If we can quantify each edge’s contribution
to the quality of the graph, a simple strategy to reduce error is to greedily replace the blend edge most
detrimental to the quality of the graph. The behavior of this strategy depends strongly on which measure of
graph quality is selected. Kim et al. [2013] use a worst-case quality measure: maxe∈B(err(e)), where B
is the set of blend edges in the graph and err is an application-defined estimate of a blend edge’s perceptual
error. This metric, which we call BASELINE, suggests that we should always replace the blend edge emax

with the highest error.

In a simulation-based game, however, the game occupies a huge state space, and the game objective en-
courages players to pursue strategies that lead to rewards. Therefore, it is likely that players will never visit
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the vast majority of the state space, rendering most of BASELINE’s additions to the graph wasteful. In-
stead, we propose a different metric, STATERANK, which measures the expected error:

∑
e∈B P (e)err(e),

where P (e) is the probability of traversing the edge e. This metric suggests we replace the blend edge
eexp with maximum expected error P (eexp)err(eexp). We infer P (e) from a player model P (c|v) giv-
ing conditional probabilities of controls c at each vertex v. Similar to the PAGERANK [Page et al. 1999]
procedure for ranking webpages, STATERANK computes edge probabilities P (e) as the normalized first
eigenvector of the transition matrix implied by P (c|v).

If STATERANK correctly predicts edge probabilities, then this procedure will improve graph quality
around precisely those states players are most likely to visit. To accurately estimate P (e), however,
we must have accurate estimates of the player control probabilities P (c|v). In the next section we discuss
how we learn this player model P (c|v) from analytics data.

5.3 Player Model

The previous section explains how we can use a player model P (c|v) to improve our sampling of huge
state spaces. In this section we describe both how we can learn player models from data and how we
use these models to create self-refining games. We use two different player models: a heuristic model to
bootstrap the simulation, and a learned model to guide our exploration.

5.3.1 Bootstrap Model

When the game is first created, no player data exists. To bootstrap state graph growth, we use a heuristic
player model Ph(c|v) which essentially guesses what players will do. Many heuristics are possible, and
the best heuristic will vary by application. In this study, we maintain the current control with probability
α and otherwise choose an alternate control uniformly at random:

Ph(c|v) =

{
α if c = cv

(1− α) /N otherwise.
(5.1)

Combining this heuristic player model with STATERANK produces a growth strategy we call SR-HEURISTIC.
This simple model can initialize a state graph, but performs poorly when used exclusively to generate a
full game (§5.6.2). We therefore propose using the heuristic model only for bootstrapping, then growing
the graph using a player model learned from gameplay traces.

5.3.2 Player Analytics Model

Once we have a bootstrap model, we can begin to collect gameplay traces to learn a more accurate player
model. We learn our player model from traces of player traversals of the state graph, each trace consisting
of a list of vertices visited and the control selected at each vertex. Let Pobs(c|v) be the observed conditional
control probabilities computed by normalizing control counts at v, and Pobs(v) be the observed probability
of visiting v, obtained by normalizing the number of visits to v by the total number of vertex visits. To
generalize our model to unvisited states, we assume that players will take similar actions in states that
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resemble each other closely. This observation leads us to implement our player model using a kernel
density estimator combined with a Markov prior with weight ε:

P (c|v) ∝
∑
u∈V
cu=cv

wuPobs(c|u)Pobs(u) (5.2)

wu = ktri (r, pdist (u, v)) + ε,

where ktri(r, x) is a triangular kernel with radius r, cu and cv are the controls of the simulation clips
generating u and v, V is the set of vertices in the graph, and pdist is an inexpensive distance function
(§5.4.2). Note that the condition cu = cv in the summation effectively creates a different player model
for each control. Also observe that this model can be evaluated even when v has not been visited by any
player. As a result, this model can be used to guide sampling deep into the graph without having to wait
for new player data at every step. The model can even be used to transfer predicted player behaviors
gathered on one graph to explorations of other similar graphs.

Combining this player model with our STATERANK technique described in the previous section yields a
crowdsourced graph quality measure, SR-CROWD, which we can use to select blend edges to replace as
we grow the graph. We evaluate state graphs generated using this player model in detail in §5.6.

5.4 Application to Liquids

In this section, we describe our construction of a liquid simulation game using the generic game precom-
putation framework that we described in §5.2. Our liquid simulations are generated using PCISPH [So-
lenthaler and Pajarola 2009]. We represent the liquid state at graph vertices v as lists of liquid particle
positions and velocities, and k-frame animations along graph edges as sequences of signed distance func-
tions e =

[
φ1, . . . , φk

]
, generated from particle data using the method of Zhu and Bridson [2005]. Each

edge also has an associated video rendered using Mitsuba [Jakob 2010]. In our application k = 10, which
yields transitions of 1/3 of a second. This latency in response to changes in player control is acceptable
for our liquids game, however, different game mechanics entail different latency requirements. [Claypool
and Claypool 2010]

We use two different metrics. For blending, we use a function dist(ei, ej , c) based on energy and detailed
liquid shape information (§5.4.1). Our player model, however, requires more frequent distance compu-
tations, so we use a more efficient metric pdist(ei, ej) which compares only coarse shape descriptors
(§5.4.2). Finally, we describe our clip blending function blend(ei, ej) in §5.4.3.

