

→

F+
⌊
F+1
2

⌋

N

×

N

client request: Cmd

Prepare

R3

R1

R2

R4

R5

OK Accept (Cmd)

OK

OK Committed Cmd

OK

⌊N/2⌋ + 1

⌊N/2⌋+1

client request: Cmd

R3

R1(Leader)

R2

R4

R5

OK Committed Cmd

OK

Accept (Cmd)

N
Θ(N)

O(1)

Rid

i (i N) = Rid

A
B A

Θ(N)

Θ(N)

Θ(N2)

GB GB+

GB
GB+

⌊N/2⌋+ 1 ⌊N/2⌋+ 1

⌊N/2⌋+ 1 ⌈3N/4⌉

⌊N/2⌋+ 1 ⌈3N/4⌉

⌊N/2⌋+ 1 ⌊N/2⌋+ 1 N N

⌊N/2⌋+ 1 ⌊3N/4⌋

⌊N/2⌋+ 1 ⌊N/2⌋+ 1

GB GB+ ⌊2N/3⌋+ 1 ⌊2N/3⌋+ 1

⌊2N/3⌋+ 1 ⌊2N/3⌋+ 1

⌊3N/4⌋ ⌊2N/3⌋+ 1 N N ≤ 15

N

C1: update obj_A ACK C1

PreAccept C1

R3

R1

R2
Commit C1

R4

R5

OK C1

C2: update obj_B

PreAccept C2 OK C2 Commit C2

ACK C2

C3: update obj_A
ACK C3

PreAccept C3

R3

R1

R2
Commit C3

R4

R5

OK C3

C4: update obj_A

PreAccept C4 OK C4 Commit C4

ACK C4

 C3→C4

Accept C3(→C4) OK C3

→

F +
⌊
F+1
2

⌋
F

F = 2

F + 1

N = 2F + 1 F
R

R.1 R.2 R.3 R

N
N

γ γ
γ

γ δ
Σ Σ, γ, δ

Σ, δ, γ

t1 R
γ Q.i R γ Q.i
t2 > t1

γ δ

γ δ
δ γ
γ δ

2F N = 2F + 1

Phase 1: Establish ordering constraints Phase 2: Paxos-Accept

Commit

Fast
Path

Slow
Path

then

else

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({logL[Q][j].seq |

logL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | logL[Q][j].cmd ⇠ �}
4: logL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to every

replica in F \{L}, where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + logR[Q][j].seq |
logR[Q][j].cmd ⇠ �}

7: update deps� deps� [{(Q, j) |
logR[Q][j].cmd ⇠ �}

8: logR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: logL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: logR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i
21: logL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: logR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius

worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

In contrast, Generalized Paxos’s fast quorum size when
N = 3 is three. Its latency is therefore determined by a
round-trip to the farthest replica. The high 99%ile la-
tency experienced by Generalized Paxos is caused by

checkpoint commits. Furthermore, conflicts cause two
additional round trips in Generalized Paxos (for any num-
ber of replicas). Thus, in this experiment, EPaxos is not
affected by conflicts, but Generalized Paxos experiences

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
cy

 (
m

e
d
ia

n
 /
 9

9
%

)
[m

s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Q L.i L

.(b+ 1).Q .b.R Q

L.i

(.(b+ 1).Q, L.i) ⌊N/2⌋+ 1

R
R (γ, γ , γ ,)

(γ, γ , γ) L.i

R (γ, γ , γ ,)

(γ, γ , γ) L.i

R ⌊N/2⌋ (γ, γ , γ ,)

.0.L L.i L

(γ, γ , γ) L.i

R (γ, γ , γ ,)

γ L.i

L.i

R (.b.Q, L.i) Q

.b.Q .x.Y L.i

(R[L][i], .x.Y, L.i)

F +
⌊
F+1
2

⌋

F + 1

L γ
L γ

γ γ

γ
γ

⌊N/2⌋ + 1 = F + 1

(γ, γ, γ) γ

.b.R R
b

.0.R
R.i

γ R.i

R.i

γ γ γ
γ

γ

L R Q L
γ δ

R.i i = 1, 2, ... R
.i.R , i = 0, 1, 2, ... R

.0.R R.i

γ γ

γ γ

Q[R][i] Q R.i

R γ Q.i R Q
R′ γ′ Q.i

γ γ′

γ Q.i Q
γ Q.i Q

Q
Q

γ γ γ

(γ, γ, γ) Q.i (γ, γ, γ)
Q.i

(γ, γ, γ) Q.i

N − 2

⌊N/2⌋
(γ, γ, γ)

γ δ

γ δ

γ δ

γ δ

γ δ δ γ δ
γ δ γ δ γ δ

γ δ
γ δ

γ δ
γ δ

γ δ

γ δ
δ γ
γ δ

δ γ γ
δ

γ
δ γ δ γ

δ δ γ
δ δ

δ
γ δ

N
R.i i

R.j j < i
R.j j < i

γ
(γ)

n

O(n)

γ γ γ

(γ, γ, γ) Q.i (γ, γ, γ)
Q.i

Q.i 0.Q

Q Q.i

Q Q.i

R ̸= Q R.i ̸= Q.i

Q.i 0.Q

bsmallest (γ, γ, γ)
Q.i Q.i

b Q.i

b = bsmallest b
bsmallest

b bsmallest

(γ, γ, γ) b1
b > b1

b2
Q.i b2 Q.i

b1 b2

b1
b1 N − 1

(γ, γ, γ) Q.i b2

⌊N/2⌋+ 1 ⌊N/2⌋
b2 (γ, γ, γ) b1

b2
b1 b2 ⌊N/2⌋

(γ, γ, γ)
b1

b2
b1

(γ, γ, γ) b2

b1
b2

N > 3
⌊N/2⌋ (γ, γ, γ)

