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Abstract
An α-approximation algorithm is an algorithm guaranteed to output a solu-

tion that is within an α ratio of the optimal solution. We are interested in the
following question: Given an NP-hard optimization problem, what is the best
approximation guarantee that any polynomial time algorithm could achieve?

We mostly focus on studying the approximability of two classes of NP-hard
problems: Constraint Satisfaction Problems (CSPs) and Computational Learn-
ing Problems.

For CSPs, we mainly study the approximability of MAX CUT, MAX 3-CSP,
MAX 2-LINR, VERTEX-PRICING, as well as serval variants of the UNIQUE-
GAMES.

• The problem of MAX CUT is to find a partition of a graph so as to max-
imize the number of edges between the two partitions. Assuming the
Unique Games Conjecture, we give a complete characterization of the ap-
proximation curve of the MAX CUT problem: for every optimum value of
the instance, we show that certain SDP algorithm with RPR2 rounding
always achieve the optimal approximation curve.

• The input to a 3-CSP is a set of Boolean constraints such that each con-
straint contains at most 3 Boolean variables. The goal is to find an as-
signment to these variables to maximize the number of satisfied con-
straints. We are interested in the case when a 3-CSP is satisfiable, i.e.,
there does exist an assignment that satisfies every constraint. Assum-
ing the d-to-1 conjecture (a variant of the Unique Games Conjecture), we
prove that it is NP-hard to give a better than 5/8-approximation for the
problem. Such a result matches a SDP algorithm by Zwick which gives
a 5/8-approximation problem for satisfiable 3-CSP. In addition, our result
also conditionally resolves a fundamental open problem in PCP theory on
the optimal soundness for a 3-query nonadaptive PCP system for NP with
perfect completeness.

• The problem of MAX 2-LINZ involves a linear systems of integer equa-
tions; these equations are so simple such that each equation contains at
most 2 variables. The goal is to find an assignment to the variables so as
to maximize the total number of satisfied equations. It is a natural gener-
alization of the Unique Games Conjecture which address the hardness of
the same equation systems over finite fields. We show that assuming the
Unique Games Conjecture, for a MAX 2-LINZ instance, even that there
exists a solution that satisfies 1− ε of the equations, it is NP-hard to find
one that satisfies ε of the equations for any ε> 0.



• The problem of VERTEX-PRICING involves of a set of customers each of
which is interested in buying a set of items. VERTEX-PRICINGk is the
special case when each customer is interested in at most k of the items.
All of the buyers are single minded, which means that each of the buyer
would buy all the items they have interest on if the total cost of the items
is within their budget. The algorithmic task is to price each item with
so as to maximize the overall profit. When each item is priced positive
profit margin, it is known that there is a O(k)-approximation algorithm
for the problem. We prove that in contrast for the very simple case of
VERTEX-PRICING3, when the seller is allowed to price some of the items
with negative profit margin (in which case more profit could possibly
be achieved), there is no polynomial time approximation algorithm that
gives constant approximation to the problem assuming the Unique Games
Conjecture.

For the learning problems, our results mostly involve showing that learning
tasks are hard for many basic function classes under the agnostic learning
model. In particular, we proved that the following two results on agnostic
learning monomials and low degree polynomial threshold functions:

• Our first result is about hardness of learning monomials. We prove that
given a set of examples, even that there exists a monomial that is con-
sistent with 1− ε of the examples, it is NP-hard to find a (1/2 + ε) good
hypothesis even we are allowed to output a linear threshold function, for
any ε > 0. Our result rules out the possibility of using linear classifiers
such as Winnow and SVM to agnostically learn monomials.

• Our second result is on the hardness of learning polynomial threshold
functions (PTFs). We prove that assuming the Unique Games Conjecture,
given a set of examples, even that there exists a low degree PTF that is
consistent with 1−ε of the examples, it is NP-hard to find such a one that
is 1/2+ ε good for any ε> 0. In the language of learning, we show there is
no better-than-trivial proper learning algorithm that agnostically learns
low degree PTFs.
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1.1 Motivation

For a vast variety of applications in computer science and engineering, the central task is
to design efficient algorithms for certain optimization problem. For example, in machine
learning, one of the major goal is to find a predication rule with the maximum accuracy
on a particular domain of data; in computer networking, a common task is to design a
protocol that gives the minimum delay of the transmissions.

Unfortunately, for a huge class of optimization problems, it is NP-hard to find the opti-
mum solution. Under the widely held belief that P 6=NP, there does not exist a polynomial
time algorithm for all of these NP-hard optimization problems.

To cope with the NP-hardness, there has been a great interest of designing efficient ap-
proximation algorithms that return a suboptimal solution provably close to the optimum.
Formally, an algorithm is called an α-approximation if it guarantees to output a solution
that is within a factor α of the optimum. When α = 1, the algorithm solves the problem
exactly. Ideally, we want to design an algorithm with its approximation ratio α being as
close to 1 as possible, while still require the algorithm to have an polynomial running time.
This raises the following natural question:

Question Given an NP-hard problem, what is the best polynomial time approximation
algorithm?

Answering the above question involves proofs from two sides: first we need to exhibit
a polynomial time algorithm that has certain approximation guarantee; second we need
to prove the impossibility of getting better polynomial time approximation algorithms.

This thesis is about to study the optimal approximation threshold for a variety of im-
portant and natural NP-hard optimization problems.

1.2 Problems Studied in This Thesis

To give the reader a sense of the optimization problems studied in the thesis, we list some
of them here:

1. (MAX 2-LINZ) We are given a set of linear inequations and these equations are so
simple such that each equation contains at most 2 variables. Can we find an assign-
ment to the variables so as to maximize the number of satisfied equations?

2. (MON-MA) We want to decide whether an E-mail is spam or not. A common ap-
proach is to look at whether these E-mails contain certain set of key words or not.
Suppose there is a collection of key words such that with high accuracy, E-mails con-
taining all of them are spam (and vice versa). Given a set of E-mails that are labelled
with whether they are spam or not, can we find a way to classify other unlabelled
E-mails with high accuracy?

3. (MAX CUT) Given a graph, can we partition it into two parts so as to maximize the
total number of edges between them?
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4. (MAX 3-CSP) Given a set of Boolean constraints such that each of the constraint
contains at most 3 variables, can we efficiently find a solution that satisfies all of
them (if there exists such a solution)?

5. (VERTEX-PRICING) A set of buyers each of which is interested in a bundle of items.
These buyers are single minded such that they either buy the whole bundle if the
total cost is within their budget or they will buy nothing. The question is how to
price each item so as to maximize the overall profit.

Generally speaking, the problems studied in this thesis come from the following two
categories: i) Constraint Satisfaction Problem (CSP); ii) Computational Learning. Below,
we give a high level overview of these two classes of problems.

1.2.1 Constraint Satisfaction Problem (CSP)

Briefly speaking, a Constraint Satisfaction Problem (CSP) involves a system of constraints
on a set of variables. Given a CSP, the natural algorithmic task, called “Max-CSP”, is to
find an assignment to the variables such that the total number of satisfied constraints are
as large as possible.

While the above definition of CSPs is rather abstract, many natural optimization prob-
lems fall into the class of CSPs. One concrete example of a CSP is the linear equation
system, which consists of a set of linear equations over a set of variables. The correspond-
ing optimization problem is to find an assignment of the variables of the system to satisfy
as many equations as possible (if not all). In addition to linear systems, we can specialize
a MAX CSP by using other types of constraints to get many of the most canonical NP-
hard optimization problems such as MAX CUT, MAX 3-SAT and MAX SAT.

CSPs also have a deep root in the study of theoretical computer science. The NP-
hardness of MAX CUT and Max-3SAT came along with the very beginning of the NP-
completeness theory [34, 88] in the seventies. Shortly after that, a seminal paper by John-
son [82], which is a foundational paper of the filed of approximation algorithms, designed
algorithms for many NP-hard optimization problems including Max-SAT, Max-3SAT as
well as Set Cover, Coloring and Maximum Independent Set. Since then, there has been
a flurry of work that successfully designing approximation algorithms for various CSPs.
Many of the early algorithms are based on Linear Programming; in a breakthrough on
both theory and practice happened in 1994, Goemans and Williamson [59] gave a Semidef-
inite Programming (SDP) rounding algorithm achieving a 0.878 approximation guarantee
for MAX CUT; it is the first algorithm with a nontrivial approximation for MAX CUT. After
that, there is a tremendous interest in designing SDP based approximation algorithm for
various CSPs [11, 15, 29, 32, 37, 49, 110, 123, 141, 142].

Compared with the quick development at the algorithm side, there has been a rela-
tively slow progress on proving hardness of approximation results until the early nineties.
The first major breakthrough is the celebrated PCP theorem, which is equivalent to the
following statement: there exists some constant ε > 0 such that given a 3-SAT instance
that can be satisfied by some assignment, it is NP-hard to find a assignment that satisfies
1− ε fraction of the constraints. This implies that it is NP-hard to have a approxima-
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tion better than 1− ε for MAX 3-SAT. Since then, people obtain many improved hardness
results for various kinds of CSPs. In a seminal work by Hastad [76], he improved the
hardness of approximation ratio of MAX 3-SAT from 1− ε to 3

4 . In the same work, he gave
a lot of other inapproximability results which included showing that MAX 3-LINq is hard
to approximate beyond the trivial 1/q ratio.

We now have optimal (i.e., matching) approximation algorithms and NP-hardness-
of-approximation results for many key problems:MAX k-LINq for k ≥ 3 [76], MAX 3-
SAT [76, 87, 143], and a few other MAX k-CSP problems with k ≥ 3 [65, 76, 138, 141].
However, many basic problems remain unresolved; for example, we do not know if 90%-
approximating MAX CUT is in P or is NP-hard. Similarly, given a satisfiable 3-CSP, we do
not know if satisfying 2/3 of the constraint-weight is in P or is NP-hard. To address this,
the Unique Games Conjecture, along with some variants of it called d-to-1 Conjecture,
were proposed by Khot [97] in 2002.

One equivalent statement of the Unqiue Games Conjecture (UGC) [99] is about the
approximability of the following problem:

Definition 1.2.1. (Γ-MAX 2-LINq) We are given a system of linear equations with variables
{xi}n

i=1 and all the equations are of the simple form xi − xj = ci j(modq) with the integer
coefficient 0 ≤ ci j ≤ q−1. The goal is to assign each xi some value in {0,1, . . . , q−1} such
that the maximum number of equations are satisfied.

UGC states that it is extremely hard to approximate the Γ-MAX 2-LINq problem in
the following sense:

Conjecture 1.2.2. (UGC) For any ε > 0, there exists large enough q such that for Γ-MAX

2-LINq instance, even there is an assignment that satisfies 1− ε fraction of the equations,
it is NP-hard to find an assignment that satisfies more than ε fraction of the equations.

Assuming the UGC, people have proved many optimal hardness of approximation re-
sults such as those results for MAX CUT [99, 102, 120] and Max-2Sat [13, 14] and a lot of
other problems [43, 67, 103]. In a powerful work by Raghvendra [125], he obtained a very
general result that for almost any CSP, the optimal approximation is achieved by certain
generic SDP algorithms.

This thesis includes work that initializes this line of research as well as work that
reflects the latest development of the area. In particular, we study the approximability of
serval important CSPs: MAX CUT and MAX 3-CSP and VERTEX-PRICING. In addition, we
will study the approximability as well as the SDP approximation for serval variants of the
Γ-MAX 2-LINq problem.

1.2.2 Computational Learning

In addition to the CSPs, we also study NP-hard optimization problems from Computa-
tional Learning theory, a branch of theoretical computer science that studies how to effi-
ciently infer an unknown target function from examples under certain distributions. For
example, the target function can be “whether it is going to rain tomorrow ?” and the input
to the target function could be the measurement of different physical conditions of today
such as temperature, humidity, and wind speed, etc. The learning algorithm has an ac-
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cess to a set of labelled examples (e.g., the measurements of a certain day as well as the
weather of the day after) and the goal is to infer the target function with high accuracy.

We usually assume that the target function has certain “simple” structure, as other-
wise we have no way of inferring the function on any unseen examples. Some examples
of classes of simple functions include: monomials (conjunctions), decision lists, majority
functions, halfspaces, low degree polynomial threshold functions (PTFs), small size deci-
sion trees, DNF, CNF, Neural Networks, et al. .

In learning theory, researchers are mainly interested in whether these simple function
classes are learnable. The learnability of a function class is defined by whether we can
use a small amount of labelled examples and computation time to find a function which
has a good agreement with the target function in that function class. Such a model is
formalized as the PAC learning model by Valiant [140]. While the original PAC learning
model assumes that certain simple target function correctly labels all the data, this model
has been generalized by Haussler [78] and Kearns [90] to address the case when there is
noise in the labels and examples. Under their model (which is called agnostic learning
model), it is only known that there is some simple function that has correctly labeled
a c (say c = 0.95) fraction of the examples, the goal of the learning to come up with a
hypothesis with accuracy being close c.

All these learning problems can be viewed as an optimization task as we are given a
set of labelled examples and our goal is to find a hypothesis with maximum prediction
accuracy. For many important concept classes, finding the optimal hypothesis, especially
when there is noise, is NP-hard. A good learning algorithm usually returns a hypothesis
that approximate the optimal one well. In the thesis, we are particular interested in the
learnability (approximability) of three common function classes: monomials, halfspaces
and polynomial threshold functions under the agnostic learning model.

Comparison between Learning and Constraint Satisfaction Problems A learn-
ing problem can also be viewed as a CSP: each of the example is a constraint and the goal
is to find a hypothesis, specified by a set of variables, that has the maximum agreement
with all the examples.

Although the learning problems is a special CSP, in this thesis we discuss the learning
problems and other CSPs seperately for the following two reasons: i) the CSPs (except
for the learning problems) in this thesis all have “local” constants ; i.e., each constraint
involves constant number of variables, while the constraints in the learning problems are
“global’, which involve many variables. ii) The techniques of proving upper and lower
bounds for these two classes of problems are relatively independent.

1.3 Organization and Summary

1.3.1 Organization

While the rest of the thesis spans a variety of different problems, they are all united by the
theme on understanding the approximability or inapproximability of NP-hard optimiza-
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tion Problems in Learning and CSPs. The thesis are organized as follows:
In Chapter 2, we define the problems to study in thesis as well as some relevant back-

ground knowledge. In Chapter 3, we define the mathematical tools used throughout the
thesis. The remaining of the thesis divides into two relatively independent parts.

In Part II, our work is mainly on understanding the approximability of various CSPs as
well as the SDP algorithms for them: we study the problem of MAX CUT in Chapter 4, MAX

3-CSP in Chapter 5, a generalization of Γ-MAX 2-LINq into integer domain in Chapter 7
the SDP formulation of several variants of Γ-MAX 2-LINq in Chapter 6 and the problem
of vertex pricing in Chapter 8.

In Part III, Our work is mainly to prove that several learning tasks are inherently
hard to approximate; i.e., there is no better-than-trivial algorithm for the problem. In
Chapter 9, we study the learnability of monomials under the agnostic learning model. In
Chapter 10, we study the learnability of polynomial threshold functions (PTFs) under the
same model.

1.3.2 Summary of Thesis Contributions

We summarize the main contributions of the thesis as follows:

• For Part II:

In Chapter 4, we give the a complete characterization of the approximability
of the MAX CUT problem assuming the UGC. In particular, we can answer the
following question: given a MAX CUT instance of optimum value c, what is the
best polynomial time approximation guarantee we can achieve. To obtain such
a result, we show that certain RPR2 SDP rounding algorithm [50] is the optimal
polynomial time algorithm for MAX CUT. In addition, we precisely determine
the SDP gap, which is a important geometric property of SDP, for the MAX CUT

problem.

In Chapter 5, we study the approximability of satisfiable MAX 3-CSP; i.e.,
given a 3-CSP such that there exists a perfect assignment satisfying all the
constraint, what is the best approximation guarantee s we can get? The op-
timal approximation ratio of such a problem is also corresponds to a funda-
mental open problem in the area of PCP: What is the smallest s such that
NP⊆ naPCP1,s[O(log n),3]?

The previous best upper bound and lower bound for s are 20/27+ε by Khot and
Saket [104] and 5/8 by Zwick [141]. In this work we close the gap assuming
Khot’s d-to-1 Conjecture. Formally, we prove that if Khot’s d-to-1 Conjecture
holds for any finite constant integer d, then the optimal approximation for sat-
isfiable MAX 3-CSP is indeed 5/8.

In Chapter 6 we present SDP gap instances for three variants of the UNIQUE-
GAMES: (i) 2-to-1 LABEL-COVER; (ii) 2-to-2 LABEL-COVER; (iii) α-constraint
LABEL-COVER. Compared with the existing UNIQUE-GAMES SDP instance,
the difference is that all of our SDP gap instances have perfect SDP solutions.
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For alphabet size K , the optimal solutions have value: (i) O(1/
√

logK); (ii)
O(1/ logK); (iii) O(1/

√
logK). Prior to this work, there were no known SDP

gap instances for any of these problems with perfect SDP value and integral
optimum tending to 0.

In Chapter 7, we study the hardness of solving integer linear systems of which
each equation contains at most two variables. As is mentioned, the UGC is
equivalent to the following statement: given a linear system with variables
such as xi−xj = ci j mod q, it is NP-hard to find a ε-good solution to the system
even if we know that there is an assignment that satisfies 1− ε fraction of the
equations. It is natural to ask whether such a linear system is still hard when
equations are evaluated over integers. Assuming the UGC, we prove that such
a hardness still holds for equations over integers (or even real numbers).

In Chapter 8, we consider the problem of pricing n items under an unlimited
supply with single minded buyers, each of which is interested in at most k of
the items . The meaning of "single minded" is that each buyer will either buy
k of the items if the overall cost is within their budget or they will buy none
of them. The goal is to price each item with profit margin p1, p2, ..., pn so as to
maximize the overall profit. There is an O(k)-approximation algorithm when
the price on each item must be above its margin cost; i.e., each pi > 0. [26]

We investigate the above problem when the seller is allowed to price some of
the items below their margin cost. It was shown that by pricing some of the
items below cost, the seller could possibly increase the maximum profit by
(log n) times [26, 56]. These items sold at low prices to stimulate other prof-
itable sales are usually called as "loss leader. It is unclear what kind of ap-
proximation guarantees are achievable when some of the items can be priced
below cost. Understanding this question is posed as an open problem by Blum
and Balcan [26]. We give a strong negative result for the problem of pricing
loss leaders. We prove that assuming the Unique Games Conjecture, there is
no constant approximation algorithm for item pricing with prices below cost
allowed even when each customer is interested in at most 3 items.

Conceptually, our result indicates that although it is possible to make more
money by selling some items below their margin cost, it can be computationally
intractable to do so.

• For Part III:

In Chapter 9, We prove the following strong hardness result for learning mono-
mials: given a distribution of labeled examples of binary inputs such that there
exists a monomial (conjunction) consistent with (1 − ε) of the examples, it is
NP-hard to find a halfspace that is correct on (1/2+ ε) of the examples, for ar-
bitrary constants ε > 0. In learning theory terms, weak agnostic learning of
monomials is hard, even if one is allowed to output a hypothesis from the much
bigger concept class of halfspaces. As immediate corollaries of our result we
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show that weak learning noisy decision lists and majorities are NP-hard. There
are a large classes of learning algorithms that use halfspaces as their hypoth-
esis such as SVM, Perceptron, Logistic Regression, et al. Our result rules out
the possibility that any of these algorithms can be used to a learn the function
class of monomials with noise.

In Chapter 10, we prove two hardness results for the problem of agnostic learn-
ing low degree polynomial threshold functions (PTFs): for any constants d ≥
1,ε> 0,

− Assuming the UGC, it is NP-hard to find a degree-d PTF that is consistent
with (1

2 + ε) fraction of a given set of labeled examples in Rn × {−1,1}, even
if there exists a degree-d PTF that is consistent with a 1− ε fraction of the
examples.

− It is NP-hard to find a degree-2 PTF that is consistent with ( 1
2 + ε) frac-

tion of a given set of labeled examples in Rn × {−1,1}, even if there exists
a halfspace (degree-1 PTF) that is consistent with a 1 − ε fraction of the
examples.

These results immediately imply the following hardness of learning results: i)
Assuming the UGC, there is no better-than-trivial proper learning algorithm
that agnostically learns degree d PTFs under arbitrary distributions; ii) There
is no better-than-trivial learning algorithm that outputs degree 2 PTFs and ag-
nostically learns halfspaces (i.e., degree 1 PTFs) under arbitrary distributions.
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Chapter 2

Background
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In this chapter, we formally define the Constraint Satisfaction Problems and Learning
Problems studied in the rest of this thesis. Also, we lay out the framework under which we
analyze the approximation algorithms and in particular those based on SDP. In addition,
we formally define the UGC and several variants of it based on which we derive many of
the results. Last we introduce a gadget called Dictator Test and explain its relationship
with hardness of approximation results for learning and CSPs.

2.1 Notations

First we define the symbols with their meaning used throughout the thesis.

Symbol : Meaning
R Real numbers
N Natural numbers
Z Integer number

Bn {x ∈Rn : ‖x‖ ≤ 1}.
Sn−1 {x ∈Rn : ‖x‖ = 1}

Vector: For vector x ∈ Rn and i ∈ [n], we use xi to denote its i-th coordinate and write
x = (x1, x2, . . . xn). For any S ⊆ [n], we use xS to denote the collection of coordinates in set
S.

2.2 Approximation and Hardness of Approximation

Given an NP-hard problem instance G and suppose the problem is a maximization prob-
lem. Let us fix the following notations: we denote optimum value of the problem to be
Opt(G); for a polynomial-time algorithm A on the problem we use AlgA(G) to denote the
value output by A on G.

The traditional way to measure the quality of an approximation algorithm is to look at
the ratio:

Definition 2.2.1. (Approximation ratio) We call a algorithm A α-approximation if for every
instance G of the problem,

AlgA(G)

Opt(G)
≥α.

Correspondingly, we can define the hardness of approximation ratio:

Definition 2.2.2. (Hardness of Approximation ratio) We call a problem α-hard to approx-
imate if there is no polynomial time algorithm with better than α-approximation unless
P=NP.

The notions of approximation and hardness of approximation as ratios have some un-
satisfactory aspects though. Instances with different optimum value can be of very differ-
ent hardness of approximation ratio. Let us use the problem of solving linear systems over
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real variables as an example. We know that when a linear system has a solution that sat-
isfies all the equations, we can efficiently solve the problem exactly by Gaussian Elimina-
tion. However, if we only know that there is a solution that satisfies 99% of the equations,
then it is known to be NP-hard to recover a solution that satisfies even 1% of the equa-
tions [68]. Another example is the MAX CUT problem. Goemans-Williamson (GW) [59]
algorithm has a guarantee that this ratio is always at least .878. However this guarantee
is not very good for graphs G with only moderately large maximum cuts. For example,
if Opt(G) = .55, which means the optimum assignment satisfies .55 fraction of the con-
straints, then the GW algorithm may [4] only find a solution with value .878 ∙ .55 < .49,
which is worse than the trivial one (1/2). On the other hand, Goemans and Williamson
showed [59] that when Opt(G) = .95, their algorithm finds a solution with value at least
.90, which is significantly better than .878 ∙0.95.

We think it is essential to measure the quality of approximation and hardness of ap-
proximation not with a single ratio but with a curve. Let us first assume that we have a
maximization problem P with optimum value in the range of [0,1].

Definition 2.2.3. We say that an algorithm A achieves approximation curve ApxA : [0,1]→
[0,1] for problem P if

AlgA(G)≥ApxA(Opt(G)) for all instance G.

Following definition is used to characterize the approximation guarantee at a particu-
lar optimum value of c.

Definition 2.2.4. Assume P is an optimization problem and A is an algorithm for it.
If any instance G with Opt(G) ≥ c, ApxA(G) ≥ s, then we say that algorithm A (c, s)-
approximate the problem P

Correspondingly, we can define the hardness for (c, s)-approximation; usually we prove
such a claim by showing the NP-hardness of the following decision problem:

Definition 2.2.5. For a optimization problem P , we use P (c, s) to denote the problem of
the following: given a instance G of P and distinguish the following two cases:

1. Opt(G)≥ c;

2. Opt(G)< s.

Essentially, if P (c, s) is NP-hard, then it is NP-hard to (c, s)-approximate P . This is
because if there is a polynomial time algorithm that (c, s)-approximate P , we can run the
algorithm on instances of G and output "Opt(G) ≥ c" if the algorithm outputs value above
s.

2.3 CSPs and SDP

2.3.1 CSPs

A Constraint Satisfaction Problem (CSP) involves a system of constraints over variables
{vi}n

i=1. A “k-CSP” is a system of constraints in which each constraint involves at most k
of the variables. We also assume each constraint has a nonnegative weight, with the sum
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weight: constraint:
1/4 v1∧¬v3∧v4

1/4 IF v3 THEN v4 ELSE ¬v5

1/2 v2 6= v5

Figure 2.1: 3-CSP

of all weights being 1. Given a k-CSP, the natural algorithmic task, called “MAX k-CSP”,
is to find an assignment to the variables such that the total weight of satisfied constraints
is as large as possible. We write “Opt” to denote the weight satisfied by the best possible
assignment. We also say that a CSP is “satisfiable” if Opt = 1. Figure 2.3.1 is an example
of 3-CSPs.

In a k-CSP, each constraint in a k-CSP is of a certain “type”; more precisely, it is a
certain predicate with arity at most k over the variables. If we specialize Max-kCSP by
restricting the type of constraints allowed, we get some of the most canonical NP opti-
mization problems. For the special case when a CSP is over Boolean variable v1, ...vn. Let
us use l i to denote the literal which can represent either vi or ¬vi. Some of the important
classes of Boolean CSPs are listed here:

• Max-2Sat: with predicate l i ∨ l j;

• Max-3Sat: with predicate l i ∨ l j ∨ l j;

• Max-2Lin: with predicates vi ⊕vj , ¬(vi ⊕vj);

• MAX CUT: with predicate vi 6= vj.

• Max-3CSP: with all the possible 3-bit predicates P(vi,vj,vk) : {0,1}3 → {0,1}.

• Max-3CSP: with all the possible k-bit predicates P(v1,v2, . . . ,vk) : {0,1}k → {0,1}.

We also study some less familiar 3-CSPs in the thesis.
• MAX NTW: with predicate NTW(l1, l2, l3), where NTW is the 3-arity predicate that eval-

uate truth if and only if 0,1 or 3 of its input is True; i.e. "Not Two True";

• MAX NAE: with predicate NAE(l1, l2, l3)=¬(l1 = l2 = l3).

Further, we also study CSPs over larger domain (other than Boolean value) such as [q]
or even Z and R. Following are definitions of such CSPs that will be discussed in the rest
of the thesis.

• MAX 2-LINq: vi ∈ [q], with predicates avi +bvj = c mod q for a, b, c ∈ [q];

• MAX 2-LINZ: vi ∈Z, with predicates avi +bvj = c for a, b, c ∈Z;

• MAX 2-LINR: vi ∈R, with predicates avi +bvj = c for a, b, c ∈R;

• MAX 3-LINq: vi ∈ [q], with predicates avi +bvj + cvk = d mod q for a, b, c, d ∈ [q].

• MAX 3-LINZ: vi ∈Z, with predicates avi +bvj + cvk = d for a, b, c, d ∈Z ;

• MAX 3-LINR: vi ∈R, with predicates avi +bvj + cvk = d for a, b, c, d ∈R. .

• Γ-MAX 2-LINZ,Γ-MAX 2-LINR,Γ-MAX 2-LINq: MAX 2-LINZ,MAX 2-LINR,MAX 2-
LINq with the additional constraints that each equation has the special form vi−vj =
a, evaluated in the corresponding domain.

32



Each constraint in k-CSPs can be viewed as functions of the form: f : Rk → {0,1}. A
assignment satisfy the constraint f if f ’s value is 1. We can further relax the definition
of CSPs by allowing constraints to be more generalized payoff functions that takes real
values (other than {0,1}) . The goal of the optimization task is to find an assignment to
maximize the weighted sum of the payoff on all of the constraints. In this thesis, we will
also study a CSP called VERTEX-PRICING with the following generalized payoff function:

• VERTEX-PRICINGk: variables v1,v2, . . .vk ∈R and the constraint is of the form

fb(v1, . . . ,vk)= 1(
∑

vi < b) ∙ (
∑

vi)

for some positive constant b ∈R+.

We will explain the problem in more details in Chapter 8.

2.3.2 SDP Gap

Most of the best approximation guarantees for CSPs currently known are achieved by
algorithms using Semidefinite Programming (SDP). Generally speaking, SDP based algo-
rithm involves two parts: relaxation of the original problem in to a SDP and rounding the
solution of the SDP to an integer solution.

For the purpose of exposition, let us use the MAX CUT problem as an example. Suppose
we have a MAX CUT instance G and it has input on Boolean variables x1, ...xn ∈ {−1,1} and
a set constraints xi 6= xj with positive weight wi j.

Essentially, the optimum value of G is the maximum of the following integer program-
ming problem:

max
xi∈{−1,1}

∑

i j
wi j

1− xix j

2
.

Solving the above optimization problem is NP-hard as it is equivalent to the Max Cut
problem. The SDP relaxation of Max Cut replace each xi with vector variable vi ∈ Bn (i.e.
vi ∈Rn, |vi| = 1) and replace the product of two integer by the inner product of two vectors.
The following relaxed optimization problem is the SDP relaxation of MAX CUT and we call
its optimum Sdp(G) :

max
vi∈Sn−1

∑

i j
wi j

1−vi ∙vj

2
.

Apparently Sdp(G) ≥ Opt(G) as we can always set each vi to be one dimensional unit
vector (i.e., 1 or −1) to achieve the integral optimum. The utility of this relaxation is that
we can actually find an essentially optimal in polynomial time [59]. Then after solving
the relaxed optimization problems, we can figure out a set of xi from the vector vi. For
example, after getting a set of vectors v1,v2, . . . ,vn, the famous Goemans-Williamson algo-
rithm uses a random hyperplane to cut all the vectors in to two parts and this naturally
induces an assignment of the xi. Another interpretation of the GW algorithm is that we
first randomly picking a vector r and then we set xi = sgn(r ∙ vi). A simple analysis on
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above rounding scheme shows that AlgGW(G)≥ 0.878∙Sdp(G)≥ 0.878∙Opt(G) and thus the
Goemans-Williamson Algorithm achieves an 0.878-approximation.

For other CSPs, their SDP algorithms all have a similar framework: i) formulate the
original problem as an integer programming; ii) relax and solve the corresponding SDP;
iii) Round the SDP solution to an integer solution.

In evaluating SDP algorithms, we would like to compare the algorithm output to the
optimum values. However doing this directly is difficult — roughly because Max-CSPs
are usually hard, and therefore we do not analytically have access to the optimum. The
approximation guarantees of SDP-based algorithms are actually based on comparing the
value of the algorithm output to the SDP value:
Definition 2.3.1. Given a SDP algorithm A, we use Sdp(G) to denote the corresponding
SDP value. We say that SDP algorithm A achieves SDP-approximation curve SdpApxA :
[0,1]→ [0,1] if

AlgA(G)≥SdpApxA(Sdp(G)) for all G.

There is an obvious barrier to how good SDP-approximation guarantees can be: If there
exists a instance G with Sdp(G)≥ c and Opt(G)≤ s then of course no algorithm could have
an SDP-approximation curve SdpApx with SdpApx(c) > s. The SDP gap is defined as
follows:
Definition 2.3.2. For 0 ≤ s ≤ c ≤ 1, we call the pair (c, s) an SDP gap if there exists a
instance G with Sdp(G)≥ c and Opt(G)≤ s. We define the SDP gap curve by

GapSDP(c)= inf{s : (c, s) is an SDP gap}.

In addition, the SDP gap gives a measure of how close the SDP is to the original integer
programming problem.

2.4 Learning Theory

2.4.1 Concept Classes

Computational Learning Theory establishes the theoretical framework of how can we in-
fer an unknown target function from examples under certain distributions. We usually
assume that the target function is from some simple concept class. Let us define concept
class as follows (assuming we only consider binary examples and labels)
Definition 2.4.1. (Concept Class) A concept class is a class of functions on f : {0,1}n →
{−1,1}.

Here is a list of concept classes studied in the thesis.
Definition 2.4.2. (monomials) Suppose the input to the function is x ∈ {0,1}n, suppose l i is
the literal that can represent either xi or ¬xi. A monomial is the conjunction on a subset of
literals which can be represented as: ∧

i∈S
li.

for some S ⊆ [n].
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Definition 2.4.3. (decision lists) A decision list f over the Boolean variables x ∈ {0,1}n is
represented by a list of variable pairs (l1, b1), (l2, b2), ..., (lk, bk) and bk+1 where each l i is a
literal (being either xi or ¬xi) and each bi is either −1 or 1. Given any x ∈ {0,1}n, the value
of f (x) is bi if i is the smallest index such that l i is made true by x; if no l i is true then
l(x)= bk+1.
Definition 2.4.4. (halfspaces) Suppose the input is x ∈ {0,1}n (or Rn). A halfspace function
f (x) : {0,1}n → {−1,1} is the sgn of the weighted sum of all the xi subtracted by a threshold:

sgn(
∑

wixi −θ)1.

Here w1, . . . ,wn,θ ∈R.
Definition 2.4.5. (degree d PTFs) For positive integer d, we call a function f (x) : {0,1}n →R

(or Rn → R) a degree d polynomial function if it is of the following polynomial expansion
form: ∑

multiset S⊆[n],|S|≤d
cS

∏

i∈S
xi.

Here each cS ∈ R is the coefficient of the polynomial. A degree d polynomial threshold
function is of the form sgn( f (x)) where f (x) is a degree d polynomial function.

A relationship among all these concept classes is that:

monomials ⊆ decision lists ⊆ halfspaces ⊆ degree d PTFs.

2.4.2 Learning Models

In learning theory, researchers study whether these common concept classes are learn-
able. The learnability of a concept class is defined under the PAC learning model by
Valiant [140].
Definition 2.4.6. (PAC Learning) We say an algorithm A efficiently learns a Boolean func-
tion class F if the following is true for any δ,ε > 0 and distribution D on {0,1}n and f in
F : Suppose A has an oracle access to example-label pairs (x, f (x)) for x sampled from
distribution D, it will output some hypothesis h in certain concept class H such that with
probability 1− δ, Pr(h(x) = f (x)) ≥ 1− ε with running time poly(1/ε,1/δ, n). We call the
learning algorithm proper if F =H .

While the original PAC learning model assumes that some function f ∈ F perfectly
labels all the data, this model has been generalized by Haussler [79] and Kearns [90] to
address the noise. In addition, the new models has extended to functions over real value
input: f :Rn → {−1,1}. Under their model (which is called the agnostic learning model), it
is only known that there is some function in a particular concept class F that has correctly
labeled a c fraction of the examples, the goal of the learning to come up with a hypothesis
with accuracy being close to c.
Definition 2.4.7. (Agnostic Learning) We say an algorithm A agnostically learns a con-
cept class F if the following is true for any δ,ε > 0 and distribution D on {0,1}n (or even
Rn): Suppose A has an oracle access to example-label pairs (x, lx) for x sampled from

1in this thesis, we use the convention that sgn(x) is 1 for x ≥ 0 and −1 for x < 0.
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distribution D and suppose the best hypothesis in F has an accuracy at least c; i.e.,
max f ∈F Pr( f (x)= lx)≥ c, then A will output some hypothesis h ∈H such that with proba-
bility at least 1−δ, Pr(h(x)= lx)≥ c−ε) with running time poly(1/δ,1/ε, n).

The agnostic model still defines learnability as whether an algorithm can find a hy-
pothesis that has almost the optimal accuracy; in practice, come up with a hypothesis
with any non-trivial (and not necessarily optimal) performance would still be useful. It is
quite natural to relax the agnostic learning model to address this.

Definition 2.4.8. ((c,s) Agnostic Learning) For 0 ≤ s ≤ c ≤ 1, we say an algorithm A ag-
nostically (c, s) learns concept class F if the following is true for any δ> 0 and distribution
D on {0,1}n (or even Rn): Suppose A has an oracle access to example-label pairs (x, lx) for
x sampled from distribution D and suppose the best hypothesis in F has accuracy at least
c; i.e., max f ∈F Pr( f (x) = lx) ≥ c, then A will output some hypothesis h ∈H such that with
probability 1−δ, Pr(h(x)= lx)≥ s−ε) with running time poly(1/δ,1/ε, n).

Uniform convergence results in Haussler’s work [78] (and see also [90]) implies that
for most common simple concept class2, learnability of F by outputting hypothesis in H

in the above agnostic model is equivalent to the approximability of the problem of finding
hypothesis in H that has the same agreement rate as the best hypothesis in C on the
given set of examples.

We use F -H -MA to denote the optimization problem of finding an optimal function in
H that approximate the best function in F on a set of examples. If F =H , we just write
it as F -MA. We also define the following decision problem to characterize its approxima-
bility.

Definition 2.4.9. For 0≤ s ≤ c ≤ 1, and a given set of examples, we want to distinguish the
following two cases:

1. There is some hypothesis f ∈F such that agrees with a c fraction of the examples.

2. No hypothesis in H agrees more than an s fraction of the examples.

We call above decision problem F -H -MA (c, s)

Therefore, by the uniform convergence results, the NP-hardness of the above problem
suggests the NP-hardness of (c, s) agnostically learn a hypothesis in F by concept class
H . And when F = H , the hardness of F -MA implies the hardness of proper learning
concept class F .

In the thesis, we will investigate the above problems for some natural selection of H

and F . We are mostly interested in the cases when c = 1−o(1); i.e., we want to understand
the learnability of a concept class F knowing that there is indeed some hypothesis in it
that almost correctly labels all the examples.

For notation convenience, we use the following short name for the concept class we
have defined:

• MON: monomials;

• HS: halfspaces;

• DL: decision lists;

2The requirement for the uniform convergence results to hold is that a concept class should have polyno-
mial VC dimension, a requirement that all the concept classes we study in the thesis satisfy.
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• PTFd: degree d PTFs.
We study the approximability of MON-HS-MA in Chapter 9 and MA-PTFd in Chap-

ter 10.

2.4.3 Related Work

A number of hardness results for proper agnostic learning of monomials, decision lists and
halfspaces have appeared in the literature. For monomials, MON-MA was shown to be
NP-hard by Kearns and Li [91]. The hardness of approximating the problem within some
constant factor (i.e., APX-hardness) was first shown by Ben-David et al. [20]. The factor
was improved to 58/59 by Bshouty and Burroughs [16]. Finally, Feldman showed a tight
inapproximability result [51] (see also [52]), namely that MON-MA (1− ε,1/2+ ε) is NP-
hard. Recently, Khot and Saket [105] proved a similar hardness result even when a t-CNF
is allowed as output hypothesis for an arbitrary constant t (a t-CNF is the conjunction
of several clauses, each of which has at most t literals; a monomial is thus a 1-CNF).
The Maximum Agreement problem for halfspaces (HS-MA) was shown to be NP-hard to
approximate by Amaldi and Kann [5], Ben-David et al. [20], and Bshouty and Burroughs
[16] for approximation factors 261

262 , 415
418 , and 84

85 , respectively. An optimal inapproximability
result was established independently by Guruswami and Raghavendra [68] and Feldman
et al. [52] showing NP-hardness of HS-MA (1− ε,1/2+ ε) for any ε > 0. The reduction in
[52] produced examples with real-valued coordinates, whereas the proof in [68] worked
also for examples drawn from the Boolean hypercube. For the concept class of decisions
lists, APX-hardness of its Maximum Agreement problem (DL-MA) was shown by Bshouty
and Burroughs [16]. As for the concept class of low degree PTFs, its hardness of knowing
result is not well understood before our work.

A number of hardness of approximation results are also known for the symmetric prob-
lem of minimizing disagreement for each of the above concept classes [7, 16, 51, 52, 80, 90].
Another well-known evidence of the hardness of agnostic learning of monomials is that
even a non-proper agnostic learning of monomials would give an algorithm for learning
DNF — a major open problem in learning theory [109]. Further, Kalai et al. proved that
even agnostic learning of halfspaces with respect to the uniform distribution implies learn-
ing of parities with random classification noise — another long-standing open problem in
learning theory and coding [84].

On the algorithmic side, monomials, decision lists, halfspaces and low degree PTFs
are all known to be PAC-learnable. Monomials, decision lists and halfspaces are even
known to be efficiently learnable in the presence of more benign random classification
noise [6, 22, 33, 89, 92]. Simple online algorithms like Perceptron and Winnow learn half-
spaces when the examples can be separated with a significant margin (as is the case if
the examples are consistent with a monomial) and are known to be robust to a very mild
amount of adversarial noise [12, 57, 58]. Kalai et al. gave the first non-trivial algorithm
for agnostic learning monomials in time 2Õ(

p
n) [84]. They also gave a breakthrough result

for agnostic learning of halfspaces with respect to the uniform distribution on the hyper-
cube up to any constant accuracy (and analogous results for a number of other settings).
Their algorithms output linear thresholds of parities as hypotheses. Very recent work [42]
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has in fact given efficient agnostic learning algorithms for low-degree PTFs under specific
distributions on examples such as Gaussian distributions or the uniform distribution over
Boolean Cube.

2.5 LABEL-COVER and Khot’s Conjectures

In this section, we formally state the UGC which leads to a numerous hardness of approx-
imation results. To begin with, let us first define the LABEL-COVER Problem, of which the
UNIQUE-GAMES is a special case.

Definition 2.5.1. A LABEL-COVER instance L is defined by a tuple (U ,V ,E,P,R1,R2,Π).
Here U and V are the two vertex sets of a bipartite graph and E is the set of edges between U
and V. P is an explicitly given probability distribution on E. R1 and R2 are integers with
1≤ R1 ≤ R2. Π is a collection of “projections”, one for each edge: Π= {πe : [R2]→ [R1] | e ∈ E}.
A labeling L is a mapping L : U → [R1],V → [R2]. We say that an edge e = (u,v) is “satisfied”
by labeling L if πe(L(v))= L(u). We define:

Opt(L)= max
all labelling L

Pre=(u,v)∼P [πe(L(v))= L(u)].

The fundamental inapproximability theorem of Raz [128] is the following statement of
the hardness of approximating the LABEL-COVER problem:

Theorem 2.5.2. There exists some positive constant η such that for every constant ε> 0 for
any 1/kη ≤ ε and LABEL-COVER instances with alphabet size k (or above), LABEL-COVER

(1,ε) is NP-hard.

In [97], Khot conjectured that several restricted forms of the LABEL-COVER problem
are also NP-hard.

Definition 2.5.3. (d-to-1 LABEL-COVER) A projection π : [R2]→ [R1] is said to be “d-to-1”
if for each element i ∈ [R1] we have 1≤ |π−1(i)| ≤ d. The d-to-1 LABEL-COVER is the special
case of LABEL-COVER in which each projection in Π is d-to-1.

A Unique Games instance is the special case when d = 1 and sometimes it is also
referred as the Unique LABEL-COVER. The UGC is that it is NP-hard to distinguish near
satisfiable instance from instances with tiny optimum value.

Conjecture 2.5.4. (UGC) For every constant ε> 0 there is some constant k(ε) such that for
UNIQUE-GAMES. with label size greater than k(ε), UNIQUE-GAMES (1−ε,ε) is NP-hard.

It is easy to see that Γ-MAX 2-LINq is a special case of Unique Gamses with alphabet
size q. By the work of [99], it is also known that Unqiue Games is equivalent to the
following statement:

Conjecture 2.5.5. (Equivalent statement of UGC) For any constant ε, there exists large
enough q, such that Γ-MAX 2-LINq (1−ε,ε) is NP-hard.

If we want to parameterized the soundness by the size of alphabet, following statement
is equivalent to UGC [99].

Conjecture 2.5.6. For any constant ε, there exists large enough q, such that Γ-MAX 2-
LINq (1−ε,1/q

ε
2−ε ) is NP-hard.
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It should be note that when a Γ-MAX 2-LINq instance has optimum value is 1, such
a problem can be easily solved by Gaussian Elimination. This also is true for UNIQUE-
GAMES. In comparison, LABEL-COVER is NP-hard to ε-approximate even when it has
optimum value 1. Khot’s d-to-1 Conjecture address the above difference by assuming that
when d ≥ 2, d-to-1 Label Cover is also hard for satisfiable instance.
Conjecture 2.5.7. (d-to-1 Conjecture) For every constant ε> 0 there is some constant k(ε)
such that for d-to-1 LABEL-COVER instances L with R2 ≥ k(ε), d-to-1 LABEL-COVER (1,ε)
is NP hard.

2.5.1 UGC v.s. d-to-1 Conjecture

Since UNIQUE-GAMES does not have perfect completeness; i.e., it is easy when opt =
1, None of the UGC-based hardness results applies to the satisfiable Max-Φ problems,
i.e., the (1, s)-approximability, by current reduction machineries. In comparison, the d-
to-1 Conjecture states that it is NP-hard to distinguish whether a d-to-1 LABEL-COVER

instances is satisfiable or far from satisfiable; it can be easily adapted to the reduction
that address the approximability of satisfiable instance. The first application of the d-to-1
Conjecture is by Dinur et al. [43] where they use some variant of the 2-to-1 Conjecture to
obtain hardness of approximation result for the 4-Coloring problems. The reason they can
not use UGC is because assuming UGC, they can only obtain hardness results applies to
"almost 4-colorable" graph. There has also been several other works that use the d-to-1
conjecture to derive the hardness for satisfiable instance [71, 120, 137],

Assuming the correctness of d-to-1 conjecture, we present a (1,5/8+o(1)) hardness for 3-
CSP that appear in Chapter 5 in this thesis. In addition, one may also wonder is it possible
to use SDP to solve satisfiable d-to-1 LABEL-COVER so as to disprove d-to-1 conjecture?
We make some partial progress on understanding the SDP gap of d-to-1 LABEL-COVER in
Chapter 6.

2.6 Dictator Testing

In this section, we introduce a gadget called “Dictator Testing” which is strongly motivated
by its applications to proving hardness-of-approximation results for CSPs and Learning.
Generally speaking, we have black-box query access to an unknown Boolean function f :
{0,1}n → {0,1} and the goal is to test the extent to which f is close to a “dictator” function;
i.e., one of the n functions of the form

f (x1, . . . , xn)= xi.

Dictator Testing is in somewhat different form for learning and CSP applications and
we discuss the difference in the following two sections.

2.6.1 Dictator Testing for CSPs

A “test” is a randomized algorithm which makes a very small number of queries to f
and then either “accepts” or “rejects”. The Dictator Testing problem was first studied
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by Bellare, Goldreich, and Sudan [19], with hardness-of-approximation for CSPs as the
motivation. It was later independently introduced, with the “dictator” terminology, by
Parnas, Ron, and Samorodnitsky [122].
Definition 2.6.1. A Dictator Test has completeness at least c if all n dictator functions are
accepted with probability at least c. We say a Dictator Test has perfect completeness if it
has completeness 1.

The Dicator Test should also have the property of rejecting functions far from Dictator
with high probability, which is also called the soundness of the test. Håstad [75, 76] intro-
duced a notion of “quasirandom” function as one way of defining functions far from being
Dictator. One can think of it as functions f which have correlation at most o(1) with every
“junta” (function depending on only O(1) coordinates). Another way of thinking of these
functions is that we cannot have a procedure of outputting an O(1) list of coordinates of
the functions satisfying the following property: when we permute the function, the corre-
sponding coordinates in the list is also permuted. We refer to such tests as “Dictator-vs.-
quasirandom Tests”. As Håstad and others have demonstrated, Dictator-vs.-quasirandom
Tests can often be used to prove optimal inapproximability results for CSPs.
Definition 2.6.2. (Informal.) A Dictator-vs.-quasirandom Test has soundness at most s if
every quasirandom function is accepted with probability at most s + o(1).

Let us use the 3-CSP as an example. Suppose T is a 3-query Dictator-vs.-quasirandom
Test on functions f : {0,1}n → {0,1}. Imagine we consider all possible random choices of T ,
and in each case write down the (up to) 3 strings x, y, z queried and the predicate applied
to the outcomes to decide accept/reject. The complete behavior of T might then look like
the following:

with probability p1, accept iff f (x(1)) ∨ f (y(1)) ∨ f (z(1))
with probability p2, accept iff ¬ f (x(2)) ∨ f (y(2))
with probability p3, accept iff ¬ f (x(3)) ∨ ¬ f (y(3)) ∨ ¬ f (z(3))

∙ ∙ ∙

This is precisely an instance of Max-3CSP, in which the “variables” are the f (x)’s. Note
that the weights pi indeed sum up to 1. More generally, if T makes at most k queries it
can be viewed as an instance of Max-kCSP. Further, suppose that T “uses the predicate
set Φ” — i.e., its decision to accept/reject is always based on applying a predicate from the
set Φ to its query responses. Then T can be viewed as an instance of Max-Φ. The above
example illustrates a tester which uses the set of ORs of up to 3 literals; thus it can be
viewed as an instance of Max-3Sat.

Suppose that T is a Dictator Test with completeness at least c. Then the Opt of the
associated CSP is at least c; indeed, there are n distinct solutions, the dictators, of value
at least c. More crucially, suppose further that T is a Dictator-vs.-quasirandom Test
with soundness at most s. This means that any solution f satisfying slightly more than
weight s of the constraints must be slightly correlated with a junta on constant number of
coordinates; i.e., it must “highlight” a small number of dictators. These two properties of
the test, taken together, make it useful as a gadget in an NP-hardness-of-approximation
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reduction. Specifically, if T uses predicate set Φ, it can be used to prove hardness for the
Max-Φ problem. Indeed, in the study of inapproximability, one has the following “Rule of
Thumb”:

Rule of Thumb for CSPs For the Max-Φ problem, to prove that MAX Φ (c, s) is hard,
construct a Dictator-vs.-quasirandom Test using Φ, with completeness c and soundness s.
We call the pair (c, s) a dictator-vs.-quasirandom gap.

It is natural to ask among all the Dictator Test with completeness c, how small could
the soundness s be? .

Definition 2.6.3. We define the dictator-vs.-quasirandom gap curve by

GapTest(c)= inf{s : (c, s) is a dictator-vs.-quasirandom gap}.

2.6.2 Dictator Test for Learning

The dictator test is also very useful in the learning problems; it is of a somewhat different
form: we can only make one query on a Boolean function f (x1, ..xn); however, we can
assume that f is in some simple function classes that we want to prove hardness results
for. Another difference is that the dictator test in learning usually checks whether two
functions are “matching dictator” as we will explain further.

For the sake of exposition of the usage of a dictator test, let us sketch a proof for the
hardness of HS-MA (1−ε,1/2+ε).

Proposition 2.6.4. Assuming the UGC, the problem HS-MA (1−ε,1/2+ε) is NP-hard.

As is mentioned, the same hardness result (based on P 6= NP) has been established
in [53, 68]. However, the following construction is different from (and somewhat simpler
than) the other proofs; it helps to illustrate the relationship between hardness of learning
and Dictator Test.

Given an instance L of UNIQUE-GAMES, we will produce a set of labelled examples
such that the following holds: if L is almost satisfiable instance, then there is a halfspaces
that agrees with 1−ε fraction of the examples, while if L is a near unsatisfiable instance
then no halfspace has agreement more than 1

2 + ε. Clearly, a reduction of this nature
immediately implies Proposition 2.6.4.

Let L be an instance of UNIQUE-GAMES with an associated graph G = (U ,V ,E) and a
set of labels [k]. The examples we generate will have (|V |+ |U |)k coordinates, i.e., belong
to R(|U |+|V |)k. These coordinates are to be thought of as one block of k coordinates for every
vertex w ∈U ∪V . We will index the coordinates of x ∈R(|U |+|V |)k as x = (xi

w)w∈U∪V ,i∈[k].
Also for any halfspace function f :R(|U |+|V |)k, we use the notion of fw for the restriction

of f on some vertex w ∈U ∪V by setting or the coordinate xi
w′ = 0 when w′ 6= w. Similarly,

for a particular edge e, we denote fe for edge e ∈ E as f ’s restriction by setting all xi
w′ to be

0 for w′ ∉ e.
For every labelling l : U ∪V → [k] of the instance, there is a corresponding halfspace

41



over R(|V |+|U |)k given by,
sgn(

∑

u∈U
x(l(u))

u −
∑

v∈V
x(l(v))

v ).

The idea is to construct a distribution of examples properly such that if there is a
good labelling for the UNIQUE-GAMES, then the above corresponding halfspace has a good
agreement rate. On the contrary, if any halfspace with 1

2 + ε agreement somehow implies
a labelling of l satisfying a constant fraction of the edges in L .

Fix an edge e = (u,v). For the sake of exposition, let us assume πe is the identity
permutation for every i ∈ [k]. For each edge e, we require a set of examples De with the
following properties:

• All coordinates xi
w for a vertex v ∉ e are fixed to be zero.

• For any label i ∈ [k], sgn(xi
u − xi

v) has agreement 1−ε with the examples De.

• If f has agreement 1
2 + ε on the set of examples De, then there exists a labelling

strategy L f for each w ∈U ∪V solely based on fw such that, L f satisfies the edge e
with non-negligible probability.

As the distribution of De looks at the restriction of f on edge e which can be viewed
as a halfspace on R2k →R, we can rephrase above requirement as a pure property testing
problem. Given a degree halfspace function fe :R2k →R, we need a randomized procedure
of generating examples that has the following property:

The procedure must satisfy:
• (Completeness) If fe(x)= xi

u − xi
v then the test accepts with probability 1−ε.

• (Soundness) If the test accepts with probability 1
2+ε, then we can output a coordinate

of fu and a coordinate of fv such that they match each other with non-negligible
probability.

As we can see here, above test not only check whether function fu, fv is a dictator. In
addition it only accepts when they are dictator with matching coordinate.

We claim that following test will serve the goal:

Matching Dictator Test T1

Choose ε to be 1
log k and δ to be “extremely small”

1. Generate independent ε-biased bits a1,a2, . . . ,an ∈ {0,1} (i.e., ai = 1 with probability
ε and 0 with probability 1−ε).

2. Generate 2n independent unit Gaussian random variables:

h1, h2 . . . , hk, g1, g2 . . . , gk.

3. Generate a random bit b ∈ {−1,1}.
4. Set r = (a1h1 + g1, . . . ,akhk + gk, g1, . . . , gk) and u = (1,1,1, . . . ,1,0, . . . ,0) ∈R2k.
5. Set y= r+bδu.
6. Accept if sgn( fe(y))= b.

Suppose that fe(x)= θ+
∑k

i=1 wi
uxi

u +
∑k

i=1 wi
vxi

v. Also without loss of generality assume

that
∑k

i=1 wi
v = 1. Then we know fe(y) = fe(r)+ bδ. Essentially, the test checks below two
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inequalities with equal probability
• fe(r)≤ δ

• fe(r)≥−δ
Since at least one of the above two inequality will hold, the passing probability of fe is
1
2 +

1
2Pr( fe(r) ∈ (−δ,δ)).
As δ is extremely small, roughly we can think of the passing probability of fe to be

1
2 +

1
2Pr( f (r) = 0). On the completeness side, it is easy to check that for fe = xi

u − xi
v, f (r) =

aihi and Pr( f (r)= 0)= 1−ε. Overall, it passes the test with probability 1−ε.
On the soundness side as fe(r) =

∑
i(w

i
u + wi

v)gi +
∑

wi
uaihi, to make Pr( f (r) = 0) to

be non-negligible, we must have wi
u +wi

v = 0 for each i. Also there must be very “few”
nonzero wi

u as otherwise
∑

wi
uaihi will not vanish. Then a good labelling strategy would

be randomly output a coordinate with nonzero weights in fu and fv. As there are very few
such coordinates, we know with non-negligible probability, they will match.

Generally speaking following is the rule of thumb for proving hardness of learning
results

Rule of Thumb for Learning To prove F -H -MA (c, s) is hard, construct a one query
matching Dictator Test such that dictator functions in F pass with probability at least c
while non-dictator functions in H pass with probability s.
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Chapter 3

Mathematical Tools

45



In this Chapter, we summarize the mathematical tools that is used throughout the
thesis.

3.1 Probability Theory

3.1.1 Product Space

The usual way of defining a probability space is a triple: a sample space Ω, a σ-algebra,
and a probability measure P . In this thesis as we mostly study the probability space
of which Ω is a finite set (with the exception of the Gaussian distribution), we denote a
probability space by a pair (Ω,μ) where Ω is the sample space and μ : Ω → (0,1] is the
density function.
Definition 3.1.1. (finite probability space) Let Ω be a finite set of events {e1, ...eq}. We
denote (Ω,μ) to be a probability space where μ : Ω→ (0,1] is the probability measure on Ω

such that
∑q

i=1μ(eq)= 1. The minimum atom probability of Ω is defined to be mini∈[q]μ(ei).
Definition 3.1.2. (inner product) Given a finite probability space (Ω,μ) and |Ω| = q, we
know that the function space F = { f | f :Ω→R} is a q-dimensional vector space; we define
the inner product induced by the probability measure μ as follows: For any f , g :Ω→R,

< f , g >=Ee∼(Ω,μ)[ f (e) ∙ g(e)].

Definition 3.1.3. For all f :Ω→R, we define its p-norm as

‖ f ‖p = (Ee∼(Ω,μ)[| f (e)|p])1/p.

Definition 3.1.4. (Ensemble) Given a finite probability space (Ω,μ). Suppose that |Ω| = q.
We call the collection of functions (χ0, ...χq−1) an ensemble if χ0, ..χq−1 is an basis for F .
Further, we call an ensemble an orthogonal ensemble if the ensemble forms an orthogonal
basis and χ0 is the constant 1 function; i.e., χ0(e)= 1 for any e ∈Ω.

To characterize a finite probability spaces, we can either use (Ω,μ) or an orthogonal
ensemble (χ0 = 1, . . . ,χq−1) on it.

Next, we introduce the definition of the product of probability spaces:
Definition 3.1.5. (Product Space) For probability spaces (Ω1,μ1), (Ω2,μ2), . . . (Ωn,μn), we
define their product probability space (Ω,μ) =

∏n
i=1(Ωi,μi) as follows : the sample space

is Ω =
∏n

i=1Ωi = {(e1, ...en) | i ∈ [n], ei ∈ Ωi} and the probability measure μ on any event
(e1, ...en) ∈

∏n
i=1Ωi is defined to be

∏n
i=1μi(ei).

For simplicity we assume that each Ωi has the same cardinality q. Also for each
function space Fi = { f | f : Ωi → R}, we denote its orthogonal ensemble on it as {χi,0 =
1,χi,1, . . . ,χi,q−1}. By the fact from basic linear algebra, the function spaces on

F = { f |
n∏

i=1
Ωn

i →R}

has an orthogonal basis {χσ :
∏n

i=1Ωi → R | σ ∈ [q]n} with each χσ defined as follows: for
x ∈

∏n
i=1Ωi,

χσ(x)=
n∏

i=1
χi,σi (xi).
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Therefore any function f ∈F can be written as a linear combination of the basis:

f (x)=
∑

σ∈[q]n

f̂ (σ)χσ(x)

We call f̂ (σ) to be f ’s Fourier coefficients on σ, where σ ∈ [q]n are also referred as the
multidimensional index.

As each χi,0 is the constant 1 function, we can ignore them in the expression of χσ; i.e.,
write χ(σ) as

∏
σi 6=0χi,σi (xi). We therefore define the active elements for any σ ∈ [q]n to be

S(σ)= {i | σi 6= 0}.

For any σ ∈ [q]n, we define deg(χσ), the degree of the term χσ, to be the number of active
elements |S(σ)|.

As any function in F can be viewed as a multilinear1 polynomial on functions: {χi, j | i ∈
[n],1 ≤ j ≤ q}. The degree of a function is then defined by the maximum degree among all
of its term with nonzero Fourier coefficients.

Definition 3.1.6. (Degree) For function f =
∑

σ∈[q]n f̂ (σ)χσ(x), we define its degree as fol-
lows:

deg( f )=max{|deg(χσ) | f̂ (σ) 6= 0,σ ∈ [q]n.}

Following is a relationship between the Fourier representation and variance of a func-
tion:

Fact 3.1.7.
Var( f )=

∑

|S(σ)|≥1
f̂ (σ)2.

.

For any S ⊆ [n], if we take fS to be
∑

S(σ)=S f̂ (σ).and write f as the sum of fS, we get
the Efron-Stein Decomposition.

Theorem 3.1.8. (Efron-Stein Decomposition [45]) Let (Ω1,μ1), ..(Ωn,μn) be discrete prob-
ability spaces. Then for f :

∏n
i=1(Ωi,μi)→R: for S ⊆ [n], if we write f as

f (x)=
∑

fS(x),

we call above representation the Efron-Stein Decomposition of f . Such a decomposition has
the following properties:

• fS(x) depends only on variables in xS.
• For all S* S′ and aS′ ∈

∏
i∈S′Ωi, it holds that E[ fS(x)|xS′ = aS′]= 0.

3.1.2 Influence, Noise and Stability

Given a function f :
∏n

i=1Ω
i →R on a probability space (Ω,μ)=

∏
(Ωi,μn

i ), we can define its
influence on the i-th input as follows:

1By multlinear, we mean that the power of χi in each χσ is at most 1.
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Definition 3.1.9. (Influence) The influence of the i-th coordinate is defined to be

Infi =Ex1,...,xi−1,xi+1,...,xn[Varxi f (x)].

The influence of f on i-th coordinate is the average variance of f over the possible
configurations on the other coordinates.

The influence of a function can be represented in terms of the Fourier Coefficients:

Fact 3.1.10.

Infi( f )=
∑

i∈S(σ)
f̂ (σ)2.

We can also generalize above notion to define the low degree influence of a function as
follows:

Definition 3.1.11. For any integer d, Inf≤d
i ( f )=

∑
i∈S(σ),|S(σ)|≤d f̂ (σ)2.

The sum of all the low degree influence is bounded by d times of the variance.

Fact 3.1.12.
n∑

i=1
Inf≤d

i ( f )≤ d ∙Var( f ).

Next we define a important concept called Noise Operator.

Definition 3.1.13. For a probability space
∏n

i=1(Ωi,μi) and 0 ≤ ρ ≤ 1, we define the noise
operator Tρ on functions on f :Ω→R as follows:

Tρ f (x)=E[ f (x′)],

where x′ has the following distribution: independently each x′
i is set to be xi with probability

ρ and sampled from (Ωi,μi) with probability 1−ρ. Also we define the noise stability

Sρ =Ex,x′[ f (x) f (x′)]=Ex[ f (x)Tρ f (x)]

We have the following facts.

