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Abstract

Differential game logic (0GL) is a logic for specifying and verifying properties of hybrid games, i.e.
games that combine discrete, continuous, and adversarial dynamics. Unlike hybrid systems, hybrid
games allow choices in the system dynamics to be resolved adversarially by different players with
different objectives. The logic dGL can be used to study the existence of winning strategies for
such hybrid games, i.e. ways of resolving the player’s choices in some way so that he wins by
achieving his objective for all choices of the opponent. Hybrid games are determined, i.e. one
player has a winning strategy from each state, yet their winning regions may require transfinite
closure ordinals. The logic dGL, nevertheless, has a sound and complete axiomatization relative to
any expressive logic. Separating axioms are identified that distinguish hybrid games from hybrid
systems. Finally, dGL is proved to be strictly more expressive than the corresponding logic of
hybrid systems.






1 Introduction André Platzer

Hybrid systems [NK92, ACH™95, Hen96, BBM98, DN00] are dynamical systems combining dis-
crete dynamics and continuous dynamics. They are widely important, e.g., for modeling how com-
puters control physical systems such as cars [DGV96], aircraft [ULO7] and other cyber-physical
systems. Hybrid systems combine difference equations (or discrete assignments) and differen-
tial equations with conditional switching, nondeterministic choices, and repetition. Hybrid sys-
tems are not semidecidable [Hen96], but nevertheless studied by many successful verification ap-
proaches. They have a complete axiomatization relative to differential equations in differential
dynamic logic (dC) [Pla08, Plal2al], which extends Pratt’s dynamic logic of conventional discrete
programs [Pra76] to hybrid systems by adding differential equations and a reachability relation
semantics on the real Euclidean space.

Hybrid games [NRY96,TPS98, HHM99, TLS00, DR06, BBC10, VPVD11] are games of two
players on a hybrid system. Hybrid games add an adversarial dynamics to hybrid systems, i.e.
an adversarial way of resolving the choices in the system dynamics. Both players can make their
respective choices arbitrarily. They are not assumed to cooperate towards a common goal but may
compete. The prototypical example of a hybrid game is RoboCup, where two (teams of) robots
move continuously on a soccer field subject to the discrete decisions of their control programs,
and they resolve their choices adversarially in active competition for scoring goals. Worst-case
verification of many other situations leads to hybrid games. Two robots may already end up in
a hybrid game if they do not know anything about each other’s objectives, because worst-case
analysis assumes they might compete. The former situation is true competition, the latter analytic
competition, because possible competition was assumed for the sake of a worst-case analysis.
UAVs etc. provide further natural scenarios for both true and analytic competition. Hybrid games
are also fundamental for security questions about hybrid systems, which intrinsically involve more
than one player.

This article studies a compositional model of hybrid games obtained from a compositional
model of hybrid systems by adding the dual operator ¢ for passing control between the players.
The dual game o is the same as the hybrid game o with the roles of the players swapped, much
like what happens when turning a chessboard around by 180° so that players black and white swap
sides. Hybrid games without ¢ are single player, like hybrid systems are, because ¢ is the only
operator where control passes to the other player. Hybrid games with ¢ give both players control
over their respective choices (indicated by ¢). They can play in reaction to the outcome that the
previous choices by the players have had on the state of the system. The fact that ¢ is an operator on
hybrid games makes them fully symmetric. That is, they allow any combination of all operators at
any nesting depth to define the game, not just a single fixed pattern like, e.g., the separation into a
single loop of a continuous plant player and a discrete controller player that has been predominant
in related work.

Hybrid games are game-theoretically reasonably tame sequential, non-cooperative, zero-sum,
two-player games of perfect information with payoffs 41, except that they are played on hybrid
systems, which makes reachability computations and the canonical game solution technique of
backwards induction for winning regions on hybrid games more difficult, because they turn out to
need infinite iterations with highly transfinite closure ordinals to terminate.



André Platzer

One of the most fundamental questions about a hybrid game is whether the player of interest
has a winning strategy, i.e. a way of resolving his choices that will lead to a state in which that
player wins, no matter how the opponent player resolves his respective choices. If the player has
such a winning strategy, he can achieve his objectives no matter what the opponent does, otherwise
he needs his opponent to cooperate

This article introduces a logic and proof calculus for hybrid games and thereby decouples the
questions of truth (existence of winning strategies) and proof (winning strategy certificates) and
proof search (automatic construction of winning strategies). It studies provability (existence of
proofs) and the proof theory of hybrid games and identifies what the right proof rules for hybrid
games are (soundness & completeness).

This article presents differential game logic (dGL) and its axiomatization for studying the ex-
istence of winning strategies for hybrid games. It generalizes hybrid systems to hybrid games
by adding the dual operator ¢ and a winning strategy semantics on the real Euclidean space.
Hybrid games simultaneously generalize hybrid systems [NK92, ACH"95|] and discrete games
[VNM55,NasS1]]. Similarly, dGL simultaneously generalizes logics of hybrid systems and logics
of discrete games. The logic dGL generalizes differential dynamic logic (d£) [Pla08,Plal2a] from
hybrid systems to hybrid games with their adversarial dynamics and, simultaneously, generalizes
Parikh’s propositional game logic [Par83,Par85,PP03] from games on finite-state discrete systems
to games on hybrid systems with their differential equations, uncountable state spaces, uncountably
many possible moves, and interacting discrete and continuous dynamics.

Every particular play of a hybrid game has exactly one winner (Section[2), exactly one player
has a winning strategy from each state no matter how the opponent reacts (determinacy, Section3)),
the dGL proof calculus can be used to find out which of the two players it is that has a winning
strategy from which state (Section[d), and dGL for hybrid games is proved to be more expressive
than dZ for hybrid systems (Section[5).

The primary contributions of this article are as follows. The logic dGL identifies the logical
essence of hybrid games and their game combinatorsE] This article introduces differential game
logic for hybrid games with a simple modal semantics and a simple proof calculus, which is proved
to be a sound and complete axiomatization relative to any expressive logic. Completeness for game
logics is a subtle problem. Completeness of propositional discrete game logic has been an open
problem for 30 years [Par83|]. This article does not address the propositional case, but focuses
on more general hybrid games and proves a generalization of Parikh’s calculus to be relatively
complete for hybrid games. The completeness proof is constructive and identifies a fixpoint-style
proof technique, which can be considered a modal analogue of characterizations in the Calculus of
Constructions [[CH88]. This technique is practical for hybrid games, and easier for hybrid systems

I A closely related question is about ways to exhibit that winning strategy, for which existence is a prerequisite and
a constructive proof an answer. As soon as one knows from which states a winning strategy exists, local search in the
action space is enough.

ZHybrid games only lead to a minor syntactic change compared to hybrid systems (the addition of ¢), yet one
that entails pervasive semantical reconsiderations, because the semantic basis for assigning meaning to any operator
changes in the presence of adversarial resolutions. This change leads to more expressiveness. It is a sign of logical
robustness that this results in a surprisingly small change in the axiomatization. Overall, the changes induced by
dualities are in some ways radical, yet, in other ways smooth.
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than previous complete proof techniques. These results suggest hybrid game versions of influential
views of understanding program invariants as fixpoints [[CC77,|Cla79|]. Harel’s convergence rule
[HMP77], which poses practical challenges for hybrid systems verification, now turns out to be
unnecessary for hybrid games, hybrid systems, and programs. Separating axioms are identified that
capture the logical difference of hybrid systems versus hybrid games. Hybrid games are proved
to be determined, i.e. in every state, exactly one player has a winning strategy, which is the basis
for assigning classical truth to logical formulas that refer to winning strategies of hybrid games.
Winning regions of hybrid games are shown to need highly transfinite closure ordinals. Hybrid
games are proved to be fundamentally more than hybrid systems by proving that the logic dGL for
hybrid games is strictly more expressive than the corresponding logic dZ for hybrid systems, which
is related to long-standing questions in the propositional case [Par85, BGL07], some of which are
still open.

2 Differential Game Logic

A robot is a canonical example of a hybrid system. Suppose a robot, W, is running around on a
planet collecting trash. His dynamics is that of a hybrid system, because his continuous dynamics
comes from his continuous physical motion in space, while his discrete dynamics comes from
his computer-based control decisions about when to move in which direction and when to stop to
gather trash. As soon as W meets another robot, E, however, her presence changes everything for
him. If W neither knows how E is programmed nor exactly what her goal is, then the only safe
thing he can assume about her is that she might do anything. It takes the study of a hybrid game
to find out whether W can use his choices in some way to reach his goal, say, collecting trash and
avoiding collisions with E, regardless of how E chooses her actions.

The hybrid games considered here have no draws. For any particular play of the W and E game,
for example, either W achieves his objective or he does not. There is no in between. Following
Zermelo [Zerl3]], games with draws can be turned into games without draws by considering draw
outcomes pessimistically as losses for the player of interest. The actual draws then result from
those states from which both players would lose when considering draws pessimistically as their
respective losses.

When a hybrid game expects a player to move, but the rules of the game do not permit any
of his moves from the current state, then that player loses right away (he deadlocks). If the game
completes without deadlock, the player who reaches one of his winning states wins. Thus, exactly
one player wins each (completed) game play for complementary winning states. The games are
zero-sum games, i.e. if one player wins, the other one loses, with player payoffs +1. Losses or
victories of different payoff are not considered, only whether a player wins or loses. The two
players are classically called Angel and Demon. By considering aggregate players, these results
generalize in the usual way to the case where Angel and Demon represent coalitions of agents that
work together to achieve a common goal.

Hybrid games are non-cooperative and sequential games. In non-cooperative games, players do
not negotiate binding contracts, but can choose to act arbitrarily according to the rules represented
in the game. Sequential (or dynamic) games are games that proceed in a series of steps, where, at
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each step, exactly one of the players can choose an action based on the outcome of the game so far.
Concurrent games, where both players choose actions simultaneously, as well as equivalent games
of imperfect information, are interesting but, even though they are related, beyond the scope of
this paper [VNMS55,/AHKO02, BP09|]. Imperfect information games lead to Henkin quantifiers, not
first-order quantifiers.

2.1 Syntax

Differential game logic (dGL) is a logic for studying properties of hybrid games. The idea is to
describe the game form, i.e. rules, dynamics, and choices of the particular hybrid game of interest,
using a program notation and to then study its properties by proving the validity of logical formulas
that refer to the existence of winning strategies for objectives of those hybrid games. Even though
hybrid game forms only describe the game form with its dynamics and rules and choices, not the
actual objective, they are still simply called hybrid games. The objective for a hybrid game is
defined in the modal logical formula that refers to that hybrid game form.

Definition 1 (Hybrid games). The hybrid games of differential game logic dGL are defined by
the following grammar («, § are hybrid games, x a vector of variables, 6 a vector of (polynomial)
terms of the same dimension, ¢ is a dGL formula):

a,fB i=a:=02=0&¢ | W |aUB|a;B|a"|a?

Definition 2 (dGL formulas). The formulas of differential game logic dGL are defined by the
following grammar (¢, ¢ are dGL formulas, p is a predicate symbol of arity k, 6; are (polynomial)
terms, x a variable, and « is a hybrid game):

¢, = p(Or,.. -, 0k) |01 2 02| 20 | o AY [Tz g | ()¢ ]| [a]d

Other operators >, =, <, <, V, —, <>, Vx can be defined as usual, e.g., Vx ¢ = ~dz —~¢. The
modal formula («)¢ expresses that Angel has a winning strategy to achieve ¢ in hybrid game «,
i.e. Angel has a strategy to reach any of the states satisfying dGL formula ¢ when playing hybrid
game «, no matter what strategy Demon chooses. The modal formula [a]¢ expresses that Demon
has a winning strategy to achieve ¢ in hybrid game «, i.e. a strategy to reach any of the states
satisfying ¢, no matter what strategy Angel chooses. Note that the same game is played in [a]¢
as in ()¢ with the same choices resolved by the same players. The difference between both dGL
formulas is the player whose winning strategy they refer to. Both use the set of states where dGL
formula ¢ is true as the winning states for that player. The winning condition is defined by the
modal formula, o only defines the hybrid game form, not when the game is won, which is what ¢
does. Hybrid game « defines the rules of the game, including conditions on state variables that, if
violated, cause the present player to lose for violation of the rules of the game. The dGL formulas
()¢ and [a] ¢ consider complementary winning conditions for Angel and Demon.

The atomic games of dGL are assignments, continuous evolutions, and tests. In the determinis-
tic assignment game x := 0, the value of variable = changes instantly and deterministically to that of
6 by a discrete jump without any choices to resolve. In the continuous evolution game x' = 0 & 1),

4
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the system follows the differential equation 2 = 6 where the duration is Angel’s choice, but Angel
is not allowed to choose a duration that would, at any time, take the state outside the region where
formula 1) holds. In particular, Angel is deadlocked and loses immediately if ¢ does not hold in
the current state, because she cannot even evolve for duration 0 then without going outside ¢ The
test game or challenge 1) has no effect on the state, except that Angel loses the game immediately
if dGL formula v does not hold in the current state.

The compound games of dGL are sequential composition, choice, repetition, and duals. The
sequential game «; (3 is the hybrid game that first plays hybrid game « and, when hybrid game «
terminates without a player having won already (so no challenge in « failed), continues by playing
game 3. When playing the choice game o U 3, Angel chooses whether to play hybrid game « or
play hybrid game /3. Like all the other choices, this choice is dynamic, i.e. every time o U 3 is
played, Angel gets to choose again whether she wants to play « or j3 this time. The repeated game
o plays hybrid game « repeatedly and Angel chooses, after each play of « that terminates without
a player having won already, whether to play the game again or not, albeit she cannot choose to
play indefinitely but has to stop repeating ultimately. Angel is also allowed to stop a* right away
after zero iterations of . Most importantly, the dual game o is the same as playing the hybrid
game o with the roles of the players swapped. That is Demon decides all choices in o that Angel
has in «, and Angel decides all choices in a that Demon has in a.. Players who are supposed to
move but deadlock lose. Thus, while the test game 7 causes Angel to lose if formula ) does not
hold, the dual test game (or dual challenge) (71))¢ causes Demon to lose if 1/ does not hold. For
example, if o describes the game of chess, then o is chess where the players switch sides. The
dual operator ¢ is the only syntactic difference of dGL for hybrid games compared to d£ for hybrid
systems [Pla08, Plal2a]], but a fundamental one, because it is the only operator where control
passes from Angel to Demon or back. Without ¢ all choices are resolved uniformly by Angel
without interaction. The presence of ¢ requires a thorough semantic generalization throughout the
logic.

The logic dGL only provides logically essential operators. Many other game interactions for
games of perfect information can be defined from the elementary operators that dGL provides.
Demonic choice between hybrid game « and 3 is a N 3, defined by (a? U 5%)4, in which either the
hybrid game « or the hybrid game [ is played, by Demon’s choice. Demonic repetition of hybrid
game « is o, defined by ((a?)")?, in which « is repeated as often as Demon chooses to. In o*,
Demon chooses after each play of a whether to repeat the game, but cannot play indefinitely so
he has to stop repeating ultimately. The dual differential equation (x' = 6 & 1)) follows the same
dynamics as 2’ = 0 & 1) except that Demon chooses the duration, so he cannot choose a duration
during which ) stops to hold at any time. Hence he loses when ¢ does not hold in the current state.
Dual assignment (z := 6)¢ is equivalent to z := 6, because it involves no choices. Unary operators
(including *,%, Vz, [a], (o)) bind stronger than binary operators and let ; bind stronger than U and

N,soa; BUy = (a; 8) Uy.

3 Note that the most common case for 1) is a formula of first-order real arithmetic, but any dG£ formula will
work. In Section[3.2] evolution domain constraints 1 turn out to be unnecessary, because they can be defined using
hybrid games. In the ordinary differential equation 2’ = 6, the term z’ denotes the time-derivative of 2 and 6 is a
polynomial term that is allowed to mention x and other variables. More general forms of differential equations are
possible [Plal0al], but will not be considered explicitly.
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Note that, quite unlike in the case of a*, it is irrelevant whether Angel decides the duration
for 2’ = 6 & 1) before or after that continuous evolution, because initial-value problems for 2’ = ¢
have unique solutions by Picard-Lindel6ff as term 6 is smooth.

Observe that every (completed) play of a game is won or lost by exactly one player. Even a
play of repeated game o* has only one winner, because the game stops as soon as one player has
won, e.g., because his opponent failed a test. This is different than the repetition of whole game
plays (including winning/losing), where the purpose is for the players to repeat the same game over
and over again to completion, win and lose multiple times, and study who wins how often in the
long run with mixed strategies. In this scenario, the overall game is played once (even if some part
of it constitutes in repeating action choices) and it stops as soon as either Angel or Demon have
won. In applications, the system is already in trouble even if it loses the game only once, because
that may entail that a safety-critical property has already been violated.

Example 1 (Wall-E and Eve). Consider a game of the robots W and E moving on a (one-dimensional)
planet. A similar game can be studied for robot motion in higher dimensions using dGL..

(w—e)<1Av=f=>{((u=1Nu:=-1);
(g:=1Ug:=-1);
/ / / / / d\x ()
t:=0;(w =v,v' =u,e’ = f, f =g,t :1&t§1))
Y (w—e)* <1

Robot W is at position w with velocity v and acceleration v and plays the part of Demon. Robot
E is at e with velocity f and acceleration g and plays the part of Angel. The antecedent of
before the implication assumes that W and E start close to one another (distance at most 1) and
with identical velocities. The objective of E, who plays Angel’s part in (), is to be close to W (i.e.
(w — e)? < 1) as specified after the (-) modality in the succedent. The hybrid game proceeds as
follows. Demon W controls how often the hybrid game repeats by operator *. In each iteration,
Demon W first chooses (M) to accelerate (u := 1) or brake (u := —1), then Angel E chooses (U )
whether to accelerate (g := 1) or brake (g := —1). Every time that the * loop repeats, the players
get to make that choice again. They are not bound by what they chose in the previous iterations.
Yet, depending on the previous choices, the state will have evolved differently, which influences
indirectly what moves a player needs to choose to win. After this sequence of choices of u and g
by Demon and Angel, respectively, a clock variable ? is reset to ¢ := 0. Then the game follows a
differential equation system such that the time-derivative of W’s position w is the velocity v and
the time-derivative of v is acceleration u, the time-derivative of E’s position e is the velocity f
and the time-derivative of f is acceleration g. The time-derivative of clock variable ¢ is 1, yet the
differential equation is restricted to the evolution domain ¢ < 1. Angel controls the duration of a
differential equation. Yet, this differential equation is within a dual game by operator ¢, so Demon
controls the duration of the continuous evolution. Here, both W and E evolve continuously but
Demon W decides how long. He cannot chose any duration > 1, because that would make him
violate the evolution domain constraint ¢ < 1.