⌊N/2⌋ + 1 b2
(γ, γ, γ)

N = 3
⌊N/2⌋ = 1 ⌊N/2⌋+ 1 = 2

N = 3

b1
b2 b2

(γ, γ, γ)

b2

b2
b2 (γ, γ, γ)

Q.i (γ, γ, γ)
b1

(γ, γ, γ)

b1
(γ, γ, γ)

t1 R
γ Q.i R γ Q.i
t2 > t1

γ δ

γ δ γ ∼ δ γ δ
γ γ δ

δ γ δ

c
⌊N/2⌋+ 1

c
N − 1 c

c

⌊N/2⌋

⌊N/2⌋+ 1

⌊N/2⌋

⌊N/2⌋ ⌊N/2⌋ + 1

R c

R

γ γ

R γ δ
R

γ ∼ δ R

γ δ

γ δ

γ δ

γ δ

γ δ δ γ

δ
δ γ

γ δ

γ
γ δ

δ
δ

γ
δ γ
δ

δ γ γ δ

γ δ

γ δ
δ γ

γ δ

γ δ

δ γ ⌊N/2⌋ + 1
δ ⌊N/2⌋+1

R
δ δ γ

γ ∼ δ R γ δ

δ
γ

δ ⌊N/2⌋+1
γ

γ
N − 1 γ

γ

γ
⌊N/2⌋+ 1 γ

δ
δ δ

γ

R

R γ δ

δ γ
δ γ

γ δ

δ γ
γ

δ

R δ γ

δ γ
δ γ

γ δ

δ γ
γ δ

γ
γ δ

γ δ

F +⌊
F+1
2

⌋

F +
⌊
F+1
2

⌋

F

A

A

A
A

A
B A

R1 R3R2

R4 R5 R6 R7

Quorum for command A Quorum for command B

A B

A B

F+1

A B

A B
A B

F +
⌊
F+1
2

⌋

F

R1 R3R2

R4 R5 R6 R7

Quorum for command A Quorum for command B

F +
⌊
F+1
2

⌋

Q⌊
F+1
2

⌋
(γ, γ, γ)

γ

γ γ γ

Q
γ

Q Q F + 1

(γ, γ, γ)

γ

γ N ≤ 7

F⌊
F+1
2

⌋

F +
⌊
F+1
2

⌋
−1

2F F + ⌊F+1
2 ⌋ F

N =
2F + 1

F + ⌊F+1
2 ⌋−1

F − 1

R Q.i Q

R
Q.i

Q.i R
F + 1 R F + 1

R

Q.i R
Q.i

γ Q.i

γ γ R γ (Q.i,
γ, γ, γ)

(γ, γ, γ) Q.i R
Q.i

Q.i

⌊F+1
2 ⌋ γ (γ, γ, γ)

Q.i

R γ Q.i

R (Q.i, γ, γ, γ)
γ

(Q.i, γ, γ, γ) (γ,

γ, γ) Q.i
δ

γ ∼ δ

γ /∈ δ

δ /∈ γ

δ ∈ γ δ ≥ γ

δ γ δ

δ
δ

δ δ

(γ, γ, γ) F + 1 Q
R

R
γ Q.i

γ
γ

γ R
γ Q.i

γ0 R γ0
γ γ0

γ γ
R γ γ Q.i

R γ
γ

F ≤ 3

(γ, γ, γ) F + 1 Q
R

δ δ ∈ γ δ ≥ γ R
F

δ
γ

γ
R

γ Q.i
F

R δ
(γ, γ, γ)

R
γ Q.i

γ
γ

γ R
γ Q.i

γ0 R γ0
γ γ0

γ γ
R γ γ Q.i

R γ
γ

7

6

5

4

3

2

1

Send Prepare's;
Wait for F+1 replies

F+1 PrepareOK's Increase ballot numberNo

At least one
replica knows

about Q.i

Yes

Choose no-op
at Q.i by

running Paxos-
Accept Phase

No

A replica has
committed tuple t

at Q.i

Commit t and
send Commit
messages to
other replicas

Yes

Yes

A replica has
accepted tuple t

at Q.i

Choose t at Q.i
by running

Paxos-Accept
Phase

Yes

No

At least
⎣(F + 1)/2⎦replicas
have pre-accepted

tuple t at Q.i

Choose
t.command at

Q.i on the slow
path

No

No

Send
TentativePreAccept's

to all replicas that have
not pre-accepted t

Yes

At least F + 1
replicas have pre-

accepted or tentative-
pre-accepted tuple t

at Q.i

Choose t at Q.i
by running

Paxos-Accept
Phase

Yes

A replica answers
NACK to a

TentativePreAccept
with status "committed"

