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“Each new program that is built is an experiment. It poses a question to nature, and its

behavior offers clues to an answer.”

Allen Newell (1975)
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We are drowning in information and having difficulty finding knowledge: useful and

actionable information. Recent studies estimate that humanity has stored in excess of

295 exabytes (295*1018 bytes) of data. Much data is stored in the form of unstructured

text, such as news articles, message boards and forums, texts, emails, status updates,

tweets, and nearly a billion webpages.

In this thesis, we present a solution to extracting knowledge present in untold amounts

of unstructured text. We define our problem as one of relation extraction: given a

document, extract all instantiations of well-defined binary relations present in the text.

To this end, we use distant supervision and a novel probabilistic first order logic system

combined with co-reference resolution to identify candidate relation instances. These

candidates are then classified by a series of cost augmented, soft-margin, binary Support

Vector Machines to produce the final relation extractions. Results on a corpus of 5.7

million newswire articles over 27 different relations results in an across-relation, micro-

averaged F1 of 42.02%. Results on a smaller, targeted search, consisting of 10 thousand

documents, achieve F1 of 33.15%.
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Chapter 1

Introduction

We are drowning in information. In a fairly recent study, Hilbert and López (2011)

estimated that humanity has stored a total of 295 exabytes (EB) of information. The

growth of digital information is staggering: from an estimated 2.6 EB in 1986, to 15.8

EB in 1993, to 54.5 EB in 2000, and 295 EB in 2007. And humanity is producing more

data each and every year at an alarming rate. In the last two years we generated 90%

of the total current sum of all electronic data. By not taking complete advantage of

these tremendous amounts of data, Åse Dragland (2013) estimate that businesses and

governments are missing the opportunity to save, and make, trillions of dollars. .

We are drowning in information and having difficulty finding knowledge: useful and

actionable information. It is humanly impossible to find this knowledge on our own.

Instead, we must use ideas and concepts from machine learning, information extraction,

statistics, computer science, natural language processing, and computer systems as our

aids.

This thesis work builds upon these ideas and charts a course to solve a specific big data

problem. In this work, we study and present solutions to the problem of relation extrac-

tion in unstructured text. We start with a series of definitions on our task and problem

scope. We then review the fields of information extraction (IE), machine learning (ML),

and natural language processing (NLP) as they each pertain to our relation extraction

task, including coverage of related work. Next, we discuss our relation extraction sys-

tem from two perspectives. We first describe our system as a data processing pipeline.

Second, we describe each component in-detail, discussing algorithmic and mathematical

specifics. After describing our system, we present results from an empirical evaluation.

We conclude with an analysis of results and discussion of our system in the larger context

of the relation extraction task.

1
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1.1 Defining the Relation Extraction Task

In our task, relations are semantic concepts that are true for a given set of entities.an

entity is specific person, place, object, event, or abstract idea. Moreover, entities are

unique: a piece of text may mention an entity and an entity may be referred to by many

different literal strings. A relation r is a named tuple of the form (R, e1, e2, . . . , ek).

Each ei is a distinct, but not necessarily unique, entity. A concrete example of a

binary relation, where k = 2, is per title, which represents the relationship be-

tween a person and her title, position, or responsibility. Titles range over President,

CEO, Congresswoman etc. An example of a per title instance is per title(Juanita

Millender-McDonald, Congresswoman).

Entity and relation mentions exist in sentences and documents. In this work, a sentence

is a sequence of one or more tokens that expresses an idea and ends with a period

symbol. A token is a sequence of characters separated by whitespace or a period. And

a document is a sequence of one or more sentences that all relate to a coherent topic

or small set of topics. it is also useful to define a corpus as a collection of documents,

all of which will have varying degree of similarity. In general, corpora are very large: on

the order of hundreds of thousands or millions of documents.

To get a sense of the end output of a relation extraction system, consider the following

two sentence document:

Rep. Juanita Millender-McDonald, a seven-term congresswoman from
southern California, died early Sunday of cancer. She was 68.

Figure 1.1: Example Sentence

Given these sentences, we would like to extract the following relation instances:

per title(Juanita Millender-McDonald, congresswoman),per title(Juanita

Millender-McDonald, Rep.), per place of residence(Juanita Millender-

McDonald, southern California) and per age(Juanita Millender-McDonald, 68).

In order to perform relation extraction, one needs a program that has an understanding

of the semantics of language and of the relations in question. In this work, we use

machine learning so that we can automatically learn how to perform this task without

explicitly programming the solution. The relation extraction learning task is, given

a set semantic relations with accompanying examples and a corpus with known instances

of these relations, learn a model that performs the relation extraction task well. And

finally, we define the relation extraction task:
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Given a set of documents with an unknown number of mentions, a set of relations, and
a learned extraction model over these relations, output all valid relation instances in

the document set.

Figure 1.2: Definition of realtion extraction task

1.2 Contributions

The specific contributions of this thesis are:

• Review of information extraction, particularly focusing on distant labeling tech-

niques for relation extraction.

• Creation of labeled training data from 5.7 million newswire documents across 27

different relations.

• Creation of distantly labeled training data from 10 thousand newswire and Internet

documents across 37 different relations.

• Novel integration of deterministic co-reference resolution, named entity recogni-

tion, part of speech tagging, and probabilistic first order logic for relation candidate

generation from unstructured text.

• Creation and presentation of a complete relation extraction system, released under

a permissive open source license.

• Empirical results on newly constructed distantly labeled datasets using soft-margin

cost-augmented binary Support Vector Machines with n-gram and k-skip n-gram

features.



Chapter 2

Relation Extraction Review

We defined naturally the relation extraction (RE) task and the corresponding learning

objective in section 1.1. In this chapter, we give a broad review of the many sub-tasks

that are directly related to producing high-quality, web-scale relation extraction systems.

We start with a history of the successes and advancements in IE. We summarize events

from the 1970s until 2014. We then discuss the topic of evaluating IE systems. We

focus on the motivation behind different evaluation metrics. Once we have a notion of

how to compare systems, we describe the two opposing paradigms in IE: hand crafting

extraction patterns using expert domain knowledge and learning extraction patterns

using statistical machine learning. We then dive into the different methods used in

modern work that are used to parse and featureize text, which is a critical component

of any text based IE system. We conclude this chapter with a review of work related to

this thesis. We cover distant supervision, web scale extraction, and successful relation

extraction systems.

2.1 Brief History of Information and Relation Extraction

Research in information extraction dates back to the late 1970s (Andersen et al., 1992,

Granger, 1977, Lehnert, 1977, Riesbeck and Schank, 1976, Schank, 1975). In 1975, Ries-

beck and Schank (1976) published work on ELI, an English language interpreter. ELI

was able to produce structured representations of the semantic information in stories.

Granger’s 1977 system “Foul-Up” was able to determine word meanings from context.

Granger (1977) used a rudimentary parser and limited, hand-coded domain knowledge

to build context specific definitions of unknown words. Lehnert’s 1977 dissertation in-

vestigated question answering as a problem in natural language understanding. Lehnert

(1977) proposed a theory of question answering that combined ideas from conceptual

4
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information processing (Schank, 1975), human memory, and computation. Lehnert im-

plemented this theory in two story understanding systems. In the mid-1980s, Ander-

sen et al. (1992), working for the Carnegie Group, launched a commercial information

extraction product, known as JASPER (Journalist’s Assistant for Preparing Earnings

Reports) J̇ASPER was constructed for Reuters in order to provide real-time financial

news to traders. It used a series of hand-crafted templates and heuristic procedures to

produce facts from newswire text. JASPER was able to automate a tedious, mundane,

routine task with an accuracy ranging from 61% to 96% on various labeled extraction

tasks.

2.1.1 Message Understanding Conferences: 1987 - 1998

Information extraction and Natural Language Processing saw rapid growth starting in

the late 1980s and early 1990s. Refinement of ideas, methods, tasks, and evaluation

strategies allowed researchers to focus their collective effort. From 1987 until 1998, a

series of competition based, conferences, known as the Message Understanding Con-

ferences (MUC), assisted and led this advance (Grishman and Sundheim, 1996). The

goal of each conference was to perform a well-defined information extraction task and

invent solutions to push the state-of-the-art. MUC was supported heavily by the U.S.

