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Abstract: 
The Tekkotsu robotic software framework's perception and manipulation primitives have 
largely been confined to planar worlds.  In this thesis I bring Tekkotsu out of the plane 
by solving a three-dimensional manipulation task: autonomously playing chess on a real 
board.  The project used a new version of the Chiara hexapod robot with a gripper 
customized for tournament-standard chess pieces.  I developed techniques for detecting 
pieces, for using multiple images to deal with occlusions, for inferring opponent moves 
from noisy information about changes in square occupancy, and for localizing the robot 
with respect to the board.  Accurate localization of pieces and the robot itself were 
achieved by a camera alignment procedure that produced a homography correction 
matrix that was then applied to the robot's camera projections.  The Chiara's limited 
reach required moving its body relative to the board.  I developed motion strategies for 
positioning the robot close to the board while keeping the legs from intruding into the 
playing area. Pieces were modeled as vertical cylinders of varying heights, and 
manipulation planning algorithms were developed to execute moves, including captures, 
using an optimal combination of arm trajectories and body motions.  The robot 
successfully competed in the AAAI-2010 Small-Scale Manipulation Challenge.  As a 
result of this work, Tekkotsu's dual-coding vision system can locate objects more 
accurately on its world map, and its manipulation planner has become more 
sophisticated.  The techniques developed here can be applied to similar manipulation 
tasks, such as playing other board games. 
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I. Introduction 

The majority of Tekkotsuʼs perception and manipulation primitives have been 

restricted to working in a 2D space. Having Tekkotsu solve a real-world 3D manipulation 

task—playing chess on a real chessboard—provided motivation to upgrade these 

primitives to handle the third dimension. This paper explores the issues and solutions 

for advancing Tekkotsuʼs capabilities to play chess. Chess pieces, modeled as vertical 

cylinders, were detected by combining multiple camera images and manipulated using a 

custom gripper designed for standard chess pieces. Inferring the opponentʼs moves and 

precise localization of the robot relative to the board required new visual reasoning 

techniques. Camera alignment, via a homography correction matrix, was used to adjust 

camera projections to more accurately localize visual features. The choice of the Chiara 

hexapod robot, with its limited reaching capabilities, led to new strategies for motion 

planning around the chessboard to be able to reach squares on the board. The Chiaraʼs 

planar arm necessitated new manipulation planning strategies to pick up and place 

chess pieces without disturbing the state of the board. Combining all of these 

advancements allowed Tekkotsuʼs dual-coding vision system to more accurately locate 

objects in its world and perform certain 3D manipulation tasks that were previously not 

possible. 

1. Tekkotsu 

The Tekkotsu robotic software framework [4] is a robot-independent framework that 

abstracts away low-level concepts of robot programming by providing users with a set of 

higher-level primitives. It allows users to develop solutions to problems in terms of 
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desired outcomes instead of lower-level concepts such as servo positions or pixel 

values. For example, Tekkotsu allows a user to create a robot-independent behavior to 

look to the left of the robot, find the largest contiguous blue object, and estimate how far 

away from the robot the object is. Concepts such as what servo angle cause the camera 

to look to the left, where the largest blue object appears in the camera frame, and where 

that object projects to relative to the robot are all abstracted away. The most abstract 

Tekkotsu components, known as the Crew, are like members of a ship, offering 

specialized skills that empower the user to easily create complex robot behaviors. The 

four implemented members of the Crew are the Lookout, MapBuilder, Pilot, and 

Grasper. 

1.1  The Crew [7] 
 

The Lookout directs the robotʼs visual focus, determining how to point the camera. It 

also handles issues surrounding image collection, such as motion blur and camera 

noise. Lookout requests take the form of specifying a point for the camera to point at in 

order to capture an image or do rangefinder scans. 

The MapBuilder determines the state of the world around the robot. It makes 

requests to the Lookout to collect images of areas of interest. Using these images, the 

MapBuilder has methods for extracting various geometric shapes, such as points, lines, 

blobs, and ellipses, and generating a model of the world in terms of these shapes. 

MapBuilder requests specify the areas of interest as well as which features and shapes 

a user is looking for. For example, one request could ask for the blue blobs in the 
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camera image when looking to the robotʼs left while a different request could ask for all 

perceived green lines to the left or right. 

The Pilot is in charge of the robotʼs motion and navigation within the world. It knows 

how the robot locomotes and can plan a path to a destination while avoiding obstacles. 

The Pilot can invoke MapBuilder or Lookout requests in order to track navigation 

markers or attempt to detect new obstacles. Pilot requests take the form of specifying 

the robotʼs desired position relative to either itself or an object in the world. 

The Grasper manipulates objects in the robotʼs world. It knows the capabilities of the 

robotʼs body and manipulators in order to generate actions that will satisfy the userʼs 

requests. It can issue MapBuilder requests to get more information about obstacles in 

the world and the object being manipulated. Grasper requests specify whether to grasp, 

release, or move some object to some location. 

1.2 Dual-Coding Vision 

Tekkotsu utilizes a powerful dual-coding vision system [6] to allow for extracting 

features from images and expressing them in several coordinate systems. The system 

exposes both iconic and symbolic representations for each known shape. The iconic 

representations are called “sketches,” and the symbolic representations are called 

“shapes.” This allows for different operations on each of the representations, and easy 

conversions between them. For example, a line can be recognized from a camera 

image sketch and translated into an algebraic line shape. The algebraic representation 

can be altered—rotated by 90 degrees for example—and a new sketch can be rendered 

from the altered shape. These operations take place in one of three coordinate spaces: 
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Camera space, where the sketches are camera images and the shapes are in pixel 

coordinates; local space, where sketches have pixels of 1 mm2 area and shapesʼ 

coordinates are egocentric to the robot; or World space, which is similar to local space 

except that all pixels and coordinates are relative to a fixed point in the world rather than 

to the robot. The system also allows projections between each of the coordinate spaces 

through kinematic knowledge of the robot. The MapBuilder is the main entry point for a 

user to request the system to take an image, parse out shapes from sketches, and 

return those shapes in the appropriate coordinate space. 