5.4.1 Edge Distance

We define dist(ei, ej , c) to be a perceptually-motivated error function incorporating information both
about the liquid’s shape and its energy:

dist(ei, ej , c) = norme(ei, ej) (dists (ei, ej) + wediste (ei, ej , c)) . (5.3)

Here, dists and diste denote the parts of distance attributable to the shapes and the energies of the two
states, respectively; norme is a normalization term that increases distance at low energies, reflecting that
fact that errors are easier to perceive when the liquid is moving more slowly. The weight we controls the
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relative priority of the shape and energy terms of dist. We set we so that for edges ri and rj where the
fluid is nearly at rest,

dists (ri, rj) ≈ wediste (ri, rj , c) .

Shape distance. The dists metric penalizes the blending of animations which contain liquid in very
different shapes. It is the sum of the volumes of the symmetric difference (X4Y = X ∪ Y \ X ∩ Y )
between each animation’s liquid volumes at each frame:

dists(ei, ej) =

k∑
f=1

vol
(
φfi4φ

f
j

)
. (5.4)

Energy distance. The diste metric penalizes the blending of animations that have very different energies,
and it strongly penalizes blending an animation with low energy into an animation with high energy, thus
enforcing conservation of energy. Omitting diste can result in the formation of small loops in the state
graph far away from energy minima, which look extremely unnatural.

We define energy at a vertex v as E(v, c) = T (v) + V (v, c), where T is kinetic energy, V is potential
energy and c is the incoming control. Notice that energy depends on the current control since selecting a
gravity vector will change the potential energy. Let vi and vj be the destination vertices (final frames) of
ei and ej . The energy error between edge ei and ej is given by

diste(ei, ej , c) = γ|E(vi, c)− E(vj , c)| (5.5)

γ =

{
cgain if |E(vi, c)− E(vj , c)| < T0

closs if |E(vi, c)− E(vj , c)| ≥ T0

where cgain � closs, and T0 is approximately the residual kinetic energy of the fluid when it is visually at
rest. We attempt to match the energies as closely as possible, rather than anticipating an energy loss, since
we are comparing energies between two clips at identical points in time. We place the threshold between
the minor energy loss penalty and the major energy gain penalty at T0 to avoid penalizing blends between
visually indistinguishable animations of static fluid.

Energy normalization. We normalize the previous two terms by multiplying them by norme. Let vi and
vj again be the destination vertices of ei and ej , ci and cj be their controls, and Tavg = 1

2 (T (vi) + T (vj)).
Then

norme(ei, ej) =

0 if Tavg < T0 and ci = cj
1√

Tavg+T0
otherwise. (5.6)

Note that this implies that the distance between two edges with the same control and kinetic energy below
T0 is 0. Again, this threshold prevents the unnecessary exploration of liquid states that are visually at rest.
This unnecessary exploration would otherwise consume the vast majority of our exploration effort since
norme goes to infinity as the fluid energy goes to zero.

5.4.2 Player Model Distance

STATERANK requires us to perform neighbor searches using a brute-force scan of all vertices in the graph,
so the function we use to compute vertex distances must be fast. We therefore use a more efficient coarse
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shape similarity function pdist in our player model. We compute a shape descriptor di for each edge ei
by dividing the fluid domain into a 6× 6× 6 grid and computing the average fraction of each cell that is
occupied by liquid, and define

pdist(ei, ej) = ||di − dj ||2. (5.7)

5.4.3 Blending

We construct animations for blend edges by blending signed distance functions. A simple linear interpo-
lation works well in cases where the fluid surfaces do not contain many fine features. However, in the
presence of droplets, splashes, and thin sheets, linear interpolation can cause popping artifacts at the be-
ginning and end of the blend. We remedy this problem by blending, using convex combinations of three
signed distance functions: the source, φs, the destination, φd, and the union of their shapes, min(φs, φd).
We use the following blend function, where 0 ≤ t ≤ 1 denotes the position in the blend, clip clips its
argument to lie between 0 and 1, and ` is a parameter that limits the blending coefficient applied to the
union:1

blend(φs, φd, t) = wsφs + wdφd + ws∪d min(φs, φd) (5.8)

ws = clip ((1 + `− 2t)/(1 + `))

wd = clip ((2t+ `− 1)/(1 + `))

ws∪d = 1− ws − wd

In our implementation, we use ` = 0.1 to avoid perceptible increases in liquid volume during blends.

5.5 Implementation

We constructed a distributed simulation system to carry out the large-scale state graph explorations re-
quired for our work. This system consists of a pool of worker nodes, which perform simulation and render
animations, and a master node, which orchestrates computation by maintaining the graph structure, com-
puting edge priorities and distances, and assigning work to the workers. We deploy this system on Amazon
EC2 in configurations featuring up to 40 worker nodes. In total for our high-viscosity and low-viscosity
experiments, this system performed over 8600 CPU-hours of computation and generated over 1.6 TB of
data, at a cost of approximately $500 in compute time.

