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Abstract

The use of shared mutable state, commonly seen in object-oriented systems, is often problem-
atic due to the potential conflicting interactions between aliases to the same state. We present a
substructural type system outfitted with a novel lightweight interference control mechanism, rely-
guarantee protocols, that enables controlled aliasing of shared resources. By assigning each alias
separate roles, encoded in a novel protocol abstraction in the spirit of rely-guarantee reasoning,
our type system ensures that challenging uses of shared state will never interfere in an unsafe fash-
ion. In particular, rely-guarantee protocols ensure that each alias will never observe an unexpected
value, or type, when inspecting shared memory regardless of how the changes to that shared state
(originating from potentially unknown program contexts) are interleaved at run-time.
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1 Introduction

Shared, mutable state can be useful in certain algorithms, in modeling stateful systems, and in
structuring programs. However, it can also make reasoning about a program more difficult, poten-
tially resulting in run-time errors. If two pieces of code have references to the same location in
memory, and one of them updates the contents of that cell, the update may destructively interfere
by breaking the other piece of code’s assumptions about the properties of the value contained in that
cell—which may cause the program to compute the wrong result, or even to abruptly terminate. In
order to mitigate this problem, static type systems conservatively associate an invariant type with
each location, and ensure that every store to the location preserves this type. While this approach
can ensure basic memory safety, it cannot check higher-level protocol properties [1,4,5,13,20]
that are vital to the correctness of many programs [3].

For example, consider a Pipe abstraction that is used to communicate between two parts of
the program. A pipe is open while the communication is ongoing, but when the pipe is no longer
needed it is closed. Pipes include shared, mutable state in the form of an internal buffer, and
abstractions such as Java’s PipedInputStream also dynamically track whether they are in the
open or closed state. The state of the pipe determines what operations may be performed, and
invoking an inappropriate operation is an error: for example, writing to a closed pipe in Java
results in a run-time exception.

Static approaches to reason about such state protocols (of which we follow the fypestate [7,
21,27,28] approach) have two advantages: errors such as writing to a closed pipe can be avoided
on the one hand, and defensive run-time tests of the state of an object can become superfluous on
the other hand. In typestate systems, abstractions expose a more refined type that models a set of
abstract states representing the internal, changing, type of the state (such as the two states above,
open and closed) enabling the static modular manipulation of stateful objects. However, sharing
(such as by aliasing) these resources must be carefully controlled to avoid potentially destructive
interference that may result from mixing incompatible changes to apparently unrelated objects
that, in reality, are connected to the same underlying run-time object. This work aims to provide
an intuitive and general-purpose extension to the typestate model by exploiting (coordination) pro-
tocols at the shared state level to allow fine-grained and flexible uses of aliased state. Therefore,
by modeling the interactions of aliases of some shared state in a protocol abstraction, we enable
complex uses of sharing to safely occur through benign interference, interference that the other
aliases expect and/or require to occur.

Consider once more the pipe example. The next two code blocks implement simplified versions
of the pipe’s put and tryTake functions. Although each function operates independently of the
other, internally they share nodes of the same underlying buffer:



// rec X.( Empty = Empty; X & Filled = none )
tryTake = fun().
let first = !buffer.head in
case !first of
Empty#_ — NoResult#{}
| Filled#[ v , next ] —
/I does not return ownership to the protocol
delete first;
buffer.head := next;
Result#v
end
end

// protocol: Empty = Filled; none
put = fun( v : Value ).
/l Empty shared node, oldlast, to be filled with node
/I containing tagged (#) empty record, {}, as ‘Empty’
let last = new Empty#{} in
let oldlast = !buffer.tail in //is Empty
// tags pair of ‘v’ and ‘last’ as ‘Filled’
oldlast := Filled#{ v , last };
buffer.tail := last
end // last cell is now reachable from head&tail
end // oldlast cell unreachable from tail

By distributing these functions between two aliases, we are able to create independent producer
and consumer components of the pipe that share a common buffer (modeled as a singly-linked
list). Observe how the interaction, that occurs through aliases of the buffer’s nodes, obeys a well-
defined protocol: the producer alias (through the put function) inserts an element into the last
(empty) node of the buffer and then immediately forfeits that cell (i.e. it is no longer used by that
alias); while the consumer alias (using tryTake) proceeds by testing the first node and, when it
detects it has been Filled (thus, when the other alias is sure to no longer use it), recovers own-
ership of that node, which enables the alias to safely delete that cell (first) since it is no longer
shared.

1.1 Approach in a Nutshell

Interference due to aliasing is analogous to the interference caused by thread interleaving [15,32].
This occurs because mutable state may be shared by aliases in unknown or non-local program
contexts. Such boundary effectively negates the use of static mechanisms to track exactly which
other variables alias some state. Therefore, we are unable to know precisely if the shared state
aliased by a local variable will be used when the execution jumps off (e.g. through a function
call) to non-local program contexts. However, if that state is used, then the aliases may change
the state in ways that invalidate the local alias’ assumptions on the current contents of the shared
state. This interference caused by “alias interleaving” occurs even without concurrency, but is
analogous to how thread interleaving may affect shared state. Consequently, techniques to reason
about thread interference (such as rely-guarantee reasoning [17]) can be useful to reason about
aliasing even in our sequential setting. The core principle of rely-guarantee reasoning that we
adapt is its mechanism to make strong local assumptions in the face of interference. To handle
such interference, each alias has its actions constrained to fit within a guarantee type and at the
same time is free to assume that the changes done by other aliases of that state must fit within a
rely type. The duality between what aliases can rely on and must guarantee among themselves
yields significant flexibility in the use of shared state, when compared for instance to traditional
invariant-based sharing.

We employ rely-guarantee in a novel protocol abstraction that captures a partial view of the use
of the shared state, as seen from the perspective of an alias. Therefore, each protocol models the
constraints on the actions of that alias and is only aware of the resulting effects (“interference”)



that may appear in the shared state due to the interleaved uses of that shared state as done by
other aliases. A rely-guarantee protocol is formed by a sequence of rely-guarantee steps. Each
step contains a rely type, stating what an alias currently assumes the shared state contains; and a
guarantee type, a promise that the changes done by that alias will fit within this type. Using these
small building blocks, our technique allows strong local assumption on how the shared state may
change, while not knowing when or if other aliases to that shared state will be used—only how
they will interact with the shared state, if used. Since each step in a protocol can have distinct rely
and guarantee types, a protocol is not frozen in time and can model different “temporal” uses of
the shared state directly. A protocol is, therefore, an abstracted perspective on the actions done by
each individual alias to the shared state, and that is only aware of the potential resulting effects of
all the other aliases of that shared state. A protocol conformance mechanism ensures the sound
composition of all protocols to the same shared state, at the moment of their creation. From there
on, each protocol is stable (i.e. immune to unexpected/destructive interference) since conformance
attested that each protocol, in isolation, is aware of all observable effects that may occur from all
possible “alias interleaving” originated from the remaining aliases.

Our main contribution is a novel type-based protocol abstraction to reason about shared muta-
ble state, rely-guarantee protocols, that captures the following features:

1. Each protocol provides a local type so that an alias need not know the actions that other
aliases are doing, only their resulting (observable) effect on the shared state;

2. Sharing can be done asymmetrically so that the role of each alias in the interaction with the
shared state may be distinct from the rest;

3. Our protocol paradigm is able to scale by modeling sharing interactions both at the reference
level and also at the abstract state level. Therefore, sharing does not need to be embedded in
an ADT [18], but can also work at the ADT level without requiring a wrapper reference [15];

4. State can be shared individually or simultaneously in groups of state. By enabling sharing
to occur underneath a layer of apparently disjoint state, we naturally support the notion of
fictional disjointness [9,16, 18];

5. Our protocol abstraction is able to model complex interactions that occur through the shared
state. These include invariant, monotonic and other coordinated uses. Moreover, they enable
both ownership transfer of state between non-local program contexts and ownership recov-
ery. Therefore, shared state can return to be non-shared, even allowing it to be later shared
again and in such a way that is completely unrelated to its previous sharing phases;

6. Although protocol conformance is checked in pairs, arbitrary aliasing is possible (if safe)
by further sharing a protocol in ways that do not conflict with the initial sharing. Therefore,
global conformance in the use of the shared state by multiple aliases is assured by the combi-
nation of individual binary protocol splits, with each split sharing the state without breaking
what was previously assumed on that state;



7. We allow temporary inconsistencies, so that the shared state may undergo intermediate (pri-
vate) states that cannot be seen by other aliases. Using an idea similar to (static) mutual
exclusion, we ensure that the same shared state cannot be inspected while it is inconsistent.
Such kind of critical section (that does not incur in any run-time overhead) is sufficiently
flexible to support multiple simultaneously inconsistent states, when they are sure to not be
aliasing the same shared state.

With this technique we are able to model challenging uses of aliasing in a lightweight substruc-
tural type system, where all sharing is centered on a simple and intuitive protocol abstraction. We
believe that by specializing our system to typestate and aliasing [1,26] properties we can offer a
useful intermediate point that is simpler than the full functional verification embodied in separa-
tion logic [6, 24] yet more expressive than conventional type systems. Our proofs of soundness
use standard progress and preservation theorems. We show that all allowed interference is benign
(i.e. that all changes to the shared state are expected by each alias of that state) by ensuring that a
program cannot get stuck, while still enabling the shared state to be legally used in complex ways.
Besides the benefit of expressing the programmer’s intent in the types, our technique also enables
a program to be free of errors related to destructive interference. For instance, the programmer will
not be able to wrongly attempt to use a shared cell as if it were no longer shared, or leave values in
that shared cell that are not expected by the other aliases of that cell.

2 Pipe Example

Our language is based on the polymorphic A-calculus with mutable references, immutable records,
tagged sums and recursive types. Technically, we build on [21] (a variant of L? [1] adapted for
usability) by supporting sharing of mutable state through rely-guarantee protocols. As in L3, a cell
is decomposed in two components: a pure reference (that can be freely copied), and a linear [14]
capability used to track the contents of that cell. Unlike L?, by extending [21] our language implic-
itly threads capabilities through the code, reducing syntactic overhead. To support this separation
of references and capabilities, our language uses location-dependent types to relate a reference to
its respective capability. Therefore, a reference has a type “ref 1 to mean a reference to a loca-
tion ¢, where the information about the contents of that location is stored in the capability for 7.
Our capabilities follow the format “rw ¢ A” meaning a read-write capability to location ¢ which,
currently, has contents of type A stored in it. The permission to access, such as by dereference,
the contents of a cell requires both the reference and the capability to be available. Capabilities
are typing artifacts that do not exist at run-time and are moved/thread implicitly through the code.
Locations (such as ) must be managed explicitly, leading to constructs dedicated to abstracting
and opening locations.

Pipes are used to support a consumer-producer style of interaction (using a shared internal
buffer as mediator), often used in a concurrent program but here used in a single-threaded environ-
ment. The shared internal buffer is implemented as a shared singly-linked list where the consumer
keeps a pointer to the head of the list and the producer to its fail. By partitioning the pipe’s func-
tions (where the consumer alias uses tryTake, and the producer both put and close), clients of
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the pipe can work independently of one another, provided that the functions’ implementation is
aware of the potential interference caused by the actions of the other alias. It is on specifying and
verifying this interference that our rely-guarantee protocols will be used.

let newPipe = fun( _ : [] ).
r=_—:[1A=-
open <n,node> = new Empty#{} in
I'=_:[]l,node : ref n,n:loc | A=rw n Empty#[]
share (rw n Empty#[]) as H[n] || T[n];
I'=.. | A=TI[n],H[n]
open <h,head> = new <n, node::H[n]> in
I'=..head:ref hh:loc | A=T[n]l,rw h dp.(ref p:: H[p))
open <t,tail> = new <n, node::T[n]> in
I'=..tail :ref t,t:1loc | A=rw ¢t dp.(ref p: T[p)),..
< rw h exists p.(ref p :: H[pl), // packs atype, the capability to location 'h’
< rw t exists p.(ref p :: T[pl), // packs atype, the capability to location 't’
{ // creates labeled record with ’put’, ‘close’ and 'tryTake’ as members
put = fun( e : int :: rw t exists p.(ref p :: T[pl) )./x..shown in Section 4...x/,

close = fun( _ : [] :: rw t exists p.(ref p :: T[pl) )./x..x/,
tryTake = fun( _ : [] :: rw h exists p.(ref p :: H[pl) )./x..%/
} :: ( rw h exists p.(ref p :: H[p]) * rw t exists p.(xref p :: T[pl) ) > >
end
end
end

The function creates a pipe by allocating an initial node for the internal buffer, a cell to be
shared by the head and tail pointers. The newly allocated cell (line 2) contains a tagged (as
Empty) empty record ({}). In our language, aliasing information is correlated through static names,
locations, such that multiple references to the same location must imply that these references are
aliases of the same cell. Consequently, the new construct (line 2) must be assigned a type that
abstracts the concrete location that was created, Jr.( ref ¢ :: rw r Empty#[] ), which means that
there exists some fresh location ¢, and the new expression evaluates to a reference to ¢ (“ref 7).
We associate this reference with a capability to access it, using a stacking operator ::. In this case
the capability is rw ¢ Empty#[], representing a read and write capability to the location ¢, which
currently contains a value of type Empty#[] as initially mentioned. On the same line, we then open
the existential by giving it a location variable n and a regular variable node to refer that reference.
From there on, the capability (a typing artifact which has no actual value) is automatically un-
stacked and moved implicitly as needed through the program. For clarity, we will manually stack
capabilities (such as on line 4, using the construct e :: A where A is the stacked capability), al-
though the type system does not require it. On line 3, the type system initially carries the following
assumptions:

I' = _:[], node :refn, n:loc | A = rwn Empty#(]

where I is the lexical environment (of persistent/pure resources), and A is a linear typing envi-
ronment that contains all linear resources (such as capabilities). Each linear capability must either



be used up or passed on through the program (e.g. by returning it from a function). The contents
of the reference node are known statically by looking up the capability for the location n to which
node refers (i.e. “rw n Empty#[]”).

Capabilities are linear (cannot be duplicated), but aliasing in local contexts is still possible by
copying references. All copies link back to the same capability using the location contained in
the reference. However, when aliases operate in non-local contexts, this location-based link is
lost. Thus, if we were to pack node’s capability before sharing it, it would become unavailable
to other aliases of that location. For instance, by writing (n,node :: rw n Empty#[]) we pack the
location n by abstracting it in an existential type for that location. The packed type now refers a
fresh location, unrelated to its old version. Instead, we share that capability (line 3) by splitting it
in two rely-guarantee protocols, H and T '. Each protocol is then assigned to the head and tail
pointers (lines 4 and 5, respectively), since they encode the specific uses of each of those aliases.
The protocols and sharing mechanisms will be introduced in Section 4.

The type of newPipe is a linear function (—o) that, since it does not capture any enclosing linear
resource, can be marked as pure (!) so that the type can be used without the linear restriction. On
line 6 we pack the inner state of the pipe (so as to abstract the capability for # as P, and the one for
h as C), resulting in newPipe having the type:

newPipe : !([] = dCIAP.(![...]::CxP))

where the separate capabilities for the Consumer and Producer are stacked together in a commu-
tative group (). In this type, C abstracts the capability rw & dp.(ref p :: H[p]), and P abstracts
rw ¢t dp.(ref p :: T[p]). Finally, although we have not yet shown the implementation, the type
of the elided record ([...]) contains function types that should be unsurprising noting that each
argument and return type has the respective capabilities for the head/tail cells stacked on top
(similarly to pre/post conditions, but directly expressed in the types). Therefore, those functions
are closures that use the knowledge about the reference to the head/tail pointers from the sur-
rounding context, but do not capture the capability to those cells and instead require them to be
supplied as argument.

[ put o N(int:P—o[]::P),
close ([l P—o]]),
tryTake : !([]:: C —o NoResult#([] :: C) + Result#(int :: C) + Depleted#[] ) |

Therefore, put preserves the producer’s capability, but close destroys it; while the result of
tryTake is a sum type of either Result or NoResult depending on whether the still open pipe
has or not contents available, or Depleted to signal that the pipe was closed (and therefore that
the capability to C vanished). Observe that the state that the functions depend on is, apparently,
disjoint although underneath this layer the state is actually shared (but coordinated through a pro-
tocol) so that (benign) interference must occur for the pipe to work properly—i.e. it is fictionally
disjoint [9, 16, 18].

'As a brief glimpse, T is “rw n Empty#[] = (rw n Node#R @ rw n Closed#[] ); none” which relies on n
containing Empty#[], ensures n then contains either Node#R or Closed#[], and then loses access to n. Both “=” and
“” (and R) will be discussed in detail in Section 4.



3 Technical Development

We now present the type system. Some non-essential details are only discussed in [21] since they
should be close to type-theoretic concepts and, therefore, straightforward to grasp. In fact, the core
system is very similar to that used in [21] but with the addition of intersection types and all of our
sharing constructs. For consistency of the presentation, we include all sharing mechanisms here
but leave their discussion to Section 4.

3.1 Syntax and Types

The (let-expanded [25]) grammar is shown in Fig. 1. The main deviations from standard A-
calculus (besides some non-standard notations) are the inclusion of location-related constructs,
and the sharing constructs (share, focus, and defocus). We reused the idioms for pairs, recursion,
etc. defined in [21] so that they are not shown here.

We use a flat type grammar (Fig. 2) where both capabilities (i.e. typing artifacts without values,
which includes our rely-guarantee protocols) and standard types (used to type values) coexist. Our
design does not need to make a syntactic distinction between the two kinds since the type system
ensures the proper separation in their use.

We now overview the basic types, leaving the rely (=) and guarantee (;) types to be presented
in the following Section together with the discussion on sharing. Pure types !A enable a linear
type to be used multiple times. A —o A’ describes a linear function of argument A and result A’.
The stacking operation A :: A" stacks A’ (a capability, or abstracted capability) on top of A. This
stacking is not commutative since it stacks a single type on the right of ::. Therefore, * enables
multiple types to be grouped together that, when later stacked, allow that type to list a commutative
group of capabilities. Note that while Aj :: (A; :: A;) and Ay :: (A, :: Ap) are not (necessarily)
subtypes, capability commutation is always possible with * such that Ay :: (A} * Ay) <:> Ag ::
(A, = Ay). Both V and 1 offer the standard quantification, over location and type kinds, together
with the respective location/type variables. [f : A] are used to described labeled records of arbitrary
length. A ref p type is a reference for location p noting that the contents of such a reference
are tracked by the capability to that location and not immediately stored in the reference type.
recursive types, that are automatically folded/unfolded through subtyping rules (see Fig. 6 and
(T:SuBsumpTION) on Fig. 4), are also supported. Sum types use the form tag#A to tag type A with
tag. Alternatives (&) model imprecision in the knowledge of the type by listing different possible
states it may be in. none is the empty capability, while rw p A is the read-write capability to
location p (a memory cell currently containing a value of type A). Finally, an A&A’ type means
that the client can choose to use either type A or type A’ but not both simultaneously.

3.2 Operation Semantics

Our small step semantics (Fig. 3) uses judgments of the form:

(Holleog) = (Hille )



o € LocatioN CONSTANTS (ADDRESSES) t € LOCATION VARIABLES p =pl|t

1 € LageLs (Tags) f € FieLps X € VARIABLES X € TYPE VARIABLES
v = p (address)
| x (variable)
|  fun(x:A).e (function)
| (e (universal location)
| (X)e (universal type)
| (p,v) (pack location)
| (A,v) (pack type)
| {fTv} (record)
| 1#v (tagged value)
e =V (value)
| vipl] (location application)
| Vv[A] (type application)
| v.f (field)
AY (application)
let x =eineend (let)

open (t,x) =vineend (open location)
open (X,x) =vineend (open type)

|

|

|

|

| newvy (cell creation)
| deletev (cell deletion)
| v (dereference)
| vi=vw (assign)

| casevofl#x —>eend (case)

| share ApasA; | A, (share)

| focus A (focus)

| defocus (defocus)

Note: p is not source-level. Z for a possibly empty sequence of Z. Tuples, recursion, etc. are encoded as idioms [21].

Figure 1: Values (v) and expressions (e).
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= A (pure/persistent)

| A -—-oA (linear function)

| A=A (stacking)

| AxA (separation)

| [ﬁ] (record)

| X (type variable)

| VXA (universal type quantification)

| dX.A (existential type quantification)

| VtA (universal location quantification)
| dr.A (existential location quantification)
| refp (reference type)

| rec X.A (recursive type)

|  >i1#A; (tagged sum)

| ADA (alternative)

| A&A (intersection)

| rwpA (read-write capability to p)

| none (empty capability)

| A=A (rely)

| A;A (guarantee)

Note: ), 1;#A; denotes a single tagged type or a sequence of tagged types separated by +, such as “t#A + u#B + v#C”.

Separation, sum, alternative and intersection types are assumed commutative, i.e. without respective subtyping rules.

Figure 2: Types and capabilities.

where a program execution is given by:
*
(Olle) > (HIlv)

which states that starting from the empty heap (@) and an initial expression (e), we reach a final
configuration of value v with heap H (after an arbitrary number of steps). The heap (H) binds
addresses (p) to values (v) using the following format:

H == 0 (empty) | H, p < v (binding)

The semantics are analogous to what is found in the literature, except for a few small differ-
ences: the (p:NeEw) and (p:DELETE) reduction rules, as in [1], manipulate existential values that
abstract the underlying location that was created or will be deleted, in order for the type system
to properly handle such location abstractions (i.e. for the value to match the given type). We also
highlight how sharing related constructs (focus, defocus, and share) have no operational meaning
(and thus are equivalent to no-ops).

3.3 Type System

Our typing rules use typing judgments of the form: I' | Ag + e : A 4 A; stating that with lexical
environment I" and linear resources Ay we assign the expression e a type A and produce effects that

11



(Holleo) > (Hiller)] Dynamics, (p:*)

(D:NEW)
(D:DELETE)

p fresh
(Hllnewv) = (H, p—> vl {p,p)) (H, p—vldelete (p,0) )= (HIl {p,v) )

(D:DEREFERENCE) (D:ASSIGN)

(H,p=v|lp)—{(H, p=v]|v) (H,p>wllp=vi)y=>{(H,p>v|v)

(D: APPLICATION) (D:SELECTION)

(H| (fun(x: A).e)v) > (H |l efv/x}) <H||{f:v}.f,->o—>(H||v,-)

(p:LocArp) (p:TyPEAPP)
(HI(ye)lpl )y = (H |l elp/t}) (HII(X)e)lA]) — (H |l efA/X})
(p:LocOPEN)

(H |lopen (t,x) = (p,v) ineend) — (H |l e{v/xHp/t})

(p:TypPEOPEN)

(H Il open (X,x) =(A,v) ineend ) — ( H || e{v/xH{A/X})
(D:CASE)

( H || case 1#v; of 1#x — e end ) — (H || ei{vi/xi} )

(p:LETCONG)
(Holleg) > (Hiller)
(Hy||letx=eyine;end)— ( H || letx =¢e; ine,end)

(p:LET)

(Hl|letx=vineend) — ( H| e{v/x})
Sharing-related constructs:

(D:SHARE)

(H|lshare Agas A | A2 ) = (H|I{})

(p:Focus) (p:DEFocCUS)

(Hllfocus A ) (HII{}) (H I defocus)— (HI{})
Figure 3: Operational semantics.

12



result in A;. The typing environments are as follows:

r == . (empty) A = (empty)
| I, x:A (variable binding) | A, x:A (linear binding)
| I, p:loc (location variable assertion) | A, A (capability/protocol)
| I, X:type (type assertion) | AC, Ag;Ai»A (defocus-guarantee)

where AY syntactically restricts A to not include a defocus-guarantee (a sharing feature, see Section
4.3). Suffices to note that this restriction ensures that defocus-guarantees are nested on the right of
> and that, at each level, there exists only one pending defocus-guarantee. A is also used to forbid
capture of defocus-guarantees by functions and other constructs that can keep part of the linear
typing environment for themselves.

The typing rules are shown in Fig. 4 and Fig. 5, but sharing related typing rules, namely
(T:Focus-RELY), (T:DEFOCUS-GUARANTEE), (T:SHARE), and (T:FRAME), are only discussed in Section
4. We now overview the main typing rules.

All values (which includes functions, tagged values, etc.) have no resulting effect (-) since,
operationally, they have no pending computations.

Allocating a new cell, (T:NEw), results in a type, dr.( ref 7 :: rw ¢ A ), that abstracts the fresh
location that was created (¢), and includes both a reference to that location and the capability to
that location. To associate a value (such as ref f) with some capability (such as the capability to
access location #), we use a stacking operator ::. Naturally, to be able to use the existential location,
we must first open that abstraction, (T:Loc-OpeN), by giving it a location variable to refer the
abstracted location, besides the usual variable to refer the contents of the existential type.

Reading the content of a cell can be either destructive, using (T:DEREFERENCE-LINEAR), Or not,
by (T:DererereNCE-PURE). The difference resides on whether its content is pure (!). If it is linear,
then to preserve linearity we must leave the unit type ([]) behind to avoid duplication.

By banging the type of a variable binding, (T:Pure-ELiM), we can move it to the linear context
which enables the function’s typing rule to initially consider all arguments as linear even if they
are pure. Functions can only capture a A® linear environment to ensure that they will not hide a
pending defocus-guarantee (and similarly on V abstractions), since our types do not express such
pending operation.

Stacking, done through (1:Capr-ELiM), (T:CAP-STACK) and (T:Cap-UNsTACK) enables the type sys-
tem to manage capabilities in a non-syntax directed way, since they have no value nor associated
identifier.

The (1:Casg) rule allows the set of tags of the value that is to be case analyzed (v) to be smaller
than those listed in the branches of the case (i < j). This conditions is safe because it amounts to
ignoring the effects of those branches, instead of being overly conservative and having to consider
them all. These branches are not necessarily useless since, for instance, they may still be relevant
on alternative program states (&).

(T: ALTERNATIVE-LEFT) expresses that if an expression types with both assumptions, Ay and Ay,
then it works with both alternatives. (T:INTERSECTION-RIGHT) is similar but on the resulting effect of
that expression.

Finally, (T:SuBsumPTION) enables expressions to rely on weaker assumptions while ensuring a
stronger result than needed, through the use of subtyping rules.
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’FlAOI—e:AAAl‘

Typing rules, (1:%)

(T:PURE)
(T:REF) T|-Fv:Ad- (T:UnrT) (1:PURE-READ)
p:loc|-Fp:refp+4- T|-Fv:IA4- T|-Fv:[]4- Lx:A|-Fx:1A4-

(T:PUre-ELIM)
(T:LINEAR-READ)

Ix:Ag|Agre: Al 4 A

(T:SUBSUMPTION)

A() <: A

I'x:Arx:AA4-

(T:NEW)
IF'Agrv:A4A

I'|Ag, x:1AgFe: Ay 4 A

AO <: Al

I'Ajre:Ag4 A,
A2<2A3

(T:DELETE)

I'Agre: A 4As

I'|Agrv:3r(refrrwtA)4A

I'|Ag-newv: dr.(refr::rwitA) 4 A

(T: ASSIGN)
I'|AgF vy AgH4A
FlA] F v refp 4 Az,l’WpAl

(T:RECORD)
IF'Arv:AA4-

I'| Ag + delete v : dr.A 4 A

(T:SELECTION)

Ay rv:[f:A]l4A

I'|Ag Fvo:=vq @ Ay -|A2,I'WpA0

(T:FuncTION)
T|A® x:Agre: A A-

CIAF{f=v}:[f:A]A4-

(T: APPLICATION)
FlA()I-V()ZAO —0 A 4 A

Flel—v.fi:AHAl

rlAll-VliAo-|A2

T AC Ffun(x: Ag).e : Ag — A H -

(T:LET)
FIAOF€0:A0-|A1
l"lAl,x:Aol—el:A1—|A2

FleFVOV1:A1-|A2

(T:ForarL-Loc)
[r:loc|A°Fe:AA-

(T:Loc-Arp)

p:locel’
[Agrv:VEA4A

I'Agrletx=eyine end: A 4 A,

(T:DEREFERENCE-LINEAR)

Agrv:refp4A,rwpA

TC|ACF (e : V1A 4 -

(T:DEREFERENCE-PURE)
Ayrv:refp4A,rwplA

LA Fvlpl: Alp/thH Ay

'AgFlv:A4AL W p (]

(1:Loc-OpPEN)

T Agkv:IrAg A,
F,t:lOClAl,X:AOF6:A1-|A2

(T:Loc-Pack)
'NAvrv:Alp/t}+-

A rWv:I1A4A,L,rWwplA

['| Ap Fopendt,x) =vin

eend:A1—|A2

C'NAF(p,v):AtAA-

Note: all bounded variables of a construct must be fresh in the respective rule’s conclusion.

Figure 4: Static semantics (continues on next page).
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(T: ALTERNATIVE-LEFT) (T:INTERSECTION-RIGHT)
' Ag,AgFe: Ay 4 A LAy re:Ap4ALA, (T:ForRALL-TYPE)
T|Ag, A Fe:Ay4A T|Agke:Ag4A,A [,X:type|A°re:AH-

rle,A()@A]l-eIAQ-IA] Flel—e:Ao—|A1,A1&A2 FlAGI—<X>e\7’XA—|

(T:TypE-APP)
' A type (T:TYPE-PACK)
I'Agrv:VX.Ag4A I'NArv: Ag{A1/X}A-

' Ag Fv[A] : AplA /X 4 Ay I'AFAL,Y): AX A -

(T:TyPE-OPEN)

Ay Fv:3AX A4 A (T:CapP-ELm)
F,X:type|A1,XZA0|-€IA1 4 A, Fle,XZA(),Al Fe:Ar 4 A
Flei—open(X,x>:vineend AL AA, I'Ap,x:Ag:i Al ke Ay 4 A
(T:CAP-STACK) (T:CaP-UNSTACK)
I'AgFe:AydALA; I'|Agtre:Ay:: A 4 A
I'Agre:Ay:i A4 A I'Agre:Ay4ALA
(1:CASE)
(1:TAG) Ao kv 2 Li#A; 4 A
F'Arv:AA4- I'ALx :Aibe : AN, i<j
CIAFI1#v: 1#A 4 - I'|Ag+-casevofli#x; —>ejend:A4A,
Sharing-related typing rules:
(T:FRAME) (T:SHARE)
TAgre:AA4A Ay = A || Az

IF'Ay® A re:A4A & A, I'|AAgrshare Agas A || Ay i [14A,A, A,

(T:Focus-RELy)
Ap €A (T:DEFOCUS-(GUARANTEE)

[|Ay= A; Ffocus A : []4Ap A >- [ | Ao, Ao, Ag; A; > Ay F defocus : []4 Ag, Ay, A,

Note: all bounded variables of a construct must be fresh in the respective rule’s conclusion.

Figure 5: Static semantics (continued).
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Subtyping on types, (sT:%)

(sT:PURE)

(ST:SYMMETRY) (sT:ToLINEAR) Ay < A, (sT:Top) (sT:REF)

A< A 1A < A 1Ag <: A4 1A <[] ref p <: !(ref p)
(sT:FuncTION) (sT:Loc-Exists)  (sT:Loc-ForarL) (sT:TyPe-EXIsTs) (sT:TyPE-FORALL)
Al < Az Ay < Ap Ay <: Ay Ag <: A Ap <: A Ay <: A
Ag o0 A <t Ay — Ay dt.Ag <: dt. Ay VtEAg <:VtA; dAXAp<:AXA; VXA < VXA

(sT:RECORD) (sT:DISCARD)
A < A i>0 (sT:PuriryREC)

[f:A, £ Al < [f:A, £ :A] [f:A, f:A] < [f:A] [£:1A] <: |[£:1A]

(ST:STACK) (sT:CaP) (sT:ConG)

Ag <A, Ay <: A, Ao <: A, (st:Com) A, < A,
Ag i Ay <t Ap il Aj I'WpA() <: I'WpAl Agx Al <A %A Agx A <t Ag*x Ay
(sT:Assoc) (sT:UNFOLD) (sT:FoLp)

(A % Ay) x Az <: A % (A * A3z) rec X.A <: Af{rec X.A/X} A{X/rec X.A} <: rec X.A

(sT:REC)
Ao <: A, (sT:Sum) (ST: ALTERNATIVE) (ST:INTERSECTION)

rec X.Aq <: rec X.A, SULHA; < VA  + 3, 1#A, A< Ag® A, Ao&A, <: Ao

Figure 6: Subtyping on types.