The dual-coding vision system uses color segmentation to categorize pixels of 

similar colors into a small number of color classes. Tekkotsu provides training tools to 

categorize colors from provided training images. Color segmentation is a powerful tool 

for removing computer vision issues that arise from solid colored objects having 

different shades of the same color throughout an image. However, color segmentation is 

sensitive to changes in the environment between the training images and the real 

images the robot perceives. For example, if the lighting in the room changes enough, a 

new set of training images may be necessary to correctly segment the camera image. 

Notice how each of the yellow and blue pieces is entirely classified as yellow and blue 

respectively in the color segmented picture in Figure 2. The green of the chessboard is 

almost entirely properly segmented. Also notice how specular reflections from a light 

near the lower left of the chessboard, underneath the queen, cause some pixels to not 

be classified as green. 
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Figure 1 - Raw RGB image of the chessboard  Figure 2 - Color segmented image 

All vision algorithms and techniques used must be robust to a certain amount of 

noise in color segmentation. Different solid colors for the chess pieces and chessboard 

were chosen specifically for allowing color segmentation to effectively differentiate 

between pieces of the two players and the board itself. 

1.3 Planar World Assumption 

The majority of Tekkotsuʼs Crew and dual-coding system were written with the 

assumption that the objects in its world were 2D in the same plane that supported the 

robot. This worked for the majority of the tasks that Tekkotsu users set out to do 

because the cameras of the robots were high enough and the objects were flat enough 

that the elongation of tall objects was minimal. For example, users in robot education 

labs using Tekkotsu completed projects that parse out information from colored tape on 

the ground, such as tic-tac-toe parsing, and that use plastic Easter-egg shell halves, 

perceived as movable colored blobs for game pieces. However, the planar world 

assumption is not satisfied when playing chess on a real chessboard due to the heights 

of chess pieces. Without the planar world assumption, some members of the Crew did 
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not act as required. The Lookout was able to function because points the camera but 

doesnʼt interpret the images, but the MapBuilder, in conjunction with the dual-coding 

vision system, could not properly determine the state of the world when objects have 

had substantial height. The occlusions that the chess pieces cast on objects behind 

them rendered the shape parsing useless to detecting individual chess pieces. The Pilot 

was able to continue without the planar world assumption because movement around a 

chessboard can still be decomposed into a 2D problem, so the Pilot did not need 3D 

information to succeed. Lastly, the Grasper had no concept of going over an object, only 

around it. Trying to go around all obstacles would create far too many constraints to 

easily play chess, so the Grasperʼs 2D manipulation planning was not applicable. All of 

these issues are addressed in my work. 

2. The Chiara 

The Chiara [5] is a hexapod robot developed at Carnegie Mellon Universityʼs 

Tekkotsu Lab. It has a camera on a pan/tilt mount, six legs for holonomic motion, and a 

planar three-link arm on the front. Two versions of the Chiara were used in my work. 

The gamma series Chiaraʼs (Figure 3) hardware consists of the following: 24 Dynamixel 

AX-12+ servos; a Pico-ITX x86 computer with a 1GHz processor, 1GB of RAM, and an 

80GB hard drive; a Logitech QuickCam-Pro 9000 webcam; a Dynamixel AX-S1 IR 

rangefinder; an 802.11 networking dongle; and a speaker. The delta series Chiaraʼs 

(Figure 4) hardware is similar to the gamma series' except for the following: a different 

body design; 12 Dynamixel AX-12+ and 12 Dynamiel RX-28 servos; an Advantech 

PCM-9361 single board computer with an Intel 1.6GHz Atom processor, 1GB of RAM, 
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and 250GB hard drive; and a USB-powered speaker. The RX-28 servos, placed in the 

knee and elevator leg joints, provide higher torque than the AX-12+ʼs and have metal 

gears instead of plastic gears. Both robots run Ubuntu Linux with the Tekkotsu robotic 

framework installed. 

   

Figure 3 - Gamma series Chiara with first Gripper   Figure 4 - Delta series Chiara with second gripper 

The legged robot allows for greater precision and mobility in locomotion than 

wheeled robots and an additional degree of freedom vertically for the robot to “stand 

up.” Standing up straightens the legs of the robot to raise its body over 12 centimeters, 

allowing the arm to reach over objects of significant height and grasp them from above. 

This changes the plane in which the planar three-link arm operates.  
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Figure 5 - The robot sitting next to the board	
   	
   Figure 6 - The robot standing above the board 

Combining altering the plane of the arm and planning arm trajectories through the 

chosen plane opens up possibilities for 3D manipulation. By reaching over the pieces on 

the chessboard, the Chiara is able to grasp pieces that would otherwise over-constrain 

the arm. 

The delta series Chiara was designed with chess playing in mind. The stresses of 

frequently standing up to perform manipulations led to upgrading the two most stressed 

servos per leg to stronger and more reliable servos. Furthermore, since the Chiara did 

not yet have a standard gripper, a custom gripper was designed for picking up 

tournament-style chess pieces. 
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II. Problems 

To autonomously play chess on a real chessboard, three separate problems must be 

solved. First, the robot must visually detect what move the opposing player previously 

made. This involves detecting changes in square occupancy and appropriately updating 

internal representations of the game state. Second, the robot must select a legal chess 

move to perform. Ideally this selection would be intelligent enough to play a competitive 

game of chess. Lastly, the robot must reliably execute the selected move on the 

chessboard and leave the board in a state for the opposing player to make a move. This 

involves planning efficient movement and manipulation trajectories to complete the 

desired move, including captures, without disturbing the remaining pieces on the board. 

1. Determining Opponentʼs Move 

Determining the opponentʼs move is achieved through visual perception of the 

chessboard. By combining features extracted from multiple camera images of the board, 

changes in square occupancy are detected. These occupancy changes are then used to 

update the internal representations of the game state for later use. 