The system initializes graph exploration with a minimal state graph containing one vertex and N edges.
Graph expansion then proceeds as described in §5.2. During exploration, the master maintains a work
queue enumerating blend edges to explore. When workers become available, the master extracts the
highest priority blend from the queue and assigns the corresponding simulation tasks to a worker. When
workers return simulation results to the master, the master computes blends for the newly simulated edges,
then updates the graph. In STATERANK-based explorations, the master periodically discards blend-edge
priorities, recomputes STATERANK on the current graph, then uses the results to re-initialize blend edge
priorities.

1The results in our supplementary video show an incorrect version of the blend function that shortens the blend time by one
frame at each end of the transition.
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5.5.1 Optimizations

A number of key optimizations were necessary to achieve high system performance, as well as to ensure
high-quality graphs.

Lazy relinking. Each time a new edge is added to the graph, nearest neighbor relationships among edges
in the graph may change. Since it would be costly to recompute optimal graph blends after each new
inserted edge, our implementation does not attempt “relinking” of existing blend edges when new edges
are created. Instead, prior to exploring any blend edge, the system first attempts to relink this edge with
existing edges in the graph. If a superior blend can be found in the graph at this time, the new blend is
immediately created and used to replace the existing blend. Lazy relinking ensures that simulation is only
performed on edges for which there are no good blend candidates in the graph, but it does not incur the
overhead of unnecessarily reevaluating edge nearest neighbors after new edges are simulated.

Pre-publish relinking. In our experiments we make graph data available for play (“publishing”) at select
checkpoints during exploration. In order to provide the best possible play experience, before playing
a graph we attempt to relink every blend edge. This process ensures that all graph blends are the best
possible blends given available data at the time of play.

Animation caching. The primary scaling bottleneck of our system is the high cost of distance compu-
tations during edge nearest-neighbor search. These computations must be performed by the master each
time a worker returns new simulation data (to create blends), and they are expensive because they require
fetching fluid-volume occupancy data from network storage. Rather than incur substantial system com-
plexity by parallelizing the master node’s execution, we were able to accelerate distance computations
needed for nearest neighbor search by caching voxel occupancy information in memory (our implementa-
tion uses memcached).

Energy pre-filtering. Even with the caching optimizations described above, nearest-neighbor search
remains expensive. (For example, linear-time nearest neighbor search makes graph relinking a quadratic-
time operation, which is unacceptable even for graphs of moderate size.). To accelerate nearest-neighbor
search we only perform full distance evaluation on the k-closest graph edges according to our energy
distance metric described in §5.4.1. It is important to set k appropriately; setting k too low can result in a
failure to find good blends even if high-quality blend targets do exist in the graph. We have found k = 100
to work well in practice.

5.5.2 Mobile Client

We make games available to players using an Android client application. The key feature of this client is
its ability to continuously play back short (1/3 second) videos without lag between them. When a player
selects a game, the client downloads the most recent version of the game’s state graph, then downloads
and caches any videos for edges in the current graph that it has not already cached. We use device
accelerometer data to select game controls. After each play session, the client uploads a list of visited
graph vertices and the control selected on each visit to our server.
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5.6 Evaluation

We use the self-refining liquid control game described at the beginning of this chapter to evaluate the
utility of STATERANK and player models learned through crowdsourced data to explore a large dynamic
space. Recall that the player’s objective in this game is to interactively tilt their device so as to splash fluid
through a target region of the domain. The game admits three possible controls (N=3) corresponding to
holding the device level and tilting it to the left and right. A sequence of screen shots from the game is
shown in Fig. 5.1, with the target region in the upper-middle part of the space highlighted in the middle
frame.

We grew state graphs for our fluid game using three different graph error measures. The SR-HEURISTIC

and SR-CROWD measures described in §5.3 prioritize growth using STATERANK and either a heuristic or
crowdsourced player model, respectively. The simplified BASELINE measure does not use STATERANK

to globally prioritize exploration. Instead, it only prioritizes growth using local conditional control prob-
abilities, P (c|v). To provide a better comparison with STATERANK, we scale the maximum error in our
BASELINE metric by the conditional probabilities in Equation 5.1 with α = 0.8, but we do not calculate
edge probabilities as in SR-HEURISTIC or SR-CROWD.

All explorations use the energy-based fluid distance metric and fluid animation blending techniques de-
scribed in §5.4. Our fluid simulations are 42K-particle PCISPH simulations. In addition to the results
analyzed here, we performed experiments on a high viscosity fluid configuration in order to observe sys-
tem behavior under a second set of fluid parameters; we show results in the video.

We grew each of our graphs until graph size reached 200K frames. (Approximately 4,300 CPU-hours
were used, per graph, to compute each graph’s 1.8 hours of animation). We paused graph expansion
at 10K, 20K, 50K, 100K, and 200K frames so that the graphs could be played by a group of six test
players, yielding gameplay traces for all graphs at these checkpoints. After collection, the checkpoint
traces for the SR-CROWD graph were used to calculate per-vertex conditional probabilities that informed
the exploration of SR-CROWD until the next checkpoint.