3.4 Subtyping

We support subtyping both on types (Fig. 6) and subtyping on the contents of the linear typing
environment (Fig. 7). Our subtyping rules follow the form Ay <: A; stating that A, is a subtype of
A;, meaning that A can be used wherever A, is expected. Similar meaning is used for subtyping
on linear typing environments, Ay <: A;.

Among other operations, these rules enable automatic fold/unfold of recursive types through
the use of (st:FoLp) and (sT:UNroLD), as well as grouping (x) of resources with (sT:Star). Note
how with (sT:ALTERNATIVE) we can weaken a type to consider additional alternatives, and with
(sT:INTERSECTION) We can pick one of the types of that intersection types thus choosing which one
to use. (sT:Discarp) allows a record to become shorter, ignoring some of its fields, provided that at
least one remains so that any resources that may be kept in that record are not accidentally lost.
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Subtyping on deltas, (sp:*)

(sp:VAR) (sp:TyPE)
(sp:STAR) A<Dl Ag<tAl Ag<iA) Ag<i A
A Ag, AL <> A Ap Ay Ao, x 1 Ag <: Ay, x: Ay Ao, Ay <: A1, Ay
(SD: ALTERNATIVE-L) (sp:INTERSECTION-R)
(sp:5YMMETRY)  (sD:NONE) Ao Ag<iAr Mg A<t Ay Ag <t ALAL Ay <iALA;
A< A A <:> A,none Ao, Ag® A1 <: A4 Ay < AL A1 &A,

Figure 7: Subtyping Environments.

4 Sharing Mutable State

The goal is to enable reads and writes to a cell through multiple aliases, without requiring the type
system to precisely track the link between aliased variables. In other words, the type system is
aware that a variable is aliased, but does not know exactly which other variables alias that same
state. In this scenario, it is no longer possible to implicitly move capabilities between aliases.
Instead, we split the original capability into multiple protocol capabilities to that same location,
and ensure that these multiple protocols cannot interact in ways that destructively interfere with
each other. Such rely-guarantee protocol accounts for the effects of other protocols (the rely), and
limits the actions of this protocol to guarantee that they do not contradict the assumptions relied
on by other aliases. This allows independent, but constrained, actions on the different protocols
to the same shared state without destructive interference. However, it also requires us to leverage
additional type mechanisms to ensure safety, namely:

(a) Hide intermediate states. A rely-guarantee protocol restricts how aliases can use the
shared state. However, we allow such specification to be temporarily broken provided that all
unexpected changes are private, invisible to other aliases. Therefore, the type system ensures a kind
of static mutual exclusion, a mechanism that provides a “critical section” with the desired level of
isolation from other aliases to that same state. Consequently, other shared state that may overlap
with the one being inspected simply becomes unavailable while that cell is undergoing private
changes. Although this solution is necessarily conservative, we avoid any run-time overhead while
preserving many relevant usages. To achieve this, we build on the concept of focus [11] (in a non-
lexically scoped style, so that there is also a defocus) clearly delimiting the boundary in the code of
where shared state is being inspected. Thus, on focus, all other types that may directly or indirectly
see inconsistencies must be temporarily concealed only to reappear when those inconsistencies
have been fixed, on defocus.

(b) Ensure that each individual step of the protocol is obeyed. In our system, sharing prop-
erties are encoded in a protocol composed of several rely-guarantee steps. As discussed in the
previous paragraph, each step must be guarded by focus since private states should not be visible
to other aliases. Consequently, the focus construct serves not only to safeguard from interference
by other aliases, but also to move the protocol forward through each of its individual steps. At each
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such step, the code can assume on entry (focus) that the shared state will be in a given well-defined
rely state, and must ensure on exit (defocus) that the shared state satisfies a given well-defined
guarantee state. By characterizing the sequence of actions of each alias with an appropriate proto-
col, one can make strong local assumptions about how the shared state is used without any explicit
dependence on how accesses to other aliases of that shared state are interleaved. This feature is cru-
cial since we cannot know precisely if that same shared state was used between two focus-defocus
operations.

4.1 Specifying Rely-Guarantee Protocols

We now detail our rely and guarantee types that are the building blocks of our protocols. To clarify
the type structure of our protocols, we define the following sub-grammar of our types syntax (Fig.
2) with the types that may appear in a protocol, P.

P:=recXP|X|PoP | P&P|A=P | AP | none

A rely-guarantee protocol is a type of capability (i.e. has no value) consisting of potentially
many steps, each of the form Ac = Ap. Each such step states that it is safe for the current client
to assume that the shared state satisfies A¢ and is required to obey the guarantee Ap, usually of the
form A; A}, which in turn requires the client to establish (guarantee) that the shared state satisfies
A{. before allowing the protocol to continue to be used as A). Note that our design constrains
the syntactical structure of these protocols through protocol conformance (Section 4.2), not in the
grammar.

Pipe’s protocols We can now define the protocols for the shared list nodes of the pipe’s buffer.
Each node follows a rely-guarantee protocol that includes three possible tagged states: Node, which
indicates that a list cell contains some useful data; Empty, which indicates that the node will
be filled with data by the producer (but does not yet have any data); and finally Closed, which
indicates that the producer has sent all data through the pipe and no more data will be added (thus,
it is the last node of the list).

Remember that the producer component of the pipe has an alias to the tail node of the internal
list. Because it is the producer, it can rely on that shared node still being Empty (as created) since
the consumer component will never be allowed to change that state. The rely-guarantee protocol
for the tail alias (for some location p) is as follows:

rw p Empty#[] = (rw p Node#R @ rw p Closed#[] ); none

This protocol expresses that the client code can safely assume (on focus) a capability stating that
location p initially holds type Empty#[]. It then requires the code that uses such state to leave it
(on defocus) in one of two possible alternatives (&) depending on whether the producer chooses
to close the pipe or insert a new element to the buffer. To signal that the node is the last element
of the pipe, the producer can just assign it a value of type Closed#[]. Insertions are slightly more
complicated because that action implies that the tail element of the list will be changed. Therefore,
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after creating the new node, the producer component will keep an alias of the new tail for itself
while leaving the old tail with a type that is to be used by the consumer. In this case, the node is
assigned a value of type Node#R, where R denotes the type [ int, dp.(ref p :: H[p]) ] (a pair
of an integer and a reference to the next shared node of the buffer, as seen from the head pointer).
Regardless of its action, the producer then forfeits any ownership of that state which is modeled by
the empty capability (none)? to signal protocol termination.

We now present the abbreviations H and T, the rely-guarantee protocols that govern the use of
the shared state of the pipe as seen by the head and tail aliases, respectively. Note that since we
intend to apply the same protocol over different locations, we use “Q = ¥p.A” as a type definition
(Q) where we can apply a location without requiring V to be a value, such as location g in Qlq].
The T and H types are defined as follows:

T £ Vp(E=>(NoC))
H = ¥p.(recX..N=none @ C=none @ E=E; X))

where N is an abbreviation for a capability that contains a node “rw p Node#R”, Cis “rw p Closed#[]”
and E is “rw p Empty#[]”. The T type was presented in the paragraph above, so we can now look

in more detail to H. Such a protocol contains three alternatives, each with a different action on the
state. If the state is found with an E type (i.e. still Empty) the consumer is not to modify such
state (i.e., just reestablish E), and can retry again later to check if changes occurred. Observe that
the remaining two alternatives have a hone guarantee. This models the recovery of ownership of
that particular node. Since the client is not required to reestablish the capability it relied on, that
capability can remain available in that context even after defocus.

Each protocol describes a partial view of the complete use of the shared state. Consequently,
ensuring their safety cannot be done alone. In our system, protocols are introduced explicitly
through the share construct that declares that a type (in practice limited to capabilities, including
protocols) is to be split in two new rely-guarantee protocols. Safety is checked by simulating their
actions in order to ensure that they preserve the overall consistency in the use of the shared state,
no matter how their actions may be interleaved. Since a rely-guarantee protocol can subsequently
continue to be split, this technique does not limit the number of aliases provided that the protocols
conform.

4.2 Checking Protocol Splitting

The key principle of ensuring a correct protocol split is to verify that both protocols consider all
visible states that are reachable by stepping, ensuring a form of progress. Protocols are not required
to always terminate and may be used indefinitely, for instance when modeling invariant-based
sharing. However, regardless of interleaving or of how many times a shared alias is (consecutively)
used, no unexpected state can ever appear in well-formed protocols. Thus, the type information
contained in a protocol is valid regardless of all interference that may occur, i.e. it is stable [17,31].

Technically, the correctness of protocol splitting is ensured by two key components: 1) a step-
ping relation, that simulates a single use of the shared state through one focus-defocus block; and

2We frequently omit the trailing “; none” for conciseness.
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’ (A, P) —> (A", P Step, (STEP:¥)

(sTEP:NONE) (STEP:STEP)

<A’ none> - <Aa none> <A05A0 = AI’P> - <A1’P>

(STEP: ALTERNATIVE-P) (STEP: ALTERNATIVE-S)
(Ao, Po) — (A1, Pp) (Ao, Po) — (A, Py) (A1, Po) = (A, Py)
(Ag, Po® P1) — (A1, Py) (Ao ® Ay, Py) — (A, Py)

(STEP:SUBSUMPTION)

Ay <t Ay Py <: Py <A1,P1>—><A2,P2> Ay < Az P, <: P3
(Ag, Po) = (A3, P3)

Figure 8: Protocol stepping rules.

2) a protocol conformance definition, that ensures full coverage of all reachable states by consid-
ering all possible interleaved uses of those steps. Thus, even as the rely and guarantee conditions
evolve through the protocol’s lifetime, protocol conformance ensures each protocol will never get
“stuck” because the protocol must be aware of all possible “alias interleaving” that may occur for
that state.

The stepping relation (Fig. 8) uses steps of the form (A, P) — (A’, P’) expressing that, assum-
ing shared state A, the protocol P can take a step to shared state A" with residual protocol P’. Due
to the use of @ and & types in the protocols, there may be multiple different steps that may be
valid at a given point in that protocol. Therefore, protocol conformance must account for all those
different transitions that may be picked.

We define protocol conformance as splitting an existing protocol (or capability) in two, al-
though it can also be interpreted as merging two protocols. Regardless of the direction, the actions
of the original protocol(s) must be fully contained in the resulting protocol(s). This leads to the
three stepping conditions of the definition below.

Definition 1 (Protocol Conformance). Given an initial state Ay and a protocol y,, such protocol
can be split in two new protocols @, and 3 if their combined actions conform with those of the
original protocol yy, noted (Ag , Yo < ay || Bo)- This means that there is a set S of configurations
(A, vy & al|pB) closed under the conditions:

1. The initial configurationisin S: (Ag, yo © aollBo) €S

2. All configurations take a step, and the result is also in S.
Therefore, if (A, v & «a||B) € S then:

(a) exists A’, @’ such that (A, a) — (A’,a’), and for all A’, o/, (A, a) — (A, a’)
implies (A,y) - (A’,yyand (A", ¥ & ' ||B) € S.

(b) exists A’, 8" such that (A,8) — (A’,B’), and for all A’, ', (A,B) — (A’,’)
implies (A,y) = (A’,yYand (A", ¥ & «a|p)€S.
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(c) exists A’,y" such that (A,y) — (A’,y’), and
forall A’,y’, (A,y) — (A’,y’) implies either:

e (A,ay > (A',a'yand (A", v & ' ||B) e S, or;
o (A,B) = (A, B)and(A", ¥y & «allf)eS.

The definition yields that all configurations must step (i.e. never get stuck) and that a step in
one of the protocols (@ or §) must also step the original protocol (y) such that the result itself
still conforms. Conformance ensures that all interleavings are coherent. This also means that
each protocol “view” of the shared state can work independently in a safe way — even when the
other aliases to that shared state are never used. Ownership recovery does not require any special
treatment since it just expresses that the focused capability is not returned back to the protocol,
enabling it to remain in the local context.

We now apply protocol conformance to our running example, as follows:

A : E

vy : recX(E=>EX & (E=N&C;(N=none & C=none)))

a : E=>NeC (Tail protocol)
B : receX(E=>E;X & N=none & C = none) (Head protocol)

Therefore, applying the definition yields the following set of configurations, S:

(E, rec X(E=E,X&(E=>N&C;(N=none & C=>nhonhe))) &
E=Co®N | recX(E=E;X ® N=none & C = none)) (1)
The initial configuration.
by step on y (subtyping for &) with £ = E; X and same with (3, using (STEP: ALTERNATIVE-P).
(NoeC, N=none & C = none &

none || rec X.(E = E;X®N = none & C = none)) 2)
by step on (1) with vy (subtyping for &) with E = N & C; ... and similarly using a.
(none , hone <& none || hone) 3)

by step on (2) with y and 8 using (STEP: ALTERNATIVE-S).
S is closed (up to subtyping, including unfolding of recursive types).

Regardless of how the use of the state is interleaved at run-time, the shared state cannot reach
an unexpected (by the protocols) state. Thus, conformance ensures the stability of the type infor-
mation contained in a protocol in the face of all possible “alias interleaving”. There exists only
a finite number of possible (relevant) states, meaning that it suffices for protocol conformance to
consider the smallest set of configurations that obeys the conditions above. Since there is also a
finite number of possible interleavings resulting from mixing the steps of the two protocols, there
are also a finite number of distinct (relevant) steps. Effectively, protocol conformance resembles
a form of bisimulation or model checking (where each protocol is modeled using a graph) with a
finite number of states, ensuring such process remains tractable.

In the following text we use a simplified notation, of the form A = A’ || A”, as an idiom
(defined in Appendix A) that applies protocol conformance uniformly regardless of whether A is
a state (for an initial split) or a rely-guarantee protocol (to be re-split and perhaps extended). The
missing type is inferred by this idiom.
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Example We illustrate these concepts by going back to the pipe’s protocols. We introduced the
protocols for the head and tail aliases through the share construct:

share (rw n Empty#[]) as H[n] || T[n];

which is checked by the (T:SHARE) typing rule, using protocol conformance, as follows:
Ag = Al Az
I'A,Agrshare Agas A ||Ax i [14A,A, A,

(T:SHARE)

With it we share a capability (Ag) by splitting it in two protocols (A; and A,) whose individual
roles in the interactions with that state conform (=). Consequently, the conclusion states that, if
the splitting is correct, then in some linear typing environment initially consisting of a type A, and
A, the share construct produces effects that replace Ay with A; and A, but leave A unmodified (i.e.
it is just threaded through).

The next examples show conformance in a simplified way, with only the state and the two
resulting protocols of a configuration. Remember that E is the abbreviation for rw g Empty#[]
that, just like the abbreviations C and N, were defined above. Thus, the use of the share construct
on line 3 yields the following set of configurations, S:

(E = recX(N=none ® C=>none ® E=E;X)|| E=(N@a& C)) (1
(NeC = recX(N=none ® C=none ® E= E; X) | none) 2)
(none = none || none) 3)

The definition is only respected if E is the state to be shared by the protocols. If instead we had
shared, for instance, C we would get the next set of configurations:

(C = recXx(N=>noned®C=none ® E=E;X)|| E=(Na® C)) (1)
(none = none || E= (N @ C)) ()

The set above does not satisfy our conformance definition. Both the state in configuration (1)
and none in (2) are not expected by the right protocol. Thus, those configurations are “stuck’ and
cannot take a step. Although splittings are checked from a high-level and abstracted perspective,
their consequences link back to concrete invalid program states that could occur if such invalid
splittings were allowed. For instance, in (2), it would imply that the alias that used the right proto-
col would assume E on focus long after the ownership of that state was recovered by some other
alias of that cell. Consequently, such behavior could allow unexpected changes to be observed by
that alias, potentially resulting in a program stuck on some unexpected value.

4.3 Using Shared State

Using shared state is centered on two constructs: focus (that exposes the shared state of a protocol)
and defocus (that returns the exposed state to the protocol), combined with our version of the
frame rule (Section 4.4). We now describe how focus is checked:

A()EZ
F|AO:>A1|‘fOCUSZI[]-|A0, All>-

(T:Focus-REeLy)
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In general, focus may be applied over a disjunction (®) of program states and expected to work on
any of those alternatives. By using A, the programmer can list the types that may become available
after focus, nominating what they expect to gain by focus.

focus results in a typing environment where the step of the protocol that was focused on
(Ag = A;) now has its rely type (Ap) available to use. However, it is not enough to just make
that capability available, we must also hide all other linear resources that may use that same shared
state (directly or indirectly) in order to avoid interference due to the inspection of private states. To
express this form of hiding, the linear typing environments may include a defocus-guarantee. This
element, written as A » A, means that we are hiding the typing environment A until A is satisfied.
Therefore, in our system, the only meaningful type for A is a guarantee type of the form A’; A”
that is satisfied when A’ is offered and enables the protocol to continue to be use as A”. Although
the typing rule shown above only includes a single element in the initial typing environment (and,
consequently, the defocus-guarantee contains the empty typing environment, -), this is not a limi-
tation. In fact, the full potential of (T:Focus-RELy) is only realized when combined with (T:FRAME).
Together they allow for the non-lexically scoped framing of potentially shared state, where the
addition of resources that may conflict with focused state will be automatically nested inside the
defocus-guarantee (>). Operationally share, focus, and defocus are no-ops which results in those
expressions having type unit ([]).

(T:DEFOCUS-(GUARANTEE)
I'|Ag, A, A";A” » Ay Fdefocus : [] 4 Ay, A”, A

The complementary operation, defocus, simply checks that the required guarantee type (A’) is
present. In that situation, the typing environment (A;) that was hidden on the right of » can now
safely be made available once again. At the same time, the step of the protocol is concluded leaving
the remainder protocol (A”) in the typing environment. Nesting of defocus-guarantees is possible,
but is only allowed to occur on the right of >. Note that defocus-guarantees can never be captured
(such as by functions, see Fig. 4 of Section 3) and, therefore, pending defocus operations cannot
be forgotten or ignored.

Example We now look at the implementation of the put and close functions to exemplify the
use of focus and defocus. Both functions are closures that capture an enclosing I where ¢ is a
known location such that tail has type ref . T was defined above as: Vp.(rw p Empty#[] =
rw p Node#R & rw p Closed#[]) where R is a pair of an integer and a protocol for the head, H
(whose definition, given above, is not important here).

put = fun( e : int :: rw t exists p.(ref p :: T[pD) ).
'=..,tail:ref ¢, t:1loc, e:int | A=rw ¢ dAp.(ref p:: T[p))
open <l,last> = new Empty#{} in I'=..,last:ref [, [:1loc | A=.. rw [ Empty#[]
open <o0,oldlast> = !tail in

I'=.., oldlast:ref o | A=rw ¢t [], rw [ Empty#[], T[o]

focus (rw o Empty#[]);
A= .. 1w o Empty#[], (rw o Node#R) @ (rw o Closed#[]); hone» -
share (rw 1 Empty#[]) as H[1] || T[1]; A=..T[],H[,..
oldlast := Node#{ e, <1,last::H[1]> }; A =..rw o Node#R, ...
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defocus; A=rw ¢t [],T[/], none

tail := <1, last::T[1]> A=rw t dp.(ref p: T[pl)
end
end,
close = fun( _ : [] :: rw t exists p.(ref p :: T[pl) ).
I'=..,tail:ref r, r:1oc, _:[] | A=rw ¢t dAp.(xref p: T[p)
open <l,last> = !tail in I'=..,last:ref [, [:1loc | A=rw ¢ [],T[/]
delete tail; A =TII]
focus (rw 1 Empty#[]); A =rw [ Empty#[], (rw [ Node#R)® (rw [/ Closed#[]); none» -
last := Closed#{}; A =rw [ Closed#[], (xrw [ Node#R)® (rw [/ Closed#[]); none» -
defocus A=-
end,

The put function takes an integer stacked with a capability for . The capability is automatically
unstacked to A. Since we are inserting a new element at the end of the buffer, we create a new node
that will serve as the new last node of that list. On line 11, the oldlast node is read from the
tail cell by opening the abstracted location it contains. Such location refers a protocol type, for
which we must use focus (line 12) to gain access to the state that it shares. Afterwards, we modify
the contents of that cell by assigning it the new node. This node contains the alias for the new tail
as will be used by the head alias. The T component of that split (line 13) is stored in the tail. The
defocus of line 15 completes the protocol for that cell, meaning that the alias will no longer be
usable through there. Carefully note that the share of line 13 takes place after focus. If this were
reversed, then the type system would conservatively hide the two newly created protocols making
it impossible to use them until defocus. By exploiting the fact that such capability is not shared,
we can allow it to not be hidden inside »> since it cannot interfere with shared state. close should
be straightforward to understand.

4.4 Framing State

On its own, (T:Focus-RELY) is very restrictive since it requires a single rely-guarantee protocol to
be the exclusive member of the linear typing environment. This restriction appears because more
complex applications focus are meant to be combined with our version of the frame rule. Together
they enable a kind of mutual exclusion that also ensures that the addition of any potentially inter-
fering resources will forcefully be on the right of » (thus making them inaccessible until defocus).
The typing rule is as follows:

F|AOF€IA4A1
MA@ A re:A4A & A,

(T:FRAME)

Framing serves the purpose of hiding (“frame away”) parts of the footprint (A,) that are not relevant
to typecheck a given expression (e), or can also be seen as enabling extensions to the current
footprint. In our system, such operation is slightly more complex than traditional framing since we
must also ensure that any such extension will not enable destructive interference. Therefore, types
that may refer (directly or indirectly) values that access shared cells that are currently inconsistent
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due to pending defocus cannot be accessible and must be placed “inside” (on the right of ») the
defocus-guarantee. However, statically, we can only make such distinction conservatively by only
allowing types that are non-shared (and therefore that are known to never conflict with other
shared state) to not be placed inside the defocus-guarantee. The formal definition of non-shared
is in Appendix A, but for this presentation it is sufficient to consider it as pure types, or capabilities
(rw p A) that are not rely-guarantee protocols and that whose contents are also non-shared. This
means that all other linear types (even abstracted capabilities and linear functions) must be assumed
to be potential sources of conflicting interference. For instance, these types could be abstracting or
capturing a rely-guarantee protocol that could then result in a re-entrant inspection of the shared
state.

To build the extended typing environment, we define an environment extension (®-) operation
that takes into account frame defocus-guarantees up to a certain depth. This means that one can
always consider extensions of the current footprint as long as any added shared state is hidden from
all focused state. By conservatively hiding it behind a defocus-guarantee, we ensure that such state
cannot be touched. This enables locality on focus: if a protocol is available, then it can safely be
focused on.

Definition 2 (Environment Extension). Given environments A and A’ we define environment ex-
tension, noted A & A’, as follows. Let A = A,, A; where n-indexed environments only contains
non-shared elements and s-indexed environments contain the remaining elements (i.e. all those
that may, potentially, include sharing). Identically, assume A" = A/, A}. Extending A with A’
corresponds to A®- A" = A,, A, A7 where:

(@) AV = Ay, A> (A, @& A)) if Ay = Ay, Av A,

509
(b) AY = A, A otherwise.

that either (a) further nests the shared part of A" deeper in Ay, ; or (b) simply composes A’ if the left
typing environment (A) does not carry a defocus-guarantee.

Although the definition appears complex, it works just like regular environment composition
when A’ does not contain a defocus-guarantee, i.e. the (b) case. The complexity of the definition
arises from the need to nest these structures when they do exist, which results in the inductive
definition above. In that situation, we must ensure that any potentially interfering shared state is
placed deep inside all previously existing defocus-guarantees, so as to remain inaccessible. This
definition is compatible with the basic notion of disjoint separation, but (from a framing perspec-
tive) allows us to frame-away defocus-guarantees beyond a certain depth. Such state can be safely
hidden if the underlying expression will not reach it (by defocusing).

The definition allows a (limited) form of multi-focus. For instance, while a defocus is pending
we can create a new cell and share it through two new protocols. Then, by framing the remaining
part of the typing environment, we can now focus on one of the new protocols. The old defocus-
guarantee is then nested inside the new defocus-guarantee that resulted from the last focus. This
produces a “list” of pending guarantees in the reverse order on which they were created through
focus. Through framing we can hide part of that “list” after a certain depth, while preserving its

purpose.
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Example We now look back at the focus of line 12. To better illustrate framing, we consider an
extra linear type (that is not non-shared), S, to show how it will become hidden (on the right of »)
after focus. We also abbreviate the two non-shared capabilities (“rw ¢ []” and “rw [ Empty#[]”)*
as Ap and A, and abbreviate the protocol so that it does not show the type application of location
o. With this, we get the following derivation:

EeE
I'E=(Ne®C)rfocusE:[]41E,(N®C);none» -
Ir'NE=>NaeC)® S,A),A;+focusE: []4(E,(N®C);none> )@ S,A(, A
I'E=(N®C),S,Aq,A; +focusE:[]41E,((N®C);nonerS),Ap A,

3)

)

where (1) - (ENVIRONMENT EXTENSION), (2) - (T:FRAME), and (3) - (T:Focus-RELY).

Note that frame may add elements to the typing environment that cannot be instantiated into
valid heaps. That is, the conclusion of the frame rule states that an hypothesis with the extended
environment typechecks the expression with the same type and resulting effects. Not all such
extensions obey store typing just like such typing rule enables adding multiple capabilities to one
same location that can never be realized in an actual, correct, heap. However, our preservation
theorem ensures that starting from a correct (stored typed) heap and typing environment, we cannot
reach an incorrect heap state.

4.5 Consumer code
We now show the last function of the pipe example, tryTake:

tryTake = fun( _ [] :: rw h exists p.(ref p :: H[p]) ). A=rw h dp.(ref p: H[p)
open <f,first> = lhead in
A=xw h [] , (N[f] = none)® (C[f] = none) & (E[f] = E[f] ; ..)
[al] A=rw i [], N[f] = none
[b] A=rw h [], C[f] = none
[cl] A=xw h [l, ELf]1= EIf]; ..
focus C[f], E[f], N[f]; // same abbreviations that were defined above
[a]l] A=.., N[f], none;nonex -
[b] A= .., C[f], none;nonev -
[c] A=.., E[f], E[f]; ..»-
case !first of
Empty#_ — [cl] A=rw h [], *w f [] , rw f Empty#[];...>-
first := Empty#{}; //restore linear type
[cl] A=rw h [] , rw f Empty#[] , rw f Empty#[];...>-
defocus; // the next assignment must occur after defocus and just on this branch
[cl] A=rw i [], H[f]
head := <f,first::H[f]>; [c] A=rw h dp.(xref p:: H[p))
NoResult#{} : NoResult#([]:: rw i dp.(ref p:: H[p])) //assume auto stacked [c] A =-

3Note that the content of each capability can be made non-shared by subtyping rules.
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| Closed#_ — [b] A=rw A [], rw f [] , none;none» -

delete first; [b] A=rw i [] , none;nones -
delete head; [b]l] A = none;none> -
defocus; [b] A=-
Depleted#{} :Depleted#|] [b] A=

| Node#[element,n] — //opens pair
[a] A=rw A [], rw f [] , n:dp.(ref p::H[p]) , none;none» -

delete first; [l A=rw i [] , n:dp.(ref p:: H[p]) , none;nones> -

head := n; [al] A=rw h dp.(ref p:: H[p]) , none;none» -

defocus; [al] A=rw h dp.(ref p:: H[p]

Result#element :Result#(int::rw i dp.(ref p :: H[p])) // auto stacked [a] A ="
end

end

The code should be straightforward up to the use of alternative program states (®). This im-
precise state means that we have one of several different alternative capabilities and, consequently,
the expression must consider all of those cases separately. On line 28, to use each individual alter-
native of the protocol, we check the expression separately on each alternative (marked as [a], [b],
and [c] in the typing environments), cf. (T:ALTERNATIVE-LEFT) in Fig. 4. Our case gains precision
by ignoring branches that are statically known to not be used. On line 29, when the type checker is
case analyzing the contents of first on alternative [b] it obtains type Closed#[]. Therefore, for
that alternative, type checking only examines the Closed tag and the respective case branch. This
feature enables the case to obey different alternative program states simultaneously, although the
effects/guarantee that each branch fulfills are incompatible.

5 Technical Results

Our soundness results (details in Appendix B) use the next progress and preservation theorems:

Theorem 1 (Progress). If ey is a closed expression (and where I and A are also closed) such that
I'|Ayreg:AAA then either:

e ¢ is a value, or;
o ifexists Hy such that ' | Ag + Hy then ( Hy || eg ) — ( Hy || ey ).

The progress statement ensures that all well-typed expressions are either values or, if there is
a heap that obeys the typing assumptions, the expression can step to some other program state —
1.e. a well-typed program never gets stuck, although it may diverge.

Theorem 2 (Preservation). If eq is a closed expression such that:
LolAokeg:A4A  TolAg® Ay + Hy (Holleo)— (Hiller)

then, for some Ay and I'y we have: Ty, T'1 |A; & Ay + Hy I, I'1|Aj ke :A4A
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The theorem above requires the initial expression e, to be closed so that it is ready for evalua-
tion. The preservation statement ensures that the resulting effects (A) and type (A) of the expression
remains the same throughout the execution. Therefore, the initial typing is preserved by the dy-
namics of the language, regardless of possible environment extensions (& A,). This formulation
respects the intuition that the heap used to evaluate an expression may include other parts (A,) that
are not relevant to check that expression.

We define store typing (Appendix B.4), noted I' | A + H, in a linear way so that each heap
location must be matched by some capability in A or potentially many rely-guarantee protocols.
Thus, no instrumentation is necessary to show these theorems.

Destructive interference occurs when an alias assumes a type that is incompatible with the
real value stored in the shared state, potentially causing the program to become stuck. However,
we proved that any well-typed program in our language cannot become stuck. Thus, although our
protocols enable a diverse set of uses of shared state, these theorems show that when rely-guarantee
protocols are respected those usages are safe.

6 Additional Examples

We now exemplify some sharing idioms captured by our rely-guarantee protocols. We also show
additional details of the Pipe example discussed above. Note that the prototype implementation,
available at https://code.google.com/p/deaf-parrot/, contains even more examples be-
yond those listed here.

6.1 Sharing a Linear ADT (Stack)

Our protocols are capable of modeling monotonic [12,23] uses of shared state. To illustrate this, we
use the linear stack ADT from [21] where the stack object has two possible typestates: Empty and
Non-Empty. The object, with an initial typestate E(mpty), is accessible through closures returned
by the following “constructor” function, newStack:

I(VYT. [] —o JE.INE. ![ push : T::E®NE —o []::NE,
pop : []:NE —oT:: E®NE,
isEmpty : []:: E®@NE — Empty#([] :: E) + NonEmpty#([] :: NE),
del : [[=E—o]]] :: E)
Although the capability to that stack is linear, we can use protocols to share it. This enables
multiple aliases to that same object to coexist and use it simultaneously from unknown contexts.

The following protocol converges the stack to a non-empty typestate, starting from an imprecise
alternative that also includes the empty typestate.

S 2 (NE®E)=NE; rec X.(NE=>NE; X)

Monotonicity means that the type becomes successively more precise, although each alias does
not know when those changes occurred. Note that, due to focus, the object can undergo interme-
diate states that are not compatible with the required NE guarantee. However, on defocus, clients
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must provide NE such as by pushing some element to the stack. The protocol itself can be re-
peatedly shared in equal protocols. Since each copy will produce the same effects as the original
protocol, their existence is not observable.

