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Abstract

This thesis describes the design and implementation of state machine
replication (SMR) that achieves near-perfect load balancing and availability,
near-optimal request processing latency (especially in the wide area), and
performance robustness when confronted with failures and slow replicas.

Traditionally, practical replicated state machines have used leader-based
implementations of consensus algorithms, because it has been believed that
they provide the best performance—highest throughput and lowest latency.
At the same time, however, a leader-based approach has many drawbacks:
the failure of the leader halts the entire replicated state machine temporarily,
the speed of the entire set is determined by the speed of the leader, and, in
geo-replicated scenarios, the distance to the leader causes remote clients to
experience high latency.

This work shows that leaderless approaches can not only solve these
problems and provide the flexibility of a completely decentralized system,
but they can also achieve substantially higher performance than leader-based
protocols. We introduce a new variant of the Paxos protocol that we call
Egalitarian Paxos. In Egalitarian Paxos all replicas perform the same func-
tions simultaneously to ensure better load balancing and availability, lower
commit latency and higher performance robustness when compared to pre-
vious Paxos variants. The benefits of Egalitarian Paxos are most apparent
in the wide area, where its latency is optimal in many practical scenarios.
We show—both theoretically and empirically—that Egalitarian Paxos has the
aforementioned benefits when updating the state of a replicated state ma-
chine. We then apply the same leaderless design principle to improve the
SMR read performance: quorum read leases generalize previously proposed
time lease-based approaches to allow arbitrary sets of replicas to perform
strongly consistent local reads for parts of the replicated state.
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Chapter 1

Introduction

Internet services today rely on massive and continuously expanding infrastructure: net-
works of data centers that span across continents and comprise hundreds of thousands
and even millions of computers [56]. In this context, where machine failures are increas-
ingly common and entire data centers can be made unavailable by human error [55] or
extreme weather events [57], fault tolerance through state replication is critical for the
availability and integrity of these applications.

The goal of this thesis is to advance the state of the art in strongly-consistent repli-
cated computer systems design. It does so by improvements to the Paxos [35] protocol
for state machine replication. The primary benefits of these improvements are that sys-
tems using it can retain strongly-consistent behavior with substantially lower latency for
clients.

1.1 Problem Statement and Scope

Redundancy through state replication is the primary mechanism for fault tolerance in dis-
tributed systems. State machine replication is used extensively both within data centers—
where machine failures are common and must be tolerated—and in the wide-area, to
guard against data loss and service unavailability caused by data center outages [55, 57],
and to ensure that the data is close to all of the geographically-distributed clients that
access it [7, 16].

The design space for replication protocols is vast, reflecting the complex (and fun-
damental [19]) trade-offs between the desirable traits of a replicated system: availabil-



ity, consistency and high performance—especially low latency. Availability is important,
particularly for user-facing applications, because the delays caused by failed nodes or un-
reachable data centers can produce costly service disruptions. Strong consistency gives
programmers an intuitive model for the effects of concurrent updates (i.e., akin to con-
current updates to a single copy of the system state), making it less likely that complex
system behavior will result in bugs. Finally, low latency is increasingly important in
the context of geo-replicated databases, where small inefficiencies add up to significant
increases in latency—tens or hundreds of milliseconds. On top of these considerations,
developers have naturally preferred simpler protocols that are easier to understand and
debug.

On one side of the design spectrum, the systems that guarantee strong consistency
rely on a variety of protocols ranging from simple primary-backup protocols, to more
complex protocols such as Paxos and Byzantine fault tolerance. Over the past decade,
the protocol of choice in systems where availability is critical and failures are benign has
been Paxos [34, 35]. Unlike primary-backup protocols, Paxos does not depend on exter-
nal failure detectors or reconfiguration services to recover from failures, and therefore,
systems using Paxos have high availability. Examples of such systems include reliable
lock services such as Chubby [10] and Boxwood [44], or geo-replicated table stores such
as Spanner [16] and Megastore [7].

On the other hand, many recent proposals have focused on obtaining low latency at
the expense of strong consistency [40, 42, 43, 52]. In practical terms, weaker consistency
translates into increased complexity and implementation effort in the upper layers of the
applications that depend on these protocols.

Deciding which of these two main approaches to use for a particular application
hinges on the answer to the following dilemma: how much performance does our ap-
plication need, and how much complexity are we willing to tolerate to get it? While
the answer is application-specific, there is a related, more general question that makes
this dilemma simpler: how much can we decrease the cost of strong consistency in the first
place? This was the question that motivated this work.

As such, this thesis focuses exclusively on strongly-consistent systems: it improves
the performance of strongly-consistent state machine replication on multiple dimensions,
achieving optimality for many practical scenarios. When we talk about optimality in
this thesis, we do so strictly in the confines of strongly-consistent systems (i.e., systems



that provide linearizability or strict serializability [23]) that can continue to process com-
mands® despite a specified number of concurrent crash failures or partitioned nodes.

Although we also consider various design decisions introduced by Byzantine fault-
tolerant protocols, the improvements we describe target only non-Byzantine failures—
this is by far the most common failure assumption used in practice today.

1.2 Thesis Hypothesis

There exists a generalization of the Paxos protocol that can simultaneously achieve (i)
wide-area latency that is optimal for a strongly-consistent system, (ii) perfect load bal-
ancing across replicas, and (iii) constant availability. Furthermore, in many realistic sce-
narios, reading the replicated state can be performed with minimal latency—i.e., as low
or lower than in weakly-consistent systems.

1.3 Results Overview

There are essentially two types of operations that replicated state machines must support:
updating the state, and reading the state. Because reads are fundamentally cheaper to
perform, it is beneficial to implement different mechanisms for updates and reads. The
techniques that we propose in this thesis for improving each of these two aspects are
largely orthogonal.

1.3.1 Efficiently Updating the State

We introduce a new state machine replication protocol called Egalitarian Paxos. Egali-
tarian Paxos (abridged EPaxos) retains the strong consistency of Paxos while improving
performance in multiple respects. These improvements increase the complexity of the
protocol when compared to Paxos, but unlike systems with weaker forms of consistency,
this burden is almost entirely the responsibility of the protocol developer, not the clients
of the system or the upper application layers.

“This refers to general commands that can update and read state. As we explain later, strongly-
consistent read-only commands can sometimes be performed locally, thus achieving the minimum latency
possible in any system (even weakly-consistent ones).



An important limitation in practical Paxos-based systems is that during efficient,
failure-free operation, all clients communicate with a single master (or leader) server
at all times. This optimization, sometimes termed “Multi-Paxos”, is important to achiev-
ing high throughput in practical systems [13]. Changing the leader requires invoking
additional consensus mechanisms that substantially reduce throughput.

This algorithmic limitation has several important consequences. First, it can impair
scalability by placing a disproportionately high load on the master, which must process
more messages than the other replicas [45]. Second, when performing geo-replication,
clients will incur additional latency for communicating with a remote master. Third, as
we show in this thesis, traditional Paxos variants are sensitive to both long-term and
transient load spikes and network delays that increase latency at the master. Finally,
this single-master optimization can harm availability: if the master fails, the system can-
not service requests until a new master is elected. Previously proposed solutions such
as partitioning or using proxy servers are undesirable because they restrict the type of
operations the cluster can perform. For example, a partitioned cluster cannot perform
atomic operations across partitions without using additional techniques.

Egalitarian Paxos has no designated leader process. Instead, clients can choose, at
every step, which replica to submit a command to, and in most cases the command will
be committed without interfering with other concurrent commands. This allows the sys-
tem to distribute the load evenly to all replicas, eliminating the first bottleneck identi-
fied above (having one server that must be on the critical path for all communication).
The system can provide higher availability because there is no transient interruption
because of leader election: there is no leader, and hence, no need for leader election,
as long as more than half of the replicas are available. Finally, EPaxos’s flexible load
distribution is better able to handle permanently or transiently slow nodes, as well as
the latency heterogeneity caused by geographical distribution of replicas, substantially
reducing both the median and tail commit latency—e.g., unlike any previous state ma-
chine replication protocol, EPaxos has optimal median commit latency in the wide-area
for three and five replica setups (i.e., it attains the lowest update latency possible in a
strongly-consistent system that can tolerate up to two concurrent failures). In our ex-
periments, EPaxos achieved an up to 3x improvement in throughput and an up to 65%
decrease in wide-area commit latency when compared to Multi-Paxos.



1.3.2 Reading the State with Very Low Latency

We introduce the concept of quorum read leases which allow Paxos replicas to perform
local reads with minimal latency, while at the same time preserving high write perfor-
mance.

Many Paxos-based systems improve read performance by using some form of time
leases, in which one or several replicas can satisfy read requests locally without hav-
ing to commit an operation using the relatively more expensive Paxos protocol. This
optimization obviously improves read throughput and latency, but also improves write
performance by reducing the total number of operations that must be handled by the
Paxos replicas.

A variety of approaches to read leases have been used in practical systems. Most
Paxos-based systems use the Multi-Paxos optimization, in which one node is temporarily
selected as the “stable leader” and is responsible for orchestrating all operations. Absent
failures, Multi-Paxos enables operations to commit in a single round trip from the leader
to a majority of replicas. In a Multi-Paxos environment, the most common read lease
optimization is to grant the stable leader a read lease on all objects comprising the state—
files, key-value pairs or relational database records, depending on the application. As a
result, reads can be handled with a single round-trip to the leader, and writes incur no
additional slowdown, compared to a Paxos system that does not use leases.

Other systems, such as Google’s Megastore [7], instead grant a read lease to all nodes.
This decision aggressively optimizes for reads at the expense of write latency: all reads
can be handled locally at a replica with no inter-replica traffic whatsoever, but writes
now involve at least one round-trip to every replica (instead of just the nearest majority).

We argue that there is an overlooked alternative that is a more natural fit to the
structure of Paxos: quorum leases. In this model, a lease for each object in the system
could be granted to different subsets of nodes. The size and composition of these subsets
is selected either based upon how frequently each replica reads the objects in question
(for best read performance) or based upon their proximity to the leader (to improve read
performance without slowing write performance). A particularly suitable size for this
subset is that of a Paxos quorum: we claim that quorum leases are a “natural” fit to
Paxos because writes in Paxos must, by definition, synchronously contact at least a simple
majority of nodes anyway. Thus, the lease revocation and the Paxos messages can be
combined, often resulting in no additional overhead or delays for handling a leased object.



1.4 Thesis Contributions
This thesis makes the following contributions:

+ The description and evaluation of a new state machine replication protocol, Egali-
tarian Paxos, which is the first SMR protocol to achieve optimal commit latency in
the wide area. Simultaneously, Egalitarian Paxos achieves perfect load balancing
across all replicas and constant availability as long as more than half the replicas
are reachable (both in the local and wide area deployments).

+ A generalization of the concept of read leases for quorum consensus-based state
machine replication. Quorum leases allow all replicas to service most read requests
locally—thus significantly increasing read performance—with only modest write
performance costs.



Chapter 2

Background and Related Work

To put this work in context, we begin with a discussion about strongly-consistent ver-
sus weakly-consistent systems. We then describe the Paxos protocol, which is the most
widely used mechanism to achieve strong consistency in distributed systems. Finally, we
discuss several of the most important Paxos variants and other protocols related to state
machine replication, and examine how EPaxos relates to this prior work.

2.1 Strong Versus Weak Consistency

As geo-distributed databases have become widespread, there has been increased attention
to the consistency versus latency trade-off in designing distributed systems. This trade-
off, as shown by the well-known CAP theorem [9, 19], is a fundamental one. The intuition
behind it is straightforward: if we want our replicas to be strongly consistent, then either
updates or reads must synchronously go across the wide-area to one or more remote data
centers, thus incurring high latency.

Informally, systems that provide strong consistency are easier to interact with, be-
cause they behave in an intuitive way: they behave as if the system had only one copy
of the data, and all operations modified and read that copy atomically.

Strong consistency commonly refers to the formal concepts of either strict serializabil-
ity or linearizability [23]. A system is strictly serializable if the outcome of any sequence
of operations, as observed by its clients, is equivalent to a serialization of those opera-
tions in which the temporal ordering of non-overlapping operations is respected (i.e., if
an operation A is acknowledged by the system before another operation B is proposed



by some client, then A comes before B in the equivalent serialization). Linearizability
is a sub-case of strict serializability in which every operation reads or updates a single
object.’ The advantage of linearizability is its “local” property: it is sufficient for a system
to linearize operations for each individual object to achieve global linearizability. Paxos
can be used to achieve strict serializability and linearizability.

Recently, there have been several proposals for reducing wide-area latency by relax-
ing the consistency model [40, 42, 43, 52]. With these approaches, updates can incur
minimal latency by being applied synchronously to only the closest site—this can hap-
pen to all updates [42], or to only a subset [40, 52]. The downside is that the state of the
replicas can diverge. This divergence is usually temporary, but application developers
must carefully consider which divergent mutations are safe and which must be applied
consistently (e.g., by falling back to a Paxos-like protocol), or they may have to provide
application-specific ways of reconciling divergent state. Irrespective, the users of the ap-
plication may themselves have to tolerate interactions with the application that are less
intuitive.

Even with weak consistency, disaster tolerance (i.e., tolerating the outages of entire
data centers with no data loss) still requires synchronous geo-replication to at least one
remote site. Understanding the fundamental limitations of synchronous replication is
therefore important irrespective of which side of the consistency-versus-latency argu-
ment one is situated.

In this context, the primary goal of this work is to make it possible for more applica-
tions to have the ease of use and intuitive behavior of a strongly-consistent system even
though they may have stringent latency requirements.

2.2 Paxos

State machine replication aims to make a set of possibly faulty distributed processors
(the replicas) execute the same commands in the same order. Because each processor is a
state machine with no other inputs, all non-faulty processors will transition through the
same sequence of states. Given a particular position in the command sequence, running
the Paxos algorithm [35] guarantees that, if and when termination is reached, all non-
faulty replicas agree on a single command to be assigned that position. To be able to
make progress, at most a minority of the replicas can be faulty—if NV is the total number

!After we define the notion of interference between operations in the context of Egalitarian Paxos, we
will be able to extend the notion of linearizability to apply to situations where operation interference is a
transitive relation.
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Figure 2.1: The shortest commit path in canonical Paxos (i.e., when there is no con-
tention for a slot) requires two rounds of communication. The dashed arrows in the
diagram signify asynchronous messages.

of replicas, at least | N/2| 4+ 1 must be non-faulty for Paxos to make progress. Paxos,
EPaxos, and other common Paxos variants handle only non-Byzantine failures: a replica
may crash, or it may fail to respond to messages from other replicas indefinitely; it cannot,
however, respond in a way that does not conform to the protocol.

The execution of a replicated state machine that uses Paxos proceeds as a series of
pre-ordered instances, where the outcome of each instance is the agreement on a single
command. The voting process for one instance may happen concurrently with voting
processes for other instances, but does not interfere with them.

Upon receiving a command request from a client, a replica will try to become the
leader of a not-yet-used instance by sending Prepare messages to at least a majority of
replicas (possibly including itself). A reply to a Prepare contains the command that the
replying replica believes may have already been chosen in this instance (in which case
the new leader will have to use that command instead of the newly proposed one), and
also constitutes a promise not to acknowledge older messages from previous leaders. If
the aspiring leader receives at least | NV /2] + 1 acknowledgements in this prepare phase,
it will proceed to propose its command by sending it to a majority of peers in the form
of Accept messages; if these messages are also acknowledged by a majority, the leader
commits the command locally, and then asynchronously notifies all its peers and the
client. Figure 2.1 depicts these message exchanges.

Because this canonical mode of operation requires at least two rounds of communi-
cation (two round trips) to commit a command—and more rounds in the case of dueling
leaders—the widely used “Multi-Paxos” optimization designates a replica to be the sta-
ble leader (or distinguished proposer). A replica becomes a stable leader by running the
prepare phase for a large (possibly infinite) number of instances at the same time, thus
taking ownership of all of them. In steady state, clients send commands only to the sta-
ble leader, which directly proposes them in the instances it already owns (i.e., without
running the prepare phase). This is depicted in Figure 2.2. When a non-leader replica
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Figure 2.2: The commit path in Multi-Paxos is only one round trip from the leader to a
majority.

suspects the leader has failed, it tries to become the new leader by taking ownership of
the instances for which it believes commands have not yet been chosen.

2.3 Paxos Variants

There exist many versions of the Paxos protocol, but in practice, Multi-Paxos is by far the
most common, being implemented in systems such as Chubby [10], Boxwood [44] and
Spanner [16]. The other versions that we describe in this section represent interesting
design points for comparing with Egalitarian Paxos.

Multi-Paxos [34, 35] makes efficient forward progress by relying on a stable leader
replica that brokers communication with clients and other replicas. With N replicas,
for each command, the leader handles ©(/N) messages, and non-leader replicas handle
only O(1). Thus, the leader can become a bottleneck, as practical implementations of
Paxos have observed [10]. When the leader fails, the state machine becomes temporarily
unavailable until a new leader is elected. This problem is not easily solved: aggressive
leader re-election can cause stalls if multiple replicas believe they are the leader.

Mencius [45] distributes load evenly across replicas by rotating the Paxos leader for
every command. The instance space is pre-partitioned among all replicas: replica R;4
owns every instance i where (i mod N) = R;;. The drawback of this approach is that
every replica must hear from all other replicas before committing a command A, because
otherwise another command B that depends on A may be committed in an instance
ordered before the current instance (the other replicas reply either that they are also
committing commands for their instances, or that they are skipping their turn). This
has two consequences: (1) the replicated state machine runs at the speed of the slowest
replica, and (2) Mencius can exhibit worse availability than Multi-Paxos, because if any
replica fails to respond, no other replica can make progress until a failure is suspected
and another replica commits no-ops on behalf of the possibly failed replica.
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Fast Paxos [37] reduces the number of message delays until commands are committed
by having clients send commands directly to all replicas. However, some replicas must
still act as coordinator and learner nodes, and handle ©(/V') messages for every com-
mand. Like Multi-Paxos, Fast Paxos relies on a stable leader to start voting rounds and
arbitrate conflicts (i.e., situations when acceptors order client commands differently, as
a consequence of receiving those commands in different orders).

Generalized Paxos [36] commits commands faster by committing them out of order
when they do not interfere. Replicas learn commands after just two message delays—
which is optimal—as long as they do not interfere. Generalized Paxos requires a stable
leader to order commands that interfere, and learners handle ©(/N) messages for ev-
ery command.” Furthermore, messages become larger as new commands are proposed,
so the leader must frequently stop the voting process until it can commit a checkpoint.
Multicoordinated Paxos [11] extends Generalized Paxos by using multiple coordinators
to increase availability when commands do not conflict, at the expense of using more
messages for each command: each client sends its commands to a quorum of coordina-
tors instead of just one. It too relies on a stable leader to ensure consistent ordering if
interfering client commands arrive at coordinators in different orders.

In the wide-area, EPaxos has three important advantages over Generalized Paxos: (1)
First and foremost, the EPaxos fast-path quorum size is smaller than the fast-path quorum
size for Generalized Paxos by exactly one replica, for any total number of replicas—this
reduces latency and the overall number of messages exchanged, because a replica must
contact fewer of its closest peers to commit a command. (2) Resolving a conflict (two
interfering commands arriving at different acceptors in different orders) requires only
one additional message delay (i.e., half a round trip) in EPaxos, but will take at least
two additional round trips in Generalized Paxos. (3) For three-site replication, EPaxos
can commit commands after one round trip to the replica closest to the proposer’s site
even if all commands conflict. We present the empirical results of this comparison in
the next chapter. These advantages make EPaxos a good fit for MDCC [30], which uses
Generalized Paxos for wide-area commits.

An important distinction between the fast path in EPaxos and that of Fast and Gen-
eralized Paxos is that EPaxos incurs three message delays to commit, whereas Fast and
Generalized Paxos require only two. However, in the wide area, the first message delay in
EPaxos is usually negligibly short because the client and its closest replica are co-located
within the same data center. This distinction allows EPaxos to have smaller fast-path

*Based on our experience with EPaxos, we believe it may be possible to modify Generalized Paxos to
rotate learners between commands, in the same ballot, to balance load if there are no conflicts. Even so,
Generalized Paxos would still depend on the leader for availability.

11



quorums and has the added benefit of not requiring clients to broadcast their proposals
to a super-majority of nodes.

In S-Paxos [8], the client-server communication load is shared by all replicas, which
batch commands and send them to the leader. The stable leader still handles ordering, so
S-Paxos suffers Multi-Paxos’s problems in wide-area replication and with slow or faulty
leaders.

2.4 Other Protocols Related to Paxos

The original Paxos paper, “The Part-Time Parliament”, was initially released as a DEC Sys-
tems Research Center tech report in 1989 [33] and it built on Lamport’s prior work on
state machine replication under synchronous communication assumptions [31, 32]. One
year prior, Oki and Liskov had published Viewstamped Replication [41, 48], which solved
the problem of state machine replication in the presence of failures for an asynchronous
setting (i.e., the same problem that Paxos solves). Although submitted for publication in
1990, Paxos was eventually disseminated as a peer-reviewed publication only in 1998 [34].
In the meantime, Chandra and Toueg published a similar protocol called Consensus [14]
in 1996. More recently, Zab [27] has gained popularity in practical settings because it is
used by ZooKeeper [25], while Raft [49] presented a variant of Viewstamped Replication
intended to be more easily understandable. All these protocols have the same communi-
cation patterns in normal operation. They are all leader-based, and they differ mainly in
the way they handle the change of the leader.

Consistently ordering broadcast messages is equivalent to state machine replication.
EPaxos has similarities to generic broadcast algorithms [6, 50, 59], that require a con-
sistent message delivery order only for conflicting messages. Thrifty generic broad-
cast [6] has the same liveness condition as (E)Paxos, but requires ©(N?) messages for
every broadcast message. It relies on atomic broadcast [51] to deliver conflicting mes-
sages, which has a latency of four message delays. G5, G134+ [50], and optimistic generic
broadcast [59] handle fewer machine failures than (E)Paxos, requiring that more than
two thirds of the nodes remain live. They also handle conflicts less efficiently: GB and
GB+ may see conflicts even if messages arrive in the same order at every replica and
they use Consensus [14] to solve conflicts; optimistic generic broadcast uses both atomic
broadcast and one Consensus instance for every pair of conflicting messages. In contrast,
EPaxos requires only one additional one-way message delay to commit commands that
interfere; the communication is performed in parallel for all interfering commands; and
EPaxos does not need a stable leader to decide the ordering.
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While the protocols described so far focus on committing commands efficiently, other
systems, such as Eve [28], tackle the orthogonal problem of parallelizing command exe-
cution on multi-core systems.

2.5 Protocol Comparison Summary

Table 2.1 compares Egalitarian Paxos and its competitors on a number of relevant dimen-
sions.

The number of critical replicas for a timely response counts those special replicas
whose responsiveness is critical for the system to commit commands on the shortest
common path. For example, in a leader-based protocol this number is 1 (i.e., the leader
itself). For Mencius, all replicas must be responsive for a command to be committed—
otherwise the live replicas must time-out and then commit no-ops. EPaxos has no such
special replicas.

The quorum for liveness, on the other hand, counts how many replicas in total must
remain alive for the system to continue operating without a reconfiguration where crashed
replicas are replaced. For some protocols, the commit path is shorter in “good” runs (as-
sumed to be the common case)—this is usually referred to as the fast path.

We compare the length of the commit path only for the wide area, because that is
where this difference in latency is most relevant. For Egalitarian Paxos, Multi-Paxos and
Mencius there is one extra message delay between the client and its closest replica, but
this is usually negligible because clients are co-located with their closest replicas in the
same data centers.
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Protocol Quorum Fast-path Critical replicas ~ WAN Fast-path  WAN Slow-path

for liveness ~ quorum for “timely” msg. delays msg. delays
response’ to commit to commit

Multi-Paxos IN/2|+1 IN/2] +1 1 3 (2 at leader) 3 (2 at leader)
Fast Paxos ° IN/2]+1 [3N /4] 1 2 3
Generalized IN/2] +1 [3N /4] 1 2 6
Paxos
Mencius IN/2|+1 IN/2]+1toN° N 2 2
Egalitarian IN/2] +1 [3N/4] ¢ 0 2 3¢
Paxos
Thrifty generic IN/2]+1 IN/2] +1 1 3 6
broadcast
GB, B+ [2N/3]+1 |2N/3]+1 1 2 4
Optimistic generic  [2N/3] +1 |2N/3] +1 1 2 3
broadcast

“This counts those special replicas that must reply for commands to be committed on the common
shortest path.