5.6.1 Predicting Player Behavior

To assess the predictive power of our models, we used the 200K-frame BASELINE graph to evaluate
SR-HEURISTIC’s and SR-CROWD’s predictions of player behavior and overall graph quality against the
observed data from gameplay. Fig. 5.7 (left, center) illustrates predicted play behavior by coloring graph
edges according to predicted visit densities. At right, we show the observed probabilities from player data
(ground truth). It is clear that SR-CROWD predicts behavior far more accurately than SR-HEURISTIC.
This entails a better estimate of the expected blend error that players encounter: SR-CROWD’s prediction
is within 10% of the observed value, while SR-HEURISTIC underestimates it by nearly 50%. Note also
that very little of the graph is actually visited by players since BASELINE has explored many “unimpor-
tant” regions of the state space. Guiding exploration with player data stands to create a graph that better
samples the played regions.

Fig. 5.4 shows the 200K-frame state graphs produced by the BASELINE, SR-HEURISTIC, and SR-
CROWD; the graphs indeed exhibit noticeably different structure. Specifically, the BASELINE graph is
approximately twice as deep as the STATERANK-produced graphs. While the BASELINE graph samples
many long sequences of constant-control play (as per the heuristic model), our game’s design does not

58



SR-HEURISTIC

BASELINE

SR-CROWD

Figure 5.4: 200K-frame state graphs. BASELINE explores long chains of low energy states. In contrast,
both SR-HEURISTIC and SR-CROWD prioritize more likely high energy states, yielding a shallower
graph structure.
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Figure 5.5: Comparison of errors observed by players on graphs generated using different methods. Left:
On average, test players observed the lowest error while playing the sequence of graphs generated by
SR-CROWD Right: Animations observed by players of the 200K-frame SR-CROWD graph exceeded our
empirical high-error threshold during only 3% of play time. Gameplay for the similarly-sized BASELINE

graph presented high-error animations ten times as often.
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Figure 5.6: Histogram of blend errors observed by players on two of the 200K-frame graphs. In con-
trast to BASELINE, the error distribution for SR-CROWD is largely concentrated below our high-error
threshold.

encourage this form of play, so these paths do not appear in the SR-CROWD graph.

The unique structure of the SR-CROWD state graph results in a higher quality game experience. Fig. 5.5,
left, plots the average error observed by players at all graph sizes. (Error is defined using the perceptually-
motivated metric described in §5.4.) While SR-HEURISTIC alone provides a modest benefit over the
BASELINE method, average observed error is nearly a factor of two lower for SR-CROWD games. The
gameplay data acquired at each checkpoint during the graph growth process helps focus simulation effort
on the state space regions that players are most likely to encounter.

5.6.2 Error Analysis

While state explorations prioritized by STATERANK successfully reduce observed error on average, they
risk leaving severe blend edges in the graph if they are deemed unlikely to be visited. While small anima-
tion errors are difficult for a player to notice, large errors, even if infrequent, can significantly reduce the
perceived quality of the game. Through gameplay testing, we empirically determined that blend anima-
tions with error scores exceeding 0.0005 corresponded to visually objectionable animations. We plot the
fraction of time that players spent viewing these high-error animations in Fig. 5.5, right.

In the large 200K-frame graph produced by SR-CROWD, players view high-error animations significantly
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SR-HEURISTIC prediction
Predicted error: 0.00011

SR-CROWD prediction
Predicted error: 0.00023

Observed user behavior
Observed error: 0.00021

200K-frame BASELINE Graph

Figure 5.7: Visualization of edge-visit densities predicted by SR-HEURISTIC (left), by SR-CROWD (cen-
ter), and the densities from recorded gameplay (right) for a 200K-frame BASELINE graph. Edges visited
at least 10% as frequently as the most visited edge are red, edges visited 2-10% as frequently are or-
ange, and all others are gray. Blend edges are hidden to reduce clutter. SR-CROWD accurately predicts
player visit densities while SR-HEURISTIC does not, indicating the value of player analytics in informing
STATERANK’s probability estimates.

SR-CROWD prediction
Predicted error: 0.00011

Observed user behavior
Observed error: 0.00010

200K-frame SR-CROWD Graph

Figure 5.8: Edge-visit densities predicted by SR-CROWD (left) and the recorded densities from actual
gameplay (right) for a 200K-frame SR-CROWD state graph. While its prediction of the expected edge
blend error remains accurate, SR-CROWD no longer predicts player behavior on this graph well, sug-
gesting an opportunity for better prediction models based on the acquired player data.

less often than in the other methods (only 3% of the time). In fact, gameplay for the small 20K-frame SR-
CROWD graph showed high-error animations less often than play through a BASELINE graph ten times as
large. The fraction of observed high-error frames does not significantly diminish in the BASELINE graphs
as they grow beyond 50K frames. A more detailed view of the distribution of errors encountered when
playing 200K-frame BASELINE and SR-CROWD graphs is provided in Fig. 5.6.

Our experiences playing the games corroborate these numerical results. In all cases, playing the SR-
CROWD games showed the highest quality animation. Play through the 200K-frame SR-CROWD graph
for high viscosity simulations reveals virtually no artifacts at all. In low viscosity simulations, the fluid
exhibits more geometric variety, and artifacts are occasionally visible (as indicated by Fig. 5.5, right), but
their frequency is greatly reduced in SR-CROWD compared to other methods. As desired, animation is of
the highest quality when the player plays with intention, attempting to score maximum points, and thus
conforming closely to the actions of previous players. We refer the reader to the accompanying video to
inspect the quality of the generated animations.