Deeper nesting levels of hybrid game operators can be used to describe more complicated
hybrid games with more levels of interaction (e.g., any number of nested U %, *).

6
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2.2 Semantics

The logic dGL has a denotational semantics. The dGL semantics defines, for each formula ¢, the
set [[gb]]I of states in which ¢ is true. For each hybrid game « and each set of winning states X, the
dGL semantics defines the set ¢, (X) of states from which Angel has a winning strategy to achieve
X in hybrid game «, as well as the set d,,(X) of states from which Demon has a winning strategy
to achieve X in a.

A state s is a mapping from variables to R. An interpretation I assigns a relation I (p) C RF
to each predicate symbol p of arity k. The interpretation further determines the set of states S,
which is isomorphic to a Euclidean space R when n is the number of relevant variables. For a
subset X C S the complement S\ X is denoted X L Let s denote the state that agrees with state s
except for the interpretation of variable x, which is changed to d € R. The value of term 6 in state
s is denoted by [#],. The denotational semantics of dGL formulas will be defined in Def. by
simultaneous induction along with the denotational semantics, ¢,(-) and J,(-), of hybrid games,
defined in Def.[4] because dGL formulas are defined by simultaneous induction with hybrid games.

Definition 3 (dGL semantics). The semantics of a dGL formula ¢ for each interpretation I with
a corresponding set of states S is the subset [[qb]]I C § of states in which ¢ is true. It is defined
inductively as follows

L [p(01, . 0] ={s €S : ([0l [6:],) € 1(p)}
2. [6r = 6] ={s€S:[6], > [6a],}
[-¢]" = ([8]")°
4. [ordl =l n[W)
[Bz¢] ={seS:s. e [¢] forsomer € R}
[
[

6. [()¢]" = <l[9]")

[ao]" = da(le]")

A dGL formula ¢ is valid in I, written I |= ¢, iff [[¢]]I = S. Formula ¢ is valid, F ¢, iff I = ¢ for
all interpretations /.

7.

Definition 4 (Semantics of hybrid games). The semantics of a hybrid game « is a function ¢, (+)
that, for each interpretation / and each set of Angel’s winning states X C S, gives the winning
region, i.e. the set of states ¢, (X) from which Angel has a winning strategy to achieve X (whatever
strategy Demon chooses). It is defined inductively as followf]

. o(X)={se8: s exy

4 The semantics of a hybrid game is not merely a reachability relation between states as for hybrid systems [Plal2a]],
because the adversarial dynamic interactions and nested choices of the players have to be taken into account.
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2. Gpew(X) ={p(0) € S: ¢(r) € X for some r € R, and (differentiable) ¢ : [0,r] = S
such that (¢) € [¢]" and %(Q = [0, forall0 < ( <r}

3. gu(X) =[] ' NX

4. caup(X) = cu(X) Ugs(X)

5. Gap(X) = calsp(X))

6. 6o (X)=Z CS: XU (2)C 7}

(X)) = (a(XF)"

Y

The winning region of Demon, i.e. the set of states d,(X) from which Demon has a winning
strategy to achieve X (whatever strategy Angel chooses) is defined inductively as follows

l. 6o9(X)={s€S: s[[eLEX}

2. dp—peyp(X) = {p(0) € S: ¢(r) € X forall r € Ry and (differentiable) ¢ : [0,7] — S
such that ¢(¢) € [¢]" and %(C) = [0], forall0 < ( <r}

3. 0rp(X) = (W] )PUX

4. Saup(X) = 0,(X) N ds(X)

5. 8ap(X) = da(dp(X))

6. 6.-(X) = {ZC S:ZC XN6.(2)}
7. 60a(X) = (0a(XC))C

This notation uses ¢, (X ) instead of ¢%(X) and d,(X) instead of 6%(X), because the interpre-
tation [ that gives a semantics to predicate symbols in tests and evolution domains is clear from
the context. Strategies do not occur explicitly in the dGL semantics, because it is based on the
existence of winning strategies, not on the strategies themselves.

The semantics is compositional, i.e. the semantics of a compound dGL formula is a simple
function of the semantics of its pieces, and the semantics of a compound hybrid game is a function
of the semantics of its pieces. This enables us to identify a compositional proof calculus. Fur-
thermore, existence of a strategy in hybrid game « to achieve X is independent of any game and
dGL formula surrounding «, but just depends on the remaining game « itself and the goal X. By
a simple inductive argument, this shows that one can focus on memoryless strategies, because the
existence of strategies does not depend on the context, hence, by working bottom up, the strategy
itself cannot depend on past states and choices, only the current state, remaining game, and goal.
This follows from a generalization of a classical result [Zer13]], but is directly apparent in a logical
setting. Furthermore, the semantics is monotone, i.e. larger sets of winning states induce larger
winning regions.
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Lemma 1 (Monotonicity). The semantics is monotone, i.e. ¢,(X) C ¢, (Y) and §,(X) C §,(Y)
forall X CY.

Proof. A simple check based on the observation that X only occurs with an even number of nega-
tions in the semantics. For example, ¢,«(X) = ({Z € S : X U (Z2) C Z} C N{Z C
S:YUg(Z) CZ} = ¢(Y)if X C VY. Likewise, X C Y implies Xt O ¥ hence
$a(X) 2 6a(Y), 50 6a(X) = (sa(X%))* C (Gal(Y)" = gua(Y). O

Monotonicity implies that the least fixpoint in ¢,«(X) and the greatest fixpoint in J,+(X) are
well-defined [HKTOO, Lemma 1.7]. The semantics of ¢, (.X) is a least fixpoint, which results in a
well-founded repetition of «, i.e. Angel can repeat any number of times but she ultimately needs
to stop at a state in X in order to win. The semantics of J,-(X) is a greatest fixpoint, instead,
for which Demon needs to achieve a state in X after every number of repetitions, because Angel
could choose to stop at any time, but Demon still wins if he only postpones X C forever, because
Angel ultimately has to stop repeating. Thus, for the formula (a*)¢, Demon already has a winning
strategy if he only has a strategy that is not losing by preventing ¢ indefinitely, because Angel
eventually has to stop repeating anyhow and will then end up in a state not satisfying ¢, which
makes her lose. The situation for [a*]¢ is dual.

Hybrid games branch finitely when the players decide which game to play in o« U S and o N f3,
respectively. The games o and o also branch finitely, because, after each repetition of «, the re-
spective player (Angel for o* and Demon for o*) may decide whether to repeat again or stop. Re-
peated games may still lead to infinitely many branches, because a repeated game can be repeated
any number of times. The game branches uncountably infinitely, however, when the players decide
how long to evolve along differential equations in 2’ = § & 1) and (2’ = 6 & 1), because uncount-
ably many nonnegative real number could be chosen as a duration (unless the system leaves ¢
immediately). These choices can be made explicit by relating the simple denotational modal se-
mantics of dGL to an equivalent operational game semantics that is technically much more involved
but directly exposes the interactive intuition of game play. For reference, this approach has been
made explicit in Appendix|C]

Example 2. The following simple dGL formula
(z=z+ 1 =22 Us=2-1))(0<z<1) (2)

is true in all states from which there is a winning strategy for Angel to reach [0,1). It is Angel’s
choice whether to repeat (*) and, ever time she does, it is her choice (U) whether to increase x by
1 and then (after ;) give Demon control over the duration of the differential equation ' = 2% (left
game) or whether to instead decrease x by 1 (right game). Formula (2)) is valid, because Angel
has the winning strategy of choosing the left action until z > 0, which will ultimately happen,
followed by the right action until 0 < x < 1. The following minor variation, however, is not valid:

(z=2z+1E@ =22 U(@=0c—-1Nz:=2-2))0<z<1)

because Demon can spoil Angel’s efforts by choosing x:=x — 2 in his choice (N) to make =
negative whenever 1 < z < 2, and then increasing x to 1.5 again via (2’ = 2?)? when Angel takes
the left choice. Angel will never reach 0 < x < 1 that way unless this was true initially already.
This phenomenon is examined in Section(3.1{in more detail.

9
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Example 3 (Wall-E and Eve). The dG£ formula (1)) from Example[l]is valid, because Angel E
indeed has a winning strategy to get close to W by mimicking Demon’s choices. Recall that
Demon W controls the repetition *, so the fact that the hybrid game starts E off close to W is
not sufficient for E to win the game. Note that the hybrid game in would be trivial if Angel
were to control the repetition (because she would then win by simply choosing not to repeat) or to
control the differential equation (because she would then win by only ever evolving for duration
0). Finally, the analysis of (I)) requires more careful proofs if the first two lines in the hybrid game
are swapped so that Angel E chooses g before Demon W chooses w.

3 Meta-Properties

This section analyzes meta-properties and semantical properties of dGL and hybrid games, in-
cluding determinacy of hybrid games, hybrid game equivalences, and closure ordinals of hybrid
games.

3.1 Determinacy

Every particular game play in a hybrid game is won by exactly one player, because hybrid games
are zero-sum and there are no draws. That alone does not imply determinacy, i.e. that, from any
initial situation, either one of the players always has a winning strategy to force a win, regardless
of how the other player chooses to play.

In order to understand the importance of determinacy for classical logics, consider the seman-
tics of repetition, defined as a least fixpoint, which is crucial because that gives a well-founded
repetition. Otherwise, the filibuster formula would not have a well-defined truth-value:

(z:=0Nz:=1)"2x=0 3)

It is Angel’s choice whether to repeat (*), but every time Angel repeats, it is Demon’s choice (M)
whether to play x := 0 or z := 1. The game in this formula never deadlocks, because every player
always has a remaining move (here even two). But, without the least fixpoint, the game would
have perpetual checks, because no strategy helps either player win the game; see Fig.[I}

Demon can move x :=1 and would win, but Angel observes this and decides to repeat, so
Demon can again move x :=1. Thus (unless Angel is lucky starting from an initial state where
she has won already) every strategy that one player has to reach + = 0 or z = 1 could be spoiled
by the other player so the game would not be determined, i.e. no player has a winning strategy.
Every player can let his opponent win, but would not have a strategy to win himself. Because of
the least fixpoint ¢, (X ) in the semantics, however, repetitions are well-founded and, thus, have to
stop eventually (after an arbitrary unbounded number of rounds). Hence, in the example in Fig.[I]
Demon still wins and formula is false, unless © = 0 holds initially. In other words, the formula
in (3) is equivalent to z = 0. The same phenomenon happens in Example[2] Likewise, the dual
filibuster game formula

r=0— ((z:=0Uz:=1))x =0 4)

10



3.1 Determinacy André Platzer

Figure 1: The filibuster game formula ((z:=0Nz:=1)")x = 0 is false (unless z = 0 initially),
but would be non-determined without least fixpoints (strategies follow thick actions). Angel’s
action choices are illustrated by dashed edges from dashed diamonds, Demon’s action choices by
solid edges from solid squares, and double lines indicate identical states with the same continuous
state and a subgame of the same structure of subsequent choices. States where Angel wins are
marked ¢ and states where Demon wins by O.

is (determined and) valid, because Demon has to stop repeating * eventually so that Angel wins if
she patiently plays x := 0 each time. Similarly, the game in the following hybrid filibuster formula
would not be determined without the least fixpoint semantics

because Demon could always evolve continuously to some state where x > 0 and Angel would
never want to stop. Since Angel will have to stop eventually, she loses and the formula is false
unless = = 0 holds initially.

It is important as well that Angel can only choose real durations » € Rx( for a continuous
evolution game x’ = 0 & v, not infinity oo, so she ultimately stops. Otherwise

(' =1%2:=0))z =0 (5)

would not be determined, because Angel wants to repeat (unless x = 0 initially) and x := 0 will
make her win once she stops after any nonzero number of repetitions. Yet, if Demon could choose
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3.1 Determinacy André Platzer

oo as the duration for the continuous evolution game z’ = 1¢, Angel will never get to play the
subsequent x := 0 to win. Since durations need to be real numbers, however, each continuous
evolution ultimately has to stop, so the formula in (5)) is valid.

In order to make sure that dGL is a classical two-valued modal logic, hybrid games have no
draws during any game play. But, because modalities refer to the existence of winning strategies,
they only receive classical truth values if, from each state, one of the players has a winning strategy
for complementary winning conditions of a hybrid game «. The logical setup of dGL makes this
determinacy proof very simple, without the need to use, e.g., the deep Borel determinacy theorem
for winning conditions that are Borel in the product topology induced on game trees by the discrete
topology of actions [Mar75].

Theorem 2 (Consistency & determinacy). Hybrid games are consistent and determined, i.e.

F =(a)=¢ < [a]¢

Proof. The proof shows by induction on the structure of o that ¢,(X%)® = §,(X) forall X C S
and all  with some set of states S, which implies the validity of —(a)—¢ <> [a]¢ using X &of [¢]".

1 cog(XO = {s €8 s ¢ X8 = ¢, 5(X) = 0p(X)

2. Go—puw(XOE = {©(0) € S : (r) ¢ X for some 0 < r € R and some (differen-
tiable) ¢ : [0,7] — S such that “€LE(¢) = [0] ) and ¢(¢) € [¢]' forall 0 < ¢ < r}°
= 0—p&w(X), because the set of states from which there is no winning strategy for Angel
to reach a state in X° prior to leaving [[w]]f along ' = 0 & 1 is exactly the set of states from
which ' = 0 & 1) always stays in X (until leaving [[@D]V in case that ever happens).

3. (X = ([]' N XB)F = ([w]")F U (X = 62 (X)
4. s (X0 = ((XB) Uga(XE))E = cu(XEF N ea(XE)E = 6,(X) N 65(X) = baua(X)
5. sap(XE)E = 6a(6p(X0))F = a(d5(X)E)E = 6a(65(X)) = Gayp(X)
6. o (X0 = (N{ZC S X UG(Z )< 2 = (ZCS: (XNaw(2)P)F C z})
= (2SS (X628 C 2 =UZ TS Z C X N6a(2)} = 00 (X). ]
7. at(XE)E = (ca((XE)E)EE = 6, (XE)E = 6,0(X) O

One direction of Theorem[2|implies F —(a)—=¢ — [a]¢, i.e. E ()¢ V [a]p, whose validity means
that, from any initial state, either Angel has a winning strategy to achieve —¢ or Demon has a win-
ning strategy to achieve ¢. That is, hybrid games are determined, because there are no states from
which none of the players has a winning strategy (for the same hybrid game « and complementary
winning conditions —¢ and ¢, respectively). At least one player, thus, has a winning strategy for

>The penultimate equation follows from the j-calculus equivalence vZ. Y (Z) = —~uZ.~Y(—Z) and the fact that
least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone functions.
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3.2 Hybrid Game Equivalences André Platzer
complementary winning conditions. The other direction of Theorem[2]implies F [a]¢ — —{a)—¢,
ie. F —([a]o A (a)—¢), whose validity means that there is no state from which Demon has a win-
ning strategy to achieve ¢ and, simultaneously, Angel has a winning strategy to achieve —¢. It
cannot be that both players have a winning strategy for complementary conditions from the same
state. That is, hybrid games are consistent, because at most one player has a winning strategy for
complementary winning conditions. Along with modal congruence rules, which hold for dG.,
Theorem[2] makes dGL a classical (multi)modal logic [Che80], yet with modalities indexed by
hybrid games.

Instead of giving a semantics to [-] in terms of the existence of a winning strategy for Demon,
Theorem[2|could have been used as a definition of [-]. That would have been easier, but would have
obscured determinacy and the role of [-] as the winning strategy operator for Demon.

3.2 Hybrid Game Equivalences

As usual, the same hybrid game can have multiple different syntactical representations. Some
equivalence transformations on hybrid games can be useful to transform hybrid games into a sim-
pler form.

Definition 5 (Hybrid game equivalence). Hybrid games « and (5 are equivalent, denoted o = (3, if
Sa(X) = ¢3(X) for all X and all I.

By Theorem[2} « and 3 are equivalent iff 6, (X) = d3(X) for all X and all 1.
Remark 1. The equivalences

(@UB=a’npl, (wB)'=a%8% (0)'=(a"), a*=a

on hybrid games can transform every hybrid game « into an equivalent hybrid game in which ¢
only occurs right after atomic games or as part of the definition of the derived operators N and *.
Other equivalences include (2’ = 0)" =2’ =0 and (' = 0 & )" = 2true Uz’ = 0 & 1.

Quite unlike in hybrid systems and (poor test) differential dynamic logic [PlaO8l/Plal2a], every
hybrid game containing a differential equation 2’ = 6 & v with evolution domain constraints ¢ can
be replaced equivalently by a hybrid game without evolution domain constrains (even using poor
tests, i.e. each test 7¢) uses only first-order formulas ¢/). Evolution domains are definable in hybrid
games and can, thus, be removed equivalently.

Lemma 3 (Domain reduction). Evolution domains of differential equations are definable as hybrid
games: For every hybrid game there is an equivalent hybrid game that has no evolution domain
constraints, i.e. all continuous evolutions are of the form x’ = 6.

