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Abstract

File systems store data in files and organize these files in directories. Over decades, file

systems have evolved to handle increasingly large files: they distribute files across a clus-

ter of machines, they parallelize access to these files, they decouple data access from

metadata access, and hence they provide scalable file access for high-performance ap-

plications. Sadly, most cluster-wide file systems lack any sophisticated support for large

directories. In fact, most cluster file systems continue to use directories that were de-

signed for humans, not for large-scale applications. The former use-case typically in-

volves hundreds of files and infrequent concurrent mutations in each directory, while

the latter use-case consists of tens of thousands of concurrent threads that simultane-

ously create large numbers of small files in a single directory at very high speeds. As a

result, most cluster file systems exhibit very poor file create rate in a directory either due

to limited scalability from using a single centralized directory server or due to reduced

concurrency from using a system-wide synchronization mechanism.

This dissertation proposes a directory architecture called GIGA+ that enables a direc-

tory in a cluster file system to store millions of files and sustain hundreds of thousands

of concurrent file creations every second. GIGA+ makes two contributions: a concurrent
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indexing technique to scale out a growing directory on many servers and an efficient lay-

ered design to scale up performance. GIGA+ uses a hash-based, incremental partitioning

algorithm that enables highly concurrent directory indexing through asynchrony and

eventual consistency of the internal indexing state (while providing strong consistency

guarantees to the application data). This dissertation analyzes several trade-offs between

data migration overhead, load balancing effectiveness, directory scan performance, and

entropy of indexing state made by the GIGA+ design, and compares them with policies

used in other systems. GIGA+ also demonstrates a modular implementation that sepa-

rates directory distribution from directory representation. It layers a client-server mid-

dleware, which spreads work among many GIGA+ servers, on top of a backend storage

system, which manages on-disk directory representation. This dissertation studies how

system behavior is tightly dependent on both the indexing scheme and the on-disk im-

plementations, and evaluates how the system performs for different backend configura-

tions including local and shared-disk stores. The GIGA+ prototype delivers highly scalable

directory performance (that exceeds the most demanding Petascale-era requirements),

provides the traditional UNIX file system interface (that can run applications without

any modifications) and offers a new functionality layered on existing cluster file systems

(that lack support for distributed directories).
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Chapter 1

Introduction

Everything builds from files as a base. ... But, file systems have no metadata

beyond a hierarchical directory structure and file names. ... Lastly, most file

systems can manage millions of files, but by the time a file system can deal

with billions of files it has become a database system.

-- Jim Gray in "Scientific Data Management in the Coming Decade" [Gray 2005]

This dissertation pertains to file system support for high-performance applications,

in both scientific computing and Internet-scale computing, that produce and consume

millions to billions of small files at very fast speeds. These applications run on thou-

sands of machines, and rely on a cluster file system to store data on thousands of storage

nodes. Modern cluster file systems use data servers to manage data blocks containing

file contents and metadata servers to manage metadata including directories, file at-

tributes and data block locations [Ghemawat 2003, Welch 2008, Lustre 2010b, Schmuck
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2002, Weil 2006a]. These file systems provide high-performance I/O bandwidth on the

data path through concurrent access to large files using techniques such as data chunk-

ing and striping [Ghemawat 2003, Hartman 1993, Anderson 1995], object-based abstrac-

tions [Gibson 1998, Lustre 2010b, Welch 2008] and distributed locking [Schmuck 2002,

Thekkath 1997]. Most cluster file systems do not provide parallel access on the metadata

path [Ross 2006, Newman 2008, Raicu 2011] — they serialize and centralize access to the

file system namespace and directories.

This dissertation presents an approach for cluster file systems to provide a scalable

and parallel directory subsystem for applications that generate metadata-intensive work-

loads such as storing millions to billions of files in a single directory and performing

hundreds of thousands of concurrent accesses, particularly mutations like file creates,

in a single directory. Unfortunately current directories are ill-equipped to meet these

requirements for two reasons.

The first reason is that the design of file system directories is governed by a fifty-

year old principle in which directories are a means to achieve hierarchical structure and

organization of files for human usage [Daley 1965, Seltzer 2009]. This use-case as an or-

ganizing principle for ease of human use, and not program access, has two characteris-

tics — low degree of concurrent accesses, particularly file creates, to each directory and

small number of files, typically tens to hundreds, in each directory. The second reason

is that cluster file systems are built to handle large files and not specifically large di-

rectories, and most most use a single metadata server to store directories [Ghemawat
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2003, Shvachko 2010, Lustre 2010b].1 These centralized metadata servers rely either on

existing local file system directories [Cao 2007, Mathur 2007, Reiser 2004] or customized

directory implementations [Zhen 2011, Dilger 2012] — both single-site approaches, how-

ever, do not provide the scalability required by applications with massive numbers of

files and fast concurrent accesses in a single directory. This dissertation aims to push

the limits of scale and concurrency of directory subsystems for cluster file systems.

1.1 Challenges

This dissertation is motivated by two new trends in technology and application work-

loads that call for a scaling the metadata path in modern cluster file systems.

Trend #1: Massive application-level parallelism

The last decade has seen tremendous innovation in large-scale parallelism. Ini-

tial efforts focused on increasing the number of cores on each CPU and increas-

ing the number of CPUs in each physical machine. These efforts then focused on

increasing the size of compute clusters: clusters today comprise of hundreds to

thousands of machines each with one to eight cores. In fact, this number is growing

rapidly [Top500 2012]. Some workgroups are predicting that Exascale-era clusters

may have as many as one billion CPU cores [Kogge 2008].

Furthermore, these clusters are now easily accessible to everyone. Until a few years

ago, clusters of hundreds to thousands of machines were available only to a "niche"
1Some file systems, like Panasas PanFS [Welch 2008] and PVFS [PVFS2 2010], use multiple metadata

servers to distribute the file system namespace. But they continue to store individual directories on one
metadata server.
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set of users, such as supercomputing sites and large organizations. Today users can

easily run their applications on a large collection of resources that can be leased

from cloud computing providers like Amazon [AWS 2012] and Joyent [Joyent 2012].

Availability of such massive computational resources has led to rapid innovation

in applications that run at a large-scale; thus, increasing the burden on the under-

lying cluster-wide storage systems.

Despite a plethora of scalable storage systems such as distributed databases and

key-value stores, cluster file systems continue to be the dominant interface for

applications to store and access data in a large cluster. In fact, most distributed

databases and key-value stores are built as an additional layer on top of a dis-

tributed cluster-wide file system. For example, Google's BigTable and Spanner data

stores rely on the Google file system and, its successor, the Colossus file system

[Chang 2006, Corbett 2012, Ghemawat 2003, Fikes 2010]. Thus cluster file systems

need to keep evolving to provide scalable performance for a wide range of appli-

cation workloads.

Trend #2: Metadata-intensive small-file workloads

Large-scale distributed applications, such as scientific computation and batch pro-

cessing frameworks, typically generate workloads that are dominated by accesses

to large files [Dayal 2008]. Thus, as massive systems have evolved, data parallelism

has become a norm and predictably manageable. The next, and currently not well

supported, bottleneck will be metadata parallelism. There is a growing set of appli-

cations in both scientific computing and Internet-scale computing that generate

one of the most difficult workloads for file systems to handle efficiently: metadata-
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intensive I/O accesses. In fact, the amount of metadata and small objects in today's

data-sets is growing rapidly; Amazon's S3 storage service, for example, has grown

to store more than a trillion objects in the five years since it began service [Barr

2012].

This new workload is generated by applications that use the storage system as a

fast, lightweight data store by (simultaneously) creating large number of files at

high speeds. Cluster file systems in HPC, for example, are struggling with applica-

tions that want to create millions of files rapidly in a single directory in bursts [Ross

2006, Newman 2008, Raicu 2011]. These concurrent workloads have several char-

acteristics: they are dominated by small-sized accesses, typically few kilobytes to

megabytes; they happen on the metadata and the data path; and, they are gen-

erated in several ways, including long periods of high file create rate, or short

bursts of even higher file create rates, or a mix of the two. Examples of such file

system operations include creating new files in one or more directories, writing

small amount of data to files immediately after creation, and accessing or updat-

ing file attributes.

The combination of these trends — large-scale, parallel metadata-intensive workloads —

is the main motivation of this dissertation. The next section gives examples of applica-

tions that generate such workloads that stress a cluster file system's metadata service

and result in surprisingly low application performance.
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1.2 Problem

This dissertation focuses on metadata-intensive metadata workloads, particularly those

that create billions of files in a single directory at very high speeds in parallel.

Most file systems today cannot handle billions of files efficiently. Performance of

local Linux file systems degrades when scaled up from a few million to a billion files

[Wheeler 2010] and the stability of cluster file system is questionable after a few tens of

millions of files [Fikes 2010]. File system directories are even worse when users put large

numbers of files in a single directory. Local file systems are still unable to handle little

more than tens of thousands of files in each directory [ZFS-discuss 2009, NetApp 2010,

StackOverflow 2009] and even cluster file systems that run on the largest clusters, in-

cluding Lustre [Lustre 2010b], HDFS [Shvachko 2010] and GoogleFS [Ghemawat 2003] are

limited by the speed of the single metadata server that manages an entire directory.

There are several real-world applications that use directories at such a large scale.

One example, and the motivating use-case for this work, is checkpoint restart in super-

computing where many parallel applications running on, for instance, ORNL's CrayXT5

cluster (with 18,688 nodes of twelve cores each) periodically write application state into

the cluster file system using a file per process, where all files are stored in the same di-

rectory [Ross 2006, Bent 2009]. Applications that do this per-process checkpointing are

sensitive to long file creation delays because of the generally slow file creation rate, es-

pecially in one directory, in today's file systems [Bent 2009]. This dissertation grew out of

a challenging requirement in 2006 of supporting 40,000 file creates per second in a single
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directory [Newman 2008]; this requirement will become much bigger in the impending

Exascale-era, when applications may run on billion-core clusters [Kogge 2008].

Supercomputing checkpoint-restart, although important, may not be a sufficient and

large reason for overhauling the current file system directory designs. Yet there are other

applications, such as gene sequencing [Yaschenko 2011], image processing [Tweed 2008].

phone logs for accounting and billing [Verizon 2006], and photo storage [Beaver 2010],

that essentially want to store an unbounded number of files that are logically part of

one directory. Some image processing applications store information associated with

all frames in separate files in one directory associated with that image [Tweed 2008].

Computational genomics applications often create a small file for every possible gene se-

quence during a micro-array sequencing experiment [Yaschenko 2011, Goldstein 2012].

Astrophysicists sometimes store zero-byte files, with all application-defined attributes

embedded in the filename, associated with every luminous object found in a telescopic

images of the sky that are used in long running simulations [Kantor 2010]. Even appli-

cations used by Internet-scale services are beginning to see such challenging use-cases.

Batch processing frameworks, like Hadoop [Hadoop 2011], routinely produce large num-

ber of KB-sized files (with intermediate results) to be stored and accessed using a cluster

file system [White 2009].

Because the file system metadata service suffers from performance bottlenecks, au-

thors of applications that generate such workloads have used several ad hoc approaches

to meet their goals.

One approach, and a rather extreme one, is to force applications to avoid generating

access patterns that stress the metadata service. Instead application developers are ex-
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pected to program to the underlying file system's strength. A popular example of this

approach is the Google file system; its authors claimed that "When [we are] regularly work-

ing with fast growing data sets of many TBs comprising billions of objects, it is unwieldy to manage

billions of approximately KB-sized files even when the file system could support it ..." [Ghemawat

2003]. For high-performance, the Google file system developers encourage application

writers to perform large sequential writes through a custom-built atomic append prim-

itive and a non-POSIX programming interface [Ghemawat 2003].

Another approach is to move the burden of supporting emerging workloads from the

file system to the application. For example, web browsers manage a large logical direc-

tory by creating many small, intermediate sub-directories with files hashed into one of

these sub-directories; but each browser re-implements this same functionality in their

own application logic. Another example is the way Hadoop distributed file system (HDFS)

handles its small files problem of managing a large number of tiny files with intermediate

results. It forces applications to use a custom library that bundles many small files into

few large files using custom formats such as sequence files and Hadoop Archives format

[White 2009, Kerzner 2009].

The final approach is to build custom storage APIs that are designed to handle new,

anticipated workloads. Such specialized interfaces and semantics are starting to emerge

in both Internet-scale computing and scientific computing. Facebook's Haystack stor-

age system uses a custom, metadata-optimized storage format to store information re-

quired to speed-up access to a user's photos [Beaver 2010]. Google's Colossus file system

stores all the file system metadata in a tabular format in the Bigtable distributed data

store [Chang 2006, Fikes 2010]. LANL's MDHIM system is targeting a user-level library

8



that stores file system metadata in an indexed on-disk format, such as ISAMs, to provide

high-throughput operations for scientific data management [Nunez 2012].

The aforementioned approaches have been successful in their respective ways, but

they have several drawbacks. They require an undesirable re-write of legacy applications

to use new interfaces or custom semantics. They bind an application to a system that

lacks a general-purpose design, and may struggle to adapt to new workloads. In fact,

these ad hoc approaches are ossifying, not innovating, the design of general-purpose file

systems by not adding support for emerging workloads.

Both vendors and users of cluster file systems will benefit from a general-purpose

scalable metadata subsystem. By extending existing file system implementations with

new features like scalable directories, vendors can support a broader range of applica-

tion workloads and users can run applications without complex porting or rewriting.

Furthermore, such a workload-agnostic metadata service can make more informed deci-

sions to adapt to challenges at large scales such as load balancing and work distribution.

Given the challenges enumerated this far, this dissertation explores ways to build a

scalable metadata service that has following objectives:

• It should inherit data-path scaling features of the existing cluster file systems while

adding new support that distributes namespace management and parallelizes di-

rectory indexing.

• It should work with legacy unmodified applications through the traditional UNIX

file system interface and POSIX-like semantics offered by many cluster file systems.
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• It should strive to meet the requirements of future metadata-intensive applications

that are predicted to run at a scale that is ten to hundred times bigger than today.

1.3 Thesis contributions and roadmap

The thesis of this dissertation is that:

Cluster file systems lack high-performance directory implementations that can meet high-

speed ingest requirements of data-intensive applications. File system directories can evolve

to be scalable and parallel: each directory can store hundreds of millions of files and sustain

hundreds of thousands of concurrent operations, particularly mutations like file creates, per

second. These high-performance directories enable existing modern cluster file systems to

scale metadata access while providing the traditional UNIX file system API and POSIX-like

semantics.

This section describes the scope of this thesis statement, the contributions made to

support this statement, and the roadmap for this dissertation.

1.3.1 Goals and non-goals

Given the challenges enumerated thus far, this dissertation explores ways to build a scal-

able metadata service that has following objectives:

Application visible semantics —

Most high-performance applications use cluster file systems that offer the tradi-

tional UNIX file system interface and POSIX semantics. To ensure that legacy appli-

cations work out-of-the-box (without any modifications), this dissertation focuses
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on POSIX semantics. However, there are several other popular file system seman-

tics such as Microsoft's SMB and CIFS standards [SMB 2013, CIFS 2013]. Although

most techniques described in this dissertation should work with non-POSIX stan-

dards, they may result in less than optimal performance.

One example is directory scans using the readdir() method. SMB standard offers an

API for range scans of a directory based on the name of the file [SMB 2013]. But

POSIX neither offers such an API nor expects the file system to return entries in

an ordered manner. To efficiently support range scans, an SMB-compliant system

would benefit more from using an indexing structure, such as B-trees, that pre-

serves key locality than from using a structure, such as hash-tables, that do not

offer key locality. In the latter indexing structure, the system may have to scan

more data than necessary, and that may result in slower scan performance.

Consistency semantics and mechanisms —

Different file systems offer different data consistency guarantees, and applications

use a file system the provides the desired consistency properties. Most POSIX-

compliant file systems offer strong data consistenty guarantees to the application.

However these guarantees may not apply to the internal state of the file system.

This is often referred to as external consistency and internal consistency.

This dissertation also uses these consistency models: applications are guaranteed

a strong data consistency but the directory's internal state, such as indexing and

mapping state, may be temporarily inconsistent. Thus applications will not experi-

ence any semantic side-effects but they may experience performance-related side-

effects. In particular, application requests that are serviced when the file system
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has temporary internal inconsistencies may experience slower response times or

reduced throughput. And this performance degradation is often dependent on the

mechanisms and policies used by the file system to fix these internal inconsisten-

cies.

Fault-tolerance and configuration management —

Most cluster file systems have sophisticated techniques for handling failures and

configuration management. Techniques such as data and process replication, data

encoding, and primary-backup failover are common among many real-world file

systems [Lustre 2010b, Welch 2008, Schmuck 2002, HDFS 2010, Ghemawat 2003].

Some file system also rely on tools and techniques that manage server membership

and configuration changes [Burrows 2006, Hunt 2010, Welch 2007].

This dissertation does not propose any new techniques to address fault tolerance

and configuration management. This decision was driven by two reasons. The first

reason is that scalable directory and metadata support is envisioned as an exten-

sion to cluster file systems that only provide scalable and reliable data access. Our

goal is to build a system that reuses and relies on the cluster file system's support

for fault tolerance. The second reason is that there has been decades of research

on techniques to improve fault tolerance and configuration management. When a

cluster file system's mechanisms are insufficient, our goal is to rely on well-studied

techniques to meet the desired availability, reliability and manageability require-

ments.
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1.3.2 Contributions

To support the thesis statement, this dissertation describes the design, implementation

and evaluation of a scalable directory service called GIGA+. The research contributions

made by GIGA+ are as follows:

• GIGA+ uses a distributed directory index that improves concurrency by trading space effi-

ciency: it uses asynchrony and inconsistency for scale-out growth and non-blocking concur-

rency at the cost of less-than-optimal size of index representation.

GIGA+ indexing uses hashing to divide a large directory into partitions that are dis-

tributed on multiple servers in a "shared nothing" manner such that GIGA+ clients

and servers have only a partial view, which is both deterministic and self-computable,

of partitions in the system. This enables two novel design decisions. First, GIGA+ servers

make independent decisions about when to split a growing directory, and then split

across servers without any system-wide co-ordination, synchronization or serial-

ization. Second, as the servers scale-out a directory in parallel, GIGA+ tolerates the

client-side indexing state, such as partition to server mapping, to become stale and

inconsistent; GIGA+ servers update a client's state in an on-demand lazy manner

at the cost bounded number of addressing errors.

• GIGA+ uses a layered implementation that decouples inter-server distribution and paral-

lelization from intra-server on-store representation.

GIGA+ layers its distributed indexing on existing backend storage systems such

that it uses GIGA+ servers only to manage access to hash partitions and it relies

on the backend storage system to store partitions efficiently. This modularization
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has several benefits. First, the distributed indexing scheme can spread directory

entries on multiple servers only until it can benefit from the decentralization (such

as good load-balancing and more parallelization). Second, backend storage systems

are better equipped at out-of-core indexing of hash partitions on persistent media;

consequently even when GIGA+ stops cross-server indexing, the backend stores can

handle growing hash partitions using the optimized implementations. Third, lay-

ering also allows for GIGA+ to focus on optimizing directory performance while

re-using features that are well-supported by a backend storage system; if the back-

end store is a cluster file system, GIGA+ can re-use features such as scalable data

access, fault tolerance and system configuration that are found in most cluster file

systems. The final benefit of layering is the ease of development and deployment

of new functionality as extensions to existing systems.

• GIGA+ proposes a specialized directory representation that is efficient at both representing

directory entries on each server and distributing entries across servers.

Experimental analysis of the GIGA+ prototype layered on local file systems demon-

strates how the interaction between lower-level implementations and GIGA+ sys-

tem behavior has significant implications of scale and performance. This disserta-

tion demonstrates that representing traditional directory entries as symbolic links

allows cluster file systems to support a scalable metadata path by re-using their

high-performance data path.
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Figure 1.1 — Outline of the research contributions in this dissertation.
Scalability of the GIGA+ user-level layered file system directories, presented in Chapter 3, de-
pends on how the higher-layer scales out a directory index on available servers and how each
server represents directory entries on an on-disk backend storage system. This dissertation stud-
ies the trade-offs made by a parallel distributed indexing to enable highly concurrent accesses,
particularly large numbers of simultaneous file inserts, in a single directory (Chapter 4 and 5).
This dissertation also analyzes how the interaction between the lower-layer backend stores and
higher-layer indexing scheme affects the scale and performance of the system (Chapter 6).

1.3.3 Dissertation roadmap

Figure 1.1 illustrates the research contributions and a roadmap of this dissertation. It

shows a canonical graph of how system performance (throughput on Y-axis) changes

over the time (on X-axis). The blue area shows the state of the system when GIGA+ is

indexing a large directory on the available servers to provide scale-out growth. The red

area shows how the interaction between the indexing technique and the backed storage
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system affects the performance of GIGA+ after it has used all available server resources.

This dissertation studies these aspects of GIGA+ design in the following chapters.

Chapter 2 presents a discussion of the background and related work in the context

of file system metadata management and directory service. It presents a taxonomy of

metadata management techniques used in modern file systems, including local file sys-

tems, distributed file systems, and high-performance cluster file systems. This chapter

also describes the design of distributed data-structures, particularly hash-table based in-

dices, and the tradeoffs to make these structures scalable and concurrent in distributed

storage systems.

Chapter 3 gives an overview of the design and implementation of the GIGA+ file sys-

tem directory prototype. The key idea of the GIGA+ prototype is that it decouples the

logical, user-visible namespace from the physical, on-store namespace. This decoupling

is achieved by (1) using an indexing technique that provides a decentralized and parallel

directory path between GIGA+ clients and servers, and (2) using a layered implementation

that allows GIGA+ servers to offload physical storage and on-disk representation of direc-

tory contents to a backend storage system. This chapter demonstrates the GIGA+ proto-

type scale and performance for configurations up to 64 servers.

The next three chapters focus on the indexing technique (discussed in Chapter 4 and

5) and the layering on backend storage systems (discussed in Chapter 6).

Chapter 4 and chapter 5 describe the distributed hash-table used in GIGA+ for index-

ing directories. This indexing scheme has two design principles — asynchronous server-

side growth and inconsistent indexing state — used in GIGA+ both when the number
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of servers is steady and when servers are being added to the system; these two design

principles are discussed in Chapter 4 and Chapter 5 respectively. These chapters also

present experimental and analytical evidence about various tradeoffs made by the design

of GIGA+ . This analysis answers several questions: how do servers split a directory to har-

ness the available parallelism in the system? how well-balanced is the load-distribution

after GIGA+ indexing distributes directories over many servers? what is the cost-benefit

of using inconsistent indexing state on GIGA+ clients and servers? under what circum-

stances is the GIGA+ directory distribution better or worse than existing techniques such

as database indexing, consistent hashing and other relevant related work?

Chapter 6 studies the effect of layering GIGA+ indexing on different types of back-

end storage systems including local file systems and shared storage systems (emulated

with NFS-mounted shared volumes). This chapter demonstrates how several aspects of

GIGA+ indexing, such as hash partitions and cross-server splits, are dependent on the sup-

port available in the backend storage system. This chapter also shows how on-disk repre-

sentation of file system directories provides highly variable performance, and shows how

using a optimized data-structures are more suitable for directory-intensive workloads.

This dissertation concludes with Chapter 7 that summarizes the lessons learnt in this

dissertation and highlights several areas that call for more future work.
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Chapter 2

Background and related Work

This chapter presents a background on file system directories, and how prior work on

distributed indexing has motivated the design of GIGA+ directories. Given the vast body of

related work in out-of-core indexing, this chapter covers techniques with a decentralized

design or a distributed implementation, and compares them with the GIGA+ design.