’Fast Paxos is ill-suited for the wide-area because conflicts occur when different replicas receive com-
mands in different order, so they will be very frequent.

At worst, a Mencius replica may have to wait for all other replicas to reply before it can commit.

93N /4] is smaller or equal to |2N /3] + 1 for practical values of N (V < 15).

©Of all the Egalitarian Paxos versions that we present in this thesis, the one that achieves all the proper-
ties stated here is EPaxos 3-WAN-Delays. The version that we focus on most in the evaluation, Optimized
EPaxos, achieves all but the last property (i.e., it requires 4 message delays on the slow path instead of 3).

Table 2.1: Protocol comparison in the wide area (local area message delays between
replicas and co-located clients are ignored). N is the total number of replicas.
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Chapter 3

Egalitarian Paxos

We begin our presentation of Egalitarian Paxos with the intuition behind the protocol.
We then describe the protocol in detail, state its properties and prove them. Finally, we
present the results of an empirical comparison between Egalitarian Paxos and previous
state machine replication protocols.

In describing EPaxos, we present multiple optimizations, some of which are incom-
patible. For this reason, we structure the presentation around multiple EPaxos variants,
starting with a basic variant whose role is mainly to improve understandability.

3.1 Contributions and Intuition

The main goals when designing EPaxos were: (1) optimal commit latency in the wide
area, (2) optimal load balancing across all replicas, to achieve high throughput, and (3)
graceful performance degradation when some replicas become slow or crash. To achieve
these goals, EPaxos must allow all replicas to act as proposers (or command leaders) si-
multaneously, for clients not to waste round trips to remote sites, and functionality to
be well balanced across replicas. Furthermore, each proposer must be able to commit
a command after communicating with the smallest possible number of remote replicas
(i.e., quorums must be as small as possible). Finally, the quorum composition must be
flexible, so that command leaders can easily avoid slow or unresponsive replicas.

EPaxos achieves all this due to the novel way in which it orders commands. Previous
algorithms ordered commands either by having a single stable leader choose the order (as
in Multi-Paxos and Generalized Paxos), or by assigning them to instances (i.e., command
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Variant Described Evaluated

Basic EPaxos Section 3.5 No
Optimized EPaxos Section 3.6  Section 3.11
EPaxos Minimum-Quorum  Section 3.7 No

EPaxos 3-WAN-Delays Section 3.8  Section 3.11.3

Table 3.1: Summary of Egalitarian Paxos variants described in this thesis.

C1: update obj_A ACK C1 C3: update obj_A ACK G3

Ri Rl ——~————g g~ a —______
_______ - 1
PreAccept C1 OK C1 :Commit C1 : ‘PreAcoept cs ‘ OK C3 Accept C3(—C4) | ok c3 :99“]’2"‘_?3_'

R N "AS—— T R2

v ‘ ~a
s “a R /\JM N

R4 VDN R4
T~ I |
[PreAcoept c2[ 19K G2 icommit G2 PreAccept C4| (0% C4 iCommit C4 |
RS ———=— W _==-==-< RE ———— — M--=-----
C2: update obj_B ACK C2 C4: update obj_A ACK C4

Figure 3.1: EPaxos message flow. R1, R2, ... R5 are the five replicas. Commands C1
and C2 (left) do not interfere, so both can commit on the fast path. C3 and C4 (right)
interfere, so one (C3) will be committed on the slow path. C3 — C4 signifies that C3
acquired a dependency on C4. For clarity, we omit the async commit messages.

slots) in a pre-ordered instance space (as in canonical Paxos and Mencius) whereby the
order of the commands is the pre-established order of their respective slots. In contrast,
EPaxos orders the instances dynamically and in a decentralized fashion: in the process
of choosing (i.e., voting) a command in an instance, each participant attaches ordering
constraints to that command. EPaxos guarantees that all non-faulty replicas will commit
the same command with the same constraints, so every replica can use these constraints
to independently reach the same ordering.

This ordering approach is the source of the benefits EPaxos has over previous algo-
rithms. First, committing a command is contingent upon the input of any majority of
replicas, unlike in Multi-Paxos where the stable leader must be part of every decision,
or in Mencius, where information from all replicas is required. This benefits wide-area
commit latency, availability, and also improves performance robustness, because it de-
couples the performance of the fastest replicas from that of the slowest. Second, any
replica can propose a command, not just a distinguished proposer, or leader—this allows
for load balancing, which increases throughput.

In taking this ordering approach, EPaxos must maintain safety and provide a lineariz-
able ordering of commands, while minimizing both the number of replicas that must
participate in voting for each command and the number of messages exchanged between
them. One observation that makes this task easier—by substantially reducing the number
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of ordering constraints in the common case—was made by generic broadcast algorithms
and Generalized Paxos before us: it is not necessary to enforce a consistent ordering for
the common case of commands that do not interfere with each other.

Figure 3.1 presents a simplified example of how Egalitarian Paxos works. Commands
can be sent by clients to any replica—we call this replica the command leader for that com-
mand, not to be confused with the stable leader in Multi-Paxos. In practical workloads,
concurrent proposals interfere only rarely (for now, think of this common case as con-
current commands that update different objects). EPaxos can commit these commands
after only one round of communication between the command leader and a fast-path
quorum of peers—F' + L%J replicas in total, including the command leader, where F'

is the number of tolerated failures (F' = 2 in the example from Figure 3.1).

When commands interfere, they acquire dependencies on each other—attributes that
commands are committed with, used to determine the correct order in which to execute
the commands (the commit and the execution orders are not necessarily the same, but
this does not affect correctness). To ensure that every replica commits the same attributes
even if there are failures, a second round of communication between the command leader
and a classic quorum of peers—F' 4 1 replicas including the command leader—may be
required (as in Figure 3.1 for command C3). We call this the slow path. As an optimization,
we can overlap the two rounds of communication to commit commands after only three
message delays (one and a half round trips) on the slow path.

3.2 Preliminaries

We present here our assumptions about the setting where Egalitarian Paxos is used and
we introduce our notation.

Messages exchanged by processes (clients and replicas) are asynchronous. Failures
are non-Byzantine—a machine can fail by stopping to respond for an indefinite amount
of time. The replicated state machine comprises N = 2F + 1 replicas, where F' is the
maximum number of tolerated failures. For every replica R there is an unbounded se-
quence of numbered command slots R.1, R.2, R.3, ... that replica R is said to own. As is
customary in the Paxos literature, we call these command slots protocol instances [35] (or
simply instances). The complete state of each replica comprises all the instances owned
by every replica in the system (i.e., for NV replicas, the state of each replica can be re-
garded as a two-dimensional array with /N rows and an unbounded number of columns).
At most one command will be chosen in an instance. The ordering of the instances is not
pre-determined—it is determined dynamically by the protocol, as commands are chosen.
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It is important to understand that committing and executing commands are different
actions, and that the commit and execution orders are not necessarily the same.

To modify the underlying application state, a client sends Request(command) to a
replica of its choice. A RequestReply from that replica will notify the client that the com-
mand has been committed. However, the client has no information about whether the
command has been executed or not. Only when the client reads the application state
updated by previously committed commands is it necessary for the system to execute
those commands.

To read (part of) the state, clients send Read(objectIDs) messages and wait for Read-
Replies. Read is a no-op command that interferes with updates to the objects it is reading.
Clients can also use RequestAndRead(7, objectIDs) to propose command v and atomically
read the machine state immediately after -y is executed—Read(objectIDs) is equivalent to
RequestAndRead(no-op, objectIDs).

3.3 Command Interference

Before we can describe EPaxos in detail, we must define command interference.

Informally, two commands that interfere must be executed in the same order by all
replicas—otherwise the states of the replicas will not converge. Commands that do not
interfere are those that can commute.

Definition 1 (Interference). Two commands v and ¢ interfere if there exists a sequence of
commands ¥ such that the serial execution 3, v, § is not compatible with the serial exe-
cution X, 9, 7y (i.e., it results in a different underlaying application state and/or different
read results).

As we explain in the following section, EPaxos guarantees that any two interfering
commands will be executed in the same order with respect to each other on every replica.
This is sufficient to guarantee that the executions on all replicas are compatible: the serial
ordering of commands on a replica can be obtained from that of any other replica by
commuting commutative commands.

Note that the interference relation is symmetric, but not necessarily transitive.
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3.4 Protocol Guarantees

The formal guarantees that EPaxos offers clients are similar to those provided by other
Paxos variants:

Nontriviality: Any command committed by any replica must have been proposed by
a client.

Stability: For any replica, the set of committed commands at any time is a subset of
the committed commands at any later time. Furthermore, if at time ¢; a replica R has
command v committed at some instance (.7, then R will have v committed in ().7 at any
later time ty > t;.

Consistency: Two replicas can never have different commands committed for the
same instance.

Execution consistency: If two interfering commands 7 and ¢ are successfully com-
mitted (by any replicas) they will be executed in the same order by every replica.

Execution linearizability: If two interfering commands v and ¢ are serialized by
clients (i.e., 0 is proposed only after  is committed by any replica), then every replica
will execute v before 9.

Execution consistency and execution linearizability imply the classic notion of lin-
earizability [23]: consistency and the definition of command interference imply serializ-
ability, which along with execution linearizability imply classic linearizability.

Liveness (w/ high probability): Commands will eventually be committed by every
non-faulty replica, as long as fewer than half the replicas are faulty and messages even-
tually go through before recipients time out.!

3.5 The Basic Protocol

For clarity, we first describe the basic Egalitarian Paxos, and improve on it in the next
section. This basic EPaxos uses a simplified procedure to recover from failures, and as a
consequence, its fast-path quorum?® is 2F" (out of the total of N = 2F" 4 1 replicas). The

'Paxos provides the same liveness guarantees. By FLP [18], it is impossible to provide stronger guar-
antees for distributed consensus with a practical (i.e., deterministic) protocol.

*We use quorum to denote both a set of replicas with a particular cardinality, and the cardinality of that
set.
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Phase 1: Establish ordering constraints

Replica L on receiving Request(y) from a client
becomes the designated leader for command  (steps
2, 3 and 4 executed atomically):
1: increment instance number i; < i; +1
{Interfy ., is the set of instances Q.j such that the
command recorded in cmds [Q][j] interferes w/ v}
. seq < 1+ max ({cmds.[Q][j].seq |
Q.j € Interfy , }U{0})
: deps., < Interfy ,
: emds,[L][ir] < (7,seq,deps.,,pre-accepted)
5: send PreAccept(7y,seq.,deps~,L.ip) to all other
replicas in F, where F is a fast quorum that

includes L

Any replica R, on receiving
PreAccept(y,seq~,deps~,L.i) (steps 6,7 and 8
executed atomically):

6: update seq., < max({seq, } U{1+cmdsg[Q][/].seq

| Q.j € Interfg , })

7: update deps., < deps., UInterfg

8: cmdsg[L][i] < (7,seq.,deps.,, pre-accepted)
. reply PreAcceptOK(v,seq~,deps~,L.i)to L

v

_v Phase 2: Paxos-Accept

Command leader L, for (v,seq,deps.) at instance
L.i:

16: cmds [L][i] < (v,seq~,deps.,accepted)

17: send Accept(v,seq~,deps,L.i) to at least [N /2]

other replicas

Any replica R, on receiving
Accept(vy,seq~,deps~,L.i):
18: cmdsg[L][i] <~ (7,seq.,deps.,,accepted)
19: reply AcceptOK(vy,L.i)to L

v

Command leader L, on receiving at least | N /2|
AcceptOK’s:

20: run Commit phase for (v, seq.,deps. ) at L.i

Commit

Replica L (command leader for v), on receiving at
least |N/2| PreAcceptOK responses:

10: if received PreAcceptOK’s from all replicas in
F\{L}, with seq., and deps., the same in all
replies (for some fast quorum ) then

run Commit phase for (v, seq,deps.,) at L.i

: else
13:  update deps., < Union(deps., from all replies)
14:  update seq, < max({seq, of all replies})
15:  run Paxos-Accept phase for (vy,seq.,,deps.) at L.i

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I

then

Fast I

Command leader L, for (v,seq,,deps.) at instance
L.i:
21:
22:
23:

cmds; [L][i] < (v, seq~,deps~,committed)
send commit notification for v to client
send Commit(vy,seq~,deps~,L.i) to all other

Path |

replicas
v

else I

Slow

Any replica R, on receiving
Commit(y,seq~,deps~,L.i):
24: cmdsg[L][i] - (7,seq.,deps.,,committed)

Path

Figure 3.2: The basic Egalitarian Paxos protocol for choosing commands.
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Explicit Prepare

Replica @ for instance L.7 of potentially failed replica L

25:

26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

increment ballot number to epoch.(b 4 1).Q, (where epoch.b. R is the highest ballot number @ is aware of
in instance L.7)
send Prepare(epoch.(b + 1).Q, L.q) to all replicas (including self) and wait for at least | N /2] + 1 replies
let R be the set of replies w/ the highest ballot number
if R contains a (v, seq., deps. , committed) then
run Commit phase for (v, seq. , deps. ) at L.i
else if R contains an (1, seq. , deps., accepted) then
run Paxos-Accept phase for (7, seq, deps_ ) at L.i
else if R contains at least | V/2] identical replies (v, seq. , deps_ , pre-accepted) for the default ballot
epoch.0.L of instance L.i, and none of those replies is from L then
run Paxos-Accept phase for (7, seq.,, depsw) at L.g
else if R contains at least one (v, seq.,, deps._, pre-accepted) then
start Phase 1 (at line 2) for  at L., avoid fast path
else
start Phase 1 (at line 2) for no-op at L.i, avoid fast path

Replica R, on receiving Prepare(epoch.b.Q, L.i) from Q

38:
39:
40:
41:

if epoch.b.Q) is larger than the most recent ballot number epoch.z.Y accepted for instance L.i then
reply PrepareOK(cmds g [L][i], epoch.z.Y, L.3)

else
reply NACK

Figure 3.3: The EPaxos simplified recovery procedure.
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fully optimized EPaxos reduces this quorum to only F' + L%J replicas. The slow-path
quorum size is always F' + 1.

3.5.1 The Commit Protocol

As mentioned earlier, committing and executing commands are separate. Accordingly,
EPaxos comprises (1) the protocol for choosing (committing) commands and determining
their ordering attributes; and (2) the algorithm for executing commands based on these
attributes.

Figure 3.2 shows the pseudocode of the basic protocol for choosing commands. Each
replica’s state is represented by its private cmds log that records all commands seen (but
not necessarily committed) by the replica.

We split the description of the commit protocol into multiple phases. Not all phases
are executed for every command: a command committed after Phase 1 and Commit was
committed on the fast path. The slow path involves the additional Phase 2 (the Paxos-
Accept phase). Explicit Prepare (Figure 3.3) is run only on failure recovery.

Phase 1 starts when a replica L receives a request for a command v from a client and
becomes a command leader. L begins the process of choosing 7y in the next available in-
stance of its instance sub-space. It also attaches what it believes are the correct attributes
for that command:

deps is the list of all instances that contain commands (not necessarily committed) that
interfere with ; we say that v depends on those instances and their corresponding
commands;

seq is a sequence number used to break dependency cycles during the execution algo-
rithm; seq is updated to be larger than the seq of all interfering commands in deps.

The command leader forwards the command and the initial attributes to at least a
fast-path quorum of replicas as a PreAccept message. Each replica, upon receiving the
PreAccept, updates v’s deps and seq attributes according to the contents of its cmds log,
records v and the new attributes in the log, and replies to the command leader.

If the command leader receives replies from enough replicas to constitute a fast-path
quorum, and all the updated attributes are the same, it commits the command. If it does
not receive enough replies, or the attributes in some replies have been updated differently
than in others, then the command leader updates the attributes based upon a simple
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majority (|V/2| + 1 = F + 1) of replies (taking the union of all deps, and the highest
seq), and tells at least a majority of replicas to accept these attributes. This can be seen as
running classic Paxos to choose the triplet (7, deps. , seq, ) in s instance. At the end of
this extra round, after replies from a majority (including itself), the command leader will
reply to the client and send Commit messages asynchronously to the other replicas.

As in classic Paxos, every message contains a ballot number (for simplicity, we rep-
resent it explicitly in our pseudocode only when describing the Explicit Prepare phase in
Figure 3.3). The ballot number ensures message freshness: replicas disregard messages
with a ballot that is smaller than the largest they have seen for a certain instance. For
correctness, ballot numbers used by different replicas must be distinct, so they include a
replica ID. Furthermore, a newer configuration of the replica set must have strict prece-
dence over an older one, so we also prepend an epoch number (epochs are explained in
Section 3.10). The resulting ballot number format is epoch.b. R, where a replica I? incre-
ments only the natural number b when trying to initiate a new ballot in Explicit Prepare.
Each replica is the default (i.e., initial) leader of its own instances, so the ballot epoch.0. R
is implicit at the beginning of every instance R.q.

3.5.2 The Execution Algorithm

To execute command vy committed in instance 1.7, a replica will follow these steps:

1. Wait for R.i to be committed (or run Explicit Prepare to force it);

2. Build 7’s dependency graph by adding v and all commands in instances from 7’s
dependency list as nodes, with directed edges from y to these nodes, repeating this
process recursively for all of 7’s dependencies (starting with step 1);

3. Find the strongly connected components, sort them topologically;
4. In inverse topological order, for each strongly connected component, do:

4.1 Sort all commands in the strongly connected component by their sequence
number;

4.2 Execute every un-executed command in increasing sequence number order,
marking them executed.
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L, R, | Replicas (the command leader is usually denoted by L)
v, | Commands
R.i, withi = 1,2, ... | Instances belonging to replica R
epoch.i. R, with epoch,© = 0, 1,2, ... | Ballot numbers generated by replica R
(epoch.0.R is the initial ballot for any instance R.7)
deps, | The list of dependencies for command
seq,, | Approximate sequence number for command

cmdsg[R][i] | The state of replica @ at instance R.i

Table 3.2: Summary of notation.

3.5.3 Informal Proof of Properties

Together, the commit protocol and execution algorithm guarantee the properties stated
in Section 3.4. We prove this formally in a later section, but give informal proofs here to
convey the intuition of our design choices.

Nontriviality is straightforward: Phase 1 is only executed for commands proposed
by clients.

To prove stability and consistency, we first prove:

Proposition 1. If replica R commits command 7y at instance Q.7 (with R and () not neces-
sarily distinct), then for any replica R’ that commits command ~' at ().i it must hold that
v and 7/ are the same command.

Proof sketch. Command v is committed at instance (). only if replica () has started
Phase 1 for vy at instance ().7. () cannot start Phase 1 for different commands at the same
instance, because (1) () increments its instance number for every new command, and (2)
if ) fails and restarts, it will be given a new, unused identifier (Section 3.10). O

The proposition implies consistency. Furthermore, because commands can be for-
gotten only if a replica crashes, it also implies stability if the cmds log is maintained on
persistent storage. Execution consistency also requires stability and consistency for the
command attributes.

Definition. If 7 is a command with attributes seq, and deps , we say that the tuple
(7, seq,, deps, ) is safe at instance Q.7 if (7, seq, deps ) is the only tuple that is or will be
committed at ().t by any replica.

Proposition 2. Replicas commit only safe tuples.
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Proof sketch. A tuple (v, seq., deps. ) can only be committed at a certain instance @).i
(1) after the Paxos-Accept phase, or (2) directly after Phase 1.

Case 1: A tuple is committed after the Paxos-Accept phase if more than half of the
replicas have logged the tuple as accepted (line 20 in Figure 3.2). The tuple is safe via the
classic Paxos algorithm guarantees.

Case 2: A tuple is committed directly after Phase 1 only if its command leader receives
identical responses from N — 2 other replicas (line 11). The tuple is now safe: If another
replica tries to take over the instance (because it suspects the initial leader has failed), it
must execute the Prepare phase and it will see at least | NV /2| identical replies containing
(7, seq.,, deps. ), so the new leader will identify this tuple as potentially committed and
will use it in the Paxos-Accept phase.

So far, we have shown that tuples, including their attributes, are committed consis-
tently across replicas. They are also stable, if recorded on persistent storage. [

We next show that these consistent, stable committed attributes guarantee that all
interfering commands are executed in the same order on every replica:

Execution consistency If interfering commands v and ¢ are successfully committed
(not necessarily by the same replica), they will be executed in the same order by every
replica.

Proof sketch. If two commands interfere, at least one will have the other in its de-
pendency set by the time they are committed: Phase 1 ends after the command has been
pre-accepted by at least a simple majority of the replicas, and its final set of dependen-
cies is the union of at least the set of dependencies updated at a majority of replicas. This
also holds for recovery (line 32 in the pseudocode) because all dependencies are based
on those set initially by the possibly failed leader. Thus, at least one replica pre-accepts
both 7 and 0, and its PreAcceptReplies are taken into account when establishing the final
dependencies sets for both commands.

By the execution algorithm, a command is executed only after all the commands in
its dependency graph have been committed. There are three possible scenarios:

Case 1: Both commands are in each other’s dependency graph. By the way the graphs
are constructed, this implies: (1) the dependency graphs are identical; and (2) v and ¢ are
in the same strongly connected component. Therefore, when executing one command,
the other is also executed, and they are executed in the order of their sequence numbers
(with arbitrary criteria to break ties). By Proposition 2 the attributes of all committed
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commands are stable and consistent across replicas, so all replicas build the same depen-
dency graph and execute vy and ¢ in the same order.

Case 2: 7y is in §’s dependency graph but ¢ is not in ¥’s. There is a path from J to
v in ¢’s dependency graph, but there is no path from ~ to . Therefore, v and ¢ are
in different strongly connected components, and 7’s component will come before §’s in
inverse topological order. By the execution algorithm, v will be executed before §. This
is consistent with the situation when v had been executed on some replicas before ) was
committed (which is possible, because v does not depend on 9).

Case 3: Just like case 2, with v and ¢ reversed. OJ

Execution linearizability If two interfering commands v and ¢ are serialized by clients
(i.e., 0 is proposed only after ~ is committed by any replica), then every replica will exe-
cute 7y before 9.

Proof sketch. Because ¢ is proposed after v was committed, 7’s sequence number is
stable and consistent by the time any replica receives PreAccept messages for ¢. Because
a tuple containing v and its final sequence number is logged by at least a majority of
replicas, 0’s sequence number will be updated to be larger than 7’s, and ¢ will contain ~
in its dependencies. Therefore, when executing 9, §’s graph must contain + either in the
same strongly connected component as ¢ (but d’s sequence number will be higher), or in
a component ordered before 0’s in inverse topological order. Regardless, by the execution
algorithm, v will be executed before 9. O

Finally, liveness is ensured as long as a majority of replicas are non-faulty. A client
keeps retrying a command until a replica gets a majority to accept it.

3.5.4 Keeping the Dependency List Small

Instead of including all interfering instances, we include only N dependencies in each
list: the instance number R.: with the highest ¢ for which the current replica has seen an
interfering command (not necessarily committed). If interference is transitive (usually
the case in practice) the most recent interfering command suffices, because its depen-
dency graph will contain all interfering instances R.j, with j < . Otherwise, every
replica must assume that any unexecuted commands in previous instances R.j (j < %)
are possible dependencies and independently check them at execute time. This is a fast
operation when commands are executed soon after commit.
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3.5.5 Recovering from Failures

A replica may need to learn the decision for an instance because it has to execute com-
mands that depend on that instance. If a replica times out waiting for the commit for an
instance, the replica will try to take ownership of that instance by running Explicit Pre-
pare, at the end of which it will either learn what command was proposed in this problem
instance (and then finalize committing it), or, if no other replica has seen a command, will
commit a no-op to finalize the instance.

If clients are allowed to time-out and re-issue commands to a different replica, the
replicas must be able to recognize duplicates and execute the command only once. This
situation affects any replication protocol, and standard solutions are applicable, such as
unique command IDs or ensuring that commands are idempotent.

3.5.6 Avoiding Execution Livelock

With a fast stream of interfering proposals, command execution could livelock: command
~ will acquire dependencies on newer commands proposed between sending and receiv-
ing the PreAccept(y). These new commands in turn gain dependencies on even newer
commands. To prevent this, we prioritize completing old commands over proposing new
commands. Even without this optimization, however, long dependency chains increase
only execution latency, not commit latency. They also negligibly affect throughput, be-
cause executing a batch of n inter-dependent commands at once adds only modest com-
putational overhead: finding the strongly connected components has linear time com-
plexity (the number of dependencies for each command is usually constant—Section 3.5.4),
and sorting the commands by their sequence attribute adds only an O(logn) factor.