Defense Advanced Research Projects Agency (DARPA). As such, initial conferences had

a heavy emphasis on information extraction that would be of use to the military. As

the conferences evolved, they incorporated more civilian themes. The MUC topics are

as follows:

• MUC-1 & MUC-2 (1987, 1989) : US Navy fleet operations messages

• MUC-3 & MUC-4 (1991, 1992): Reports on Terrorism in Latin America

• MUC-5 (1993): International joint ventures and circuit fabrication

• MUC-6 (1995): Articles on management changes

• MUC-7 (1998): Reports of satellite launches

Figure 2.1: List of MUC conferences with dates and topics

As Grishman and Sundheim (1996) report, the first MUC more more exploratory in

nature. Competing teams used different output formats and there was no formal eval-

uation. Two years later, in the same domain, the conference organizers had formalized

the task with a set of pre-defined templates. MUC-2 set the standard for information

extraction tasks in this regard. Participants were given definitions of different classes of

events. Each individual event had a corresponding template. Each template had several
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slots that defined different types of information. Examples of slots included the type of

event, the agent participating in the event, the time and location of the event. Combin-

ing a template with answers extracted from text created a piece of structured, factual

information. Templates in the MUC-2 challenge had 10 different slots. An example

template (from a later MUC) is as follows:

NAME : “Coca− Cola′′

ALIAS : “Coke′′

TYPE : “Company′′

LOCALE : “Atlanta CITY′′

COUNTRY : “United States′′

Figure 2.2: Standardized slot-filling template for Organization from MUC-6. Repro-
duced from Grishman and Sundheim (1996)

The successive MUCs followed this same template filling approach. In MUC-3 and MUC-

4 participants had to construct template filling programs that parsed and extracted in-

formation from Foreign Broadcast Information Service reports of terrorist events in Latin

America. In keeping with MUC’s goal of advancing the state-of-the-art in information

extraction, the conference organizers complicated the task and increased the number of

slots from 10 to 18, and then to 24 for MUC-4.

MUC-5 introduced a substantially more difficult and complex task. The tasks involved

extracting information about international joint ventures and electronic circuit fabrica-

tion from both English and Japanese language sources. In total, there were 11 tem-

plates using 47 different slots. Moreover, MUC-5 was the first conference to use nested

templates to describe events in terms of sub-events. This recursive structure laid the

groundwork for more advanced structured information extraction.

The emphasis for the next MUC was on developing portable, task independent sys-

tems. This was a significant change of pace for the Message Understanding Conference.

Preparing data, research, design, and development of systems, and manual evaluation

in previous MUC tasks had been labor intensive and expensive. In addition, previous

MUCs resulted in systems with only “shallow” understanding of the text. To accomplish

these goals, MUC-6 sought to (1) identify domain-independent algorithms and technol-

ogy that had enough accuracy and reliability to be ready for immediate practical use;

(2) develop highly portable systems; and (3) challenge participants to construct systems

that demonstrated a thorough, “deeper” understanding of the textual information.

In following with (1), MUC-6 incorporated the task of Named Entity Recognition (NER).

NER consists of identifying the names of all locations, people, organizations, and other
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specialized entity types, such as times, dates, and currency, as they occur in text. To

tackle (2), MUC-6 introduced standardized templates for several common event types,

including people and organizations. See figure 2.2 for an example. The deeper under-

standing challenges in (3) were collectively known as SemEval (“Semantic Evaluation”).

SemEval consisted of 3 subtasks: co-reference resolution, word sense disambiguation,

and uncovering predicate-argument sentence structure.

The co-reference task is to determine which pairs (or if more, chains) of nounphrases

in a text refer to one another. MUC-6 focused on the part-whole and set-subset co-

reference relations. The specific word sense disambiguation task was to link each mention

of a adjective, adverb, noun, and verb in a text with a specific meaning of the word

in WordNet (Miller, 1995). Lastly, the objective of the predicate-argument structure

recovery subtask was to construct a tree that syntacticly links the constituent members

of a sentence using grammatical rules.

MUC-7 continued with these tasks while adding complexity and reinforcing the commit-

ment to developing portable systems. MUC-7 included Chinese, Japanese, and English

texts on the NER task (Chinchor, 2001). The other tasks remained relatively unchanged

from their MUC-6 definitions.

2.2 Learning Relation Extractors

In section 2.1, we glossed over the details of the relation extraction systems. Roughly

before the 90s, most RE systems used hand crafted extraction patterns and explicitly

programmed rules that that used manually evaluated knowledge (Andersen et al., 1992,

Granger, 1977, Grishman and Sundheim, 1996, Riesbeck and Schank, 1976, Schank,

1975). Even early successful commercial systems, such as JASPER (Andersen et al.,

1992), were based upon this extremely time consuming, tedious, error prone, and ulti-

mately fragile approach. As noted in section 2.1.1, one of the main emphases of MUC

was on developing potable RE systems. So much so that the NER task was introduced

in MUC-6 (Grishman and Sundheim, 1996).

In an effort to improve portability and flexibility of automated RE systems, there was

an intriguing, fundamental shift in relation extraction research and development. In the

late 80s and early 90s, applications of statistics to problems in computer sciences gave

birth to a new field, machine learning. The fundamental insight underlying machine

learning is to not explicitly program solutions, but rather, as Mitchell (1997) put it,

to “construct computer programs that automatically improve with experience.” The

often-cited definition of learning algorithm is, “a computer program is said to learn from
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experience E with respect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E.” (Mitchell,

1997) In application to relation extraction, the definition is: T , the task, is to identify

and extract structured facts that express a binary relation and P , the performance

metric, is F1 on a held-out dataset.

Defining experience, E, for relation extractors is hotly contested. And the disagreement

in the field stems from larger differences in the classes of machine learning algorithms.

Each class has a different method for learning from data (i.e. gaining experience). In

general, there are three different types of learning algorithms. Unsupervised learning

algorithms build models from data that has not been annotated, i.e. the label informa-

tion is not explicit in the data (Chapelle et al., 2006). On the other hand, supervised

learning algorithms operate on data that has been explicitly annotated and labeled

(Chapelle et al., 2006, Mitchell, 1997). This setting is usually considered easier as there

is a a well-defined metric for performance: the model’s agreement with labeled data.

Many real-world data, such as the overwhelming majority, if not all of, of Internet

text, is unlabeled (Hilbert and López, 2011). Automatically evaluating performance on

unlabeled data is difficult. Most often, unsupervised algorithms are evaluated on la-

beled data. Supervised algorithms usually perform better than unsupervised algorithms

because, during learning, they can directly optimize their internal modeling through au-

tomatic evaluation. Supervised learning algorithms have the ability to compare perfor-

mance to some “ground-truth” labeling and thus have the opportunity to be consistent

with said labeling. However, as noted earlier, many data that is relevant to relation

extraction is not explicitly labeled, rendering the advantages of completely supervised

algorithms useless.

The third kind of learning algorithm is seen as a combination of the former two. Semi-

supervised learning (SSL) algorithms construct models from a combination of labeled

and unlabeled data. In SSL, algorithms are supplied with a small amount of labeled

examples and a large number of unlabeled examples. Because human annotation of

text for binary relations is a costly process, there is little labeled data applicable to

the relation extraction task (defined in figure 1.1). In SSL, the objective is to learn a

hypothesis that is consistent with the few labeled examples while using prior knowledge

to incorporate the information locked away in the multitude of unlabeled examples

(Chapelle et al., 2006). In a sense, semi-supervised algorithms attempt to combine the

best of both worlds.
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2.2.1 Distant Supervision

There are a multitude of semi-supervised learning algorithms. An extremely effective

and scalable SSL for relation extraction is known as distant supervision (Banko et al.,

2007, 2008, Carlson et al., 2010, Etzioni et al., 2004, 2005, Go et al., 2009, Hoffmann

et al., 2011, 2010, Krause et al., 2012, McDonald, 2005, Min, 2013, Mintz et al., 2009,

Mitchell et al., 2009, Nguyen and Moschitti, 2011a,b, Nigam et al., 1998, Pantel and

Pennacchiotti, 2006, Purver and Battersby, 2012, Riedel et al., 2010, Rosenfeld and

Feldman, 2007, Roth et al., 2014, Surdeanu et al., 2010, Takamatsu et al., 2012, Xu

et al., 2013). Craven et al. (1999) are credited with the first application of distant

supervision when they applied the technique to relation extraction in biomedical texts.