As a final experiment, we also measured SR-CROWD’s ability to predict player behavior on the 200K-
frame graph that it produced. This prediction is compared to ground truth observed player data in Fig. 5.8.
Interestingly, although SR-CROWD still produces an expected edge error within 10% of the observed
value, its predictions of player visit behavior on this final graph are relatively poor as compared to its
predictions on the baseline graph (Fig. 5.7). We hypothesize that although our player model is accurate,
self-referentially growing a graph based on this model amplifies small inaccuracies, even while signifi-
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cantly lowering error. Thus, Fig. 5.8 suggests that creating more sophisticated models of player behavior
from the acquired play data could aid in sampling the game state space even more efficiently.

5.7 Limitations

Our game was designed as a simple research vehicle both to explore the potential of leveraging crowd-
sourced player data to efficiently sample large state spaces, and to demonstrate a new form of self-refining
game using complex 3D liquid dynamics as a primary element. Our results demonstrate that models built
from player data can concentrate precomputation in an important (but tiny) subset of the full state space, a
result that overcomes a major hurdle in scaling data-driven techniques. Nevertheless, our current approach
has several limitations which we hope further research can address.

Total dynamic complexity. To our knowledge, our fluid example represents one of the most complex
systems ever precomputed at a large scale. However, even simple generalizations of the dynamics would
overwhelm our system. For example, inserting floating objects would explode the state space. We em-
phasize that our completely monolithic technique of precomputing everything about a simulation state
represents just one (extreme) end of a spectrum of approaches. Precomputed and live elements can be de-
composed, composited together, and even coupled. Precomputed systems could also be generalized (e.g.,
using multi-way blends), potentially turning our discrete state graph representation into a continuous space
of precomputed dynamics.

Limits of control. Our system offers only a small number of discrete controls and samples control to 1/3
of a second. Increasing the temporal or spatial control resolution not only explodes the state space, but also
causes specific technical problems. Because our state graphs have complete N -way branching at every
vertex, the blend edge fraction is (N−1)/N . In the limit of increasing control resolution, nearly every clip
will be a blend. We believe the solution is to sparsely sample control, inserting control branches only when
player data indicates they are necessary. At run-time, the system would trade off simulation and control
error. It may be possible to even scale this approach to (multi-dimensional) continuous controls. Similarly,
clip length has implications for blending. As the clip length approaches one frame, blends become jump
discontinuities. We believe this issue could be addressed by globally optimizing state graphs to ensure
smooth transitions.

Range of applicable phenomena. Our approach assumes it is possible to meaningfully blend two simula-
tions without obvious visual artifacts. Fluids work well because the eye often ignores errors in turbulence.
Some phenomena might be less forgiving. We observe, however, that blending has been successfully ap-
plied to a wide range of phenomena, from human motion graphs to image morphing. Blending should
work for any sufficiently well-sampled continuous phenomenon, making the ability to densely sample
important subsets of the state space – the very goal of this paper – even more important.

Single-viewpoint rendering. We chose to include rendering in our precomputation to achieve rich visual
effects. This decision constrains our game to single-viewpoint rendering. However, rendering could be
decoupled from the precomputation and performed either on the server or the client. A server-based ren-
dering system would stream rendered images from any viewpoint. Client-based rendering is also possible,
although efficient compression of 3D data would be required, a particular challenge for fluid data with
temporally changing surface topology.

Storage requirements. Our 200K-frame state graphs correspond to about 5 GB of data. Unlike our
prototype, practical implementations of complex data-driven games would likely rely on cloud-based an-
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imation storage and streaming. We used off-the-shelf video compression for simplicity, but our video
corpus contains enormous redundancy across clips that standard video compression methods do not ex-
ploit. Deduplicating similar video sequences (perhaps by linear dimension reduction, or by applying frame
prediction between clips) could potentially yield vast savings.

Applicability to existing games. Some types of open-world games encourage exploration and the discov-
ery of new experience and content. However, many categories of games do encourage stereotyped player
behavior, and even games that prioritize novelty will likely feature substantial overlap in player behaviors
that our method can exploit.

5.8 Summary

This chapter presents a first step towards self-refining games whose dynamics continuously improve based
on player analytics. We observe that game objectives cause players to explore only a small fraction of the
entire state space, making data-driven simulation feasible even for complex dynamical systems. We adapt
the data-driven simulation method of Kim et al. [2013] to liquids, and replace the precomputation phase
with a continuous process that concentrates state sampling in the subset of the dynamics that players really
explore.

We compare three strategies to sample the game dynamics and show that using real player data (SR-
CROWD) significantly outperforms both a more simplistic player model (SR-HEURISTIC) and a baseline
model without player data (BASELINE). Interestingly, even our best player model significantly mispre-
dicts player actions (Fig. 5.8), suggesting that further improvements are possible. Nevertheless, our results
strongly indicate that player data can be successfully exploited to capture very complex dynamical sys-
tems.