Section 2.1 presents an overview of traditional directories in local file systems, and

Section 2.2 summarizes how networked file systems, both in enterprise environments

and high-performance environments, manage file system metadata such as namespaces

and directories. Section 2.3 describes hash-based data-structures and their distributed

variants used in scalable storage systems. Although this dissertation is about file systems,

Section 2.4 discusses why users of large directories find it hard to use database systems

such as relational databases and key-value data stores.
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2.1 Overview of file system directories

The original UNIX and BSD file systems were designed with the principle that every-

thing, including a directory, is a file. Directories are special files whose contents are a

tuple, called the directory entry, of file name and the i-node number of that file. Figure

2.1 shows how the file system directory tree (or the namespace) and individual direc-

tories are structured in traditional UNIX local file systems. In this figure, directory /b

has several directory entries, including a sub-directory D1 and several files F1 to F4. Each

entry in the file corresponding to directory /b is represented as a {name, i-node number}

tuple. File F1, for example, has an i-node number 12345 which stores the file's attributes,

such as size, permission, and owner, and pointers to disk blocks of file data.

Local file systems use either hash-tables or B-trees (or a combination of the two) for

directory indexing. For example, SGI XFS directories use B-trees [Sweeney 1996], ReiserFS

directories use a special tree-like index [Reiser 2004], Linux Ext file systems directories

use hashed trees called H-trees [Cao 2007, Phillips 2001, Mathur 2007], and Oracle ZFS

and Redhat GFS directories use extendible hashing [ZFS 2007, Soltis 1996].

2.2 Namespaces and directories in networked file systems

Networked file systems can be categorized as enterprise distributed file systems or clus-

ter file systems. The former includes systems, such as NFS-based aggregation [Sandberg

1985], AFS [AFS 2013], and FARSITE [Adya 2002], designed for remote file access for work-

loads, such as user home directories and volumes, that have a very low degree of shared

concurrent accesses compared to data-intensive applications. The latter includes sys-
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Figure 2.1 — Directory namespace in modern file systems.
This figure shows how directories are stored as regular files of tuples of directory entry name
and i-node number.

tems, such as parallel file systems in scientific computing and Internet services, that deal

with massive files and large numbers of concurrent accesses to a single file or directory.

Another difference between these two types of networked file systems is the way they

store metadata. Typically, classic distributed file systems store the namespace of a user-

visible mountable volume on a remote server that uses the i-node number of directory

entries (like traditional directories in Figure 2.1) on the same server as the file associated

with that entry. Cluster file systems, however, store all file system metadata including the

namespace and directories on a metadata server. The i-node numbers in these directory

entries are replaced by addresses of the location of data blocks stored on separate servers

called data servers.
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This section uses the following taxonomy to present a survey of how networked file

systems manage the hierarchical namespace and individual directories on one or more

servers.

2.2.1 Single-server for both namespace and directories

The first, and the most common category, consists of cluster file systems that use a single

metadata server to manage and store the entire file system namespace including direc-

tories. Several recent file systems, such as Google file system [Ghemawat 2003], Hadoop

distributed file system [Shvachko 2010] and Lustre file system [Lustre 2010b], use this

approach. The main benefit of this approach is that it simplifies both administration and

implementation of the metadata subsystem.

A single metadata server, however, has limited performance that may not scale as

metadata-intensive workloads get larger in size. For example, early versions of the Google

file system could handle only about 50 million files because their in-memory metadata

management was insufficient to store metadata associated with more files [Fikes 2010].

One way to improve performance is to optimize metadata management on that single

server. Lustre file system, for example, improved the throughput of their centralized

metadata service using fine-grained locking of subtrees to enable highly concurrent names-

pace operations [Dilger 2012]. While this approach improves performance, it does not

scale beyond the performance of one single metadata server.
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2.2.2 Multi-server namespace, single-server directories

The next category includes file systems that distribute the namespace over multiple

servers, but each directory is managed by only one server. This approach is common

among both enterprise distributed file systems and cluster file systems; examples in-

clude PVFS [PVFS2 2010], Panasas's PanFS [Welch 2008], and an early version of FARSITE

[Adya 2002].

A classic technique, used by Sprite [Welch 1992] and Panasas's PanFS [Welch 2008],

is to rely on static name-based subtree partitioning where each subtree is assigned to

a different server. This approach derived from the function of a mount table in client

nodes is similar to NFS or CIFS based file aggregation techniques used in many enterprise

systems [Sandberg 1985, CIFS 2013, NFSv4 2013]. This approach requires careful system

administration to monitor load and size of different subtrees, and, if needed, migrate the

hot-spot subtrees using manual configuration or automated re-balancing daemons.

One approach of re-distribution is adopted by the FARSITE file system that dynam-

ically migrates heavily accessed subtrees using a hierarchical identifier structure used

by the file system namespace [Douceur 2006]. Microsoft's FARSITE, a file system for an

untrustworthy network of desktops, proposed a distributed directory service using file

identifier-based metadata partitioning and fine-grained distributed locking to allow mul-

tiple writers to have concurrent access to an object (like a shared directory) [Douceur

2006, Adya 2002]. But FARSITE was built for desktop applications, not for data-intensive

services; if used for the latter use-case, its distributed locking semantics will severely

limit the scalability under highly concurrent workloads.
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To alleviate load imbalance issues in static namespace partitioning, some file sys-

tems use multiple metadata servers. Examples of this approach include Lustre (partic-

ularly their proposed clustered MDS service) [Lustre 2010a, 2009], Intermezzo [Braam

1999] and Vesta [Corbett 1996]. They hash an object's pathname or identifier to control

its placement on one of the metadata servers. If the hash function provides a statisti-

cally uniform distribution over a large key-space, this approach alleviates the server's

responsibility for well-distributed file placement, and allows clients to directly hash and

address the request to the appropriate server. The cost of this "implicit" load balancing

is the loss of namespace locality: it is entirely possible that different sub-directories in

a subtree and different files in a directory may all be assigned to different servers caus-

ing pathname lookups to address multiple servers. To improve pathname lookup per-

formance, file systems have adopted several optimizations including namespace caches

that store the prefix of recently accessed pathnames [Welch 1992], nonuniform random-

ization hash functions that adapt to changes in server load [Wu 2004], or lazy pathname

traversals only during certain operations (such as changes to access permissions) [Brandt

2006]. Furthermore, directories and namespace do not adapt to any changes if certain

parts of the namespace grow larger than others, resulting in a potentially imbalanced

distribution.

GIGA+ uses a hashing based technique to distribute both the namespace and the files

in a directory on multiple servers, and uses a similar optimization to speed up pathname

lookups. This choice was driven by two factors: metadata-intensive workloads running

at large scales suffer drastically in presence of a load imbalance, and the massive amount
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of data managed by storage servers makes it undesirable to use data redistribution or

migration in case of a hot-spot in the system.

2.2.3 Multi-server namespace, multi-server directories

The final category includes file systems that distribute both their namespace and large

directories on multiple servers. The pioneering work in distributed directories is IBM's

GPFS [Schmuck 2002] which is discussed in depth in the next section. OrangeFS [OrangeFS

2010, Yang 2011] and Ceph [Weil 2006a] also provide support to distribute large directo-

ries, while Lustre's clustered metadata service plans to provide this support in future

releases of the system [Lustre 2010a, 2009].

OrangeFS, a commercially supported distribution of the PVFS cluster file system, has

implemented a basic version of GIGA+ distributed directories in their recent release [Yang

2011, OrangeFS 2010]. However, the OrangeFS implementation uses a simplified version

of GIGA+ that splits a directory only once and over all available servers when the directory

grows beyond a certain size. This simplification allowed OrangeFS developers to quickly

add the distributed directory feature in a beta version of their product; they plan to im-

plement the incremental growth technique adopted in GIGA+ in future releases of Or-

angeFS [Ligon 2010].

Ceph is an object-based cluster file system that uses dynamic sub-tree partitioning of

the namespace and hashes individual directories when they get too big or get too many

accesses [Weil 2006a, 2004, 2006b]. While the experimental version of Ceph (from 2006)

shows promising directory scalability, the recent versions of Ceph directory clustering

have been described as "less stable" [ceph users 2013] and "buggy" [ceph devel 2013]
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(and are often disabled by users). Compared to Ceph, GIGA+ facilitates dynamic server

addition achieving balanced server load with minimal migration. It is unclear from the

current Ceph documentation if (and how) Ceph directories are re-balanced after server

additions.

Lustre is an object-based cluster file system that has clustered metadata for high

availability, but stores all metadata centrally on a single server [Lustre 2010b]. However,

Lustre has proposed a clustered metadata service that will split a directory using a hash

of the directory entries only once over all available metadata servers when it exceeds a

threshold size [Lustre 2010a, 2009] (this strategy is similar to OrangeFS's simple modi-

fication to GIGA+). The effectiveness of this "split once and for all" scheme depends on

the eventual directory size and does not respond to dynamic increases in the number of

servers. Experiments, conducted by NCAR in 2005, using the single server directory ser-

vice, showed that Lustre scaled to about a few thousand creates/second [Cope 2005]. Pre-

liminary experiments from 2005 suggest that an early version of Lustre's scalable meta-

data service can scale-up file creates per second [Studham 2005]. But Lustre has yet to

release a stable, supported version of the proposed cluster metadata service [Dilger 2012,

Zhen 2011]. Nevertheless, GIGA+ avoided using a split-once strategy because it stands the

risk of splitting a rather small directory across all the servers, which may result in sub-

optimal performance of directory scans. This strategy is also hard to optimize for new

server addition without extensive metadata migration.
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2.3 Distributed data-structures for indexing

Historically, variants of hash-tables and B-trees were designed for high-performance out-

of-core indexing on a single machine, particularly for databases whose data did not fit

in memory. As systems grew from running on one machine to running on many ma-

chines, these indexing techniques had to be decentralized: data was indexed on multiple

machines such that B-tree leaves or hash-table buckets were stored separately from the

pointers to these leaves or buckets. These distributed implementations had to deal with

challenges related to performance, fault-tolerance, correctness and load-balancing. And

all these issues are even more difficult when dealing with highly concurrent accesses to

the same index. This section focuses on how distributed data-structures and their imple-

mentations handle these challenges.

One of the earliest design decisions that GIGA+ made was to use a hash-table instead

of a B-tree. This decision was based on two factors — load balancing and range query sup-

port — that differentiate these data-structures and their relative importance to parallel

applications that use cluster file systems.

At massive scales used in modern cluster computing, load-balancing is very impor-

tant for overall system performance. Hash-tables implicitly provide good statistical dis-

tribution of keys into many buckets. Although B-trees have been used in many scalable

distributed data stores [Chang 2006, HBase 2010, MacCormick 2004], the storage system

has to provide explicit mechanisms to ensure that the leaves of a B-tree are split and

evenly distributed across the cluster. The implicit uniform distribution properties of a

hash functions alleviates this implementation burden on a cluster storage system.
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Figure 2.2 — Fagin’s extendible hashing [Fagin 1979].
Two-level structure comprising of bucket pointers and bucket. Splitting overflow buckets doubles
the header table of bucket pointers with new pointers pointing to buckets created from splits.

On the other hand, B-trees are better than hash-tables at performing high-performance

range queries and scans. This property makes B-trees essential for databases that need

to support high-performance scans that return data ordered on the key of a table. Most

POSIX file systems, however, do not provide in-order range query semantics.1 Current

POSIX semantics for directory scans assume that readdir() scans will return unordered

results and the application (such as ls) sorts the results in the desired order.

This section describes the details of three hashing data structures — extendible hash-

ing, linear hashing and consistent hashing — that are widely used in distributed systems.
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2.3.1 Extendible hashing and IBM GPFS

Extendible hashing is a dynamically growing hash table proposed by Ronald Fagin more

than three decades ago [Fagin 1979]. Fagin's extendible hashing dynamically doubles the

size of the table containing pointers to pairs of post-split links to the original bucket,

and expands only the overflowing bucket (by restricting implementations to a specific

family of hash functions) [Fagin 1979]. Figure 3.1 shows the two levels used by extendible

hashing: at the bottom level, there are buckets that store the keys (or directory entries),

and the top level comprises of a table of pointers to these buckets. The expansion algo-

rithm doubles the pointer table in one step, with two bucket pointers pointing to each

bucket, so looking up an entry through either pointer will find the entry when the shared

bucket is scanned (linearly). It then splits the overflow bucket by creating a new bucket,

transferring half the keys from the old bucket and updating one of the bucket pointers

to point to this new bucket.

Concurrent access, particularly updates, to an extendible hash-table is limited by

the speed and performance of the central node that serializes all updates to the bucket

pointer table. Much prior research has focused on improving Fagin's original design us-

ing fine-grained locking mechanisms for highly concurrent updates [Ellis 1983, 1985, Ku-

mar 1990]. Extendible hashing has been used in local file systems, including Oracle's ZFS

[ZFS 2007], and distributed file systems, including Redhat's Global File System 2 (GFS2)

[Soltis 1996, Whitehouse 2007] and IBM's GPFS [Schmuck 2002].

1NTFS is an exception here: it supports range scans for file system directories.
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IBM's General Parallel File System (GPFS) uses Fagin's extendible hashing for its dis-

tributed directory implementation [Schmuck 2002]. GPFS is a shared-disk, high-performance

file system that enables highly concurrent read and write access to blocks of data that

are striped on many disks in the system. GPFS is one of the most widely deployed paral-

lel file system in high-performance computing environments [Top500 2012]. Like tradi-

tional UNIX file systems, GPFS represents directories as a special file and stripes blocks of

this file on multiple disks. Using extendible hashing for directory indexing, GPFS repre-

sents each hash-table bucket as a disk block and the pointer table as the block pointers in

the directory's i-node. When a directory grows in size, GPFS allocates new blocks, moves

some of the directory entries from the overflowing block into the new block and updates

the block pointers in the i-node.

GPFS uses a symmetric architecture where a cluster node can be a client or a server,

and can understand the underlying block layout. This enables GPFS to use client cache

consistency and distributed locking to facilitate concurrent access to blocks of a file in-

cluding regular files and directories [Schmuck 2002]. Concurrent readers can acquire a

shared reader lock for a directory from the lock manager and then cache these blocks for

subsequent use. All directory reads are served from the cached blocks; thus, delivering

high throughput for read-intensive workloads. Writers, however, need to acquire a ex-

clusive write lock from the lock manager before updating the directory's blocks stored

on shared-disk storage.

This combination of cache consistency and distributed locking imposes significant

bottlenecks on concurrent write workloads such as application threads that are simul-

taneously creating files in one directory. Early versions of GPFS used whole directory
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locking. When two threads create files in the same directory, the process of releasing (or

acquiring) locks forces directory blocks to be flushed to disk (or read from disk). This disk

I/O happens for both blocks containing directory entries and i-nodes containing block

pointers. Experiments performed using these early versions of GPFS, by NCAR in 2005,

show that read-only lookups scale very well but concurrent creates are limited due to

the high overhead from lock contention and resulting disk I/O [Cope 2005].

Newer releases of GPFS have several optimizations to alleviate consistency and seri-

alization bottlenecks during highly concurrent directory accesses. GPFS v3.2.1 and on-

wards use fine-grained directory locking (FGDL) that allows nodes to lock individual di-

rectory blocks instead of locking the entire directory [GPFS 2008, Schmuck 2010]. In ad-

dition, modifications to locking and cache consistency protocol reduce lock contention

and disk I/O: once a writer acquires a exclusive lock to insert entries in a directory block,

all other writers wanting to insert entries in that same block send their insert requests

directly to the current lock holder. This reduces the disk I/O overhead by avoiding block

reads and writes through the shared disk subsystem [Schmuck 2010].

Compared to early versions, these optimizations have improved GPFS performance

for concurrent directory insertions [Frings 2011, Artiaga 2010]. GPFS, however, suffers

from synchronously writing the directory's i-node, which contains the extendible hash-

ing mapping state, and invalidating client caches to provide strong consistency guar-

antees [Schmuck 2010]. This simplifies fault tolerance and recovery, but lowers perfor-

mance of file creates. GPFS users continue to report unsatisfactory file create rate in a

single directory [Frings 2011, Calderon 2010, Artiaga 2010], compared to both other par-

allel file systems [Hedges 2010, Alam 2011] and other ad-hoc approaches [LRZ 2013].
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Drawing from GPFS's lessons, GIGA+ takes a different approach: it strongly embraces

asynchrony and inconsistency in all aspects of design. Directories in GIGA+ expand on

many servers in parallel without system-wide serialization or synchronization. Mapping

state, particularly at clients, is allowed to be inconsistent and out-of-date; servers can

update this state eventually in an on-demand manner. GIGA+ also facilitates server addi-

tions in a non-blocking manner to minimize data migration and service disruption in an

existing service.

2.3.2 Linear hashing and LH*

Linear hashing is another re-sizable hash-table that grows by splitting its hash buckets in

a linear order using a pointer to the next bucket to split [Litwin 1980]. Unlike extendible

hashing, which shares a pointer table with clients, linear hashing only shares state about

the next bucket to split. Linear hashing is used in many modern single-node databases

including Postgre, MySQL and BerkeleyDB [Geschwinde 2002, MySQL 2013, Olson 1999],

but not found in any (well-known) file system.

Linear hashing has a distributed variant, called LH* [Litwin 1993], that stores buckets

on multiple servers and uses a central split coordinator that advances permission to split

a partition to the next server. This split co-ordinator maintains a globally consistent and

shared pointer, called split pointer, to the next bucket to split.

An attractive property of LH* is that it does not update a client's mapping state syn-

chronously after every new split. Clients continue to use their stale mapping state which

is updated when a server is addressed incorrectly (using the old mapping information).
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GIGA+ uses similar mechanism that allows client caching of "location" information to

become state and correct it on addressing an incorrect server.

A problem is that LH* can split only one bucket at a time and the next split operation

has to wait until the previous one is completed [Litwin 1993, 1996]. This happens because

the co-ordinator serializes all split operations to maintain a single true value of the split

pointer and because LH* enforces a round-robin order of splitting partitions. An overflow

bucket will often not split until its turn arrives, leading to a transient load imbalance.

Authors of LH* have proposed two optimizations that, in theory, alleviate these scal-

ability bottlenecks [Litwin 1996]. The first optimization eliminates the need for a cen-

tral split co-ordinator by using a split token that is passed among servers to decide which

bucket to split. Unlike LH* with a split co-ordinator, which splits the next bucket if any

bucket overflows, LH* without an co-ordinator can split the next bucket only if the token-

holder bucket overflows. Assuming uniform distribution of hashing, this token-holder bucket

will overflow at about the same rate as other buckets. This leads to cascading splits where

many buckets split as soon as they receive the token, and resulting in long periods when

many servers are busy splitting followed by long periods of no splitting.

The second optimization relaxes another LH* assumption, that a split starts only

when the previous one terminates, using a client-shared variable that tracks the last

committed (or completed) split operation [Litwin 1996]. But these pre-splits are made

visible to the clients only when the split co-ordinator moves the committed pointer to

the appropriate bucket. This optimization is further generalized to allow any bucket to

start and finish a split at any time. But it still has several problems: split order remains

serialized with a round-robin ordering, messaging traffic overhead grows for each op-
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eration and implementation increases in complexity. LH* authors also claim that these

optimizations need significant changes to the load control and client addressing mecha-

nisms, and may lead to unbounded number of addressing errors [Litwin 1996].

GIGA+ differs from LH* in several ways. To maintain consistency of the split pointer

(at the coordinator), LH* splits only one bucket at a time [Litwin 1993, 1996]; GIGA+ allows

any server to split a bucket at any time without any coordination. LH* offers a complex

partition pre-split optimization for higher concurrency [Litwin 1996], but it causes LH*

clients to continuously incur some addressing errors even after the index stops growing;

GIGA+ chose to minimize (and stop) addressing errors at the cost of more client state.

2.3.3 Consistent hashing

Consistent hashing divides the hash-space into randomly sized ranges that are distributed

on server nodes [Karger 1997]. A hash-space range is assigned to a server, typically, based

on the hash of a server's identifier such as name or IP address [Stoica 2001]. Figure 2.3(A)

illustrates how a 3-server configuration uses consistent hashing for data partitioning;

server A, B and C each have three ranges indicated by different colors. A request for key

X is addressed to the server (A) that holds the range of hash-space associated with the

hash of the key hash(X).

The main advantage of consistent hashing is how it re-distributes hash-space range

when servers are added or removed from an online system. Consistent hashing is ef-

ficient at managing membership changes because addition or deletion of servers typi-

cally results in split or join of hash-ranges only for servers adjacent in the hash space.

Figure 2.3(B) and (C) shows how consistent hashing re-distributes the hash-space range
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Figure 2.3 — Consistent hashing
(A) This figure illustrates a hash-space that is divided into three ranges assigned to three
different servers (A, B and C) identified through different colors. (B) In this illustration, the
neighboring servers also server as backups of the ranges held by other servers (C) When a new
server D is added to the system, it is a given a random part of the hash-space range held by
another server A. This random hash-space division leads to imbalanced assignment on each
server. Similar imbalance may result if a server leaves the system; in this example, if server
B leaves the systems, adjoining server C takes over its hash-space range and now controls
two-third the range of the entire two-server configuration. (D) Hash-space distribution skew is
alleviated by dividing the hash-space into more parts than the number of servers, and assigning
multiple ranges to each server. (This figure was found on the Internet [Katsov 2012].)
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when a new server D is added or when an existing server B is removed. It shows that

new server D is randomly assigned a range in the hash-space based on where hash to

server D's identifier lies in the hash-space. Server D then is responsible for a part of the

hash-space range held by an adjacent server (A). Similarly when an existing server (B)

is removed, another adjacent server (C) is responsible for the range held by the removed

server. This property of handing server membership changes makes consistent hashing

popular for wide-area peer-to-peer storage systems [Dabek 2001, Rowstron 2001, Muthi-

tacharoen 2002, Rhea 2003]: these systems experience a much higher rate of change in

server membership than cluster systems, and distributed hash-tables have used several

optimizations to handle this churn [Rhea 2004, 2005]. Numerous cluster systems have

also used consistent hashing for data partitioning [DeCandia 2007, Voldemort 2010, Basho

2013, Lakshman 2009], but have faced load-balancing issues resulting from random sized

hash-space division [DeCandia 2007].

Figure 2.3(C) shows the imbalance in the hash-space range held by each server when

a server is added or removed. This imbalance is worse in large-scale systems. Amazon's

Dynamo uses consistent hashing to partition the key-values stored in a cluster wide stor-

age system [DeCandia 2007]. Developers of Dynamo observed that consistent hashing's

data distribution resulted in high load variance, even after using the virtual servers op-

timization [DeCandia 2007]. Virtual servers is a mechanism that divides the hash-space

into more partitions than number of servers allowing each server to map multiple ranges

to a single server [Stoica 2001, DeCandia 2007]. Figure 2.3(D) shows an example of how

virtual servers divides the hash-space such each each server (indicated by a different

color) has four hash-space ranges. Each server now has to maintain more mapping state
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about the other hash ranges, and a newly added server needs to get its hash-range from

more than one server. In contrast, GIGA+ uses threshold-based equal-sized splitting that

provides better load distribution that consistent hashing.

Another problem with consistent hashing is that it implicitly assumes a very large

data-set: this allows aggressive partitioning on many nodes to begin with and alleviates

load imbalance in the distribution. This property, however, is not the best fit for work-

loads, such as file system directories, that have mix of mostly small data-sets and a few

large data-sets. In such cases, multi-node partitioning is required only when data-sets

grow large incrementally — an important design criteria for GIGA+ large directories.

2.4 Storage systems without a file system API

The primary use-case for scalable directories is small-file intensive workloads; this raises

the question, why not use a database, relational or key-value NoSQL, instead? The main reason

is that traditional relational databases lack support for running at scale with high paral-

lelism, and modern key-value data stores lack a common general-purpose programming

interface and semantics.