Proof. For notational convenience, assume the (vectorial) differential equation 2’ = 6(z) to con-
tain a clock z(; = 1 and that ¢, and z are fresh variables. Then 2’ = 6(x) & ¥ (z) is equivalent to
the hybrid game:

to:= 057" = 0(x); (z:= ;2 = =0(2))% 2(20 > to — ¥(2)) ©

See Fig.[2| for an illustration. Suppose the current player is Angel. The idea behind game equiva-
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Angel plays forward game, reverts flow and time

o,

Demon checks v in backwards game until initial

to

Figure 2: “There and back again game”: Angel evolves x forwards in time along 2’ = (z), Demon
checks evolution domain backwards in time along 2’ = —0(z) on a copy z of the state vector z

lence () is that the fresh variable ¢, remembers the initial time z, and Angel then evolves forward
along 2’ = 6(x) for any amount of time (Angel’s choice). Afterwards, the opponent Demon copies
the state x into a fresh variable (vector) z that he can evolve backwards along (2’ = —6(z))? for
any amount of time (Demon’s choice). The original player Angel must then pass the challenge
?(z9 > tg — ¥(2)), i.e. Angel loses immediately if Demon was able to evolve backwards and
leave region ¢(z) while satisfying zy > t(, which checks that Demon did not evolve backward for
longer than Angel evolved forward. Otherwise, when Angel passes the test, the extra variables
1o, 2 become irrelevant (they are fresh) and the game continues from the current state = that Angel
chose in the first place (by selecting a duration for the evolution that Demon could not invalidate).

]

Lemma[3| can eliminate all evolution domain constraints equivalently in hybrid games from
now on. While evolution domain constraints are fundamental parts of standard hybrid systems
[Hen96, HKPV95, ACHH92, |P1a08]], they turn out to be mere convenience notation for hybrid
games. In that sense, hybrid games are more fundamental than hybrid systems, because they
feature elementary operators.

3.3 Strategic Closure Ordinals

In order to examine whether the dGL semantics could be implemented directly to compute win-
ning regions for dGL formulas by a reachability computation or backwards induction, this section
investigates how many iterations the fixpoint for the semantics ¢, (X)) of repetition needs.

The semantics, ¢,«(X), of a* is a least fixpoint and Knaster-Tarski’s seminal fixpoint theorem
entails that every least fixpoint of a monotone function on a complete lattice corresponds to some
sufficiently large iteration. That is, there is some ordinal A at which the A-th iteration, ) (X), of
5o (+) coincides with ¢ (X), i.e. o (X) = ¢} (X); see Fig. How big is ), i.e. how often does
So(+) need to iterate to obtain ¢,«(X)?

Recall that ordinals extend natural numbers and support (non-commutative) addition, multipli-
cation, and exponentiation, ordered as:

0<1<2<...w<wt+l<w+2<...w-2<w-2+1< ... w-3<w-3+1<...

© CK

W<witl< Wt w<®rotl<w < <L < o<

14



3.3 Strategic Closure Ordinals André Platzer

Figure 3: Least fixpoint ¢,-(X) corresponds to some higher iterate ¢}(X) of ¢, (-) from winning
condition X.

The first infinite ordinal is w, the Church-Kleene ordinal wa, i.e. the first nonrecursive ordinal,
and w, the first uncountable ordinal. Recall that every ordinal x is either a successor ordinal, i.e.
the smallest ordinal x = ¢ + 1 greater than some ordinal ¢, or a limit ordinal, i.e. the supremum of
all smaller ordinals. Depending on the context, O is considered a limit ordinal or separate.

3.3.1 Iterations and Fixpoints

For each hybrid game «, the semantics ¢,(-) is a monotone operator on the complete powerset
lattice (Lemmal[l). The rth iterate, *(-), of ¢, (+) is defined in line with a minor variation of Kozen’s
formulation of the Knaster-Tarski theorem [HKTOO, Theorem 1.12], obtained by considering the
sublattice with z at the bottom.

Let 7 : L — L any monotone operator on a partial order L, then defining 7(x) U

U 7(7"(x)) for all ordinals X is equivalent to:
k<A

o
=

(2) = 2

T 2) € 2 UT(r(2))

™(x) € | J7(z) A+ 0alimit ordinal

K<

o
=

Yet, | J and, thus, 7 () are only guaranteed to exist if L is a complete partial order.

TheOI‘eIIl 4 (Knaster-Tarski [HKTOO, Theorem 1.12]). For every complete lattice L, there is an
ordinal X of at most the cardinality of L such that, for each monotone 7 : L. — L, i.e. 7(z) C 7(y)
for all x C vy, the fixpoints of T in L are a complete lattice and for all x € L and all ordinals k:

@) (Ve eLiaCzr(z) C 2} = @) = 7" (a)
The least ordinal A with the property in Theorem@is called closure ordinal of 7.
The operator 7%(-) enjoys useful properties. By its extensive / inflationary definition, 7"(x) is

not just monotone in z but also monotone and homomorphic in . Since 7°(x) = z, this works for
all ordinals.
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3.3 Strategic Closure Ordinals André Platzer
Lemma 5. 7 is inductive, i.e. T(x) C 7(z) for all k < \ and homomorphic in k, i.e.

7 (z) = 7M1 ()) for all k, A

Proof. Inductiveness, i.e. 7%(z) C 7*(x) for k < ), which is monotonicity in , holds by definition
[HKTO00, Lemma 1.11]. Homomorphy in &, i.e. 7%t*(z) = 7*(7*(z)) can be proved by induction
on A, which is either 0, a successor ordinal (second line) or a limit ordinal # 0 (third line):

7 =) = )
PHg) = 2 (”M)) Ur(r (e (@))) = () U (P (@) = P ()
T (z) = U U T (x U ()

1<K+ 1<K <A
= U T (x) = U (1% () = 7" (x)) O
<A <A

By Theorem@ there is an ordinal A of cardinality at most that of R such that ¢, (X) = ¢} (X)
for all « and all X, because the powerset lattice is complete and ,(-) monotone by Lemma
This iterative construction 7*(X) corresponds to backward induction in classical game theory
[VNMS55, Aum95], yet it terminates at ordinal A which is not necessarily finite.

3.3.2 Scott-Continuity

Repetitions in classical hybrid systems only repeat any finite number of times [Plal2a]. If the se-
mantics of dGL were Scott-continuous, this would be the case for dGL as well, because the closure
ordinal of Scott-continuous operators on a complete partial order is <w by Kleene’s fixpoint theo-
rem. Dual-free o are indeed Scott-continuous, in particular, the closure ordinal for hybrid systems
is w.

Lemma 6 (Scott-continuity of ?-free dGL). The dGL semantics of *-free « is Scott-continuous, i.e.
Sa(Unes Xn) = U,es Sa(Xn) for all families { X, }re; with any index set J.

Proof. By Lemmal Unes $a(Xn) € a(U,es X ) The converse inclusion can be shown by a
simple induction on the structure of o <o (U,,c; Xn) € U,y Sa(Xn). IH is short for induction
hypothesis.

LoGeoUney X) = {5 € S st € Uy X} € Upeyds € S+ s € X} =

U,es Sm=(Xn), since sl ¢ U,es Xn implies sl ¢ X, for some n.

2. Gmpies(Unes Xn) = {9(0) € 8 F29E(() = [0] ) and ¢(¢) € [¢]" forall ¢ < r for
some (differentiable) ¢ : [0,7] — S such that (r) € U, c; Xn} € U, ey o= 4(Xn) =
{p(0) € S:...p(r) € X,}, because (1) € |, X, implies ¢(r) € X,, for some n.

3. g?w(UneJ Xn) = [M]I N UneJ XTL = UneJ([[w]]I N Xn) = UneJ §?¢<Xn>

neJ
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4. 008Uy Xn) = SalUnes Xn) U ss(Unes Xn) = (Unes salXa)) U (Une, 55(Xa)) =
Unes(Sa(Xn) Us(Xn)) = U,cs Saus(Xn)

5. Sa8(Unes Xn) = Sal$s(Ues Xn)) = SolUnes s8(Xn)) = Uney Sal6s(Xn)) = U,e Sass(Xn)

6. Sor(Unes Xn) = (Unes Xn)Usa(Sas (U,,e s Xn)) is the least fixpoint. Prove that | J,,. ; Ga+ (X5)
is a fixpoint, which implies o+ (IU,,c; X»n) € U,cs Sa* (Xn). Indeed,

H
(Unes Xn)Usa(U,e s Sar (X)) = (Unes Xn)UUse s Sa(Sar (X)) = Une s (XnUsa (o (Xn)) =
Unes Sax(X5). The last equation uses that ¢, (X,,) is a fixpoint. O

But ¢, (-) is not generally Scott-continuous, so A might potentially be greater than w for hybrid
games. Games with both ¢ and * do not generally have a Scott-continuous semantics nor an w-
chain continuous semantics, i.e. they are not even continuous for a monotonically increasing chain
Xo C X7 C X, C ... with w as index set:

R = §y=y—|—1X<LJ (—o0,n]) 91 U gy:y—l-lX((_OOvn]) =0

n<w n<w

hence F (y:=y+1")In:Ny<nbut #In:N(y:=y+ 1)y <n

This example shows that, even though Angel wins this game, there is no upper bound < w on the
number of iterations it takes her to win, because Demon could repeat y := y + 1* arbitrarily often.
This phenomenon is directly related to a failure of the Barcan axiom (Sectiond.5). The quantifier
dn : N over natural numbers is not essential here [P1a08] but mere convenience to make both lines
above match directly.

If 7 is countably-continuous, i.e. continuous for families with countable index sets, on a com-
plete partial order, then its closure ordinal is A < w;. But this is not the case for Go(+) either, by the
above counterexample with countable index set w.

A function 7 on sets is x-based, for an ordinal , if for all X, z € 7(X) implies x € 7(Y") for
some Y C X of cardinality <x. If 7 is k-based, then its closure ordinal is <x [Acz7/7, Proposition
1.3.4]. The semantics ¢, () is not w;-based, however, because of Lemma and removing just one
state from the winning condition may lose states in the winning region:

[0,00) = ¢p—1a(]0, 00))

but 0 & ¢,._14([0,00) \ {a}) = (a,00) forall a > 0
Consequently, it is the combination of ¢,*, and differential equations that makes hybrid games
challenging.
3.3.3 Transfinite Closure Ordinals

When will the iteration for the fixpoints in the winning region definitions stop? Hybrid games
may have higher closure ordinals, because w many repetitions of the operator (and even <w(X
many) may not be enough to compute winning regions. In other words, ¢, (X) will coincide with
iterations ¢/*(X) as illustrated in Fig.|3| but this may need more than w many iterations to terminate.
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3.3 Strategic Closure Ordinals André Platzer

Theorem 7 (Closure ordinals). The semantics of dGL has a closure ordinal > W, i.e. for all
A < wCK, there are ov and X such that c,+(X) # ) (X).

Proof. The proof first shows the easier case that the closure ordinal is > w - 2. A proof for > w®
is shown in Appendix[E The specific dGL formulas considered for these increasing lower bounds
show that the closure ordinal is not a simple function of the syntactic structure, because minor
syntactic variations lead to vastly different closure ordinals.

To see that the closure ordinal is > w even with just one variable, a single loop and dual,
consider the semantics of the following dGL formula, i.e. the set of states in which it is true:

(z=o+ L2 =1"Ug:=0-1))(0<z < 1) (7)

@ B

The winning regions for this dGL formula stabilize after w - 2 iterations, because w many iterations
are necessary to show that any positive real can be reduced to [0, 1) by choosing 3 sufficiently
often, whereas another w many iterations are needed to show that choice o, which makes progress
> 1 but possibly more under Demon’s control, can turn x into a positive real. It is easy to see that

Saup(10,1)) = U, cw saus([0,1)) = [0, 00), because ¢/ ,5([0,1)) = [0,n) holds for all n» € N by a
simple inductive argument:

giuﬁ([()? 1)) - 3
Saup([0,1)) =10, 1) U caus(saus([0,1))) = [0, 1) U caus ([0, 1)
=[0,1) Uca([0,n)) Ugs([0,n)) = [0,1) UBU[1,n + 1)
But the iteration for the winning region does not stop at w, as ¢ 7'([0, 1)) = [—n, o) holds for all

n € N by another simple inductive argument:

seipH((0,1)) = [0,1) Usaus (a3 ([0, 1))

;1) U Gaus([—n, 00))

1) U€a([ 00)) U gg([—n, 00))
n— )U [—n, 00)

0
0
0

[
=
=
-

Thus, <57([0,1)) = <235'(10,1)) = U<, ;"J;([O 1)) = R = ¢4up(R). In this case, the closure
ordinal is w - 2 > w, since g,y ([0,1)) = R # <e05([0,1)) forall n € N.

To show that the closure ordinal is > w K consider any ordinal A < wl , 1.e. any recursive or-
dinal. Let < C M x M be a corresponding recursive well-order of order type A on a corresponding

set M C ]RE] That is, let f- a recursive function such that the relation x < y given by f-(z,y) =0
defines a well-order on the set M & {r e R: fi(x,y) = 0orf<(y,x) = 0 forsomey € R}.
Without loss of generality, assume that 0 € M is the least element of M with respect to <. Since <
is recursive, denote by 7 f~(x,y) = 0 the program that does not change the value of variables z, y

A well-order is a linear order < on M in which every non-empty subset has a least element. Two sets M, N have
equal order type iff they have an order-isomorphism ¢ : M — N, i.e. a monotone bijection with monotone inverse.
More background can be found in the standard literature [Rog87].
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and that implements the recursive function that terminates if x € M and either z < yory & M
and that otherwise fails (like 7(0 = 1) would). Consider the dG£ formula

<(y::x;(a:’:1;x':—1;?f<(x,y):O)‘j)*>m20 (8)

v~
«

By definition of 7 f_(x,y) = 0, formula (8)) is valid, because x is in M after each successful run
of 7f-(z,y) = 0, and < is a well-order on M with least element 0. By construction, ¢,(X) =
{a € R: b e X forall b with f.(b,a) = 0} for X C R. Since < has order type A, ¢({0}) #
s2({0}) = M forall k < ), otherwise the ¢ ({0}) would induce a monotone injection (even order-
isomorphism) from M to k < A, which is a contradiction. Indeed, ¢ : M — k;x — inf{s: z €
. ({0})} would otherwise be a monotone injection as x < y in M implies ¢(x) < ¢(y), because
o(x) > (y) implies y € ¢, (X) foraset X = 2~ ({0}) that does not contain z, contradicting
x < y. Note that ¢(y) is a successor ordinal and hence ¢(y) — 1 defined, since ¢ maps into
successor ordinals and 0 by the definition of ¢. Consequently, ¢}({0}) = M # 1({0}) =
Sa(M) = R = ¢4+({0}), where M # R because )\ is recursive hence countable and < a linear
order on M. Thus, the closure ordinal for formula (8) is A+1 > . Hence, for any recursive ordinal
)\, there is a hybrid game with a bigger closure ordinal. So, the closure ordinal is > w¢¥X, U

By Theorem the closure ordinal for dGL is between wt and ordinals of the cardinality of the
reals. In fact, the same proof works for any other well-ordering that is definable in hybrid games,
not just those that are definable by classical recursive functions. The proof does not permit arbitrary
well-orderings of the real numbers, however, because those may not be definable by hybrid games.
Consequently the closure ordinal for dGL is at least w{’G, which we define as the first ordinal \
that does not have a well-ordering of order type A that is definable by hybrid games. This ordinal
satisfies w® < wHO and is at most of the cardinality of the reals. These thoughts yield a more
precise grasp on wiC in Section[3|

The fact that hybrid games require highly transfinite closure ordinals has a number of con-
sequences. It makes reachability computations and backwards induction difficult, because they
only terminate after more than w-infinitely many steps. It requires higher bounds on the number
of repetitions played in hybrid games. It causes classical arguments for relative completeness to
fail (Sectiond.3). And it causes semantical differences that are only visible in hybrid games, not
in hybrid systems. For example, the dGL semantics is more general than defining ¢, (X) to be
truncated to w-repetition ¢'(X) = |J, ., su(X), which misses out on the existence of perfectly
natural winning strategies. The semantics of dGL is also different than advance notice semantics.
For reference, both comparisons are elaborated in Appendix[D]

4 Axiomatization

Section [2| has defined dGL so that every game play has exactly one winner. Section [3| has shown
that hybrid games are determined, i.e. from every state, exactly one of the players has a winning
strategy for complementary winning conditions, but how can one find out which of the players
that is? In principle, one could follow the iterated winning region construction from Section[3.3|
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4.1 Proof Calculus André Platzer
to find out, which corresponds to reachability computation or backwards induction, but that will
not generally terminate in finite time, because the closure ordinal is highly transfinite. Every
dGL sentence without free variables or predicate symbols is either true or false, because dGL is a
classical logic. But the semantics of dGL formulas is ineffective, because computing the semantics,
like classical model checking or game solving would, requires transfinite computations. This calls
for other ways of proving the validity of dGL formulas.

Simple dGL formulas can be checked by a tableau procedure that expands all choices and
detects loops for termination as in the game tree examples (Fig.[I] and Appendix). This principle
does not extend to more general hybrid games with differential equations, inherently infinite state
spaces [Hen96|], and which need higher ordinals of iteration for computing winning regions by
Theorem[7l

4.1 Proof Calculus

A Hilbert-type proof calculus for proving validity of dG£ formulas is presented in Fig. ]
[] la]¢ < =(a)—¢

(=) (z:=0)¢(z) & ¢(0)
() (@' =0)¢ & 3H=0(z:=y(t)e @) =0
(7) (M) < (Y A 9)

(W) {(@UB)o < ()oV (B)¢
)
)
)

() (@ B)d < (a)(B)¢
") oV (a){a)p — (a")o
() (ah)¢ ¢ =(a)=o

¢ =1
()¢ = ()¢
PV (Y =

R P P

Figure 4: Differential game logic axiomatization

The logic dGL simultaneously generalizes logics of hybrid systems and logics of discrete
games and so does its proof calculus. The proof calculus of dGL shares axioms with differen-
tial dynamic logic [Plal2a]] and discrete game logic [PPO3]. It is based on the first-order Hilbert
calculus (modus ponens, uniform substitution, and Bernays’ V-generalization) with all instances
of valid formulas of first-order logic as axioms, including first-order real arithmetic [Tar51]. Write
- ¢ iff dGL formula ¢ can be proved with the dGL proof rules from dGL axioms (Fig.[). That
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4.1 Proof Calculus André Platzer

is, a dGL formula is inductively defined to be provable in the dGL calculus if it is an instance of
a dGL axiom or if it is the conclusion (below the rule bar) of an instance of one of the dGL proof
rules ML [FPl modus ponens, uniform substitution, or V-generalization, whose premises (above the
rule bar) are all provable.