In order to take multiple camera images and accurately move relative to the 

chessboard, the robot must know where it is relative to the board. With the assumption 

that the robot is positioned somewhere on its side of the board, a custom localization 

technique is used to precisely determine the robotʼs position and orientation in the world 

frame. From this, the robot can look at different parts of the board. However, given 

manufacturing inconsistencies in the robotʼs body and camera, the actual position and 

orientation of the camera deviate far enough from the expected position that camera 
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projections become a large source of error. With inaccurate projections, the localization 

incorrectly calculates the position and orientation of the robot. Therefore, a camera 

alignment technique was implemented via a homography correction matrix. 

Due to chess pieces breaking the dual-coding vision systemʼs heavy reliance on a 

planar world, new techniques for detecting the features of the chessboard were 

necessary. Not being able to directly differentiate piece shapes focused attention on 

detecting square occupancy, which would allow inference of piece identity by tracking 

occupancy changes. First, the chess pieces themselves needed to be extracted. Since 

chess pieces can be thought of as tall and slender cylinders, I created methods for 

extracting where the bottoms of cylinders lay in camera space sketches. This method 

was susceptible to pieces occluding other pieces, so I explored strategies for taking 

multiple images from different angles to overcome these occlusions. Second, the board 

squares themselves needed to be extracted in order to determine the relationships 

between the detected pieces. No assumptions could be made for how much of the 

board was in view in each camera image, how many lines should be extracted, and at 

what orientation the board would lie, so the techniques needed to be robust to all of 

these. 

Once square occupancy was determined, the information gained needed to be 

compared against the previous state of the board in order to figure out what changes 

occurred. Noisy information due to occlusion frequently required information from 

multiple camera images to be combined to confidently construe the opponentʼs move. 

To reduce the number of occlusions, a larger, non-standard chessboard was used with 



	
   15	
  

2.75” squares rather than 2.25” squares. As soon as enough criteria were met from all 

the images, the opponentʼs move was deduced and the internal board state was 

updated accordingly. 

2. Selecting the Robotʼs Move 

The easiest way to achieve competitive chess play was through use of an open 

source chess engine. Since chess engines are heavily researched algorithms, there 

were several to choose from. I selected the GNU Chess [2] chess engine to perform all 

chess logic due to its easy portability. 

3. Executing Moves 

Executing moves was accomplished by interleaving motion and manipulation 

actions. Due to Tekkotsuʼs original Grasper being restricted to a planar world, the 

Grasper, as well as all manipulation actions, needed to be extended to handle moving 

chess pieces in three dimensions. The Chiaraʼs gripper places constraints on how the 

robot is capable of performing manipulations. Therefore, I designed multiple iterations of 

the gripper that utilize a vertical approach to grasp the chess pieces. With this capability 

in place, the Grasper needed to be extended to use this manipulation strategy while 

maintaining its ability to operate only in a plane if necessary. With these in mind, I 

developed primitives to accomplish various manipulation tasks. 

In order to get the Chiara within range of the piece it needed to move, I developed 

motion-planning strategies to get the robot close to the board without entering the 

playable area. By combining information on all pertinent locations used during a 

manipulation action, an optimal positioning of the body was calculated to minimize the 
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number of body movements between manipulations for multi-manipulation chess 

moves, such as captures. Furthermore, an approach behavior was created to prevent 

the robot from entering the playable area to perform a manipulation, and to place the 

legs in a stable position for balanced standing while manipulating. 

Some accuracy issues arose from only using dead reckoning for motion and 

manipulation. The Chiaraʼs locomotion was not precise enough for accurate placement 

of pieces, so a new localization technique different from the initial localization action was 

used. This dramatically increased placement accuracy. Once in place, the chess piecesʼ 

positions were visually detected. The pieces were not guaranteed to be in the center of 

each board square, so the visual detection step made the system robust to off-center 

pieces. 

With both motion and manipulation planning strategies in place, a higher-level 

planner was created to interleave motion and manipulation actions to complete the 

requested chess move. Captures required much more advanced interleaving since at 

least three different manipulations needed to happen: moving the captured piece to an 

unoccupied square, placing the capturing piece into the appropriate square, and picking 

the captured piece back up for removal from the board. Furthermore, the higher-level 

planner introduced fallback conditions for whenever a manipulation action was unable to 

succeed. After executing the series of planned actions, the requested chess move was 

successfully accomplished. 
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III. Solutions 

1. Determining Opponentʼs Move 

1.1 Initial Localization 

The initial localization was solved in a three step process. Upon initialization, the 

robot first built a map of the world in local space, egocentric coordinates, of all green, 

yellow, and blue objects to the robotʼs right, front, and left. This task was a common 

application of the MapBuilder. Given this map of the world, the average position of all 

the green, yellow, and blue objects was the most likely candidate for the location of the 

chessboard. This strategy could fail if there were many other green, yellow, and blue 

objects in close proximity to the robot, but this was not a concern. From this map, the 

robot now had a general idea of the direction in which the chessboard lay relative to 

itself. 

The next step attempted to center the camera on the lower left corner of the 

chessboard. The robot can exploit the assumption that the lower left corner of the 

chessboard is a green corner because chess regulations dictate that the lower left 

corner is colored. After centering the camera frame on the center of the approximate 

chessboard location, the robot performed an iterative technique of looking at large green 

collections and shifting its gaze until the majority of green things in the camera frame lay 

in the right half or top half, depending on whether the center of the approximate 

chessboard was to the left or right of the robot respectively. This should place the lower 

left corner of the chessboard within the camera frame. 
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 The third step was to extract the location of the lower left corner for positioning and 

the bottom border of the board for orientation. The corner was extracted by finding the 

leftmost or bottommost green pixel in the camera frame depending on whether the robot 

was looking left or right respectively. The bottom line was extracted by fitting lines of 

increasing orientation through the extracted corner pixel until a suitable line was found. 

Projecting the point and line from the camera frame to local space coordinates gave a 

precise measurement of the robotʼs position and orientation relative to the board. Figure 

7 shows a sample extraction of the corner and line in the camera frame. The green 

pixels are of the chessboard, the blue dot represents the location of the extracted corner 

pixel, and the pink line represents the extracted bottom line. 