Traditional "one size fits all" relational database systems (RDBMS) do not meet the

scalability and performance requirements of parallel data-intensive applications [Agrawal

2008, Seltzer 2008, Stonebraker 2007b]. RDBMS designs were conceived four decades ago,

when online transaction processing workloads dominated the database market and when

application logic also included data management logic, including physical layout and ac-

cess methods. Over time RDBMS vendors have added numerous, tightly-coupled subsys-

tems, such as lock hierarchies, buffer managements, query optimizers and concurrency
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control, with a promise of better performance for diverse set of workloads. But these

monolithic databases often lack the desired scale and performance, and they are also

deemed too heavy-weight a solution for applications that require simple non-transactional

semantics such as simple key-value lookups and write-once-read-many accesses [Stone-

braker 2007b,c,a]. For instance, a recent study has shown that stripped down databases,

without any locking, latching and other concurrency control features, can be about 20

times faster than the original system [Harizopoulos 2008].

To alleviate these concerns, new key-value data stores were designed from scratch us-

ing only those database semantics and functions that were required by target applica-

tions [Chang 2006, DeCandia 2007, Stonebraker 2009]. These data stores scale out, typ-

ically, by supporting only a small subset of an RDBMS's transactional ACID semantics

[Seltzer 2008]. Different stores relax different semantics and offer different properties.

Some stores, for example, limit atomicity to per-object or per-row mutations [Chang

2006, DeCandia 2007], while others relax consistency through eventual application-level

inconsistency resolution or weak integrity constraints [DeCandia 2007, Stonebraker 2009],

Moreover, an application programmed to use one data store may not be able to use an-

other data store without significant re-implementation that uses a different interface.

This is a significant shortcoming compared to using a file system.

Most general-purpose file systems, particularly cluster file systems used in super-

computing, offer the traditional UNIX file system interface and POSIX-like semantics.
2 This makes applications portable: they can run on any file system that supports the

2Several scalable file systems, such as the Google file system [Ghemawat 2003] and HDFS [Shvachko
2010], offer customized, non-POSIX interface and limited semantics targeted at only a handful of work-
loads and access patterns. Such purpose-built file systems are rare in supercomputing environments where
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UNIX interface and POSIX semantics. Furthermore, most modern key-value data stores,

such as Google's Bigtable [Chang 2006], Amazon's Dynamo [DeCandia 2007], and their

open-source reincarnation [HBase 2010, Lakshman 2009], are built as user-level systems

layered on existing file systems; their main purpose is to serve as middleware to support

workloads, particularly small file workloads, that are not supported by the lower-layer

file system. This dissertation takes a different approach: it pushes these extensions that

support new workloads, such as highly concurrent directory accesses, inside the cluster

file system. This approach benefits both cluster file systems and applications: a file sys-

tem can support new features without changing the interface, thus making it compatible

with legacy applications that can run without any modifications.

2.5 Summary

Table 2.1 summarizes how GIGA+ compares with the other distributed hash-based in-

dexing techniques. The main facets of GIGA+ that differentiate it from prior work is the

combination of unsynchronized concurrent partition splitting on servers and inconsis-

tent mapping state at clients. GIGA+ also enables online server addition with minimal

disruption, lazy configuration update and load re-balancing. Finally, GIGA+ decouples

distributed indexing from on-store representation that facilitates easy deployment on

existing cluster file systems

applications generate a wide-range of workloads that are often non known a priori; such applications are
best served by a general-purpose file system. Although Microsoft NTFS is a very popular general-purpose
file system running on most (Windows-based) computers, UNIX-based file systems with POSIX semantics
remains the de facto choice for high-performance computing.
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Chapter 3

GIGA+ file system directory service

Most modern cluster file systems, discussed in the previous chapter, have directory sub-

systems that either have no decentralized indices or have decentralized indices that re-

quire strong synchronization and consistency. Past user experience and experimental

evidence has shown that these file system directories will not meet the growing scaling

requirements of metadata-intensive workloads of massively parallel applications of the

future [Ross 2006, Newman 2008, Raicu 2011, Kogge 2008].

This chapter introduces a new file system directory, called GIGA+ , that is designed to

push the scalability and concurrency of directory accesses, particularly when creating large num-

bers of files at high speed in a single directory. GIGA+ uses a novel parallel indexing technique

that is layered on existing unmodified storage systems. The rest of the chapter describes

the GIGA+ architecture and its key components. This chapter also presents the scale and

performance of the GIGA+ file system directory prototype for various configurations and

workloads.
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3.1 Overview of GIGA+ file system directories

GIGA+ file system directories are designed as a part of a user-level file system layered on

top of existing, unmodified file systems. An alternative to this layered approach would be

to modify an existing cluster file system to intrinsically support a distributed directory

service.1 However layering allows GIGA+ to provide an incremental extension to an existing

cluster file system, and it has two key benefits.

The first benefit is the ease of development and deployment which has been well

studied in prior work [Zadok 2006]. The ease of deployment is particularly important for

GIGA+ because most target applications (that need scalable directories) run in environ-

ments where it is both unreasonable and infeasible to replace existing file systems easily.

For such deployments, a "middleware" layer that sits between unmodified applications

and existing cluster file systems is an attractive approach.

The second benefit is that layering allows GIGA+ to re-use, rather than re-invent, so-

phisticated techniques of real-world production cluster file systems. Building on decades

of research in distributed systems, these systems have numerous features for high per-

formance, better dependability, and simpler manageability. Most cluster file systems

provide highly parallel techniques to read and write large amounts of data at high speeds

[Ghemawat 2003, Hartman 1993, Anderson 1995, Gibson 1998, Lustre 2010b, Welch 2008,

Schmuck 2002, Thekkath 1997]. These file systems also have sophisticated fault tolerance

mechanisms to tolerate various types of failures transparently without affecting the ac-

tive users [Thekkath 1997, Ghemawat 2003, Welch 2008]. Large-scale file systems also use

1GIGA+ techniques have also been implemented inside some releases of the OrangeFS cluster file system
[OrangeFS 2010, Yang 2011].
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Figure 3.1 — GIGA+ system architecture.
GIGA+ provides a user-level distributed file system directory service layered on an unmodified
file system.

system management tools for node membership and global configuration [Hunt 2010,

Welch 2007, Burrows 2006]. GIGA+ is not intended to replace membership or fault toler-

ance or data access mechanisms; it avoids this where possible and re-uses them where

needed.

Figure 3.1 shows the architecture of GIGA+ file system directories. It uses a client-

server architecture and has three components: unmodified applications running on clients,

the GIGA+ distributed indexing modules running on clients and servers, and a backend
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persistent store accessed by the server (and sometimes by the client). Figure 3.1 shows

two types of backends, a local file system (denoted by l_fs) and a cluster file system (de-

noted by c_fs).

By default, applications use the traditional UNIX VFS API, such as open(), creat() and

close() calls, to interact with GIGA+ layer. GIGA+ is a mounted as a file system using the

FUSE (File System in User-Space) toolkit [FUSE 2010]. Figure 3.1 shows how the FUSE ker-

nel module intercepts VFS calls and redirects them to the user-level GIGA+ client process

that sends the operation to an appropriate GIGA+ server process. The GIGA+ prototype

uses a pathname-based high-level API offered by FUSE.2

GIGA+ uses a novel high-performance distributed indexing technique that algorith-

mically determines how large directories are divided over many servers and how clients

address file system operations to the correct servers. GIGA+ clients send all metadata op-

erations, such as open(), create(), mkdir() and readdir(), to a GIGA+ server whose address is

determined by the indexing algorithm. The GIGA+ indexing algorithm also determines

how a server services a client's requests. A GIGA+ server can service a request on its own

or by collaborating with other servers.

In GIGA+ , the role of a server is only to manage a file system object like a directory

or a file. The server does not store the object itself; it only manages access to the object.

The GIGA+ server invokes the backend storage system to store the object persistently. In

other words, a GIGA+ server can either either create (or delete) an object in the backend

store or access an existing object from the backend store; depending on the choice of

2FUSE also offers a low-level API that uses i-node numbers. But it has a higher complexity because
the user-level code needs to handle caching and i-node number management. The high-level API has an
internal name lookup cache that simplifies implementation.
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backend store, GIGA+ servers may or may not read or write data from the file. For ex-

ample, GIGA+ servers can create a directory entry for a new file, change its attributes

over the time, delete the directory entry for a new file, or return a file descriptor for an

application to read or write.

The main idea of the layered GIGA+ design is to decouple directory indexing from

backend storage and representation. GIGA+ manages two namespaces: a logical names-

pace used by applications and a physical namespace used on backend stores. Conse-

quently, GIGA+ clients and servers are responsible for translating the application's logical

namespace operation into the backend store's physical namespace operation. For exam-

ple, if an application accesses a file /big-dir/f1.log, GIGA+ may may physically store in a

backend cluster file system at the pathname /mnt/clusterfs-store/d123/f567.log. GIGA+ clients

and servers work together to perform this application's namespace translation during

the file system metadata operations.

Through this decoupling, GIGA+ may have different code-paths for accessing data

and metadata depending on the choice of backend store. If the backend store is a lo-

cal system, like a Linux file system, GIGA+ servers are responsible for both translating

the logical namespace operations and performing the data operations using the physical

namespace. But if the backend is a cluster storage system, such as a parallel file system,

GIGA+ servers are needed only to translate the logical namespace to physical namespace.

The result of this translation, which may be a symbolic link or a file handle, is passed to

the GIGA+ client who can directly operate on the physical namespace through the cluster

file system's module. Figure 3.1 shows how a cluster file system based backend (c_fs) en-

ables GIGA+ clients to access the data through the physical namespace of a backend store
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without going through the GIGA+ server. In contrast, a local file system (l_fs) forces both

the data path and metadata path operations to go through the GIGA+ server.

By decoupling data path operations from metadata path operations, GIGA+ can in-

herit the scalable techniques for reading and writing file data that are already present in

the underlying cluster file systems. Thus, the GIGA+ user-level file system serves as a mid-

dleware that allows an existing cluster file system, without a scalable metadata path, to

provide high-performance metadata operations through distributed directory indexing.

3.2 Key components of the GIGA+ directory service

This section describes how the key GIGA+ components — indexing technique, GIGA+ clients

and GIGA+ servers — interact with each other.

3.2.1 GIGA+ distributed indexing technique

GIGA+ uses dynamically re-sizable hash-based indexing that splits a directory into parti-

tions and distributes these partitions on many servers. A directory in GIGA+ is created on

a single server; as this directory grows in size, the GIGA+ server divides it into multiple

partitions and places these partitions on different servers. Each partition has a range of

the hash-space associated with it, and a partition holds only those directory entries that

hash into its range. To access a file in a directory, GIGA+ clients hash the file name and

send the request to the server that holds the partition responsible for the hash-space

range corresponding to the hash of the file name. Two aspects of GIGA+ differentiate it

from prior work on adaptive hash tables such as extendible hashing [Fagin 1979] and lin-

ear hashing [Litwin 1980]. First is how GIGA+ servers split and distribute partitions, and
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second is how GIGA+ maintains partition-to-server mapping that allows clients to send

requests to correct servers.

GIGA+ servers split partitions independently without any system-wide coordination.

Each server manages only its own partitions, and makes independent decisions about

when to split its overflow partitions. This enables GIGA+ servers to expand a growing

directory in parallel without any total ordering of splits of overflow partitions and with-

out any distributed locks during cross-server splits. This uncoordinated growth enables

highly concurrent mutations of the GIGA+ directory index, but it also incurs two side-

effects.

The first side-effect is that each GIGA+ server has only a partial view of the directory

(i.e., a server only knows about the partitions it stores). To increase the set of known

partitions, each GIGA+ server also maintains the history of every split operation per-

formed on each of its partitions. The second side-effect is that the partition-to-server

mapping changes frequently when servers are simultaneously splitting old partitions to

create new partitions. To keep this mapping updated, every split will require the servers

to notify all other servers and all clients (potentially thousands of them!) to update their

mappings consistently. GIGA+ chose to avoid such a strong consistency for indexing state.

(However, GIGA+ provides strong consistency for the application data.)

GIGA+ allows partition-to-server mapping state to get stale and out-of-date. As a re-

sult, a client's mapping state (i.e., client's view of the directory) may be different from

the server's view. This causes a client to send its request to an incorrect GIGA+ server

that no longer holds the partition with the desired hash-space range because that hash-

space range was assigned to a different partition during a prior split. This incorrectly
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Figure 3.2 — Using GIGA+ indexing for inserts and lookups.
Directory /foo is divided into partitions that are distributed on three servers, such that each partition
holds a particular range in the hash-space (denoted by {x − y}). (1) Client b inserts a file test.log
in the directory by hashing the filename to find the appropriate partition using their partition-to-server
mapping. Assuming hash("test.log") = 0.4321, the filename gets hashed to partition P2 and the request
is sent to server R. (2) Server R receives the insert request and finds that partition P2 is full. Using the
GIGA+ split mechanism (described in Chapter 4), it splits P2 to create a new partition P6, with half the
hash-space range, on server Y . This example assumes that file test.log is also moved to P6. (3) Once
the split is complete, server R sends a response to client b who updates its partition-to-server map to
indicate the presence of P6 on server Y . (4) Other clients are unaware of this split and their mapping
becomes inconsistent, but GIGA+ continues to use this stale mapping state. Client a issues a lookup on
test.log and its out-of-date mapping indicates (incorrectly) that the entry is located on P2 on server R.
(5) The ”incorrect” server R receives client a’s request and detects from its split history that the desired
hash-space range been moved to another partition P6 on server Y . Server R uses the split history of P2

to update client’s stale mapping. (6) Client a then sends its request to the ”correct” server.
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addressed server uses the split history of the incorrectly addressed partition to provide

a lookup hint to the client. On receiving this hint, a client updates its stale mapping state

and sends the request to another server.

Figure 3.2 presents an example of insert and lookup operations on a GIGA+ distributed

directory. The example in this figure shows a directory /foo that is managed by three

servers, Y, G, and R. Figure 3.2 uses the notationPi{x−y} to denote the range of the hash-

space {x−y} held by a partitionPi. As the directory grows in size, partitions get filled up

and GIGA+ servers split them into two by transferring the second half of the hash-space

range to the new partition. Chapter 4 and 5 describe the details of how GIGA+ servers split

partitions in parallel and how GIGA+ clients can lookup entries without full knowledge

of server-side expansion.

3.2.2 Clients in GIGA+

GIGA+ clients are stateless: they do not cache any file system data or metadata, but only

keep (soft) state associated with directory indexing. Because GIGA+ is targeting concur-

rently shared directories with up to billions of files, caching such directories at each

client is impractical: the directories are too large and the rate of change too high. GIGA+ clients

do not cache directories and send all directory operations to a server. Directory caching

only for small rarely changing directories is an obvious extension employed, for exam-

ple, by PanFS [Welch 2008], but it may require careful engineering to handle cases of

write sharing. The current GIGA+ prototype chose to avoid the significant complexity of

implementing cache consistency protocols, and instead incurs the cost of one client to
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server message for small directories.3 In fact, production cluster file systems, like PVFS,

also avoid data caching on the client because they do not want to incur the complex im-

plementation and unpredictable performance of a distributed cache consistency mech-

anisms [PVFS2 2010].

GIGA+ clients only keep indexing state, such as partition-to-server mapping, num-

ber of partitions and list of servers, associated with directories that are presently being

accessed. A GIGA+ client uses this indexing state to determine the server that holds the

partition associated with the application's file request. Furthermore, all indexing state

can be stale and out-of-date; GIGA+ indexing can tolerate inconsistent mapping state and

resolve the inconsistency in a lazy manner (described in details in Chapter 5).

This soft state also makes it easy to handle GIGA+ client failures. If a client reboots, it

can only lose operations in flight and the indexing state with respect to GIGA+ directo-

ries. GIGA+ relies on existing techniques for lost operations: sequence numbers are used

to distinguish new messages from retransmitted messages and a server reply cache en-

sures that non-idempotent commands, like create, can return the original command's

response when a reply packet is lost. Lost mapping state is relatively easy to handle since

all client state for a directory can be reconstructed because a GIGA+ client with no state

is treated as a client with stale and inconsistent state which is eventually updated by

GIGA+ servers.

3In many HPC deployments, clients are considered "ephemeral" where they may be middleware li-
braries or MPI programs that may come or go more seamlessly than server-side processes.
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3.2.3 Role of GIGA+ servers

The primary purpose of a GIGA+ server is to manage partitions by synchronizing and se-

rializing interactions between clients and partitions. Note that GIGA+ does not use any

system-wide, multi-server synchronization or serialization; GIGA+ servers only ensure

correct and safe access by thousands of clients to a given partition. A GIGA+ server does

not store partitions, but it manages access to them. GIGA+ servers map logical hash par-

titions to be stored in an underlying backend storage system. Partitions can be stored in

a backend store that is either local to a server, such as Linux file systems or a key-value

store, or shared across and accessible from all servers, such as a cluster file system or fed-

erated NFS servers. GIGA+ servers rely on the backend store to control how a partition is

represented on persistent media. A store can represent a partition as a regular directory

or as flat files or as a specialized data-structure. This approach allows GIGA+ to decouple

indexing from on-disk representation.

GIGA+ servers are also responsible for splitting overflow partitions using a multi-step

process. First, the GIGA+ server takes a local lock on the partition being split. The server

then reads the partition from the backend store, scans all entries to find entries that

will migrate to the new partition, and creates the new partition with the appropriate

entries. Next, the server initiates a cross-server migration by sending the new parti-

tion to another server that will be responsible for it. Once the migration completes suc-

cessfully, both servers, the split initiator and the split recipient, update their mapping

state. Finally, the initiator server releases the lock on the overflow partition. The cur-
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rent GIGA+ prototype blocks inserts into the partition undergoing split; it led to a much

simpler implementation than using a sophisticated fine-grained locking scheme.

One challenge with splits is the overhead of migrating data entries. This cost is de-

pendent of the choice of the underlying backend store. If a GIGA+ server uses a local

backed store, splits need to move both the directory entries and the file data associated

with those entries. This makes splits much more expensive than a backend that is shared

among servers. For shared storage backends, such as a cluster file system, splits only

move the directory entries without moving the file data on the data servers. These split-

related tradeoff are discussed in details in Chapter 6.

Another challenge in cross-server splits is failure-free operation of splits. Ideally,

splits would require support for distributed transactions for atomicity in face of failures

[Gray 1992]. The current GIGA+ prototype does not implement this complex mechanism

and relies on reusing the backend cluster storage system's tools for reliable cross-server

migration during splits [Sinnamohideen 2010]. More generally, much of the failure han-

dling in GIGA+ is dependent on the functionality of the underlying backend stores, par-

ticularly cluster file systems.

Modern cluster file systems scale to sizes that make fault tolerance mandatory and

sophisticated [Ghemawat 2003, Welch 2007, Braam 2007]. With GIGA+ integrated in a clus-

ter file system, fault tolerance for data and services is already present, and GIGA+ does

not add major challenges. Reliability issues, such as on-disk representation and disk fail-

ure tolerance, are a property of the existing cluster file system's directory service, which

is likely to be based on replication even when large data files are RAID encoded [Welch

2008]. Moreover, if partition splits are done under a lock over the entire partition, which
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is the current state of GIGA+ prototype, the implementation can use a non-overwrite

strategy with a simple atomic update of which copy is live. As a result, recovery becomes

garbage collection of spurious copies triggered by the failover service when it launches a

new server process or promotes a passive backup to be the active server [Burrows 2006,

Hunt 2010, Welch 2007].

While the GIGA+ design assumes that is integrated into a full featured cluster file sys-

tem, it is possible to layer GIGA+ as an interposition layer over and independent of a clus-

ter file system, which itself is usually layered over multiple independent local file systems

[Ghemawat 2003, Shvachko 2010, Welch 2008, PVFS2 2010]. Such a layered GIGA+ proto-

type would not be able to reuse the fault tolerance services of the underlying cluster file

system, leading to an extra layer of fault tolerance. The primary function of this addi-

tional layer of fault tolerance is replication of the GIGA+ server's write-ahead logging for

changes it is making in the underlying cluster file system, detection of server failure,

election and promotion of backup server processes to be primaries, and re-processing of

the replicated write-ahead log. Even the replication of the write-ahead log may be un-

necessary if the log is stored in the underlying cluster file system, although such logs are

often stored outside of cluster file systems to improve the atomicity properties writing

to them [Chang 2006, HBase 2010].

To ensure load balancing during server failure recovery, the layered GIGA+ server

processes could employ the well-known chained-declustering replication mechanism to

shift work among server processes [Hsaio 1990], which has been used in other distributed

storage systems [Lee 1996, Thekkath 1997]. This technique replicates partitions so that

there are two copies of every partition and these two are stored on adjacent servers in
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the server list order. For example, if a directory is spread on 3 servers, all the primary

copy partitions on server 1 will be replicated on server 2, partitions primary in server

2 replicated on server 3, and partitions primary in server 3 will be replicated on server

1. Chained declustering makes it simple to shift a portion of the read workload of each

primary to its secondary so that the secondary of a failed node does not have a higher

load than other servers [Hsaio 1990]. Some systems have used chained declustering to

spread "hot" partition reads across its two servers [Lee 1996, Thekkath 1997], but hash-

ing in GIGA+ implicitly ensures uniform load distribution across all servers so this is not

needed.

On normal lookups and mutations, clients send their requests to the server that holds

the primary copy. A non-failed primary handles lookups directly and replicates muta-

tions to the secondary before responding. If the client's request times out too many times,

the client will send the request (marked as a failover request rather than an incorrectly

addressed request to the server that holds the replica). A server receiving a failover re-

quest participates in a membership protocol among servers to diagnose and confirm the

failover [Burrows 2006, Welch 2007]. While a node is down or being reconstructed, its sec-

ondary executes all of its operations, and uses chained declustering to shift some of its

read workload over other servers. This shifting is done by notifying clients in reply mes-

sages to cache a hint that a server is down and execute chained declustering workload

shifts. Clients either try the failed primary first and failover to learn about the failure or

try the secondary first and be corrected to retry at the primary.

In this scheme, if the replica's server also fails (along with the primary) then the

requested data becomes unavailable. One way to avoid this is by keeping more replicas,
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a practice adopted by large file systems like GoogleFS which keeps 3 to 6 copies of data

[Ghemawat 2003].

3.3 Evaluation of scale and performance

This section presents the experimental evaluation conducted to measure the scale and

performance of the GIGA+ file system directory prototype; it begins by describing the

experimental setup, including details about the cluster resources and configurations of

different storage backends used by GIGA+ servers, and then reports the measured per-

formance of the GIGA+ prototype for various workloads. Detailed analysis of the design

trade-offs made in GIGA+ are presented later in Chapters 4-6.

3.3.1 Experimental setup

All experiments are performed on a 128-node compute cluster, called Marmot, available

through the PRObE initiative [PROBE 2012]. The cluster comprised of machines running

the Linux 2.6.32-24-generic kernel (Ubuntu release) on hardware described in Table 3.1.