The determinacy axiom[[]] describes the duality of winning strategies for complementary win-
ning conditions of Angel and Demon, i.e. that Demon has a winning strategy to achieve ¢ in hybrid
game « if and only if Angel does not have a counter strategy, i.e. winning strategy to achieve —¢ in
the same game «v. Axiom [(:=)|is Hoare’s assignment rule. Formula ¢(#) is obtained from ¢(z) by
substituting 0 for x at all occurrences of x, provided = does not occur in the scope of a quantifier or
modality binding x or a variable of . A modality containing x := or 2’ outside the scope of tests
71) or evolution domain constraints binds x, because it may change the value of z. In the differen-
tial equation axiom|[{")] y(-) is the unique [Wal98, Theorem 10.VI] solution of the symbolic initial
value problem y/(t) = 6, y(0) = x. The duration ¢ how long to follow solution y is for Angel to
decide, hence existentially quantified. It goes without saying that variables like ¢ are fresh in Fig.

Axioms and are as in dynamic logic [Pra76] and differential dynamic logic [Plal2a]
except that their meaning is quite different, because they refer to winning strategies of hybrid games
instead of reachability relations of systems. The challenge axiom expresses that Angel has a
winning strategy to achieve ¢ in the test game 7/ exactly from those positions that are already in ¢
(because 77 does not change the state) and that satisfy v for otherwise she would fail the test and
lose the game immediately. The axiom of choice expresses that Angel has a winning strategy
in a game of choice o U 3 to achieve ¢ iff she has a winning strategy in either hybrid game « or
in /3, because she can choose which one to play. The sequential game axiom |(;)| expresses that
Angel has a winning strategy in a sequential game «; 3 to achieve ¢ iff she has a winning strategy
in game « to achieve ()¢, i.e. to get to a position from which she has a winning strategy in game
[ to achieve ¢. The iteration axiom characterizes (a*)¢ as a pre-fixpoint. It expresses that, if
the game is already in a state satisfying ¢ or if Angel has a winning strategy for game « to achieve
(a*)o, i.e. to get to a position from which she has a winning strategy for game a* to achieve ¢,
then, either way, Angel has a winning strategy to achieve ¢ in game a*. The converse of |(*)| can
be derive and is also denoted by The dual axiom @ characterizes dual games. It says that
Angel has a winning strategy to achieve ¢ in dual game a? iff Angel does not have a winning
strategy to achieve —¢ in game «. Combining dual game axiom @ with the determinacy axiom
[Jyields(a®)¢ <+ [a]¢, i.e. that Angel has a winning strategy to achieve ¢ in o iff Demon has a
winning strategy to achieve ¢ in «.. Similar reasoning derives [a¢]¢ <> (a)¢.

Monotonicity rule [Ml is the generalization rule of monotonic modal logic C [Che80]. It ex-
presses that, if the implication ¢ — ) is valid, then, from wherever Angel has a winning strategy
in any hybrid game « to achieve ¢, she also has a winning strategy to achieve v, because v holds
wherever ¢ does. So rule [Ml expresses that easier objectives are easier to win. Fixpoint rule [FPI
characterizes («*)¢ as a least pre-fixpoint. It says that, if ¢ is any other formula that is a pre-
fixpoint, i.e. that holds in all states that satisfy ¢ or from which Angel has a winning strategy in
game « to achieve that condition 1), then v also holds whereever («*)¢ does, i.e. in all states from

"oV (a)(a*)p — ()¢ derives by [(F)] Thus, (a)(¢ V (@)(a*)¢) — (a)(a*)¢ by Ml Hence, ¢ V (a)(¢ V
(a){a*)p) — ¢ V (@) (a*)¢ by propositional congruence. Consequently, (a*)¢ — ¢ V (a){a*)¢ by[FPl
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4.1 Proof Calculus André Platzer

which Angel has a winning strategy in game o to achieve ¢.

As usual, all substitutions in Fig.[] are required to be admissible to avoid capture of variables,
i.e. they require all variables x that are being replaced or that occur in their replacements to not
occur in the scope of a quantifier or modality binding x. Recall that the uniform substitution rule
from first-order logic substitutes all occurrences of predicate p(-) by a dGL formula (), i.e. it
replaces all occurrences of p(6) for any vectorial term 6 by the corresponding /() simultaneously:

(m)%%
%

In particular, the uniform substitution rule requires all relevant substitutions of /() for p(f) to
be admissible and requires that no p(#) occurs in the scope of a quantifier or modality binding a
variable of ¢)(6) other than those in #; see [Chu56, §35,40]. If admissible, the formula () can use
variables other than those in 6, hence, the case where p is a predicate symbol without arguments
enables to generate all formula instances from the dGL axioms. Rule [US| turns axioms into
axiom schemes [[Chu56, §35,40].

Despite their fundamentally different semantics (reachability relations on states of hybrid sys-
tem runs versus existence of winning strategies into sets of states of interactive hybrid game play)
and different dynamical effects (mixed discrete, continuous, and adversarial dynamics), the axiom-
atization of dGL ends up surprisingly close to that of the logic dZ for hybrid systems [Plal2al]. The
primary difference of the axiomatization of dGL compared to that of d is the addition of axiom
for dual games, the absence of axiom K, absence of Godel’s necessitation rule (dGL only has
the monotonic modal rule M), absence of the Barcan formula (the converse Barcan formula is still
derivablﬂ), and absence of the hybrid version of Harel’s convergence rule [HMP77]. Due to the
absence of K, the induction axiom and the convergence axiom are absent in dGL, while corre-
sponding proof rules are still valid; see Sectiond.5|for details. The induction rule (ind) is derivable
from [FPL

A proof of a classical result about the interderivability of [EP| with the induction rule is
included for the sake of completeness.

Lemma 8 (Invariance). Rule and the induction rule (ind) of dynamic logic are interderivable
in the dGL calculus:
Y — [oy
= o]y
Proof. Rule derives from [FP: First derive the following minor variant
Y=oy Y9
= [a*]o

From ¢ — [a]y and ¢ — ¢ propositionally derive 1) — ¢ A [«]t), from which contraposition and
propositional logic yield —¢ V —[a]iy — —¢p. With[[-]] this gives =¢ V (a)—¢p — —). Now [EP]

(ind)

(indg)

8 From ¢ — 3z ¢, derive ()¢ — ()3 ¢ by Ml from which first-order logic derives Vz ({a)¢ — (a)3z ¢) and
then derives 3z (a)¢ — («)Tx ¢, since converse Barcan assumes that x is not free in the succedent.
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4.2 Soundness André Platzer
derives (a*)—¢ — =, which, by[[-] is —[a*]¢ — —), which gives ) — [o*]¢ by contraposition.
The classical []-induction rule ind follows by ¢ = . From[ind] the variant[indg|is derivable again
by Mlon ¢) — ¢.

Rule [FPl derives from ind: From ¢ V («)1) — 1, propositionally derive ¢ — v and (a)y) — ).
By M| the former gives (a*)¢ — (a*)1). By contraposition, the latter derives ¢ — — ()1, which
gives =) — [a]=¢) by [] Now [nd derives =¢) — [a*]—¢). By contraposition —[a*]—t) — 1),
which, by [[-] is (a@*)1) — 4. Thus, (a*)¢ — 1 by the formula derived above. O

In particular, the dGL calculus could have been equipped with rule [ind instead of [FPL

Example 4. The dual filibuster game formula (@) from Section[3.1] proves easily by going back and
forth between players:

*

B2=0-0=0v1=0
:O—>(x::O)x:O\/(:C::1)x:O
x:O—>(x::OUx::1>x:0
@]x:O%ﬁ(x::Oﬂx:l)ﬁx:O
[E]x:()—>[a:::0ﬂx::1]x:0

o, —0=[(z:=0Nz:=1) ]z =0
@]$:O—><(x::OUl‘2:1)X>$:O

A proof of a (a*) property will be considered later, because the proof technique for those
properties comes from the completeness proof. More challenging hybrid games are provable in
dGL; see [QP12] for a proof of a stress-test of a highly interactive, 11-dimensional, nonlinear
hybrid game in robotic factory automation.

4.2 Soundness

Soundness studies whether all provable formulas are valid. The soundness proof uses that the
following congruence rule derives from two uses of monotonicity rule [Mt

<~
(RE) &
()¢ < ()t
Theorem 9 (Soundness). The dGL proof calculus in Fig.H|is sound, i.e. all provable formulas are

valid.

Proof. In order to prove soundness of an implication axiom ¢ — 1), fix any interpretation / with
any set of states S and show [¢]" C [¢/]". To prove soundness of an equivalence axiom ¢ < 10,
show [¢]" = [¢]". To prove soundness of a proof rule

¢

(4
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4.2 Soundness André Platzer
assume that ¢ is valid, i.e. [[gb]]I = Sin all interpretations / with any set of states S, and prove that
o is valid, i.e. [1/]" = S in all I with any S. All rules except[US], satisfy the stronger condition of
local soundness, i.e. for any interpretation I with any set of states S: [¢]" = S implies [1)]" = S.
Recall the p-calculus notation where 1. Y (Z) denotes the least fixpoint of Y(Z) and vZ.7(Z)
denotes the greatest fixpoint. Soundness of modus ponens (MP) and V-generalization (from ¢
derive Vx ¢) is standard and not shown.

[ [la]o]" = [~(a)—¢]" is a corollary to determinacy (Theorem.

0
(=] [z:=0)0()])" = seea([0(@)]) = {s € §: 54’ € @'} = {s € §: 5 € [6(O)]'} =
[[gzﬁ(é’)]]I, where the penultimate equation holds by the substitution lemma. The classical sub-
stitution lemma is sufficient for first-order logic ¢(6). Otherwise the proof of the substitution

lemma for d [PlalOb, Lemma 2.2] generalizes to dGL.

(Y] [(2' = 0)¢]" = cw—p([8]") = {©(0) € S : for some ¢:[0,7] — S so that (r) € [4]’
and 2200 (¢) = [0],, for all ¢ < r}. Also, [F>0(z:=y(t))¢]' = {s € S : s
[(z:=y(t))¢] forsomer >0} ={secS:s;c{uecS: uV ¢ [¢]'} forr > 0} =

(t) sT . .
{s € S: (s;)Ef’ b € [¢]" forsomer > 0}. The inclusion “D” between both parts

lv(®] ¢
holds, because the function (¢) = (s%). i solves the differential equation =’ = 6 by

assumption. The inclusion “C” follows, because the solution of the (smooth) differential
equation =’ = 6 is unique [Plal0b, Lemma 2.1].

D) [(79)6])" = cu([6]") = [W]' N ] = [w gl
O] [ U Bl = caus([8]") = sa([8]") Uss([6]') = [{e)d]’ U [(B)g]"
G0 [ Bl = sas([6]") = salss([8]") = sa[(BYS]") = [{a)(B)e]".

|
[F]] Since [(a")g]" = <o ([¢]') = nZ.([8]" U <a(2)) is a fixpoint, have [(a*)¢]" = [¢]" U
Sa([{a)el"). Thus, [¢ V > ]]I U l(e)(anel’ = [g]' U sa(la)el’) =
[[< “Y¢]". Consequently, [¢ V (« !

(O] K)ol = ca([e]) = <al([6])") = call-¢]’ o1")F = [~{@)—¢]" by Def. 4

M| Assume the premise ¢ — 1 is valid in interpretation /, i.e. [[gzﬁ]] C [¢]". Then the conclusion

(a)¢ — (a)pis valid in I, i.e. [(a)o]" = wu([¢]") C sa([¥]") = [(a)2]" by monotonicity
(LemmalT)).

oV (B)el’

(age)
I
@
J

[FP| Assume the premise ¢ V (a)i) — o is valid in 7, i.e. [¢ V (a)y]" C []". Thatis, [¢]" U
w([U]) = [¢l" U [()¥]" = [¢ v (@¢]" € [¢]'. Thus, 4 is a pre-fixpoint of Z =
[6]" U a(Z). Now using Lemmall], [(a*)¢]" = co- ([8]") = pZ.([6] U sa(2)) is the least
fixpoint and the least pre-fixpoint. Thus, [(a*)¢]" C [1/]", which implies that (a*)¢ — ) is
valid in [.
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4.3 Completeness André Platzer
[US] Standard soundness proofs for [US] [Chu56] generalize to dGL. A new proof based on an
elegant use of the soundness of [RE] is shown here. Assume the premise ¢ is valid, i.e.

[¢]" = S in all interpretations I with any set of states S. Assume that the uniform substitu-

tion is admissible, otherwise rule is not applicable and there is nothing to show. It needs

to be showsn that qﬁ;f’((.')) is valid, i.e. [[qb;f((f))]]l = S for all 7 with S. Consider any particular
interpretation J with set of states S. Without loss of generality, assume p not to occur in

¥(+) (otherwise first replace all occurrences of p in ¢(-) by ¢ and then use rule again

to replace those ¢ by p). Thus, by uniform substitution, p does not occur in ¢;f’((f)) and the

value of .J(p) is immaterial for the semantics of gzﬁ;f((.')). Therefore, pass to an interpretation

I that modifies .J by changing the semantics of p such that [p(x)]" = [¢(x)]” for all val-
ues of z. In particular, [p(z)]" = [1(z)]" for all values of , since p does not occur in
Y(z). Thus, I =V (p(x) <> ¢(z)). Since Mlis locally sound, so is the congruence rule
[RE] which derives from [Ml The principle of substitution of equivalents [HC96|, Chapter 13]
(from A <> B derive T(A) <+ T(B), where T(B) is the formula T(A) with some occur-
rences of A replaced by B), thus, generalizes to dGL and is locally sound. Hence, for any
particular occurrence of p(u) in ¢, have I = p(u) <> ¥ (u), which implies I = ¢ <> gzﬁ;f’(%)
for the ordinary replacement of p(u) by ¢)(u). This process can be repeated for all occur-
rences of p(u), leading to [ = ¢ «» gb;f((_')). Thus, S = [¢]" = [[gb;f’((,')) ]". Hence, [[gb;f((f))]]‘] =S,

because p no longer occurs after uniform substitution qﬁ;f)((_')), since all occurrences of p with
any arguments will have been replaced at some point (since admissible). This implies that
gb;f’((f)) is valid since interpretation .J with set of states S was arbitrary. [

The proof calculus in Fig.[4] does not handle differential equations 2’ = 6 & ¢ with evolution
domain constraints 1) (other than true). Yet, Lemmal[3| from Section[3.2] eliminates all evolution
domain constraints equivalently from hybrid games, so that evolution domains no longer occur.

4.3 Completeness

The converse of soundness is completeness, which is the question whether all valid formulas are
provable. Completeness of dGL is a challenging question related to a famous open problem about
completeness of propositional game logic [Par83]. Based on Godel’s second incompleteness the-
orem [G6d31]], dC is incomplete [Pla08, Theorem 2] and so is dGL. Hence, the right question to
ask is that of relative completeness [Coo78, HMP77], i.e. completeness relative to an oracle logic
L. Relative completeness studies the question whether a proof calculus has all proof rules that
are required for proving all valid formulas in the logic from tautologies in L. In a style similar to
Leivant [Le109], the question of relative completeness can be separated from that of expressivity.
Relative completeness can be shown schematically for dGL, i.e. the dGL calculus is complete rel-
ative to any expressive logic. This is to be contrasted with dZ, whose relative completeness proof
was dependent on the particular base logic and its encoding [P1a08]]. In particular, the dGL com-
pleteness result is coding-free [Mos74]], which Moschovakis defines as a result that is independent
of the particular encoding.
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4.3 Completeness André Platzer
Definition 6 (Expressive). A logic L is expressive (for dGL) if, for each dGL formula ¢ there
is a formula ¢’ of L that is equivalent, i.e. £ ¢ <+ ¢". Logic L is constructively expressive if, in
addition, the mapping ¢ — ¢’ is effective.

The classical approach for completeness proofs [[Coo78,[HMP77] proceeds in stages of first-
order safety assertions, first-order termination assertions, and then the use of those to prove the
general case. That approach does not work for dGL, because hybrid games are so highly symmetric
that they may contain operators whose proof depends on proofs about all other operators. A proof
of F' — (a)@, for example, may require proofs of formulas of the form A — [(]|B, e.g., when « is
4. Such an attempt of proving completeness for (o) formulas would need to assume completeness
for [(] formulas and vice versa, which is a cyclic assumption. Even more involved cyclic arguments
result from trying to prove completeness of (o*) and [«*| formulas that way. Furthermore, the
previous arguments for completeness of (a*) formulas [[Coo78, HMP77,Pla08] depend on proofs
about repetition counts. Those do not work in a hybrid game setting, either, because winning
repetition games is more difficult within a chosen bound on the repetition count. No bound on
the repetition count below the corresponding closure ordinal can be guaranteed, which can be
recursively transfinite by Theorem([7} Also compare how the semantical discrepancies discussed in
Appendix[D|relate to repetition bounds.

Instead, completeness for all dGL formulas of all types can be proved simultaneously, yet with
a more involved well-founded partial order on formulas that ensures that the inductive argument
in the completeness proof stays well-founded. This generality has beneficial side-effects, though,
because the resulting proof architecture enables a result with minimal coding that makes it possible
to exactly identify all complex cases.

Theorem 10 (Relative completeness). The dGL calculus is a sound and complete axiomatization
of hybrid games relative to any expressive logic L, i.e. every valid dGL formula is provable in the
dGL calculus from L tautologies.

Proof. Write - ¢ to indicate that dGL formula ¢ can be derived in the dGL proof calculus from
valid L formulas. It takes a moment’s thought to conclude that soundness transfers to this case from
Theorem[9)} so it remains to prove completeness. For every valid dG£ formula ¢ it has to be proved
that ¢ can be derived from L axioms within the dGL calculus: from E ¢ prove i, ¢. The proof
proceeds as follows: By propositional recombination, inductively identify fragments of ¢ that
correspond to ¢; — ()9 or 1 — [y logically. Then, express subformulas ¢; equivalently in
L by Def.[6] as needed, and derive these first-order Angel or Demon properties. Finally, prove that
the original dGL formula can be re-derived from the subproofs in the dGL calculus.