Distant supervision occurs in domains where unlabeled data is plentiful and there exists

a source of structured labeled data. In relation extraction, the most common form of

distant supervision is to heuristically align a knowledge base – a database of relation

instances between entities – to entity mentions in text (Banko et al., 2007, Hoffmann

et al., 2011, 2010, Mintz et al., 2009, Nigam et al., 1998, Riedel et al., 2010, Schmitz

et al., 2012, Surdeanu et al., 2010, Takamatsu et al., 2012, Xu et al., 2013). Commonly

used sources of publicly available knowledge bases include Freebase (Bollacker et al.,

2008), YAGO (Suchanek et al., 2007), and DBPedia (Auer et al., 2007), which is derived

from Wikipedia infoboxes.

An active area of research is in these alignment heuristics. The most common heuristics

involve finding all sentences that have a matching relation and entity pair mention, then

using these matches as positive examples for the relation (Mintz et al., 2009, Roth et al.,

2014, Schmitz et al., 2012, Surdeanu et al., 2010). For each record (r, (Q,A)) in the

knowledge base, these distant supervision systems query the corpus for sentences con-

taining Q AND A. The returned sentences are then featurized and turned into positive

examples for relation r. As a concrete example, consider the triple (per title, (Jimmy

Carter, President)). When querying the corpus, we might retrieve the following sen-

tence:

President Jimmy Carter pardoned Jefferson Davis in 1978.

Figure 2.3: Example of matched sentence in distant supervision

Under the widely held assumption that a sentence that contains an entity pair (Q,A)

that is listed in the knowledge base (KB) under relation r is expressing the relation r,

we would use the sentence in figure 2.3 as a positive example for the relation per title.

It is also possible to consider this sentence as a positive example for another relation

under the same entity pair. For example, with the relation per political office

as in (per political office, (Jimmy Carter, President)). This is an example of
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overlapping labels, which, sometimes, can pose problems for distant supervision. Given

two mutually exclusive relations, r1 and r2, it is not true that a single sentence s that

has the entity pair (Q,A) is a positive example for both r1 and r2. Moreover, it is

not even guaranteed that (Q,A) in s express either r1 or r2. Despite these theoretical

problems which could lead to noisy training data, this straightforward knowledge base

alignment heuristic is extremely effective in practice, resulting in state-of-the-art relation

extraction systems (Mintz et al., 2009, Roth et al., 2014).

Riedel et al. (2010) and Hoffmann et al. (2011) flip a key assumption of the KB alignment

distant supervision approach on its head. While they still do a heuristic KB alignment,

they assume that a relation and entity pair is expressed at least once in a corpus. In

contrast, the works described above assume that every sentence with that has (Q,A) for

the KB tuple (r, (Q,A)) express relation r. From this different assumption, both sets of

authors develop a factor graph model that is able to effectively capture this assumption

on a per relation and entity pair basis. In their models, each entity pair embedded in a

sentence is modeled by a relation variable for all possible relations that the entity pair

could participate in. This graphical model also includes variables for different lexical and

syntactic features. Finally, they define a conditional probability distribution over this

factor graph’s variables, which yields a distribution over these sentences with embedded

entity pair mentions. This distribution allows one to determine which sentences are most

likely to express a given relation. In turn, this yields training data that is more internally

consistent and less noisy. Hoffman et al. extend the model proposed by Ridel et al. to

handle overlapping relations. They accomplish this through a different factorization and

probability distribution.

A different distant supervision approach takes a few cues from the discipline of informa-

tion retrieval (IR). In IR, the objective is to find a set of documents that are relevant

to a query (Manning et al., 2008). The common approach in IR systems is to learn this

query to document set mapping by learning a document ranking function. Then, given a

query, this function can produce a list of documents in decreasing relevance to the query.

The common approach to learning this function is through relevance feedback, which can

be explicit (a list of queries with known relevant documents) or implicit (noting which

documents are pursued after a user submits a query). In practice, a medium between

these two is used; known as pseudo-relevance feedback (Manning et al., 2008). Pseudo-

relevance feedback involves assuming that the top k (for small values of k, such as 10

- 50) documents returned from the function are relevant, using the words of the docu-

ments to expand the query’s scope (known as query expansion), and then re-performing

the search with the expanded query and returning the most relevant k documents.
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Xu et al. (2013) use a modified notion of pseudo-relevance feedback in order to distantly

label and extract novel relation mentions. In their work, the authors assume that sen-

tences that are relevant to a individual relation and entity pair contain entity pairs that

are relevant to the relation in question. In turn, these entity pairs are used in the query

expansion step to find more sentences. These sentences are then positively labeled and

used as examples for the extraction model.

Another effective and popular distant supervision scheme is known as bootstrap learning

(Banko et al., 2008, Brin, 1999, Carlson et al., 2010, Etzioni et al., 2004, 2005, Jones et al.,

1999, Krause et al., 2012, Mitchell et al., 2009, Pantel and Pennacchiotti, 2006, Schmitz

et al., 2012). Instead of a heuristic knowledge base alignment, the bootstrap learning

paradigm iterates between learning extraction patterns from a set of labeled examples

and adding new examples to this set using the previous iteration’s extraction patterns.

Bootstrap learning begins using a small set of labeled examples, known as seeds. These

seed examples are manually annotated by humans and usually on the order of 10 per

relation. These examples usually consist of an entire annotated sentence or document.

That is, the example has all of the information that the relation extractor would have

available to it at test time, with the addition of a human annotation specifying the

specific relation present between a specific entity pair.

The first iteration consists of learning relation extraction models from these seed in-

stances. This provides the models with a set of extraction patterns, i.e. features that

are able to recover the relation and entity pair mention. The updated model is then

run over the entire corpus. This step produces many extractions, which are most nearly

guaranteed to contain false positives. A critical decision is in how to manage these newly

extracted instances. Most methods take the approach of passing these extractions into a

knowledge aggregator that is able to use constraints between relations and other informa-

tion in order to eliminate spurious extractions (Carlson et al., 2010, Mitchell et al., 2009).

Other approaches use grammars and probabilistic grammar models to rank extractions

and filter incorrect extractions (Etzioni et al., 2004, Schmitz et al., 2012). Simpler ap-

proaches involve static thresholds, such as “accept the top k newly extracted instances

for each relation.” These thresholds often work well enough in practice (Carlson et al.,

2010).

A common critique of bootstrap learning systems is that they are prone to semantic

drift (Curran et al., 2007, McIntosh and Curran, 2009). Semantic drift is the condition

of extracting new relation examples that deviate so greatly from the seed examples that

they are no longer related. This causes the semantics of the set of extracted instances to

become diluted and noisy. And due to the iterative nature of bootstrapping methods,
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using incorrect examples as justification for extracting more examples leads to an ever-

increasing amount of semantic drift. In practice, semantic drift can be devastating.

Often the solution is to employ human annotators to prune incorrect extraction patterns

and examples from the set of learned knowledge. However, Curran et al. (2007) and

McIntosh and Curran (2009) provide algorithms that aim to automatically detect and

negate semantic drift. In general, these algorithmic solutions exploit domain knowledge

about the relations in order to constrain their definitions and thus the types of extraction

patterns that are used during the bootstrapping process. For example, Curran et al. rely

on mutual exclusion between relations in order to constrain the process. McIntosh and

Curran present a distributional similarity filter which rejects extractions if the extraction

is more similar to other recently extracted examples than it is to the seed examples. In

practice, McIntosh and Curran find that their method can improve precision on later

iterations by as much as 10%.



Chapter 3

Data

This thesis work germinated from an entry in the 2012 KBP Slot Filling task (Ji et al.,

2010). In this competition, we had access to a dataset of many news articles and

message boards. In addition, we had a well-defined list of semantic relations with labeled

examples that were known to occur in the dataset. It was natural to use these data to

further our own research.

However, before embarking on this thesis, we thought it crucial to understand this data.

Before making assumptions about how the data is distributed and the patterns that are

present within it, we sought to get a sense of the signals and information present in the

text. As such, we decided to perform manual inspection of many document samples.

We read through hundreds of documents from the different text sources of this corpus.

Immediately, we observed disparaging differences in quality between these sources. The

documents sampled from the news article sources consisted of significantly higher-quality

writing than the documents sampled from the message board sources. On the whole, we

noted that the news articles had many desirable properties. The articles had few, if any,

grammatical or spelling errors. Their sentences were well-constructed and effectively

communicated facts. The documents followed, to some extent, over-arching patterns,

which gave us hope that we might be able to successfully extract meaningful and useful

information.An example of such a sentence is in figure 3.1.