Each machine in this test cluster has one disk that is managed by a Linux file system.4

For experimentation, GIGA+ prototype was layered on different types of backend stores:

Linux local file systems — Most large clusters use local file systems to manage on-disk

storage, even when there is a higher-layer distributed storage system that manages data

access, data placement, and data migration. Many of the largest file systems in the world

rely on Linux local file systems such as Ext3/4, Reiser and XFS. For example, the Google

file system [Ghemawat 2003] and its open-source reincarnation Hadoop distributed file
4Real world cluster systems use more than one disk per machine [Dean 2009].
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CPU Dual Socket, Single Core AMD Opteron
Memory 16 GB (8GB per core)
Disks WD Black SATA 7200 RPM 2TB disk
Network Gigabit Ethernet connected to Black Diamond 6808 switch

Table 3.1 — Specifications of the cluster used for experimental analysis.
Experiments were performed in a dedicated setup where no competing services were using the
machines. This cluster uses the Emulab tools for machine setup [White 2002, PROBE 2012].

system (HDFS) [Shvachko 2010] rely on multiple disks on each server that are managed

by local file systems. The Lustre file system was layered on nodes running Linux Ext4

but is moving to run on ZFS [Dilger 2012]. Some cluster file systems, like Panasas's PanFS

[Welch 2008] and Ceph [Weil 2006a], build on specialized object-based local file systems.

Networked file systems — Networked file systems comprise of a client-server model

where applications make their file I/O requests through a file system client which com-

municates to the remote servers. Popular networked file systems often provide a kernel-

mode client that can rely on functionality, such as auto-mounting and VFS layer indi-

rection, provided by UNIX file systems [Sandberg 1985]. Some file systems, such as PVFS

[PVFS2 2010], Ceph [Weil 2006a], and HDFS [Shvachko 2010], also include a library inter-

face to link directly against applications.

Database-like local stores — The last few years have seen an emergence of purpose-

built database-like storage systems that store and access data using data structures op-

timized for high-throughput read and write performance. These systems typically offer

simple APIs like put() and get() operations and lightweight semantics required by the an-

ticipated workloads. Examples of such stores includes LevelDB [LevelDB 2012], which uses
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LSM-trees [O'Neil 1996], TokuDB [Tokutek 2010], which uses fractal trees [Bender 2007],

and Acunu [Acunu 2011], which uses stratified B-trees [Twigg 2011].

Experiments in this chapter use a synthetic workload generator tool, called mdtest

[MDTest 2010], that is used by many parallel file system vendors and users [Hedges 2010,

Alam 2011].5 This tool generates several types of workloads that perform weak scaling

where each server in the system performs a fixed amount of work and as the system

grows bigger the amount of work it does also increases proportionally. In the context of

GIGA+ directories, an N -server GIGA+ configuration handles a directory with N million

files; N varies from 1 server to 64 servers. Thus, a single server manages 1 million files,

a 2 million file directory is created on 2 servers, a 4 million file directory on 4 servers,

up to a 64 million file directory on 64 servers. GIGA+ uses eight application threads on

a single GIGA+ client to create files on one GIGA+ server. That is, for an N -server setup,

an experiment uses N GIGA+ clients each running 8 application threads that perform

directory operations such as file creates and lookups.

The primary workload is a create-intensive workload that creates large numbers of

files concurrently in a single directory. This is the most important workload and use-case

for this research. The second workload is a lookup-intensive workload that performs a

stat() on random files in a large directory distributed on multiple GIGA+ servers. Several

other workloads, such as directory scans and mixed workload with creates and lookups,

are also used to evaluate GIGA+ performance; results from such workloads are presented

in subsequent chapters of this dissertation.

5Earlier version of GIGA+ also used another benchmark program called metarates that provides similar
functionality using MPI-IO based workload generation [Metarates 2010]
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In all experiments in this dissertation, the workload generator tool generates file-

names that are random. However, the nature of filenames does not matter because GIGA+ hashes

the filename for all operations. All workloads are generated on an empty file system, un-

less specified. Finally, this experimental evaluation has not tuned the workload for opti-

mal efficiency because the focus of this evaluation is to understand the behavior of the

GIGA+ servers and clients. If an experiment changes these assumptions, it is described

explicitly in the setup of that experiment.

3.3.2 Scale and performance

The first experiment measures the baseline performance of various GIGA+ configurations

and file systems by creating one million files in a single directory using the mdtest tool.

Table 3.2 compares the number of files created per second in a single directory for several

local and networked file systems. This table shows file systems that were readily available

and easily accessible for this experiment.

The GIGA+ setup uses two machines, one client and one server. A directory stored

on the GIGA+ server does not split because there were no other servers. The mdtest tool

creates a million files using two methods: first, all file creates went through the VFS API,

and second, all file creates went through a non-POSIX library API that was created by

directly linking GIGA+ into the application. The library approach allows mdtest to use

custom object creation calls (called giga_creat()) avoiding system call and FUSE overhead

[Rajgarhia 2010] in order to compare to mdtest directly in the local file system.

For the local file systems, mdtest creates files using the UNIX file system API directly

in the file system. As expected, both ReiserFS and Linux ext3 deliver high directory in-
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Storage systems that store a directory
on one server

Files created per sec-
ond in one directory

Linux Ext3 16,470
Local storage systems Linux ReiserFS 20,705

Linux XFS 1,275
NFSv3 client-server 521

Networked file systems Hadoop distributed file system 4,290
PVFS cluster file system 1,064
ReiserFS backend (via VFS/FUSE) 5,977

GIGA+ client-server setup ReiserFS backend (via library API) 17,902
(one partition on server) LevelDB backend (via VFS/FUSE) 3,760

Table 3.2 — Single node file create rate on different backends.
An average of five runs of running the concurrent create workload to create a 1-million file
directory from scratch. The standard deviation across five runs of each experiment was too
negligible (less than 1%) to be reported.

sert rates.6 All file systems were configured with commonly recommended parameters

for metadata-intensive workloads such as enabling the -noatime and -nodiratime options.

Linux Ext3 used write-back journaling and the dir_index option to enable hashed-tree

indexing [Cao 2007], and ReiserFS was configured with the -notail option, a small-file op-

timization that packs the data inside an i-node for high performance [Reiser 2004].

Table 3.2 shows that GIGA+ with mdtest running on a remote machine using the li-

brary interface at the client and ReiserFS backend on the server creates 17,902 files per

second —this is about 80% the rate of local ReiserFS configuration in which mdtest cre-

ates 20,705 files per second in a local directory in ReiserFS. Using the library API in the

6XFS was extremely slow during the create-intensive workload. Although XFS provides great perfor-
mance for reading and writing large files, other metadata-intensive experiments have experienced similar
metadata performance issues with XFS [Wheeler 2010].

59



GIGA+ client-server setup requires one RPC message for each file create. This compari-

son shows the RPC messaging penalty incurred by GIGA+ client-server setup. The goal of

creating a library version was only to compare GIGA+ efficiency to local file systems; all

other experiments are performed using the VFS/FUSE interface.

However, creating a single file in GIGA+ through the VFS interface requires three RPC

messages. These RPCs are a result of how FUSE creates files: each create first performs

a getattr() to check if a file exists, followed by the actual creat() call, and finally another

getattr() after creation to load the created file's attributes.7 Each of these calls results in a

RPC message from the GIGA+ client to the server. As expected, Table 3.2 shows that using

the VFS/FUSE interface causes GIGA+ to run three times slower that the library API.

Table 3.2 compares the single GIGA+ server setup with networked file systems that

store a directory on a single machine. It shows the file create rate for the open-source

PVFS cluster file system, an NFSv3 filer, and the Hadoop distribute file system (HDFS).

Both HDFS and PVFS are cluster-scale systems with support for reliability and fault tol-

erance; HDFS uses a write-ahead log and replication in software, while PVFS relies on the

storage nodes to provide reliability using RAID. Because the current GIGA+ prototype has

not implemented reliability and fault tolerance mechanisms, it would have been unfair

to compare it with HDFS and PVFS with their fault tolerance mechanisms turned on.

For a more enlightening comparison, HDFS and PVFS were configured to be functionally

equivalent to the GIGA+ prototype. Specifically, in this experiment, the write-ahead log

and replication was disabled in HDFS. PVFS was also configured to use its default mode

7Several other file systems have also observed that aggressive attribute checking in FUSE affects the
system performance [Weil 2006a].
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which has no redundancy unless a RAID controller is added. Because the NFSv3 filer was

used in production, this experiment was not able to disable its RAID redundancy and

hence is slower than it might otherwise be. Table 3.2 also shows that GIGA+ directories

using the VFS/FUSE interface outperforms all three networked file systems; however,

GIGA+ is a skeletal prototype that has a much simpler code path and worse reliability

support than the production networked file systems compared in this table.

The next experiment uses GIGA+ configurations from Table 3.2 to evaluate the scal-

ability of distributed directories when GIGA+ is configured to use LevelDB and ReiserFS.

The main difference between these backends is the way hash partitions are stored in per-

sistent store. LevelDB stores partitions in a single LevelDB table of key-value pairs and

ReiserFS stores partitions as file system directories. Chapter 6 discusses how different

backends interact with the GIGA+ directory indexing technique.

Figure 3.3 reports the scalability of GIGA+ with LevelDB based backend store. It plots

the increase in average steady-state throughput (on Y-axis) as the number GIGA+ servers

doubles (on X-axis). Figure 3.3 has two graphs: the left graph shows the scalability of file

creations in a single directory and the right graph shows the scalability of file lookup op-

erations in a single directory. The file creation performance was measured by creating

large number of files, one million files on each GIGA+ server, in an empty directory using

the weak scaling setup methodology: an N -server configuration stores a directory with

N million files created concurrently by a total of N remote client machines (each with

eight workload generating mdtest threads). The lookup performance was measured in a

similar manner: N clients issued stat() requests for 25% randomly chosen files in a large

directory that contains N million files in a directory on N servers. For the lookup exper-
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Figure 3.3 — Scale and performance of file create and lookup rate of
GIGA+ with LevelDB backend store.
This figure shows how GIGA+ with LevelDB scales the file create rate (left graph) and file lookup
rate (right graph) with different number of servers. This configuration delivers a steady-state
throughput of roughly 160,000 file creates per second for a directory with 64 million files striped
on 64 servers — surpassing the most stringent file creation requirements in high-performance
computing [Newman 2008].
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iment, the file system was mounted and re-mounted after the directory was created and

before lookups were issued.

Figure 3.3 shows that GIGA+ on LevelDB backend scales linearly up to the size of 64-

server configuration, and can sustain an average file creation rate of 160,000 file cre-

ates per second in a single directory —this exceeds some of the most rigorous scalability

demands in supercomputing [Newman 2008]. The right graph in the figure shows the

scalable lookup performance of GIGA+ directories; GIGA+ can sustain a little less than

1,000,000 file lookups per second in a directory with 64 million files stored on a 64-server

configuration. Good lookup performance is expected because the index is not mutating

and load is well-distributed among all servers; the first few lookups fetch the directory

partitions from disk into the buffer cache and the disk is not used after that.

Figure 3.4 shows the scalability of GIGA+ layered on a ReiserFS backend and compares

them with other systems with support for scalable metadata. The experiments in this

figure are performed on a different cluster than the one used in Figure 3.3. This cluster

has 64 machines each with dual quad-core 2.83GHz Intel Xeon processors, 16GB memory

and a 10GigE NIC, and Arista 10 GigE switches. All nodes were running the Linux 2.6.32-js6

kernel (Ubuntu release) and GIGA+ stores partitions as regular directories in a ReiserFS on

one 7200rpm SATA disk. The experimental methodology is same as the previous scaling

experiment except that it is at a smaller scale: each server has 400,00 files (an N -server

configuration has 0.4N million files) and a maximum of 32 servers. Despite the minor

differences in the clusters and experiments, Figure 3.4 shows that GIGA+ with ReiserFS

backend provides scalability for up to 32 servers; it delivers a peak throughput of about

100,000 file creates per second. The difference in scalability between the LevelDB based
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Figure 3.4 — Scale and performance of file create rate of GIGA+ layered on
ReiserFS backend.
This graph shows the scalability of file create rate in large directory striped on varying number
of servers. For the 32-server configuration, this GIGA+ prototype delivers a little less than
100,000 file creates per second when creating a directory with about 13 million files. This
figure also compares GIGA+ with a modified version of HBase [HBase 2010] and experimental
performance reported by the Ceph file system [Weil 2006a].
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backend and ReiserFS based backend are explored in details in Chapter 6 after the reader

has learnt the trade-offs made by the GIGA+ indexing technique.

Figure 3.4 also compares GIGA+ with the scalability of the Ceph file system [Weil

2006a] and the Apache HBase distributed key-value store [HBase 2010]. For Ceph, Fig-

ure 3.4 reuses numbers from their original paper that reported experiments from a clus-

ter that used dual-core 2.4GHz machines with IDE drives, with equal numbered sepa-

rate nodes as workload generating clients, metadata servers and disk servers with object

stores layered on Linux ext3 [Weil 2006a].

HBase is used to emulate Google's Colossus file system that stores file system meta-

data in BigTable instead of internally on single master node [Fikes 2010]. Figure 3.4 shows

performance for an HBase configuration on a 32-node HDFS configuration with a single

copy (no replication) and two parameters disabled: blocking while the HBase servers are

doing compactions and write-ahead logging for inserts (a common practice to speed up

inserting data in HBase). This configuration allowed HBase to deliver better performance

than GIGA+ for the single server configuration because the HBase tables are striped over

all 32-nodes in the HDFS cluster. But configurations with many HBase servers scale more

poorly than GIGA+ (which has a much simpler code path).

3.4 Summary

This chapter presented a high-level overview of the GIGA+ distributed indexing scheme,

and the roles of GIGA+ client and server of a distributed file system directory service that

is designed to be layered on existing backend storage systems. This design is driven by

two goals set at the start of this research: (1) to extend existing cluster file systems to be

65



able to support scalable directory operations, and (2) to push the limits of scalability for

concurrent accesses, particularly file inserts, in a single directory.

Experimental evaluation of the GIGA+ directory prototype shows that the throughput

of file creates and lookups scales for configurations up to 64 servers and that the achieved

throughput exceeds the challenging requirements, particularly for file create rate in a

directory, of the high-performance computing community that motivated this research.

So what makes GIGA+ scale? The next few chapters answer this question by describing

the design decisions and analyzing the tradeoffs made by the GIGA+ directory service to

push for higher scalability and greater concurrency.

• Chapter 4 describes how GIGA+ servers scale-out a rapidly growing directory across

many servers in a highly concurrent and load-balanced manner.

• Chapter 5 shows how GIGA+ clients lookup partitions in GIGA+ servers in the face of

uncoordinated server-side directory expansion without using strong consistency

of the indexing state.

• Chapter 6 studies the interaction of the indexing technique with the underlying

backend store to understand how GIGA+ can efficiently leverage the strengths of

the backend store.
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Chapter 4

Asynchronous scale-out growth

GIGA+ is a concurrent indexing technique that divides a large directory into partitions

and distributes these partitions across multiple servers. The design of GIGA+ has two dis-

tinguishing tenets — (1) splitting and distributing directories on servers asynchronously,

and (2) allowing inconsistent and out-of-date partition-to-server mapping information.

They are discussed over the next two chapters.

This chapter pertains to the first tenet: asynchronous growth. It describes how the in-

dex grows incrementally with the size of a directory and scales out on many servers con-

currently without any global, system-wide synchronization and serialization. GIGA+ dis-

tributes large directories on servers such that each server only has a partial view of the

directory index; this allows GIGA+ servers to make independent and concurrent deci-

sions to expand the index. Furthermore, GIGA+ preserves this non-blocking property

when new servers are added to the system: it spreads the existing load on new servers in

a manner that minimizes data migration and achieves well-balanced load distribution.

67



This chapter also analyzes the cost-benefit of splitting large directories and the trade-

offs of splitting directories at different rates. Finally, this chapter concludes with how

GIGA+ mitigates imbalance for small directory workloads.

4.1 Incremental, hash-based partitioning

All directories are managed by GIGA+ servers: a directory, d, is created by the server

that handles the mkdir(d) operation and all subsequent accesses to d are sent to the

GIGA+ servers responsible for the directory's partition. A successful mkdir() operation

creates an empty directory with a single partition that stores all entries created in that

directory. In GIGA+ , when a directory is created and is small in size, it is represented by a

single partition that is managed by one server. When a directory grows big, GIGA+ splits

the directory into multiple partitions and distributes them on more servers.

This incremental growth property, i.e. the ability to divide a directory in proportion

to its size, is crucial for small directory performance. Most file system directories start

small and remain small [Dayal 2008, Agrawal 2007]. Figure 4.1 shows the distribution of

directory size (measured in number of entries) found in large-scale file system deploy-

ments in a prior study [Dayal 2008]. This figure shows that 99.99% directories contain

fewer than 8,000 files. GIGA+ uses this number to define small directories and the split

threshold: a directory with fewer than 8,000 entries is a small directory with one par-

tition, and this partition can be split into more partitions once it has more than 8,000

entries.
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Since only a few directories grow to really large sizes, incremental growth allows

GIGA+ to avoid degrading performance of small directories. Striping small directories

across multiple servers will lead to inefficient resource utilization, particularly for direc-

tory scans. A readdir() on a small distributed directory will force all servers to scan their

respective portions of the directory. These small scans will be dominated by disk seek

latency instead of data transfer latency. Perhaps a bigger benefit of incremental growth

is that it allows GIGA+ to handle adding new servers with minimal data re-distribution.

We discuss both scanning efficiency and adding servers in Section 4.3 and Section 4.5

respectively.

GIGA+ uses hash-based partitioning where each directory partition corresponds to a

range in the hash-space. When a directory is created, it has a single partition that holds

the entire hash-space range. GIGA+ prototype uses the cryptographic 128-bit MD5 hash

function [Rivest 1992]. Thus the single partition holds the entire hash-space range from

0 to 2128 − 1; which is denoted in the rest of this dissertation as (0, 2128 − 1]. GIGA+ does

not require the cryptographic properties of MD5; in fact, it can use any hash function

that produces hash values that are uniformly distributed in the hash space for any dis-

tribution of unique keys. This property of a hash function is important to allow GIGA+ to

load balance keys over partitions. If a large directory is divided inN partitions, each with

1/N -th the hash-space range, then the hash function should statistically distribute the

same number of keys in each partition.

Each filename (contained in a directory entry) is hashed and then mapped to a parti-

tion that holds the necessary hash-space range. For a small directory with a single parti-

tion, all files are hashed and inserted to that partition. When a partition overflows (after
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it has more than 8,000 entries), the GIGA+ server divides the overflow partition into a

new partition by assigning the second half of the overflow partition's hash-space range

to the newly created partition. Both partitions now have a hash-space range of the same

size: the original partition holds the range (0, 264 − 1] and the new partition holds the

range (264, 2128−1]. During splits, GIGA+ migrates approximately half the number of en-

tries (that have hash values in the second half of the hash-space range) from the overflow

partition to the newly created partition. As more entries are added to this directory, the

two partitions split further to create more new partitions (and half the hash-space range

of original partitions). In GIGA+ , the number of partitions for a directory is proportional

to the size of that directory.

GIGA+ distributes partitions on multiple servers using a deterministic round-robin

mapping of partitions to servers. This mapping relies on a list of servers known a pri-

ori. Servers on this list are ordered and the list is known to all GIGA+ servers that man-

age directories. GIGA+ relies on a configuration management system, such as Apache

ZooKeeper [ZooKeeper 2011], to manage server membership (discussed later in Section

4.5).

Thus, splitting allows GIGA+ to distribute a growing directory on many servers. By

spreading the partitions on many servers, GIGA+ can enable parallel access to large di-

rectories.
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4.2 Concurrent, unsynchronized splitting

Figure 4.2 shows how a directory is divided and distributed using GIGA+ indexing. In this

example, a directory is to be spread over three servers {S0, S1, S2} in three shades of

gray color. P (x,y]
i denotes the hash-space range (x, y] held by a partition with the unique

identifier i. This example and the remainder of this dissertation, assumes that hash val-

ues are fractional numbers in the range (0, 1]; for simplicity, the hash value zero is not

used. GIGA+ uses the identifier i to map Pi to an appropriate server Si in a round-robin

layout, i.e. server Si is computed as "i MODULO num_servers". Partitions and servers

uses a color coding: a partition with a certain shade of gray resides on the server with

the same shade of gray. Initially, at time T0, the directory is small and stored on a sin-

gle partition P
(0,1]
0 on server S0. As the directory grows and the partition size exceeds a

threshold number of directory entries, provided this server knows of an underutilized

server, S0 splits P (0,1]
0 into two by moving the greater half of its hash-space range to a

new partition P
(0.5,1]
1 on S1. As the directory expands, servers continue to split overflow

partitions onto more servers.

A key goal for GIGA+ is for each server to split independently, without system-wide

serialization or synchronization. Servers make local decisions to split a partition and can

split together at the same time. For example, in Figure 4.2, at time T3, servers S0 and S1

split partitions P0 and P1 simultaneously and independently without any inter-server

coordination.

The side-effect of uncoordinated growth is that other GIGA+ servers do not have a

global view of the partition-to-server mapping on any one server; each server only has a
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partial view of the entire index. Figure 4.2 shows the partition-to-server mapping table

as example of the server's view. For each GIGA+ server, this view consists of the partitions

that a server manages and the "child" partition (on different servers) created by splitting

these partitions. In Figure 4.2, at timeT3, serverS1 manages partitionP1 with hash-space

range (0.5, 0.625], and knows that it previously split P1 to create children partitions, P3

and P5, on servers S0 and S2 respectively. Servers are unaware about partitions created

by splits that happened on other servers and that did not target them; for instance, at

time T3, server S0 is unaware of partition P5 and server S1 is unaware of partition P2.

Specifically, each server knows only the split history of its partitions. The full GIGA+

index is a complete history of a directory partitioning, which is the transitive closure

over the local mappings on each server. This transitivity, enabled by split histories, is

useful for three reasons.

First, the full index is not maintained synchronously by any client. GIGA+ clients can

enumerate the partitions of a directory by traversing its split histories starting with the

zeroth partitionP0. However, such a full index constructed and cached by a client may be

stale at any time, particularly for rapidly mutating directories. Second, split histories en-

able GIGA+ servers to correct significantly inconsistent, out-of-date mapping state at the

clients that send operations to "incorrect" servers. Finally, split histories may also help

recreate the data-structures used to maintain the GIGA+ index. For instance, partition-

to-server mapping cached by servers that get lost due to server reboots, may be recon-

structed by traversing the split histories of a partition to learn about other partitions and

their servers.

74



4.3 Trade-offs of how to split directories

The previous sections described how cross-server partition splitting enables GIGA+ to

provide parallel access to large directories. This section analyzes the different ways for

GIGA+ to achieve this parallelism. GIGA+ expands a directory incrementally by splitting

an overflow partition into a new partition, with half the hash-space range, managed on

another server. This allows GIGA+ to spread a directory on only one new server at a time,

and it raises a question: if GIGA+ wants to harness all the available parallelism, why not split the

partition into N new partitions and distribute them on on N available servers?

This section studies the cost-benefit trade-off of splitting partitions using two poli-

cies. The first policy, called "incremental splits", is used in GIGA+ to split large directories

such that it uses one additional server with each partition split. The second policy, called

"split once", is to split a large directory once, when its first partition overflows, into N

partitions distributed on N servers (creating one partition per each server).

4.3.1 Benefits of splitting once on all servers

The benefit of splitting partitions on multiple servers is the higher throughput (opera-

tions per second) from using more servers. This section presents experimental evidence

of the how the throughput improves using the two split policies.

Experimental methodology — Experiments in this section report how the system

throughput scales as a growing directory is striped on increasing number of GIGA+ servers.

The workload in this experiment creates an empty directory and populates it with large

number of files proportional to the number of servers (in a weak scaling manner). An N -
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Figure 4.3 — Scale-out growth using ”incremental split” policy
This graph shows instantaneous file creation rate (Y-axis) during a 30-second period (X-axis)
from the beginning of an experiment that creates large number of files in a newly created
directory that is striped on varying number of GIGA+ servers (shown in the legend of the
graph). During this incremental growth scale-out phase, massive drops in aggregate create
rate correspond to inter-server splits of overflow partitions; after the splits are completed, the
throughput doubles as the number of servers is doubled.

server configuration will store a directory that with N million files created concurrently

by a total of N remote client machines (each with eight workload generating threads).