Our method is well suited to mobile platforms with limited control precision and computational capac-
ity. Player-driven state sampling enables us to deliver high quality rendered content in realtime with
bounded simulation error. In addition to improving existing games, these ideas could enable a new class
of cloud-based games where designers no longer have to worry about simulating and rendering the world
in fractions of a second.

The ideas presented in this chapter suggest several interesting questions and generalizations. How much
player data is required to sufficiently sample a space? How does adding states affect the difficulty and the
strategy of the game? How can we adapt our sampling approach to applications beyond games? Further
research could yield more powerful techniques to composite precomputed dynamics models like ours
with other virtual elements, create more flexible models through decomposition, decouple rendering from
simulation, and address other limitations (§5.7).

63



64



Chapter 6

Conclusion

Data-driven techniques are one of the most powerful tools computer graphics has for creating detailed,
interactive simulations. They allow massive amounts of offline computational power to be brought to
bear on interactive applications, enabling even very highly detailed simulations to run in real-time. In this
document, we have provided three solutions for problems that limit the use of data-driven simulation in
graphics.

Chapter 3 described a method for generating scalable data-driven simulations with domains that can be
reconfigured at runtime. By creating a collection of data-driven simulation tiles that act as building blocks
for our desired domains, we can construct domains that would be too large for conventional simulations,
or build a huge assortment of different domains without re-training. The key technical challenge in this
chapter was the enforcement of constraints between neighboring simulation tiles. To solve this challenge,
we introduced the constraint reduction technique, which modifies reduced bases to enable the enforce-
ment of linear inequality constraints in Galerkin-projected simulations. We demonstrated an application
of our method to fluid simulation, but its general nature paves the way for coupling of all kinds of reduced
simulations. In fact, Chapter 4 uses constraint reduction to enforce boundary non-penetration constraints
in fluid simulations on deforming meshes. In the future, we hope to see this approach extended to phe-
nomena such as explosions, elastic dynamics, and free-surface fluids – or even coupling different types of
reduced models in the same simulation. This technique could also potentially be adapted to work with the
non-polynomial Galerkin projection technique presented in Chapter 4, and a similar domain decomposi-
tion approach could perhaps be applied to self-refining games (Chapter 5) to enable them to capture much
larger scenes.

Chapter 4 addressed one of the central limitations of analytic Galerkin projection: its restriction to purely
polynomial dynamics. By extending Galerkin projection to also handle divisions and roots, we extended
the scope of Galerkin projection to a huge swath of new phenomena. These phenomena include not
just the two that we demonstrated, fluids and radiosity in continuously deformable domains, but also n-
body gravitational systems and atomic-scale Lennard-Jones interactions. The existence of non-polynomial
Galerkin projection also encourages us to search for further methods to analytically capture, simulate and
render the many complex, high-dimensional phenomena in the world around us.

Finally, Chapter 5 presented self-refining games, which provide a principled approach to collecting train-
ing data for interactive data-driven simulations. By observing players interacting with a simulation game,
we can determine which parts of the state space they want to visit at runtime, and concentrate our training
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data sampling in those areas. Future work could extend these precomputed physics models by making
them more flexible using domain decomposition (like we did with Galerkin projection in Chapter 3), or
by allowing precomputed state graph models to interact with traditionally-simulated virtual elements at
runtime. Another exciting avenue of future work would be to combine self-refinement with a different
underlying data-driven simulation technique, such as Galerkin projection.

Our ultimate goal is to create immersive, interactive simulations of anything. Data-driven simulation is
a vital tool for achieving this goal. It allows for incredible detail while maintaining interactive response
times, and it is ideally suited to an increasingly heterogeneous computational landscape. Mobile devices
are rapidly becoming faster, and large-scale cloud compute clusters are available cheaply and on-demand,
while the console, the PC, and other devices intermediate in computational capacity are becoming less im-
portant. Data-driven simulation makes it possible to utilize cheap offline computation to enhance realtime
interactive experiences, even on devices with limited computational capability.

The work that we have presented in this document greatly enhances the reach of data-driven simulation,
but it is just a beginning. Data-driven simulation still has many limitations – in scale, in authoring, and
in the types of phenomena that can be simulated – that must be overcome. We believe that two of the
directions that we have begun to explore in this document will be particularly important in the future
development of simulation in graphics. One of these is increasing modularity in data-driven simulation,
like we did with our our modular bases technique, to scale simulations to huge domains, incorporate
more detail, and allow for greater runtime flexibility while maintaining interactive response times. The
other is approaching simulation design and construction from a human factors perspective, as we did with
self-refining games, in order to create efficient simulations that prioritize the user experience over simple
physical definitions of accuracy and adapt to how they are actually used over time.

6.1 Modular Data-Driven Simulation

Data-driven simulation’s strengths include its abilities to represent huge amounts of detail in real-time
simulations, and to permit efficient use of heterogeneous computation resources in an increasingly diverse
computational landscape. There are still many limits to its scalability and versatility, however. Very large
scenes will often offer too many possibilities and too large a state space to be sampled adequately during
training. Large scenes also require large state representations and reduced models, making it necessary
to process large volumes of data at runtime, especially when it is necessary to capture very localized or
sparse user interactions. Furthermore, there is still a large gap between the range of phenomena that we
can simulate using traditional methods and using data-driven methods, a problem that is exacerbated by
the fact that it can be difficult to couple data-driven and traditional simulations in the same scene.