“A. Sukrisno, the former ambassador to Vietnam and Romania, and Jawoto, a former
ambassador to Beijing, are both living in exile in Amsterdam.”

Figure 3.1: Example of a desirable sentence. Importantly, it is factual; it conveys
useful information about two people. It is a relation mention and thus useful for relation

extraction.

In contrast, the articles fetched from message boards were unsatisfactory. An example

is in figure 3.2. The informal nature of message boards leads to many undesirables.

13
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“Boy, the Democrats sure did try to shoot the messenger on this one huh?”

Figure 3.2: Example of an undesirable sentence. Not factual with high emotional
content. It is not a relation mention and thus not useful to our task.

Responses were usually not as well written as news articles. Sentences were littered with

spelling and grammatical mistakes, incoherent ramblings, and unknowable references.

We often observed that responses would refer to other information that was not on the

message board. We thought it would add an additional, unnecessary layer of complexity

to our system if we had to perform extensive dereferencing from other data sources in

order to use the message board data. In the end, we concluded that the entirety of

the message board data was not to be trusted and used within our relation extraction

system. In retrospect, this seems like a natural conclusion: it is difficult to extract

valuable information from a comment thread crafted by an angry mob!

Before this course-grained document filtering, there were 218,223,253 sentences in 32,25,591

documents. After, there were 7,733,089 sentences in 5,726,579 documents. Interestingly,

after filtering, 78% of these documents contain only a single sentence.

3.1 Relations and Labeled Data

In table 3.1, we list all of the relations from the TAC-KBP 2012 slot filling challenge (Ji

et al., 2010). We use these relations in experiments in chapter 5. Due to some problems

arising from label sparsity and distant labeling, we do not use all of these relations.

Rather we use two subsets of these relations, which we describe in our experiments

chapter (chapter 5).

Although the semantics of the relations used in TAC-KBP challenges stayed the same

between years, some of the relation names did not. Therefore, we manually mapped

every relation name from 2009-2011 to the 2012 TAC-KBP names.

We use the manually annotated assessments from the 2009-2012 TAC-KBP results as

our knowledge base. There are 3,862 positive examples across all relations
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Relation Example

org alternate names (American Bar Association, ABA)

org city of headquarters (International Crisis Group, Brussels)

org country of headquarters (Awami League, Bangladesh)

org date dissolved (American Basketball Association, 1976)

org date founded (Lashkar-e-Taiba, 1989)

org founded by (United National Congress, Basdeo Panday)

org member of (Blackburn Rovers, Premier League)

org members (American Beverage Association, Susan Neely)

org parents (USA Network, NBC Universal)

org political religious affiliation (Focus On The Family, Evangelical)

org shareholders (Arsenal Football Club, Daniel Fiszman)

org subsidiaries (Carnival Corporation, Princess Cruises)

org top members employees (Pentax Corporation, Fumio Urano)

per age (Ellen Degeneres, 56)

per children (Juanita Millender-McDonald, Keith McDonald)

per cities of residence (Kelly Cutrone, New York City)

per city of death (Irene Kirkaldy, Gloucester)

per countries of residence (Jo Ann Davis, United States)

per country of birth (Susan Boyle, Britain)

per date of birth (Jane Bolin, 1908-April-11)

per date of death (Theodor Kollek, 2007-January-02)

per employee of (Jennifer Dunn, IBM)

per member of (Gilbert Gude, Army Medical Corps)

per origin (Steven Derounian, Armenian)

per parents (Beverly Sills, Shirley Silverman)

per siblings (Spencer Pratt, Stephanie Pratt)

per stateorprovinces of residence (Jake Pavelka, Texas)

per title (Jefferson DeBlanc, Colonel)

Table 3.1: TAC-KBP 2012 Relations, each with one real example. We use subsets of
these relations in our experiments, detailed in chapter 5.
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Methods

Below, we detail our relation extraction methods. We describe our system from two

perspectives. We give a“bird’s eye view” and illustrate the relation extraction machinery

as a data processing pipeline. We detail the inputs and outputs of each component and

map the links between each component. We also describe the algorithms behind each

component in detail.

4.1 Relation Extraction Pipeline

Our system is logically split into two pipelines. The first pipeline takes as input a set of

documents and outputs training data for our relation extraction models. This pipeline

executes standard text processing algorithms (section 4.1.1), generates candidates using

a probabilistic first-order logic and distant supervision (section 4.1.2), and constructs

features for these candidates to make training data for the evaluation pipeline (section

4.1.3).

We discuss the second pipeline in section 4.2. This pipeline trains and evaluates our

relation extraction models, optimizing for F1 on held out testing sets.

16
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(a) Distant Labeling Pipeline.

(b) Train and Evaluation Pipeline. We train
a separate binary Support Vector Machine for
each relation. We sweep through positive mis-
classification costs and output the model that
achieves the highest average F1. See section 4.2

for detail.

Figure 4.1: Relation extraction pipeline. Figure 4.1a shows the process of creating
training data from a corpus of unstructured text documents. Our pipeline is able to
generate, distantly label, and featurize candidates from either an entire corpus or from
a targeted search. However, due to computational constraints, we are only able to
perform co-reference resolution and use the ProPPR candidate generation rules on the

smaller document set that is output from the targeted search.
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4.1.1 Document and Sentence Processing

The first stage of the distant labeling pipeline performs a series of text processing steps.

These steps serve to add structure to the document’s text. Different sub-components of

this system annotate the individual tokens in the document. These annotations trans-

form unstructured text into a representation that is suitable for candidate generation.

Figure 4.2: The document processing
component annotates a set of unstructured

text documents.

Although the document processing component

only accepts a set of documents as input, we

have two distinct methods for feeding this

component’s input. The first method is to

completely process an entire corpus. This

mode is suitable for large-scale relation extrac-

tion. Due to our modular architecture, we

are able to process documents in an embar-

rassingly parallel fashion. This nearly linear

speedup drastically reduces the overall running

time of document processing.

The second method is to use a list of queries to

perform a targeted search over the corpus. By

only returning the k most relevant documents

for each query, we are able to focus our docu-

ment processing efforts on a drastically smaller

set of documents, which is crucial for practical

document-wide co-reference resolution.

As stated earlier, this component performs a

sequence of algorithms on unstructured text, each of which adds additional structure

to the original text. The first such algorithm is sentence segmentation. We identify

and index each sentence present in the document. Each sentence is assigned a unique

identifier, which is the concatenation of the document’s ID and the sentence’s order

within the document (e.g. sentence 0, 1, 2, . . . ). After this step, we tokenize each

sentence and assign Part-of-Speech (POS) and Named Entity (NE) tags to each token.

Next, we chunk tokens into phrases. We use a simple and efficient chunking algorithm

that does a single pass through the tokens, chunking any two successive tokens if and

only if the tokens have the same NE tag. See figure 4.3 for an example tagged and

chunked sentence. Note that in the example we are interested in finding nounphrases:

contiguous sequences of tokens that act as a single noun. Assigning POS tags and

performing NER allows us to find these nounphrases in text.
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The final text processing step is to perform document-wide co-reference resolution. This

resolution gives us the ability to generate candidates that span multiple sentences. See

section 4.1.2 for a detailed explanation of how we incorporate co-reference information

in our candidate generation.

General/NNP Paul Eaton/NNP/PERSON said/VBD/ George Bush/NNP/PERSON is/VBZ

holding/VBG our/PRP soldiers/NNS hostage/NN to/TO his/PRP ego/NN ./.

Figure 4.3: Example of a text-processed sentence. Note the POS tags (e.g. proper
noun NNP and plural noun NNS). Also note that the PERSON NE tag allows us to form

distinct chunks for both “Paul Eaton” and “George Bush.”

We use the robust NLP tools provided by the Stanford CoreNLP library in order to

perform segmentation, tokenization, POS tagging, NER, and co-reference resolution

(Finkel et al., 2005, Lee et al., 2011, Toutanova and Manning, 2000).