In other words, a single-server configuration has 1 million files created by 8 threads on

a single client, a two-server configuration has 2 million files created by two clients (with

16 total threads), and so on. Experiments were done on the cluster described in Table 3.1.

Each GIGA+ server stores its partitions in a LevelDB-based backend stored in an on-disk

Linux Ext3 file system managing a single 7200RPM disk.
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Observations — Figure 4.3 reports the instantaneous throughput, measured as

file creates per second, on a log-scale Y-axis during the first 30 seconds of the workload.

The throughput is studied for GIGA+ configurations of 1, 2, 4, 8, 16, 32 and 64 servers.

This figure highlights the effect of using "incremental split" policy during the 30-second

initial scale-out growth phase.

In Figure 4.3, the throughput of the single server remains flat, as expected, at roughly

7,500 file creates per second due to the absence of any other server. In the 2-server case,

the directory starts on a single server and splits when it has more than 8,000 entries in the

partition. When the servers are busy splitting, at the 1-second mark, throughput drops

significantly for a short time. Throughput degrades even more during the scale-out phase

as the number of GIGA+ servers goes up. For instance, in the 8-server case, the aggregate

throughput drops from roughly 14,000 file creates/second at the 4-second mark to as low

as 1,000 creates/second before growing to the about 28,000 creates/second. This happens

because all servers are busy splitting at the same time. Because GIGA+ splits partitions

in a binary manner, each of N -server configurations in Figure 4.3 has equal-sized range

in the hash-space. And the uniform distribution property of the hash function ensures

that all partitions fill up at the same rate and overflow at roughly the same time. This

causes all servers (where these partitions reside) to split without any co-ordination at

the same time. And after the split spreads the partitions on more servers, the aggregate

throughput achieves the desired linear speed-up in performance.

To avoid these significant periods of throughput degradation when all servers are

busy splitting partitions simultaneously, GIGA+ based systems could implement one of

the following optimizations. The first optimization would be to stagger splits by adding a

77



random back-off delay before each server decides to split its overflow partitions. Depend-

ing on the choice of back-off periods, it is conceivable that a much smaller set of servers

may split at about the same time. The second optimization would be to use a more fine-

grain locking. The current GIGA+ implementation locks the entire partition before split-

ting; a more sophisticated implementation to use multiple, fine-grained locks to scan and

migrate keys in the overflow buckets. However, the latter technique is significantly more

complex than the former technique. The outcome of both these optimizations would be

to alleviate the duration of splits and throughput degradation during splits by splitting

different partitions at different times. However, once all servers are split, the aggregate

throughput achieves the same linear scale-up as before.

Another observation in Figure 4.3 is the high variance during the 30-second incre-

mental growth phase. This variance is associated with the on-disk representation of GIGA+ hash

partitions. In this experiment, the GIGA+ servers store the hash partitions in a LevelDB-

based store. This causes the splits, which involve reading from disk, scanning entries,

writing appropriate entries to a different partition, and writing to disk, to be subjected

the complex interactions of partition representation and on-disk I/O behavior. Although

Chapter 6 studies the variability from this interactions in details, Figure 4.4 takes a short

detour to show what happens if disk I/O is eliminated. Figure 4.4 shows the behavior

for a similar experiment when GIGA+ servers store all partitions in-memory on a Linux

tmpfs backend. As expected, an in-memory store speeds up the experiment; Figure 4.4

shows the first 8-second period of the incremental scale-out phase. The main point of

this figure is to illustrate the incremental growth behavior more clearly than Figure 4.3:

splits cause the throughput to drop before the throughput doubles after invoking twice
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Figure 4.4 — Scale-out growth using ”incremental split” policy on a in-memory
Linux tmpfs backend store
This graph shows the scale-out growth similar to Figure 4.3 with the only difference that
GIGA+ servers store all partitions in memory. Compared to Figure 4.3, which used on-disk
partition representation, this figure shows much less variance in the observed throughput on
the Y-axis. Detailed analysis of variability from using on-disk representations is discussed later
in Chapter 6.

the number of servers. The rest of the experiments use on-disk backend stores (unless

explicitly specified).

An alternative to this "incremental splits" policy is the "split once" policy that splits

a large directory only once and splits it over all available servers. Figure 4.5 compares

these two split policies for a 32-server configuration that performs the same experiment

as described before in Figure 4.3. As expected, Figure 4.5 shows that the "split once" pol-
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Figure 4.5 — Comparing incremental splitting and ”split once” policy.
When a directory exceeds the threshold size, the ”split once” policy splits it once and on all the
servers; this figure uses a 32-server configuration to compare the incremental scale-out phase
using both the ”split once” policy and the incremental splitting policy.

icy is able to harness the maximum parallelism in the system by expanding the direc-

tory on all the servers instantly. The "split once" policy splits at the 2-second mark to

distribute the directory on all 32 servers. Compared to the binary splits in the "incre-

mental split" policy, this split takes longer and causes a higher throughput degradation

because spreading partitions on 32 servers involves more complexity than spreading it

on 2 servers. However, after its first and only split, the "split once" policy attains the

maximum throughput after the 7-second mark. In comparison, the "incremental split"

policy needs almost 19 seconds to achieve maximum system throughput.
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4.3.2 Cost of splitting once on all servers

So why use incremental splitting in GIGA+ ? Is there a reason to not use the "split once"

policy to spread directories on all servers instantly? To answer these questions, this sec-

tion studies the directory scan performance, particularly for small directories which con-

stitute more than 99.99% of all file system directories [Dayal 2008]. This analysis uses the

default GIGA+ split threshold of 8,000 entries. Using the "split-once" policy on a 64-server

setup will cause a directory with 8,000 entries to split into 64 partitions, one on each

server, with 125 entries per partition. Using the GIGA+ "incremental splits" policy, this

directory with 8,000 entries will split in two partitions with 4,000 entries each on two

separate servers. To understand the difference in these two split policies, this section

measures the performance and efficiency of the readdir() operation. Scans on directories

with "split-once" policy are referred to as split-once scans and scans on directories with

"incremental split" policy are referred to as incremental split scans.

Implementing readdir() in GIGA+ — Applications that need all the contents of a

directory, such as ls and find, typically use the readdir() library call.1 By default, the read-

dir() library call uses a 32 KB buffer that is passed to the the getdents() system call that

returns the directory entries in this buffer. If all directory entries are fit in the buffer,

the call returns to the application. For directories with millions of files, readdir() needs

to make multiple getdents() system calls that fetch 32 KB worth of entries repeatedly un-

til all entries are retrieved. Applications seeking high-performance scans often use big-

ger readdir() buffer sizes that minimize the number of getdents() system calls [Congleton

1In a UNIX-based system this library is typically libc or a similar variant.
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2011].2 For distributed directories, scans need to get entries from all partitions stored on

multiple GIGA+ servers.

The FUSE-based GIGA+ prototype intercepts the readdir() operation and forwards it

to the user-space GIGA+ client. This client determines the partitions associated with the

directory being scanned. If the directory is spread on N servers, the GIGA+ client issues

an RPC_READDIR message to all N GIGA+ servers in parallel. An alternative to this ap-

proach would be to send RPCs to a smaller set of servers, i.e. fewer than the total N di-

rectory servers, depending on dynamic factors such as server load and client buffering.

However, in comparison, sending the RPC message to all N servers concurrently may

yield lower latency readdir() operations and, more importantly, a simpler implementa-

tion.

Each RPC_READDIR message contains a 1 MB buffer that is used by the server to re-

turn directory entries. GIGA+ chose to use a 1 MB buffer because it is bigger than the de-

fault readdir() buffer size (32 KB), a practice recommended for faster scan performance in

both local file systems and cluster file systems [Congleton 2011, Dilger 2012]. If a GIGA+ server

has more than 1 MB entries, it responds with a cursor of how many entries were returned

successfully in one message. The client uses the cursor to request to the next batch of 1

MB directory entries. This process completes after the server acknowledges that it has

sent all directory entries (for all partitions) that it stores for the directory in question.

File system directory scans, however, do not guarantee the accuracy of returned re-

sults, particularly for mutating directories; in fact, POSIX semantics for readdir() also suf-

2Some users choose to improve scan performance by directly calling getdents() and performing
application-specific management of buffers filled with directory entries [Congleton 2011].

82



fer from the same problem [Drepper 2007]. The POSIX semantics state that readdir() must

return all directory entries (in an unordered manner), which exist when the call was is-

sued, once and only once. This does not guarantee the correctness of results when di-

rectory entries are created and deleted simultaneously during the readdir() operation

[Whitehouse 2007]. An entry that is created when readdir() is being processed may not

be listed in the results and, similarly, a deleted entry may still be listed in the results.

On the server side, for each RPC_READDIR message, the GIGA+ server fetches 1 MB

of directory entries from persistent storage. The current implementation of GIGA+ server

does not explicitly prefetch or read-ahead the entries from the on-disk store; it assumes

that the backend file system may already perform such optimizations. On the client side,

the GIGA+ client dynamically allocates memory as entries are returned in the RPC_READDIR

response messages. GIGA+ clients do not keep any state such as entry names or partition

identifiers. Once all entries are returned, the GIGA+ client returns these entries to the

readdir() caller. This design imposes a high memory pressure at the client because a di-

rectory with billions of files may not fit in memory unless the GIGA+ client explicitly

performs buffer management for readdir() operations. However the current GIGA+ im-

plementation chose to avoid complex client-side memory management to preserve the

simplicity of the implementation and interface of FUSE's readdir() implementation [FUSE

2010].

Methodology — Scan performance of GIGA+ directories is analyzed by studying three

different parameters that capture the effect of disk I/O, network messages and server

load. The three parameters used to understand readdir() performance for "incremental

split" and "split once" policies are:
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1. Buffer size in the RPC_READDIR message.

2. Size of the file system, measured in terms of number of directory entries (or files)

in all the directories in the file system.

3. Idleness of the servers used by the directory subsystem

To understand the effect of these parameters, this section uses a metric called scan

efficiency to measure the effectiveness of both split policies. Scan efficiency is defined

as the average time to scan each entry returned in the scan results; for example, if a

scan returns 1,000 entries in 5 seconds, the scan efficiency is 5 ms/entry. Thus, for scan

efficiency, the lower number is better than higher number. Because readdir() scans are

performed in parallel on all partitions of a directory, the scan efficiency is a per-server

metric, i.e. scan efficiency reflects the time to scan the partition on one server plus the

time to get the results to the client and consolidate them. In case of directories that span

multiple servers, the reported scan efficiency is the average of each server. In most cases,

the variance of scan efficiency across multiple servers is neglible (less than 2%); hence,

the measurements in this section do not report variance unless it is significant.

Parameter #1: Buffer size in RPC_READDIR message

The buffer size used in an RPC_READDIR message determines how many client-

server messages are required to complete a readdir() request. A large buffer size reduces

the number of messages at the cost of higher memory pressure and bigger network mes-

sage sizes, while a smaller buffer size may need higher number of messages. For a 1 MB

buffer, readdir() completion time for incremental split scans was higher than split once
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Phase 1 Insert 8,000 files in an empty directory (dir1)
Phase 2 Scan directory dir1 created in Phase #1
Phase 3 Insert 64 million files in another empty directory (dir2)
Phase 4 Scan directory dir1 created in Phase #1

Table 4.1 — Four phases of the multi-phase scan experiment. This experiment is
performed a 64-server setup that starts with a new, empty file system.

scans. This happens because a 1 MB buffer cannot fit all the entries that the server needs

to send back to the client. Clients need to send two RPC_READDIR requests for the in-

cremental split scans case, while the split-once scans require a single RPC_READDIR

request. By doubling the buffer size to 2 MB, both the scan use-cases complete their read-

dir() operations in about the same time.

However, readdir() completion time alone is insufficient to capture the server-side ef-

ficiency of directory scans. Scan efficiency is measured using a four-phase experiment,

described in Table 4.1, on a 64-server configuration. This experiment creates files in

phase 1 and 3, and scans the small directory in phase 2 and 4. Phase 1 starts with an

empty directory and creates 8,000 files, just enough to trigger a split that divides the

directory either in 64 partitions (of 125 entries each) on 64 servers for the "split once"

policy or in 2 partitions (of 4,000 entries each) on 2 servers for the "incremental split"

policy. Phase 3 creates 64 million files in another new directory; irrespective of the pol-

icy, this directory is large enough to split in 64 partitions of 1,000,000 entries each that

are spread on 64 servers. The two measurement phases, phase 2 and phase 4, perform

a similar operation: scan the small directory of 8,000 entries create in phase 1. The key

idea is that Phase 2 scans a small directory in a file system containing only one small
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Split-once policy Incremental split policy

Scan efficiency in phase 2 2.96 ms/entry 0.10 ms/entry
Scan efficiency in phase 4 6.41 ms/entry 0.17 ms/entry

Table 4.2 — Average scan efficiency of servers during multi-phase scans in Table
4.1
Scan efficiency variance across 64 servers was neglible (>5%) and is omitted.

directory, while Phase 4 scans a small directory in a file system containing one small and

one big directory. To eliminate any effects of caching, the file system was unmounted

and re-mounted after every phase.

Table 4.2 reports the scan efficiency of scan operations performed in the two mea-

surement phases (phase 2 and phase 4). Recall that scan efficiency is defined such that a

smaller number indicates better performance. Table 4.2 shows that scan efficiency of a

small directory using "split-once" policy is 30 times worse than the efficiency from us-

ing "incremental splits" policy. This difference in scan efficiency grows to about 37 times,

when the file system on each server grows by 1,000,000 entries. In other words, with more

entries in a file system, scan efficiency of small directories using "split-once" policy is or-

ders of magnitude worse than using "incremental splits" policy. This observation can be

explained by the disk efficiency during scans. The cost of small scans is dominated by

seek and rotation time, which has much lesser effect on large scans (4,000 entries) that

are dominated by data transfer time. This is consistent with current disk performance

where it is generally recommended that scans of 1-4MB, which is the size of a track, are

much more efficient than smaller scans [Anderson 2003, Schlosser 2005, Schindler 2011].
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Each directory entry in GIGA+ is about 256 bytes, and a large scan is about the size of a

track on modern disks while a small scan (of 125 entries) is only about 32 KB in size.

Parameter #2: Total number of entries in the file system

Results from the previous experiment in Table 4.2 indicate that scans become ineffi-

cient as the number of entries in the file system grows over time. This phenomenon is

explored further by varying the number of entries in a file system.

Figure 4.6 shows how the scan efficiency varies with different file system sizes (shown

on X-axis). It denotes the number of entries on each server using a pair (x, y) where x is

the number of entries in small directories and y is the number of entries in large directo-

ries. For example, the configuration (4M, 10M) indicates a file system where each server

has four million entries in small directories and ten million entries in large directories,

i.e. on a 64-server setup, this configuration has 256 million entries in small directories

and 640 million entries in big directories.

The Y-axis in Figure 4.6 shows the scan efficiency of readdir() on a small directory for

both the "split once" policy and the "incremental splits" policy. Figure 4.6(a) shows the

scan efficiency of a small directory with 8,000 entries as a function of the file system size.

It shows that as the file system grows in size, both split policies yield a more inefficient

scan performance. The "incremental splits" policy, however, has 1-2 orders of magnitude

better scan efficiency than the "split once" policy.

This analysis raises a question: why not increase the split threshold such that each

server will have more entries (which results in more efficient scans)? To answer this ques-

tion, split threshold is increased by four times, from 8,000 entries to 32,000 entries. The
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growth in split threshold changes the notion of a small directory, i.e. if a system uses

the "split once" policy, the directory splits over all servers only when it has more than

32,000 entries. Thus, in a 64-server setup, each server has 500 entries after the first split.

Similarly, for the "incremental splits" policy, a directory with 32,000 entries has 16,000

entries on each server after the first split.

Figure 4.6(b) shows the scan efficiency of the two split policies with the larger split

threshold of 32,000 entries. These results show that scans in "split once" policy are in-

efficient compared to "incremental splits" policy, and that both scans are more inef-

ficient with the increasing file system sizes. While this is similar to the observations in

Figure 4.6(a), scans are two to three times more efficient when the split threshold is larger

(i.e., 32,000 entries).
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With a large split threshold, the partitions are also large and scanning these partitions

is more efficient than scanning smaller partitions. The disk bandwidth utilization is much

higher than when the split threshold was smaller (i.e., 8,000 entries). However, large split

threshold will take longer for a large directory to split to all available servers. This causes

GIGA+ to harness the system-wide parallelism much slower than when the split threshold

was lower.

Parameter #3: Idleness of the GIGA+ directory servers

So far, all experiments show the scan efficiency of an idle system, i.e. a system where

there is only one outstanding request — the scan request issued by the client. A more re-

alistic use-case would have different types of directory operations simultaneously. This

real-world scenario is emulated by performing directory scans in conjunction with si-

multaneous update and lookup requests on the GIGA+ server.

This experiment starts with a file system with small directories and big directories.

It then randomly picks ten small directories to be scanned. Each directory is scanned

once and there is a 30-second pause in between scans of two directories. During this 30-

second quiet period, other clients in the system perform a mix of update and lookup

operations of all other directories in the system. The mix workload constitutes using a

chmod() operation and a stat() operation on files chosen randomly from directories that

are not being scanned.

Figure 4.7 shows the scan efficiency of each of the ten scan requests performed dur-

ing this experiment. It reports results for two different split thresholds (8,000 entries and

32,000 entries) and compares the "split-once" policy and "incremental splits" policy. For
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both policies, Figure 4.7 shows that the first scan request is one to two orders of magni-

tude more inefficient than all other scan requests. This happens for two reasons that are

related with LevelDB based on-disk backend store.

The first reason is that the initial scan request causes the LevelDB store to read data

from the disk. This disk read makes the initial scans run much slower, but fetches the

scanned data in memory for future use. The second reason is that the intermediate 30-

second period of updates causes a lot of activity in LevelDB store. Update requests cause

LevelDB to handle modified entries in its buffers and lookup requests force more data

from disk, possible evicting other buffered data. Because LevelDB uses a periodic sort-

and-merge mechanism before flushing the in-memory buffers to disk, a mixed workload

forces LevelDB to reorganize the partitions in an efficient sorted manner. Consequently,

all subsequent scans are reading from an almost sorted data structure resulting in similar

scan performance. Chapter 6 describes the structure and operations of LevelDB in details.

91



Fi
gu

re
4.

7
—

Sc
an

effi
ci

en
cy

of
a

bu
sy

sy
st

em
.

Th
is

gr
ap

h
sh

ow
st

he
sc

an
effi

cie
nc

y
of

te
n

re
ad

di
r(

)r
eq

ue
st

sf
or

te
n

di
ffe

re
nt

sm
all

di
re

ct
or

ies
(o

fs
am

e
siz

e)
in

an
ex

ist
in

g
lar

ge
fil

es
ys

te
m

.T
he

se
sc

an
sa

re
pe

rfo
rm

ed
af

te
ra

30
-se

co
nd

pe
rio

d
du

rin
g

wh
ich

ot
he

rc
lie

nt
sa

re
iss

ui
ng

ra
nd

om
lo

ok
up

s
(s

ta
t()

)a
nd

up
da

te
s(

ch
m

od
())

to
ot

he
rfi

les
in

th
e

fil
e

sy
st

em
.G

ra
ph

(a
)r

ep
or

tt
he

sc
an

effi
cie

nc
y

fo
rG

IG
A+

co
nfi

gu
ra

tio
n

wi
th

bo
th

th
e

”s
pl

it-
on

ce
”

an
d

”in
cr

em
en

ta
ls

pl
its

”
po

lic
y

fo
ra

sp
lit

th
re

sh
ol

d
of

8,
00

0
en

tri
es

.G
ra

ph
(b

)
ha

s
a

sim
ila

r
se

tu
p

bu
tw

ith
a

lar
ge

rs
pl

it
th

re
sh

ol
d

of
32

,0
00

en
tri

es
.B

ot
h

gr
ap

hs
an

aly
ze

fil
e

sy
st

em
so

fd
iff

er
en

ts
ize

s.

92



Key lessons —

• Splitting enables more parallelism: GIGA+ distributes hash partitions of a large

growing directory on many servers.

• The rate of splitting partitions, i.e. either splitting a partition into two partitions or

N partitions, is governed by various factors including the nature of the workload

(i.e., scans and lookups interfere with inserts) and the complexity of splitting (i.e.,

getting an N -server split right is much harder than a 2-server).3

4.4 Understanding the effectiveness and ineffectiveness
of splitting

The previous section described how and when splitting a large directory on more servers

helps in harnessing available parallelism in the system. This section probes the rationale

of splitting further by exploring the question: under what circumstances does splitting pro-

vide little or no benefit, and explores whether GIGA+ can split only when there is benefit in doing

so? The remainder of this section quantifies the benefit, measured as the quality of load

balancing, of splitting and devises a strategy to mitigate cases when the cost of splitting

outweighs its benefits.

3In fact, Lustre has proposed a N -server split once strategy for distributed directories several years
ago, but the complexity of that operation has stymied its release in the main distribution [Lustre 2010a,
2009].
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Figure 4.8 — Hash-space distribution in GIGA+ indexing.
The top figure shows an example of power-of-two number of servers where each GIGA+ server
is responsible for 1/4th the hash-space range. The bottom figure shows the imbalance among
non-power-of-two number of GIGA+ servers caused by different in hash-space range held by
partitions: two of the five partitions (and their servers), in this example, have only half the
hash-space range as the remaining partitions (and their servers).

4.4.1 Effectiveness of splitting: load-balanced distribution

So far, all analysis has used configurations where the number of GIGA+ servers is a power-

of-two. This is a special case because it is naturally load-balanced with only a single par-

tition per server: the partition on each server is responsible for a equal sized hash-range.

Figure 4.8 shows an example of a GIGA+ hash tree for a directory that is split into four

partitions (top part of the figure) that are stored on four servers. Because each partition

has 1/4-th the hash-space range, servers have a balanced load distribution.
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When the number of servers is not a power-of-two, however, there is load imbalance.

The bottom half of Figure 4.8 illustrates an example of the hash tree for a large directory

that is striped on five servers. In this figure, the partitions on the last level of the tree

(level 3) are responsible for half the hash-space range of the partitions on the previous

level (level 2) of the tree. This factor of two difference is a result of two-way partition

splits that divides the hash-space range among the partitions. As a result, servers have

imbalanced distribution of hash-space range.

To better understand the quality of GIGA+ load balancing, Figure 4.9 shows the load

imbalance for different configurations of GIGA+ and compares it with consistent hashing

[Karger 1997]. The experimental methodology and observations are described below.

Methodology — Figure 4.9 reports results of an analytical simulation that measures

the load imbalance for a large directory that is striped on different server configurations.

Each configuration contains two parameters, the number of servers in a cluster (shown

on X-axis) and number of partitions on each server (shown in the legend).

For each configuration, the Y-axis of Figure 4.9 represents the load imbalance. Load

is computed using a Monte Carlo model of hash-space division that decides which par-

titions should split using a uniform random function distribution. For GIGA+ , when the

number of servers N is not a power-of-two, 2r < N < 2r+1, then a random set of N − 2r

partitions from tree depth r, each with range size 1/2r, will have split into 2(N − 2r)

partitions with range size 1/2r+1. For consistent hashing, the hash-space range held by

each partition is determined randomly (typically, based on the hash value of the name

of the server [Stoica 2001]).
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Figure 4.9 — Load-balancing efficiency of GIGA+ and consistent hashing.
These graphs show the quality of load balancing measured as the mean load deviation across
the entire cluster (with 95% confident interval bars). Like virtual servers in consistent hashing,
GIGA+ also benefits from using multiple hash partitions per server. GIGA+ needs one to two
orders of magnitude fewer partitions per server to achieve comparable load distribution relative
to consistent hashing.