By appropriate propositional derivations, assume ¢ to be given in conjunctive normal form.
Assume that negations are pushed inside over modalities using the dualities —[a]¢ = ()¢ and
—(a)¢ = [a]—¢ that are provable by axiom [E]], and that negations are pushed inside over quanti-
fiers using provable equivalences ~Vz ¢ = dx —¢ and —3x ¢ = Va —¢. The remainder of the proof
follows an induction on a well-founded partial order < induced on dG£ formulas by the lexico-
graphic ordering of the overall structural complexity of the hybrid games in the formula and the
structural complexity of the formula itself and with L at the bottom. L is considered first-order,
thus of lowest complexity, by relativity. Well-foundedness of < is easy to see (formally from
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projections into concatenations of finite trees), because the overall structural complexity of hybrid
games in any particular formula can only decrease finitely often at the expense of increasing the
formula complexity, which can, in turn, only decrease finitely often to result in a L formula. The
only important property for us is that, if the structure of the hybrid games in v is simpler than those
in ¢ (somewhere simpler and nowhere worse), then 1) < ¢ even if the logical formula structure of
1 is larger than that of ¢, e.g., when 1 has more propositional connectives, quantifiers or modal-
ities (but of smaller overall complexity hybrid games). In the following, IH is short for induction
hypothesis.

0. If ¢ has no hybrid games, then ¢ is a first-order formula; hence provable by assumption (even
decidable [Tar51] if in first-order real arithmetic, i.e. no uninterpreted predicate symbols
occur).

1. ¢ is of the form —¢;; then ¢ is first-order, as negations are assumed to be pushed inside, so
case[0] applies.

2. ¢isof the form ¢; A @9, then F ¢; and F ¢», so individually deduce simpler proofs for -, ¢,
and -, ¢, by IH, which combine propositionally to a proof for -, ¢ A ¢s.

3. The case where ¢ is of the form Vz ¢2, 3 ¢o, [a]¢s or (a)¢o is included in case[d] with
o1 = false.

4. ¢ is a disjunction and—without loss of generality—has one of the following forms (other-
wise use provable associativity and commutativity to reorder disjunction):

¢1 V [a]ga
b1V (@)
gbl vV EL’L’ qbg
¢1 V VY 9o,

Let ¢1 V (a) ¢ be a unified notation for those cases. Then, ¢» < ¢, since ¢ has less modal-
ities or quantifiers. Likewise, ¢; < ¢ because (] ¢, contributes one modality or quantifier
to ¢ that is not part of ¢,. By Def.[f] there are L formulas ¢, ¢ with = ¢; <> ¢ fori = 1,2,
By congruence, the validity F ¢ yields F ¢} V () ¢, which implies F —¢’ — (o) ¢}. By
induction now derive

F g7 = (a) A ¢ ©)

Abbreviate the L formula —¢’ by F and the L formula ¢ by G, so that -, F — (a)G
remains to be proved. Observe that all subsequent proofs except for (' = 6]) and Jx also
work without encoding when simply using ¢, as F' and ¢; as G.

(a) If () is the operator Vx then F F' — Vz GG, where = can be assumed not to occur in
F by renaming. Hence, F F' — (. Since G < Vz G, because it has less quantifiers,
also F — G < F — Vx G, hence - F' — G is derivable by IH. Then, -, F' — Vax G
derives by V-generalization of first-order logic, since x does not occur in F'. It is even
decidable if in first-order real arithmetic [Tar51]).
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(b)

(©)

(d)

(e)

®

€y

(h)

@)

W)

The remainder of the proof will conclude (F' — ) < (F' — ¢) from ¢ < ¢ without
further notice.

If () is the operator 3z then F F' — Jx G, which is first-order (i.e. in L) and, thus,
provable by IH, because F, G are L formulas. It is even decidable if in first-order real
arithmetic [Tar51].

F F— (2' = 0)G is an L formula and hence is provable by assumption, because F, G
are L formulas. Similarly for F F' — [2/ = 0]G.

F F — (2 = 0& )G, then this formula is, by Lemma equivalent to a formula with-
out evolution domain restrictions. Using equation (6) from the proof of Lemmal[3] as
a definitory abbreviation concludes this case by induction hypothesis. Similarly for
FEF— 2 =0&Y]G.

The cases where « is of the form = : =6, 7, 5 U~, or 3;~ are consequences of the
soundness of the equivalence axioms |[(:=)I{?")(U)ll(;)| plus the duals obtained via du-
ality axiom [E]} Whenever their respective left-hand side is valid, their right-hand side
is valid and of smaller complexity (the games get simpler), and hence derivable by IH.
Thus, F' — («)G derives by applying the respective axiom. This proof shows the cases
explicitly that require extra thought.

F F — (z:=0)G implies F F Ay = 0 — GY for a fresh variable y, where GY is the
result of substituting y for x. Since F' Ay = 6 — GY < (z:=0)G, because there
are less hybrid games, -, F' Ay = 6 — GY is derivable by IH. Hence, derives
L FAy = 0 — (x:=y)G. Propositional logic derives -, F' — (y = 0 — (z:=y)G),
from which -, F' — Vy(y = 6 — (x:=y)G) derives by V-generalization of first-
order logic. Since y was fresh it does not appear in 6 and (G, so substitution validities
of first-order logic derive -, F' — (x:=0)G. Note that direct proofs by are
possible when the resulting substitution is admissible, but the substitution in GY is
always admissible, because it is a variable renaming replacing x by y.

FF — (U7)G implies F F — (8)G V (7)G. Since (5)G V (7)G < (5 U ~)G, be-
cause, even if the propositional and modal structure increased, the structural complex-
ity of hybrid games /3 and ~y is smaller than that of 5 U « (formula GG did not change),
. F — (B)G V ()G is derivable by IH. Hence, [(U)| derives -, F — (8 U 7)G.

F ' — (8;7v)G, which implies F F' — () (7)G. Since (5)(7)G < (B;7)G, because,
even if the number of modalities increased, the overall structural complexity of the hy-
brid games decreased because there are less sequential compositions, -, F' — (5)(7)G
is derivable by IH. Hence, -, F' — (f3; )G derives by

F F — (8%)G implies F F — —(8)—G, which implies F F' — [B]G. Since [5]G <
(84 G, because 3¢ is more complex than 3, -, F' — [5]G can be derived by IH. Axiom
[]} thus, derives -, F' — —=(B8)=G, from which axiom [(?)| derives -, F' — (39)G.

F F — [39G implies F F — —(8%)~G, hence F F — (8)G. Since (8)G < [89G,
because 3% is more complex than 3, -, F' — ()G can be derived by IH. Consequently,
. F — —=—=(8)=—G can be derived using M on - G — ——G. Hence, [(7)] derives
F, F — —=(3%) =G, from which axiom[[-] derives b, F — [39]G.
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k)

)

F ' — [$*]G can be derived by induction as follows. Formula [3*|G, which expresses
that Demon has a winning strategy in game 3* to satisfy G, is an inductive invariant
of §*, because [5*|G — [5][5*]G is valid, even provable by the variation [5*|G —
G A [B][6*]G of [(*)| that can be obtained from axioms [(*)]and[[-]] Thus, its equivalent L
encoding according to Def.[f]is also an inductive invariant:

v = ((81G).

F — p and ¢ — G are valid (Angel controls *), so are derivable by IH, since (F' —
¢) < ¢ and (p — G) < ¢ hold by encoding. By ML [(9)] and []} the latter deriva-
tion -, ¢ — G extends to F; [§*]¢ — [B*]G. As above, ¢ — [5]y is valid, and thus
derivable by IH, since [ has less loops. Thus, which derives from[EP by Lemma
derives F; ¢ — [3*]p. The above derivations combine propositionally (cut with [3*]p
and p) to -, F' — [5¥]G.

F F — (5*)G. Let x the vector of free variables of (3*)G. Since (5*)G is the least
pre-fixpoint, for any dGL formula v with free variables in x:

EVz(GV (B¢ =) = ((BG = 1)

by a variation of the soundness argument for[FP, which is also derivable by the (seman-
tic) deduction theorem from [FPl In particular, this holds for a fresh predicate symbol p
with arguments z:

E Vo (G V (B)p(z) — p(x)) = ((B)G — p(x))
Using F F' — (5*)G, this implies
F Yz (GV (B)p(z) — p(x)) = (F — p(z))

AsVx (G V (B)p(xz) — p(z)) — (F — p(x)) < ¢, because, even if the formula
complexity increased, the structural complexity of the hybrid games decreased, because
¢ has one more loop, so this fact is derivable by IH:

PV (G (B)p(x) = p(x) = (F = p(x))

By uniformly substituting (3*)G with free variables z for p(z), [USl derives using p ¢
F. G-

RV (GV(B)(B)G = (69G) = (F = (69)G) (10)
Yet,[(F)]derives = GV (B)(3*)G — (5*)G, from which - Vz (GV(8)(8*)G — (5*)G)
derives by V-generalization. Now modus ponens derives -, F' — (3*)G using (10).

This concludes the derivation of (9). Further = ¢, « ¢’ implies F =¢; — ¢, which is
derivable by TH, because ¢; < ¢. Combine -, =¢; — —¢} with () (cut with —¢?) to derive

FL —d1 — (o) @ (11)
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Likewise = ¢y ¢+ ¢ implies F ¢} — ¢, which is derivable by IH, as ¢, < ¢. From - ¢%, — ¢
derive -, {a]) ¢y, — (a)é, byMIif () is (a), byMland[(9)]if {a] is [a], by V-generalization
if (] is Vz, and by V-generalization and duality if («] is 3z. Finally combine the latter
derivation propositionally with by a cut with {a)¢? to derive -, ¢, — (] ¢s, from
which b, ¢1 V (&) ¢, derives propositionally.

This completes the proof of completeness (Theorem[10). [

The proof of Theoremis constructive, so Theoremis constructive if L is constructively ex-
pressive. To highlight, the proof works without coding, except for 2/ = #, 3 and [5*]. The result is
even coding-free in the sense of Moschovakis [Mos74]. Using the case for ($*)G in the proof
of Theorem|10| reveals an explicit °-free reduction to a dG£ formula with less loops, which can be
considered a modal analogue of characterizations in the Calculus of Constructions [CH88]|]. These
observations easily reprove a classical result of Meyer and Halpern [MHS82|] about the semide-
cidability of termination assertions (logical formulas F' — (a)G of uninterpreted dynamic logic
with first-order F', G and regular programs « without differential equations). In fact, this proves a
stronger result about semidecidability of dynamic logic without any [«]- with loops [Sch84]. Theo-
rem[I0|shows that this result continues to hold for uninterpreted game logic in the fragment where
* only occurs with even %-polarity in («/) and only of odd 4-polarity in [] (the conditions on tests
in «v are accordingly).

The constructive nature of Theorem[I0|characterizes exactly which part of hybrid games prov-
ing is difficult: finding computationally succinct weaker invariants for [5*]G and finding suc-
cinct differential (in)variants [Plal0a] for [z’ = ] and (2’ = ), of which a solution is a special
case [Plal2c]]. The case 3z G is interesting in that a closer inspection of Theorem[I0|reveals that its
complexity depends on whether that quantifier supports Herbrand disjunctions. That is the case for
uninterpreted first-order logic and first-order real arithmetic [Tar51]], but not for G = [3*]+), which
already gives 3x G the full IT}-complete complexity even for classical dynamic logic [HKTO00, The-
orems 13.1,13.2]. Herbrand disjunctions for 3z G justify how Theorem[I0] implies the result of
Schmitt [Sch&4].

The proof of Theorem[10] uses minimal coding. The case [3*] needs encoding, because F —
[3*]G validity is already I13-complete for classical dynamic logic [HKT00, Theorem 13.5]. The
case 3 needs encoding in the presence of [3*], because 3z [3*|G validity is IT}-complete for classi-
cal dynamic logic [HKTO00, Theorems 13.1]. The case 2’ = 6 leads to classical A}—hardness over
N [Pla08, Lemma 4].

The completeness proof indicates a coding-free way of proving Angel properties (5*)G that
is similar to characterizations in the Calculus of Constructions and works efficiently in practice.
Examples are shown in Appendix[A]l In particular, dGL does not need Harel’s convergence rule
[HMP77] for completeness and, thus, neither does logic for hybrid systems, even though it was
previously based on it [Plal2a]. These results correspond to a hybrid game reading of influential
views of understanding program invariants as fixpoints [CC77,Cla79].
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4.4 Expressibility

The dGL calculus is complete relative to any expressive logic L. One natural choice for an oracle
logic is L,p, the modal ji-calculus of differential equations (fixpoint logic of differential equations):

6= X(0) | p(6) | 61 > 02|~ | 6 A0 | (2 = 0) | X6

where 11X .¢ requires all occurrences of X in ¢ to be positive. The semantics is the usual, e.g.,
1X.¢ binds set variable X and real variable (vector) z and is interpreted as the least fixpoint
X of ¢, i.e. the smallest denotation of X such that X (z) > ¢ holds for all x [Koz83, Lub89].
A more careful inspection of the proofs in this article reveals that the two-variable fragment of
L,p is enough, which gives a stronger statement as long as the variable hierarchy for L,p does
not collapse [BGLO7|]. The logic L,p is considered in this context, because it exposes the most
natural interactivity on top of differential equations and makes the constructions most apparent and
minimally coding themselves.

Lemma 11 (Continuous expressibility). L, is constructively expressive for dGL.

Proof. Of course, (p(#))” = p(6) etc. The inductive cases are shown in Fig. It is easy to check

(=9)’ = —(¢")
(GAY) =¢" Ay
(Fz¢)’ = 3z (4)
(z:=0)p)" =Yy (y =0 — (¢¥)°)
((2' = 0)¢)" = (2 = 0)(¢")
((70)0)" = (b A )’
(U B)®) = ((a)pV (B)o)
((c; B)9) = ({)(B)9)"
((a")) = uX.(¢ V (@)X ()
((ah)e) = (~{a)-¢)"
([a]o) = ({(ah)e)’

Figure 5: Inductive cases for constructive expressivity of L,p.

that ¢ is equivalent to ¢, e.g. based on the soundness of the dGL axioms. Note that (¢ V ) =
@ V ¥’ is a consequence of the above definitions and the abbreviation ¢ V 1) = —=(=¢ A —).
The quantifier in the definition of ((x:=0)¢)’ is not necessary if the substitution of ¢ for x is
admissible. The variable renaming of fresh variable y for x in ¢ with the result ¢Y is always
admissible. Note that quantifiers are expressible in L,p via 3z ¢ = (2' = 1)¢V (z/ = —1)¢. Recall
that 2/ = 0 & ¢ is expressible by Lemma[3] The case ((*)¢)” is defined as the least fixpoint of the
reduction of ¢ V (a) X (), where x are the variables of « using classical short notation [Lub89].

31



4.4 Expressibility André Platzer

In particular, ({o*)¢)’ satisfies ¢ V (o) ((a*)$)* «+ ({a*)¢)” and ((a*)¢)® is the formula with the
smallest such interpretation, which is all that these proofs depend on. [

A discrete analog of Lemmal[I T|follows from a (constructive) equi-expressibility result [Plal2a,
Theorem 9].

Corollary 12 (Discrete expressibility). The (first-order) discrete pi-calculus over R is construc-
tively expressive for dGL.

This aligns the discrete and the continuous side of hybrid games in a constructive provably
equivalent way similar to corresponding results about hybrid systems [Plal2a]. Yet, the interactiv-
ity of two-variable fixpoints stays, which turns out to be necessary (Section[3).

Corollary 13 (Relative completeness). The dGL calculus is a sound and complete axiomatization
of dGL relative to L,,p. With the Euler axiom [Plal2al], the dGL calculus is a sound and complete
axiomatization of dGL relative to the discrete u-calculus over R.

Proof. Follows from Theorem[I0} Lemmal[I T} and Corollary[12] O

An interesting question is whether fragments of dGL are complete relative to smaller logics,
which Theorem([I0] and Lemma[IT|reduce to a study of expressing (two-variable) L,p. This yields
the following hybrid versions of Parikh’s completeness results for fragments of game logic [Par83].

Corollary 14 (Relative completeness of *-free dGL). The dGL calculus is a sound and complete
axiomatization of *-free hybrid games relative to AL.

Proof. Lemma[l1| reduces to dZ, even the first-order logic of differential equations [Plal2al], for
*-free hybrid games. 0

Corollary 15 (Relative completeness of ?-free dGL). The dGL calculus is a sound and complete
axiomatization of %-free hybrid games relative to dL..

Proof. “-free loops are Scott-continuous by Lemma@ so have closure ordinal w and are, thus,
equivalent to their dC form, and even expressible in the first-order logic of differential equations
by [Plal2a, Theorem 9]. ]

By Corollary[15] d_ is relatively complete without the convergence rule that had been used
before [P1a08]. In combination with the first and second relative completeness theorems of d_
[Plal2a], it follows that the dGL calculus is a sound and complete axiomatization of *-free hybrid
games and of “-free hybrid games relative to the first-order logic of differential equations. When
adding the Euler axiom [Plal2a], both are sound and complete axiomatizations of those classes of
hybrid games relative to discrete dynamic logic [Plal2a]. Similar completeness results for dGL
relative to dC, and, thus, relative to the first-order logic of differential equations, follow from
Theorem[I0] with some thought, e.g., for the case of hybrid games with winning regions that are
finite rank Borel sets.
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4.5 Separating Axioms

In order to illustrate how and why reasoning about hybrid games differs from reasoning about
hybrid systems, separating axioms can be identified, that is, axioms of dC [Pla08, Plal2a] that do
not hold in dGL. This article investigates the difference in terms of important classes of modal
logics; recall [HC96] or Appendix[B]

Theorem 16. dGL. is a subregular, sub-Barcan, monotonic modal logic without the induction ax-
iom of dynamic logic.

The proof of Theorem[I6]is in Appendix[B] where a simple counterexample for each separating
axiom illustrates what makes hybrid games different than hybrid systems. The difference in axioms
is summarized in Fig.[6l where Cly is the universal closure with respect to all variables bound in
hybrid game «.

a)(¢ =) = ([ = [aJv) M {a)o V() — {(a)(¢ V1)
Kk N
[a]¢ 118l — [Blv

01N\ Py =Y

[@]¢1 A [a]gs — [ald

K
G
R
B (03¢ —(a)p (r¢a) B Jwla)o— (o (1¢a)
X

[@*](¢ = [a]@) = (¢ = [a7]¢) VI Cly(¢ = [a]p) = (¢ = [a7]¢)
B () = ¢V (") (=9 A (a)0)

Figure 6: Separating axioms: The axioms and rules on the left are sound for hybrid systems but
not for hybrid games. The related axioms on the right are sound for hybrid games.