For convenience, we include the definition of newStack:

let newStack = <T>fun( _ : [] )
open <h,head> = new E#{} in //head’ contains tagged unit
{

push = fun( e : T :: EMPT[h] & ELEM[h] ).
open <n,next> = new 'head in
head := N#{ e , <n,next> } //tagged next node
end,
pop = fun( _ : [] :: ELEM[h] ).
case 'head of
N#[e,n] — //sugared pair open
open <t,ptr> = n in

head := !ptr;
delete ptr;
e
end
end,
isEmpty = fun( _ : [] :: EMPT[h] & ELEM[h] ).

case 'head of //linear content (destructive read) thus
E#v — // requires (conservatively) reassigning the cell

head := E#v;
Empty#{}
| N#n —
head := N#n;
NonEmpty#{}
end,
del = fun( _ : [] :: EMPT[h] ).
delete head
3
end

This stack, although linear, can be shared arbitrarily by using the rely-guarantee protocol men-
tioned above, that enforces a monotonic use of the stack’s state. Protocol conformance, instantiated

as follows:
A: NE®E

a: ((NE®E)= NE;rec X.(NE=NE; X))
B: ((NE®E)= NE;rec X.(NE = NE; X))
v: ((NE®E)= NE;rec X.(NE = NE; X))

is straightforward by using the stepping subtyping rule.
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Client Code. Example of possible client code:

let stack = newStack[int] {} in
open <E,<NE,x>> = stack in

share E as S || S;
//sends an alias of the stack to some unknown context
unknown( <E,<NE,x :: S>> );

focus E (+) NE;
case x.isEmpty( {} ) of
Empty#_ —

x.push( 123 );
defocus

| NonEmpty#_ —
x.popC {} );
x.push( 123 );
defocus

end;

// from now on can rely on stack being NonEmpty

focus NE;

/[ ... use x in some way ...

defocus

...

end
end

6.2 Capturing Local Knowledge in a Simple Counter

Although our types cannot express the same amount of detail on local knowledge as prior work [4,
18], they are expressive enough to capture the underlying principle that enables us to keep increased
precision on the shared state between steps of a protocol.

For this example, we use a simple two-states counter. In it, N encodes a number that may be
zero and P some positive number, with the following relation between states:

N = Z#[] + NZ#int P £ NZ#int (note that: P <: N, vital to show conformance)

We now share this cell in two asymmetric roles: IncOnly, that limits the actions of the alias to only
increment the counter (in a protocol that can be shared repeatedly); and Any, an alias that relies on
the restriction imposed by the previous protocol to be able to capture a stronger rely property in a
step of its own protocol. Assuming an initial capability of rw p N, this cell can be shared using the
following two protocols:

recX..rwpN=rwpP; X)
recY(rwpN=rmwpP;wpP=rwpN;Y)

IncOnly
Any

A
A
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Thus, by constraining the actions of IncOnly we can rely on the assumption that Any remains
positive on its second step, even when the state is manipulated in some other unknown program
context. Therefore, on the second step of Any, the case analysis can be sure that the value of the
shared state must have remained with the NZ tag between focuses. Note that the actions of that
alias allow for it to change the state back to Z.

Client code.

open <v,value> = new Z#{} in
share (xrw v Z#[]) as IncOnly[v] || Any[v];
outside( <v, value :: IncOnly[v] > ); A = Any[v] , ..
focus N[v], P[v]; A=rw v N, wvP; 'wvP=rmwvN; Y)s»..
case !value of // may or may not be "positive”
Z#_ — value := NZ#123
| NZ#n — value := NZ#456

end; A=rwv P, ' wvP; wyvP=>rwvN; Y)es.)

defocus; A=mwv P=mwvN; Y,k .
. // anything else may be executed many or none times

focus N[v]; A=rwv P, wv N; Yps.)

case !value of // protocol enables type system to assume state remains nonzero!

NZ#n — value := Z#{}
end; A=rwv N, (rwv N; Ys.)
defocus

Protocol Conformance.
Remember that P <: N:

A: N

v: recX. N=P;recY(P=N;X & N=P;Y))
a: recX.(N=P,P=>N;X)

B: recX..N=P;X)

(N, recX(N=P;recY(P=>N,X & N=>P;Y)) &

recXx(N=P;P=>N;X) || recX.(N=P; X)) (D)
initial configuration.
(P, recY(P=N;X & N=>P;Y) & P=>N;X | recX.(N=P;X)) 2)
by a with (1)
by B with (2)
(P, recYAP=N;X & N=>P;Y) & recX..N=P;P=>N;X) | recX.(N=P;X)) 3)
by 8 with (1)
(N, rec X(N=P;recY(P=>N,X & N=>P;Y)) & recX.(N=>P;,P=>N;X) || recX.(N=P;X)) 4
by a with (2)

S is closed (up to unfolding of recursive types and subtyping).

The continuous split of rec X.( N = P; X ) is straightforward since all changes “fit” in the
original protocol.
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6.3 Iteratively Sharing State (including Additional Steps)

Our technique is able to match an arbitrary number of aliases by splitting an existing protocol.
Such split can also extend the original uses of the shared state by appending additional steps, if
those uses do not destructively interfere with the old assumptions.

This example shows such a feature by encoding a form of delegation through shared state
that models a kind of “server-like process”. Although single-threaded, such a system could be
implemented using co-routines or collaborative multi-tasking. The overall computation is split
between three individual workers (for instance by each using a private list containing cells with
pending, shared, jobs) each with a specific task. A Receiver uses a Free job cell and stores some
Raw element in it. A Compressor processes a Raw element into a Done state. Finally, the Storer
removes the cells in order to store them elsewhere. In real implementations, each worker would be
used by separate handlers/threads, triggered in unpredictable orders, to handle such jobs.

We also show how we can share multiple locations together, bundled using *, by each job being
kept in a container cell while the flag (used to communicate the information on the kind of content
stored in the container) is in a separate cell. The raw value is typed with A and the processed value
has type B. The types and protocols are:

F2rw fFree#[] = rwc (] R2rw fRaw#[] * rwc A D 2 rw f Done#[] * rwc B

Receiver z F=R
Compressor = recX(F=F,X @ R=D)
Storer = recX(F=>F,X & recY(R=>R;Y © D= none))

The protocol for the Receiver is straightforward since it just processes a free cell by assigning
it a raw value. Similarly, Compressor and Storer follow analogous ideas by using a kind of
“waiting” steps until the cell is placed with the desired type for the actions that they are to take
(note how Storer keeps a more precise context when the state is not F, even though it is not
allowed to publicly modify the state). To obtain these protocols through binary splits, we need an
intermediate protocol that will be split to create the Compressor and Storer protocols. The initial
split (of F) is as follows:

F = Receiver || recX.(F=>F,;X @ R= none)

The protocol on the right is then further split, and its ownership recovery step further extended
with additional steps, to match the two new desired protocols:

recX(F=>F,;X & recY(R=R;Y & R=D;D=none)) = Compressor || Storer

The Receiver alias never needs to see how the other two aliases use the shared state. Although the
second split is independent from the initial one, protocol conformance ensures that it cannot cause
interference by breaking what Receiver initially relied on.

Protocol conformance.
Assuming abbreviations for the following states:

F2rw f Free#[] = rwc[] R2rw fRaw#[] * rwc A D = rw f Done#[] = rwc B
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The final three target aliases have the following protocols:

Receiver 2 F =R
Compressor = recX.(F=>F,X @« R=0D)
Storer £ recX..(F=F,X & recY(R=R;Y @ D= none))

The first split is as follows (note that it is equivalent of Receiver || TMP, where TMP is
recX..F=F,X & R = none)).

A: F
v: recX.(F=F,X & F=R;R= none)
a: recX.(F=>F,;,X © R= none)
B: F=R
The conformance is straightforward since it is similar to previous examples.
We now wish to re-splitrec X.( F = F; X @& R = none ) and append a few additional steps
to it so as to enable a transition from R to D:

recX.(F=F,X & R=none) >~ recY(R=R;Y & R=D;D = none)
which results in the following combined protocol:
recX.(F=FX & recY AR=R;Y & R=D;D = none))

a protocol which is then split as (note that the initial state is F @ R, which can be computed with
initial):

A: FoR [ =initial(recX.(F=F,X & recY(R=R;Y & R=D;D=none))) |
recX..F=FX & recY (R=R;Y & R=D;D = none))

recX.(F=F,X &« R=D)

recX.(F=F,X & recY(R=R;Y © D= none))

™R R

Yielding the following set of configurations:

(FOR, recX(F=>F,;X &© recY(R=>R;Y & R=D;D=none) &
recX.(F=>F,X &©« R=D) || recX(F=F,X & recY(R=R;Y @ D= none))) (1)
initial configuration,
and also same step if stepping with y /8
(note subtyping to weaken protocol so that both resulting protocols match).
(FoD, recX.(F=F;X.. ® D=>none) &
recX..F=F;X.. ® none) [ recX.(F=>F,;X @& recY(R=>R;Y @ D= none)))(2)
step with y / @ on (1).
(Fonone, recX.(F=>F,X.. & none) &
recX(F=>F,X.. ® none) || recX.(F=F;X & none)) 3)
step with y / @ on (2).
S is closed (up to unfolding of recursive types and subtyping).
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6.4 Complete Pipe Code with Client Code

Complete pipe code, from the running example:

1 let newPipe = fun( _ : [] ).

21

22

23

24

open <n,node> = new Empty#{} in

I'=_:[], node:ref n, n:loc | A=rw n Empty#]
share (rw n Empty#[]) as H[n] || T[n]; //splits cap of 'n’in two protocols
I'=...| A=T[n] , Hn]
open <h,head> = new <n, node::H[n]> in //stacks 'H[n] on top of reference 'node’
I'=.., head:ref h, h:loc | A=T[n] , rw h dp.(xref p :: H(p))
open <t,tail> = new <n, node::T[n]> in //analogous to previous
I'=.., tail:ref r, r:1loc | A=rw ¢t dp.(ref p:: T[p]) , rw h dp.(ref p :: H[p)
<rw t exists p.( ref p :: T[p] ), // packs capability as’'C’
< rw h exists p.( ref p :: H[p] ), // packs capability as P’
{ // creates labeled record with 'put’, ’close’ and 'tryTake’ as members
put = fun( e : int :: rw t exists p.( ref p :: T[p] ) ).

F=.., e:int | A=rw ¢t dp.(ref p:: T[pl)
open <1,last> = new Empty#{} in
I'=...| A=rw ¢t dp.(ref p::T[(p]) , rw [ Empty#[]
open <o0,oldlast> = !tail in
I'=.., oldlast:ref o | A=xrw ¢t [] , rw [ Empty#[] , T[o]
focus (rw o Empty#[]);

A=.., rw o Empty#[] , (rw o Node#R) @ (rw o Closed#[]); nhone» -

share (rw 1 Empty#[]) as H[1] || T[1];
A=.., T, HI, ..

oldlast := Node#{ e , <1,last::H[1]> };
A=.., rw o Node#R , ..

defocus;

A=rw t [], T[] , none
tail := <1, last::T[1l]>

A=rw t dp.(ref p: T[pl)

end
end,
close = fun( _ : [] :: rw t exists p.(ref p :: T[pl) ).
'=..., :[]| A=rw ¢ dAp.(xref p:: T[p))
open <l,last> = !tail in
I'=.., last:ref [, [:1loc | A=xw ¢ [], T[/]
delete tail;
I'=..| A=T[]
focus (rw 1 Empty#[]);
I'=...| A=rw [ Empty#[] , (rw [ Node#R)® (rw [ Closed#[]); none > -
last := Closed#{};
I'=... | A=rw [ Closed#[] , (rw [ Node#R)® (rw [/ Closed#[]); none» -
defocus
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end,

tryTake = fun( _ [] :: rw h exists p.(ref p :: H[p]) ).
A=rw h dp.(ref p:: H[p)
open <f,first> = 'head in
A=xrw h [], H[f]
A=rw h [] , (N[f] = none)® (C[f] = none)® (E[f] = E[f] ; ...
[al] A=rw i [], N[f] = none
[b] A=rw i [], C[f] = none
[c] A=rw h [], E[f]= E[f]; ..
focus C[f], E[f], N[f]; //these abbreviations are defined below
[a] A=.., N[f], none;none» -
[b] A=.., C[f], none;nonex -
[cl A=.., E[f], E[f]; ..»-
case !first of
Empty#_ —
[cl] A=rw h [] , *w f [] , rw f Empty#[];...>-
first := Empty#{}; // restore linear type
[c] A=rw h [] , rw f Empty#[] , rw f Empty#[];...>-
defocus;
[cl] A=xw i [], HIf]
head := <f,first::H[f]>;
[c] A=rw h dAp.(ref p:: H[p])
NoResult#{} :NoResult#([]: rw & dp.(ref p:: H[p])) //assume auto stacked
[c] A=
| Closed#_ —
[b] A=rw A [] , rw f [] , none;none» -
delete first;
[b] A=rw /& [] , none;none> -
delete head;
[b]l] A = none;none> -
defocus;
[b] A=-
Depleted#{} : Depleted#]
[b] A=-
| Node#[element,n] —
[al] A=rw A [], rw f [] , n:dp.(ref p::H[p]) , none;nonew -
delete first;
[al] A=rw i [], n:3dp.(ref p: H[p]) , none;nonex -
head := n;
[al] A=rw A dp.(ref p:: H[p]) , none;none» -
defocus;
[a] A=rw A dp.(xref p:: H[p))
Result#element : Result#(int::rw i dp.(ref p :: H[p]l)) // assume auto stacked
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[a] A=-
end
end

} :: ( rw h exists p.(ref p :: H[p]) * rw t exists p.(ref p :: T[pl) ) > >

end

end
end
in
/...

Using the abbreviations: N for rw p Node#R, C for (rw p Closed#[]), and E for “rw p Empty#[]”.

newPipe : !([] = dACAP.(!M::CxP))

M = [put : !(int::P—o[]::P),
close o W([]=P—]]),
tryTake : !([]:: C —o NoResult#([] :: C) + Result#(int :: C) + Depleted#[]) ]

Note that the protocol enables a “late choice” on the producer, such that they can pick Close
or Node after focus.

R = [int, dp.(refp :: H[p])]
T £ VYp.(rw p Empty#[] = (rw p Node#R @ rw p Closed#[] ) )
H 2 Vp.(recX.(rw pNode#R = none @ rw p Closed#[] = none &

rw p Empty#[] = rw p Empty#[]; X ))

Protocol Conformance. Note the “late choice” on making the node either N (rw p Node#R) or C
(rw p Closed#[]). The abbreviation E is for “rw p Empty#[]”. We instantiate the variables of the
protocol conformance definition as:

A: E

v: recX(E=>EX&(E=N®C;(N=none @ C > none)))
a: E= Ca®N;none

B: recX(E=E;X®N = noned C = none)

Which yields the following set S:

(E, rec X(E=E,X&(E=>N&C;(N=none & C=>nonhe))) &
E=Ce®N;none || recX.(E=E;X®N = noned C = none)) (1)
by initial configuration,
and by step on y (subtyping for &) with £ = E; X,
and same with 8 (using (STEP: ALTERNATIVE-P)).
(N®eC, N=>none © C = nohe &

none || rec X.(E = E;X®N = none® C = none)) 2)
by step on (1) with vy (subtyping for &) with E = N & C; ... and same with .
(none, hone <& none || none) 3)

by step on (2) with y and g (using both N and C, but individually).
S is closed (up to unfolding of recursive types and subtyping).
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Client Code. One possible use of the pipe is shown in the client code below.

1 let takeAll = <C>fun( reader : [ tryTake : [] :: C —o NoResult#( [] :: C) +
Depleted#[] + Result#( int :: C ) ] :: C).

2 let res = reader.tryTake() in

3 case res of

4 Depleted#_ — {} // pipe closed, done

5 | Result#_ — //ignores result to continue taking elements off

6 takeAll[C] ( reader ) //notclosed

7 | NoResult#_ — abort( "invalid" ) //throws runtime exception.
8 end

9 end

10 in

12 open <C,<P,pipe>> = newPipe() in
13 let writer = pipe in

14 writer.put( 1 );

15 writer.put( 2 );

16 writer.close( );

17 end

s let reader = pipe in

19 takeAll[C] ( reader ) // all pipe components exhausted
20 end

21 end

Note that our definition of takeAll needs to make an assumption on a specific “alias inter-
leaving” in the use of the shared state: it is meant to only be called after the pipe is closed. Such
condition cannot be expressed in our types (and is usually enforced in concurrent systems by wait-
ing), and therefore we use an abort function that could, for instance, throw an exception or diverge
the execution if the shared state is still with a value of that type.

6.5 Last-to-use Recovery

The following code snippet shows a usage where the last alias to use the shared state recovers
ownership of that state. Such scheme could be extended to arbitrary, but finite, number of aliases.
We use the following abbreviations: H for “rw ¢t Held#[]”, and F for “rw ¢ Free#int”, and where
Alias is the following protocol:

(rw t Held#[] = rw t Free#int ; none ) ® (rw ¢ Free#int = none ; none )

4+ open <t,x> = new Held#{} in I'=r:1loc, x:ref r | A=rw ¢t Held#[]
s share (rw t Held#[]) as Alias[t] || Alias[t]; A = Alias[f] , Alias]¢]
¢ outside( <t,x :: Alias[t]> ); // stores alias on some nonlocal context A = Alias]f]

A=( rw t Held#[] = rw ¢ Freef#tint )& ( rw ¢ Free#int = none )
[a] A=( rw ¢ Held#[] = rw ¢ Free#int )
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[b] A=( rw ¢ Free#int = none )

focus H[t], F[t];
[al] A=rw ¢t Held#[] , ( rw ¢t Free#int ; none»>- )
[b] A=rw ¢t Free#int , ( none ; nonex- )

case !x of
Held#n — [l A=xw  [], ..

X := Free#42; [a] A=rw ¢t Free#int , ..
defocus [a] A ="

| Free#n — [bl] A=xw <[], ..
defocus; [b] A=rw 7 []
X :=n+ 1; [b] A=rw ¢ int
/...
delete x [b] A=-

end

end

Protocol Conformance.

A: H
v: H= F;F = none;none
a: H= F;none @& F = none;none
f: H= F;none & F = none;none
(H, H= F;F = none;none &
H= F;none @& F = none;none || H= F;none & F = none;none) (D)
initial configuration.
(F, F = none;none & none || H= F;none & F = none;none) )
by step on (1) with y and a.
(F, F = none;none & H= F;none & F = none;none || none) 3)
by step on (1) with y and a.
(none, hone < none || none) @

by step on (2) or (3) with y and « / 3, respectively.
S is closed (up to unfolding of recursive types and subtyping).

6.6 Wait-until-used Recovery

The following protocols model a usage equivalent of “busy-waiting”. Upon splitting, one protocol
(OneUse) uses the shared state once and discards ownership of that state, and the other (Retry)
retries an arbitrary number of times “waiting” for the first alias/protocol to finish its use.

OneUse = Vp.(rw p Held#[] = rw p Free#int)
£ VYp.rec X.((rw p Held#[] = rw p Held#[]; X ) & (rw p Free#int = none) )
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| open <t,x> = new Held#{} in

19

share ( rw t Held#[] ) as Retry[t] || OneUse[t];
outside( < t, x :: OneUse[t] > ); //captures OneUse in some other nonlocal context
rec Y. //recursion is encoded as an idiom
focus ( rw t Held#[] ), ( rw t Free#int );
case !x of
Held#n —
X := Free#123;
defocus; // retry, did not consume shared type!
Y // recursion point
| Free#n — //recovers
defocus;
X :=n + 1;
/...
X := Ix + 1;
/...
delete x
end
end

Protocol Conformance.
We use the following abbreviations: H for “rw p Held#[]”, and F for “rw p Free#int”.

A: H

v: recX.(H=H;X & H= F;F = none;none)
OneUse £ a: H = F;none
Retry =8: rec X.(H= H;X & F = none;none)

(H, rec Xx(H=>H;X & H= F;F = none;none) &

H= F;none || rec X.(H= H;X @& F = none;none)) (D)

initial configuration, and step with H = H; X with y and 8 (subtyping for &).

(F, F = none;none & none || recX.(H= H;X & F = none;none)) )
on (1).

(none, hone <& none || none) 3)
on (2).

S is closed (up to unfolding of recursive types and subtyping).

Alternative Protocols.
The protocol above only allows OneUse to use the state once. Alternatively, we could have the
shared state contain a state S that is used for a wait phase, and then N for the recovery step, as

follows:
RetryRecovery rec X.((S=S5;X)®(N=none))

UseUntilDiscard = recX.((S = 5;X)& (S = N;none))
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7 Related Work

We now discuss other works that offer flexible sharing mechanisms. Although there are other
interesting works [1,2,4,5,7,30] in the area, they limit sharing to an invariant.

In Chalice [19], programmer-supplied permissions and predicates are used to show that a pro-
gram is free of data races and deadlocks. A limited form of rely-guarantee is used to reason about
changes to the shared state that may occur between atomic sections. All changes from other threads
must be expressed in auxiliary variables and be constrained to a two-state invariant that relates the
current with the previous state, and where all rely and guarantee conditions are the same for all
threads.

Several recent approaches that use advanced program logics [9, 10, 22, 29, 31] employ rely-
guarantee reasoning to verify inter-thread interference. Although our approach is type-based rather
than logic-based, there are several underlying similarities. Concurrent abstract predicates [9)
extend the concept of abstract predicates [22] to express how state is manipulated, supporting
internally aliased state through a fiction of disjointness (also present in [16, 18]) that is based on
rely-guarantee principles and has similarities to our own abstractions. Their use of rely-guarantee
also allows intermediate states within a critical section, which are immediately weakened (made
stable) to account for possible interference when that critical section is left. Although our use
of rely-guarantee is tied to state (be it references or abstracted state), not threads, our protocols
capture an identical notion of stability through a simpler constraint that ensures all visible states
are considered during protocol conformance. Another modeling distinction is that our interference
specification lists the resulting states (from interference), not the actions that can (or cannot [10])
occur from external/unknown sources.

Monotonic [12,23] based sharing enables unrestricted aliasing that cannot interfere since the
changes converge to narrower, more precise, states. Our protocols are able to express monotonicity.
However, since the rely and guarantee types of a step in the protocol must describe a finite number
of states, we lack the type expressiveness of [23]. We believe this concern is orthogonal to our
core sharing concepts, and is left as future work. We are also capable of expressing more than just
monotonicity. For instance, due to ownership recovery, a cell can oscillate between shared and
non-shared states during its lifetime, and with each sharing phase completely unrelated to previous
uses.

Gordon et al. [15] propose a type system where references carry three additional type com-
ponents: a predicate (for local knowledge), a guarantee relation, and a rely relation. They handle
an unknown number of aliases by constraining the writes to a cell to fit within the alias’ declared
guarantee, similarly to how rely-guarantee is used in program logics to handle thread-based inter-
ference. Although they support a limited form of protocol (and their technique can generally be
considered as a two-state protocol), their system effectively limits the actions allowed by each new
alias to be strictly decreasing since their guarantee must fit within the original alias’ guarantee.
Since we support ownership recovery of shared state, a cell can be shared and return to non-shared
without such restriction. Unlike ours, their work does not allow intermediate inconsistent states
since all updates are publicly visible. In addition, their work requires proof obligations for, among
other things, guarantee satisfaction while we use a more straightforward definition of protocol con-
formance that is not dependent on theorem-proving. However, their use of dependent refinement
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types adds expressiveness (e.g. their predicates capture an infinite state space, while our state space
is finite) but increases the challenges in automation, as typechecking requires manual assistance in
Coq.

Krishnaswami et al. [18] define a generic sharing rule based on the use of frame-preserving
operations over a commutative monoid (later shown to be able to encode rely-guarantee [8]). The
core principle is centered on splitting the internal resources of an ADT such that all aliases obey
an invariant that is shared, while also keeping some knowledge about the locally-owned shared
state. By applying a frame condition over its specification, their shared resources ensure that any
interference between clients is benign since it preserves the fiction of disjointness. Thus, local
assumptions can interact with the shared state without being affected by the actions done through
other aliases of that shared state. The richness of their specification language means that although it
might not always be an obvious, simple or direct encoding, protocols are likely encodable through
the use of auxiliary variables. However, our use of a protocol paradigm presents a significant
conceptual distinction since we do not need sharing to be anchored to an ADT. Therefore, we can
share individual references directly without requiring an intermediary module to indirectly offer
access to the shared state, but we also allow such uses to exist. Similarly, although both models
allow ownership recovery, our protocols are typing artifacts which means that we do not need an
ADT layer to enable this recovery and the state of that protocol can be switched to participate in
completely unrelated protocols, later on. Their abstractions are also shared symmetrically, while
our protocols can restrict the available operations of each alias asymmetrically. Additionally, after
the initial split, our shared state may continue to be split in new ways. Finally, we use focus to
statically forbids re-entrant uses of shared state, while they use dynamic checks that diverge the
execution when such operation is wrongly attempted.

8 Conclusions

We introduced a new flexible and lightweight interference control mechanism, rely-guarantee pro-
tocols. By constraining the actions of an alias and expressing the effects of the remaining aliases,
our protocols ensure that only benign interference can occur when using shared state. We showed
how these protocols capture many challenging and complex aliasing idioms, while still fitting
within a relatively simple protocol abstraction. Our model departs from prior work by, instead
of splitting shared resources encoded as monoids, offering an alternative paradigm of “temporal”
splits that model the coordinated interactions between aliases. A prototype implementation, which
uses a few additional annotations to ensure typechecking is decidable, is currently underway®.
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A Auxiliary Definitions

Fetching the initial state of a rely-guarantee protocol:

initial(A = B;C) = A

initial(A @ B) = 1initial(A)® initial(B)
initial(A&B) = initial(A)&initial(B)
initial(rec X.A) = initial(A{rec X.A/X})
initial(none) = none

Extending a rely-guarantee protocol, with protocol Z, on a step where it would otherwise just
recover ownership of the state and terminate:

(A= none;none)~~7Z = A= initial(Z);Z
A=B,C)~<Z = A= B;(C=2Z)
A®B)<Z = A~Z & BrZ
(A&B)»<Z = AwZ & BeZ
(rec XA)<Z = Afrec XA/X}><Z

Additionally, if initial(Z) = A then:
(A= none;none )~7Z = Z

so that the extension fully replaces the old step, without leaving a redundant step.

Our sharing rule is:
A= Ayl Ay

share Agas A; || A

That uses protocol conformance through the following idiom, using the syntax Ao = A, || As,
such that:

e if Ag is not a rely-guarantee protocol:
(A, A" & Al A2)
where A’ is a rely-guarantee protocol where initial(Ay) = A’.
e if Aj is a rely-guarantee protocol (i.e. we wish to re-split that protocol in A; and A,):
(initial(Ag), Ag=< A © A, |l Ay)

where Aj is a valid extension for the protocol A, such that A; and A, conform with what A,
initial does, with the addition of some extra steps (A;). Such extension is optional.
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We use the following possible definition of non-shared types of A. Therefore, the following
elements are sure to not include access to shared parts of the heap:

A non-shared A non-shared

none non-shared !A non-shared rw p A non-shared dz.A non-shared

Ao non-shared A non-shared

Ap :: A; non-shared
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B Proofs

B.1 Well-Formed Types and Environments

Our well-formed definition ensures that types are properly formed (i.e. type formation). Therefore,
each type must have all the location variables it depends on declared in the corresponding enclosing
I" environment so that all location variables must be known in the same scope as the capability that
refers a certain location variable. An analogous condition must hold for type variables.

Definition 3 (Well-Formed). We have the following cases (defined by induction on the structure
of the type/environment):

. (Gamma)

I wf I wf I wf I'kA type
-wf I,p:loc wf T,X:type wf ILx:A wf

° (Delta)

I'rA wf 'FA type

I'r- wf I'rA,x: A wt
I'FA type
I'rA wf I'rA type T+ A wf I'rA wf
'rAA wf I'rA, A A wf

- (T

I'+ A type I'+ A, type I'+ A type I'+A; type

I + none type [ +!A type [+ [f: A] type '+ (Ag — A) type

p:locel '+ A type

't (rw p A) type I, p : loc + (ref p) type I, X type X type

'k A type I'FA; type T FAtype I'FA, type
I'(Ag 1 Ay) type ' (Ag=A;) type

I,z :loc + A type I',t:loc + A type I', X type + A type I, X type + A type
I'+ Vt.A type '+ dt.A type ' VX.A type I' - 4X.A type
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'+ A type I'+ A, type I'+ A type '+ A type I, X type - A type

I'rAy® A, type ' Ap&A, type I' F rec X.A type
'+ A, type ' A type I'FA, type ' A type I'FA, type
I'F ), 1L#A; type ' Ay A type I'kAy = A type

Note that well-formed conditions are not explicitly mentioned and are assumed to be present
whenever they are relevant.

We define locs(A), where I' - A type, to be the set of all location variables/constants present in
A (thus, declared in the smallest I" that " - A type).
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B.2 Subtyping Inversion Lemma

Lemma 1 (Subtyping Inversion Lemma). We have the following cases for fypes (A) and for the

linear typing environment (A):

e (Type) If A <: A’ then one of the following holds:

1. A’ =A.

2. if A =!A( then either:
(a) A’ = Ay, or;
(b) A’ =!A; and Ay <: Ay, or;
(c) A" =1].

3. ifA = Ay o A then A’ = Ay — Aj and Al <Az and Ay < Ap.
4. if A=Ay :: Ay then A’ = A, :: Asand Ay <: A; and A, <: As.

5. if A = [f : A] then either:

(@) A=[f:A f,:A]]Jand A’ =[f:A]landi > 0.

(b) A=[f:Af,:AjJand A’ =[f: A, f;: Aj]and Ay <: A;.

(c) A=[f:!A]and A" =![£f : !A].

6. ifA=rwpApthenA’ =rw p A, and Ay <: A;.

7. if A = dt.Agthen A’ = dr.A; and Ay <: A;.

8. if A =Vt.Agthen A’ = Vt.A; and Ay <: A;.

9. if A = dX.Agthen A’ = dX.A; and A, <: A;.
10. if A = VX.Agthen A’ = VX.A; and Ay <: A;.
11. if A = ref p then A" = !(ref p).

12. if A = Ag * A, then either:

(a) A’ = A % A, or;

(b) A’ =Ap*xA,and A, <: A,.

(c) if Ag = (A * A() then A” = A{) x (Aj = Ay).
13. if A=Y, 1#A; then A’ = I'#A’ + 3, L#A,.
14. if A = Ap{X/rec X.Ap} then A’ = rec X.A,.
15. if A = rec X.Aj the either:

(a) A’ =rec X.A; and Ay <: Ay, or;

(b) A" = A{X/rec X.A,}.
16. if A = Ag&A| then A" = A,,.
17. A =A@ A”

e (Delta) If A <: A’ then one of the following holds:
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I. A=A

2. if A=Ag,x:Agthen A’ = A;,x: A; and
A() < A andAo <:Aj.

3. if A=Ay, Agthen A’ = A;,A; and Ay <: A; and Ay <: A;.
4. if A = Ay, Ag, A then either:
(@) A" = Ay, Ap * Ay, or;
(b) case (3) with Ay, or;
(c) case (3) with A;.
5. if A = Ag,Ap * Ay then A’ = Ay, Ap, Aj.
6. if A = Ay, none then A’ = A,,.
7. A’ = A, none.
8. if A=Ay, Ag® A, then Ay, Ag <: A" and Ay, A; <: A.
9. if A" = A}, Ap&A; then A <: Aj,Apand A <: A, A;.

Proof. We only very informally sketch the proof, without going into detail on each case since they
are straightforward to show.

1. (Type) By induction on the derivation of A <: A’.

Case (sT:SymMETRY) Case 1 of the definition.
Case (sT:ToLINeAR) Case 2 (a) of the definition.
Case (sT:Pure) Case 2 (b) of the definition.
Case (s1:Tor) Case 2 (c) of the definition.

Case (sT:Rer) Case 11 of the definition.

Case (sT:FunctioN) Case 3 of the definition.
Case (sT:Loc-Exists) Case 7 of the definition.
Case (sT:Loc-ForarLL) Case 8 of the definition.
Case (sT:Type-Exists) Case 9 of the definition.
Case (sT:Type-ForaLL) Case 10 of the definition.
Case (sT:REcorp) Case 5 (b) of the definition.
Case (sT:Discarp) Case 5 (a) of the definition.
Case (sT:PuriryREC) Case 5 (¢) of the definition.
Case (sT:StacK) Case 4 of the definition.

Case (sT:Capr) Case 6 of the definition.