 

Figure 7 - Parsing the lower left corner (blue dot) and bottom line (pink) for localization when looking left 

1.2 Camera Alignment 

It became apparent that the positioning of the robot relative to the board was off by a 

systematic error depending on where the corner pixel lay in the camera frame. This 



	
   19	
  

error was attributed to inaccurate projections from the camera frame into the world. To 

correct for this, I implemented an alignment technique that applies a correctional 

homography matrix to all camera projections after calibration. Since camera 

misalignment results in translations and rotations of the projections without any warping, 

a homography matrix that maps straight lines from one coordinate space to straight 

lines in a different coordinate space corrects for these errors [9]. The code for 

computing the homography matrix was ported from the AprilTags vision system [1]. The 

implementation gathered correspondences for mapping points in one frame to points in 

another frame and calculated the matrix that minimized the overall error in transforming 

each correspondence point to its correct position. 

To gather these correspondences from the camera of the robot, a custom alignment 

rig was created. The rig screwed into the bottom of the Chiara to minimize any shifting 

and to fix a common point between the robot and the rig. The rig placed two colored 

diamond shapes directly in front of the robot on the ground plane, one to the right and 

one to the left.  

	
  

Figure 8 - Alignment rig connected to the Chiara 
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The robot would look directly in between the two diamonds and extract all four 

corners from both diamonds. Given the known location of the alignment rig and the 

diamonds relative to the robot, the expected location of each of the corners of the 

diamonds in the camera frame was computed. The pairs of expected location corners 

and extracted corners supplied eight correspondences to be used in calculating the 

homography. For example, the correspondence between the right corner of the right 

diamond extracted from the camera frame and its expected location computed from 

kinematic projections is one factor to weigh into the homography calculation. 

Applying the homography to camera projections reduced the projection error to a 

tolerable level. Viewing the adjustments in the camera frame showed obvious errors in 

the camera alignment. In Figure 9, the yellow blobs represent the perceived diamonds 

from the camera rig, the green dots represent the expected location of each 

corresponding corner, and the blue lines show the error in the correspondence between 

the expected and extracted corners. Notice how all the green points lie below their 

extracted corresponding corners. 

 

Figure 9 - A visual representation of the correspondences for camera alignment 
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Applying the homography to all projections gave more accurate projections for 

features extracted from camera images. Projecting the locations of chess pieces, points 

on the chessboard, and lines from local space into the camera frame, all fell within 

tolerable error levels. The code can easily be adapted to perform alignment of other 

cameras on other robot platforms running Tekkotsu, given appropriate alignment rigs. 

1.3 Detecting Square Occupancy 

Detecting square occupancy from a camera image was done in two stages. First, the 

locations of the chess pieces were extracted through a series of dual-coding sketch 

operations. This approximately identified the bottom of each chess piece in an image. 

Second, the board squares were extracted through a custom vision algorithm based on 

a Hough transform. From these two pieces of information, the state of each board 

square could be determined. 

1.3.1 Detecting chess pieces 

The inspiration for detecting chess pieces was taken from previous work in Tekkotsu 

used to detect the location of Easter-egg halves. When looking for a particular colored 

Easter-egg half, the most reliable way to extract an exact position is based off the set of 

pixels in the camera frame that are the target eggʼs color and whose southern neighbor 

pixel is not the targetʼs color. These sets of pixels are called the under-pixels. Applying 

this technique of finding under-pixels to chess pieces also worked well but resulted in a 

noisy pixel set due to ornamental features in the chess pieces. 
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Figure 10 - The under-pixels forming "smiles" Figure 11 - Under-pixels overlaid on the original image 

The pixel set from the pieces formed “smile” shapes around each chess piece in the 

camera frame. Classifying only the mouths of the smiles as pieces required filtering out 

the noise from the ornamental features. Through a series of dual-coding visual 

operations, the pixels were bloated into larger connected components. Filtering out the 

components with too small an area left only the components derived from smiles. 

Taking the centers of these remaining components gave usable approximate locations 

of each piece in the camera frame. 

 
 

Figure 12 - Extracted approximate chess piece locations for yellow and blue pieces 
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This technique rarely yielded any false positives in images, but was susceptible to 

not extracting every piece in the frame due to occlusions from other pieces or only 

partial piece views. Notice how, in Figure 12, the bishop and pawn along the bottom are 

not identified. Without reliably seeing the bottom of either piece, the under-pixels do not 

appear in the camera frame. Also notice how the knight and rook in the upper-right of 

the image are not identified. The occlusion of those pieces by the pawns in front 

prevents the appropriate under-pixels from being detected, as can be seen in Figure 10. 

The lack of a pronounced smile causes the associated connected components to be 

filtered out. If the same board were viewed from a different angle, though, the missed 

pieces from this image might be visible and could be extracted successfully. When not 

enough information was extracted from a picture, more pictures from different vantage 

points were collected. 

To employ multiple images from different viewing angles and locations, I developed 

a strategy for shifting the robot and combining information from multiple images. If 

another image was needed, the robot would sway horizontally and shift the camera 

gaze in the opposite direction. Shifting in this manner maximized the difference in 

parallax between chess pieces in an attempt to obtain an unobstructed view of occluded 

pieces. For example, the robot would sway its body to the left, shifting the camera 

position leftward, and then pan right to look at the right side of the board. If that did not 

provide enough new information, the robot would then sway its body to the right and 

look at the left side of the board. If this still failed to provide enough information, the 

robot would walk, shifting its body location by 100 mm to a new vantage point. This 
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strategy proved robust at capturing images from different positions and directions to 

extract enough information to overcome occlusions. 

1.3.2 Extracting board squares 

Board squares were extracted from the green pixels in the camera frame. To 

determine which square each chess piece was contained within, each squareʼs pixel 

area in the camera image needed to be extracted. This resulted in parsing out the lines 

between squares on the board. Taking all green pixels from the camera frame and using 

a series of dual-coding visual operations yielded a sketch of the green pixel edges. 