Proposition 3.1.14.

Tρ f =
∑

ρ|σ| f̂ (σ).

Proposition 3.1.15.

Sρ f =
∑

ρ|σ| f̂ (σ)2.

3.2 Advanced Probability Machineries

In the following, We introduce two tools in analyzing functions on product probability
spaces.
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3.2.1 Invariance Principle

The invariance principle [116] characterizes the asymptotic behaviour of low influence
functions over product distribution.

There are multiple versions of the invariance principle and we state the using noisy-
influences rather than low-degree influences (for an sketch of the proof, one can look
at [126]).
Theorem 3.2.1. For probability space (Ω,μ) = (

∏n
i=1Ωi,μi)n where each (Ωi,μi) has an

ensemble Xi = (χi,0, ...χi,q−1). Let Gi = (gi,0 = 1, ...gi,q−1) follows the multivariate Gaussian
distribution with their covariance matrix specified by the following "matching moments"
condition: for any i ∈ [n] and j1, j2 ∈ [q]

E[χi, j1χi, j2]=E[gi, j1 , gi, j2]. (3.1)

G1,G2, ...Gn are all independent with each other.
Also the minimum atom probability among all (Ω,μi) is at least α. Let f (X1, . . . ,Xn) be

a real-valued and assume that maxi InfiT1−ε f ≤ τ. Then for any function ψ(t) : R→R with
bounded 3-rd derivative |ψ′′′(t)| ≤ B,

∣
∣E[ψ(T1−ε f (X1, . . . ,Xn))]−E[ψ(T1−ε f (G1, . . . ,Gn))]

∣
∣≤ oτ,α,ε(1).

Here τ,ε,α,B are all constant independent of n.
Above invariance principle applies to functions defined on a single product probability

space; later in [115] (also see [43]), Mossel generalized above result to vector valued func-
tions and product of functions on correlated probability spaces. To state his results, first
let us define the correlation between two probability spaces.
Definition 3.2.2. Let (Ω×Θ;μ) be a finite probability space. Define the correlation between
Ω and Θ to be:

ρ(Ω,Θ;μ)= sup{Cov[ f , g] : f :Ω→R, g :Θ→R,Var[ f ]=Var[g]= 1}.

The conditional operator Uμ associated with μ is a mapping from function space { f | f :Θ→
R} to {g|g : Ω→ R} defined as follows: for f : Θ→ R and any x0 ∈Ω and random variable
pair x ∈Ω, y ∈Θ drawn from μ, Uμ f (x0)=Ey[ f (y)|x = x0].

We also define following quantity of the Gaussian Distribution.
Definition 3.2.3. Let Φ(x) be the CDF function of one dimension Gaussian Distribution.
g1 and g2 be bivariate Gaussian random variables with mean zero and covariance matrix[
1 ρ

ρ 1

]

.For ρ ∈ [−1,1], we define Γρ,Γρ : [0,1]2 → [0,1] by

Γρ(δ1,δ2)=Pr(g1 ≤Φ−1(δ1)∧ g2 ≤Φ−1(δ2));

Γρ(δ1,δ2)=Pr(g1 ≤Φ−1(δ1)∧ g2 ≥Φ−1(1−δ2)).

When δ1 = δ2 = δ, we simplify the above notations by Γρ(δ) and Γρ(δ).

Following theorem is a generalization of the invariance principle for functions on cor-
related probability spaces [115]:
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Theorem 3.2.4. Let {(Ωi ×Θi,μ)}n
i=1 be a collection of correlated probability spaces and

assuming that the ρ(Ωi,Θi,μi)≤ ρ0 for each i ∈ [n].The probability space (Ω×Θ,μ) is defined
to be

∏n
i=1(Ωi×θi,μi) and functions f :Ω→R and g :Θ→R has the property that that E[ f ]=

δ1 and E[g] = δ2. (Here the expectation is taken with respect to the marginal distribution
of μ1,μ2 on Ω and Θ). Assume the minimum atom probability among all (Ωi ×Θi,μi) for
i ∈ [n] is at least α. If f and g also satisfy the following influence property:

max
i

min(InfiT1−ε f , InfiT1−εg)≤ τ.

then we have that

Γρ0
(μ1,μ2)+ oτ,α,ε(1)≤E[ f ∙ g]≤Γρ0(δ1,δ2)+ oτ,α,ε(1)

3.2.2 Hypercontractivity

Hypercontractivity provides us another tool of analyzing functions defined on product of
probability spaces.
Definition 3.2.5. We say that a real random variable x is (p, q,η)-hypercontractive for
1≤ q ≤ p <∞ and 0< η< 1 if ‖‖‖x‖‖‖p <∞, and for all a ∈R, ‖‖‖a+ηx‖‖‖p ≤‖‖‖a+ x‖‖‖q.

For a discrete distribution, it is known to have the following hypercontractivity:
Theorem 3.2.6. Let (Ω,μ) be a finite probability space with minimum atom probability α.
Then every function f :Ω→R with E[ f ]= 0 is (2, p,ηp(α)) hypercontractive with

ηp(α)=

√
A1/p − A−1/p

A1/p′ − A−1/p′

where A = 1−α
α

and 1/p+1/p′ = 1.
As for continuous distributions, following hypercontractivity theorem is known for the

Gaussian Distribution:
Theorem 3.2.7. Let G be a one-dimensional Gaussian Distribution, the G is (2, q,1/

√
q−1)-

hypercontractive.
Now we state the hypercontractivity theorem for low degree polynomials on product

probability space
Theorem 3.2.8. If a probability space (Ω,μ) is (2, p,η) hypercontractive, then a Degree d
polynomial f :Ωn →R on probability space ((Ωn,μn) is (2, p,ηd) hypercontractive.

In addition, the following “hypercontractive inequality” [23, 62] is known for functions
applied with the noise operator.
Theorem 3.2.9. Suppose 0 ≤ ρ ≤ 1 and q ≥ 2 satisfy that ρ ≤ 1/

√
(q−1)/(p−1). Then for

all f : {−1,1}n →R and assume the distribution is uniformly random on {−1,1}n, then

‖Tρ f ‖q ≤ ‖ f ‖p.

For a large domain such as [q]n, the optimal bound was first proved by Diaconis and
Saloff-Coste [40]; the following uses their Theorems 3.5.ii and A.1 plus Hölder duality:
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Theorem 3.2.10. Let q ≥ 2, f : [q]n → R, and 0 ≤ ε < 1. Also assume the distribution is
uniform distribution on [q]n. Then

‖Tp
1−ε f ‖2 ≤ ‖ f ‖p, where p = p(q,ε)= 1+ (1−ε)(2−4/q)/ log(q−1).
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Part II

CSPs and SDP
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Chapter 4

Approximation Curve for Max Cut
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4.1 Introduction

The MAX CUT is a Boolean CSP with the “ 6=" constraints. It is also equivalent to the fol-
lowing graph problem. Given an undirected graph G = (V ,E), the Max Cut problem asks
for a partition of the vertices into two sets so as to maximize the number of edges connect-
ing the two sets. It is one of the classic NP-hard problems from Karp’s list of 21 [88] and
is arguably the simplest NP-hard problem. To cope with its NP-hardness and to under-
stand hard instances, there has been a variety of work on its approximation algorithms.
The greedy algorithm (or the random-assignment algorithm) is easily shown to have an
approximation ratio of 1

2 (see [129]). Goemans and Williamson [59] gave a SDP rounding
algorithm achieving a .878 approximation ratio.1 Since the early ’90s, there is a large
amount of interest in the SDP relaxation, in approximation algorithms, and in hardness
of approximation for MAX CUT [3, 4, 15, 30, 36, 37, 47, 48, 50, 59, 73, 86, 99, 102, 107, 142].
In this Chapter, we build on the results in many of these papers and determine an essen-
tially complete picture of the optimal approximation algorithms, SDP gaps, Dictator Tests,
and UGC-hardness for MAX CUT.

4.1.1 Definitions

We begin with the basic definitions. We generally work with edge-weighted, undirected
graphs G = (V ,E,w), where w : E → R≥0 gives the nonnegative edge weights. The issue of
self-loops turns out to be a nuisance; our policy will be to disallow them unless otherwise
specified. Without loss of generality, we will always assume the edge weights sum to 1;
i.e.,

∑
e∈E w(e)= 1. Thus we can think of the weights as giving a probability distribution on

edges; we will therefore omit w and think of E as a (symmetric) probability distribution
on edges, writing (u,v)∼ E to denote a draw from this distribution.
Definition 4.1.1. A (proper) cut in G is a partition of the vertices into two parts, h : V →
{−1,1}. The value of the cut is

valG(h)= Pr
(u,v)∼E

[h(u) 6= h(v)]= E
(u,v)∼E

[1
2 −

1
2 h(u)h(v)].

The MAX CUT problem is the following: Given G, find a proper cut h with as large a value
as possible.

In general, we prefer the second definition of value given above, since it generalizes to
fractional cuts:
Definition 4.1.2. A fractional cut in G is a function h : V → [−1,1]. The value of the
fractional cut is

valG(h)= E
(u,v)∼E

[1
2 −

1
2 h(u)h(v)].

Given a fractional cut h, we can randomly produce a proper cut h′ by setting each value
h′(v) to be 1 with probability 1

2 + 1
2 h(v) and −1 with probability 1

2 − 1
2 h(v), independently

1The SDP relaxation itself was given earlier by Delorme and Poljak [37], who noted it was polynomial-
time computable.
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across v’s. In this way, E[h′(v)] = h(v). It follows that E[valG(h′)] = valG(h) (although this
uses the fact that G has no self-loops). Hence there always exists a proper cut h′ with
value at least valh(G), and furthermore such a cut can easily be found deterministically
from h using the method of conditional expectations. For these reasons, we will henceforth
treat the MAX CUT problem as being about finding a fractional cut with as large a value
as possible, and we will refer to fractional cuts simply as ‘cuts’.
Definition 4.1.3. The optimum cut value, or MAX CUT, for G is denoted

Opt(G)= sup
h:V→[−1,1]

valG(h).

Note that the optimum is always at most 1 and at least 1
2 (since the fractional cut h ≡ 0

is always available).

4.1.2 SDP Gaps of MAX CUT

All of the best approximation guarantees for MAX CUT currently known are achieved by
algorithms using the SDP [37, 49, 59, 123]:
Definition 4.1.4. The (MAX CUT) SDP value of a graph G is

Sdp(G)= max
g:V→Bn

E
(u,v)∼E

[1
2 −

1
2 g(u) ∙ g(v)], (4.1)

where n = |V | and Bn denotes {x ∈Rn : ‖x‖ ≤ 1}. Note that Sdp(G)≥Opt(G), as g can always
be taken to map into [−1,1].

We should note that for graphs without self-loops, it is easy to see that the optimal
embedding maps all vertices to the boundary of the ball.

Recall the following definition of SDP gap for Max Cut. Note that as there is a trivial
way of finding a cut of value above 1

2 , we only consider (c, s)-gap for c ≥ s ≥ 1
2 .

Definition 4.1.5. For 1
2 ≤ s ≤ c ≤ 1, we call the pair (c, s) an SDP gap if there exists a graph

G with Sdp(G)≥ c and Opt(G)≤ s. We define the SDP gap curve by

GapSDP(c)= inf{s : (c, s) is an SDP gap}.

Triangle inequalities. One can also consider strengthening the SDP by adding the
‘triangle inequalities’: i.e., enforcing

g(v1) ∙ g(v2)− g(v2) ∙ g(v3)− g(v1) ∙ g(v3)≥−1,

g(v1) ∙ g(v2)+ g(v2) ∙ g(v3)+ g(v1) ∙ g(v3)≥−1,

for all v1,v2,v3 ∈V . All of our positive results (rounding algorithms) will hold without the
triangle inequalities, and we focus attention in this work almost exclusively on the basic
SDP (4.1). However, we will also show that all of our negative results (SDP gaps, algorith-
mic limitations) hold even with the triangle inequalities.

We analogously define the curve Gap4SDP for the SDP with the triangle inequalities.
Of course, we have Gap4SDP(c)≥GapSDP(c) for all c.
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4.1.3 RPR2 Algorithms

The GW-algorithm’s approximation curve is as follows:

ApxGW (c)≥

{
1
π

arccos(1−2c) if c ≥ .844,

.878c if c ≤ .844.

There has been serval improvements to achieve a better approximation curve (particu-
larly for c < 0.844). Generalizing the GW algorithm, Feige and Langberg [48] introduced
the ‘RPR2’ (Randomized Projection, Randomized Rounding) framework for rounding the
solutions of SDP relaxations:

Definition 4.1.6. An RPR2 algorithm for MAX CUT is defined by a rounding function,
r :R→ [−1,1]. Given a graph G, the steps of the algorithm are as follows:

1. Use SDP to find an optimal embedding g : V → Sn−1 for the SDP (4.1).

2. Choose a random vector Z ∈ Rn according to the n-dimensional Gaussian distribu-
tion.

3. Output the (fractional) cut h : V → [−1,1] defined by h(v)= r(g(v) ∙Z).

(Certain implementation details of the RPR2 method are discussed in Section 4.13.)

All of the known SDP algorithm for Max-Cut fall into the RPR2 framework. For
example, the GW algorithm is RPR2 with rounding function r(x) = sgn(x); the random-
assignment algorithm is RPR2 with rounding function r(x)≡ 0. Zwick’s algorithm [142] is
not obviously RPR2, but it is shown to be so by Feige and Langberg [48]. In that paper, the
authors suggest using ‘s-linear’ rounding functions: i.e., functions of the form r(t) = t/s if
−s ≤ t ≤ s, r(t) = 1 if t ≥ s, r(t) =−1 if t ≤−s. Charikar and Wirth’s analysis [30] for c = 1

2
indeed uses RPR2 with s-linear rounding functions.

We conclude the discussion of RPR2 algorithms by mentioning that, given an input
graph G, it can be advantageous to try several different rounding functions r. It is well
known (as discussed in Section 4.13) that given a collection R of rounding functions,
one can achieve the performance of the best of them with running time slowdown only
O(|R| log |R|). Indeed, Feige and Langberg even suggested the idea of trying ‘all’ possible
rounding functions, up to some ε-discretization. Whether or not this achieves the perfor-
mance of the ‘optimal’ rounding function up to an additive ε is a tricky issue which we
discuss further in section 4.2.2.

4.1.4 Dictator Tests of " 6="

For MAX CUT one needs a dictator test making only 2 queries and testing f (x) 6= f (y). The
rule of thumb is that giving a such a test with ‘completeness’ c and ‘soundness’ s may allow
one to derive a c vs. s inapproximability result. (We give concrete theorems along these
lines later in this section).

Let us briefly recall some of the relevant definitions:
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Definition 4.1.7. A 2-query, 6=-based Dictator Test for functions f : {−1,1}n → {−1,1} is
a randomized procedure for choosing two strings x, y ∈ {−1,1}n. We think of the test as
querying f (x) and f (y), and then accepting when f (x) 6= f (y), and rejecting otherwise.
Definition 4.1.8. The completeness of a Dictator test T for n-bit functions is

Completeness(T)=min
i∈[n]

{Pr[T accepts χi]},

where χi : {−1,1}n → {−1,1} is the ith ‘Dictator’ function, χi(x)= xi.
As for the soundness, we defer the formal explanation to section 4.7; for now, suffice it

to say we make a definition along the following lines:
Definition 4.1.9. (informal) The soundness of a Dictator Test T for functions f : {−1,1}n →
[−1,1] is

Soundness(T)=max{Pr[T accepts f ] : f is ‘quasirandom’}.

In addition to the unspecified notion ‘quasirandom’, the reader will notice that we have
generalized to testing functions whose range is [−1,1] rather than {−1,1}. The reason for
doing this is that all the applications we present require this generalized setting. The dis-
tinction is similar to the one between proper and fractional cuts. Again, formal definitions
appear in Section 4.7.

Definition 4.1.10. (informal) We call the pair (c, s) a dictator-vs.-quasirandom gap if for
all η > 0, for sufficiently large n there is a dictator-vs.-quasirandom test T (n) for functions
f : {−1,1}n → [−1,1] with Completeness(T(n))≥ c and Soundness(T(n))≤ s+η. We define the
dictator-vs.-quasirandom gap curve by

GapTest(c)= inf{s : (c, s) is a dictator-vs.-quasirandom gap}.

As mentioned, our interest in dictator-vs.-quasirandom tests comes from their applica-
tion to algorithmic hardness results. We give three such applications here. The first is the
original application, implicitly proved in [99]:
Theorem 4.1.11 ([99]). Suppose (c, s) is a dictator-vs.-quasirandom gap, and η> 0. Then
the UGC (UGC) implies that it is NP-hard to distinguish MAX CUT instances with value
at least c−η from instances with value at most s+η. I.e., assuming the UGC and P 6= NP
we essentially have ApxA(c)≤GapTest(c) for all efficient algorithms A and all c.

(The ‘essentially’ here refers to the fact that we really only have ApxA(c−η)≤GapTest(c)
for all η > 0. Ultimately we will show that GapTest is continuous, so this distinction is ir-
relevant.)

4.1.5 Motivation and Discussion

In this section we discuss the motivation and merits of deciding the optimal approxima-
bility curve of MAX CUT for every values of c.

First, MAX CUT is a fundamental algorithmic problem; indeed, it is arguably the sim-
plest NP optimization problem. For the reasons discussed in section 4.1.1, we feel that
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understanding its approximability for the entire range of c is important. We are hardly
alone in this regard; for example, in 2001 Feige and Langberg [48] wrote that they were
“trying to extend the techniques of [50] in order to prove [that RPR2 algorithms can match
the SDP gap curve for values of c < .844]”. Besides the algorithmic work on the MAX CUT

curve we’ve already described [30, 48, 59, 142], there has also been a great deal of work
recently on the very related problem of the Max-2Lin [1, 2, 8, 17, 77]. For example the
Grothendieck/Quadratic Programming results of [1, 2, 30] are nothing more than analysis
of the Max-2Lin approximability curve at 1

2 + ε — with the underlying graph structure
fixed to be bipartite, in the Grothendieck case. Further, analyzing the MAX CUT/Max-
2Lin approximability curves at 1−ε for subconstant ε is very strongly related to analyzing
Sparsest-Cut approximability.

Further, the fundamental nature of the MAX CUT problem makes our inability to un-
derstand its computational complexity all the more galling. Recall that every value of c
for which we don’t know the largest efficiently achievable value of ApxA(c) yields a ba-
sic, natural problem not known to be in P and not known to be NP-hard: e.g., “Given a
graph with a cut of size 60%, find a cut of size 55%”. Without the UGC, it seems we have
no idea how to prove sharp inapproximability results, although in this work we did the
best we could by ruling out RPR2 algorithms from achieving Apx(c) > S(c). Assuming the
UGC, though, the present work completely closes the MAX CUT problem. Even if one does
not believe the UGC, there are several takeaways: First, we’ve shown that the UGC can-
not be disproved by giving good MAX CUT SDP rounding algorithms, for any value of c.
Second, our work gives an improved approximation algorithm inspired by UGC/dictator-
vs.-quasirandom test considerations.

Finally, we hope that the methods developed— specifically, the use of Hermite anal-
ysis, von Neumann’s Minimax Theorem, Borell’s rearrangement inequality [24], and the
Karush-Kuhn-Tucker conditions — can be used to make progress on understanding SDP
gaps and approximability of other fundamental problems. Specifically, we believe our
methods should be useful for attacking Max-2Sat and other 2-CSPs (some indication of
this is given already in the recent work of Austrin [13, 14]), 3-CSPs, and perhaps even for
determining the Grothendieck constant [63].

4.1.6 Statement of Main Results

Our first result, from which the remaining results derive, is a complete determination of
the SDP gap curve. We introduce an explicit function S : [ 1

2 ,1] → [1
2 ,1], and show that

GapSDP(c) = S(c) for all c. In particular, the proof of the lower bound, GapSDP(c) ≥ S(c),
is achieved via a poly(n)-time RPR2 algorithm. Thus we have an efficient algorithm for
MAX CUT which has optimal SDP-approximation curve. The fact that an RPR2 algorithm
achieves the SDP gap confirms a conjecture suggested by Feige and Langberg [48].

Next, we show how to transform the SDP results into dictator-vs.-quasirandom testing
results. Specifically, we are able to show that the dictator-vs.-quasirandom gap curve is
identical to the SDP gap curve; i.e, GapTest(c) = S(c) for all c ∈ [1

2 ,1]. This result gives us
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optimal dictator-vs.-quasirandom tests. In addition:
• The SDP gap curve with triangle inequalities, Gap4SDP, is also identical to the curve

S.

• If A is any RPR2 algorithm then ApxA(c) ≤ S(c) for all c, even assuming both of
the following: (i) A uses the SDP with triangle inequalities; (ii) A is not required to
choose Z to be a random n-dimensional Gaussian, but rather is allowed to determin-
istically select the best Z satisfying ‖Z‖ =Θ(

p
n). (Contrast this with the fact that

in graphs exhibiting the c vs. S(c) SDP gap, our RPR2 algorithm actually finds an
essentially optimal cut.)

• If A is any polynomial-time algorithm then ApxA(c)≤ S(c) for all c, assuming P 6=NP
and the UGC.

4.1.7 The Critical Curve, S

At this point the reader might wish to know the identity of this critical curve S(c). Unfor-
tunately, there is no ‘nice’ formula for it. Rather, it is defined as follows:

S(c) = inf
(1,ρ0)-distributions P

with mean 1−2c

sup
r:R→[−1,1]

increasing, odd

valGP (r). (4.2)

Not all of the expressions above have even been defined yet — in particular ‘(1,ρ0)-distribution’
(a certain simple kind of probability distribution on [−1,1]) and ‘GP ’ (a certain infinite
graph). Further, on the face of it this definition does not look very ‘explicit’, especially
since the inf and sup are both over infinite sets. Nevertheless, in section 4.5 we prove the
following:

Theorem 4.1.12. There is an algorithm that, on input c ∈ [1
2 ,1] and ε > 0, runs in time

poly(1/ε) and computes S(c) to within ±ε.

We believe this justifies our claim that S is ‘explicitly given’. A brief discussion of this
point appears in section 4.6.1.

In fact, as we will describe in the next section, significant portions of S(c) can be de-
scribed or estimated more simply. For c ≥ .844, S(c) agrees with the Goemans-Williamson
SDP-approximation curve, 1

π
arccos(1−2c). For c = 1

2 +ε, S(c)≈ 1
2 +

1
2 ∙ε/ ln(1/ε) up to lower-

order terms (this is proved in Section 4.14, tightening the asymptotics of [30, 102]). A plot
of S(c) versus c appears in Section 4.15.

4.1.8 Prior Work

Surveying the entirety of the previous work on approximation algorithms, SDP gaps, and
hardness results for MAX CUT would take several pages, so we restrict ourselves to briefly
summarizing the best results known prior to this work.

SDP and Dictator Testing gaps. Combining prior work of many authors yields the
following:
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1. For c ≥ .844: GapSDP(c)=Gap4SDP(c)=GapTest(c)= 1
π

arccos(1−2c).

2. For c = 1
2+ε: GapSDP(c), Gap4SDP(c), and GapTest(c) all have asymptotics 1

2+Θ(ε/ ln(1/ε)).

As can be seen, this already pins down substantial portions of these curves fairly well. In
the next section we will argue the merits of pinning them down precisely.

The lower bound GapSDP(c)≥ 1
π

arccos(1−2c) for c ≥ .844 is, as mentioned, due to Goe-
mans and Williamson [59], using RPR2 with the rounding function sgn. The matching
upper bound is due to Feige and Schechtman [50], using infinite graphs with vertex set
Sn−1 and edge set connecting all vectors with inner product at most 1 − 2c. The lower
bound GapSDP(c) ≥ 1

2 +Ω(ε/ ln(1/ε)) is due to Charikar and Wirth [30], using RPR2 with
s-linear rounding functions, as suggested by Feige and Langberg [48]. The upper bound
GapSDP(c) ≤ 1

2 +O(ε/ ln(1/ε)) is due to Khot and O’Donnell [102], using mixtures of corre-
lated Gaussian graphs (described in section 4.2.2). As mentioned, we tighten the asymp-
totics of the previous two results in Section 4.14. Finally, Feige and Langberg showed
some additional numerical lower bounds for GapSDP(c), via RPR2 with s-linear rounding
functions; e.g., GapSDP(.6)≥ .5477.

The upper bound GapTest(c) ≤ 1
π

arccos(1−2c) actually holds for all c ∈ [1
2 ,1]; this was

conjectured by Khot, Kindler, Mossel, and O’Donnell [99] and proved by Mossel, O’Donnell,
and Oleszkiewicz [116]. The ‘noise sensitivity’ test from [99] involves choosing x ∈ {−1,1}n

uniformly at random and choosing y by flipping each coordinate of x with probability
c. (As we will discuss in section 4.10, this construction is quite similar to one intro-
duced by Karloff [86] and analyzed further in [3, 4].) The upper bound GapTest(

1
2 + ε) ≤

1
2 +O(ε/ ln(1/ε)) was proved by Khot and O’Donnell [102], by mixing together two tests of
the type in [99]. The remaining parts of the above statements implicitly follow from Khot
and Vishnoi [107]. Interestingly, although proving lower bounds for GapTest(c) is a very
natural problem from the point of view of Property Testing, it doesn’t seem to have been
explicitly been considered in the literature. Indeed, using the Khot-Vishnoi result is a
very circuitous way to prove Dictator Testing lower bounds. We discuss this point further
in section 4.9.

Algorithmic hardness. Early results on algorithmic hardness involved showing up-
per bounds on the approximation curve of specific algorithms. In particular, work of
Karloff [86], Alon and Sudakov [3], and Alon, Sudakov, and Zwick [4] showed that for
the GW algorithm, ApxGW (c)≤ 1

π
arccos(1−2c), where ApxGW (c) denotes the expected per-

formance, over Z, of the GW algorithm. Further, this result holds even if one adds all
‘valid’ constraints to the SDP. As we describe in section 4.10, these results can be seen as
very weak forms of dictator-vs.-quasirandom tests. Feige and Schechtman [50] extended
these results to the case where the algorithm can pick any halfspace cut (although only
under the triangle inequalities, not any valid constraints). Assuming the UGC, [99]’s The-
orem 4.1.11 implies NP-hardness of achieving approximation curve exceeding GapTest(c).
The best unconditional NP-hardness result is much weaker: Håstad [76] together with
Trevisan, Sorkin, Sudan, and Williamson [138] showed that achieving Apx( 17

21)> 16
21 is NP-

hard; it is easy to translate this into hardness of Apx( 1
2+ε)> 1

2+
11
13ε for ε≤ 13

42 and hardness
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of Apx(1−ε)> 1− 5
4ε for ε≤ 4

21 .

4.1.9 Comparison with Raghavendra’s Result

In an independent powerful work obtained by Raghavendra [125], he established a equiv-
alent relationship (with o(1) slack) between GapSDP(c) and the optimal approximation
Algoptimal(c) as weell as GapTest(c) for almost every CSP with bounded arity. In addition,
he also gave an algorithm of calculating the GapSDP with running time exp(exp(Ω(1/ε)))
and an optimal SDP rounding algorithm (assuming UGC) with running time poly(n) ∙
exp(exp(Ω(1/ε))) (also see [127]). Compared with [125], one main advantage of our work
on the problem of MAX CUT is that we have a much better running time on SDP rounding
and SDP gap calculation. This allows us to explicitly determine the actually value of the
SDP gap as well as the optimal approximation curve for the Max Cut problem. In addition,
our work has a concrete construction of the worst SDP gap instance is: it is certain (1,ρ0)
Gassuian Mixture graph, which will be defined later.

4.2 Proof Overview

In this section we describe the ideas and intuition underlying the determination of GapSDP.
By the end of the section we will also have defined all the terms necessary for the defini-
tion (4.2) of the curve S(c).

4.2.1 Embedded Graphs

The first idea is to slightly shift the way one looks at SDP gaps for MAX CUT. Usually
one thinks of first finding a graph G, then showing Sdp(G) is large and Opt(G) is small.
But suppose one determines that Sdp(G) is large for some graph G; then one may as well
identify G with its optimal SDP embedding on the sphere.
Definition 4.2.1. An (n-dimensional) embedded graph G is one whose vertex set V is a
subset of Sn−1. For embedded graphs, we explicitly allow self-loops.2 The ρ-distribution of
the embedded graph, denoted P = P(G), is the discrete probability distribution on [−1,1]
given by the distribution of u ∙ v when (u,v) ∼ E. We define the spread of G (which we also
call the spread of P) to be

Spread(G)=Spread(P)= E
ρ∼P

[1
2 −

1
2ρ] ∈ [0,1].

Thinking about embedded graphs leads to some important observations. The first is
that we can symmetrize any SDP gap instance. Specifically, let G be an embedded graph
with Spread(G) = c and Opt(G) ≤ s. Suppose O is any rotation of space; then it is clear
that the rotated embedded graph OG also satisfies Spread(OG)= c and Opt(OG)≤ s, and is
thus an equally good gap instance. Further, if one takes a mixture H =λG+(1−λ)G′ of any
two embedded graphs G and G′ with Spread(G) = Spread(G′) = c and Opt(G),Opt(G′) ≤ s,

2Although we disallow self-loops in MAX CUT inputs, we allow them in embedded graphs. One reason for
this is that there is no guarantee that every optimal SDP embedding g : V → Sn−1 is injective.
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then Spread(H) is again c, and also Opt(H) ≤ s by a simple averaging argument. Hence
we can average an SDP gap instance G over all rotations of space, and preserve the gap.
When we do this we get an ‘infinite embedded graph’ whose vertex set is all of Sn−1 and
whose edge distribution is ‘symmetric’, in the sense that the density on the pair (u,v)
depends only on the inner product u ∙ v. In fact, the ‘ρ-distribution’ of the symmetrized
graph is precisely the original ρ-distribution P(G).
Definition 4.2.2. Let P denote any discrete probability distribution on [−1,1]. We define
the d-dimensional symmetric embedded graph S (d)

P to be the embedded graph with vertex

set Sd−1 and edge distribution over Sd−1 ×Sd−1 given by drawing a random pair of unit
vectors with inner product ρ, where ρ itself is drawn from P.

Thus we have reduced the search for graphs with large SDP gap to the search for ρ-
distributions P such that Spread(P)= c (i.e., the mean of P is 1−2c) but Opt(S (d)

P ) is small.
Indeed, Feige and Schechtman’s SDP gap instance [50] is precisely of this form; roughly
speaking, they take P to be the distribution with all of its mass concentrated on 1−2c.

Unfortunately, analyzing Opt(S (d)
P ) is not so easy; we will come back to the problem

later. For now let us move to the algorithmic side of things. We have seen that we can
reduce the problem of finding large SDP gaps to studying symmetric embedded graphs.
Can we similarly reduce the problem of finding large cuts in arbitrary graphs to studying
symmetric embedded graphs? The observation here is that, in some sense, this is just what
the RPR2 algorithm is doing. Consider the steps of the algorithm from Definition 4.1.6.
RPR2 algorithms do not use the fact that the SDP solution they operate on is optimal;
hence we can mentally dispense with Step 1 (SDP) and view RPR2 algorithms as simply
taking an embedded graph G as input and trying to find a large cut in it. Next, recalling
that the d-dimensional Gaussian distribution is spherically symmetric, we see that the
RPR2 algorithm can, at a rough level, be thought of as: (i) implicitly constructing the
symmetrized version of G; and then, (ii) outputting the ‘one-dimensional’ fractional cut r.
We will make this idea more precise in the next section. For now, we note that if RPR2

algorithms are to achieve the SDP gap, it must in some sense be the case that optimal cuts
in symmetric embedded graphs S (d)

P are ‘one-dimensional’. The key to our determination
of GapSDP(c) is showing that this statement is sufficiently true.

4.2.2 Gaussian Mixture Graphs

By now our analysis is heavily dependent on understanding Opt(S (d)
P ), where P is a dis-

tribution with mean 1−2c. I.e., we want to determine

sup
h:Sd−1→[−1,1]

E
ρ∼P

E
(u,v)∼Sd−1×Sd−1

with ‹u,v› = ρ

[1
2 −

1
2 h(u) ∙h(v)].

This is somewhat complicated by the fact the distribution on vertices — i.e., the uniform
distribution on the surface of the sphere — is not a product distribution, and depends in
a nontrivial way on the dimension d. It is possible to at once avoid this difficulty and hew
much more closely to the RPR2 framework by replacing the uniform distribution on Sd−1

by the d-dimensional Gaussian distribution.
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Definition 4.2.3. Let P denote any discrete probability distribution on [−1,1]. We define
the d-dimensional Gaussian mixture graph G (d)

P to be the probability measure on Rd ×Rd

given by drawing a pair of ‘ρ-correlated d-dimensional Gaussians’, where ρ itself is drawn
from P. In the case d = 1, we simply write GP. By ρ-correlated d-dimensional Gaussians we
mean a pair (x, y), where x is a standard d-dimensional Gaussian and y∼ ρx+

√
1−ρ2Z,

with Z being another d-dimensional Gaussian independent of x. Note that this distribution
is symmetric in x and y.

Gaussian mixture graphs, with P concentrated on 1 and −1
2 , were introduced in [102]

to show SDP gaps for c near 1
2 .

Regarding the effect of switching from S (d)
P to G (d)

P , recall that the Gaussian distri-
bution in a high dimension d is very similar to the uniform distribution on the sphere of
radius

p
d. Using this fact, it is not too hard to show that when Spread(P) = c we have

Sdp(G (d)
P ) ≥ c− od(1), via the embedding x 7→ x/‖x‖. Thus we can equally well search for

SDP gaps based on Gaussian mixture graphs. As for algorithms, the RPR2 framework
now has a very simple interpretation: Given an embedded graph G with ρ-distribution P,
the RPR2 algorithm implicitly converts it to GP and cuts it with the rounding function r.
More specifically, the expected value of the cut produced by RPR2 on graph G is:

AlgRPR2(G) = E
Z

[

E
(u,v)∼E

[1
2 −

1
2 r(u ∙Z)r(v ∙Z)]

]

= E
ρ∼P(G)

E
(x,y) ρ-corr’d

1-dim Gaussians

[1
2 −

1
2 r(x)r(y)] = val

G (1)
P

(r). (4.3)

The reader can now see that given G, an RPR2 algorithm should strive to take r to be
the optimal cut r :R→ [−1,1] for GP (i.e., G (1)

P ). This leads us to two questions:

1. Can we algorithmically determine an r which gives a near-optimal cut for GP?

2. Whether or not we can, would this be enough to match the SDP gap? In other words,
is it true that for all ρ-distributions P with spread c ∈ [1

2 ,1],

Opt(GP ) ≥ inf
P ′ with mean 1−2c

Opt(G (d)
P ′ )? (4.4)

Here the left-hand side represents what we hope to achieve algorithmically with RPR2,
and the right-hand side represents the upper-bound on GapSDP(c) we can achieve using
Gaussian mixture graphs.

Question 2 above is the heart of the matter; we describe its affirmative answer in the
next section. For now, let us discuss Question 1. Although analytically we don’t know
the optimal cut for GP , there is a feeling that one could algorithmically find an r coming
within ε of the optimum by using the Feige-Langberg idea of trying ‘all’ possible r, suitably
discretized. Indeed, Feige and Langberg wrote that if one only considers ‘well-behaved’
rounding functions r (suggesting piecewise differentiable functions with bounded deriva-
tives) then one can construct a collection of 2poly(1/ε) many discretized rounding functions
such that one of them achieves a cut in GP that is within ε of that achieved by the best
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well-behaved rounding function.

Unfortunately, there is no guarantee that the optimal cut for GP is is ‘well-behaved’.
Even if it were guaranteed to be piecewise differentiable, we have no way of proving that
its derivatives don’t depend on ‘n’; i.e., the number of points in P ’s support. Thus we do not
know of any way of efficiently (in n) discretizing the search space for the optimal rounding
function of a given GP . But luckily, in the next section we will see that for the ‘worst’ P,
there is a relatively well-behaved optimal cut r; specifically, there is an increasing optimal
cut. The fact that increasing functions are O(1/ε)-Lipschitz except on a set of measure ε

means it will be sufficient to discretize the set of rounding functions r in a way depending
only on ε and not on n. Indeed, our actual algorithm for finding cuts of size at least S(c)−ε

in graphs G with Sdp(G)≥ c is:

Algorithm 4.2.4. Perform the RPR2 algorithm, trying out all 2Õ(1/ε2) possible ‘ε-discretized’
rounding functions r.

The definition of ‘ε-discretized’ is given in section 4.4. A discussion of the running time,
poly(|V |) ∙2Õ(1/ε2), appears in section 4.6.2.

4.2.3 Hermite Analysis, Minimax, and Borell’s Gaussian Rearrange-
ment

We now come to the main conceptual part of the determination of GapSDP, namely prov-
ing (4.4). Suppose we could show that for every P ′, there was an optimal cut f for G (d)

P ′

that was ‘one-dimensional’ — i.e., of the form f (x) = r(u ∙ x), where r : R→ [−1,1] and u is
any unit vector. It’s easy to see that the value of f in G (d)

P ′ is just valGP′ (r); hence we would

show Opt(G (d)
P ′ ) = Opt(GP ′), proving (4.4). Unfortunately, we do not know whether this is

the case. What we will show, though, is that when P ′ is the ‘worst’ distribution, G (d)
P ′ has

an optimal one-dimensional (and increasing, as promised) cut.

To start, we take advantage of our switch to Gaussian graphs; this allows us to express
the value of cuts f : Rd → [−1,1] using ‘Hermite analysis’ (akin to Fourier analysis over
{−1,1}n). Specifically, given a cut f one has

val
G (d)

P
( f )= 1

2 −
1
2 E
ρ∼P

[
∑

S∈Nd

f̂ (S)2ρ|S|

]

, (4.5)

where each f̂ (S) ∈R is a ‘Hermite coefficient’, and |S| denotes
∑d

i=1 Si. Using this formula
one can easily show that any optimal cut f may as well be odd; i.e., satisfy f (−x)=− f (x).
Further, when f is odd, the sum in (4.5) can be restricted to only be over S’s such that |S|
is odd.

We now make the following observation: For fixed odd f , the expression S f (ρ) :=
∑

|S| odd f̂ (S)2ρ|S| is a polynomial in ρ (power series, actually) with nonnegative coefficients
and only odd powers. This means that it is convex for ρ ≥ 0 and concave for ρ ≤ 0. Now sup-
pose we keep f fixed but vary the ρ-distribution P, subject only to it having mean 1−2c.
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Using formula (4.5), one sees that we can make val
G (d)

P
( f ) as low as the value of the con-

vex lower envelope of 1
2 −

1
2S f (ρ) at 1−2c. Further, by the convexity/concavity described,

one achieves this by concentrating all of P ’s probability mass on at most two points: some
negative number ρ0, and possibly also 1.

Definition 4.2.5. We call a discrete probability distribution P on [−1,1] a (1,ρ0)-distribution
if P puts positive probability on some −1 ≤ ρ0 ≤ 0, nonnegative probability on 1, and zero
probability on all other values in [−1,1].

These considerations suggest that the Gaussian mixture graphs with lowest MAX CUT

are those based on (1,ρ0)-distributions. This doesn’t constitute a proof, though, because
we fixed the cut and the graph in the wrong order: we are supposed to fix the distribu-
tion P first and then choose the optimal cut. Ultimately, though, we prove that (1,ρ0)-
distributions are the worst case for Gaussian mixture graphs by using the von Neumann
Minimax Theorem: we can reverse the order of fixing the distribution and the cut if we
allow the ‘cut Player’ to choose a distribution on cuts. Fortunately, the convex combination
of S f (ρ) polynomials has the same convexity/concavity properties as a single one, so the
previous argument goes through. Unfortunately, one also has to overcome some rather
severe discretization/compactness complications to use the von Neumann Theorem in this
infinitary setting.

At this point we essentially have that the Gaussian mixture graphs with smallest MAX

CUT are those based on (1,ρ0)-distributions. Finally, we are able to deduce that in such
graphs there are optimal, one-dimensional, increasing cuts through the use of Borell’s re-
arrangement inequality for Gaussian space [24]. Borell’s theorem implies that for ρ ∈ [0,1],
the quantity S f (ρ) can only increase if one ‘rearranges’ f ’s values into an increasing, one-

dimensional function. If G =G (d)
P is a Gaussian mixture graph with P a (1,ρ0)-distribution,

then formula (4.5) tells us that valG( f ) is (up to an additive 1
2) a negative linear combina-

tion of S f (1) and S f (ρ0). It turns out that S f (1) is just E[ f 2], which doesn’t change under
rearrangement, and when f is odd S f (ρ0)=−S f (−ρ0); hence Borell implies that this quan-
tity decreases under rearrangement. This proves that indeed there is a one-dimensional
and increasing optimal cut.

Thus we establish that (4.4) holds and that the right-hand side in that inequality is
precisely S(c).

4.2.4 Organizations of the Remaining Proof

Above is just a high level overview of the proof. The missing part is organized as fol-
lows: The construction of optimal dictator-vs.-quasirandom tests from Gaussian mixture
graphs mimics the proof of the Majority Is Stablest theorem using the ‘Invariance Princi-
ple’ from [116]; the poly(1/ε)-time algorithm for computing S(c) within ε, promised in Theo-
rem 4.1.12, involves combining the Karush-Kuhn-Tucker conditions with Borell’s theorem;
and, the remaining work involves careful discretization arguments.
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4.3 GapSDP(c) ≤ S(c): Hermite Analysis and Borell’s Re-
arrangement

In this section we prove GapSDP(c) ≤ S(c); i.e., we show that for each c ∈ [1
2 ,1] and η > 0,

there exists a graph G exhibiting a large SDP gap: Sdp(G) ≥ c and Opt(G) ≤ S(c)+η. We
remind the reader here of the definition of S(c):

S(c) = inf
(1,ρ0)-distributions P

with mean 1−2c

sup
r:R→[−1,1]

increasing, odd

valGP (r).

4.3.1 SDP Gaps via Gaussian Mixture graphs

As described in sections 4.2.2 and 4.2.3, the graphs we use to exhibit SDP gaps will be
high-dimensional Gaussian mixture graphs based on (1,ρ0)-distributions. Since these are
infinite graphs, we will need to extend a number of our basic definitions, including ‘Sdp(G)’
and ‘Opt(G)’. The reader may object that these will not proper SDP gap examples because
the graphs are infinite and also have self-loops (one might even object that the graphs are
weighted). However in Section 4.12 we show that these issues can be circumvented:
Proposition 4.3.1. Suppose G = G (d)

P is a Gaussian mixture graph with Sdp(G) ≥ c and
Opt(G) ≤ s. Then for any ε > 0, there is a finite, self-loopless, unweighted graph G ′ (with
n = (1/ε)O(d) vertices) with Sdp(G′)≥ c−ε and Opt(G′)≤ s+ε.

The proof of this proposition essentially only uses straightforward, already-known
ideas [8, 50, 102]. The reader should also note that arbitrarily small losses in c are also
immaterial, since we can show (essentially a priori) that GapSDP(c) is continuous:
Proposition 4.3.2. The function GapSDP is continuous on [1

2 ,1], and strictly increasing
from 1

2 to 1.
The proof of this proposition is in Section 4.11.

Extending the basic MAX CUT definitions to infinite graphs is quite straightforward;
see [102]. Here we will just treat the special case of Gaussian mixture graphs, which
require a little extra care due to the fact that they can have ‘self-loops’. To begin, we
define cuts and value as before: A (fractional) cut for G (d)

P is any measurable function

f :Rd → [−1,1], and

val
G (d)

P
( f )= E

ρ∼P
E

(x,y) ρ-corr’d
d-dim. Gaussians

[1
2 −

1
2 f (x) f (y)].

Since we allow ‘self-loops’ (i.e., P ’s with probability mass on 1), one should note that we
can’t necessarily find ‘proper’ cuts with value at least that of fractional cuts. We define
Opt(G (d)

P ) to be the supremum of the value over all fractional cuts.

Second, we define Sdp(G (d)
P ) essentially as in the SDP (4.1):

Sdp(G (d)
P )= sup

g:Rd→Bd

E
(u,v)

[ 1
2 −

1
2 g(u) ∙ g(v)].
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Some comments on this definition: Again, because of self-loops, it is not necessarily true
that the optimal embedding g maps into the surface of the ball Sd−1. As it happens,
though, we are only concerned with proving lower bounds on Sdp(G (d)

P ), and the embed-

dings we will use happen to map into Sd−1 anyway. Second, the most natural definition of
Sdp(G) for an ‘infinite graph’ G would allow embeddings into Bm and have an additional
sup over m ∈ N. But again, we will end up only considering embeddings Rd → Sd−1 for
G (d)

P , so we choose to make the above simpler definition.

Having made these definitions, the goal of this section is to prove the following two
theorems:

Theorem 4.3.3. Let G = G (d)
P be a d-dimensional Gaussian mixture graph, and let c =

Spread(P)=Eρ∼P [1
2 −

1
2ρ]. Then Sdp(G)≥ c−O(

√
log d/d), via the embedding g :Rd → Sd−1

mapping x to x/‖x‖.3

Theorem 4.3.4. Let G = G (d)
P be a d-dimensional Gaussian mixture graph for which P is

a (1,ρ0)-distribution. Then the optimal fractional cut for G is achieved by an increasing,
odd, ‘one-dimensional’ cut; i.e., a function s : Rd → [−1,1] of the form s(x) = r(x1), where
r :R→ [−1,1] is increasing and odd.

Theorem 4.3.3 is just a calculation; the heart of the matter is Theorem 4.3.4.

Before proving these theorems, let us see how together they imply GapSDP(c) ≤ S(c).
Let P be a (1,ρ0)-distribution achieving the inf in the definition of S(c) to within ε. Now
consider G =G (d)

P . By Theorem 4.3.3, Sdp(G) ≥ c−O(
√

log d/d). On the other hand, Theo-
rem 4.3.4 implies that

Opt(G)≤ sup
s:Rd→[−1,1]

one-dimensional, increasing, odd

valG(s).

But when s is one-dimensional, s(x)= r(x1), it’s immediate from the definitions that valG(s)=
val

G (1)
P

(r). Thus we have Opt(G)≤ S(c)+ε.

Having determined this Gaussian mixture graph G with Sdp(G)≥ c−O(
√

log d/d) and
Opt(G) ≤ S(c)+ ε, we are essentially done. Using Proposition 4.3.1 we can convert G to a
finite, self-loopless graph G′ with Sdp(G′) ≥ c−O(

√
log d/d) and Opt(G) ≤ S(c)+2ε; since

ε > 0 is arbitrary this proves that GapSDP(c−O(
√

log d/d)) ≤ S(c). Now by the continuity
of GapSDP (Proposition 4.3.2), we conclude that GapSDP(c)≤ S(c).

4.3.2 Proof of Theorem 4.3.3

Theorem 4.3.3 Let G = G (d)
P be a d-dimensional Gaussian mixture graph, and let c =

Spread(P)=Eρ∼P [1
2 −

1
2ρ]. Then Sdp(G)≥ c−O(

√
log d/d), via the embedding g :Rd → Sd−1

mapping x to x/‖x‖.

3 g(0) can be set arbitrarily.
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Proof. As stated, let g(x)= x/‖x‖, which maps Rd onto Sd−1. (The value of g(0) may be set
arbitrarily since the probability that one of G (d)

P ’s ‘edges’ involves 0 is 0.) We need to show:

E
ρ∼P

E
(x,y) ρ-corr’d

d-dim, Gaussians

[
1

2
−

1

2

x

‖x‖
∙

y

‖y‖

]

≥ E
ρ∼P

[1
2 −

1
2ρ]−O(

√
log d/d).

Clearly it suffices to prove the following:

for all ρ ∈ [−1,1], E
(x,y) ρ-corr’d

d-dim, Gaussians

[
x

‖x‖
∙

y

‖y‖

]

≤ ρ+O(
√

log d/d). (4.6)

This can be considered a standard probability result. Inside the expectation, in the nu-
merator, we have

x ∙ y=
n∑

i=1
xi yi,

and the summands xi yi are i.i.d. real-valued random variables. The expectation of xi yi is
ρ, and the variance and third absolute moment are bounded by absolute constants. Thus
the Berry-Esseen theorem implies that x ∙ y will be in the range ρd ±O(

√
d log d) except

with probability at most O(1/
p

d). In the denominator, it is well-known (and a similar
argument shows) that ‖x‖ and ‖y‖ will each be in the range

p
d±O(

√
log d) except with

probability at most O(1/
p

d). Hence except with probability at most O(1/
p

d) we have that

x

‖x‖
∙

y

‖y‖
≤

ρd+O(
√

d log d)

(
p

d−O(
√

log d))(
p

d−O(
√

log d))
≤ ρ+O(

√
log d/d).

Since x
‖x‖ ∙

y
‖y‖ is bounded above by 1 always, we gain at most O(1/

p
d) in the exceptional

cases, and conclude that (4.6) indeed holds.

4.3.3 Proof of Theorem 4.3.4

Before proceeding with the proof of Theorem 4.3.4 we record here the basic facts from
‘Hermite analysis’ we will use throughout this work.

The space of functions L2(Rd) under the Gaussian distribution has a countable or-
thonormal basis given by products of normalized Hermite polynomials. These products
are indexed by vectors S ∈ Nd; we use the notation |S| for

∑d
i=1 Si, which is also the de-

gree of the product polynomial HS. We can express any such function f via its ‘Hermite
expansion’,

f (x)=
∑

S∈Nd

f̂ (S)HS(x),

with convergence in L2-norm. We make frequent use of the following definition:
Definition 4.3.5. Given f ∈ L2(Rd) and ρ ∈ [−1,1], the noise stability of f at ρ is

Sρ( f )= E
(x,y) ρ-corr’d

d-dim. Gaussians

[ f (x) f (y)].
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(Note that we reversed the notational position of ρ and g in section 4.2.3 for clarity
of exposition.) The following basic facts about Hermite expansions are well known; it is
essentially the Fourier Analysis in Chapter 2 with (Ω,μ) taken to be the Gaussian Dis-
tribution (though the dimensionality is infinity now See, e.g., [102] and the references
therein.

Proposition 4.3.6.

1. Sρ( f )=
∑

S∈Nd ρ|S| f̂ (S)2.

2. S1( f )=
∑

S∈Nd f̂ (S)2 =E[ f 2].

3. If f is an odd function (i.e., f (−x)=− f (x)), then f̂ (S)= 0 unless |S| is odd.

4. If f is an odd function then S−ρ( f )=−Sρ( f ).

We also immediately deduce the following fact:

Proposition 4.3.7. Assume f is an odd function. Then as a function of ρ, Sρ( f ) is a power
series with nonnegative coefficients, odd powers of ρ only, and radius of convergence at least
1. In particular it is an odd function of ρ, strictly increasing on [−1,1], 0 at 0, concave on
[−1,0], and convex on [0,1].

We now proceed with the proof:

Theorem 4.3.4 Let G =G (d)
P be a d-dimensional Gaussian mixture graph for which P is

a (1,ρ0)-distribution. Then the optimal fractional cut for G is achieved by an increasing,
odd, ‘one-dimensional’ cut; i.e., a function s : Rd → [−1,1] of the form s(x) = r(x1), where
r :R→ [−1,1] is increasing and odd.

Proof. Suppose P has weight p on the point −1 ≤ ρ0 ≤ 0 and weight 1− p on the point 1.
Let ( f i) be a sequence of measurable fractional cuts, f i : Rd → [−1,1], for which valG( f i)↗
Opt(G). We have

valG( f i)= E
ρ∼P

E
(x,y) ρ-corr’d

d-dim. Gaussians

[1
2 −

1
2 f i(x) f i(y)]= 1

2 −
1
2 E
ρ∼P

[Sρ( f i)],

and hence

1−2valG( f i)= (1− p)S1( f i)+ pSρ0( f i). (4.7)

Consider now replacing f i by f odd
i , the function Rd → [−1,1] given by f odd

i (x) = ( f i(x)−

f i(−x))/2. It is well known that �f odd
i (S) equals f̂ i(S) for odd |S| and is 0 for even |S|.

Thus when we make this replacement, S1( f i) =
∑

S f̂ i(S)2 only decreases, and similarly
Sρ0( f i) =

∑
S f̂ i(S)2ρ

|S|
0 only decreases (using the fact that ρ0 ≤ 0). Thus (4.7) only de-

creases, and hence valG( f i) can only increase. Thus we may assume each f i is odd.

Given this assumption and using Proposition 4.3.6.4,

1−2valG( f i) = (4.7) = (1− p)E[ f 2
i ]− pS−ρ0( f i). (4.8)

71



We now appeal to the Gaussian rearrangement inequality of Borell [24], which implies
that for any function f i ∈ L2(Rd) and any nonnegative ρ,

Sρ( f i)≤Sρ( f ∗i );

here f ∗i is the Gaussian rearrangement of f i, an increasing, one-dimensional function.4

Suppose then we replace each f i by f ∗i . Since it holds that E[( f ∗i )2]=E[ f 2
i ], the first term

in (4.8) does not change. But −ρ0 is nonnegative, so we can use Borell’s result to conclude
that the second term S−ρ0( f i) only increases. Hence (4.8) only decreases under Gaussian
rearrangement and thus valG( f i) only increases. Thus we may replace all of the f i ’s by
their Gaussian rearrangements. Note that an odd function, when rearranged, is still odd.

We now have a sequence of one-dimensional, odd, increasing functions ri : R→ [−1,1],
with valG(ri) ↗ Opt(G) (we abuse notation here slightly instead of writing valG(si) where
si : Rd → [−1,1] is defined by si(x) = r(x1)). It is well known that using a Helly-type
proof we can pass to a subsequence that converges a.e. to an increasing, one-dimensional
function r, which must also be odd. Dominated convergence then implies that valG(r) =
Opt(G).

4.4 GapSDP(c)≥ S(c): Discretized RPR2 and Minimax

In this section we show that GapSDP(c) ≥ S(c). As described in section 4.2.2, the idea will
be to randomly find cuts in a given embedded graph by trying the RPR2 algorithm with
‘all’ increasing, odd rounding functions. Of course, we actually only try ‘all’ such functions
up to some discretization. Specifically:
Definition 4.4.1. Given ε> 0, let Iε denote the partition of R\{0} into intervals,

Iε = {±(−∞,−B],±(−B,−B+ε2],±(−B+ε2,−B+2ε2], . . . ,±(−2ε2,ε2],±(−ε2,ε2)},

where B = B(ε) is the smallest integer multiple of ε2 exceeding
p

2ln(1/ε). We say that a
function r :R→ [−1,1] is ε-discretized if the following hold:

• r is identically −1 on (−∞,−B], 0 at 0, and identically 1 on [B,∞).
• r’s values on the finite intervals in Iε are from the set εZ∩ (−1,1).
Note that the number of different ε-discretized r’s is 2Õ(1/ε2).

The main theorem we prove in this section is the following:
Theorem 4.4.2. There is a universal constant5 K <∞ such that for all c ∈ [1

2 ,1],

inf
discrete dists P on [−1,1]

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r) (4.9)

4Borell only proves this for f i Lipschitz and nonnegative, but both conditions are inessential; the first
can be removed by standard approximation arguments and the second simply by adding a sufficiently large
constant. Alternatively, one can use the alternate proof of Borell’s theorem due to Beckner [18].

5In future results in this section, different K ’s may have different values; however they never depend on
c or ε.
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is within ±Kε of

S(c) = inf
(1,ρ0)-distributions P

with mean 1−2c

sup
r:R→[−1,1]

increasing, odd

valGP (r).

Aside from discretization issues, the main idea here is using Hermite analysis and the
von Neumann Minimax Theorem to show that ‘worst’ ρ-distribution is a (1,ρ0)-distribution.
Incidentally, the discretization issues are not just necessary because we want a finitary al-
gorithm; in fact, discretization is also necessary for the employ of the Minimax Theorem
(which also requires a finitary setting, or at least some kind of continuity and compact-
ness).

Let us explain how we can use Theorem 4.4.2 algorithmically:

Theorem 4.4.3. Let G be any (discrete) embedded graph with spread c. If we run Algo-
rithm 4.2.4 on G, trying RPR2 on G with all possible increasing, odd ε-discretized rounding
functions r, then at least one will achieve, in expectation, a cut of value at least S (c)−O(ε).
In particular, there exists a cut in G with value at least S(c).

Proof. Given any r, the observation (4.3) from Section 4.2.2 implies that AlgRPR2(G) =
valGP (r). Thus the suggested algorithm achieves at least (4.9), which by Theorem 4.4.2 is
at least S(c)−Kε. As for the last statement in the theorem, we’ve in particular shown that
there exists some cut fε : V → [−1,1] with value at least S(c)−Kε. Taking ε→ 0 we can get
a sequence of cuts f i with limsupvalG( f i) ≥ S(c). But since each cut is just a point in the
compact, finite-dimensional cube [−1,1]|V | and since valG(∙) is continuous, we can extract
a limiting cut f with value at least S(c).

Corollary 4.4.4. For each c ∈ [1
2 ,1] it holds that GapSDP(c) ≥ S(c). Indeed, there is an

algorithm which, given any graph G with Sdp(G)≥ c and any ε> 0, runs in time poly(|V |) ∙
2Õ(1/ε2) and with high probability outputs a proper cut in G with value at least S (c)−ε.

Proof. Given G, we can solve the semidefinite program and find an isomorphic embedded
graph G′ with spread at least c. It is quite easy to decrease the spread of an embedded
graph arbitrarily; for example, map each x ∈ Sn−1 to (tx,

p
1− t2) ∈ Sn for a t ∈ [0,1] of

one’s choosing. Thus we may assume that G′ has spread exactly c. Now the algorithm
from Theorem 4.4.3 (which has the dominating running time stated) is used to obtain
a cut with value at least S(c)−O(ε). As ε > 0 can be arbitrarily small, this establishes
GapSDP(c)≥ S(c).

Some minor algorithmic details are discussed more carefully in Section 4.13. One we
need to mention explicitly is that our algorithm cannot solve the SDP exactly. Instead, we
can use it to find an isomorphic graph with spread exactly c− ε2. Then the algorithm will
find a cut with value at least S(c−ε2)−O(ε). Since we now know S =GapSDP, we can inspect
the proof of Proposition 4.3.2 and conclude that S(c−ε2)≥ S(c)−O(ε2) if c is bounded away
from 1, and we can use the fact that GapSDP(1−δ)= 1−arccos(−1+2δ)/π= 1−Θ(

p
δ) (from

Goemans-Williamson) to conclude that S(c−ε2)≥ S(c)−O(ε) if c is close to 1.
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We discuss the issue of the running time’s dependence of ε in section 4.6.2.

Combining Corollary 4.4.4 with the results of section 4.3 completes the proof that

GapSDP(c)= S(c).

The remainder of this section is devoted to proving Theorem 4.4.2. The proof will proceed
by transforming (4.9) into S(c) in several steps. Each step will modify the range of either
the inf or sup, while changing the overall value by at most Kε.

4.4.1 Discretizing Distributions

The first step involves showing we can discretize the distributions P appearing in (4.9).
This will facilitate our application of the Minimax Theorem.
Definition 4.4.5. Let c ∈ [1

2 ,1] be given and fixed. We say that a discrete distribution P on
[−1,1] is η-discretized if its support is contained in ηZ∪ {−1,1}.
Lemma 4.4.6. There is a universal constant K <∞ such that for each c ∈ [1

2 ,1],

(4.9) = inf
discrete dists P on [−1,1]

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r)

is within ±Kε of
inf

ε7-discretized dists P
with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r). (4.10)

Proof. In fact, (4.10) is clearly at least (4.9), since the inf is over a smaller set. To show the
difference is at most O(ε) it suffices to show that every discrete distribution P on [−1,1]
with mean 1−2c can be converted into an ε7-discretized distribution P ′ with mean 1−2c
such that ∣

∣valGP (r)−valGP′ (r)
∣
∣≤O(ε)

⇔

∣
∣
∣
∣
∣
∣

E
ρ∼P

E
(x,y) ρ-corr’d
Gaussians

[r(x)r(y)] − E
ρ∼P ′

E
(x,y) ρ-corr’d
Gaussians

[r(x)r(y)]

∣
∣
∣
∣
∣
∣
≤O(ε) (4.11)

holds for for every ε-discretized, increasing, odd r.

The conversion of P to P ′ proceeds as follows. For each atom ρ i of P, choose ρ′
i ≤ ρ′′

i
to be the two values in ε7Z∪ {−1,1} which straddle ρ i as closely as possible. Write also
ρ i = λiρ

′
i + (1−λi)ρ′′

i , λi ∈ [0,1]. We form P ′ be replacing each atom ρ i with probability
mass pi in P with the pair of atoms ρ′

i, ρ
′′
i with masses piλi, pi(1−λi), respectively. We

have that P ′ is indeed an ε7-discretized distribution with the same mean as P, namely
1−2c.

Note that |ρ′
i −ρ i|, |ρ′′

i −ρ i| ≤ ε7 always. It’s easy now to see that (4.11) will follow if we
can show ∣

∣
∣
∣
∣
∣
∣

E
(x,y) ρ′i-corr’d

Gaussians

[r(x)r(y)] − E
(x,y) ρ i-corr’d

Gaussians

[r(x)r(y)]

∣
∣
∣
∣
∣
∣
∣
≤O(ε) (4.12)
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holds for all ε-discretized increasing odd r, using only |ρ′
i − ρ i| ≤ ε7. Now the left side

of (4.12) is equal to |Sρ′
i
(r)−Sρ i (r)|, and r here is odd. Thus by the increasing/concavity/convexity

properties of Sρ(r) given in Proposition 4.3.7, we immediately see that the largest possible
of |Sρ′

i
(r)−Sρ i (r)| value would occur when ρ′

i = 1 and ρ i = 1− ε7 (or equivalently, ρ′
i =−1,

ρ i =−1+ε7). Thus the proof of (4.12) and hence the theorem follows Claim 4.4.7 below.

Claim 4.4.7. For every fixed ε-discretized, increasing, odd r,
∣
∣
∣
∣
∣
∣
∣

E
(x,y) 1-corr’d
Gaussians

[r(x)r(y)] − E
(x,y) (1−ε7)-corr’d

Gaussians

[r(x)r(y)]

∣
∣
∣
∣
∣
∣
∣
≤O(ε).