Case (sT:Com) Case 12 (a) of the definition.
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Case (sT:Cong) Case 12 (b) of the definition.
Case (sT:Assoc) Case 12 (c) of the definition.
Case (sT:Sum) Case 13 of the definition.

Case (sT:FoLp) Case 14 of the definition.

Case (sT:UnroLp) Case 15 (a) of the definition.
Case (sT:Rec) Case 15 (b) of the definition.
Case (sT:ALTERNATIVE) Case 17 of the definition.

Case (sT:INTERSECTION) Case 16 of the definition.
. (Delta) By induction on the derivation of A <: A",

Case (sp:SYMMETRY) - Case 1 of the definition.

Case (sp:VAR) - Case 2 of the definition.

Case (sp:Typg) - Case 3, 4 (b) and 4 (c) of the definition.

Case (sp:STAR), right - Case 4 of the definition.

Case (sp:STAR), left - Case 5 of the definition.

Case (sp:NonE) - Cases 7 (for <:, right) and 6 (for :>, left) of the definition.
Case (sp:ALTERNATIVE-L) - Case 8 of the definition.

Case (sp:INTERSECTION-R) - Case 9 of the definition.
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B.3 Protocol Conformance Preservation

Lemma 2 (Protocol Conformance Preservation). If A = P || Q then:
e if A is not a rely-guarantee protocol, then (A, P) — (A’, P’)
e if A is a rely-guarantee protocol, then (A, Ay — (A}, A")

and A’ = P’ || Q. Similarly for Q.

Proof. Immediate since the definition of protocol conformance requires all following configura-
tions to be in S, including one that just uses P or Q. Therefore, all subsequent configurations must
also conform regardless of which particular step is taken. O

This lemma ensures that a protocol will never get stuck in an unexpected state. Therefore, by
definition, each protocol works on its own since it must consider the case of Q never being used.
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B.4 Store Typing

We use the notation T to mean that I is closed in the sense of only containing (p : loc) elements
and nothing else. Therefore, it only lists the known location constants. Similarly, we use A to
mean that A is closed, so that it only includes capabilities (of the form: rw p A — note the location
constant p) or rely-guarantee protocols. There is no inconsistency with the notation of A since if
such type can only depend on closed environments (in order to be well-formed), then it too must
be closed or it would not be well-formed.

Definition 4 (Store Typing).

(str:Loc) (STR:STAR) (STR:NONE)
(sTR:EmPTY) T|A+H T A Ay A +H T|A+H
SR T,p:loc|A+H T|AAy+«A +H T|Anonetr H
(STR:INTERSECTION)

(STR: ALTERNATIVE) I'A Ay H (STR:BINDING)

I'AAFH I'AA +H I'AA +H A FVv:AA4-
TIAA @A FH T|AA&A +H TIATWpAFHp<—v

(STR:SHARE) (/SIR:DEJOCUS)
A= Al Ay A7 =A\A, Ao = A; || Az
I'AAFH I'A”+H I'AvH

TIAALAFH  T|N,(AgA)v A+ H,H

Note that, since the added capability on (sTR:BNDING) must still be well-formed, such implies
that I must contain p. For the same reason, p must also not appear in A or H.

On (sTR:ALTERNATIVE), we only need one rule because such type is assumed to be commutative.

(sTr:DEFOCUS) ensures that the remaining protocol contained in the typing environment con-
forms after the A state is reached (which may not yet be the case). Similarly, due to the support of
H, it ensures that A, is either none or a type that is a protocol for the state of Aq. All other parts of
the heap must be supported by A’. The use of \ is to highlight that A, (a protocol that is the result
of merging all other protocols to that state that may be in A) may be at any defocus depth, however
it must be hidden behind that ».

The A \ A enables to extract A from A such that A is the result of merging all of possible
protocols that are compatible in A, up until there are no more.

A= A [ A Ag=> A ]| Ay
Ao = A1\ A Ao = A1\ Ay
A]:AZ\AZ A3:A2\A2 notA\A

Ao =M\ Ay Ao, A" > A3 = (AL,A > Ay) \ Ay A=AA\A

It is crucial to note that the definition above enable parts of these protocols to not be present,
and still conform. Therefore, even if part of the environment is (temporarily) framed, the remaining
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visible protocol still conform although with potential steps that appear “unreachable”. Similarly,
none, always conforms and can be used when necessary.

Lemma 3 (Store Typing Inversion Lemma). If
i:l A+ H
then one of the following holds:
1.T=-andA=-and H = -.
2. ifT=0",p:locthen” | A + H.
3. if A= A,Ag* A, thenT | A, Ag, A, + H.

4. EKA: &,erA ag\d{l\:H’,pr—> v then
I'A A FH andT |[A, Fv:AA-.

5. if A= A’,none thenT | A’ + H.
6. if A = K’,Ao @ A, then either:

° le’,AO + H, or;
e T|AA +H.

(remember that @ is commutative)
7. ifA=N,A;,Ayand Ay = A, || Ay then T | A, Ay + H.

8. if A= A”,(Ap;A;) > A’ then o L
A" =N \A,and Ay =2 A ||Ayand ' |A” + H” and ' |A” + H and H = H',H” .

9. if A = A7, Ay&A, then:

° fl K’,AO + H, and;
e T|A,A + H.

Proof. Straightforward induction on the derivation of T| A+ H. O
Lemma 4 (Subtyping Store Typing). If T | A+ HandA <: A thenfl A+ H.
Proof. By induction on the derivation of fl A+ H.

Case (sTrR:EMpPTY) We have:
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ek )

L N 2)
by hypothesis

By (Subtyping Inversion Lemma) on (2), we have that either:

o[1] A = (1.1)

We conclude by (1).

o [7] A = -,hone 2.1

-|-,none - 2.2)

by (sTR:NONE) on (1).
Thus, we conclude.

Case (sTr:Loc) We have:

T,p:loc|A+H (1)
A< N 2)
by hypothesis.

T|AvH 3)
by inversion on (sTrR:Loc) with (1).

TIN+H 4)
by induction hypothesis with (3) and (2).

T.p:loc| A+ H (5)

by (str:Loc) with p and (4).
Thus, we conclude.

Case (sTR:BINDING) We have:

TIATwpAr+Hp—v (1)
ArwpA <: N (2)

by hypothesis.
T|AA +H 3)
TIA Fv:A-- 4)

by inversion on (sTR:BINDING) with (1).
By (Subtyping Inversion Lemma) on (2), we have that either:
e[1] N=ArwpA (1.1)
by sub-case hypothesis.
Thus, we conclude by (1).

o [3] A=Ay, A (2.1)
A <: A 2.2)
rwpA <: A (2.3)

by sub-case hypothesis.

Ap=rwpA, (2.4)
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A< A (2.5)
by (Subtyping Inversion Lemma) using case [6] with (2.3).
(Note: we are omitting cases [1], [14] and [17] since those are similar to [6]).

T|A Fv:A - (2.6)
by (T:SuBsUMPTION) on (4) with (2.5).

T|AgA v H 2.7)
by induction hypothesis on (3) and (2.2) noting that A, is unchanged.
fl&),rprll-H,;ﬂ—)v (2.8)
by (sTrR:BinDING) with (2.6) and (2.7) with p.

TIN+Hp—v (2.9)

by rewriting (2.8) with (2.1) and (2.4).
Thus, we conclude.

e [71A" = A, rw p A, none (4.1)
by sub-case hypothesis.
I''A,rwp A,none + H,p — v 4.2)

by (sTR:NONE) on (1).
Thus, we conclude.
¢ [9] Immediate by applying i.h. and (STR:INTERSECTION).

Case (STR:STAR) We have:

T|AAgxA - H (1)
AAgx A < A )

by hypothesis.
T|AApA - H 3)

by inversion on (STR:STAR) on (1).
by (Subtyping Inversion Lemma) on (2) we have that either:
o [1] A=A, A+ A, (1.1)
Thus, we conclude by (1).
e [3] A = E,A and
A< A (2.1)
AgxA; <A (2.2)
By (Subtyping Inversion Lemma) on (2.2) we have that either:
(Note: cases [1], [14] and [17] are straightforward)

o [12(a)] A=A %A

N =A", A %A (2.3)
by rewriting hypothesis.

A A+ Ay <t A, ALL Ao (2.4)
by (sp:STaR) on (2.3).

T|A",Ap, Al FH (2.5)

by induction hypothesis on (3) with (2.1).
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T|A", A, Ap+ H (2.6)
since A is a set, re-ordering is allowed.
Thus, we conclude by (2.6).
o [12(b)] A=ApxA,and A <: A,

AN =A Ay * A, (3.1)
by rewriting hypothesis.

A, Ag % Ay <: A, Ag, As (3.2)
by (sp:STAR) on (3.1).

TIA A, A+ H (3.3)

by induction hypothesis on (3) with A; <: A,.
Thus, we conclude.
o [12(c)] if Ag = A = A then A = Aj * (A * Ay)

A=A Ay A]) * A 4.1
T|A, (A, A, A - H (4.2)
by rewriting hypothesis.

TIA A, Ay« A FH (4.3)
since A is a set, re-ordering is allowed on (4.2).

T|AALALAY - H (4.4)
by (Store Typing Inversion Lemma) on (4.3).

T|A Ay AL A v H (4.5)
since A is a set, re-ordering is allowed on (4.4).

TIAAL A« A - H (4.6)
by (STR:STAR) on (4.5).

T|A A, (A] xA) - H 4.7)

by (STR:STAR) on (4.6).
Thus, we conclude.
o [5] A=A, A A,
Thus, we conclude by (3).
o [7] A = Z, none.
Thus, we conclude by (sTrR:NoNE) on (1).
¢ [9] Immediate by applying i.h. and (STR:INTERSECTION).

Case (sTR:NONE) We have:

T|A,none+ H (1
A, none <: A’ (2)

by hypothesis.
T|A+H (3)

by inversion on (STR:STAR) on (1).
By (Subtyping Inversion Lemma) on (2), we have that either:
e [1] A’ =A,none
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Thus, we conclude by (1).

e [6] A=A

Thus, we conclude by (3).

o [7] A = Z, none, none

Thus, we conclude by (sTrR:NoNE) on (1).

¢ [9] Immediate by applying i.h. and (STR:INTERSECTION).

Case (STR:ALTERNATIVE) We have:

TIAA®A +H (D
AA A < N )
by hypothesis.

By (Subtyping Inversion Lemma) on (2), we have that either:
(Note: as before, we are omitting case [4] since it is straightforward)

o [1] A’—AAOEBAI (1.1)

Thus, we conclude by (1).

* [3] N = Ag, A (2.1)
A < AO (2.2)
AgBA < A (2.3)

by sub-case hypothesis.

A=A B A 2.4)

by (Subtyping Inversion Lemma) case [1] on (2.3) .
(Note: we are omitting cases [14] and [17] since they are straightforward)
By inversion on (1) we have that either:

oF|AA0|—H (2.5)
A, Ao <: Ao, Ag (2.6)
by (sp:TypE) on (2.2) and (sT:SYMMETRY) with Aj.

T|AgAgFH 2.7)
by induction hypothesis on (2.5) and (2.6).

T|ApAc®A FH (2.8)

by (STR: ALTERNATIVE) on (2.7).
Thus, we conclude.

o T|AA +H (2.9)
Analogous to the previous case, noting that @ is commutative.

o [7] A=A ,Aog® A, hone 3.1
Thus, we conclude by (sTrR:NoNE) on (1).

e[8] A AO < N 4.1
A A <: N 4.2)

by sub-case hypothesis.
By inversion on (1) we have that either:

o T|A Ao+ H (4.3)
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T|IAN+H (4.4)
by induction hypothesis on (4.1) and sub-case hypothesis.

o T|AA +H (4.5)

Analogous to the previous case, using (4.2).

¢ [9] Immediate by applying i.h. and (STR:INTERSECTION).

Case (STR:INTERSECTION) We have:

T|AA&A FH €))
A A &AS < N ()

by hypothesis.
T|AA+-H (3)
T|AA+-H )

by inversion on (STR:INTERSECTION) with (1).
By (Subtyping Inversion Lemma) on (2), we have that either:

o [1] Symmetry case is immediate. (1.1)
o[3] A=A, A, (3.1)
A< A (3.2)
A &A, <: Aj (3.3)

Then, by (Subtyping Inversion Lemma) on (3.3) (and since & is commutative),
we have that either:

o [16] A} = Az (3.4
Thus, we conclude by (3).

o [16] Ay = Az 3.5)
Thus, we conclude by (4).

o [11 A1 &A; = Az (3.6)
Thus, we conclude by (1).

o [171 A1 &A; = A1 &A, ® Ay 3.7
Thus, we conclude by (1) with (STR: ALTERNATIVE).

e [7] Analogous to previous cases. (7.1)
o [9] A=A, A &A, 9.1)

Thus, we conclude by (1).

Case (STR:SHARE) We have:

T|AALA - H 1)
AALA, < N )

by hypothesis.
éo =>4 I Ay 3)
T'|AAFH 4)

by inversion on (STR:SHARE) with (1).
By (Subtyping Inversion Lemma) on (2), we have that either:
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o[1] A=A AL A (1.1)
by sub-case hypothesis.
Thus, we conclude by (1).

o [3] A =A",ALLA, (2.1)
A< A7 (2.2)
Ap <t A] (2.3)
Ay <t A 2.4)
by sub-case hypothesis (merging both cases).

Ay <: Ay (2.5)
by (ST:SYMMETRY) on Aj.

A, Ag <: A7, Ay (2.6)
by (sp:TypE) on (2.5) and (2.2).

T|A”, Ao+ H 2.7)
by induction hypothesis on (4) with (2.6).

Ay = Al |l A] (2.8)
by (steP:SuBsumpPTION) and (Protocol Conformance Preservation) with (3).

T|A", AL A, - H (2.9)

by (STR:SHARE) with (2.8) and (2.9).
Thus, we conclude.
e [4(a)] by (sTrR:STAR) with (1).
e [4(b)/(c)] analogous to [3(*)] cases.
e [7] by (sTrR:NoONE) with (1).
¢ [9] Immediate by applying i.h. and (STR:INTERSECTION).
Thus, we conclude.

Case (sTr:DEFOCUS) Analogous to the previous case, since the only subtyping rule applicable to a
defocus-guarantees is the symmetry case.
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Lemma 5 (Store Typing Extension).
T| Ao @ A + Ho, H,

if and only if _ . R - _
T|Ave- A7 rHy AN =A\A, T|ArH, T|A FH,

The above implies, when read from top to bottom, that we can separate the heap in two parts
(Hp and H,) such that each is supported by the two typing environments independently. Since there
is the possibility of sharing, any element that is common to both Ay and A; will be supported by
the heap Hy. Therefore, we use the previous definition of A \ A, but raised to sets of types (i.e.
typing environments), to extract from A; all elements that will only be supported in H.

The opposite direction is simply merging the typing environments. Also note that we are using
a definition of Ay \ A; that never rearranges elements inside a defocus-guarantee. Therefore, A,
elements are all with the same relative defocus-guarantee depth as in A].

Proof. We expand the steps of the proof to clarify the reasoning. We have the two sub-cases:

e Up sub-case:
The up case is immediate since we are just merging two disjoint heaps, while assuming that
the non-separate parts already conform. The crucial step is:

A=A\ AY (0
First, note that B? can only include parts of the heap (Hy) that are shared because of i:l &) F

Hy, as otherwise Hy would have elements that are not supported by Ko alone. Therefore,
(1) is only “pushing” shared parts into A;. Note that H, simultaneously supports two typing
environments one that may and another that may not include those additional shared parts
(that must only be rely-guarantee protocols). As state in the definition of A \ A, our protocol
conformance definition enables them to work not only alone but also when other protocols to
that same state may not be present. This corresponds to apparently “useless” steps that only
gain meaning when conformance is seen together with those hidden protocols. Therefore,
by having the two store typing constrains on Hy both with and without A, we are sure to
correctly assume they remain valid in those two situations.

Now the position on where these are placed does not compromise store typing: if p does not
hold any defocus-guarantee, then the conclusion is immediate since the shared type is known
to be consistent with the heap from T | Ao @ A” + Hy, if it did hold some defocus-guarantee,
then it could potentially re-order or cause a rearrangement in the list of defocus-guarantees
of A;. However, such case does not compromise store typing since it refers disjoint shared
types. Consequently, the order is not important since the defocus-guarantee still obeys its
purpose of forbidding access to shared types whose underlying state is inconsistent—even
if they are only accessible from a very conservative defocus depth such does not break store
typing by (sTr:DErFocus), since that rule uses an arbitrary depth for the other parts of the
protocol. All the elements of A, that have non-shared types are immediate since they directly
obey store typing through (sTR:BINDING).

Thus, we conclude.
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e Down sub-case:
By the definition of ® we can break each environment in two sub-components on whether
they have non-shared types (n) or when they may have shared types (s):

Ao = Aoy Ao )

A1 = Ay, A 3)

Therefore, we can pick Hy and H; such that we are able to partition the two linear envi-
ronments into parts that only refer each one independently. However, there may be shared
types which could then appear on both typing environments. By making all shared parts, that
are common to both environments, fall into Hy, we can easily see that T | Ag + Hy since all
protocols also work alone (also note that such operation can never exposed shared types that
should remain hidden due to focus). Then, if we pick the parts of A;; that also depend on
H by: A = A1 \ A” we must immediately T | Ao @ Al + Hj because A" must only contain
shared types and those rely-guarantee protocols are elther defocused and therefore, ready to
be used by hypothesis or, if they correspond to an already focused state then there must be a
defocus-guarantee in A that will hide them (since otherwise we could just push that part of
the state to H,) and, by (sTrR:DErocus) we know that the protocols must still conform when
we consider the expected guarantee. Therefore, we conclude since the environment linked
to H, obeys store typing by hypothesis. Note, however, that by (1), we may gain access to
shared types of H; that before were being conservatively hidden behind a defocus-guarantee
but now that the environments are separate they no longer are. This does not violate store
typing since those elements were obeying it by hypothesis (without requiring (sTr:DEFocus))
and must refer disjoint parts of the heap.
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B.S

Values Inversion Lemma

Lemma 6 (Values Inversion Lemma). If v is a value such that:

fl Arv: Ap A -
then one of the following holds:
1. if Ag = [] then: _ _
A= I'l-rv:[]4-
2. if Ag ='A; then: _ _
A= I'l-rv:A 4
3. if Ay = Ay i1 A, then: L
I | Arv:A 4A;
4. if Ay = ref p then: _
vV=p p:loc € T A=
5. ifAg = A — A’ then:
A<:A”  v=fun(x:A").e T|A%x:A"re:A 4.
6. if Ay = VYt.A then: . _
v=(he T,t:loc|A°re:A+-
7. if Ag = Jt.A then: L
v={p,V) LAY D A{p/t}4-
8. if Ag = [f : A] then:
v={f=) flKl—vQ:Aﬁ~
(Note that, although the record value can have more fields than those that are listed in the
type, only the fields that are in the type will appear in the inversion.)
9. if Ag = VX A then: _ _
v=(X)e TI,X:type|A°re:A+-
10. if Ag = dX.A then: o
v={(A")V) F'NARYV :A{A /XA -

11. if Ay = 2, L;#A; then:

v = 1#v; /I:le\'-ViIAiﬁ'

for some i.
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12. if Ag = rec X.A then o
I'Arv:Afrec XA/X} -

13. if A=A",A; ® A, then
’fl&,All-Vle-ﬁ fl&,AzFVﬁAo-|‘

14. if Ag = A| ® A, then either
lekv:A14~ or flKkv:A24-
Note that A&A’ does not appear here since it is a capability (i.e. just gets stacked on top of some
value) and subtyping ensures its elimination.
Proof. By induction on the derivation of fl Arv: ApH-.

Case (1:REF) - We have:
T,po:loc|-+p:refp- (1)
by hypothesis.

Thus, we conclude by case 4 of the definition.

Case (1:Pure) - We have:

T|-Fv:lA - (D
by hypothesis.
f-Fv:iA 4 )

by inversion on (T:PURE).
Thus, we conclude by case 2 of the definition.

Case (T:Un1T) - We have:

—

rl-rv:fl4: (1)
by hypothesis.
Thus, we conclude by case 1 of the definition.

Case (1:PUre-READ), (T:LINEAR-READ), (T:PURE-ELIM), (T:NEW) - Not applicable.
Case (T:DELETE), (T:ASSIGN), (T:DEREFERENCE-LINEAR), (T:DEREFERENCE-PURE) - Not applicable.

Case (1:RECORD) - We have:

CIAr{f=v):[f:A]4- (D
by hypothesis.
’l:l/A\l-V,':A,‘-|' (2)

by inversion on (T:RECORD).
Thus, we conclude by case 8 of the definition.
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Case (T:SELECTION), (T: APPLICATION) - Not applicable.

Case (T:FunctioN) - We have:
T|AC +fun(x : Ag).e : Ag — A, 4 -
T|AC, x:Agre:A -

AQ <: A()

Thus, we conclude by case 5 of the definition.

Case (1:Capr-ELv) - Not applicable.

Case (1:CaP-STACK) - We have:
FIKI—WAO A A

’l:l/A\I-VZAQ-iAl

Thus, we conclude by case 3 of the definition.

Case (1:CapP-UNSTACK), (T: APPLICATION) - Not applicable.

Case (T:ForaLL-Loc) We have:
TIACk (tye:V1.AA-

f,t:loc|Ker:A4-

Thus, we conclude by case 6 of the definition.

Case (T:Loc-App) Not applicable.

Case (T:Loc-Pack) We have:
TIAF(p,v)y:3tAA-

TIArv:Alp/thA-

Thus, we conclude by case 7 of the definition.

Case (1:Loc-OpeN) Not applicable.
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by hypothesis.

(2)
by inversion on (T:FuncTION).

3)

by (ST:SYMMETRY) with Aj.

ey
by hypothesis.

2)

by inversion on (T:CAP-STACK).

ey
by hypothesis.

2)

by inversion on (T:ForaLL-Loc) with (1).

(D
by hypothesis.

2

by inversion on (T:Loc-Pack) with (1).



Case (T:ForaLL-TYPE) We have:
TIACF(X)e: VXA -
T,X:type|ACtre:AH-
Thus, we conclude by case 9 of the definition.

Case (T:Type-Arp) Not applicable.

Case (1:TyPE-PacK) We have:
TIAF (Ag,vy: AX.A; 4 -

TIAFv:A{A/X)A-

Thus, we conclude by case 10 of the definition.

Case (T:Type-OpPEN) Not applicable.

Case (1:Tac) We have:
TIAFl#v:1#A 4 -

/I:l/A\I—v:A—b

Thus, we conclude by case 11 of the definition.

Case (T:Case) Not applicable.

Case (T: ALTERNATIVE-LEFT) We have:
/I:l/A\,A()@Al |—VZA2 -

T|AAgrv:Ay+-
FlA,A]FVﬁAz%'

Thus, we conclude by case 13 of the definition.

ey
by hypothesis.

2)

by inversion on (T:ForaLL-Loc) with (1).

(1
by hypothesis.

(2)

by inversion on (1: Type-Pack) with (1).

(1
by hypothesis.

2)

by inversion on (T:TAG).

(D
by hypothesis.
()
3)

by inversion on (T: ALTERNATIVE-LEFT).

Case (T:FraMmE) Not applicable, A environment on right is empty, otherwise direct application of

induction hypothesis.

Case (T:SuBsumpPTION) We have:

65



T|Arv:A - (1)

by hypothesis.
A< N )
TINFv:AgA- (3)
Ag <: A 4)
S <. &)

by inversion on (T:SUBSUMPTION).
By induction hypothesis on (3) we have that one of the following holds:

1. if Ag = [] then:

A= (1.1)
Tl-Fv:[]4- (1.2)
<A, (1.3)

by case 1 of the hypothesis and rewriting (4).
Then, by (Subtyping Inversion Lemma) on (1.3) we have that either:

o[l] Ay =] (1.4)
and we conclude as case 1 of the definition.
e [5(0)] A =] (1.5)
and we conclude as case 2 of the definition.
o[17] Ay =[]®A (1.6)

and we conclude as case 14 of the definition using (3).

2. if Ay = A then:

A= 2.1)
f-+v:Ad- (2.2)
1A <: A, (2.3)

by case 2 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (2.3) we have that either:
o[1] A=A
Thus, we conclude by case 2 of the definition through (2.2).
*[2(a)] A1 =A
Thus, we conclude by induction hypothesis on (2.2).
e [2(b)] Ay ='A"and A <: A’
Tl Fv:A - (2.4)
by (T:SuBsumpTiON) on (2.2) with A <: A’.
Thus, we conclude by case 2 of the definition with (2.4).
® [2(0)] Ar =]
Cl-Frv:i[]4- (2.5)
by (T:UNIT) on v.
Thus, we conclude by case 2 of the definition.
o[17] A; =1AA’ (2.6)

66



and we conclude as case 14 of the definition using (3).

. if Ay = A —o A’ then:

v=fun(x:A).e 3.1
TIN x:Are:A - 3.2)
A—o A < A, 3.3)

by case 5 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (3.3) we have that:
(Note: we omit the remaining cases since they are straightforward)

A =A" - A (3.4)
A < A (3.5)
AV < A (3.6)
TIN  x:Are:A” 4 (3.7)

by (T:SusumpTioN) on (3.2) and (3.5)
flKG,x:Ake:A”’ﬁ- (3.8)

by (1T:SuBsumpTION) on (3.7) and (sp:VaRr) with (2).
(a defocus-guarantee can never be introduced by subtyping, thus A®)
Thus, with (3.8), (3.6) and (3.1) we conclude by case 5 of the definition.

. 1f Ag = A :: A’ then:

TIAFv:AAA 4.1)

A A <A 4.2)
by case 3 of the hypothesis and rewriting (4).

by (Subtyping Inversion Lemma) on (4.2) we have that:

(Note: we omit the remaining cases since they are straightforward)

A=A A 4.3)
A <: A" (4.4)
A < A 4.5)
TI|Arv:A” 4 A" (4.6)

by (T:SusumpTiON) on (4.1) with (4.4) and (4.5).
Thus, we conclude by case 3 of the definition.

. if Ay = [ : A] then:

v=(E=v) (5.1)
TINFV: AA- (5.2)
[£:A] <: A, (5.5)

by case 8 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (5.5) we have that either:
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(Note: the remaining [1] and [17] cases are straightforward)

e [5(h)] Ag=[f:A, f;: A’]and

Al =[f:A, £f;:A”] (5.6)
A < A” 5.7

Thus, by (T:SuBsumpTioNn) on (5.2) and (5.7) we conclude by case 8 of the definition.

e [5(a)] Ag=[f:A,f£ :A]and
Ay =[f:A]landi > 0.

Thus, by (T:Recorp) with (5.1) and ignoring the dropped field, we conclude by case 8
of the definition. Note that all fields have the same effect and by i > 0 we ensure that
subtyping leaves at least one field to do such effect.

e [5(c)] Ag=[f:'A]and

Ay =1[f:1A] (5.8)
TIA v 14,4 (5.9)
by rewriting (5.2) with (5.8).

T v A4 (5.10)
by induction hypothesis on (5.9), note the ! type.

Cl-+{f=v}:[£:!1A]4- (5.11)

by (T:RECORD) on (5.9).
Thus, we conclude by case 2 of the definition.

. if Ap = dt.A then:

K:’(\p, V') 6.1)
LAV Alp/th4- (6.2)
dr.A <: A, (6.3)

by case 7 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (6.3) we have that:
(Note: the remaining [1] and [17] cases are straightforward)

Ay =3dtA (6.4)
A< A (6.5)
C'NArY A'p/t} - (6.6)

by (T:SusumpTiON) on (6.2) and (6.5).
Thus, we conclude by case 7 of the definition.

. if Ag = Vt.A then:

v={_t)e (7.1)
f,t:loch’Gl—e:A—i- (7.2)
Vt.A <: A; (7.3)
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10.

1.

12.

by case 6 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (7.3) we have that:
(Note: the remaining [1] and [17] cases are straightforward)

A =VtLA (7.4)
A< A (7.5)
[r:loc|ASFe: A - (7.2)

by (T:SusumpTiON) on (7.2) and (7.5).
(note that a defocus-guarantee cannot be introduced by subtyping)
Thus, we conclude by case 6 of the definition.

. if Ay = ref p then:

vV=p (8.1)
p:loc €T (8.2)
A= (8.3)
refp <: A, (8.4)

by case 4 of the hypothesis and rewriting (4).
(Note: the remaining [1] and [17] cases are straightforward)
by (Subtyping Inversion Lemma) on (8.4) we have:
o [11] Al =!(ref p)
Thus, we conclude by case 2 of the definition.

if Ag = AX.A, analogous to J¢.A.
if Ag = VX.A, analogous to V¢.A.

if Ay = ; 1;#A] then:

v =14 (11.1)
TIA Fv: A4 (11.2)

for some i.
S L#A! < A, (11.3)

(Note: the remaining [1] and [17] cases are straightforward)

by (Subtyping Inversion Lemma) on (8.4) we have that:

A = 1'#A" + 3, 1 #A] (11.4)
Thus, by (11.2) we conclude by case 11 of the definition.

if Ay = rec X.A then:

TIA +v: Afrec X.A/X} A - (12.1)
rec X.A <: A; (12.2)
by case 12 of the hypothesis and rewriting (4).
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(Note: the remaining [1] and [17] cases are straightforward)

by (Subtyping Inversion Lemma) on (12.2) we have that either:

e [15(a)] Al =rec X.Aand A <: A’

TIArv:Afrec XA /X) - (12.3)
by (T:SuBsumpTION) on (12.1).

Thus, we conclude by case 12 of the definition.

o [15(b)] Al = A{X/rec X.A}

Thus, we conclude by induction hypothesis on (12.1) combined with

(T:SuBsumPTION) On each case.

13. if A = A, A, ® A; then:

TIA, Ay bv:AgH- (13.1)
rlA/,Ag I-VIAO-| . (132)
Ay <: A (13.3)

By induction hypothesis on each case and then (T:SuBsumPTION).

14. if Ag = A; & A, then either:

TIAFv:AA- (14.1)
TIANFv:AsA- (14.2)
and:

A @A, <: A (14.3)

This case is analogous to previous ones by applying (Subtyping Inversion Lemma) on
(14.3) yielding cases [1] and [17]. The first is immediate, the second is closed by
considering either (14.1) or (14.2) through (T:SuBsumPTION).

Case (T:LET), (T:SHARE), (T:Focus-RELY), (T:DEFOoCUs-GUARANTEE) Not values.
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B.6 Substitution

For clarity, substitution is defined on constructs that allow expressions even though our grammar
(in some places) only allows values since such difference has no impact in the following definitions
and is generally more readable.