The CoreNLP sentence segmenter and tokenizer is a finite state automaton. The POS

tagger used in the library is a log-linear model with local and non-local features. The

model is estimated using the maximum entropy method. The NER is a Conditional

Random Field (CRF) that incorporates local and non-local features as well. The co-

reference resolution engine is a sieve-based approach. The engine successively applies

deterministic models, in order of increasing precision, on the document in order to

determine co-reference.

To perform our search over the documents, we use the Apache Lucene search engine

(http://lucene.apache.org/).

4.1.2 Candidate Generation and Distant Labeling using Probabilistic

First-Order Logic and Co-reference Resolution

In the data, we often observed sentence constructions where the query of interest is

mentioned in the sentence preceding the answer. Usually a pronoun (or sometimes

another noun, such as an acronym or other alias) in the answer sentence would refer to

the query in the preceding sentence. We immediately noted that this could be a potential

recall problem: a per-sentence based relation extraction system would be completely

unable to answer this type of query.

To circumvent this issue, we adopt a novel candidate generation approach that uses a

highly scalable probabilistic first-order logic system known as ProPPR (Wang et al.,

2013). ProPPR uses prolog rules, atomic facts, and a novel graphical representation to

perform probabilistic inference. The system represents the logic program as a directed

http://lucene.apache.org/
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graph. Nodes in the graph are logic program states, i.e. a rule with some number of

satisfied variables and a partial mapping of variables to values. Edges between logic

program states correspond to invoking a specific inference rule. A complete proof is sum

of all paths through the graph from a rule consisting of all variables (the query) to a rule

consisting of no free variables. ProPPR uses an approximate of PageRank algorithm

in order to probabilistically prove rules. Moreover, ProPPR uses a local grounding

technique in order to construct this graph. The particular algorithm that ProPPR uses

can construct such a graph in time that is not proportional to the size of its input.

This fact makes ProPPR an ideal choice for relation extraction, where our input data is

naturally large.

We construct inference rules in ProPPR that allow us to generate candidates from both

within-sentence entity pairs and from entity pairs that share a link to a common referent.

We describe all of these rules in detail below. We also present the exact rule formulations

in figure 4.4, with supporting rule definitions in figure 4.5, and definitions of atomic

statements in figure 4.6.

For the within-sentence case, the candidateSent(Q,S,A) rule will propose that two

entities (Q,A) are a relation extraction candidate iff Q and A are from the same sentence

S and A has a noun-type POS tag.

candidateSent(Q,S,A) :- sentlink(Q,S,A), constraint(S,A) .
candidateDoc(Q,Sq, Sa,Ref,A) :- doclink(Q,Sq, Sa,Ref), sentlink(Ref, Sa,A),

coref(Q,Sa,Ref, Sa), constraint(S,A) .
candidateDoc(Q,Sq, Sa,Ref,A) :- sentlink(Q,Sq,Ref), doclink(Ref, Sq, Sa,A),

coref(Ref, Sq,A, Sa), constraint(S,A) .

Figure 4.4: Candidate generation rules in the ProPPR probabilistic first-order logic
system. Note that the words that begin with capital letters (e.g. Q) are variables.

The other rule has two different definitions, both of which generate candidates from the

same document using co-reference information. The first definition of candidateDoc

(Q,Sq, Sa,Ref,A) will propose the candidate (Q,A) iff:

• Entity Q is in sentence Sq, entity Ref is in sentence Sa, and Sq and Sa are

sentences from the same document.

• Entity Ref in sentence Sa refers to entity Q in sentence Sq.

• Entity Ref and entity A are in same sentence Sa.s

• Entity A has a noun-type POS tag.

The second definition for candidateDoc proposes the candidate (Q,A) iff:



Chapter 4. Methods 21

• Entity Q and entity Ref are in sentence Sq together.

• Sentence Sq and sentence Sa are in the same document.

• Entity Ref in sentence Sq refers to entity A in sentence Sa.

• Entity A is in sentence Sa and A has a noun-type POS tag.

sentlink(Q,S,A) :- entInSent(Q,S), sentHasEnt(S,A) .
doclink(Q,Sq, Sa,A) :- entInSent(Q,Sq), sentInDoc(Sq,D)

docHasSent(D,Sa), sentHasEnt(Sa,A) .
constraint(S,A) :- sentHasEntPOS(S,A, NN) .
constraint(S,A) :- sentHasEntPOS(S,A, NNS) .
constraint(S,A) :- sentHasEntPOS(S,A, NNP) .
constraint(S,A) :- sentHasEntPOS(S,A, NNPS) .

Figure 4.5: Supporting candidate generation rules. The four definitions for
constraint mean that this rule can be satisfied in four different ways.

entInSent(Q,S) := Entity Q is in sentence S
sentHasEnt(S,A) := Sentence S has entity A
sentInDoc(S,D) := Sentence S in in document D
docHasSent(D,) := Document D has sentence S
sentHasEntPOS(S,A, T) := Entity A in sentence S has POS tag T

coref(Ref, Sq,A, Sa) := Ref in sentence Sq is a referent to A in sentence Sa

Figure 4.6: Definitions of atomic statements.

Figure 4.7: The candidate generation
and distant labeling component.

In our candidate generation, we accept all infer-

ences of a candidate generation rule that have non-

zero probability.

We follow the widespread distant labeling assump-

tion as detailed in our review in section 2.2.1. As

applied to our candidate generation approach, we

label a candidate (Q,A) with relation r if and only

if the record (r, (Q,A)) appears in our knowledge

base (KB). Figure 4.7 gives a schematic represen-

tation of the candidate generation and distant la-

beling component.
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4.1.3 Featurization: k-skip n-grams

Our choice of features are inspired by Roth et al.

(2014) and Mintz et al. (2009).

Figure 4.8: The featurization com-
ponent.

We use two different types of features: n-grams

and k-skip n-grams. An n-gram is a contiguous

sequence of n tokens. A k-skip n-gram is a gen-

eralization of this idea. They are like n-grams, as

they have exactly n successive tokens, but they al-

low at most k skips in-between any pair of tokens.

Note that a 0-skip n-gram is an n-gram. Thus,

k-skip n-grams subsume all n-grams as well as all

k − 1, k − 2, etc.-skip n-grams.

We provide examples of n-grams and k-skip n-

grams produced from the sentence, “Insurgents

killed in ongoing fighting.” in figures 4.9 and 4.10,

respectively. These examples are reproduced from

Guthrie et al. (2006).

Uni-gram := Insurgents, killed, in, ongoing, fighting

Bi-gram := Insurgents killed, killed in, in ongoing, ongoing fighting

Tri-gram := Insurgents killed in, killed in ongoing, in ongoing fighting

Figure 4.9: Examples of n-grams, comma-separated.

1-skip bi-grams := Insurgents killed, killed in, in ongoing, ongoing fighting, Insurgents in,

killed ongoing, in fighting

2-skip bi-grams := Insurgents killed, killed in, in ongoing, ongoing fighting, Insurgents in,

killed ongoing, in fighting, Insurgents ongoing, killed fighting

Figure 4.10: Examples of k-skip n-grams, comma-separated.

Formally, we follow the definition of a k-skip n-gram as it is presented in Guthrie et al.

(2006). This definition is listed in figure 4.11, where we define elements of the set of

k-skip n-grams.



Chapter 4. Methods 23

{wi1 , wi2 , . . . , win |
n∑

j=1

ij − ij−1 ≤ k}

Figure 4.11: Definition of a k-skip n-gram.

For the query and answer nounhprases, we take the bi-grams and uni-grams that are

adjacent to the nounphrase. We also construct 2-k-skip bi-grams from the tokens in-

between the query and answer nounphrases. In the event that the candidate was gen-

erated from two sentences, we take the 2-k-skip n-grams between the answer or query

(depending on the specific candidate generation rule) and the referent. Note that we

must construct these k-skip n-gram features from two nounphrases in the same sentence.

4.2 Learning Extraction Features

Our choice of learning algorithm is also inspired by Roth et al. (2014). The authors make

an important empirical insight in relation extraction. They note that relation extraction

systems must constantly handle negative examples. The overwhelming majority of sen-

tences and pairs of sentences in documents do not express any known relation. Therefore,

the overwhelming majority of generated candidates will not express any known relation.

In general, the majority of learning algorithms assume that the training data is uniformly

balanced between positive and negative examples. In the relation extraction task, this

assumption is violated.

Figure 4.12: The evaluation pipeline.