   

Figure 13 - All green pixels in the camera frame  Figure 14 - The green edge lines 

These green edge pixels provided a suitable input to a Hough transform to extract 

the lines. However, a Hough transform by itself was not sufficient to robustly parse out 

the lines of the board. Since the expected number of lines the transform should perceive 

depended on how much of the board was in the camera frame, there was no easy rule 

for what confidence threshold to set on determining which lines from the transform were 

board lines. Two more issues confounded placing the confidence threshold. Since the 

cameraʼs aspect ratio was not 1:1, horizontal lines were more probable than vertical 

lines, causing the transform to pull out more horizontal than vertical lines. Inversely 
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weighting the probability of each line based on its overall length in the camera frame 

evened out the confidences of vertical, horizontal, and diagonal lines. Furthermore, 

each board line did not project a perfectly linear set of pixels in the camera. This pixel 

aliasing caused the Hough transform to extract multiple probable lines for each board 

line. To combat this, the 40 most probable lines were extracted out of the transform, and 

filters were applied to weed out the duplicate probable lines per board line. 

  

Figure 15 - The 40 most probable lines   Figure 16 - The lines over the green pixels 

As each next most probable line was extracted, its proximity in position and 

orientation to and intersections with previously extracted lines were tested. Filtering the 

lines that intersected previously extracted lines of similar orientation or that were too 

close to previously extracted lines resulted in an adequate base set of board lines. This 

set of lines was then split into two sets of lines, one per board dimension, and then 

sorted in terms of proximity. After sorting, one set contained all vertical lines in order 

from top to bottom and the other contained all horizontal lines in order from left to right. 

Taking the 40 most probable lines succeeded in pulling out possible board lines, but 

it did not guarantee parsing out all possible board lines in the image. Figure 15 clearly 
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shows this with one of the horizontal lines and three edges of the board not being 

parsed. This discrepancy forced a post-processing extrapolation step to look for missed 

lines in between the parsed out lines as well as off the ends of each line set. 

To extract missing lines in between parsed lines, the intersections of each line from 

one dimensionʼs line set with a line from the other dimensionʼs line set formed a set of 

points in the camera frame. Analyzing patterns in the consecutive differences between 

these points allowed for outlier detection. If the difference between two points was large 

enough to be considered an outlier, searching for local maxima in the Hough transform 

for lines of the same orientation through points a fraction of the way between the two 

points creating the outlier found the missing line. Depending on whether the outlier 

difference was on the order of two or three times larger than the average differences, 

the point to start searching in the Hough transform was either a half or a third of the 

outlier distance. To extract missing lines off the ends of each line set, a similar approach 

to finding missed in between lines worked well. Calculating average differences 

between points along one dimensionʼs line setʼs intersection with lines in the other 

dimension gave a basis for where to start searching in the Hough transform off the ends 

of the list. If a local minimum in the transform was probable enough, it would be added 

to that line set. 

After this post-processing step, the two line sets would contain the most probable 

board lines. In Figures 17 and 18, the green pixels are the green edge pixels from the 

camera image and the pink lines are the final extracted board lines. Notice how the 

previously missed horizontal line was extracted as well as the topmost and leftmost 
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board edges. The bottommost line did not meet the threshold for being accepted during 

extrapolation and the rightmost line was already extracted. This was an acceptable 

failure because enough information from the rest of the board was extracted to deduce 

the opponentʼs move. 

  

Figure 17 - Extracted board lines from green pixels      Figure 18 - The lines over the original image 

With the chess pieces and board lines parsed out of the camera image, detecting 

square occupancy was a matter of determining which squares the chess piece centers 

lay within. For each consecutive pair of lines in both line dimensions, if a piece center 

lay in between both pairs of lines, then that corresponding square must be occupied by 

a piece of that color. This results in a parsed color representation of the board.  

   

Figure 19 - The parsed lines and piece centers  Figure 20 - Parsed features over the image 
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1.4 Partial Board Views 

As seen in Figure 12 of the example board state parse, some squares of the 

chessboard were not in the camera frame. If the opposing playerʼs turn changed the 

state of one of the missed board squares, then that change would not be perceived. 

Therefore, multiple pictures of different sections of the board needed to be compiled into 

a single perceived board state. As each new picture was parsed, its information was 

localized against the previously perceived information to find an alignment that 

minimized the total number of errors between the perceptions. If the alignment was 

unambiguous, the two states would be merged into a single board state. For example, if 

the left six columns of the chessboard had already been perceived and a new image 

with seven perceived columns came in, the alignment between the two boards with the 

fewest number of errors between them was chosen, resulting in a combined state 

containing seven or all eight columns. From this, the previously unknown columns would 

be updated with the information from the new image. 

After each merge of perceived information, the perceived state of the board was 

compared against the previously known state of the board. Using the same board 

alignment technique, the alignment with the minimum number of errors was chosen. If 

the minimum alignment was unambiguous, with no two alignments resulting in the same 

number of errors, then that state was accepted as a successful board perception. 

Otherwise, more images of the board would be taken to collect more information until 

alignment was no longer ambiguous. 
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1.5 Deducing the Move 
 

Given an unambiguous alignment between the perceived state of the board and the 

previously known board, analyzing the differences between these two states exposed 

what move the opposing player made. Three types of differences were possible: 

vacated squares that had a piece in the previous board state but no piece in the 

perceived board state, occupied squares that had a piece in the perceived board state 

but not in the previous board state, and taken squares that had a piece of one color in 

the perceived board state but a piece of the other color in the previous board state. If no 

vacated squares existed, no squares were occupied or taken, or more than one square 

was occupied or taken, then the perceived board was rejected. Each of these conditions 

implied an action that could not have been a legal chess move, so the perceived parsing 

of the board was assumed to have failed. Castling, where two squares are vacated, was 

the only exception to these rules and was handled as a special case. 

The requirement that there be no more than one vacated square would have led to 

rejecting too many parses because occlusions and partial or missing piece views in the 

camera frame created many vacated spaces where pieces should have been. Many 

images of the board would be necessary to guarantee a perfect board parse, so to 

reduce the number of pictures taken, this requirement was relaxed and some extra 

processing was done on the vacated squares.  