Proof. Write η= ε7. Since 1-correlated Gaussians are identical, we are comparing

E
(x,y) (1−η)-corr’d

Gaussians

[r(x)r(y)]

with E[r(x)2]. Using the fact that r is ε-discretized, it suffices to show that when (x, y) is a
pair of (1−η)-correlated Gaussians, the probability that x and y land in different intervals
from Iε (recall Definition 4.4.1) is at most O(ε). We will first give up on the half-infinite
intervals in Iε; using the fact that x and y are both individually distributed as Gaussians,
the probability that either of them ends up at least B ≥

p
2ln(1/ε) in absolute value is at

most O(ε) anyway. Also, the probability that either lands on 0 is 0. It remains to consider
the intervals of the form I = [t, t+ ε2), where 0 ≤ t < B (the case of negative intervals will
be the same). The probability density function for x is nearly constant over the interval
I; in particular, the ratio between its values at t and t+ ε2 is exp(ε2t+ ε4/2), which is close
to 1 (since t < B = O(

√
log(1/ε))). Even just using that it is at most 2, we conclude that

conditioned on x falling into I, the probability that x falls into [t+2ε3, t+ε2−ε3] is at least
1−O(3ε3/ε2)= 1−O(ε).

By losing O(ε) probability, we will assume this happens. In this case, y is distributed
as (1−η)x+

√
1− (1−η)2N(0,1), where N(0,1) is a standard normal. Note that (1−η)x =

x−ηx ≥ x−ηB ≥ x−ε3, since ηx ≤ ε7B ¿ ε3. Hence we have (1−η)x ∈ [t+ε3, t+ε2−ε3]. Given
this, the conditional probability that y won’t also fall into I is at most the probability
that

√
1− (1−η)2N(0,1) will exceed ε3 in absolute value. But the standard deviation of

this normal is O(
p
η) = O(ε3.5), so the probability it will exceed ε3 in absolute value is

exponentially small in ε, certainly smaller than O(ε). Thus we’ve shown that except with
probability at most O(ε), x and y will fall into the same interval from Iε, and this completes
the proof of the claim.

4.4.2 Minimax

The next step in the proof of Theorem 4.4.2 is to reinterpret the space of ε7-discretized
distributions P with mean 1−2c:
Fact 4.4.8. Any ε7-discretized distribution P with mean 1−2c can be expressed as a convex
combination of 2-point ε7-discretized distributions each with mean 1−2c (and vice versa,
clearly).
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Here, by a ‘2-point distribution’ we mean one whose support is on at most two points
(i.e., either one or two points).

Proof. This fact can be considered standard. One proof sketch is the following: Given any
ε7-discretized P with mean 1−2c, pick any two points which straddle 1−2c and on which
P has positive probability mass (the two points may coincide in case P has mass on 1−2c).
Such a pair must exist because P has mean 1− 2c. Take the mean-(1− 2c) probability
distribution over this pair and ‘remove it from P ’ (i.e., subtract and rescale) to the greatest
extent possible. This will preserve the mean of P being 1−2c, and it will also cause P to
have support on (at least) one fewer point. Repeat this process until P is empty; the pairs
extracted give the required combination of 2-point distributions.

The next step is to reverse the inf/min and max in (4.10) using the von Neumann
Minimax theorem.

Lemma 4.4.9.

(4.10) = min
ε7-discretized dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r) (4.13)

= max
probability distributions R over

ε-discretized, increasing
odd r:R→[−1,1]

min
2-point ε7-discretized dists P

with mean 1−2c

E
r∼R

[valGP (r)]. (4.14)

Proof. Note that (4.10), which has an inf, is not precisely the same as (4.13), which has a
min. We will show that (4.10) equals (4.14) using the Minimax theorem. Since a corollary
of the Minimax theorem is that the inf’s and sup’s involved are achieved, this will imply
that (4.10) is equal to (4.13) and that we can write min and max everywhere.

Consider a zero-sum game between a ‘Distribution Player’ and a ‘Function Player’.
Acting simultaneously, the Distribution Player chooses a 2-point ε7-discretized probabil-
ity distribution P with mean 1−2c, and the Function Player chooses an increasing, odd,
ε-discretized r : R→ [−1,1]. The payoff is valGP (r) to the Function Player from the Distri-
bution Player.

Note that both players choose from a finite set of strategies; for the Distribution Player,
this uses the fact that for any pair of discretized points, there is at most one distribution
with mean 1−2c supported on this pair. Therefore we may apply the von Neumann Mini-
max theorem. We conclude that the game has some value, which is achieved in both of the
following scenarios: (a) the Function Player goes first and gets to choose a mixed strat-
egy, and then the Distribution Player goes second and gets to choose a pure strategy; and,
(b) the Distribution Player goes first and gets to choose a mixed strategy, and the Function
Player goes second and gets to choose a pure strategy. The value in (a) is clearly (4.14). As
for the value in (b), we claim it equals (4.13). This follows from Fact 4.4.8, along with the
fact that if we identify a P with a convex combination of 2-point distributions Q, then for
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any r,

E
Q∼P

[valGQ (r)] = E
Q∼P

E
ρ∼Q

E
(x,y) ρ-corr’d

Gaussians

[1
2 −

1
2 r(x)r(y)]

= E
ρ∼P

E
(x,y) ρ-corr’d

Gaussians

[1
2 −

1
2 r(x)r(y)] = valGP (r).

Hence (4.13) equals (4.14) and the proof is complete.

4.4.3 More Minimax; Convexity and Concavity

In the next step, we use the special properties of Sρ(r) for odd r given in Proposition 4.3.7,
along with further Minimax-based reasoning, to deduce that the ‘Distribution Player’ es-
sentially may as well use a (1,ρ0)-distribution. This idea was discussed in section 4.2.3.
Definition 4.4.10. We say an ε7-discretized distribution P is almost-(1,ρ0) if it is the mix-
ture of two (1,ρ0)-distributions for which the two ρ0 values are neighboring (or equal) dis-
cretized values.
Lemma 4.4.11.

(4.13)= min
ε7-discretized dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r)

= min
ε7-discretized almost-(1,ρ0)-dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r). (4.15)

Proof. Let P∗ denote an ε7-discretized distribution with mean 1− 2c achieving the min
in (4.13); i.e., an optimal mixed strategy for the Distribution Player. Let R∗ denote a dis-
tribution over ε-discretized, increasing, odd r achieving the max in (4.14); i.e., an optimal
mixed strategy for the Function Player. The Minimax Theorem further implies that P∗ is
an optimal strategy for the Distribution Player given that the Function Player uses R∗.
I.e., P∗ is a minimizing choice for P in the following:

min
ε7-discretized dists P

with mean 1−2c

E
r∼R∗

[valGP (r)].

Now

E
r∼R∗

[valGP (r)] = E
r∼R∗

E
ρ∼P

E
(x,y) ρ-corr’d

Gaussians

[1
2 −

1
2 r(x)r(y)] = 1

2 −
1
2 E
ρ∼P

E
r∼R∗

[Sρ(r)],

and so it follows that P∗ is a maximizing choice for P in the following:

max
ε7-discretized dists P

with mean 1−2c

E
ρ∼P

E
r∼R∗

[Sρ(r)].

Suppose we fix a particular odd r. We now have the special properties of Sρ(r) as a
function of ρ given in Proposition 4.3.7. We also claim that the convexity and concavity
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of this function are essentially strict; i.e., Sρ(r) is not linear on any open interval. For

otherwise, by analyticity, d2

dρ2Sρ(r) would have to be 0 everywhere on [−1,1], implying that

r is equal (in the L2 sense) to a linear function. But an ε-discretized function cannot be
linear, since it is constantly −1 on (−∞,−B] and constantly 1 on [B,∞).

Next, note that all of the properties mentioned in Proposition 4.3.7 are maintained
under finite convex combinations, in particular because first and second derivatives are
linear. Hence if we define

q(ρ)= E
r∼R∗

[Sρ(r)],

we conclude that q(ρ) is also an odd function of ρ, strictly increasing on [−1,1], 0 at 0,
concave on [−1,0], convex on [0,1], and not linear on any open interval. An illustration of
what q may look like is given in Figure 1.

Figure 4.1: Illustrative q(ρ), with least concave upper bound
q(ρ).

Recall now that P∗ is a maximizing choice for P in

max
ε7-discretized dists P

with mean 1−2c

E
ρ∼P

[q(ρ)].

To complete the proof, we will show that this forces P∗ to be almost-(1,ρ0). Suppose we
first disregard the constraint of being ε7-discretized. Then it is easy to see that the max-
imum value in the above is equal to q(1−2c), where q denotes the least concave upper
bound of the function q. We have that q equals q on some interval [−1,ρ0], where ρ0 < 0,
and is a straight line joining q(ρ0) and q(1) on [ρ0,1]. Further, in this case there would be a
unique maximizing P∗: either the 1-point distribution concentrated on 1−2c, if 1−2c ≤ ρ0,
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or the (1,ρ0)-distribution with mean 1−2c, if 1−2c ≥ ρ0.

Now we reintroduce the constraint that P∗ must be ε7-discretized. Let q̃ denote the
piecewise linear function which interpolates q’s values on the discretized points ε7Z. We
now have that the maximum value of Eρ∼P [q(ρ)] is equal to q̃(1−2c), where again q̃ is
the least concave upper bound of q̃. The function q̃ is still odd, strictly increasing, concave
on [−1,0], and convex on [0,1]; hence again the function q̃ equals q̃ on some interval
[−1,ρ0], where ρ0 < 0, and is a straight line joining q(ρ0) and q(1) on [ρ0,1]. The only
difference now is that the point ρ0 is not necessarily unique; there may be two consecutive
possibilities, if the ‘secant’ at one of the possible ρ0’s is parallel to one of the line segments
touching q(ρ0). (Note that there cannot be more than two possible ρ0’s, since otherwise
the graph of q would have three distinct collinear points on [−1,0] and would thus be
linear on some open interval.) We conclude that any maximizing P∗ must have all of its
support among 1 and the (at most) two discretized values that straddle ρ0; i.e., P∗ must
be almost-(1,ρ0).

Finally, we can convert almost-(1,ρ0)-distributions to (1,ρ0)-distributions:
Lemma 4.4.12. There is a universal constant K <∞ such that for each c ∈ [1

2 ,1],

(4.15) = min
ε7-discretized almost-(1,ρ0)-dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r)

is within ±Kε of

min
ε7-discretized (1,ρ0)-dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r). (4.16)

Proof. We sketch the proof, which uses the same ideas used in the proof of Lemma 4.4.6.
We need to show that any almost-(1,ρ0)-distribution P with mean 1−2c can be converted
into a (1,ρ0)-distribution P ′ with mean 1−2c in a such a way that val(r) changes by at
most O(ε) for every ε-discretized, increasing, odd r. If P is already a (1,ρ0)-distribution
then we are done. Otherwise, it has support on two neighboring discretized values, say
ρ′

0 < ρ′′
0. Since the mean of P is 1− 2c we must have ρ′

0 < 1− 2c. We now form P ′ by
pushing the weight λ that P gave to ρ′′

0 onto ρ′
0. This changes the mean by λ(ρ′′

0 −ρ′
0)≤ ε7,

but we can compensate for this by shifting a small amount of weight (at most 2ε7) onto the
support point 1. One bounds the change in val(r) caused by these shifts by O(ε)+O(ε7) via
|ρ′

0 −ρ′′
0| ≤ ε7 and Claim 4.4.7.

4.4.4 Undiscretizing

We have now reached (4.16), which is very close to S(c); the only difference is that we have
discretized distributions and functions. We now ‘undiscretize’:
Lemma 4.4.13. There is a universal constant K <∞ such that for each c ∈ [1

2 ,1],

(4.16) = min
ε7-discretized (1,ρ0)-dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r).

79



is within ±Kε of

inf
(1,ρ0)-distributions P

with mean 1−2c

sup
r:R→[−1,1]

increasing, odd

valGP (r) = S(c). (4.17)

Proof. It is straightforward to see that the ideas from Lemma 4.4.6 can be used to replace
the min in (4.16) with the inf from (4.17), changing the value of (4.16) by at most O(ε).
Thus we concentrate on discretizing the functions. To that end, fix any (1,ρ0)-distribution
P (in fact, our argument will hold for any distribution on [−1,1]). We will show that for
any increasing, odd r : R→ [−1,1], there is an ε-discretized, increasing, odd r′ : R→ [−1,1]
with |valGP (r)−valGP (r′)| ≤O(ε). This will complete the proof.

So let r be given. Define the increasing, odd, ε-discretized function r′ : R→ [−1,1] as
follows: On each finite interval I in Iε, we will take r′ to be identically equal to the value
of r on the midpoint of I,6 rounded to the nearest integer multiple of ε (or ±1, if one of
these is closer). As necessary, we will also take r′ to be identically −1 on (−∞,−B] and
identically 1 on [B,∞). We now argue that valGP (r′) is within ±O(ε) of valGP (r).

The idea is that |r − r′| ≤ ε except on a set of small Gaussian measure. We will give
up on the two half-infinite intervals and include them in the exceptional set. As for the
finite intervals in Iε, since r is increasing and bounded in [−1,1], for at most 1/ε of these
intervals can r increase by more than ε. On the intervals where it increases by less than
ε, we indeed have |r− r′| ≤ ε. Hence |r− r′| fails on at most 1/ε intervals of width ε2, plus
perhaps the two half-infinite intervals ±(−∞,B]. Note that the total Gaussian measure of
these intervals is at most O(ε). It is thus easy to see that

valGP (r)= E
ρ∼P

E
(x,y) ρ-corr’d
Gaussians

[1
2 −

1
2 r(x)r(y)]

is within ±O(ε) of valGP (r′): The probability that either x or y falls into the ‘bad’ intervals is
at most 2 ∙O(ε), since x and y are each individually distributed as standard Gaussians. In
this case, the difference in values is at most 1. Otherwise, we have that |r(x)−r′(x)|, |r(y)−
r′(y)| ≤ ε, and then the difference in values is at most O(ε).

Combining all of the Lemmas 4.4.6, 4.4.9, 4.4.11, 4.4.12, 4.4.13, we have proved Theo-
rem 4.4.2.

We end with the following observation:
Corollary 4.4.14. Each sup in the definition of S(c), as well as the inf, is achieved. Hence

S(c) = min
(1,ρ0)-distributions P

with mean 1−2c

max
r:R→[−1,1]

increasing, odd

valGP (r).

6Since we are working in L2(R), technically here we mean the value of any increasing representative of
r’s equivalence class.
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Proof. (Sketch.) The fact that the sup is achieved for each P is proved in Theorem 4.3.4.
The fact that the inf is achieved can be deduced by taking a converging subsequence of
ρ0’s, and using the discretization Lemmas 4.4.6 and 4.4.13 to show that the max’s for close
values of ρ0 are close.

4.5 Estimating S(c) Efficiently

This section is devoted to the proof of Theorem 4.1.12:

Theorem 4.1.12 There is an algorithm that, on input c ∈ [1
2 ,1] and ε > 0, runs in time

poly(1/ε) and computes S(c) to within ±ε.

As Lemma 4.4.13 shows, S(c) is within ±O(ε) of

(4.16) = min
ε7-discretized (1,ρ0)-dists P

with mean 1−2c

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r).

Since we can enumerate all poly(1/ε) many ε7-discretized (1,ρ0)-distributions, it is clearly
sufficient to show we can efficiently estimate

max
ε-discretized r:R→[−1,1]

increasing, odd

valGP (r) (4.18)

for any (1,ρ0)-distribution P. In fact, for technical reasons, we will show how to estimate a
slightly different quantity. Specifically, instead of using the rounding function discretiza-
tion described in Definition 4.4.1, we will use a different one:
Definition 4.5.1. Let ε > 0 be such that 1/ε2 is an odd integer. We define Jε to be the
partition of R into 1/ε2 intervals of equal Gaussian measure ε2.7 We say that a function
r :R→ [−1,1] is ε2-equidiscretized if r is constant on each of the intervals in Jε.

We will show how to estimate

sup
ε2-equidiscretized r:R→[−1,1]

increasing, odd

valGP (r) (4.19)

to within ±O(ε) in time poly(1/ε), whenever P is a (1,ρ0)-distribution. Although this quan-
tity is not directly comparable to (4.18), nevertheless with only minor modifications to the
proof of Lemma 4.4.13 one can show that S(c) is also within ±O(ε) of

min
ε7-discretized (1,ρ0)-dists P

with mean 1−2c

sup
ε2-equidiscretized r:R→[−1,1]

increasing, odd

valGP (r).

(To see this, first note that the function discretization step hardly changes. Second, the
proof of Lemma 4.4.6 goes through with ε2-equidiscretized functions as well because the

7Which partition points are included in which intervals is immaterial.
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intervals in Jε are only wider than the intervals in Iε.) Thus efficient estimation of (4.19)
for (1,ρ0)-distributions is sufficient to establish Theorem 4.1.12.

The reason for our redefinition of discretization is the following: it allows us to drop
the conditions ‘increasing, odd’ from the optimization problem (4.19). Specifically:
Proposition 4.5.2. Let P be a (1,ρ0)-distribution and consider the following optimization
problem:

sup
ε2-equidiscretized r:R→[−1,1]

valGP (r). (4.20)

There exists an optimal solution r∗ achieving the sup which is both increasing and odd.

Proof. The proof is essentially identical to that of Theorem 4.3.4; the key point is that
performing Gaussian rearrangement on an ε2-equidiscretized function yields another ε2-
equidiscretized function.

We now consider (4.20). Suppose P has weight 1− p on the point 1 and weight p on
the point ρ0; of course, p = 2c/(1−ρ0). Let us index the intervals in Jε from left to right
as I−m, . . . , Im, where m = (1/ε2 −1)/2. We identify an ε2-equidiscretized function r with
the length-(2m+1) vector giving its value on each interval; we will write r j for the entry
corresponding to I j, −m ≤ j ≤ m. Finally, we write Wρ for the (2m+1)× (2m+1) matrix
whose ( j, k) entry equals the probability that a ρ-correlated pair of Gaussians (x, y) will
satisfy x ∈ I j, y ∈ Ik. Now

valGP (r)= 1
2 −

1
2

(

(1− p)
∑

−m≤ j,k≤m
W1( j, k)r jrk + p

∑

−m≤ j,k≤m
Wρ0( j, k)r jrk

)

,

and hence the optimization problem (4.20) is equivalent to the problem

minimize r>((1− p)W1 + pWρ0)r,

subject to −1≤ r j ≤ 1 for all −m ≤ j ≤ m.

We now consider the Karush-Kuhn-Tucker conditions for this quadratic program and con-
clude that any optimal solution r must satisfy

∑

−m≤k≤m
((1− p)W1( j, k)+ pWρ0( j, k))rk = 0, for all j such that −1< r j < 1. (4.21)

These necessary conditions for the optimality of a rounding function was already deter-
mined by Feige and Langberg [48].

The key observation that lets us make efficient use of the conditions is that we know
from Proposition 4.5.2 that there is an optimal increasing odd r∗. In particular, there is
some 0≤ m0 ≤ m such that

r∗j =−1, for all j <−m0,

r∗j = 1, for all j > m0,

−1< r∗j < 1, for all −m0 ≤ j ≤ m0.
(4.22)
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Thus algorithmically, we can try all possible values for m0, incurring only an O(1/ε2) factor
slowdown. For each choice, we assume an r∗ satisfying the conditions (4.22), and we
solve (4.21) for the remaining unknown values; i.e., we solve the square system

∑

−m0≤k≤m0

((1− p)W1( j, k)+ pWρ0( j, k))rk = b j for all −m0 ≤ j ≤ m0, (4.23)

where b j =
∑

k<−m0((1− p)W1( j, k)+ pWρ0( j, k))−
∑

k>m0((1− p)W1( j, k)+ pWρ0( j, k)). We are
guaranteed that there exists an optimal, feasible solution r∗ satisfying (4.23) for at least
one value of m0.

4.5.1 Evading Singularity

The above discussion suggests a poly(1/ε) time algorithm for computing (4.19) exactly.
There are two problems we need to circumvent, however. The first problem is that, algo-
rithmically, we cannot compute the values Wρ( j, k) — or even the endpoints of the intervals
in Jε — exactly. The more challenging problem is that the square system (4.23) may be
singular, in which case it may produce infinitely solutions that would need to be tried. As
we will see, once we take care of the latter problem, the former will follow.

Let us write the square system (4.23) more compactly as

((1− p)M1,m0 + pMρ0,m0)s = b, (4.24)

where Mρ,m0 represents the square submatrix of Wρ corresponding to indices −m0 . . . m0,
and s represents the truncation of the vector r to these indices. We may assume here that
m0 ≥ 1, since there is nothing to solve for if m0 = 0 (note that r∗0 must be 0 by oddness).
Write Mρ0,m0,p = (1− p)M1,m0 + pMρ0,m0 .

We are concerned about the possibility that det(Mρ0,m0,p) = 0. More generally, we are
concerned if the condition number κ(Mρ0,m0,p) is very large, since in this case our inability
to calculate the Mρ,m0 matrices precisely would lead to very inaccurate solutions to (4.24).
Since the matrix Mρ0,m0,p is symmetric, its condition number is

κ(Mρ0,m0,p)= |λmax(Mρ0,m0,p)|/|λmin(Mρ0,m0,p)|,

where λmax and λmin denote largest and smallest eigenvalues in absolute value. Since
each Mρ,m0 is a submatrix of the stochastic matrix Wρ, its maximum eigenvalue is at most
1; hence we need only worry about the smallest eigenvalue of Mρ0,m0,p. Since M1,m0 is a
multiple of the identity matrix, it can be simultaneously diagonalized with Mρ0,m0 , and
hence the eigenvalues of Mρ0,m0,p are precisely

{(1− p)+ pλρ0,m0( j)}−m0≤ j≤m0 ,

where the λρ0,m0( j)’s are the eigenvalues of Mρ0,m0 . It is easy to see that for any particular
λρ0,m0( j), the set of p’s for which (1− p)+ pλρ0,m0( j) is in the range (−δ,δ) is an interval of
width at most 2δ. Hence we deduce the following:
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Proposition 4.5.3. For each ρ0, the set

Bρ0 :=
⋃

1≤m0≤m
{p : κ(Mρ0,m0,p)> 1/δ}

is a collection of at most m ∙ (2m+1)=O(1/ε4) intervals of width at most 2δ each.
Our trick now will be to give up on these ‘bad’ p’s; or rather, the ‘bad’ c-values with

which they are associated. Recalling the relationship p = 2c/(1−ρ0) ⇔ c = (1−ρ0)p/2, we
have that

C :=
⋃

ε7-discretizedρ0

{(1−ρ0)p/2 : p ∈ Bρ0}

is a collection of at most O(1/ε11) intervals of width at most 2δ each. And, whenever c 6∈ C,
we are assured that the square system (4.24) has a matrix with condition number at most
1/δ.

We now set δ= ε15 and use the following algorithm for estimating S(c). Given c, we try
to estimate S(c′) for all values c′ = c+ tε14, for t an integer with |t| ≤ 1/ε12. If we manage
to succeed for some c′, then the resulting estimate for S(c′) will also be a ±O(ε) estimate
for S(c), since |c′ − c| ≤ ε2 (and see the proof of Corollary 4.4.4 regarding the continuity of
S). There are at most O(1/ε11) ‘bad’ intervals comprising C, and each has width at most
2δ. Since 2δ ¿ ε14, each such interval contains at most one possible c′; but, there are
2/ε12 +1 À O(1/ε11) possible c′, and hence at least one choice must fall outside C. Hence
we will succeed for at least one c′.

4.6 On S(c) and Running Times

4.6.1 On S(c)

As we have shown, S(c) can be computed to within ±ε in time poly(1/ε); we believe this
result justifies our claim that S(c) is ‘explicit’. A reasonable way to understand the notion
of ‘explicitness’ would be with respect to the ‘bit model’ of Braverman and Cook [25]; in
that setting, our poly(1/ε) time algorithm would correspond to a fairly liberal notion of
‘explicit’, with a polylog(1/ε) time algorithm corresponding to a fairly demanding notion of
‘explicit’. The latter notion is the level of explicitness one has for, e.g., ‘ 1

π
arccos(1−2c)’. On

the other hand, some less explicit-looking bounds have been given for related problems;
for example, Haagerup’s bound [72] for the complex Grothendieck constant is 8/π(k0 +1),
where k0 is the unique solution of the equation

π(k+1)

8k
=

∫π/2

0

cos2 t
√

1−k2 sin2 t
dt

in the interval [0,1]. This value can surely be computed to within ±ε in time poly(1/ε);
it may well also be computable in time polylog(1/ε) but this is, at least, not immediately
obvious.
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We in fact used the algorithm behind Theorem 4.1.12 to approximate S(c) for the values
.505, .510, .515, . . . , .840 (with the values S(.5) = .5 and S(c) = arccos(1− 2c)/π for c ≥
.844 being already known). The values we found are given in the table in Section 4.15.
We were not completely formal about the approximation process and thus the results in
Section 4.15 should not be considered rigorous. In particular, the approximations of the
matrices Wρ were done numerically in Matlab; also, the problem of singularity discussed
in section 4.5.1 did not seem to arise and so we disregarded it. We can also report that the
best rounding functions r arising in the algorithm were very close to being s-linear, in all
cases; they became only slightly rounded near ±s (convex near −s, concave near s).

4.6.2 On the Running Time of the Rounding Algorithm

As shown in Corollary 4.4.4, our MAX CUT rounding algorithm is efficient (polynomial) in
terms of its dependence on n, the number of vertices; indeed, the running time is domi-
nated by the time for SDP. To get a cut that is provably within ε of S(Opt(G)), however, our
algorithm’s dependence on ε is exponential, 2Õ(1/ε2). As we will discuss in Section 4.13, all
known RPR2 algorithms have at least some ε dependence as well. This dependence is at
least poly(1/ε), from converting expectation results to high probability results; in some pa-
pers, it is exponential (as in the derandomized Goemans-Williamson algorithm from [46]).

In practice, we feel this issue is not very important. As mentioned in the previous sec-
tion, we observed that using RPR2 with s-linear rounding functions (as Feige and Lang-
berg suggested) seems nearly optimal. In particular, it seems to achieve cuts that are
within about 10−4 of S(c), across all values of c. Further, one can precompute a table of
which value of ‘s’ to use for ‘each’ possible value of c (suitably discretized) — and the al-
gorithm knows what c is after solving the SDP. Thus in practice one can achieve within
10−4 of S(c) with no real running time overhead. If error smaller than 10−4 is desired,
it seems one can perform a local search for a better rounding function, starting from the
appropriate s-linear function and modifying it slightly near ±s.

Finally, given our poly(1/ε) time algorithm for approximating S(c) to within ±ε, we be-
lieve that our rounding algorithm should also be able to have this improved dependence.
Since this is not the main focus of our work, we will only briefly describe the technical-
ities that would need to be overcome. Given an embedded graph G with ρ-distribution
P, the idea would not be to try to solve the Karush-Kuhn-Tucker conditions for GP —
since in general we have no promise that the optimal rounding function for GP is increas-
ing, we wouldn’t be able to effectively try all possibilities for where it is ±1. Instead, one
might simply try to use all of the rounding functions constructed in the determination of
S(c). This seems as though it should work: the proof of Theorem 4.4.2 using the Minimax
Theorem seems to imply that a convex combination of the optimal rounding functions for
(1,ρ0)-distributions will achieve at least S(c) for GP .

Unfortunately, several technical problems crop up. First, the Minimax proof only im-
plies that ‘nearly’ (1,ρ0)-distributions are the worst case, and it is unclear if we can ef-
fectively enumerate these, since the weight to distribute to the three points is not com-

85



pletely determined by c. Second, even if we circumvent this problem, the Minimax theo-
rem only implies that some convex combination of all the optimal rounding functions for
(1,ρ0)-distribution will be good for GP ; however, our algorithm for computing S(c) only
finds the increasing ones. This problem too might be circumventable if one could prove
strict increase in Borell’s rearrangement inequality assuming the function is not already
monotone. Such an ‘equality condition’ result is probably true, but is currently unknown.
Finally, even if both of these issues were fixed, we still have the problem that the Karush-
Kuhn-Tucker conditions might be a singular system and thus have multiple (and possibly
very many) solutions, all of which theoretically might need to be combined by the ‘Function
Player’.

4.7 Ddictator-vs.-quasirandom Tests

In this section we discuss Dictator Tests and give the definitions necessary for our ‘dictator-
vs.-quasirandom’ tests. The subsequent two sections are devoted to the proof that GapTest(c)=
S(c).

We begin with an essential observation: 2-query Dictator Tests are nothing more than
embedded graphs (see Definition 4.2.1), with the vertex set being further restricted to lie
within the discrete cube. To make the connection clearer, we treat the discrete cube as
lying on the unit sphere:

Definition 4.7.1. We write {−1,1}n = {− 1p
n

, 1p
n

}n for the discrete cube, since it is convenient

to have {−1,1}n ⊆ Sn−1.

Definition 4.1.7 defines a 2-query, 6=-based Long Code test to be a probability distri-
bution on pairs (x, y) ∈ {−1,1}n × {−1,1}n. Since we think of the Long Code test as testing
f (x) 6= f (y) and since 6= is symmetric, there is no loss in generality if we insist that the
probability distribution be symmetric in x and y. But such a symmetric distribution on
{−1,1}n × {−1,1}n is identical to a weighted undirected graph G on {−1,1}n, with self-loops
allowed. Note that this is an embedded graph, with the additional property that the ver-
tex set is (a subset of) {−1,1}n. Further, if f : {−1,1}n → {−1,1} is the function being tested,
then 1

2 − 1
2 f (x) f (y) is 1 if f (x) 6= f (y) and 0 if f (x) = f (y). Hence the probability that f

passes the test is just valG( f ). Extending this definition to functions f : {−1,1}n → [−1,1],
we have the following:

Definition 4.7.2. A dictator-vs.-quasirandom test for n-bit functions f : {−1,1}n → [−1,1]
is an embedded graph T whose vertex set is {−1,1}n. The value of the test on f is valT( f ),
and this is sometimes referred to as the probability that T passes/accepts f .

Our notion of the ‘completeness’ of a dictator-vs.-quasirandom test is essentially as in
Definition 4.1.8: the least probability with which one of the Dictators passes:

Definition 4.7.3. The ith Dictator function χi : {−1,1}n → {−1,1} is defined by χi(x) =
p

n ∙
xi.

Definition 4.7.4. The completeness of an n-bit dictator-vs.-quasirandom test T is

Completeness(T)=min
i∈[n]

{valT (χi)}
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The average of the probabilities with which Dictators pass a test T is precisely its
spread:

Proposition 4.7.5. Given an n-bit dictator-vs.-quasirandom test T = ({−1,1}n,E), we have

Spread(T)= avg
i∈[n]

{valT (χi)}.

Hence Spread(T)≥Completeness(T).

Proof.

Spread(T)= E
(x,y)∼E

[1
2−

1
2 x∙y]= E

(x,y)∼E
[1

2−
1
2

∑n
i=1xi yi]=

1
n

∑n
i=1 E

(x,y)∼E
[1

2−
1
2 nxi yi]= avg

i∈[n]
{valT (χi)}.

As discussed in section 4.1.4 we use a weakened soundness notion for dictator-vs.-
quasirandom tests; specifically, these tests only need to reject functions that are suffi-
ciently ‘quasirandom’. This soundness condition allows us to get large completeness/soundness
gaps despite using only 2 queries. The notion of being ‘quasirandom’ is, for all intents and
purposes, the same as the notion of having small ‘low-degree influences’ introduced in [99]
and used in previous papers on UNIQUE-GAMES-hardness. We will make a very slightly
different definition because we feel it is more natural. To make this definition we need to
recall the basics of Fourier analysis of Boolean functions.

Analogous to the Hermite analysis described in section 4.3.3, the space of functions
L2({−1,1}n) under the uniform distribution has a complete orthonormal basis given by the
monomials (χS)S⊆[n]:

χS(x)=
∏

i∈S
(
p

n ∙ xi).

One can uniquely express any function f : {−1,1}n →R via its Fourier expansion,

f =
∑

S⊆[n]
f̂ (S)χS.

We now introduce quasirandom functions:

Definition 4.7.6. For 0≤ ε,δ≤ 1, we say a function f : {−1,1}n → [−1,1] is (ε,δ)-quasirandom
if for each i ∈ [n],

Inf(1−1−δ)
i ( f )≤ ε,

where we define the (1−δ)-attenuated influence of i on f to be

Inf(1−1−δ)
i ( f )=

∑

S⊆[n]
i∈S

(1−δ)|S|−1 f̂ (S)2.

Note that this definition becomes stricter when ε or δ decreases; we think of func-
tions as being ‘more quasirandom’ when δ and (especially) ε are small. As an example,
Dictator functions χi are the antithesis of being quasirandom; in particular, if ε < 1 then
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χi is not (ε,δ)-quasirandom even for δ = 1.8 On the other hand, the Majority function is
extremely quasirandom; specifically, (O( 1p

n
),0)-quasirandom. We have chosen the name

quasirandom based on the ‘Invariance Principle’ from [116], which essentially states that
if f : {−1,1}n → [−1,1] is very quasirandom, then the distribution of

∑

S⊆[n]
f̂ (S)

∏

i∈S
Xi

is nearly unchanged whether one takes the Xi ’s to be independent ±1 bits or independent
N(0,1) Gaussians.

Having defined quasirandom functions, we give the soundness notion for our tests:
Definition 4.7.7. The (ε,δ)-soundness of a dictator-vs.-quasirandom test T for functions
f : {−1,1}n → [−1,1] is

Soundnessε,δ(T)=max{valT ( f ) : f is (ε,δ)-quasirandom}.

Given this definition, the most natural Property Testing question to ask is how far
apart completeness and soundness can be for dictator-vs.-quasirandom tests:
Definition 4.7.8. We call the pair (c, s) a dictator-vs.-quasirandom test (ε,δ)-gap if for all
sufficiently large n, there is a dictator-vs.-quasirandom test T (n) for functions f : {−1,1}n →
[−1,1] with Completeness(T(n))≥ c and Soundnessε,δ(T(n))≤ s. We call the pair (c, s) simply
a dictator-vs.-quasirandom test gap if ∀η > 0,∃ε,δ > 0 such that (c, s+η) is a dictator-vs.-
quasirandom test (ε,δ)-gap.
Definition 4.7.9. The dictator-vs.-quasirandom gap curve is the function GapTest : [1

2 ,1]→
[1

2 ,1] defined by

GapTest(c)=min{s : (c, s) is a dictator-vs.-quasirandom test gap}.

(It is immediate from the definitions that this min is achieved; i.e., we needn’t write
inf.)
In the next section we will show that GapTest(c) ≤ S(c); substituting this into these theo-
rems yields our results from section 4.1.6; the subsequent section will be devoted to the
inequality GapTest(c) ≥ S(c), whose proof completes the result GapTest(c) = S(c). Although
the inequality GapTest(c) ≥ GapSDP(c) was already implicitly proved in [107], we will give
an alternate direct proof which clarifies the connection between SDP rounding algorithms
and dictator-vs.-quasirandom testing. Finally, in the last section we will connect dictator-
vs.-quasirandom tests with the SDP-hardness constructions in [3, 4, 86].

4.8 GapTest(c)≤ S(c): Invariance Principle

To upper-bound GapTest(c), we need to determine dictator-vs.-quasirandom tests with com-
pleteness at least c for which all quasirandom functions pass with small probability.
Studying just how small this soundness can be is very similar to searching for the largest

8We take 00 = 1 in the definition.
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possible SDP gap, discussed in section 4.2. For example, given a particular test T on
{−1,1}n with Completeness(T)≥ c and Soundnessε,δ(T)≤ s, one can symmetrize it with re-
spect to all 2nn! symmetries of {−1,1}n, forming T ′. Then one still has Completeness(T ′)≥
c and Soundnessε,δ(T ′) ≤ s, and furthermore T ′ has the property that the probability of
choosing a pair (x, y) depends only on its Hamming distance; i.e., only on ‹x, y›. Just as we
switched from S (d)

P (which insisted on ‹x, y› being precisely ρ) to the analytically-easier

G (d)
P , it is natural to switch to the version of symmetrized tests with independence across

coordinates:
Definition 4.8.1. We define the noise sensitivity mixture test T (n)

P on {−1,1}n by analogy
with Gaussian mixture graphs. In particular we define (x, y) to be ρ-correlated n-bit strings
if x is drawn uniformly from {−1,1}n and y is formed by taking yi = xi with probability
1
2 +

1
2ρ and yi =−xi with probability 1

2 −
1
2ρ, independently across i.

We remark that a ρ-correlated pair (x, y) has ‹x, y› tightly concentrated around ρ, and
that further:
Fact 4.8.2. Completeness(T (n)

P )=Spread(P)=Eρ∼P [1
2 −

1
2ρ].

Also, given f : {−1,1}n →R we use the notation

Sρ( f )= E
(x,y) ρ-corr’d
n-bit strings

[ f (x) f (y)].

The reader is warned that we use the notation Sρ( f ) for both f : {−1,1}n →R and f ∈ L2(Rn)
with the Gaussian distribution. For more on noise sensitivity tests, see [99].

Having decided that the best dictator-vs.-quasirandom gaps will occur essentially with
noise sensitivity mixture tests, the ideas from section 4.2.3 again apply. The Hermite and
Fourier formulas for noise stability are the same and we again conclude that the optimal
mixture should come from a (1,ρ0)-distribution. This provides an explanation for why
such tests were useful in [102].

Finally, to upper-bound the value of quasirandom functions on noise sensitivity (1,ρ0)-
mixture tests, we use the Invariance Principle of [116] ( which is also stated in Sec-
tion 3.2.1 without explicitly giving the error bound) to reduce to the analysis of the MAX

CUT in Gaussian mixture graphs. Then Theorem 4.3.4 can be used to get an upper bound
of S(c). More precisely, we prove the following theorem:
Theorem 4.8.3. Let P be any (1,ρ0)-distribution and let T denote the dictator-vs.-quasirandom
test T (n)

P . Then for any τ> 0,

Soundnessτ,Ω(1/ log(1/τ))(T)≤ sup
r:R→[−1,1]

increasing, odd

valGP (r)+O(log(1/τ)−1/8).

Before proving Theorem 4.8.3, let us see how it implies the desired result:
Corollary 4.8.4. GapTest(c)≤ S(c).

Proof. Let P be the (1,ρ0)-distribution with mean 1−2c achieving the minimum in the defi-
nition of S(c) (or rather, in Corollary 4.4.14). Writing T =T (n)

P , we have Completeness(T)=
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c by Fact 4.8.2. Now by definition,

sup
r:R→[−1,1]

increasing, odd

valGP (r)

is precisely S(c). Hence Theorem 4.8.3 implies that the (ε,δ)-soundness of T can be made
at most S(c) plus an arbitrarily small amount, by taking ε and δ sufficiently small. This
establishes GapTest(c)≤ S(c).

4.8.1 Proof of Theorem 4.8.3

The proof is an extension of the proof of the Majority Is Stablest theorem from [116].
Let P, T, and τ be as in the statement of the theorem, and let f : {−1,1}n → [−1,1] be a
(τ,Ω(1/ log(1/τ)))-quasirandom function. We need to show that

valT( f )= E
ρ∼P

E
(x,y) ρ-corr’d
n-bit strings

[1
2 −

1
2 f (x) f (y)]= 1

2 −
1
2 E
ρ∼P

[
Sρ( f )

]
,

is, up to an additive O(log(1/τ)−1/8), at most

sup
r:R→[−1,1]

increasing, odd

valGP (r) = sup
r:R→[−1,1]

increasing, odd

(
1
2 −

1
2 E
ρ∼P

[
Sρ(r)

]
)

.

Equivalently, we must show

E
ρ∼P

[
Sρ( f )

]
≥ inf

r:R→[−1,1]
increasing, odd

E
ρ∼P

[
Sρ(r)

]
−O(log(1/τ)−1/8). (4.25)

Let us write p for the weight of P on ρ0. Then the left side of (4.25) is

(1− p)E[ f 2]+ pSρ0( f ).

As in the proof of Theorem 4.3.4, this quantity can only decrease if we replace f by f odd,
in which case it becomes

(1− p)E[ f 2]− pS−ρ0( f ), (4.26)

analogous to (4.8). (Note that a similar formula will arise on the right side of (4.25), since
the r’s are odd.) Since f odd has the same Fourier expansion as f except with the even-
degree terms dropped, we have that Inf(1−δ)

i ( f odd) ≤ Inf(1−δ)
i ( f ), and hence f = f odd is still

(ε,δ)-quasirandom.

We now set γ=O
(

loglog(1/τ)
log(1/τ)

)
and distinguish the two cases ρ0 ≤−1+3γ and ρ0 >−1+3γ:

90



Case 1: ρ0 ≤ −1+3γ. In this case we use S−ρ0( f ) ≤ S1( f ) = E[ f 2] to deduce that (4.26)
is at least 1−2p. On the other hand, by taking r = sgn (which is increasing and odd), we
conclude that the term on the right side of (4.25) satisfies

inf
r:R→[−1,1]

increasing, odd

E
ρ∼P

[
Sρ(r)

]
≤ (1−p)E[sgn2]−pS−ρ0(sgn)= (1−p)−p(1−Θ(

p
γ))= 1−2p+Θ(

p
γ),

where we used the estimate S1−δ(sgn)= 1−Θ(
p
δ). Since Θ(

p
γ)¿O(log(1/τ)−1/8), the proof

of (4.25) in this case is complete.

Case 2: ρ0 > −1+ 3γ. In this case we follow the arguments from [116]’s proof of the
Majority Is Stablest theorem. Write ρ = −ρ0 < 1−3γ, and express ρ = ρ′ ∙ (1−γ)2. We let
g ∈ L2(Rn) be the multilinear polynomial

g(x1, . . . , xn)=
∑

S⊆n
(1−γ)|S| f̂ (S)

∏

i∈S
xi,

and we let g̃ :Rn → [−1,1] be the function defined by

g̃(x)=

{
g(x) if |g(x)| ≤ 1,

sgn(g(x)) else.

We note that f being odd implies that both g and g̃ are odd. Since

E[ f 2]=
∑

S⊆[n]
f̂ (S)2 =

∑

S∈Nn
ĝ(S)2 =E[g2]≥E[ g̃2],

we have
(4.26)≥ (1− p)E[ g̃2]− pSρ( f ).

Further, using the fact that f is (τ,Ω(1/ log(1/τ)))-quasirandom, the Invariance Principle-
based arguments in [116] imply that

|Sρ( f )−Sρ′( g̃)| ≤ τΩ(γ).

Hence we have

(4.26) ≥ (1−p)E[ g̃2]−pSρ′( g̃)−τΩ(γ) = (1−p)E[ g̃2]+pS−ρ′( g̃)−τΩ(γ) =

(

1−2val
G (n)

P′
( g̃)

)

−τΩ(γ),

where the first equality uses the fact that g̃ is odd and where P ′ the probability distribu-
tion that puts weight 1− p on 1 and weight p on −ρ′. But P ′ is a ‘(1,ρ0)-distribution’, and
hence Theorem 4.3.4 implies that

val
G (n)

P′
( g̃)≤ sup

r:R→[−1,1]
increasing, odd

valGP′ (r).

Thus we have
(4.26) ≥ inf

r:R→[−1,1]
increasing, odd

E
ρ∼P ′

[
Sρ(r)

]
−τΩ(γ).

By taking the constant in the definition of γ large enough we get τΩ(γ) ¿ O(log(1/τ)−1/8).
Thus to complete the proof of (4.25), we only need to relate the inf with P to the inf with
P ′, using the fact that |(−ρ′)−ρ0| ≤ O(γ). This can be done by using the discretization
Lemmas 4.4.6 and 4.4.13; the resulting error term is at most O(γ1/7) ≤ O(log(1/τ)−1/8), as
required.
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4.9 GapTest(c)≥ S(c): RPR2 Algorithms Imply Testing Lower
Bounds

In this section we discuss ‘lower bounds’ for the dictator-vs.-quasirandom testing prob-
lem; i.e., proofs that any test T with Completeness(T) = c cannot have Soundnessε,δ(T)
which is too small. As mentioned earlier, Khot and Vishnoi’s result can be used to get such
lower bounds: it gives a long translation of a (c, s) dictator-vs.-quasirandom test gap into
a (c−η, s+η) SDP gap (with triangle inequality, even), for arbitrarily small η. This means
that an SDP-rounding guarantee can be used to rule out the existence of strong dictator-
vs.-quasirandom tests. A similar idea arises from the earlier Theorem 4.1.11, which shows
that a (c, s) dictator-vs.-quasirandom test gap can be translated into into a c−η vs. s+η

UGC-hardness result for MAX CUT. Since one feels it is unlikely that the UGC would be
disproved via an elaborate reduction to MAX CUT followed by a too-strong SDP-rounding
algorithm, Theorem 4.1.11 also suggests that SDP-rounding algorithms should be able to
prove dictator-vs.-quasirandom testing lower bounds.

In this section we show explicitly and directly that RPR2 algorithms give rise to dictator-
vs.-quasirandom testing lower bounds. More specifically, the following theorem implies
(and indeed is slightly stronger than) the result GapTest(c)≥ S(c):
Theorem 4.9.1. Let ε > 0 be given. Then for all n ≥ O(1/ε7), if T is any dictator-vs.-
quasirandom test for functions f : {−1,1}n → [−1,1] satisfying Completeness(T) ≥ c, then
Soundnessε,0(T)≥ S(c)−ε.

Proof. Let T be a such a test. As described in section 4.7, T can be thought of as an em-
bedded graph on the vertex set {−1,1}n ⊆ Sn−1. Write P for the ρ-distribution of T, and
recall from Proposition 4.7.5 that Spread(P)≥Completeness(T)≥ c.

Imagine we now run our RPR2 Algorithm 4.2.4) on T, with the discretization param-
eter set to ε′ := ε/K . By Theorem 4.4.3, it will at some point hit upon an ε′-discretized,
increasing, odd rounding function r∗ :R→ [−1,1] which satisfies

AlgRPR2(T)= valGP (r∗)≥ S(Spread(P))−O(ε′)≥ S(c)−ε/2, (4.27)

assuming K is a sufficiently large constant. (Here we also used that S is increasing.)
Recall that when we run the RPR2 algorithm with r∗, it chooses a random n-dimensional
Gaussian Z and outputs the fractional cut fZ : {−1,1}n → [−1,1] defined by

fZ(x)= r∗(x ∙Z).

Thus (4.27) is equivalent to
E
Z

[valT( fZ)]≥ S(c)−ε/2.

Our goal is now to show the intuitively plausible claim that that fZ is very likely to be a
quasirandom Boolean function:

Claim 4.9.2. With probability at least 1−O(1/n) over over the choice of Z, the function fZ

is (O(
p

ln n/n)/ε′2,0)-quasirandom.
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With our choice of n ≥ O(1/ε7), this claim implies that with probability at least 1− ε/2
the function fZ is (ε,0)-quasirandom. This in turn completes the proof of the theorem,
since it implies

E
Z

[valT ( fZ) | fZ is (ε,0)-quasirandom] ≥ S(c)−ε/2−ε/2.

Thus there must exist an (ε,0)-quasirandom f : {−1,1}n → [−1,1] with valT ( f ) ≥ S(c)− ε,
and we conclude that Soundnessε,0(T)≥ S(c)−ε as needed.

Proof. (of Claim 4.9.2.) Given Z, let us write f = fZ for notational simplicity. Let us also
write γ=O(

p
ln n/n)/ε′2. We need to show that with probability at least 1−O(1/n),

γ≥ Inf(0)
i ( f )= Infi( f )= E

x∈{−1,1}n

[(
( f (x(i=1))− f (x(i=−1))

2

)2]

for all 1≤ i ≤ n. (4.28)

Here we have used the notation x(i=b) for the string x with the ith coordinate set to b/
p

n,
along with the well-known alternate definition of Boolean influences (see [99]). In fact, we
will show that (4.28) holds whenever both of the following hold:

|Zi| ≤ 2
p

ln n for all 1≤ i ≤ n; (4.29)

1
2 n ≤ ‖Z‖2

2 ≤
3
2 n. (4.30)

Since |Zi| ≤ 2
p

ln n for each i except with probability at most O(1/n2), we get that (4.29)
holds except with probability O(1/n). It’s also well known (and the proof is sketched in the
proof of Theorem 4.3.3) that (4.30) holds except with exponentially small probability in n.
Thus both (4.29) and (4.30) hold except with probability at most O(1/n), as necessary.

Let us henceforth fix Z = Z satisfying (4.29) and (4.30). We wish to prove now that (4.28)
holds. We will show that it holds for i = n, and the fact that it holds for 1 ≤ i < n will follow
by an identical argument. So we must prove that

γ ≥ E
x∈{−1,1}n

[(
( f (x(n=1))− f (x(n=−1))

2

)2]

=
1

4
E

x∈{−1,1}n−1

[(

r∗
(

n−1∑

i=1
Zixi +

Zi
p

n

)

− r∗
(

n−1∑

i=1
Zixi −

Zi
p

n

))2]

.

Using the fact that r is ε′-discretized, we can even show the following stronger result:

Pr
x∈{−1,1}n−1

[
n−1∑

i=1
Zixi ±

Zi
p

n
fall into different intervals from Iε′

]

≤ γ. (4.31)

Let σ2 denote
∑n−1

i=1 Z2
i /n, which by (4.29) and (4.30) satisfies 1

3 ≤ σ2 ≤ 3
2 . Now the

random variable
∑n−1

i=1 Zixi has distribution close to that of a mean-zero Gaussian with
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variance σ2; more specifically, using the Berry-Esseen Theorem we have that for every
interval I,

∣
∣
∣
∣
∣
Pr

[
n−1∑

i=1
Zixi ∈ I

]

−Pr[N(0,σ2) ∈ I]

∣
∣
∣
∣
∣
≤O

(
maxi |Zi|

σ
p

n

)

=O(
√

log n/n). (4.32)

The analysis is now very similar to the analysis in Claim 4.4.7. Given any interval
J ∈ Iε′ , let J′ denote the subinterval gotten by moving the boundary points inwards by
3
p

ln n/n. The analysis from Claim 4.4.7 implies that a standard Gaussian will fall into one
of the J′ intervals except with probability O(

p
ln n/n/ε′2), and only the constant in the O(∙)

changes if we consider instead a Gaussian with variance σ2 ∈ [1
3 , 3

2]. Hence the same is true
of the random variable

∑n−1
i=1 Zixi, using (4.32). But whenever this random variable falls

into some J′, we get that
∑n−1

i=1 Zixi ±
Zip

n
are both in the associated J, since |Zi| ≤ 2

p
ln n.

Since we took γ=O(
p

ln n/n)/ε′2, we have that (4.31) indeed holds, as needed.

(Theorem 4.9.1)

4.10 Hardness Results for RPR2 Algorithms

In this section we revisit the constructions of Karloff [86], Alon and Sudakov [3], and
Alon, Sudakov, and Zwick [4]. The purpose of these constructions is to demonstrate that
the analysis of the Goemans-Williamson approximation guarantee is tight (and likewise
for the Zwick [142] approximation guarantee, in the case of [4]). For now we discuss [3, 86],
returning to [4] at the end of the section.

The works [3, 86] consider the graph T on {−1,1}n in which a pair of vertices (x, y) is
connected if and only if the vertices’ inner product is exactly 1 −2c; here c is any ratio-
nal parameter in (1

2 ,1).9 The authors show (for infinitely many n) that the identity map
is an optimal SDP embedding, and hence Opt(T) = Sdp(T) = c. On the other hand, since
every edge in the embedded graph connects vectors with inner product 1−2c, the expected
value of the cut output by the GW algorithm (RPR2 with the rounding function sgn) is
only arccos(1−2c)/π. Thus (in expectation, at least) the GW approximation curve satisfies
ApxGW (c)≤ arccos(1−2c)/π.

As the reader can clearly see, this construction can be viewed as a dictator-vs.-quasirandom
test with completeness c. Indeed, the noise sensitivity test of [99] is almost identical to it;
the only difference is that the noise sensitivity test picks edges with expected inner product
1−2c rather than precise inner product 1−2c. The ‘soundness’ result used in [3, 86] is that
the average value among ‘random halfspace functions’ sgn(x∙Z) is at most arccos(1−2c)/π.
As we saw in section 4.9, these random halfspace functions are almost surely quasiran-
dom.

9The earlier work of [86] was slightly more complicated as it only included vertices with Hamming weight
exactly n/2.
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The result from [3, 86] has some additional strengths and weaknesses. One strength
is that the SDP embedding used has all of its unit vectors on the discrete cube {−1,1}n;
hence these points satisfy the triangle inequalities, and indeed satisfy all ‘valid’ inequali-
ties (see [86]). Thus ApxGW (c) is still at most arccos(1−2c)/π even if the SDP with triangle
inequalities is used. A weakness of the original result was that it only stated that the ex-
pected value of the cut GW produces is at most arccos(1−2c)/π; it said nothing, e.g., about
what happens if the GW algorithm is run several times and the best resulting cut is se-
lected. For the noise sensitivity version of the test, a result in [99] shows that GW achieves
at most arccos(1−2c)/π+ o(1) with high probability. However, Feige and Schechtman [50]
showed an even better result:
Theorem 4.10.1 ([50]). For any rational c ∈ (1

2 ,1) and any η > 0, there are optimally em-
bedded graphs G, with arbitrarily large numbers of vertices, satisfying:

• Opt(G)=Sdp(G)= c;
• the vectors in G satisfy the triangle inequalities;
• every halfspace cut has value at most arccos(1−2c)/π+η.
The conclusion from this result is that running the RPR2 algorithm A with the round-

ing function sgn cannot achieve ApxA(c)> arccos(1−2c)/π, even if: (i) A uses the SDP with
triangle inequalities; and, (ii) A is not required to choose Z at random but is allowed to
use the best possible Z of length

p
n. (When r = sgn, the length of Z is irrelevant and may

as well be fixed.)

Feige and Schechtman prove Theorem 4.10.1 (non-constructively) as follows: They be-
gin with the embedded graph T on {−1,1}n constructed in [3, 86]. They then essentially
take G to consist of m disjoint copies of T, each embedded in a random n-dimensional sub-
space of Rd. If d À n2 log m, then the triangle inequalities hold in G with high probability;
on the other hand, if d is not too large then it can be shown that every halfspace cut of G
has value at most arccos(1−2c)/π+η.

We now prove a generalization of Theorem 4.10.1. We would like to emphasize that
our proof follows Feige and Schechtman’s extremely closely.
Theorem 4.10.2. Suppose (c, s) is a dictator-vs.-quasirandom gap, and η > 0. Fix any
RPR2 rounding function r which is piecewise constant.10 Then there are embedded graphs
G in Sd−1, with arbitrarily large numbers of vertices, satisfying:

• Opt(G)≥ c;
• the vectors in G satisfy the triangle inequalities;
• every fractional cut fZ of the form fZ(u)= r(u ∙Z) satisfies valG( fZ)≤ s+η, as long as

‖Z‖2 =Θ(
p

d).

Proof. Select ε,δ> 0 and a family (T(n)) of dictator-vs.-quasirandom tests, with T(n) oper-
ating on {−1,1}n, such that Completeness(T(n)) ≥ c and Soundnessε,δ(Tn) ≤ s+η/3, for all
sufficiently large n. We would also like to assume that each T(n) is regular, meaning that
each x ∈ {−1,1}n participates in the test with the same probability. We can ensure this by
symmetrizing each T(n) with respect to the 2nn! symmetries of {−1,1}n, as discussed in

10As all functions implemented on a discrete computer must be.
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section 4.8. (Alternatively, the dictator-vs.-quasirandom tests we will actually use, con-
structed in section 4.8, are already regular.)

As in [50], we take G to be m equally weighted disjoint copies of T(n), embedded
on the unit d-dimensional sphere Sd−1 with independent random orientations. Since
Completeness(T(n)) ≥ c, certainly Opt(G) = Opt(T(n)) ≥ c. Also, as shown in [50], if d À
n2 log m then the vectors in G satisfy the triangle inequalities with high probability; this
uses the fact that the vectors in T(n) satisfy the triangle inequalities. It remains to analyze
valG( fZ) for all possible fractional cuts fZ(u) := r(u ∙Z) where ‖Z‖2 =Θ(

p
d). For concrete-

ness, assume that this means (1/c)
p

d ≤ ‖Z‖2 ≤ c
p

d for some c > 0.

Let us consider the piecewise constant function r. Choose a small enough γ> 0 so that
the set

B :=
⋃

{[t−γ, t+γ] : t is a point of discontinuity for r}

has total measure at most εη/O(
p

c). Following [50], we now take a γ-net N for the set
{Z1/c)

p
d ≤ ‖Z‖2 ≤ c

p
d}; this can have cardinality O(c

p
d/γ)d. We show that, with high

probability over the orientations of G, both of the following hold for all v ∈N :

1. valG( fv)≤ s+2η/3;

2. the fraction of vertices u of G for which u ∙v ∈B is at most η/6.

Having shown this, it follows that valG( fZ) ≤ s+η for all (1/c)
p

d ≤ ‖Z‖2 ≤ c
p

d. To see
this for a given Z, take v to be the closest net point. Then for every u ∈ G we have
|u ∙Z−u ∙v| ≤ ‖u‖∙‖Z−v‖ ≤ γ. It follows that fZ(u)= fv(u) except possibly when u ∙v ∈B.
But this occurs only for at most an η/6 fraction of vertices in G, and hence at most an η/6
fraction of edge weight, by regularity. It follows that |valG( fZ)−valG( fv)| ≤ 2η/6, and hence
valG( fZ)≤ s+η, as required.

It remains to prove that items (1) and (2) above indeed hold with high probability. Fix
any v ∈N and let T1, . . . ,Tm denote the randomly oriented copies of T(n) making up G. In
analyzing some Ti vis-a-vis v, we imagine instead that the orientation of Ti is fixed and v
is chosen randomly from the surface of the sphere of radius ‖v‖2. In this framework, let Y
denote the projection of the random v onto the n-dimensional subspace containing Ti. Now
the projection of a random vector from the surface of a sphere onto a lower-dimensional
subspace yields a distribution which is close to Gaussian. In particular, since we are al-
ready assuming d À n2 log m ≥O(n2), the results in [39] imply that the variation distance
between Y and the n-dimensional Gaussian distribution with coordinate variances equal
to ‖v‖2/

p
d ∈ [1/c, c] is at most O(n/d)=O(1/n). If Y were truly drawn from that Gaussian

distribution, then we would have the following (cf. the proof of Claim 4.9.2):

• the expected fraction of vertices u of Ti for which u ∙Y ∈B is at most O(
p

c|B|);
• |Yi| ≤O(

p
c ln n) for all 1≤ i ≤ n;

• 1
2c n ≤ ‖Y‖2

2 ≤
3c
2 n.

Similar to the proof of Claim 4.9.2, the last two of these imply that fv is a (ε,0)-quasirandom
cut for Ti, as long as O(

p
c ln n/n) ≤ γ and O(

p
c|B|) ≤ ε. The latter holds by design; the
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former holds so long as we take n ≥ poly(c/γ). But when fv is a (ε,0)-quasirandom cut for
Ti, we have valTi ( fv)≤ s+η/3. Note also that O(

p
c|B|)≤ η/24 by design.

Overall, we conclude that for each i independently we have valTi ( fv) ≤ s + η/3, ex-
cept with probability at most O(1/n) over the choice of orientations. If we ensure that
n ≥ O(1/η), we conclude that the expected value of valTi ( fv) is at most s+η/2. Similarly,
we can conclude that the expected fraction of vertices u of Ti for which u ∙ v ∈ B is at
most η/12. Since valG( fv)= avgi∈[m] valTi ( fv), a Chernoff bound implies that item (1) above
holds except with probability at most exp(−O(η2m)). Similarly, item (2) above holds except
with probability at most exp(−O(η2m)). If we take m À d log d then this probability will
be much smaller than O(c

p
d/γ)−d (treating c, γ, and η as constants), and so we get that

both items (1) and (2) hold with high probability for all net points simultaneously, by a
union bound.

As in [50], the overall constraints we have on m and d are that n2 log m ¿ d ¿ m/ log m,
and this can clearly be realized.

We end this section by discussing the issue of self-loops and the construction of Alon,
Sudakov, and Zwick [4]. If we use Theorem 4.10.2 with the noise sensitivity (1,ρ0)-mixture
tests constructed in section 4.8, we get a hard instance for RPR2, but one that might
be considered slightly unsatisfactory: this is because the embedded graph G constructed
has self-loops. However one can’t simply dismiss embedded graphs with self-loops, be-
cause optimally embedded graphs can have self-loops. In fact, Alon, Sudakov, and Zwick’s
construction is the following: for each (1,ρ0)-mixture distribution, they construct a self-
loopless graph for which the optimal SDP embedding is essentially the noise sensitivity
(1,ρ0)-mixture test. More precisely, it is the version in which vertices are connected if their
inner product is exactly ρ0 or 1. The technique of [4] involves taking the (1,ρ0)-mixture
test and replacing the self-loops by cliques, similar to the self-loop removal technique dis-
cussed in Section 4.12.

4.11 GapSDP(c) is Continuous

In this Section we prove Proposition 4.3.2. The fact that GapSDP(c) is increasing on [ 1
2 ,1]

is immediate from the definition (since if c′ > c, the inf for c′ is over a subset of the inf
for c). We mainly focus on the proof that GapSDP(c) is continuous on ( 1

2 ,1); this requires
only a simple trick — the use of the isolated edge. The proof of continuity at 1 requires
appealing to Goemans-Williamson, and the continuity at 1

2 is trivial. Finally, the proof
that GapSDP(c) is strictly increasing requires an isolated clique trick, plus an appeal to a
result of Zwick [142].

Definition 4.11.1. Given a graph G and a parameter 0 ≤ ε ≤ 1, we define the graph G t
edgeε to be the graph in which G’s edge-weights are scaled by a factor of 1−ε, and then two
new vertices are added, with an edge between them of weight ε.

The following is easy to verify:

Proposition 4.11.2. Sdp(Gtedgeε)= (1−ε)Sdp(G)+ε and Opt(Gtedgeε)= (1−ε)Opt(G)+ε.

97



We now prove:

Proposition 4.11.3. GapSDP(c) is continuous on (1
2 ,1).