The load imbalance on Y-axis is measured as the average fractional deviation from

even load. Here's an example to illustrate load variance computation. In a cluster of 10

servers, for example, each server is expected to handle 10% of the total load; however,

if two servers are experiencing 16% and 6% of the load, then they have 60% and 40%

variance from the average load respectively. For different cluster sizes, the variance of

each server measured. Figure 4.9 reports the the average (and 95% confidence interval

error bars) over all the servers.
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Figure 4.10 — GIGA+ indexing hash-tree before and after splitting.
The top figure shows an example of tree of hash-space range of a large GIGA+ directory. It
shows that at most times partitions are either at tree depth r or r + 1. The bottom figures
shows the state of the tree as the GIGA+ directory splits to create more partitions. With more
partitions in the server, each partition is responsible for much smaller range of the hash-space.

Observations — GIGA+ configuration in Figure 4.9(a) shows the results of five random

selections of N − 2r partitions that split to the r + 1 level. Figure 4.9(a) shows the ex-

pected periodic pattern where the system is perfectly load-balanced when the number

of servers is a power-of-two. But with non-power-of-two number of servers the load im-

balance among servers is high because some servers have hash partitions from level r

and others have hash partitions from level r + 1.
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However, Figure 4.9 shows that load imbalance reduces if GIGA+ continues to split

to create more than one partition on each server. Until now, GIGA+ split a large direc-

tory to keep a partition on each server, which is sufficient for a directory to harness all

available parallelism in the system. In contrast, Figure 4.9 shows that splitting can also

benefit load balancing, when partitions continue to split even after all servers are al-

ready in use. Splitting the directory to create more partitions that number of servers

causes the hash-space tree, in Figure 4.10, to grow deeper; and as the number of levels of

the tree increases, the range of hash-space maintained by each partition decreases. (As

described earlier, at tree depth r, each partition hold 1/2r-th part of the hash-space.) As

a result, when each server has multiple partitions, each partition will manage a smaller

portion of the hash-range, and the sum of smaller partitions held on a server will be less

variable than a single large partition. This phenomenon explains the observation in case

of GIGA+ in Figure 4.9(a) where splitting to create increasing number of partitions per

server significantly improves load balance when the number of servers is not a power-

of-two. For instance, if GIGA+ splits to create 8 or more partitions on each server, the

servers on average have less than 5% load imbalance in the system.

A similar approach of assigning multiple hash-space ranges to each server is also used

to alleviate load imbalance in consistent hashing [Karger 1997]. Systems such as Chord

DHT [Stoica 2001] and Amazon Dynamo key-value storage system [DeCandia 2007] re-

fer to this approach as virtual servers. Consistent hashing associates each partition with a

random point in the hash-space (0, 1] and assigns it the range from this point up to the

next larger point and wrapping around, if necessary. Figure 4.11 illustrates how consis-

tent hashing's random hash-space distribution works. In this figure, the top two figures
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Figure 4.11 — Hash-space distribution in consistent hashing with and without
virtual servers.
Each color in this figure indicates the server that holds the corresponding key range. The top-
left figure shows a 2-server consistent hashing setup where the hash-space is randomly divided
between the red and blue server. The top-right figure show how the key range is re-distributed
in consistent hashing when a third server, green, is added and is assigned a random part of the
existing range (from red server). Given the high variance in the range distribution in the both
the top figures, the bottom figure illustrates how consistent hashing divides the key range in
many more virtual partitions that are distributed among the same set of servers three servers.
Consistent hashing literature refers to this distribution of multiple key ranges to the same server
as virtual servers [Stoica 2001, DeCandia 2007]. (This figure were found on the Internet [Robson
2010].)
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show a case where each server, corresponding to a different color, holds uneven parts

of the range. Because of the random distribution of the range, both the 2-server and 3-

server configuration has uneven ranges associated with them. To reduce this variance in

range distribution, the bottom illustration in Figure 4.11 shows how consistent hashing

assigns multiple ranges to each of the three server

Figure 4.9(b) shows the load imbalance of using multiple partitions per server (or vir-

tual servers) in consistent hashing by using five samples of a random assignment for each

partition and how the sum, for each server, of partition ranges selected this way varies

across servers. Because consistent hashing's partitions have more randomness in each

partition's hash-range, it has more than twice the load variance than GIGA+ . Figure 4.9(b)

shows that increasing the number of hash-range partitions significantly improves load

distribution in consistent hashing too. But consistent hashing needs to split much more

— the figure shows that consistent hashing needs more than 128 partitions per server to

match the load variance that GIGA+ achieves with 8 partitions per server — consistent

hashing roughly requires an order of magnitude more partitions.

4.4.2 Ineffectiveness of splitting (and how to avoid it)

Splitting partitions has two benefits: higher concurrency and better load balancing. The

natural question to ask is whether GIGA+ should always keep splitting overflow partitions

and distributing new partitions on available servers? To answer this question, this sec-

tion explores the circumstances under which the cost of splitting outweighs its benefits.

And in the context of this question, there are generally two strategies found in storage

systems.
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The first strategy, generally used in classic database indexing, is to never stop split-

ting, i.e. keep splitting whenever a partition overflows. Classic database indices, such as

extendible hashing [Fagin 1979], linear hashing [Litwin 1980], and B-trees [Comer 1979],

were developed for out-of-core indexing of records that did not fit in memory of single-

node database systems. These indexing schemes, both hash-tables and B-trees, will split

a partition (or a leaf page in a B-tree) when its size exceeds the recommended size of

optimal storage allocation units, such as pages, disk blocks or large disk extents [Gray

1992]. This implies an unbounded number of partitions per server as the table grows in

size.

The second strategy extends the classic "never stop splitting" technique in distributed

storage systems such as Google Bigtable [Chang 2006] and Apache HBase [HBase 2010].

Partitions are managed by servers and, on overflow, they are split to be distributed on

other servers. However, in this technique, overflow partitions continue to be split and

spread on many servers for load-balancing and decentralization.

GIGA+ adopts a strategy similar to other distributed systems in that splitting parti-

tions is used to parallelize access to a large directory by distributing load over all servers.

However, the key difference from these other techniques is that GIGA+ can stop splitting

partitions after each server has an equal share of work. For a given number of servers,

Figure 4.9 demonstrates that GIGA+ can determine the number of partitions per server

that provide the desired and tolerable load variance among servers.

When GIGA+ splits the directory into enough partitions and reaches the limit on the

number of partitions per server, it stops splitting and distributing partitions. If a parti-

tion overflows, GIGA+ servers continue to grow the partition in size and allows the back-
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end store to continue its own out-of-core indexing of the on-disk representation of the

hash partition. The layered implementation of GIGA+ , described earlier in Chapter 3, de-

couples the two actions: splitting hash partitions for parallelism and load balancing, and

storing hash partitions on the backend storage system. GIGA+ servers handle the inter-

server splitting and rely on the backend storage system for intra-server representation.

Because most storage systems perform out-of-core indexing, when GIGA+ stops splitting,

all overflow partitions continue to be indexed internally by the underlying storage sys-

tem without involving the GIGA+ servers.

Figure 4.12 compares the effect of two different splitting policies: stop splitting parti-

tions after distributing on all servers (used in GIGA+ design) and keep splitting partitions

on overflow continuously (used in most database-like systems). GIGA+ is setup to run us-

ing these two policies. Both policies are evaluated using the same methodology: create

a large directory on a 16-server configuration that stores all partitions in an in-memory

Linux tmpfs backend store. These servers are similar to the cluster setup described ear-

lier in Chapter 3. Directory entries are created in a directory which starts empty. Using

128 client threads, this experiment creates a total of 8 million entries in the directory.

The tmpfs in-memory backend is used to isolate the effect of on-disk representations; the

effect of partition splits can now be narrowed to cross-server migration of directory en-

tries. Subsequent experiments will demonstrate the effect of using on-disk backends for

storing hash partitions.

Figure 4.12 reports the instantaneous throughput measured as the number of files

created in each second (on a log-scale Y-axis) during the time it takes for the experiment

to complete, i.e. time required for the directory to contain 8 million files distributed on
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(b) Policy: Keep splitting continuously

Periodic splits cause throughput drop

Figure 4.12 — Comparing policies to split partitions (in an in-memory setup).
This figure compares the system throughput of 16-server GIGA+ setup with in-memory back-
ends that differ only in their splitting policies. The top graph shows the GIGA+ policy that stops
splitting after all servers are in use (in this case, splitting stops after there is one partition per
server). The bottom graph shows the policy of splitting partitions continuously as they overflow
(as in classic database indices); this policy is detrimental in a multi-server setup because even
splitting in an in-memory system, without any disk I/O bottleneck, causes a 10% slow down in
the running time of the experiment.

16 servers. In this figure, the top graph labeled (a) shows a split policy that stops when

every GIGA+ server has one partition, causing partitions to ultimately get much bigger

than 8,000 entries. The bottom graph, labeled (b), shows the continuous splitting policy

used by classic database indices where a split happens whenever a partition has more

than 8,000 directory entries. The difference between the graphs is that continuous split-

ting of overflow partitions results in 10% longer completion time than when splitting is

stopped after all servers are in use. With continuous splitting, the system also experi-
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Figure 4.13 — Cost of splitting to create more partitions (in an on-disk system).
The cost of splitting partitions, measured on the X-axis as benchmark completion time, for
configurations with different number of servers (on Y-axis) for different split policies. The
32 partitions/server case shows the continuous splitting policy and the 1 partition/server case
shows the GIGA+ policy to stop splitting when all servers are in use. The other intermediate
configurations help to highlight the case when the cost of splitting to create extra partitions
(from 16 to 32 partitions/server) far outweighs the load balancing benefits from these extra
partitions/server as shown in Figure 4.9.

ences periodic throughput drops that last longer as the number of partitions increases.

This happens because repeated splitting maps multiple partitions to each server, and

since uniform hashing will tend to overflow all partitions at about the same time, multi-

ple partitions will split on all the servers at about the same time.4

4This behavior of all partitions splitting simultaneously can be fixed by engineering techniques that
cause each server to randomly delay splitting for small random period of time. However, in our experience,
this had minimal effect in improving the completion time of the experiment. But staggering splits may be
useful for other applications that require some "soft real-time" performance guarantees.
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This cost of continuous splitting — the 10% increase in benchmark completion time —

in an in-memory setup gets significantly worse when hash partitions are stored in an on-

disk backend store. Figure 4.13 compares the cost of these two splitting policies on an on-

disk backend store used by a varying number of servers. This experiment creates a large

directory that starts empty and grows to be big using the weak scaling methodology used

earlier (in Sections 4.3 and 3.3). AnN -server configuration stores an empty directory that

will contain N/2 million files created concurrently by a total of 8N -threads running

on N remote client machines, i.e. 1-server configuration has 500,000 files created by 8

application threads running on one client machine, 2-server configuration has 1,000,000

files created by 16 application threads running on two client machines, and so on. Each

GIGA+ server stores its hash partitions in an on-disk Linux ext3 file system managing a

single 7200RPM disk.

Figure 4.13 shows the time required to complete this directory creation benchmark

(on Y-axis) for different cluster configurations (on X-axis). It emulates the two split poli-

cies: the 1 partition/server case shows the GIGA+ policy to stop splitting when all servers

are holding one partition of a directory and the 32 partitions/server case shows the other

splitting policy that splits repeatedly 32 times, instead of continuously until end of exper-

iment.5 This figure also shows the cost of splitting a bounded number of times through

the 4, 8, and 16 partitions/server cases.

In Figure 4.13, for multi-server configurations, the 32 partitions per server case takes

more than twice as much time to complete the benchmark than 1, 4, 8, and 16 partitions

5This experiment chose to stop splitting after 32 times and not continue splitting continuously because
the latter choice took a very long time to run for each run.
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per server. To compare this on-disk configuration with the in-memory configuration in

Figure 4.12, look at the case of 16 servers on X-axis. Using on-disk partitions, Figure 4.13

shows that the continuous splitting policy (emulated by 32 partitions/server) is almost

50% slower than GIGA+ splitting policy (indicated by 1 partition/server); the same policy

was only 10% slower in the in-memory configuration of Figure 4.12.

In GIGA+ , the cost of splitting, measured as benchmark completion time in Figure 4.13,

is related to the benefit of splitting, measured as load-balancing efficiency in Figure 4.9.

Recall from Figure 4.9(a) that the load-balancing efficiency from using 32 partitions per

server is only about 1% better than using 16 partitions per server. However, splitting to

create twice as many partitions makes the system slower by a factor of two: Figure 4.13

shows that the 32 partitions/server case takes more than twice the amount of time to

complete the experiment than the 16 partitions/server case.

The final observation in Figure 4.13 is that splitting to create more partitions per

server does not result in longer benchmark completion time. In fact, experiments with 4, 8,

and 16 partitions/server complete about 10-30% faster in all cluster configurations than the

experiments with 1 partition/server. This is counter intuitive because splitting to create

more partitions per server results in additional disk I/O traffic and data migration traffic.

This behavior is explained in Chapter 6 which discusses the effect of different types of

backend storage systems and their on-disk representations of hash partitions.

Key lessons —
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• Although splitting to create one partition on each server is sufficient to harness

the available parallelism in the system, it often results in an imbalanced load dis-

tribution.

• To improve load balancing, GIGA+ splits more to increase the number of partitions

mapped on each server.

• However, splitting continuously starts having diminishing returns: the cost of ad-

ditional splitting significantly outweighs the benefits of this splitting. Excessive

splitting to incurs high disk I/O and data migration traffic, but these extra par-

titions on each server provide neglible improvement in load balancing or system

throughput.

4.5 Handling new server additions

Large cluster-based systems need to add new server resources to meet growing perfor-

mance requirements. This section describes how GIGA+ adapts to addition of new servers

in a running directory service. 6

When a new server is added to a system, it is not servicing any requests and is not

providing any load or capacity sharing until data is migrated to it. This highlights the

key trade-off between additional data migration overhead and transient load imbalance.

When new servers are added to an existing configuration, the system is immediately no

longer load balanced because the new servers are still idle. The servers need to re-balance
6Removing servers through decommissioning, not through failing and replacing, is not as common as

adding servers in high-performance computing. This dissertation does not address this problem; GIGA+ as-
sumes that migrating directory state from servers scheduled to be removed can be done out-of-band by
data migration and copy tools.
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among themselves by migrating directory entries from existing servers. Before this can

happens, existing servers need to know the presence of new servers in the system. The

rest of this section shows how GIGA+ addresses these two issues.

4.5.1 How does GIGA+ migrate partitions on new servers?

The goal in GIGA+ is to minimize the number of directory entries migrated to the new

servers. This corresponds to trying to minimize how hash partitions are re-created and

re-mapped to the new server configuration (with additional servers). GIGA+ uses a round-

robin partition-to-server mapping shown in Figure 4.2; partitions are mapped to servers

using {iMOD num_servers} where i is a partition identifier. As described earlier in Sec-

tion 4.1, round-robin mapping enables faster parallelism when a directory is small and

growing by spreading new partitions on more servers. However, for round-robin map-

ping, a naive server addition scheme would require re-mapping almost all hash partitions

(and their directory entries) to new servers whenever new servers are added. Consider

a configuration that has N GIGA+ servers with M partitions each. If k new servers are

added, then round-robin mapping of {i MOD num_servers} will cause (N − 1)M parti-

tions to be re-mapped on N + k servers in the system — in other words, all but the first

N partitions may end up migrating to different servers.

GIGA+ avoids this extensive re-mapping of hash partitions by changing the partition-

to-server layout when new servers are added to the system. To spread existing partitions

on newly added servers, GIGA+ does not use round-robin mapping — GIGA+ servers use

a sequential layout to map partitions on new servers. Figure 4.14 illustrates this in details.

This figure shows an example where the original configuration has 5 servers with 3 par-
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Figure 4.14 — Server additions in GIGA+.
To minimize the amount of data migrated, indicated by the arrows that show splits, GIGA+
changes the partition-to-server mapping from round-robin on the original server set to sequential
on the newly added servers.

titions each. Partitions P0 to P14 use a round-robin rule (for Pi, server is i mod N , where

N is number of servers). After the addition of two servers, the six new partitions, P15 to

P20, are mapped to new servers using the new sequential layout rule: iDIVM , where M

is the number of partitions per server (in Figure 4.14 M is set to 3 partitions per server).

This mechanism poses two questions.

The first question is why would GIGA+ servers split partitions to new servers? Recall

from Section 4.4.2 that GIGA+ stops splitting a directory that has spread on all available

servers with the desired load distribution. In such a case, if a large directory continues
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to grow larger, GIGA+ hash partitions on each server may overflow but not be split fur-

ther because any further splitting does not provide any decentralization or parallelism

benefits. As a result, GIGA+ relies on the backend storage systems to perform out-of-core

indexing of individual partitions that are growing in size. At this point, when the system

is saturated and highly utilized, adding new servers is one way to improve throughput.

Typically, this is when new servers are added to most systems. Once new GIGA+ servers

are available, existing servers can inspect its partitions that are overflowing and are eli-

gible to be split to new servers (as described above).

The second question is how do you choose M , which is the number of partitions on

the newly added servers? It is important to note that M may be different for different

directories; small directories that have not yet fully striped on the existing set of servers

decide M when they have to start using a the newly added servers. For a large directory,

M can either be equal to or be greater than the number of partitions in the original set

of servers. Figure 4.14 shows the case where the number of partitions of each new server

is the same as number of partitions on existing set of servers. Results from earlier in

this chapter, in Section 4.4.1, demonstrate that the existing set of servers store multiple

partitions on each server depending the desired degree of load distribution. Thus, it is

expected that using the same value ofM both on existing servers and old servers may not

yield any load imbalance. However, Figure 4.10 explained how splitting to create more

partitions reduces the hash-space range held by each partition. This requires that the

value of new servers have a bigger M because the newer partitions are going to hold a

much smaller range in the hash-space.
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While round-robin mapping enables a growing directory to stripe on all available

servers quickly, sequential mapping for the tail set of partitions does not disturb pre-

viously mapped partitions more than is mandatory for load balancing. In fact, this is

similar to consistent hashing with virtual servers where each server in consistent hash-

ing holds multiple ranges in the hash-space. A new server that is also assigned multiple

ranges that it has to transfer from the old servers responsible for that range. If the new

server is assigned N ′ virtual servers, the random range partitioning in consistent hash-

ing may force this server to contact N ′ old servers to transfer a part of the range to the

new server.

4.5.2 How do existing clients and servers learn about new servers?

Like the asynchronous incremental directory expansion, GIGA+ also uses asynchrony in

the way presence of new servers is known to existing servers in the system. New servers

are advertised to existing servers in a lazy, on-demand manner. Like many large-scale

distributed systems [Ghemawat 2003, Welch 2008], GIGA+ also relies on a distributed con-

figuration management protocol, such as Apache ZooKeeper for HDFS [Hunt 2010], to

maintain a globally consistent version of the ordered server list. The arrival of a new

server and its order in the global server list is declared by the configuration manage-

ment protocol which leads to each existing server eventually noticing the new server.

Once it knows about new servers, an existing server can inspect its partitions for

those that have sufficient directory entries to warrant splitting and would split to a newly

added server. Based on the current configuration of the index, i.e. the number of par-

titions in the system, the existing servers know deterministically which partitions can
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be split to create new partitions on new servers using the sequential layout scheme de-

scribed above. The order in which an existing server inspects partitions can be entirely

driven by client references to partitions, biasing migration in favor of active directories.

Another strategy to force splits would be based on administrator control driven by a

background traversal of a list of partitions whose size exceeds the splitting threshold.

Clients learn about availability of new servers through the update messages triggered

after addressing incorrect servers. Once the old servers have completed splitting exist-

ing overflow partitions onto new servers, all accesses to the split partitions will trigger

an update from the server to the client. For all addressing errors related to a split involv-

ing a newly added server, the update message comprises of the new bitmap and the list

of newly added servers. The lookup algorithm used at the client uses this information

when computing the address of the server responsible to hold a partition with a given

identifier. This allows GIGA+ clients to continue normal mode of operations without syn-

chronously learning about the new servers in the system until they are accessed.

4.6 Other issues: mitigating server overloads

Although hashing and splitting in GIGA+ should spread directory contents and traffic

over many servers, there are two cases that may create a hot-spot on any server: first is

the case of small directories and second is the case of a millions of clients booting up to

access one directory. Both cases can be mitigated through randomized server selection.

The incremental growth property of GIGA+ ensures that small directories, with fewer

than 8,000 entries, will only have one partition (the zeroth partition P0) on one server. In

order to avoid placing all small directories on one server, GIGA+ chooses a random per-
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mutation of the global server list for each directory during mkdir() operation. This server

list is stored as an extended attribute along with i-node attributes of the directory entry.

For example, consider a directory /dir1. During the mkdir() call for dir1, the directory en-

try of dir1 has an extended attribute that keeps the server list for dir1. This server list may

be different from another directory, for example, dir2. GIGA+ uses the first server in dir1's

server list to hold the zeroth partition P0 created during mkdir() . This allows small di-

rectories to be distributed evenly among all servers as long as the random permutations

of server list are created with a good permutation function.

Similar randomization also helps in mitigating another use-case that may potentially

overload the GIGA+ server that holds the zeroth partition for big directories. However, if

millions of application threads choose to access one particular (large) directory for the

first time, they may all overwhelm the server that holds the zeroth partition. To mitigate

this use-case, GIGA+ clients avoid contacting the server with zeroth partition, and instead

pick any random server from the directory's server list. If the randomly chosen server

is not responsible for the desired partition, it is possible that either the server does not

have any partitions or the server has split the partition.

In case the chosen server does not have any partitions for that directory (because

the directory has not yet expanded to that server), then the server updates the client

to try the parent of the partition it will eventually manage. This process continues until

the client reaches the server that holds the appropriate partition. Because GIGA+ splits

in a binary manner and maintains a split history, GIGA+ servers can traverse the hash-

tree, described earlier in this chapter, to determine the presence or absence of desired

partitions.
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In the other case, when the chosen server is not responsible for the operation sent

by the client (because of a split that is not known to the client), then that server treats

the client's mapping state as inconsistent and invokes the process of updating the client's

state using techniques described in Chapter 5. In a nutshell, the GIGA+ server sends a

"hint" to fix the client's inconsistent mapping state and point it to a server that may be

aware of the desired partition. The client then retries by sending the message to another

server. This process is repeated until the client reaches the correct server.

However, there is one use-case that is not mitigated by random server selection: if a

million new clients all access one particular small directory. This use-case of highly pop-

ular non-distributed objects may be alleviated through careful use of techniques, such

as replicating the popular object and distributing read traffic over multiple replicas or

caching the popular object closer to the client, that are beyond the scope of this disser-

tation.

4.7 Summary

This chapter presented the design, implementation and analysis of a key research con-

tribution in GIGA+ indexing technique — the ability to split overflow partitions on mul-

tiple servers without system-wide co-ordination, serialization or blocking operations.

GIGA+ uses asynchrony both when the number of servers is known a priori and when

new servers are added to the system.

The two main lessons emerged from analysis of trade-offs made by the GIGA+ index-

ing technique. These lessons are widely applicable to other distributed systems aimed at

massive scalability and concurrency.
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• While splitting and distributing partitions is necessary to enable parallel access,

splitting needs to be stopped when the system is load balanced on all available servers.