3.5.7 Read Leases

As in any other state machine replication protocol, a Read must be committed as a com-
mand that interferes with updates to the objects it is reading to avoid reading stale data.
However, Paxos-based systems are often optimized for read-heavy scenarios in one of
two ways: assume the clients can handle stale data and perform reads locally at any
replica, as in ZooKeeper [25]; or grant a read lease to the stable leader so that it can re-
spond without committing an operation [13]. EPaxos can use read leases just as easily,
with the understanding that a (infrequent) write to the leased object must be channeled
through the node holding the lease. In wide-area replication, the leaderless design of
EPaxos and Mencius allows different sites to hold leases for different objects simultane-
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ously (e.g., based on the observed demand for each object). This property makes EPaxos
and Mencius excellent fits for quorum read leases, which we introduce in the next chapter,
because it means that these protocols can retain their high write performance even with
read leases.

3.5.8 Formal Proofs of Properties

We prove that together, the commit protocol and execution algorithm guarantee the
properties stated in Section 3.4.

Theorem 1 (Nontriviality). Any command committed by any EPaxos replica must have
been proposed by a client.

Proof:  For any command that reaches the Commit phase, a replica must have executed
the Init phase. Init is only executed for commands proposed by clients. [

Definition 2. If v is a command with attributes seq, and deps,, we say that the tuple
(7, seq.,, deps. ) is safe at instance Q.7 if (7, seq. , deps, ) is the only tuple that is or will be
committed at ().7 by any replica.

Lemma 1. EPaxos replicas commit only safe tuples.

Proof:

1 The same ballot number cannot be used twice in the same instance.

Proor:

1.1 No two different replicas can use the same ballot number.
Proor: The ballot number chosen by a replica is based on its id, which is
unique.
1.2 A replica never uses the same ballot number twice for the same instance
PRrROOF:
1.2.1 Case: If replicas store the command log in persistent memory, then a

replica will never reinitiate the same instance twice with the same ballot
number.
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1.2.2 Case: If a crashed replica can forget the command log, it will be assigned
a new id when it recovers.

1.2.3 QE.D.
Cases 1.2.1 and 1.2.2 are exhaustive.
1.3 QE.D.
Immediately from 1.1 and 1.2.

2 For any instance ().: there is at most one attempt (i.e., the default ballot 0.Q)) to
choose a tuple without running Explicit Prepare first.

Proor:

2.1 A replica () starts an instance ().7 at most once.

ProorF: A replica starts an instance only in the Init phase of the algorithm
and it increments the instance number atomically every time it executes Init.
The instance number never decreases. If a replica loses the content of its
memory (e.g., after a crash), it will be assigned a previously unused replica id
by a safe external configuration service—so the same instance can never be
started twice.

2.2 No replica other than () can start instance ().i.

Proor:

2.2.1 Areplica with a different id R # () starts only instances R.i # ).
2.2.2 A new replica is never assigned the id of a previously started replica

2.2.3 QE.D.
Immediately from 2.2.1 and 2.2.2.

23 QED

When not running Explicit Prepare, a replica tries to choose a command in
an instance only if it starts that instance, and only for the default ballot. By
2.1 and 2.2, this can happen at most once per instance ()., in ballot 0.Q).

3 Let bsmaest be the smallest ballot number for which a tuple (, seq.,, depsv) has
been committed at instance ().i. Then any other commit at instance (). commits
the same tuple.

Proor:

By induction on the ballot number b of all ballots committed for ().i:
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3.1

3.2

Base case: if b = Dgpaiiest, then the same tuple is committed in both b and

bsmallest-

ProOOF:
By 1, b and bgq15¢ must be the same ballots.

Induction step: if tuple (v, seq, deps. ) has been committed in ballot by, then
the next higher successful ballot b > b; will commit the same tuple.

Proor:

Let by be the next highest ballot number of a ballot attempted at instance
Q.. By 2, and since b, cannot be the default ballot for ().i (because there
is a ballot b; smaller than it), b, is attempted after running Explicit Prepare.
Furthermore, by the recovery procedure, any ballot attempted after Explicit
Prepare must run the Paxos-Accept Phase.

3.2.1 Case: Ballot b is committed directly after Phase 1.
Since b, is successful after Phase 1, then a fast quorum (N — 1 replicas)
have recorded the same tuple (7, seq., depsv) for instance ().i. For b to
start, its leader must receive replies to Prepare messages from at least
| N/2] 4 1 replicas. Therefore, at least | [V /2] replicas will see a Prepare
for by after they have recorded (v, seq., deps, ) for ballot b, (if they had
seen the larger ballot b, first, they would not have acknowledged any
message for ballot b;). by’s leader will therefore receive at least | N/2|
PrepareReplies with tuple (v, seq,, deps, ) marked as pre-accepted.
If the leader of b, is among the replicas that reply to the Prepare of bal-
lot by, then it must have replied after the end of Phase 1 (otherwise it
couldn’t have completed the smaller ballot b,), so it will have committed
tuple (7, seq., depsw) by then. The leader of b, will then know it is safe to
commit the same tuple.
Below, we assume that the leader of b; is not among the replicas that
reply to the Prepare of ballot bs.

3.2.1.1 Subcase: N > 3
The | N/2] replies with tuple (v, seq, deps. ) constitute a majority
among the first | N /2] + 1 PrepareReplies. The leader of ballot by,
will therefore be able to identify tuple (v, seq,, deps ) as potentially
committed, and use it in a Paxos-Accept Phase.

3.2.1.2 Subcase: N = 3
| N/2| =1 is not a majority among the first | N /2| + 1 = 2 Prepar-
eReplies. However, for N = 3, a command leader commits a tuple
after Phase 1 only if a PreAcceptReply matched the attributes in the
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initial PreAccept. The acceptor that has sent such a PreAcceptReply
in ballot b; will convey this information in a PrepareReply for bal-
lot by. The leader of ballot by will therefore use the correct tuple
(7, seq.,, deps. ) in a Paxos-Accept Phase.
For ballots higher than b, to start, their leaders will follow the recovery
procedure, and will receive either the same type of replies received by
the leader of b, (as above), or it will receive at least one PrepareReply
from a replica whose highest ballot is b, and has marked (7, seq. , deps. )
as accepted. In either case, by the recovery procedure, the replica try-
ing to take over instance (.7 will have to use tuple (7, seq., depsv) in a
Paxos-Accept Phase. By simple induction, any ballot higher than b; will
use tuple (7, seq,, deps.) in a Paxos-Accept Phase, including successful
ballots.
3.2.2 Case: Ballot b; is committed after the Paxos-Accept Phase.
The tuple (7, seq. , deps, ) is safe by the guarantees of classic Paxos.
3.2.3 QE.D.
Cases 2.2.1 and 2.2.2 are exhaustive.

3.3 QE.D.
The induction is complete.

4 QED.

Immediately from 3.

Theorem 2 (Consistency). Two replicas can never have different commands committed for
the same instance.

Proof: We have already proved a stronger property: by Lemma 1, two replicas can never
have different tuples (i.e., commands along with their commit attributes) committed for
the same instance. [

Theorem 3 (Stability). For any replica, the set of committed commands at any time is a
subset of the committed commands at any later time. Furthermore, if at time t, a replica R
has command v committed at some instance ().i, then R will have v committed in Q.1 at
any later time to > t;.
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Proof: By Theorem 2 and the extra assumption that committed commands are recorded
in persistent memory. O]

So far, we have shown that tuples are committed consistently across replicas. They
are also stable, as long as they are recorded in persistent memory. We now show that
having consistent attributes committed across all replicas is sufficient to guarantee that
all interfering commands are executed in the same order on every replica:

Theorem 4 (Execution consistency). If two interfering commands~y and & are successfully
committed (not necessarily by the same replica), they will be executed in the same order by
every replica.

Proof:

1 If v and § are successfully committed and v ~ §, then either  has ¢ in its depen-
dency list when + is committed (more precisely, vy has 0’s instance in its dependency
list, but, for simplicity of notation, we use a command name to denote the pair com-
prising the command and the specific instance in which it has been committed), or
0 has v in its dependency list when § is committed.

Proor:

1.1 The attributes with which a command ¢ is committed are the union of at least
| N /2] + 1 sets of attributes computed by as many replicas.

Proor:

1.1.1 Case: c is committed immediately after Phase 1.
N — 1 replicas have input their attributes for c.
1.1.2 Case: c is committed after the Paxos-Accept phase.
1.1.2.1 Subcase: The Paxos-Accept phase starts after the execution of Phase
1.
Phase 1 ends after | N /2] replicas have replied to a PreAccept with the
command leader’s updated attributes (so the attributes are the union
of [ N/2] + 1 sets of attributes, from as many replicas, including the
command leader).
1.1.2.2 Subcase: The Paxos-Accept phase starts after | N /2| PrepareReplies
in the recovery phase, none of which is from the initial command
leader.
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Then | N /2] replicas, plus the initial command leader (| N /2] + 1
replicas in total), have contributed to the set of attributes used for
the subsequent Paxos-Accept phase.

1.1.2.3 Subcase: The Paxos-Accept phase starts after a PrepareReply from a
replica R that had marked c as accepted.
Then some replica has to have previously initiated the Paxos-Accept
phase that resulted in R receiving an Accept, so this subcase is re-
ducible to one of the previous subcases.

1.1.2.4 QED.
The subcases enumerated above describe all possible circumstances
in which a command is committed after the Paxos-Accept Phase.

1.1.3 Case: v is committed after the current replica receives a Commit for vy
from another replica.
The replica that initiates the Commit must be in one of the previous two
cases.

1.1.4 QE.D.
The cases enumerated above are exhaustive.

1.2 QE.D.

By 1.1, at least one replica R contributes for both +’s and §’s final attributes.
Because R records every command that it sees in its command log, and be-
cause v ~ 0, R will include the command it sees first in the dependency list
of the command it sees second.

2 QED.

By 1, the final dependency graphs of v and 4 are in one of three cases:

2.1 Case: v and ¢ are both in each other’s dependency graph.

Then, by the execution algorithm, v and d have each other in their dependency
graphs, and moreover, they are in the same strongly connected components
of their respective graphs. By the execution algorithm, whenever one com-
mand is executed, the other is also executed. Since the execution algorithm
is deterministic, and since, by Lemma 1, every replica builds the same depen-
dency graphs for v and 9, every replica will execute the commands in the
same order.

2.2 Case: 7y is in 0’s dependency graph, but ¢ is not in ’s dependency graph.
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The commands are in different strongly connected components in ’s graph,
and 0’s component is ordered after 7’s component in reversed topological
order.

We show that 7 is executed before d by every replica:
2.2.1 Subcase: A replica tries to execute 7 first.
The replica will execute v without having executed 9.
2.2.2 Subcase: A replica tries to execute 9 first.
By the execution algorithm, the replica will build ¢’s dependency graph,
which also contains v in a strongly connected component that is ordered
before §’s component in reversed topological order. Then 7 is executed
before ¢ is executed.
2.3 Case: 0 is in 7’s dependency graph, but v is not in ¢’s dependency graph.
Just like the previous case, with v and ¢ interchanged.

2.4 QE.D.

The above three cases are exhaustive. In all cases, the commands are executed
in the same order by every replica.

Theorem 5 (Execution linearizability). If two interfering commands vy and 0 are serialized
by clients (i.e., 0 is proposed only after v is committed by any replica), then every replica
will execute y before 6.

Proof:

1 v will be in §’s dependency graph.
Proor:

By the time § is proposed, v will have been pre-accepted by at least | N /2] + 1
replicas. For ¢ to be committed, it too has to be pre-accepted by at least | N /2| + 1
replicas. Therefore, at least one replica R whose pre-accept is taken into account
when establishing 0’s dependency list pre-accepts ¢ after it has pre-accepted 7.
Since v ~ ¢, R will put v in §’s dependency list.

2 The sequence number with which ¢ is committed will be higher than that with
which v is committed.

Proor:
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2.1 By the time any replica receives a request for 0 from a client, at least | NV /2| +1
replicas will have logged the final sequence number for .

PrOOF:
2.1.1 Case: vy is committed directly after Phase 1.

Then N — 1 replicas have logged the same sequence number for v, and
this is the sequence number with which 7 is committed.

2.1.2 Case: vy is committed after the Paxos-Accept Phase.
Then at least | NV /2] + 1 replicas have logged v as accepted with its final
attributes, including its sequence number.

2.1.3 QE.D.
Cases 2.1.1 and 2.1.2 are exhaustive.
2.2 QED.

By 2.1, at least one of the replicas that pre-accepts J, whose PreAcceptReply
is taken into account when establishing ¢’s final attributes, will update ¢’s
sequence number to be higher than 7’s final sequence number.

3 QED.

At any replica R, there are two possible cases:

3.1 Case: R tries to execute 7y before it tries to execute 6.

3.1.1 Subcase: ¢ is in 7’s dependency graph.
Then, by 1, § and + are in the same strongly connected component. By
the execution algorithm and by 2, v will be executed before 9.

3.1.2 Subcase: 0 is not in ’s dependency graph.
Then, by the execution algorithm, v will be executed (at a moment when
0 won’t have been executed).

3.2 Case: R tries to execute 9 before it tries to execute 7.

3.2.1 Subcase: 0 is in ’s dependency graph.
Then, by 1, § and + are in the same strongly connected component. By
the execution algorithm and by 2, ~ will be executed before 6.

3.2.2 Subcase: 0 is not in ’s dependency graph.
Then, by 1, v is in a different strongly connected component than ¢, and
7’s component is first in reversed topological order. By the execution
algorithm, v is executed before .

3.3 QE.D.
The above cases are exhaustive. In all cases v is always executed before 0.
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Finally, liveness is guaranteed with high probability as long as a majority of replicas
are non-faulty: clients and replicas use time-outs to resend messages, and a client keeps
retrying a command until a replica succeeds in committing that command.

3.6 Reducing the Fast-Path Quorum Size

We have described the core concepts of our protocol in the previous section. We now
describe modifications that allow EPaxos to use a smaller fast-path quorum—only F' +
L%J replicas, including the command leader. We call this version Optimized EPaxos
and present a TLA+ specification for it in the Appendix.

This is an important optimization because, by decreasing the number of replicas that
must be contacted, EPaxos has lower latency (especially in the wide area) and higher
throughput, because replicas process fewer messages for each command. For three and

five replicas, this fast path quorum is optimal (two and three replicas respectively).

3.6.1 Intuition for the New Fast-Path Quorum Size
The new fast-path quorum size of F' + L%J is necessary for correct recovery after at
most F' concurrent failures. More precisely, it is necessary for the correct recovery of
every command that appears as if it may have been committed on the fast path by a
now unresponsive command leader—commands committed on the slow path are easily
recoverable just like in classic Paxos.

Let A be a command that may have been committed on the fast path by an unrespon-
sive command leader. This means that some of the responsive replicas have marked it as
PreAccepted with exactly the same ordering attributes, but none has marked it as Accepted
or Committed. Therefore, A was either committed on the fast path by its failed command
leader, or it has not yet been committed. It is then safe for the recovery procedure to try
to commit A with the pre-accepted attributes, because these are the only attributes that
A may have already been committed with.

On the other hand, there may be other interfering commands (whose commit status
may or may not be known) that have ordering attributes that conflict with those of A.
For example, consider a command B that interferes with A, also in the process of being
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Quorum for command A Quorum for command B

Figure 3.4: A scenario where minimal majorities are not enough for fast-path EPaxos
quorums. R1 and R3 are the command leaders for interfering commands A and B re-
spectively, but, along with R2, they fail after sending PreAccepts. The recovery procedure
cannot decide which one of A or B might have been committed on the fast path. That
information is stored on the now failed R2 node, where the two quorums intersect.

recovered, and neither one of these two commands has the other as a dependency. This
is clearly wrong and, if A and B are committed with these sets of attributes, it can lead to
inconsistencies. The recovery procedure must gather enough information to prove which
one of A or B (or both) could not have been committed on the fast path, and change its
attributes by essentially restarting the voting process for it. The new size of the fast-path
quorum makes this possible.

First, we will show why a simple majority of /'+1 replicas is not enough. Consider the
diagram in Figure 3.4 which depicts a scenario where of the seven replicas, the command
leaders for interfering commands A and B both failed just after sending PreAccepts. The
only replica where the two quorums intersect has also failed, so the recovery procedure
cannot decide which one of A or B might have been committed on the fast path (i.e.,
which one of A or B was received first by R2).

On the other hand, notice how F + L%J (i.e. 4 out of a total of 7 replicas), is
sufficient: in this case, either the quorums intersect in some of the nodes left alive after
F failures, or, as exemplified in Figure 3.5, the quorums intersect in the command leaders.
In the latter situation, the recovery procedure can safely conclude that none of the two
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Quorum for command A Quorum for command B

Figure 3.5: F' 4 L%J replicas in every fast-path quorum is sufficient for the recovery
procedure to correctly decide which commands may or may not have been committed
on the fast path. In this example, the two command leaders are in each other’s quorums,
which makes it impossible for either command to have been committed on the fast path.
The gray rectangle indicates the failed replicas.

commands could have been committed on the fast path because the opposite command
leader would have added an extra dependency on its own command.

3.6.2 Summary of Changes

The recovery procedure (i.e., the Explicit Prepare Phase) changes substantially, starting
with line 32 in our pseudocode description. The new command leader () looks for only
L%J replicas that have pre-accepted a tuple (7, deps. seqv) in the current instance with
identical attributes. Upon discovering them, it tries to convince other replicas to pre-
accept this tuple by sending TentativePreAccept messages. A replica receiving a Tenta-
tivePreAccept will pre-accept the tuple only if it does not conflict with other commands
in the replica’s log—i.e., an interfering command that is not in deps, and does not have
7 in its deps either, or one that is in deps_ but has a seq attribute at least as large as seq,.
If the tuple does conflict with such a command, and that command is committed, ) will
know 7 could not have been committed on the fast path. If a un-committed conflict exists,
() defers recovery until that command is committed. Finally, if () convinces F' + 1 repli-
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cas (counting the failed command leader and the remainders of the fast-path quorum) to
pre-accept (7, deps. , seq, ), it commits this tuple by running the Paxos-Accept phase for
it.

One corner case of recovery is the situation where a dependency has changed its seq
attribute to a value higher than that of the command being recovered. We can preclude
this situation by allowing command leaders to commit command +y on the fast path only if
for each command in deps7 at least one acceptor has recorded it as committed. For N < 7,
a more efficient solution is to attach updated deps attributes to Accept and AcceptReply
messages, and ensure that the recipients of these messages record them. This information
will be used only to aid recovery.

The next subsections contain a detailed description of this new recovery procedure, as
well as proofs that recovery can always make progress if a majority of replicas are alive—
the new size of the fast-path quorum is necessary and sufficient for this to hold—and that
optimized EPaxos provides the guarantees enumerated in Section 3.4.

Another important implication of the new fast-path quorums size is that after F fail-
ures there may be as few as L%J surviving members of a fast quorum, which will not
constitute a majority among the remaining replicas. Therefore, if the command leader
sends PreAccept messages to every replica (instead of sending PreAccepts to only the repli-
cas in a fast quorum), the recovery procedure may not be able to correctly identify which
replicas’ replies the failed command leader took into consideration if it committed the
instance. Still, such redundancy is sometimes desirable because the command leader
may not know in advance which replicas are still live or which replicas will reply faster.
When this is the case, we change the fast-path condition as follows: a command leader
will commit on the fast path only if it receives '+ L%J — 1 PreAcceptReplies that match
its initial ordering attributes—and every replica that replies without updating these at-
tributes marks this in its log so the recovery procedure can take only these replicas into

consideration.

When not sending redundant PreAccepts (we call this version thrifty), a three-replica
system will always be able to commit on the fast path—there can be no disagreement in
a set with only one acceptor. This is the variant that we focus on in the next subsec-
tions, although the proofs of correctness can be easily adapted for the version that uses
redundancy.
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3.6.3 Preferred Fast-Path Quorums

Instead of sending PreAccept messages to every replica, a command leader sends PreAc-
cepts to only those replicas in a fast-path quorum that includes itself. We call this mode
of operation thrifty. The fast-path quorum can be static per command leader, or it can
change for every new command—depending on inter-replica communication latency and
dynamic load assessment.

Using this optimization has the immediate benefit of decreasing the overall num-
ber of messages processed by the system for each command, thus increasing the system
throughput. Another consequence is that for 3 replicas, there is no chance of conflicts,
even when all commands interfere. This is because the command leader sends only one
PreAccept, so the corresponding PreAcceptReply has no other reply to conflict with. As
long as there are no failures and replicas reply timely, a 3-replica thrifty EPaxos state
machine will commit every command after just one round of communication.

Finally, the most important consequence of using the thrifty optimization is that we
can decrease the fast-path quorum size from 2F to F' 4 L%J, where F' is the maximum

number of failures the system can tolerate (the total number of replicas is therefore N =
2F +1).

To achieve this, we modify the fast path condition in Phase 2 (line 10 of the pseu-
docode in Figure 3.2), and we also modify the recovery procedure (i.e., the Explicit Pre-
pare Phase) as described in the next subsection. The rest of the algorithm remains the
same as previously described.

The command leader commits a command on the fast path if both of the following
conditions are fulfilled:

F41

5| — 1 PreAcceptReplies with iden-

1. FP-quorum: The command leader receives F'+ |
tical deps and seq attributes, and

2. (option 1) FP-deps-committed: For every command in deps, at least one of the repli-
cas in the quorum (including the command leader itself) has recorded that
command as Committed—acceptors pass this information to the command
leader with at most one bit per each command included in deps.

(option 2) Accept-Deps: Every sender of an Accept or AcceptReply message at-
taches a dependency list (deps) updated right before the Accept or AcceptReply
is sent; every receiver of an Accept or AcceptReply will store the message in
its log permanently.
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For the second condition, we can use option 1 to ensure that the seq attribute for every
command in deps is final (it will not change)—this will aid in recovering from failures,
as explained in the next subsesction. Alternatively, for up to seven total replicas, we
can use the option 2; the updated dependency information in the recorded Accept and
AcceptReply messages is only used during the recovery procedure, and has no role in
the execution algorithm. Although less straightforward, using the second option has
the important benefit that it increases the chance of committing on the fast path when
commands interfere frequently.

When using the Accept-Deps variant of the protocol (option 2), it is important for
replicas that have not received a command to not set dependencies on its correspond-
ing instance. This may happen in implementations that use the optimization described
in Section 3.5.4 (which involves setting implicit dependencies on all instances with IDs
smaller than a given instance ID) and may result in the approximate sequence number not
being updated correctly. There are two ways an implementation can avoid this problem:
(a) acceptors attach the ranges of instances that they have not seen to PreAcceptReplies or
(b) acceptors do not reply to PreAccepts before receiving messages for all instances that
they would set implicit dependencies on.

For 3 and 5 replicas, the new fast-path quorum sizes become 2 and 3, respectively,
which is optimal (just like for classic Paxos).

3.6.4 Failure Recovery in Optimized Egalitarian Paxos

We now describe in detail the new recovery procedure (i.e., the new Explicit Prepare
Phase) that allows us to use smaller fast-path quorums.

The recovery procedure guarantees that a command committed on the fast path will
be committed even if its command leader and F' — 1 other replicas have since failed.

Let R be a replica trying to decide instance ().7 of a potentially failed replica Q:

1. R sends Prepare messages to all other replicas, with a higher ballot number than
the initial ballot number for ().i.

Each replica replies with the information recorded for ()., if any. R waits for at
least F' 4 1 replies (including itself). If R does not receive F' + 1 ACKS (because
some replicas have received messages with higher ballots, and reply with NACKS),
R increases the ballot number and retries.

2. If no replica has any information about ).z, R exits recovery and starts the process
of choosing a no-op at (.7 by proposing it in the Paxos-Accept Phase.
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3. If at least one replica has committed command v in ().7 (there is at most one such
command), with attributes deps_ and seq, R commits 7 locally, sends Commit((Q).i,
7, deps., seq.,) to every other replica, and exits recovery.

4. If at least one replica has accepted command (1, deps. , seq, ) in Q).4, R exits recov-
ery and starts a Paxos-Accept Phase for this tuple at (). (it will choose the one
accepted with the highest ballot number, if there are multiple different accepted
tuples at ().1).

Ul

. If atleast | £ | replicas have pre-accepted v with the same attributes (-, deps_, seq.),
in ().7’s default ballot then goto 6.

Else R exits recovery and starts the process of choosing v at ().7, on the slow path
(i.e., Phase 1, Phase 2, Paxos-Accept, Commit).