No

Choose
t.command at

Q.i on the slow
path

Yes

∃ command C
whose recovery has been deferred

because of a conflict with t, and
C's command leader must have

been part of the fast-path quorum
for t

No

Yes

Defer recovery for Q.i
and try to decide an

instance that conflicts
with Q.i

No

F + ⌊F+1
2 ⌋

c1, c2, ..., cn
ci ci+1 i = 1..n − 1 cn c1

γ δ γ /∈ δ

δ /∈ γ

R γ R γ
R γ δ
δ

R

γ γ γ

R Lγ γ
γ

δ δ δ

R Lδ δ

| γ| ≥ ⌊F+1
2 ⌋

| δ| ≥ ⌊F+1
2 ⌋

γ ∩ δ = ∅

R Lγ /∈ δ δ
Lγ γ

R Lδ /∈ γ γ
Lδ δ

F R Lγ

γ R γ
F − 1 δ

δ R R
δ

| δ| ≥ ⌊F+1
2 ⌋+ 1

R γ

γ RESPδ {Lδ}

F + ⌊F+1
2 ⌋ + ⌊F+1

2 ⌋ + 1 + 1 > 2F + 1
2F + 1

R γ δ

ci+1 ∈ ci
i = 1..n cn+1 ≡ c1

ci ∼ ci+1 ci /∈ ci+1
ci+1 ∈ ci

ci
≥ ci+1

i cn+1 ≡ c1 c1
= c2

= ... = cn
n ≥ 3

ci ci+1

ci+1

ci+1

ci+1

ci

n ≥ 3
c1, c2 c3

⌊
F+1
2

⌋

ci RESPci

c1
c2 c2 c3

F

2F + 1−
⌊
F+1
2

⌋
= F +

⌊
F+1
2

⌋
c2⌊

F+1
2

⌋
RESPc1 c1
c2

F
LIV E F + 1

F+1
⌊
F+1
2

⌋
+1

LIV E⌊
F+1
2

⌋

|LIV E ∩ RESPc2 | =
⌊
F+1
2

⌋
LIV E

c2 c1
|LIV E ∩ RESPc2| = 1 +

⌊
F+1
2

⌋
|LIV E ∩ RESPc3 | =

⌊
F+1
2

⌋

LIV E c3
c2

ci ci+1

ci+1 ci
ci+1 ci

ci ci+1

ci+1

Q.i
Q.i

Q.i
Q.i

(γ, γ, γ) Q.i

(γ, γ, γ)

F +1 (γ, γ, γ)

Q.i

(γ, γ, γ)

F+⌊F+1
2 ⌋ Q.i

F
⌊F+1

2 ⌋

δ ∼ γ δ /∈ γ

γ /∈ δ

δ
γ

δ ∼ γ δ ∈ γ

γ /∈ δ δ ≥ γ

a ≺ b ≡ a
b

γ0

δ ∼ γ0 δ ∈ γ0
γ0 /∈ δ δ ≥ γ0

γ0 γ0

δ γ0
δ

δ
γ0

γ0 ≺ δ

γ δ ≺ γ
δ ∼ γ δ ∈ γ γ /∈ δ

δ ≥ γ γ

δ γ

δ

δ

γ
δ ≺ γ

δ

δ

γ γ

δ δ

(δ, δ, δ) δ ∼ γ δ ∈ γ

γ /∈ δ δ ≥ γ

R′ γ′s
γ

R′ (δ, δ, δ) γ

R′ γ γ ≤ δ

γ

γ
γ

γ

F
(γ, γ, γ)

γ δ
γ δ

γ δ

γ δ

γ δ

γ

γ

γ δ

γ

γ δ δ γ

γ δ ∈ γ

γ
γ δ

γ δ /∈ γ

F+1
γ γ

δ

δ γ
δ

γ R

R γ
γ
R γ

δ γ ∈ δ

R γ

R δ γ ∈ δ δ
R γ γ ∈ δ

δ

γ ∈ δ

δ γ

γ δ

γ δ

R

R γ δ
R δ γ

γ δ δ
γ γ δ

δ
γ δ

δ R

R δ

R γ δ δ γ

R δ δ
γ γ

γ δ

R δ

R δ δ /∈ γ δ
γ

γ ∈ δ γ < δ

γ δ

R δ

γ′ γ′ ∼ δ γ′ ∈ δ δ /∈ γ′

δ ≤ γ′ R
δ γ′ γ ̸= γ′

γ′ = γ γ
δ γ

δ γ

R′ γ
δ Lδ ̸=

R′ Lδ δ
δ

γ

F = 2

δ Lδ

R′ R′

δ

R′

γ

δ δ

F = 2

δ

R′

γ
δ R′

δ

F = 3

δ
δ

Lδ

δ
γ

γ

δ δ

F = 2 F = 3
γ = γ′ R

δ δ ≤
γ γ

δ

F +⌊F+1
2 ⌋

1

2

3

45

6

7

F

F + 1

client request: C1

PreAccept C1

R3

R1

R2

Committed C1→C2

R4
R5

OK C1

Accepted C1→C2 C1→C2

Accepted C1→C2

Can't Commit

F

F

Phase 1: Establish ordering constraints Phase 2: Paxos-Accept

Commit

Slow
Path

then

else

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
cy

 (
m

e
d
ia

n
 /
 9

9
%

)
[m

s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: send PreAcceptOK(�,seq� ,deps� ,L.i) to L and
bN/2c other replicas

Any non-leader replica R, after receiving at least
bN/2c+ 1 PreAcceptOK responses (possibly
including the initial PreAccept from the command
leader) at instance L.i:

6: update deps� Union(deps� from all replies)
7: update seq� max({seq� of all replies})
8: cmdsR[L][i] (�,seq� ,deps� ,accepted)
9: send Accepted(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, on receiving at least bN/2c
identical Accepted(�,seq� ,deps�) or bN/2c
AcceptOK messages:
20: run Commit phase for (�,seq� ,deps�) at L.i

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

5 Practical Considerations

Command interference. For EPaxos to function ef-
ficiently, the implementation must be able to decide
whether two commands interfere before executing them
(it can, however, conservatively assume interference if un-
certain). Although there are many approaches that could

work, one that seems likely is to use explicitly-specified
dependency keys as in Google’s High Replication Datas-
tore [10] and Megastore [2]. Interference can easily be
inferred for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting. Even for
relational databases, the transactions that usually con-
stitute the bulk of the workload are simple and can be

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: send PreAcceptOK(�,seq� ,deps� ,L.i) to L and
bN/2c other replicas

Any non-leader replica R, after receiving at least
bN/2c+ 1 PreAcceptOK responses (possibly
including the initial PreAccept from the command
leader) at instance L.i:

6: update deps� Union(deps� from all replies)
7: update seq� max({seq� of all replies})
8: cmdsR[L][i] (�,seq� ,deps� ,accepted)
9: send Accepted(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, on receiving at least bN/2c
identical Accepted(�,seq� ,deps�) or bN/2c
AcceptOK messages:
20: run Commit phase for (�,seq� ,deps�) at L.i

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

5 Practical Considerations

Command interference. For EPaxos to function ef-
ficiently, the implementation must be able to decide
whether two commands interfere before executing them
(it can, however, conservatively assume interference if un-
certain). Although there are many approaches that could

work, one that seems likely is to use explicitly-specified
dependency keys as in Google’s High Replication Datas-
tore [10] and Megastore [2]. Interference can easily be
inferred for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting. Even for
relational databases, the transactions that usually con-
stitute the bulk of the workload are simple and can be

Fast
Path

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: send PreAcceptOK(�,seq� ,deps� ,L.i) to L and
bN/2c other replicas

Any non-leader replica R, after receiving at least
bN/2c+ 1 PreAcceptOK responses (possibly
including the initial PreAccept from the command
leader) at instance L.i:

6: update deps� Union(deps� from all replies)
7: update seq� max({seq� of all replies})
8: cmdsR[L][i] (�,seq� ,deps� ,accepted)
9: send Accepted(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, on receiving at least bN/2c
identical Accepted(�,seq� ,deps�) or bN/2c
AcceptOK messages:
20: run Commit phase for (�,seq� ,deps�) at L.i

Command leader L, for (�,seq� ,deps�) at instance
L.i, after timing out waiting for Accepted messages:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

5 Practical Considerations

Command interference. For EPaxos to function ef-
ficiently, the implementation must be able to decide
whether two commands interfere before executing them
(it can, however, conservatively assume interference if un-
certain). Although there are many approaches that could

work, one that seems likely is to use explicitly-specified
dependency keys as in Google’s High Replication Datas-
tore [10] and Megastore [2]. Interference can easily be
inferred for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting. Even for
relational databases, the transactions that usually con-
stitute the bulk of the workload are simple and can be

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: send PreAcceptOK(�,seq� ,deps� ,L.i) to L and a

pre-established slow quorum

Any non-leader replica R, after receiving bN/2c+ 1
PreAcceptOK responses (possibly including the
initial PreAccept from the command leader) at
instance L.i:

6: update deps� Union(deps� from all replies)
7: update seq� max({seq� of all replies})
8: cmdsR[L][i] (�,seq� ,deps� ,accepted)
9: send Accepted(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, on receiving at least bN/2c
identical Accepted(�,seq� ,deps�) or bN/2c
AcceptOK messages:
20: run Commit phase for (�,seq� ,deps�) at L.i

Command leader L, for (�,seq� ,deps�) at instance
L.i, after timing out waiting for Accepted messages:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

5 Practical Considerations
Command interference. For EPaxos to function ef-
ficiently, the implementation must be able to decide
whether two commands interfere before executing them
(it can, however, conservatively assume interference if un-
certain). Although there are many approaches that could

work, one that seems likely is to use explicitly-specified
dependency keys as in Google’s High Replication Datas-
tore [10] and Megastore [2]. Interference can easily be
inferred for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting. Even for
relational databases, the transactions that usually con-
stitute the bulk of the workload are simple and can be

⌊N/2⌋

a <i b a b a
b a <i b

a b <i

<i

a <time b a
b

<i ∪ <time < (<i ∪ <time)
<

c1, ..., cn c1 < c2 < ... < cn < c1

<i

cj−1 cj cj−1 <i cj
cj−1 <time cj c1

c2

c2 <time c1
c1 <time c2 c2 <i c1 c2 c1

c1 <time c2 c1

j > 2 cj−1 <i cj
j cj−1 <time cj c1

cj c1 <time cj c1, cj, ..., cn
c1 cj c2 cj−1 cj−1 <time c2

c2, ..., cj−1

c2 <i ... <i cn <i c1 cj−1 <i cj cj−1 cj
c2 c1

c2
c1

c1 <time c2

<i

<i ∪ <time

<i

<i ∪ <time

F + 1

F + 1

F + 1

F + 1

1
4

3
4

N = 3

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 2%

EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 50

 100

 150

 200

 250

 300

 350

 400

VA CA OR JP EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

21ms 127ms

118ms

278ms

EPaxos-forward 0%
EPaxos-forward 100%

Multi-Paxos-forward CA leader
Multi-Paxos-forward JP leader

3 Replicas

Throughput [reqs / sec]

0 10000 20000 30000 40000 50000

EPaxos,0%
EPaxos,2%

EPaxos,25%
EPaxos,100%

Mencius
Multi−Paxos
�

EPaxos,slow−acc,0%
EPaxos,slow−acc,100%

Mencius,slow−acc
Multi−Paxos,slow−leader

5 Replicas

Throughput [reqs / sec]

0 10000 20000 30000 40000 50000

3 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000 25000

EPaxos,0%
EPaxos,2%

EPaxos,25%
EPaxos,100%

Mencius
Multi−Paxos
�

EPaxos,slow−acc,0%
Mencius,slow−acc,0%

5 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000 25000

1
4

Θ(N)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Multi-
Paxos

Mencius Mencius
min-log

EPaxos,
100%

T
h
ro

u
g
h
p
u
t
[r

e
q
s

/
se

c]

1/N

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
e

d
ia

n
 L

a
te

n
cy

 [
m

s]

Throughput [requests/second]

Multi-Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

 10
 20
 30
 40
 50
 60
 70
 80
 90

 2000 4000 6000 8000 10000 12000 14000 16000 18000

9
9

%
ile

 L
a

te
n

cy
 [

m
s]

Throughput [requests/second]

Multi-Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

 1

 10

 100

 1000

 10000

 0 100000 200000 300000 400000 500000

M
e

d
ia

n
 L

a
te

n
cy

 [
m

s]