The root of the problem, in some sense, is that data-driven simulation is usually a monolithic proposition
– either capture the entire scene in a single simulation, or avoid a data-driven techniques. Monolithic data-
driven simulations must have very large state spaces to produce good results, and, by definition, do not
couple to other simulations. Their large state spaces make them difficult to train, since it is becomes harder
and harder to predict what users will do as the range of possible user actions increases. Even learning the
important parts of the state space from users, like we did with self-refining games, may not be of much
help if the state space becomes too complex. Large scenes may also incorporate some scene elements that
could be more efficiently simulated using traditional techniques.

We suggest three possible avenues for addressing these problems: domain decomposition, coupling tradi-
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tional and data-driven simulation, and local perturbations.

Domain decomposition. Domain decomposition can help keep state space sizes manageable by dividing
a simulation in space and limiting the size of each piece. Keeping each piece small reduces the quantity
of data that each piece requires for training. Being able to assemble the pieces into larger simulations,
however, allows the combined simulation to cover a very large state space. Chapter 3 demonstrated the
power of this technique for Galerkin-projected fluid simulations. Allowing self-refining games to be
similarly constructed from parts would enable them to handle much larger state spaces. Other extensions
to domain decomposition, such as being able to continuously move or blend simulation tiles at runtime,
could allow for much more efficient simulations of complex scenes.

Coupling traditional and data-driven simulations. Data-driven interactive simulations and traditional
interactive simulations excel in different areas. Data-driven simulations are well-suited to large compute
clusters, large detailed scenes, and scenes with restricted user interaction. Traditional simulations are
well-suited to small scenes without too much detail, are best run on local devices, but do not place many
limits on the types of user interaction they can support. Coupling traditional and data-driven simulation
techniques would also allow complex scenes to be simulated using the most appropriate simulation tech-
nique for each type of dynamics. Consider a simulation of multiple rigid objects floating in water. Rigid
bodies are easy to simulate using traditional methods, and we demonstrated precomputed water in Chap-
ter 5, but including floating rigid bodies in our water game would make the state space too large to sample
effectively. If we could couple a traditional rigid body simulation to our precomputed liquid simulation,
we could avoid storing the exact state of each rigid body in the liquid simulation, greatly reducing its state
space and hopefully rendering it feasible for precomputation.

Local perturbations. One particular weakness of data-driven simulation is their handling of sparse inter-
actions, where the user can introduce large changes to a small part of the simulation domain. To support
this type of interaction, data-driven simulations need to be able to represent these changes at every sin-
gle point where the user could introduce them, which can make the reduced representation impracticably
large. Returning to the coupled liquid and rigid body simulations from the previous paragraph, it seems
unavoidable that the introduction of rigid bodies into the water should increase the amount of precom-
putation required for the water simulation, even if the rigid bodies are computed separately at runtime.
If a brick is thrown into the water, for example, a splash should appear at precisely the spot where the
brick contacted the surface. Even for a single brick, sampling all possible splash locations becomes an
enormous burden, since we must also sample the time evolution of each splash, at least to the point where
one splash becomes indistinguishable from the next. Ideally, we would not include the splashes in our
training data at all, restricting our reduced representation to low-frequency fluid states only, and introduce
splashes at runtime as local perturbations that would be incorporated into the precomputed simulation
over a short period of time. Harmon and Zorin [2013] proposed a method for temporarily incorporating
localized bases into Galerkin-projected simulations of deformable body dynamics. However, no analog
exists for fluid simulation, or for any simulation using our state graph representation.

The suggested future directions in this section would make data-driven simulation a more useful tool
for creating interactive experiences by increasing its power. There is another way to increase its utility,
however: by creating simulations optimized specifically for human perception and interactive use.
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6.2 Human-Centered Simulation Design

The inspiration for using data-driven simulation techniques in graphics derives substantially from the suc-
cess of these techniques in disciplines outside of graphics, especially engineering. The goals of interactive
simulation in graphics and of typical engineering simulations are substantially different, however. An en-
gineering simulation is generally intended to answer a question about physics: how much drag a particular
airplane wing design will generate, or how much load a bridge can support without breaking. Interactive
simulations in graphics, on the other hand, do not exist primarily in order to generate physically accurate
outcomes, but to create perceptually plausible animation to be consumed by humans. We can describe
these two different types of simulations as physics-centered and human-centered, respectively.

The distinction between human and physics-centered simulations is not a bright line. Rather, it is intended
to illuminate two different sets of priorities that can be taken into account when creating a simulation.
These priorities are in tension, but they are not mutually exclusive. Simulations built while primarily
holding one or the other set of priorities do tend to share some common traits.