6. R sends TentativePreAccept(Q).i,, deps. seqv) to all the respondents that have not
pre-accepted 7.

When receiving a TentativePreAccept(Q.i, ", deps. seqﬂ/) a replica pre-accepts (7,
deps. seqv) at Q.1 if it has not already recorded an interfering command with con-
flicting attributes—i.e., any command ¢ such that:

i. v~ 9,and
ii. v ¢ deps;, and
iii. (a) 0 ¢ deps., or
(b) 0 € deps,, but seq; > seq, (this subcase has one exception that does not

constitute a conflict: ¢ and ~ have the same initial command leader, and
is recorded as pre-accepted).

Otherwise, if such a command 0 with conflicting attributes exists, the receiver of the
TentativePreAccept replies with NACK, 0’s instance, the identity of the command
leader that has sent ¢, and the status of  (pre-accepted, accepted or committed).

7. (a) If the total number of replicas that have pre-accepted or tentatively pre-
accepted (7, deps. , seq.,) is at least F' + 1 (and we can count () here too, even
if it does not reply), R exits recovery and starts a Paxos-Accept Phase for this
tuple at Q.i.

(b) Else if a TentativePreAccept NACK returns a status of committed, R exits re-
covery and starts the process of choosing 7y at ().7, on the slow path.
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(©)

(d)

(e)

Else if a TentativePreAccept NACK returns an instance not in 7’s dependency
list, with a command leader that must have been part of +’s fast quorum for
~ to have been committed on the fast path, then R exits recovery and starts
the process of choosing v at ().7, on the slow path.

Else if There exists command 7, such that R has deferred the recovery of 7y
because of a conflict with ~, and 7y’s initial command leader must have been
part of 7’s fast quorum for v to have been committed on the fast path, then
R exits the recovery of v and starts the process of choosing v at ().7, on the
slow path.

Else R defers 7’s recovery, and tries to decide one of the uncommitted com-
mands that conflicts with ~.

If ¥ < 3 and we implement the Accept-Deps protocol modification, then step 7
becomes:

7.

(a)

(©)

(d)

If the total number of replicas that have pre-accepted or tentatively pre-
accepted (7, deps. seqw) is at least '+ 1 (and we can count () here too, even
if it does not reply), R exits recovery and starts a Paxos-Accept Phase for this
tuple at Q.i.

Else if a TentativePreAccept NACK returns a status of committed for a com-
mand ¢ such that & € deps, and seq; > seq., R checks the additional Accept
and AcceptReply dependencies recorded at F' other replicas. If there exists an
Accept or AcceptReply for the tuple with which § has been committed, such
that +y is not part of its additional dependencies, and the sender of that mes-
sage is part of 7’s fast quorum (i.e., must be part of the quorum for the fast-
path hypothesis to hold), then R exits the recovery procedure and starts the
process of choosing v at (.7 on the slow path. If, on the other hand, none
of the F replicas has recorded such an Accept or AcceptReply message, then
R resends the TentativePreAccept specifying that J is no longer a conflict for

(v, deps,. seq,).
Else if a TentativePreAccept NACK returns a status of committed, R exits re-
covery and starts the process of choosing 7 at ().7, on the slow path.

Else if a TentativePreAccept NACK returns an instance not in v’s dependency
list, with a command leader that must have been part of ~’s fast quorum for
v to have been committed on the fast path, then R exits recovery and starts
the process of choosing «y at ().7, on the slow path.

43



(e) Else if There exists command 7y, such that R has deferred the recovery of v,
because of a conflict with 7, and v’s initial command leader must have been
part of 4’s fast quorum for ~ to have been committed on the fast path, then
R exits the recovery of v and starts the process of choosing v at ().7, on the
slow path.

(f) Else R defers 7’s recovery, and tries to decide one of the uncommitted com-

mands that conflicts with ~.

This decision process is depicted in Figure 3.6.
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3.6.5 Formal Proofs of Properties for Optimized Egalitarian Paxos

We are now ready to explain why the fast-path quorum must be F' + L%J so that the
following lemma holds:

Lemma 2. The recovery procedure for Thrifty Egalitarian Paxos can always make progress
(as long as the system is live).

Proof:

The recovery procedure blocks only if there exist commands ¢y, ¢s, ..., ¢, such that
the recovery for ¢; defers to ¢; ;1 for any i = 1..n — 1, and ¢,, defers to c;. The recovery
procedure must assume about every one of these commands that it might have been
committed on the fast path.

I Case 1: The chain contains two consecutive commands y and § such that v ¢ deps;

and § ¢ deps. .

Let R be a replica trying to recover . R must believe that v may have been commit-
ted on the fast path. Eventually, R will defer v and try to decide ¢, and, by our initial
assumption, it must believe that § too may have been committed on the fast path.

R must be aware of the following sets and their properties:

1. RESP,, the set of all the replicas in s fast quorum (QUOR,) that have responded
to R’s prepare messages, does not include L., the initial command leader for
(otherwise v could be decided);

2. RESPj, the set of all the replicas in 0’s quorum (QUOR;) that have responded to
R’s prepare messages, does not include L;, the initial command leader for ¢;

3. [RESP,| > | F32];
4. |RESPs| > | ZH |,

5. RESP, N RESP; = & (because a replica cannot pre-accept both commands with
conflicting attributes);

6. R infers that L., ¢ QUORs—otherwise ¢ could not have been committed on the
fast path, since L, has set conflicting attributes for .

7. R infers that Ls ¢ QUOR —otherwise v could not have been committed on the
fast path, since L; has set conflicting attributes for o.
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I

8. Since there are at most /" replicas that do not reply to R, and L., (the possibly
failed command leader for ) must be one of them (otherwise R could decide ),
by 6, there are at most ' — 1 replicas that may be part of QUOR; (we denote
this superset by QUOR;) and that R does not receive replies from. Then, for R
to believe  may have been committed on the fast path, it must be the case that
|RESP;| > [ 75| + 1

By 2, 5 and 7, R must infer that the following sets are disjoint: QUOR7 (i.e., the
set of replicas that may be part of QUOR.), RESPF;, and {Ls}. By 8 and our fast-
path quorum requirement, the cardinality of the union of these sets must be at least
F+ 5]+ [£H] + 1+ 1 > 2F + 1. But this is impossible, because this union
must be a subset of the replica set, and its cardinality is 2F" + 1. Therefore, some
of these sets overlap, so R cannot be simultaneously uncertain about v and 4. Our
assumption that the recovery procedure could deadlock is false.

Case 2: ¢, € depscl_, forall i = 1..n (with ¢, 1 = ¢1).

For recovery to defer, it must be the case that ¢; ~ ¢;11, ¢; ¢ depsciﬂ, Ciy1 € depscz_,
and seq, > seq,,  foranyi(and c,i1 = ¢1). Then seq, = seq,, = ... = seq, . Note

also that this is only possible for n > 3.

1. Subcase: There exist ¢; and c;,; that have the same initial command leader.

Since ¢; 1 has not been decided, it must be the case that all the information avail-
able about ¢, is that it has been pre-accepted by various replicas. By our def-
inition of conflicts (step 6 of the recovery procedure, point iii.(b)), ¢;+1 will not
conflict with ¢;, which contradicts our assumption for this subcase.

2. Subcase: No two consecutive commands in the chain have the same command
leader.

As noted earlier, it must be the case that n > 3, otherwise there is no conflict.
Consider commands ¢y, co and c3. It is impossible that any replica that replies
to Prepare messages has pre-accepted two consecutive commands in the chain
(because then they would not have been pre-accepted with the same sequence
numbers). Furthermore, at least L%J responding replicas have pre-accepted
each command in the chain (for ¢; we denote this set of replicas as RESF,,). We
show that the recovery procedure concludes that either c;’s leader must have been
part of co’s fast quorum or that c,’s leader must have been part of c3’s fast quorum:

2.1 Sub-subcase: F'is odd.
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Then 2F + 1 — L%J =F+ L%J, and since ¢, has not been pre-accepted
by the L%J replicas in RESP,,, all the other replicas, including ¢;’s leader,
must have been part of ¢;’s fast quorum.

2.2 Sub-subcase: F'is even.
Let LIV E be a set of F' + 1 replicas that respond to Prepare messages (more
replica may reply, we only consider F'+1 of them). No more than L%J +1of
the replicas in LIV E can be part of any one command’s fast quorum, because
at least L%J will be part of the fast quorum for the subsequent command in
the chain.
If |[LIVE N RESP,,| = | £, then all replicas outside LIV E must have
been part of ¢5’s fast quorum, including ¢;’s leader.
If [ LIVENRESP.,| =1+ L%J then |LIVE N RESP,.,| = L%J SO
all replicas outside LIV E must have been part of c3’s fast quorum, including
co’s leader.

The sub-subcases enumerated above are exhaustive. In all situations, the leader
of a command ¢; must have been part of the fast quorum for ¢;;. It is there-
fore impossible for ¢;;; to have been committed on the fast-path, since ¢;’s leader
couldn’t have pre-accepted c;;; with the same sequence number as ¢; without
adding ¢; to ¢;+1’s dependency list. As per 7 (or 7°) in the recovery procedure, the
recovery procedure will eventually abandon the fast-path recovery for c; .

The subcases enumerated above are exhaustive.

Finally, we show that the recovery procedure is correct. We start by showing that it
commits only safe tuples:

Theorem 6. The Optimized Egalitarian Paxos recovery procedure commits only safe tuples.

Proof:

Assume the recovery procedure is trying to recover instance ().i. We show that the
tuple that it commits at ().¢ is safe.

1 Case: No tuple is committed at instance ().i before the recovery procedure commits
a tuple at Q).i.

In all cases, the recovery procedure ends by choosing a tuple on the slow path, by
running classic Paxos. The tuple is thus safe by the classic Paxos guarantees.
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2 Case: A tuple (7, deps., seq ) has been committed at ().i before the recovery pro-
cedure terminates.

2.1

2.2

Subcase: (7, deps. , seq. ) has previously been committed on the slow path.

Then there must be at least '+ 1 replicas that have accepted (, deps. seqv).
Since the recovery procedure terminates by running classic Paxos in all cases,
it will use the same tuple in a Paxos-Accept Phase. By the guarantees of the
classic Paxos algorithm, only this tuple can ever be committed at ().i.

Subcase: (7, deps. seqv) has previously been committed on the fast path.

Then there must be F'+ L%j replicas that have pre-accepted this tuple at ().7
before processing the Prepares of the recovery procedure (otherwise the initial
command leader would have received NACKs for the initial PreAccepts and
not taken the fast path). Since at most F' replicas can be faulty, the recovery
procedure will take into account the PrepareReplies of at least | ©1 | of them,
and by step 5 of the recovery procedure, it will try to obtain a quorum for this
tuple. We show that it will succeed:

2.2.1 No interfering command ¢ ~ <, can be committed such that § ¢ deps,
and y ¢ deps;.
ProOOF: § must be pre-accepted by a majority of replicas, and that ma-
jority will intersect ’s quorum (itself a majority) in at least one replica,
which will ensure that at least one command will be in the other’s deps
set.

2.2.2 Ifthe protocol does not implement Accept-Deps, but does implement FP-
deps-committed, then no interfering command § ~ 7, d € depsv, can be
committed such that v ¢ deps; and seq; > seq.

ProOF:

We prove this by generalized induction. The relation that we run the
induction on is @ < b = “command a has been committed (in a particular
instance) by the recovery procedure for the first time before command b
has been committed (in a particular instance) by the recovery procedure
for the first time”.

2.2.2.1 Base case: Let y, be the first command initially committed on the fast
path and then committed again as a result of the recovery procedure
(or one of the first, if multiple such commands are committed at the
exact same time).
Assume there existed § ~ 7o, 6 € deps o committed such that
Yo & deps; and seqs > seq. at the time of vy’s recovery. Since 7o had
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been committed on the fast path, then by the additional condition for
the fast-path in optimized EPaxos (FP-deps-committed), all its depen-
dencies, including 6 must have been committed before seq.  had been
computed. Then, § must have been committed again in the meantime
with different attributes (thus breaking safety). But by Lemma 1, 1,
2.1, 2.2.1, and the recovery procedure, this could only have occurred
if 0 had been committed incorrectly by the recovery procedure (be-
fore ~), after initially having been committed on the fast-path—all
other commit paths preserve safety. By our base case assumption,
this is impossible, since 7y < 0.

2.2.2.2 Induction step: The property holds for + if it holds for every § < ~.

Assume there exists § ~ vy, € depsv, committed such that y ¢ deps;
and seq; > seq.. Since 7y has been committed on the fast path, then,
by the additional condition for the fast-path in optimized EPaxos, all
its dependencies, including J must have been committed before seq,
had been computed. Then, 6 must have been committed again with
different attributes (thus breaking safety). But by Lemma 1, 1, 2.1,
2.2.1 and the recovery procedure, this could only occur if § has been
committed incorrectly by the recovery procedure after initially hav-
ing been committed on the fast-path—we have shown that all other
commit paths preserve safety. Since v has not been committed by
the recovery procedure yet, § < . By the induction hypothesis and
by 2.2.1, the recovery procedure would have exited 0’s recovery by
correctly committing its initial fast-path attributes. Then seq; cannot
be larger or equal to seq., since seq, has been updated to be larger
than seg; at ¢’s initial commit time.

2.2.23 QED
The induction is complete.

2.2.3 If the protocol does not implement FP-deps-committed, but does imple-
ment Accept-Deps, the recovery procedure will not exit on the first Else
case of step 7.
Proor: For the recovery procedure to exit on the first Else case of step 7’,
there must exist a committed tuple (9, deps;, seq;), withd ~ v, § € deps_,
v ¢ depss and seq; > seq., and there must exist an Accept or AcceptReply
message for this tuple sent by a replica R’ in 7's fast-path quorum such
that the additional dependencies for this message do not include . Then
R’ must have accepted (0, deps;, seqs) before pre-accepting . This is im-
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2.24

2.2.5

possible, since then 1" would not have pre-accepted v with seq < seq;,
as we know it must have for «y to be committed on the fast-path.

The recovery procedure will not exit on branches 7.c or 7d (7°.d or 7’.e,
respectively): No replica in 7’s fast quorum can start instances for com-
mands that interfere with v and set conflicting attributes (as per the def-
inition of conflicting attributes in step 6 of the recovery procedure), be-
cause all these replicas have pre-accepted v with its attributes.

QE.D

By the recovery procedure, 2.2.1, 2.2.2, 2.2.3, 2.2.4 and Lemma 2 the re-
covery procedure will be successful in getting F' replicas to pre-accept
tuple (7, deps. seqv) (not counting the implicit pre-accept of the initial
command leader), and it will start the Paxos-Accept Phase for this tuple.

23 QED
Subcases 2.1 and 2.2 are exhaustive and safety is preserved in both.

3 QE.D.

Cases 1 and 2 are exhaustive and safety is preserved in both.

Next, we show that the recovery procedure preserves execution consistency:

Theorem 7. The Optimized Egalitarian Paxos preserves execution consistency.

Proof:

Let v and 0 be two commands that interfere and have been committed. We show that
all replicas execute -y and ¢ in the same order.

1 Case: Both v and 0 have first been committed by their respective command leaders,
without running the recovery procedure.

This is no different from simplified EPaxos: the different fast-path condition in-
fluences only the recovery path. By Theorem 6 and Theorem 4, v and § will be
executed in the same order by every replica.

2 Case: 7y is first committed as a result of the recovery procedure, while ¢ is first
committed by its initial command leader without running the recovery procedure.
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2.1 Subcase: 7y is committed before step 7 of the recovery procedure, or after ex-
iting one of the Else branches in step 7.

Then v must have been pre-accepted by a majority of replicas and then com-
mitted after running the Paxos-Accept Phase. This too is reducible to the
simple EPaxos case, so, by Theorem 4, v and ¢ will be executed in a consistent
order across all non-faulty replicas.

2.2 Subcase: v is committed after exiting the recovery procedure on the If branch
in step 7.

We show that either  has § as a dependency or ¢ has 7 as a dependency:

2.2.1 Sub-subcase: v had been pre-accepted with € deps. .
v’s pre-accepted attributes as received in the recovery procedure at step
7 do not change, so v will be committed with ¢ as a dependency.

2.2.2 Sub-subcase: v had been pre-accepted with § ¢ deps. .

Since the recovery procedure exits on the If branch of step 7, at least F'+1
replicas, including «’s original command leader have pre-accepted «y as
a result of a PreAccept or a TentativePreAccept. § will also have been pre-
accepted by a majority of replicas, so there is at least one replica that has
pre-accepted both  and 7, and whose replies are taken into account both
when establishing §’s commit attributes and in the recovery procedure
for 7. Let this replica be R:

2.2.2.1 Sub-sub-subcase: R pre-accepts 7y as a result of receiving a PreAccept
from +’s initial command leader.
Then R must have learned about 7 before receiving a PreAccept for
d, 50 vy € deps;.

2.2.2.2 Sub-sub-subcase: R pre-accepts -y after receiving a TentativePreAccept
during the recovery procedure.
Then, according to the conditions in step 6 of the recovery procedure,
either 12 had already pre-accepted d such that v € deps;, or ¢ reaches
R after the TentativePreAccept for +. In either case, 7 € deps; when
0 commits.

In conclusion v € deps;
2.2.3 QE.D.
Sub-subcases 2.2.1 and 2.2.3 are exhaustive.

By step 2 of the proof for Theorem 4, since at least one command is committed
with the other in its dependency list, every replica will execute the commands
in the same order.

52



3 Case: 0 is first committed as a result of the recovery procedure, while 7 is first
committed by its initial command leader without running the recovery procedure.

Just like case 2, with v and ¢ interchanged.

4 Case: Both v and ¢ are first committed after the recovery procedure.

If at least one of the commands is committed before step 7 in the recovery proce-
dure, or after exiting step 7 on one of the Else branches, the situation is reducible
to one of the previous cases.

The only remaining subcase is that when both commands are committed after ex-
iting step 7 on the If branch.

Assume no command has the other in its dependency list when exiting step 7 of
the recovery procedure. But each command has been pre-accepted by a major-
ity or replicas (either as a result of PreAccepts or TentativePreAccepts). Then there
must be at least one replica I? that pre-accepts both commands, and whose replies
are taken into account when establishing each command’s commit attributes. If
R pre-accepts 7y before J, then, by the conditions in step 6 of the recovery proce-
dure, R will not acknowledge ¢ without a dependency for v (and vice-versa). This
contradicts our assumption.

Then at least one command is in the other’s dependency list, and by step 2 in the
proof for Theorem 4, the commands will be executed in the same order on every
replica.

5 QED

Cases 1, 2, 3 and 4 are exhaustive.

Finally, we show that the recovery procedure preserves execution linearizability:
Theorem 8. The Optimized Egalitarian Paxos preserves execution linearizability.
Proof:  Let v and 4 be two interfering commands serialized by clients: ¢ is proposed
only after a replica has committed . We show that v will always be executed before ¢

By the time ¢ is proposed, a majority of replicas have either pre-accepted or accepted
~ with its final (commit) attributes. At least one of these replicas will pre-accept  as a
result of receiving a PreAccept or a TentativePreAccept, and its reply will be considered in
deciding ¢’s final attributes. Let this replica be R:
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1 Case: R receives a PreAccept for 0.

Then R will put 7y in deps; and it will increment seg; to be larger than seq. . Since
R’s reply is considered when deciding 4’s final attributes, §’s dependency list will
include v and its sequence number will be larger than v’s at commit time. By the
execution algorithm, v will always be executed before 9.

2 Case: R receives a TentativePreAccept for § at some point other than step 7’ in the
recovery procedure.

Since R will ACK (otherwise § would not be committed), and ¢ ¢ deps., (because 9
was proposed after v was committed), by the conditions in step 6 of the recovery
procedure, it must hold that y € deps; and seq, < seq;. By the execution algorithm,
~ will always be executed before 0.

3 Case: R receives a TentativePreAccept for ¢ at step 7’ in the recovery procedure.

In this case, there must exist a command + such that 7' ~ §, 7' € deps;, § ¢ depsv,
and seq; < seq.,, and R is instructed to ignore the conflict between the attributes
of § and those of 7/. We show that v # +'.

Assume 7' = 7. Then v must have first been committed on the slow-path, because
otherwise § couldn’t have acquired a stale dependency on v (i.e., a dependency
where seq; hasn’t been updated to be larger than the committed seq. )—this remains
true for implicit dependencies, as per the discussion in Section 3.6.3. Then there
must exist a replica R’ that has participated in the Paxos-Accept phase for 7, and
that was also supposed to be part of §’s fast-path quorum. We first note that L; #
R’, where L; is the initial command leader for ¢, because it wouldn’t have set the
conflicting sequence number for § after having accepted the commit-time attributes
for ~.

3.1 Subcase F' = 2.

The recovery procedure for ) must not have received a response from L; (oth-
erwise it would have exited before step 7°). Then there is at most one more
replica that fails to respond during the recovery procedure, and this replica
must be R’ (otherwise R’ would have replied with non-conflicting attributes
for 9, and the recovery procedure would have ended).

3.1.1 Sub-subcase R’ was the leader of the Paxos-Accept phase that first com-
mitted v. Then it would have sent AcceptReply messages to two other
replicas, and these messages would have included additional dependen-
cies (as per Accept-deps) that would not have included ¢ (because ¢ had
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not been proposed at this point). Since at most /' = 2 replica are faulty,
these acceptors must be part of the replicas that reply during the recovery
for 9, so the recovery procedure will discover the recorded AcceptReplies
and will not send the TentativePreAccept in step 7°.

3.1.2 Sub-subcase R' was an acceptor in the Paxos-Accept phase that first com-
mitted . Then the leader for this Paxos-Accept phase must have re-
sponded during the recovery for § with the Accept message from R'. The
additional dependencies for this message would not contain 9, so the re-
covery procedure will not send the TentativePreAccept in step 7°.

3.2 Subcase F' = 3.

In this case, the recovery procedure for § reaches the Else branches of step
7’ only if exactly two replicas part of §’s fast-path quorum reply to Prepare
messages (otherwise the recovery procedure either exits before step 7’, or on
the If branch of step 7°). Then of the three un-responsive replicas, one is L;,
and the other two must be part of both §’s fast-path quorum and the Paxos-
Accept quorum that has first committed 7. Then at least one of the two other
replicas part of 7’s Paxos-Accept quorum must have received and recorded
an Accept or AcceptReply message with additional dependencies that did not
include d. Since these replicas are both responsive during the recovery for 9,
the recovery procedure could not have sent the TentativePreAccept in step 7.

3.3 QE.D. Step 7’ can be executed only if F' = 2 or /' = 3. Both subcases have
ended in contradiction, so our assumption that 7 = 7/ is false. Then R cannot
receive a TentativePreAccept that forces it to pre-accept o such that seq; <
seq.. By 3.1, 3.2 and the execution algorithm,  will always be executed before

J.

3 QED

Cases 1 and 2 and 3 are exhaustive.

3.7 Minimizing the Fast-Paxos Quorum Size

In the previous section we found that the size of the fast-path quorum must be F'+ L%j
for the recovery procedure to be able to identify those commands that may have been
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Figure 3.7: An example of how fixed fast-path quorums can be pre-configured so that for
any two quorums, the command leader of one is part of the other. The diagram depicts
only the quorums for replicas 1, 2 and 3. In this example with seven total replicas, fast-
path quorums are minimal (four replicas each).

committed on the fast-path. This size guaranteed that any two quorums intersected in
sufficient replicas for recovery to decide which one of two interfering commands could
have been committed. This condition was necessary because we allowed command lead-
ers the flexibility to choose any sufficiently large subset of replicas as a quorum.

Another option is to pre-configure the fast-path quorums in a way that guarantees
they intersect in at least one of the two corresponding command leaders. This way, for
two interfering commands, the recovery procedure will be able to immediately discount
the one whose quorum includes the other’s command leader—this command could not
have committed on the fast path because one of the replicas in its fast path quorum was
able to propose an interfering command with conflicting attributes. Figure 3.7 shows a
simple configuration where this condition is met: replicas are arranged on a logical circle
and the fast-path quorum for each replica contains itself and the /' following clock-wise
peers. Slow-path quorums remain as flexible as before.

The major advantage of this option is that fast-path quorums are now minimal for
any total number of replicas: F' + 1. This benefits throughput and may benefit wide-
area latency for suitable geographical configurations. The disadvantage is that failures
are more difficult to tolerate: a failed replica will force all command leaders who have it
in their quorums to commit all commands on the slow path until fast-path quorums are
reset globally.
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client request: C1
R1

R2

R3

R4
R5

Figure 3.8: Even when a command (C1) must be committed on the slow path, it will
incur only three message delays in failure-free runs if we forward PreAccept replies to
all members of a quorum.