Throughput [requests/second]

Multi-Paxos
EPaxos 100%

EPaxos 0%

 0
 10000

 0
 10000

T
h
ro

u
g
h
p
u
t
[r

e
q
s

/
se

c]

 0
 10000
 20000
 30000

 0 5 10 15 20 25 30 35
Time [seconds]

replica failure
delayed commits

EPaxos

Multi-Paxos

Mencius

A

B C

DE

A
ABA AEA

(ABA,AEA) (ABEA,AEBA) = ABEA
(ABA,AEA

(ACA,ADA))

B A
ABEA

Grant lease

Local Reads
Possible

Lease expires
Local Reads
Not Allowed

Local Writes
Not Allowed

Local Writes
Possible

Local Reads
Possible

Local Reads
Not Allowed

Local Writes
Not Allowed

Local Writes
Possible

REVOKE

Grant lease

OK

Leasing with time expiration

Leasing with early revocation

R1

R2

R5

R4

R3

Grantors
(Majority)

Lease
Holders

(any size)

R
O (Q,O)

Q ⊆ R O ⊆ O Q O
r ∈ Q

⌊N/2⌋ + 1
N = |R|

g (Q,O) r ∈ Q

r O g
g r

O
r

g r

⌊N/2⌋

⌊N/2⌋+1 N

O

⌊N/2⌋

R1

R2

promise

T1 T3

T2

T3 + t_guard +
 t_lease: R1's
promise
expires at R1 if
no promise_ACK

t_guard

guard

guard_ACK promise_ACK

t_guard

T5

t_lease
t_lease

t_lease
T4

T4 + t_lease:
R1's promise
expires at R2

T5 + t_lease:
R1's promise
expires at R1 if
promise_ACK

t
t

t

t + t

t
⌊N/2⌋

t′+t
t′

t + t

R

H

R[H]←
+

H

R[H]

R[H]←

H

() R

H [R]←

R

H [R]

H [R]←
R

R
H

R[H]←
+

t′ ←
H

←
H

t′ H
H

R[H]← R[H]

H

t′

R
t′ +

H [R]←
R

H ⌊N/2⌋
N

W R
W R

R W R
W W R R

W R
R

R W R
W

R

R R

R

R W R

W

⌊N/2⌋ + 1 R R

W

R R
W W

R
W

R W

R W R
R W

R W
W R

W R

W W R

R
W R

W

R R

W R

t + t

t

t

t

t

t = t + t

t + t + t = 2t + t + t

t t
t

t + t

⌊N/2⌋ ⌊N/2⌋−1

⌊N/2⌋

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
R

e
a
d
s

Read Latency [ms]

California

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 10 100 200 300 1000

P
e
rc

e
n
ta

g
e
 o

f
W

ri
te

s

Write Latency [ms]

California

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
R

e
a
d
s

Read Latency [ms]

Japan

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 10 100 200 300 1000

P
e
rc

e
n
ta

g
e
 o

f
W

ri
te

s

Write Latency [ms]

Japan

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
R

e
a
d
s

Read Latency [ms]

Oregon

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 10 100 200 300 1000

P
e
rc

e
n
ta

g
e
 o

f
W

ri
te

s

Write Latency [ms]

Oregon

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
R

e
a
d
s

Read Latency [ms]

Virginia

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 10 100 200 300 1000

P
e
rc

e
n
ta

g
e
 o

f
W

ri
te

s

Write Latency [ms]

Virginia

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
R

e
a
d
s

Read Latency [ms]

Ireland

QL
QL-uniform

LL
ML

 0

 20

 40

 60

 80

 100

 10 100 200 300 1000

P
e
rc

e
n
ta

g
e
 o

f
W

ri
te

s

Write Latency [ms]

Ireland

QL
QL-uniform

LL
ML

× ×

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Leader-lease Quorum-lease Megastore-lease

T
h
ro

u
g
h
p
u
t
[o

p
s/

se
c]

Reads

Writes

Uniformly
distributed reads

×

https://developers.google.com/appengine/docs/java/datastore/overview
https://developers.google.com/appengine/docs/java/datastore/overview

http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
http://research.microsoft.com/apps/pubs/default.aspx?id=64624

https://github.com/efficient/epaxos

http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://arxiv.org/pdf/1209.4187.pdf
https://aws.amazon.com/message/65648/
http://www.extremetech.com/extreme/161772-microsoft-now-has-one-million-servers-less-than-google-but-more-than-amazon-says-ballmer
http://www.extremetech.com/extreme/161772-microsoft-now-has-one-million-servers-less-than-google-but-more-than-amazon-says-ballmer
http://arstechnica.com/information-technology/2012/10/hurricane-sandy-takes-data-centers-offline-with-flooding-power-outages/
http://arstechnica.com/information-technology/2012/10/hurricane-sandy-takes-data-centers-offline-with-flooding-power-outages/

,

()
∆
= = {} 0 ∈ : ∀ ∈ : ≤

()
()

, , (), (),

()

∀ ∈ :
∧ () ⊆
∧ ∀ ∈ () :
∧ ∈
∧ () = (()÷ 2) + 1

∀ ∈ :
∧ () ⊆
∧ ∀ ∈ () :
∧ ∈
∧ () = (()÷ 2) +

((()÷ 2) + 1)÷ 2

∆
= : /∈

∆
= × (1 . . ())

∆
= { , , , }

∆
=
[: { }, : , : ,

: , : × ,
: ∪ { }, : , :]

∪ [: { }, : , : ,
: , : × ,
: ∪ { }, : , :]

∪ [: { },
: , : × ,
: ∪ { }, : , :]

∪ [: { }, : , : ,
: , : ×]

∪ [: { }, : , : ,
: , : × ,
: , : , :]

∪ [: { }, : , : ,
: , : ×]

∪ [: { }, : , : ,
: , : × , : × ,

: ,
: ∪ { }, : , :]

∪ [: { }, : , : ,
: , : × ,
: ∪ { }, : , :]

∪ [: { }, : , : ,
: , : × , : ∪ { }]

=
=
=
=

=
=

=
=

= .