Data-driven simulations, as approximations to traditional simulations, all seek to minimize the error that
their approximation incurs. One difference between physics-centered and human-centered data-driven
simulations is reflected in the errors that these simulations seek to avoid. Physics-centered applications
seek to measure some specific numerical property as accurately as possible. This goal naturally induces
a definition of error, relative to which the performance of the simulation can be optimized. Simple error
functions, such as L2 error, are often reasonable choices, and tend to correspond to useful physical quan-
tities such as energy. Human-centered applications are more directly concerned with perceptual notions
of error, which do not necessarily map nicely to such simple formulations.

Human-centered simulations are also typically more error-tolerant. If errors are neither too frequent nor
too large, they will not interfere substantially with the user experience. It is therefore not necessary for
a simulation to have hard error bounds for it to be useful; it is necessary only that the error typically
be low. In physics-centered simulations, however, error bounds are frequently of paramount importance,
particularly if a simulation is being used to evaluate the efficiency or safety of a real-world object.

Finally, and perhaps most obviously, human-centered simulations are intended to be used by people –
typically many different people. Whether they appear in games, art, education, or some other venue, their
entire purpose is to respond convincingly to user inputs. Physics-centered simulations, on the other hand,
may not be used by anyone at all: they may appear in control systems or other automated processes. The
smaller user population for physics-centered simulations also means that their inputs are typically more
predictable.

Most simulations in graphics are constructed using physics-centered techniques, including our Galerkin-
based simulations from Chapters 3 through 4. (For example, these simulations use L2 error both to
select their bases and to construct their reduced dynamics tensors.) Using physics-centered simulation
techniques in human-centered applications can work well, because physical error is often a good proxy
for perceptual error. However, optimizing for simple physical error measures can be inefficient, since in
general such measures are not perceptually valid, and simulation creators may invest substantial effort
eliminating errors that users will never notice but are weighted highly using the physical measure.

Adopting human-centered simulation design has, we believe, the potential to produce simulation-based in-
teractive experiences far more immersive, convincing, and enjoyable than would be possible with physics-
centered simulation. Self-refining games are strong evidence for this statement: their design is strongly

68



human-centric, and, despite being a poor fit for engineering or other traditional simulation applications,
they produced beautiful interactive 3D liquid simulations that other types of data-driven simulation can-
not emulate. Here, we suggest three ways in which future data-driven simulations could be improved by
prioritizing human factors in their designs.

Better models of perceptual error in physical systems. Defining useful perceptual error measures
for dynamical systems can be a difficult and complex process, as we demonstrated in §5.4. Even our
perceptual error metric there was defined in an ad hoc manner. Experimentally validated measures of
perceptual error in physical simulations would make data-driven simulations more efficient and help avoid
the process of trial and error that is currently required to develop application-specific perceptual error
estimates. Better perceptual understanding could also help guide the choice of other simulation design
decisions, like representation selection.

More trajectory-based simulation representations. One major difference between the Galerkin-based
data driven techniques in this paper and the state graph technique of self-refining games is the nature
of the parts that comprise their reduced models. In Galerkin-based techniques, the fundamental unit of
representation is the simulation snapshot. The reduced model consists simply of a collection of snapshots
that can be combined to yield new states. In the state graph model, the fundamental unit of representation
is the trajectory, that is, a short segment of simulation behavior in time. This difference is similar to
that between dynamic and kinematic methods for character animation. As with kinematic animation
methods, using trajectories in reduced representations allows the simulation to avoid explicitly handling
physics calculations at runtime, which allows both the physics equations and the error metrics to take
any form. Also, if only perceptually convincing trajectories are incorporated into the reduced model, and
good blending techniques are chosen, then we can guarantee that the user will never see an implausible
animation. (A complementary line of work would be more advanced blending methods that can generate
plausible animation by combining even very different trajectories, such as the liquid blending technique of
Raveenendran et al. [2014]). However, reliance on recorded trajectories hurts generalizability, especially
the ability to generalize to small perturbations from the training data, and as such may make them less
appropriate for engineering or other physics-centered tasks.

Adapting to user behavior. Perhaps the most powerful way to prioritize human factors in simulation
design is to let simulations actually adapt to user behaviors in order to achieve their design goals. This
was the key insight of self-refining games. The creation of more advanced and more accurate player
models would of course allow self-refining games to even more efficiently explore simulation state spaces.
Simulations could lower the error that users perceive not just by providing high-quality results, but by
actually introducing limited amounts of error into the simulation to guide users towards better-explored
regions of the state space. Customized simulations could also provide different dynamics to each user,
either to conform to user-specific models of simulation error, or to achieve application-specific goals
unrelated to error (such as maximizing playing enjoyment in a game).

6.2.1 Final Thoughts

We are excited about the future of data-driven simulation. Data-driven techniques, including Galerkin
projection and cubature, have already proven to be useful tools for crafting interactive experiences, and
we hope that our self-refining games will join their ranks. Self-refining games can create easy-to-analyze
simulations of even very complex phenomena, and they are currently the only method we are aware of
that can interactively simulate high-resolution 3D liquids on mobile devices. Data-driven simulations can
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create increased simulations of unparalleled scale and detail, and are uniquely well-positioned to exploit
large-scale cloud computation. In the future, we expect modular, human-centered data-driven simulations
to allow game creators, designers, educators, and artists to create almost any interactive experience they
acn dream of.
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