3.8 Reducing the Length of the Slow Path in the Wide-
Area to Three Message Delays

The length of the slow path in Egalitarian Paxos is four message delays (two round trips),
plus the client-to-closest-replica message delay that is insignificant in the wide area.
Here, we show how to reduce this length to only three wide-area message delays. We
call this version EPaxos 3-WAN-Delays.

We summarize the modifications to (optimized) EPaxos:

1. After receiving a PreAccept, an acceptor will send the corresponding PreAcceptRe-
ply not only to the command leader, but also to all the other members of a pre-
established slow quorum (it is the command leader who decides what the slow
quorum is, and describes it in the PreAccepts it sends).

2. After receiving F' PreAcceptReplies (possibly including from itself), in addition to
the initial PreAccept from the command leader, an acceptor will compute the up-
dated ordering attributes and accept them. The acceptor will then send an Accepted
message to the command leader, with the accepted attributes.

3. If the command leader cannot commit on the fast path, it waits for /' identical
AcceptReplies. If it receives them, then it can commit directly. Otherwise, it starts
the second phase, sending Accepts to a slow-path quorum.

Figure 3.8 depicts an example of how this version of EPaxos commits commands on
the slow path.

The pseudocode corresponding to the modified algorithm is presented in Figure 3.9.

This optimization preserves safety: a tuple will be committed as a result of this opti-
mization only if a majority of replicas have first accepted it, and there is only one such
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Phase 1: Establish ordering constraints |'> Phase 2: Paxos-Accept

Any non-leader replica R, after receiving at least
[N/2|+1 PreAcceptOK responses (possibly
including the initial PreAccept from the command
leader) at instance L.i:

Replica L on receiving Request(y) from a client
becomes the designated leader for command  (steps
2, 3 and 4 executed atomically):

6: update deps., <— Union(deps. from all replies)
7. update seq, <— max({seq, of all replies})

8: cmdsg[L][i] < (v,seq~,deps.,,accepted)

9: send Accepted(vy,seq~,deps~,L.i) to L

1: increment instance number i; < ip + 1
{Interf; ., is the set of instances Q.j such that the
command recorded in cmds [Q][j] interferes w/ v}
2: seq~ < 1+ max ({cmds.[Q][j].seq |
Q.j € Interf; , } U{0})
3: deps~ < Interf -
4: cmdsg[L][ir] < (v,seq.,deps.,, pre-accepted)
5: send PreAccept(v,seq,deps.,L.ip) to all other
replicas in F, where F is a fast quorum that
includes L

Command leader L, for (v,seq.,,deps.,) at instance
L.i, after timing out waiting for Accepted messages:
16: cmds; [L][i] < (v, seq,deps.,,accepted)

17: send Accept(v,seq~,deps.,, L.i) to at least [N /2|

I
I
I
I
I
I
I
¢ I other replicas
I
I
I
I
I
I
I
I

Any replica R, on receiving - Any replica R, on receiving
PreAccept(vy,seq,deps.,,L.i) (steps 6,7 and 8 Accept(y,seqr, depsy, L.i):
executed atomically): 18: cmdsg[L][i] < (7,seq,,deps. ,accepted)

19: reply AcceptOK(y,L.i)to L
[ 1

I

Y

Command leader L, on receiving at least | N /2|
P identical Accepted(y, seq.,deps.) or [N /2|
AcceptOK messages:

6: update seq., < max({seq, } U{1+cmdsg[Q][/].seq
| 0.j € Interfg 4 })

7: update deps., < deps~ Ulnterfg

8: cmdsg[L][i] < (7,seq,deps., pre-accepted)

9: send PreAcceptOK(v,seq~,deps~,L.i) to L and a
pre-established slow quorum

20: run Commit phase for (v, seq.,,deps.) at L.i

\ 4

Replica L (command leader for ), on receiving at
least [N /2| PreAcceptOK responses:

Commit

Command leader L, for (v,seq.,deps.,) at instance
L.i:
10: if received PreAcceptOK’s from all replicas in , .
. . 21: cmds[L][i] < (v, seq~,deps-,committed
F\{L}, with seq., and deps., the same in all then | . send <L:(I)IrIlIn]it n()(tI/ﬁca(tIiZ) o (Ijr 1/,t0 ot )
lies (for s fast th )
replies (for some 1as guorurrI ) then , Fast 23: send Commit(y,seq.,deps.,,L.i) to all other
11:  run Commit phase for (v, seq,,deps-) at L.i I .
12: else Path replicas

13:  update deps., < Union(deps., from all replies) I
14:  update seq-, + max({seq, of all replies}) else Any replica R, on receiving
15:  run Paxos-Accept phase for (v, seq.,deps. ) at L.i EOW— Commit(7y,seq~,deps~,L.i):
Path I24: cmdsg[L][i] < (v,seq~,deps.,,committed)

Figure 3.9: The Egalitarian Paxos version that incurs only three wide-area message de-
lays on the slow path.
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tuple that can be accepted in the initial ballot—safety is therefore guaranteed due to the
classic Paxos guarantees. The optimization also preserves execution consistency and lin-
earizability, because the accepted tuple is computed based on the PreAcceptReplies of
| N /2| replicas, which together with the command leader form a majority (as we showed
earlier in proving the EPaxos properties, the input of a majority in establishing the or-
dering guarantees is the necessary and sufficient condition for ensuring execution con-
sistency and linearizability).

3.9 Strict Serializability

Egalitarian Paxos guarantees that interfering commands are executed in a linearizable
order. If the interference relation is transitive (which is equivalent with a setting where
each command refers to the state of a single object) then execution linearizability im-
plies the whole system is linearizable, as defined by Herlihy and Wing: linearizability is
a local property, meaning that “a system is linearizable if each individual object is lineariz-
able” [23].

The corresponding consistency property in a system where each command can up-
date and read multiple objects is strict serializability. This is a setting where the interfer-
ence relation is not necessarily transitive. EPaxos does not guarantee strict serializability
without a simple modification that we describe in this section.

For example, imagine a system with two distinct objects A and B, and two concurrent
clients client1 and client2. If each client issues the following commands sequentially (i.e.,
they wait for the a command to be committed before issuing the next)

client 1: wupdate A; update B
client 2: read B; read A

it is impossible for client2 to see an updated B and an unmodified A. In this case, all
operations are linearizable, because they each refer to a single object. However, if client2
were to issue the composite command read A and B instead, it is possible that it will see
an updated B and an unmodified A:

client 1: update A; update B
client 2: read A and B

This is because the read may be concurrent with both updates, and since the updates
do not interfere, the system can choose the following ordering: update B; read A and B;
update A.
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We can modify EPaxos to guarantee strict serializability: clients are sent the commit
notification for a command only after all instances in the dependencies graph of the cur-
rent command have been committed. We call this version EPaxos-strict. We show that it
guarantees strict serializability.

Theorem 9 (Strict serializability). Every execution in EPaxos-strict is equivalent to a serial
execution where non-concurrent commands are executed in their temporal order.

Proof:

1 We define a <; b to be true if commands a and b interfere, and a has been executed
by a replica before b (by execution consistency, if @ <; b then every replica will
execute a before b). It is easy to see that <; is a partial order relation.

2 Because commands are executed serially, every execution in EPaxos-strict (as well
as in EPaxos) defines a total order that is an extension of <; (by execution consis-
tency).

3 We define a <me b to be true if any client has been notified that a has been
committed (along with its entire dependency graph) before b is proposed.

4 We show that <; U <y, is a partial order relation. We define < tobe (<; U <yime)-
Assume < is not a partial order relation. Then there exists a sequence of commands
1, ...,Cy such that ¢; < co < ... < ¢, < ¢1. Consider the shortest such cycle.

4.1 Because <; is a partial order relation, there must be at least one pair of con-
secutive commands ¢;_; and ¢; such that ¢;_; <; ¢; is not true. Then it must
be true that ¢;_; <time ¢;. By re-indexing, let these two commands be ¢; and
Cy.

4.2 The cycle must have more than two commands: it is impossible for co <jme €1
since €1 <gime C2; C2 <; ¢ implies that cs is in ¢;’s dependency graph which
also contradicts ¢; <gme Co, since ¢; could not have ended before its entire
dependency graph was committed (by EPaxos-strict).

4.3 There is no j > 2 such that ¢;_; <; ¢; does not hold: Assume there is such
a j. Then c¢;_1 <gme ¢;. If ¢ ends (i.e, its corresponding client is notified)
before c; starts, then ¢; <im. ¢, and we have the shorter cycle ¢y, ¢;, ..., ¢,.
If c¢; ends after c; starts, then ¢, must start after ¢;_; ends, so ¢;_1 <¢ime C2,
and we have the shorter cycle ¢, ..., ¢;_;.
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Client notification Interference must be transitive

Consistency guarantee

After commit Yes
After commit No
After command and No

entire dependency graph
have been committed

Linearizability
Per-object linearizability

Strict serializability

Table 3.3: Consistency guarantees in EPaxos.

44 By 43 cy <; ... <; ¢y <; 1. But ¢j_1 <; ¢; implies that ¢;_; is in ¢;’s de-
pendency graph. Since this relation is transitive, it must hold that ¢ isin ¢;’s
dependency graph. But, by EPaxos-strict, this implies that c; was committed
before the commit notification for c¢; was sent to its corresponding client. This

contradicts ¢; <yjme Co.

5 By the definition of interference, all serial executions that extend <; are compatible—
i.e., they produce the same state and read results. In particular, any execution that
extends the partial order <; U <y, Will be compatible with any serial execution
that extends <;. Then by 2, all executions in Epaxos-strict are compatible with a
serial execution that extends <; U <yjne. Q.E.D

Table 3.3 summarizes the consistency guarantees of EPaxos.

Because the dependency graph of a command is complete (all the dependencies are
committed) by the time the client receives a notification for it, EPaxos-strict does not
require approximate sequence numbers to guarantee linearizability, and this simplifies
the recovery procedure. The drawback of EPaxos-strict is that clients may experience
higher latency for committing (but not for executing) conflicting commands. The latency

for committing and executing non-interfering commands remains the same
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3.10 Reconfiguring the Replica Set

Reconfiguring a replicated state machine is an extensive topic [38, 39, 41]. In EPaxos, or-
dering ballots by their epoch prefix enables a solution that resembles Vertical Paxos [38] *
with majority read quorums: A new replica, or one that recovers without its memory,
must receive a new ID and a new (higher) epoch number, e.g., from a configuration ser-
vice or a human. It then sends Join messages to at least F' + 1 live replicas that are not
themselves in the process of joining. Upon receiving a join, a live replica updates its
membership information and the epoch part of each ballot number it uses or expects to
receive for new instances. It will thus no longer acknowledge messages for instances
initiated in older epochs (instances that it was not already aware of). The live replica
will then send the joining replica the list of committed or ongoing instances that the live
replica is aware of. The joining replica becomes live (i.e., it proposes commands and par-
ticipates in voting the proposals of other replicas) only after receiving commits for all
instances included in the replies to at least /” + 1 Join messages. Production implemen-
tations optimize this process using snapshots [13].

This strategy ensures that a joining replica and a replica that has been excluded from
the new configuration cannot participate in voting commands at the same time—thus
preserving the property that any two quorums overlap.

Once F' + 1 live replicas have switched to the new configuration, a replica that has
been excluded from the new configuration will not be able to act as command leader (its
messages will not be acknowledged by a majority), nor can it participate in successful
ballots. The excluded replica might still initiate instances, but they can be finalized only
by live replicas that have committed to the new configuration. This eventually stops
when all live replicas have committed to the new configuration, or when the excluded
replica receives a Join message that makes it aware of its exclusion.

The strategy described in this section preserves the protocol guarantees. An instance
is either finalized as if the joining replica has not joined yet (if the id of that instance
was contained in one of the F' 4 1 replies to join messages), or it is treated like a new
command in the new configuration.

*Vertical Paxos is a generalization of Paxos designed to handle frequent reconfigurations.
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3.11 Empirical Evaluation of Egalitarian Paxos

In this section we show the results of our empirical comparison between Egalitarian
Paxos, Multi-Paxos, Mencius and Generalized Paxos. The EPaxos variant that we evaluate
is Optimized EPaxos, with the exception of the wide-area experiments, where we evaluate
both Optimized EPaxos and EPaxos 3-WAN-Delays (the version that has only three wide-
area message delays on the slow path).

The experimental setup consisted of Amazon EC2 large instances for both state ma-
chine replicas and clients, running Ubuntu Linux 11.10. An Amazon EC2 large instance
consists of two 64-bit virtual cores with 2 EC2 Compute Units each and 7.5 GB of memory.
For local-area experiments, the typical RTT inside an EC2 cluster is 0.4 ms.

3.11.1 Implementation

We implemented EPaxos, Multi-Paxos, Mencius, and Generalized Paxos in Go, version
1.0.2.

Language-specific details

Behind our choice of Go was the goal of comparing the performance of the four Paxos
variants within a common framework in which the protocols share as much code as
possible to reduce implementation-related differences. While subjective, we believe we
achieved this, applying roughly equal implementation optimization to each; we are re-
leasing our implementations for others to perform comparisons or further optimiza-
tion [46].

Go presented two challenges: First, the garbage collection that eased implementation
of four complete Paxos variants adds performance variability; and second, its RPC imple-
mentation is slow. We solved the latter by implementing our own RPC stub generator.
We have not fully mitigated the GC penalty, but EPaxos is more affected than the other
protocols because its attribute-containing messages are larger, so our results are fair to
the other protocols.

Thrifty Operation

For all protocols except Mencius, we used an optimization that we call thrifty. In thrifty,
a replica in charge of a command (the command leader in EPaxos, or the stable leader
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in Multi-Paxos) sends Accept and PreAccept messages to only a quorum of replicas, in-
cluding itself, not the full set. This reduces message traffic and improves throughput. The
drawback is that if an acceptor fails to reply quickly, there is no quick fall-back to another
reply. However, thrifty can aggressively send messages to additional acceptors when a
reply is not received after a short wait time; doing so does not affect safety and only
slightly reduces throughput. Mencius cannot be thrifty because the replies to Accept
messages contain information necessary to commit the current instance (i.e., whether
previous instances were skipped or not).*

3.11.2 Typical Workloads

We evaluate these protocols using a replicated key-value store where client requests are
updates (puts). This is sufficient to capture a wide range of practical workloads: From the
point of view of replication protocols, reads and writes are typically handled the same
way (reads might be serviced locally in certain situations, as discussed in Section 3.5.7).
Nevertheless, writes are the more difficult case because reads do not interfere with other
reads. Our tests also capture conflicts, an important workload characteristic—a conflict
is a situation when potentially interfering commands reach replicas in different orders.
Conflicts affect EPaxos, Generalized Paxos, and, to a lesser extent, Mencius. One ex-
ample of conflicts are those experienced by a lock service, where conflicts are equiva-
lent to write-write conflicts from multiple clients updating the same key. A read-heavy
workload is where concurrent updates rarely target the same key, corresponding to low
conflict rates. Importantly, lease renewal traffic—constituting over 90% of the requests
handled by Chubby [10]—generates no conflicts, because only one client can renew a
particular lease.

From the available evidence, we believe that 0% and 2% command interference rates
are the most realistic. For completeness, we also evaluate 25% and 100% command in-
terference (for 25%, % of commands target the same key while % target different keys).
In Chubby, fewer than 1% of all commands (observed in a ten-minute period [10]) could
possibly generate conflicts. In Google’s advertising back-end, F1, which uses the geo-
replicated table store Spanner (which, in turn, uses Paxos) fewer than 0.3% of all opera-
tions may generate conflicts, since more than 99.7% of operations are reads [16].

*A Mencius replica must receive Accept replies from the owners of all instances it has not received
messages for. We tried Mencius-thrifty, in which the current leader sends Accepts first to the replicas it
must hear from, and to others only if quorum has not yet been reached. It did not improve throughput,
however: under medium and high load, only rarely are all previous instances “filled” when a command is
proposed.
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We indicate the percentage of interfering commands as a number following the ex-
periment (e.g., “EPaxos 0%”).

3.11.3 Latency In Wide Area Replication

We validate empirically that EPaxos has optimal median commit latency in the wide area
with three replicas (tolerating one failure) and five replicas (tolerating two failures). The
replicas are located in Amazon EC2 data centers in California (CA), Virginia (VA) and
Ireland (EU), plus Oregon (OR) and Japan (JP) for the five-replica experiment. At each lo-
cation there are also ten clients co-located with each replica (fifty in total). They generate
requests simultaneously, and measure the commit and execute latency for each request.
Figure 3.10 shows the median and 99%ile latency for EPaxos, Multi-Paxos, Mencius and
Generalized Paxos.

With three replicas, an EPaxos replica can always commit after one round trip to its
nearest peer even if that command interferes with other concurrent commands. In con-
trast, Generalized Paxos’s fast quorum size when N = 3 is three. Its latency is therefore
determined by a round-trip to the farthest replica. The high 99%ile latency experienced
by Generalized Paxos is caused by checkpoint commits. Furthermore, conflicts cause two
additional round trips in Generalized Paxos (for any number of replicas). Thus, in this ex-
periment, EPaxos is not affected by conflicts, but Generalized Paxos experiences median
latencies of 341 ms with 100% command interference.

With five replicas, EPaxos avoids the two most distant replicas, while Generalized
Paxos avoids only the most distant one. Thus, EPaxos has optimal commit latency for the
common case of non-interfering concurrent commands, with both three and five replicas.
For five replicas, interfering commands cause one extra round trip to the closest two
replicas for EPaxos, but up to two additional round trips for Generalized Paxos.

Mencius performs relatively well with multiple clients at every location and all lo-
cations generating commands at the same aggregate rate. Imbalances force Mencius to
wait for more replies to Accept messages. In the worst case, with active clients at only
one location at a time, Mencius experiences latency corresponding to the round trip time
to the replica that is farthest away from the client, for any number of replicas.

Multi-Paxos has high latency because the local replica must forward all commands
to the stable leader.

The results in Figure 3.10 refer to commit latency. For EPaxos, execution latency dif-
fers from commit latency only for high conflict rates because a replica must delay execut-
ing a command until it receives commit confirmations for the command’s dependencies.
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Figure 3.10: Median commit latency (99%ile indicated by lines atop the bars) at each of 3
(top graph) and 5 (bottom graph) wide-area replicas. The Multi- and Generalized Paxos
leader is in CA. In Mencius imbalanced, EU generates commands at half the rate of the
other sites (no other protocol is affected by imbalance). In Mencius worst, only one site
generates commands at a given time. The bottom of the graph shows inter-site RTTs.
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With 100% interference rate (i.e., worst case), three-replicas EPaxos experiences median
execution latencies of 125 ms to 139 ms (depending on the site), whereas for five replicas,
median execution latencies range from 304 ms to 319 ms (compared to 274 ms to 296 ms
for Mencius, and unchanged latencies for Multi-Paxos and Generalized Paxos 100%). As
explained in the previous section, this worst case scenario is highly unlikely to occur in
practice. Furthermore, commit latency is the only one that matters for writes®, while for
reads, which have a lower chance of generating conflicts, there is a high likelihood that
commit and execution latency are the same. Furthermore, reads will also benefit from
read leases, which allow reads to be serviced locally.

However, if high command interference is common, there is a wide range of tech-
niques that we can use to reduce latency: e.g., forwarding PreAcceptReplies among fast
quorum members to reduce slow-path commit latency by one message delay (see below),
or reverting to a partitioned Multi-Paxos mode, where the same site acts as command
leader for all commands in a certain group (thus eliminating conflicts among the com-
mands within that group).

Reducing Slow-Path Latency in EPaxos

As explained in Section 3.8, we can reduce the slow-path latency in EPaxos by having
the members of the fast-path quorum send PreAcceptReplies not only to the command
leader, but also to each other. The equivalent optimization for Multi-Paxos is to send
AcceptReplies not only to the stable leader, but also to the site of the client [12] (so that
this site can conclude that the command has been committed before being notified by the
leader).

We implemented and evaluated these optimizations for both EPaxos and Multi-Paxos
(we call them EPaxos-forward and Multi-Paxos-forward). The results are presented in
Figure 3.11.

The result is that the slow path in EPaxos becomes just as fast or faster than the regu-
lar path in Multi-Paxos (depending on the actual topology of the setup and the choice of
the stable Multi-Paxos leader). The only exception is the Multi-Paxos leader site, which
experiences a latency of only two wide-area message delays. The EPaxos fast-path la-
tency, on the other hand, is fundamentally lower than that of the Multi-Paxos commit
path. This is not reflected in Figure 3.11 because in this particular setup, the stable leader
(California) has a peer that is very close (Oregon), and all replicas are almost colinear.

°From the client’s perspective, there is no difference between a committed but not-yet-executed write,
and a write that has been executed (it is, however, guaranteed that execution will occur before subsequent
interfering reads).
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Figure 3.11: Median and 99%ile (as error bars) commit latency when reducing the slow-
path latency in EPaxos and the regular commit latency in Multi-Paxos to three wide-
area message delays. The median latency for EPaxos 100% corresponds to the slow path,
while the median latency for EPaxos 0% corresponds to the fast path. For Multi-Paxos we
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Figure 3.12: Throughput for small (16 B) commands (error bars show 95% CI).

For bad choices of leaders (e.g., Japan in this setup), or for different, non-colinear setups,
EPaxos would be always faster on the fast path and at most as slow as Multi-Paxos on
the slow path.

3.11.4 Throughput in a Cluster

We compare the throughput achieved by EPaxos, Multi-Paxos, and Mencius, within a
single EC2 cluster. We omit Generalized Paxos from these experiments because it was
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Figure 3.13: Throughput for large (1 KB) commands (with 95% Cl).

not designed for high throughput: It runs at less than ; the speed of EPaxos, and its
availability is tied to that of the leader, as for Multi-Paxos.*

A client on a separate EC2 instance sends batched requests in an open loop” (only
client requests are batched; messages between replicas are not), and measures the rate
at which it receives replies. For EPaxos and Mencius, the client sends each request to a
replica chosen uniformly at random. Replicas reply to the client only after executing the
request. Although it is often sufficient to acknowledge after commit, we wished to also
assess the effects of EPaxos’s more complex execution component.

Figure 3.12 shows the throughput achieved by 3 and 5 replicas when the commands
are small (16 B). Figure 3.13 shows the throughput achieved with 1 KB requests.

EPaxos outperforms Multi-Paxos because the Multi-Paxos leader becomes bottlenecked
by its CPU. By being thrifty (Section 3.11.1), EPaxos processes fewer messages per com-
mand than Mencius, so its throughput is generally higher—with the notable exception of
many conflicts for more than three replicas, when EPaxos executes an extra round per
command (Mencius is not significantly influenced by command interference—there was
no interference in the Mencius tests). EPaxos messages are slightly larger because they
carry attributes, hence our EPaxos implementation incurs more GC overhead.

Processing large commands narrows the gap between protocols: All replicas spend
more time sending and receiving commands (either from the client or from the leader),
but Mencius and EPaxos exhibit significantly higher throughput than leader-bottlenecked
Multi-Paxos.

SLearners handle ©(/N') messages per command and the leader must frequently commit checkpoints—
see Section 2.3.

"In practice, a client needing linearizability must wait for commit notifications before issuing more
commands; the open loop mimics an unbounded number of clients to measure maximum throughput.
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Figures 3.12 and 3.13 also show throughput when one node is slow (for Multi-Paxos
that node is the leader—otherwise its throughout is mostly unaffected). In these exper-
iments, two infinite loop programs contend for the two virtual cores on the slow node.
EPaxos handles a slow replica better than Mencius or Multi-Paxos because the other repli-
cas can avoid it: Each replica monitors the speed with which its peers process pings over
time, and excludes the slowest from its quorums. Mencius, by contrast, fundamentally
runs at the speed of the slowest replica because its instances are pre-ordered and a replica
cannot commit an instance before learning about instances ordered before it—and 1/ N
of those instances belong to the slow replica.

3.11.5 Logging Messages Persistently

To resume immediately after a crash, a replica must preserve the contents of its memory
intact, otherwise it may break safety (for all of the protocols we evaluate). This implies
persistently logging every state change before acting upon or replying to any message.
The preceding experiments did not include this overhead, because it is avoidable in some
circumstances: if power failure of all replicas is not a threat, replicas can recover from
failures as presented in Section 3.10; in addition, persistent memory technologies keep
improving, and battery-backed memory is sometimes feasible. We nevertheless wanted
to evaluate whether EPaxos is fundamentally more I/O intensive than Multi-Paxos or
Mencius.