Proof. We first prove right-continuity on ( 1
2 ,1). Suppose c ∈ (1

2 ,1), and let s = GapSDP(c).
Given any sufficiently small ε > 0, assume c < c′ < c + (1− c)ε/2 < 1. By the definition
of GapSDP(c) = s we can find some graph G with Sdp(G) ≥ c and Opt(G) ≤ s+ ε/2. Let
G̃ = G t edgeε/2. Then we have Sdp(G̃) ≥ (1− ε/2)c+ ε/2 = c+ (1− c)ε/2 > c′, and further,
Opt(G̃) ≤ (1− ε/2)(s+ ε/2)+ ε/2 ≤ s+ ε. This proves GapSDP(c′) ≤ s+ ε. Since GapSDP is in-
creasing, we have proven right-continuity at c.

The proof of left-continuity on ( 1
2 ,1) is similar. Suppose c ∈ (1

2 ,1), and let s =GapSDP(c).
Given any sufficiently small ε> 0, assume 1

2 < c−2ε(1− c) < c′ < c. For any graph G with

Sdp(G)≥ c′, let G̃ =Gtedge2ε. We have Sdp(G̃)≥ (1−2ε)c′+2ε= c′+2ε(1−c′)≥ c′+2ε(1−c)≥
c and also Opt(G̃) = (1−2ε)Opt(G)+2ε. By the definition of GapSDP(c) = s, it holds that
Opt(G̃) ≥ s. Hence (1−2ε)Opt(G)+2ε≥ s which implies Opt(G) ≥ s− (1−Opt(G))2ε≥ s− ε.
This proves GapSDP(c′)≥ s−ε. Since GapSDP is increasing, we have proven left-continuity
at c.

We next check continuity at the endpoints, c = 1
2 ,1. It’s easy to see that if Sdp(G) = 1

then G must be bipartite and so Opt(G) = 1. Hence GapSDP(1) = 1. Next, by taking the
sequence of complete graphs Km (each with total edge-weight 1), which satisfy Opt(Km)≤
1
2 +

1
m → 1

2 as m →∞, we see that GapSDP(1
2)= 1

2 . Thus to check continuity at the endpoints

we need to show that limc→(1/2)+ GapSDP(c)= 1
2 and limc→1− GapSDP(c)= 1.

The first of these follows simply because GapSDP(c) is sandwiched between 1
2 and c for

all c. For the second of these, suppose G is any graph with Sdp(G) ≥ 1− ε. The analysis
of Goemans and Williamson [59] implies that one can find a cut in G with value at least
1−O(

p
ε). Thus GapSDP(1−ε)≥ 1−O(

p
ε), and so limc→1− GapSDP(c)= 1 as claimed.

Finally, we check that GapSDP(c) is strictly increasing. For this we introduce isolated
cliques:

Definition 4.11.4. Given a graph G and two parameters m ∈N and 0≤ ε≤ 1, we define the
graph GtKm,ε to be the graph in which G’s edge-weights are scaled by a factor of 1−ε, and
then an isolated m-clique is added, whose total edge-weight is ε.

Using the fact that Opt(Km,1)≤ 1
2 +

1
m , one can check:

Proposition 4.11.5. Sdp(GtKm,ε)≥ (1−ε)Sdp(G)+ε/2 and Opt(GtKm,ε)≤ (1−ε)Opt(G)+
(1

2 +
1
m )ε.

We now have:

Proposition 4.11.6. GapSDP(c) is strictly increasing on [1
2 ,1].

Proof. It’s enough to check this on ( 1
2 ,1). So suppose 1

2 < c < c′ < 1, and write s′ =GapSDP(c′).
Zwick [142] was the first to show that c′ > 1

2 implies s′ > 1
2 ; Charikar and Wirth [30] specif-

ically proved that Sdp(G) ≥ 1
2 +γ implies Opt(G) ≥ 1

2 +Ω(γ/ log(1/γ)). Thus we have s′ > 1
2 .

Write ε= (c′ − c)/c′. Select m large enough that s′ − 1
2 −

1
m is still strictly positive. Finally,

take δ> 0 so that δ< (s′ − 1
2 −

1
m )ε.
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By definition of GapSDP(c′)= s′, we can find a graph G′ with Sdp(G′)≥ c′ and Opt(G′)≤
s′ +δ. Let G = G′ tKm,ε. Then Sdp(G) ≥ (1− ε)c′ + ε/2 ≥ (1− ε)c′ = c. Further, Opt(G) ≤
(1− ε)(s′ +δ)+ (1

2 +
1
m )ε≤ s′ + (1

2 +
1
m − s′)ε+δ< s′ −δ+δ= s′. We conclude that GapSDP(c)<

s′ =GapSDP(c′). Thus GapSDP(c) is indeed strictly increasing.

4.12 SDP Gaps Based on Infinite, Self-looped Graphs

In this Section we prove Proposition 4.3.1.

Proof. Write G0 = G. We will transform G0 into G1, an infinite graph on vertex set Bd;
then G1 into G2, a finite graph (with self-loops); then G2 into G3, a self-loopless graph;
then G3 into G4, an unweighted graph. The desired graph will then be G′ =G4. The first
transformation uses the idea of embedded graphs, and the remaining transformations are
all previously known.

Let g :Rd → Bd achieving the sup in the definition of Sdp(G0) to within ε. Let G1 be the
infinite graph on Bd given by pushing forward G0 via g, i.e., G1(A,B)=G0(g−1(A), g−1(B))
(here we’re identifying a graph with the probability measure defining its ‘edge weights’).
We immediately get E(x,y)∼G1[1

2 −
1
2 x ∙ y]≥ c−ε. We can think of this as saying:

‘Sdp(G1)’≥ c−ε, (4.33)

with the identity mapping as the embedding. Further,

Opt(G1)≤ s, (4.34)

because for any fractional cut h : Bd → [−1,1] for G1, the cut h ◦ g : Rd → [−1,1] for G0

achieves the same value, E(x,y)∼G1[1
2 −

1
2 h(x)h(y)]=E(x,y)∼G0[1

2 −
1
2(h◦ g(x))(h◦ g(y))].

We next discretize G1 in the manner of, say, Feige and Schechtman [50]. Choose an
ε-net N within Bd of size at most O(1/ε)d. Further, partition Bd into Voronoi cells based
on N , with a disjoint cell Cv for each v ∈ N . Now define the (finite) graph G2 on N by
taking G2(u,v) = G1(Cu,Cv) (again, we identify a graph with its edge distribution). We
claim

Sdp(G2)≥ c−3ε. (4.35)

To see this, recall that the identity embedding for G1 achieves E(x,y)∼G1[1
2 −

1
2 x ∙ y] ≥ c− ε.

Now if x is in the cell Cu and y is in the cell Cy, then x ∙ y= (u+η1)∙(v+η2) for some vectors
η1,η2 of length at most ε; this implies |x ∙ y− u ∙ v| ≤ 3ε. Since we can draw from G2 by
drawing (x, y) ∼ G1 and then taking (u,v) such that x ∈ Cu and y ∈ Cv, we conclude that
E(u,v)∼G2[1

2 −
1
2 u ∙ v]≥ c−ε− 3

2ε. We conclude that (4.35) holds with the identity map as the
embedding. The fact that

Opt(G2)≤ s (4.36)

follows for the same reason as (4.34) — any cut for G2 can be extended to an equally good
cut for G1.
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We now eliminate self-loops from G2, forming G3, using the construction in the Section
of Khot and O’Donnell [102], which itself is based on a trick of Arora, Berger, Hazan,
Kindler, and Safra [8]. It is shown therein that for any ε > 0, we can take G3 to have
O(1/ε)2 times as many vertices as G2, and satisfy

Sdp(G3)≥Sdp(G2)≥ c−3ε, (4.37)

and
Opt(G3)≤Opt(G2)≤ s+ε. (4.38)

Finally, we form G′ = G4 from G3, converting weighted edges to unweighted edges.
There is a simple randomized way to do this (see, e.g., [19, 35]), taking a weighted graph
on m vertices into an unweighted one on poly(m/ε) vertices, such that

Sdp(G4)≥Sdp(G3)−ε≥ c−4ε, (4.39)

and
Opt(G4)≤Opt(G3)+ε≤ s+2ε. (4.40)

Since G3 has O(1/ε)d+2 vertices, our G4 has n = (1/ε)O(d) vertices, as claimed. The proof
follows after replacing ε by ε/4.

4.13 RPR2 — Implementation Issues

In this section we mention a few implementation issues that arise in the use of the RPR2

framework and discuss how they affect our algorithmic guarantees. All of these issues
have been considered before; see [46, 48, 50, 59, 112].

Exact Solving of the SDP. The SDP-solving guarantee one actually has is that a solu-
tion within ε of optimum can be found in time poly(n) ∙ log(1/ε). We have already treated
this issue in the proof of Corollary 4.4.4. Another related issue is that the vectors returned
by the SDP-solver may not lie precisely on the unit sphere, something we assumed in our
analysis. This can be taken care of by shrinking all vectors slightly so that they lie within
the unit ball, and then adding a fictitious extra coordinate with tiny values to make the
vectors have length exactly 1.

Choosing Gaussian Random Variables. Again, this can not be done precisely, but the
approximation methods of Mahajan and Ramesh [112] shows that one can occur ε loss at
the expense only of poly(n,1/ε) time.

Expectation vs. High probability vs. Deterministic. Our results have been con-
cerned with showing the expected value of the fractional cut produced by the (randomized)
RPR2 algorithm is at least S(c). One can turn this into a high-probability result, losing
only an additive ε in cut value, by using poly(n,1/ε) independent repetitions. Alternatively,
one can derandomize the RPR2 framework, again losing only an additive ε in the cut value,
via the method of conditional expectations; this can be done in poly(n,1/ε) time [112] or
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O(n) ∙2poly(1/ε) time [46]. Having done either of these, one has a fractional cut with value
at least S(c)− ε. This can be converted into a proper cut with at least the same value by
the method of conditional expectations.

Multiple Rounding Functions. As discussed in section 4.1.3, we also want to try a
collection R of rounding functions. For a high-probability results, we can simply repeat
the algorithm O(|R| log |R|) times for each rounding function and this will achieve what
the best of them does. Alternatively, we can just use the derandomized algorithms once
for each r ∈R.

Proper Cuts when G Has Self-loops. Given a graph G with self-loops, we cannot
actually find proper cuts with value at least S(Sdp(G)). For example, if G consists of a
single self-loop then Sdp(G) = 1

2 (via the embedding mapping the vertex to 0), but there
is no proper cut of value 1

2 . The way to interpret our guarantee for graphs G with self-
loops is as follows: First, remove the self-loops from G, forming G′ — note that this does
not change the value of the optimal proper cut. Then our algorithm achieves at least
S(Sdp(G′))−ε≥ S(O(G))−ε, where O(G) denotes the value of the optimal proper cut in G.

4.14 Improved Asymptotics of S(1
2 +ε)

As described in section 4.1.8, Charikar and Wirth [30] established GapSDP(1
2 + ε) ≥ 1

2 +

Ω(ε/ ln(1/ε)) and Khot and O’Donnell [102] established GapSDP(1
2 + ε) ≤ 1

2 +O(ε/ ln(1/ε)). In
this Section we carefully examine these proofs and conclude the following:

Theorem 4.14.1. GapSDP(1
2 +ε)= S(1

2 +ε)= 1
2 + (1

2 ± o(1)) ∙ε/ ln(1/ε).

Proof. We upper-bound S(c) essentially by repeating the argument in [102], paying more
attention to the constants. Take P to be the (1,ρ0)-distribution with weight p = 2

3 +
4
3ε on

ρ0 =−1
2 and weight 1

3 −
4
3ε on 1. Now if r :R→ [−1,1] is any odd one-dimensional rounding

function, we have

valGP (r)= 1
2 −

1
2

[
(1

3 −
4
3ε)S1(r)+ (2

3 +
4
3ε)S−1/2(r)

]
= 1

2 −
∑

odd s

(1
6 −

2ε
3 + (1

3 +
2ε
3 )(−1

2)s
)
r̂(s)2

≤ 1
2 +εr̂(1)2 −

∑

odd s≥3
(1

8 −
3
4ε)r̂(s)2 = 1

2 +εr̂(1)2 − (1
8 −

3
4ε)E[(r−Lr)2], (4.41)

where L denotes the ‘projection to degree 1’ operator; i.e., Lr(x) = r̂(x)x. As in [102] we
consider the value of σ2 := r̂(1)2 = E[(Lr)2], the variance of the Gaussian Lr(x). Using
|r| ≤ 1, we lower-bound

E[(r−Lr)2]≥E[1{|Lr|≥1} ∙ (sgn(r)−Lr)2],

which asymptotically is σΘ(1) ∙exp(−1/2σ2). If σÀ 1/
p

2ln(1/ε) then the final term in (4.41)
will exceed ε, making the overall quantity less than 1

2. Thus in upper-bounding (4.41) we
can assume σ≤ (1+o(1))/

p
2ln(1/ε), and thus we get an upper bound of 1

2+(1
2+o(1))ε/ ln(1/ε),
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c S(c) c S(c) c S(c) c S(c)
0.505 0.5008 0.590 0.5414 0.675 0.6012 0.760 0.6694
0.510 0.5021 0.595 0.5446 0.680 0.6050 0.765 0.6736
0.515 0.5036 0.600 0.5478 0.685 0.6089 0.770 0.6778
0.520 0.5053 0.605 0.5510 0.690 0.6127 0.775 0.6820
0.525 0.5072 0.610 0.5544 0.695 0.6167 0.780 0.6862
0.530 0.5092 0.615 0.5577 0.700 0.6206 0.785 0.6905
0.535 0.5113 0.620 0.5611 0.705 0.6245 0.790 0.6947
0.540 0.5136 0.625 0.5646 0.710 0.6285 0.795 0.6990
0.545 0.5160 0.630 0.5681 0.715 0.6325 0.800 0.7033
0.550 0.5185 0.635 0.5716 0.720 0.6365 0.805 0.7076
0.555 0.5211 0.640 0.5752 0.725 0.6406 0.810 0.7119
0.560 0.5238 0.645 0.5788 0.730 0.6446 0.815 0.7162
0.565 0.5265 0.650 0.5825 0.735 0.6487 0.820 0.7206
0.570 0.5294 0.655 0.5861 0.740 0.6528 0.825 0.7249
0.575 0.5323 0.660 0.5898 0.745 0.6569 0.830 0.7293
0.580 0.5352 0.665 0.5936 0.750 0.6611 0.835 0.7336
0.585 0.5383 0.670 0.5974 0.755 0.6652 0.840 0.7380

Table 4.1: Value of S(c)

as claimed.

To lower-bound GapSDP(1
2 +ε) we refer to [30, equation (11)], which shows that

GapSDP(1
2 +ε)≥

1

2
+

ε

T2
−4e−T2/2

for every T ≥ 1. By taking T = (1− o(1)) ∙
p

2ln(1/ε), we get a lower bound of 1
2 + (1

2 − o(1)) ∙
ε/ ln(1/ε).

4.15 Approximate Values of S(c)

is alsso equivalent to the following graph problem. Given an undirected graph
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Figure 4.2: S(c) vs. c.
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Chapter 5

Conditional Hardness of
Approximating Satisfiable 3-CSPs
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5.1 Introduction

In this chapter, we study the approximability of 3-CSP; in particular we are interested in
instances of 3-CSP that are satisfiable (i.e., instance with optimum value being 1). We
study the largest s such that we can still (1, s)-approximate MAX 3-CSPs in polynomial
time. In addition to the importance of the problem by itself, it has a strong motivation in
the study of Probability Checkable Proof.

5.1.1 The PCP Characterization of NP

The famous PCP (Probabilistic Checkable Proof) Theorem states that any language in NP
has a proof system where the proofs can be probabilistically checked in a query-efficient
way. The notation PCPc,s(r(n), q(n)) stands for the class of languages M verifiable by a
proof system with the following parameters: for an input x of length n, the verifier uses
r(n) random bits and query q(n) bits in the proof to decide in polynomial time whether
x is in M or not. The verifier has the following performance guarantees: i) if x is in M,
there exists a proof that passes with probability c and ii) if x is not in the M, no proof
passes with probability more than s. We call c the completeness and s the soundness of the
verifier.

If the verifier makes all its queries at one time based only on x and the r(n) random
bits, it is called nonadaptive. On the other hand, if the verifier picks next query’s location
based on x, the random bits and all the previous queries, it is called adaptive. The nota-
tion aPCP and naPCP is used to distinguish languages verifiable by the adaptive and the
nonadaptive verifier. The adaptive verifier has better performance while the nonadaptive
verifier has more natural implication to the hardness of approximation for CSPs (See The-
orem 5.1.3 for more discussions). We mainly focus on the nonadaptive proof system in this
work.

Formally, the PCP Theorem [9, 10] states that:
Theorem 5.1.1. NP⊆ naPCP1,1/2(O(log n,O(1)).

We can see that c is 1 in the PCP Theorem; i.e., when the input x is in the language,
there exists a proof that passes with probability 1. Such a verifier is said to have perfect
completeness, which is a natural and desirable property of the proof system. Much effort
is devoted to optimizing the tradeoff between q(n) and s (as well as some other parameters
such as proof length, adaptativity, free bit complexity) [19, 66, 76, 130]. It is known that in
order to make c to be 1 and bound s away from 1, the minimum number of queries that the
verifier need to make is 3. The subject study in this work is then to optimize the sound-
ness s for the 3-query nonadaptive PCP systems with perfect completeness. Formally, we
examine the following question:
Question 5.1.2. What is the smallest s that makes NP⊆ naPCP1,s[O(log n),3]

This problem was first studied in [19] where Bellare, Goldreich and Sudan showed
that NP ⊆ naPCP1,0.8999+ε[O(log n),3]. Håstad [76] further improved this result to NP ⊆
naPCP1,3/4+ε(O(log(n)),3). Around the same time, Zwick [141] showed that naPCP1,5/8(O(log(n)),3)⊆
BPP by giving a randomized polynomial-time 5/8-approximation algorithm for satisfiable
3CSP. Therefore unless NP⊆BPP, the best s must be bigger than 5/8. Zwick further conjec-
tured that this algorithm is optimal, i.e., NP ⊆ naPCP1,5/8+ε(O(log n),3) (See Section 5.1.2
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for more discussions). After nearly a decade, Khot and Saket [104] showed that NP ⊆
naPCP1,20/27+ε(O(log(n)),3).

We note that certain relaxations of the problem are well understood. If we allow the
verifier to be adaptive, Guruswami et al. [66] proved that NP ⊆ aPCP1,1/2+ε(O(log(n)),3). If
we allow an arbitrarily small loss of completeness for the nonadaptive verifier, Håstad [76]
showed that NP ⊆ naPCP1−ε,1/2+ε(O(log(n)),3). Both of above results achieved optimal
soundness assuming NP ⊆BPP [141].

We think that Question 5.1.2 addresses an important missing part in understanding
the 3-query PCP systems. In addition, as is mentioned the answer to this question is
equivalent to deciding the optimal hardness of approximation ratio for satisfiable 3-CSPs.

5.1.2 Hardness of Approximation and Khot’s Conjectures

The relationship between PCP and MAX 3-CSP is due to the following well known con-
nection between PCP and hardness of approximation:

Theorem 5.1.3. Let Φ be a set of predicates with arity no more than k. Following two
statements are equivalent: i) MAX Φ (c, s) is NP-hard . ii)For some NP complete language
L, there is a PCP system with nonadaptive verifier using predicates only from Φ has com-
pleteness c and soundness s. 1

Note that the nonadaptiveness is crucial in Theorem 5.1.3. If the verifier is adaptive in
above theorem, the hardness result would hold only for CSPs with predicate set: “depth k
decision tree with predicate in Φ at each node”.

As a direct application of the theorem, we have that Question 5.1.2 is equivalent to the
following question:

Question 5.1.4. What is the smallest s such that MAX 3-CSP (1, s) is NP-hard .

We can also see why unless NP ⊆ BPP, Zwick’s 5/8-approximation randomized algo-
rithm for satisfiable MAX 3-CSP [141] mentioned earlier implies that the smallest s in
Question 5.1.2 and 5.1.4 must be bigger than 5/8. And Zwick’s conjecture is that s = 5/8+ε

in both questions 5.1.2 and 5.1.4.

5.1.3 Satisfiable Max NTW

The optimal hardness of satisfiable 3CSP is also corresponding to a open problem in the
conclusion of the seminal paper of Håstad [76]. The problem he asked is to decide for satis-
fiable Max-NTW whether there exists an polynomial-time approximation algorithm beyond
the random assignment threshold 5/8. Following is the formal statement of Håstad’s open
problem:

Question 5.1.5. For any constant ε> 0, given a satisfiable Max-NTW instance I , is it NP-
hard to find an assignment that satisfies more than an 5/8+ε fraction of the constraints?

Question 5.1.5 is important as a “Yes" answer to it will also resolve Question 5.1.2 and
5.1.4 since Max-NTW is a special Max-3CSP.

1Strictly speaking, the hardness result in Theorem 5.1.3 is only for weighted MAX k-CSPs. As for Sat-
isfiable Max k-CSPs, the inapproximability is the same for weighted and unweighted instances due to the
reduction in [35].
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As a result of Theorem 5.1.3, Question 5.1.5 is equivalent to decide whether there
is such a nonadaptive PCP system for some NP Complete problem that the verifier has
perfect completeness and soundness 5/8+ε and it uses the same predicate set as Max-NTW.
Constructing such a PCP system for the d-to-1 LABEL-COVER is the main focus of the
remaining work.

5.2 Our Contribution and Methods

5.2.1 Main Results

Our main result is that we can solve Håstad’s Open Problem (Question 5.1.5) assuming
the Khot’s d-to-1 Conjecture hold for any finite d. Formally, our main theorem can be
stated as follows:

Theorem 5.2.1. Assuming Khot’s d-to-1 Conjecture holds for any finite positive integer
d,MAX NTW (1,5/8+ ε) is NP hard. Equivalently speaking,there is a 3-query PCP system
for NP that has perfect completeness and soundness 5/8+ ε for any ε> 0 . In addition, the
verifier is nonadaptive and uses the same predicates as MAX NTW.

Above theorem implies the answer to Question 5.1.2 and 5.1.4 and confirms Zwick’s
conjecture.

Corollary 5.2.2. Assuming Khot’s d-to-1 Conjecture holds for any finite positive integer d
and ε> 0, MAX 3-CSP (1,5/8+ε) is NP hard. Equivalently speaking, NP⊆ naPCP1,5/8+ε(O(log(n),3).
Further assuming that NP * BPP, Zwick’s 5/8-approximation algorithm for satisfiable 3-
CSPs is optimal and 5/8+ε is the optimal s for both Question 5.1.2 and 5.1.4.

5.2.2 Methods

In the proof we build a PCP system for the d-to-1 LABEL-COVER that reads three bits and
checks the NTW predicate on the literals of them.

The main technicalities of this work are i) designing the verifier for the d-to-1 LABEL-
COVER; ii) analyzing the soundness of the proof system.

Our verifier can be viewed as a generalization of the 3-query dictator test in [121]. The
dictator test in [121] generates queries from the sample space {−1,1}n × {−1,1}n × {−1,1}n

for testing “one function”. For the use of d-to-1 LABEL-COVER, roughly speaking we need
the verifier to address query space {−1,1}n×{−1,1}dn×{−1,1}dn for testing “two functions”.

In the analysis of the PCP system, the main challenge (as usual) is to bound the ex-
pectation of certain quadratic and cubic term. The problem is more complicated compared
with [121] and some very different techniques are used in the work. We analyze the
quadratic term in the resulting Fourier analysis based on some novel arguments about
the positivity of certain linear operators. For the cubic term, we use the Invariance Princi-
ple style arguments similar to [115, 116]. However, none of these invariance theorems in
[115, 116] can be applied to our proof as a black box since our distribution does not have
2-wise independence. In addition, unlike the other proofs using the Invariance Principle
that are usually dependent on some properties in Gaussian space, we prove some invariant
properties between two distributions over Boolean cube. These two distributions have the
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same (non-zero) 2-wise correlation while Invariance Principle helps to handle the hard-to-
analyze 3-wise correlation.

5.2.3 Related and Subsequent Work

Related Work Most of the hardness reduction from UNIQUE-GAMES to Max-Φ prob-
lems involves designing a “dictator test” that only uses predicate from Φ. In [121], we
proposed a 3-query dictator test based on the NTW predicate with soundness 5/8+ ε and
completeness 1. However, the test can only be directly used to build PCP system for the
Unique Label Cover and such a proof system therefore does not have perfect completeness.

Subsequent Work After our work, there have been several results built on top of the
techniques developed in this work. In [136], the authors studied the problem of k-query
PCP with perfect completeness. Their main contribution is a k-query Dictator test with
perfect completeness. While it remains a open question how to compose their Dictator
Test with proper outer verifier. In another recent work [137], the author investigated the
3-query PCP system over Zq with perfect completeness and obtained improved soundness
assuming the d-to-1 conjecture.

5.2.4 PCP System Framework

The high level framework of our PCP system is similar to Håstad’s construction for Max
3Lin [76]. Given is a d-to-1 LABEL-COVER instance L : (U ,V ,E,P,R1,R2,Π). A“proof”
for L consists of a collection of the truth table of Boolean functions for each vertex. More
specifically, for each vertex u ∈U , there is an associated Boolean function fu(x) : {−1,1}R1 →
{−1,1} and for each vertex v ∈V , there is an associated Boolean function gv(y) : {−1,1}R2 →
{−1,1}. The proof contains all the truth table of these Boolean functions and the length of
the proof is therefore |U |2R1 +|V |2R2. From now on we always view −1 as True and 1 as
False.

The verifier checks the proof by following procedure:
• Pick an edge e = (u,v) from distribution P.

• Generate a triple (x, y, z) from some distribution Te on {−1,1}R1 × {−1,1}R2 × {−1,1}R2

(Te is specified later).

• Accept if NTW( fu(x), gv(y)), gv(z)))= 1.

Folding The prover can write the constant “1" function for every fu, gv and such a
proof always passes. To address this, the standard “folding trick”[19] is used for our sys-
tem. For example, for query x = (x1, x2, ..xR1) on fu, the verifier always use the value of
sgn(x1) fu(1, sgn(x1)x2, ..sgn(x1)xn) (instead of fu(x)). Similar strategy is applied for query
y and z on gv. Suffice to say, we can assume that all the functions fu, gv are odd.

For above PCP system, we will show:
1. If opt(L )= 1, there is a proof that passes the test with probability 1. (completeness)

2. For any ε> 0, if there exists a proof that passes with probability at least 5/8+ε, then
opt(L )> η, where η> 0 is some constant only depend on ε and d. (soundness)
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Assuming the d-to-1 Conjecture, such a proof system shows that NP ⊆ naPCP1,5/8+ε(O(log n,3)
and a 5/8+ε hardness result for approximating satisfiable Max 3-NTW.

5.3 The Test and the Analysis

Given above PCP reduction framework, the remaining of the work constructs the distri-
bution Te and analyzes the completeness and soundness for the associated verifier. The
reader is assumed to be familiar with the basics of Fourier analysis of Boolean functions.;
see e.g., [134]. As a reminder, our default representation for bits will be +1 and −1 rather
than 0 and 1. We use f̂ (S) to denote the Fourier coefficients of function f on set S.

5.3.1 Idea of Constructing Te

Recall that the verifier first picks an edge e = (u,v). Then it generates (x, y, z) by distri-
bution Te and accept if NTW( fu(x), gv(y), gv(z)) = 1. This section we define the distribution
Te.

For the picked edge e, we write di = |π−1
e (i)| for i = 1,2...R1. By the property of d-to-1

projection, we know 1 ≤ di ≤ d.
We express fu : {−1,1}R1 → {−1,1} as

fu : X 1 ×X 2 ×∙∙ ∙×X R1 → {−1,1},

where each X i = {−1,1}{i} (a slightly complicated way to write {−1,1}), and gv : {−1,1}R2 →
{−1,1} as

gv : Y 1 ×Y 2 ×∙∙ ∙×Y R1 → {−1,1},

where each Y i = {−1,1}π
−1
e (i). Let we also write Z i = {−1,1}π

−1
e (i).

We construct Te as a product distribution: (
∏R

i=1 X i ×Y i ×Z i,Te) =
∏R

i=1(X i ×Yi ×

Z i,T i
e ). To define each T i

e , we start by defining some general distributions on {−1,1}×
{−1,1}m × {−1,1}m. We denote {−1,1}× {−1,1}m × {−1,1}m by X ×Y ×Z here.
Definition 5.3.1. Define distribution H (m) generating (x, y1, y2, ..ym, z1, z2, ..zm) as fol-
lows: first x, y1, y2, ..ym are generated as independent random bits and then for each 1 ≤
i ≤ m, zi is set to be −yix.

By definition, x and y1, ...ym are independent. In addition, the distribution is the same
if we first generate (x, z1, ...zm) and then set yi = −xi zi. Therefore x and z1, ..zm are also
independent.

The distribution H (m) is also the basis of Håstad’s construction of the XOR3 verifier.
Håstad’s verifier checked XOR3( fu(x), gv(y), gv(z)) = 0 where (x, y, z) is first generated by
∏

T i
e for T i

e = Hδ(di) and then each bit in (x, y, z) is reset to be some random bit in-
dependently with probability δ. Such a PCP system has near perfect completeness and
soundness 1/2+δ. The random noise is added to each bit to make sure that big parity
function passes with small probability.

We have a similar situation here. H (m) is good for us as (x, yi, zi) can only be one of
(1,1,−1), (1,−1,1), (−1,1,1), (−1,−1,−1) and these tripes are all in the support of NTW. We
can not add random noise to H (m) though as we need the perfect completeness. Notice
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that (1,1,1) is also in the support of NTW. We then make a tweak on H (m) by including
(1,1,1) as a possible value for (x, yi, zi).
Definition 5.3.2. Define distribution N (m) generating (x, y1, y2, ..ym, z1, z2, ..zm) as fol-
lows. First, we pick a random integer k from 1 to m. Next, we generated x, y1, y2, ..yk−1, yk+1, ..ym

as independent random bits. Last, we set yk, zk to be equal to x and for any i ∈ [m], i 6= k, we
set zi to be equal to −yix. Define distribution Hδ(m) = (1−δ)H (m)+δN (m); i.e., Hδ(m)
generates (x, y1, y2, ..ym, z1, ..zm) by H (m) with probability 1−δ and by N (m) with proba-
bility δ.

It is easy to check that the margin distribution of H (m), N (m) and Hδ(m) on X ,Y
and Z are all uniform.

We are now ready to define the Te:
Definition of Te

Definition 5.3.3. We have Te =
∏

T i
e where each T i

e is set to be Hδ(di) for i = 1,2..R1 and
δ= ε2/2.

To analyze Te, we also need to define serval other distributions.
Definition 5.3.4. Define distribution F (m) generating (x, y1, y2, ..ym, z1, z2, ..zm) as follows:
first y1, y2..ym, z1, z2..zm are generated by their marginal distribution on H (m) and x is
generated as a random bit independent with (y1, y2, ..ym, z1, ..zm).

By definition, F (m) and H (m) have the same marginal distribution on Y ×Z . Also,
they have the same marginal distribution on X ×Y and X ×Z as x, y1, ..ym and x, z1, ..zm

are independent in both F (m) and H (m). In addition, it is easy to check H (m) and F (m)
have the same “1-wise" marginal distribution (the uniform distribution) on X , Y and Z .

We also add the “tweak" N (m) to F (m) to define a new distribution:
Definition 5.3.5. Define distribution Fδ to be Fδ(m)= (1−δ)F (m)+δN (m).

It is easy to see Hδ(m) and Fδ(m) also have the same “1-wise" and “2-wise" correlation;
i.e., Hδ(m) and Fδ(m) have the same marginal distribution on X , Y , Z X ×Y , X ×Z

and Y ×Z . Their “1-wise" marginal distributions are all uniform. The 3-wise correlation
of Hδ(m) and Fδ(m) are different though. Following lemma describes the difference.
Lemma 5.3.6. For any function f : X →R, g : Y →R, Z →R,

E
Hδ(m)

[ f (x)g(y)h(z)]− E
Fδ(m)

[ f (x)g(y)h(z)]=
∑

|S|is odd,S⊆[m]
(1−δ) f̂ ({1}) ĝ(S)ĥ(S)).

Proof. Recall that χS is defined to be the parity function on set S. By writing each function
into its Fourier expansion, we have

RHS =
∑

U⊆[1],V⊆[m],W⊆[m]
f̂ (U) ĝ(V )ĥ(W)( E

Hδ(m)
[χU (x)χV (y)χW (z)]− E

Fδ(m)
[χU (x)χV (y)χW (z)]).

(5.1)
By the definition of Hδ(m) and Fδ(m), we know

( E
Hδ(m)

[χU (x)χV (y)χW (z)]− E
Fδ(m)

[χU (x)χV (y)χW (z)])

= (1−δ)( E
H (m)

[χU (x)χV (y)χW (z)]− E
F (m)

[χU (x)χV (y)χW (z)]). (5.2)

Notice that H (m) and F (m) have the same margin distribution on Y ×Z . There-
fore to make (5.2) nonzero, U must be nonempty (and therefore must be {1}). When
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U = {1} we have that EF (m)[χU (x)χV (y)χW (z)] = EF (m)[x]EF (m)[χV (y)χW (z)] = 0. There-
fore, EH (m)[xχV (y)χW (z)] must be nonzero to make (5.2) nonzero. It is not hard to see
this happens only when V ,W are the same set with odd cardinality and the expectation of
xχV (y)χW (z) is 1 . Therefore,

(5.1)=
∑

|S|is odd,S⊆[m]
(1−δ) f̂ ({1}) ĝ(S)ĥ(S) E

H (m)
[xχS(y)χS(z)]= RHS.

Recall the definition of Correlation between probability spaces.
Definition 5.3.7. Let (Ω×Θ,μ) be correlated finite probability space. Define the correlation
between Ω and Θ to be

ρ(Ω,Θ;μ)= sup{Cov[ f , g] : f ∈ A, g ∈ B,Var[ f ]=Var[g]= 1}.

The conditional operator Uμ associated with μ is a mapping from function space { f | f :Θ→
R} to {g|g : Ω → R} defined as follows: for f : Θ → R and any x ∈ Ω and random variable
(X ,Y ) drawn from μ, Uμ f (x)=EY [ f (Y )|X = x].

Since Cov( f , g)=E[( f −E[ f ])(g−E[g])], we can assume without loss of generality that
E[ f ]= 0,E[g]= 0 when calculating the correlation between the two spaces; i.e.,

ρ(Ω,Θ;P)= sup{E[ f g] : f ∈ A, g ∈ B,E[ f ]= 0,E[g]= 0,Var[ f ]=Var[g]= 1}.

For the distributions defined, we have the following properties with proof in Sec-
tion 5.5.
Lemma 5.3.8. ρ(X ×Y ,Z ;Hδ(m))≤ 1− δ2

22d+1d2 .
Lemma 5.3.9. ρ(X ,Y ;Hδ(m))≤ δ.
Lemma 5.3.10. ρ(X ,Y ×Z ;Fδ(m))≤

p
δ.

We comment that if we did not add the “tweak distribution" N to H , we would have
that ρ(X ×Y ,Z ;H (m)) = 1. As for Hδ, we still have ρ(X ,Y ×Z ;Hδ(m)) = 1 and this is
some tricky part for our analysis.

In [115] (Proposition 2.13), Mossel proved that the correlation of product spaces is
decided by the maximum correlation among all the individual correlated spaces:
Proposition 5.3.11. For i = 1,2..n, let (Ωi ×Θi,μi) be a finite probability space. We define
product probability space (Ω×Θ,μ)=

∏n
i=1(Ωi,Θi,μi). Then:

ρ(Ω,Θ;μ)=max
i

ρ(Ωi,Θi;μi).

By applying Proposition 5.3.11, we know:
Lemma 5.3.12.

ρ(
R1∏

i=1
X i ×Y i,

R1∏

i=1
Z i;Te)≤ 1−

δ2

22d+1d2

ρ(
R1∏

i=1
X i,

R1∏

i=1
Y i;Te)≤ δ

ρ(
R1∏

i=1
X i,

R1∏

i=1
Y i ×Z i;

R1∏

i=1
Fδ(di))≤

p
δ

112



5.3.2 Analysis of the Verifier

In this section, we analyze the completeness and soundness of our verifier.

Completeness Analysis If val(L) = 1 for some labelling L, we can simply take fu (u ∈
U) to be the L(u)th dictator function χL(u) and gv (v ∈ V ) to be χL(v). By the definition of
Te, for any edge (u,v), we know (xL(u), yL(v), zL(v)) is always in the support of NTW. Also
the dictator function is odd and it does not change by the folding procedure. Such a proof
always passes with probability 1.

Soundness Analysis For any ε, we show if some proof passes the test with probability
more than 5/8+ ε, then we have opt(L ) > η. where η> 0 is some constant depending only
on ε and d.

First let us we arithmetize the probability the proof passes. We have

Pr(NTW( fu(x), gv(y), gv(z))= 1)=

E
e=(u,v)∼P,Te

[5
8+

1
8( fu(x)+gv(y)+gv(z))+1

8( fu(x)gv(y)+gv(y)gv(z)+ fu(x)gv(z))−3
8 fu(x)gv(y)gv(z)].

(5.3)

By the folding mentioned in Section 5.2.4 ,we know all the fu, gv are odd. Also notice
that Te ’s 1-wise marginal distribution are all uniform, therefore

E
e=(u,v)∼P,Te

[1
8( fu(x)+ gv(y)+ gv(z))]= 0.

In the following Theorem 5.3.13, 5.3.14, 5.3.26, we analyze the terms E[ fu(x)gv(y)+ fu(x)gv(z)],
E[gv(y)gv(z)] and E[ fu(x)gv(y)gv(z)] respectively.

Theorem 5.3.13. For any odd Boolean functions f : {−1,1}R1 → {−1,1} and g : {−1,1}R2 →
{−1,1},

E
x,y∼Te

[ f (x)g(y))]≤ δ.

Proof. This follows directly from the Lemma 5.3.12 that ρ(
∏R1

i=1 X i,
∏R2

i=1 Yi,Te) ≤ δ. By
definition for any odd Boolean function f , g (therefore with mean 0 and variance 1), they
can have correlation at most δ.

By applying Theorem 5.3.13 and notice the symmetry between y and z, we have

E
e=(u,v)∼,Te

[
1

8
( fu(x)gv(y)+ fu(x)gv(z))]≤ δ/4.

In the next section we analyze the term gv(y)gv(z).
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Analyzing gv(y)gv(z)

Theorem 5.3.14. For any odd Boolean function g : {−1,1}R2 → {−1,1} , we have

E
y,z∼Te

[g(y)g(z)]≤ δ.

Proof. It can be be checked that ρ(Yi,Z i,Hδ(di))= 1−δ. We can not use the same simple
trick as in Theorem 5.3.13. However, the fact that g is odd makes it possible for us to
bound Ey,z∼Te [g(y)g(z)].

First we need define the matrix form of the distribution on {−1,1}m × {−1,1}m with the
Fourier basis.

Definition 5.3.15. Suppose P is a distribution on {−1,1}m × {−1,1}m. A 2m ×2m matrix
M(P ) is defined as follows: let us use all the subsets of [m] to index number from 1 to 2m.
The M(P ) has the following form. For any S ⊆ [m],T ⊆ [m], the element M(P )S,T at S row
T column is E(y,z)∼P [χS(y)χT (z)].

We can also identify function g : {−1,1}m → R with a row vector in R2m
that contains

the entire collection of g’s Fourier coefficients. The Fourier coefficients are arranged in the
same order as their associated sets in Definition 5.3.15

For example, when m = 2, the subsets of {1,2} are of the order ;, {1}, {2}, {1,2}. If the
distribution generates (y1, y2, z1, z2) ∈ {−1,1}2 × {−1,1}2 as follows: y1, y2 is generated as
independent random bits and zi = yi for i = 1,2. Then such a distribution has the following
matrix form: 






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1








.

And we write down function g’s vector form as:

g =








ĝ(φ)
ĝ({1})
ĝ({2})

ĝ({1,2})








.

With the new matrix notion, we can write the product of two functions as the multipli-
cation between vectors and matrix:

E
y,z∼P

[ f (y)g(z)]=
∑

T,S⊆[m]
f̂ (S) ĝ(T)E

P
[χS(y)χT (z)]= f T M(P )g.

Following lemma is easy to check.

Lemma 5.3.16. i) P1 and P2 are two distributions on {−1,1}m×{−1,1}m. If P = cP1+(1−
c)P2, then M(P )= cM(P1)+ (1− c)M(P2).

ii) P1 and P2 are two distributions on {−1,1}m1 × {−1,1}m1 and {−1,1}m2 × {−1,1}m2 . If
P =P1 ×P2, then M(P )= M(P1)⊗M(P2).

114



We define the identity distribution I (m) on {−1,1}m × {−1,1}m as follows: y1, ..ym are
first generated as independent random bits and zi = yi for every i. It is easy to check that
M(I (m)) is the identity matrix.

Now we are ready to prove Theorem 5.3.14. First let us write Ey,z∼Te [g(y)g(z)] by the
multiplication of the vector form of g and the matrix M(Te):

E
y,z∼Te

[g(y)g(z)]= gT M(Te)g = gT
R1⊗

i=1
M(Hδ(di))g.

Define distribution Iδ(m)= δI (m)+ (1−δ)H (m). We will show

gT
R1⊗

i=1
M(Hδ(di))g ≤ gT

R1⊗

i=1
M(Iδ(di))g.

To see this, we first need prove the following lemma:

Lemma 5.3.17. M(Iδ(m)), M(Iδ(m))−M(Hδ(m)) and M(Iδ(m))+M(Hδ(m)) are all pos-
itive matrices.

Proof. 1) To show M(Iδ(m)) is positive: Recall that Iδ(m) = δI (m)+ (1−δ)H (m). I (m)
is the identity matrix which is positive. It is easy to check that M(H (m)) is a diagonal
matrix with following diagonal elements: for any odd set S ⊆ [m], M(H (m))S,S = 0 and for
any even-cardinality set S ⊆ [m], M(H (m))S,S = 1. M(H (m)) is also positive. Therefore,
M(Iδ) is positive.

2) To show M(Iδ(m))−M(Hδ(m)) is positive: Since we know M(Iδ(m))−M(Hδ(m)) =
δ(M(I (m))−M(N (m))), we only need to show (M(I )−M(N )) is a positive matrix.

Notice that for any function h : {−1,1}d →R ,

hT M(N (m))h = E
N (m)

[(h(y)h(z)]≤ E
N (m)

[
(h(y)2+h(z)2

2
]

Notice that N (m) and I (m) have the same marginal distribution (uniform distribution)
on y and z. Then

E
N (m)

[
(h(y)2 +h(z)2

2
]= E

N (m)
[(h(y)2]= E

I (m)
[(h(y)2]= hT M(I )h

This implies for any h, hT(M(I (m))−M(N (m)))h > 0. Therefore, M(I (m))−M(N (m)) is
a positive matrix.

3) To show M(Iδ(m))+M(Hδ(m)) is positive: We know M(Iδ(m))+M(Hδ(m)) = 2(1−
δ)M(H (m))+δ(M(I )+M(H (m))). We already know M(H (m)) is positive. It remains to
prove that M(I )+M(H (m)) is positive. Notice that

−hT M(N (m))h = E
N (m)

[−(h(y)h(z)]≤ E
N (m)

[
(h(y)2 +h(z)2

2
]

= E
N (m)

[(h(y)2]= E
I (m)

[(h(y)2]= hT M(I (m))h. (5.4)

Then we have that M(I (m))+M(N (m)) is a positive matrix.
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We have shown M(Iδ(m)), M(Iδ(m))+ M(Hδ(m)), and M(Iδ(m))− M(Hδ(m)) are all
positive matrix. By Lemma 5.6.1 this implies

⊗k
i=1 M(Iδ(di))−

⊗k
i=1 M(Hδ(di)) is a posi-

tive matrix for any integer k ≥ 1. Therefore,
⊗R1

i=1 M(Iδ(di))−
⊗R1

i=1 M(Hδ(di)) is positive.
By the property of positive matrix, we have

gT
R1⊗

i=1
M(Hδ(di))g ≤ gT

R1⊗

i=1
M(Iδ(di))g.

Now we calculate gT ⊗R1
i=1 M(Iδ(di))g by g’s Fourier Coefficients. Notice that M(Iδ(m))

is also a diagonal matrix: for any odd-cardinality set S ⊆ [d], M(Iδ(m))S,S = δ and for any

even size set S, M(Iδ(m))S,S = 1. Then
⊗R1

i=1 M(Iδ(di)) is also diagonal matrix; i.e., for
S,T ⊆ [R2],S 6= T, we have

E
∏R1

i=1 Iδ(di)
[χS(y)χS(z)]= 0.

Also notice that g only has Fourier Coefficients on odd-cardinality set, we can expand
gT ⊗R1

i=1 M(Iδ(di))g as:

∑

S⊆[R2],|S| is odd
ĝ(S)2 E

∏R1
i=1 Iδ(di)

[χS(y)χS(z)].

The term E∏R1
i=1 Iδ(di)

[χS(y)χS(z)] can be further written as:

R1∏

i=1
E

Iδ(di)
[χ(S∩π−1

e (i))(y)χ(S∩π−1
e (i))(z)].

Since S is odd-cardinality set, there must exist some i0 (1 ≤ i0 ≤ R1) such that the inter-
section set between S and π−1

e (i) has odd cardinality. Recall that for odd-cardinality set S,
M(Iδ(di0)S,S)= δ. We know therefore

E
∏R1

i=1 Iδ(di)
[χS(y)χS(z)]=

R1∏

i=1
E

Iδ(di)
[χ(S∩π−1

e (i))(y)χ(S∩π−1
e (i))(z)]

≤ E
Iδ(di0 )

[χ(S∩π−1
e (i0))(y)χ(S∩π−1

e (i0))(z)]= M(Iδ(di))S∩π−1
e (i0),S∩π−1

e (i0) = δ. (5.5)

This implies
E

∏R1
i=1 Iδ(di)

[g(y)g(z)]≤ δ
∑

S⊆[R2]
ĝ(S)2 ≤ δ.

Overall, we have proved that

E
Te

[g(y)g(z)]≤ E
∏R1

i=1 Iδ(di)
[g(y)(z)]≤ δ.

and therefore Eu,v∼P,y,z∼Te [gv(y)gv(z)] is also bounded by δ.
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So far, We have shown

E
Te

[1
8( fu(x)gv(y)+ gv(y)gv(z)+ fu(x)gv(z))]≤

3

8
δ

In the next section we analyze:

E
(u,v)∼P,x,y,z∼Te

[−
3

8
fu(x)gv(y)gv(z)].

Analyzing fu(x)gv(y)gv(z)

We will first describe some new Fourier analysis tools . Recall the definition of influence
on coordinate.
Definition 5.3.18. Given function f : {−1,1}n →R, i ∈ [n], we define the influence of i on f
to be

Infi( f )=
∑

S3i
f̂ (S)2.

In this work we also define the influence on set:
Definition 5.3.19. 2 For a function f : {−1,1}n →R, T ⊆ [n], define

InfT ( f )=
∑

S⊇T
f̂ (S)2.

Recall the definition of Bonami-Beckner noise operator Tρ.
Definition 5.3.20. (Ω,μ)=

∏n
i=1(Ωi,μi) is finite product probability space. For x = (x1, ..xn) ∈

Ω, random variable y = (y1, ..yn) ∈Ω is called ρ correlated with x if each yi is independently
set to be xi with probability ρ and set to be a random sample from (Ωi,μi) with probability
(1−ρ).

The Bonami-Beckner Tρ is a function mapping from { f : Ω→ R} to {g : Ω→ R} defined
as follows: g(x)= Tρ f (x)=E[ f (y)], where y is a random variable ρ correlated with x.
Remark 5.3.21. In this Chapter, we assume μi to be the uniform distribution unless addi-
tion explanation. e.g., when we define Bonami-Beckner Operator on {−1,1}n, we refer to the
product probability space ({−1,1},uniform distribution on {−1,1})n.

Also Bonami-Beckner Operator is dependent on how we write the product space. For ex-
ample, {−1,1}R2 and

∏R1
i=1{−1,1}π

−1
e (i) have different Bonami-Beckner Operator. By {−1,1}R2 ,

we mean product of spaces Ωi = {−1,1} for i = 1,2..R2; by
∏R1

i=1{−1,1}π
−1
e (i) we mean the prod-

uct of spaces Ωi = {−1,1}π
−1
e (i) for i = 1,2..R1. By definition, the Bonami-Beckner operators

are different in above two cases. In this work we mostly use the first operator unless addi-
tional explanation.

It is well known fact that the total influence over all coordinates for “smoothed func-
tion” T1−γ f is bounded. We generalize it by proving that for “smoothed function”, its total
influence on all constant size sets is also bounded.
Lemma 5.3.22. For any Boolean function f : {−1,1}n → [−1,1] and γ< 1, m ∈N,

∑

S⊆[n],|S|≤m
InfS(T1−γ f )≤ (

m

2γ
)m.

2The definition here is different from [83].
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Proof. Notice for every set S ⊆ [n], it contains
∑m

i=0

(|S|
i

)
subset with size smaller than m.

We know that
∑m

i=0

(|S|
i

)
≤ (|S|+1)m (imagine the process we select m times from |S| element

and every time, we chose to select nothing or one of the |S| element). Then we have

∑

S⊆[n]
(InfST1−γg)≤

∑

S⊆[n]
(|S|+1)m(1−γ)2|S| f̂ (S)2. (5.6)

With the inequality from Lemma 5.3.23, it can be shown (|S| +1)m(1−γ)2|S| ≤ ( m
2γ )m and

therefore

(5.6)≤ (
m

2γ
)m

∑

S⊆[n]
f̂ (S)2 = (

m

2γ
)m.

Lemma 5.3.23. For γ> 1/2, x > 0, m ∈N, f (x)= (1−γ)2x(x+1)m, we have f (x)≤ (m/γ)m

Proof. Notice that 1−γ≤ e−γ, we have f (x) ≤ e−2xγ(x+1)m = h(x). By some calculus, h(x)
reaches its maximum when x = m

2γ −1.Then we have f (x)≤ h( m
2γ )≤ ( m

2γ )m.

In this work we extend the hypercontractive inequality into the following form:

Lemma 5.3.24. Let function f : {−1,1}n → [−1,1] and 0< γ< 1, then

‖T1−γ f ‖3 ≤ ‖ f ‖
2+2γ

3
2 .

Proof.

‖T1−γ f ‖3 =E[|T1−γ f (x)|3]1/3 ≤E[|T1−γ f (x)|2+2γ]1/3

Notice that (1−γ)≤
√

1
1+2γ , we can use hyper-inequality and get:

E[[T1−γ f |2+γ]1/3 = ‖T1−γ f ‖
2+2γ

3
2+2γ ≤ ‖ f ‖

2+2γ
3

2

As a corollary, we have

Corollary 5.3.25.

‖T1−γ f ‖3 ≤ ‖(T(1−0.5γ) f )‖
2+γ

3
2 .

Proof. Since

‖T1−γ f ‖3 ≤ ‖T1−γ+γ2/4 f ‖3 = ‖T(1−0.5γ)T(1−0.5γ) f )‖3 ≤ ‖(T(1−0.5γ) f )‖
2+γ

3
2 .

Now we are ready to analyze fu(x)gv(y)gv(z). Following is the key theorem we need:
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Theorem 5.3.26. There exists some positive constant γ,τ depending only on d,δ such that
for any odd Boolean functions f : {−1,1}R1 → {−1,1} and g : {−1,1}R2 → {−1,1}, if for every
1≤ i ≤ R1 and odd-cardinality set S ⊆π−1

e (i),

min(InfiT(1−0.5γ) f , InfST(1−0.5γ) g)≤ τ,

then ∣
∣
∣
∣ E
x,y,z∼Te

[ f (x)g(y)g(z)]

∣
∣
∣
∣≤ 3

p
δ.

Proof. The first idea is that we can apply some smooth operator to f , g and the expectation
would not change too much.

Formally, we claim there exists some positive constant γ′,γ (γ′ > γ> 0) depending only
on δ and d such that

| E
x,y,z∼Te

[ f (x)g(y)g(z)]− E
x,y,z∼Te

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]| ≤
p
δ, (5.7)

Above claim is proved by Lemma 5.4.2.
From Lemma 5.3.12, we know

ρ(
R1∏

i=1
X i,

R1∏

i=1
Y i ×Z i;

R1∏

i=1
Fδ(di))≤

p
δ

Therefore, notice that E[T1−γ f (x)]= 0 and both T1−γ f (x) and T1−γ′ g(y)T1−γ′ g(z) are bounded
in [−1,1] and they have variance less than 1. Therefore, we have

| E
x,y,z∼

∏R1
i=1 Fδ(di)

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]= |Cov(T1−γ f (x),T1−γ′ g(y)T1−γ′ g(z))| ≤
p
δ.

(5.8)
Following we will prove the expectation of the product of “smoothed" function (T1−γ f )(T1−γ′ g)(T1−γ′)

is very close on distribution Te =
∏R1

i=1 Hδ(di) and
∏R1

i=1 Fδ(di). Formally, we will show:

| E
∏R1

i=1 Fδ(di)
[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]− E

Te=
∏R1

i=1 Hδ(di)
[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]| ≤

p
δ

(5.9)
Combining (5.7), (5.8), (5.9), we then prove Ex,y,z∼Te [ f (x)g(y)g(z)]≤ 3

p
δ

It remains to prove (5.9). The technique for the proof of (5.9) is similar to the Invari-
ance Principle proof in [116]. Roughly speaking, we show every time we can change the
distribution at one coordinate from Hδ(di) to Fδ(di) and the change will be bounded by
the influence at that coordinate. And then we use the fact that for “smoothed" function the
total influence is bounded.

To clarify, let us start by changing the distribution at the first coordinate from Hδ(d1)
to Fδ(d1). Without loss of generality, let us assume that π−1

e (1) = {1,2, ..d1}. Let us write
x′ for (x2, ..xn) and y′ for (yd1+1, ..yR2) and z′ for (zd1+1, .zR2).

We can think of f as a function only on variable x1 and write f by its Fourier expansion
as :

f (x)= F;(x′)+ x1F{1}(x
′).
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Similarly, we can view g as a function only on variable y1, ..yd1 and we denote g’s Fourier
expansion (on y1, ..yd1) as

g =
∑

S⊆[d1]
χS(y)GS(y′).

For any S ⊆ [d1], we can also represent GS by g’s original Fourier coefficients ĝ(Q) (Q ⊆
[R2]) as follows:

GS(y′)= E
y1,..yd1

[g(y)χS(y)]=
∑

Q⊆[R2],Q∩[d1]=S,
ĝ(Q)χQ\S(y′).

We know therefore GS(y′)=Ey1,..yd1
[g(y)χS(y)] is always bounded between [−1,1]. Sim-

ilarly F{1} =
∑

i∈Q χQ\{1}(x′) and it is also bounded in [−1,1].
It is easy to see T1−γ f has Fourier Expansion T1−γFφ+ x1(1−γ)T1−γF{1} (on variable

x1) and T1−γ′ g has Fourier Expansion
∑

S⊆[d1]χS(1−γ′)|S|GS (on variable y1, ..yd1).
By Lemma 5.3.6, if we take conditional expectation only on (x, y1, ..yd1 , z1..zd1), we have

E
Fδ(d1)

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]− E
Hδ(d1)

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)

=−(1−δ)
∑

S
(1−γ)(1−γ′)2|S|T1−γF{1}(x

′)T1−γ′GS(y′)T1−γ′GS(z′)

Further condition on x′, y′, z′, we can calculate the difference of changing the first coor-
dinate as follows:

E
Hδ(d1)×

∏R1
k=2 Fδ(dk)

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]− E
∏R1

k=1 Fδ(dk)
[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]

= E
∏R1

k=2 Fδ(di)

[

E
Hδ(d1)

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]− E
Fδ(d1)

[T1−γ f (x)T1−γ′ g(y)T1−γ′ g(z)]

]

= −(1−δ)
∑

|S| is odd,S⊆[d1]
(1−γ)(1−γ′)2|S| E

∏R1
k=2 Hδ(dk)

[T1−γF{1}1(x′)T1−γ′GS(y′)T1−γ′GS(z′)].

(5.10)

Notice that
∏R1

i=2 Hδ(di) has uniform marginal distribution on x′, y′, z′. We have

E
∏R1

i=2 Hδ(di)
[T1−γF1T1−γ′GST1−γ′GS] ≤ ‖T1−γF{1}‖3‖T1−γ′GS‖

2
3 (Holder’s Inequality)

≤ ‖T1−0.5γF{1}‖
2+γ

3
2 ‖T1−0.5γ′GS‖

4+2γ′

3
2 (Corollary 5.3.25)

By representing GS by g’s original Fourier coefficients, we have

‖T1−0.5γ′GS‖
2
2 = ‖T1−0.5γ′

∑

Q:Q∩[d1]=S
ĝ(Q)χQ\S‖

2
2 =

∑

Q:Q∩[d1]=S
(1−0.5γ′)2|Q|−2|S| ĝ(Q)2

≤
∑

Q:S⊆Q⊆[R2]
(1−0.5γ′)2|Q|−2|S| ĝ(Q)2 =

(InfST1−0.5γ′ g)

(1−0.5γ′)2|S|

And similarly,

‖T1−0.5γF{1}‖
2
2 ≤

Inf1T1−0.5γ f

(1−0.5γ)2
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We can then bounding |(5.10)| by

∣
∣
∣
∣
∣
∣
(1−δ)

∑

|S| is odd,S⊆[d1]
(1−γ′)2|S|(1−γ)

(
Inf1T1−0.5γ f

(1−0.5γ)2

) 1+0.5γ
3

(
InfST1−0.5γ′ g

(1−0.5γ′)2|S|

) 2+γ′

3

∣
∣
∣
∣
∣
∣

≤
∑

|S| is odd,S⊆[d1]
(InfiT1−0.5γ f )

1+0.5γ
3 (InfST1−0.5γ′ g)

2+γ′

3

Take τ to be (
p
δ

2(d/0.5γ)d )
6
γ and notice that γ′ ≥ γ (which implies InfST1−0.5γ′ g ≥ InfST1−0.5γg),

we have

min(Inf1T1−0.5γ f , InfST1−0.5γ′ g)≤ τ

and therefore

(Inf1T1−0.5γ f )
1+0.5γ

3 (InfST1−0.5γ′ g)
2+γ′

3 ≤ τγ/6(Inf1T1−0.5γ f )
1
3 (InfST1−0.5γg)

2
3 .

Recall d1 ≤ d, then we can bound the difference of changing the first coordinate from
Hδ(d1) to Fδ(di) by

τγ/6
∑

|S| is odd,S⊆[d1]
(Inf1T1−0.5γ f )

1
3 (InfST1−0.5γg)

2
3 ≤ τγ/6

∑

|S| is odd,S⊆[d1]
(Inf1T1−0.5γ f+InfST1−0.5γg)

≤ τγ/6(2d−1Inf1T1−0.5γ f +
∑

|S| is odd,S⊆[d1]
InfST1−0.5γg) (5.11)

Similarly calculation will show that for any i,

| E
∏i

k=1 Fδ(dk)×
∏R1

k=i+1 H k
δ

(dk)
[T1−0.5γ f (x)T1−0.5γ′ g(y)T1−0.5γ′ g(z)]−

E
∏i−1

k=1 Fδ(dk)×
∏R1

k=i H
k
δ

(dk)
[T1−0.5γ f (x)T1−0.5γ′ g(y)T1−0.5γ′ g(z)]|

≤ τγ/6(2d−1InfiT1−0.5γ f +
∑

|S| is odd,S⊆π−1(i)

InfST1−0.5γg)

If we sum above inequality over i from 1 to R1, we have

| E
∏R1

i=1 Fδ(di)
[T1−0.5γ f (x)T1−0.5γ′ g(y)T1−0.5γ′ g(z)]− E

Te=
∏R1

i=1 Hδ(di)
[T1−0.5γ f (x)T1−0.5γ′ g(y)T1−0.5γ′ g(z)]]|

≤ τγ/6
R1∑

i=1
(2d−1InfiT1−0.5γ f +

∑

S⊆π−1(i)

InfST1−0.5γg)

≤ τγ/6(2d−1(1/γ)+ (d/γ)d) (By Lemma 5.3.22)

≤ τγ/6(2(d/γ)d)=
p
δ.

This proves (5.9).
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Soundness Proof

Now we prove the following soundness theorem.
Theorem 5.3.27. For any ε, if some proof passes with probability more than 5/8+ ε, then
we have opt(L )> η. Here η> 0 is some positive constant only dependent on ε and d.

Proof. Recall that ε= 2
p
δ. Suppose some proof pass the test with probability 5/8+ε, then

E
e=(u,v)∼P,Te

[5
8 +

1
8( fu(x)+ gv(y)+ gv(z))+ 1

8( fu(x)gv(y)+ gv(y)gv(z)+ fu(x)gv(z))

− 3
8 fu(x)gv(y)gv(z)]> 5

8 +2
p
δ.

By the oddness of fu, gv and Theorem 5.3.13, 5.3.14, we know

E
e=(u,v)∼P,Te

[5
8+

1
8( fu(x)+gv(y)+gv(z))+1

8( fu(x)gv(y)+gv(y)gv(z)+ fu(x)gv(z))]<
5

8
+

3

8
δ<

5

8
+

3

8

p
δ.

Therefore,

| E
e=(u,v)∼P,Te

[ fu(x)gv(y)gv(z)]| >
13

3

p
δ> 4

p
δ.

Then by an average argument, for
p
δ fraction of the edges (u,v), we have

E
x,y,z∼H R

δ

[ fu(x)gv(y)gv(z)]> 3
p
δ

We call these edges “good”. By Theorem 5.3.26, we know for every “good” edge (u,v), there
must exists some i, and odd set S ⊆ L(i) such that:

min(InfiT(1−0.5γ) fu, InfST(1−0.5γ) gv)≥ τ. (5.12)

We can define the following randomized label strategy for L :
For u ∈U , define

Su = {i|Infi(T1−0.5γ fu)≥ τ}

and v ∈V , define

Sv = { j| j ∈ S, InfS(T1−0.5γgv)≥ τ, |S| ≤ d, |S| is odd}.

Given (10.24), for good “edges" (u,v), Su,Sv must be both nonempty and there exists some
i ∈ Su such that πe(i)∩Sv 6= ;.