Roth et al.’s solution is to use a cost-

augmented learning algorithm. If the

learner is able to penalize misclassi-

fications on positive examples more

seriously than misclassifications on

negative examples, then the learner

is significantly more likely to learn

a hypothesis that is able to ade-

quately discriminate between unob-

served positive and negative examples

in a class-unbalanced setting. Specif-

ically, for each relation, we use a cost-

augmented binary soft-margin Sup-

port Vector Machine (SVM) to learn

the function from adjacent n-gram
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and inner k-skip n-gram features of

candidates to the relation.
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4.2.1 Hard vs. Soft Margin SVMs

All SVMs learn a hyperplane that separates the data into distinct classes. Moreover, all

SVMs find the hyperplane that maximizes the margin between the hyperplane and each

class.

The original hard SVM finds a linearly separable hyperplane. That is, all of the data

points are perfectly separated into their respective classes and the hyperplane that ac-

complishes this separation is linear. In the easy to visualize two-dimensional case, this

hyperplane is a straight line. See figure 4.13a1 for an example.

Hard SVMs have an Achilles’ heel: they do not work on non-linearly separable datasets.

This is a frustrating limitation as most (if not all) real-world uses of classifiers are

in non-linearly separable domains. In our domain, where we have tens of millions of

noisy features and hundreds of thousands of labeled training examples, hard SVMs

are completely impractical. Add to this distantly labeled data, which almost always has

some small labeling errors, and any justification for using hard-margin SVMs evaporates.

However, there is a very useful re-formulation of the traditional SVM to deal with non-

linearly separable datasets. So called soft-margin SVMs introduce slack variables, ξ,

which account for each data points’ transgression into the margin. This change in the

objective function introduces new support vectors. While in both the hard and soft case

the vectors that are on the margin are the support vectors, the soft SVM case adds all

vectors that have non-zero ξ’s. The vectors that have non-zero values for their slack

variables are exactly the ones that have passed into the margin. See figure 4.14a for the

soft-SVM objective function and see figure 4.13b for a visual example of a soft-SVM’s

hyperplane and margin.

1Public Domain. http://commons.wikimedia.org/wiki/File:Svm max sep hyperplane with margin.png
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(a) Hard SVM formulation. Note how the
support vectors are only the data points that

are on the margin.

(b) Soft SVM formulation. Critical differ-
ence is that support vectors include data
points that are in-between the separating hy-

perplane w and the class margins.

Figure 4.13: Hard and soft Support Vector Machine formulations on synthetic
dataset. 1

4.2.2 Cost-Augmented Support Vector Machines

Training SVMs is equivalent to optimizing an objective function (see figure 4.14). The

margin-maximizing idea is equivalent to minimizing the squared L1 norm of the hy-

perplane w plus the sum of each slack variable ξi weighted by a cost C, subject to

the constraint that each data point must reside on the class-appropriate side of the

hyperplane.

This formulation has been empirically shown to work well on a variety of classification

tasks. However, it is sensitive to the distribution of labeled examples between the

positive and negative classes. For example, if the ratio of negative to positive examples

is 1 million to 1, then the SVM will learn a hyperplane w and associated margin that will

be extremely likely to classify any data point as negative merely because the negative

examples greatly outnumber the positive examples seen during training.

In our relation extraction task, as well as many other NLP applications, we suffer from

a class imbalance problem. Namely, the negative distantly labeled relation candidates

(section 4.1.2) greatly outnumber the positively distant labeled candidates. To overcome

this problem, we adopt a cost-augmented approach to training SVMs.

The cost-augmented approach we follow is the same that is presented by Morik et al.

(1999). The critical idea is a relatively simple change: separate the cost C into costs

specific to misclassifications on positive and negative examples seen during training.
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These two new costs, C+ and C−, are only applied to examples that belong to either

the positive class (label yi = +1) or the negative class (label yi = −1), respectively. See

figure 4.14b2 for the complete objective function formulation.

In our experiments in chapter 5, we use the cost-augmented binary SVM implementation

known as svm-light (Morik et al., 1999).

(a) Normal soft SVM objective function.
Note the single cost penalty C.

(b) Cost-augmented soft SVM objective function.
Note that the cost is split between the positively
labeled examples C+ and the negative examples

C−.

Figure 4.14: Objective functions for soft and cost-augmented soft SVMs.2

4.2.3 Stratified Cross Validation

Cross validation is a useful technique to thoroughly evaluate the performance of any

learning algorithm. The idea behind cross validation is to shuffle all of the training

examples and then partition this data into k folds, where k ≥ 2. For each fold, we select

the fold to be held out and train a model on the other k − 1 folds. Once we have a

model, we evaluate its performance on the held out fold. This procedure produces k

performance estimates.

While in general cross validation is a useful evaluation paradigm, this method can pro-

duce skewed performance estimates when the training data is unbalanced. In our case,

we do not have an approximately even distribution of relations. To counteract this class

imbalance problem while yielding a minimum of unnecessary influence on our empirical

evaluation, we use a technique known as stratified cross validation. In stratified cross

validation, we ensure that each fold has the same distribution of labeled examples. I.e.

for each relation, we ensure that each fold has 1
k of the relation’s positively labeled

examples. Moreover, we ensure that each fold has 1
k of the negative examples.

We use stratified cross validation in order to evaluate our learned relation extractors.

2Reproduced from Morik et al. (1999)
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Experiments

In this chapter, we describe our experiments to evaluate our relation extraction system.

We specify our setup and describe the methods we use to generate our evaluations,

including hyperparameter values. We present relation classification performance on two

separate experiments.

5.1 Experimental Setup

We train a an independent binary classifier for each relation using a cost-adjusted Sup-

port Vector Machine (SVM). We justify our use of a cost-augmented SVM in section

4.2.2. The ability to penalize the SVM more for misclassifying positive examples is

critical to the overall success of our relation extraction system. Without this cost-

augmentation, our system is not able to effectively learn discriminative features, result-

ing in near zero F1 scores. In all experiments, we perform a parameter sweep over the

three cost values: 6, 10, and 14, which correspond to the SVM penalizing misclassifica-

tions on positive examples 6, 10, and 14 times as much as it does misclassifications of

negative examples. We note that a cost value of 1 is equivalent to a non-cost-augmented

SVM.

We generate training data using our pipeline described in 4.1. Specifically, for each rela-

tion, we generate relation candidates and distantly label them using our knowledge base

(described in section 4.1.2), extract adjacent n-gram and inner k-skip n-gram features

(described in section 4.1.3), and output these training examples to disk. In addition

to generating labeled examples, our candidate generation step also generates negative

labeled examples. A candidate (Q,A) is considered negative if it does not align to any

relation in our knowledge base, i.e. 6 ∃r s.t. (r, (Q,A)) ∈ KB. These unmatched candi-

dates are assigned the virtual label NOT RELATED. They are critical in our training and

28
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evaluation as they help the learner understand how to reject candidates, which heavily

influences precision. For each relation, we uniformly at random evenly split the dis-

tantly labeled examples into 3 folds. We also uniformly at random evenly distribute the

NOT RELATED examples to each relation’s 3 folds.

5.2 Evaluation

As described in section 4.2.3, we use 3-fold stratified cross-validation. We use standard

metrics for relation extraction evaluation. Namely precision, recall, and F1. We provide

precise definitions of these metrics in figure 5.1. Intuitively, precision can be thought

of as how often the extracted relations were correct. Recall can be thought of as how

many of the known relation mentions in the text were extracted by the system. F1 is

the harmonic average between precision and recall.

Precision =
|{all correct mentions}| ∩ |{extracted mentions}|

|{extracted mentions}|

Recall =
|{all correct mentions}| ∩ |{extracted mentions}|

|{all correct mentions}|

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

Figure 5.1: Definitions of evaluation metrics: precision, recall, and F1.

F1 is a useful metric as it balances performance between providing correct extractions

and finding all relation mentions. It would be quite easy to achieve 100% recall: a

system could simply output absolutely everything. This behavior is, of course, highly

undesirable, which would be captured by this hypothetical system having near-zero pre-

cision. On the flip side, a system could only output its single, most confident extraction.

This would most likely be a correct extraction, and thus the system would have perfect

precision. However, it would have near-zero recall as it only output a single extraction.

F1 puts emphasis on doing well in both of these areas, without unduly sacrificing either

one.

In order to make better sense of the results, we limit our presentation to a few key views.