For the experiments in this section we used Amazon EC2 High-I/O instances equipped
with high-performance solid state drives. Every replica logs its state changes synchronously
to an SSD-backed file, for all protocols.
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Figure 3.15: Latency vs. throughput for 3 replicas.

Here (Figure 3.14), all protocols are I/O bound, but Multi-Paxos places a higher I/O
load on the stable leader than on non-leader replicas, making it slower. EPaxos outper-
forms Mencius due to the thrifty optimization: in EPaxos, unlike in Mencius, it is suffi-
cient to send (pre-)accept messages to only a quorum of replicas, and therefore EPaxos
requires fewer logging operations per command than Mencius. However, we make the
(novel, to our knowledge) observation that while every Mencius acceptor must reply to
accept messages, not all acceptors must log their replies synchronously—it is sufficient
that a quorum of acceptors log synchronously before responding, and the command
leader commits only after receiving their replies. “Mencius min-log” (in Figure 3.14),
needs only slightly more synchronous logging than EPaxos (every min-log replica must
still log its own skipped instances synchronously).
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Figure 3.16: Latency vs. throughput for 5 replicas when batching small (16 B) commands
every 5 ms.

3.11.6 Execution Latency in a Cluster

This section examines client-perceived execution latency using three replicas. Despite
its more complex execution algorithm, EPaxos has lower execution latency than either
Multi-Paxos or Mencius, regardless of interfering commands. In addition, our strategy
for avoiding livelock in EPaxos’s execution algorithm (Section 3.5.6) is effective.

Figure 3.15 shows median (top graph) and 99%ile latency under increasing load in
EPaxos, Mencius and Multi-Paxos. We increase throughput by increasing the number of
concurrent clients sending commands in a closed loop (each client sends a command and
waits until it has been executed before sending the next) from 8 to 300. The maximum
throughput is lower than in the throughput experiments because here, replicas bear the
additional overhead of hundreds of simultaneous TCP connections.

3.11.7 Batching

Batching increases the maximum throughput of Multi-Paxos by 5x and of EPaxos by 9x
(Figure 3.16). Commands are generated open loop from a separate machine in the cluster.
Every 5 ms, each proposer batches all requests in its queue, up to a preset maximum
batch size: 1000 for EPaxos, 5000 for Multi-Paxos. Command leaders issue notifications
to clients only after execution. Each point is the average over ten runs.

EPaxos’s advantage here still arises from sharing the load more evenly across replicas,
whereas Multi-Paxos places it all on the stable leader. Under the same client throughput,
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Figure 3.17: Commit throughput when one of three replicas fails. For Multi-Paxos, the
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Mencius and EPaxos will send up to 5x more messages: each leader will send batches,
instead of having one leader aggregate the commands into a single larger batch. How-
ever, the cost of these extra messages is amortized rapidly across large batches, becoming
negligible versus processing and executing the commands.

Importantly, and perhaps counter-intuitively, batching diminishes the negative ef-
fects of command interference in EPaxos. This is because (1) the cost of the extra round
of communication for handling a conflict is amortized across multiple commands, and
becomes insignificant for large batch sizes (second phase messages are short, because
command leaders send only the new attributes to replicas that have already received the
batch in the first phase); and (2) at low throughputs, even if all commands interfere, con-
flicts are less frequent because the possibility of there being multiple batches in flight
at the same time (and arriving at different replicas in different orders) diminishes. As a
result, EPaxos with 100% interference is effectively as fast as EPaxos with no interference.

Although we have not tested Mencius with batching, as long as replicas do not expe-
rience performance variability, we expect it to be as fast as EPaxos, since the difference
in messaging patterns has a diminished effect with batching.

3.11.8 Service Availability under Failures

Figure 3.17 shows the evolution of the commit throughput in a three-replica setup that
experiences the failure of one replica. A client sends requests in an open loop, at the
same rate for every system—approximately 10,000 requests per second (a rate at which
none of the systems is close to saturation, hence the steady throughput).

With Multi-Paxos, or any variant that relies on a stable leader, a leader failure prevents
the system from processing client requests until a new leader is elected. Although clients
could direct their requests to another replica (after they time out), a replica will usually
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not try to become the new leader immediately. False suspicions can degrade performance
by causing stalls, so the fail-over time will usually be on the order of seconds [10, 44].
The failure of a non-leader replica (a situation not depicted in Figure 3.17) does not affect
the availability of the system.

In contrast, any replica failure disrupts Mencius: a replica cannot finalize an instance
before knowing the outcome of (or at least which commands are being proposed in) all
instances that precede it, and instances are pre-assigned to replicas round-robin. Unlike
in Multi-Paxos, clients can continue to send requests to the remaining replicas; they will
be processed up to the point where they are ready to be committed. Eventually, a live
replica will time out and commit no-ops on behalf of the failed replica, thus freeing the
instances waiting on them. At this point, the delayed commands are committed and
acknowledged, which causes the throughput spike depicted in Figure 3.17. Live replicas
commit no-ops periodically until the failed replica recovers, or until a reconfiguration.

Both in Multi-Paxos and Mencius, the timeout duration is a trade-off between the
availability of the service and the impact that acting too frequently on false positives
has on throughput and latency. EPaxos avoids this dilemma because it can operate un-
interrupted by the crash of a minority of replicas. Clients with commands outstanding
at a failed replica will time out and retry those requests at another replica. Although
live replicas will commit commands unhindered, some of these commands may have ac-
quired dependencies on commands proposed by the failed replica. Executing the former
(as opposed to committing them) will therefore be delayed until another replica finalizes
committing the latter. Unlike in Mencius, this occurs only once: an inactive replica can-
not continue to generate dependencies. Moreover, it occurs rarely for workloads with
low conflict rates.

3.12 Summary of Egalitarian Paxos Benefits

Egalitarian Paxos is the first state machine replication protocol that simultaneously of-
fers constant availability, perfect load balancing across replicas and optimal latency in the
wide-area. While other SMR protocols can also achieve high throughput by using batch-
ing, EPaxos has lower wide-area latency than any previous strong-consistency protocol.
Furthermore, its completely decentralized design means that EPaxos obviates a num-
ber of SMR implementation problems: there is no need for leader election or optimizing
leader placement in wide-area setups, and adapting to slow replicas becomes significantly
easier.
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The most important benefit of EPaxos is its low wide-area latency. For example, con-
sider the following setup with five sites:

An EPaxos client at location A would experience a commit delay corresponding to
the sum of message propagation delays across the longest of the ABA and AF A paths—
max(ABA, AEA)—on the fast path, and max(ABFEA, AEBA) = ABEA on the slow
path. Generalized Paxos, having a larger fast-path quorum, will incur max(ABA, AEA,
min(ACA, ADA)) on the fast path (and multiple round trips on the slow path). The
latency experienced by a Multi-Paxos client depends on the placement of the leader. For
example, if the leader is at B, a client in A will wait for messages to travel across the
ABFE A path—the same as the slow path in EPaxos—but will have to wait longer for a
less advantageous leader placement.

The cost of using Egalitarian Paxos is having to efficiently decide which commands
interfere and which do not. This is not, however, a new or unique problem, and pre-
vious solutions apply. One solution is using explicitly-specified dependency keys as in
Google’s High Replication Datastore [20] and Megastore [7]. A better solution is inferring
interference automatically. For example, for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting, it is straightforward to determine inter-
ference. Even for relational databases, the transactions that usually constitute the bulk
of the workload are simple and can be examined before execution to determine which
rows they will update (e.g. the New-Order transaction in the TPC-C benchmark [53]).
For other transactions it will be difficult to predict what exact state they will modify, but
it is safe to simply assume they interfere with any other transaction.
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Chapter 4

Quorum Read Leases

If EPaxos was about improving the performance of updates for a replicated state machine,
in this chapter we discuss about reading the replicated state efficiently. Our contribution
is a new mechanism based on time leases that we call quorum read leases. While appli-
cable to EPaxos, quorum read leases are not EPaxos-specific, and for clarity we present
them in the context of Multi-Paxos.

4.1 Overview

Given a replicated state machine implemented using Paxos or a similar quorum-based
protocol, simply reading the state of a single replica is not guaranteed to produce con-
sistent results. For example, the replica in question may have stale state (because, in
general, not all replicas must be updated synchronously when modifying the state). Fur-
thermore, a previous read may have already read the newer state from a different replica,
and therefore using this simple approach will not guarantee that reads are monotonic.

The simplest way of implementing strongly consistent reads is to commit and then
execute all reads exactly like any other command. This ensures strict serializability, but
has the drawback that reads incur the same high latency in the wide-area as updates.
A better approach is to send the read request to any majority of replicas, have these
replicas wait for ongoing updates to finish, and then return their result to the client. The
client would use the result corresponding to the most recent update (i.e., the one with
the highest sequence number). Although better (for example, in leader-based systems
we must no longer contact the leader for every read), this approach still incurs wide-
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area communication delays. Instead, many practical implementations of Paxos use a
mechanism based on time leases [7, 10, 13, 16].

The most common lease-based approach is the “leader lease”, and it consists in grant-
ing the stable Multi-Paxos leader a lease for the entire replicated state [10, 13, 16]. The
leader will be able to service reads directly from its local copy of the state because, while
the lease is active, all other live replicas guarantee that they will not commit an update
that was not proposed by the current leader. This guarantee holds trivially while every-
one recognizes the leader as alive, because it is the only one who proposes updates, but
it also holds if a new leader is elected while the lease is active.

While the leader lease improves throughput and latency at the leader site, the other
non-leader sites still incur high wide-area latency. Megastore [7] introduced the follow-
ing change: all replicas hold a lease for the entire state, so all replicas can read locally.
With this approach, read latency is minimal and read throughput is maximal. However,
the price that we pay is decreased update performance: (1) all updates must be acknowl-
edged by all replicas synchronously, incurring higher wide-area latency, and (2) if any
replica becomes unresponsive, no updates can be performed until the global lease expires.

Here, we argue that the leader lease and the Megastore lease are only two points in
a larger design space. A more general approach would grant multiple leases simultane-
ously to subsets of the replicas (instead of either one replica or all replicas) for parts of the
state (instead of the entire state). In particular, the Paxos communication patterns make
granting leases to majorities of replicas the sweet spot in the design space, because up-
dates must be acknowledged by majorities anyway, and thus leases have a lower impact
on update performance.

Despite the intuitiveness of this approach, implementing quorum leases is nontrivial.
Compared to approaches in which the set of nodes with the lease is fixed—either a single
master or all replicas—an implementation of quorum leases must be able to consistently
determine which objects belong to which lease quorum, automatically determine appro-
priate lease durations, and efficiently refresh the leases in a way that balances overhead,
a high hit rate on leased objects, and rapid lease expiration in the event of a node or net-
work failure. Solving these problems and evaluating the resulting benefits is our primary
objective.
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Figure 4.1: Leasing with and without revocation.

4.2 Quorum Leases: Intuition

Recall that a lease is a time-limited promise from one process to another to not modify an
object during the lease duration. Leases are often coupled with a revocation mechanism: If
the lease grantor wishes to modify the object before the lease has expired, it must contact
each lease holder and receive confirmation that the holder will stop using its local copy
of the object, as shown in Figure 4.1.

Quorum leases intertwine the idea of leasing with the natural set of nodes that must
be contacted for a Paxos write, bundling the Paxos write operation with the lease revoca-
tion. In Paxos, a replica can commit a command only after a majority quorum—possibly
including itself—has acknowledged the command. As is apparent from the revocation
example in Figure 4.1, if the write quorum includes all nodes that hold leases on the ob-
ject to be modified, then receiving acknowledgements from the write quorum also means
that the lease has been properly revoked at all replicas.

Of course, this simple design has several complications: (1) if any member of the
quorum becomes unavailable, no command can be committed until the lease expires;
and (2) replicas outside the quorum cannot perform local reads.
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We solve the first problem by carefully choosing the lease duration relative to the
round-trip time between the replicas. A quorum is notified synchronously only for a set
amount of time, after which none of its members can rely on their state being updated
synchronously anymore. If a quorum member crashes, the system will be unavailable
only until the lease expires.

To reduce the opportunity cost of not leasing to the full set of nodes, we grant leases
on a per-object basis, where each lease might have a different set of nodes holding it. In
this way, while not all nodes can read locally, the nodes generating the most read traffic
for each object can do so. This design is particularly appropriate when the popularity
of each object differs substantially across replicas—such as might be the case, e.g., in the
popularity of users across a geo-distributed social network.

In conclusion, quorum leases take advantage of the existing communication patterns
in Paxos to allow replicas to perform local reads, without substantially decreasing the
availability of the system, and without significantly increasing write latency.

4.3 Designing Quorum Leases

We begin by describing the assumptions about the Paxos systems that use quorum leases.
We then describe our quorum leases design goals and motivate our design choices.

4.3.1 Assumptions

Communication between the nodes is asynchronous: messages may be lost or delayed
indefinitely. Replicas do not synchronize clocks, but their clock rates are assumed to be
similar, such that a modest guard time can account for clock drift over a short interval.
Failures are non-Byzantine: replicas can crash or fail to respond indefinitely, but they
will not take actions that do not conform to the protocol.

We assume that the replicated state consists of multiple objects that can be updated
and read separately. Clients submit operations that specify which objects will be updated,
and queries for reading object values. Multiple updates and queries can be batched in the
same command.
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granted leases to two lease holders (R4 and R5).

4.3.2 Design Goals

A quorum lease provides a subset of Paxos replicas the guarantee that they will be noti-
fied synchronously of any update to a particular set of objects before those updates are
committed by any replica. Thus, let R be the set of all replicas in a Paxos group, and let
O be the set of all objects replicated by this Paxos group. A quorum lease is a pair (@), O),
where ) C R and O C O. We call @ the lease quorum for this lease, and O the set of
granted objects. Every replica r € () is a lease holder.

Unlike a Paxos quorum, which must include a majority of replicas, a lease quorum
can be of any size—e.g., it can contain fewer than half the replicas.

A lease becomes active after a majority of replicas (i.e., at least [ N /2| + 1 replicas,
where N = |R|) have granted the lease to at least one lease holder. An example of such
a lease is shown in Figure 4.2, where a majority have granted read leases to two nodes in
the set. A replica g grants a lease (@), O) to a replica r € () by making a promise:

1. to notify r synchronously before committing any update to any object in O that g
proposes (i.e., g must not commit until it receives a message from r in response to
its notification), AND
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2. to acknowledge Accept and Prepare messages' for updates to objects in O only
with the condition that the proposer must also notify r synchronously before com-
mitting these updates.

To enforce the first condition without extra communication, ¢ can include r in any
Paxos quorum of acceptors before committing a Paxos command that it proposes (i.e.,
for which it is the leader). To enforce the second condition, every replica must attach
enough information to its replies to the Paxos Accept and Prepare messages from a pro-
poser that the proposer can determine which replicas the responder has granted leases
to; the proposer uses this information to synchronously notify the lease holders before
committing. We explain in Section 4.3.4 how to implement this exchange efficiently by
adding only a short lease identifier to each message.

To prevent unbounded periods of unavailability, a promise is valid for only a set
amount of time, after which it expires. In a correct implementation, a promise must ex-
pire at the lease holder before expiring at the grantor. When a lease holder has fewer
than | N /2] valid promises from different replicas (the holder itself counts as an implicit
grantor), the lease is said to be inactive for that holder.

This mechanism achieves the following: while the lease is active at a lease holder,
that lease holder can assess whether an update to any of the leased objects is ongoing
(i.e., in the process of being committed), and if not, the lease holder can read the most
up-to-date value of that object from its local store.

A quorum lease can be granted to any subset of replicas, of any size. However, because
updates in Paxos must be accepted synchronously by a majority of replicas even when not
using leases, it is advantageous for both latency and availability to make lease quorums
be simple majorities (| N /2| + 1 out of the total of N replicas). For reduced write latency,
it is also useful that every lease quorum include the current distinguished proposer (i.e.,
the current stable leader, if the Paxos variant used relies on a stable leader—such as, for
example, Multi-Paxos).

Different Paxos replicas may need to read different sets of objects at different times.
We therefore wish to be able to update both the set of leased objects, and the lease quo-
rums. We call the totality of quorum leases agreed upon at any given moment a lease
configuration, and we use Paxos to achieve consensus on lease configuration changes.
Conceptually, there is a separate, independent Paxos-replicated state machine for the
configuration state; in our implementation, the configuration Paxos instantiation runs on

"The condition for acknowledging Prepare messages applies only to instances where the grantor has
already accepted an update for an object in O.
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the same nodes as the main Paxos instantiation. Because replica clocks are not synchro-
nized, we must establish timing dependencies when granting and refreshing leases. We
do this through separate communication, independent of the lease configuration change
protocol (see below).

Because an unresponsive lease holder will prevent updates to the leased objects until
the lease expires, it is useful for leases to be granted for short periods of time, which are
refreshed before they expire.

4.3.3 Design Overview

Although we believe that quorum leases apply to any variant of Paxos, we focus for
clarity on the most popular: Multi-Paxos.

While using quorum leases, the replicas of a Paxos system communicate using two
categories of messages: (1) The normal Paxos messages for choosing commands; and
(2) Lease management messages. We separate these in both design and implementation
to make it easier to reuse the leases with other Paxos variants, and to modify the lease
management protocol.

Lease management consists of two message sub-types: (2a) Paxos messages for agree-
ing on lease configuration changes—what are the quorums and what is the set of object
IDs granted to each quorum; and (2b) messages for granting and refreshing leases.

To avoid a dependency on external clock synchronization, we set lease timers based
upon the causal ordering of messaging events using a lightweight peer-to-peer protocol
described in detail in Section 4.3.5. This protocol efficiently combines the computation
of lease timers and the granting and refreshing of leases.

Separating lease configuration and granting conveys several advantages. First, it
means that the granting protocol could be improved independent of the rest of the sys-
tem to take advantage of, e.g., hardware clock synchronization or stronger assumptions
about delays based upon knowledge of the physical connections between machines. Im-
portantly, the simplicity of the lease granting protocol also makes short lease intervals
feasible, which has important benefits for availability. The lease renewal messages are
short and can be piggybacked on existing traffic, as they refer to the current lease configu-
ration through a short configuration ID, instead of needing to explicitly describe quorums
and granted objects as the lease configuration messages must.
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4.3.4 Lease Configurations

A lease configuration describes the quorum composition and the set of granted objects
for all the quorum leases in a Paxos system at a given time.

A lease configuration is built incrementally from a sequence of lease configuration
changes. Replicas agree on lease configuration changes through Paxos—they participate
in Paxos instances that are separate from the normal command-choosing instances. The
result is a sequence of lease configuration changes that all (non-faulty) replicas agree
upon. A lease configuration is then simply referred to by the instance number of the
latest change.

Our basic implementation of quorum leases strives to assign leases such that: (a) the
lease is granted to a simple majority of nodes; and (b) the number of locally-satisfied read
operations is maximized; and (c) the total number of leases being managed is modest. *

It accomplishes this by having replicas track the frequency of reads. The current
Multi-Paxos leader replica periodically gathers this information and determines the next
lease configuration such that each object is granted to the majority quorum that consists
of the stable leader and the | N /2] additional replicas that have read the object most
often; it then proposes this new configuration—a set of (quorum, object ID list) pairs—in
one of the special Paxos instances. Because it is already guaranteed to see all writes by
virtue of being the Multi-Paxos leader, the stable leader is granted a default lease that
covers every object not in another lease, and is also included in every lease quorum.

There are many possible ways to maintain read statistics. In our current implementa-
tion, when a replica receives a read request that it cannot service locally, it forwards it to
the stable Multi-Paxos leader. The leader counts the number of forwarded read requests
for each object-replica pair. If the number of reads from a given replica is larger than the
number of reads from another replica previously included as a lease holder for the object,
the leader will include the new replica as a lease holder in the next lease configuration
update.

Lease configuration changes happen sufficiently infrequently that they can be written
to a stable log without affecting the performance of the system.
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Figure 4.3: When clocks are not synchronized, the lease activating procedure uses ac-
knowledgements to safely manage lease intervals. In this diagram, the lease duration
is t_lease. A grantor (R1) will only send a promise if its guard is acknowledged by the
holder (R2). The grantor can thus bound the promise duration even if the holder does
not reply to the promise.

4.3.5 Activating Leases

Replicas agree on a lease configuration as described in the previous section, but the quo-
rum leases that constitute this configuration become active only after being granted as
explained in this section.

The lease configuration covers all leases granted on all objects (which may involve
many different sets of holder replicas), and so replicas affirm this configuration in an
all-to-all manner. Every replica sends a promise to every other replica in the system
(thus becoming a grantor). The promise includes the number of the most recent lease
configuration that the grantor is aware of, the lease duration, and a timestamp. A receiver
(i.e., a lease holder) rejects promises for lease configurations older than the newest one
it is aware of.

A lease represents a time during which the grantor will not modify an object without
contacting the holder, which gives the holder permission to read that object locally. For
safety, the grantor’s “will not modify” window of time must be inclusive of the holder’s
“can read locally” window of time. For high availability, these times should be as short
as possible, so that a failed holder can only block writes for a short period of time. These
goals are accomplished by the lease establishing and renewal protocol described in Fig-
ures 4.3 and 4.4.

*Many other optimization goals are both possible and reasonable; exploring them more deeply is an
interesting avenue of future work.
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Before sending a promise, the grantor sends the holder a guard message, which the
holder must acknowledge. The guard specifies a time duration #4,,,q. The subsequent
promise contains a lease duration {e,s.. Importantly, the promise is only valid if received
by the holder before #4.q has expired. This ensures that even if the holder does not
respond to the promise, the grantor knows that the holder will not believe it has a lease
more than fg.rd + fiease sSeconds after it received the guard ACK.

A holder starts a lease timer as soon as it receives a promise. The promise expires
after its specified lease duration (fj..s.) has passed. A lease holder can consider the lease
active while there are at least | N /2] promises received from different peers that have
not yet expired.

When renewing active leases, there is no need to send the guard anymore. The most
recent acknowledged promise plays the role of the guard: when sending a new promise,
the grantor indicates that it must be received within a time ¢’ 4t g,rq from the most recent
received acknowledgment (the grantor indicates which ACK this was), where t' is the
time elapsed at the grantor since receiving this acknowledgment. Therefore, the grantor
will be able to safely relinquish its promise after ¢5uara + tiease Seconds from sending the
renewal.

When a grantor becomes aware that a new lease configuration has been agreed upon
while its most recent promises are still valid, it can take one of two approaches: (1) the
grantor can let its current promises expire, and then send promises for the new config-
uration; or (2) the grantor can immediately send promises for the current configuration,
but while both sets of promises are valid, it must abide by the lease rules of both the pre-
vious and the current configuration.®> For simplicity, our current implementation takes
the first approach.

The lease establishing and renewing logic is described in pseudocode in Figure 4.4.

4.3.6 Ensuring Strong Consistency

Paxos and Multi-Paxos provide strong consistency: operations are strictly serializable
(they are both serializable and the temporal order of non-overlapping operations is re-
spected). In this section we show that quorum leases maintain this consistency guarantee.

Write-only and composite read-write operations will be committed through the nor-
mal Paxos protocol and executed atomically. They will thus be strictly serializable. Every

*For example, if an object has been granted to a different quorum, the grantor must ensure that it
notifies synchronously every replica in the union of the two quorums before committing an update to the
object.
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Establishing leases

Every replica R becomes a grantor:

1: send Guard(guard_duration) to every other replica
2: for every GuardACK from any replica H do

3:  set grant_timerp[H|
guard_duration + lease_duration
4:  send Promise(lease_duration) to H

5: for every PromiseReply from any replica H do

6:  if reply received before grant_timer,[H]
expired then
7: set grant_timerp[H] < lease_duration

Any replica H, on receiving a

Guard(guard_duration) from a replica R:

8: set guard_timery[R] < guard_duration
9: reply with a GuardACK
10: wait for a Promise(lease_duration) from R
11: if Promise received before guard_timer; [R]
expires then
12:  set lease_timery|R]  lease_duration
13:  reply with PromiseReply to R

{A lease holder H can consider the lease active if at least | N /2| promises from different replicas have yet to

expire (where N is the total number of replicas).}

Every replica R that is a grantor:

14

15:

16:

17:

18:

19

20:

Any replica H, on receiving a
Promise(lease_duration, t’, seq, ) from a replica

R:

20

21
22

Renewing leases

: for every other replica H do

: set grant_timerg[H| +

lease_duration + guard_duration

set t’ < the time since the most recent ACK
from H

set seq,-x ¢ the sequence number of most
recent ACK from H

send Promise(lease_duration, t', seq,,) to H
: for every PromiseReply from any replica H do
set grant_timerg [H) <— min(grant_timery[H],
lease_duration)

: if Promise received before time ¢’ + guard_duration
since sending ACK with sequence seq, ., then

: set lease_timery [R] < lease_time

1 reply with PromiseReply to R

Figure 4.4: Establishing and renewing quorum leases.