, , , , , ,
, ,

∆
=

∧ ∈ [→ [: ,
: ,
: × ,

: ∪ { },
: ,

:]]
∧ ∈
∧ ∈ [→ (×)]
∧ ∈
∧ ∈ [→]
∧ ∈ [→]
∧ ∈ [→ ((∪ { })×

()×
)]

∧ ∈
∧ ∈ [→]

∆
= ⟨ , , , , , ,

, , ⟩

∆
=

∧ = {}
∧ = [∈ (→ {}]
∧ = {}
∧ = [∈ (→ {}]
∧ = [∈ (→ 1]
∧ = [∈ (→ {}]
∧ = [∈ (→ {}]
∧ = 1
∧ = [∈ (→ {}]

1(, , , , ,)
∆
=

∆
= { . : ∈ []}
∆
= 1 + ({ . : ∈ []})
∆
= { ∈ [] : . = }

∧ ′ = [[] = (\) ∪
{[(→ ,

!→ ,
!→ ,
!→ ,
!→ ,
!→]}]

∧ ′ = [[] = ∪ { }]
∧ ′ = (\) ∪

[: { },
: { },
: \ { },
: { },
: { },
: { },
: { },
: { }]

(,)
∆
=

∆
= ⟨ , []⟩

∆
= ⟨0, ⟩

∧ ′ = ∪ { }
∧ (∃ ∈ () :

1(, , , , , {}))
∧ ′ = [[] = + 1]
∧ ⟨ , , , ⟩

1 ()
∆
=

∃ ∈ :
∧ . =
∧ . =
∧ ∆

= { ∈ [] : . = . }
∧ (∀ ∈ :

(. = . ∨ . [1] < . [1]))
∧ ∆

= . ∪
({ . : ∈ []} \ { . })

∆
= ({ . ,

1 + ({ . : ∈ []})})
∆
= { . : ∈ { ∈ [] :

. ∈ { , }}}
∧ ′ = [[] = (\) ∪

{[!→ . ,
!→ ,
!→ . ,
!→ . ,
!→ ,
!→]}]

∧ ′ = (\ { }) ∪
{[#→ ,

#→ ,
#→ . ,
#→ . ,
#→ . ,
#→ ,
#→ ,

#→]}
∧ ⟨ , , , ,

, , ⟩

1 (, ,)
∆
=

∧ ∈ []
∧ ∈ ()
∧ ∃ ∈ [] :

∧ . =
∧ . =
∧ . [1] = 0
∧ ∆

= { ∈ :
∧ . =
∧ . =
∧ . =
∧ . ∈
∧ . = . }

∧ (∀ ∈ (\ { }) :
∃ ∈ : . =)

∧ (∀ 1, 2 ∈ :
∧ 1. = 2.
∧ 1. = 2.)

∧ ∆
= ∈ :

∧ ∆
= { . :

∈ { ∈ [] :
. ∈ { , }}}

∆
= { . : ∈ }

(. ⊆ (∪))
∧ ′ = [[] = (\ { }) ∪

{[#→ ,
#→ ,
#→ . ,
#→ . ,
#→ . ,
#→ .]}]

∧ ′ = (\) ∪
{[#→ ,

!→ ,
!→ . ,
!→ . ,
!→ . ,
!→ .]}

∧ ′ = [[] = \ { }]
∧ ′ = [[] =

∪ {⟨ . , . , . ⟩}]
∧ ⟨ , , , , ⟩

1 (, ,)
∆
=

∧ ∈ []
∧ ∈ ()
∧ ∃ ∈ [] :

∧ . =
∧ . =
∧ ∆

= { ∈ :
∧ . =
∧ . =
∧ . =
∧ . ∈
∧ . = . }

∧ (∀ ∈ (\ { }) : ∃ ∈ : . =)
∧ ∆

= { . : ∈ }
∆
= ({ . : ∈ })

∧ ′ = [[] = (\ { }) ∪
{[!→ ,

!→ ,
!→ . ,
!→ . ,
!→ ,
!→]}]

∧ ∃ ∈ () :
(′ = (\) ∪

[: { },
: { },
: \ { },
: { },
: { . },

: { . },
: { },

: { }])
∧ ⟨ , , , ,

, , ⟩

2 ()
∆
=

∃ ∈ :
∧ . =
∧ . =
∧ ∆

= { ∈ [] : . = . }
∧ (∀ ∈ : (. = . ∨

. [1] < . [1]))
∧ ′ = [[] = (\) ∪

{['→ . ,
'→ ,
'→ . ,
'→ . ,
'→ . ,
'→ .]}]

∧ ′ = (\ { }) ∪
{['→ ,

'→ ,
'→ . ,
'→ . ,
'→ .]}

∧ ⟨ , , , ,
, , ⟩

2 (, ,)
∆
=

∧ ∈ []
∧ ∈ ()
∧ ∃ ∈ [] :

∧ . =
∧ . =
∧ ∆

= { ∈ :
∧ . =
∧ . =
∧ . =
∧ . ∈
∧ . = . }

∧ (∀ ∈ (\ { }) : ∃ ∈ :
. =)

∧ ′ = [[] = (\ { }) ∪
{['→ ,

'→ ,
'→ . ,
'→ . ,
'→ . ,
'→ .]}]

∧ ′ = (\) ∪
{[#→ ,

#→ ,
#→ . ,
#→ . ,
#→ . ,
#→ .]}

∧ ′ = [[] = ∪
{⟨ . , . , . ⟩}]