Harel’s convergence rule [HMP77] is not a separating axiom, because it is sound for dG., just
unnecessary. In light of Theorem([7] it is questionable whether the convergence rule would be rela-
tively complete for hybrid games, because it is based on the existence of bounds on the repetition
count. The hybrid version of Harel’s convergence rule [Pla08] reads as follows (it assumes that v
does not occur in «):

ev+1)Av+1>0—= (a)p(v)
Fvp(v) = (*)Fv<0¢(v)

If the convergence rule could prove, e.g., dGC formula (7)) from Theorem(7} then ¢ (-) would yield
a bound on the number of repetitions, which, by the proof of Theorem(7 does not exist below
closure ordinal w - 2. The premise of a use of the convergence rule makes the bound induced by
©(v) progress by 1 in each iteration. The postcondition in the conclusion makes it terminate for
v < 0. And the conclusion’s antecedent requires a real number for the initial bound. Thus, the
convergence rule only permits bounds below w, not the required transfinite ordinal w - 2.
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These thoughts further suggest a transfinite version of the convergence rule with an extra induc-
tive premise for limit ordinals. That would be interesting, but is technically more involved than the
dGL axiomatization, because it would require multi-sorted quantifiers and proof rules for ordinal
arithmetic.

5 Expressiveness

Differential game logic dGL is a logic for hybrid games. How does it compare to differential
dynamic logic d£ [Pla08|Plal2al], which is the corresponding logic for hybrid systems? Hybrid
systems are expected to be single-player hybrid games where one of the players never gets to
decide. And, dC is expected to be a sublogic of dGL. But what about the converse? How the
expressiveness of dGL relates to that of dC is related to classical long-standing questions for the
propositional case [Par85, BGL0O7]. Note that even known classical results about expressiveness
for the propositional case do not transfer to dGL [Par85].

The notation L; < L, signifies that logic L, is expressive for logic L; (Def.[6). Likewise,
Ly = L, signifies equivalent expressiveness, i.e. L; < Lo and Ly < L;. Further, L; < L, means
that L is strictly less expressive than Lo, i.e. L1 < Lo butnot Ly < L.

Lemma 17 (Single-player hybrid games). dC < dGL by syntactic embedding.

Proof. Hybrid systems form single-player hybrid games, i.e. -free hybrid games. So, identity is
a syntactic embedding of d£ into dGL, which preserves the semantics as follows. With Lemmal[6]
Kleene’s fixpoint theorem implies that w is the closure ordinal for ¢-free hybrid games «. Hence,
for -free o, a simple induction shows

S (X) = (X)) = [ (X) = [ can(X) (12)

n<w nw

where o is the n-fold sequential composition of « given by o’ = ?true and o' = a;a”. The
semantics of 9-free dGL agrees with that defined for d£ originally [P1a08,[Plal2a] by a simple
comparison using for the crucial case o*. O

What about the converse? Is the logic dGL truly new or could it have been expressed in dC?
Without any doubt, unlike dZ, dGL is meant for hybrid games and makes it more convenient to
refer directly to questions about hybrid gamesﬂ Does dGL provide features strictly necessary
for hybrid games that d£ is missing? Finitely bounded hybrid games are expressible in d by
Theorem[I4] What about other hybrid games? Both possible outcomes are interesting. If dC =
dGL, then Theorem[10] implies that dGL is complete relative to dC and relative to the smaller
logics that dC is complete for [Plal2a]. If dC < dGL, instead, then dGL is a provably more
expressive logic with features that are strictly necessary for hybrid games. The answer takes some
preparations.

° Even if a logic is not strictly more expressive but “only” more convenient, it is still often strongly preferable.
Program logics and their cousins, for example, are used widely, even though first-order integer arithmetic would
theoretically suffice [HMP77,[HK84,HKTOO].
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Let (yo, - - ., yn|) denote a R-Godel encoding, i.e. a bijective function pairing any n-tuple of real
numbers Yo, y1, - - - , Yn into a single real that, along with its inverse, is definable in FOD [Pla08|,
Lemma 4]. FOD is the first-order logic of differential equations [Pla0§], i.e., the first-order frag-
ment of dC where all hybrid games « are of the form 2/ = . By Lemma[17} FOD is a sublogic
of dGL and, thus, R-Godel encodings are definable in dGL. (Rich-test) regular dynamic logic
(DL) [HKTO00,Plal2al] over R is the fragment of d (and by Lemmall7| of dGL) without ¢ and
without differential equations. So both FOD [Pla08, Lemma 4] and DL [Plal2a, Theorem 9] can
define R-Godel encodings. Acceptable structures are structures in which elementary R-Godel en-
codings are definable [Mos74].
The open recursive game quantifier © of length w applied to formula p(z, y) is

def
Oy p(x,y) = Vyo Iy Yy 3ys ... \/ @@, (o, - - - yn)) (13)

n<w

which has a semantics as a two player Gale-Stewart game [GS53]] in which two players alternate
in choosing values for the w many variables y,; and y;11. Player 3 wins if ¢(z, (yo, ..., ¥n))
holds for some n < w so that the infinitary disjunction \/,,__ ¢ (x, (Yo, .., yn)) is satisfied; see
[Mos74, Vaall|] for details.

Lemma 18 (Game quantifier). Recursive game quantifier O is definable in dGL.

Proof. Let ¢(x,y) a dGL formula, which, to simplify notation, is assumed to check the sequence
that y encodes only at even indices n. Then Oy p(z, y) is definable in dGL:

(=) (¢ =142 = —1%y:=(y, 2); ¢ = L = =Liy:=(y.2)) D plz,y) (14

This dGL formula uses (yo, y1, Y2, - - - , Yn|) reordered as (... ((((]), vo), v1]), v2), - - . yn) for sim-
plicity, which is a recursive permutation. Angel and Demon alternate differential equations for z in
that get successively paired into y by y := (|y, 2|), which is definable [Pla08, Lemma 4]. This
alternation of differential equations corresponds to the alternation of quantifiers in o. The number
of actual alternations played can be exactly any n < w, because the semantics of (a*) is a least
fixpoint, so well-founded. O]

Note that equivalently defines (13), even though the former is a finite dGL formula while
the latter is an infinite formula in an infinitary logic augmented with the game quantifier [Vaall],
so (14) is infinitely more concise. The closed recursive game quantifier —Oy —¢(z, y) is definable
in dGL by duality as well, noting that open as well as closed Gale-Stewart games are determined
[GS53]. Finally observe that would not define in the (weaker) advance notice semantics
(Appendix@, as that corresponds to swapping the quantifier alternation with \/

n<w*

\ Y90 31 Ve Fys - 0@, (b0, - -, yn))

n<w

With this preparation, dGL can be proved to be strictly more expressive than dZ, which means
that hybrid games are fundamentally more than hybrid systems.
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Theorem 19 (Expressive power). dC < dGL.

Proof. By Lemmall7] it only remains to refute dGL < d£. R-Gddel encodings etc. are elementar-
ily definable in FOD [Pla08, Lemma 4], thus, also in DL over R [Plal2a, Theorem 9]. This makes
R an acceptable structure [Mos74] when augmented with the corresponding definitions from FOD
or DL over R. Further, dC = FOD [Pla08|] and dZ = DL over R [Plal2a, Theorem 9]. On any
acceptable structure, DL defines exactly all first-order definable relations [HK84, Theorems 3 and
4]. For acceptable structures, the open recursive game quantifier oy (z, y) for first-order formu-
las p(z,y) exactly defines all (positive first-order) inductively definable relations [Mos72,Mos74,
Theorem 5C.2][U] The logic dGL can define © by Lemma|18] so all inductive relations. In accept-
able structures, not all inductively definable relations are first-order definable [Mos74, Theorem
5B.2]. Thus, dGL can define an inductive relation that DL cannot define over R, so neither can dZ.
Hence, dC = DL < dG. over R. O]

Thus, hybrid games can characterize relations that hybrid systems cannot. The proof of The-
orem implies that w}'® exceeds all order types of all inductive well-orders, because all inductive
relations can be characterized in dGL. All closure ordinals of inductive relations occur as order
types of some inductive well-order, because the staging order of inductive definitions is well-
founded [Mos74, Theorems 3A.3, 3C.1]. Thus, w!C equals the closure ordinal of the underlying
structure.

The game quantifier and its characterization in the proof of Lemma[I§] along with the differ-
ential equation characterization of Godel encodings [Pla08, Lemma 4] implies the existence of a
smaller syntactic fragment of dGL that is expressive, so that dGL is complete relative to this frag-
ment of dGL by Theorem[10] By (13), alternating differential equations in a single loop are the
dominant feature of this fragment. The only modification to the proof of Lemmall1]is the case
of ({a*)¢)” which then uses with a (definable) formula ¢(z, (v, - . . , ¥»|)) that simply checks
whether the decision sequence o, . .., y, gives a valid play of hybrid game o* in which Angel
wins. The fact that © assumes strict alternation of the players is easily overcome by choosing ¢ to
be independent of y; when the player for its quantifier does not get to choose in o* at step ¢. The
actions can be chosen, e.g., as discussed in Appendix|C|

6 Related Work

Games and logic have been shown to interact fruitfully in many ways [GS53, Ehr61, Par83, Par85),
Aum935,HS97,Sti01, AHKO02,PPO3,|CHPO7, AG11,|Vaall|]. The present article focuses on using
logic to specify and verify properties of hybrid games, inspired by Parikh’s propositional game
logic for finite-state discrete games [Par83}[Par85, PPO3]. Game logic generalizes (propositional
discrete) dynamic logic to discrete games played on a finite state space. Game logic is elegant but
challenging. Its expressiveness has only begun to be understood after two decades [BerO3,BGLO7].

Discrete games and the interaction of games and logic for various purposes have been studied
with much success [VNMS55, Par85, Aum95,[HS97,St101, |[AHKO02, |PP03, [Ber03, CHPO7, BGLO7,

10 The game quantifier in [Mos72| starts with Jy;, which is a difference easily overcome.
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BP09,/AG11},[Vaiall]. Propositional game logic [PPO3] subsumes APDL and CTL*. After more
than two decades, it has been shown that the alternation hierarchy in propositional game logic
is strict and encodes parity games that span the full alternation hierarchy of the (propositional)
modal p-calculus [BerO3] and that, being in the two variable fragment, it is less expressive than the
(propositional) modal y-calculus [BGLO7]. Another influential propositional modal logic, ATL*
has been used for model checking finite-state systems [AHKO2]] and is related to propositional
game logic [BP09]. Applications and relations of game logic, ATL* [AHKO02], and strategy logic
[CHPO7]] have been discussed in the literature [AHKO02, PPO3,|(CHPO7, BP09]. These logics for
the propositional case of finite-state discrete games are interesting, but it is not clear how their
decision procedures should be generalized to the highly undecidable domain of hybrid games with
differential equations, uncountable choices, and higher closure ordinals. The logic dGL shows how
such hybrid games can be proved, enjoys completeness, and comes with a rich theory

Differential games have been studied with many different notions of solutions [Isa67,|Fri71,
Pet93, Bre10]. They are of interest when actions are solely in continuous time. The present article
considers the complementary model of hybrid games where the underlying system is that of a
hybrid system with interacting discrete and continuous dynamics, but the game actions are chosen
at discrete instants of time, even if they take effect in continuous time.

Hybrid games provide a complementary perspective on differential games, just like hybrid
systems provide a complementary perspective on continuous dynamical systems. Differential
games formalize various notions of adversarial control on variables for a single differential equa-
tion [Isa67, Fr171}, Pet93]], including solutions based on a non-anticipatory measurable input to an
integral interpretation of the differential equations [Fri71], joint limits of lower and upper limits of
d-anticipatory or d-delayed strategies for 6 — 0 [Pet93]], and Pareto-optimal, Nash, or Stackelberg
equilibria, whose computation requires solving PDEs that quickly become ill-posed (e.g., for feed-
back Nash equilibria except in dimension one or for linear-quadratic games); see Bressan [Brel0]
for an overview. Hybrid games, instead, distinguish discrete versus continuous parts of the dynam-
ics, which simplifies the concepts, because easier pieces are involved, and, simultaneously, have
been argued to make other aspects like delays in decisions and the integration of computer-decision
into continuous physics more realistic [TPS98, TLS00,[BBC10, VPVD11, PHPO1,|QP12]. The sit-
uation is similar to hybrid systems, which provide a complementary perspective on (continuous)
dynamical systems [Hen96,Plal2a] that can model more complicated systems as a combination of
simpler concepts and can model computational effects more realistically.

Some reachability aspects of games for hybrid systems have been studied before. A game view
on hybrid systems verification has been proposed following a Hamilton-Jacobi-Bellman PDE for-
mulation [TMBOO03,[MBTO05], with subsequent extensions by Gao et al. [GLQO7|]. Their primary
focus is on adversarial choices in the continuous dynamics, which is very interesting, but not what
is considered here. The PDE formulation is related to an approach with viability theory for hybrid
games applications in finance [SP04]. WCTL properties of STORMED hybrid games, which are
restricted to evolve linearly in one “direction” all the time, have been shown to be decidable using
bisimulation quotients [VPVD11]]. STORMED hybrid games generalize o-minimal hybrid games
which have been shown to be decidable earlier [BBC10]]. The case of rectangular hybrid games
is known to be decidable [HHM99] as well as the special case of timed games [CHP11]. Many
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applications do not fall into these decidable classes [[QP12]], so that a study of more general hybrid
games is called for. The results in this article have implications for reachability analysis. They
show, for example, that reachability computations and backwards induction for hybrid games re-
quire highly transfinite closure ordinals > wX. Completeness further characterizes the challenging
cases in hybrid games verification.

This article takes a complementary view and studies logics and proofs for hybrid games instead
of searching for decidable fragments using bisimulation quotients [HHM99, BBC10, VPVD11],
which do not generally exist. It provides a proof-based verification technique for more general
hybrid games with nonlinear dynamics. This article’s notion of hybrid games is more flexible,
because it allows arbitrary nested hybrid game choices rather than the fixed controller-plant inter-
action considered in related work. This results in more general logical formulas with nested modal
game operators. This article does not consider concurrent games [BBC10], though, only sequential
games.

There is more than one way how logic can help to understand games of hybrid systems. In con-
current work, it has been shown that games can be added as separate constructs on top of unmod-
ified differential dynamic logic [QP12]], focusing on the special case of advance notice semantics
(Appendix[D). The present article follows a different principle. Instead of leaving differential dy-
namic logic untouched and adding several separate game constructs on top of full hybrid systems
reachability operators as in [QP12], the logic dGL becomes a proper game logic by adding a single
operator ¢ for adversariality into the system dynamics. The logic dGL results in a much simplified
but nevertheless more general logic with a simpler and more general semantics (and not restricted
to advance notice) and simpler and more general calculus. The present article studies a Hilbert cal-
culus and focuses on fundamental logical properties and theory instead. See [QP12] for practical
aspects like sequent calculus automation and a very challenging robotic factory automation case
study that translates to dGL. What is more difficult in dGL in comparison to that fragment [QP12],
however, is the need to carefully identify which axioms are no longer sound for games, which is
what is pursued in Sectiond.3]

The logic dGL presented here has similarities with stochastic differential dynamic logic (SAL)
[Plal1], because both may be used to verify properties of the hybrid system dynamics with partially
uncertain behavior. Both approaches do, however, address uncertainty in fundamentally different
ways. SAL takes a probabilistic perspective on uncertainty in the system dynamics. The dGL ap-
proach put forth in this paper, instead, takes an adversarial perspective on uncertainty. Both views
on how to handle uncertain behavior are useful but serve quite different purposes, depending on
the nature of the system analysis question at hand. A probabilistic understanding of uncertainty
can be superior whenever good information is available about the distribution of choices made by
the environment and other agents. Whenever that is not possible, adversarial views may be more
appropriate, since they do not lead to the inadequate biases that arbitrary probabilistic assump-
tions would impose. Adversarial dynamics is also called for in cases of true competition, like in
RoboCup.

38



André Platzer
7 Conclusions and Future Work

This article has introduced differential game logic (dGL) for hybrid games that combine discrete,
continuous, and adversarial dynamics. Just like hybrid games unify hybrid systems with discrete
games, the logic dGL unifies logic of hybrid systems with Parikh’s propositional game logic of
finite-state discrete games. Hybrid games are challenging, because their winning regions require
closure ordinals > w!l®. The logic dGL for hybrid games is, furthermore, more expressive than
the corresponding logic dZ for hybrid systems. Nevertheless, dGL has a simple modal semantics
and a simple proof calculus, which is proved to be a sound and complete axiomatization of hybrid
games relative to any expressive logic.

The completeness proof is constructive with minimal coding, thereby exactly characterizing
the difficult parts of hybrid games proving. The proof identifies an efficient fixpoint-style proof
technique, which can be considered a modal analogue of characterizations in the Calculus of Con-
structions [[CH&8], and relates to hybrid game versions of influential views of understanding pro-
gram invariants as fixpoints [CC77,/Cla79]]. Relative completeness shows that dGL has all axioms
and proof rules for dealing with hybrid games and only games of differential equations themselves
are difficult. The study of (fragments of) dGL which are complete for smaller logics is interesting
future work. By the schematic completeness result, this reduces to questions of expressiveness that
give rise to interesting problems in descriptive set theory.

It is intriguing to observe the overwhelming impact of the innocent addition of a dual operator.
Yet, it is reassuring to find that logical robustness makes logical foundations continue to work
despite the formidable extra challenges of hybrid games.

The dGL calculus is strikingly similar to the calculus for stochastic differential dynamic logic
SdC [Plall], despite their fundamentally different semantical presuppositions (adversarial non-
determinism versus stochasticity), which indicates the existence of a deeper logical connection
relating stochastic and adversarial uncertainty. Because of the axiomatic similarity, the rich theory
of dGL may shed light on the logical theory of stochastic hybrid systems, which so far remained
elusive.