1. Variable Substitution, (vs:*)
We define the usual capture-avoiding (i.e. up to renaming of bounded variables) substitution

rules:

eofv/x} = e

(vs:1)
(vs:2)
(vs:3)
(vs:4)
(vs:5)
(vs:6)
(vs:7)
(vs:8)
(vs:9)
(vs:10)
(vs:11)
(vs:12)
(vs:13)
(vs:14)
(vs:15)
(vs:16)
(vs:17)
(vs:18)
(vs:19)
(vs:20)
(vs:21)
(vs:22)
(vs:23)
(vs:24)
(vs:25)

plv/x

x{v/x

xofv/x1

(fun(xp : A).ep){v/x;

(f =e}{v/x

(e.DHHfv/x

(eo en)fv/x

(new e){v/x

(delete e){v/x

(le){v/x

(eo :=e{v/x

(p-e){v/x

elpl{v/x

(D e)v/x

(open (t,xp) = eg in e end){v/x;
(A,e){v/x

e[Al{v/x

(X)) v/x

(open (X, xg) = eg in e; end){v/x;
(1#e){v/x

(case e of 1;#x; — ¢; end){v/x
(let xg = eg in e1 end){v/x;
(share Agas Ay || Ax){v/x
(focus A){v/x

defocus{v/x

2. Location Variable Substitution, (Ls:*)
Similarly, we define location substitution (but here up to renaming of bounded location vari-

ables) as:

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

71

Je
v

Xo (x0 # x1)
fun(xg : A).ep{v/x1} (x0 # x1)
{£=elv/x}}

elv/x}.f

eofv/x} eifv/x}

new e{v/x}

delete e{v/x}

le{v/x}

eofv/x} == er{v/x}

(p,elv/x})

e{v/x}[p]

(1) efv/x}

open (t, xg) = epf{v/x1} inei{v/x;}end (xg # x1)
(A, efv/x})

e{v/x}[A]

(X) efv/x}

open (X, xg) = ep{v/x1}ine{v/x1} end (x¢ # x1)
l#e{v/x}

case e{v/x} of 1;#x; — e;{v/x} end (x; # %)
let xo = eo{v/x1} ine{v/x1} end (x9 # x1)
share Ao{v/x} as Ai{v/x} || Ax{v/x}

focus A{v/x}

defocus



eolp/t} =

(Ls:1.1)
(Ls:1.2)
(Ls:1.3)
(Ls:1.4)
(Ls:1.5)
(Ls:1.6)
(Ls:1.7)
(Ls:1.8)
(Ls:1.9)
(Ls:1.10)
(Ls:1.11)
(Ls:1.12)
(Ls:1.13)
(Ls:1.14)
(Ls:1.15)
(Ls:1.16)
(Ls:1.17)
(Ls:1.18)
(Ls:1.19)
(Ls:1.20)
(Ls:1.21)
(Ls:1.22)
(Ls:1.23)
(Ls:1.24)

{
{
{
{
(case e of 1;#x; — ¢; end){p/t}
{
{
{
{

plt}
plt}
plt}
p/tl

ot
x{
{
{
(e Hip/1}
{
{p
{
{

(fun(zx A) e)
{f=e}

(eo e)ip/t}
(new e){p/t}
(delete e){p/t}
(le){p/t

(eo :=e{p/t
(po.e){p1/t
elpolip1/t
(o) e){p/t1}

}
}
}
}

(open (fy, x) = eg in ey end){p/t1}

(A,e){p/1}
e[Allp/1}
(X)e)p/t)

(open (X, x) = eg in ey end){p/t}

(I#e){p/1}

(let x = e in ey end){p/t}
(share Ag as A1 || Ax){p/t}

(focus A){p/1}
defocus{p/t}
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fun(x : A{p/t}).e{p/1}

{f =elp/t}}
e{p/t}.£

eolp/t} er{p/t}
new e{p/t}
delete e{p/t}
le{p/1}

eolp/t} ;= el{p/t}
(poip1/t}, elp1/1})
elp1/tlpoip1/t}]
(t1)elp/t1}

(to # 11)

open (1o, x) = eof{p/ti}inei{p/ti}end (t # t1)

(A{p/t},elp/t})
elp/t}[A{p/1}]
(Xyelp/t)

open (X, x) = ep{p/t}ine{p/t} end

l#e(p/t}

case e{p/t} of 1;#x; — e;{p/t} end
let xg = eo{p/t} in e1{p/t} end
share Ao{p/t} as Ai{p/t} || A2ip/1}

focus A{p/1}
defocus



Aolp/t} = Ay

(Ls:2.5) (Ao o Apip/t Aolp/t} — Ai{p/t}

Aofp/t} :: A{p/t}

(Ls:2.1) polp/ty = p

(Ls:2.2) Hp/t} = p

(Ls:2.3) tofp/ti} = 1t (to # 11)
(Ls:2.4) (‘A){p/ty = A{p/t}

}
}
}
}
}
(Ls:2.6) (Ao = AD{p/1}
(Ls:2.7) [£: Al{p/t}
}
}
}
}
}
}

= [£:A{p/t}]
(Ls:2.8) (Vto.A){p/tl = Vl‘o.A{p/l‘l} (to # t1)
(1s:2.9) . A){p/t1} = FAn.Alp/t} (tg # 1)
(1s:2.10)  (ref po){pi/t} = ref po{p1/1}
(Ls:2.12)  (rw po A)p1/t} = rw polp1/t} Alp1/t}
(Ls:2.13) (Ao = Aip/tt = Aolp/th = Ailp/t}
(Ls:2.14) VX A){p/t} = VXA{p/t}
(Ls:2.15) AxA{p/t} = AXA{p/t}
(Ls:2.16) X{p/t} = X
(Ls:2.17)  (rec X.A){p/t} = rec X.A{p/t}
(Ls:2.18) (X L#ANip/tt = X L#Adp/t}
(Ls:2.19)  (Ao@ Aip/tt = Aolp/tt® Ailp/t}
(Ls:2.20) none{p/t} = none
(Ls:2.21) (Ao = Aip/tt = Aolp/tt = Alp/t}
(Ls:2.22) (AosADip/tt = Aolp/th Alp/t)
(Ls:2.23)  (Ap & Apip/tt = Aolp/tt & Ailp/t}

Lofp/t} =
(Ls:3.1) {p/t} =
(Ls:3.2) T, x: A)fp/t} = T{p/t},x: A{p/t}
(1s:3.3) ([I,t :loc){p/ti} = T{p/t1}, 1o : loc (to # 1)
(s:3.4) (I, X : type)p/t} = T'{p/t},X : type
Aofp/t} =
(Ls:4.1) Ap/t} =
Ls:4.2) (A, x:A)lp/ty = Alp/t},x: A{p/t}
(Ls:4.3) (A, A)p/ty = Alp/t}, Alp/t}
(Ls:d44) (A A=A)p/ty = Alp/th, Alp/ti»> A{p/t}

3. Type Variable Substitution, (1s:*)
Finally, we define type substitution (up to renaming of bounded type variables) as:
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eofA/X} = e

(ts:1.1) pfA/X}
(1s:1.2) x{A/X}
(1s:1.3) (fun(x : Ag).e){A/X)
(ts:1.4) (f = e}{{A/X)
(ts:1.5) (e.D){A/X}
(1s:1.6) (eg e){A/X}
(ts:1.7) (new e){A/X}
(15:1.8) (delete e){A/X}
(1s:1.9) (le){A/X}
(ts:1.10) (eg := e){A/X}
(1s:1.11) (p,e){A/X}
(ts:1.12) e[pl{lA/ X}
(ts:1.13) (nye){A/X}
(ts:1.14) (open (t,x) = ey ine; end){A/X}
(ts:1.15) (Ag,e){A1/X)}
(ts:1.16) e[Agl{A1/X}
(1s:1.17) X0y e){A/ X1}
(1s:1.18) (open (Xp, x) = eg in ey end){A/X;}
(ts:1.19) (1#e){A/X)
(1s:1.20) (case e of 1;#x; — ¢; end){A/X}
(ts:1.21) (let x = ¢g in e; end){A/X}
(1s:1.22) (share Ag as A1 || Ax){A/X)
(1s:1.23) (focus A" ){A/X)
(1s:1.24) defocus{A/X}
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fun(x . AQ{A]/X}).e{Al/X}

{f =elA/X}}

efA/X}.£

eofA/ X} e1fA/ X}

new e{A/X}

delete e{A/X}

le{A/ X}

eofA/X} = e1{A/X}

(p,efA/X})

e{A/X}p]

(ryelA/X}

open (t,x) = eg{A/X} in e {A/X} end
(AofA1/X}, efA1/ X))
e{A1/X}HAofA1/X}]

(Xo) efA/ X1} (Xo # X1)
open (Xp,x) = eofA/X1}ine{A/ X} end (Xo # X7)
l#e{A/X)

case e{A/X)} of 1#x; — e;{A/X} end
let xo = eg{A/X} ine1{A/X} end
share Ap{A/X} as A{{A/X} || Ar{A/ X}
focus A’{A/X)

defocus




[Ao{A1/X) = A, |

(T8:2.6) (Ag — A{A2/X)}

{

{ AofA2/X} — A{Ar/ X}
(1s:2.7) (Ag :: ADfAL /X

{

{

Ao{Az/X} 1 A1{A2/ X}

(15:2.1) PplA/X) = p

(1s:2.2) HA/X} = p

(15:2.3) X{A/X) = A

(1s:2.4) XofA/X1} = Xo Xo # X1)
(TSZz.S) ('AQ) Al/X} = ’Ao{Al/X}

(1s:2.8) [£f:Al{Ap/X} = [£f:A{Ao/X}]
(18:2.9) Vt.AQ){A1/X} = VYt.AolA1/X}
(1s:2.10) @t AD{A1/X) = TAt.Apf{A/X)
(ts:2.11) (ref p){A/X} = refp
(1s:2.13) (rw p A)){A1/X} = rw pAp{A/X}
(1s:2.14) (Ap * ADfA2/X} = AofA2/X} = A1{A2/X}
(1s:2.15) (VXo.A0){A1/X1} = VYXo.AolA1/X1} (Xo # X1)
(1s:2.16)  (AXo.Ao){A1/X1} = IXo.AofA1/X1} (Xo # X1)
(TS:2.17) (rec Xo.Ao){A]/X]} = rec X().A(){A]/X]} (X() * X])
(18:2.18) i L#ANA/XY = X L#A{A/X)
(1s:2.19) Ay AD{A/X} = AplA/ X} A{A/X])
(1s:2.20) none{A/X} = none
1Ls:2.21)  (Ag = ADIA/X) = AplA/X) = A{A/X)
(Ls:2.22) (Ap; A{A/XY = AofA/X} A{A/X}
(Ls:2.23) (Ao&ANA/X) = AolA/X)&A{A/X)
To{A/X} =T
(rs:3.1) {A/X

} =
(18:3.2) T, x:Ap){A1/X} = T{A/X}, x: AplA/X}
(1s:3.3) T,t:loc){A/X} = T{A/X},t: loc
(rs:3.4) (I, Xp : type){A/ X} = T{A/X1}, Xo : type Xo # X1)

[ Ao{A/X) = A |
(ts:4.1) {A/X) = -
(1s:4.2) (A, x:Ap){A1/X} = A{A1/X}, x: Ao{A1/X}
(15:4.3) (A, AofAL/X} = AfA1/X}, AofA1/X)
(1s:4.4) (A Ag> ADH{A1/X} = A{A/X},Ap{A1/X} > A{A/X]}
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B.7 Free Variables Lemma

Lemma 7 (Free Variables Lemma). If I' | Ag,x : Ag - e : A; 4 Aj and x € fv(e) then x ¢ A;.
fv(e) = “set of all free variables inside the expression e”

Proof. We proceed by induction on the derivation of I' | Ag,x : Ag F e : Ay 4 Ay.
Case (1:REF), (T:PURE), (T:UNIT), (T:PURE-READ) - A is empty.

Case (T:LINEAR-READ) - We have:

IN'x:Arx:AA4- (D
x € fv(x) 2)
by hypothesis.

Therefore, we immediately conclude x ¢ -.

Case (1:Pure-ELIM) - We have:

I'|Ag,x:1AgFe: Ap 4 A (1)
x € fv(e) 2)
by hypothesis.

[Lx:Ag|Agre: A HA 3)
by inversion on (T:PURE-ELIm).

x ¢ A 4)

because x is in the linear environment (and cannot appear duplicated in A’s).
Therefore, we conclude.

(Note: the case when x is not the one use in the (T:Pure-ELim) rule is a direct application of
the induction hypothesis.)

Case (T:NEwW) - We have:

[ Ag,x:Ag-newv: dr.(refr::rwrA) 4 A ()
x € fv(new v) 2)
by hypothesis.

I'Ap,x :Agrv:A4A (3)
by inversion on (T:New) with (1).

x € fv(v) 4)

[ fv(new v) = fv(v) ]
by definition of fv and (2).
xé Al (5)
by induction hypothesis on (3) and (4).
Therefore, we conclude.

Case (T:DELETE) - We have:
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I'|Ag,x:Ap+deletev:dr.A 4 A
x € fv(delete v)

I'|Ag,x:Agrv:dt.(reft:rwirA)4A;

x € fv(v)

X ¢ Al
Therefore, we conclude.
Case (T:ASSIGN) - We have:

I'|Ag,x:AFrvy:i=v; 1 Ay -|A2,I'WpA0
x € ftv(vy :=vy)

Fle,XZAI-VllA()-|A1
CA Fvy:refp4 A, rwp A

Therefore, we have the following possibilities:

1. x € fv(vy) A x ¢ £v(vy)
(x:A)eN

ngz,l'WpAl

X%Az,l’WpAo

(1

(2)

by hypothesis.

(3)

by inversion on (T:DELETE) with (1).
4)

[ fv(delete v) = fv(v) ]

by definition of fv and (2).

(5)

by induction hypothesis on (3) and (4).

(1

(2)

by hypothesis.

(3)

4)

by inversion on (T:AssiGN) with (1).
[ £v(vo :=v1) = £v(vo) U £fv(vy) |

(1.1)
by x ¢ fv(vy).
(1.2)

by induction hypothesis on (4) with (1.1).

(1.3)

since the capability trivially obeys the restriction (since x is not a type).

Thus, we conclude.

2. xe ftv(v)) A x ¢ £v(vy)

x ¢ A 2.1
by induction hypothesis on (3) and case assumption.

x ¢ Ay rw p Ay (2.2)
by (2.1) and (4).

x ¢ Az,l’W P A() (23)

since the capability trivially obeys the restriction on (2.2).

Thus, we conclude.

3. x € fv(vy) A x € £v(vy)
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X¢A1

3.1

by induction hypothesis on (3) and case assumption.

We reach a contradiction since v is well-typed by (4) but x € fv(v;) contradicts (3.1).
Thus, such case is impossible to occur in a well-typed expression.

Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

' Ag,x:AgFlv:A4 A, rwp|]
x € fv(lv)

I'Ag,x:Agrv:refp4A,rwpA

x € fv(v)
X¢A,TWpA
x & A,rwp (]

Thus, we conclude.

Case (T:DEREFERENCE-PURE) - We have:

I'|Ag,x:Ag kv 1A 4 Al,I‘Wp 1A,
x € fu(lv)

FIAO,x:AOI—v:refp—|A1,er!A1

x € fv(v)
X ¢ Al,I'Wp ’Al

Thus, we conclude.

Case (T:RECORD) - We have:

C|Ax:Agr{f=v}:[f:A]4-
x e ftv({f =v})

Therefore, we immediately conclude x ¢ -.

(1)

(2)

by hypothesis.

(3)

by inversion on (T:DEREFERENCE-LINEAR).
[ fv(lv) = fv(v) ]

4)

by definition of fv and (2).

)

by induction hypothesis on (3) and (4).
(6)

by (5) and since x cannot be in rw p [].

(D

(2)

by hypothesis.

(3)

by inversion on (T:DEREFERENCE-PURE).
[ fv(le) = fv(v) |

4)

by definition of fv and (2).

%)

by induction hypothesis on (3) and (4).

(D
2)
by hypothesis.



Case (T:SELECTION) - We have:

I'Ag,x:Ag kvt A 4 Ay
x € fv(v.f)

I'|Ag,x:Agrv:[f:A]4A;

x € fv(v)
X ¢ Al
Thus, we conclude.

Case (T: APPLICATION) - We have:

I'Ag,x:Arvyvy t A4 A,
x € fv(vovy)

FlA()I-V()ZAO—OAl-|A1
F|A1|-V13A0-|A2

Therefore, we have the following possibilities:

1. xe fv(v)) A x ¢ £v(vo)

rlA()I-V()ZAO—OAl-|A1
A=Al x:A

CIAN,x:Arvi i AgH A

X¢A2

(1

(2)

by hypothesis.

€)]

by inversion on (T:SELECTION).

[ fv(v.f) = fv(v) |

4)

by definition of fv and (2).

(%)

by induction hypothesis on (3) and (4).

(1)

(2)

[ fv(vo v1) = £v(vo) U £v(vy) ]
by hypothesis.

(3)

4)

by inversion on (T:AppLICATION) with (1).

(1.1)

(1.2)

by x ¢ fv(vy).

(1.3)

by rewriting (4) with (1.2).
(1.4)

by induction hypothesis on (1.3) and sub-case hypothesis.

Thus, we conclude.
2. x € fv(vy) A x € £v(vy)

X€A1

2.1

by induction hypothesis on (3) and case assumption.

We reach a contradiction since v; is well-typed by (4) but x € fv(v;) contradicts (2.1).
Thus, such case is impossible to occur in a well-typed expression. Therefore, we con-

clude.
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3. xe ftv(vy) A x & £v(vy)
X ¢ Al

X€A2

Thus, we conclude.

Case (1:FuncTtioN) - We have:

(3.1

by induction hypothesis on (3) and case assumption.

(3.2)
by (3.1) and (4).

FlAG,XZA() I—fun(xo :AQ).e:AQ — A4 (1)

x € fv(fun(xg : Ay).e)
Xé-
Thus, we conclude.
Case (T:ForaLL-Loc) - We have:

I'A,x:Agr{the:Vt.AA-
x € fv((t)e)

xX¢-
Thus, we conclude.
Case (1:Loc-Arp) - We have:

I'NA, x:ApFvp]: Alp/t} 4 A
x € fv(v[p])

p:locel’
I'Ax:Agrv: VEAA4A N
x € fv(v)

X ¢ Al

Thus, we conclude.

Case (1:Loc-OpPEN) - We have:

2)
by hypothesis.
3)

since it is the empty environment.

(D
()
by hypothesis.
(3)

since it is the empty environment.

(1)

(2)

by hypothesis.

(3)

4)

by inversion on (T:Loc-App) on (1).
[ fv(vlpD) = £fv(v) ]

(%)

by definition of fv and (2).

(6)

by induction hypothesis on (5) and (4).
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I['|Ag,x:Aropenit,xy) =vpine end: A; 4 A, (D)

x € fv(open(t, xo) = vy in e; end) 2)
[ fv(open(t, xo) = vy in e; end) = £v(vy) U fv(ey) ]

by hypothesis.

I'|Ag,x : A vy :dt.Ag 4 A 3)
It:loc| Ay, xpg:Ag e i A4 A, @

by inversion on (T:Loc-OpeN) with (1).
Therefore, we have the following possibilities:

1. x e fv(e)) A x ¢ £v(vy)

(x:A)e N (1.1)
by x ¢ fv(vy).
x¢ A (1.2)

by induction hypothesis on (4) with (1.1).
Thus, we conclude.

2. x € fv(vy) A x € fv(ey)

x ¢ A 2.1
by induction hypothesis on (3) and case assumption.

We reach a contradiction since v is well-typed by (4) but x € fv(e;) contradicts (2.1).
Thus, such case is impossible to occur in a well-typed expression.

3. x € fv(vy) A x ¢ fv(ep)

X ¢ A (3.1)
by induction hypothesis on (3) and case assumption.
xX¢ A (3.2)

by (3.1) and (4).
Thus, we conclude.

Case (1:Loc-Pack) - We have:

A x:AgF{(p,v): A4 A (1)
x € fv((p,v)) 2)

by hypothesis.
A, x:Ag kv :A{p/t}41 A 3)

by inversion on (T:Loc-Pack) on (1).
[ fv({p,v)) = £fv(v) ]

x € fv(v) “4)
by definition of fv and (2).
x ¢ A )

by induction hypothesis on (4) and (3).
Thus, we conclude.
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Case (T:ForaLL-TYPE) - We have:

T|Ax:Agk (X)e:VX.AA-
x € fv((X)e)

xX¢-
Thus, we conclude.

Case (1:Type-App) - We have:

r | A,X . A() F V[Al] AQ{Al/X} 4 Al

x € fv(v[A())
I'HA, type
I'Ax:AgFv:VXAr 4 A
x € fv(v)
x & A
Thus, we conclude.

Case (1:Type-PAck) - We have:

T|Ax:Agk (A,v): AX.Ay 4 A,
x € fv({A1,v))

I'Ax:Agrv: A A /X4 A

x € fv(v)
xX¢ A]

Thus, we conclude.

Case (T:Type-OpEN) - Analogous to (T:Loc-OPEN).

Case (1:Capr-ELIM) - We have:
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()
by hypothesis.
3)

since it is the empty environment.

(1)

(2)

by hypothesis.

(3)

“)

by inversion on (T:Type-App) on (1).
[ fv(v[A1]) = £v(v) ]

(%)

by definition of fv and (2).

(6)

by induction hypothesis on (5) and (4).

(D

(2)

by hypothesis.

(3)

by inversion on (T:Type-Pack) on (1).

[ fv({(Ar,v) = fv(v) ]

4)

by definition of fv and (2).

(%)

by induction hypothesis on (4) and (3).



Fle,XZAl Z:A2|—€:AO—|A]
x € fv(e)

I'Ag,x 1 Aj,Ay ke Ag 4 A
X¢A1

Thus, we conclude.

Case (1:CapP-STACK) - We have:

I'|Ag,x:Agre:A; 2 Ay 4 A
x € fv(e)

FIAOI—e:A1—|A1,A2
x &AL A
X¢A1

Thus, we conclude.

Case (1: Car-UNsTACK) - We have:

I'NAg,x:Agre: AL 4AL A
x € fv(e)

Fle,XIA()I-eZAl ZZA2-|A1
x¢A

Thus, we conclude.

Case (T:FrRAME) - We have:

' (Ag,x:Ap)) @ Ay re:A4A & A,

x € fv(e)

T A, x:Agke:AdA

(1)

(2)

by hypothesis.

(3)

by inversion on (T:Cap-ELim) on (1).
4)

by induction hypothesis on (2) and (3).

(D

(2)

by hypothesis.

(3)

by inversion on (T:Cap-Stack) on (1).
4)

by induction hypothesis on (3) and (2).
(5)

by (4).

(D

(2)

by hypothesis.

(3)

by inversion on (T:Cap-UNstack) with (1).
4)

by induction hypothesis with (3) and (2).

ey
2)
by hypothesis.
3)

by inversion on (T:FrRaME) with (1), note by (2) x must be in environment.

X¢A1
X¢(A1®—A2)

Thus, we conclude.

“)
by induction hypothesis.

(&)

since by (1) x cannot be in A,.



Case (1:SuBsumPpTION) - We have:

I'Ag,x:Are: A 4A; (D
x € fv(e) (2)
by hypothesis.

Ag,x: A<t Aj,x: A 3)
LAy Fe:AgHA] 4)
Ay <: Ay (5
Ay <t A (6)
by inversion on (T:SuBsumpTION) With (1).

x ¢ A (7
by induction hypothesis on (2) and (4).

X¢ Al (8)

by (6) and (7) noting the members of A; and A] are the same.
Thus, we conclude.

Case (1:Tac) - We have:

['Ag,x:Agr1#v: A 4 A (1)
x € fv(1#v) 2)

by hypothesis.
I'Ap,x:Agkv A 4A (3)

by inversion on (1:Tac) with (1).
[ fv(1#v) = fv(v) |

x € fv(e) “4)
by definition of fv and (2).
x ¢ A )

by induction hypothesis on (3) and (4).
Thus, we conclude.

Case (1:CasE) - We have:

I'|Ap,x:A"Fcasevofl#x; —e;jend: AHA (1)
x € fv(case v of 1 #x; — e; end) 2)
[ fv(case v of 1 #x; — ¢; end) = fv(v) U m ], for some i < j

by hypothesis.

[[Ag,x: A" Fv: ), L#A 4 A 3)
CIA,x;:Aire t A4 A 4)
i< &)

by inversion on (T:Casg) with (1).

Therefore, we have the following possibilities:
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1. xe fv(v) A x ¢ fv(e))

xé¢ N (1.1)
by induction hypothesis on (3) and case assumption.
x & A (1.2)

by (1.1) and (4).
Thus, we conclude.

2. x ¢ fv(v) A x € fv(e))

(x:A)eN 2.1
by x ¢ fv(e).
x¢ A (2.2)

by induction hypothesis on (4) and (2.1).
Thus, we conclude.

3. x e fv(v) A x € fv(e)

x ¢ A 3.1
by induction hypothesis on (3) and sub-case hypothesis.

We reach a contradiction since v is well-typed by (4) but x € fv(e;) contradicts (3.1).
Thus, such case is impossible to occur in a well-typed expression.

Case (T: ALTERNATIVE-LEFT) - We have:

' Ag,x: A0, A1 @Ay Fe: Az 4 A (1)
x € fv(e) 2)
by hypothesis.

I'|Ag, x 1 Ag, A1 Fe: Az 4 A 3)
I'|Ag, x:Ag, Ay Fe: Ay 4 A @
by inversion on (T: ALTERNATIVE-LEFT) with (1).

xé Al (5)

by induction hypothesis with (2) and (3).
Thus, we conclude.

Case (T:INTERSECTION-RIGHT) - Analogous to previous case but using (T:INTERSECTION-RIGHT).

Case (T:LET) - We have:

I'Ap,x:Arletxg=eyine;end: A; 4 A, (D)
x € fv(let xy = eg in e; end) ()
[ fV(let Xp = € in e end) = fv(eg) U fv(ey) ]

by hypothesis.

I'|Ap,x:Areg:AyHA (3)
FlA],X01AOF€12A1-|A2 (4)

by inversion on (T:LET) with (1).
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Therefore, we have the following possibilities:

1. x € fv(e;) A x ¢ fv(ep)

(x: A) € A (1.1)
by x ¢ fv(ey).
x ¢ A (1.2)

by induction hypothesis on (4) with (1.1).
Thus, we conclude.

2. x € fv(ey) A x € fv(ey)

X ¢ A 2.1
by induction hypothesis on (3) and case assumption.

We reach a contradiction since e, is well-typed by (4) but x € fv(e;) contradicts (2.1).
Thus, such case is impossible to occur in a well-typed expression.

3. x € fv(ey) A x ¢ fv(ey)

X & A 3.1
by induction hypothesis on (3) and case assumption.
X& N (3.2)

by (3.1) and (4).
Thus, we conclude.

Case (1:SHARE), (T:Focus-RELY), (T:DEFOCUS-GUARANTEE) - Not applicable x can never occur free
in these expressions.
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B.8 Well-Form Lemmas
Lemma 8 (Well-Formed Type Substitution). We have:

e For location variables:

1. If
I,t:loc wf p:locel

then I'{p/t} wf.

2. If
It:loc+- A wf p:locel

then T{p/t} + Alp/t} wi.

3. If
I't:loc+ A type p:locel

then I'{p/t} + A{p/t} type.

e For type variables:

1. If
I, X type wf I+ A type

then I'{A/X} wf.

2. If
I, X type - A wf '+ A type

then I'{A/X} + A{A/X} wi.

3. If
I, X type - A type '+ A’ type

then I'{A"/X} + A{A’/X} type.
Proof. Straightforward by induction on the structure of I', A and types.
Lemma 9 (Well-Formed Subtyping). We have two cases:
1. (Type) f '+ A typeand A <: A’ then' + A’ type.
2. (Delta) IfI'+ A wfand A <: A’ thenT' + A’ wf.

Proof. Straightforward by induction on the definition of <: for types and A, respectively.
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B.9 Substitution Lemma

Lemma 10 (Substitution Lemma). We have the following substitution properties for both expres-
sion typing and type formation:

1. (Linear) If
I'Agrv:Ag4 A I'Ap,x:Agre: A4 A,

then
LAy refv/x}: A4 A,
2. (Pure) If
Fl'I-VZ!A()-P F,XIAO|AOF€ZA1-|A1
then

' Agrefv/x}: Ay 4 A
(note that due to the required pure types, the A environments to check v must be empty)

3. (Location Variable) If
It:loc|Agre:AA4A p:locel

then
Hlo/t} | Aofp/t} v elp/t} - Alp/t} 4 Alp/t}

Note that, since t may appear free in all typing environments, the expression and in its type,
we must substitute into all those elements.

4. (Type Variable) If
X type|AgFe:ApHA ' A type

then
T{A1/X} | AofA1/ X} F efAr/ X} AolAL/ X} 4 A{A /X))

(replaces X in all places it may occur free)

Proof. We split the proof on each of the lemma’s sub-parts:
1. (Linear)

Proof. We proceed by induction on the typing derivation of
FlA],XIA()I-eIAl -|A2.

Case (T:REF), (T: PURE), (T:UNIT), (T:PURE-READ) - Not applicable since these rules require
an empty A environment.

Case (T:LINEAR-READ) - We have:
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'Arv:A4- (1)

Ix:Arx:AA4- 2)
by hypothesis.

(note v’s ending environment must be - to apply (T:LINEAR-READ)).
FNArx{v/x}:A4- 3)

by (vs:2) with (1) and x.
Thus, we conclude.

Case (1:Pure-ELIM) - We have:

LAy Fv:ApHA (1)
rlAl,XlI!Az,XOZAol-eZAl-|A2 (2)
by hypothesis.

F,XliAzlAl,X0:AOF€ZA1-|A2 (3)
by inversion on (T:Pure-ELim) with (2).

Iox t Ay | Ay kefv/xg) i AL A, (4)
by induction hypothesis on (3) with (1).

I'| A, x Ay kefv/xp) i A 4 Ay &)

by (T:Pure-ELim) with (4).
Thus, we conclude.

Case (T:NEw) - We have:

I'Agrv:AgHA; (1)
AL, x:Agrnewyy: de.(reft::rwtA) 4 A, 2)
by hypothesis.

rlAl,XZA()I-V()IAl-|A2 (3)
by inversion on (T:New) with (2).

I'|Ag Fvolv/x}: A1 4 Ay @
by induction hypothesis with (1) and (3).

IAgFnewvo{v/x} : dt.(reft:rwitA) 4 A, &)
by (T:NeEw) with (4).

I'|Ag - (new vo){v/x}: At.(reft:rwitA)) 4 A, (6)

by (vs:8) with (5).
Thus, we conclude.

Case (T:DELETE) - We have:

I'Agrv:Ag+4 A (1)
' A, x:AgF delete vo : dt.A A Ay (2)

by hypothesis.
F'ALx:Agrvy: dt(refrirwrA)HA, 3)

by inversion on (T:DELETE) with (2).
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I'|AgFvo{v/x}: dt.(reft::xrwtA) 4 A,
I'| Ay + delete vo{v/x} : At.A; 4 A,
I'| Ap + (delete vo){v/x} : At.A; 4 Ay

Thus, we conclude.

Case (T:AssIGN) - We have:

I'|Agrv:Ay A
FlAl,X:A()l-V() ::VllAl-iAz,l’WpAg

I'ALx:Agkvy Ay 4 A
FlA’I—vo:reprAg,rprl

We have that either:
(a) x € fv(vy)
x &N

LA Fvy{v/x}:ref p4 A, rwp A

T A Fv{v/x}: Ay 4N

A Fvolv/x} i=vi{v/x} : Ay 4 Ay, W p Ay

r | Al F (V() = Vl){V/X} : A1 4 Az, l'WpAQ

Thus, we conclude.

(b) x ¢ £v(v)
(x:Ag) € N

A" Fvofv/x} :ref p 4 Ar,rw p Ay

4)

by induction hypothesis with (1) and (3).
(%)

by (T:DEeLETE) with (4).

(6)

by (vs:9) with (5).

(1
2)
by hypothesis.
3)
C))

by inversion on (T:AssIGN) with (2).

(1.1)

by (Free Variables Lemma) on (3).
(1.2)

since x cannot occur in ey by (1.1).
(1.3)

by induction hypothesis on (1) and (3).
(1.4)

by (T:AssiGN) on (1.2) and (1.3).
(1.5)

by (vs:11) on (1.4).

2.1)
by (9) and x ¢ fv(v;).
(2.2)

by induction hypothesis (since it is applied to x wherever is in the
environment) and where A" is the same as A’ without x.

A Fvi{v/x}: Ay 4 A”

A Fvolv/x} i=vi{v/x} : Ay A Ay, rw p Ay

I | Al F (VO = Vl){V/X} : A1 4 AQ,I'WPAz
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since x cannot occur in e; by x ¢ fv(e;).
2.4)

by (T:AssIGN) using (2.4) and (2.5).
(2.5



by (vs:11) on (2.6).
Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

I'AgFv:Ag+4A; (D
FlA],XCAol-!V()IAl-|A2,I'Wp[] (2)
by hypothesis.

FlAl,x:Aol—vo:refp—|A2,erA1 (3)
by inversion on (T:DEREFERENCE-LINEAR) on (2).

Ay Fvol{v/x}iref p 4 Ar,rw p Ay @
by induction hypothesis with (1) and (3).

A Flvofv/x} i Ay 4 Ay, rw p (] )
by (T:DEREFERENCE-LINEAR) On (4).