Also, by Lemma 5.3.22, we know that
∑

S InfS(T1−0.5γgv)≤ (d/γ)d. Therefore, the num-
ber of S that satisfies InfS(T1−0.5εgv)≥ τ is at most (d/γ)d/τ and therefore|Sv| ≤ d(d/γ)d/τ.
Similarly, we have |Su| ≤ 1/(γτ).

For every vertex w ∈ U ∪V , our labelling strategy is to randomly pick a label from
Sw for w. We know for ever “good edge”, they are satisfied by probability at least 1

|Su||Sv|
.

Overall, our randomized strategy satisfies at least

η=

p
δ

|Su||Sv|
≥
p
δ(

γ

d
)d+1τ2

fraction of all the edges. Notice here η,γ,τ are positive constant depending on δ and d.
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5.4 Noise Operator

For the product space {−1,1}n with uniform distribution at each coordinate, it is easy
to check that Fourier Expansion is the Efron-Stein Decomposition ; i.e., f =

∑
S⊆[n] fS(x)

where fS(x) = f̂ (S)χS(x). It is also easy to check for the product space
∏R2

i=1

(
{−1,1}π

−1
e (i)

)

with uniform distribution on each {−1,1}π
−1
e (i), f (x)=

∑
S⊆R2 fS(x) with fS(x)=

∑
πe(T)=S f̂ (T)χT (x)

is the Efron-Stein Decomposition.
Following Lemma is proved in [115] (Proposition 2.12)

Lemma 5.4.1. Let (Ω×Θ,μ) =
∏n

i=1(Ωi ×Θi,μi) be a finite product probability spaces.
And ρ(Ωi,Θi;μi) < ρ i. Suppose f : Θ→ R has the Efron-Stein Decomposition

∑
S⊆n fS on

∏n
i=1(Ωi,μ1). And let Uμ be the conditional operator of μ mapping function f : Θ → R to

g :Ω→R, then

‖Uμ fS‖2 ≤

(
∏

i∈S
ρ i

)

‖ f ‖2.

Now we prove that for our distribution Te, the expectation of f (x)g(y)g(z) is closed to
its smoothed version T1−γ′ f (x)T1−γg(y)T1−γg(z) for some small constant γ,γ′.
Lemma 5.4.2. Let f be a function mapping from {−1,1}R1 → [−1,1] and g be function

mapping from {−1,1}R2 → [−1,1] . For any small constant β > 0, let ρ0 = 1− δ2

22d+1d2 ,γ =
β3

d (1−ρ0), γ′ = β3γ2d

2 , we have:

E
x,y,z∼Te

[T1−γ′ f (x)T1−γg(y)T1−γg(z)]− E
x,y,z∼Te

[ f (x)g(y)g(z)]≤ 3β.

Proof. By Lemma 5.3.8 , we know ρ(X ×Y ,Z ;Te)≤ 1− δ2

22d+1d2 = ρ0.

Let us write the Efron-Stein Decomposition for g(z) on
∏R1

i=1(Z i,Ti
e) as

∑
S⊆[R1] gS(z)

and we know gS(z) =
∑

π(T)=S ĝ(S)χT (z). We also write ( f (x)g(y))’s Efron-Stein Decompo-
sition on

∏
i=1(X i ×Y i,T i

e ) as
∑

S⊆[R1] FS(x, y). Let UTe be the conditional operator asso-

ciated with correlated probability space (
∏R1

i=1 X i ×Y i,
∏R1

i=1 Z i,Te). We denote I as the
identity operator. Then we have

E[ f (x)g(y)g(z)]−E[( f (x)g(y)T1−γg(z)]=E[ f (x)g(y)(I −T1−γ)g(z)]

=
∑

S⊆[R1]
E[FS(x, y)UTe (I −T1−γ)gS(x, y)] (By the orthogonality) (5.13)

It is easy to check that for the Efron-Stein decomposition of function (I −T1−γ)g, we have

((I −T1−γ)g)S = (I −T1−γ)(gS).

Then Lemma 5.4.1, we have that

‖UTe (I −T1−γ)gS‖2 ≤ ρ
|S|
0 ||(I −T1−γ)gS||2.

Denote πe(Q) as {i|πe(i) ∈ Q}. As πe is d-to-1 projection, we have |Q| ≤ |S|d . For any
Q ⊆ [R2], We know

||(I −T1−γ)gS||
2
2 =

∑

Q⊆[R2],πe(Q)=S
(1− (1−γ)2|Q|)2 ĝ(Q)2χT ≤ (1− (1−γ)2|S|d)2‖gS‖

2
2.
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Therefore,

||UTe (I −T1−γ)gS||2 ≤ ρ
|S|
0

√
1− (1−γ)2|S|d)||gS||2 ≤min(ρ|S|

0 ,
√

1− (1−γ)2|S|d)‖gS‖2.

When |S| ≥ logβ
logρ0

, we know ρ
|S|
0 ≤β. When |S| ≤ logβ

logρ0
, we have

1− (1−γ)2|S|d = 1−

(

1−
β3(1−ρ0)

d

)2|S|d

≤ 1− (1−β3(1−ρ0))
2 logβ

logρ0 = o(β2).

Therefore,

min(ρ|S|
0 ,

√
1− (1−γ)2|S|d)≤β.

By Cauchy-Schwarz, we get:

(5.13) ≤
√ ∑

S⊆[R1]
||FS||22

∑
||UTe (I −T1−γ)gS||22 ≤ β

√ ∑

S⊆[R1]
||FS||22

∑

S⊆[R1]
||gS||22 ≤ β (5.14)

If we apply the same calculation above when treating f (x)T1−γg(z) as a whole and
notice that ρ(X ×Z ,Y ;Te)≤ ρ0, we would get:

|E[ f (x)T1−γg(y)T1−γg(z)]−E[( f (x)g(y)T1−γg(z)]| ≤β (5.15)

It remains to show

|E
Te

[ f (x)T1−γg(y)T1−γg(z)]− E
Te

[T1−γ′ f (x)T1−γg(y)T1−γg(z)]| ≤β.

However, we can not apply the same trick again as that ρ(X i,Y i ×Z i,Hδ(di))= 1.
Recall the definition of the Bonami-Beckner operator, we can rewrite ETe [ f (x)T1−γg(y)T1−γg(z)]

as E(Te)∗[ f (x)g(y∗)g(z∗)] where (Te)∗ is the distribution as follows: first we generate x, y, z
by distribution Te and then we independently reset each bits in y, z with some indepen-
dent random bit with probability γ and get y∗, z∗.

Recall that Te =
∏R1

i=1 T i
e where each distribution T i

e (on X i ×Y i ×Z i) is set to be

Hδ(di). It is easy to check that (Te)∗ =
∏R1

i=1(T i
e )∗ where (T i

e )∗ =H ∗
δ

(di) is the distribution
such that we first generate (x, y1..ydi , z1..zdi ) by Hδ(di) and then we independently reset
every coordinate yi and zi to be some random bit with probability γ.

Now we will show ρ(X i,Y i ×Z i;H ∗
δ

(di)) ≤ (1−γ2d/2). By the definition of H ∗
δ

(di),

there is probability (γ)2di such that yi, zi are all reset. When this happen, x is independent
with y, z. We call V the event that “yi, zi are all reset". Then we have

ρ(X i,Y i ×Z i;H ∗
δ (di))= sup

f ,G,E[ f ]=E[G]=0
E[ f 2]=E[G2]=1

(1−γ2di )E[ f (x)G(y, z)|V]

+γ2diE[ f (x)G(y, z)|V] (5.16)

Notice that event V is independent with x, we have E[ f (x)G(y, z)|V]=E[ f (x)|V ]E[G(y, z)|V]=
E[ f (x)]E[G(y, z)|V]= 0.
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Also since

1=E[G2]= (1−γ2di )E[G2|V]+γ2di E[G2|V]

we have E[G(y, z)2|V]≤ 1/(1−γ2di ). Therefore

ρ(X i,Y i ×Z i;H ∗
δ (di))= (1−γ2di )E[ f (x)G(y, z)|V]≤ (1−γ2di )

√
E[ f 2|V]|E[G(y, z)2|V]

≤ (1−γ2di )
√

E[ f 2]/(1−γ2di )≤
√

1−γ2di ≤ (1−γ2d/2) (5.17)

We have shown ρ(X i,Y i ×Z i;H ∗
δ

(di))≤ (1−γ2d/2). By applying Proposition 5.3.11,

ρ(
R1∏

i=1
X i,

R1∏

i=1
Y i ×Z i;T ∗

e )≤ 1−γ2d/2.

Notice that

E
Tβ

[ f (x)T1−γg(y)T1−γg(z)]− E
Te

[T1−γ′ f (x)T1−γg(y)T1−γg(z)]

= E
T ∗

e

[ f (x)g(y∗)g(z∗)]− E
T ∗

e

[T1−γ′ f (x)g(y∗)g(z∗)]= E
T ∗

e

[g(y∗)g(z∗)(I −T1−γ′) f (x)] (5.18)

Now we can view g(y∗)g(z∗) as a whole. Similar to the proof of (5.15) and (5.13), we
can bound the |(5.18)| by β. Overall, we prove that

|E[ f (x)g(y)g(z)]−E[T1−γ∗( f (x)T1−γg(y)T1−γg(z)]| ≤ 3β.

Above proof is similar to the setup of Lemma 6.2 in [115]. The main reason we can not
use it directly is our distribution has ρ(X ,Y ×Z ;Te)= 1. In addition, the Bonami-Beckner
Operator we need to use is different from the one used in that Lemma.

5.5 Probability Space

Proof of Lemma 5.3.8:

Proof. Let us first prove a graph property of Hδ.

Lemma 5.5.1. Define a bipartite graph G(X ×Y ,Z ) as follows: if

PrHδ
((x, y1, ..yd, z1..zd)> 0,

(x, y1, ...yd), (z1, ..zd) are in G and there is an edge between them. Then G is connected.

Proof. This is a bipartite graph with no isolated nodes since nodes are included only if
they are on some edge. Notice that Hδ = (1−δ)H +δN . By definition of N , we know
(z1, ..zd) has edge with (xi = z1, y1 = z1, y2 = −x1z2..yd = −x1zd). And by definition of H ,
(x1 = z1, y1 = z1, y2 =−x1z2...yd =−x1zd) has edge with (−1, z2...zd). Therefore, (z1, ..zd) is
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connected with (−1, z2...zd) if they are not the same node. Essentially, (z1, ..zd) has edge
with the node that set one of the zi to -1: (z1, z2, ..zi−1, zi =−1, zi+1, ..zd) if they are not the
same nodes. Notice that (1, ...1) is in Z and it can reach any nodes in Z by setting some
coordinates to −1. Also, every node in X ×Y is connected with some node in Z . The graph
is therefore fully connected.

Since Hδ is connected. The smallest probability event in Hδ is δ
d2d . By applying

Lemma 2.9 in [115], we know: ρ(X ×Y ,Z ;Hδ)≤ 1− δ2

22d+1d2 .

Proof of Lemma 10.5.1

Proof. Notice that Fδ ,F and N ’s marginal distributions on X are all uniform.

(X ,Y ×Z ;Fδ)= sup
f ,G,E[ f ]=E[G]=0
E[ f 2]=E[G2]=1

E
Fδ

[ f G]= (1−δ)sup
f ,G

(E
F

[ f G]+δE
N

[ f G])=

(1−δ)E
F

[ f ]E[G]+δE
N

[ f G]≤ 0+δ

√
E
N

[| f |2] E
N

[G2]. (5.19)

We know EN [ f 2]=EFδ
[ f 2]= 1. Also notice that 1 =EFδ

[G2]= (1−δ)EF [G2]+δEN [G2]≥
δEN [G2]. We have EN [G2]≤ 1/δ and therefore we can bound (5.19) by

p
δ.

Proof of Lemma 5.3.9

Proof. We know X ,Y are independent in H . Also by definition Hδ = (1− δ)H + δN .
Notice that the marginal distributions of both Hδ and N on Y and Z are the same
(uniform distribution), we have

ρ(X ,Y ;Hδ)= sup
f ,g,E[ f ]=E[g]=0
E[ f 2]=E[g2]=1

E
Hδ

[ f (x)g(y)]= (1−δ)sup
f ,g

(E
H

[ f (x)g(y)]+δE
N

[ f (x)g(y)])

= δE
N

[ f g]≤ δ

√
E
N

[ f 2] E
N

[g2]= δ.

5.6 Matrix Theory

Lemma 5.6.1. Ai and Bi are mi ×mi matrix. And we know Ai, Ai +Bi and Ai −Bi are
positive matrices. Then for any n,

⊗n
i=1 Ai−

⊗n
i=1 Bi and

⊗n
i=1 Ai+

⊗n
i=1 Bi are both positive

matrices.

Proof. We prove the claim by induction on n.
Base: The base case n = 1 is already known fact.
Induction step: Suppose it is hold for n = k, for n = k+1, we know

2

(
k+1⊗

i=1
Ai −

k+1⊗

i=1
Bi

)

= (Ak+1 +Bk+1)(
k⊗

i=1
Ai −

k⊗

i=1
Bi)+ (Ak+1 −Bk+1)(

k⊗

i=1
Ai +

k⊗

i=1
Bi).
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By Induction, (Ak+1 +Bk+1), (
⊗k

i=1 Ai −
⊗k

i=1 Bi), (Ak+1 −Bk+1), (
⊗k

i=1 Ai +
⊗k

i=1 Bi) are all

positive matrices. Therefore,
⊗k+1

i=1 Ai −
⊗k+1

i=1 Bi is positive.
By a similar argument, since we know

2

(
k+1⊗

i=1
Ai +

k+1⊗

i=1
Bi

)

= (Ak+1 +Bk+1)(
k⊗

i=1
Ai +

k⊗

i=1
Bi)+ (Ak+1 −Bk+1)(

k⊗

i=1
Ai −

k⊗

i=1
Bi),

we have that
⊗k+1

i=1 Ai +
⊗k+1

i=1 Bi is also positive.
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Chapter 6

SDP gaps for variants of Label Cover

129



6.1 Introduction

In this chapter, we mainly study the SDP gap for 2-to-1 LABEL-COVER (as well some other
variants).

6.1.1 Motivations

The main reason to study d-to-1 LABEL-COVER is to understand the approximability of
satisfiable instance. For example, in Chapter 5, we study the applications d-to-1 conjec-
ture on the 3-CSP examples. Another hardness result for satisfiable instance is the graph
coloring problem: an important result is due to Dinur, Mossel, and Regev [43] who used the
“2-to-1 Conjecture” as well as the “2-to-2 Conjecture”, and the “α-Constraint Conjecture”.
(These conjectures will be described formally in Section 6.3.) An instance of LABEL-COVER

with α-constraints was also implicit in the result of Dinur and Safra [44], on the hardness
of approximating minimum vertex cover.

6.1.2 Statements of the Conjectures

We have already defined d-to-1 LABEL-COVER in Section 2.5. 2-to-1 LABEL-COVER is the
special case of d = 2. We restate its definition here:

Definition 1. A mapping π : [R] → [R] is said to be 2-to-1 if for each element j ∈ [R] we
have |π−1( j)| ≤ 2. A LABEL-COVER instance is said to be 2-to-1 if all its constraints are
2-to-1 projections.

Conjecture 1. [97] (2-to-1 Conjecture) For any δ > 0, for 2-to-1 LABEL-COVER with
alphabet size large enough (while still being a constant depending only on δ), it is NP-hard
to (1,1−δ)-approximate the problem.

6.1.3 Evidence for and against

Despite significant work, the status of the UGC— as well as the 2-to-1, 2-to-2, and α-
Constraint Conjectures — is unresolved. Towards disproving the conjectures, the best al-
gorithms known are due to Charikar, Makarychev, and Makarychev [28]. Using somewhat
strong SDP relaxations, those authors gave polynomial-time SDP-rounding algorithms
which achieve:

• Value K−ε/(2−ε) (roughly) for Unique LABEL-COVER instances with SDP value 1− ε

over alphabets of size K .

• Value K−3+2
p

2−ε for 2-to-1 LABEL-COVER instances with SDP value 1−Θ(ε) over
alphabets of size K .

The best evidence in favor of the UGC is probably the existence of strong SDP gaps. The
first such gap was given by Khot and Vishnoi [107]: they constructed a family of Unique
LABEL-COVER instances over alphabet size K with SDP value 1− ε and integral optimal
value K−Θ(ε). In addition to roughly matching the CMM algorithm, the Khot–Vishnoi gaps
have the nice property that they even hold with Triangle Inequality constraints added into
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the SDP. Even stronger SDP gaps for UGC were obtained recently by Raghavendra and
Steurer [127].

Standing in stark contrast to this is the situation for the 2-to-1 Conjecture and related
variants with perfect completeness. Prior to this work, there were no known SDP gap
families for these problems with SDP value 1 and integral optimal value tending to 0 with
the alphabet size. Indeed, there was hardly any evidence for these conjectures, beyond the
fact that the algorithm in [28] failed to disprove them.

6.1.4 SDP gaps as a reduction tool

In addition to being the only real evidence towards the validity of the UGC, SDP gaps
for UNIQUE-GAMES have served another important role: they serve as starting points
for strong SDP gaps for other important optimization problems. A notable example of
this comes in the work of Khot and Vishnoi [107] who used the UG gap instance to con-
struct a super-constant integrality gap for the Sparsest Cut-SDP with triangle inequali-
ties, thereby refuting the Goemans-Linial conjecture that the gap was bounded by O(1).
They also used this approach to show that the integrality gap of the Max-Cut SDP remains
0.878 when triangle inequalities are added. Indeed the approach via UNIQUE-GAMES re-
mains the only known way to get such strong gaps for Max Cut. Recently, even stronger
gaps for Max-Cut were shown using this framework in [96, 127]. Another example of a
basic problem for which a SDP gap construction is only known via the reduction from
UNIQUE-GAMES is Maximum Acyclic Subgraph [67].

In view of these results, it is fair to say that SDP gaps for UNIQUE-GAMES are signif-
icant unconditionally, regardless of the truth of the UGC. Given the importance of 2-to-1
and related conjectures in reductions to satisfiable CSPs and other problems like coloring
where perfect completeness is crucial, SDP gaps for 2-to-1 LABEL-COVER and variants are
worthy of study even beyond the motivation of garnering evidence towards the associated
conjectures on their inapproximability.

6.2 Our Results

LABEL-COVER admits a natural SDP relaxation (see Figure 6.1). In this work, we show
the following results on the limitations of the basic SDP relaxation for LABEL-COVER

instances with 2-to-1, 2-to-2, and α constraints:
• There is an instance of 2-to-2 LABEL-COVER with alphabet size K and optimum

value O(1/ logK) on which the SDP has value 1.

• There are instances of 2-to-1 and α-constraint LABEL-COVER with alphabet size K
and optimum value O(1/

√
logK) on which the SDP has value 1.

In both cases the instances have size 2Ω(K).
We note that if we only require the SDP value to be 1− ε instead of 1, then integrality

gaps for all these problems easily follow from gaps from UNIQUE-GAMES, constructed by
Khot and Vishnoi [107] (by duplicating labels appropriately to modify the constraints).
However, the motivation behind these conjectures is applications where it is important
that the completeness is 1. Another difference between the 2-to-1 LABEL-COVER and the
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Unique LABEL-COVER is the fact that for 2-to-1 instances, it is consistent with known
algorithmic results of [28] that Opt be as low as K−c for some c > 0 independent of ε, when
the SDP value is 1− ε. It is an interesting question if Opt can be indeed this low even
when the SDP value is 1. Our constructions do not address this question, as we only show
OPT =O(1/

√
logK).

We also point out that our integrality gaps are for special cases of the LABEL-COVER

problem where the constraints can be expressed as difference equations over F2-vector
spaces. For example, for 2-to-2 LABEL-COVER, each constraint φe is of the form x− y ∈
{α,α+γ} where α,γ ∈ Fk

2 are constants. However, treating the coordinates (x1, . . . , xk) and
(y1, . . . , yk) as separate Boolean variables, and introducing an auxiliary Boolean variable
ze for the constraint, we can re-write it as a conjunction of linear equations over F2:

k∧

i=1

(
xi − yi − ze ∙γi =αi

)
.

Here xi, yi,αi,γi denote the ith coordinates of the corresponding vectors. Then the problem
of deciding whether the instance is completely satisfiable (OPT = 1) or not (OPT < 1),
reduces to deciding whether the system of linear equations as above, is satisfiable. This
can be easily done in polynomial time.

Despite this tractability, the SDPs fail badly to decide satisfiability. This situation is
similar to the very strong SDP gaps known for problems such as 3-XOR (see [131], [139]),
for which deciding complete satisfiability is easy.

6.3 Preliminaries and Notation

6.3.1 2-to-1, 2-to-2 and α LABEL-COVER Problems

Recall that a LABEL-COVER instance L is defined by a tuple (U ,V ,E,P,R1,R2,Π). Here
U and V are the two vertex sets of a bipartite graph and E is the set of edges between U
and V . P is an explicitly given probability distribution on E. R1 and R2 are integers with
1 ≤ R1 ≤ R2. Π is a collection of “projections”, one for each edge: Π= {πe : [R2] → [R1] | e ∈
E}.

Here an edge (u,v) is satisfied by a assignment L if L(u) = πu,v(L(v)). The constraint
on each edge is a projection. As for the 2-to-2 and α LABEL-COVER, the constraint on each
edge is called 2-to-2 and α defined as follows.
Definition 2. A constraint π⊆ {1, . . . ,2R}2 is said to be a 2-to-2 constraint if there are two
permutations σ1,σ2 : {1, . . . ,2R} 7→ {1, . . . ,2R} such that (i, j) ∈ π if and only if (σ1(i),σ2( j)) ∈
T where

T := {(2l−1,2l−1), (2l−1,2l), (2l,2l−1), (2l,2l)}R
l=1

A LABEL-COVER instance is said to be 2-to-2 if all its constraints are 2-to-2 constraints.
A constraint π ⊆ {1, . . . ,2R}2 is said to be an α-constraint if there are two permutations

σ1,σ2 : {1, . . . ,2R} 7→ {1, . . . ,2R} such that (i, j) ∈π if and only if (σ1(i),σ2(i)) ∈ T ′ where

T ′ := {(2l−1,2l−1), (2l−1,2l), (2l,2l−1)}R
l=1

A LABEL-COVER instance is said to be α if all its constraints are α constraints.
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maximize Ee=(u,v)∈E

[
∑

(i, j)∈πe

〈
z(u,i),z(v, j)

〉
]

subject to
∑

i∈[R]

∥
∥z(v,i)

∥
∥2

= 1 ∀ v ∈V

〈
z(v,i),z(v, j)

〉
= 0 ∀ i 6= j ∈ [R],v ∈V

Figure 6.1: SDP for LABEL-COVER

Conjecture 2. [43] (2-to-2 Conjecture) For any δ> 0, it is NP-hard to decide whether a
2-to-2 LABEL-COVER instance L has:-

• OPT(L )= 1
• OPT(L )≤ δ

It was shown in [43] that the 2-to-2 Conjecture is no stronger than the 2-to-1 Conjec-
ture.

Conjecture 3. [43] (α Conjecture) For any δ > 0, it is NP-hard to decide whether a α

LABEL-COVER instance L has:-
• OPT(L )= 1
• OPT(L )≤ δ

By abuse of notation, for the 2-to-2 or α LABEL-COVER, we use πu,v to denote the
constraint on an edge (u,v) and it an edge is satisfied if (L(u),L(v)) ∈ πu,v. For the case of
2-to-1 where each πu,v is a projection relationship, we use (L(u),L(v)) ∈πu,v as a equivalent
statement of πu,v(L(v))= L(u).

In Figure 6.1, we write down a natural SDP relaxation for the LABEL-COVER problem.
The relaxation is over the vector variables z(v,i) for every vertex v ∈V and label i ∈ [R].

6.3.2 Fourier Analysis

We will use the Fourier Analysis on Fk
2 where F2 = {0,1}. 1

Let V := { f : Fk
2 →R} denote the vector-space of all real functions on Fk

2, where addition
is defined as point-wise addition over F2 (or . We always think of Fk

2 as a probability space
under the uniform distribution, and therefore use notation such as ‖ f ‖p := Ex∈Fk

2
[| f (x)|p].

For f , g ∈F , we also define the inner product ‹ f , g› :=E[ f (x)g(x)].
For any α ∈ Fk

2 the χα ∈ F as χα(x) := (−1)α∙x, ∀x ∈ Fk
2. The Fourier characters form an

orthonormal basis for V with respect to the above inner product, hence every function f ∈ V

has a unique representation as f =
∑

α∈Fk
2

f̂ (α)χα, where the Fourier coefficient f̂ (α) :=
〈

f ,χs
〉
.

We also sometimes identify each α with the set Sα = {i|αi = 1} and denote the Fourier
coefficients as f̂ (S). We use the notation |α| for |Sα|, the number of coordinates where α

1The reader may notice that in other Chapters, we are using Harmonical Analysis over {−1,1}n →R. The
switch (to F2) is mainly for the notational convenience in this Chapter.
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is 1.
We need the following result due to Talagrand (“Proposition 2.3” in [135]), proven using

hypercontractivity methods:

Theorem 6.3.1. Suppose F : Fk
2 →R has E[F]= 0. Then

∑

α∈Fk
2\{0}

F̂(α)2/|α| =O

(
‖F‖2

2

ln(‖F‖2/(e‖F‖1))

)

.

More precisely, we will need the following easy corollary:

Corollary 6.3.2. If F : Fk
2 → {0,1} has mean 1/K, then

F̂(0)2 +
∑

α∈Fk
2\{0}

F̂(α)2/|α| =O (1/(K logK))

Proof. We have F̂(0)2 = E[F]2 = 1/K2 ≤ O(1/(K logK)), so we can disregard this term. As
for the sum, we apply Theorem 6.3.1 to the function F ′ = F −1/K , which has mean 0 as
required for the theorem. It is easy to calculate that ‖F ′‖2 =Θ(1/

p
K) and ‖F ′‖1 =Θ(1/K),

and so the result follows.

6.4 Integrality Gap for 2-to-2 Games

We first give an integrality gap for LABEL-COVER with 2-to-2 constraints. The instance
for 2-to-1 LABEL-COVER will be an extension of the one below. In fact, our analysis of
Opt in the 2-to-1 case will follow simply by reducing it to the analysis of Opt for the 2-to-2
instance below.

The vertex set V in our instance is same as the vertex set of the UNIQUE-GAMES

integrality gap instance constructed in [107]. Let F := { f : Fk
2 7→ F2} denote the family of

all Boolean functions on Fk
2. For f , g ∈ F , define the product f g as ( f g)(x) := f (x)g(x).

Consider the equivalence relation ∼ on F defined as f ∼ g ⇔ ∃α ∈ Fk
2 s.t. f ≡ gχα. This

relation partitions F into equivalence classes P1, . . . ,Pn, with n := 2K /K . The vertex set
V consists of the equivalence classes {P i}i∈[n]. We denote by [P i] the lexicographically
smallest function in the class P i and by P f , the class containing f .

We take the label set to be of size K and identify [K] with Fk
2 in the obvious way. For

each tuple of the form (γ, f , g) where γ ∈ Fk
2 \ {0} and f , g ∈ F are such that (1+χγ) f ≡

(1+χγ)g, we add a constraint π(γ, f ,g) between the vertices P f and P g. Note that the
condition on f and g is equivalent to saying that χγ(x) = 1 =⇒ f (x) = g(x). If f = [P f ]χα

and g = [P g]χβ and if A : [n]→ Fk
2 denotes the labeling, the relation π(γ, f ,g) is defined as

(A(P f ), A(P g)) ∈π(γ, f ,g) ⇔ (A(P f )+α)− (A(P g)+β) ∈ {0,γ}.

Note that for any ω ∈ Fk
2, the constraint maps the labels {ω,ω+ γ} for P f to the labels

{ω+α−β,ω+α−β+γ} for P g in a 2-to-2 fashion. We denote the set of all constraints by π.
We remark that, as in [107], our integrality gap instances contain multiple constraints on
each pair of vertices.
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6.4.1 SDP Solution

We give below a set of feasible vectors z(P i ,α) ∈RK for every equivalence class P i and every
label α, achieving SDP value 1. Identifying each coordinate with an x ∈ Fk

2, we define the
vectors as

z(P i ,α)(x) :=
1

K
([P i]χα)(x).

It is easy to check that
∥
∥z(P i ,α)

∥
∥2

= 1/K for each of the vectors, which satisfies the first
constraint. Also, z(P i ,α) and z(P i ,β) are orthogonal for α 6=β since

〈
z(P i ,α),z(P i ,β)

〉
=

1

K2

〈
[P i]χα, [P i]χβ

〉
=

1

K2

〈
χα,χβ

〉
= 0

using the fact that [P i]2 = 1. The following claim proves that the solution achieves SDP
value 1.
Claim 6.4.1. For any edge e indexed by a tuple (γ, f , g) with f (1+χγ)≡ g(1+χγ), we have

∑

ω1,ω2∈π(γ, f ,g)

〈
z(P f ,ω1),z(P g,ω2)

〉
= 1

Proof. Let f ≡ [P f ]χα and g ≡ [P g]χβ. Then, (ω1,ω2) ∈ πe iff (ω1 +α)− (ω2 +β) ∈ {0,γ}.
Therefore, the above quantity equals (divided by 2 to account for double counting of ω)

1

2
∙
∑

ω

(〈
z(P f ,ω+α),z(P g,ω+β)

〉
+

〈
z(P f ,ω+α+γ),z(P g,ω+β)

〉

+
〈

z(P f ,ω+α),z(P g,ω+β+γ)

〉
+

〈
z(P f ,ω+α+γ),z(P g,ω+β+γ)

〉)

=
1

2

∑

ω

〈
z(P f ,ω+α) +z(P f ,ω+α+γ),z(P f ,ω+β) +z(P f ,ω+β+γ)

〉
(6.1)

However, for each ω, we have z(P f ,ω+α) +z(P f ,ω+α+γ) = z(P f ,ω+β) +z(P f ,ω+β+γ), since for all
coordinates x,

z(P f ,ω+α)(x)+z(P f ,ω+α+γ)(x) =
1

K
([P f ]χω+α(x)+ [P f ]χω+α+γ(x))

=
1

K
( f (x)+ f χγ)χω(x)

=
1

K
(g(x)+ gχγ)χω(x)

=
1

K
([P g]χω+β(x)+ [P g]χω+β+γ(x))

= z(P f ,ω+β)(x)+z(P f ,ω+β+γ)(x).

This completes the proof as the value of (6.1) then becomes

1

2

∑

ω

∥
∥
∥z(P f ,ω+α) +z(P f ,ω+α+γ)

∥
∥
∥

2
=

1

2

∑

ω

(∥
∥
∥z(P f ,ω+α)

∥
∥
∥

2
+

∥
∥
∥z(P f ,ω+α+γ)

∥
∥
∥

2
)

= 1
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6.4.2 Soundness

We now prove that any labeling of the instance described above, satisfies at most O(1/ logK)
fraction of the constraints. Let A : V → Fk

2 be a labeling of the vertices. We extend it to a
labeling of all the functions in F by defining A([P i]χα) := A(P i)+α.

For each α ∈ Fk
2, define Aα : F → {0,1} to be the indicator that A’s value is α. By

definition, the fraction of constraints satisfied by the labeling A is

val(A) = E
(γ, f ,g)∈π




∑

α∈Fk
2

Aα( f )(Aα(g)+ Aα+γ(g))





= E
(γ, f ,g)∈π




∑

α∈Fk
2

Aα( f )(Aα(g)+ Aα(gχγ))



 = 2 ∙ E
(γ, f ,g)∈π




∑

α∈Fk
2

Aα( f )(Aα(g)



(6.2)

where the last equality used the fact that for every tuple (γ, f , g) ∈π, we also have (γ, f , gχγ) ∈
π.

Note that the extended labeling A : F → Fk
2 takes on each value in Fk

2 an equal number
of times. Hence

E f [Aα( f )]=Pr f [A( f )=α]= 1/K for each α ∈ Fk
2. (6.3)

For our preliminary analysis, we will use only this fact to show that for any α ∈ Fk
2 it holds

that

E
(γ, f ,g)∈π

[Aα( f )Aα(g)]≤O(1/(K logK)). (6.4)

It will then follow that the soundness (6.2) is at most O(1/ logK). Although this tends to 0,
it does so only at a rate proportional to the logarithm of the alphabet size, which is K = 2k.

Beginning with the left-hand side of (6.4), let’s write F = Aα for simplicity. We think of
the functions f and g being chosen as follows. We first choose a function h : γ⊥ → F2. Note
that γ⊥ ⊆ Fk

2 is the set of inputs where χγ = 1 and hence f = g, and we let f (x)= g(x)= h(x)
for x ∈ γ⊥. The values of f and g on the remaining inputs are chosen independently at
random. Then

E
(γ, f ,g)∈π

[F( f )F(g)]=E
γ

E
h:γ⊥→F2

[
E f ,g|h[F( f )F(g)]

]
=E

γ
E

h:γ⊥→F2

[
E f |h[F( f )]Eg|h[F(g)]

]
. (6.5)

Let us write PγF(h) for E f |hF( f ), which is also equal to Eg|hF(g). We now use the Fourier
expansion of F. Note that the domain here is FK

2 instead of Fk
2. To avoid confusion with

characters and Fourier coefficients for functions on Fk
2, we will index the Fourier coeffi-

cients below by sets S ⊆ Fk
2. Given an f ∈V , we’ll write f S for

∏
x∈S f (x) (which is a Fourier

character for the domain FK
2 ). Now for fixed γ and h,

PγF(h)=E f |h[F( f )]=E f |h




∑

S⊆Fk
2

F̂(S) f S



=
∑

S⊆Fk
2

F̂(S) ∙E f |h[ f S].
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The quantity E f |h[ f S] is equal to hS if S ⊆ γ⊥ as is 0 otherwise. Thus, using the Parseval
identity, we deduce that (6.5) equals

E
γ

E
h:γ⊥→F2

[
(PγF(h))2]=E

γ

[
∑

S⊆γ⊥

(
F̂(S)

)2

]

=
∑

S⊆Fk
2

Prγ[S ⊆ γ⊥] ∙
(
F̂(S)

)2
.

Recalling that γ ∈ Fk
2 \ {0} is chosen uniformly, we have that

∑

S⊆Fk
2

Prγ[S ⊆ γ⊥] ∙
(
F̂(S)

)2
=

∑

S⊆Fk
2

2−dim(S) ∙
(
F̂(S)

)2
,

where we are writing dim(S) = dim(span S) for shortness (and defining dim(;) = 0). For
|S| ≥ 1 we have dim(S)≥ log2 |S| and hence 2−dim(S) ≥ 1/|S|. Thus

∑

S⊆Fk
2

2−dim(S) ∙ F̂(S)2 ≤ F̂(;)2 +
∑

;6=S⊆Fk
2

F̂(S)2/|S|.

Corollary 6.3.2 shows that this is at most O(1/(K logK)). This completes the proof, as

val(A) = 2 ∙
∑

α∈Fk
2

E(γ, f ,g)∈π [Aα( f )Aα(g)] ≤ 2 ∙
∑

α∈Fk
2

2−dim(S) Âα(S)2 = O(1/ logK).

6.5 Integrality Gap for 2-to-1 LABEL-COVER

The instances for 2-to-1 LABEL-COVER are bipartite. We denote such instances as (U ,V ,E,R1,R2,Π)
where R2 = 2R1 denote the alphabet sizes on the two sides. For a bipartite instance, the
LABEL-COVER SDP can be written in the following form involving vectors y(u,i) for each
u ∈U , i ∈ [R1] and vectors z(v, j) for each v ∈ v, j ∈ [R2].

maximize Ee=(u,v)∈E

[
∑

i∈[R2]

〈
y(u,πe(i)),z(v, j)

〉
]

subject to
∑

i∈[R1]

∥
∥y(u,i)

∥
∥2

= 1 ∀ u ∈U

∑

i∈[R2]

∥
∥z(v,i)

∥
∥2

= 1 ∀ v ∈V

〈
y(u,i),y(u, j)

〉
= 0 ∀ i 6= j ∈ [R1], u ∈U

〈
z(v,i),z(v, j)

〉
= 0 ∀ i 6= j ∈ [R2],v ∈V

Figure 6.2: SDP for 2-to-1 games
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6.5.1 Gap Instance

As in the case of 2-to-2 games, the set V consists of equivalence classes P1, . . . ,Pn, which
partition the set of functions F = { f : Fk

2 → F2}, according to the equivalence relation ∼

defined as f ∼ g ⇔ ∃α ∈ Fk
2 s.t. f ≡ gχα. The label set [R2] is again identified with Fk

2 and
is of size K = 2k.

To describe the set U , we further partition the vertices in V according to other equiv-
alence relations. For each γ ∈ Fk

2,γ 6= 0, we define an equivalence relation ∼=γ on the set
P1, . . . ,Pn as

P i
∼=γ P j ⇔ ∃ f ∈P i, g ∈P j s.t. f (1+χγ)≡ g(1+χγ)

This is equivalent to saying

P i
∼=γ P j ⇔ ∃ f ∈P i, g ∈P j s.t. f g(x)=−1⇒ χγ(x)=−1∀x ∈ Fk

2

This partitions P1, . . . ,Pn (and hence also the set F ) into equivalence classes Q
γ

1 , . . . ,Qγ
m.

Here m = 2K /2+1/K (this is immediate from the second definition and the fact that n =
2K /K) and the partition is different for each γ. The set U has one vertex for each class of
the form Q

γ

i for all i ∈ [m] and γ ∈ Fk
2 \ {0}. As before, we denote by [Qγ

i ] the lexicographi-

cally smallest function in the class Q
γ

i , and by Q
γ

f the class under ∼=γ containing f . Note

that if f ∈Q
γ

i , then there exists a β ∈ Fk
2 such that f (1+χγ)≡ [Qγ

i ]χβ(1+χγ).

The label set R1 has size K /2. For each vertex Q
γ

i ∈U , we think of the labels as pairs

of the form {α,α+γ} for α ∈ Fk
2. More formally, we identify it with the space Fk

2/‹γ›. We
impose one constraint for every pair of the form (γ, f ) between the vertices P f and Q

γ

f . If

f ≡ [P f ]χα and f (1+χγ)≡ [Qγ

i ]χβ(1+χγ), then the corresponding relation π(γ, f ) is defined
by requiring that for any labelings A : V → [R2] and B : U → [R1],

(B(Qγ

f ), A(P f )) ∈π(γ, f ) ⇔ A(P f )+α ∈ B(Qγ

f )+β.

Here, if B(Qγ

f ) is a pair of the form {ω,ω+γ}, then B(Qγ

f )+β denotes the pair {ω+β,ω+γ+β}.

6.5.2 SDP Value

As before, we give a set of vectors y(Q
γ

i ,{α,α+γ}) and z(P i ,α) in RK , identifying each coordinate

with an x ∈ Fk
2. We define the vectors as

y(Q
γ

i ,{α,α+γ})(x) :=
1

K

(
[Qγ

i ]χα(1+χγ)
)
(x) and z(P i ,α)(x) :=

1

K

(
[P f ]χα

)
(x).

We have already shown that
〈
z(P i ,α),z(P i ,β)

〉
= 0 for α 6= β and

∥
∥z(P i ,α)

∥
∥2

= 1/K . It
again follows by the orthogonality of characters that for disjoint pairs {α,α+γ} and {β,β+
γ}, the vectors y(Q

γ

i ,{α,α+γ}) and y(Q
γ

i ,{β,β+γ}) are orthogonal. It is also easy to verify that
∥
∥
∥y(Q

γ

i ,{α,α+γ})

∥
∥
∥

2
= 2/K . Hence, the vectors form a feasible solution.

To show that the SDP value is equal to 1, we consider an arbitrary constraint indexed
by the pair (γ, f ). Let f ≡ [P f ]χα and f (1+χγ) ≡ [Qγ

i ]χβ(1+χγ). Then for any ω ∈ Fk
2, this

138



constraint maps the label ω+α for P f to the pair {ω+β,ω+γ+β} for Q
γ

f . Hence, the value
of the SDP solution on this constraint is given by

∑

ω∈Fk
2

〈
y(Q

γ

i ,{ω+β,ω+β+γ}),z(P i ,α+ω)

〉

We will show that for every ω, y(Q
γ

i ,{ω+β,ω+β+γ}) = z(P i ,α+ω) +z(P i ,α+ω+γ). This will complete

the proof as the above expression then becomes

∑

ω∈Fk
2

〈
z(P i ,α+ω) +z(P i ,α+ω+γ),z(P i ,α+ω)

〉
=

∑

ω∈Fk
2

∥
∥z(P i ,α+ω)

∥
∥2

= 1.

To show the vector identity, we simply note that for each coordinate x, we have

y(Q
γ

i ,{ω+β,ω+β+γ})(x)=
1

K

(
[Qγ

i ]χβ(1+χγ)
)
(x) =

1

K

(
f (1+χγ)

)
(x)

=
1

K

(
[P f ]χα+ [P f ]χα+γ

)
(x)

= z(P i ,α+ω)(x)+z(P i ,α+ω+γ)(x).

6.5.3 Soundness

We now bound the fraction of constraints satisfied by any pair of labelings A : V → [K] and
B : U → [K /2]. Let 1{E } denote the indicator of the event E , and N(u) denote the neighbor-
hood of a vertex u ∈U . Then, the fraction of constraints satisfied by any assignments A,B,
can be bound by an application of Cauchy-Schwarz as

val(A,B) = Eu∈UEv∈N(u)
[
1{πuv(A(v))=B(u)}

]

≤
(
Eu∈U

(
Ev∈N(u)

[
1{πuv(A(v))=B(u)}

])2
)1/2

=
(
Eu∈UEv1,v2∈N(u)

[
1{πuv1 (A(v1))=B(u)=πuv2 (A(v2))}

])1/2

≤
(
Eu∈UEv1,v2∈N(u)

[
1{πuv1 (A(v1))=πuv2 (A(v2))}

])1/2

Note that if πuv1 and πuv2 are 2-to-1 projections, then the inner quantity in the last ex-
pression denotes the value of a 2-to-2 LABEL-COVER instance, each of whose constraints is
defined by two 2-to-1 constraints in the original instance. For the 2-to-1 instance described
above, we will show that the inner quantity in fact denotes the fraction of constraints sat-
isfied by A for the 2-to-2 instance described in Section 6.4. This will show that the fraction
of constraints satisfied by any assignment in the above 2-to-1 instance can be at most
O(1/

√
logK).

To see this, note that a vertex u ∈ U and a vertex v1 ∈ V can be sampled jointly by
picking a pair (γ, f ) and taking u = Q

γ

f and v1 = P f . Sampling v2 ∈ N(u) corresponds to

choosing a class P i such that for some β ∈ Fk
2 [P i]χβ(1+χγ) ≡ f (1+χγ). Thus, v2 can be

sampled by choosing a random g such that f (1+χγ)≡ g(1+χγ) and taking v2 =P g.
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Also, if f ≡ [P f ]χα1 and g ≡ [P g]χα2 , then the constraint πuv1(A(v1))=πuv2(A(v2)) sim-
ply requires that for some ω ∈ Fk

2, A(P f )+α1 and A(P g)+α2 both lie in the set {ω,ω+γ}
and hence

(A(P f )+α1)− (A(P g)+α2) ∈ {0,γ}.

6.6 From 2-to-1 Constraints to α-constraints

In this section we show that any integrality gap instance for 2-to-1 games, with sufficiently
many edges, can be converted to an integrality gap instance for games with α-constraints.
The SDP we consider for these games is identical to the ones considered before, except for
the objective function.
Theorem 6.6.1. Let L = (U ,V ,E,R,2R,π) be a bipartite instance of 2-to-1 LABEL-COVER

problem with OPT(L )≤ δ and SDP value 1. Also, let |E| ≥ 4(|U |+|V |) log(R)/ε2. Then there
exists another instance L ′ = (U ,V ,E,2R,π′) of LABEL-COVER with α-constraints having
SDP value 1 and OPT(L ′)≤ δ+ε+1/R.

Proof. The proof simply follows by adding R “fake” labels for each vertex u ∈U , and then
randomly augmenting the constraints to make them of the required form. In particular,
let the new labels we add for each u ∈U be R +1, . . . ,2R. Let e = (u,v) be an edge. Since
the constraints in π are 2-to-1 type, there exist permutations σ1,e : [R] → [R] and σ2,e :
[2R] → [2R] such that after permuting the labels on each side, the projection πe maps
labels (2i−1,2i) to i i.e. πe(σ−1

2,e(2i−1))=πe(σ−1
2,e(2i))=σ−1

1,e(i).
To incorporate the new labels into the constraint, choose a random bijection σ′

1,e :
{R +1, . . . ,2R} → [R]. We now construct a new permutation σ̃1,e : [2R] → [2R] as σ̃1,e(i) =
2σ1,e(i)−1 if i ≤ R and σ̃1,e(i)= 2σ′

1,e(i) if i > R i.e. the new labels are mapped to the even
positions 2,4, . . . ,2R while the others are mapped to the odd positions.

The original 2-to-1 constraints are satisfied by a labeling A iff the pair (σ̃1,e(A(u),σ2,e(A(v)))
is of the form (2i−1,2i−1) or (2i−1,2i) for some i ≤ R. We augment the constraint by also
allowing (σ̃1,e(A(u),σ2,e(A(v))) to be (2i,2i−1) for some i. Note that if the constraint is sat-
isfied in this way, then u must get one of the new labels. Also, note that the augmentation
is random as we choose the map σ′

1,e independently at random for each edge e.
Given a vector solution {y(u,i)}u∈U ,i∈[R] and {z(v, j)}v∈V , j∈[2R] for π, we leave the vectors

z(v, j) unchanged and for each u ∈ U , take z(u,i) = y(v,i) if i ≤ R and 0 otherwise. It is
immediate that the solution is feasible. Also, the value of the objective is the same as the
value of the 2-to-1 SDP, as all the additional terms in the objective involve some vector
z(u,i) for some i > R and are hence 0. Thus, the SDP value for the new instance is 1.

To bound the optimal value of any labeling A : U ∪V → [2R], we split it as

Ee=(u,v)∈E
[
1{(A(u),A(v)) satisy e}

]
= Ee=(u,v)∈E

[
1{A(u)≤R} ∙1{(A(u),A(v)) satisy e}

]

+Ee=(u,v)∈E
[
1{A(u)>R} ∙1{(A(u),A(v)) satisy e}

]

Note that the first term is simply the number of 2-to-1 constraints satisfied by A and it at
most δ by assumption.

Also, for any fixed labeling A, the probability over the choice of the random maps
{σ′

1,e}e∈E, that (A(u), A(v)) satisfy e given that A(u) > R, is at most 1/R. By a Chernoff
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bound, the fraction of edges (u,v) satisfied with A(u)> R is at most 1/R+ε with probability
exp(−ε2|E|/3) over the choice of the random maps. By a union bound and the condition on
ε, the second term is at most 1/R + ε for all labelings A, with high probability over the
choice of {σ′

1,e}e∈E. Picking an instance with the appropriate choice of the maps σ′
1,e gives

the required instance L ′.

6.7 Discussion

The instances we construct have SDP value 1 only for the most basic SDP relaxation. It
would be desirable to get gaps for stronger SDPs, beginning with the most modest exten-
sions of this basic SDP. For example, in the SDP for 2-to-1 LABEL-COVER from Figure 6.2,
we can add valid nonnegativity constraints for the dot product between every pair of vec-
tors in the set

{y(u,i) | u ∈U , i ∈ [R1]}
⋃

{z(v, j) | v ∈V , j ∈ [R2]} ,

since in the integral solution all these vectors are {0,1}-valued. The vectors we construct
do not obey such a nonnegativity requirement. For the case of UNIQUE-GAMES, Khot and
Vishnoi [107] were able to ensure nonnegativity of all dot products by simply taking tensor
products of the vectors with themselves and defining new vectors y′

(u,i) = y⊗2
(u,i) = y(u,i)⊗y(u,i)

and z′
(v, j) = z⊗2

(v, j) = z(v, j) ⊗z(v, j). Since ‹a⊗2,b⊗2› = ‹a,b›2, the desired nonnegativity of dot
products is ensured.

We cannot apply this tensoring idea in our construction as it does not preserve the
SDP value at 1. For example, for 2-to-1 Label Cover, if we have y(u,i) = z(v, j1) + z(v, j2)

(so that these vectors contribute 1 to the objective value to the SDP of Figure 6.2), then
upon tensoring we no longer necessarily have y⊗2

(u,i) = z⊗2
(v, j1) + z⊗2

(v, j2). Extending our gap
instances to obey the nonnegative dot product constraints is therefore a natural question
that we leave open. While this seems already quite challenging, one can of course be
more ambitious and ask for gap instances for stronger SDPs that correspond to certain
number of rounds of some hierarchy, such as the Sherali-Adams hierarchy together with
consistency of vector dot products with pairwise marginals. For UNIQUE-GAMES, gap
instances for several rounds of such a hierarchy were constructed in [127].
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Chapter 7

Unique Games over Integers
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7.1 Introduction

In this Chapter, assuming the UGC we prove that it is NP-hard to (1 − ε,ε)-approximate
MAX 2-LINZ (and MAX 2-LINR).

7.1.1 Motivation

As we have discussed, Khot et al. [99] showed that the UGC is equivalent to the following
statement: for any ε> 0, MAX 2-LINq(1−ε,ε) is NP-hard for large enough q.

An obvious question left open is whether the UGC also implies hardness of solving
two-variable linear equations over the integers, rather than over the integers modulo a
large constant.
Question 7.1.1. Is it true that for all constant ε,> 0, the MAX 2-LINZ(1− ε,ε) problem is
NP-hard assuming the UGC?
We believe that lack of an additional quantifier over q here gives this question a certain
aesthetic appeal.

7.1.2 Related Work

The version of Question 7.1.1 for MAX 3-LIN (i.e., equations of the form vi − vj + vk = ci jk)
took a relatively long time to be resolved. Håstad proved his celebrated NP-hardness re-
sult for MAX 3-LINq(1−ε,1/q+ε) in 1997 [74]; however, it was not until a decade later that
Guruswami and Raghavendra [69] showed that indeed MAX 3-LINZ(1−ε,ε) is NP-hard for
all constant ε> 0. A relatively simple observation allowed Guruswami and Raghavendra
to also deduce that MAX 3-LINR(1−ε,ε) is NP-hard; here the equations are still of the form
vi −vj +vk = ci jk for ci jk ∈Z, but the variables can be assigned values in R.

A version of the MAX 3-LINR problem is also being studied by Khot and Moshkovitz
in ongoing work. In their formulation, called ROBUST-MAX 3-LINR, the constants ci jk

are all 0; however certain conditions are placed on how the variables vi may be assigned
real values, so as to eliminate the trivial solution vi ≡ 0. Assuming the UGC, Khot and
Moshkovitz [101] show that given a system with a (1−ε)-good solution, roughly speaking it
is NP-hard to find a solution in which a constant fraction of the equations are satisfied to
within ±Ω(

p
ε). Very recently they have eliminated the need for the UGC. The motivation

for their work is the hope of establishing the same sort of result for ROBUST-MAX 2-LINR,
a problem closely connected with UNIQUE-GAMES.

7.1.3 Statement of Our Results

In this work we show a positive answer to Question 7.1.1. In fact, our main theorem is the
following stronger result:
Theorem 7.1.2. Assume the UGC. For any small constants ε > 0, there exists a constant
q = q(ε) ∈N such that the following holds: Given an instance I of of linear equations overl
variables {xk}n

k=1 with the form xi − xj = ci j in which the integer constants ci j are in the
range [−q, q], it is NP-hard to distinguish the following two cases:

• There is a (1−ε)-good integer assignment to the variables.
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• When equations are evaluated modulo any integer m ≥ q,There is no assignment to
the variables which is ε-good (i.e.,satisfies more than ε fraction of the equations)

Assuming ε< 0.1, it suffices for q(ε) to be large enough that Õ(1/q)ε/(2−ε) ≤ ε.
An interesting and somewhat novel aspect of this result is that it gives hardness even

for a “multi-objective” problem. In the search version of Theorem 9.1.1’s algorithmic task,
although the algorithm is promised there is an extremely good integer solution to the given
equations, it may attempt to find a slightly good solution modulo any m ≥ Õ(1/q)ε/(2−ε) of
its choosing. We show that even still, the task is hard assuming the UGC.

From our main result Theorem 9.1.1, we immediately deduce the following corollaries:
Corollary 7.1.3. Assuming the UGC, for all ε,> 0 the MAX 2-LINZ(1−ε,ε) problem is NP-
hard.

Proof. If there is a ε-good integer assignment to the variables, then this assignment is also
ε-good modulo q (or any other integer m ≥ q).

Corollary 7.1.4. Assuming the UGC, for all ε> 0 there exists q such that the MAX 2-LINm(1−ε,ε)
problem is NP-hard for any m ≥ q, even for m = m(n) which is super-constant. In particular,
the algorithmic task in Theorem 7.1.2 is equivalent to the UGC.

Proof. If there is a (1− ε)-good integer assignment to the variables, it is also (1 − ε)-good
modulo m.

Corollary 7.1.5. Assuming the UGC, for all ε> 0 the MAX 2-LINR(1− ε,ε) problem is NP-
hard.

Proof. Certainly any (1− ε)-good integer assignment to the variables is also a (1− ε)-good
real assignment. Further, as each constraint in Theorem 9.1.1 is of the form vi − vj = ci j ∈
Z, any ε-good real assignment to the variables vi can be converted into a ε-good integer
assignment simply by dropping all the fractional parts.

7.2 Overview of Our Proof

We now describe the new ideas we introduce to prove Theorem 9.1.1. In this section, we as-
sume the reader is closely familiar with the proof of the Khot–Kindler–Mossel–O’Donnell
(KKMO) UGC-hardness result for MAX 2-LINq(1− ε,ε). Our discussions will also not be
completely formal.

As KKMO showed, given ε> 0 it is sufficient to construct a Dictator Test for functions
f :ZL

q →Zq using 2Lin-constraints, with the following two properties: (i) dictator functions

f (x)= xi pass the test with probability at least 1−ε; (ii) any f :ZL
q →Δq with all influences

smaller than τ passes the test with probability at most 1/qε/(2−ε)+κ, where the “error term”
κ = κ(q,ε,τ) can be made arbitrarily small by taking τ > 0 to be a sufficiently small con-
stant independent of L. Here Δq is the convexification of Zq; i.e., the set of all probability
distributions over Zq.

As a first step one might try extending the KKMO analysis to MAX 2-LINm, where m
is “super-constant”. The essential difficulty is that applying the key tool, the Majority Is
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Stablest Theorem, to τ-small-influence functions f : [m]L → [0,1] introduces an error term
κ(m,ε,τ) which depends on m. If m is super-constant, even as a function of L, this will
cause the KKMO reduction from UNIQUE-GAMESL to fail; in particular, it means that
in the soundness case, one would decode such f ’s to ωL(1) many labels in [L], which is
unacceptable.

Since we presumably must use the Majority Is Stablest Theorem, and since we also
care about constraints modulo a super-constant m, we are led to consider Dictator Tests for
functions f : [q]L →Zm. We are not aware of any prior work on testing such functions, with
differing domain and range (arguably, the work on hardness of ordering constraints [67]
has some of the same flavor). An initial difficulty in working with such functions is that
the usual method of “folding” no longer makes sense. Our first observation is that one need
not fold by the usual method of restricting the domain by a factor of q; instead, one can
build folding directly into the KKMO test. I.e., KKMO’s result could be obtained via the
following Dictator Test for functions f : ZL

q → Zq: Choose x, x′ ∼ ZL
q to be (1− ε)-correlated

random strings, choose also c, c′ ∈Zq uniformly and independently, and then test the 2Lin
constraint

f (x+ (c, c, . . . , c))− c = f (x′ + (c′, c′, . . . , c′))− c′. (7.1)

To analyze the soundness of this test, one introduces the “randomized (or d) function” g :
ZL

q →Δq defined by g(x)= g(x+(c, . . . , c))−c, in which case the probability that f passes the
test is S1−ε[g]. One then observes that E[ga(x)] = 1/q for each coordinate output function
ga :ZL

q → [0,1], a ∈Zq. Thus one can apply the Majority Is Stablest to bound S1−ε[g] by

q(Γ(1/q)+κ(q,ε,τ))≤ (1/q)ε/(2−ε)+ oL(1),

as necessary.
We will show how to extend this analysis to functions f : [q]L → Zm, where m ≥ q.

Proceeding with the same “built-in folding”, we obtain the function g : [q]L →Δm which has
the property that E[ga(x)]≤ 1/q for each a ∈ [m]. Our main technical result, Lemma 7.4.3,
shows that this is sufficient to prove

S1−ε[g]=
∑

a∈[m]
S1−ε[ga]≤ (1/q)ε/(2−ε) + qlog qκ(q,ε,τ)= (1/q)ε/(2−ε)+ oL(1).

The key point here is that the error term does not depend at all on m, and hence the overall
analysis works even for m super-constant. To evade dependence on m, the idea is that one
can obtain the bound S1−ε[ga]≤E[ga](1/q)ε/2 without any small-influences assumption at
all if E[ga]≤ q− log q; one only needs to use hypercontractivity.

These ideas let us obtain UG-hardness of MAX 2-LINm(1−ε,ε) even for super-constant
m. To complete the proof of our main Theorem 9.1.1, we need to improve the completeness
aspect of the Dictator Test so that even integer-valued dictators f : [q]L → Z pass with
probability close to 1. An observation here is that an integer-valued dictator f (x) = xi

already passes our test with probability close to 1/2: Ignoring the ε-noise, the test (7.1)
fails only if one of xi + c, x+ c′ “wraps around” modulo q but the other doesn’t.

There is a very simple idea for decreasing the probability of such wraparound: choose
c and c′ from a range smaller than [q]. E.g., if we choose c, c′ ∼ [q/t], then we get wrap-
around in xi + c with probability at most 1/t. Hence integer-valued dictators f : [q]L → Z,
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f (x) = xi will pass the test in (7.1) with probability at least 1 − ε− 2/t. How does this
restricted folding affect the soundness analysis? It means that the associated randomized
function g : [q]L → Δm will only satisfy E[ga] ≤ t/q for each a ∈ [m], rather than E[ga] ≤
1/q. But this is still sufficient for our technical Lemma 7.4.3 to bound S1−ε[g] by roughly
(t/q)ε/(2−ε). Thus by taking t = log(q), say, we get a 2Lin-based Dictator Test having integer-
valued completeness 1−ε−O(1/ log(q)) and Zm-valued soundness Õ(1/q)ε/(2−ε) for any m ≥ q.
This suffices to establish our main Theorem 9.1.1.

7.2.1 Comparison with Guruswami–Raghavendra

Here we briefly compare our methods with those Guruswami and Raghavendra [69] used
to establish hardness for MAX 3-LINZ. Although they also mentioned MAX 3-LINm for
very large m in the overview of their work, their methods are somewhat more integer-
specific than ours. In particular, they worked with Dictator Tests on functions f :ZL

+ →Z,
using a certain exponential distribution on the domain Z+. (Ultimately, of course, they
truncated the distribution to a finite range.) This necessitated introducing and analyzing
a somewhat technical method of decoding functions f to coordinates associated to sparse
Fourier frequencies ω ∈ [0,2π]L with large Fourier coefficients.

Guruswami and Raghavendra also described their Dictator Tests as “derandomized
versions” of Håstad’s tests, where the amount of randomness of the test depends only on
the soundness. The same could be said of our result vis-a-vis KKMO’s Dictator Tests: we
get MAX 2-LINm Dictator Tests in which the size of the domain elements, q, depends only
on the desired soundness of the test.

7.3 Definitions and analytic tools

7.3.1 Notation

For r ∈R+ we let [r] denote {1,2, . . . ,brc}. Given m ∈N we write ⊕m for addition modulo m.
It will also be convenient to use the following slightly unusual notation:

Definition 7.3.1. We write Zm for the group of integers modulo m. We will also sometimes
identify this set with [m]⊂Z, not with the more standard {0,1, . . . , m−1}. Finally, we extend
the notation to m =∞, in which case we understand Zm to mean simply the integers, Z.

Definition 7.3.2. We write Δm for the set of probability distributions over Zm with finite
support; when m 6=∞ we can identify Δm with the standard (m−1)-dimensional simplex in
Rm. We also identify an element a ∈Zm with a distribution in Δm, namely, the distribution
that puts all of its probability mass on a.

7.3.2 Noise stability and influences on [q]n →Rm

Here we need to used a generalization of the Harmonic Analysis introduced in Section 3.1.1.
We will be considering functions of the form f : [q]n →Rm (as oppose to R), where q, n, m ∈
N. We will also allow m = ∞, in which case we interpret the range as all sequences in
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RZ with at most finitely many nonzero coordinates. The set of all functions f : [q]n → Rm

forms an inner product space with inner product

‹ f , g› = E
x∼[q]n

[‹ f (x), g(x)›];

here we mean that x is uniformly random and the ‹∙, ∙› inside the expectation is the usual
inner product in Rm. We also write ‖ f ‖ =

√
‹ f , f › as usual.

For 0 ≤ ρ ≤ 1, we define Tρ to be the linear operator on this inner product space given
by

Tρ f (x)=E
y
[ f (y)],

where y is a random string in [q]L which is ρ-correlated to x. We define the noise stability
of f at ρ to be

Sρ[ f ]= ‹ f ,Tρ f ›.

For i ∈ [n], we define the influence of i on f : [q]n →Rm to be

Infi[ f ]= E
x1,...,xi−1,xi+1,...,xn∼[q]

[
Varxi∼[q][ f (x)]

]
,

where Var[ f ] is defined to be E[‖ f ‖2]−‖E[ f ]‖2. More generally, for 0 ≤ η≤ 1 we define the
η-noisy-influence of i on f to be

Inf(1−η)
i [ f ]= Infi[T1−η f ].

One may observe that

Inf(1−η)
i [ f ]=

m∑

j=1
Inf(1−η)

i [ f j],

where f j : [q]n →R denotes the jth-coordinate output function of f . (When m =∞ the sum
should be over j ∈Z.)

We will need the following “convexity of noisy-influences” fact:

Proposition 7.3.3. Let f (1), . . . , f (t) be a collection of functions [q]n →Rm. Then

Inf(1−η)
i

[

avg
k∈[t]

{
f (k)

}]

≤ avg
k∈[t]

{
Inf(1−η)

i [ f (k)]
}

.