The logic of hybrid games opens up many directions for future work, including the study of
computationally bounded winning strategies, e.g., only polynomial strategies, strategies that are
constructible with small closure ordinals, or with finite rank Borel winning regions, as well as
an explicit study of constructive dGL to retain the winning strategies as part of the proof. Yet,
challenges abound, given the ability of dGL to define closed elementary games won by a player for
whom no hyperelementary quasiwinning strategies exist, which follows from Theorem[I9|[Mos74,
Chapter 7].

Draws, coalitions, rewards, and payoffs different from 41 can be expressed in dGL, but it
may be useful to include direct syntactical support. Imperfect information games and equiva-
lent concurrent games are interesting but nontrivial extensions that remain challenging even in the
discrete case, because imperfect information leads to Henkin quantifiers. The logic dGL can be
augmented with differential games as a new kind of atomic games. Thanks to its compositional
semantics, this results in a modular construction, yet there are many ways to do that, because there
are different notions of differential games. Combining dGL with axioms for differential equa-
tions [Plal0a,Plal2a] already provides a way of handling hybrid games with nonlinear differential
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equations, differential-algebraic inequalities and differential equations with input.

A Example dGL Proofs

The completeness proof suggests the use of iteration axiom and to prove («*) properties.
The following examples illustrate how this works in practice. Observe how logic programming
saturation with widening quickly proves the resulting arithmetic.

Example 5 (Non-game system). The simple non-game dG£ formula
r>0—=((z:=2-1)"0<z<1

is provable, shown in Fig.[7} where (a*)0 < 2 < 1 s short for ((z:=2 — 1)")(0 < x < 1).

= Ve(0<z<1Vplx—1)—=px) = (x>0 p))
Ve (0<z <1V {(x:=z— Uplz) = p(@) — (x>0 — p(z))
Wyr0<z<1iV@=cr—-1){a)0<z<l—o{(aVW<z<1) = @>0— (@)0<z<]1)
C Ve(0<z<1lV(z=z—-1){(a")0<zx<1l—= (a0 <z<]1)
VD r>0—= (a0 <z<l1

Figure 7: dGL Angel proof for Example[5|using technique from completeness proof

Example 6 (Choice game). The dGL formula
r=1Na=1={((z:=a;a:=0Nz:=0)")x #£1

which comes from on p.[51]is provable as shown in Fig.[8] where N+ is short for z := a; a :=
0Nz:=0and ((8Nv)")x # 1short for ((z:=a;a:=0Nx:=0)")z # 1:

Vo (z # 1V p(a,0) Ap(0,a) = p(x,a)) — (true — p(x,a))
— Va (z # 1V (B)p(w,a) A (1)p(x,a) = p(x,a)) = (true — p(z,a))
Ll Va (x %1V<Bﬂ Vp(e,a) = plx,a)) = (true — p(z,a))
B Ve £1v{En(Bny))z#1 = {(Bn1))z #1) = (true = (BN7) )z # 1)
true — ((BN~) )z #1

= r=1ANa=1—={(BNy) )z #1

Figure 8: dGL Angel proof for Example[6|using technique from completeness proof

Example 7 (Hybrid game). The dGL formula

(=12 =1"Uz:=20-1))0<z<1
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[R]

Ve(0<ax<1VVt>0p(l+t)Vplx—1)— p(x)) = (true — p(z))

=1 Ve(0<z <1V {(r:=0-3t>0(z:=x+1t)-p(z)Vplx—1) = p(z)) — (true — p(x))
m(]i Ve(0 <z <1V {(z:=1)-("=1)-p(x)Vplx—1)— plx)) — (true = p(x))

— Va (0 <z < 1V (B)p(x) V (3)p(x) = p(x) = (true = p(x))
()] V(0 <z <1V {(BU7)p(z)— p(x)) — (true — p(x))

W Vo (0<z<1V {BUANBUNN<z <1 {(BUNN0O<z<1)— (true = (U0 <z < 1)

[¥IMP]

o~
=
I
9]
1
=
C
2
=
o
IA
s
A
—_

Figure 9: dGL Angel proof for Example[7] using technique from completeness proof

which comes from on p.[53is provable as shown in Fig.[9) where the notation ((3 U ~)")0 <
z < 1is short for ((z:=1;2" = 19Uz :=2 —1)")(0 < 2 < 1): The proof steps for 3 use in [{")]
that ¢ — x + ¢ is the solution of the differential equation, so the subsequent use of @ substitutes
1 in for z to obtain ¢ — 1 + ¢. Recall that the winning regions for formula (I8) need >w iterations
to converge. It is still provable easily. A variation of this proof shows dG£ formula (2)) from p.[9]
where the handling of the nonlinear differential equation is a bit more complicated.

A variation of Example[7] proves dGL formula (7)) from the proof of Theorem[7} whose closure
ordinal is w - 2.

B Proof of Separating Axioms

This section proves Theorem[I6] with an emphasis on simple counterexamples for each separating
axiom.

B.0.1 Subnormal Modal Logic

Unlike dZ, dG£ is not a normal modal logic [HC96]. Axiom K, the modal modus ponens from
normal modal logic [HC96], dynamic logic [Pra76|], and differential dynamic logic [Plal2a], i.e.
[a](¢ = ¢) = ([e]o — [a]v)

is not sound for dGL as witnessed using the choice & = (z := 1Nz := 0);y := 0 and ¢ =
r = 1,1 = y = 1; see Fig.[I0] The global version of K, i.e. the implicative version of Godel’s
generalization rule is still sound and derives with |(“)|and D from Ml using o = 3¢

¢ =Y
[B]¢ — [BlY

The normal Godel generalization rule G, i.e.

¢

[o]¢

however, is not sound for dGL as witnessed by the choice o = (?false)?, ¢ = true.
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10 [oo] [10] loo] [10] [oo]
< <
r=1

< m] o <
[

ef(z=1=y=1) [df aly =1

Figure 10: Game trees for counterexample to axiom K using o = (z:=1Nz:=0);y:=0.

B.0.2 Subregular Modal Logic

Regular modal logics are monotonic modal logics [[Che80] that are weaker than normal modal
logics. But the regular modal generalization rule [Che80], i.e.

P1L NPy =
[a]gr A [a]ga — [a]d

is not sound for dGL either as witnessed by the choice o« = (z:=1Nz:=0);y:=0,¢; =2 =
Lgpp ==y, =0=1Az=uy;seeFig.[[1]

o] foo]  [10]  oo]  [10]
o
r=1

m] o m] <
[ o=y [o]z=

00)
<
Tr =

a] 1A Y

Figure 11: Game trees for counterexample to regular modal rule using o = (x := 1Nz :=0);y:=0.

B.0.3 Monotonic Modal Logic

The axiom that is closest to K but still sound for dGL is a monotonicity axiom. This axiom is
sound for dGL, yet already included in the monotonicity rule

Lemma 20 ( [Che80, Theorem 8.13)). In the presence of rule [RE from p.[23} rule M\ is interderiv-
able with axiom M:

(@) V()i = () (o V)

Proof. Axiom M derives from rule Mt From ¢ — ¢ V ¢, Mlderives (a)¢ — (a)(¢ V ¢). From
v — ¢V p,Mlderives (o)1) — (a)(¢ V1)), from which propositional logic yields (a)p V (a)i) —
() (V).

Conversely, rule M| derives from axiom M and rule REt From ¢ — 1 propositional logic
derives ¢ V ¢ <> 1, from which [REl derives («)(¢ V 1) <> (a)1p. From axiom M, propositional
logic, thus, derives (a)¢ — (a). O
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The converse of axiom M is sound for dZ but not for dGL, however, as witnessed by o = x :=
1Nz:=0,¢ =2 =1,9 =z = 0; see Fig.[12}

(@) (o V) = ()¢ V()

The presence of the regular congruence rule RE| and the fact that [a]¢ <> —(«)—¢ still make dGL
0] 0] 0]
m] o
=1 =0

3% 3% o m]
(a)(z=1ve=0) () (o)

Figure 12: Game trees for counterexample to converse monotone axiom using o« = z := 1Nx := 0.

a classical modal logic [Che80]. Rule M| even makes dGL a monotone modal logic [Che80].

B.0.4 Sub-Barcan

The most important axioms about the interaction of quantifiers and modalities in first-order modal
logic are the Barcan and converse Barcan axioms [Bar46], which, together, characterize constant
domain in normal first-order modal logics [HC96]. The Barcan axiom B, which characterizes anti-
monotonic domains in first-order modal logic [HC96], is sound for constant-domain first-order
dynamic logic and for differential dynamic logic dZ when x does not occur in « [Plal2a]:

(a)Fr ¢ — Fz ()¢ (x € )

but the Barcan axiom is not sound for dGL as witnessed by the choice « = y := y + 1* or
a =y =1%and ¢ = x > y. The equivalent Barcan formula

Vrlalp = [oVz e  (x ¢ a)

is not sound for dGL as witnessed by the choice a = y:=y + 1*ora =7 = 1%and ¢ = y > x.
The converse Barcan formula of first-order modal logic, which characterizes monotonic domains
[HC96], is sound for dGL and can be derived when x does not occur in « (see[8 on p.22):

(%) dr (a)¢p — (a)Izr ¢ where x & o

B.0.5 No Induction Axiom

The induction axiom
[a*}(¢ = [a]¢) = (¢ = [a"]0) (15)

holds for dZ, but, unlike induction rule indl does not hold for dGL as witnessed by
o = ((z:=a;a:=0)Na:=0)"and ¢ = x = 1; see Fig.[13] Note that the failure of the induction
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Figure 13: Game trees for counterexample to induction axiom (notation: =z,a) with game
a=(r:=a;a:=0)Nz:=0. (left) [*](x = 1 — [a]Jr = 1) is true by the strategy “if Angel
chose stop, choose = := a; a := 0, otherwise always choose x := 0” (right) [a*]x = 1 is false by
strategy “repeat once and repeat once more if x = 1, then stop.” If a winning state can be reached
by a winning strategy, the mark is enclosed in a circle © or ©, respectively.
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axiom in the counterexample for hinges on the fact that Angel is free to decide whether or not
to repeat « after each round depending on the state. This would be different if dGL had had an
advance notice semantics for a*; see Appendix[D] By a variation of the soundness argument for
[FP it can be shown, however, that a variation of the induction axiom is still sound if the induction
rule is translated into an axiom using the universal closure, denoted Cly, with respect to all
variables bound in «:

Cly (¢ = [a]@) — (¢ — [a*]@)

This trick with universal closures does not work for the dual of the induction axiom, the first
arrival axiom (a*)¢ — ¢ V (a*)(—¢ A («)¢). This axiom holds for dC. It expresses that, if ¢
holds after a repetition of «, then it either holds right away or « can be repeated so that ¢ does not
hold yet but can hold after one more repetition [PPO3]]. This axiom does not hold, however, for
dGL as witnessed by o* = ((z:=x —yNz:=0);y:=x)" and ¢ = x = 0, since two iterations
surely yield x = 0, but one iteration may or may not yield x = 0, depending on Demon’s choice;
see Fig.[14] Observe how the failure of the first arrival axiom in dGL relates to the impossibility of
predicting precise enough repetition counts in hybrid games (recall corresponding discussions for
Theorem([7} Section|4.3] and Appendix[D).

@2 <00, 2 0 2 <00
'Q, N Q NA O NG AR . 4
V\oa // ‘\VO 9 // \\'o @ o @‘Q;/ \\'O @
@ \ % =l \ ({\)9 = ‘%
N N ay N / Nl
2> 2] 00> [0
o &
<00,:00,>  <00,:00,> <00,<00,x00,<00,>
© © o 0 oo
[m] (m]
Figure 14: Game trees for counterexample to first arrival axiom with game

a=(r:=r—yNz:=0);y:=z (notation: z,y). (left) (a*)x =0 is true no matter what
Demon chooses (right) (a*)(z # 0 A (a)xz = 0) is false, because stop can be defeated by
x:=x — y and repeat can be defeated by = := 0.
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C Operational Game Semantics

In order to relate the intuition of interactive game play to the denotational semantics of hybrid
games, this section shows an operational semantics for hybrid games that is more complicated
than the modal semantics from Section[2.2] but makes strategies explicit and more directly reflects
the intuition how hybrid games are played successively. The modal semantics is beneficial, be-
cause it is simpler. The results in this section are not needed in the rest of the paper and play
an informative role. The operational semantics formalizes the intuition behind the game tree in
Fig.[[]and relates to standard notions in game theory and descriptive set theory. Theorem[21|below
proves that the operational game semantics is equivalent to the modal semantics from Section[2.2]
The (denotational) modal semantics is much simpler but the operational semantics makes winning
strategies explicit. As the set of actions A for a hybrid game choose:

{l,t,s,9,0} U{(x:=0) : x variable, # term}
U{(2" = & @r) : z variable, 6 term,+ formula,r € R>q}
U {?¢ : ¢ formula}

For game U 3, action [ decides to descend left into «, t is the action of descending right into 3. In
game «*, action s decides to stop repeating, action g decides to go back and repeat. Action D starts
and ends a dual game for o?. The other actions represent the actions for atomic games: assignment
actions, continuous evolution actions (in which time r is the critical decision), and test actions.
The operational game semantics uses standard notions from descriptive set theory [Kec94].
The set of finite sequences of actions is denoted by A, the set of countably infinite sequences
by AN. The empty sequence of actions is (). The concatenation, s"t, of sequences s,t € AN is
defined as (s1,...,Sp,t1,. .., tm) if s = (s1,...,8,) and t = (ty,...,t,). Foran a € A, write
a’t for (a)"t and write t*a for t"(a). For a set S C AN, write St for {s*t : s € S} and ¢S for
{t"s : s € S}. The state |t|, reached by playing a sequence of actions t € A™ from a state s in
interpretation [ is inductively defined by applying the actions sequentially, i.e. as follows:

l. |z:=0],= 5L

. . . d x
2. |2’ = 0&yQ@r]|s = p(r) for the unique ¢ : [0, 7] — S differentiable, p(0) = s, %(C) =

[0],,c) and () € [1]" for all ¢ < r. Note that |2/ = 6 & 1)@r |, is not defined if no such
exists.

3 L?Ws:{s if s € [{]

not defined otherwise
4. [s=[t]s=[s]s=lo]ls=[0]s = [0]s =5
5. lat]s = |t)(la),) fora € Aand t € AN

A treeis aset T C AWM that is closed under prefixes, that is, whenever ¢ € 7" and s is a prefix
of t (.e. t = s*r for some 7 € AM), then s € T. A node ¢t € T is a successor of node s € T iff
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Figure 15: Operational game semantics for hybrid games of dGL

t = s"a for some a € A. Denote by leaf(T") the set of all leaves of 7', i.e. nodes ¢ € T that have no
successor in 7.

Definition 7 (Operational game semantics). The operational game semantics of hybrid game « is,
for each state s of each interpretation I, a tree g(a)(s) € AN defined as follows (see Fig. for a
schematic illustration):

L glz:=0)(s) = {(z:=0)}

2. g2 =0&Y)(s) = {(a' =0&yYQr) : r € R,r > 0,9(0) = s for some (differentiable)
¢+ [0,7] — S such that 22 (¢) = [0] ., and ©(¢) € [¢)]' forall { < r}

3. g(7)(s) ={(7¥)}
4. gla U p)(s) = lgla)(s) Urg(B)(s)
5. gl B)(s) =gl@)xu (J  eBd(lt])

teleaf(g(a)(s))
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6. gla”)(s) = [J f"((s): ()})

n<w
where f" is the n-fold composition of the function
def

F(2) = Z U Upgcreat(z) U 08(@)([0]s){(s), (9)}
7. g(a?)(s) = g(a)(s)d

Note the implicit closure under prefixes in the definition of g(«/)(s) for readability reasons. For
example, g(a)(s) — 0'g(a)(5)°0 means g(a?)(s) — {(), (2)} Ud'g(a)(s) U2"g(a)(s)"D.

Angel gets to choose which action to take at node t € g(«)(s) if ¢ has an even number of
occurrences of 0, otherwise Demon gets to choose. In the former case Angel acts at t, in the latter
Demon acts at t. Thus, at every t, exactly one of the players acts at ¢. If the player who acts at ¢ is
deadlocked, then that player loses immediately. A player who acts at ¢ € g(a)(s) is deadlocked at
tift ¢ leaf(g()(s)) and no successor s is enabled, i.e. | s|; is not defined. This can happen if the
last action in s has a condition that is not satisfied like 7z > 0 or 2’ = 0 & = > 0 at a state where
x < 0. Note that the player who acts at ¢ € g(«*)(s) cannot choose g infinitely often for that loop.

A strategy for Angel from initial state s is a nonempty subtree o C g(«)(s) such that

1. forall t € o at which Demon acts, t"a € o for all a € A such that t"a € g(a)(s).

2. for all ¢t € o at which Angel acts, if t ¢ leaf(g(«)(s)), then there is a unique a € A with
t"a € 0.

Strategies for Demon are defined accordingly, with “Angel” and “Demon” swapped. The action
sequence o & 7 played from state s in interpretation / when Angel plays strategy o and Demon

plays strategy 7 from s is defined as the sequence (a1, . . ., a,) € A™ of maximal length such that
(a if Angel acts at (ay, ..., a,)
and (aq,...,a,)"a € 0
i1 =14 a if Demon acts at (aq, . .., a,)
and (a1,...,a,)a €T
| not defined  otherwise

By definition of a strategy for Angel/Demon, the a is unique. A winning strategy for Angel for
winning condition X C S from state s in interpretation [ is a strategy o C g(«)(s) for Angel from
s such that, for all strategies 7 C g(«)(s) for Demon from s: Demon deadlocks or |0 & 7] € X.
A winning strategy for Demon for (Demon’s) winning condition X C § from state s in interpre-
tation I is a strategy 7 C g(«)(s) for Demon from s such that, for all strategies o C g(«)(s) for
Angel from s: Angel deadlocks or |0 ® 7|, € X.