LA F (vo)fv/x}: A4 Ay, rw p (] (6)

by (vs:10) on (5).
Thus, we conclude.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR).

Case (1:RECORD) - We have:

rlA()l-VZA()-iAl (1)
C|ALx:Agr{f=Vv}:[f:A]A- ()
by hypothesis.

rlA],XIA()I-V;:Ai-|‘ (3)
by inversion with (T:REcorp) on (2).

LA FVi{v/x} A4 - 4
by induction hypothesis with (1) and (3).

A F{E=v{v/x}}:[£:A]4- 5)
by (T:RECORD) on (4).

A F{£=vDiv/x} [£:A] - (6)

by (vs:5) on (5).
Thus, we conclude.

Case (T:SELECTION) - We have:

LAy Fv:AgHA (D)
rlAl,XiAol-V().fiAl-|A2 (2)

by hypothesis.
I'AL,x:Agkvo: [£:A1]4 A, 3)

by inversion on (T:SELECTION) with (2).
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LA Fvolv/x) i [£:A]4 A “4)

by induction hypothesis on (3) with (1).

LA Fvlv/x)f:[£:A]4A; 5)

by (T:SELECTION) on (4).

LA F@oD){v/x): [£:A]4 A ©6)

by (vs:6) on (5).

Thus, we conclude.

Case (T: APPLICATION) - We have:

I'|Agrv:Ay A (1)
FCIALx:AgkFvyvy AL HA, (2)
by hypothesis.
I'AL,x:AgkFvg:Ay 0 A HA 3)
A Fvi A4 A, 4)
by inversion on (T: APPLICATION) with (2).

We have that either:

(a) x € fv(vy)

x¢ N (1.1)
by (Free Variables Lemma) on (3).
CIA rvi{v/x} Ay 4 A (1.2)
since x cannot occur in vy by (1.1).
LAy Fvo{v/x} Ay 0 A A (1.3)
by induction hypothesis with (1) and (3).
I'| Ao Fvo{v/x} vi{v/x}: AL 4 Ay (1.4)
by (T:AppLicaTioN) with (1.2) and (1.3).
r | A() F (V() V]){V/.X} A A Az (15)

(b)

by (vs:7) on (1.4).
Thus, we conclude.

x & fv(vo)
(x:Ag) e N (2.1
by x ¢ fv(vy).
CIA" Fvifv/x}: A4 A (2.2)
by induction hypothesis where A" is A” without x.
['|AgFvo{v/x}: Ay A 4 A (2.3)
since x cannot occur in vy by x ¢ fv(vy) and (2.1).
I'| Ao Fvolv/x} vi{v/x} i Ar 4 Ay 2.4)
by (T:AppPLICATION) on (2.2) and (2.3).
LAy (vovi){v/x} i A4 A, (2.5

by (vs:7) on (2.4).
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Thus, we conclude.

Case (1:FunctioN) - We have:

rleFVIA04A1

L |AS, xo: Ao Ffun(x; : Ap).e: A — Ay 4

FlA?,X]IA],XoﬁAol-e:AQ-I'
X1 # Xo

(1)
2)
by hypothesis.
3)
“4)

by def. of substitution up to rename of bounded variables.

CIAS, x t Ak efv/x} i Ay -

T|AY Ffun(x; : Ap).e{v/x}: Ay — Ay + -

r | AlG F (fun(xl : Al)-e){V/X} . Al —0 A2 - -

Thus, we conclude.

Case (1:ForarLL-Loc) - We have:

FIA()I-VZA()-|A1
I'AL,x:Agk{t)e:Vt.A; 4 -

It:loc| A, x:Apre: A4
It:loc| Ay Fefv/x} Ay 4-
LA F{(t)elv/x}:Vt.A; 4 -
LA - e)v/x}: VA A -
Thus, we conclude.

Case (1:Loc-Arpr) - We have:

FIA()I-VIA()-|A1
FlAl,x:Ao F Vo[p] IA]{p/f} -|A2

p:locel
I'|A,x:AgFvy: VLA 4 Ay

' Ay Fvolv/x) i VEA H Ay
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)

by induction hypothesis with (1) and (3).
(6)

by (T:Function) with (5).

(7

by (vs:4) on (6) and (4).

(D

(2)

by hypothesis.

(3)

by inversion on (T:ForaLL-Loc) with (2).
4)

by induction hypothesis with (1) and (3).
%)

by (T:ForaLL-Loc) on (4).

(6)

by (vs:14) on (5).

(D

(2)

by hypothesis.

(3)

4)

by inversion on (1:Loc-App) with (2).
%)

by induction hypothesis on (4) and (1).



U Ay Fvolv/xilp]l : Aldp/th 4 Ay (6)
by (T:Loc-App) on (5) and (3).
L[ Ay F (olpDiv/xt s Aldp/tt 4 Ay (7
by (vs:13) on (6).

Thus, we conclude.

Case (1:Loc-Pack) - We have:

I'Agrv:Ag+4 A (1)
FlAl,x:Aol-(p,v()):Ht.A] 4 A, 2)
by hypothesis.

I'ALx:Ag kv Al{p/tt4 A, 3)
by inversion on (T:Loc-Pack) with (2).

IAFvofv/xb s Adp/t} 4 As 4)
by induction hypothesis on (1) and (3).

A F{p,vofv/x}) : At.AL 4 Ay (&)
by (1:Loc-Pack) on (4).

I[ArF (p,vo){v/x) : AtALH Ay (6)

by (vs:12) on (5).
Thus, we conclude.

Case (1:Loc-OpPEN) - We have:

LAy Fv:AgHA (D)
Ay, xg: Ag Fopendt,x;) =vpine end: Ay 4 A, )
by hypothesis.
I'| Ay, xp:Ag kv dt.Ay 4 A 3)
It:loc| A x1: Ay ket AL H A, @
by inversion on (T:Loc-OpeN) with (2).

We have that either:

(@) xo € £v(vp)

Xo & N (1.1)
by (Free Variables Lemma) on (3).
Xo £ X1 (12)
by def. of substitution up to rename of bounded variables.
It:loc| A, x Ay ke{v/xo} : A H A, (1.3)
since x( cannot occur in e¢; and by (1.1) nor in I" by (3).
A Fvo{v/xg) : LAy 4 A (1.4)
by induction hypothesis on (1) and (3).
' A+ open {t,x1) =volv/xo} ine{v/xglend : A; 4 Ay (15)
by (1:Loc-OpeN) on (1.3) and (1.4).
I'| Ay F (open{t, x;) = vgin ey end){v/xo} : A; 4 Ay (1.6)
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by (vs:15) on (1.6) and (1.2).
Thus, we conclude.

(b) xo & £v(vp)

(xp : Ag) € A 2.1
by xo ¢ fv(vp).

X0 # X (2.2)
by def. of substitution up to rename of bounded variables.

It:loc| A7, x;: As Fei{v/xg} 1 A 4 Ay 2.3)
by induction hypothesis with A" equal to A" without xj.

' Ay Fvo{v/xg) : LAy 4 A7 2.4)
since x( cannot occur in vy by xo ¢ £v(vy).

I'| A Fopendt, x;) = vo{v/xo} ine{v/xp} end : Ay 4 A, (2.5
by (T:Loc-OpeN) on (2.3) and (2.4).

'l Ay F (open{t, x;) = vgin ey end){v/xo} : A; 4 Ay (2.6)

by (vs:15) on (2.2) and (2.5).
Thus, we conclude.

Case (T:ForaLL-TYPE) - Analogous to (T:ForaLL-Loc) with (vs:18).
Case (T:Type-App) - Analogous to (T:Loc-Aprp) with (vs:17).

Case (1:Type-Pack) - Analogous to (T:Loc-Pack) with (vs:16).
Case (1:Type-OPEN) - Analogous to (T:Loc-OpeN) with (vs:19).
Case (1:Car-ELIM) - We have:

LAy Fv:A)g4ALx Ay i As (1)
FIAl,xleg ZZA3,X01A0I-€ZA1-|A2 (2)
by hypothesis.

I'|Ay,x 0 Ay, A, xg i Agk et AT H A, 3)
by inversion on (T:Cap-ELim) with (2).

LIALx Ay, Az Fe{v/xp) : A 4 Ay 4
by induction hypothesis with (1) and (3).

I'|Ap,x Ay i Az Fefv/xpl : Ay A A, &)

by (T:Cap-ELim) with (4).
Thus, we conclude.

Case (1:CaP-STACK) - We have:

T Ak v:AgHA )
I'ApL,x:Agre: Ay i Ay 4 A, 2)

by hypothesis.
F'ALx:Agre: A 4 A A, (3)
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r | Al F e{v/x} . A1 4 AQ,AQ
I'Ajrefv/x) Ay Ay H A,
Thus, we conclude.

Case (1:Capr-UNSTACK) - We have:

I'Agrv:AgHA;
FlA],x2AOF63A1—|A2,A2

I'ApL,x:Agre: A i Ay 4 A,
CIA Felv/x} Ayt Ay H A
I'A Fe{v/x}: A4 A A
Thus, we conclude.

Case (1:SuBsumPpTION) - We have:

LAy Fv:AgHA
rlAl,XIAOF€ZA1-|A2

Ay, x:Ag <t Al x A
TN, x:A)Fe:Ay A,
A2<ZA1

N, < A,

Ay <: A
[|Agkv:AjHA]

LA Fefv/x}: Ay 4 A
A <: A
FlAll-e{v/x}:A1—|A2

Thus, we conclude.

by inversion on (T:CAP-Stack) with (2).
4)

by induction hypothesis with (1) and (3).
%)

by (T:CAP-STACK) on (4).

(D

(2)

by hypothesis.

(3)

by inversion (T:Cap-UNstack) with (2).
4)

by induction hypothesis with (1) and (3).
(5)

by (1:Cap-Unstack) with (4).

(D

(2)

by hypothesis.

(3)

4)

(%)

(6)

by inversion on (T:SUBSUMPTION) on (2).

(7)

by (Subtyping Inversion Lemma) on (3) on x.
3)

by (T:SuBsumpTioN) on (1) with (7).

)

by induction hypothesis on (4) and (8).

(10)

by (Subtyping Inversion Lemma) on (3).

(11)

by (T:SusumpTioN) on (9) with (10), (5) and (6).
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Case (T:FrRAME) - We have:

I'Agrv:Ag4 A (1)
F'(AL,x:A) @ Aske: A HA @ A5 2)
by hypothesis.

FlAl,x:Aol—e:A1—|A2 (3)
by inversion on (T:FrRAME) with (2).

A Fe{v/x}: A4 A, 4)
by induction hypothesis with (1) and (3).

A @& Askelv/x}: A 4 A& Az 5

by (T:FRAME) on (4) with Aj.
Thus, we conclude.

Case (1:Tac) - We have:

LAy Fv:AgHA (D
I'|A,x: Aok 1#vg t 1#A 4 A, )
by hypothesis.

FCIALx:Agkvy: A4 A, (3)
by inversion (T:Tac) with (2).

LA Fvolv/x} i AL H A, €))
by induction hypothesis with (1) and (3).

LA - 1#ve{v/x) c 1#A 4 A ®))
by (1:Tag) with (4).

A+ (1#V0){V/X} C1HA A A, (6)

by (vs:20) on (5).
Thus, we conclude.

Case (1:CasE) - We have:

I'|Agrv:Ag+4A; (D
I'|Aj,x:Aprcasevyof 1i#x; > ejend: A4A, 2)
by hypothesis.
CIALx:Ag kv X L#HA A A 3)
LA, xi:Alke: A4 N 4
1< %)
by inversion (T:Casg) with (2).

‘We have that either:

(a) x € fv(vy)

x¢ N (1.1)
by (Free Variables Lemma) on (3).
XF X, (1.2)

by def. of substitution up to rename of bounded variables.
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(b)

CIA,x : Al kefv/x}: A4 A (1.3)
since x cannot occur in ¢; and by (1.1) nor in I" by (3).

LA, x:Ag Fvolv/xy: 2 L#AT A N (1.4)
by induction hypothesis on (1) and (3).

I'| Ay + case vo{v/x} of 1 #x; — e;{v/x}end : A4 A, (1.5)
by (1:Casg) on (5), (1.3) and (1.4).

['|A;+(case vy of 1#x; — e;end){v/x} : A4 A, (1.6)
by (vs:21) on (1.6) and (1.2).

Thus, we conclude.

x ¢ £v(vy)
(x: Ay e N 2.1
by x ¢ fv(e).
X# X (2.2)
by def. of substitution up to rename of bounded variables.
LA, xi: Al efv/x} : A4 A, (2.3)
by induction hypothesis where A” is same as A" without x.
LA Fvolv/x}: X 1#A A A (2.4)
since x cannot occur in e by x ¢ fv(e).
['| Ay +case vo{v/x} of L i#x; — e;{v/xjend: A4 A, (2.5
by (1:Casg) on (5), (2.3) and (2.4).
I'| A; + (case vp of 1 #x; — e end){v/x} : A4 A, (2.6)

by (vs:21) on (2.1) and (2.5).
Thus, we conclude.

Case (T: ALTERNATIVE-LEFT), (T:INTERSECTION-RIGHT) - Immediate by applying the induction

hypothesis on the inversion and then re-applying the rule.

Case (T:LET) - Analogous to previous cases.

Case (T:SHARE), (T:Focus-RELY), (T:DEFOCUS-GUARANTEE) - Immediate since these expressions

do not have free variables to substitute.

. (Pure)

Proof. We proceed by induction on the typing derivation of
Ix:Apg|AgFe: A 4A;.

Case (1T:REF) - We have:
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F,p:lOCl'}—VQZ!A0—|' (1)

ILpo:loc,x:Ag|-Fp:refpH- 2)
by hypothesis.

Ip:loc|-+p:refp - 3)
by x ¢ fv(p) on (2).

Ip:loc| -+ pf{v/x}:refp - 4

by (vs:1) on (3) using x and v.
Thus, we conclude.

Case (1:Pure) - We have:

I|-Fvg:1ApH- (D)
F,XOZAol'FV11!A1-|- (2)
by hypothesis.

Ixg:Ag|-Fvi A H- 3)
by inversion on (T:PURE) with (2).

I'xg:'AgFvi A 4- (4)
by (T:Pure-ELim) on (3) with xy.

L[+ vifvo/xo} : A4 - )
by (Substitution Lemma - Linear) with (1) and (4).

L|-Fvi{vo/xo} i 1AL A - (6)

by (T:PURE) on (5).
Thus, we conclude.

Case (1:Un1T) - We have:

I'|-Fvg:1ApH- (1)
Cox:Agl-Fvi:[]4- 2)

by hypothesis.
Ik vifvo/xb o 14 (3)

substitution on x cannot change the type since [] is always valid by (T:Unir).
(and substitution cannot change a value to become an expression).
Thus, we conclude.

Case (1:Pure-READ) - We have:

I'l-Fv:ilApH- (D)
F,X()ZA()l'I-XIZ!Al-|' (2)
by hypothesis (matching environments and type with (T:PURE-READ)).
We have that either:
(@) xo=x
Cl-rv:A4- (1.1)
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Ix:A|-Frx:!1A+4-

Il-Fx{v/x}:1A4-

Thus, we conclude.
(b) xo # x1
Fl-kxl A A

Fl o XI{V/X()} . ‘Al -

Thus, we conclude.

Case (T:LINEAR-READ) - We have:

I'l-+rv:ilApg+-
F,xo:Aolxlell—xlel—|-

Xo F X1
I'ix A Fx{v/xe): A4

Thus, we conclude.

Case (T:Pure-ELIM) - We have:

I'l-+rv:ilAp+-
F,XoiAole,XlZ!A2|-€IA1-|A1

I', xo : Ag, X3 :Azlel—e:A] 4 A
F,x1 ZAzlAO F e{v/xo}:Al 4 Al
I'| Ao, x1 : 1Ay Fefv/xp} : Ay 4 Ay

Thus, we conclude.

Case (T:NEw) - We have:

(1.2)

by restated hypothesis with x = xy = x;.
and with A = A() = A1~

(1.3)

by (vs:2) on (1.1) using x and v.

2.1

by xo ¢ £v(x;) on (2).

(2.2)

by (vs:3) on (2.1) using x, and v.

(1

(2)

by hypothesis.

(3)

since I" and A identifiers cannot collide.
4)

by (vs:3) on (2) using x, and v.

(D

(2)

by hypothesis.

(3)

by inversion on (T:Pure-ELim) with (2)
4)

by induction hypothesis on (1) with (3).
%)

by (T:PURE-ELIM) on (4).

I'-Fv:ilApH- (1)
[Lx:Ag|AgFrnew vy : de.(refr::rwitAp) 4 A 2)

by hypothesis.
F,XZAoleFVOIA14A1 (3)
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FlAO F Vo{V/X} A AN

“)
by induction hypothesis with (3) and (1).

I'|Ag - newvo{v/x} . de.(refr:rwir A)) 4 Ay &)

['|Ag F (new vo){v/x} : Jt.(reft::rwt Ay) A

Thus, we conclude.

Case (T:DELETE) - We have:

C[-rv:ilAg+-
Ix:Ayg| Ao+ delete vy : Ar.A; 4 Ay

Ix:Ag| Aok vy : de(refrirwrAy) A
I'|AgFvo{v/x}: de(reft::xrwitAy) 4 A
I'| Ao + delete vo{v/x} : Ft.A 4 Ay

I'| Ap + (delete vo){v/x} : At. A1 4 Ay

Thus, we conclude.

Case (T:AssiGN) - We have:

C[-rv:ilAg+-
F,XZA()leI-VO =W :Al-iAz,l'WpAQ

Ix:Ag|Ag vyt Ay 4 Ay
r,X:A()'Al l—vO:refp—|A2,erA1

I'|Ag Fvi{v/x}: Ar 4 A

Ay Fvolv/x}:ref p 4 Ar,rw p Ay

I'|Ag Fvolv/x} i=vi{v/x} : Ay 4 Ay, xw p Ay
A F (vo:i=vi){v/x} i Ay 4 Ay rw p Ay

Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:
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by (T:NeEw) with (4).
A (6)
by (vs:8) on (5).

(1

(2)

by hypothesis.

(3)

by inversion on (T:DELETE) with (2).
4)

by induction hypothesis with (3) and (1).
(%)

by (T:DEeLETE) with (4).

(6)

by (vs:9) on (5).

(1

(2)

by hypothesis.

(3

4)

by inversion on (T:AssIGN) with (2).

%)

by induction hypothesis on (3) with (1).
(6)

by induction hypothesis on (4) with (1).
(7

by (T:AssigN) with (5) and (6).

8)

by (vs:11) on (7).



Il-+v:1Ag+- (1)

F,XZA()lA()I-!V()IAl-IAl,er[] (2)
by hypothesis.

[Lx:Ag|AgFvo:refp4 A, rwpA, 3)
by inversion on (T:DEREFERENCE-LINEAR) with (2).

[ AgFvo{v/x}:ref p4A,rwpA, 4
by induction hypothesis on (3) with (1).

I'|Ag Flvofv/x} i Ay 4 A rw p (] 5
by (T:DEREFERENCE-LINEAR) With (4).

I'[Ag F (vo)fv/x}: Ap 4 A rw p (] (6)

by (vs:10) on (5).
Thus, we conclude.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR).

Case (T:RECORD) - We have:

l-rv:!A" 4. (D)
Ox:A |Ar{f=v}:[f:A]lA- )
by hypothesis.

Cox: A JARY D A4 - 3)
by inversion on (T:RecorDp) with (2).

CIArRV{v/x}:Ai+- 4)
by induction hypothesis on (3) with (1).

CIAF{E=v{v/x}}: [f:A]A- 5)
by (T:RECORD) on (4).

F'NAF{f=vH{v/x}:[£:A]4- (6)

by (vs:5) on (5).
Thus, we conclude.

Case (T:SELECTION) - We have:

Il-rv:!A4- (1)
Fox: A" | AgFvo.f: A4A 2)
by hypothesis.

[ox: A | Ag kv [£:A]4A 3)
by inversion on (T:SELECTION) with (2).

LAy Fvolv/x) i [£:A]4 A (4)
by induction hypothesis with (1) and (3).

[ Ag Fvo{v/xhf:AA4A 5)
by (T:SELECcTION) With (4).

Ao F (vo.D){v/x} 1 A4 A (6)

by (vs:6) on (5).
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Thus, we conclude.

Case (T: APPLICATION) - We have:

Fl-rv:!A4- (D)
ILx:A | Agrvogv i AL HA, (2)
by hypothesis.

Ix:A | Agkvg:Ag — Ay 4 A 3)
r,x:A"All-VliA()-iAz (4)
by inversion on (T:APPLICATION) with (2).

LAy Fvolv/x) i Ay o Ay 4 Ay (5)
by induction hypothesis with (1) on (3).

LA Fvi{v/x}:Ag 4 A, (6)
by induction hypothesis with (1) on (4).

[ Ao Fvolv/xtvilv/x} i Ap 4 Ag (7
by (T:AppLicaTiON) With (5) and (6).

L[ Aok (ovi)iv/x}:Ar4 A (®)
by (vs:7) on (7).

Thus, we conclude.

Case (1:FuncTtioN) - We have:

-rv:!A4- (1)
ILxg: A" A fun(x1 1Ap).e:Ag o Al H- )
by hypothesis.

F,XOZAllAG,X12A0F€:A1-|' (3)
by inversion on (T:Function) with (2).

X0 # X1 4)
by def. of substitution up to rename of bounded variables.

FlAG,Xl cAgFefv/xg) i AL A - ®))
by induction hypothesis with (3) and (1).

I'| AC fun(x1 : Ao).e{V/Xo} tAg o0 A H- (6)
by (T:Function) with (6).

| AS + (fun(x; : Ag).e){v/xo} : Ag — A 4 - (7
by (vs:4) on (6) and (4).

Thus, we conclude.

Case (1:ForarLL-Loc) - We have:

-rv:A" 4. (D)
Ix:A |AgF{(t)e:Vt.AH- 2)

by hypothesis.
It:loc,x: A" |Agre:AA4- 3)
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by inversion on (T:ForaLL-Loc) with (2).

It:loc|AgFefv/x}:AH- 4
by induction hypothesis on (3) with (1).

I'|AgF(t)efv/x}: VLA 4 - 5
by (T:ForaLL-Loc) with (4).

'|AgF (t)ye){v/x}:VE.AA- (6)

by (vs:14) on (5).
Thus, we conclude.

Case (1:Loc-Arpr) - We have:

|-rv:!A4- (D)
Iox A" [ Ao Fvolpl - Alp/t} 4 A (2)
by hypothesis.

p:locel,x: A 3)
Lx:A"|AgFvy: VEAHA 4)
by inversion on (1:Loc-App) with (2).

I'| Ao F vo{v/x}: VE.A 4 Ay )
by induction hypothesis with (1) and (4).

I'| Ao Fvolv/xilp] - Alp/th 4 A (6)
by (T:Loc-App) with (5) and (3).

I'[ Ao F (volpDiv/x} = Afp/t} 4 A (7

by (vs:13) on (6).
Thus, we conclude.

Case (1:Loc-OpPEN) - We have:

|-rv:!A4- (D)
ILx:A"|AgFopenit,x;) =vpine end: A; 4 A 2)
by hypothesis.

Ix:A | AgFvy:dtAg 4 Ay (3)
It:loc,x: A" |A,x1:Agre AL H A, €))
by inversion on (T:Loc-OpeN) with (2).

Xo # Xi )
by def. of substitution up to rename of bounded variables.

I'|Ag Fvolv/x}: At.Ag 4 Ay (6)
by induction hypothesis on (3) and (1).

It:loc| Ay, x1: Agke{v/x) A4 Ay @)
by induction hypothesis on (4) and (1).

| Ag Fopent, x;) = vo{v/x}ine{v/xtend: A; 4 A (8)
by (1:Loc-Open) with (6) and (7).

['| Ag + (open{t,x;) =vgine; end){v/x}: Ay 4 A 9

by (vs:15) on (8) and (5).
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Thus, we conclude.

Case (1:Loc-Pack) - We have:

I'i-rv:A"+4-
F,X:A/lel—(p,V0>23l.A—|A1

Cox: A" | Ag vyt A{p/t} 4 Ay
I'| Ag Fvolv/x} s A{p/t} 4 Ay

I'| Ao F{p,volv/x}) : At.A 4 Ay
LA+ p,votv/x}: AtA 4 A

Thus, we conclude.

(1

(2)

by hypothesis.

(3

by inversion on (T:Loc-Pack) with (2).
4)

by induction hypothesis with (1) and (3).
(%)

by (1:Loc-Pack) with (4).

(6)

by (vs:12) on (5).

Case (T:ForaLL-TYPE) - Analogous to (T:ForaLL-Loc) with (vs:18).

Case (T:Type-Aprp) - Analogous to (T:Loc-App) with (vs:17).

Case (T:Type-PACK) - Analogous to (T:Loc-Pack) with (vs:16).

Case (T:Type-OpEN) - Analogous to (T:Loc-Open) with (vs:19).

Case (1:Car-ELIM) - We have:

I'-rv:iIA"4-
Ix:A | Ao, x0: Ag s Ar ket A 4 A

Ix:A | Ao, x0 : Ag,As Fe: A 4 A
I'| Ag, x0 : Ag, Az Felv/x} i A 4 Ay
I'|Ag, xp: Ag s Ay Fefv/x} i AT 4 A
Thus, we conclude.

Case (1: CAP-STACK) - We have:

-Fv:iI1A 4
F,XZA/|AOF€:A013A1-|A1

F,XZA’|AOF63A0-|A1,A1
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(D

(2)

by hypothesis.

(3)

by inversion on (1T:Cap-ELim) with (2).
“4)

by induction hypothesis with (1) and (3).
%)

by (T:Cap-ELim) with (4).

ey
2
by hypothesis.
3)

by inversion on (T:CaP-Stack) with (2).



r | AO = B{V/X} . A() 4 A],A]
FlAO F e{v/x} ZA() ZIAl 4 A]
Thus, we conclude.

Case (1: Car-UNsTaCK) - We have:

-rv:IA" 4.
F,x:A’lel—e:Ao—|A1,A1

Ix:A |Agre: Ayt A 4 A
Ao Fe{v/x}:Ag:i A4 A
' AgFefv/x}:AgHALA
Thus, we conclude.

Case (1:FRAME) - We have:

I'|l-rv:A"+4-
Ix: A |Ag@& A ke A4A & A,

Ix:A |Agre:A4N
Ay refv/x}:A4A
FAy® A refv/x}: A4 A & A,

Thus, we conclude.

Case (T:SuBsumPpTION) - We have:
Ij-+rv:1A 4.
F,x:A’lel-e:Al 4 A4

Ay <: A
Fox: A |AjFe:AgHA]
Ap < A4
Al <t A

LAy Fe{v/x}:AgHA]
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4)

by induction hypothesis with (1) and (3).
%)

by (T:Cap-Stack) with (4).

(D

(2)

by hypothesis.

(3)

by inversion on (T:Cap-UNsTack) with (2).
4)

by induction hypothesis with (1) and (3).
(5)

by (1:Cap-Unstack) with (4).

(D

(2)

by hypothesis.

(3)

by inversion on (T:FRAME) with (2).

4)

by induction hypothesis with (1) and (3).
%)

by (T:FRAME) with A,.

(D

(2)

by hypothesis.

3)

4

5

(6)

by inversion on (T:SUBSUMPTION) with (2).
(7

by induction hypothesis with (1) and (4).



Flei—e{V/X} IA] —|A] (8)
by (T:SuBsumptioN) with (7), (3), (5) and (6).
Thus, we conclude.

Case (1:Tac) - We have:

Ij-+rv:1A 4. (D)
[Lx: A | A 1#vg 1 1#A| 4 A (2)
by hypothesis.

Iox: A |Agkvg i A A 3)
by inversion (1:TaG) with (2).

I'| Ao Fvolv/x}: A 4 Ay @
by induction hypothesis with (1) and (3).

| Ag - 1#vg{v/x} - 1#A, 4 Ay (5)
by (1:Tac) with (4).

' Ag - (L#vg){v/x}: 1#A 4 Ay (6)

by (vs:20) on (5).
Thus, we conclude.

Case (1:CASE) - We have:

f-rv:!A4- (D)
ILx:A"|Agrcasevyof 1i#x; > ejend: A4 A 2)
by hypothesis.

Oox: A" [A Ry X 1#HA A 3)
Cox: AN, xi Al re: A4 A 4
1< )]
by inversion (T:Casg) with (2).

X # X (6)
by def. of substitution up to rename of bounded variables.

LA Fvolv/x}: X 1#A A A (7
by induction hypothesis on (3) and (1).

DA, xi Al b edv/x}: A Ay (8)
by induction hypothesis on (4) and (1).

| Ay - case vo{v/x}of Li#x; — ejfv/x}end: A 4 A, 9
by (T:Casg) on (5), (7) and (8).

I'| A; + (case vy of 1 #x; — e; end){v/x} : A4 Ay (10)
by (vs:21) on (9) and (6).

Thus, we conclude.

Case (T: ALTERNATIVE-LEFT), (T:INTERSECTION-RIGHT) - Immediate by applying the induction
hypothesis on the inversion and then re-applying the rule.
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Case (T:LET) - Analogous to other cases such as (T:Loc-OPEN).

Case (1:SHARE), (T:Focus-RELY), (T:DEFOCUS-GUARANTEE) - Immediate since x cannot occur
free in these expressions.

O
. (Location Variable)
Proof. We proceed by induction on the typing derivation of

It:loc|Agre:AHA.
Case (1:REF) - We have:

Ipo:loc,t:loc|-+pg:refpyH- (D

p:locel (2)

by hypothesis.

I, po : loc, t : loc wf 3)

by typing.

(T, po : loc){p/t} wf “4)

by (Well-Formed Type Substitution - Gamma) on (3), (2).

Hp/th, polp/t}  loc wE (%)

by (Ls:3.3) on (4)

Mo/}, polp/t} : loc | - + polp/t} - ref pofp/t} 4 - (6)

by (1:ReF) with (5).

(I, po : loc)(p/t} | - F polp/t} = (ref po){p/t} 4 - (N

by (Ls:3.3), (Ls:2.10) on (6)
Thus, we conclude.

Case (1:PURrg) - We have:

It:loc|-Fv:IAd- (D)
p:locel (2)
by hypothesis.

It:loc|-Fv:AA- 3)
by inversion on (T:PUurg) with (1).

Hp/ty | -{p/th + vip/t} = Alp/t} 4 {p/1} 4)
by induction hypothesis with (2) and (3).

Hp/th| -{p/ty v vip/t} :1Alp/t} + {p/1} )
by (T:PURE) on (4).

Hp/th| -{p/th = vip/th - (LA p/t} 4 {p/1} (6)

by (Ls:2.4) on (5)
Thus, we conclude.
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Case (1:Un1T) - We have:

It:loc|-Fv:[]d- (D)
p:locel’ 2)
by hypothesis.

I,t:loc wf 3)
by typing.

HNp/t} wi 4)
by (Well-Formed Type Substitution - Gamma) on (3), (2).

Ho/th[-Fv:ill4- %)
by (T:Unit) with (4).

Hp/ty | -{p/th = vip/t} - [{p/t} 4 p/1} (6)

by (Ls2.7), (Ls4.1) on (5) and noting that regardless if
¢ occurs or not in v its type remains unchanged.
Thus, we conclude.

Case (1:Pure-READ) - We have:

Ix:A,t:loc|-+x:!A4- (D)
p:locel (2)
by hypothesis.

[,x:A,t:loc wf 3)
by typing.

(T, x : A)lp/t} wf “4)
by (Well-Formed Type Substitution) on (3), (2).

[{p/t}, x : Alp/t} wf )
by (Ls:3.2) on (4)

Ho/th x  Alp/t} |-+ x :1A{p/t} 4 - (6)
by (T:PURE-READ) with (5).

Ho/th, x  Alp/t}| -{p/t} v Xlp/t} : (\A){p/t} 4 {p/1} (7

by (Ls:3.1), (Ls:2.4), (Ls:1.2) on (6)
Thus, we conclude.

Case (T:LINEAR-READ) - We have:

It:loc|,x:A+rx:AA4- ()
p:locel’ 2)
by hypothesis.