Here for any c1, c2, ...ct ∈ R (or Rm), we use the notation avg(c1, . . . , ct) to denote their
average:

∑t
i=1 ci

t
.

Following fact is well known:

Fact 7.3.4. For any η,
n∑

i=1
Infi(T1−η f )≤

Var( f )

2eη
.
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7.3.3 Hypercontractivity and Majority Is Stablest

Recall the hypercontractivity on [q]n.

Theorem 7.3.5. Let q ≥ 2, f : [q]n →R, and 0≤ ε< 1. Then

‖Tp
1−ε f ‖2 ≤ ‖ f ‖p, where p = p(q,ε)= 1+ (1−ε)(2−4/q)/ log(q−1).

The second tool we need is the Majority is the Stablest Theorem.

Theorem 7.3.6. Suppose f : [q]n → [0,1] has Inf(1−η)
i [ f ] ≤ τ ≤ (log q)−(log q)/c for all i ∈ [n],

where η< c(log q)/ log(1/τ) and c > 0 is a certain universal constant. Let μ= E[ f ]. Then for
any 0< ε< 1,

S1−ε[ f ]≤Γ1−ε(μ)+
log q

cε
∙
loglog(1/τ)

log(1/τ)
.

This is essentially a special case of Theorem 3.2.4,with the error bound explicitly given.

Proposition 7.3.7. Assume 0< ε< .1 and 0≤μ≤ exp(−1/
p
ε)/

p
ε. Then Γ1−ε(μ)≤μ1+ε/(2−ε).

This estimate follows from Corollary 10.2 in [99]. (The expression in that corollary is
in fact an upper bound on Γ1−ε(μ) for all 0 < ε< 1 and 0 ≤ μ≤ 1/2, as can be verified using
the inequality in Proposition 6.1 of [99]. The simplified bound μ1+ε/(2−ε) holds when ε< .1
and μ≤ exp(−1/

p
ε)/

p
ε.)

7.4 Dictator Tests

In this work we will be considering two-variable linear equation constraints; specifically,
testing functions f : [q]n →Zm using constraints of the form f (x)− f (y)= c, where c ∈Z.

Before defining Dictator Tests we need to introduce another small technical detail, that
of testing averages of functions. Given a test for functions f : [q]n →Zm, say, we can think
of it more generally as a test for functions f : [q]n → Δm. To understand this, one should
think of a function with range Δm as a “randomized” function into Zm. I.e., to apply the
test T to a function f : [q]L → Δm, one first chooses a random constraint as usual in T ;
say it is f (x)− f (y)= c. One then chooses a ∼ f (x) and a ∼ f (y) (independently) and finally,
one checks the constraint a− y= c.

We may now informally state what a Dictator vs. Small Noisy-Influences Test is. It is
a test for functions f : [q]n →Δm with the following two properties: (i) Dictator functions
— i.e., functions of the form f (x) = xi — pass the test with high probability. (Here we are
interpreting the integer xi ∈ [q] also as an element of Zm, and thus also as an element
of Δm.) In other words, ValT ( f ) is large when f is a dictator. (ii) Functions f satisfying
Inf(1−η)

i [ f ] ≤ τ for all i ∈ [n] pass the test with low probability, where here η and τ should
be thought of as very small constants. More formally:

Definition 7.4.1. Let T be a test for functions f : [q]n →Δm. We say that T has complete-
ness at least c if every dictator function f (x) = xi passes the test with probability at least
c. We say that T has (τ,η)-soundness at most s if every function f : [q]n → Δm satisfying

Inf(1−η)
i [ f ]≤ τ for all i ∈ [n] passes the test with probability at most s. Finally, given a fam-

ily of tests (Tn), where Tn test functions f : [q]n →Δm, we say it has soundness s if for every
κ> 0 there exists τ,η> 0 such that each Tn has (τ,η)-soundness at most s+κ.
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We now state our new family of Dictator vs. Small Noisy-Influences Tests. Given pa-
rameters 0 < ε < 1 and q ∈ N, we define the following test Tq,ε for functions f with do-
main [q]L:

Test Tq,ε:

• Choose x, x′ ∼ [q]L to be a pair of (1−ε)-correlated random strings.
• Choose c, c′ ∼ [q/ log(q)] independently and uniformly.
• Define y= x⊕q (c, c, . . . , c), and define y′ = x′ ⊕q (c, c, . . . , c).
• Test the constraint “ f (y)− c = f (y′)− c′ ” (equivalently, “ f (y)− f (y′) =

c− c′ ”).

As discussed, one can also think of this test as an explicit weighted CSP of MAX 2-
LIN type over the variable set [q]L. The constraint f (y)− c = f (y′)− c′ should be thought
of as a formal expression, since we have not yet specified the range of the assignment f .
In fact, we will analyze the test’s properties when the range of f varies over different Zm’s.

To prove our main Theorem 9.1.1 it will suffice (as we verify in Section 7.5) to show the
following.

Theorem 7.4.2. The Dictator Test Tq,ε uses integer constants ci j in [−q/ log(q), q/ log(q)]
and has the following two properties:

Completeness: For each m ∈ N∪ {∞}, the L dictator functions f : [q]L → Zm pass the
test Tq,ε with probability at least 1−ε−O(1/ log(q)).

Soundness: Assume 0< ε< .1 and that q ≥ exp(1/
p
ε) an integer. Assume f : [q]L →Δm

satisfies Inf(1−η)
i [ f ]≤ τ≤ (log q)−(log q)/c for all i ∈ [L], where η< c(log q)/ log(1/τ) (and c is the

constant from Theorem 7.3.6). Assume further that q/ log(q) ≤ m ≤∞. Then f passes the
test Tq,ε with probability less than

Õ(1/q)ε/(2−ε) +
Õ(qlog q)

ε
∙
loglog(1/τ)

log(1/τ)
.

The Completeness part of Theorem 7.4.2 is easy to verify:

Proof. Suppose f (x) = xj for some j ∈ [L]. In the test Tq,ε we have xj = x′j except with
probability at most ε. When the event happens, write b for the common value. We further
have that b is at most q−bq/ log(q)c except with probability at most O(1/ log(q)). Thus with
probability at least 1− ε−O(1/ log(q)) we have both yj = b+ c and y′j = b+ c′ as integers
in [q]; i.e., the ⊕q does not cause “wrap-around”. Thus f (y) will equal the integer b+ c
within Zm, and similarly f (y′) will equal b+ c′ within Zm, and the tested constraint will
be satisfied.

The next two subsections of the work are devoted to the proof of the Soundness part of
Theorem 7.4.2. In the first subsection we prove a technical lemma bounding the noise sta-
bility of functions f : [q]L →Δm which have ‖ f j‖∞ small for each j ∈Zm. In the subsequent
subsection, we complete the proof of the soundness of our test.
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7.4.1 Technical lemma

Our soundness analysis relies on the following technical lemma; the crucial aspect of it is
that the upper bound we give on the noise stability does not depend on m.

Lemma 7.4.3. Fix 0 < ε< .1 and let q ≥ exp(1/
p
ε) be an integer. Further, let L, m ∈N and

0< η< 1. Assume g : [q]L →Δm satisfies Inf(1−η)
i [g]≤ τ≤ (log q)−(log q)/c for all i ∈ [L], where

η< c(log q)/ log(1/τ) (and c is the constant from Theorem 7.3.6).
Then if Ex[g(x)a]≤ log(q)/q for all a ∈ [m], it follows that

S1−ε[g]< Õ(1/q)ε/(2−ε) +
Õ(qlog q)

ε
∙
loglog(1/τ)

log(1/τ)
.

Proof. Write μa = Ex[g(x)a]. We use two different bounds for S1−ε[ga] depending on the
magnitude of μa. The first bound uses the small noisy-influences of ga (which are certainly
smaller than those of g) and the Majority Is Stablest Theorem (Theorem 7.3.6), yielding

S1−ε[ga]≤Γ1−ε(μa)+ e(τ), e(τ) :=
log q

cε
∙
loglog(1/τ)

log(1/τ)
.

We may also use Proposition 7.3.7 because ε< .1 and μa ≤ log(q)/q ≤ exp(−1/
p
ε)/

p
ε; thus

S1−ε[ga]≤μ1+ε/(2−ε)
a + e(τ). (7.2)

Our second bound is more useful when μa is extremely small; it only needs the hyper-
contractivity theorem (Theorem 7.3.5), and not the small noisy-influences condition. The
theorem gives

S1−ε[ga]= ‖Tp
1−εga‖

2
2 ≤ ‖ga‖

2
p =E[gp

a]2/p ≤E[ga]2/p =μ
2/p
a ,

where p = 1 + (1 − ε)(2−4/q)/ log(q−1) as in Theorem 7.3.5. One can check that 2/p ≥ 1+
ε/(1.9log q) for all 0 < ε< 1 and q ≥ 3; hence:

S1−ε[ga]≤μ
1+ε/(1.9log q)
a . (7.3)

We now put the two bounds together:

S1−ε[g] =
∑

a∈[m]
S1−ε[ga]

=
∑

a:μa≥q− log q

S1−ε[ga]+
∑

a:μa<q− log q

S1−ε[ga]

=
∑

a:μa≥q− log q

(μ1+ε/(2−ε)
a + e(τ)) +

∑

a:μa<q− log q

μ
1+ε/(1.9log q)
a (using (7.2), (7.3)).

Since g’s range is Δm we have
∑

a∈[m]μa = 1. Thus the first sum above is at most

qlog qe(τ)+
∑

a:μa≥q− log q

μ1+ε/(2−ε)
a ≤ qlog qe(τ)+max

a
με/(2−ε)

a ≤ qlog qe(τ)+ (log(q)/q)ε/(2−ε)
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using the assumed upper bound on μa. The second sum above is at most

max
a:μa<q− log q

μ
ε/(1.9log q)
a ≤ (q− log q)ε/(1.9log q) = q−ε/1.9.

Thus we conclude

S1−ε[g]≤ qlog qe(τ)+ (log(q)/q)ε/(2−ε) + q−ε/1.9 < Õ(1/q)ε/(2−ε)+
Õ(qlog q)

ε
∙
loglog(1/τ)

log(1/τ)

as claimed.

7.4.2 Soundness of the test

This section is devoted to the proof of the Soundness part of Theorem 7.4.2.

Proof. Given f as in the statement of the theorem, we introduce another randomized
function g : [q]L →Δm. Specifically, g(x) is defined to be the distribution function on a ∈Zm

given by the following experiment:

• Choose c ∼ [q/ log(q)] uniformly at random.
• Choose b according to the distribution f (x⊕q (c, c, . . . , c)).
• Define a = b− c ∈Zm.

Thus in the test Tq,ε, once x and x′ are chosen the probability that f passes the test is
equal to the probability that independent draws from g(x) and g(x′) yield the same value
in Zm. I.e.,

Pr[ f passes the constraint] = E
x,x′

[‹g(x), g(x′)›]=S1−ε[g].

It thus suffices to bound S1−ε[g].
Our first task is to show that g has small noisy-influences. Define the operator Sc for

c ∈Zq as follows: Sch(x) = h(x⊕q (c, c, . . . , c)). Define the operator Rc for c ∈Zm as follows:
(Rch(x))a = h(x)a+c, where the sum a+ c is within Zm. Hence by definition,

g = avg
c∈[q/ log(q)]

{RcSc f }. (7.4)

In particular, for each i ∈ [L] we have

Inf(1−η)
i [g]≤ avg

c∈[q/ log(q)]
{Inf(1−η)

i [RcSc f ]}

by the convexity of noisy-influences (Proposition 7.3.3). But it’s easy to see that Inf(1−η)
i [Rch]=

Inf(1−η)
i [h] and Inf(1−η)

i [Sch]= Inf(1−η)
i [h]. Hence we conclude Inf(1−η)

i [g]≤ Inf(1−η)
i [ f ]≤ τ for

all i ∈ [L].
We now make the key observation. For a ∈ Zm, define μa = Ex∼[q]L [g(x)a]. Using the

original definition of g we have

μa =Pr x,c∼[q/ log(q)],
b∼ f (x⊕q(c,c,...,c))

[b− c = a]= E
x,c∼[q/ log(q)]

[ f (x⊕q (c, c, . . . , c))a+c],
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where the expressions b− c = a and a+ c are treated within Zm. But the joint distribution
of c and x⊕q (c, c, . . . , c) is identical to the joint distribution of c and y, where y ∼ [q]L is
uniform and independent of c. Hence

μa = E
y,c∼[q/ log(q)]

[ f (y)a+c]≤ max
y∈[q]L

{

E
c∼[q/ log(q)]

[ f (y)a+c]

}

≤ log(q)/q for all a ∈Zm, (7.5)

since
∑

b f (x)b = 1 and m ≥ q/ log(q).

Having established (7.5) and also Inf(1−η)
i [g] ≤ τ for all i, we may bound S1−ε[g] and

thus complete the proof using the technical Lemma 7.4.3. (In the case that m =∞ we may
still apply the lemma because g’s outputs are nonzero on only finitely many coordinates;
hence we may consider g’s range to be a finite-dimensional simplex.)

7.5 The Reduction from UNIQUE-GAMESL

In this section we show how to use our Dictator Test to obtain our main UG-hardness
result, Theorem 9.1.1. We reiterate that we are essentially using the reduction implic-
itly proved in [99]; we give the full deduction here for completeness and because we are
working in a slightly nonstandard setting.

For technical convenience, we will use the following equivalent version of the UGC due
to Khot and Regev [94, Lemma 3.6]:
Theorem 7.5.1. Assume the UGC. For all small ζ,γ > 0, there exists L ∈ N such given an
unweighted UNIQUE-GAMESL instance G = (U ,V ,E, (πu,v)(u,v)∈E) which is U-regular, it is
NP-hard to distinguish the following two cases:

1. There is an assignment A : (U∪V )→ [L] and a subset U ′ ⊆U with |U ′|/|U | ≥ 1−ζ such
that A satisfies all constraints incident on U ′.

2. There is no γ-good assignment A.
Our main task, which we will carry out in the next subsection, will be to prove the

following slight variant of Theorem 9.1.1, wherein we write s(q,ε) = Õ(1/q)ε/(2−ε) for the
main term in the Soundness part of Theorem 7.4.2:
Theorem 7.5.2. Fix 0 < ε< .1 rational and q ≥ exp(1/

p
ε) an integer. For any L ∈N, there

is a polynomial-time reduction mapping non-bipartite, unweighted UNIQUE-GAMESL in-
stances G into MAX 2-LIN instances I having the following properties:

• (Completeness.) If statement 1 in Theorem 8.4.2 holds for G , then there is an integer
assignment to the variables in I satisfying at least (1−ζ)(1− ε−O(1/ log(q)))-weight
of the equations.

• (Soundness.) If there is no γ-good assignment for G where γ= γ(q,ε)> 0 is sufficiently
small, then there is no integer assignment to the variables in I which satisfies at least
(3s(q,ε))-weight of the equations modulo m, for any integer m ≥ q/ log(q).

By combining Theorem 8.4.3 with Theorem 8.4.2, taking ζ= 1/log(q) and γ= γ(q,ε)> 0
as necessary, we obtain the following variant of Theorem 9.1.1:
Theorem 7.5.3. Assume the UGC. For any 0< ε< .1 rational and q ≥ exp(1/

p
ε) an integer,

the following holds: Given an instance I of MAX 2-LIN in which the integer constants ci j

are in the range [−q/ log(q), q/ log(q)], it is NP-hard to distinguish the following two cases:
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• There is a (1−ε−O(1/ log(q)))-good integer assignment to the variables.
• There is no assignment to the variables which is Õ(1/q)ε/(2−ε)-good modulo any integer

m ≥ q/ log(q).
From this, we can deduce our main Theorem 9.1.1 for ε′ and ε′ by taking ε in Theo-

rem 7.5.3 a rational of the form ε′ −Θ(1/ log(q)).

7.5.1 Proof of Theorem 8.4.3

We now prove Theorem 8.4.3.

Proof. The reduction is essentially as in [99]. Given the UNIQUE-GAMESL instance G =
(U ,V ,E, (πuv)), the reduction produces a weighted MAX 2-LIN instance I with variable
set V × [q]L. We think of an assignment F to these variables as a collection of functions
fv : [q]L →Zm, one for each v ∈V . Here we will allow q/ log(q)≤ m ≤∞. For each u ∈ V we
also introduce the randomized function fu : [q]L →Δm defined by

fu(x)= E
u:(u,u)∈E

[ f πuu
u (x)],

where define the functions f π
v : [q]L →Zm by

f π
v (x)= fv(x◦π−1), with x◦π−1 ∈ [q]L defined by (x◦π−1) j = xπ−1( j).

We now define the instance according to the following probabilistic test:

• Choose u ∈U randomly.
• Apply test Tq,ε from Section 7.4 to fu.

Note that by the definition of applying a test to a randomized function, this indeed makes
I a weighted MAX 2-LIN instance over the variables V × [q]L. Further, it is easy to check
that the reduction from G to I thus defined can be carried out in polynomial time assum-
ing ε, q, and L are constant.

To prove the Completeness part of Theorem 8.4.3, suppose that assignment A and sub-
set U ′ ⊆U are as in statement 1 of Theorem 8.4.2. Define an integer-valued assignment F
for I by taking fv(x)= xA(v). Then by definition and by the property of A, we will have that
fu : [q]L →ΔZ is in fact the A(u)th dictator function for all u ∈U ′. Thus by the complete-
ness part of Theorem 7.4.2, assignment F will pass the test I with probability at least
Pr[u ∈U ′] ∙ (1−ε−O(1/ log(q)))≥ (1−ζ)(1−ε−O(1/ log(q))). This finishes the Completeness
part of Theorem 8.4.3.

As for the Soundness part of Theorem 8.4.3, choose τ= τ(q,ε)> 0 small enough so that
the error term in the Soundness part of Theorem 7.4.2 is at most the main term, s(q,ε);
choose also η= η(q,ε)> 0 sufficiently small so that the hypothesis therein holds. By way of
proving the contrapositive, suppose that there is an integer m ≥ q/ log(q) and a Zm-valued
assignment F to I which passes the test I with probability at least 3s(q,ε). Then by an
averaging argument, there must be some subset U ′ ⊆ V of fractional size at least s(q,ε)
such that when u ∈U ′, the test Tq,ε passes fu with probability at least 2s(q,ε). It follows
from the Soundness part of Theorem 7.4.2, along with our choice of τ and η, that

for all u ∈U ′, ∃iu ∈ [L] s.t. Inf(1−η)
iu

[ fu]> τ. (7.6)

154



By definition of fu and by the convexity of noisy-influences (Proposition 7.3.3) we deduce
that for each such u ∈U ′ and iu ∈ [L],

τ< avg
v:(u,v)∈E

{
Inf(1−η)

iu
[ f πuu

v ]
}
= avg

v:(u,v)∈E

{
Inf(1−η)

πuv(iu)[ fv]
}

⇒ τ/2≤ Inf(1−η)
πuv(iu)[ fv] for at least a τ/2-fraction of u’s neighbors v. (7.7)

For each v ∈V let us define

C(v)= { j ∈ [L] : Inf(1−η)
j [ fv]> τ/2};

thus by (10.9) we have:

∀ u ∈U ′, πuv(iu) ∈ C(v) for at least a τ/2-fraction of u’s neighbors v ∈V . (7.8)

We claim and will show shortly that |C(v)| ≤ 1/(ητ) for all v. Having established this,
consider choosing a random assignment A : (U ∪V ) → [L] as follows: for u ∈U ′ set A(u) =
iu; for v ∈ V , choose A(v) randomly from C(v) (assuming the set is nonempty); finally,
set A(w) arbitrarily in [L] for all unassigned vertices w. Now by (7.8), for each u ∈U ′ the
expected fraction of constraints incident on u which A satisfies is at least (τ/2)/(ητ)= ητ2/2.
Since |U ′|/|U | ≥ s(q,ε) and G is U-regular, we conclude that the expected fraction of all
constraints in G that A satisfies is at least s(q,ε)ητ2/2. Taking γ= γ(q,ε)= s(q,ε)ητ2/2, we
conclude that there must exist a γ-good assignment for G .

It remains to verify the claim that |C(v)| ≤ 1/(ητ) for all v. This is true by Fact 7.3.4.
We also need the following small observation: even for arbitrarily large m, if h : [q]L →Δm

then Var[h] ≤ 1. This is because Var[h] ≤ E[‖h‖2] ≤ maxx{‖h(x)‖2} ≤ 1, as every point in
Δm has Euclidean norm at most 1. Thus

|C(v)| =
∣
∣{ j ∈ [L] : Inf(1−η)

j [ fv]> τ/2}
∣
∣≤

1/(2eη)

τ/2
≤ 1/(ητ),

as claimed.
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Chapter 8

On Hardness of vertex pricing
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8.1 Introduction

We study the item pricing problem which is a CSP with the constraint being a generalized
payoff function.

8.1.1 Motaviation and Background

A informal description of the problem is as follows: a seller has an infinite supply of n
different items. There are m buyers, each of which are interested in a subset of the items
with certain budget limit. These buyers are all single minded; i.e., they either buy all the
items they are interested in if the overall cost is within their budget or they will buy none
of them. The algorithmic task is to price each item i with a profit margin pi to maximize
the overall profit of the seller.

Serval results were known when the profit margin pi on each item is required to be
positive. A O(log n+log m) approximation for the general problems is given by Guruswami
et al. [64]. If we assume that each customer is only interested in a constant number k
of the items, a O(k2)-approximation algorithm was given in [26] by Briest and Krysta.
Later in [16], Balcan and Blum improved the approximation ratio to O(k). In particular,
when k = 2 (such a problem is also called graph vertex pricing), their algorithm gave an
4-approximation. On the hardness side, an APX-hardness result was obtained for the
general problem in [64]. Later, Demaine, Feige, Hajiaghayi, and Salavatipour obtained a
poly-logarithmic hardness [38]. As for the case that each customer is only interested in at
most 2 of the items, a 2-hardness result was obtained in [93] assuming the Unique Games
Conjecture (UGC).

Much less is known when the seller is allowed to assign negative profit margin pi for
some of the items. The motivation behind selling some items below the margin cost is to
increase the overall profit by stimulating the sales of other products. These items sold
below the cost are usually referred as the “loss leaders”. One example of loss leaders is in
the market of digital book reader (such as the Kindle and IPad), the seller may price the
reading device at a low price so as to make more money on the sales of the digital books.

Studying the problem of pricing loss leaders is formulated as an open problem in [16];
the authors asked: "what kind of approximation guarantees are achievable if one allows
the seller to price some items below their margin cost?" Interestingly, the authors found
that by optimally pricing some of the items below cost, one could possibly achieve a profit
that is Ω(log n) times of the maximum profit under the positive price model. The problem
of pricing loss leaders is further studied by Balcan et al. in [56]. They introduced two
new models: the coupon and discount model. Roughly speaking, the discount model is
the item pricing problem with negative profit margin allowed; the coupon model adds an
additional assumption that a seller’s profit is at least 0 for the entire transactions with
each customer. The same Ω(log n) “profitability gap” was shown under these models.

In this work, we give a negative result for pricing loss leaders. In particular, we show
that obtain a constant approximation for item pricing, under either the coupon or discount
model, is NP-hard assuming the Unique Games Conjectures; our hardness result holds
even for the very simple case that each customer is only interested at most k = 3 items.
Our result should be compared with the case when only positive prices is assigned, there
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is an 1
3e -approximation for such a problem.

8.1.2 Problem definitions

The item pricing problem is also called the VERTEX-PRICING problem; it can be defined
on a graph where each customer is corresponding to a hyperedge and each item to price is
corresponding to a vertex. Let us start by formally define the following VERTEX-PRICING

problem.
Definition 8.1.1. (VERTEX-PRICING) A vertex pricing problem is specified by the tuple

(G(V ,E), {be | e ∈ E}))

Here G(V ,E) is a multigraph where each vertex vi ∈V represents an item. Each hyperedge
e ∈ E represents a set of items (vertices) that a particular customer is interested with the
budget be.

When the corresponding graph is k-hypergraph (i.e., each customer is interested in at
most k items), we call the problem VERTEX-PRICINGk.
Definition 8.1.2. Given a VERTEX-PRICING instance I , and a price function p : V → R,
the profit is defined as follows:

profitI (p)=
∑

be≥price(e)
price(e)

where price(e)=
∑

v∈e p(v).
When we restrict the range of the price function p, we get the positive price model, as

well as the discount model and B-bounded model that is introduced in [56]
Definition 8.1.3. Given a instance I of VERTEX-PRICING:

For the positive price model, the objective function is

Optpos = max
p:V→R+

profitI (p).

For the discount model, the objective function is

Optdisc = max
p:V→R

profitI (p)

For the B-bounded coupon model, the objective function is

OptB = max
p:V→[−B,∞)

profitI (p)

The B-bounded model applies to the case that each item has the same margin cost
B and the seller could not price the profit margin below −B. The authors in [56] also
defined the coupon model which assumes that the profit is at least 0 for each sale with the
customer.
Definition 8.1.4. Given a instance I of VERTEX-PRICING, the profit under coupon model
is defined as

profit+I (p)=
∑

be≥price(e)
max(price(e),0)
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and the objective function is the following:

Optcoup = max
p:V→R

profit+(p)

It is easy to see the following relationship among these models.
Fact 8.1.5. For any B > 0 and a VERTEX-PRICING instance I ,

Optpos ≤OptB ≤Optdisc ≤Optcoup.

weighted v.s. unweighted instance we can also define weighted version of the above
vertex pricing problem. The difference is that every edge has a weight we and profit(p) is
defined to be ∑

be≥price(e)
we ∙price(e).

Similar change is made to profit+(p).
As is shown in [93] (Lemma 2.2), the unweighted VERTEX-PRICING has the same ap-

proximability as the weighted VERTEX-PRICING.1 In the rest of the thesis, we only prove
the hardness results for weighted VERTEX-PRICING while the same hardness result also
hold for unweighted VERTEX-PRICING.

8.1.3 Main result

Our main result is the following theorem:
Theorem 8.1.6. Assuming the UGC, given a VERTEX-PRICING3 instance. Then for any
positive integer B, it is NP-hard to distinguish the following two cases:

• OptB ≥Ω(logB);
• Optcoup ≤ 25.

Using fact (8.1.5) and taking B = 2Ω(α), we get the following corollaries:
Corollary 8.1.7. Assuming the Unique Games Conjecture, for any constant α> 0, VERTEX-
PRICING3 under the coupon model is NP-hard to α-approximate.
Corollary 8.1.8. Assuming the Unique Games Conjecture, for any constant α> 0, VERTEX-
PRICING3 under the discount model is NP-hard to α-approximate.
Corollary 8.1.9. Assuming the Unique Games Conjecture, VERTEX-PRICING3 under the
B-bounded model is NP-hard to Ω(logB)-approximate.

8.2 Preliminaries

8.2.1 Dictator Test for vertex pricing

VERTEX-PRICING3 as a 3-CSP The VERTEX-PRICING3 problem can be viewed as a 3-
CSP over a set of variables p1, p2, ...pn and a set of constraints specified by bi jk with weight

1Although the original proof only applies to VERTEX-PRICING 2 with positive price, it is straightforward
to adapt their proof for our problem: VERTEX-PRICING3 with arbitrary price.
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wi jk
2. Let us first think of the VERTEX-PRICING problem under the discount model, the

payoff function on bi jk is

revenue(pi, p j, pk,wi jk)= 1(pi + p j + pk ≤ bi jk)(pi + p j + pk).

The goal is to find p : [n]→R to maximize the overall profit:

∑

i, j,k
wi jk ∙revenue(pi, p j, pk, bi jk).

By the rule of thumb, we need to design a Dictator Testof the following form. It is a
test for functions f : [p]n → R with the following two properties: (i) Dictator functions —
i.e., functions of the form h(xi) for a particular function h : [p]→R and each i ∈ [n] — pass
the test with high profitT ( f )= c;3 (ii) Functions f that is of “low noisy influence” on each
coordinate pass the test with low profitT ( f ) = s. Then roughly speaking, by the tech-
nique of [99], we can show that assuming the UGC, it is NP-hard to distinguish whether a
VERTEX-PRICING3 instance with profit above c or below s (which directly implies a hard-
ness of approximation ratio s/c).

Above is the description of the Dictator Testfor the discount model. As for the coupon
model, the Dictator Testis essentially of the same except the pay off function is defined as

revenue+(pi, p j, pk,wi jk)= 1(pi + p j + pk ≤ wi jk) ∙max(pi + p j + pk,0).

and the profit of a function f is defined as

profit+T ( f )=Ex,y,z,w[revenue+( f (x)+ f (y)+ f (z),w)].

In the rest of the work, we first design and analyze a proper Dictator Testfor VERTEX-
PRICING3. Then we use the idea from [99] to construct a reduction from the UNIQUE-
GAMES problem to the VERTEX-PRICING problem. We want to emphasize here that we
can not directly use [99] as the variables in VERTEX-PRICING is unbounded. To circumvent
that, we need to modify the definition of “low noisy influence” function correspondingly.

8.2.2 Mathematical tools

One major advanced tool we need in our analysis is the following theorem that is essen-
tially similar to invariance principle stated in Chapter 2.

Theorem 8.2.1. Let (Ω= [p]t,μ) be a finite probability spaces with the following properties:
• a = (a1,a2, . . . ,at)∼μ are pairwise independent.
• α=mina∈Ωμ(a)> 0.

For η > 0 and f = ( f 1, ... f t) : Ωn → [0,1]t be function satisfying that for any i ∈ [n], j ∈ [k]
and some constant τ> 0,

Inf1−η
i f j ≤ τ

2strictly speaking, for each (i, j, k), there can be different bi jk with different weights wi jk.
3usually h(t)= t for most of the other results in the thesis.
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Then

E[
t∏

i=1
T1−η f (i)]−

t∏

i=1
E[ f (i)]≤ τC0η/ log(1/α))

Here C0 is a constant that only dependent on t. The expectation is taken with respect to the
product distribution (Ω,μ)n.

Roughly speaking, above theorem states that for calculating the product of t different
functions, if these functions do not have big noisy influence on each coordinate, then the
product of them is the essentially the same under an pairwise independent distribution or
the fully independent distribution.

8.3 Dictator Test for vertex pricing

8.3.1 Description of the Dictator Test

To introduce our Dictator Testas well as analyzing it, first let us define the following dis-
tributions D0,D1,D2 on (x, y, z) ∈ [p]n ×

∏n
i=1×

∏n
i=1.

Definition 8.3.1. (Distribution D0) Choose x, y uniform randomly and independently from
∏n

i=1; for each i, we have that
• zi = p− (xi + yi) if xi + yi < p.
• zi = 2p− (xi + yi) if p ≤ xi + yi ≤ 2p.
By definition, we know that xi + yi + zi = 0 mod p for each i. One important property

of above distribution is that (xi, yi, zi) for each i are pairwise independent.
Definition 8.3.2. (Distribution D1) For x, y, z ∼ D0,, Let x′, y′, z′ be 1− ε correlated with
x, y, z. We call the corresponding distribution on x′, y′, z′ as D1

Definition 8.3.3. (Distribution D2) Choose x, y, z uniform randomly and independently
from

∏n
i=1.

Following is the Dictator Testfor vertex pricing. Here, we use 1 to indicate the all “1”
vector: (1,1, . . . ,1) ∈Rn.
Definition 8.3.4. (Dictator Test T ) For x′, y′, z′ generated from D1, a k randomly chosen
from [

p
p], we generate a VERTEX-PRICING constraint among f (x′), f (y′), f (z′ ⊕p

⌊p
p/k

⌋
∙1)

with budget
⌊p

p/k
⌋
. We define

profitT ( f )=Ex′,y′,z′,k[revenue
(
( f (x′), f (y′), f (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)
].

and

profit+T ( f )=Ex′,y′,z′,k[revenue+ (
( f (x′), f (y′), f (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)
].

For the purpose of analyzing T , we also define the following Test T ′.
Definition 8.3.5. (Test T ′) For x′, y′, z′ generated from D2; randomly choose k ∈ [

p
p]. We

generate a VERTEX-PRICING constraint among f (x′), f (y′), f (z′) with budget
⌊p

p/k
⌋
).

We define

profitT ′( f )=Ex′,y′,z′,k[revenue
(
( f (x′), f (y′), f (z′),

⌊p
p/k

⌋)
].
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and
profit+T ′( f )=Ex′,y′,z′,k[revenue+ (

( f (x′), f (y′), f (z′),
⌊p

p/k
⌋)

].

We claim that for the Dictator TestT ′, it has the following property:
Proposition 8.3.6. For any function f : [p]n →R, profit+

T ′( f )≤ 1.

Proof. Notice that for each triple (x′, y′, z′) , if there exists k′ such that
⌊p

p/(k′ +1)
⌋
≤

f (x′)+ f (y′)+ f (z′)≤
⌊p

p/k′
⌋
. Then the profit on (x′, y′, z′) is at most

k′( f (x)+ f (y)+ f (z))≤ k′pp/k′/
p

p ≤ 1.

If f (x′)+ f (y′)+ f (z′)≤ 0 or f (x′)+ f (y′)+ f (z′)≥
p

p, then the profit on x′, y′, z′ is 0.
Condition on every triple (x′, y′, z′), the expect profit associated with f (x′), f (y′), f (z′) is

at most 1, therefore the overall profit is also at most 1.

8.3.2 Analysis of the Dictator TestT

We prove the completeness (Theorem 10.3.5) and soundness (Theorem 10.3.6) for T in
this section.
Theorem 8.3.7. (Completeness of T ) For function f (x)= xi−p/3 for x ∈

∏n
i=1, profitT ( f )≥

Ω(log p).

Proof. Suppose x′, y′, z′ ∼D1 is generated as 1−ε copy of x, y, z ∼D0.
Since xi, yi are randomly generated from [p], we know that

p
p ≤ xi + yi ≤ p with prob-

ability at least 1/3. When this happen, xi + yi + zi = p and zi ≤ p−
p

p. Also as each of the
xi, yi, zi is reset to a random number with probability ε= 1/p, we know that with probabil-
ity 1/3−3/p, x′i = xi, y′i = yi, z′i = zi and we have that x′i+ y′i+ z′i = p and z′i ≤ p−

p
p. We call

these (x′, y′, z′) “good”.
Then for “good” (x′, y′, z′), if we choose f (t)= xi− p/3, we know that f (x′)+ f (y′)+ f (z′⊕p⌊p
p/k

⌋
)= xi + yi + zi +

⌊p
p/k

⌋
− p =

⌊p
p/k

⌋
. Therefore,

revenue
(
( f (x′), f (y′), f (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)
=

⌊p
p/k

⌋
.

Therefore for “good” (x′, y′, z′), the associate is at least

(1/3−3/p) ∙

∑p
p

k=1

⌊p
p/k

⌋

p
p

≥ (1/3−3/p) ∙

∑p
p

k=1

(p
p/k−1

)

p
p

≥ (1/3−3/p) ∙ (log
p

p−1)≥ 1/8log p

for large enough p.
We also need to show bound the profit (loss) on those "bad" x′, y′, z′ such that for some

k
f (x′)+ f (y′)+ f (z′ ⊕p

⌊p
p/k

⌋
)< 0.

This could happen for x′, y′, z′ generated from the following two cases:

1. At least one of the x′i, y′i, z′i is reset, this happens with probability at most 3/p.
2. None of the x′i, y′i, z′i is not reset. Since xi+yi+zi = p,2p, to make f (x′i)+ f (y′i)+ f (z′⊕pp

p/k) < 0, we know that we must have xi + yi + zi = p and zi > p−
p

p/k. We must
then have xi + yi ≤

p
p/k. We know that Pr(xi + yi ≤

p
p/k ≤Pr(xi, yi ≤

p
p/k)= 1

pk2 .
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Therefore, we can have negative profit on (x′, y′, z′) occur with probability at most 4/p.
As we know that f (x)= xi− p/3≥−p/3,therefore, f (x′)+ f (y′)+ f (z′+

⌊p
p/k

⌋
)≥−p, overall,

we lose at most 4/p ∙ p =−4 on those “bad” (x′, y′, z′).
Overall, for f (x) = xi − p/3, we must have that profitT ( f ) ≥ 1/8 ∙ log p−4 =Ω(log p) for

sufficient large p.

Now we state the soundness statement. As f : [p]n → R is not bounded, we define its
influence on a transformation of f as follows. We define f̃ be the integral part of f , being
b f c. We also define f ′ ∈ [p] and is uniquely defined by f ′ = f̃ mod p. By abuse of the
notation, we also write f ′ : [p]n → {−1,1}p with f ′(i) being the indicator function 1( f̃ = i
mod p). The influence of f ′ is defined with respect to its vector form.
Theorem 8.3.8. (Soundness of T ) For τC01/p log(p) ≤ 1/p4 and any function f : [p]n → R

such that
max

i
Inf1−ε

i f ′ ≤ τ,

we have that profit+T ( f )< 7.

Proof. Notice that the soundness statement is proved for the coupon model which auto-
matically gives an upper bound for profitT ( f ).

First let us prove above statement under the assumption that f ∈ [p]. Then f ′(i) = 1( f =
i). We also use μa to denote Ex∈[p]n[ f ′a(x)]. We can arithmetize and bound the objective
function profit+T ( f ) in terms of f ′(i) as follows:

profit+T ( f )=
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

E
x′,y′,z′∼D2,k

[ f ′a(x′) f ′b(y′) f ′c(z′ ⊕p
⌊p

p/k
⌋
∙1)(a+ b+ c)]

= E
x,y,z∼D1,k

[
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

T1−ε f ′a(x)T1−ε f ′b(y)T1−ε f ′c(z⊕p
⌊p

p/k
⌋
∙1)(a+b+ c)]

=E
k

[
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

E
x,y,z∼D1

T1−ε f ′a(x)T1−ε f ′b(y)T1−ε f ′c(z⊕p
⌊p

p/k
⌋
∙1)(a+ b+ c)].

Notice that Inf1−ε
i f ′a ≤ Inf1−ε

i f ′ ≤ τ for i ∈ [n],a ∈ [p]. and x, y, z ∼ D1 are pairwise
independent, by Theorem 8.2.1 (with minimum probability α= 1/p), we can plug in inde-
pendent x, y, z ∼D2 with additive error bounded by τC01/(p log p) ≤ 1/p4. That is

profit+T ( f )<E
k

[
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

E
x,y,z∼D2

(
f ′a(x) f ′b(y) f ′c(z⊕p

⌊p
p/k

⌋
∙1)+1/p4

)
(a+ b+ c)]

≤Ek∈[
p

p][
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

μaμb f ′c(z⊕p
⌊p

p/k
⌋
∙1)(a+b+ c)]+1

The last inequality uses the fact that a+ b+ c ≤
p

p and there are at most p3 terms in
the summation.

A important observation is that since z is independent of k, therefore the random vector
variable z⊕p

⌊p
p/k

⌋
is also independent of the random variable k. Also, the distribution

on z⊕p
⌊p

p/k
⌋

is uniformly random over [p]n.
Therefore, we can further bound profit+T ( f ) by

Ek[
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

μaμbμc(a+b+ c)+1.
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As for the term

Ek∈[
p

p][
∑

0≤a+b+c≤bpp/kc,a,b,c∈[p]

μaμbμc(a+b+ c).

It is just profit+
T ′( f ). By Proposition 8.3.6, we know that profit+

T ′( f ) ≤ 1. Overall, we
bound profit+T ( f ) by 2 when f ∈ [p].

Following two observation is useful in our analysis.

Observation 8.3.9. Above proof also works even for randomized function f (x) ∈ [p] spec-
ified by f ′ in the following way: for each x, with probability f ′i(x), f outputs i. Here
∑

f ′i(x)= 1 for any x ∈ [p]n.

Observation 8.3.10. For any θ ∈R, f ∈ [p] , we can also bound the profit on function f −θ.
That is profit+T ( f −θ)≤ 2.

To see this, simply notice that

profit+T ( f−θ)=
∑

3θ≤a+b+c≤3θ+bpp/kc,a,b,c∈[p]

E
x′,y′,z′∼D2,k

[ f a(x′) f b(y′) f c(z′⊕p
⌊p

p/k
⌋
∙1)(a+b+c−3θ)]

and then we use the same proof and show that profit+T ( f −θ)≤profit+
T ′( f −θ)+1≤ 2.

Now we need to handle the case that f is not necessary a bounded integral function.
Recall that f̃ = b f c. First, we notice that f ≤ f̃ +1, therefore, we have that

revenue+ (
( f (x′), f (y′), f (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)

≤ revenue+ (
( f̃ (x′), f̃ (y′), f̃ (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)
+3. (8.1)

We then have that

profit+T ( f )=Ex′,y′,z′,k[revenue+ (
( f (x′), f (y′), f (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)
]

≤Ex′,y′,z′,k[revenue+ (
( f̃ (x′), f̃ (y′), f̃ (z′ ⊕p

⌊p
p/k

⌋
∙1),

⌊p
p/k

⌋)
+3]≤profit+T ( f̃ )+3.

The next step we show that

profit+T ( f̃ )≤profit+T ( f ′)+profit+T ( f ′ − p/3)+profit+T ( f ′ −2p/3) (8.2)

By definition of f ′, we know that

f̃ (x)+ f̃ (y)+ f̃ (z)= f ′(x)+ f ′(y)+ f ′(z) mod p.

Therefore, if f̃ (x)+ f̃ (y)+ f̃ (z)≤
⌊p

p/k
⌋

for some k, it must be the case that

f ′(x)+ f ′(y)+ f ′(z) ∈
[
0,

⌊p
p/k

⌋]
or

[
p, p+

⌊p
p/k

⌋]
or

[
2p,2p+

⌊p
p/k

⌋]
.

Therefore,

revenue+( f̃ (x), f̃ (y), f̃ (z),
⌊p

p/k
⌋
)≤ revenue+( f ′(x), f ′(y), f ′(z),

⌊p
p/k

⌋
))

+revenue+( f ′(x)− p/3, f ′(y)− p/3, f ′(z)− p/3,
⌊p

p/k
⌋
))

+revenue+( f ′(x)−2p/3, f ′(y)−2p/3, f ′(z)−2p/3,
⌊p

p/k
⌋
)).

This proves (8.2). And by Observation 8.3.10, we have that

profit+T ( f )<profit+T ( f̃ )+1≤ 3 ∙2+1≤ 7.
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8.4 The reduction from the UNIQUE-GAMES

In this section we show how to use our Dictator Test T to obtain our main result, Theo-
rem 9.1.1. First let us recall the definition of the UNIQUE-GAMES.

Definition 8.4.1. For L ∈ N, a UNIQUE-GAMESL instance consists of a bipartite graph
having vertex sets U, V and edge set E, together with a bijective constraint πv,u : [L] →
[L] for each (u,v) ∈ E. In addition, each edge e ∈ E has a nonnegative weight puv, with
∑

(u,v)∈E puv = 1. The algorithmic task is to find an assignment A : (U ∪V ) → [L] such that
the total weight of satisfied constraints is as large as possible. Here we say that A satisfies
the constraint πuv if πuv(A(u))= A(v).

The following equivalent version of the UGC due to Khot and Regev [103, Lemma 3.6]:

Theorem 8.4.2. Assume the UGC. For all small ζ,γ > 0, there exists L ∈ N such given an
unweighted UNIQUE-GAMESL instance G = (U ,V ,E, (πu,v)(u,v)∈E) which is U-regular, it is
NP-hard to distinguish the following two cases:

1. There is an assignment A : (U∪V )→ [L] and a subset U ′ ⊆U with |U ′|/|U | ≥ 1−ζ such
that A satisfies all constraints incident on U ′.

2. There is no assignment A that satisfies more than γ fraction of the constraints.

We make the following reduction from a UNIQUE-GAMES instance G to a VERTEX-PRICING3

instance I . The reduction is very similar to the one in [99]. Given the UNIQUE-GAMESL

instance G = (U ,V ,E, {πuv}), the reduction produces a weighted VERTEX-PRICING instance
I with variable set V × [p]L. We think of an price assignment F to these variables as a
collection of functions F = { fv : [p]L → R}, one for each v ∈ V . We now define the instance
according to the following procedures.

Reduction from UNIQUE-GAMES

1. Choose u ∈U randomly.
2. Choose 3 of u’s neighbor v1,v2,v3 randomly (with replacement).
3. Generate (x, y, z)∼D2 and k randomly from [

p
p].

4. Add a constraint among fv1(πv1,u(x)), fv2(πv2,u(y)), fv3(πv3,u(z) +
⌊p

p/k
⌋
) with

budget
⌊p

p/k
⌋
.

Here, for x ∈ [p]L and mapping π : [L] → [L], we denote π(x) ∈ [p]L as the permutation
of x’s coordinate according to i; i.e., π(x)i = xπ(i).

We claim that above reduction have the following property.

Theorem 8.4.3. For ζ= 1/p, τ satisfies that τC0 p log p ≤ 1/p4 and γ= τ2/p4, above reduction
have the following property:

• (Completeness.) If statement 1 in Theorem 8.4.2 holds for G , then there is a price
assignment F such that profitI (F) = Ω(log p). In addition, the price assigned on
each variable is p-bounded, i.e., with value ≥−p.

• (Soundness.) If there is non assignment for G that satisfies more than γ fraction of
the edges, then for every price assignment F such that profit+I (F)≤ 25.

By combining Theorem 8.4.3 with Theorem 8.4.2, and set p = B, we prove Theorem 9.1.1.
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8.4.1 Proof of Theorem 8.4.3

It remains to prove Theorem 8.4.3.

Proof. (Completeness) To prove the completeness part of Theorem 8.4.3, suppose that as-
signment A : V → [L] and subset U ′ ⊆U are as in statement 1 of Theorem 8.4.2. Define an
price assignment F for I by taking fv(x)= xA(v)− p/3. Then by definition and the property
of A, for u′ ∈ U ′, fvi (π

vi ,u
′
(x)) = xA(u′) − p/3 for i = 1,2,3. Thus by the completeness of the

Dictator Test(Theorem 10.3.5), assignment F will have profit at least Ω(log p) conditioned
on u′ ∈U is picked. As for the case that u ∉U ′ is picked, we lose a negative profit bounded
by −p . Overall, we have that profitI (F) ≥ (1− ζ)Ω(logP)+ ζp. Notice that we choose
ζ = 1/p, therefore, profitI (F) ≥ Ω(log p). In addition, we know that the assignment on
each fv is above −p/3.

(Soundness) We prove the soundness statement by contradiction. Suppose that some
assignment F have profit+I (F) ≥ 25, we will exhibit a assignment to the Unique Games
instance G that satisfies γ fraction of the edges. Notice that the maximum profit on each
constraint is at most

p
p , then by an average argument, we must have for at least 1/

p
p

of the vertex u ∈U picked in the first step, the expected profit on these u is above 24.
Let us call these u “good”. Write N(u) as the neighbor of u. By definition, for a fixed

”good” u, we know that

Ev1,v2,v3∈N(u),x,y,z∼D2[revenue+ (
fv1(πu,v1 x), fv2(πu,v2(y)), fv3(πu,v3(z)+

⌊p
p/k

⌋
),

⌊p
p/k

⌋)
]≥ 24.

Similar to the analysis of Theorem 10.3.6 , we define f̃v = b fvc and introduce f ′v ∈ [p]
such that f ′v = f̃v mod p, although we also write f ′v as [p]n → {0,1}p with its i-th coordinate
indicate whether f ′v is i. We call the assignment corresponding to { f̃v}v∈V as F̃ and the
assignment corresponding to { f ′v}v∈V as F ′.

By the proof of (8.1), we know that

profit+I (F̃)≥profit+I (F)−3≥ 21

and by the proof of (8.2), we have that

profit+I (F ′)+profit+I (F ′ − p/3)+profit+I (F ′ −2p/3)≥profit+I (F̃)≥ 21.

Therefore, one of profit+I (F ′),profit+I (F ′ − p/3),profit+I (F ′ −2p/3) should be above 7.
Assume that profit+I (F ′ − p/3)≥ 7. (The other 2 cases are similar)
We know then

profit+I (F ′ − p/3)

=Ex,y,z,k,,v1,v2,v3[
∑

p<a+b+c≤p+bpp/kc
[ f a

v1
(πv1,u(x)) f b

v2
(πv2,u(y)) f c

v3
(πv3,u(z)+

⌊p
p/k

⌋
∙1)(a+b+c−p)]

=Ex,y,z,k[
∑

p<a+b+c≤p+bpp/kc
Ev1∈N(u)[ f a

v1
(πv1,u(x))] ∙Ev2∈N(u)[ f b

v2
(πv2,u(y))]∙

Ev3∈N(u)[ f c
v3

(πv3,u(z+
⌊p

p/k
⌋
∙1))](a+b+ c− p)] (8.3)
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If we define f i
u =Ev∈N(u)[ f i

v(πv,u(x)] for i ∈ [p], then we have that

profit+I (F ′ − p/3)=Ex,y,z,k[
∑

p<a+b+c≤p+bpp/kc
Ev1,v2,v3[ f i

u(πv1,u(x))

∙ f i
u(πv2,u(y)) f i

u(πv3,u(z)+
⌊p

p/k
⌋
∙1)(a+ b+ c− p)]≥ 7. (8.4)

Denote fu(x)= ( f 1
u (x), f 2

u (x), . . . , f p
u (x)) . It is easy to check that

∑
f i
u = 1. Then fu can be

viewed as a randomized function that on a particular x, it output i with probability f i
u(x).

Then (8.4) is equal to the profit of the Dictator TestT on fu− p/3,being profit+T ( fu− p/3)≥
7.

We know then by a contrapositive statement of Theorem 10.3.6 along with observation
8.3.10 and Observation 8.3.9, there must be some i such that Inf1−ε

i fu ≥ τ.
Then by Fact 7.3.3, we know that

τ≤ Inf1−ε
i fu ≤Ev∈N(u)[Inf1−ε

i fv(πv,u(x))]

By an averaging argument, since Infi fv(πv,u(x)) =
∑

j∈[p] infi f j
v ≤ p, for τ

2p fraction of

the v ∈ N(u), we have that Infi fv(πv,u(x))= Inf1−ε
j=(πv,u)−1(i)

fv ≥ τ/2.

Now consider choosing a random assignment. Let Su = {i | Inf1−ε
i fu ≥ τ} and Sv be

{i | Inf1−ε
i fu ≥ τ/2}. By fact 7.3.4, we know that |Sv| ≤ p2/τ.

The assignment would be randomly set a label in Su for u and a label in Sv for v.
Then it is easy to see for good vertex u and any of its coordinate i ∈ Su, τ/2p fraction
of its neighbor will have a matching coordinate j = (πv,u)−1(i) in Sv. Therefore above
assignment satisfy at least 1/|Sv| ∙τ/2p fraction of the edges for “good” u. We know that
there is at least a 1/

p
p fraction of the u is good . By the regularity of the graph at the U

side, we know that such a labeling strategy satisfies at least 1/
p

p ∙ (τ/p2)τ/2p ≥ τ2/p4 = γ

fraction of the edges.
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Hardness of Learning
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Chapter 9

Hardness of Learning Monomials

171



9.1 Introduction

Monomials (conjunctions), decision lists, and halfspaces are among the most basic concept
classes in learning theory. They are all long-known to be efficiently PAC learnable, when
the given examples are guaranteed to be consistent with a function from any of these
concept classes. However, in practice data is often noisy or too complex to be consistently
explained by a simple concept. Dealing with noise and other inconsistencies is thus one of
the most significant issues in learning theory. In this chapter, we prove a strong hardness
result for agnostic learning of monomials using halfspaces, or equivalently the MON-HS-
MA problem.

Theorem 9.1.1. The problem of MON-HS-MA (1−ε,1/2+ε) is NP-hard.

Note that this hardness result is essentially optimal since it is trivial to find a hypoth-
esis with agreement rate 1/2 — output either the function that is always 0 or the function
that is always 1.

Since the class of monomials is a subset of the class of decision lists which in turn
is a subset of the class of halfspaces, our result implies an optimal hardness result for
proper agnostic learning of decision lists. In addition, a similar hardness result for proper
agnostic learning of majority functions can be obtained via a simple reduction.

9.2 Proof Overview

By the rule of thumb, the first step is to construct a dictator test such that a dictator mono-
mial passes with probability 1−ε while a non dictator test passes the test with probability
1/2+ε.

We prove Theorem 9.1.1 by exhibiting a reduction from the k-LABEL-COVER problem,
which is a particular variant of the LABEL-COVER problem. The k-LABEL-COVER problem
is defined as follows:

Definition 9.2.1. For k > 2, an instance of k-LABEL-COVER L (G(V ,E), M, N, {πv,e|e ∈
E,v ∈ e}) consists of a k-uniform connected (multi-)hypergraph G (V ,E) with vertex set V
and an edge set E; a set of functions {πvi ,e}k

i=1; and a set of labels M = {1,2, . . . , M} for some
positive integers M. Every hyperedge e = (v1, . . . ,vk) is associated with a k-tuple of projection
functions {πvi ,e}k

i=1 where πvi ,e : [M]→ [N].
A vertex labeling A is an assignment of labels to vertices A : V → [dR]. A labeling A is

said to strongly satisfy an edge e if πvi ,e(A (vi))=πvj ,e(A (vj))) for every vi,vj ∈ e. A labeling
L weakly satisfies edge e if πvi ,e(A (vi))=πvj ,e(A (vj))) for some vi,vj ∈ e, vi 6= vj.

The goal in LABEL-COVER is to find a vertex labeling that satisfies as many edges
(projection constraints) as possible.

For the sake of clarity, we first present the proof of Theorem 9.1.1 assuming the Unique
Games Conjecture. Consequently, we will be interested in the k-UNIQUE LABEL-COVER

problem which is a special case of k-LABEL-COVER where M = N, and all the projection
functions {πv,e|v ∈ e, e ∈ E} are bijections. The following inapproximability result for k-
UNIQUE LABEL-COVER is equivalent to the Unique Games Conjecture of Khot [98].

Conjecture 9.2.2. For every constant η > 0 and a positive integer k, there exists R0 such
that for all positive integers R > R0, given an instance L (G(V ,E),1,R, {πv,e|e ∈ E,v ∈ e}) it
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is NP-hard to distinguish between,
• strongly satisfiable instances: there exists a labeling A : V → [R] that strongly satis-

fies 1−kη fraction of the edges E.
• almost unsatisfiable instances: there is no labeling that weakly satisfies 2k2

Rη/4 fraction
of the edges.

A proof of the equivalence between above conjecture and Unique Games Conjecture
can be found in [103].

Given an instance L of k-UNIQUE LABEL-COVER, we will produce a distribution D

over labeled examples such that the following holds: if L is a strongly satisfiable instance,
then there is a disjunction (an OR function) that agrees with a randomly chosen example
with probability at least 1 − ε, while if L is an almost unsatisfiable instance then no
halfspace agrees with a random example from D with probability more than 1

2 +ε. Clearly,
such a reduction implies Theorem 9.1.1 assuming the Unique Games Conjecture but with
disjunctions in place of conjunctions. De Morgan’s law and the fact that a negation of a
halfspace is a halfspace then imply that the statement is also true for monomials (we use
disjunctions only for convenience).

Let L be an instance of k-UNIQUE LABEL-COVER on hypergraph G = (V ,E) and a
set of labels [R]. The examples we generate will have |V | ×R coordinates, i.e., belong to
{0,1}|V |×R . These coordinates are to be thought of as one block of R coordinates for every
vertex v ∈V . We will index the coordinates of x ∈ {0,1}|V |×R as x= (x(`)

v )v∈V ,`∈[R].
For every labeling A : V → [R] of the instance, there is a corresponding disjunction (OR

function) over {0,1}|V |×R given by,

h(x)=
∨

v
x(A (v))

v .

Thus, using a label ` for a vertex v is encoded as including the literal x(`)
v in the disjunction.

Notice that an arbitrary halfspace over {0,1}|V |×R need not correspond to any labeling at
all. The idea would be to construct a distribution on examples which ensures that any
halfspace agreeing with at least 1

2 + ε fraction of random examples somehow corresponds
to a labeling of L weakly satisfying a constant fraction of the edges in L .

Fix an edge e = (v1, . . . ,vk). For the sake of exposition, let us assume πvi ,e is the identity
permutation for every i ∈ [k]. The general case is not anymore complicated. For the edge
e, we require a distribution on examples De with the following properties:

• All coordinates x(`)
v for a vertex v ∉ e are fixed to be zero. Restricted to these exam-

ples, the halfspace h can be written as h(x)= sgn(
∑

i∈[k]‹wvi , xvi›−θ).

• For any label ` ∈ [R], the labeling A (v1) = . . . = A (vk) = ` strongly satisfies the edge
e. Hence, the corresponding disjunction ∨i∈[k]x

(`)
vi

needs to have agreement > 1− ε

with the examples from De.

• There exists a decoding procedure that given a halfspace h outputs a labeling Lh for
L such that, if h has agreement > 1

2 +ε with the examples from De, then Lh weakly
satisfies the edge e with non-negligible probability.

For conceptual clarity, let us rephrase the above requirement as a testing problem.
Given a halfspace h, consider a randomized procedure that samples an example (x, b)
from the distribution De, and accepts if h(x) = b. This amounts to a test that checks if
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the function h corresponds to a consistent labeling. Further, let us suppose the halfspace
h is given by h(x) = sgn(

∑
v∈V ‹wv, xv›−θ) . Define the linear function lv : {0,1}R → R as

lv(xv)= ‹wv, xv›. Then, we have h(x)= sgn(
∑

v∈V lv(xv)−θ).
For a halfspace h corresponding to a labelling L, we will have lv(xv)= x(A(v))

v – a dictator
function. Formally, the `’th dictator function on {0,1}R is given by F(x)= x(`). Thus, in the
intended solution every linear function lv associated with the halfspace h is a dictator
function.

Now, let us again restate the above testing problem in terms of these linear functions.
For succinctness, we write l i for the linear function lvi . We need a randomized procedure
that does the following:

Given k linear functions l1, . . . , lk : {0,1}R → R, queries the functions at one
point each (say x1, . . . , xk respectively), and accepts if sgn(

∑k
i=1 l i(xi)−θ)= b.

The procedure must satisfy,
• (Completeness) If each of the linear functions l i is the `’th dictator function for some

` ∈ [R], then the test accepts with probability 1−ε.

• (Soundness) If the test accepts with probability 1
2 + ε, then at least two of the linear

functions are close to the same dictator function.

A testing problem of the above nature is referred to as a Dictatorship Testing and is a
recurring theme in hardness of approximation.

Notice that the notion of a linear function being close to a dictator function is not
formally defined yet. In most applications, a function is said to be close to a dictator if it
has influential coordinates. It is easy to see that this notion is not sufficient by itself here.
For example, in the linear function sgn(10100x1 + x2 −0.5), although the coordinate x2 has
little influence on the linear function, it has the significant influence on the halfspace.

We resolve this problem by using the notion of critical index (Definition 9.3.1) intro-
duced in [133] and has found numerous applications in the analysis of halfspaces [41, 113,
119]. Roughly speaking, given a linear function l, the idea is to recursively delete its in-
fluential coordinates until there are none left. The total number of coordinates so deleted
is referred to as the critical index of l. Let cτ(wi) denote the critical index of wi, and let
Cτ(wi) denote the set of cτ(wi) largest coordinates of wi. The linear function l is said to be
close to the i’th dictator function for every i in Cτ(wi). A function is far from every dictator
if it has critical index 0.

An important issue is that the critical index of a linear function can be much larger
than the number of influential coordinates and cannot be appropriately bounded. In other
words, a linear function can be close to a large number of dictator functions, as per the
definition above. To counter this, we employ a structural lemma about halfspaces that
was used in the recent work on fooling halfspaces with limited independence [41]. Using
this lemma, we are able to prove that if the critical index is large, then one can in fact
zero out the coordinates of wi outside the t largest coordinates for some large enough t,
and the agreement of the halfspace h only changes by a negligible amount! Thus, we first
carry out the zeroing operation for all linear functions with large critical index.

We now describe the above construction and analysis of the dictatorship test in some
more detail. It is convenient to think of the k queries x1, . . . , xk as the rows of a k×R
matrix with {0,1} entries. Henceforth, we will refer to matrices {0,1}k×R and their rows

174



and columns.
We construct two distributions D0,D1 on {0,1}k such that for s = 0,1, we have Prx∈Ds

[
∨k

i=1xi =
s
]
> 1− ε for ε= ok(1) (this will ensure the completeness of the reduction, i.e., certain dis-

junctions pass with high probability). Further, the distributions will be carefully chosen
to have matching first four moments. This will be used in the soundness analysis where
we will use an invariance principle to infer structural properties of halfspaces that pass
the test with probability noticeably greater than 1/2.

We define the distribution D̃R
s on matrices {0,1}k×R by sampling R columns indepen-

dently according to Ds, and then perturbing each bit with a small random noise. We de-
fine the following test (or equivalently, distribution on examples): given a halfspace h on
{0,1}k×R , with probability 1/2 we check h(x) = 0 for a sample x ∈ D̃R

0 , and with probability
1/2 we check h(x)= 1 for a sample x ∈ D̃R

1 .

Completeness By construction, each of the R disjunctions OR j(x) = ∨k
i=1x( j)

i passes the

test with probability at least 1 − ε (here x( j)
i denotes the entry in the i’th row and j’th

column of x).
Soundness For the soundness analysis, suppose h(x) = sgn(‹w, x›−θ) is a halfspace that
passes the test with probability at least 1/2+ε. The halfspace h can be written in two ways
by expanding the inner product ‹w, x› along rows and columns, i.e., h(x)= sgn(

∑k
i=1‹wi, xi›−

θ)= sgn(
∑R

i=1‹w
(i), x(i)›−θ). Let us denote l i(x)= ‹wi, xi›.

First, let us see why the linear functions ‹wi, xi› must be close to some dictator. Note
that we need to show that two of the linear functions are close to the same dictator.

Suppose each of the linear functions l i is not close to any dictator. In other words, for
each i, no single coordinate of the vector wi is too large (contains more than τ-fraction of
the `2 mass ‖wi‖2 of vector wi ). Clearly, this implies that no single column of the matrix
w is too large.