∧ ′ = [[] = \ { }]
∧ ⟨ , , , , ⟩

(,)
∆
=

∆
= { ∈ [] : . = . }

∧ ∀ ∈ : (. /∈ { , } ∧
. [1] ≤ . [1])

∧ ′ = [[] = (\) ∪
{[#→ . ,

#→ ,
#→ . ,
#→ . ,
#→ . ,
#→ .]}]

∧ ′ = [[.] = ∪
{⟨ . , . , . ⟩}]

∧ ⟨ , , , ,
, , ⟩

(, ,)
∆
=

∧ /∈ []
∧ ≤
∧ ¬(∃ ∈ [] :

∧ . =
∧ . ∈ { , })

∧ ′ = ∪
[: { },

: { },
: ,
: { },
: {⟨ , ⟩}]

∧ ′ = + 1
∧ ′ = [[] = ∪ { }]
∧ ⟨ , , , ,

, ⟩

()
∆
=

∃ ∈ :
∧ . =
∧ . =
∧ ∨ ∃ ∈ [] :

∧ . = .
∧ . [1] > . [1]
∧ ′ = (\ { }) ∪

{['→ ,
'→ ,
'→ . ,
'→ . ,
'→ . ,

'→ . ,
'→ . ,
'→ . ,
'→ . ,
'→ .]}

∧ ′ = [[] = (\ { }) ∪
{['→ . ,

'→ . ,
'→ . ,
'→ . ,
'→ . ,
'→ .]}]

∧ . ∈ []
∧ ′ = [[] =

\ { . }]
∧ ⟨ , , ,

, , ⟩
⟨ , , , ,

, , ⟩

∨ ∧ ¬(∃ ∈ [] : . = .)
∧ ′ = (\ { }) ∪

{['→ ,
'→ ,
'→ . ,
'→ . ,
'→ . ,

'→ ⟨0, ⟩,
'→ ,
'→ ,

!→ {},
!→ 0]}

∧ ′ = [[] = ∪
{[!→ . ,

!→ ,
!→ . ,
!→ ,
!→ {},
!→ 0]}]

∧ ⟨ , , , , ,
, ⟩

(, ,)
∆
=

∧ ∈ []
∧ ∃ ∈ [] :

∧ . =
∧ . /∈ { , }
∧ ∆

= { ∈ :
∧ . =
∧ . =
∧ . =
∧ . = . }

∧ (∀ ∈ : ∃ ∈ : . =)
∧ ∨ ∃ ∈ :

∧ (. ∈ { , })
∧ ′ = [[] = \ { }]
∧ ′ = \
∧ ⟨ , , , , ,

, ⟩
∨ ∧ ¬(∃ ∈ : . ∈ { , })

∧ ∃ ∈ :
∧ . =
∧ (∀ ∈ (\ { }) :

(. [1] ≤ . [1] ∨
. ̸=))

∧ ′ = (\) ∪
[: { },

: { },
: \ { },
: { },
: { . },
: { . },
: { . },
: { . }]

∧ ′ = [[] = (\ { }) ∪

{[!→ ,
!→ ,
!→ . ,
!→ . ,
!→ . ,
!→ .]}]

∧ ′ = [[] = \ { }]
∧ ′ = [[] = ∪ { }]
∧ ⟨ , , , , ⟩

∨ ∧ ¬(∃ ∈ :
. ∈ { , , })

∧ ∆
= { ∈ : . = }

(∨ ∧ ∀ 1, 2 ∈ :
1. = 2. ∧ 1. = 2. ∧ 1. = 2.

∧ ¬(∃ ∈ : . = [1])
∧ () ≥ ()− 1
∧ ∆

= ∈ :
∧ ′ = (\) ∪

[: { },
: { },
: \ { },
: { },
: { . },
: { . },
: { . },
: { . }]

∧ ′ = [[] = (\ { }) ∪
{[!→ ,

!→ ,
!→ . ,
!→ . ,
!→ . ,
!→ .]}]

∧ ′ = [[] = \ { }]
∧ ′ = [[] = ∪ { }]
∧ ⟨ , , , , ⟩

∨ ∧ ∀ 1, 2 ∈ : 1. = 2. ∧
1. = 2. ∧
1. = 2.

∧ ¬(∃ ∈ : . = [1])
∧ () < ()− 1
∧ () ≥ ()÷ 2
∧ ∆

= ∈ :
∧ ′ = (\) ∪

[: { },

: { },
: ,
: { },
: { . },
: { . },
: { . },
: { . }]

∧ ′ = [[] = \ { }]
∧ ′ = [[] = ∪ { }]
∧ ⟨ , , ,

, , ⟩
∨ ∧ ∨ ∃ 1, 2 ∈ : 1. ̸= 2. ∨

1. ̸= 2. ∨
1. ̸= 2.

∨ ∃ ∈ : . = [1]
∨ () < ()÷ 2

∧ ̸= {}
∧ ∆

= ∈ : . ̸=
∧ 1(. , , , , . ,)
∧ ′ = [[] = \ { }]
∧ ⟨ , , , , ⟩)

∨ ∧ ∀ ∈ : . =
∧ 1(, , , , . ,)
∧ ′ = [[] = \ { }]
∧ ⟨ , , , , ⟩

()
∆
=

∃ ∈ :
∧ . =
∧ . =
∧ ∆

= { ∈ [] : . = . }
∧ ∀ ∈ : . [1] ≤ . [1] ∧

. /∈ { , , }
∧ ∨ (∃ ∈ [] \ :

∧ . /∈ .
∧ ∨ . /∈ .