Given only one occupied or taken square, moving each vacated squareʼs piece to 

the occupied or taken square was tested as a legal chess move. If only one of the 

vacated squareʼs pieces moving to the occupied or taken square was a valid chess 
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move, then that move was confidently accepted and the internal board state was 

updated accordingly. For example, if the opponentʼs opening move was moving a pawn 

forward, the perceived board state would see the pawnʼs new location as occupied, the 

pawnʼs old location as vacated, and a handful of pieces on the opponentʼs back row of 

the board as vacated due to occlusions. However, only the pawnʼs old location to the 

new location was a valid chess move since no other chess piece could have legally 

moved to that square. Thus, the internal board state would be updated with the pawnʼs 

new location. If more than one vacated squaresʼ piece could have legally moved into the 

occupied or taken square, the move was considered ambiguous and more images of 

the board were necessary. Combining these rules for inferring the opponentʼs move with 

the ability to take multiple images of the chess board to gain more information, these 

vision techniques accurately and robustly perceived the state of the chessboard after an 

opponentʼs move.  

2. Selecting the Robotʼs Move 

To perform all chess logic, I used the GNU Chess [2] chess engine. The engine was 

FOSS (Free Open Source Software), which allowed for easy integration into Tekkotsu. 

Some alterations were necessary to interact with the chess engine given the 

perceptionʼs internal representation of the board state. The engine allowed for testing 

move legality given the current board state, calculating a competitive next move along 

with specifying chess states such as capturing and being in check, undoing a previous 

move, and updating game states after perceiving a move. These features were used as 

a black box to perform all chess game logic on the robot. 
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3. Executing the Move 

3.1 Grasper Primitives 

The Grasper was originally written for use on planar robot arms. This was sufficient 

when the Chiaraʼs planar three-link arm was positioned on the ground plane, but was 

insufficient for handling all the constraints for moving chess pieces. Therefore, the 

Grasper was rewritten to handle both 2D planar tasks as well as certain 3D 

manipulation techniques to play chess. The four primary action requests for the Grasper 

are picking up an object (grasp), placing an object (release), moving an object 

(moveTo), and withdrawing after manipulation (rest). Each of these actions was 

decomposed into planning and various execution stages with all required information 

coming through Grasper requests. 

Depending on what kind of gripper the robot had, different grasping techniques were 

needed. A planar three-link arm with a fixed end-effector required a different technique 

than the Chiaraʼs 3D manipulator. Moving an object with a planar three-link arm was 

decomposed into planning three arm trajectories: one to go from the armʼs current state 

to having the object within its grasp, one to move the object from its current position to 

the desired location, and one to back the arm away from the object and return to a rest 

state. Using an RRT path-planner [3], these arm trajectories avoided projected 

obstacles in the environment, avoided colliding with the robotʼs body, and maintained 

any contact constraints imposed by the chosen gripper. This strategy was extended to 

3D manipulation by adjusting the height of the armʼs working plane and adjusting the 

obstacles in the environment before executing any of the planned paths. Given a set of 
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3D obstacles in the environment, a target object to move, and a target location to place 

the object, I extended the Grasper to adjust its standing height between arm motions to 

avoid collisions with the environment. 

To grasp an object using the 3D manipulation technique for the Chiara, the Grasper 

first planned two arm trajectories, moving the gripper above the object and moving the 

gripper from that position to a resting state. If both trajectories were possible, the 

Grasper then commanded the robot to stand up to a level above all environment 

obstacles, if possible, and execute the first arm trajectory to place the gripper over the 

target object. Once the gripper was in position, it then ran the appropriate action for 

grasping the object; pitching the gripper down, lowering the armʼs working plane to 

enclose the object, closing the gripper, standing back up to the previous height, and 

pitching the gripper back up. Lastly, the second arm trajectory was executed to place 

the arm in a resting state, and the default standing level was restored. This successfully 

grasped the object and left it contained in the gripper. The other primary Grasper 

actions were slightly different versions of the grasping technique described. Releasing 

an object only differed in moving the arm above the target location from the Grasper 

request and opening the gripper rather than closing. Moving an object tied grasping and 

releasing actions together without resting and incorporated the third arm trajectory for 

moving the gripper from above the pick-up location to above the target location. Resting 

took the robot from its current state to the rest state. 

For each of these tasks, all workspace trajectories were planned before any motion 

was initiated. If any step of the planning failed, no motion would occur and appropriate 
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error conditions would be returned to the user. This prevented executing only a portion 

of a task and allowed the programmer to attempt alternative strategies. For example, if 

an application requested to move an object to a new location that was out of the armʼs 

reach, the Grasperʼs planning stage would recognize this and would return an error 

code indicating that the target location was out of range. Catching errors in planning 

before execution also prevented expensive path planning operations from occurring 

while the robot was in a stressed position, since spending excess time in strenuous 

positions decreased the hardwareʼs lifespan. 

The Grasper request provides many parameters to allow users to control the 

planning and execution of manipulation tasks. The request contained fields that a user 

could populate for which shape to pick up, where to drop off the shape, and whether to 

settle both the arm and body on rest or just the arm. Other fields included all appropriate 

parameters for adjusting RRT planning, whether to perform 3D or 2D manipulation, what 

angles the gripper should be at when manipulating, and what objects should be treated 

as obstacles in the environment. Given default values for these fields, a user only 

needed to set the manipulation action to take, the shape to be moved, and the target 

location. At that point, the Grasper would execute that action, if possible.  

3.2 The Gripper 

The chess pieces were tournament-style chess pieces. They were of Staunton 

design with the king between 85mm and 105mm tall, the kingʼs diameter between 40% 

and 50% of its height, and all other pieces with similar proportions [8]. To grasp these 

chess pieces, a new gripper for the Chiara was required. With a strategy for vertical 
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approach of the pieces, the gripper needed to have a wrist capable of pitching up and 

down. It also had to be wide enough to surround the piece on approach without 

disturbing it and be able to close on the piece to enforce compliant envelopment. The 

first design was made from three Futaba high precision servos that created a wrist with 

pitch and roll and a gripper in a palm and thumb formation. In order to grasp pieces of 

different forms, foam was attached to the effector end of the palm while the thumb 

consisted of a concave arc. The closing motion would swing the arc of the thumb into 

the foam of the palm, gripping the piece between them. 