87



simple or composite read-only operation will either be serviced atomically by a replica
that holds leases for all the objects in question, or will be committed through normal
Paxos if no such replica exists. Thus, the system ensures serializability.

To ensure strict serializability, notice that it is necessary and sufficient to show that
given a read-write or write-only operation W and a read-only operation R, where the
write set of W intersects with the read set of R, then the system observes their temporal
order. That is to say (1) if R completes before W begins at any replica, i does not ob-
serve W; and (2) if W is committed at any replica before R is received by any replica, R
observes W. If R is committed through Paxos, this is true by virtue of the Paxos protocol
guarantees. We must show that the property also holds when R is serviced locally by
some replica.

If R completes before W begins, the property holds trivially: R cannot return a ver-
sion that does not yet exist anywhere. We are therefore left with the case where W was
committed before R was received.

The replica that services R locally (we will call it readery) can only do so if it has
a lease for the objects that I? refers to. We must therefore be in one of the following
situations:

Case 1: readerg acquired the lease before W began. In this case, readery’s lease was
active throughout WW’s Paxos commit process. Because the lease is active, by the causal
ordering of grantors and holders starting their lease timers, it must be the case that at
least | N/2| + 1 replicas (possibly including readery) have granted readery the lease,
and their promises are still active (i.e., binding). The quorum of replicas that accepted W
will intersect this quorum of grantors in at least one replica grantor .. Because grantor ,
accepts W, it must be the case that W’s proposer will learn that there is an active lease
when grantor , replies to its Accept. Therefore, W’s proposer will know that it must
notify readery before committing 11 (even if this proposer has not made any promises
itself), and reader, must execute W before executing any further read, including R. In
conclusion, R will observe W.

Case 2: readerp acquired the lease after W began. This case has three sub-cases: (1)
If there exists an acceptor that is part of W’s Paxos quorum and that grants readery, the
lease before accepting W, then this scenario reduces to the previous case. (2) If readery
itself accepts W before its lease becomes active, it must execute W before R. (3) There
exists an acceptor grantor , that first accepts W and then makes a promise that readerp
takes into account when activating its lease. Because promises contain the index of the
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most recent accepted Paxos instance at the grantor (therefore at least as recent as 11’s
instance at grantor ), readerp knows that it must wait for commits for all instances up
to and including W’s instance before replying to any read (including R). These three
sub-cases are exhaustive.

In conclusion, a Paxos system that implements quorum read leases ensures strict se-
rializability.

4.3.7 Recovering after a Replica Failure

The failure of a lease holder will prevent the system from committing updates to any
object for which the lease holder has a lease until enough of the promises made to it
expire. The system can resume committing once a majority of replicas are no longer
bound to notify the faulty replica synchronously. In practice, the time for which it is
blocked is on the order of a few to ten seconds, depending on the round-trip time between
the replicas, as we analyze more carefully in Section 4.3.8.

A grantor suspects that a replica may have failed if that replica stops replying to its
promises or heartbeat messages (common in many Paxos implementations). After a grace
period, the grantor will stop trying to renew its promises, and it will let the ones made
so far expire. In the meantime, the grantor will request a special lease configuration
update that specifies that the replica suspected of failure should be excluded from all
quorums it was part of. Replicas that switch to this new configuration no longer need
to synchronously notify the possibly-failed replica of updates, and the system can safely
resume using leases.

A replica that rejoins the replica set after a failure must wait for fyrace + ficase S€CONds
before it can accept and/or propose any commands to ensure that all of its promises have
expired.

4.3.8 Lease Time and Failures Analysis

In this section we analyze the relationship between the inter-replica RTTs, the lease du-
ration, and the maximum window of write unavailability after a lease holder crashes.

The guard period fgua.q (Section 4.3.5) must be larger than the maximum round-trip
time between any two replicas; otherwise, the soon-to-be lease holder will reject the
subsequent promise when it arrives. The lease duration ?j.s, on the other hand, can
be arbitrarily small because grantors can send the lease renewal traffic “blind”—that is,
without knowing whether or not its previous lease renewals had been received success-
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fully. However, for renewals to be consistently successful even when messages are lost
and retransmitted, the lease duration should be higher than one RTT.

A grantor will stop issuing new leases once it believes a replica is down, as indicated
by a failure to reply to some previous message. Such a message loss can only be detected
after (at least) one round-trip time between the grantor and grantee. In practice, a grantor
will likely wait some additional time before believing a replica failed. We term this total
time, from the instant that a replica could have failed to the time its grantor stops issuing
lease renewals, the “grace period” {grce.

At the end of the grace period, the grantors will conclude that the node in question
has crashed. The grantors can exclude the crashed node from the lease configuration
state immediately, but they cannot update any objects leased by the crashed node until
they can be certain the crashed (or partitioned) node will not read its objects locally. We
term this time ., and it is calculated as follows: in the worst case, the grantor sent
a promise right before the grace period expired, and therefore, by the renewal logic, it
must wait for Zy,it = tguard + tiease before it can consider this promise expired.

The maximum period of write unavailability caused by a failed lease holder is there-
fore ticase + tgrace + twait = 2tiease + Lgrace 1 tguard. For wide-area setups, this will be on the
order of seconds (approximately 11 seconds for 2 seconds lease and grant periods and a
5 seconds grace period.)

After fgace €xpires, but before ¢, expires, the live replicas will initiate a lease con-
figuration change (Section 4.3.7) so that they can resume using leases after ¢,.; expires.

If the Paxos leader fails, the unavailability time will be the maximum of the time to
elect a leader and tgrace + twait-

4.3.9 Multi-object Operations and Batching

With quorum leases, different objects may be granted to different quorums. There-
fore, multi-object update operations must be synchronously acknowledged by a super-
quorum—the union of all quorums that lease an object updated by the multi-object opera-
tion. If such operations are frequent, this may affect the performance and the availability
of the system. A possible solution is to track those objects that are frequently updated
together and ensure they are always granted to the same quorum.

A similar problem arises with batching. Batching increases the throughput of Paxos
systems by grouping multiple concurrent operations in a single Paxos command. If these
operations update objects leased by different quorums, the batch must be accepted syn-
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chronously by the union of all corresponding quorums. To avoid this, replicas must sep-
arate objects granted to different quorums into different batches before proposing them.
Under heavy request load (usually the situation that warrants batching to sustain a high
throughput) there will usually be enough operations of each type for batching to still be
effective.

4.4 Evaluating Quorum Leases

We implemented quorum leases, classic leader leases and Megastore-type leases within
our Multi-Paxos system written in Go. Because our main focus is on the message and
round-trip time reductions (or increases) due to leasing in the wide area, we usually run
the system at throughput levels where the implementation details are not the bottleneck.
This reduces the importance of a specific choice of Paxos framework.

Because a major focus for all leasing strategies is to reduce latency in the wide area,
we implemented as part of our baseline the latency optimization described in [12] (and
in Section 3.11.3). This optimization reduces the commit latency perceived by clients that
are co-located with a replica other than the Multi-Paxos stable leader, by having other
replicas transmit their AcceptReplies to both the stable leader and to the replica near the
client. Thus, in the common case, the client does not need to wait the additional time
for a message to come back from the stable leader, which reduces commit time from four
one-way delays to three.

We implemented this optimization because, while it does not appear to be commonly
deployed, it is a straightforward algorithmic tweak that reduces commit latency and
therefore more accurately represents the state of the art of the write latency that can
be achieved by a Paxos-based system. This optimization benefits all three implementa-
tions (leader leases, Megastore-type leases, and quorum leases), but in some cases confers
slightly more of an advantage to traditional leader leases than to quorum or Megastore-
leases.

Without leases, the near-client replica will be able to commit as soon as it receives
| N /2| AcceptReplies, or | N /2| — 1 AcceptReplies and an Accept from the leader (because
it is implicit that the leader must have accepted too). With leases, the commit condition
is more strict: the replica closest to the client can commit an operation after receiving
Accept or AcceptReplies messages from all the replicas that hold the lease for the objects
updated by the operations (in addition to the previous condition that at least [N /2]
replicas in total signal that they have accepted).
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Jp CA OR VA IRL
Japan 0.4 120 120 180 270

California 04 20 85 150
Oregon 04 75 170
Virginia 04 92
Ireland 0.4

Table 4.1: Approximate round-trip times between data centers in milliseconds.

4.4.1 Evaluation Setup

We run our implementations of quorum leases, classic leader leases and Megastore-type
leases, both in a single Amazon EC2 cluster, and in a geo-distributed setting: five Multi-
Paxos replicas run in five Amazon EC2 data centers, located in Virginia, Northern Cali-
fornia, Oregon, Ireland and Japan. Ten clients are co-located (i.e., in the same data center)
with each replica. Replicas and clients run on large Amazon EC2 instances: two 64-bit
virtual cores with two EC2 Compute Units each and 7.5 GB of memory. The typical RTT
in an EC2 cluster is 0.4 ms. The round-trip times between data centers are summarized
in Table 4.1.

4.4.2 The Workload

In our experiments, we use Multi-Paxos to replicate a key-value store. Lacking access
to, e.g., user traces from a major Internet service, we use the YCSB [15] key-value work-
load to benchmark it.* Every client in our system proposes Put and Get operations with
keys drawn from either a Zipf distribution (with an exponent of 0.99—the default YCSB
implementation of a Zipf generator) or a uniform distribution. For the Zipf distribution,
the most popular items differ across data centers: the sequence of keys ordered by pop-
ularity is a different random permutation for each data center. We ran experiments for
two workload ratios of Puts to Gets—1:1 and 1:9—with each client choosing the operation
type at random. The skewed Zipf distribution is the ideal workload for quorum leases be-
cause clients in different data centers will mostly access different objects. The uniformly
distributed workload, on the other hand, is the worst case scenario for quorum leases
because an object is equally likely to be accessed by replicas that hold a lease for it as by
replicas that do not.

“For ease of integration with our implementation, we implemented a custom workload generator that
uses the same distributions as YCSB via a direct translation of the YCSB code into Go.
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4.43 Latency

We ran this workload in the wide area, for one hundred thousand keys’, with fifty si-
multaneous clients, ten at each of the five locations. Each client sends ten thousand
requests to the co-located replica, in a closed loop, and measures the latency (there are
thus 500,000 requests in total). For writes, clients are notified as soon as the operation has
been committed, so we do not wait for it to be executed. This is sufficient to ensure strict
serializability: after receiving the commit notification, the client can safely assume that
any subsequent operations (proposed by itself or other clients) will be globally ordered
after its write. A read, on the other hand, is executed before notifying the client, so that
the read value can be returned with the notification.

In all experiments, the Multi-Paxos leader is in California. Based on the round-trip
times shown in Table 4.1, California is the data center closest to the center.

We set the lease parameters as follows: the lease duration was 2 seconds, every
grantor renewed the current lease after 500 milliseconds, and the lease configuration
was updated every 10 seconds.

The cumulative distribution of latencies, separate for reads and writes, is presented in
Figure 4.5 for all three lease strategies: quorum leases, single-leader lease, and Megastore-
type leases. For quorum leases we run both Zipf-distributed and uniformly distributed
workloads. For the skewed workload, we let the system adapt for 5000 requests from
each client before we begin measuring latencies. The ratio of reads to writes is 1:1. This
high frequency of writes increases the chance that reads will have to wait for concurrent
writes to the same object to finish before they can execute, so, for completeness, we also
present a summary of quorum lease results for the 9:1 read to write ratio in Table 4.2 (the
other two leasing strategies benefit only marginally from this workload change, their
read latencies being alread very low and very high, respectively).

°A larger key space would be advantageous for quorum leases, making it less likely for a key to be
accessed by a non-lease-holder.
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Figure 4.5: CDFs of client-observed latency for each site, with all three lease techniques:
quorum lease (QL), single leader lease (LL), and Megastore-type lease (ML). QL-uniform
corresponds to quorum leases for a uniformly-distributed workload. The read-to-write
ratio in these experiments was 1:1. The Multi-Paxos leader is always located in Califor-
nia. Note the log scale on the X axis.
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Fast local reads
Japan 81%
California 95%
Oregon 89%
Virginia 89%
Ireland 81%

Table 4.2: Percentages of fast local reads (< 10 ms) for wide-area quorum leases with 10%
writes and 90% reads, Zipf-distributed.

The single leader lease provides the best write performance because the leader can
always choose the fastest quorum for committing a write. The leader is the sole owner of
the lease, so no particular other replica must be notified synchronously when an update
occurs. The fastest quorum always includes the replica closest to the client, to take full
advantage of the AcceptReplies forwarding optimization described at the beginning of this
section. This low write latency, however, comes at a cost: only the leader can read locally.
Thus, the single leader lease suffers mean read latency at least two orders of magnitude
larger than that of the competing strategies.

The Megastore-type lease allows every replica to read any object locally, but requires
proposers to notify all other replicas synchronously before committing a write. Typical
(95%) read latencies are under 10 ms—one to two orders of magnitude faster than when
communication with a remote data center is required. A small percentage of read re-
quests are delayed by concurrent writes to the same objects: when a write is ongoing, a
replica must delay interfering reads until it can be sure that the write will be committed
(i.e., typically until it has received a commit notification). The price of this near-optimal
read performance is increased write latency, by more than 100 ms in most cases com-
pared to the other leasing schemes. Each replica must wait for the replica farthest away
to acknowledge an update before committing it and notifying the client. Furthermore,
this scheme incurs more risk of unavailability for writes: any unresponsive replica will
prevent all updates from progressing until the replica’s lease expires.

Quorum leases are a compromise between the two previous schemes. Over 80% of
reads at every site are performed locally. Over 70% of updates have the minimum latency
achievable by a geo-distributed Multi-Paxos system, matching that provided by the single
leader lease, and 2% to 3x faster (i.e. 100 to 200 milliseconds lower latency) than writes
with the Megastore approach. Because all replicas are likely to be part of at least one
quorum lease, any replica failure will cause some unavailability for writes. However,
this does not affect all writes (as it would for Megastore-type leases), but only writes to
the objects granted to the failed replica.
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Figure 4.6: Local-area read and write throughput for different leasing strategies. The
“Uniformly-distributed reads” for quorum leases corresponds to the situation when
clients do not know which replicas can read locally which objects. Error bars repre-
sent 95% confidence intervals.

The worst scenario for quorum leases is that when the workload is uniformly dis-
tributed (also presented in Figure 4.5). For that experiment, we set the quorum leases
statically, based on geographical proximity: one lease includes the replicas in California,
Japan and Oregon, the other includes California, Virginia and Ireland. Each leases half
the key space. As expected, approximately half the request at each location will therefore
have the minimum latency, while the other half will exhibit the worst case latency.

4.4.4 Throughput in a Cluster

While our focus is on wide-area replication, we evaluate the throughput of the three
leasing strategies in a local-area cluster as well. Figure 4.6 compares the maximum read
and write throughputs achieved with all three leasing strategies. For quorum leases, we
present results for two situations: (1) different objects are popular at different replicas—
i.e.,, when trying to read a certain object, all clients know which replica has a lease for that
object; and (2) clients are oblivious of lease assignment, and direct their reads uniformly
at random across all replicas.

Megastore leases have the best read throughput, narrowly surpassing quorum leases
when clients are aware of lease assignments, and 4 x higher than single-leader leases. Be-
cause we use batching to commit writes (the leader batches up to 5000 updates at a time),
the difference in messaging patterns between the three lease implementations is less im-
portant, so their write throughputs are approximately the same. Quorum leases have
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a 10% lower write throughput because we must separate the updates into per-quorum
batches (i.e., only updates leased by the same quorum are batched together). In the local
cluster, Megastore leases achieve higher throughput, at the cost of suffering more impact
upon node failure: all leases will be stalled when any replica becomes available, whereas
with a quorum lease, an unresponsive replica will stall only updates for the objects it
has leased. In general, our results suggest that the differences between Megastore-type
leases and quorum leases are less important in a local cluster than they are in the wide
area, if throughput is the main consideration.

4.4.5 Discussion

These experiments evaluated only single-object operations. For multi-object operations,
if the same objects are usually accessed together, then they will be leased together, and
therefore the corresponding read and write latencies will be similar to those reported
here. On the other hand, the write latency of multi-object writes that target objects leased
by different quorums will approach that of the Megastore leases. If such operations are
common, and multi-object reads that span quorums are also common, the Megastore
lease may be a more suitable.

4.5 Related Work

Time-based leases have been introduced as a way of improving the latency of reads while
maintaining strong data consistency in distributed systems [5, 10, 21, 24, 58]. Quorum
leases preserve this goal in the context of Paxos replicated state machines.

Previous systems have used leases to improve the read performance of Paxos systems
in two ways. First, Chandra et al. [13] proposed the Paxos leader lease (also used in
Chubby [10] and Spanner [16]), which gives the Multi-Paxos leader the ability to perform
strongly-consistent reads locally, for a specified time interval. Second, Megastore [7], a
wide-area deployment of Paxos, effectively grants every replica in the system a lease
for every object: a write in Megastore must synchronously send an invalidate message
to every replica that has not accepted the write—so that the remote replica knows its
copy of the object (entity group, in Megastore terminology) is stale. As shown in our
evaluation, the leader lease and the Megastore lease are at opposite extremes of the design
spectrum for leases in Paxos: leader leases allow for optimal Multi-Paxos write latency,
while Megastore leases sacrifice write latency for optimal read latency at every replica.
By contrast, quorum leases allow for a more fine-grained exploration of the design space:
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leases can be granted to any subset of replicas and they refer to only a specified portion of
the replicated state, so that different replicas can hold different leases at the same time.
For a geo-distributed replicated state machine that observes locality in the popularity
of its replicated objects, quorum leases can approximate the benefits of both previous
approaches simultaneously. This comes at the expense of simplicity, because quorum
leases are more complex to manage.

Spanner [16] is a leader-leased, Paxos-based system that uses TrueTime—accurate
clock synchronization clock synchronization that requires special hardware—to improve
geo-distributed read performance. It does so in two ways: first, it improves the manage-
ment of leader leases, by taking advantage of their synchronized clocks. Second, it can let
remote replicas read locally by issuing snapshot reads, at timestamps speficied by clients.
Like a quorum lease, a snapshot read executes locally. Unlike a quorum lease, however, a
snapshot read may not be up-to-date with respect to updates already committed at other
replicas.

Other systems, such as ZooKeeper [25] and MDCC [30], allow fast local reads, but
make no freshness guarantees (i.e., the results may be stale).

Previous systems have used Paxos as a mechanism for granting leases: FaTLease [26]
and PaxosLease [54] are replicated state machines that grant leases to individual clients.
They use Paxos to ensure the fault tolerance of the lease-management system, and take
advantage of the perishable property of leases to avoid logging Paxos state to disk. By
contrast, quorum leases are granted to the replicas themselves (not the clients) based on
the popularity of replicated objects, and they can be granted to multiple entities (replicas)
at the same time instead of just one. Furthermore, unlike FaTLease and PaxosLease,
quorum leases specify how leases are enforced, not just how they are granted.

The use of leases in improving the performance of distributed protocols is not re-
stricted to Paxos. Zzyzx [22] is a Byzantine fault tolerant system that gives clients ex-
clusive locks to objects. It does so in order to preclude competing client requests, and
thus to reduce the common commit path by one message delay (half a round trip) when
compared to Zyzzyva [29]. Compared to the mechanism in Zzyzx, quorum leases are
granted to the replicas themselves, so multiple (or all) clients can benefit from each lease,
and solve a different problem: allowing single-replica consistent reads, an operation gen-
erally incompatible with Byzantine fault tolerant systems.

Per-client leases are also used in systems such as Chubby [10] and Farsite [5] to allow
clients to operate on cached sub-parts of the replicated data (i.e., cached files).

Quorum leases are superficially similar to the notion of preferred quorums [4, 17]. The
key distinction is that a quorum lease constitutes a requirement to synchronously update
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each lease holder, while preferred quorums are a performance optimization. In Q/U [4],
clients try to communicate with the same preferred quorum of replicas every time they
want to access a particular object, to increase the chance that those replicas are up-to-
date with all the latest versions. Quorum leases, by contrast, guarantee that replicas in
the lease holder subset are up-to-date, so clients can read from any one replica in that
subset and not an entire quorum. HQ replication [17] makes only a quorum of replicas
execute the full protocol in failure-free situations to reduce the messaging overhead.

4.6 Conclusion

By exploiting the existing messaging requirements for Paxos operations, quorum leases
provide a natural, and therefore efficient, mechanism for allowing local reads in a Paxos-
replicated system without substantially increasing the delay for write operations to com-
mit. Our evaluation on geo-distributed replicas in Amazon EC2 data centers shows that
these leases work well in practice: More nodes can perform reads locally than with sim-
ple master-only leases, but the write latency increases only modestly and only does so
for typically fewer than 10-20% of operations. We therefore believe that quorum leases
are an excellent general-purpose leasing mechanism for Paxos-based systems.

Although we have presented quorum leases only in the context of Multi-Paxos, the
most widely used variant of Paxos, we believe they can also be applied to other Paxos
variants [37, 45, 47], as well as systems using similar majority-consensus replication pro-
tocols [25]. Leaderless Paxos variants, in particular, such as EPaxos and Mencius are a
good fit for quorum leases because they do not require a single replica to be part of every
write quorum—this gives more flexibility in choosing lease quorums, and benefits both
write latency and availability, especially with EPaxos, which optimizes for wide-area
Paxos commit latency.

99



100



Chapter 5

Conclusion and Future Work

State machine replication is one of the most important building blocks of large-scale
distributed systems. This thesis improves the state of the art in the design of strongly
consistent replicated state machines.

We introduced Egalitarian Paxos, a new state machine replication protocol that al-
lows for SMR implementations with very high update performance. Egalitarian Paxos is
the first protocol to achieve optimal wide-area latency, and simultaneously enable high
update throughput and constant availability. Its decentralized design substantially im-
proves the ability of the system to tolerate slow replicas or slow links.

Given the increasing popularity of geo-replicated databases, the main benefit of Egal-
itarian Paxos is its low wide-area latency. Previous latency optimizations for state ma-
chine replication [36, 37] or consistent broadcast protocols [50, 59] minimize the total
number of message delays until commit. EPaxos, by contrast, has the same minimal
number of inter-replica message delays—which correspond to messages across the wide-
area—but one more client-to-replica message delay, which in the wide area is negligible
because clients are often co-located with the closest replicas in the same data centers.
This allows EPaxos to also minimize the number of replicas that must be contacted, thus
achieving lower latency.

If latency is important for updates, it is perhaps even more important for reads, be-
cause many databases have a high read-to-write ratio. The mechanism introduced in this
thesis, quorum read leases, generalizes previously proposed lease-based read optimiza-
tions for Paxos. The result is the ability to perform very low latency, highly-consistent
local reads at every replica, with only a minimal impact on write performance.
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Quorum read leases are highly effective when the workload exhibits locality—different
objects being popular at different replicas. This is likely the case for those setups that
straddle multiple continents and time zones.

Besides the performance benefits, EPaxos and quorum leases offer practical imple-
mentation benefits. For example, they obviate such implementation problems as leader
election or leader placement. Furthermore, achieving high throughput and high perfor-
mance resiliency requires less engineering effort than with previous algorithms, because
EPaxos is designed for load balance and maximum flexibility in choosing quorums. Look-
ing forward, this work would be complemented by taking more of these practical state
machine replication implementation aspects and addressing them algorithmically. One
example would be proactive reconfigurations—replacing possibly failed replicas proac-
tively with minimum throughput disruption so that the replicated state machine can
tolerate many (non-concurrent) failures in a short period of time.
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APPENDIX

The TLA+ specification of Optimized Egalitarian Paxos.