∨ . ≥ .
∧ ′ = (\ { }) ∪

{[,→ ,
,→ ,
,→ . ,
,→ . ,
,→ . ,
,→ .]})

∧ ⟨ , , , , ,

, , ⟩
∨ ∧ (∀ ∈ [] \ :

. ∈ . ∨ (. ∈ . ∧
. < .))

∧ ′ = (\ { }) ∪
{['→ ,

'→ ,
'→ . ,
'→ . ,
'→ . ,
'→]}

∧ ′ = [[] = (\) ∪
{['→ . ,

'→ ,
'→ . ,
'→ . ,
'→ . ,
'→ .]}]

∧ ⟨ , , , , ,
, ⟩

(, ,)
∆
=

∃ ∈ [] :
∧ . =
∧ ∆

= { ∈ : . = ∧
. = ∧ . = ∧
. = . }

∧ ∀ ∈ : ∃ ∈ : . =
∧ ∨ ∧ ∀ ∈ : . =

∧ ′ = (\) ∪
[: { },

: { },
: \ { },
: { },
: { . },
: { . },
: { . },
: { . }]

∧ ′ = [[] = (\ { }) ∪
{['→ ,

'→ ,
'→ . ,
'→ . ,
'→ . ,

!→ .]}]
∧ ⟨ , , , , ,

, ⟩
∨ ∧ ∃ ∈ : . ∈ { , , }

∧ 1(. , , , , . ,)
∧ ⟨ , , , , ,

, ⟩
∨ ∧ ∃ ∈ : . =

∧ ∀ ∈ : . ∈ { , }
∧ ′ = \
∧ ′ = [[] = \ { }]
∧ ⟨ , , , , ,

, ⟩

∆
=

∨ (∃ ∈ (\) :
∃ ∈ : (,))

∨ (∃ ∈ : ∃ ∈ [] :
∨ (∃ ∈ () : 1 (, ,))
∨ (∃ ∈ () : 1 (, ,))
∨ (∃ ∈ () : 2 (, ,))
∨ (∃ ∈ () : (, ,)))

∆
=

∃ ∈ :
(∨ 1 ()
∨ 2 ()
∨ ∃ ∈ : (. = ∧ (,))
∨ ∃ ∈ :

∧ [[1]] > [2]

∧ ∃ ∈ () : (, ,)
∨ ()
∨ ∃ ∈ [] :
∃ ∈ () : (, ,)

∨ ())

∆
=

∨
∨

∆
= ∧✷[]

∆
=

∀ ∈ :
✷(∀ ∈ [] : ∈ ∨ =)

∆
=

∀ ∈ :
∀ ∈ :

∀ ∈ :
✷((∃ 1 ∈ [] :

∧ 1. =
∧ 1. =
∧ 1. ∈ { , }) ⇒
✷(∃ 2 ∈ [] :

∧ 2. =
∧ 2. =
∧ 2. ∈ { , }))

∆
=

∀ ∈ :
✷(([]) ≤ 1)

⇒ (✷) ∧ ∧ ∧

	1 Introduction
	1.1 Problem Statement and Scope
	1.2 Thesis Hypothesis
	1.3 Results Overview
	1.3.1 Efficiently Updating the State
	1.3.2 Reading the State with Very Low Latency

	1.4 Thesis Contributions

	2 Background and Related Work
	2.1 Strong Versus Weak Consistency
	2.2 Paxos
	2.3 Paxos Variants
	2.4 Other Protocols Related to Paxos
	2.5 Protocol Comparison Summary

	3 Egalitarian Paxos
	3.1 Contributions and Intuition
	3.2 Preliminaries
	3.3 Command Interference
	3.4 Protocol Guarantees
	3.5 The Basic Protocol
	3.5.1 The Commit Protocol
	3.5.2 The Execution Algorithm
	3.5.3 Informal Proof of Properties
	3.5.4 Keeping the Dependency List Small
	3.5.5 Recovering from Failures
	3.5.6 Avoiding Execution Livelock
	3.5.7 Read Leases
	3.5.8 Formal Proofs of Properties

	3.6 Reducing the Fast-Path Quorum Size
	3.6.1 Intuition for the New Fast-Path Quorum Size
	3.6.2 Summary of Changes
	3.6.3 Preferred Fast-Path Quorums
	3.6.4 Failure Recovery in Optimized Egalitarian Paxos
	3.6.5 Formal Proofs of Properties for Optimized Egalitarian Paxos

	3.7 Minimizing the Fast-Paxos Quorum Size
	3.8 Reducing the Length of the Slow Path in the Wide-Area to Three Message Delays
	3.9 Strict Serializability
	3.10 Reconfiguring the Replica Set
	3.11 Empirical Evaluation of Egalitarian Paxos
	3.11.1 Implementation
	3.11.2 Typical Workloads
	3.11.3 Latency In Wide Area Replication
	3.11.4 Throughput in a Cluster
	3.11.5 Logging Messages Persistently
	3.11.6 Execution Latency in a Cluster
	3.11.7 Batching
	3.11.8 Service Availability under Failures

	3.12 Summary of Egalitarian Paxos Benefits

	4 Quorum Read Leases
	4.1 Overview
	4.2 Quorum Leases: Intuition
	4.3 Designing Quorum Leases
	4.3.1 Assumptions
	4.3.2 Design Goals
	4.3.3 Design Overview
	4.3.4 Lease Configurations
	4.3.5 Activating Leases
	4.3.6 Ensuring Strong Consistency
	4.3.7 Recovering after a Replica Failure
	4.3.8 Lease Time and Failures Analysis
	4.3.9 Multi-object Operations and Batching

	4.4 Evaluating Quorum Leases
	4.4.1 Evaluation Setup
	4.4.2 The Workload
	4.4.3 Latency
	4.4.4 Throughput in a Cluster
	4.4.5 Discussion

	4.5 Related Work
	4.6 Conclusion

	5 Conclusion and Future Work
	Bibliography