T, :loc) wt 3)
by typing.

HMp/ty wE 4)
by (Well-Formed Type Substitution) with (3) and (2).

It:locr A type 5)
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by (Well-Formed Delta) on (1)

Hp/t} v Afp/t} type (6)
by (Well-Formed Type Substitution) with (6) and (2).

Hp/t} | x: Afp/ty v x 2 Afp/t} 4 - (7
by (T:LINEAR-READ) with (5).

Hp/t} | (x : A)lp/th = X{p/t} = Alp/t} 4 {p/1} )

by (Ls:4.2), (Ls:4.1), (Ls:1.2) on (7).
Thus, we conclude.

Case (1:Pure-ELM) - We have:

It:loc| Ag,x:'AgFe: Ay 4 A (1)
p:locel (2)
by hypothesis.

It:loc,x:Ag|AgFe: A 4 A 3)
by inversion on (T:Pure-ELim) with (1).

(@I, x : Ao)p/t} | Aofp/t} + elp/t} = Alp/tt 4 Adp/1} 4)
by induction hypothesis on (3) and (2).

Mo/t x : Aofp/t} | Aofp/t} + elp/t} = Alp/t} 4 Alp/t} )
by (1s:3.2) on (4)

Hp/t} | Aolp/t}, x 1 Aolp/t} + elp/th - Adp/t} 4 Afp/t} (6)
by (T:PUrRe-ELm) on (5).

Ho/th [ (Ao, x 1A p/t} + elp/t} - Arlp/t} 4 Alp/t} (7)
by (Ls:4.2) on (6)

Thus, we conclude.

Case (T:NEW) - We have:

It:loc|AgFnew v : dfy.(ref 1y ::rw ity A) 4 Ay (1)
p:locel’ 2)
by hypothesis.

It:loc|AgFv:A4A; 3)
by inversion on (T:NEw) with (1).

Hp/t} | Aofp/ty + vip/1} = Afp/t} + Afp/t} 4)
by induction hypothesis on (2) and (3).

Hp/t} | Aofp/th + new vip/r} = Fto.(ref 1y 2 xw 1 Alp/1}) 4 Ai{p/1} (%)
by (T:NeEw) with (4).

I #1t (6)
by def. of substitution up to rename of bounded location variables.

Cp/t} | Aofp/t}h + (new v){p/t} : Tto.(ref 1y 2 vw 1o Alp/1}) 4 Ai{p/1} (7)
by (Ls:1.7) on (5).

Ho/t} | Aolp/th + (new v){p/t} : Fr.(ref 1y i (rw 1o A){p/t}) 4 Alp/1} ®)

by (Ls:2.12) on (7).
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Clp/t} | Aofp/t} + (new v){p/t} = to.((ref 1 :: vw 1y A){p/1}) 4 Ai{p/1} )
by (Ls:2.6) on (8) and (6).
Ho/t} | Aolp/th + (new v){p/t} . (Tto.(ref 1o :: vw 10 A))p/t} + Alp/1} (10)
by (Ls:2.9) on (9) and (6).
Thus, we conclude.

Case (T:DELETE) - We have:

It:loc| Ay +deletev: dtp.A 4 Ay (D)
p:locel’ 2)
by hypothesis.

It:loc|Agkv: dty.(refrg s rwig A) 4 A 3)
by inversion on (T:DELETE) with (1).

Ho/t} | Aofp/th + vip/th - (Fto.(ref 1y 2 xw 19 A))p/t} 4 A{p/1} 4)
by induction hypothesis on (2) and (3).

fo #t %)
by def. of substitution up to rename of bounded location variables.

Hp/t} | Aofp/th + vip/1} = Fto.((ref 1 2 xw 1o A)p/1}) 4 Ai{p/1} (6)
by (Ls:2.9) on (4) and (5).

Hp/ty | Aofp/th + vip/t} = Fto.((ref 10){p/t} =2 (xw 1y A)lp/t}) 4 Alp/1} (7
by (Ls:2.12) on (6).

Mo/} | Aofp/th v vip/t} : Fto.(ref 1o xw 1o Afp/t}) 4 Alp/1} 3
by (Ls:2.10), (Ls:2.3), (Ls:2.12) on (7).

Hp/t} | Aolp/th + vip/t} : Tto.(Alp/t}) 4 A{p/1} )
by (T:DELETE) on (8).

Hp/t} | Aolp/t} + vip/t} : (Ato.A)p/t} 4 A{p/1} (10)

by (Ls:2.9) on (5) and (9).
Thus, we conclude.

Case (T:AssiGN) - We have:

It:loc| Ao Fvo:i=vy i Ay 4 A, TW p Ag (D)
p:locel’ )
by hypothesis.

Ir:loc|Ag kv Ag 4 A 3)
It:loc|AiFvy:refp-4 A, rwp A 4)
by inversion on (T:AssiGN) with (1).

Hp/t} | Aolp/th v vilp/t} : Aofp/t} 4 Ailp/t} )]
by induction hypothesis on (3) with (2).

Hp/th | Adp/t} = volp/t} - (ref p)lp/t} 4 (Ao, xw p A)p/1} (6)
by induction hypothesis on (4) with (2).

Hp/t} | Alp/th = volp/t} - ref plp/1} 4 Axfp/th xw plp/t} Ai{p/1} (7

by (s:2.10), (1s:4.3), (Ls:2.12) on (6).
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Dlp/ty | Adp/t} F volp/t) = vilp/1} - Alp/t)

4 Mo{p/ 1}, xw plp/t} Aolp/1} 8)
by (T:AssiGN) on (6) and (7).
o/t | Aldp/th v (vo := vi){p/t} - Ai{p/t} 4 (A, xw p Ag)p/1} )

by (Ls:1.10), (1s:2.12), (1s:4.3) on (8).
Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

It:loc|AgF!lv:A4ALTwWp ] (D)
p:locel (2)
by hypothesis.

It:loc|Agrv:refp4 A, rwpA 3)
by inversion on (T:DEREFERENCE-LINEAR) with (1).

M/} | Aofp/th + vip/1} = (ref p)lp/th 4 (A1, xw p A){p/t} 4)
by induction hypothesis with (2) and (3).

Hp/th | Aolp/t} + vip/t} : xef plp/t} 4 Ailp/t}, xw plp/1} Alp/t} )
by (Ls:4.3), (Ls:2.12), (1s:2.10) on (4).

Hp/th | Aolp/ty - W{p/t} - Alp/1} 4 Afp/t}, xw plp/t} (] (6)
by (T:DEREFERENCE-LINEAR) On (5).

Hp/t} | Aolp/th + (){p/t} - Alp/th 4 (A, xw p []) (7)

by (Ls:1.9), (Ls:4.3), (Ls:2.12), (Ls:2.3) on (6).
Thus, we conclude.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR).

Case (T:RECORD) - We have:

Lt:loc|Ar{f=v}:[f:A]4- (1)
p:locel’ 2)
by hypothesis.

It:loc|Arv; A4 3)
by inversion on (T:Recorp) with (1).

Hp/ty | Mp/t} v edp/t} - Adp/t} 4 {p/1} 4)
by induction hypothesis with (2) and (3).

Hp/th | Alp/t} F{£ = vip/t}} : [£: Alp/t}] 4 {p/1} (%)
L by (T:REcorp) with (4).

Hp/ty | Mp/ty v (£ = vDip/1} - ([£ : AD{p/t} 4 {p/1} (6)

by (Ls:1.4), (Ls:2.7) on (5).
Thus, we conclude.

Case (T:SELECTION) - We have:
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It:loc|Agrv.E: A 4 A (D

p:locel’ 2)
by hypothesis.

L,t:loc|Agkv:[f:A]4A (3)
L by inversion on (T:SELECTION) with (1).

Hp/t} | Aolp/ty v vip/ty - [£: Alp/t} 4 Aldp/1} 4)
by induction hypothesis on (1) and (3).

Hp/t} | Ao/t + vip/th : [£: Alp/t}] 4 Afp/1} (%)
by (Ls:2.7) on (4).

Hp/th | Aolp/ty + Vip/th.£; 2 Ap/t} 4 Adp/t} (0)
by (T:SELECTION) on (5).

Hp/t} | Aolp/ty + (v.£){p/1} = Adp/t} 4 Afp/1} (7

by (Ls:1.5) on (6).
Thus, we conclude.

Case (T: APPLICATION) - We have:

It:loc|AgFvyvy i A HA, (1)
p:locel (2)
by hypothesis.

I't:loc|Agkvg:Ag o A 4 A 3)
It:loc| Ay vy i AgH A, @
by inversion on (T: AppLICATION) With (1).

Hp/t} | Aofp/th + volp/t} : (Ao — AD{p/t} 4 Al{p/1} (5)
by induction hypothesis on (2) and (3).

Hp/th | Adp/ty v vifp/t) = Aolp/1} 4 Aofp/t} (6)
by induction hypothesis on (2) and (4).

Hp/t} | Ao/t + volp/t} : Aofp/t} — Alp/t} 4 Ai{p/1} (7
by (Ls:2.5) on (5).

Hp/t} | Aolp/th + (vo vidlp/t} = Aofp/t} 4 Axlp/t} 8)

by (T:AppLIcATION) on (6) and (7), and (Ls:1.6).
Thus, we conclude.

Case (T:FunctioN) - We have:

[t:loc|Arfun(x: Ag)e:Ag—o A H- (1)
p:locel’ 2)
by hypothesis.

It:loc|A,x:Agre:A;A4- 3)
by inversion on (T:Function) with (1).

Lo/t | (A, x - Ag)lp/t} + elp/t} - Aldp/t} 4 -{p/1} 4)

by induction hypothesis on (2) and (3).
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Ho/th | Alp/t}, x = Aolp/t} + elp/t} = Aifp/t} 4 {p/t} (%)
by (Ls:4.2) on (4).
N/t | Afp/t} Ffun(x = Aofp/th).elp/t} = Aolp/t} — Ailp/t} 4 {p/t} (6)
by (T:FuncTtion) on (5).
Hp/ty | Alp/t} F (fun(x @ Ag).e){p/t} = (Ao — A{p/1} 4 {p/t} (7
by (Ls:1.3), (Ls:2.5) on (6).

Thus, we conclude.

Case (1T:ForaLL-Loc) - We have:

It:loc| Ay F(ty)e: Vig.A+- (1)
p:locel’ 2)
by hypothesis.

It:loc,ty:loc|Agre:AH- 3)
by inversion on (T:ForaLrL-Loc) with (1).

fo £t 4)
by def. of substitution up to rename of bounded location variables.

(I, 10 - loo){p/1} | Aolp/1} v elp/t} = Alp/1} + -{p/t) &)
by induction hypothesis with (2) and (3).

Clp/t}, 1o : loe | Aolp/t} F elp/t} - Alp/t} 4 {p/1t} (6)
by (1s:3.3), (1s:2.3) with (4) on (5).

ip/1y | Aolp/1} + (to) elp/t} - Vio.Alp/1} 4 -{p/1} (N
by (T:ForaLL-Loc) on (6).

ip/t} | Aolp/1} v (Kto) e)lp/t} = (Yio.A)p/t} 4 -{p/t} ®)

by (rs:1.13), (1s:2.8) with (4) on (7).
Thus, we conclude.

Case (1:Loc-Appr) - We have:

I,t:loc| Ay +v[p]: A{p/ty} 4 A (1)
p:locel 2)
by hypothesis.

p:locel’ 3)
[t:loc|Ag+v: VA4 A 4)
by inversion on (1:Loc-App) with (1).

Hp/ty | Aofp/th + vip/t} = (Vio.A)lp/t} 4 Av{p/t} )
by induction hypothesis with (2) and (4).

plp/t} 2 loc e T{p/1} (6)
by induction hypothesis with (2) and (3), and by (rs:3.3).

y#t (7
by def. of substitution up to rename of bounded location variables.

Hp/t} | Aofp/th v vip/t} - Vig.Alp/t} 4 A{p/1} 3)

by (1s:2.8), (7) on (5).
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Ho/th | Aolo/th v vip/tplp/t}] - Alp/tip/to} 4 Alp/t} )
by (T:Loc-App) on (8) and (6).
Hlo/t} | Aolp/th = (WIpDip/t} - Alp/tHp/to} 4 Alp/t} (10)
by (Ls:1.12) on (8).

Thus, we conclude.

Case (T:Loc-Pack) - We have:

It:loc| Ak {p,v):dtn.A 4 A (D)
p:locel’ 2)
by hypothesis.

[Lt:loc|AgFv:A{p/ty) 4 A 3)
by inversion on (T:Loc-Pack) with (1).

Ho/th | Aolp/th  vip/t} - Alp/tolp/t} 4+ Alp/t} 4)
by induction hypothesis on (3) and (2).

fo #t 5)
by def. of substitution up to rename of bounded location variables.

I'| Aolp/ty + vip/ty - Alp/tHp/to} 4 Aifp/t) (6)
by (4) and (5).

Hp/t} | Ao/t + (plo/th vip/t}) = Ft0.Alp/t} 4 Alp/1} (7

by (T:Loc-Pack) on (6) and because p must be in I'.
(therefore, its substitution must also occurred by (Ls:3.3)).
Hp/t} | Aofp/th + (p. v p/1} = (Ft0.A)lp/t} 4 Ailp/1} 3)
by (Ls:1.11), (Ls:2.9) on (7), (5).
Thus, we conclude.

Case (1:Loc-OPEN) - We have:

I,t:loc| Ay +openty,x) =vyine end: A 4 A, (D)
p:locel (2)
by hypothesis.

It :loc| Ag +vg : dtg.Ag 4 Ay 3)
It:loc,fy:loc| A, x:Ag e : A 4 Ay @
by inversion on (T:Loc-OpeNn) with (1).

Hp/t} | Aofp/th v volp/t} : (Ato.Ao)p/1} 4 Aifp/1} (%)
by induction hypothesis on (2) and (3).

(I, 10 loe){p/t} | (A, x = Agp/t} + erfp/t} : Alp/t} 4 Aofp/1} (6)
by induction hypothesis on (2) and (4).

fo # 1 @)
by def. of substitution up to rename of bounded location variables.

Hp/th, 1o : loc | Aifp/t}, x = Aolp/t} + erlp/t} - Adp/t} 4 Axlp/1} (®)
by (1s:3.3), (Ls:4.2) on (7), (6).

Hp/t} | Aolp/t} + volp/t} : to.Aolp/t} 4 Adp/ 1} )
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by (Ls:2.10) on (5), (7).
Hp/t} | Aofp/t} + open (1o, x) = volp/t}

ine{p/t} end : Ai{p/t} 4 Aalp/t} (10)
by (1:Loc-Open) on (8) and (9).
Hp/t} | Aofp/t} + (open<to, x) = vo in ey end){p/t} : Ai{p/1} 4 Axfp/t} (11)

by (Ls:1.14) on (10).
Thus, we conclude.

Case (T:ForaLL-TYPE) - Analogous to (T:ForarL-Loc).
Case (1:Type-App) - Analogous to (T:Loc-App).

Case (1:Type-Pack) - Analogous to (T:Loc-Pack).
Case (T:Type-OpEN) - Analogous to (T:Loc-OPEN).
Case (1:Car-ELIM) - We have:

It:loc|Ag,x:A; Ay ke AgdA; (D)
p:locel’ 2)
by hypothesis.

It:loc|Ag,x:A,Ay Fe:AgH N 3)
by inversion on (T:Cap-ELim) with (1).

Hp/t} | (Ao, x : Ay, A){p/th + elp/t} = Aolp/t} 4 Allp/1} 4)
by induction hypothesis with (2) and (3).

Hp/t} | Aolp/th, x - Adp/t}, Adfp/t} v efp/t} : Aolp/th 4 Adp/1} %)
by (Ls:4.3), (Ls:4.2) on (4).

Co/th | Aolp/t}, x - Ailp/t} i Axlp/t} + elp/t} @ Aolp/t} 4 Ar{p/t} (6)
by (T:Cap-ELim) with (5).

Hp/t} | (Ao, x 2 Ay it Ao){p/t} F efp/t} : Aofp/th 4 Afp/t} (7)

by (s:4.2), (Ls:2.6) on (6).
Thus, we conclude.

Case (T:CAP-STACK), (T: CAP-UNSTACK) - Analogous to (T:Cap-ELim).

Case (T:FrRAME) - We have:

[t:loc|Ag@& Ay ke:A4A & A, (D)
p:locel’ 2)
by hypothesis.

It:loc|Agre:AH4A; 3)
by inversion on (T:FrRAME) with (1).

Ho/th | Aolp/t} + elp/t} : Alp/t} 4 Alp/t} 4)
by induction hypothesis with (2) and (3).

It:lock Ay ® A, 5
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by typing on (1).
Ho/t} F (Aofp/1h) @ (Aafp/1}) (6)
by (Well-Formed Type Substitution - Delta) on (5) and (2)
and by (Ls:4.%).
Hp/th v Axlp/t} (7
by (Well-Formed Delta) on (6).
Hp/t} | Aolp/tt @ Molp/t} F elp/t}  Alp/t} 4 Afp/t} @ Aa{p/1} 8)
by (T:FRAME) on (7) and (4).
Hp/th | (Ao @& Ao)ip/t} F elp/t} » Alp/t} 4 (A @ Ao){p/1} )
and by (Ls:4.%).

Thus, we conclude.

Case (1:SuBsumPpTION) - We have:

It:loc|AgrFe:Ap4A (D)
p:locel’ )
by hypothesis.

Ay <: A 3)
[t:loc| Ay ke AgHA] 4)
Ag <: Ay %)
Al <i A 6)
by inversion on (T:SuBsumPTION) With (1).

Hp/t} | Aglp/t} + elp/t} : Aolp/t} 4 Alfp/t} (7
by induction hypothesis on (4) with (2).

It:lock Ay ®)
by typing on (1).

HNp/t} F Aofp/1} )
by (Well-Formed Type Substitution - Gamma) on (8), (2).

Aolp/t} <: Aplp/t} (10)
by (3) and (9).

Aofp/t} < Alfp/t} (11)
Ailp/t} <t Alp/t} (12)

analogous reasoning using
(Well-Formed Type Substitution - Delta) on (5) and (6).

Hp/t} | Aolp/t} + elp/tt - Adp/t} 4 Alfp/t} (13)
by (T:SuBsumpTiON) on (7), (10), (11) and (12).
Thus, we conclude.

Case (1:Tac) - We have:

[Lt:loc| Ag F 1#v @ 1#A 4 A (1)
p:locel’ 2)
by hypothesis.
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It:loc|Agrv:AAdA 3)
by inversion on (1:Tac) with (1).

Hp/th | Aolp/ty + vip/ty - Alp/t} 4 Alfp/t) “)
by induction hypothesis on (3) and (2).

Hp/t} | Aofp/t} + 1#vip/1} : 1#A{p/t} 4 Ai{p/1} )]
by (1:TAG) on (4).

Hp/t} | Aofp/t} + (L#tv){p/t} : (1#A)p/t} 4 A{p/t} (6)

by (rs:1.19), (Ls:2.18) on (5).
Thus, we conclude.

Case (T:CaSE) - We have:

It:loc|Agrcasevofl#x; —e;jend:AHA; (1)
p:locel (2)
by hypothesis.

Lot:loc| A kv: Y L#HAT A A 3)
Loe:loc| A, xi Al ket A4 A 4)
1< (%)
by inversion (T:Casg) with (1).

Hp/ty | Alp/th = vip/t} = (2 L#AD{p/1} 4 Allp/1} (6)
by induction hypothesis on (3) and (2).

Hp/ty | Adp/ty v vip/t} = 2 Li#(A{p/1}) 4 Allp/1} (7
by (Ls:2.18) on (6).

Hp/ty | (A, xi - AD{p/t} v edp/t} - Alp/1} 4 Aafp/1} @)
by induction hypothesis on (4) and (2).

o/t | A, xi - Al{p/t} F edp/t} = Alp/t} 4 Axlp/1t} )
by (Ls:4.2) on (8).

I{p/t} | Aolp/t} + case vip/t} of 1#x; — e;{p/t} end : A{p/t} 4 Ax{p/t} (10)
by (T:Casg) on (5), (7) and (9).

[{p/t} | Aolp/t} + (case v of 1 #x; — e; end){p/t} : Alp/t} 4 Ax{p/t} (11

by (Ls:1.20) on (10).
Thus, we conclude.

Case (T: ALTERNATIVE-LEFT), (T:INTERSECTION-RIGHT) - Immediate by applying the induction
hypothesis on the inversion and then re-applying the rule.

Case (T:LET) - Analogous to (T:Loc-OpEN).

Case (T:SHARE), (T:Focus-RELY), (T:DEFOCUS-GUARANTEE) - Immediate by applying the re-
spective substitution rules.

4. (Type Variable), analogous to the (Location Variable) proof.
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B.10 Values Lemma

Lemma 11 (Values Lemma). If v is a closed value such that:
T | Arv:A4N

then:

— —~G —

A<A’ N TIA kv A4

Proof. By induction on the typing derivation of FI Arv:A4A.

Case (1T:REF) - We have:
F,p:locl-l—p:refp—b

Thus, by making:
—~G

A=
We immediately conclude.

Case (1:PURE) - We have:

—_

l-rv:A4-

Thus, by making:
—~G

A=
We immediately conclude.

Case (1:Un1T) - We have:

—_

I'l-rv:[]4-

Thus, by making:
—~G

A=
We immediately conclude.

Case (1: PUrRe-READ), (T: LINEAR-READ) - value not closed.

Case (1:Pure-ELM) - Environment not closed.

(1
by hypothesis.

2)
3)

(1
by hypothesis.

2)
3)

(1
by hypothesis.

2
3)

Case (T:NEW),(T:DELETE), (T: ASSIGN), (T:DEREFERENCE-LINEAR), (T:DEREFERENCE-PURE) - Not a value.
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Case (T:RECORD) - We have:

T|Agr{f=v):[f:A]4A,

Fl&)l—v:A—iKl

—~G —~

Ao <: A, LA
—~ —G
I''A, Fv:A4-

TIN F(E=v): [F:Al4-
Therefore, by (3) and (5) we conclude.

Case (T:SELECTION) - Not a value.
Case (T: APPLICATION) - Not a value.

Case (1:FunctioN) - We have:
T|AC Ffun(x : Ag).e : Ag —o Ay H -
Thus, by making:
N =-
We immediately conclude.
Case (T:ForarLL-Loc) - We have:
TIA+(tye :Vt.AA-
Thus, by making:
N =-

We immediately conclude.

Case (T:Loc-Arp) - Not a value.

Case (T:Loc-PAck) - We have:
TIAF(p,vy:3tAA-
FlKl—v:A{p/t} q -
A< A, ,-

121

ey
by hypothesis.

(2)
by inversion on (T:Recorp) with (1).
(3)

“4)
by induction hypothesis on (2).

%)
by (T:RECORD) on (4).

ey
by hypothesis.

2)

(D
by hypothesis.

2

()
by hypothesis.

2)

by inversion on (T:Loc-Pack) with (1).

3)



—~ —G
A, rv:A{p/t} -

—~ —~G
A, F{(p,v):dt.A -

Therefore, by (3) and (5) we conclude.

Case (1:Loc-OpPEN) - Not a value.

Case (T:ForaLL-TYPE) - We have:
TIACF(X)e: VXA -
Thus, by making:

N =-

We immediately conclude.

Case (1:TYpPE-APP) - Not a value.

Case (1:TYpPE-PACK) - We have:
TIAF (A,vy:AX.Ap A -
TIAFV:AoA /XA

—_

A< A, -
TIAS Fv: AglA,/X) 4 -

—~ —~G
T|A, F(A,v): XA A -

Therefore, by (3) and (5) we conclude.

Case (1:TYpPE-OPEN) - Not a value.

Case (1:Car-ELM) - Environment not closed.

Case (1: CAP-STACK) - We have:
Fl&)l—v:AO::Al 4&
T|Agrv:AgH4A,A,

— G —
AQ <: Av ,A],Al

“)
by induction hypothesis on (2).

(%)
by (1:Loc-Pack) on (4).

(D
by hypothesis.

2)

ey
by hypothesis.

(2)

by inversion on (1: Type-Pack) with (1).
3)

“)

by induction hypothesis on (2).

(5)
by (1:TyPe-PAck) on (4).

ey
by hypothesis.

2)

by inversion on (T:CAp-Stack) with (1).

3)



flval—v:Ao—b 4)
by induction hypothesis on (2).

~ —~G
FlAv ,AII-VIA()-|A1 (5)
by (T:FRAME) on (4) using A;.

—~G
Note that this application of (T:FrRAME) can be applied directly since A, .

TIA A bv:iAgA A ©6)
by (1:Cap-Stack) on (5).

Therefore, by (3) and (6) we conclude.

(note that A¢ is immediate since a defocus-guarantee is not a type)

Case (1:Capr-UNSTACK) - We have:

Tl Aok v:Ag4ALA )
by hypothesis.
I'Agrv:Ag:i A 4 A )
by inversion on (T:Cap-UNstack) with (1).
— —G —
AO <: Av s A] (3)
TIA Fv:iAg:nA 4 )
by induction hypothesis on (2).
—~ —~G
FlAV I-VZAO-|A1 (5)
by (1:Cap-Unstack) with (4).
A< A ©)
TIA bv:AgH (7
by induction hypothesis on (5).
— —~G —
Ao <: N, AL A ®)

by transitivity of subtyping with (3) and (6).
Therefore, by (7) and (8) we conclude.

Case (T:FrRAME) - We have:

TlAo@ Arv:A4A @ A (1)
by hypothesis.
TlAgkv:A4A 2)
by inversion on (T:FrRAME) with (1).
— G —

Ay <: A, A 3)
TIA FviAq- @)
by induction hypothesis on (2).

— — —G — —
Ao@ Ay <A, (A& Ay) (5)
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by (1) KZ can be & to &).

Therefore, by (4) and (5) we immediately conclude.

Case (T:SuBsuMPTION) - We have:
fl KO Fv:A;H KI
b <
LAy Fv:AgHA]
AQ <Ay
AII <: A]

— G —~
’ . ’
A0<.GAV A
I'A, Fv:AgH-
A7 ~6 =
Ay <A, LA

— G —
Ay < A, A

—~ —~G
I'A, Fv:A 4

Case (1:Tac) - We have:
TlAgk 1#v: 1#A 4 -
Fl&)l—v:A—b

— G —
Ag < A, ,A;

—~ —~G

I''A, Fv:A4-

TIAS F 18y : 144 4 -

(1)

by hypothesis.

(2

(3)

4)

%)

by inversion on (T:SuBsumpPTION) With (1).
(6)

(7

by induction hypothesis on (3).

)

by transitivity of subtyping with (5) and (6).
©)

by transitivity of subtyping with (2) and (8).
(10)

by (T:SuBsumpTiON) with (sD:SYMMETRY) and (4) on (7).
Therefore, by (9) and (10) we conclude.

Therefore, by (5) and (3) we conclude.

Case (1:Casg) - Not a value.

Case (T: ALTERNATIVE-LEFT) - We have:
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ey
by hypothesis.

(2)

by inversion on (1:Tac) with (1).
(3)

4)

by induction hypothesis on (2).

(%)
by (T:TaG) on (4).



Fl&),Ao@AlFVZA24A\1 (D

L _ by hypothesis.
['|Ag,AgFv:Ar4 A )
T 1A A Fv:iAy 44, 3)
by inversion on (T: ALTERNATIVE-LEFT) with (1).

Roodo <: AR, (4)
TIA Fvidya (5)
by induction hypothesis on (2).

Ao Ar < &4, ©)
TIA Fv:As 4 )

by induction hypothesis on (3).
—~G
(note: by (T:SuBsumpTION) both applications of the i.h. yield the same A, )

&),Ao DA < AVG,AI (8)
by (sb: ALTERNATIVE-L) on (4) and (6).
Therefore, by (8) and (7) we conclude.

Case (T:INTERSECTION-RIGHT) - We have:

T|AgFv:AgHALA&A, (D
by hypothesis.
I'|AgFv:iAg4ALA ()
FlA()I-VZA()-|A],A2 (3)
by inversion on (T:INTERSECTION-RIGHT) with (1).
&) <t &)G’ KI’AI (4)
—~ —~G
A, Fv:iApgH- 5)
by induction hypothesis on (2).
— G —
Ao <: A, AL A (6)
—~ —~G
T|A, Fv:AgH- (7

by induction hypothesis on (3).
—~G
(note: by (T:SuBsumpTION) both applications of the i.h. yield the same A, )

Ao < AL AL AV&AS ®)
by (sp:INTERSECTION-R) on (4) and (6).
Thus, by (8) and (7) we conclude.

Case (T:LET), (T:SHARE), (T:Focus-RELY), (T:DEFOCUS-GUARANTEE) - Not values.
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B.11 Preservation
Theorem 3 (Preservation). If ¢, is a closed expression such that:
ﬁ) | Ko Feg:AH A
TolAg@- Ao+ Hy  (Holleg) = (Hiller)

then: I . P .
F(),FllAl@—Azl-Hl Fo,FllAll—el:A%A

for some A, 1.

Proof. By induction on the typing derivation of I:B | KO Feg:AH A.

Case (1:REF), (T:PURE), (T:UNIT) - are values.

Case (T:Pure-READ), (T: LINEAR-READ), (T: PURE-ELIM) - not applicable, environments not closed.

Case (T:NEwW) - We have:

I:B|Koknewv:3t.(reft::rth)4Z
F0|Ao®—A2|—H
(Hl|newv)>(H, p—=vl{op))

o))
2)
3)

by hypothesis, with (D:NEw).

l:z)lgol—v:A—fA\

“4)

by inversion on (T:New) with (1).

—_—

Ao <: A, A
Ig|AyFVv:AA4-

&)
(6)

by (Values Lemma) with (4).

p fresh

(7

by inversion on (p:New) with (3).

ol A,Ae- Ak H

®)

by (Subtyping Store Typing) with (2) and (5).
(note that ® relation remains unaffected)

Thus, if we make:
ﬁ =p:loc

We have that:

FAOFAI | Kv FVv:AAd-

€))

(10)

by (Weakening) (6) with I';.
(note that weakening is only valid in the lexical environments, I')

To.T1 | AL A=A+ H

(1)

by (strR:Loc) with ﬁ (that contains p) on (8).

H = Hy, H,
Ry = A\ A
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To,T1 | Ay, A@— A} v Hy (14)

To.T1 | A, A Hy (15)
To.T1 | Ay - H)y (16)
by (Store Typing Extension) on (11)

To.T1 A TWp A Hy, p > v (17)
by (sTrR:BinpING) with (10) and (15).

Lo, T [ ALArwpA@-A) F Hy, p v (18)
since p is fresh and (14) and (17).

To. T A TWpA® A b H, p > v (19)

by (Store Typing Extension) on (12), (13), (16), (18).
Thus, if we make:

Al =ArwpA (20)
We have that:

To.Ti|-Fp:refpH- 1)
by (T:REF) with p.
ﬂ,ﬁl&l—p:refp—l& (22)
by (T:FrRAME) on (21) with Kl (since - is empty, frame is immediate).
ﬂ,ﬁl&l—p:refp::rpr—|X 23)
by (T:Cap-Stack) on (22) noting that (20).

If ¢ fresh then:
Lo, T1 [ A+ p: (refp: xw p A)lp/t} 4 A (24)

by type substitution on (23).

Note that, by (4), p cannot occur in A since it is a fresh location constant not present in L.

To.T1 | Ay F (o, p) : At.(reft - rwiA) 4 A (25)
by (T:Loc-Pack) on (24).
Thus:
To.T1 | A F (o, p) : At.(reft:rwtA) 4 A (26)
for some Zl, ﬁ
by (25).
Therefore, by (19) and (26) we conclude.
Case (T:DELETE) - We have:
To | Ao + delete (p,p) : LA 4 A (1)
TolAo@ Ay H, pv )
(H, p—vldelete (p,p) )= (HIl (v} ) (3)
by hypothesis, with (D:DELETE).
I:BIKOI—(p,p):Ht.(reft::rth)—|Z 4)

by inversion on (T:DELETE) with (1).
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—

Ao <: A A (5)
Lo A,k {p.p): Ar(reft::rwiA) - (6)
by (Values Lemma) with (4).