MODULE EgalitarianPaxos

ExTENDs Naturals, FiniteSets

Max(S) = 1¥S = {} THEN O ELSE CHOOSEi € S:Vj € S:j<i

Constant parameters:
Commands: the set of all possible commands
Replicas: the set of all EPaxos replicas
FastQuorums(r): the set of all fast quorums where r is a command leader
SlowQuorums(r): the set of all slow quorums where r is a command leader

coNsTaNTs Commands, Replicas, FastQuorums(-), SlowQuorums(-), MaxBallot
AssuME IsFiniteSet(Replicas)

Quorum conditions: (simplified)

ASSUME V1 € Replicas :
A SlowQuorums(r) C suBseT Replicas
AV SQ € SlowQuorums(r) :
At € SQ
A Cardinality(SQ) = (Cardinality(Replicas) = 2) 4+ 1

AssUME Vr € Replicas :
A FastQuorums(r) C suBseT Replicas
AVFQ € FastQuorums(r) :
At e FQ
A Cardinality(FQ) = (Cardinality(Replicas) + 2) +
((Cardinality (Replicas) +2) + 1) + 2

Special none command

A
none = CHOOSE ¢ : ¢ ¢ Commands

The instance space

Instances = Replicas x (1 .. Cardinality(Commands))
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The possible status of a command in the log of a replica.

Status = {“not-seen”, “pre-accepted”, “accepted”, “committed”}

All possible protocol messages:

Message 2

[type : {"pre-accept”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas,

cmd : Commands U {none}, deps : suBset Instances, seq : Nat]
U [type : {“accept”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas,

cmd : Commands U {none}, deps : sUBSET Instances, seq : Nat]
U [type : {"“commit"},

inst : Instances, ballot : Nat x Replicas,

cmd : Commands U {none}, deps : suBseT Instances, seq : Nat)
U [type : {“prepare”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas]
U [type : {"pre-accept-reply”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas,

deps : suBseT Instances, seq : Nat, committed : suBseT Instances|
U [type : {“accept-reply"}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas]
U [type : {"prepare-reply”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas, prev_ballot : Nat x Replicas,

status : Status,

cmd : Commands U {none}, deps : suBseT Instances, seq : Nat]
U [type : {“try-pre-accept”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas,

cmd : Commands U {none}, deps : sUBSET Instances, seq : Nat]
U [type : {“try-pre-accept-reply”}, src : Replicas, dst : Replicas,

inst : Instances, ballot : Nat x Replicas, status : Status U {*OK"}]

Variables:

comdLog = the commands log at each replica

proposed = command that have been proposed

executed = the log of executed commands at each replica

sentMsg = sent (but not yet received) messages

crtInst = the next instance available for a command leader

leaderOfInst = the set of instances each replica has started but not yet finalized
committed = maps commands to set of commit attributs tuples

ballots = largest ballot number used by any replica

preparing = set of instances that each replica is currently preparing (i.e. recovering)
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VARIABLES cndLog, proposed, executed, sentMsg, crtInst, leaderOflnst,
committed, ballots, preparing

TypeOK =
A cmdLog € [Replicas — SUBSET [inst : Instances,
status : Status,
ballot : Nat x Replicas,
cmd : Commands U {none},
deps : SUBSET Instances,

seq : Nat]]

A proposed € suBSET Commands

A executed € [Replicas — suBseT (Nat x Commands)]

A sentMsg € sUBSET Message

A crtlnst € [Replicas — Nat]

A leaderOfInst € [Replicas — suBseT Instances]

A committed € [Instances — suBSET ((Commands U {none}) x
(suBseT Instances) x
Nat)]

A ballots € Nat

A preparing € [Replicas — sUBSET Instances]

vars = (cmdLog, proposed, executed, sentMsg, crtInst, leaderOfInst,
committed, ballots, preparing)

Initial state predicate

Init =
A sentMsg = {}
A cmdLog = [r € Replicas — {}]
A proposed = {}
A executed = [r € Replicas — {}]
AcrtInst = [r € Replicas — 1]
A leaderOfInst = [r € Replicas — {}]
A committed = [i € Instances — {}]
A ballots =1
A preparing = [r € Replicas — {}]

Actions

StartPhasel(C, cleader, Q, inst, ballot, oldMsg) =
LET newDeps = {rec.inst : rec € cmdLog][cleader]}
newSeq = 1+ Max({t.seq:t € cmdLog|cleader]})
oldRecs = {rec € cmdLog|cleader] : rec.inst = inst }N
A cmdLog’ = [emdLog except ![cleader] = (@ \ oldRecs) U

{[inst > inst,
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status — “pre-accepted”,

ballot — ballot,

cmd +— C,

deps — newDeps,

seq > newSeq]}]
A leaderOfInst’ = [leaderOfInst xcept ![cleader] = @ U {inst }]
A sentMsg’ = (sentMsg \ oldMsg) U

[type : {“pre-accept”},

src  : {cleader},

dst :Q\{cleader},

inst : {inst},

ballot : {ballot},

cmd : {C},

deps : {newDeps},

seq :{newSeq}]

Propose(C, cleader) =

LT newlnst = (cleader, crtInst[cleader])
newBallot = (0, cleader)

IN A proposed’ = proposed U {C}
A (3Q € FastQuorums(cleader) :

StartPhasel(C, cleader, Q, newlnst, newBallot, {}))

A crtInst’ = [crtInst Except ![cleader] = @ + 1]
A\ UNCHANGED (executed, committed, ballots, preparing)

A

PhaselReply(replica)
Jmsg € sentMsg :
A msg.type = “pre-accept”
A msg.dst = replica
A 1ET oldRec = {rec € emdLog[replica] : rec.inst = msg.inst }In
A (Vrec € oldRec :
(rec.ballot = msg.ballot V rec.ballot[1] < msg.ballot[1]))
A LET newDeps = msg.deps U
({t.inst : t € cmdLog][replical} \ {msg.inst})
newSeq = Max({msg.seq,
1+ Max({t.seq : t € cmdLog|replical})})
instCom = {t.inst : t € {tt € cmdLog[replica :
tt.status € {“committed”, “executed”}}} 1N
A cmdLog’ = [emdLog exceprt ![replica] = (@ \ oldRec) U
{[inst + msg.inst,
status — “pre-accepted”,
ballot — msg.ballot,
cmd  +— msg.cmd,
deps +— newDeps,
seq > newSeq]}]
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A sentMsg' = (sentMsg \ {msg}) U
{[type +> “pre-accept-reply”,
src > replica,
dst +— msg.src,
inst + msg.inst,
ballot — msg.ballot,
deps + newDeps,
seq +— newSeq,
committed — instCom]}
A UNCHANGED (proposed, crtlnst, executed, leaderOfInst,
committed, ballots, preparing)

PhaselFast(cleader, i, Q) =
A1 € leaderOflnst[cleader]
A Q € FastQuorums(cleader)
A Jrecord € cmdLog[cleader] :
A record.inst = i
A record.status = “pre-accepted”
A record.ballot[1] = 0
ALET replies = {msg € sentMsg :
A msg.inst =i
A msg.type = “pre-accept-reply”
A msg.dst = cleader
A msg.src € Q
A msg.ballot = record.ballot }1n
A (Vreplica € (Q\ {cleader}) :
Jmsg € replies : msg.src = replica)
A (Vrl, r2 € replies :
Arl.deps = r2.deps
Arl.seq = r2.seq)
A LETT = CHOOSET € replies : TRUEIN
A 1ET localCom = {t.inst :
t € {tt € cmdLog][cleader] :
tt.status € {“committed”, “executed”}}}
extCom = uNION {msg.committed : msg € replies}in
(r.deps C (localCom U extCom))
A cmdLog’ = [emdLog exceprt ![cleader] = (@ \ {record}) U
{[inst i,
status — “committed”,
ballot — record.ballot,
cmd  +— record.cmd,
deps > r.deps,
seq > r.seq)}]
A sentMsg’ = (sentMsg \ replies) U
{[type — “commit”,
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inst —i,

ballot + record.ballot,

cmd  — record.cmd,

deps > r.deps,

seq > r.seq|}
A leaderOfInst’ = [leaderOfInst ExcepT ![cleader] = @ \ {i}]
A committed’ = [committed ExcepT ![i] =

@ U {(record.cmd, r.deps, r.seq)}|

A UNCHANGED (proposed, executed, crtInst, ballots, preparing)

PhaselSlow(cleader, i, Q) =
A1 € leaderOfInst[cleader]
A Q € SlowQuorums(cleader)
A Jrecord € cmdLog[cleader] :
A record.inst = i
A record.status = “pre-accepted”
ALET replies = {msg € sentMsg :
A msg.inst =1
A msg.type = “pre-accept-reply”
A msg.dst = cleader
A msg.src € Q
A msg.ballot = record.ballot }1n
A (Vreplica € (Q\ {cleader}) : 3msg € replies : msg.src = replica)
A 1LET finalDeps = UNION {msg.deps : msg € replies}
finalSeq = Max({msg.seq : msg € replies} )N
A cmdLog’ = [cmdLog exceprt ![cleader] = (@ \ {record}) U
{[inst i,
status — “accepted”,
ballot — record.ballot,
cmd > record.cmd,
deps > finalDeps,
seq  +— finalSeq]}]
A 38Q € SlowQuorums(cleader) :
(sentMsg’ = (sentMsg \ replies) U
[type : {“accept”},
src : {cleader},
dst : SQ\ {cleader},
inst : {i},
ballot : {record.ballot },
emd : {record.cmd},
deps : {finalDeps},
seq : {finalSeq}])
A UNCHANGED (proposed, executed, crtInst, leaderOfInst,
committed, ballots, preparing)
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Phase2Reply (replica) =
Jmsg € sentMsg :
A msg.type = “accept”
A msg.dst = replica
A 1ET oldRec = {rec € cmdLog[replica)] : rec.inst = msg.inst }In
A (Yrec € oldRec : (rec.ballot = msg.ballot V
rec.ballot[1] < msg.ballot[1]))
A cmdLog’ = [emdLog except ! [replica] = (@ \ oldRec) U
{[inst > msg.inst,
status — “accepted”,
ballot — msg.ballot,
cmd  — msg.cmd,
deps +— msg.deps,
seq > msg.seq]}]
A sentMsg' = (sentMsg \ {msg}) U
{[type — “accept-reply”,
src > replica,
dst +— msg.src,
inst +— msg.inst,
ballot — msg.ballot]}
A UNCHANGED (proposed, crtlnst, executed, leaderOfInst,
committed, ballots, preparing)

Phase2Finalize(cleader, i, Q) =
A1 € leaderOflnst[cleader]
A Q € SlowQuorums(cleader)
A Jrecord € cmdLog[cleader] :
A record.inst = i
A record.status = “accepted”
A LET replies = {msg € sentMsg :
A msg.inst = i
A msg.type = “accept-reply”
A msg.dst = cleader
A msg.src € Q
A msg.ballot = record.ballot }1n
A (Vreplica € (Q\ {cleader}) : Imsg € replies :
msg.src = replica)
A cmdLog’ = [cmdLog except ![cleader] = (@ \ {record}) U
{[inst i,
status — “committed”,
ballot — record.ballot,
cmd  — record.cmd,
deps > record.deps,
seq + record.seq]}]
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A sentMsg' = (sentMsg \ replies) U
{[type — “commit”,
inst =1,
ballot + record.ballot,
cmd  — record.cmd,
deps  + record.deps,
seq  + record.seq]}
A committed’ = [committed ExcepT ![i] = @ U
{{record.cmd, record.deps, record.seq)}|
A leaderOfInst’ = [leaderOfInst ExcepT ![cleader] = @ \ {i}]
A UNCHANGED (proposed, executed, crtInst, ballots, preparing)
Commit(replica, cmsg) =
LeT oldRec = {rec € cmdLog[replica] : rec.inst = cmsg.inst }1N
AVrec € oldRec : (rec.status ¢ {“committed”, “executed”} A
rec.ballot[1] < cmsg.ballot[1])
A cmdLog’ = [emdLog excepT ![replica] = (@ \ oldRec) U
{[inst — cmsg.inst,
status +— “committed”,
ballot — cmsg.ballot,

cmd — cmsg.cmd,
deps — cmsg.deps,
seq — cmsg.seq| }]

A committed’ = [committed EXCEPT ![cmsg.inst] = @ U
{(cmsg.cmd, cmsg.deps, cmsg.seq)}]
A UNCHANGED (proposed, executed, crtInst, leaderOfInst,
sentMsg, ballots, preparing)

Recovery actions

SendPrepare(replica, i, Q) =
A1 ¢ leaderOflInst[replica]
A ballots < MaxBallot
A=(3rec € cmdLog[replica] :
Arec.inst =i

Arec.status € {"“committed”, “executed”})
A sentMsg’ = sentMsg U

[type :{"prepare”},

src  : {replica},
dst :Q,
inst :{i},

ballot : {(ballots, replica)}]
A ballots’ = ballots + 1

A preparing’ = [preparing Except ![replica] = @ U {i}]
A UNCHANGED (cmdLog, proposed, executed, crtlnst,
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leaderOflInst, committed)

ReplyPrepare(replica) =
Jmsg € sentMsg :
A msg.type = “prepare”
A msg.dst = replica
AV Jrec € cmdLog[replical :
A rec.inst = msg.inst
A msg.ballot[1] > rec.ballot[1]
A sentMsg’ = (sentMsg \ {msg}) U
{[type > “prepare-reply”,
src > replica,
dst — msg.src,
inst > rec.inst,
ballot — msg.ballot,
prev_ballot — rec.ballot,
status — rec.status,
cmd > rec.cmd,
deps > rec.deps,
seq > rec.seq)}
A emdLog’ = [emdLog except ![replica] = (@ \ {rec}) U
{[inst > rec.inst,
status — rec.status,
ballot — msg.ballot,
cmd  +— rec.cmd,
deps > rec.deps,
seq  + rec.seq|}]
A TF rec.inst € leaderOflInst[replica] THEN
A leaderOfInst’ = [leaderOfInst ExcepT ![replica] =
@\ {rec.inst}]
A UNCHANGED (proposed, executed, committed,
crtInst, ballots, preparing)
ELSE UNCHANGED (proposed, executed, committed, crtInst,
ballots, preparing, leaderOfInst)

V A=(3rec € cmdLog[replical : rec.inst = msg.inst)
A sentMsg’ = (sentMsg \ {msg}) U
{[type — “prepare-reply”,
src  +— replica,
dst +— msg.src,
inst +— msg.inst,
ballot — msg.ballot,
prev_ballot — (0, replicay),
status — “not-seen”,
cmd > none,
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deps = {}7
seq 0]}
A cmdLog’ = [cmdLog EXCEPT ![replical = @ U
{[inst > msg.inst,
status — “not-seen”,
ballot — msg.ballot,
cmd  +— none,
deps +— {},
seq > 0]}]
A UNCHANGED (proposed, executed, committed, crtInst, ballots,
leaderOflnst, preparing)

PrepareFinalize(replica, i, Q) =

A1 € preparing[replical
A Jrec € cmdLog|replica) :
Arec.inst =1
Arec.status ¢ {“committed”, “executed”}
A LET replies = {msg € sentMsg :
A msg.inst = i
A msg.type = “prepare-reply”
A msg.dst = replica
A msg.ballot = rec.ballot }1n
A (Vrep € Q:3Jmsg € replies : msg.src = rep)
AV dcom € replies :
A (com.status € {“committed”, “executed”})
A preparing’ = [preparing ExcepT ![replica] = @ \ {i}]
A sentMsg’ = sentMsg \ replies
A uNcHANGED (cmdLog, proposed, executed, crtlnst, leaderOfInst,
committed, ballots)
V' A =(Fmsg € replies : msg.status € {“committed”, “executed”})
A Jacc € replies :
A acc.status = “accepted”
A (Vmsg € (replies \ {acc}) :
(msg.prev_ballot[1] < acc.prev_ballot[1] V
msg.status # "accepted”))
A sentMsg’ = (sentMsg \ replies) U
[type :{“accept"},

src  : {replica},
dst : Q\ {replica},
inst :{i},

ballot : {rec.ballot},
cmd : {acc.cmd},
deps : {acc.deps},
seq : {acc.seq}]
A cmdLog’ = [emdLog except ![replical = (@ \ {rec}) U
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{[inst i,
status — “accepted”,
ballot — rec.ballot,
cmd  +— acc.cmd,
deps +— acc.deps,
seq > acc.seq)}]
A preparing’ = [preparing ExcepT ! [replica] = @ \ {i}]
A leaderOflInst’ = [leaderOfInst xcepT ![replica] = @ U {i}]
A UNCHANGED (proposed, executed, crtInst, committed, ballots)
V' A —=(Imsg € replies :
msg.status € {“accepted”, “committed”, “executed”})
A LET preaccepts = {msg € replies : msg.status = “pre-accepted” } N
(V AVpl, p2 € preaccepts :
pl.cmd = p2.cmd A pl.deps = p2.deps A pl.seq = p2.seq

A —(3pl € preaccepts : pl.src =1i[1])
A Cardinality(preaccepts) > Cardinality(Q) — 1
A LET pac = CHOOSE pac € preaccepts : TRUEIN

A sentMsg’ = (sentMsg \ replies) U
[type :{“accept”},

src  : {replica},
dst :Q\ {replica},
inst :{i},

ballot : {rec.ballot},
cmd : {pac.cmd},
deps : {pac.deps},
seq : {pac.seq}]
A cmdLog’ = [emdLog excepT ![replical = (@ \ {rec}) U
{[inst —1i,
status — “accepted”,
ballot — rec.ballot,
cmd  +— pac.cmd,
deps > pac.deps,
seq > pac.seq]}]
A preparing’ = [preparing EXCEPT ![replical = @ \ {i}]
A leaderOfInst’ = [leaderOfInst xcepT ![replica] = @ U {i}]
A UNCHANGED (proposed, executed, crtInst, committed, ballots)
V AVpl, p2 € preaccepts : pl.cmd = p2.cmd A
pl.deps = p2.deps A
pl.seq = p2.seq
A —(3pl € preaccepts : pl.sre = i[1])
A Cardinality(preaccepts) < Cardinality(Q) — 1
A Cardinality (preaccepts) > Cardinality(Q) + 2
A LET pac = CHOOSE pac € preaccepts : TRUEIN
A sentMsg’ = (sentMsg \ replies) U
[type :{“try-pre-accept’},
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src  : {replica},
dst :Q,
inst : {i},
ballot : {rec.ballot},
cmd : {pac.cmmd},
deps : {pac.deps},
seq :{pac.seq}]
A preparing’ = [preparing Except ![replica] = @ \ {i}]
A leaderOfInst’ = [leaderOfInst ExcepT ![replica] = @ U {i}]
A UNCHANGED (cmdLog, proposed, executed,
crtInst, committed, ballots)
V A V3dpl, p2 € preaccepts : pl.cmd # p2.cmd V
pl.deps # p2.deps V
pl.seq # p2.seq
V 3pl € preaccepts : pl.src = i[1]
V Cardinality(preaccepts) < Cardinality(Q) + 2
A preaccepts # {}
ALET pac = CHOOSE pac € preaccepts : pac.cmd # nonein
A StartPhasel(pac.cmd, replica, Q, i, rec.ballot, replies)
A preparing’ = [preparing Except ![replica] = @ \ {i}]
A UNCHANGED (proposed, executed, crtInst, committed, ballots))
V  AVmsg € replies : msg.status = “not-seen”
A StartPhasel(none, replica, Q, i, rec.ballot, replies)
A preparing’ = [preparing ExCepT ![replica] = @ \ {i}]
A UNCHANGED (proposed, executed, crtInst, committed, ballots)

ReplyTryPreaccept(replica) =
Jtpa € sentMsg :
A tpa.type = “try-pre-accept”
A tpa.dst = replica
ALET oldRec = {rec € cmdLog[replica] : rec.inst = tpa.inst N
A Vrec € oldRec : rec.ballot[1] < tpa.ballot[1] A
rec.status ¢ {“accepted”, “committed”, “executed”}
AV (Frec € cmdLog|replica] \ oldRec :
A tpa.inst ¢ rec.deps
A Vrec.inst ¢ tpa.deps
V rec.seq > tpa.seq
A sentMsg’ = (sentMsg \ {tpa}) U
{[type > “try-pre-accept-reply”,
src > replica,
dst  — tpa.src,
inst + tpa.inst,
ballot — tpa.ballot,
status — rec.status]})
A UNcHANGED (cmdLog, proposed, executed, committed, crtInst,
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ballots, leaderOfInst, preparing)
V A (Vrec € cmdLog|replica] \ oldRec :
tpa.inst € rec.deps V (rec.inst € tpa.deps A
rec.seq < tpa.seq))
A sentMsg’ = (sentMsg \ {tpa}) U
{[type > “try-pre-accept-reply”,
src > replica,
dst  +— tpa.src,
inst > tpa.inst,
ballot — tpa.ballot,
status — “"OK"]}
A emdLog’ = [emdLog except ! [replica] = (@ \ oldRec) U
{[inst +> tpa.inst,
status — “pre-accepted”,
ballot — tpa.ballot,
cmd  +— tpa.cmd,
deps > tpa.deps,
seq > tpa.seq|}]
A UNCHANGED (proposed, executed, committed, crtInst, ballots,
leaderOflInst, preparing)

FinalizeTryPreAccept(cleader, i, Q) =
Jdrec € cmdLog|cleader] :
Arec.inst =1
A LET tprs = {msg € sentMsg : msg.type = "try-pre-accept-reply” A
msg.dst = cleader A msg.inst =i A
msg.ballot = rec.ballot }1n
A Vr e Q:3tpr € tprs : tpr.src =71
AV AVtpr € tprs: tpr.status = “OK"
A sentMsg' = (sentMsg \ tprs) U
[type :{“accept”},

src  : {cleader},
dst  :Q\ {cleader},
inst :{i},

ballot : {rec.ballot},
emd : {rec.cmd},
deps : {rec.deps},
seq : {rec.seq}]
A cmdLog’ = [cmdLog excert ![cleader] = (@ \ {rec}) U
{[inst i,
status — “accepted”,
ballot — rec.ballot,
cmd > rec.cmd,
deps > rec.deps,
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seq > rec.seq)}]
A\ UNCHANGED (proposed, executed, committed, crtInst, ballots,
leaderOflnst, preparing)
V A Jtpr € tprs : tpr.status € {“accepted”, “committed”, “executed”}
A StartPhasel(rec.cmd, cleader, Q, i, rec.ballot, tprs)
A UNCHANGED (proposed, executed, committed, crtInst, ballots,
leaderOfInst, preparing)
V A dtpr € tprs: tpr.status = “pre-accepted”
AVtpr € tprs : tpr.status € {“OK", “pre-accepted”}
A sentMsg’ = sentMsg \ tprs
A leaderOfInst’ = [leaderOfInst except ![cleader] = @ \ {i}]
A UNCHANGED (cmdLog, proposed, executed, committed, crtInst,
ballots, preparing)

Action groups

CommandLeaderAction =

V (3C € (Commands \ proposed) :
Jcleader € Replicas : Propose(C, cleader))

V (cleader € Replicas : Jinst € leaderOflnst|cleader] :
V (3Q € FastQuorums(cleader) : PhaselFast(cleader, inst, Q))
V (3Q € SlowQuorums(cleader) : PhaselSlow(cleader, inst, Q))
V (3Q € SlowQuorums(cleader) : Phase2Finalize(cleader, inst, Q))
V (3Q € SlowQuorums(cleader) : FinalizeTryPreAccept(cleader, inst, Q)))

ReplicaAction =
Jreplica € Replicas :
(v PhaselReply(replica)

V Phase2Reply(replica)
V Jemsg € sentMsg : (cmsg.type = “commit” A Commit(replica, cmsg))
V 3i € Instances :

A crtInst[i[1]] > i[2] This condition states that the instance has

been started by its original owner

A 3Q € SlowQuorums(replica) : SendPrepare(replica, i, Q)
V ReplyPrepare(replica)
VvV 3i € preparing[replica] :

3Q € SlowQuorums(replica) : PrepareFinalize(replica, i, Q)
V ReplyTryPreaccept(replica))

Next action

A

Next =
V CommandLeaderAction
V ReplicaAction
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The complete definition of the algorithm

Spec £ Init A O[Next]yvars

Theorems

Nontriviality =
Vi € Instances :
O(V C € committed[i] : C € proposed V C = none)

Stability =
Vreplica € Replicas :
Vi € Instances :
vV C € Commands :
O((3recl € cmdLog|replical :

Arecl.inst =i

Arecl.cmd = C

Arecl.status € {“committed”, “executed"}) =

O(3rec2 € cmdLog|replica] :
Arec2.inst =i
Arec2.cmd = C
Arec2.status € {“committed”, “executed”}))

Consistency =
Vi € Instances :
O(Cardinality (committed[i]) < 1)

THEOREM Spec = (OTypeOK) A Nontriviality A Stability A Consistency
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