 

Figure 21 - First gripper with a palm + thumb design 

This gripper proved valuable when prototyping the Grasper functionality. However, it 

had two noticeable flaws. First, the amount of space allowed between the foam of the 

palm and the arc of the thumb was too small for the level of accuracy required when 

placing the arm above a chess piece. This led to small errors in perceived piece location 

causing the gripper to knock over the chess piece when pitching down the wrist, or not 

obtaining a strong enough grip on pieces due to the thumbʼs closing trajectory. Second, 

the amount of room between the end of the gripper and the end of the gripper servo was 

too small to obtain a solid grip on larger chess pieces, such as kings and queens, even 
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if the gripper was perfectly accurate when pitching down. Unfortunately, the length of 

the gripper could not be increased without being too long to remain above the table 

when pitching down, even with the robot in its tallest stance. These lessons imparted 

valuable information for the second gripper design. 

To increase the amount of space between the grasping surfaces, a two-fingered 

gripper was chosen for the second gripper. A two-fingered gripper allowed for the 

gripping surfaces to cover a larger area when closing around a piece to make up for 

inaccuracies in arm placement. To increase the amount of room between the end of the 

gripper and the gripper servos, the wrist-roll degree of freedom was removed and the 

gripper servosʼ rotational axes were placed above the working plane of the arm. The 

fingers were based on the first designʼs thumb, but fitted with foam. 

 

Figure 22 - New two-fingered gripper 

This gripper robustly compensated for moderate inaccuracies when picking up 

pieces and was capable of obtaining strong holds on every piece type by grasping the 
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pieces close to their bases. It consisted of one AX-12+ for wrist pitch and two Futaba 

servos for finger open/close. The foam on the two fingers was trimmed to minimize the 

required width of the fingers when approaching a piece.  
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To minimize the chances of knocking over pieces on the board, calls made to the 

Grasper requested the gripper to be placed at a 45-degree angle to the chessboard. If a 

target location was surrounded by pieces, coming in at a 45-degree angle utilized the 

most open space to pick up or drop off a piece. If no arm configuration could reach the 

target location with a 45-degree angle, then angles deviating from 45-degrees were 

considered. In the worst case, 0 or 90 degree angles were accepted, but only after all 

other attempted angles failed. 

3.3 Moving Around the Board 

In order to overcome the Chiaraʼs limited arm reach, the robot needed to move 

around the board to get the arm into positions where it could successfully grasp or 

release pieces. To minimize the total amount of time the robot took to complete moves, 
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the planner attempted to find optimal positions for the robot to manipulate as many 

objects as possible before needing to reposition. The technique for finding these 

locations used sketches in the dual-coding vision systemʼs world space. The annulus 

formed around a target location from all locations larger than the armʼs minimum 

reaching distance and smaller than the armʼs maximum reaching distance specified the 

set of locations that the robot could be in and still reach the target location. Taking the 

intersection of all annuli from each target location and removing all positions too close to 

the chessboard yielded collections of areas in world space from which the robot could 

reach all target locations. Figure 25 shows the piece location as a green dot and its 

annulus of reach-ability. The robot could be at any location within that annulus and 

some configuration could place the arm over the piece. Some of these locations placed 

the robot in collision with the chessboard. Figure 26 shows the set of these locations as 

a blue square. Figure 27 introduces the destination location (red dot) and its annulus of 

reach-ability (red ring). Taking the intersection of the two annuli and removing anything 

in the blue square yielded all viable locations to reach both the piece and its destination 

in tan, as seen in Figure 28. 
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Figure 25 - Annulus of piece reach-ability	
   	
  	
  	
   Figure 26 - Invalid locations over annulus of reach-ability 

	
   	
  

Figure 27 - Intersection of piece and destination	
   Figure 28 - The remaining viable positions (tan) 

However, some chess moves required moving pieces to positions that were well out 

of range of their original positions. If the intersection of the annuli resulted in no viable 

positions, then the motion planner split the multiple manipulation actions into single 

actions. This split will be discussed in the section on interleaving the Pilot and the 

Grasper. 

Once the robotʼs desired location was planned, a Pilot request was made to move 

the robot to that location. Given imperfections in the robotʼs locomotion and outside 

factors such as slipping on the table, the robot did not end up precisely where 
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requested. To compensate for these errors, the robot re-localized after every motion 

through a different localization technique. Since all calculated robot locations were close 

to and facing an edge of the board, the robot could look directly in front of itself and 

parse information from its view of the board. The robot based its location from parsing 

out the lines of the board using the same techniques as when extracting board squares.  

From the collections of lines, the robot took the intersection of the lowest horizontal 

line and the vertical line closest to the middle of the camera frame to compute a 

reference point on the board. Care was taken to ensure that the lowest horizontal line 

was the board edge and not a line in the middle of the board. Given this intersection 

point in the camera frame, the board squares immediately to the left and right of this 

point were sampled to see which was green and which was not. This narrowed down 

which vertical board line the robot was looking at when projecting that point from 

camera space to world space.  

Given the approximate location of the robot, a reference point in world space, and 

whether the square to the left of that point was green, the reference point could be at 

one of only four places on the board. Assuming that the robotʼs error for movement was 

not off by more than the width of a board square, taking the board location candidate 

closest to the robotʼs intended position determined the robotʼs actual location. 

Furthermore, the robotʼs orientation could be determined from the extracted horizontal 

line. If localization determined that the robot was too far off from its intended location, it 

would make another Pilot request to adjust for this error and get the robot to the correct 

spot. In Figure 29, the green areas are the extracted green image pixels, the pink lines 
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are the extracted horizontal and vertical lines to use, and the large pink dot at the linesʼ 

intersection is the extracted reference point. The algorithm would determine that the left 

square is green, and localize off of the projection of the pink dot into world space for the 

nearest border point whose left square is green. 

	
  

Figure 29 - Localization from extracted board lines (pink) 

3.4 Approaching the Board 

Unfortunately, the Chiaraʼs six-legged walk did not take world obstacles into account. 