• Further splitting brings no performance benefit — in fact, it may have adverse af-

fect on the overall system performance — until new servers are added and work

needs to be transferred to them.
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Chapter 5

Bounded inconsistency of indexing state

The previous chapter discussed the first design tenet of GIGA+ about splitting and dis-

tributing large directories in an asynchronous manner. This chapter focuses on the sec-

ond tenet: tolerating inconsistent state. The term "inconsistency" generally has two con-

notations. One that is visible to the applications and other that is internal to the system.

The former definition typically pertains to the inconsistency of application data; this

data inconsistency is exposed to the application that is often in the best position to re-

solve these inconsistencies. GIGA+ uses the latter connotation, i.e. it has inconsistencies

that are always within the system (and not exposed to the application) and are associated

with the indexing state (and not pertaining to the application data).

GIGA+ tolerates inconsistency of the internal indexing-related state and provides

strong consistency of the application data. Because GIGA+ is layered on top of backend

storage systems, applications and users are offered the same data consistency guarantees

as the underlying storage systems. In particular, GIGA+ focuses on providing POSIX-like
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file system semantics which guarantee that once a directory entry is created in a direc-

tory all subsequent reads (or lookups) will see that directory entry.

This chapter presents how GIGA+ indexing embraces inconsistency by allowing the

partition-to-server mapping to be stale and out-of-date. GIGA+ relies on the server-side

split histories to resolve these inconsistencies in an lazy manner. Clients that use incon-

sistent mapping state need extra messages to reach the correct server. This overhead

is governed by two factors: frequency of update messages and new information in each

update message. This chapter studies the trade-offs that control these two factors.

The GIGA+ approach to use inconsistent updates was motivated by the complemen-

tary approach — to keep partition-to-server mapping consistently updated all the time

— used in IBM GPFS's distributed directory implementation [Schmuck 2002]. IBM GPFS,

as described earlier in Chapter 2, maintains a strongly consistent and synchronized map-

ping table in the on-disk i-node of the directory that is distributed on a shared disk sub-

system [Schmuck 2002]. This property reduces the throughput of a workload that con-

currently creates many files in one directory. GPFS users experience a significantly lower

file creation rate for such workloads [Artiaga 2010, Hedges 2010, Cope 2005]. This disser-

tation is motivated by the need to avoid consistency and synchronization bottlenecks

that hinder the scalability of high file creation rate of parallel applications.

5.1 Allowing inconsistent partition-to-server mapping

Recall from Chapter 4 that GIGA+ distributes a large directory's partitions such that each

server only has a partial view of the index. For each server, this view comprises of the

partitions that it manages and the history of how each of these partitions was split by
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the server. GIGA+ clients, on the other hand, may or may not have any mapping infor-

mation. A new client that accesses a large directory for the first time does not know the

partition to server mapping, but a client that has been accessing a large directory contin-

uously gradually caches enough partition to server mapping. This section describes how

GIGA+ enables clients go from having no state to having enough state without disrupting

the correctness of operations.

Imagine a client that performs a stat() operation to access a file F in a large directory

D striped on many servers. Client begins by resolving the D's parent directory entry to

get the i-node for D. In addition to the default i-node attributes, this i-node contains

extended attributes for the GIGA+ specific directory metadata, including the server S0

that holds partition P0 and the server list associated with D. Thus a new client assumes

that D has only one partition P0 and knows only the partition-to-server mapping, {P0 :

S0}, about that single partition.

Client uses the hash of the filename, hash(F ), to compute the partition identifier

that may hold the file. Since the client knows only about one partition of the directory, it

starts starts by assuming thatP0 holds the entire hash-space range and sends the request

to server S0. Partition P0 may be the correct partition for file F if hash(F ) falls within

the current hash-space range ofP0. The client operation, thus, reached the correct server

that services it and sends a reply to the client.

However, partition P0 may no longer be responsible for file F because a previous

server-side split, which the client has not learned about, caused P0 to change its hash-

space range. In such a case, the client has addressed an incorrect server. This incorrectly

addressed server,S0, detects the addressing error by recomputing the partition identifier
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by re-hashing the filename and comparing the partitions (and their hash-space ranges) it

stores. (This process is similar to what the GIGA+ clients use send requests to appropriate

partitions and servers.)

An addressing error indicates that the incorrectly addressed server was managed a

partition that held the file at some point in the past. In other words, the partition has split

one or more times which migrated the file to a different partition that is responsible

for the hash-space range corresponding to the hash value of the filename. The client's

partition-to-server mapping state is stale and unaware of the "new" partitions on the

server.

The incorrectly addressed server S0 uses its split history to send a reply that updates

the client's indexing state. The client updates its cached version of the indexing state

and recomputes the partition identifier to resent the request to a different server. If the

newly addressed server S1 also detects that its partition P1 is no longer responsible for

the file, it sends another update to the client based on its own split history. Client applies

the update to its state and retries the request to another server until it finally reaches

the correct server.

The drawback of allowing inconsistent indices is that clients may need additional

probes before addressing requests to the correct server. The number of addressing errors

incurred by any client is governed on two key factors: the new indexing state in an update

message sent by a server and the frequency of at which servers send updates to clients.

The next two sections, Section 5.2 and 5.3, discuss these in details.
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5.2 Effect of new indexing state in update messages

The new indexing state in an update message sent by a server represents a server's guess

about about the staleness of a client's indexing state. A GIGA+ server uses the number

of partitions to encode the directory's indexing state. The top part of Figure 5.1 shows

the hash tree of a GIGA+ directory that has split into several partitions on three servers.

When a client first accesses the directory it aware only about the zeroth partition P0 of

the system. The update messages sent to a client with stale mapping allow the client to

learn about different parts of the hash tree. These update messages can be in three forms

described below.

The first form is that update messages only include information about the first split

of partition P0 which is partition P1. Subsequent update messages from subsequent ad-

dressing errors point to more splits. In other words, the client starts from the root of

the tree and performs a depth first traversal of the hash tree. This is labeled as update

form #1 in Figure 5.1(a). Thus, a client with an empty index may send O(log(N)) incor-

rect probes, where N is the total number of partitions in the system, before reaching

the correct partition. This is the worst case for GIGA+ where each update message only

points to the next partition in the system, i.e. the client traverses the hash tree one-level

at a time. Furthermore, when GIGA+ servers have more that one partition per server, this

mechanism may cause a client to address the same server multiple times as it searches

for newer partitions.

To reduce the number of addressing errors, GIGA+ servers can send the entire split

history of the incorrectly addressed partition. Unlike the naive technique, this second
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Figure 5.1 —Update message sent in response to addressing errors from clients with
inconsistent mapping state.
Using a sample large directory split across three servers (show in the top part of this figure), this
illustration shows three different forms of update messages each with more new indexing state. Although
GIGA+ relies of the highest encoding message labeled update form #2 (which needs more space than
others), it allows GIGA+ clients to be learn about the state of the index much faster that the other
forms of update that are more space-efficient (but incur more addressing errors).
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form of updates allows GIGA+ clients to traverse multiple levels down the tree in one

update message. However, these update messages only tell the client about a fragmented

part of the hash tree as illustrated in Figure 5.1(b) with the label update form #2.

To further increase the new indexing state in an update message, GIGA+ includes the

split history of not just the incorrectly addressed partition on a server, but the split history

of all partitions stored on that server. Figure 5.1 shows that this form, labeled as update form

#3, of update message allows a client to learn about more partitions quickly. In fact, this

bounds the number of addressing errors to be no more than the number of GIGA+ servers

in the system. In other words, for a given directory, a new client needs to visit each server

at most once to have a complete index of partitions.

To represent the split history of all partitions on a server, GIGA+ uses a bitmap-based

encoding to represent the partition state on each client and server. In this bitmap, a

value '1' at the ith bit indicates that Pi has been created, and value '0' indicates that Pi is

absent and has not been created (yet). As partitions split, the bit value at the position cor-

responding to the new partition's identifier is set to `1' at the server that does the split.

Figure 5.2 illustrates how bitmaps are used when partitions are split and when partitions

are accessed in GIGA+ .

For every directory, each GIGA+ server creates and maintains a separate bitmap. This

bitmap tracks a server's partial view of the directory comprising of all partitions stored

on a server and split histories of those partitions. And since GIGA+ servers split indepen-

dently, each of them has a different bitmap. Union of bitmaps from all servers represents

all the partitions of a large directory.
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Figure 5.2 — Bitmap-encoding to store partitions and their split histories.
A bit-value of ”1” indicates the presence of a partition on a server, and bit-value ”0” indicates
the absence of the partition on a server. This example show how bitmaps are used to choose a
new partition to split into and to lookup the partition that holds the desired filename.

This bitmap encoding reduces both the memory footprint in clients and servers, and

the network traffic caused by update messages from servers to clients. In the simplest

bitmap scheme, the size of the bitmap is proportional to the number of partitions in

that directory. However, for large directories with many partitions, GIGA+ can further

compact these bitmaps by using the knowledge of how the GIGA+ hash-space tree splits.

Recall from Section 4.2 that the hash tree grows deeper with more splits; in other

words, most partitions are either at level r or level r + 1 in the hash tree because of

repeated splits of their parent partitions. Thus the bitmap, such as Figure 5.2, is likely
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going to be a long sequence of 1s (indicating interior nodes of the tree representing par-

ent partitions that have split) followed by a sequence mixed with 1s and 0s (indicating

leaf nodes of the hash tree representing partitions at tree depth r or r + 1). Encoding of

such bitmaps can be more efficient using compression techniques like run-length encod-

ing [Salomon 2004] or using techniques that enable provide space efficiency at the cost

of higher addressing errors [Litwin 1996].

The latter trade-off is particularly interesting. The GIGA+ encoding takes more space

(to represent split histories of all partitions on a server) and allows clients to learn about

the hash tree faster, which results in fewer addressing errors. In contrast, the distributed

variant of linear hashing, called LH*, takes a complimentary approach: a space-efficient

index representation for a higher number of addressing errors [Litwin 1996]. LH* uses a

two variables to represent the current state of the hash index: the highest depth of the

hash tree at which all partitions have split and the index of the most recently created

partition. But the cost of this two-variable representation is that LH* clients may suffer

from addressing errors even when the index stops splitting on the LH* servers, particu-

larly when they are using optimizations for high concurrency splitting [Litwin 1996].

A similar scheme can be used to further optimize the GIGA+ bitmap encoding. GIGA+ can

also use two variables corresponding to LH*: the lowest index in the bitmap that is set to

`0' and the highest index in the bitmap that is set to `1'. However, the GIGA+ design chose

to incur fewer addressing errors at the cost of a minimal space overhead, and GIGA+ guar-

antees that these addressing errors will stop once servers stop splitting a directory's par-

titions.
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5.3 Effect of directory mutation rates

The cost of using inconsistent indexing state is governed by another factor: the frequency

at which clients receive these update messages. The client update frequency is a function

of two variables that are dependent on the workload. The first variable, called insert rate,

is the rate at which servers are splitting partitions. The second variable, called lookup

rate, is the rate at which clients are accessing (but not mutating) that directory.

If the insert rate is lower than the lookup rate, the partitions are splitting slower than

the rate at which clients' mapping state becomes inconsistent. And even if a client's map-

ping becomes stale due to a recent split, it can catch up quickly because it already knows

about most other existing partitions. If the insert rate is higher than the lookup rate,

clients' mapping state becomes inconsistent more often. In other words, the server-side

view of the hash tree is deeper than the client-side view of the tree. This requires clients

to get updated quickly either through frequent addressing errors or through update mes-

sages that convey more new partitions.

To understand the cost of using inconsistent mapping, Figure 5.3 measures the in-

correct addressing overhead, on Y-axis, as the fraction of all client requests that were

re-routed during a create-intensive benchmark for different configurations (on X-axis).

In this benchmark, an N -server configuration stores an empty directory that will con-

tain N/2 million files created concurrently by a total of N remote client machines, i.e.

1-server configuration has 500,000 files created by 8 application threads running on one

client machine, 2-server configuration has 1,000,000 files created by 16 application threads
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Figure 5.3 — Fraction of requests that incur addressing errors due to inconsis-
tent indexing state at GIGA+ clients.
This graph measures the fraction of requests that are addressed to incorrect servers for config-
urations with varying number of GIGA+ servers. For every configuration, the experiment was
repeated with one partition per server and with 16 partitions per server. The observed results
show a very neglible incorrect addressing overhead (less than 0.05% of total requests).

running on two client machines, and so on. For all server setups, this figure shows results

of GIGA+ configurations that use one partition per server and 16 partitions per servers.

Figure 5.3 shows that, in absolute terms, fewer than 0.05% of the requests are ad-

dressed incorrectly; this is only about 250 requests per client because each client is doing

500,000 file creates. The number of addressing errors increases proportionally with the

number of partitions per server because it takes longer to create all partitions. In cases

where the number of servers is a power-of-two, after each server has at least one par-

tition, subsequent splits yield two smaller partitions on the same server, which will not

lead to any additional addressing errors.
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Figure 5.4 — Occurrence of addressing errors based on the workload executed
by a GIGA+ clients.
This graph shows how often addressing errors occur and when do they stop for two separate
GIGA+ clients, one that performs inserts in a growing directory (top graph) and other that
performs lookups in a directory that it has never accessed before (bottom graph). In both cases,
incorrect addressing occurs for only for initial few requests until the clients learns about all the
servers in the system.

To better understand how addressing errors occur and when they stop happening,

Figure 5.4 takes a closer look at the worst case from Figure 5.3: the 30-server configu-

ration with 16 partitions on each server. This figure consists of two graphs that report

the number of addressing errors (on Y-axis) incurred by two GIGA+ clients during the

execution of their respective workloads.

The top graph, Figure 5.4(b), shows the number of errors encountered by each re-

quest generated by one client thread (i.e., one of the eight workload generating threads

per client) as it issues 50,000 file create requests (on the X-axis) in a directory. This client

thread is one of 240 client threads that are all simultaneously inserting 50,000 files in

a single directory that is spread on 30 GIGA+ servers with 16 partitions on each server.
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Figure 5.4(b) has three observations. First, the index update that this client thread re-

ceives from an incorrectly addressed server is always sufficient to find the correct server

on the second probe. Second, addressing errors are bursty, one burst for each level of

the index tree needed to create 16 partitions on each of 30 servers, or 480 partitions

(28 < 480 < 29). And finally, that the last 80% of the work is done after the last burst of

splitting without any addressing errors.

To further emphasize how little incorrect server addressing clients generate, Fig-

ure 5.4(c) shows the addressing errors of a new client that executes a lookup workload.

This new GIGA+ client issues 10,000 lookup requests (on X-axis) in a large directory that

it has not accessed before but was created before it starts issuing lookup requests. This

large directory is created in the previous experiment, i.e. 15 million files in a directory

distributed on 30-server configuration with 16 partitions per servers. Compared to the

insert-only workload in Figure 5.4(b), this lookup-intensive client incurs frequent ad-

dressing errors at the beginning because it starts with no state about the GIGA+ index.

This client makes no more than 3 addressing errors for a specific request, and no more

than 30 addressing errors total and makes no more addressing errors after the 40th re-

quest. This lookup-intensive client stops incurring addressing errors much faster than

then insert-only client, which stops getting addressing errors after about 10,000 of its

50,000 requests, because the latter keeps getting periodic addressing errors until all par-

titions are created in the system.
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5.4 Summary

GIGA+ allows clients to have inconsistent indexing state which may cause them to send

requests to incorrect servers. The server-side split histories enables incorrectly addressed

servers to detect this addressing error and provide hints to fix this error. These hints al-

low GIGA+ clients to update their indexing state and re-address their request to another

server.

GIGA+ minimizes these addressing errors incurred by the client by making one key

trade-off: it increases the new indexing state sent in an update message to decrease the

number of addressing errors. GIGA+ uses a bitmap-encoding that allows a server to send

split histories of all its partitions. This encoding enables clients to learn about new par-

titions quickly

Furthermore, GIGA+ ensures that addressing errors are bounded by the number of

servers in the system: if GIGA+ servers have stopped splitting partitions, clients will not

incur addressing errors after they have visited each server once.
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Chapter 6

Interaction with backend stores

The GIGA+ architecture presented in Chapter 3 (and illustrated in Figure 3.1) briefly dis-

cussed how the choice of backend stores affects the behavior and performance of the sys-

tem. This chapter presents details about how GIGA+ servers use two kinds of backends —

a local on-disk store available only on that server, and a shared disk storage system that

can be accessed through clients and servers — and how their implementations affect the

behavior of GIGA+ .

6.1 Using local file system as backend

Many modern cluster file systems rely on local file systems to store data persistently

on disks or SSDs attached to storage servers. Examples of such file systems include the

Google file system [Ghemawat 2003], Hadoop distributed file system [Shvachko 2010],

Lustre [Lustre 2010b], and PVFS [PVFS2 2010].
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Figure 6.1 — GIGA+ that uses a local file system as the backend store.
GIGA+ servers are responsible for managing and storing hash partitions. These partitions are
stored in a local file system as a regular directory; this allows GIGA+ to uses a separate logical
namespace (that is seen by an application using a GIGA+ client) and physical namespace (that
is stored in backends stores).

When GIGA+ servers use a local file system as a backend store, the server is responsible

for both managing and storing directory entries. GIGA+ servers perform the indexing

functionality and call in the local file system to access its hash partitions. Figure 6.1 shows

a configuration where GIGA+ server stores the hash partitions as directories in a local file

system.1

GIGA+ partitions are stored in the local file system as regular directories. In this con-

figuration, a logical large directory is represented physically as many small directories

corresponding to the partitions associated with GIGA+ servers. Figure 6.2 shows how the

logical namespace, seen by the application running a client, is different from the physi-

cal namespace, seen on the backend stores in GIGA+ servers. The example in this figure

1Although Figure 6.1 shows a single disk on one physical server, there a multiple disks running on real-
world clusters.
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Figure 6.2 — Namespace separation in GIGA+ : application namespace is dif-
ferent from physical namespace.
By storing partitions as directories in a local file system, GIGA+ separates the logical namespace
(that is seen by applications running on client) from the physical namespace (that is stored in
backends stores on GIGA+ servers). In this example, client visible directories are stored on one
or more servers (depending on their size) as local file system directories on GIGA+ servers.

shows that a large directory /big1 is divided in two partitions that are stored as local file

system directories /big1/.P0 and /big2/.P0 on servers S1 and S2. If the application runs a

"ls /big1" commands, the GIGA+ client fetches and returns files from both partitions.

When a partition splits, the GIGA+ server performs a readdir() scan of the physical

directory associated with that partition and migrates the appropriate directory entries

(along with the data, if any) to the destination of the newly created partition. The recip-

ient GIGA+ server creates a new directory corresponding to the newly created partition

and inserts the directory entries in that directory. The main drawback of such splits is

that the GIGA+ server also needs to move the file data associated with these directory

entries because local backend stores both the directory entry and its associated file data.

Depending on the size of files, which can easily be gigabytes or more, partition splits

133



become very expensive. The experiments in this section focus on directory entries and,

hence, use zero-byte files.

GIGA+ servers have used both Linux file systems, Ext3 and ReiserFS, as backend stores.

Implementations of these file systems have significant differences that have surpris-

ing effects on the performance of the system. Figure 6.3 shows how the file create rate

varies in a 16-server configuration for four different configurations: (1) one partition

per GIGA+ server that uses Linux Ext3, (2) one partition per GIGA+ server that uses Reis-

erFS, (3) 16 partitions per GIGA+ server that uses Linux Ext3, and (3) 16 partitions per

GIGA+ server that uses ReiserFS. Each of these configurations starts with a new file sys-

tem. The experiment creates an empty directory that is populated with 8 million files,

causing the large directory to be striped on 16 GIGA+ servers.

Figure 6.3 shows two interesting phenomena. First, the benchmark running time

varies by a factor of six, from about 100 seconds to over 600 seconds, and second, the

backend file system yielding the faster performance is different when there are 16 par-

titions on each server than with only one.

Comparing a single partition per server in GIGA+ over ReiserFS and over Ext3 (left

column in Figure 6.3), benchmark completion time increases from about 100 seconds

using ReiserFS to nearly 170 seconds using Ext3. For comparison, the same benchmark

completed in 70 seconds when the backend was the in-memory tmpfs file system.
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Directories are indexed in Linux Ext3 using the h-tree data-structure [Cao 2007] and

in ReiserFS using the balanced B-tree structure [Reiser 2004]. Looking more closely at

Linux Ext3, as a directory grows, Ext3's journal also grows and periodically triggers Ext3's

kjournald daemon to flush a part of the journal to disk. Because directories are growing on

all servers at roughly the same rate, multiple servers flush their journal to disk at about

the same time leading to a significantly lower aggregate file create rate. This behavior

was observed for all three journaling modes supported by Ext3 [Cao 2007, Prabhakaran

2005].

To confirm the effect of journaling, the above experiment was repeated with a multi-

disk configuration where the journal was mounted on a second disk in each server. This

eliminated most of the throughput variability observed in Ext3, completing the bench-

mark almost as fast as with ReiserFS.

For ReiserFS, however, placing the journal on a different disk had little impact. This is

explained by the second phenomenon observed in the right column of Figure 6.3. It shows

that for GIGA+ with 16 partitions per server, Ext3 (which is insensitive to the number of

partitions per server) completes the create benchmark more than four times faster than

ReiserFS. This results, possibly, from the on-disk directory representation. ReiserFS uses

a balanced B-tree for all objects in the file system, which re-balances as the file system

grows and changes over time [Reiser 2004]. When partitions are split more often, as in

case of 16 partitions per server, the backend file system structure changes more, which

triggers more re-balancing in ReiserFS and slows the create rate.
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6.2 Shared storage backend with optimized layout

The previous section described two hard problems from using local file systems as back-

ends. First, on-disk structures and directory representations of modern Linux local file

systems are inefficient at handling large directories. Second, GIGA+ splits become ex-

pensive when they migrates both directory entries and their file contents across servers.

To overcome these two challenges, GIGA+ uses a backend configuration that combines

a metadata-optimized on-disk representation on each GIGA+ server and a shared disk

storage system that can be accessed from both GIGA+ clients and servers.

GIGA+ uses a persistent key-value storage library, called LevelDB , to store all metadata

associated with directory entries and GIGA+ specific indexing state. [LevelDB 2012]. This

LevelDB based representation delivers higher performance than local file systems for

metadata-intensive workloads [Ren 2013].

Using shared storage allows cross-server GIGA+ splits to migrate only the directory

entries and not the file contents. Since the file contents are stored in the shared stor-

age system, GIGA+ clients can access the file contents directly without going through the

GIGA+ servers. Figure 6.4 shows the architecture that allows GIGA+ clients to decouple

metadata path from the data path by using the GIGA+ indexing modules to handle only

metadata operations such as create(), mkdir() and open(). These metadata operations re-

turn a pointer (or a file handle) to the actual file contents stored in the backend share

storage such as a cluster file system in Figure 6.4.

This section describes more details: Section 6.2.1 shows how LevelDB stores all file

system metadata using a single on-disk structure on each server, Section 6.2.2 describes
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Figure 6.4 — Different data and metadata paths when GIGA+ is layered on a
shared storage backend.
GIGA+ is integrated with a tabular metadata-optimized on-disk layout (using LevelDB ) on
each server and a shared storage space that allows efficient cross-server operations (such as
splitting without migrating file contents).

the challenges in effectively integrating GIGA+ and LevelDB to work with existing cluster

file systems, and Section 6.2.3 analyzes the scale of performance of using GIGA+ with

LevelDB .