The denotational modal semantics from Section[2.2]is equivalent to the operational semantics:
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Theorem 21 (Equivalent semantics). The modal semantics of dGL is equivalent to the game tree
operational semantics of dGL, i.e. for each hybrid game «, each initial state s in each interpreta-
tion I, and each winning condition X C S:

s € ¢o(X) <= there is a winning strategy o C g(a)(s) for Angel to achieve X from s
5 € 0o (X®) <= there is a winning strategy T C g()(s) for Demon to achieve X® from s

Proof. Proceed by simultaneous induction on the structure of o and prove equivalence. As part
of the equivalence proof, construct a winning strategy o achieving X using that s € ¢,(X). The
simultaneous induction steps for 4, (X C) are simple dualities, except for the case of a*. It is
easy to see that Angel and Demon cannot both have a winning strategy from the same state s
for complementary winning conditions X and XC in the same game g(«)(s). Theorem implies
601(XB) = ga(X)C'
l.s € Guy(X) <= Wb e X — lo®7|s = |z := 0]y = sV e X using
o ¥ {(z :=0)} = g(z := 6)(s). The converse direction follows, because the strategy o
follows the only permitted strategy.

2.5 € Guegep(X) <= s = ¢(0),0(r) € X for some r € R and some (differentiable)
¢+ 0,7] — Ssuch that €L (¢) = [0] ., and ¢(¢) € [¢]' forall{ <r <= [o@T], =

|2 = 0&p@r|, = o(r) € X, using 0 & {(2' = 0&v@r)} C g(a’ = 0&)(s). The
converse direction follows, because this ¢ has the only permitted form for a strategy where
different values of r that lead to X are equivalently useful.

3.5 € X)) = [W]'NX <= |o@7], = ||, =s € X, withs € [¢]" using
o & {("¥)} = g(?¢¥)(s). The converse direction uses that this o is the only permitted
strategy and it deadlocks exactly if s & []".

4. s € Guup(X) = cu(X)Ug(X) < s € ¢ (X) ors € ¢3(X). By induction hypothesis,
this is equivalent to: there is a winning strategy o, C g(«)(s) for Angel for X from s or
there is a winning strategy og C g(5)(s) for Angel for X from s. This is equivalent to

o C g(aU B)(s) being a winning strategy for Angel for X from s, using either o 1o, or
def

o=1tog.

5.5 € 6up(X) = <u(sp(X)). By induction hypothesis, this is equivalent to the existence
of a strategy 0, C g(«)(s) for Angel such that for all strategies 7 C g(«)(s) for Demon:
|00 ® T]s € ¢p(X). By induction hypothesis, |0, @ 7]s € ¢5(X) is equivalent to the ex-
istence of a winning strategy o, for Angel (which depends on the state |0, @ 7|, that the
previous « game led to) with winning condition X from |0, @ 7]s. This is equivalent to
o C g(a; 5)(s) being a winning strategy for Angel for X from s, using

o oo U U(O‘a @ 7)o, (16)
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The union is over all leaves o, @ 7 € leaf(g(«)(s)) for which the game is not won by a
player yet. Note that o is a winning strategy for X, because, for all plays for which the
game is decided during «, the strategy o, already wins the game. For the others, o, wins the
game from the respective state | o, @ 7| that was reached by the actions o, & 7 according
to the strategy 7 that Demon was observed (when « terminates) to have played during «. The
converse direction uses that strategies do not depend on moves that have not been played yet
and that any strategy can be factorized by prefixes of what has actually been played to be
coerced into the form (16).

. Both inclusions of the case a* are proved separately. If I denotes the set of states from
which Angel has a winning strategy in g(a*)(s) to achieve X, then need to show that
Sar(X) = W. For ¢,-(X) C W, it is enough to show that W is a pre-fixpoint, i.e. X U
Go (W) C W, because ¢,+ (X) is the least (pre-)fixpoint. Consider any s € X U, (W) C W.
If s € X then s € W with the winning strategy o &« {(s)} for Angel to achieve X in o*
from s. Otherwise, s € ¢, (W) C W implies, by induction hypothesis, that there is a win-
ning strategy o, C g(a)(s) for Angel in « to achieve W from s. By definition of W, Angel
has a winning strategy in g(a*)(s) to achieve X from all states reached after playing « from
s according to 0, i.e. |0, ® 7], € W for all strategies 7 of Demon. Thus, by composing o,
with the respective (state-dependent) winning strategies o, for all possible resulting states
(which are all in W) corresponding to the respective possible strategies 7 that Demon could
play during the first «, a winning strategy is obtained of the form

o g'o, U U 9 (0 ® 7)o,

for Angel to achieve X in o* from s, where the union is over all leaves o, @& 7 € leaf(g(«)(s))
in any strategy 7 of Demon for which the game is not won by a player yet during the first .

The converse inclusion ¢,- (X)) D W is equivalent to ¢, (X )¢ C W?E. For this, recall ¢, (X))t =
0o (XY) = U{Z € S : Z C X' N 64(Z)} by Theorem[2l Thus, since ¢,-(X)C is a great-
est (post-)fixpoint, it is enough to show Z C WE for all Z with Z C X®n do(Z). Since,
Z C 04(Z), Demon has a winning strategy in « to achieve Z from all s € Z, by induction
hypothesis. By composing the respective winning strategies for Demon, obtain a winning
strategy 7 for Demon to achieve Z in o* for any number of repetitions that Angel chooses
(recall that Angel cannot choose to repeat a* infinitely often to win). Since Z C Xt Angel
cannot }éave a winning strategy to achieve X in o* from any s € Z by Theorem[2] Thus,
Z CWe.

c5 € ¢u(X) = (XL «— s & ¢ (XP). By induction hypothesis, this is equivalent
to: there is no winning strategy ¢ C g(«)(s) for Angel winning X® in o from s. Since
Gat(X) = 64(X) by Theorem[2] this is equivalent to: there is a winning strategy 7 C g(a)(s)
for Demon winning X in « from s. Since the nodes where Angel acts swap with the nodes
where Demon acts when moving from « to o, this is equivalent to: there is a winning

strategy o C g(a?)(s) for Angel winning X in o from s using o &' 9°7°0. The converse
direction uses that all strategies permitted for o begin and end with . U
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D Alternative Semantics

To see why the dGL semantics is both natural and general, briefly consider alternative choices
for the semantics, focusing on the role of repetition in the context of hybrid games. It turns out
that alternative semantics require prior bounds of repetitions of <w (Appendix[D.I)) and w (Ap-

pendix[D.2)), respectively.

D.1 Advance Notice Semantics

One alternative semantics is the advance notice semantics for o*, which requires the players to
announce the number of times that game o will be repeated when the loop begins. The advance
notice semantics defines ¢,(X) as J,,_, San (X) where o™ = ;v and o® = 7true and de-
fines d,+(X) as (), dan(X). When playing o*, Angel, thus, announces to Demon how many
repetitions n are going to be played when the game a* begins and Demon announces how often to
repeat ™. This advance notice makes it easier for Demon to win loops a* and easier for Angel to
win loops o™, because the opponent announces an important feature of their strategy immediately
as opposed to revealing whether or not to repeat the game once more one iteration at a time as in
Def.[d] Angel announces the number n < w of repetitions when o* starts.

In hybrid systems, the advance notice semantics and the least fixpoint semantics are equivalent
(Lemma@, but the advance notice semantics and dGL’s least fixpoint semantics are different for
hybrid games. The following formula is valid in dG£ (see Fig.[16), but would not be valid in the
advance notice semantics:

r=1ANa=1—={(((r:=a;a:=0)Nx:=0)" )z #1 (17)

If, in the advance notice semantics, Angel announces that she has chosen n repetitions of the game,
then Demon wins (for a # 0) by choosing the = := 0 option n — 1 times followed by one choice
of 2 := a; a := 0 in the last repetition. This strategy would not work in the dGL semantics, because
Angel is free to decide whether to repeat a* after each repetition based on the resulting state of the
game.

Conversely, the dual formula would be valid in the advance notice semantics but is not valid in
dGL:

r=1Na=1=[(z:=a;a:=0)Nz:=0)]x =1

The dGL semantics is more general, because it gives the player in charge of repetition more control
as the state can be inspected before deciding on whether to repeat again. Advance notice semantics,
instead, only allows the choice of a fixed number of repetitions. The advance notice games can be

expressed easily in dGL by having the players choose a counter ¢ before the loop that decreases to
0 during the repetition. The advance notice semantics can be expressed in dG., e.g., for (17) as

r=1Na=1—=(c:=0;c:=c+ 1% (((z:=a;a:=0)Nz:=0);c:=c— 1) 7c=0)z # 1
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Figure 16: Game trees forz = 1 Aa =1 — (o*)z # 1 with game o = (z:=a;a:=0)Nz:=0
(notation: z,a). (left) valid in dGL by strategy “repeat once and repeat once more if z = 1, then

stop” (right) false in advance notice semantics by the strategy “n — 1 choices of x := 0 followed
by z :=a;a:=0 once”, where n is the number of repetitions Angel announced
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D.2 w-Strategic Semantics

Another alternative choice for the semantics would have been to allow only arbitrary finite itera-
tions of the strategy function for computing the winning region by using the w-strategic semantics,
which defines ¢, (X) as ¢/ (X) = U, -, sa(X) along with a corresponding definition for d,-(X).
Like the dGL semantics, but quite unlike the advance notice semantics, the w-strategic semantics
does not require Angel to disclose how often she is going to repeat when playing o*. Similarly,
Demon does not have to announce how often to repeat when playing a*. Nevertheless, the seman-
tics are different. The w-strategic semantics would make the following valid dGL formula invalid:

(z:=12' =1%Uz:=2-1))(0<z<1) (18)

By a simple variation of the argument in the proof of Theorem[7] <¥([0,1)) = [0, o0), because
¢"([0,1)) = [0,n) for all n € N. Yet, this w-level of iteration of the strategy function for winning
regions misses out on the perfectly reasonable winning strategy “first choose = := 1; 2’ = 1¢ and
then always choose x := x — 1 until stopping at 0 < z < 1”. The existence of this winning
strategy is only found at the level ¢<“*1([0,1)) = ¢,([0,00)) = R. Even though any particular
use of the winning strategy in any game play uses only some finite number of repetitions of the
loop, the argument why it will always work requires > w many iterations of ¢,(-), because Demon
can change x to an arbitrarily big value, so that w many iterations of ¢,(-) are needed to conclude
that Angel has a winning strategy for any positive value of x. There is no smaller upper bound on
the number of iterations it takes Angel to win, in particular Angel cannot promise w as a bound
on the repetition count, which is what the w-semantics would effectively require her to do. Bu
strategies do converge after w + 1 iterations. According to Theorem[7] the same shortcomings of
the w-semantics apply at higher transfinite closure ordinals.

The dGL semantics is also more general, because, by Theorem its closure ordinal is zwch,
in contrast to the w-semantics, which has closure ordinal w by construction. The same observation
shows a fundamental difference between the dGL semantics and the advance notice semantics,
which has closure ordinal < w.

E Proof of Higher Closure Ordinals

of Theorem[7} In this proof, proceed in stages of increasing difficulty. That the closure ordinal is
> w - 2 has already been shown on p. Now prove the bounds > w? and finally > w*. In order
to see that the closure ordinal is at least w? even for a single nesting layer of dual and loop, follow
a similar argument using more variables. Consider the family of formulas (for some N & N) of
the form

N
<(:BN::$N—1;:B’N_1:1dU... U:BQ::a:g—l;x'lzldel::$1—1)*)/\xi<0
v~ i=1

0%

The winning regions for this dGL formula stabilizes after w - N iterations, because w many itera-
tions are necessary to show that any x; can be reduced to (—o0, 0) by choosing the last action suf-
ficiently often, whereas another w many iterations are needed to show that x5 can then be reduced
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to (—o0, 0) by choosing the second-to-last action sufficiently often, increasing x; arbitrarily under
Demon’s control, which can still be won because this adversarial increase in x; can be compen-
sated for by the first part of the winning strategy. The vector space of variables (xy, . .., z1) is used
in that order. It is easy to see that ¢*(a)(—o00,0)" =, s"(@)(—00,0)" = (—o0,0)" ! x R,
because ¢" ! (a)(—00,0) = (—00,0)V ! x (—o0, n) holds for all n € N, n by a simple inductive
argument:

<H@)(=00,0)" = (=00,0)" Uca("(a)(=00,0)") = (=00,0)" U ca((—00,0)" " x (=00, — 1))

Inductively, s *V (a) (=00, 0)N =, s“ " (a)(—00,0)Y = (—00,0)¥ =1 x R**! because
¢kt (q)(—00,0) = (—00,0)N*71 x (—oo,n) x R¥ holds for all n € N by a simple inductive
argument:

A () (=00, 0) = (=00,0)" U o (¢ (@) (—00,0)")
(50,00 U ((—00,0)¥ ¥ x (00,1 = 1) x RY)

(—OO,O)N Bl (—oo,n) x R¥

Consequently, ¢, ((—00,0)") = ¢V (a)(—o00,0)" # ¢« N=D+n(q)(—00,0)", which makes w -
N the closure ordinal for o. Since hybrid games a of the above form can be considered with
arbitrarily big N € N, the common closure ordinal has to be > w - N for all N € N, i.e. it has to
be > w?.

In order to see that the closure ordinal is at least w“, follow an argument expanding on the
previous case. Consider the family of formulas (for some N € N) of the form

N
(?zn-1 < 032y, =1%oy =ay —1U...U% < 0;2) = 1% 2y =25 — 1 U2y ::xl—l)*>/\xi <0

v i=1
a

The winning regions for this “clockwork w” formula stabilizes after w” iterations, w many iter-
ations are necessary to show that any x; can be reduced to (—oo, 0) by choosing the last action
sufficiently often, whereas another w many iterations are needed to show that =5 can then be re-
duced to (—o0,0) by choosing the second-to-last action sufficiently often in case x; has already
been reduced to (—oo,0). Every time the second-to-last action is chosen, however, Demon in-
creases x; arbitrarily, which again takes w many steps of the last action to understand how z; can
again be reduced to (—oo, 0) before the second-to-last action can be chosen again to decrease x5
further. This phenomenon that w many actions on z;_; are needed before z; can be decreased by
1 holds for all ¢ recursively. Note that in any particular game play, Demon can only increase x;
by some finite amount. But Angel does not have a finite bound on that increment, so she will first
have to convince herself that she has a winning strategy that could tolerate any change in z;, which
takes w many iterations of the previous argument.
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The vector space of variables (zy, ..., ;) is used in that order. For by,...,b; € NU {oco},
use the short hand notation

by .. baby & (—00,by) X -+ X (=00, by) X (—00, by)
and write b for (—oo, b;)™ in that context. Letbh = (bny...,b1). ProvethatVn e NVj € N, j >0

g“’j(”“)(a)b]\;...bj...bl =bn ... (bjs1 + n)od’ if @by, ..., b <00,5 >0

§wj(n+1)(04)b]v e bj_HOOj = bN N (bj+1 +n+ 1)00] lf@ bN, ce ,bj+1 < OO,bj =00 = ..

b

¢ (@b . b100F T 00! = by . (brsr + DIF T (0 + Doc? Ub i @) by, . .., byyr < 00, by, = 00,k > j

by induction on the lexicographical order of j and n. Note that, in the case (), there are some
subordinate cases which do not need to be tracked in this analysis, because they are strategic dead
ends. IH is short for induction hypothesis.

The base case j = 0,n = 0 is vacuous for (I) and can be checked easily for 2.

¢ Ha)by .. b1oc® = ¢ (@)by ... by =by ... (b +1) =by... (b + 1)
< ()b . b1oo® = bUg(a)s™(@)by .. by =bUg(a)by ... (by+n) =by...(by +n+1)

For (3), the case 7 = 0 holds only after an extra offset k£, however:

Cl(Od)bN Ce bk+1OOk = gU bN c. (bk+1 -+ 1)0001671
" MHa)by .. 100" = ¢"(@)by . . bpa100® Uby .. (bpgy + 1)1"000" 1 forn < k
S ()b .. bpy100” = FT ()b .. D100 Uby . (b + D1FH(n 4 1)

So instead, prove base case 7 = 1,n = 0, because the finite extra offset k£ has been overcome at w:

G Ha)oy . b= | D (@)by . 010 = | J oy (b + 0+ 1) =by .. boo  if D
nw n<w
(@b . .. byoo = U ¢ 1) ( byoot = by ... (by + 1)o0 if @
n<w
¢ Ha)by . . . bppyoo® = U ¢ (@)by .. b0k = U by .. (b + DI+ 1) UD
= Z;w (b + D1 o U B - if @

In case (), there are some subordinate cases ub coming from mixed occurrences by . .. (bgr1 +
1)000®~=1, but do not need to be tracked, because they are strategic dead ends. By construction
of o, no counter can be changed without resetting all smaller variables to O first as indicated.
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j ™ j+ 1,n = 0: For the step from j to 7 + 1 prove the case n = 0 as follows.

§wj+1'(0+1)(a)bN .. bj .. bl = §ijw(Oz)bN .. bj . bl = U gwj-(n-l-l)(a)bN s bj ce bl

n<w
. (U, -, b -+ (bjs1 + n)oo? | if D
= S Upew On - (bj1 + 14 1)00? if @
(U b - (Bt + D197 (0 + D)oo UD if Q)
by ... bjyo007 Tt ifby,...,b; < o0
1) by bjyp00 T if by, ... bjs < o0
"~ )by (bjg + 1)ood ! if by, ... bjya < 00,bj41 =00,k =75+1
by - (b + DIF 21007t Ul if by, ..., byyy < 00,b, = 00,k > j+ 1

n ~ n + 1. Within any level j, prove the step from n to n + 1 as follows. If n = 0, then
¢ (@)by ... by ... by = ¢’ (a)by ... b;...b already has the property by induction hypothe-
sis. Otherwise n > 0, which allows us to conclude:

D ()b by by = ¢ ()b by by G ()¢ M ()b by by

¢ (@)by ... (bj41 +n — 1)od? it D

Ié{ §w] (Oé)bN . (bj+1 + n)ooj if @
(< (@)bn ... (begr + 1)1F 7 T noo? U b if Q3
(bN (b]+n)ooj lf®

by (bj+n+1)oc! if @
L (b + D1 (n 4+ Docd UD i B

Consequently, ¢4+ ((—o00, 0)V) = ¢“" (a)(—00, 0)N = RN # ¢ "(a)(—0c0,0)" for all n € N,
which makes w” the closure ordinal for . Since hybrid games « of the above form can be
considered with arbitrarily big N € N, the common closure ordinal has to be > w forall N € N,
1.e. it has to be > w". O
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