We provide aggregate precision, recall, and F1 measures for each experiment. Each one

of these metrics is averaged across each relation in a technique known as micro-averaging.

In addition, we provide a F1 on a per-relation basis for each dependent variable in each

experiment. Finally, we manually aggregate all of the relations into 10 functional types.

This mapping is listed in table 5.1. This mapping allows us to visualize performance

and better understand classification performance across the relations.
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Relation Functional Type

org alternate names org to misc

org city of headquarters org to location

org country of headquarters org to location

org date dissolved org to date

org date founded org to date

org founded by org to person

org member of org to org

org members org to person

org parents org to org

org political religious affiliation org to misc

org shareholders org to person

org stateorprovince of headquarters org to location

org subsidiaries org to org

org top members employees org to person

per age person to misc

per alternate names person to person

per cause of death person to date

per charges person to misc

per children person to person

per cities of residence person to location

per city of birth person to location

per city of death person to location

per countries of residence person to location

per country of birth person to location

per country of death person to location

per date of birth person to date

per date of death person to date

per employee of person to org

per member of person to org

per origin person to misc

per other family person to person

per parents person to person

per religion person to misc

per schools attended person to misc

per siblings person to person

per spouse person to person

per stateorprovince of birth person to location

per stateorprovince of death person to location

per stateorprovinces of residence person to location

per statesorprovinces of residence person to location

per title person to misc

Table 5.1: Complete relation to functional types. The 10 functional types are org
(organization) to date, org to location, org to misc, org to org, org to person, person to

date, person to location, person to misc, person to org, and person to person.



Chapter 5. Experiments 31

5.3 Empirical Results

We empirically evaluate our relation extraction system on a per-relation basis. Using

the motivation from section 4.2.3 and metrics described in figure 5.1, we evaluate per-

formance using precision, recall, and F1 on a held out test sets using 3 fold stratified

cross validation.

5.3.1 Large Scale Relation Extraction

Our first experiment is a comparison with many other distantly labeled relation extrac-

tions systems found in the literature (Mintz et al., 2009, Roth et al., 2014, Schmitz et al.,

2012, Surdeanu et al., 2010). In this experiment, we limit our candidate generation stage

to candidates that come from the same sentence. We perform candidate generation using

the entire newswire corpus (chapter 3).

This candidate generation step exactly follows the common distant supervision assump-

tion: a sentence expresses a relation r is the sentence has entities Q,A and the triple

(r,Q,A) is in the knowledge base (see section 2.2.1 for a review on distant supervision).

Since both of the candidate’s entities come from the same sentence, we do not use co-

reference resolution. Using this within-sentence candidate generation method, we find

22,539,854 within-sentence candidate pairs.

We provide micro-averaged results for precision, recall, and F1 in table 5.2. We also

provide a per-relation breakdown of F1 in table 5.3. In figure 5.2, we plot the micro-

averaged F1 for each functional relation type.

Precision Recall F1

50.89% 38.70% 42.27%

Table 5.2: Micro-averaged (across all relations and folds) results of relation extraction
system using within-sentence candidate generation on entire newswire corpus.
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Relation Precision Recall F1

org city of headquarters 44.05 35.71 39.05

org country of headquarters 47.62 28.71 35.59

org date dissolved 0.00 0.00 0.00

org date founded 100.00 50.00 66.67

org founded by 46.11 27.16 33.55

org member of 0.00 0.00 0.00

org members 17.81 11.11 13.55

org parents 38.27 36.11 34.67

org political religious affiliation 68.20 68.52 68.05

org shareholders 45.83 20.00 26.19

org subsidiaries 0.00 0.00 0.00

org top members employees 53.77 33.73 41.16

per age 82.07 26.32 38.56

per children 0.00 0.00 0.00

per cities of residence 75.63 52.85 62.07

per city of death 83.33 50.00 61.11

per countries of residence 80.07 68.88 74.01

per country of birth 55.59 45.85 50.19

per date of birth 0.00 0.00 0.00

per date of death 31.94 50.00 38.33

per employee of 73.95 70.20 71.99

per member of 67.83 46.95 55.23

per origin 91.05 80.95 85.69

per parents 78.12 33.75 44.65

per siblings 31.19 27.86 28.11

per stateorprovinces of residence 95.93 57.54 71.00

per title 96.28 94.22 95.24

Table 5.3: Per-relation results only using within sentence distant labeling on the
entire newswire corpus. Metrics are micro-averaged across 3 folds using stratified cross

validation.
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Figure 5.2: Micro-averaged F1 for each functional relation type used in the large scale
experiment, using within-sentence candidate generation. Note the high variance across

all functional relation types. F1 scores range from the low teens to the low 70s.
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5.3.2 Searching and ProPPR Candidate Generation with Co-reference

Resolution

Our second experiment is compares different candidate generation methods. In this

experiment, we use the within-sentence candidate generation, the ProPPR inference rule

based candidate generation (section 4.1.2), and a method that combines both within-

sentence and ProPPR to generate relation extraction candidates.

Due to computational constraints imposed by our text processing, namely the co-

reference resolution engine, we are unable to process the entire corpus. Instead, we

take the 80 queries used in the TAC-KBP 2012 slot filling task and locate all documents

that these queries occur in. This targeted search returns 193,571 sentences in 10,254

documents. Of these documents, only 4% consist of a single sentence.

Table 5.4 contains the micro-averaged (across all folds and relations) precision, recall,

and F1 for each candidate generation method on this dataset. We provide micro-

averaged F1 results on a per-relation basis for each candidate generation method in

table 5.5. Figure 5.3 plots the micro-averaged F1 across all folds for each functional

relation type. Finally, we provide the per-relation precision, recall, and F1 for each

separate candidate generation method in tables 5.6, 5.7, and 5.8.

Precision Recall F1

Within-Sentence 34.45% 27.13% 29.29%

ProPPR Rules 36.35% 28.37% 29.54%

Both 38.66% 31.86% 33.15%

Table 5.4: Micro-averaged (across all relations and folds) precision, recall, and F1 for
each candidate generation method on the search results. Note that the best aggregate
performance occurred when we combined the within-sentence and ProPPR rule-based

candidate generation methods.
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Relation Within-Sentence ProPPR Rules Both

org alternate names 30.88 30.88 30.88

org city of headquarters 12.83 19.65 12.83

org country of headquarters 43.10 56.21 43.10

org founded by 40.92 37.00 40.92

org member of 33.61 30.34 33.61

org members 23.23 39.04 23.23

org parents 28.84 37.56 28.84

org political religious affiliation 64.01 70.23 64.01

org shareholders 14.06 30.26 14.06

org stateorprovince of headquarters 22.69 17.67 22.69

org subsidiaries 16.07 24.87 16.07

org top members employees 38.12 40.33 38.12

per alternate names 86.67 47.04 86.67

per cause of death 100.00 83.33 100.00

per charges 0.00 0.00 0.00

per children 0.00 48.35 0.00

per cities of residence 13.89 17.71 13.89

per city of birth 0.00 0.00 0.00

per city of death 24.54 29.04 24.54

per countries of residence 22.36 30.70 22.36

per country of birth 13.95 0.00 13.95

per country of death 0.00 0.00 0.00

per date of death 22.00 27.76 22.00

per employee of 32.23 40.71 32.23

per member of 16.46 14.49 16.46

per origin 12.03 21.90 12.03

per other family 0.00 0.00 0.00

per parents 40.04 43.27 40.04

per religion 0.00 50.00 0.00

per schools attended 0.00 0.00 0.00

per siblings 13.25 17.38 13.25

per spouse 0.00 0.00 0.00

per stateorprovince of birth 0.00 0.00 0.00

per stateorprovince of death 12.41 15.09 12.41

per statesorprovinces of residence 6.21 17.95 6.21

per title 66.24 66.00 66.24

Table 5.5: Micro-averaged F1 (across 3 folds) per-relation results using queried doc-
ument set and with all candidate generation methods. Note that while some relations
have incredible performance (e.g. per cause of death), there are many relations that
have an F1 of 0. These zeros are attributable to not having enough labeled data for

the relation.
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Figure 5.3: Micro-averaged F1 for each functional relation type used in the search-
results experiment, using within-sentence, ProPPR rules, and both candidate genera-
tion methods. Note the high variance presented across all of the measurements. Criti-
cally, note that for two complete functional relation types (person to date and person to
misc), the ProPPR candidate generation method was not able to extract any relations.