6.2.1 Overview of LevelDB

LevelDB is an open-source key-value storage library for on-disk storage [LevelDB 2012]. It

is based on the Google BigTable's server-side tablet architecture [Chang 2006] that imple-

ments the log-structured merge (LSM) tree data structure [O'Neil 1996]. LSM trees enable

high-speed write performance using an in-memory buffer that delays writing new and

changed entries until it has a significant amount of change to record on disk. The process
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Figure 6.5 — Structure of LevelDB
LevelDB represents data on disk in multiple SSTables that store sorted key-value pairs.

of writing in-memory data to an on-disk representation uses multi-level trees that are

ordered on the key used by the application.

Using LevelDB as a local storage representation for metadata can transform metadata

updates to large, non-overwrite, sorted and indexed logs on disks, which greatly reduces

random disk seeks [Ren 2013]. The detailed design of LevelDB and how to use LevelDB to

store metadata is explained below.

LevelDB and LSM-trees — LevelDB buffers all modifications, which includes writ-

ing new entries and updating old entries, to its entries in a sequential log kept in an

in-memory buffer. These modifications are spilled to disk when the in-memory buffer

exceeds 4 MB; this process is called a minor compaction [Chang 2006]. When a spill is trig-

gered, buffered entries are sorted, indexed and written to disk in a format called SSTable

[Chang 2006]. These entries may then be discarded from the in memory buffer and can

be reloaded by searching each SSTable on disk, possibly stopping when the first match
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occurs if the SSTables are searched most recent to oldest. The number of SSTables that

need to be searched can be reduced by maintaining a Bloom filter on each, but, with

time, the cost of finding a record not in memory still increases [Chang 2006]. To avoid

keeping large numbers of SSTable files, LevelDB triggers a background process, called

major compaction, that combines multiple SSTables into a smaller number of SSTables

by merge sort.

As illustrated in Figure 6.5, LevelDB extends this simple approach to further reduce

read costs by dividing SSTables into several levels. In Level-0, each SSTable may contain

entries with any key value, based on what was in memory at the time of its spill. The

higher levels of SSTables are the results of compacting SSTables from their own or lower

levels. In these higher levels, LevelDB maintains the following invariant: the key range

spanning each SSTable is disjoint from the key range of all other SSTables at that level.

So querying for an entry in the higher levels only needs to read at most one SSTable in

each level. LevelDB also sizes each of the higher levels differentially: all SSTables have

the same maximum size and the sum of the sizes of all SSTables at level L will not exceed

10L MB. This ensures that the number of levels grows logarithmically with increasing

numbers of entries. LevelDB compactions are inspired by LSM trees [O'Neil 1996], but

such background operations are also found in newer data-structures such as streaming

B-trees in the Toku file system [Esmet 2012, Bender 2007] and stratified trees in the Acunu

storage engine [Twigg 2011].

For data consistency, LevelDB offers the same guarantees as most local file systems.

To avoid high performance penalty, LevelDB does not synchronize all data to disk imme-

diately; it flushes the data to disk every 5 seconds [Ren 2013]. However, users can con-
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figure this duration depending on their desired consistency-performance tradeoff. This

periodic synchronization is similar to local Linux file systems that also use a 5-second

(or 30 seconds, in some older versions) interval to flush the journal to persistent storage

[Prabhakaran 2005].

Table schema — LevelDB stores records of key-value pairs indexed lexicographically

on the key. The file system metadata is stored in this LevelDB abstraction based on the

metadata schema proposed by TableFS [Ren 2013]: directory entries and i-node attributes

are aggregated in a single LevelDB table with a row for each file and directory. To link

together the hierarchical structure of the user's namespace, rows of this table are ordered

by a 224-bit key consisting of the 64-bit i-node number of a file's parent directory and

a 160-bit SHA1 hash value of its filename string (final component of its pathname). The

value of a row contains the file's full name, its i-node attributes (from struct stat in Linux),

and a symbolic link that contains the actual path of the file object in the shared storage

system (such as a cluster file system). Figure 6.6 shows an example of storing a sample

file system's metadata into one LevelDB table.

All the entries in the same directory have rows that share the same first 64 bits in

their the table's key. For readdir() operations, once the i-node number of the target direc-

tory has been retrieved, a scan sequentially lists all entries having the directory's i-node

number as the first 64 bits of their table's key. To resolve a single pathname, the meta-

data server starts searching from the root i-node, which has a well-known global i-node

number (0). Traversing the user's directory tree involves constructing a search key by
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Key Value 
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<1,h2> 2, “foo”, struct stat 

<1,h3> 3, “bar”, struct stat, 
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Figure 6.6 — Schema used in LevelDB to store file system metadata
An example illustrating how the file system metadata is stored in LevelDB records.

concatenating the i-node number of current directory with the hash of next component

name in the pathname.

6.2.2 Integrating LevelDB with GIGA+

Each GIGA+ server manages its local LevelDB instance that is stored on a local disk at-

tached to the server.2 In the current GIGA+ prototype, GIGA+ servers use a NFS mounted

volume, accessible from all GIGA+ servers, to emulate shared storage.

This integration of GIGA+ indexing, shared storage and LevelDB requires three fea-

tures to be efficient: a schema to represent directory entries and partitions in LevelDB , a

mechanism to split overflow partitions across servers without transferring the data, and

a data access path that is decoupled from the metadata access path to scale reading and

writing files.
2If a shared storage system is available on all nodes of the cluster, LevelDB instance can be stored in

that system but each GIGA+ server's instance should be unique.
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Metadata representation — LevelDB stores all metadata including GIGA+ hash parti-

tions for directories, entries in each hash partition, and other bootstrapping information

such as root entry and GIGA+ configuration state. The general schema used is:

KEY parentDirID, gigaPartitionID, hash(dirEntry), dirEntry

VALUE attr(dirEntry), [ symlink | data | gigaMetaState]

The main difference from the schema used in TableFS described in Section 6.2.1 is

the addition of two GIGA+ specific fields: gigaPartitionID to identify a GIGA+ hash parti-

tion and gigaMetaState to store the hash partition related mapping information. These

GIGA+ related fields are used only for large directories that are distributed on multiple

GIGA+ servers.3

Partition splitting — Each GIGA+ hash partition and its directory entries are stored

in SSTable files in a local LevelDB instance. Recall that each GIGA+ server process splits a

hash partition P on overflow and creates another hash partition P ′ which is managed by

a different server. This split involves migrating approximately half the entries from old

partition P to the new hash partition P ′ on another server during which the key range

in write is locked. Cross-server splits of LevelDB partitions can be done in several ways.

A simple approach to splitting is to perform a LevelDB range scan on partition P

and copy about half the results (corresponding to the keys that are migrated to the new
3Since the hash(dirEntry), which is the hash value of the directory entry, is a part of the key, it is possible

to use this hash value to identify hash partitions if the same hash function is used for both GIGA+ and
LevelDB keys. This optimization can eliminate the need for gigaPartitionID in the schema; the current
GIGA+ prototype does not implement this optimization yet.

143



partition) from P in a buffer. This buffer of entries is copied in an RPC message that is

sent to the server that holds the new partition P ′. The recipient server inserts each key

from the received buffer in its own LevelDB instance. This approach is attractive for its

simplicity, but it can be slow because the server that receives the split inserts each key in-

crementally. To speed up splits, GIGA+ uses a bulk insertion optimization in LevelDB that

communicates splits through a shared storage volume.

The immutability of LevelDB SSTables makes it possible to implement a fast bulk in-

sertion that adds an SSTable to Level 0 without pushing its data through the write-ahead

log and minor compaction process. To leverage this optimization, LevelDB was modified

to support a three-step split operation. First, the split initiator performs a range scan on

its LevelDB instance to find all entries that need to be moved to the new partition on an-

other server. Results of this scan are written in an SSTable file (understood by LevelDB )

that is stored in the shared storage volume. Second, the split initiator sends an RPC to the

split receiver with the location of this intermediate SSTable file; this RPC is much smaller

in size than an RPC that sends all the keys over the wire. The split receiver then reads the

intermediate SSTable file and bulk inserts the file into the LevelDB tree structure; this

bulk insert is also faster than the previous iterative insertion of one at a time. The final

step is a clean-up and commit phase: after the receiver completes the bulk insert opera-

tion, it notifies the initiator to delete the migrated hash-range from its LevelDB instance

and unlock the range.4

4This three-phase split can be refined even further: LevelDB can use symbolic links to the intermediate
files without explicitly copying the files through shared storage volume. Because the current release of
LevelDB does not have support for links, this optimization is not a part of the current prototype.
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Decoupled data and metadata path — All metadata operations go through the

GIGA+ server; however, following the same path for data operations would incur an un-

necessary performance penalty of shipping data over the network an extra time. That

is, data is copied from the shared storage system to the GIGA+ server, and then copies it

again from the GIGA+ server to the GIGA+ client. This penalty can be significant in HPC

use-cases where files can easily be tens to hundreds of gigabytes in size.

This migration cost is mitigated by performing all data path operations directly through

the shared storage module (or client module of a cluster file system) on the machine run-

ning the GIGA+ client. Figure 6.4 shows this data path in blue color. After a GIGA+ client

completes a lookup on a desired file name through GIGA+ servers, it gets back a symbolic

link to the physical path in the shared storage system. Recall that the schema, shown in

6.6, used in LevelDB includes a symbolic link to the actual on-disk location of the object.

All subsequent accesses using this symbolic link will force the client operating system to

resolve this link into the underlying shared storage system (either a NFS-mounted vol-

ume or a cluster file system). While the file is open, some of its attributes (e.g., file size

and last access time) may change relative to copy of attributes stored in LevelDB instance

of the GIGA+ server. GIGA+ server will capture these changes on file close on the metadata

path. Other attribute changes relative to permissions can be updated in-flight through

the GIGA+ servers.
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6.2.3 Analysis

To emulate shared storage for split operations, the current GIGA+ prototype uses a NFS-

mounted volume accessible from all machines; this volume was only used for the cross-

server LevelDB split optimization described in Section 6.2.2. This experimental setup is

used to evaluate the performance of a single-node LevelDB metadata store and the scala-

bility of GIGA+ distributed directories on a 64-server setup (using the hardware described

in Chapter 3).

The baseline performance of a single-node LevelDB metadata store was measured

using a workload that creates 100 million zero-length files in a single directory. Figure

6.7 reports the instantaneous throughput, measured as files created per second, on Y-axis

during the run time of the workload (on X-axis).

Figure 6.7 compares the instantaneous throughput of LevelDB metadata store with

three Linux file systems: Ext4 [Mathur 2007], XFS [Sweeney 1996], and BTRFS [Btrfs 2012].

All systems perform well at the beginning of the test, but the file create throughput drops

gradually for all systems. BTRFS suffers the most serious throughput drop, slowing down

to 100 operations per second. LevelDB incurs a gradual degradation in throughput; this

happens due to the periodic background compactions that occur during the entire ex-

periment as more files get created over time. If there are pre-existing files from previous

compactions, LevelDB merges these old files with newly arrived in-memory logs to write

out most recent sorted sequential files. These compactions cause both read and write

disk I/O: existing sorted files are read into memory and newly merged files are written

back to disks. When there are more entries already existing in LevelDB, it requires more
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Figure 6.7 — Single-node baseline performance on an on-disk LevelDB backend.
LevelDB-based metadata store is 10X faster than modern Linux file systems for a workload
that creates 100 million zero-length files. X-axis only shows the time until LevelDB finished all
insertions because the other file systems were much slower. Y-axis uses a log scale.

compaction work to maintain LevelDB invariants and to perform a negative lookup be-

fore each create has to search more SSTables on disk. The LevelDB metadata store, how-

ever, maintains a more steady performance with an average speed of 2,200 operations

per second respectively, and is 10X faster than all other tested file systems.

After establishing the baseline performance, the next experiment evaluates the scal-

ability of the distributed directory setup that uses LevelDB store on GIGA+ servers. Fig-

ure 6.8 shows the instantaneous throughput, measured as file creates per second, on Y-

axis during the entire run time of the workload that creates many files in a single direc-

tory striped on different number of GIGA+ servers. This workload creates millions of files

in a single directory in a strong scaling setup: an N -server configuration stores an empty

directory that will contain N million files created concurrently by a total of 8N -threads

running on N remote client machines, i.e. 1-server configuration has 1 million files cre-
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GIGA+ using a disk-based LevelDB backend shows promising scalability up to 64 servers.
Note that at the end of the experiment, the throughput drops to zero because clients stop
creating files as they finish 1 million files per client. However the interaction between LevelDB ’s
compaction policies and the Linux Ext3’s implementation policies causes periodic throughput
variance that degrades as the the number of directory entries in each LevelDB increases. Solid
lines in each configuration are Bezier curves to smooth the variability.

ated by 8 application threads running on one client machine, 2-server configuration has

2 million files created by 16 application threads running on two client machines, and so

on up to 64 million files on 64 servers. Each GIGA+ server stores its hash partitions in

LevelDB that is stored on an on-disk Linux file system managing a single 7200RPM disk;

cross-servers splits in LevelDB are communicated through a NFS mounted volume shared

by all GIGA+ servers.

The main result in Figure 6.8 is that as the number of servers doubles the throughput

of the system also scales up. With 64 servers, GIGA+ can achieve a peak throughput of
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about 160,000 file creates per second. The prototype delivers peak performance after

the directory workload has been spread among all servers. Reaching steady-state, the

throughput quickly grows due to the splitting policies adopted by GIGA+ .

After reaching the steady state, throughput slowly drops as LevelDB builds a larger

metadata store. In fact, in large setups with 8 or more servers, the peak throughput drops

by as much as 25% (as in case of the 64-server setup). This is because when there are more

entries already existing in LevelDB , it requires more compaction work to maintain Lev-

elDB invariants and to perform a negative lookup before each create has to search more

SSTables on disk. In theory, the work of inserting a new entry to a LSM-tree isO(logB(n))

wheren is the total number of inserted entries, andB is a constant factor proportional to

the average number of entries transferred in each disk request [Bender 2007]. Thus the

formula a·S+b
logT can approximate the throughput timeline in Figure 6.8. In this formula,

S is the number of servers, T is the running time, and a as well as b are constant fac-

tors relative to the disk speed and splitting overhead. This estimation projects that when

inserting 64 billion files with 64 servers, the system may deliver an average of 1,000 op-

erations per second per server, i.e. 64,000 operations per second in aggregate.

6.3 Summary

The GIGA+ file system directory service is designed to be layered on top of existing, un-

modified storage systems that need highly concurrent directory accesses. This makes it

important that GIGA+ be layered in a manner that uses the lower-level system effectively.

Splitting partitions, in particular, is tightly dependent on the choice of the backend store.

149



When GIGA+ is layered on local file systems managed by GIGA+ servers, split opera-

tions are very expensive. Because a local file system stores the directory entry and its

associated file contents on the same server, cross-server GIGA+ splits need to migrate

both the directory entries and the associated contents (which can be gigabytes or more

in size). Even when this file-related data migration was avoided (by using zero-byte files

in synthetic workloads) during experimentation, GIGA+ scalability is tightly dependent

on how the local file systems, such as Linux Ext3 and ReiserFS, store directories on-disk.

To avoid costly data migration and inefficient on-disk representation, GIGA+ was lay-

ered on a metadata-optimized backend store that used shared storage for cross-server

splits. Such a setup is an ideal setup for GIGA+ because splits only move the directory

entries managed by GIGA+ servers without migrating any file data that is stored in the

shared storage system. GIGA+ used LevelDB for high-performance on-disk metadata rep-

resentation along with a NFS mounted shared volume to emulate shared storage. This

LevelDB-based metadata store outperforms modern Linux file systems by an order of

magnitude on a single machine. For distributed directories, this GIGA+ configuration

scaled linearly up to 64 servers delivering a peak throughput of more than 160,000 file

creates per second.

Experiments with different backend file systems demonstrate that the design and

implementation of these backends have subtle and significant side-effects on the perfor-

mance of the GIGA+ directory service. This analysis recommends further research, which

is outside the scope of this dissertation, in on-disk representations that will be suitable

for emerging metadata-intensive workloads such a large file system directories.
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Chapter 7

Conclusion

Growth in application-level parallelism and diversity among data-intensive workloads is

posing new scale and concurrency challenges for cluster file systems. For decades, cluster

file systems have focused on scalable performance on the data path and ignored scaling

the metadata path. As applications start becoming more metadata-intensive, cluster file

systems need to evolve their support for highly parallel and distributed access to the

metadata such as file system namespace and directories. While some cluster file systems

have evolved to support distributed namespace operations, most of these systems do not

provide decentralized directory access. Few cluster file systems that provide distributed

directories suffer from serialization and consistency bottlenecks when applications are

accessing a single directory concurrently at high speeds.

This dissertation presented a new directory subsystem called GIGA+ that delivers

promising scale and performance for workloads that need to store millions to billions

of files in a single directory at hundreds of thousands of file operations per second. The
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central idea of GIGA+ is a concurrent hash-based indexing technique that embodies two

principles — asynchrony and inconsistency — to distribute large directories on many

servers. GIGA+ splits a growing directory into several partitions in a manner that spreads

the directory incrementally across multiple servers without any system-wide serializa-

tion or synchronization. Each GIGA+ server makes an independent decision to split its di-

rectory partition on another server and keeps a history of splits for each of its partitions.

As the index spreads over multiple servers, GIGA+ allows the indexing state (partition-to-

server mapping) at clients to become stale and out-of-date. This client state is eventually

updated in a lazy manner by a GIGA+ server that is addressed incorrectly. GIGA+ relies on

asynchrony and inconsistency to add new servers: an existing directory service expands

on to new servers asynchronously through minimal data migration and re-balancing

while lazily disseminating information about new servers as needed.

GIGA+ indexing explores several factors that control the tradeoff between consis-

tency and concurrency of the indexing state. Table 7.1 summarizes these trade-offs and

lessons learnt from their analysis.

GIGA+ file system directory prototype is built as a user-level client-server architec-

ture that layers its indexing technique on an unmodified backend storage system. This

architecture allows modularity by separating how directory entries are indexed on mul-

tiple servers from how they are stored on persistent storage; it decouples the logical

namespace used by applications from the physical namespace stored on the backend

stores. GIGA+ servers perform this translation. Applications use the traditional hierarchi-

cal namespace to access a file through GIGA+ clients and send the request to GIGA+ servers

that access the file using the physical namespace used by the backend storage system.
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Trade-off #1 Incremental scale-out (on one server at a time) instead of aggressive
scale-out (over all servers at once)

Incremental scale-out takes longer to harness parallelism than aggres-
sive scale-out, but it achieves more efficient directory scan perfor-
mance particularly for small directories which form the majority of
directories in a file system. Because GIGA+ aims to provide a general-
purpose directory service, it aims to improve large directory perfor-
mance without affecting small directory performance.

Trade-off #2 Stop inter-server indexing after it is fully distributed and parallel, and
rely on backend store for out-of-core indexing for overflow partitions

Splitting partitions on multiple servers allows GIGA+ to distribute work
and harness available parallelism. These splits, however, may involve
cross-server migration of entries from one partition to another. To
avoid this overhead, GIGA+ stops splitting a growing directory after it
has spread on all servers and is load balanced. GIGA+ allows overflow
partitions to be indexed by the backend storage system's out-of-core
indexing technique for efficient access.

Trade-off #3 Tolerate inconsistent, out-of-date indexing state for unsynchronized,
non-blocking server-side growth

GIGA+ servers split partitions in an uncoordinated, asynchronous man-
ner, which may change partition-to-server mapping rapidly. GIGA+ al-
lows clients to use their possibly out-of-date state; these clients may
incorrectly address a wrong server that uses its split history to update
the client's state. The number of addressing errors is dependent on the
workload (ratio of clients' lookup rate and server-side growth) and is
negligible even for insert-intensive workloads. Moreover, these errors
happen only when the directory is mutating over servers.

Trade-off #4 Faster update of inconsistent client-side indexing state at the cost of
encoding more state in update messages

GIGA+ encodes a directory's index using a bitmap that is used by
servers to send updates to clients. This encoding uses more space (than
theoretical optimal) to allow clients to learn about the index quickly.

Table 7.1 — Summary of GIGA+ trade-offs analyzed in this dissertation.
Tradeoffs between consistency and concurrency of indexing state.
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This dissertation explores how the choice of backend storage systems affects GIGA+ be-

havior, particularly how GIGA+ hash partitions are represented in the backend and how

GIGA+ splits these partitions efficiently. The current GIGA+ prototype was studied on lo-

cal file system backends, where splits result in migration of directory entries and the file

data, and shared storage backends, where splits are more efficient and move only the

directory entries.

7.1 Future work

Although GIGA+ has shown promising scalability and performance as a research proto-

type, there are several avenues of further work that may be relevant for real-world de-

ployments and future metadata subsystems.

7.1.1 GIGA+ without client and server processes

The design of GIGA+ implicitly assumes the ability to run client and server processes on

a compute cluster. In practice, particularly in HPC deployments, it is often infeasible to

run such processes because it conflicts with fault zoning and performance isolation re-

quirements of long-running applications. Furthermore, assuming the ability to modify

the operating system kernel on the cluster nodes may be unrealistic; thus FUSE (and its

kernel module) may not be available for running a GIGA+ client. A version of GIGA+ with-

out clients and servers can be designed as a middleware library that applications can link

and unlink as needed.

The key challenge in building this GIGA+ middleware is to logically distribute GIGA+ server's

responsibility across all nodes running the middleware. The main purpose of a GIGA+ server
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process is to serialize access to the partition managed by that server and to communi-

cate addressing updates from partition splits to the clients. One approach would be des-

ignate certain application threads as "server proxies" that act as a logical controller to

access partitions. These proxies should also be communicate with each other for splitting

partitions and handling addition of new servers. This communication can be performed

through a message passing interface (MPI) that is widely used in HPC deployments.

7.1.2 FUSE extensions for cluster systems

In the current GIGA+ prototype, once the application gets a symbolic link pointing to the

physical location of the file, it will rely on FUSE and VFS to dereference the symbolic link

to access the physical file. To avoid these extra indirections going in and out of VFS, it

would be beneficial to extend the FUSE kernel module to detect a file handles coming

from a cluster file system for future use.

Another extension in FUSE would be for file system notifications. In a layered file

system, the higher layers will benefit from support for notification calls like inotify() and

dnotify() to monitor changes to the underlying file system. For cluster file systems, such a

notification system may enable the higher layers to make informed decisions about fault

tolerance, data migration and configuration changes.

Given the popularity of FUSE in large-scale cluster systems, such extensions may ben-

efit a large community of researchers and developers.
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7.1.3 Efficient backends for metadata-intensive workloads

The analysis presented in this dissertation discovered the tight coupling of the distributed

file system with the on-disk representation of directories. In most local file systems, file

system metadata, including i-nodes, block management and directories, is stored in an

area of the file system separate from the disk blocks that store file contents. Furthermore,

to ensure metadata consistency, techniques such as journaling and update ordering re-

quire multiple writes for each metadata mutation. Such random disk accesses reduces

disk bandwidth utilization and throughput.

Inspired by log-structured designs that convert random accesses to sequential ac-

cesses [Rosenblum 1992, O'Neil 1996], storage systems have begun exploring the use

of optimized data-structures for metadata-intensive workloads. Both TokuFS's use of

fractal trees and TableFS's use of LevelDB has demonstrated a ten-fold increase in the

throughput of metadata-intensive workloads [Ren 2013, LevelDB 2012, Esmet 2012, Ben-

der 2007].

Inspired by TableFS's finding, this dissertation showed the benefits of using LevelDB

to enhance directory performance in a distributed system. However, this needs further

exploration. Compaction policies, for instance, used by LevelDB have a significant impact

on the foreground performance of applications. Compactions are a necessary evil: in or-

der to speed up future reads and scans, they steal resources from foreground operations

that happen simultaneously with these background operations. Exploring heuristics that

can minimize the impact of foreground operations for metadata-specific will enhance

performance [Sears 2012, Esmet 2012, Twigg 2011].
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