Recall that the halfspace is given by, h(x)= sgn(
∑

j∈[R]‹w
( j), x( j)›−θ). Here l(x)=

∑
j∈[R]‹w

( j), x( j)›−
θ is a degree 1 polynomial into which we are substituting values from two product distri-
butions DR

0 and DR
1 . Further, the distributions D0 and D1 have matching moments up to

order 4 by design. Using the invariance principle, the distribution of l(x) is roughly the
same, whether x is from DR

0 or DR
1 . Thus, by the invariance principle, the halfspace h is

unable to distinguish between the distributions DR
0 and DR

1 with a noticeable advantage.
Suppose no two linear functions l i are close to the same dictator, i.e., Cτ(wi)∩Cτ(w j)=

;. In this case, we condition on the values of x( j)
i for j ∈ Cτ(wi) (note that we condition

on at most one value in each column so the conditional distribution on each column still
has matching first three moments), and then apply the invariance principle using the fact
that after deleting the coordinates in Cτ(wi), all the remaining coefficients of the weight
vector w are small (by definition of critical index). This implies that Cτ(wi)∩Cτ(w j) 6= ;
for some two rows i, j. This finishes the proof of the soundness claim.

The above consistency-enforcing test almost immediately yields the Unique Games
hardness of weak learning disjunctions by halfspaces. To prove NP-hardness, we reduce
a version of Label Cover to our problem. This requires a more complicated consistency
check, and we have to overcome several additional technical obstacles in the proof.

The main obstacle encountered in transferring the dictatorship test to a Label Cover-
based hardness is one that commonly arises for several other problems. Specifically, the
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projection constraint on an edge e = (u,v) maps a large set of labels L = {`1, . . . ,`d} corre-
sponding to a vertex u to a single label ` for the vertex v. While composing the Label Cover
constraint (u,v) with the dictatorship test, all labels in L have to be necessarily equiva-
lent. In several settings including this work, this requires the coordinates corresponding
to labels in L to be mostly identical! However, on making the coordinates corresponding to
L identical, the prover corresponding to u can determine the identity of edge (u,v), thus
completely destroying the soundness of the composition. In fact, the natural extension
of the Unique Games-based reduction for MAXCUT [100] to a corresponding Label Cover
hardness fails primarily for this reason.

Unlike MAXCUT or other Unique Games-based reductions, in our case, the soundness
of the dictatorship test is required to hold against a specific class of functions, i.e, halfs-
paces. Harnessing this fact, we execute the reduction starting from a Label Cover instance
whose projections are unique on average. More precisely, a smooth Label Cover (introduced
in [95]) is one in which for every vertex u, and a pair of labels `,`′, the labels {`,`′} project
to the same label with a tiny probability over the choice of the edge e = (u,v). Techni-
cally, we express the error term in the invariance principle as a certain fourth moment of
halfspace, and use the smoothness to bound this error term for most edges of the Label
Cover instance. It is of great interest to find other applications where a weak uniqueness
property like the smoothness condition can be used to convert a Unique Games hardness
result to an unconditional NP-hardness result.

9.3 Preliminaries

In this section, we define two important tools in our analysis: i) critical index, ii) invari-
ance principle.

9.3.1 Critical Index

The notion of critical index was first introduced by Servedio [133] and plays an important
role in the analysis of halfspaces in [41, 113, 119].
Definition 9.3.1. Given any real vector w = (w(1),w(2), . . . ,w(n)) ∈ Rn. Reorder the coor-
dinates by decreasing absolute value, i.e., |w(i1)| > |w(i2)| > . . . > |w(in)| and denote σ2

t =
∑n

j=t |w
(i j)|2. For 06 τ6 1. The τ-critical index of the vector w is defined to be the small-

est index k such |w(ik)|6 τσk. If no such k exists (∀k, |w(ik)| > τσk), the τ-critical index is
defined to be +∞. The vector w is said to be τ-regular if the τ-critical index is 1.

A simple observation from [41] is that if the critical index of a sequence is large the
sequence must contain a geometrically decreasing subsequence.
Lemma 9.3.2. (Lemma 5.5 in [41]) Given a vector w = (w(i))n

i=1 such that |w(1)|> |w(2)|>
. . .> |w(n)|, if the τ-critical index of the vector w is larger than l, then for any 16 i6 j6 l+1,

|w( j)|6σ j 6 (
√

1−τ2) j−iσi 6 (
√

1−τ2) j−i|w(i)|/τ.

In particular, if j > i+ (4/τ2) ln(1/τ) then |w( j)|6 |w(i)|/3.
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For a τ-regular weight vector, the following lemma bounds the probability that its
weighted sum falls into a small interval under certain distributions on the points. The
proof is in Appendix 9.8.
Lemma 9.3.3. Let w ∈Rn be a τ-regular vector w, and

∑
|w(i)|2 = 1. D is a distribution over

{−1,1}n. Define a distribution D̃ on {−1,1}n as follows: to generate y from D̃, first sample x
from D and then define,

y(i) =

{
x(i) with probability 1−γ

random bit with probability γ.

Then for any interval [a, b], we have

Pr
[
‹w, y› ∈ [a, b]

]
6

4|b−a|
p
γ

+
4τ
p
γ
+2e−

γ2

2τ2 .

Intuitively, ‹w, y› is τ close to the Gaussian distribution if each y(i) is a random bit and
therefore we can bound the probability that ‹w, y› falls into the interval [a, b]. In above
lemma, each y(i) has probability γ to be a random bit, then γ fraction of y(i) is set to be a
random bit and we can therefore bound the probability that ‹w, y› falls into the interval
[a, b].
Definition 9.3.4. For a vector w ∈ Rn, define set of indices St(w) ⊆ [n] as the set of indices
containing the t largest coordinates of w by absolute value. Suppose its τ-critical index is
cτ, define set of indices Cτ(w) = Scτ(w). In other words, Cτ(w) is the set of indices whose
deletion makes the vector w to be τ-regular.
Definition 9.3.5. For a vector w ∈ Rn and a subset of indices S ⊆ [n], define the vector
Truncate(w,S) ∈Rn as:

(Truncate(w,S))(i) =

{
w(i) if i ∈ S

0 otherwise

As suggested by Lemma 9.3.2, a weight vector with a large critical index has a geo-
metrically decreasing subsequence. The following two lemmas use this fact to bound the
probability that the weighted sum of a geometrically decreasing sequence of weights falls
into a small interval. First, we restate Claim 5.7 from [41] here.
Lemma 9.3.6. [Claim 5.7, [41]] Let |w(1)|> |w(2)| . . .> |w(T)|> 0 be a sequence of numbers

so that |w(i+1)|6 |w(i)

3 | for 16 i6 T−1 . Then for any interval I = [α− w(T)

6 ,α+ w(T)

6 ] of length
|w(T)|

3 , there is at most one point x ∈ {0,1}T such that ‹w, x› ∈ I.

Lemma 9.3.7. Let |w(1)|> |w(2)| . . .> |w(T)|> 0 be a sequence of numbers so that |w(i+1)|6
|w(i)

3 | for 16 i6 T −1. D is a distribution over {−1,1}T. Define a distribution D̃ on {−1,1}T

as follows: To generate y from D̃, sample x from D and set

y(i) =

{
x(i) with probability 1−γ

random bit with probability γ.

Then for any θ ∈R we have

Pr
[
‹w, y› ∈ [θ−

w(T)

6
,θ+

w(T)

6
]
]
6

(
1−

γ

2

)T
.
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Proof. By Lemma 9.3.6, we know that for the interval J =
[
θ− |wT |

6 ,θ+ |wT |
6

]
, there is at

most one point r ∈ {−1,1}T such that ‹w,r› ∈ J. If no such r exists then clearly the prob-
ability is zero. On the other hand, suppose there exists such an r, then ‹w, y› ∈ J only if
(y(1)

1 , y(2)
1 , . . . , y(T)

1 )= (r(1), . . . , r(T)) holds.

Conditioned on any fixing of the bits x, every bit y( j) is an independent random bit with
probability γ. Therefore, for every fixing of x, for each i ∈ [T], with probability at least γ/2,

y(i) is not equal to r(i). Therefore, Pr[y(1) = r(1), y(2) = r(2), . . . , y(T) = r(T)]6
(
1− γ

2

)T
.

9.3.2 Invariance Principle

While invariance principles have been shown in various settings by [31, 114, 117], we re-
state a version of the principle well suited for our application. We present a self-contained
proof for it in Appendix 9.9.
Definition 9.3.8. A C4-function Ψ(x) :R→R is said to be B-nice if |Ψ′′′′(t)|6B for all t ∈R.
Definition 9.3.9. Two ensembles of random variables P = (p1, . . . , pk) and Q = (q1, . . . , qk)
are said to have matching moments up to degree d if for every multi-set S of elements from
[k], |S|6 d, we have E[

∏
i∈S pi]=E[

∏
i∈S qi].

Theorem 9.3.10. (Invariance Principle) Let A = {A{1}, . . . , A{R}},B = {B{1}, . . . ,B{R}} be fam-
ilies of ensembles of random variables with A{i} = {a(i)

1 , . . . ,a(i)
ki

} and B{i} = {b(i)
1 , . . . , b(i)

ki
}, sat-

isfying the following properties:

• For each i ∈ [R], the random variables in ensembles (A{i},B{i}) have matching mo-
ments up to degree 3. Further all the random variables in A and B are bounded by
1.

• The ensembles A{i} are all independent of each other, similarly the ensembles B{i} are
independent of each other.

Given a set of vectors l = {l{1}, . . . , l{R}}(l{i} ∈Rki ), define the linear function l :Rk1×∙∙ ∙×RkR →
R as

l(x)=
∑

i∈[R]
‹l{i}, x{i}›

Then for a B-nice function Ψ :R→R we have
∣
∣
∣
∣E
A

[
Ψ

(
l(A )−θ

)]
−E

B

[
Ψ

(
l(B)−θ

)]∣∣
∣
∣6B

∑

i∈[R]
‖l{i}‖4

1

for all θ > 0. Further, define the spread function c(α) corresponding to the ensembles A ,B
and the linear function l as follows,

(Spread Function: )For 1/2>α> 0, let

c(α)=max
(
sup
θ

PrA

[
l(A ) ∈ [θ−α,θ+α]

]
, sup

θ
PrB

[
l(B) ∈ [θ−α,θ+α]

])

then for all θ,
∣
∣
∣
∣E
A

[sgn(l(A )−θ)]−E
B

[sgn(l(B)−θ)]

∣
∣
∣
∣6O

(
1

α4

) ∑

i∈[R]
‖l{i}‖4

1+2c(α).
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9.4 Construction of the Dictatorship Test

In this section we describe the construction of the dictatorship test which will be the key
ingredient in the hardness reduction from k-UNIQUE LABEL-COVER.

9.4.1 Distributions D0 and D1

The dictatorship test is based on following two distributions D0 and D1 defined on {−1,1}k.
Lemma 9.4.1. For k ∈N, there exists two probability distributions D0, D1 on {−1,1}k such
that Prx∼D0{every xi is 0}> 1− 2p

k
, Prx∼D1{every xi is 0}6 1p

k
, while matching moments up

to degree 4, i.e., ∀a, b, c, d ∈ [k]

E
D0

[xa]= E
D1

[xa] E
D0

[xaxbxcxd]= E
D1

[xaxbxcxd]

E
D0

[xaxb]= E
D1

[xaxb] E
D0

[xaxbxc]= E
D1

[xaxbxc]

Proof. For ε= 1p
k
, take D1 to be the following distribution:

1. with probability (1− ε), randomly set exactly one of the bit to be 1 and all the other
to be 0;

2. with probability ε
4 , independently set every bit to be 1 with probability 1

k1/3 ;

3. with probability ε
4 , independently set every bit to be 1 with probability 2

k1/3 ;

4. with probability ε
4 , independently set every bit to be 1 with probability 3

k1/3 ;

5. with probability ε
4 , independently set every bit to be 1 with probability 4

k1/3 .

The distribution D0 is defined to be the following distribution with parameter ε1,ε2,ε3,ε4

to be specified later:

1. with probability 1− (ε1 +ε2 +ε3+ε4), set every bit to be zero;

2. with probability ε1, independently set every bit to be 1 with probability 1
k1/3 ;

3. with probability ε2, independently set every bit to be 1 with probability 2
k1/3 ;

4. with probability ε3, independently set every bit to be 1 with probability 3
k1/3 ;

5. with probability ε4, independently set every bit to be 1 with probability 4
k1/3 .

From the definition of D0,D1, we know that Prx∼D0[every xi is 0]> 1− (ε1+ε2+ε3+ε4)
and Prx∼D1[every xi is 0]6 ε= 1p

k
.

It remains to determine each εi. Notice that the moment matching conditions can be
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expressed as a linear system over the parameters ε1,ε2,ε3,ε4 as follows:

4∑

i=1
εi(

i

k1/3
)= (1−ε)/k+

4∑

i=1

ε

4
(

i

k
1
3

)

4∑

i=1
εi(

i

k1/3
)2 =

4∑

i=1

ε

4
(

i

k
1
3

)2

4∑

i=1
εi(

i

k
1
3

)3 =
4∑

i=1

ε

4
(

i

k
1
3

)3

4∑

i=1
εi(

i

k
1
3

)4 =
4∑

i=1

ε

4
(

i

k
1
3

)4.

We then show that such a linear system has a feasible solution ε1,ε2,ε3,ε4 > 0 and
∑4

i=1 εi 6 2/
p

k .

To prove this, by applying Cramer’s rule,

ε1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1−ε)/k+
∑4

i=1
ε
4( i

k
1
3

) 2

k
1
3

3

k
1
3

4

k
1
3∑4

i=1
ε
4( i

k
1
3

)2 4

k
2
3

9

k
2
3

16

k
2
3∑4

i=1
ε
4( i

k
1
3

)3 8

k
3
3

27

k
3
3

64

k
3
3∑4

i=1
ε
4( i

k
1
3

)4 16

k
4
3

81

k
4
3

256

k
4
3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

k
1
3

2

k
1
3

3

k
1
3

4

k
1
3

1

k
2
3

4

k
2
3

9

k
2
3

16

k
2
3

1

k
3
3

8

k
3
3

27

k
3
3

64

k
3
3

1

k
4
3

16

k
4
3

81

k
4
3

256

k
4
3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

With some calculation using basic linear algebra, we get

ε1 = ε/4+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1−ε)/k 2

k
1
3

3

k
1
3

4

k
1
3

0 4

k
2
3

9

k
2
3

16

k
2
3

0 8

k
3
3

3

k
3
3

64

k
3
3

0 16

k
4
3

3

k
4
3

256

k
4
3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

k
1
3

2

k
1
3

3

k
1
3

4

k
1
3

1

k
2
3

4

k
2
3

9

k
2
3

16

k
2
3

1

k
3
3

8

k
3
3

27

k
3
3

64

k
3
3

1

k
4
3

16

k
4
3

81

k
4
3

256

k
4
3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

4
p

k
+O(

1

k
2
3

).

For big enough k, we have 06 ε1 6 1
2
p

k
. By similar calculation, we can bound ε2,ε3,ε4 by

1
2
p

k
. Overall, we have ε1 +ε2 +ε3 +ε46 2/

p
k
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We define a “noisy” version of Db (b ∈ {0,1}) below.
Definition 9.4.2. For b ∈ {−1,1}, define the distribution D̃b on {−1,1}k as follows:

• First generate x ∈ {−1,1}k according to Db.

• For each i ∈ [k],

yi =

{
xi with probability 1− 1

k2

uniform random bit ui with probability 1
k2

Observation 9.4.3. Since the noise is defined to be an independent uniform random bit,
when calculating moments of y, such as ED̃b

[yi1 yi2 ∙ ∙ ∙ yid ], we can substitute yi by (1−γ)xi+
1
2γ. Therefore, a degree d moment of y can be expressed as a weighted sum of moments of x
of degree up to d. Since D0 and D1 have matching moments up to degree 4, D̃0 and D̃1 also
have matching moments up to degree 4.

The following simple lemma asserts that conditioning the two distributions D̃0 and D̃1

on the same coordinate xj being fixed to value b results in conditional distributions that
still have matching moments up to degree 3.
Lemma 9.4.4. Given two distributions P0,P1 on {−1,1}k with matching moments up to
degree d, for any multi-set S of elements from [k], |S|6 d−1, j ∈ [k] and c ∈ {−1,1}.

E
P0

[
∏

i∈S
xi | xj = c]= E

P1

[
∏

i∈S
xi | xj = c].

Proof. For the case c = 1 and any b ∈ {−1,1},

E
Pb

[xj
∏

i∈S
xi]= E

Pb

[
∏

i∈S
xi | xj = 1]PrP0[xj = 1]= E

Pb

[
∏

i∈S
xi | xj = 1] E

P0

[xj].

Therefore,

E
P0

[
∏

i∈S
xi | xj = 1]=

EP0[xj
∏

i∈S xi]

EP0[xj]
=

EP1[xj
∏

i∈S xi]

EP1[xj]
= E

P1

[
∏

i∈S
xi | xj = 1].

For the case c = 0, replace xj with x′j = 1− xj. It is easy to see that P0 P1 still have

matching moments and conditioning on xj = 0 is the same as conditioning on x′j = 1. Hence
we can reduce to the case c = 1.

9.4.2 The Dictatorship Test

Let R be a positive integer. Based on the distribution D0 and D1, we define the dictatorship
test as follows:

1. Generate a random bit b ∈ {0,1}.

2. Generate x ∈ {−1,1}kR from DR
b .

3. For each i ∈ [k], j ∈ [R],

y( j)
i =

{
x( j)

i with probability 1− 1
k2 ;

random bit with probability 1
k2 .

4. Output the pair (y, b). Equivalently, ACCEPT if h(y)= b.
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We can also view y as being generated as follows: i) With probability 1
2 , generate a

negative sample from distribution D̃R
0 ; ii) With probability 1

2 , generate a positive sample
from distribution D̃R

1 .

Theorem 9.4.5. (Completeness) For any j ∈ [R], h(y) = ∨k
i=1 y( j)

i passes with probability

> 1− 3p
k
.

Proof. If x is generated from DR
0 , we know that with probability at least 1− 2p

k
, all the

bits in {x( j)
1 , x( j)

2 , . . . , x( j)
k } are set to 0. By union bound, with probability at least 1 − 2p

k
−

1
k , {y( j)

1 , y( j)
2 , . . . , y( j)

k } are all set to 0, in which case the test passes as ∨k
i=1 y( j)

i = 0. If x

is generated from DR
1 , we know that with probability at least 1 − 1p

k
, one of the bits in

{x( j)
1 , x( j)

2 , . . . , x( j)
k } is set to 1 and by union bound one of {y( j)

1 , y( j)
2 , . . . , y( j)

k } is set to 1 with

probability at least 1− 1p
k
− 1

k , in which case the test passes since ∨k
i=1 y( j)

i = 1. Overall, the

test passes with probability at least 1− 3p
k
.

9.4.3 Soundness Analysis

The soundness property of the test (formally stated in Theorem 9.4.8) is that if some h(y)
passes the above dictatorship test with high probability, then we can decode each wi (i ∈
[k]) in to a small list and at least two of the list will intersect. The proof of the soundness
property is based on two key lemmas (Lemma 9.4.6, 9.4.7). Roughly speaking, the first
lemma states that if a halfspace passes the test with good probability, then two of its
critical index sets Cτ(wi),Cτ(w j) (see Definition 9.3.1 ) must intersect; the second lemma
states that every halfspace can be approximated by another halfspace with a small critical
index.

Let h(y) be a halfspace function on {−1,1}kR given by h(y) = sgn(‹w, y›−θ). Equiva-
lently, h(y) can be written as

h(y)= sgn
( ∑

j∈[R]
‹w( j), y( j)›−θ

)
= sgn

( ∑

i∈[k]
‹wi, yi›−θ

)

where w( j) ∈Rk and wi ∈RR .
Lemma 9.4.6. (Common Influential Coordinate) For τ = 1

k7 , let h(y) be a halfspace such
that for all i 6= j ∈ [k], we have Cτ(wi)∩Cτ(w j)=; . Then

∣
∣
∣ E
D̃R

0

[h(y)]− E
D̃R

1

[h(y)]
∣
∣
∣6O

(1

k

)

Proof. Fix the following notation,

si =Truncate(wi,Cτ(wi)) l i = wi − si

yL
i =Truncate(yi,Cτ(wi)) yL = yL

1 , yL
2 , . . . , yL

k

We can rewrite the halfspace h(y) as h(y) = sgn
(
‹s, yL›+‹l, y›−θ

)
. Let us first normalize

the halfspace h(y) so that
∑

i∈[k] ‖l i‖2 = 1. We now condition on a possible fixing of the
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vector yL. Under this conditioning and for y chosen randomly from the distribution D̃R
0 ,

define the family of ensembles A = A{1}, . . . , A{R} as follows:

A{ j} = {y( j)
i | ∀i ∈ [k] such that j ∉ Cτ(wi)}

Similarly define the ensemble B = B{1}, . . . ,B{R} using y chosen randomly from the distri-
bution D̃R

1 . Further let us denote l{ j} = (l( j)
1 , . . . , l( j)

k ). Now we apply the invariance principle
(Theorem 9.3.10) to the ensembles A ,B and the linear function l. For each j ∈ [R], there
is at most one coordinate i ∈ [k] such that j ∈ Cτ(wi). Thus, conditioning on yL amounts to
fixing of at most one variable y( j)

i in each {y( j)
i }i∈[k]. By Lemma 9.4.4, since D̃0 and D̃1 have

matching moments up to degree 4, we get that A{ j} and B{ j} have matching moments up
to degree 3. Also notice that max j∈[R],i∈[k] |l

( j)
i |6 τ‖l i‖2 6 τ‖l‖2 (as l i is a τ-regular) and

each y( j)
i is set to be a random unbiased bit with probability 1

k2 ; by Lemma 9.3.3, the linear
function l and the ensembles A , B satisfy the following spread property for every θ′ ∈R:

PrA

[
l(A ) ∈ [θ′ −α,θ′ +α]

]
6 c(α)

PrB

[
l(B) ∈ [θ′ −α,θ′ +α]

]
6 c(α),

where c(α)6 8αk+4τk+2e
− 1

2τ2k4 (by setting γ= 1
k2 and |b−a| = 2α in Lemma 9.3.3). Using

the invariance principle (Theorem 9.3.10) this implies:
∣
∣
∣E
A

[
sgn

(
‹s, yL›+

∑

j∈[R]
‹l{ j}, A{ j}›−θ

)∣∣
∣yL

]
−

E
B

[
sgn

(
‹s, yL›+

∑

j∈[R]
‹l{ j},B{ j}›−θ

)∣∣
∣yL

]∣∣
∣

6O
( 1

α4

) ∑

i∈[R]
‖l{i}‖4

1+2c(α) (9.1)

By definition of the critical index, we have max j∈[R] l j
i 6 τ‖l i‖2. Using this, we can bound

∑
i∈[R] ‖l{i}‖4

1 as follows:

∑

j∈[R]
‖l{ j}‖4

16 k4
∑

i∈[k]

∑

j∈[R]
‖l( j)

i ‖46 k4
∑

i∈[k]

(
max
j∈[R]

|l( j)
i |2

)
‖l i‖

2
2

6 k4τ2
∑

i∈[k]
‖l i‖

2
26 k4τ2‖l‖2

26
1

k8
.

In the final step, we used the fact that τ = 1
k7 and ‖l‖2 = 1 by normalization. Let us fix

α = 1
k2 . The inequality (9.1) holds for all settings of yL. Averaging over all settings of yL

we get that (9.1) can be bounded by O( 1
k ).

The set Cτ(wi) can be thought of as the set of influential coordinates of wi. In this light,
the above lemma asserts that unless some two vectors wi,w j have a common influential
coordinate, the halfspace h(y) cannot distinguish between D̃R

0 and D̃R
1 .

Unlike with the traditional notion of influence, it is unclear whether the number of
coordinates in Cτ(wi) is small. The following lemma yields a way to get around this.
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Lemma 9.4.7. (Bounding the number of influential coordinates) Fix

t =
4

τ2
(log(1/τ)+ logR)+4k2 log(1/k)

4

τ2
(log(1/τ).

Given a halfspace h(y) and ` ∈ [k] such that |Cτ(w`)| > t, define h̃(y)= sgn(
∑

i∈[k]‹w̃i, yi›−θ)
as follows: w̃` =Truncate(w`,St(w`)) and w̃i = wi for all i 6= `. Then,

∣
∣
∣ E
D̃R

0

[h̃(y)]− E
D̃R

0

[h(y)]
∣
∣
∣6

1

k2
and

∣
∣
∣ E
D̃R

1

[h̃(y)]− E
D̃R

1

[h(y)]
∣
∣
∣6

1

k2
.

Proof. Without loss of generality, we assume ` = 1 and |w(1)
1 | > |w(2)

1 | > ∙ ∙ ∙ > |w(R)
1 |. In

particular, this implies St(w1) = {1, . . . , t}. Set T = 4k2 log(1/k). Define the subset G of
St(w1) as

G = {gi | gi = 1+ id(4/τ2) ln(1/τ)e,06 i6 T}.

Therefore, by Lemma 9.3.2, |w(gi)
1 | is a geometrically decreasing sequence such that |w(gi+1)

1 |6

|w(gi)
1 |/3. Let H = St(w1)\G. Fix the following notation:

wG
1 =Truncate(w1,G), wH

1 =Truncate(w1, H), w>t
1 =Truncate(w1, {t+1, . . . , n}).

Similarly, define the vectors yG
1 , yH

1 , y>t
1 . We now rewrite the halfspace functions h(y) and

h̃(y) as:

h(y)= sgn
( k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›+‹w>t

1 , y>t
1 ›−θ

)

h̃(y)= sgn
( k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›−θ

)
.

Notice that for any y, h(y) 6= h̃(y) implies

∣
∣

k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›−θ

∣
∣6 |‹w>t

1 , y>t
1 ›|. (9.2)

By Lemma 9.3.2, we know that

|w(gT )
1 |2 >

τ2

(1−τ2)t−gT
‖w>t

1 ‖2
2 >

τ2

(1−τ2)
4
τ2 (log(1/τ)+logR)

‖w>t
1 ‖2

2 >
R2

τ
‖w>t

1 ‖2
2.

Using the fact that R‖w>t
1 ‖2

2 > ‖w>t
1 ‖2

1, we can get that ‖w>t
1 ‖1 6

p
τ|w(gT )

1 | 6 1
6 |w

(gT )
1 |.

Combining the above inequality with (9.2) we see that,

Pr
D̃0

R

[
h(y) 6= h̃(y)

]
6 Pr

D̃0
R

[
|

k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›−θ|6 |‹w>t

1 , y>t
1 ›|

]

6 Pr
D̃0

R

[∣
∣

k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›−θ

∣
∣6

|w(gT )
1 |

6

]

= Pr
D̃0

R

[
‹wG

1 , yG
1 › ∈ [θ′ −

1

6
|w(gT )

1 |,θ′ +
1

6
|w(gT )

1 |]
]
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where θ′ = −
∑k

i=2‹wi, yi› − ‹wH
1 , yH

1 › + θ. For any fixing of the value of θ′ ∈ R, induces a

certain distribution on yG
1 . However, the 1

k2 noise introduced in yG
1 is completely indepen-

dent. This corresponds to the setting of Lemma 9.3.7, and hence we can bound the above

probability by
(
1− 1

2k2

)T
6 1

k2 . The result follows from averaging over all values of θ′.

Theorem 9.4.8. (Soundness) Fix τ= 1
k7 and t to be set as the same as in Lemma 9.4.7. Let

h(x)= sgn(‹w, y›−θ) be a halfspace such that St(wi)∩St(w j)=; for all i, j ∈ [k]. Then the
halfspace h(y) passes the dictatorship test with probability at most 1

2 +O( 1
k ).

Proof. The probability of success of h(y) is given by 1
2 +

1
2

(
ED̃R

1
[h(y)]−ED̃R

0
[h(y)]

)
. There-

fore, it suffices to show that
∣
∣
∣ED̃R

0
[h(y)]−ED̃R

1
[h(y)]

∣
∣
∣6O( 1

k ).

Define K = {l | Cτ(wl)> t}. We discuss the following two cases.

1. K = ;; i.e., ∀i ∈ [k], Cτ(wi)6 t. Then for all i, j, St(wi)∩St(w j) = ; implies Cτ(wi)∩

Cτ(w j)=;. By Lemma 9.4.6, we thus have
∣
∣
∣ED̃R

0
[h(y)]−ED̃R

1
[h(y)]

∣
∣
∣6O( 1

k ).

2. K 6= ;. Then for all l ∈ K , we set w̃` =Truncate(w`,St(w`)) and replace w` with w̃` in h
to get a new halfspace h′. Since such replacements occur at most k times and by Lemma
9.4.7 every replacement changes the output of the halfspace on at most 1

k2 fraction of

examples, we can bound the overall change by k× 1
k2 = 1

k . That is

∣
∣
∣ E
D̃R

0

[h′(y)]− E
D̃R

0

[h(y)]
∣
∣
∣6

1

k
,

∣
∣
∣ E
D̃R

1

[h′(y)]− E
D̃R

1

[h(y)]
∣
∣
∣6

1

k
. (9.3)

Also notice that for h′ and all ` ∈ [k], the critical index of |Cτ(w̃`)| is less than t. This

reduces the problem to Case 1, and we conclude
∣
∣
∣ED̃R

0
[h′(y)]−ED̃R

1
[h′(y)]

∣
∣
∣= O (1/k). Along

with (9.3) this finishes the proof.

9.5 Reduction from k-UNIQUE LABEL-COVER

In this section, we describe briefly a reduction from k-UNIQUE LABEL-COVER problem
to agnostic learning of monomials, thus showing Theorem 9.1.1 under the Unique Games
Conjecture (Conjecture 9.2.2). Although our final hardness result only assumes P 6= NP,
we describe the reduction to k-UNIQUE LABEL-COVER for the purpose of illustrating the
main idea of our proof.

Let L (G(V ,E),1,R, {πv,e|v ∈V , e ∈ E}) be an instance of k-UNIQUE LABEL-COVER. The
reduction will produce a distribution over labeled examples: ( y, b) where y lies in {0,1}|V |×R

and label b ∈ {0,1}. We will index the coordinates of y ∈ {0,1}|V |×R by y(i)
w (for w ∈ V , i ∈ R)

and denote yw (for w ∈V ) to be the vector (y(1)
w , y(2)

w , . . . , y(R)
w ).
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1. Sample an edge e = (v1, . . . ,vk) ∈ E

2. Generate a random bit b ∈ {−1,1}.

3. Sample x ∈ {−1,1}kR from D̃R
b .

4. Define y ∈ {−1,1}|V |×R as follows:

(a) For each v ∉ {v1, . . . ,vk}, yv = 0.

(b) For each i ∈ [k] and j ∈ [R], y( j)
vi

= x(πvi ,e( j))
i .

5. Output the example (y, b).

Proof of Theorem 9.1.1 assuming Unique Games Conjecture Fix k = 10
ε2 , η = ε3

100

and a positive integer R > d(2k29)
1
η2 e for which Conjecture 9.2.2 holds.

Completeness: Suppose that A : V → [R] is a labeling that strongly satisfies 1 − kη
fraction of the edges. Consider disjunction h(y) =

∨
v∈V y(A (v))

v . For at least 1− kη frac-
tion of edges e = (v1,v2, . . . ,vk) ∈ E, πv1,e(A (v1)) = ∙∙ ∙ = πvk,e(A (vk)) = `. As all coordi-
nates of y outside of {yv1 , . . . , yvk } are set to 0 in step 4(a), the disjunction reduces to

∨i∈[k] y
(A (vi))
vi

=∨i∈[k]x
(`)
i . By Theorem 9.4.5, such a disjunction agrees with every (y, b) with

probability at least 1− 3p
k
. Therefore h(y) agrees with a random example with probability

at least (1− 3p
k
)(1−kη)> 1− 3p

k
−kη> 1−ε.

Soundness: Suppose there exists a halfspace h(y) =
∑

v∈V ‹wv, yv› that agrees with more
than 1

2 + ε> 1
2 + 1p

k
fraction of the examples. Set t = k12(3log(k6)+ logR)+4k2 log(1/k)) =

O
(
k13 log(R)

)
(same as in Theorem 9.4.8). Define the labeling A using the following strat-

egy : for each vertex v ∈V randomly pick a label from St(wv).

By an averaging argument, for at least ε
2 fraction of the edges e ∈ E generated in step

1 of the reduction, h(y) agrees with the examples corresponding to e with probability at
least 1

2 +
ε
2 . We will refer to such edges as good. By Theorem 9.4.8 for each good edge e ∈ E,

there exists i, j ∈ [k], such that πvi ,e
(
St(wvi )

)
∩πvj ,e

(
St(wvj )

)
6= ;. Therefore the edge e ∈ E

is weakly satisfied by the labeling A with probability at least 1
t2 . Hence, in expectation

the labelling A weakly satisfies at least ε
2 ∙

1
t2 =Ω( 1

k27 log2 R
)> 2k2

Rη/4 fraction of the edges (by

the choice of R and t).

9.6 Reduction from Label Cover

In this section, we describe a reduction from the bipartite Label Cover problem to a k-
LABEL-COVER with an additional smoothness property. We then reduce the smooth k-
LABEL-COVER problem to agnostic learning of disjunctions by halfspaces. This will give
us Theorem 9.1.1 without assuming the Unique Games Conjecture.
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9.6.1 Smooth k-LABEL-COVER

Our reduction use the following hardness result for k-LABEL-COVER (Definition 9.2.1)
with the additional smoothness property.
Theorem 9.6.1. There exists a constant γ> 0 such that for any integer parameter J , u> 1,
it is NP-hard to distinguish between the following two types of k-LABEL-COVER L (G(V ,E), N, M, {πv,e|e ∈
E,v ∈ e}) instances with M = 7(J+1)u and N = 2u7Ju:

1. (Strongly satisfiable instances) There is some labeling that strongly satisfies every
hyperedge.

2. (Instances that are not 2k22−γu-weakly satisfiable) There is no labeling that weakly
satisfies at least 2k22−γu fraction of the hyperedges.

In addition, the k-LABEL-COVER instances have the following properties:

• (Smoothness) for a fixed vertex w and a randomly picked hyperedge containing w,

∀i, j ∈ [M],Pr[πw,e(i)=πw,e( j)]6 1/J.

• For any mapping πe,v and any number i ∈ [N], we have |(πe,v)−1(i)| 6 d = 4u; i.e.,
there are at most d = 4u elements in [M] that are mapped to the same number in [N].

The proof of the above theorem can be found in Appendix 9.10.

In the rest of the thesis, we will set u = k and therefore d = 4k. Also we set the smooth-
ness parameter J = d17 = 417k.

9.6.2 Reduction from Smooth k-LABEL-COVER

The starting point is a smooth k-LABEL-COVER L (G(V ,E), N, M, {πv,e|e ∈ E,v ∈ e}) with
M = 7(J+1)u and N = 2u7Ju as described in Theorem 9.6.1. Following below is the reduc-
tion from k-LABEL-COVER L (G(V ,E), N, M, {πv,e|e ∈ E,v ∈ e}) that given an instance of
k-LABEL-COVER L produces a random labeled example. We refer to the obtained distri-
bution on examples as E .

• Pick a hyperedge e = (v1,v2, . . . ,vk) ∈ E with corresponding projections π1, . . . ,πk :
[M]→ [N].

• Generate a random bit b ∈ {−1,1}.

• Sample x ∈ {−1,1}kR from DN
b .

• Generate y ∈ {−1,1}|V |×M as follows:

1. For each v ∉ e, yv = 0.

2. For each i ∈ [k], set yvi ∈ {−1,1}M as follows:

y( j)
vi

=

{
x(πi( j))

i with probability 1− 1
k2

random bit with probability 1
k2

• Output the example (y, b) or equivalently ACCEPT if h(y)= b.
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9.6.3 Proof of Theorem 9.1.1

We claim that our reduction has the following completeness and soundness properties.
Theorem 9.6.2. • COMPLETENESS: If L is a strongly-satisfiable instance of smooth

k-LABEL-COVER, then there is a disjunction that agrees with a random example from
E with probability at least 1−O( 1p

k
).

• SOUNDNESS: If L is not 2k22−γk-weakly satisfiable, then there is no halfspace that
agrees with a random example from E with probability more than 1

2 +O( 1p
k
).

Combining the above theorem with Theorem 9.6.1 we get that for k =O(1/ε2), we obtain
our main result: Theorem 9.1.1.

It remains to check the correctness of the completeness and soundness claims in The-
orem 9.6.2. First let us prove the completeness property.

Proof. (Proof of Completeness) Let L be the labeling that strongly satisfies L . Consider
disjunction h(y) =

∨
v∈V y(L(v))

v . Let e = (v1,v2, . . . ,vk) be any hyperedge and let Ee be the
distribution E restricted to the examples generated for e. With probability at least 1−
1/k, yL(vi)

vi
= xπ

e,vi (L(vi))
i for every i ∈ [k]. As e is strongly satisfied by L, for all i, j ∈ [k],

πe,vi (L(vi)) = πe,vj (L(vj)). Therefore, as in the proof of Theorem 9.4.5, we obtain that h(y)
agrees with a random example from Ee with probability at least 1−O(1/

p
k). Labeling

L strongly satisfies all edges and therefore we obtain that h(y) agrees with a random
example from E with probability at least 1−O(1/

p
k).

The more complicated part is the soundness property which we prove in Section 9.6.4.

9.6.4 Soundness Analysis

Let h(y) be a halfspace that agrees with more than 1
2 +

1p
k
-fraction of the examples. Sup-

pose,

h(y)= sgn
( ∑

v∈V
‹wv, yv›−θ

)
.

Let τ= 1
k13 and let

sv =Truncate(wv,Cτ(wv)), lv = wv − sv.

Definition 9.6.3. A vertex v ∈ V is said to be β-nice with respect to a hyperedge e ∈ E
containing it if

∑

i∈[N]

( ∑

j∈π−1(i)

|l( j)
v |

)4
6β‖lv‖

4
2

where π : [M] → [N] is the projection associated with vertex v and hyperedge e. In other
words,

∑

i∈[N]

(
‖l{e,i}

v ‖1

)4
6β‖lv‖

4
2.
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An hyperedge e = (v1,v2, . . . ,vk) is β-nice, if for every i ∈ [k], the vertex vi is β-nice with
respect to e.
Lemma 9.6.4. The fraction of 2τ-nice hyperedges in E is at least 1−O(1/k).

Proof. By definition, we know that lv is τ-regular vector. Denote Iv = {i | (l(i)
v )2

‖lv‖2
2
> 1

d8 }. There-

fore, |I| 6 d8. Notice there are at most d16 pairs of values in I × I. By the smoothness

property of the k-LABEL-COVER instance, for any vertex v, at leat 1− d16

J fraction of the
hyperedges incident on v have the following property: for any i, j ∈ I, πe,v(i) 6=πe,v( j). If all
the vertices in an hyperedge have this property we call it a good hyperedge. By an aver-

aging argument, we know that among all hyperedges at least 1− kd16

J = 1− k
4k > 1−O( 1

k )
fraction is good.

We will show all these good hyperedges are also 2τ-nice. For a given good hyperedge e,

a vertex v ∈ e, π=πe,v and i ∈ [N], there is at most one j ∈π−1(i) such that (l(i)
v )2

‖lv‖2
2
> 1

d8 .

Based on the above property, we will show

∑

i∈[N]

( ∑

j∈π−1(i)

|l( j)
v |

)4
6 2τ‖lv‖

4
2

Notice that
∑

i∈N

( ∑

j∈π−1(i)

|l( j)
v |

)4
=

∑

i∈N

∑

j1, j2, j3, j4∈π−1(i)

∣
∣l( j1)

v l( j2)
v l( j3)

v l( j4)
v

∣
∣ (9.4)

and the sum of all the terms with j1 = j2 = j3 = j4 is ‖lv‖4
4.

For other term |l( j1)
v l( j2)

v l( j3)
v l( j4)

v

∣
∣ such that j1, j2, j3, j4 are not all equal, there is at least

one |l( jr)
v | (r ∈ [4]) smaller than ‖lv‖2

d4 . Therefore, |l( j1)
v l( j2)

v l( j3)
v l( j4)

v

∣
∣ can be bounded by

‖lv‖2

d4

( ∑

j1, j2, j3, j4

(l( j1)
v )3 + (l( j2)

v )3 + (l( j3)
v )3 + (l( j4)

v )3).

Overall, expression (9.4) can be bounded by

‖lv‖
4
4 +

‖lv‖2

d4

∑

j1, j2, j3, j4

(l( j1)
v )3 + (l( j2)

v )3+ (l( j3)
v )3+ (l( j4)

v )3

6τ2‖lv‖
4
2 +

‖lv‖2

d4
4d3‖lv‖

3
3 (each term is counted at most 4d3 times)

6(τ2 +4
τ

d
)‖lv‖

4
2 (lv is τ-regular vector )

62τ‖lv‖
4
2.

Let us fix a 2τ-nice hyperedge e = (v1, . . . ,vk). As before let Ee denote the distribution
on examples restricted to those generated for hyperedge e. We will analyze the probability
that the halfspace h(y) agrees with a random example from Ee.
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Let π1,π2, . . . ,πk : [M] → [N] denote the projections associated with the hyperedge e.
For the sake of brevity, we shall write wi, yi, l i instead of wvi , yvi , lvi . For all j ∈ [N] and
i ∈ [k], define

y{ j}
i =Truncate(yi,π

−1
i ( j)).

Similarly, define vectors w{ j}
i , l{ j}

i and s{ j}
i .

Notice that for every example (y, b) in the support of Ee, yv = 0 for every vertex v ∉ e.
Therefore, on restricting to examples from Ee we can write:

h(y)= sgn
( ∑

i∈[k]
‹wi, yi›−θ

)
.

Common Influential Variables

Lemma 9.6.5. (Common Influential Coordinate) Let h(y) be a halfspace such that for all
i 6= j ∈ [k], we have πi(Cτ(wi))∩π j(Cτ(w j))=;. Then

∣
∣
∣E
Ee

[h(y)|b = 0]−E
Ee

[h(y)|b = 1]
∣
∣
∣6O

(1

k

)
. (9.5)

Proof. Fix the following notation:

yL
i =Truncate(yi,Cτ(wi)) yL = yL

1 , yL
2 , . . . , yL

k

s= s1,s2, . . . , sk l = l1, l2, . . . , lk.

We can rewrite the halfspace h(y) as h(y) = sgn
(
‹s, yL›+‹l, y›−θ

)
. Let us first normalize

the weights of h(y) so that
∑

i∈[k] ‖l i‖2
2 = 1. Let us condition on a possible fixing of the

vector yL. Under this conditioning and also for b = 0, define the family of ensembles
A = A{1}, . . . , A{N} as follows:

A{ j} =
{

y(`)
i | i ∈ [k],` ∈ [M] such that πi(`)= j and ` ∉ Cτ(wi)

}

Similarly define the ensemble B = B{1}, . . . ,B{N} for the conditioning b = 1. Now we shall
apply the invariance principle (Theorem 9.3.10) to the ensembles A ,B and the linear
function l(y):

l(y)=
∑

j∈[N]
‹l{ j}, y{ j}›.

As we prove in Claim 9.6.6 below, the ensembles A ,B have matching moments up to
degree 3. Furthermore, by Lemma 9.3.3, the linear function l and the ensembles A , B

satisfy the following spread property:

PrA

[
`(A ) ∈ [θ′ −α,θ′ +α]

]
6 c(α) PrB

[
`(B) ∈ [θ′ −α,θ′ +α]

]
6 c(α)

for all θ′ ∈R, where c(α)= 8αk+4τk+2e
− 1

2k4τ2 (by setting γ= 1
k2 and |b−a| = 2α in Lemma

9.3.3).
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Using the invariance principle (Th. 9.3.10), this implies:

∣
∣
∣
∣
∣
E
A

[

sgn

(

‹s, yL›+
∑

j∈[N]
‹l{ j}, A{ j}›−θ

)

|yL

]

−E
B

[

sgn

(

‹s, yL›+
∑

j∈[N]
‹l{ j},B{ j}›−θ

)

|yL

]∣
∣
∣
∣
∣

6O(
1

α4
)

∑

j∈[N]
‖l{ j}‖4

1 +2c(α). (9.6)

Take α to be 1
k2 and recall that τ= 1

k13 . In Claim 9.6.7 below we show that

∑

j∈[N]
‖l{ j}‖4

16 2τk4.

The above inequality holds for an arbitrary conditioning of the values of yL. Hence, by
averaging over all settings of yL we get that expression (9.6) is bounded by O(1/k).

Claim 9.6.6. The ensembles A and B have matching moments up to degree 3.

Let us suppose for a moment that y was generated by setting y( j)
vi

= x(πi( j))
i , that is with-

out adding any noise. By Lemma 9.4.1, the first moments of random variable y conditioned
on b = 0 agree with the first moments of random variable y conditioned on b = 1. As we
showed in Observation 9.4.3, even with noise, the first four moments of y remain the same
when conditioned on b = 0 and b = 1. Finally, πi(Cτ(wi))∩π j(Cτ(w j))=; for all i 6= j ∈ [k].
Hence for each j ∈ [N], conditioning on yL fixes bits in at most one row of A{ j}. Formally,
for every j ∈ [N], there exists at most one i ∈ [k] such that y{ j}

i and yL 6= φ have shared
variables. Therefore, by Lemma 9.4.4, A and B have matching moments up to degree 3.
Claim 9.6.7. ∑

j∈[N]
‖l{ j}‖4

16 2τk4 .

Proof. Since ‖l{ j}‖1 =
∑

i∈[k] ‖l{ j}
i ‖1, we can write

∑

j∈[N]
‖l{ j}‖4

16
∑

j∈N
k4

( ∑

i∈[k]
‖l{ j}

i ‖4
1

)
= k4

∑

i∈[k]

( ∑

j∈[N]
‖l{ j}

i ‖4
1

)
. (9.7)

As e = (v1, . . . ,vk) is a 2τ-nice hyperedge, we have
∑

j∈[N] ‖l{ j}
i ‖4

16 2τ‖l i‖4
2. By normalization

of l, we know
∑

i∈[k] ‖l i‖2
2 = 1. Substituting this into inequality (9.7) we get the claimed

bound.

Bounding the Number of Influential Coordinates

Lemma 9.6.8. Given a halfspace h(y)= sgn(
∑

i∈[k]‹wi, yi›−θ) and ` ∈ [k] such that |Cτ(w`)|>
t for t = 1

τ2 (16k2 log(1/k) log(1/τ)+ln(1/τ)+10ln d)=O(k30), define h̃(y)= sgn(
∑

i∈[k]‹w̃i, yi›−

θ̃) as follows:

• w̃` =Truncate(w`,St(w`)) and w̃i = wi for all i 6= `.

• θ̃ = θ−E[‹a`, y`›|b = 0], for a= w− w̃.
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Then,

∣
∣
∣E
Ee

[h̃(y)|b = 0]−E
Ee

[h(y)|b = 0]
∣
∣
∣6

1

k2
,

∣
∣
∣E
Ee

[h̃(y)|b = 1]−E
Ee

[h(y)|b = 1]
∣
∣
∣6

1

k2
.

Proof. It is easy to see that the matching moments condition implies that

EEe [‹a`, y`›|b = 0]=EEe [‹a`, y`›|b = 1].

Let us show the inequality for the case b = 0, the other inequality can be derived in an
identical way. Let Ee,0 denote distribution Ee conditioned on b = 0. Without loss of gener-

ality, we may assume that ` = 1 and |w(1)
1 |> |w(2)

1 | . . .> |w(M)
1 |. In particular, this implies

St(w1)= {1, . . . , t}. Define

μ` =EEe,0 [‹a`, y`›], μ{i}
`

=EEe,0 [‹a{i}
`

, y{i}
`
›].

Let us set T = d4k2 log(1/k)e and define the subset G = {g1, . . . , gT} of St(w1) as follows:

G = {gi | gi = 1+ id(4/τ2) ln(1/τ)e,06 i6 T}.

Therefore, by Lemma 9.3.2, |w(gi)
1 | is a geometrically decreasing sequence such that |w(gi+1)

1 |6

|w(gi)
1 |/3. Let H = St(w1)\G. Fix the following notation:

wG
1 =Truncate(w1,G), wH

1 =Truncate(w1, H), w>t
1 =Truncate(w1, {t+1, . . . , n}).

Similarly, define the vectors yG
1 , yH

1 , y>t
1 . By definition, we have a1 = w>t

1 . Rewriting the
halfspace functions h(y), h̃(y) :

h(y)= sgn
( k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›+‹a1, y>t

1 ›−θ
)
,

h̃(y)= sgn
( k∑

i=2
‹wi, yi›+‹wG

1 , yG
1 ›+‹wH

1 , yH
1 ›+μ1−θ

)
.

By Claim 9.6.9 below, with probability at most 1
d = 1

4k , we have |‹a1, y1›−μ1|> d4‖a1‖2.

Suppose |‹a1, y1›−μ1| < d4‖a1‖2, then Claim 9.6.10 below gives |‹a1, y1›−μ1| < 1/d6|w(gT )
1 | <

1
3 |w

(gT )
1 |. Thus, we can write

PrEe,0

[
h(y) 6= h̃(y)

]
6PrEe,0

[
‹wG

1 , yG
1 › ∈ [θ′ −

1

3
|w(gT )

1 |,θ′ +
1

3
|w(gT )

1 |]
]
+

1

4k
.

where θ′ = −
∑k

i=2‹wi, yi›−‹wH
1 , yH

1 ›−μ1+θ. For any fixing of the value of θ′ ∈R, induces a

certain distribution on yG
1 . However, the 1

k2 noise introduced in yG
1 is completely indepen-

dent. This corresponds to the setting of Lemma 9.3.7, and hence we can bound the above
probability by (1−1/(2k2))T +1/4k6 (1−1/(2k2))4k2 log(1/k) +1/4k6 1/k2.

Claim 9.6.9.

PrEe,0

[
|‹a1, y1›−μ1|> d4‖a1‖2

]
6

1

d
.
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Proof. We claim:

VarEe,0

(
‹a1, y1›

)
6 td‖a1‖

2
2 +d‖a1‖

2
26 2td‖a1‖

2
2.

Notice that [M] can be seen as the union of disjoint sets R1∪R2∪∙∙ ∙∪RN where Ri =π−1
1 (i).

There are at most t sets such that Ri ∩St(w1) 6= ; and, by the property of our k-LABEL-
COVER instance, there are at most td indices in those sets. Let U1 = ∪Ri∩St(w1) 6=;Ri and

let U2 = S \U1. It is easy to see that yU1
1 is independent of yU2

1 and therefore

VarEe,0

(
‹a1, y1›−μ1

)
=VarEe,0

(
‹aU1

1 , yU1
1 ›

)
+VarEe,0

(
‹aU2

1 , yU2
1 ›

)
.

The variance of ‹aU1
1 , yU1

1 › is at most

‖aU1
1 ‖2

16 td‖aU1
1 ‖2

26 td‖a1‖
2
2.

Notice that U2 is the union of all the Ri ’s that do not intersect with St(w1) . Further for

any i, j ∈ [N] such that Ri∩St(w1)=; and R j∩St(w1)=;, yRi
1 is independent of y

R j

1 . Also
since every Ri has size at most d,

VarEe,0

(
‹aU2

1 , yU2
1 ›

)
=

∑

Ri∩St(w1)=;
VarEe,0

(
‹aRi

1 , yRi
1 ›

)
6

∑

Ri∩St(w1)=;
d‖aRi

1 ‖2
2 = d‖aU2

1 ‖2
26 d‖a1‖

2
2.

Overall, we have

VarEe,0

(
‹a1, y1›

)
6 td‖a1‖

2
2 +d‖a1‖

2
26 2td‖a1‖

2
2.

Notice that t = poly(log d) and by applying Chebyshev’s inequality (Th. 9.7.3), we have

PrEe,0

[
|‹a1, y1›−μ1|> d4‖a1‖2

]
6

2td

d8
6

1

d
.

Claim 9.6.10. By the choice of the parameters T and t,

‖a1‖26
1

d10
|w(gT )

1 |.

Proof. By Lemma 9.3.2,

|w(gT )
1 |2>

τ

(1−τ2)t−gT )
‖a1‖

2
2>

τ

(1−τ2)
1
τ2 (ln(1/τ)+10ln d)

‖a1‖
2
2> d10‖a1‖

2
2.

193



Soundness Theorem

Recall that we chose τ= 1/k13 and t =O(k30).
Lemma 9.6.11. Fix a hyperedge e which is 2τ-nice. If for all i 6= j ∈ [k], πi

(
St(wi)

)
∩

π j
(
St(w j)

)
= ; then the probability that halfspace h(y) agrees with a random example

from Ee is at most 1
2 +O( 1

k ).

Proof. The proof is similar to the proof of Theorem 9.4.8. Define K = {` | Cτ(w`) > t}. We
divide the problem into the following two cases.

1. K = ;; i.e., for all i ∈ [k], Cτ(wi) 6 t. Then for any i 6= j ∈ [k], St(wi)∩St(w j) = ;
implies Cτ(wi)∩Cτ(w j)=;. By Lemma 9.6.5, we have

∣
∣
∣E
Ee

[h(y)|b = 0]−E
Ee

[h(y)|b = 1]
∣
∣
∣6O

(1

k

)
.

2. K 6= ;. Then for all ` ∈ K , we set w̃` = Truncate(w`,St(w`)) and define a new halfs-
pace h′ by replacing w` with w̃` in h. Since such replacements occur at most k times
and, by Lemma 9.6.8, every replacement changes the output of the halfspace on at
most 1

k2 fraction of examples from Ee, we can bound the overall change by k× 1
k2 =

1
k .

That is

∣
∣
∣ E
Ee,0

[h′(y)]− E
Ee,0

[h(y)]
∣
∣
∣6

1

k
,

∣
∣
∣ E
Ee,1

[h′(y)]− E
Ee,1

[h(y)]
∣
∣
∣6

1

k
. (9.8)

For the halfspace h′ and for all ` ∈ [k], we have |Cτ(w̃`)|6 t, thus reducing to Case
1. Therefore ∣

∣
∣ E
Ee,o

[h′(y)]− E
Ee,1

[h′(y)]
∣
∣
∣6O

(1

k

)
. (9.9)

Combining (9.8) and (9.9), we get

∣
∣
∣ E
Ee,0

[h(y)]− E
Ee,1

[h(y)]
∣
∣
∣6O

(1

k

)
.

In other words, the probability that halfspace h(y) agrees with a random example from Ee

is at most 1
2 +O( 1

k ).

We first recall the soundness statement:
Proposition 9.6.12. If L is not a 2k22−γk-weakly satisfiable instance of smooth k-LABEL-
COVER, then there is no halfspace that agrees with a random example from E with proba-
bility more than 1

2 +
1p
k
.

Proof. The proof is by contradiction. We can define the following labeling strategy: for
each vertex v, uniformly randomly pick a label from St(wv). We know the size of St(wvi ) is
t =O(k30).

Suppose there exists a halfspace that agrees with a random example from E with prob-
ability more than 1

2 +
1p
k
. Then by an averaging argument, for at least 1

2
p

k
-fraction of the
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hyperedges e, h(y) agrees with a random example from Ee with probability at least 1
2+

1
2
p

k
.

We refer to these edges as good.

Since there is at most O(1/k)-fraction of the hyperedges that are not 2τ-nice we know
that at least 1

4
p

k
-fraction of the hyperedges are 2τ-nice and good. By Lemma 9.6.11, for

each 2τ-nice and good hyperedge e there exist two vertices vi,vj ∈ e such that πe,vi (St(wi))
and πe,vj (St(w j)) intersect. Then there is a 1

t2 probability that the labeling strategy we
defined will weakly satisfy hyperedge e.

Overall this strategy is expected to weakly satisfy at least 1
4
p

k
1
t2 = Ω( 1

k61 ) fraction of

the hyperedges. This is a contradiction since L is not 2k2

2γk -weakly satisfiable.

9.7 Probabilistic Inequalities

In the discussion below we will make use of the following well-known inequalities.
Theorem 9.7.1. (Hoeffding’s Inequality) Let x1, . . . , xn be independent real random vari-
ables such that xi ∈ [ai, bi]. Then the sum of these variables S =

∑n
i=1 xi satisfies

Pr[|S−E[S]|> nt]6 2e
− n2 t2

∑n
i=1

(b(i)−a(i))2 .

Theorem 9.7.2. (Berry-Esseen Theorem) Let x1, x2, . . . , xn be i.i.d. random unbiased {−1,1}
variables. Also assume that

∑n
i=1 c2

i = 1 and maxi{|ci|}6 α. Let g denote a unit Gaussian
variable N(0,1). Then for any t ∈R,

∣
∣Pr

[∑
cixi 6 t

]
−Pr[g6 t]

∣
∣6α.

Theorem 9.7.3. (Chebyshev’s Inequality) Let X be a random variable with expected value
u and variance σ2. Then for any real number t > 0,

Pr[|X −μ|> t ∙σ]6 1/t2.

9.8 Proof of Lemma 9.3.3

Recall that each y(i) is generated by the following manner:

y(i) =

{
x(i) with probability 1−γ

random bit with probability γ.
(9.10)

Let us define a random vector z ∈ {−1,1}n based on y. For y generated, if y(i) is generated
as a copy of x(i) in (9.10), then z(i) = 0; if y(i) is generated as a random bit in (9.10), then
z(i) = 1. Let us write S =

∑n
i=1 w(i) y(i). Our proof is based on two claims.

Claim 9.8.1. Pr[
∑n

i=1 |w
(i)|2z(i)> γ/2]> 1−2e−

γ2

2τ2 .

Claim 9.8.2. For any a′ < b′ ∈R and any fixing of z(1), z(2), . . . , z(n), if
∑n

i=1(w(i))2z(i) =σ2 > 0,

then Pr[S ∈ [a′, b′]]6 2|b′−a′|
σ

+ 2τ
σ

.
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Given the above two claims are correct, define event V to be {
∑n

i=1(w(i))2z(i) > γ

2 } and
use 1[a,b](x) : R → {0,1} to denote the indicator function of whether x falls into interval
[a, b].

Pr[S ∈ [a, b]]=E[1[a,b](S)]=Pr[V ]E[1[a,b](S) |V ]+Pr[¬V ]E[1[a,b](S) | ¬V ]

By Claim 9.8.1,

Pr[¬V ]E[1[a,b](S) | ¬V ]6Pr[¬V ]6 2e−
γ2

2τ2 .

By Claim 10.4.1,

Pr[V ]E[1[a,b](S) |V ]6
4(b−a)

p
γ

+
4τ
p
γ

.

Overall,

Pr [S ∈ [a, b]]6
4(b−a)

p
γ

+
4τ
p
γ
+2e−

γ2

2τ2 .

It remains to verify Claim 9.8.1 and Claim 10.4.1.

To prove Claim 9.8.1, we need to apply the Hoeffding’s inequality (see Theorem 9.7.1).

Notice that (w(i))2z(i) ∈ [0, (w(i))2] and applying Hoeffding’s Inequality, we know

Pr

[∣
∣
∣
∣
∣

n∑

i=1
(w(i))2z(i) −E

[
n∑

i=1
(w(i))2z(i)

]∣
∣
∣
∣
∣
> nt

]

6 2e
−2n2 t2

∑n
i=1

(w(i))4 .

We know E[
∑n

i=1(w(i))2z(i)]= γ and
∑n

i=1((w(i))2)26maxi
{
(w(i))2

}∑n
i=1(w(i))26 τ2. If we

take nt = γ/2, we have

Pr

[∣
∣
∣
∣
∣

n∑

i=1
(w(i))2z(i) −γ

∣
∣
∣
∣
∣
>

γ

2

]

6 2e−
γ2

2τ2 .

Therefore, with probability at least 1−2e−
γ2

2τ2 ,
∑n

i=1(w(i))2z(i)> γ

2 .

To prove Claim 10.4.1, we need use Berry-Esseen Theorem (See Theorem 9.7.2). Let
us split S into two parts: S′ =

∑
zi=1 wi yi and S′′ =

∑
zi=0 wi yi. Since S = S′ +S′′ and S′ is

independent of S′′, it suffices to show that Pr
[
S′ ∈ [a′, b′]

]
6 2|b′−a′|p

σ
+ 2τ

σ
for any a′, b′ ∈ R.

Define y′(i) = 2y(i) − 1 and note that y′(i) a {−1,1} variable. By rewriting S′ using this
definition, we have

S′ =
∑

z(i)=1

w(i) y(i) =
∑

z(i)=1

w(i) 1+ y′(i)

2
.

Then

Pr
[
S′ ∈ [a′, b′]

]
=Pr

[
∑

z(i)=1

w(i) y′(i) ∈ [a′′, b′′]

]

, (9.11)
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where a′′ = 2a′ −
∑

z(i)=1 w(i) and b′′ = 2b′ −
∑

z(i)=1 w(i). We can further rewrite the above
term as

Pr

[
∑

z(i)=1

w(i) y′(i)6 b′′

]

−Pr

[
∑

z(i)=1

w(i) y′(i)6 a′′

]

=Pr






∑

z(i)=1

w(i) y′(i)
√∑

z(i)=1(w(i))2
6

b′′

√∑
z(i)=1(w(i))2




−Pr






∑

z(i)=1

w(i) y′(i)
√∑

z(i)=1(w(i))2
6

a′′

√∑
z(i)=1(w(i))2




 .

We can now apply Berry-Esseen’s theorem. Notice that for all the i such that z(i) = 1,

y′(i) is distributed as an independent unbiased random {−1,1} variable. Also maxz(i)=1
|w(i)|√∑

z(i)=1(w(i))2
6

τ√∑
z(i)=1(w(i))2

.

By Berry-Esseen’s theorem, we know that expression (9.11) is bounded by

Pr




N(0,1)6

b′′

√∑
z(i)=1(w(i))2




−Pr




N(0,1)6

a′′

√∑
z(i)=1(w(i))2




+

2τ
√∑

z(i)=1(w(i))2
.

Using the fact that a unit Gaussian variable falls in any interval of length λ with prob-
ability at most λ and noticing that b′′ − a′′ = 2(b′ − a′), we can bound the above quantity
by

2|b′ −a′|
√∑

z(i)=1(w(i))2
+

2τ
√∑

z(i)=1(w(i))2
=

2|b−a|

σ
+

2τ

σ
.

9.9 Proof of Invariance Principle (Theorem 9.3.10)

We restate our version of the invariance principle here for convenience.