F1s reange from the low teens to the high 50s.
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Relation Precision Recall F1

org alternate names 48.03 23.74 30.88

org city of headquarters 14.29 11.67 12.83

org country of headquarters 47.20 39.97 43.10

org founded by 48.72 35.86 40.92

org member of 61.11 24.60 33.61

org members 30.66 18.83 23.23

org parents 29.29 28.77 28.84

org political religious affiliation 78.77 57.96 64.01

org shareholders 18.18 11.71 14.06

org stateorprovince of headquarters 22.14 23.92 22.69

org subsidiaries 19.42 14.60 16.07

org top members employees 41.19 36.78 38.12

per alternate names 100.00 80.00 86.67

per cause of death 100.00 100.00 100.00

per charges 0.00 0.00 0.00

per children 0.00 0.00 0.00

per cities of residence 14.61 13.81 13.89

per city of birth 0.00 0.00 0.00

per city of death 25.08 24.14 24.54

per countries of residence 27.54 20.59 22.36

per country of birth 18.89 11.80 13.95

per country of death 0.00 0.00 0.00

per date of death 26.92 21.03 22.00

per employee of 34.28 31.70 32.23

per member of 18.77 15.56 16.46

per origin 15.01 13.35 12.03

per other family 0.00 0.00 0.00

per parents 48.98 34.72 40.04

per religion 0.00 0.00 0.00

per schools attended 0.00 0.00 0.00

per siblings 12.88 14.29 13.25

per spouse 0.00 0.00 0.00

per stateorprovince of birth 0.00 0.00 0.00

per stateorprovince of death 12.88 12.50 12.41

per statesorprovinces of residence 8.67 4.95 6.21

per title 77.72 57.82 66.24

Table 5.6: Per-relation results using the within-sentence candidate generation method
only on the searched corpus. Precision, recall, and F1 are averaged across 3-fold strat-

ified cross validation.
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Relation Precision Recall F1

org alternate names 32.73 94.82 48.42

org city of headquarters 72.09 66.67 67.45

org country of headquarters 93.98 85.43 89.47

org founded by 0.00 0.00 0.00

org member of 0.00 0.00 0.00

org members 92.59 75.15 82.81

org parents 68.11 36.35 46.49

org political religious affiliation 100.00 44.44 61.11

org shareholders 0.00 0.00 0.00

org stateorprovince of headquarters 0.00 0.00 0.00

org subsidiaries 74.45 46.67 54.75

org top members employees 54.51 41.48 47.06

per alternate names 90.74 37.03 50.74

per cause of death 0.00 0.00 0.00

per charges 0.00 0.00 0.00

per children 100.00 50.00 66.67

per cities of residence 0.00 0.00 0.00

per city of birth 100.00 51.67 64.68

per city of death 0.00 0.00 0.00

per countries of residence 0.00 0.00 0.00

per country of birth 0.00 0.00 0.00

per country of death 0.00 0.00 0.00

per date of death 0.00 0.00 0.00

per employee of 74.73 58.34 65.15

per member of 0.00 0.00 0.00

per origin 0.00 0.00 0.00

per other family 0.00 0.00 0.00

per parents 91.67 75.00 82.14

per religion 0.00 0.00 0.00

per schools attended 0.00 0.00 0.00

per siblings 100.00 70.37 81.48

per spouse 0.00 0.00 0.00

per stateorprovince of birth 0.00 0.00 0.00

per stateorprovince of death 0.00 0.00 0.00

per statesorprovinces of residence 80.56 40.48 53.74

per title 0.00 0.00 0.00

Table 5.7: Per-relation results using the ProPPR inference candidate generation
method only on the searched corpus. Precision, recall, and F1 are averaged across
3-fold stratified cross validation. Note the large degree of variance across all relations.

For instance, precision ranges from 0% to 100%.
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Relation Precision Recall F1

org alternate names 48.03 23.74 30.88

org city of headquarters 23.61 16.97 19.65

org country of headquarters 56.65 56.05 56.21

org founded by 42.08 33.81 37.00

org member of 49.84 23.92 30.34

org members 41.87 36.70 39.04

org parents 39.80 36.15 37.56

org political religious affiliation 85.86 61.15 70.23

org shareholders 34.84 27.24 30.26

org stateorprovince of headquarters 16.06 20.21 17.67

org subsidiaries 25.20 24.90 24.87

org top members employees 42.79 39.29 40.33

per alternate names 83.33 37.22 47.04

per cause of death 75.00 100.00 83.33

per charges 0.00 0.00 0.00

per children 60.74 50.00 48.35

per cities of residence 16.87 18.69 17.71

per city of birth 0.00 0.00 0.00

per city of death 29.61 29.30 29.04

per countries of residence 31.12 31.36 30.70

per country of birth 0.00 0.00 0.00

per country of death 0.00 0.00 0.00

per date of death 26.18 29.86 27.76

per employee of 43.24 39.28 40.71

per member of 17.77 12.46 14.49

per origin 36.23 18.04 21.90

per other family 0.00 0.00 0.00

per parents 41.03 47.22 43.27

per religion 100.00 33.33 50.00

per schools attended 0.00 0.00 0.00

per siblings 15.88 20.00 17.38

per spouse 0.00 0.00 0.00

per stateorprovince of birth 0.00 0.00 0.00

per stateorprovince of death 14.20 16.48 15.09

per statesorprovinces of residence 19.29 17.28 17.95

per title 80.38 56.21 66.00

Table 5.8: Per-relation results using the within-sentence and ProPPR inference candi-
date generation methods on the searched corpus. Precision, recall, and F1 are averaged

across 3-fold stratified cross validation.
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Conclusion

From our empirical results in chapter 5, we conclude the sum of all of our algorithms and

techniques described in chapter 4 has culminated in an relation extraction system that is

competitive with state-of-the-art systems. Our distant labeling pipeline is efficient and

scales to millions of documents. While not as scalable, our novel candidate generation

method using ProPPR, a locally groundable probabilistic first-order logic, proved itself

in a typical relation extraction setting.

Our large-scale extraction experiment in in section 5.3.1 showed that our relation extrac-

tion system is efficient and suitable for corpus-sized datasets. Despite not having access

to more advanced candidate generation using ProPPR, this large-scale system was still

able accurately classify relation candidates, with a micro-averaged F1 of 42.27%. We

note that the entire newswire corpus had few multi-sentence documents. In fact, only

22% of the documents had more than one sentence. A main advantage of using ProPPR

inference is to propose candidates that come from different sentences within the same

document. Therefore, we conclude that our inference rules for ProPPR would not be as

effective in this corpus.

In our targeted search experiment, detailed in section 5.3.2, we empirically validated our

novel approach to candidate generation using ProPPR. Although candidate generation

using ProPPR suffered from sparsity, leading to several relations that had 0 performance

scores, this technique achieved stellar performance on other relations. In the presentation

of our results, especially in figure 5.3, we note that this led to very high variance in our

reported metrics.

In contrast, the within-sentence method did not suffer from the same data sparsity

issues. Upon inspection, we noted many mismatches between co-reference candidates
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and candidates produced from our nounphrase chunking using NE tags. Unfortunately,

this meant that we were not able to exploit the full power behind ProPPR inference.

From a practical standpoint, we were able to improve upon the typical baseline, within-

sentence candidate generation method. We were able to combine ProPPR inference

with the within-sentence method to achieve a synergistic effect in relation classification

performance. Our overall micro-averaged F1 of 33.15% using this method is competitive

with state-of-the-art relation extraction systems (Roth et al., 2014).

Outside of candidate generation, we note the effectiveness of our feature representation

and our choice of learning algorithm. n-grams and k-skip n-grams have been used in a

variety of NLP tasks, ranging from information extraction to language modeling. In our

task, we found that these features were effective and provided a good space in which to

learn to discriminate between relations.

We make a crucial note about using a cost-augmented Support Vector Machine as a

learning algorithm. Early prototypes of our system that used a non-cost-augmented

SVM had terrible performance. Using within-sentence candidate generation and n-gram

and k-skip n-gram features, a non-cost augmented SVM had a near zero micro-averaged

F1.

In closing, we conclude that our approach, including our novel candidate generation

method using ProPPR, was highly effective and resulted in a highly competitive and

performant relation extraction system.
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