(note that we will omit the G syntax until relevant, for clarity)

Tol A, +p: (reft:rwiA)p/e} A - (7)
by (Values Inversion Lemma) with (6).
TolA,Fp:refp:rwpAlp/t} 4 - (8)
by (Ls:2.6), (1s:2.10), (Ls:2.1), (Ls:2.12) with (7).
To| A, +p:refp+4rwpAlp/) )
by (Values Inversion Lemma) with (8).
A, <: Aj.xw p Afp/1) (10)
Lo|A,Fp:refpA- (11)
by (Values Lemma) with (9).
A, = (12)
by inversion on (T:Rer) with (11).
Therefore:
To| A rwp Alp/th,Ae- A+ H, p—v ie.
Tolrwp Alp/th,Ae A rH, p v (13)
by (Subtyping Store Typing) using (2), (10) and (12).
H,p—>v=(FHy, p—v),H (14)
Ay=M\A, (15)
Lolrwp Alp/th, A& AY +Hy, p— v (16)
Tolrwp Alp/t), A+ Hy, p <= v (17)
To| Ay + Hy (18)
by (Store Typing Extension) on (13)
Lo | A A v Hy (19)
Tol Ak v: Alp/t) 4 (20)
by (Store Typing Inversion Lemma) with (17).
Tol A+ (o, v): JtA - Q1)
by (1:Loc-Pack) with (20) using p.
Tol A A {p,vy: AAAA (22)
by (T:FrAaME) with (21) using A.
(because (Values Lemma) ensures that KVG frame is immediate)
Using
I = (23)
A=A A (24)
We have
To.Ti 1A F{o,vy: AtAF A (25)
by (22) with (23) and (24).
To.T1 | Ay + Hy (26)
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by (19) with (23) and (24).

[o. Ty | A @ Ay + H 27)
by (26) and (17) since p is a unique capability.
Lo, T [ A& A - H (28)

by (Store Typing Extension) on (14), (15), (18), (26) and (27).
Therefore, by (25) and (28) we conclude.

Case (T:AssiGN) - We have:

Folel-p = Ai 4 A, TWp Ay (1)
F0|A0®—A2|—H 0 >V 2)
(H,p=>wllp=vi)={(H, p—>viiv) (3)
by hypothesis.
TolAgFvi:AgHN (4)
To|AFp:refp4ArwpA, (5)
by inversion on (T:AssIGN) with (1).
Ay <: A, N (6)
I:;)|ZV\1I-V13A0-|' (7N
by (Values Lemma) on (4).
A < Ap,A rwp A (8)
FolA Fp:refp4- )
by (Values Lemma) on (5).
A, = (10)
by inversion on (T:Rer) with (9).
Lol A, A rwpA @ A rH, p— v (11)
by (Subtyping Store Typing) with (2), (6) and (8).
H PMV0=(H0,P;>V0),H1 (12)
Az A Ay (13)
FolAvl,A rpr1®—A”|—H0,p<—>v0 (14)
FolAvl,A rwp A +Hy, p— v (15)
FO | A’ FH, (16)
by (Store Typing Extension) on (11)
FO | AVI,AVO,A + Hy (17
To Ay Fvo:A; - (18)
by (Store Typing Inversion Lemma) on (15).
Lo | Ay Arwp Ag F Hy L p > vy (19)
by (sTrR:BinDING) With p on (7) and (17).

by making:
I = (20)
To.T1 | A AW p Ag F Hy L p <> vy @1
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by (Weakening) with (19).

To.Ti | Ay kvg: Ap A (22)
by (Weakening) on (18).
Io, T | AVO,A, I'WpA() Fvo:Ag -|,A,I’WpA0 (23)

by (T:FRAME) using K, rw p Ao with (22).
—G
(note that by (Values Lemma) A, )
Lo, T Ay, A, xwpAg@ Ay - H, p = v (24)
by (Store Typing Extensions) on (21).
Therefore, by (13) and (24) we conclude.

Note that (24) is a valid step since the extension cannot refer the fresh (and non-shared) ca-
pability and, therefore, such change of contents cannot interfere with A, since that capability
cannot occur twice. From now on, we abbreviate the use of the (Store Typing Extension)
lemma since it is analogous to previous cases.

Case (T:DEREFERENCE-LINEAR) - We have:

TolAgrlp: A4 A rwpll (1)
TolAg@- Ay H, p v )
(H,p=vilp)—><(H, p>v|v) (3
by hypothesis, (D:DEREFERENCE).

TolAgrp:refp4Arwpll (4)
by inversion on (T:DEREFERENCE-LINEAR) with (1).

&) <: A;,,/A\,rpr )
l:z)lgpl—p:refp—b (6)
by (Values Lemma) on (4).

A= (7)
by (Values Inversion Lemma) on (6).

&, <: X, rwpA 3)
by rewriting (5) with (7).

To|ArwpAe-ArH, p—v )
by (Subtyping Store Typing) with (8) and (2).

TolA Fv:AAd- (10)
Lo | A A, + Hy (1)

by (Store Typing Extension) with (9) and (Store Typing Inversion Lemma).

We omit a few steps of using (Store Typing Extension) since they are analogous to previous
cases.

Tol-Fv:[l4- (12)
by (T:Unit) with value v.
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ﬂlxa&)vrwp[]kH()’p:_)v

by making:

F]Z'

FO’FI |AaAv,er[] |_H0’ pc_> v
To, Ty [ A Fv:AA-

To, Ty [ A Axwp [T Fv:A4ATwp ]

To, Ty A A xwp[l@ Ak H, p s

Therefore, by (18) and (17) we conclude.

Case (T:DEREFERENCE-PURE) - We have:

(13)
by (sTR:BINDING) using p, (11) and (12).

(14)

(15)

by (Weakening) using ﬁ on (13).
(16)

by (Weakening) using T, on (10).
7

by (T:FRAME) using K, rw p [] on (16).
(18)

by (Store Typing Extension) on (15).

TolAoFlp:!A4 A, rwp 1A (1)
ColAg@- Ao H, p>v 2)
(H,p=vllp)=(H,p=V]v) (3)
by hypothesis, with (D:DEREFERENCE).
TolAokp:refp+4A,rwp A (4)
by inversion on (T:DEREFERENCE-PURE) with (1).
Ko <: &),/A\, rwp A )
I:?)l&,l—p:refp—i- (6)
by (Values Lemma) on (4).
A= (7)
by (Values Inversion Lemma) on (6).
&) < Z, rwp A 3)
by rewriting (5) with (7).
TolArwp lAe- A+ H, p—v ©)
by (Subtyping Store Typing) with (8) and (2).
TolA, Fv:ilA4- (10)
Lo | A A, + Hy (11)
by (Store Typing Extension) with (9) and (Store Typing Inversion Lemma).
Kv —. (12)
Tol-Fv:ilA4. (13)
by (Values Inversion Lemma) on (10).
To| A+ H (14)
by rewriting (11) with (12).

by making:
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I =
ﬂaﬁlxaer !Al_H()’p;)V

ﬂ,ﬁl-l—v:!A—b
To. T A rwp 1AFv:1A4ATwp A
T T IA A tWplAe- Ay - H, p> v

Therefore, by (18) and (19) we conclude.

Case (1:RECORD) - is a value.

Case (T:SELECTION) - We have:

TolAgF{f=vI.fi: A 4A
FolA()@—AzI-H
(HI{E=VvLf ) (Hllv)
TolAgF{f=v}:[f:A]4A

Ao <: N, A
To| A F{f=v}:[£:A]4-

FQ|A'|-Vi:Ai-|‘

ﬂl&,/A\Fvi:A,’4K

(15)

(16)

by (Weakening) using ﬁ on (9).

(17)

by (Weakening) using ﬁ on (13).

(18)

by (T:FRAME) using K, rwp !Aon (16).
(19)

by (Store Typing Extension) on (16).

(D

()

3)

by hypothesis, with (D:SELECTION).

“4)

by inversion on (T:SELECTION) with (1).
)

(6)

by (Values Lemma) on (4).

(N

by (Values Inversion Lemma) with (6) .

®)

by (T:FrRAME) with A with 7 (Z’G by (Values Lemma)).

1:;)|K’,/A\®—KZFH

Therefore, by making:
I =-

A =N,A
To.T1 | Ay @Ay v H

€))

by (Subtyping Store Typing) with (2) and (5).

(10)

Y
(12)

by (Weakening) with (10) on (9) and rewriting (9) using (11).

I::),I:\HKH‘WIAH’A\

(13)

by (Weakening) with (10) on (8) and rewriting (8) using (11).

Therefore, by (12) and (13) we conclude.

Case (T: APPLICATION) - We have:
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To | Ag F (Fun(x : Ag)e)v:A 4 A
F0|A0®—A2|—H0
(Hy || (fun(x : Ag).e) v) = ( Hy |l e{v/x} )

To | Ao F fun(x : Ag).e : Ag — Ay 4 AV
TG |ANrv:iAg4A

Ao <: N, A,
FolAvl-fun(XZAo).eiAo—OAl 4 -

N < AN,
F()lA;I-VCAO-P

ﬂl&,,x:AoFelA]-|'

v =fun(x: Ap).e

Ay <: Ap

Lol A, ALAFv: Ay 1A, A

ﬁ)l&,,x:Ao,KFeiA14’A\

To | Av Al A+ efv/x}: Ay 4A

(D
2)
3)
by hypothesis.
C))
)

by inversion on (T: AppPLICATION) With (1).

(6)

(7

by (Values Lemma) on (4).
@)

)

by (Values Lemma) on (5).
(10)

(11)

(12)

by (Values Inversion Lemma) with (7).

(13)

by (T:FRAME) on (9) with Zv, A.

(14)
by (T:FrRAME) on (10) with A.
(15)

by (Substitution Lemma - Linear) with (13) and (14).

By making:
Fl =
A =ALALA

We immediately have:
I, I'1 |[Ar Fe{v/x}: A4 A

Lo, Ty | A, A, @ As v Hy

Fo.T1 | A A, A, @ Ay + Hy

Fo,T1 | Ay @ A + Hy

Therefore, by (16) and (19) we conclude.

Case (1:FuncTION) - is a value.

Case (T:ForaLL-Loc) - is a value.
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(16)
with (15).
(17

by (Subtyping Store Typing) with (2) and (6).

(18)

by (Subtyping Store Typing) with (17) and (8).

(19)
by renaming the environment.



Case (1:Loc-App) - We have:

Fo | Ao (D e)lpl s Alp/th 4 A (1
F0|A0®—A2|—H0 2)
(Ho Ity e)lpl ) = (Hy |l elp/1}) (3)
by hypothesis, with (p:LocArp).

Dol Aok (tye:VL.AH4A (4)
o :loc e, %)
by inversion on (1:Loc-App) with (1).

Ay <: AL A, (6)
To| Ak (the: VtA - (7)
by (Values Lemma) on (4).

To.t:loc| A Fe:AA- (8)
by (Values Inversion Lemma) with (7).

To.t:loc|AAre:A4A 9)
by (T:FrRAME) with A on (8).

Lolo/t} | Adp/t), Mp/t) v elp/t) : Alp/t} 4 Alp/t) (10)

by (Substitution Lemma - Location Variable) on (5) and (9).

To | A AFelp/t): Alp/ty 4 A

(1)

since ¢ cannot occur in I'y, A,, A (is fresh in conclusion) and (10).

By making:
F-

A=A, A

We trivially have:

To. Ty | A+ elp/t) : Alp/t) 4 A

To,T1 | A @ A, + Hy

(12)
with (11).
(13)

by (Subtyping Store Typing) using with (2) and (6).

Therefore, by (12) and (13) we conclude.

Case (1:Loc-Pack) - Is a value.

Case (1:Loc-OpPEN) - We have:

Folel—open (t,x)y ={p,v) ineend: A, N
F() | Ao & A2 F Ho
( Hy |l open (t,x) = {p,v) ineend ) — ( H || elp/t}{v/x} )

F0|A0|-<pv> HtAo-iA’
F(),t lOClA/X Agtre: A1-|A
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2)
3)
by hypothesis, (p:LocOPEN).
“)
(&)



by inversion on (T:Loc-OpeNn) with (1).

Ay <: A, N (6)
Lol Ak (p,v) s Ay 4 - (7)
by (Values Lemma) with (4).
ol A kv Aglp/th 4 - ®)
by (Values Inversion Lemma) with (7).
p :loc e 1:5 9
by well-formed types of (8).
Totp/t} | /1), x : Aolp/t) F elp/t} : Avlp/t) 4 Alp/1) (10)
by (Substitution Lemma - Location Variable) with (5) and (9).
Do | AL A, Fv: Aglp/ty 4 A (11)
by (T:FRAME) with A’ on (8).
ol Aok v: Aglp/t} 4 & (12)
by (T:SusumptioN) with (6) and (11).
Lolo/t} | Aolp/t} F vip/t) : Aolp/1) 4 Nlp/t) (13)
by (Substitution Lemma - Location Variable) with (9) and (12).
Tolp/t} | Aofp/ty + elp/thv/x} : Aidp/t) 4 Alp/1) (14)
by (Substitution Lemma - Linear) with (13) and (10).
By making:
ﬁ =.
A=A,
We immediately have:
Tolp/thT1 | Ailp/ty v elp/thv/x} : Aidp/t) 4 Alp/t) (15)
with (14).
Co.T1 | Ak elp/iv/x}: Ay4A (16)
since I'y, A; and A are closed, ¢ is fresh in the conclusion and (14).
To.Ti | Ay @ Ay + Hy (17)

by (Weakening) with T, on (2).
Therefore, by (16) and (17) we conclude.
Case (T:ForaLL-TYPE) - is a value.
Case (T:Type-Arp) - Analogous to (T:Loc-App).
Case (1:Type-PACK) - is a value.
Case (T:Type-OpEN) - Analogous to (T:Loc-OPEN).
Case (T:Car-ELM) - Not applicable, environment not closed.

Case (1:CAP-STACK) - We have:
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ﬂl&)l—eolA()Z:Al—|Z (D

—

To | Ao @ Ay + Hy )
(Hol|leo) > (Hiller) (3)
by hypothesis.

To Aot eo:AgHA A 4)
by inversion on (T:Cap-Stack) on (1).

To.Ti | A @ A, - Hy ©)
To.Ti | Ar ket Ag 4 A A, (6)

for some Ay, 1.
by induction hypothesis on (2), (3) and (4).
To.T1 1A ke Ay A 4A (7)
by (1:CapP-STAcK) on (6).
Therefore, by (5) and (7) we conclude.

Case (1:Capr-UNsTACK) - We have:

ol Aot eo:AgHAA (1)
To | Ag @ A, + H, ()
(Holleg) = (Hlle) 3)
by hypothesis.

TolAgkFep:Ag: A 4A (4)
by inversion on (T:Cap-UNsTack) on (1).

To, T | Ay @ A + H, (5)
To.T | A ke A Ay 4A (6)

for some Ay, T7.
by induction hypothesis on (2), (3) and (4).
To.Ti 1A Feit Ag 4 AL A (7)
for some Kl, ﬁ
by (T:Cap-UNsTACK) on (6).
Therefore, by (5) and (7) we conclude.

Case (T:SuBsumpTION) - We have:

TolAgFep:A 4A 1)
To| Ao @ A; + Hy 2)
(Holleg) = (Hylle) 3)

by hypothesis.
Ao <: A &)
To | AL Feg: Ag 4 A 5)
AO <: A1 (6)
A <A (7)
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by inversion on (T:SuBsumPTION) with (1).

o | Aj @ Ay v Hy ®)

by (Subtyping Store Typing) with (2) and (4).
To,T1 1Ay @ Ay + H, ©)
To.T1 1A e i AgH A (10)

for some Kl I;.
by induction hypothesis on (3), (5) and (8).
To.TilAi ket A H4A (11)
by (T:SusumptioN) with (6), (7) and (10) noting that Kl < Kl
Therefore, by (9) and (11) we conclude.

Case (1:Tac) - is a value.

Case (1:Casg) - We have:

I:Bl&)kcase 1i#v; of 1i#x; — e; end:A4A (D)
To | Ao ® Ay v Hy )
< H, || case 1#v; of 1 #x; — e; end > — ( Hy || e{vi/xi}) 3
by hypothesis, (D:CASE).
To | Ao Lithv; 0 3, L#A; 4 &Y )
I:;|Z’,x,-:Ail—e,-:A—|/A\ &)
i<j (6)
by inversion on (p:Casg) with (1).
Ao <: A, A (7
To | Ak Littv 0 3, 1A, A ®)
by (Values Lemma) with (4).
I:;|Kvl—v,-:Ai—|- ©)
for some i.
by (Values Inversion Lemma) with (8).
TolAA Fvii A4 A (10)
by (T:FRAME) on (9) with A
Lol Ao+ eifvi/xi): A4 A (11)
by (Substitution Lemma - Linear) with (10) and (5), for some i.
By making:
ﬁ —.
A=Ay
We trivially have:
To.T1 | Ar F eifvi/xi) : A4 A (12)
by (11).
To.Ti | Ay @ Ay + Ho (13)
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Thus, by (12) and (13) we conclude.

Case (T: ALTERNATIVE-LEFT) - We have:

Fole,Ao@Al |—€0 A2-|A
Fole,Ao@A1®—A2FHO
(Holleo)— (Hiller)

Fole,A() Fep: A 4’A\
role,Al Feg: A2 1A

by (2).

ey
2)
3)
by hypothesis.
“)
(&)

by inversion on (T: ALTERNATIVE-LEFT) with (1).

By (Store Typmg Inversion Lemma) on (2), we have that either:

.F()lA(),A()@B—AQFHO
To.[) 1A @& Ay + H,
ro,r1|A1F€12A2-|A

for some Ay, 1.

Therefore, we conclude.
oIy |Ayp, A1 & A+ Hy

Thus, we conclude.

Case (T:INTERSECTION-RIGHT) - We have:

Folel-e() A2-|AAO&A1
F0|A0®—A2|-Ho
(Holleo)— (Hiller)

TolAoFeo: Ay 44, A
Tog|AgFey: Ay 4A A

FO,F1 | Al ®—A2 F Hl
FO,F1|A1 l—el A2 —|A A()
for some Al,l"l

ﬁ)’ﬁ | Kl @ KZ F Hl
FO,F1 |A1 F 61 A2 4 A,Al
for some AI,Fl

(1.1)
by sub-case hypothesis.

(1.2)
(1.3)

by induction hypothesis with (1.1), (3) and (4).

(2.1)
analogous to previous sub-case but using (5).

(1)

(2)

(3)

by hypothesis.

4)

&)

by inversion on (T:INTERSECTION-RIGHT) with (1).
(6)

(7

by induction hypothesis with (2), (3) and (4).
8)
)

by induction hypothesis with (2), (3) and (5).
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To.T1 | Ay + eyt Ay 4 A, Ap&A, (10)
by (T:INTERSECTION-RIGHT) on (7) and (9).
Thus, we conclude.

Case (T:FrRAME) - We have:

F0|A0®—A2I—eo A4K®—Kz (1)
Lo | (Ao @ Ay) @ As + Hy (2
(Holleo)— (Hiller) 3)
by hypothesis.

TolAgkep:A4A (4)
by inversion on (T:FrRAME) with (1).

H0 = H),HY (5)
A3 \AY (6)

Fo | (AO @ Az) @ A” - Hj (7)
F0|A0®—A2|—H @®)
o | A” FHJ 9)
by (Store Typing Extension) on (2)

(Hy. Hy lleo ) (Hi Hy Nl ey ) (10)
by the support of the expression and (3).

(Hylleo ) (Hiller) (1)
by (10) since that part of the heap is not used.

Lo, Ty [ A1 @ As + H;. (12)
FO,FllAl ke A4NA (13)

for some Al, F1
by induction hypothesis on (4), (8) and (11).

To.Ti|Ai@- Ay ket A4Ae- A (14)
by (T:FRAME) on (13) using A,.
Lo, It | (Ag & Ay) @ A; + H| (15)

by (Weakening) and (Store Typing Extension).

(noting that Z? can only include shared parts thus remains correct)
Therefore, by (14) and (15) we conclude.

Case (1:LET) - We have two reductions:

1. Sub-Case (p:LETCoONG):

1:B|K0Hetx:e0ine2end:A14Z (D
Lo | Ao @ Ay + Hy 2)
(Hp||letx=eyine;end)— ( H||letx =¢; ine, end) 3

by hypothesis.
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(Holleo)— (Hiller) 4)
by inversion on (p:LETConG) with (3).

TolAgkFey:AgHN (5)
To|N,x: Aok er: AL 4A (6)

by inversion on (T:LET) with (1).
To.Ti | A @ Ay + H,y 6)
To.TilAg ke Ag4 A (7)

for some A, T7.
by induction hypothesis on (2), (4) and (5).

To.T1 [ N,x:Agker: A4 A (8)
by (Weakening) on (6).
Fo,FllAll—letx:el inezend1A1-|A (9)

by (T:LET) with (7) and (8).
Therefore, by (9) and (6) we conclude.

2. Sub-Case (p:LET):

I:B|&)kletx:vineend:A14K (D
TolAo@- A+ H )
(H||letx=vineend ) ( H| e{v/x}) 3)
by hypothesis

TolAgrv:Ag+A (5)
To|A,x:Agre:A 4A (6)
by inversion on (T:LET) with (1).

Ay <: A, N (7)
To A kv:AgA- (8)
by (Values Lemma) with (4).

ol A A Fv:AgHA )
by (T:FramE) with (8).

Lol ALA Fefv/x}: A HA (10)
by (Substitution Lemma - Linear) with (6) and (9).

To|ANe-A v H (11)

by (Subtyping Store Typing) with (2) and (7).
Therefore, by (Weakening) with I'y = - and by (10) and (11) we conclude.

Case (T:SHARE) - We have:

1:5 |K,A0 +share Apas A, || Ay : [] 4 K,Al,Az (D)
Io|A,Ag® A+ H 2)
(H| share Apas A || A2 ) > (H[[{}) 3)

by hypothesis.
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Ao = Al Az “4)
by inversion on (T:SHARE) with (1).

TIAALA @ A+ H (5)
by (STR:SHARED) with (2) and (4).

(the application of (Store Typing Extension) is immediate)

Tol-+{b:[14- 6)
L _ by (t:Unit) with v = {}.
Lo [AALAH{}[T4AA1L A, (7)

by (T:FRAME) on (6).
Thus, by making:

h= ®

A=A AL A, ©)

We have, through (Weakening) and just renaming the environment:

o.T1 [ A @-As v H (10)

L . by (5).

Lo, i [A F{} i [14AA1L Ay (11)
by (7).

Therefore, by (10) and (11) we conclude.

Case (1:Focus) - We have:

To|Ag= A; rfocus A : [] 4 Ag, A, > (1)
TolAy = Aj@- A+ H )
(Hllfocus A ) — (HII{}) 3)
by hypothesis.

H = Hy, H, 4)
A, =M\ AY )
TolAg = A & AJ + Hy (6)
Lo | Ag = Ay + Hy (7)
Iy | A+ H, (8)
by (Store Typing Extension) on (2).

Ag = Ay = A, || none )]
since protocols work alone and A, must be the initial state.

Lo | Ao + Hy (10)
by (Store Typing Inversion Lemma) with (7) and (9).

Lo | Ao, Ay >+ Hy (11)
by (str:DEFOCUS) with (10) since the protocol must conform.

To|AgAp-@ Ay - H (12)

by reapplying (Store Typing Extension).

Note that any other protocol to that state that may exist in A, must still compose properly
with the protocol that was focused on. This occurs from both the initial hypothesis (2) that
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ensures all already existing protocols conform, and by (Protocol Conformance Preservation)
that guarantees protocol conformance remains valid regardless of which protocol is stepped

first.

Tol-F{}:4- (13)
_ by (T:Unit) with v = {}.
Iy |Ag,Ai>-F{}:[]14A0,A>- (14)

by (T:FrRAME) on (13).
Thus, by making I'y = - we conclude by (12) and (14).

Case (T:DEFocus) - We have:

F() | Ao,Ao, A(),Al > A] + defocus : [] = &),A],A\] (1)
F()l(A(),A(), A(),A11>A1)®—A2|-H (2)
(H |l defocus ) — (H | {}) 3)
by hypothesis.

H Ho, H, 4)
A2 \A) )

FO | ( AO,AO, Apg; A > A1 ) @& A" + Hy (6)
F0 | Ao,Ao, Ao Ar> A+ Hy (7
FO | A2 F H, (8)
by (Store Typing Extension) on (2).

Ho =H ,H" 9)
=A1\ A (10)

AO = Al 4, (11
FO | A+ H” (12)
FO | AO,AO FH (13)
by (Store Typing Inversion Lemma) with (7).

Lo | A, Ao, Ay + Hy (14)
by (STR:SHARE) with (9), (10), (11), (12), (13).

Lo | (Ag, Ao, Ar) &= As + H (15)
by (Store Typing Extension) on (14).

Lol-+{:04- (16)
by (t:Unit) with v = {}.

Lol Ao, A, Ar F A} [14 A0, A A (17)

by (T:FRAME) on (16).
Thus, by making I'y = - we conclude by (17) and (15).
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B.12 Progress

Theorem 4 (Progress). If e is a closed expression such that
fl &) Fep:AH Kl

then either:

(value) ¢ is a value (v), or;

(steps) if exists Hy such thatfl &) + H, then
(Holley)— (Hylle).

Proof. By induction on the typing derivation of i:l Ko Feyp:AH A.

Case (1:REF), (T:PURE), (T:UNIT), (T:PURE-READ), (T: LINEAR-READ), (T: PURE-ELIM) - are all values
or the environments are not closed.

Case (T:NEw) - We have:
fl&)l—ner:Elt.(reft:: rth)4Kl (D)
by hypothesis.

Which is not a value but transitions by (p:New).
Thus, we conclude.

Case (T:DELETE) - We have:

fl KO + delete v : 3t.A + Kl (D
by hypothesis.

TlAgkv:Atrefr:rwrA) A, 2)
by inversion on (T:DELETE) with (1).

v =(p,p) 3)

by (Values Lemma) and (Values Inversion Lemma) on (2).
Thus, by (p:DELETE) the expression transitions.

Case (T:AssiGN) - We have:

/l:lgol—vozzvl:Al—|Kz,rpro (D)
by hypothesis.

T|Agkvi:AgHA )
TIA Fvy:refpdAy,rwpA, 3)
by inversion on (T:AssiGN) with (1).

Vo=p )

by (Values Lemma) and (Values Inversion Lemma) with (3).
Thus, by (p:AssiGN) the expression transitions.
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Case (T:DEREFERENCE-LINEAR) - We have:

TIArv:A4ALTwp[] (1)
by hypothesis.

T|Agrv:refp4A,rwpA 2)
by inversion on (T:DEREFERENCE-LINEAR) with (1).

v=p 3)

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:DEREFERENCE) the expression transitions.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR).
Case (T:RECORD) - is a value.

Case (T:SELECTION) - We have:

T|AgFv.fi:Ai4A, (1)
by hypothesis.

TlAgkv:[£:A]4A, 2)
by inversion on (T:SELECTION) with (1).

v={f=v} (3)

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:SELECTION) the expression transitions.

Case (T:APPLICATION) - We have:

T Agkvovi: A HA, (1)
by hypothesis.

TIAgkvy:Ag—o A 4 A, )
TIA Fv:AgH A 3)
by inversion on (T:AppLIcATION) with (1).

vo =fun(x: A”).e Ag <: A” )]

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:AppLicATION) the expression transitions.

Case (1:FuNcTION) - is a value.
Case (1:ForarrL-Loc) - is a value.

Case (1:Loc-App) - We have:

T | Ao+ vipl : Alp/t} 4 A (1)
by hypothesis.
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T|AgFv:VeA4A, ()
by inversion on (1:Loc-App) with (1).

v=(ne 3)
by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:LocApp) the expression transitions.

Case (1:Loc-OpPEN) - We have:

FI&)kopenq,x):vineend:A]452 (1)
by hypothesis.

TlAgkFv:3AtAg+A, 2)
F,t:locl&,x:Aoke:A14KZ 3)
by inversion on (T:Loc-Open) with (1).

v ={p,V") 4)

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:LocOpEN) the expression transitions.

Case (1:Loc-Pack) - is a value.

Case (T:ForaLL-TYPE) - is a value.

Case (T:Type-AprpP) - Analogous to (T:Loc-App) but using (p: TYPEAPP).
Case (1:Type-OPEN) - Analogous to (T:Loc-Open) but using (p: TYPEOPEN).
Case (1:TypPE-PACK) - is a value.

Case (1:Car-ELM) - Environment not closed.

Case (1:CaP-STACK), (T: CAP-UNSTACK) - By direct application of induction hypothesis on the in-
version of each of the typing rules.

Case (T:FrRAME) - We have:

T|Ao@ MAre:AgHA @A, (1)
by hypothesis.
I'|Agre:ApHA ()

by inversion on (T:FrRaME) with (1).
Then, by induction hypothesis on (2), we have that either:

e ¢is avalue (v), or; 3)
e if exists Hj such thati:l KO F Hythen ( Hy||e) — < Hj|l e > 4)
Then, since we know that KO ®— Kg then exists H, such that:

T| Ao @ Ay + Ho, H, )

Therefore, by (5), (3) and (4) we conclude.
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Case (1:SuBsumPpTION) - We have:

T|Agre:A 4A; (1)

by hypothesis.
Ao <: A )
TIA Fe:ApHA 3)
Ay < Ay 4)
Ay <: A 5)

by inversion on (T:SuBsumpTION) With (1).

If exists H, such that:
T| Ao+ Hy 6)
T|A + Hy (7)

by (Subtyping Store Typing) with (6) and (2).
By induction hypothesis on (3), we have that either:
e ¢is avalue (v), or; ®)
e or(Holle) (Hlle) )]
Therefore, we conclude.

Case (1:TAG) - is a value.

Case (1:CASE) - We have:

Fl&)kcasevoflj#xjaejend:A4Z] (D
by hypothesis.

TlAgrv: Y, L#A 4 A )
TIALx:Aire:Ad4A (3)
i<j 4)
by inversion on (T:Casg) with (1).

v = 1#v; 5

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:Casg) the expression transitions.

Case (T: ALTERNATIVE-LEFT) - We have:

T|AgAg®A Fe:Ar4A, (1)
by hypothesis.
T1Ao Aok e:Ar4A )
T A Al Fe:AyHA 3)
by inversion on (T: ALTERNATIVE-LEFT) with (1).

We have that either:
e c¢isavalue (v); “4)

Therefore the expression is a value.
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e If exists Hy such thati:l &),Ao @A +Hy

&)

By (Store Typing Inversion Lemma) on (5), we have that either:

<>I:| Ao,AO F HO

Then by induction hypothesis on (2), we conclude that:

(Holle) (Hylle')

Thus, the expression steps, since e cannot be a value.

<>I:| &),Al F HO

Then by induction hypothesis on (3), we conclude that:

(Holle) (Hylle')

Thus, the expression steps, since e cannot be a value.

Therefore, we conclude.

(6)

(7

®)

€))

Case (T:INTERSECTION-RIGHT) - Immediate by applying the induction hypothesis on the inversion

of the typing rule.

Case (T:SHARE) - We have:

flK,Ao Fshare Agas A || A, : [] 4X,A1,A2

ey
by hypothesis.

Then, if exists Hy such thatfl K, Ap + Hj then (1) steps by (D:SHARE).

Case (1:Focus-RELy), (T:DEFOCUS-GUARANTEE) - Analogous to previous case but by (p:Focus) and

(p:DEFocus), respectively.

Case (T:LET) - We have:
Fl&)kletxzeoinel end:A—|Kl

/l:l&)l-eoiAoﬁA\l
F|A1,x:A0|—el:A1—|A2

By induction hypothesis on (2), we have that either:

e ¢(is a value (v);
Thus, by (p:LET) the expression transitions.
e if exists Hy such thatI' | Ag + Hy

(Holleo ) (Hlley)

Thus, by (p:LerCong) the expression (1) transitions.

Therefore, we conclude.
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by hypothesis.

2)
3)

by inversion on (T:LET) with (1).

)

®)
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