Theorem 9.3.10 restated (Invariance Principle) Let A = {A{1}, . . . , A{R}},B = {B{1}, . . . ,B{R}}
be families of ensembles of random variables with A{i} = {a(i)

1 , . . . ,a(i)
ki

} and B{i} = {b(i)
1 , . . . , b(i)

ki
},

satisfying the following properties:

• For each i ∈ [R], the random variables in ensembles (A{i},B{i}) have matching mo-
ments up to degree 3. Further all the random variables in A and B are bounded by
1.

• The ensembles A{i} are all independent of each other, similarly the ensembles B{i}

are independent of each other.

Given a set of vectors l = {l{1}, . . . , l{R}}(l{i} ∈ Rki ), define the linear function l : Rk1 × ∙∙ ∙ ×
RkR →R as

l(x)=
∑

i∈[R]
‹l{i}, x{i}›
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Then for a B-nice function Ψ :R→R we have
∣
∣
∣
∣E
A

[
Ψ

(
l(A )−θ

)]
−E

B

[
Ψ

(
l(B)−θ

)]∣∣
∣
∣6B

∑

i∈[R]
‖l{i}‖4

1. (9.12)

for all θ > 0. Further, define the spread function c(α) corresponding to the ensembles A ,B
and the linear function l as follows,

(Spread Function: )For 1/2>α> 0, let

c(α)=max
(
sup
θ

PrA

[
l(A ) ∈ [θ−α,θ+α]

]
, sup

θ

PrB

[
l(B) ∈ [θ−α,θ+α]

])

then for all θ̃,

∣
∣
∣E
A

[
sgn

(
l(A )− θ̃

)]
− EB

[
sgn

(
l(B)− θ̃

)]
∣
∣
∣
∣6O

(
1
α4

)∑
i∈[R] ‖l{i}‖4

1+2c(α). (9.13)

Proof. Let us prove equation (9.12) first. Let Xi = {B{1}, . . . ,B{i−1},B{i}, A{i+1}, . . . , A{R}}.

We know that

E
A

[Ψ(l(A )−θ)]−E
B

[Ψ(l(B)−θ)]= E
X0

[Ψ(l(XR)−θ)]− E
XR

[Ψ(l(X0)−θ)]

=
R∑

i=1
E

Xi−1

[Ψ(l(Xi−1)−θ)]− E
Xi

[Ψ(l(Xi)−θ)].

Therefore, it suffices to prove

∣
∣ E
Xi−1

[Ψ(l(Xi−1)−θ)]− E
Xi

[Ψ(l(Xi)−θ)]
∣
∣6B‖l{i}‖4

1.

Let Yi = {B{1}, . . . ,B{i−1}, A{i+1}, . . . , A{R}} and we have Xi = {Yi,B{i}} and Xi−1 = {Yi, A{i}}.
Then

E
Xi−1

[Ψ(l(Xi−1)−θ)]−E
Xi

[Ψ(l(Xi)−θ)]= E
Yi

[

E
A{i}

[Ψ(l(Xi−1)−θ)]− E
B{i}

[Ψ(l(Xi)−θ)]

]

. (9.14)

Notice that

l(Xi−1)−θ = ‹l{i}, A{i}›+
∑

16 j6i−1
‹l{ j},B{ j}›+

∑

i+16 j6R
‹l{ j}, A{ j}›−θ

and
l(Xi)−θ = ‹l{i},B{i}›+

∑

16 j6i−1
‹l{ j},B{ j}›+

∑

i+16 j6R
‹l{ j}, A{ j}›−θ.

Take θ′ =
∑

16 j6i−1‹l
{ j},B{ j}›+

∑
i+16 j6R‹l

{ j}, A{ j}›−θ, We can further rewrite equation
(9.14) as

E
Yi

[
E

A{i}
[Ψ(‹l{i}, A{i}›+θ′)]− E

B{i}
[Ψ(‹l{i},B{i}›+θ′)]

]
. (9.15)
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Using the Taylor expansion of Ψ, we have that the inner expectation of equation (9.15)
is equal to

∣
∣ E

A{i}
[Ψ(θ′)+Ψ′(θ′)‹l{i}, A{i}›+

Ψ′′(θ′)

2
(‹l{i}, A{i}›)2 +

Ψ′′′(θ′)

6
(‹l{i}, A{i}›)3 +

Ψ′′′′(δ1)

24
(‹l{i}, A{i}›)4]

− E
B{i}

[Ψ(θ′)+Ψ′(θ′)‹l{i},B{i}›+
Ψ′′(θ′)

2
(‹l{i},B{i}›)2+

Ψ′′′(θ′)

6
(‹l{i},B{i}›)3+

Ψ′′′′(δ2)

24
(‹l{i},B{i}›)4]

∣
∣.

(9.16)

Using the fact that A{i} and B{i} have matching moments up to degree 3, we can upper
bound equation (9.16) by

E
A{i}

[
Ψ′′′′(δ1)

24
(‹l{i}, A{i}›)4]− E

B{i}
[
Ψ′′′′(δ2)

24
(‹l{i},B{i}›)4]6

B

12
|l{i}|41.

In the last inequality, we use the fact that Ψ is B-nice and ‹l{i}, A{i}›6 ‖l{i}‖1,‹l{i},B{i}›6
‖l{i}‖1.

Overall, we bound the inner expectation of equation (9.15) by B
12‖l{i}‖4

1. This implies

equation (9.15) and therefore equation (9.9) is bounded by B
12‖l{i}‖4

1, establishing equation
(9.12).

To prove equation (9.13), we need to use the following lemma.

Lemma 9.9.1. ([117], Lemma 3.21) There exists some constant C such that ∀0 < λ < 1
2 ,

there exists C
λ4 -nice function Φλ : R→ [0,1] which approximates the sgn(x) function in the

following sense: Φλ(t)= 1 for all t >λ; Φλ(t)= 0 for t <−λ.

By the above lemma, we can find a C
α4 -nice function Φα such that Φα(l(A )−θ) is equal

to sgn(l(A )−θ) except when l(A ) ∈ [θ−α,θ+α] and Φα(l(B)−θ) is equal to sgn(l(B)−θ)
except when l(B) ∈ [θ−α,θ+α]. Also for any x ∈ R, |sgn(x)−Φα(x)|6 1 as sgn(x) and Φα(x)
are both in [0,1].

Overall, we have

∣
∣
∣
∣E
A

[
sgn

(
l(A )−θ

)]
−E

B

[
sgn

(
l(B)−θ

)]∣∣
∣
∣6

∣
∣
∣
∣E
A

[
sgn

(
l(A )−θ

)]
−E

A

[
Φα

(
l(A )−θ

)]∣∣
∣
∣

+

∣
∣
∣
∣E
A

[
Φα

(
l(A )−θ

)]
−E

B

[
Φα

(
l(B)−θ

)]∣∣
∣
∣+

∣
∣
∣
∣E
B

[
Φα

(
l(B)−θ

)]
−E

B

[
sgn

(
l(B)−θ

)]∣∣
∣
∣

6
C

α4

∑

i∈[R]
‖l{i}‖4

1+2c(α).

9.10 Hardness of Smooth k-LABEL-COVER

First we state the bipartite smooth Label Cover given by Khot [95]. Our reduction is
similar to the one in [61] but in addition requires proving the smoothness property.
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Definition 9.10.1. A Label Cover problem L (G(V ,W ,E), N, M, {πw,v|(w,v) ∈ E}) consists of
a bipartite graph G(V ,W ,E) with bipartition V and W, projection functions πw,v : [M] →
[N] associated with each edge (w,v) ∈ E. We will only consider instances where all vertices
in W have the same degree. For any labeling L : V → [M] and L : W → [N], an edge is said
to be satisfied if πw,v(L(v)) = L(w). We define Opt(L ) to be the maximum fraction of edges
satisfied by any labeling.
Theorem 9.10.2. There is an constant γ> 0 such that for all integer parameters u and J, it
is NP-hard to distinguish the following two cases: A Label Cover problem L (G(V ,W ,E), N, M, {πw,v|(w,v) ∈
E}) with M = 7(J+1)u and N = 2u7Ju having

• Opt(L )= 1 or

• Opt(L )6 2−2γu.

In addition, the Label Cover has the following properties:

• for each πw,v and any i ∈ [N], we have |(πw,v)−1(i)|6 4u;

• for a fixed vertex w and a randomly picked neighbor of w called v,

∀i, j ∈ [M],Pr[πw,v(i)=πw,v( j)]6 1/J.

Now we are ready to prove Theorem 9.6.1.

Proof. Given an instance of bipartite Label Cover L (G(V ,W ,E), N, M, {πw,v|(w,v) ∈ E}), we
can convert it to a smooth k-LABEL-COVER instance L ′ as follows. The vertex set of L ′ is
V and we generate the hyperedge set E′ and projections associated with the hyperedges
in the following way:

1. pick a vertex w ∈W ;

2. pick all k-tuple of v’s neighbors v1, . . . ,vk and add them as an hyperedge e to E′;

3. for each vi ∈ e, define πe,vi =πw,vi .

Completeness: If Opt(L ) = 1, then there exists a labeling L such that for every edge
(w,v) ∈ E, πw,v(L(v)) = L(w). We can simply take the restriction of labeling L on W for the
smooth k-LABEL-COVER instance L ′. For any hyperedge e = (v1,v2, . . . ,vk) generated by
w ∈W , we know πe,vi (L(vi))= L(w)= πe,vj (L(vj)) for any i, j ∈ [k]. Therefore, we know that
there exists a labeling strongly satisfying all hyperedges in L ′.

Soundness: If Opt(L )6 2−2γu, then we can weakly satisfy at most 2k22−γu-fraction of
the hyperedges in L ′. This can be proved via contrapositive argument. Suppose there is
a labeling strategy L (defined on V ) for the smooth k-LABEL-COVER that weakly satisfies
α> 2k22−γu fraction of the hyperedges. Using the regularity of the graph in L ′, we know
that if we randomly pick a vertex w and randomly pick two of its neighbors v1,v2 then

Pr
[
πw,v1(L(v1))=πw,v2(L(v2))

]
>

α
(k
2

) >
2α

k2
.

By an averaging argument, for at least α
k2 -fraction of the vertices w ∈ W , have the

following property: for all the possible pairs of w’s neighbors, at least α
k2 -fraction have the
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same labels in L. For every w with this property, by an averaging argument again, one
of w’s neighbors, say v0, must have the same label with at least α

k2 -fraction of w’s other
neighbors. We can simply assign w label πe,v0(L(v0)). Using such a labeling strategy (only

on vertices with the above property) we will satisfy at least α2

k4 = 4∙2−2γu-fraction the edges
of L , leading to a contradiction.

Smoothness of L ′: For any given vertex v in L ′, we want so show that if we randomly
pick an hyperedge e′ containing v, then for the projection πe,v as defined in L ′,

∀i, j ∈ [M],Pr[πe′,v(i)=πe′,v( j)]6
1

J
.

To see this, notice that all vertices in W have the same degree; picking a projection πe′,v

using the above procedure is the same as randomly picking a neighbor w of v and using
the projection πw,v defined in L . Therefore,

∀i, j ∈ [M],Pr[πe′,v(i)=πe′,v( j)=Pr[πw,v(i)=πw,v( j)]6
1

J
.
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Chapter 10

Hardness of Learning Low degree
PTFs
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10.1 Introduction

10.1.1 Motivation

The last few years have witnessed a surge of research interest and results in theoretical
computer science on halfspaces and low-degree PTFs, see e.g. [42, 54, 55, 70, 85, 124, 132].
One reason for this interest is the central role played by low-degree PTFs (and halfspaces
in particular) in both practical and theoretical aspects of machine learning, where many
learning algorithms either implicitly or explicitly use low-degree PTFs as their hypothe-
ses. More specifically, several widely used linear separator learning algorithms such as the
Perceptron algorithm and the “maximum margin” algorithm at the heart of Support Vector
Machines output halfspaces as their hypotheses. These and other halfspace-based learn-
ing methods are commonly augmented in practice with the “kernel trick,” which makes
it possible to efficiently run these algorithms over an expanded feature space and thus
potentially learn from labeled data that is not linearly separable in Rn. The “polynomial
kernel” is a popular kernel to use in this way; when, as is usually the case, the degree
parameter in the polynomial kernel is set to be a small constant, these algorithms out-
put hypotheses that are equivalent to low-degree PTFs. Low-degree PTFs are also used
as hypotheses in several important learning algorithms with a more complexity-theoretic
flavor, such as the low-degree algorithm of Linial et al. [111] and its variants [81, 118],
including some algorithms for distribution-specific agnostic learning [21, 42, 84, 108].

Given the importance of learning algorithms that construct low-degree PTF hypothe-
ses, it is a natural goal to study the limitations of learning algorithms that work in this
way. We study the problem of learning low degree PTFs under the agnostic learning model,
or equivalently the PTFd-MA problem.

10.1.2 Our Main results

Recall the definition of PTFs as follows:
Definition 10.1.1. For positive integer d, we call a function f (x) :Rn →R degree d polyno-
mial function if it is of the following polynomial expansion form:

∑

multiset S⊆[n],|S|6d
cS

∏

i∈S
xi.

A degree d polynomial threshold function is of the form sgn( f (x)) where f (x) is a degree
d polynomial function.

Our main results are the following two theorems. Our first result is obtained assuming
the UGC..
Theorem 10.1.2. Assuming the UGC, for any constant d,PTFd-MA (1− ε,1/2+ ε) is NP
hard for any constant ε> 0 .
Remark 10.1.3. In fact, Our hardness results also hold for d being o(loglog n).
Theorem 10.1.4. PTF1-PTF2-MA (1−ε,1/2+ε) is NP-hard.

Note that the parameters in these hardness result are essentially optimal since it is
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trivial to find a hypothesis with agreement rate 1
2 as we can randomly choose to output

function that is always −1 or the function that is always 1.

Our results immediately implies the following hardness of agnostic learning results: i)
Assuming the UGC, even there exists a good degree d PTF that is consistent with 1− ε

fraction the examples, there is no efficient proper agnostic learning algorithm that can
output a degree d PTFs correctly labelling more than 1

2 + ε fraction of the examples; ii)
Assuming P 6= NP, even there exists a good halfspace that is consistent with 1− ε fraction
the examples, there is no efficient agnostic learning algorithm that can find a degree 2
PTFs that correctly label more than 1

2 +ε fraction of the examples.

Admittedly, our results do not rule out the possibility of efficient learning algorithm
when ε is sub-constant or unrestricted hypothesis may be used.

10.1.3 Overview of the Proof

Based on the idea of constructing Dictator Test for PTF, we now overview the idea to
prove Theorem 10.1.2 and 10.1.4. In comparison with the Dictator Test constructed in
Section 2.6.2, to prove Theorem 10.1.2 which address the hardness of proper learning
degree d PTFs, the additional complication is to handle the cross terms (such as xi

ux j
v)

in degree d PTFs. It is easy to see that for the Dictator Test T1 there exists a degree 3
polynomial: fe = (xi

u − xi
v)

∑
(xi

u)2 that would pass the test with high probability. However,
fv = 0 which gives no clue for deciding the label of v. The main innovation of our proof is
to design a proper Dictator Test that let fe = xi

u − (xi
v)d passes with high probability. More

specifically, we modify the test T1 by setting y= (a1h1+ gd
1 +bδ,a2h2+ gd

1 +bδ, . . . ,anhn +

gd
n, g1, . . . , gn) and check sgn( fe(y)) = b. A nice property of such a test is that it force fe to

have almost no weight on the cross terms. The complete proof of the Dictator Test as well
as Theorem 10.1.2 appears in Section 10.2.

As for Theorem 10.1.4, a first observation is that the given test T1 already has sound-
ness 3/4+ ε for degree 2 PTFs. To see this, notice that r and −r is generated with equal
probability, essentially we are testing the following 4-tuple of inequalities with equal prob-
ability:

fe(r+δu)> 0;

fe(r−δu)> 0;

fe(−r+δu)< 0;

fe(−r−δu)< 0.

Recall that fe(x) is a degree 2 polynomial, we can write it as the sum of θ+ f1(x)+ f2(x)
where f1(x) is its linear (degree 1) part and f2(x) is the quadratic (degree 2) part.

If all of the above 4 inequalities hold, combining fe(t+δu) > 0 and fe(−t−δu) < 0, we
get that f1(t+δu)> 0; and combining fe(t−δu)< 0 and fe(−t+δu)> 0 we get f1(t−δu)< 0.
Therefore for some degree 2 polynomial function f , if it passes the test with probability
3/4+ ε, then by an average argument, ε fraction of the 4-tuple inequalities all hold which
implies that for ε fraction of the r generated, f1(r+δu)> 0 and f1(r−δu)< 0. Then we know
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linear function f1 pass the Dictator Test T1 with probability above 1/2+ε. This essentially
reduce to the problem of testing degree 1 PTF which we already know how to analyze.

To further get the soundness down to 1/2, more work has to be done. Roughly speaking,
we check sgn( f (k1r+k2δu))= sgn(k2) for k1, k2 generated from some carefully constructed
distribution.

In addition to the above modification, in order to remove the need of assuming the
UGC, we use the “folding trick” that is proposed in [60, 106] to ensure the consistency
across different vertices. This has the benefit that we only need to design a test on one
vertex (instead of an edge). The reason that we can not use “folding” for our first result on
low degree PTFs is that such a folding can not handle the cross terms. The complete proof
Theorem 10.1.4 appears in Section 10.3.

10.2 On Hardness of Proper Learning Degree d PTFs

In this section, we will prove Theorem 10.1.2.

10.2.1 Dictator Test

As is mentioned, a key gadget in the hardness reduction is a Dictator Test of whether a
degree d polynomial threshold function f :R2n → {−1,1} is of the form

sgn(xi − xd
n+i)

for some i ∈ [n].

For any function
f (x)=

∑

multiset S,|S|6d,S⊆[2n]
cS

∏

i∈S
xi

where x ∈R2n, our Dictator Test will query its value one a single point y and decide to ac-
cept or reject based on sgn( f (y)). For notation convenience, we refer the future appearance
of S as multiset if not further clarified.

Following is the definition of the test.
Definition 10.2.1. Fixing parameter β = 1

log n and δ = 1
2n2 . we generate one randomized

query with the following procedures:

Dictator Test Td

1. Generate independent β-biased bits a1,a2, . . . ,an ∈ {0,1} (i.e., ai = 1 with probability β

and 0 with probability 1−β).

2. Generate 2n independent unit Gaussian variables: h1, . . . , hn, g1, . . . , gn.

3. Generate a random bit b ∈ {−1,1}.

4. Set y= (a1h1 + gd
1 +bδ,a2h2 + gd

1 +bδ, . . . ,anhn + gd
n, g1, . . . , gn).

5. Accept if sgn( f (y))= b.
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Now we state the completeness and soundness properties of Td.
Lemma 10.2.2. (Completeness) When f (x) = xi − xd

n+i, it passes the test with probability
1−β.

Proof. We know that

f (y)= aihi +bδ.

Therefore, when ai = 0 (with probability 1−β) , f (y) has the same sign as b.

The more complicated part is the following soundness guarantee. To state it, we first
introduce the following notion:
Definition 10.2.3. For any degree d polynomial function f :Rn →R, we define

wt( f )=
∑

16|S|6d
|cS|.

We also define Iθ( f ) to be {i | i ∈ S, |cS|> θ ∙ wt( f )

(n+d
d )

}.

By above definition, when θ6 1, Iθ( f ) is not empty as the total number of multiset of
size at most d is

(n+d
d

)
.

Lemma 10.2.4. (Soundness) For d being a constant and all n big enough, if some degree d
polynomial function f (x) passes the test with probability 1

2+β, then for f1 = f (x1, . . . , xn,0, . . . ,0),
f2 = f (0,0, . . . ,0, xn+1, . . . , x2n), we have |I0.5( f1)|6 1

β2 , |I1( f2)|6 1
β2 . In addition, if for some

i ∈ [n], (n+ i) ∈ I1( f2), we must also have i ∈ I0.5( f1).

Proof. If wt( f ) = 0 which means f (x) is a constant function, it passes the test with proba-
bility 1

2 .

Otherwise, as the Dictator Test only checks the sign of f at some point, with out lose
of generality, we can assume that wt( f )= 1.

Set r = (a1h1+gd
1 ,a2h2+gd

1 , . . . ,anhn+gd
n, g1, g2, . . . , gn) and u = (1,1, . . . ,1,0,0, .0) ∈R2n

such that ui = 1 when 16 i6 n and ui = 0 when (n+1)6 i6 2n. Then the Dictator Test
defined is essentially the following:

• Generate r;

• Test f (r+δu)> 0 with probability 1
2 and f (r−δu)< 0 with probability 1

2 .

Suppose that some function f (x) passes with probability 1
2 +β, then we know that for

at least 2β fraction of the r generated, we must have both of the following hold:

f (r+δu)> 0; (10.1)

f (r−δu)< 0. (10.2)

Viewing d as a constant, let us first bound the difference between f (r+δu) and f (r):
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f (z+δu)− f (z)=
∑

|S|6d
cS

(
∏

i∈S,i∈{1,2,...,}
(ri +δ)

∏

i′∈S,i′∈{n+1,n+2,...,2n}

ri′ −
∏

i∈S
ri

)

6
∑

16|S|6d
|cS| ∙

∑

T 6=;,T⊆(S∩[n])
δ|T| ∙

∏

i∉T
|ri|6

∑

16|S|6d
|cS|2

|S|

(

δ
∏

|ri |>1,i∈S
|ri|

)

(10.3)

By the property of Gaussian random variables, we know that E[|ri|]6E[|gi|d]+E[|hi|]6
dd. Then by Markov inequality, Pr[|ri| > 2ddn2] 6 1

2n2 . By union bound for all but 1
n

fraction of the r generated, we have that maxi |ri|6 2ddn2.

Given that maxi |ri|6 2ddn2, we can further bound (10.3) by

δ2d(2ddn2)d
∑

16|S|6d
|cS|6 δ4ddd2

n2d 6
1

2n
. (for n large enough and constant d)

Similar calculation shows that when maxi |ri|6 2ddn2,

f (r)− f (r−δu)6
1

2n
.

Therefore, for at least 2β− 1
n >

1
log n fraction of the z generated, we have that

∣
∣ f (r)

∣
∣<

1

2n
.

Recall that f (r) = f (a1h1 + gd
1 , . . . ,anhn + gd

n, g1, . . . , gn); for every realization of a ∈
{0,1}n, we denote the corresponding restriction on f as fa(g, h) which is a degree d2

polynomial of on Gaussian random variables h1, . . . , hn, g1, . . . , gn. We use ‖ fa‖2 to denote

E[ fa(g1, . . . , gn, h1, . . . , hn)2]
1
2

Then we know that

1

log n
6Pra,g,h(| fa(g, h)|6 1/2n)6E

a

[
(

1/2n

‖ fa‖2
)1/d2]

. (10.4)

where the last inequality is due to the small ball property of Gaussian polynomials (see
Lemma 10.4.1).

Suppose a′ = argmina ‖ fa‖2. Then (10.4) implies that

(
1

2n ∙ ‖ fa′‖2
)1/d2
>

1

log n

or equivalently

‖ fa′‖26
(log n)d2

2n
. (10.5)

Let us write down fa′ as polynomial on g1, . . . , gn, h1, . . . , hn, say

fa′ =
∑

multiset S,S
wT,T ′

∏

i∈T
gi

∏

i∈T ′

hi,
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Let us further simplify the notation of wT,φ by wT . Then we claim that every

wT 6
1

n10d
.

Otherwise, by Lemma 10.4.2,

‖ fa′‖2>
1

n10d
∙

1
(2n+d2

d2

)
(d2)d2

.

which asymptotically violates (10.5) for large enough n.

Knowing that each of the wT is small, let us now establish its relationship the original
coefficient in cS (multiset S ⊆ [2n]).

It is easy to see the restriction of fa′ by setting all the hi to 0 is the same as f (gd
1 , . . . , gd

n, g1, . . . , gn)
which implies that:

∑

T⊆[n]
wT

∏

i∈T
gi =

∑

S⊆[2n]
cS

∏

i∈S,i∈[n]
gd

i

∏

n+i∈S
gi.

Summing all the cS such that S corresponding to the same term

∏

i∈S,i∈[n]
gd

i

∏

n+i∈S
gi,

we get wT for T = {i : d|i ∈ S}∪ {i|n+ i ∈ T}.

Following lemma illustrates when different cS can be corresponding to the same term.

Lemma 10.2.5. For any multiset S0,S1 ⊆ [2n] of size at most d and S0 6= S1, if

∏

i∈S0,16i6n
gd

i

∏

n+ j∈S0,16 j6n
g j =

∏

i∈S1,16i6n
gd

i

∏

n+ j∈S1,16 j6n
g j, (10.6)

then there exists some i, such that S0 = {i} and S1 = {n+ i : d} or vice versa.

Proof. (Proof of Lemma 10.2.5) Let us discuss the following two cases.

• S0∩ [n] 6= S1∩ [n]. Without loss of generality, let us assume that there is some i ∈ S0

and i ∉ S1. Then to make (10.6) hold, it must be the case that S1 contains d copy of
n+ i. Also since |S1|6 d, it can only be the case that S1 = {n+ i : d}. Therefore S0

must be {i}.

• S0∩ {n+1, . . . ,2n} 6= S1∩ {n+1, . . . ,2n}. Without loss of generality, let us assume that
there is some (n+ i) ∈ T0. Then it must be the case that i ∈ T1 to make (10.6) hold.
Then the power on gi is d. This can only happen when S1 = {n+ i : d} which enforce
S0 to be {i}.

By Lemma 10.2.5, we have the relationship between cS and wT .

• For any i ∈ [n] and S1 = {i}, S2 = {n+ i : d}, T = {i : d}, cS1 + cS2 = wT .
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• If for any i ∈ [n], S 6= {i} and S 6= {n+ i : d}, then for T = {i : d | i ∈ T}∪ {i | n+ i ∈ T},
we have that

wT = cS.

Recall that
f1(x)= f (x1, . . . , xn,0, . . . ,0) =

∑

S⊆[n]
cS

∏

i∈S
xi

and
f2(x)= f (0,0, . . . ,0, xn+1, . . . , x2n)=

∑

S⊆{n+1,...,2n}

cS

∏

i∈S
xi.

Let us write f (x)= f1 + f2 + f12 where

f12 =
∑

|S|6d,S∩{1,2,...,n} 6=;,S∩{n+1,n+2,...,2n} 6=;

cS

∏

i∈S
xi.

We know then

• every cS appear in f1 such that |S|> 2,

cS 6
1

n10d
. (10.7)

• for every cS in f2 and S is not the multiset {n+ i : d} for some i ∈ [n],

cS 6
1

n10d
. (10.8)

• for every i ∈ [n],
∣
∣|c{i}|− |c{n+i:d}|

∣
∣6 |c{i} + c{n+i:d}|6

1

n10d
. (10.9)

• for every cS appear in f12,

cS 6
1

n10d
. (10.10)

Since for f1 and f2, their coefficients are either matching (such as c{i} and c{n+i:d}) or
being small themselves, we have that

|wt( f1)−wt( f2)|6O(
1

n10d
∙

(
n+d

d

)

)6
1

n
. (10.11)

Also by (10.10) as every efficient in f12 is less than 1
n10d and there are at most

(2n+d
d

)
of

them, we know then

wt( f12)6
1

n10d

(
2n+d

d

)

6
1

n

Therefore, recall that wt( f1)+wt( f2)+wt( f12)=wt( f ), we have

wt( f1)+wt( f2)> 1−
1

n
. (10.12)
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Combining (10.11) and (10.12), we know that for n> 10,

0.51>wt( f1),wt( f2)> 0.49.

Therefore, every element (n+ i) in I1( f2), it must come from those sets S such that cS >
0.49/

(n+d
d

)
. By (10.8), we know it can only be the set S = {n+i : d} as all the other cS are less

than 1
n10d . By (10.9), we know that f̂ ({i})> 0.48

(n+d
d )

and it must be in I0.5( f1) as wt( f1)6 0.51.

By above proof, we also know |I1( f2)| 6 |I0.5( f1)| as any (n+ i) ∈ I1( f2) implies that
i ∈ I0.5( f1). It remains to bound the size of I0.5( f1) by 1

β2 .

Let us prove it by contradiction. Suppose that I0.5( f1) > 1
β2 . As wt( f1) > 0.49, every

j ∈ I0.5( f1) comes from the set S = { j} as all the other cS is less than 1
n10d . Then when

we consider all the possible realization of a, with probability 1− (1−β)|I( f1)|> 1− 1
n , there

exists some i ∈ I0.5( f1) with ai = 1. By the definition of I0.5( f1), we also must have

c{i}>
0.5 ∙0.49

(n+d
d

) >
0.2

(n+d
d

) .

Then there will be a term c{i}hi in the expansion of fa as a Gaussian polynomial of
g and h such that |c{i}|> 0.2/

(n+d
d

)
. This suggests that for (1− 1

n ) of the realization of a,

| fa|2> 0.2

(n+d
d )

∙ 1

(2n+d2

d2 )(d2)d2
>Ω( 1

n2d2 ).

Then we have
1

log n
6Pra,g,h(| fa(g, h)|6 1/2n)6

1

n
+O(

n2d

2n/d
)

which leads to a contradiction for big enough n.

10.2.2 Hardness Reduction from UNIQUE-GAMES

With above Dictator Test, we now prove Theorem 10.1.2. The hardness reduction is from a
UNIQUE-GAMES Instance L (U ,V ,E,Π, k) to a distribution of positive and negative exam-
ples. The examples in the learning problem lies in the space R(|U |+|V |)k labeled with either
positive (+1) or negative (−1). Denote dim = (|U |+ |V |)k. For y ∈ Rdim, each coordinate is
indexed by a possible label for a vertex in U ∪V .

We fix the following notations: w ∈U ∪V and x ∈Rdim, we use xi
w to denote the coordi-

nate corresponding to the vertex w’s i-th label. Also we use xw to indicate the collection
of coordinates of coordinates corresponding to vertex w; i.e., (x1

w, x2
w, . . . , xk

w). Also for any
function f (x) :Rdim →R, we use fu to denote f ’s restriction by setting all the coordinate to
be 0 except xu. Similarly, denote fu,v as the restriction of f by setting all the coordinate to
be 0 except xu, xv.

We construct the example distribution from the UNIQUE-GAMES instance by the fol-
lowing procedures. Let us choose parameter β= 1

log(k) and δ= 2−k2
.
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Reduction from UNIQUE-GAMES

1. Randomly choose an edge (u,v) for u ∈U and v ∈V .

2. Setting yw = 0 for any w ∈U ∪V such that w 6= u,w 6= v.

3. Generate independent β-biased bits a1,a2, . . . ,ak ∈ {0,1} (i.e., ai = 1 with probability β

and 0 with probability (1−β) and generate 2k Gaussian h1, . . . , hk, g1, . . . , gk.

4. Generate a random bit b ∈ {−1,1}.

5. For every i ∈ [k], set y(i)
v = gi

6. For every i ∈ [k], set y(i)
u = a1h1 + (gπe(i))d +δb.

7. Output example-label pair (y, b).

We will prove the following two Lemmas (10.2.6 and 10.2.7) for the reduction.
Lemma 10.2.6. (Completeness) If Opt(L ) = 1− η, then there is a degree d polynomial
threshold function that is consistent with 1−η−β percentage of the examples.

Proof. (Proof of Lemma 10.2.6) Suppose that there is a labeling l that satisfies 1−η edges.
Then consider the following degree d polynomial threshold functions:

sgn(
∑

u∈U
x(l(u))

u −
∑

v∈V
(x(l(v))

v )d).

It is easy to verify that such a PTF agrees with 1−η−β fraction of the examples.

Lemma 10.2.7. (Soundness) If Opt(L ) 6 1/kΘ(η), then there is no degree d polynomial
threshold function agrees with more than 1

2 +2β fraction of the examples.

Proof. (Proof of Lemma 10.2.7) We prove above lemma by contradiction. Suppose that
there is some degree d polynomial function f that passes the test with probability 1

2 +2β.
Then by an average argument, for β fraction of the edge (u,v) picked in the first step, we
have that f (x) passes the test with probability 1

2 +β. Let us call these edges“good”.

For a particular “good” edge e = (u,v), let us assume that πe is the identity mapping for
notation convenience.

Essentially, we are conducting our test for Td for fu,v with parameter n = k.

Since fu,v passes the test with probability 1
2 +β, By Lemma 10.2.7, we must have that

I0.5( fu)⊆ I1( fv) 6= ; (if we index xi
u by i when output I0.5( fu) and index xi

v by i when output
I0.5( fv)). In addition, we have that |I1( fv)|, |I0.5( fu)|6 1/β2.

We now give the following labelling strategy based on f . For every u ∈U , we randomly
pick its label from I0.5( fu) and for every v ∈V , we randomly pick its label from I1( fv). Then
for each good edge, it will get satisfied by probability β2. Overall such a labelling strategy
gives a labelling that satisfies at least β3 = 1

(log k)3
fraction of the edges in expectation. This

is a contradiction to the fact that Opt(L )6 1/kΘ(η) for sufficiently large k.

By above proof, we gave a way of constructing a distribution D of example-label pairs
from a instance of Label Cover L. Let us use Opt(D) to denote the accuracy of the best
degree d PTF on D. And our constructed distribution has the following properties:
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• If Opt(L )= 1−η, then Opt(D)= 1−η− 1
log k .

• If Opt(L )6 1/kθ(η), then Opt(D)6 1
2 +

2
log k .

10.2.3 Discretizing the Gaussian Distribution

Above reduction is not in polynomial time as the resulting distribution D has infinite
support. If we look into the construction, for every edge picked we need to generate 2k
independent Gaussian h = (h1, . . . , hk), g = (g1, . . . gk).

To “discretize” the reduction, we will replace each h and g by some h′ and g′ where each
h′

i and g′
i are independently generated by sum of N bits divided

p
N where N = (2k)24(d2)2 .

By Theorem 10.6.2, there exists a way of coupling (g, h) with (g′, h′) such that for every
degree d2 polynomial, it has the same sign on (g, h) as on (g′, h′) except for 1/k fraction of
the (g, h) generated. Therefore, if we replace (g, h) with (g′, h′) in the reduction and also no-
tice that for every realization of a, the resulting polynomial on g1, . . . , gk and h1, h2, . . . , hk

is of degree at most d2, our discretized reduction will almost preserve the soundness and
completeness guarantees with a loss of 1

k :

• If Opt(L )= 1−η, then Opt(D)= 1−η− 1
log k −1/k.

• If Opt(L )6 1/kθ(η), then Opt(D)6 1
2 +

2
log k +1/k.

Also notice that the distribution of (g′, h′) has a support of size 22kN = 22k(2k)24(d2)2

which
is constant as the label size is regarded as constant for UNIQUE-GAMES. Then we can
simply enumerate all its support to further remove the need of random bits and make the
reduction deterministic.

Eventually, by picking proper η and k (e.g., η = ε/2 and k = e1/ε2
), we prove Theo-

rem 10.1.2.

10.2.4 For d being Super-constant

From above proof, our hardness result hold for any constant d. Actually, it is easy to see

that d = o(loglog n), our proof will still work. (we need 22k(2k)24(d2)2

to be some polynomial
on the size of the label cover.)

10.3 Hardness of Learning Halfspaces with degree 2
PTFs

In this section, we prove Theorem 10.1.4. Again the proof has two parts. In the first step,
we construct a dictator test for degree 2 PTFs. In the second step, we compose such a
dictator test with the Label Cover problem to prove NP-hardness result.
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10.3.1 The Dictator Test

The key gadget in the hardness reduction is a Dictator Test of whether a degree 2 polyno-
mial threshold function f :Rn → {−1,1} is of the form sgn(xi) for some i ∈ [n].

Suppose p is a degree 2 polynomial function written as the following form:

p(x)= θ+
∑

i∈[n]
cixi +

∑

i, j∈[n],i6 j
ci j xix j.

We also write p1(x)=
∑

cixi and p2(x)=
∑

ci jxi j to denote the degree 1 and 2 part of p(x).

Below is a one query Dictator Test T1 on sgn(p(x)). We choose parameter β = 1
log(n) and

δ= 1
2n for the test.

Test T2

1. Generate independent β-biased bits a1,a2, . . . ,an ∈ {0,1} (i.e., ai = 1 with probabil-
ity ε and 0 with probability (1−β) and generate n independent Gaussian variables
g1, . . . , gn. Set r = (a1 g1,a2 g2, . . . ,an gn).

2. Generate t by randomly pick a number i ∈ {1,2, . . . , (log n)2} and set t = ni.
3. Generate random bit b ∈ {−1,1}.item
4. Set u ∈Rn to be the all “1” vector (1,1,1, . . . ,1) and set y= t3r+ bt2δu.
5. Accept if sgn(p(y))= b.

For above test T1, We have the following completeness and soundness properties.
Lemma 10.3.1. (Completeness) If p(x)= xi for i = 1. . . , n, then it passes with probability at
least 1−β.

Proof. If p(x) = xi(i ∈ [n]), then as long as ai is set to zero in step 1, p(x) = b2δt2 and it
passes the test. By definition of the test, this happens with probability 1−β.

Lemma 10.3.2. (Soundness) Denote A =
∑

ci and I(p) to be the set {i | ci > A/n2}. If some
p passes the test with probability 1

2 +β, then |I(p)|6 1/β2 and A > 0.

Proof. The proof is by contradiction. Suppose for some function p with |I(p)| > 1/β2 or
A6 0 passes above defined test with probability 1

2 +β.

First we show is the following lemma.

Lemma 10.3.3. Pr[p1(r) ∈ (−δA,δA)]6 2
n .

Proof. It is obvious when A 6 0 above inequality hold. Otherwise, assuming A > 0 and
|I(p)|> 1/β2. We know that in step 1 when generating ai, with probability 1−(1−β)|I(p)|>
1− 1

n at least one of the coordinate in I(p) is set to a Gaussian (instead of zero). For these

(1− 1
n ) fraction of x, we know that no matter which other coordinate is set to be Gaussian,

p1(r) is a Gaussian variable with variance at least A2/n4 (as one of the weight is at least
A/n2). Using the anti-concentration of Gaussian variable (Lemma 10.4.1), we have that

PrV [p1(r) ∈ (−δA,δA)]6
2δA

A/n2
6

n3

2n
6

1

n
.
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By union bound, we know that for at most 2
n of the x, p(r) is inside the interval

(−δA,δA).

Notice that r and −r are generated with equal probability, essentially a equivalent
test to T2 would be the testing the following 4 inequalities with equal probability for r, t
generated.

p(t3r+ t2δα)> 0 (10.13)

p(t3r− t2δα)< 0 (10.14)

p(−t3r+ t2δα)> 0 (10.15)

p(−t3r− t2δα)< 0. (10.16)

As p(y) passes the test with probability 1
2 +β, using an averaging argument, for β/2

fraction of the r, 1
2 +β/2 fraction of the constraints containing the r are satisfied. For these

β/2 fraction of r, let us remove the fraction r (of probability at most 2/n) such that p1(r) ∈
(−δA,δA), Recall that β= 1

log n , we know there are at least β/4 fraction of r remaining. We
call these r “good”.

Let us fixed a good r. By an averaging argument again, for any “good” r, for at least β/4
fraction of the t generated, 3 out of the 4 of the inequalities in the 4-tuple that contains
t and r are satisfied. There are 4 different ways of choosing 3 out of the 4 constraints.
Without loss of generality, let us assume that for β/16 fraction of the t, the first three
constraints are satisfied. That is:

p(t3r+ t2δα)> 0 (10.17)

p(t3r− t2δα)< 0 (10.18)

p(−t3r+ t2δα)> 0 (10.19)

Let us call these t “good" for the corresponding r and define the set that contains all the
“good” t for a given “good” r to be Tr. Since the possible choice of t = ni is from for each i
from [log2 n], therefore we know |T)|> (log n)2 ∙β/16=O(log n).

Since p(x) is a degree 2 polynomial, we can express p(r+δα) (by Taylor Expansion) as:

p(r+δα)= θ+ p1(r)+ p2(r)+δ
∑

ci +δ2
∑

ci j +δ
∑

16i6 j6n
ci j(ri + r j).

Denote B =
∑

ci j and p′
2(x) =

∑
16i6 j6n ci j(ri + r j). We can rewrite (10.17), (10.18),

(10.19) as:

t3 p1(x)+ t2δA+ t6 p2(x)+ t5δp′
2(x)+ t4δ2B+θ > 0 (10.20)

t3 p1(x)− t2δA+ t6 p2(x)− t5δp′
2(x)+ t4δ2B+θ < 0 (10.21)

t3 p1(x)+ t2δA− t6 p2(x)− t5δp′
2(x)− t4δ2B−θ > 0 (10.22)

Notice that (10.20) and (10.22) are equivalent to

p1(x)>−δA/t+
∣
∣t3 p2(x)+δt2 p′

2(x)+δ2tB+θ/t3
∣
∣.
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Since we already know that p1(x) ∉ (−δA,δA) and t> n, therefore

p1(x)> δA.

Also for (10.21), we can rewrite it as

p1(x)6 δA/t− (t3 p2(x)+δt2 p′
2(x)−δ2tB+θ/t3).

Let us further simplify the notation by denote C = p2(x), D = δp′
2(x) and E = δ2B. Then

we rewrite above constrains as follows:

p1(x)>−δA/t+
∣
∣t3C+ t2D+ tE+θ/t3

∣
∣

and
p1(x)6 δA/t− (t3C+ t2D− tE+θ/t3).

Notice that above (upper and lower) bound hold for any t in Tr. Therefore, we know
that for any t1, t2 ∈ Tr,

δA/t1 − (t3
1C+ t2

1D− tE+θ/t3
1)>−δA/t2+

∣
∣t3

2C+ t2D+ t2E+θ/t3
2

∣
∣

which is equivalent to

− (t3
1C+ t2

1D− t1E+θ/t3
1)+δA(

1

t1
+

1

t2
)>

∣
∣t3

2C+ t2
2D+ t2E+θ/t3

2

∣
∣. (10.23)

Using the fact that p(x)> δA, therefore −(t3
1C+ t2

1D− t1E+θ/t3
1)> (1− 1

t1
)δA. Combing

this with (10.23), we know that for any t1, t2 ∈ Tr, we have

−(t3
1C+ t2

1D− t1E+θ/t3
1)(1+

( 1
t1
+ 1

t2
)

1− 1
t1

)>
∣
∣t3

2C+ t2
2D+ t2E+θ/t3

2

∣
∣.

By definition, ti > n for any i; we have
( 1

t1
+ 1

t2
)

1− 1
t1

6 3/n Therefore, for any t1, t2 in Tr, the

following inequality holds:

−(t3
1C+ t2

1D− t1E+θ/t3
1)

∣
∣t3

2C+ t2
2D+ t2E+θ/t3

2

∣
∣ >

1

1+
( 1

t1
+ 1

t2
)

1− 1
t1

> 1−3/n. (10.24)

We know |Tr| =O(β(log n)2)=O(log n). Actually, we only need the fact that |Tr|> 5. Let us
pick t06 t16 t26 t36 t4 from Tr, and denote G =−(t3

1C+ t2
1D− t1E+θ/t3

1). We know that

G6 t3
1|C|+ t2

1|D|+ t1|E|+ |θ|/t3
1.

Also for t0, t2, t3, t4, we write:

F0 = t3
0C+ t2

0D+ t0E+θ/t3
0; (10.25)

F2 = t3
2C+ t2

2D+ t2E+θ/t3
2; (10.26)

F3 = t3
3C+ t2

3D+ t3E+θ/t3
3; (10.27)

F4 = t3
4C+ t2

4D+ t4E+θ/t3
4. (10.28)
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Denote F =maxi=0,2,3,4 |Fi|, by (10.24) we know

F

G
> 1−3/n. (10.29)

Viewing C,D,E,θ as unknown variable and solving above linear system consists equation
(10.25),(10.26),(10.27),(10.28) using Cramer’s rule, we have

C =

∣
∣
∣
∣
∣
∣
∣
∣
∣

F0 t2
0 t0 1/t3

0
F1 t2

2 t2 1/t3
2

F2 t2
3 t3 1/t3

3
F3 t2

4 t4 1/t3
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

t3
0 t2

0 t0 1/t3
0

t3
2 t2

2 t2 1/t3
2

t3
3 t2

3 t3 1/t3
3

t3
4 t2

4 t4 1/t3
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Notice that t0 < t2 < t3 < t4, ∣
∣
∣
∣
∣
∣
∣
∣
∣

t3
0 t2

0 t0 1/t3
0

t3
2 t2

2 t2 1/t3
2

t3
3 t2

3 t3 1/t3
3

t3
4 t2

4 t4 1/t3
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

is O(t3
4t2

3t2t−3
0 ).

Since F =maxi=0,2,3,4 |Fi|, we know that
∣
∣
∣
∣
∣
∣
∣
∣
∣

F0 t2
0 t0 1/t3

0
F1 t2

2 t2 1/t3
2

F2 t2
3 t3 1/t3

3
F3 t2

4 t4 1/t3
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

=O(Ft2
4t3t−3

0 )

Then we have C =O( F
t4t3t2

).

Fimilar analysis shows that

D =O(
F

t3t2
);

E =O(
F

t2
);

θ =O(Ft3
0).

Therefore, we have

G6 |C|t3
1 + t2

1|D|+ t1|E|+ |θ|/t3
16O(F(t2

1/t2t3 + t1/t2 + t1/t3 + t3
0/t1)).

Then notice that ti+1/ti > n as they are different power of n, we have

G

F
=O(t2

1/t2t3 + t1/t2 + t1/t3 + t3
0/t1)6O(

1

n
).

This contradicts (10.29).
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10.3.2 Hardness Reduction from Label Cover

Recall that our reduction is from the LABEL-COVER instance L specified by (U ,V ,E, k, m,Π)
. For notation convenience, let us use F(q) : U ∪V →N to denote the possible choice of la-
bels for vertex q; i.e., for u ∈U , F(u)= k and for v ∈V , F(v)= m.

The examples in the learning problem we reduce to lies in the space R|U |k+|V |m labeled
with either positive (+1) or negative (−1). Denote dim = |U |k+ |V |m. For y ∈ Rdim, each
coordinate is indexed by a possible label for a vertex in U ∪V . We fix the following nota-
tions: For q ∈ U ∪V , we use y(i)

q to denote the coordinate corresponding to the vertex q’s
i-th label (i ∈ [F(q)] ). We use vector yq to denote all the coordinates of y corresponding to
vertex q’s labels.

Following is the reduction, briefly speaking we want to conduct the Dictator Test T2

on the restriction of pv(x) for v ∈ V . For given (U ,V ,E, k, m,Π) and choose the parameter
to be β= 1

log m and δ= 1
2m .

Reduction from LABEL-COVER L

1. Randomly pick an vertex v ∈V .

2. For each w ∈U ∪V ,w 6= v, yw = 0.

3. Generate independent β-biased bits a1,a2, . . . ,am ∈ {0,1} (i.e., ai = 1 with probability ε

and 0 with probability (1−β)

4. generate m independent Gaussian variables g1, . . . , gm.

5. Generate t by uniform randomly pick a number i ∈ {1,2, . . . , (log m)2}, then set t = mi.

6. Generate random bit b ∈ {−1,1}.

7. Set r = (a1 g1,a2 g2, . . . ,am gm).

8. For α ∈Rn to be the all “1” vector (1,1,1, . . . ,1), set yv = t3r+bt2δα.

9. Output example-label pair (y, b) (with folding steps specified later).

The learning problem is to find a degree 2 polynomial p :Rdim → {−1,1} such that sgn(p(y))=
b for as many example-label pairs as possible. Let us denote

p(y)= θ+
∑

q∈U∪V ,i∈[F(q)]
c(i)

q y(i)
q +

∑

q1,q2∈U∪V ,i∈[F(q1], j∈[F(q2)]
c(i, j)

(q1,q2) y
(i)
q1

y( j)
q2

.

Notice that in the reduction when vertex v is picked, we set all the coordinate to zero
except yv. Essentially, we are conducting test T1 on the function

pv = θ+
∑

i∈[m]
c(i)

v y(i)
v +

∑

i, j∈[m]
c(v(i),v( j)) y

(i)
v y( j)

v

which is the restriction of p(y) by setting all the coordinate to zero except those coordinates
corresponding to vertex v. The fraction of agreement of p(y) on all the examples is the
averaging passing probability of all possible pv (for any v ∈V ) on test Tm.

Folding Trick: We use the “folding ” technique that is similar to [60, 106]. The pro-
cedures are described as follows: instead of output pair ( y, b) in the last step of above
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reduction, we output (y′, b) where y′ is the projection of y into some subspace H⊥ (defined
later). By folding, we are able to enforce the p(y) to have the same value on different
points in Rdim as long as their projection on H⊥ is the same. It is easy to see the projection
can be done in polynomial time.

We define the subspace H and H⊥ for our folding as follows:
Definition 10.3.4. For every e = (u,v) ∈ E, i ∈ [k], b(e, i) ∈Rdim is the vector with 0 at every
coordinate except that b(e, i)(i)

u = 1 and for every j ∈ (πe)−1(i), b(e, j)( j)
v =−1. Let B to be the

collection of all such be,i: B = {b(e, i) | e = (u,v) ∈ E, i ∈ [k], j ∈ (πe)−1(i)}. Define H = span(B)
and H⊥ to be the orthogonal complement of H in Rdim.

After folding, we can further enforce p(x) to have following “folding” property:

For any h ∈ B and c ∈R , p(x+ ch)= p(x).

and we call function that has above property folded. In particular for e = (u,v) ∈ E and
i ∈ [k], p(x + rb(e, i)) = p(x). If we view p(y) as a polynomial only on y(i)

u and y( j)
v for

j ∈ (πe)−1(i) and apply Lemma 10.5.1, we have that

c(i)
u =

∑

j∈(πe)−1

c( j)
v .

If we sum over all possible i, this implies for any edge (u,v),

∑

i∈k
c(i)

u =
∑

i∈m
c(i)

v .

Now we prove our main result, Theorem 10.1.4. Recall the hardness result of LABEL-
COVER as follows [128]:

Theorem 2.5.2 There exists some constant η such that it is NP-Hard to distinguish the
following two cases:

• Opt(L )= 1;

• Opt(L )6 1/mη.

We will show the following two properties of the reduction to complete the proof.
Theorem 10.3.5. (Completeness) If Opt(L ) = 1, there is a folded function p(x) that is
consistent with 1−1/log(m) fraction of the points.
Theorem 10.3.6. (Soundness) If Opt(L ) 6 1/mη, there is no folded degree 2 polynomial
function consistent with 1

2 +
2

log2(m)
fraction of the data.

Combing Theorem 10.1.4, 10.3.5, 10.3.6 and notice that m can be arbitrary big num-
ber (e.g. e1/ε2

),we can easy to get Theorem 10.1.4. (we also use a similar discretization
argument in Section 10.2.3)

Following is the proof of above Theorem 10.3.5, 10.3.6.

Proof of Theorem 10.3.5

219



Proof. If Opt(L ) = 1, suppose there is a labeling l satisfying all the edges. Then consider
function

p(y)=
∑

w∈U∪V
yw(l(w)).

Notice that for every v ∈V , pv is a dictator and passes Tm with probability at least 1− 2
log m

by Lemma 10.3.1. Therefore p passes with probability at least 1−1/log(m).

It is also easy to check that p(x) is folded.

Proof of Theorem 10.3.6

Proof. The proof is by contradiction. Suppose there is some folded degree 2 polynomial
p(x) such that sgn(p(x)) agrees with more than 1

2 + 2
log m fraction of the example, i.e., the

averaging passing probability of pv on Tm is 1
2+

2
log m . By an averaging argument, we know

for 1
log m fraction of the v ∈U , pv passes the test Tk with probability 1

2 +
1

log m and we call
such a v “good” vertex. Also we call an edge “good” if one of the endpoint of the edge is a
good vertex. By the regularity of the graph, we know at least 1

log m fraction of the edges are
“good”.

For a “good” vertex v, define

Iv = { j| j ∈ [m], c( j)
v >

m∑

i=1
c(i)

v /m2},

then by Theorem 10.3.2, |Iv|6 (log m)2. For every u ∈ U , we define Ju = { j : j ∈ [k], c( j)
u >∑

i∈[k] c(i)
u /k}.

Notice Ju is not empty as

max
j

c( j)
u >

∑

i∈[k]
cu[i]/k.

We define the following labeling strategy for L . For u ∈U , randomly assign it a label
from Ju; for v ∈ V , we randomly assign it a label from Iv (if Iv is empty, just assign any
label).

For every good edge e = (u,v) and any j ∈ Ju, by folding, we have

∑

i∈π−1
e ( j)

c(i)
v = c( j)

u >
∑

i∈[k]
c(i)

u /k =
∑

i∈[m]
c(i)

v /k.

There is at least one label i in π−1
e ( j) such that

∑
i∈[m] c(i)

v /km >
∑

i∈[m] c(i)
v /m2, and it is

therefore in Iv. Notice that Iv 6 (log m)2, by our randomized labeling strategy, we have
1/(log m)2 chance to satisfy edge (u,v).

Therefore above labelling strategy satisfy (in expectation) at least 1/(log(m)2) fraction
of the good edges and 1/(log m)3 fraction of the total edges. For large enough m, this
contradicts with the fact that Opt(L )6 1/mη.
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10.4 Probability Inequalities

The second fact is from [27].
Lemma 10.4.1. Let f (x) : Rn → R be a degree-d polynomial function, then for x1, x2, . . . , xn

being independent unit Gaussian,

Pr[| f (x1, . . . , xn)|6α]6O(d E[ f (x1, . . . , xn)2]−
1

2d α1/d).

where x1, x2, . . . , xn are independent standard Gaussian.
Lemma 10.4.2. For a degree d polynomial f =

∑
multisetS,|S|6d,S⊆[2n] cS

∏
i∈S xi and for any

multset T ⊆ [n], ‖ f ‖2 =E[ f (x1, . . . , xn)2]
1
2 >

ˆ| f (T)|

(n+d
d )dd

.

Proof. Given f , one way to calculate its ‖ f2‖2
2 is to convert it into its hermite expansion

∑
S f̂ (S)χS where χS is the Hermite polynomial. Then the variance is

∑
f̂ (S)2.

of the form χS(x)=
∑

T⊆S hT
S

∏
i∈T xi where hT

S is the coefficients of the Hermite polyno-
mial hS.

We know that cT can be written as the sum of
∑

T⊆S hT
S f̂ (S). There are at most

(n+d
d

)

term in the summation. . . , Also every hT
S is some constant only depending on d actually

it is not hard to bound it by dd. Therefore, there must be at least one hermite coefficients

f̂ (S) that has absolute value bigger than | f̂ (T)|

dd(n+d
d )

and this give a lower bound for ‖ f ‖2.

10.5 Folding Lemma

Lemma 10.5.1.

p(x)= θ+
n∑

i=0
wixi +

∑

06i6 j6n
wi jxix j

is a degree 2 function. If for any c ∈R and f (x+ c(1,−1, . . . ,−1))= f (x), then w0 =
∑n

i=1 wi.

Proof. We know that

θ+w0(x0+ c)+
n∑

i=1
wi(xi− c)+w00(x0+ c)2+

n∑

j=1
w0 j(x0+ c)(xj− c)+

∑

16i6 j6n
wi j(xi− c)(xj− c)

= θ+
n∑

i=0
wixi +

∑

06i6 j6n
wi jxix j.

Notice that above equation hold for any c, x. Therefore if we express left hand and right
hand as polynomials of variable c, x0, x1, . . . , xn, the corresponding coefficients should be
the same. If we look at the coefficients of the term c, we have

w0 −
n∑

i=1
wi = 0.
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10.6 Discretization of the Gaussian distribution

Theorem 10.6.1. There is a probability distribution on (G ,HN )∼R2 such that the marginal
distribution on G follows the standard Gaussian distribution and the marginal distribu-
tion of HN follows the distribution of the summation of N random bits; i.e., HN =

∑N
i=1 bi

where each bi is independent random bits from {−1,1}. In addition, HN and G are close in
the following sense: with probability at least 1−O( 1

N
1
4

), |G − HNp
N
|6O( 1

N
1
4

)).

Proof. Let Φ be the CDF (Cumulative distribution function) of HN and Ψ be the CDF of
the marginal distribution on G (i.e. standard Gaussian Distribution).

We can couple random variables G ,HN in the following ways: first we sample h0 from
the marginal distribution on HN . We know that

Pr(HN = h0)=Ψ(h0)−Ψ(h0−2)

since if h0 is a feasible outcome of summing N bits, then h0 − 2 is the biggest feasible
outcome less than h0 (if there is any). Then we generate G by keep drawing random sam-
ples from the Gaussian Distribution until the sample falls into the interval (Ψ−1(Φ(h0 −
2)),Ψ−1(Φ(h0)] and we set its value to be G .

By above construction, we claim G must follows the Gaussian distribution: essen-
tially we use the value of h0 as a indicator of whether G is in the interval (Ψ−1(Φ(h0 −
2)),Ψ−1(Φ(h0)]. We also need to check that Pr(h = h0)=Pr(G ∈ (Ψ−1(Φ(h0−2)),Ψ−1(Φ(h0)].
This is true because

Pr(h = h0)=Pr(h ∈ (h0 −2, h0]=Φ(h0)−Φ(h0 −2)

=Pr(g ∈ (Ψ−1(Φ(h0−2)),Ψ−1(Φ(h0)]).

By above coupling of G and H , it remains to prove for any number in the interval (Ψ−1(Φ(h0−
2)),Ψ−1(Φ(h0))] is close to h0/

p
n for most of the h0 generated.

It suffice to check the following two inequalities:

• |Ψ−1(Φ(h0))− h0p
N
|6 1

N
1
4

;

• |Ψ−1(Φ(h0 −2))− h0p
N
|6 1

N
1
4

.

Suppose h0 > 0 and we will just prove the second one. By the Berry Esseen Theorem, we
know that |Φ(h0 +2)−Ψ( h0+2p

N
)|6 1p

N
.

Therefore,

Ψ−1(Φ(h0 +2))6Ψ−1(Ψ(
h0 +2
p

N
)+

1
p

N
)6

h0 +2
p

N
+O(

1p
N

e−(s+2)2/2
). (10.30)

Notice that when h06
√

log N
2 , (10.30) is bounded by O( 1

N1/4 ). Also by Chernoff Bound, we

know that when Pr(H >
√

log N
2 )6O( 1

N
1
4

).
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Therefore, except with probability O( 1

N
1
4

), |G −H |6O( 1

N
1
4

)

By above theorem, we know that we can construct a distribution HN that is point-wise
close a Gaussian distribution G with high probability. Now we will use the constructed
distribution to discretize the high dimension Gaussian space for low degree PTFs.
Theorem 10.6.2. For any degree D polynomial f (x1, . . . , xn) =

∑
|S|6D f̂ (S)

∏
i∈S xi. Here D

is some constant that does not depend on n. Let (y, z) ∈ Rn ×Rn be generated by sample
n times i.i.d from the distribution (G ,HN )⊗n where we take N = n24D2

as is the set up of
Theorem 10.6.1.

Then

Pr(sgn( f (y)) 6= sgn( f (z))6O(
1

n
).

Proof. Without loss of generality, let us assume that
∑

S 6=; | f̂ (S)| = 1. By Lemma 10.4.2, we
know that ‖ f2‖> 1

(n+D
D )DD

.

By union bound and Theorem 10.6.1, we know that with probability 1− n
N1/4 = 1−O( 1

n ),

we have that for every i ∈ [n], |xi − yi|6 1
N1/4

Similar to the calculation in (10.3), when y and z are close on each coordinate, we have
that

| f (y)− f (z)|6
1

N
1
4

O(n2D2
)6

1

n3D2

Then

Pr(sgn( f (y)) 6= sgn( f (z))6Pr( f (y)6 | f (z)− f (y)|)

6O(
1

n
)+Pr( f (y)6

1

n3D2 ) (10.31)

By Lemma 10.4.1, we can bound

Pr( f (y)6
1

n3D2 )

by O( 1
n ).

Overall we bound the probability of Pr(sgn( f (y)) 6= sgn( f (z)) by O( 1
n ).

Remark 10.6.3. Above theorem immediately implies that (HNp
N

)⊗n can be used to fool low

degree PTFs over G⊗n. Also the distribution of H ⊗n
N , by definition, can be generated with

n24D2+1 random bits.
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Part IV

Open Problems
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Chapter 11

Open Problems
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Numerous problems are unsolved on understanding the approximability of NP-hard
problems. One of the most important one is to prove or disprove the Unique Games Con-
jecture as well the d-to-1 conjecture. In addition to that, I list the open problems that I
found intriguing, and hard to solve, during the writing of my thesis.

Efficient SDP Rounding for CSPs: In the study of MAX CUT, we gave an SDP round-
ing algorithm with running time poly(n) ∙ 2poly(1/ε). Can we improve its running time to
poly(n) ∙poly(1/ε)? Can we even give an efficient rounding algorithm for general CSPs?
In the work of [125], the author gave a generic SDP rounding algorithm for almost every

CSP with running time poly(n) ∙22poly(1/ε)
. Can we improve such a running time to make the

algorithm more practical?

NP-hardness for Satisfiable 3-CSP: Can we prove that MAX 3-CSP (1,5/8+ ε) is NP-
hard without assuming the d-to-1 conjecture?

Hardness of Approximating Satisfiable CSPs: Can we establish a more general re-
sult on the approximability of satisfiable CSPs? In particular can we prove or disprove the
following conjecture:
Conjecture 11.0.4. Let Φ be a predicate set. For the problem of MAX Φ, GapTest(1), which
is the optimal soundness of the Dictator Test using predicates from set φ with perfect com-
pleteness, is equal to the optimal approximation ratio for MAX Φ when the instance is
satisfiable.

SDP gap for 2-to-1 LABEL-COVER: Can we construct instances of 2-to-1 LABEL-COVER

with SDP value 1 and optimum value 1/Rθ(1) where R is the alphabet size? More desirably,
can we obtain such a gap under even stronger form of SDP for 2-to-1 LABEL-COVER?

NP hardness results of MA-MON-PTFd (1− ε,1/2+ ε): Can we show the that even
there exists a monomials that is consistent with 0.99 fraction of the data, it is hard to find
a low degree PTF that is consistent with 0.51 fraction of the examples. Such a hardness
result would subsume almost all the previous results on hardness of agnostic learning and
strengthen the belief that learning tasks under agnostic noises over arbitrary distribution
are essentially hard.
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