With a target location close to the board, the walk engine might place one of the front 

legs into the board area while walking. As this would disrupt the board state, an 

approach behavior was implemented. To get the Chiara into a position close to the 

board without affecting the board state, custom locomotion was done by shifting the 

walk engineʼs center location, rocking the body forward. The robot then would lift its legs 

off the ground to rest on its belly, shift its legs forward, place its legs back down to stand 

up, and then rock the body forward while keeping the leg placements stationary. This 
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successfully placed the robot at locations close to the chessboard without disturbing any 

pieces. This behavior also ensured that the legs would be in a stable configuration for 

standing up during manipulations. Without a stable configuration, the robot could lose its 

balance and fall onto the board. 

3.5 Detecting Off-center Pieces 
 

Since chess pieces were not guaranteed to be in the center of each board square, 

each piece needed to be visually located before attempting to manipulate it. To get an 

accurate measurement, the robot would look directly at the square the target piece was 

in. This placed the piece near the center of the camera frame. Detecting the pieceʼs 

approximate location was done with the same smile detection heuristic used when 

determining the opponentʼs move. The centers of each perceived chess piece were then 

projected into local coordinates. The piece whose perceived location was closest to the 

estimated location of the target piece was taken as the appropriate piece to manipulate. 

To get the precise location of the center of this piece, the bottom edge of the piece was 

determined from the under-pixel closest to the bottom of the camera frame. The 

extracted point was projected into local space, and an offset of magnitude equal to the 

radius of the chess piece was added in the direction away from the camera. This 

approximated the center of the piece, and its location on the world map was updated. 

The visual detection of off-center pieces proved to robustly aided manipulation actions 

in picking up pieces, correcting previous perceptual errors. 

3.6 Manipulation Planner: Interleaving the Pilot with the Grasper 
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With techniques for motion and manipulation planning in place, a higher-level 

planner was needed to decompose chess moves from the chess engine into a series of 

Pilot and Grasper requests. If the chosen move was only moving a piece from one 

square to another, then the manipulation was fairly straightforward. If the piece being 

moved and its target position were both reachable from a single location, the robot 

would first be instructed to move to that location. Once in position, the relative locations 

of the piece and its destination position would be calculated and the Grasper would 

perform a moveTo operation. After successful manipulation, the robot was then 

instructed to return to the home position on its side of the board. If the piece and its 

target position were too far away to be reachable from one location, the planner 

decomposed the action into more steps. First the robot would need to get in position to 

pick up the piece, and then perform the grasp action. With the piece held in the gripper, 

the robot would then move into a position where it could reach the target location. Once 

in position, the Grasper would perform a release action, placing the piece in its desired 

location. Lastly, the robot would return to its home position. 

Performing a capture required more manipulation planning than moving a single 

piece. To perform a capture, the planner created actions for moving the captured piece 

out of its square to a nearby unoccupied square, moving the capturing piece onto the 

destination square, and then reacquiring the captured piece to remove it from the board. 

Assuming both pieces were in reach, these three manipulations required keeping track 

of three different board positions. If both pieces were not simultaneously in reach, then 

the capturing piece would be picked up from its current location and dropped off in a 
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separate empty square within reach of the captured piece. From here, the same 

process of moving the captured piece off of its square, moving the capturing piece onto 

the square, and removing the captured piece took place. These techniques effectively 

covered all cases of captures during game play. 

3.6.1 Adjusting on failure 

Once the robot was in position to perform a manipulation, the planning of arm 

trajectories would occasionally fail. If the target piece was too close to one of the 

forward legs, the Grasper would not find a position for the arm that would prevent the 

gripper and the leg from colliding. If the robot did not get close enough to its computed 

position, a target piece might be out of reach. If any of these cases occurred, the failure 

condition was reported to the higher-level planner, and fallback plans were executed 

If the Grasper failed to perform the moveTo operation of picking up and dropping off 

a piece from a single position, then the operation would be decomposed into two 

Grasper actions. The first operation was getting in position and grasping the piece, the 

second was getting into position and releasing the piece. With only one location to worry 

about, the manipulation planner could reliably find a position from which the robot was 

able to reach the target. If the Grasper failed to perform a grasp or release action, then 

the target location was most likely out of reach. If the location was too far away, the 

planner would generate a new target position slightly closer to the target location in 

order to compensate for robot misplacement. Similarly, if the location was too close, the 

planner would generate a new target position slightly farther from the target location. 

However, if the target location was within range and the Grasper was unable to succeed 
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due to an over-constrained environment, the planner would slightly perturb its current 

target location. This did not guarantee a problem fix, but a target location that was within 

range and computed from the motion planner should have succeeded. Slightly adjusting 

the position gave the Grasper another chance to perform its action with slightly different 

data. 

 
IV. Results 

1. AAAI Competition 

The robot successfully competed in the AAAI-2010 Small-Scale Manipulation 

Challenge. It was able to make legal, competitive chess moves through ten moves on 

each side with minimal human assistance. Unfortunately, due to time constraints, 

certain shortcuts were needed. Since the Chiara can only reach over four rows of the 

chessboard, the motion planning generated positions for the robot to walk around the 

sides of the board in order to reach the other half. Due to inaccuracies in the robotʼs 

walking performance and time constraints for debugging, walking around the board 

needed to be curtailed. This meant that no move that required manipulation on the half 

of the board furthest from the robotʼs playing side could be executed. Curtailing 

movements was accomplished by overriding the chess engine when it decided to make 

such a move. When that happened, the chess engine was commanded to undo the 

move it had decided upon, and a pawn on the robotʼs playing side was chosen to move 

up a single square. The chess engineʼs internal representation was updated accordingly 

and the action was executed. For the scope of the Manipulation Challenge, this style of 
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move was not considered a blunder, as further moves in the game would lead the chess 

engine to decide on other intelligent moves. 

Some failures did occur, though. After a leg servo overheated and shut off, it became 

apparent that the system was not tolerant to hardware failures. This failure resulted in 

poor walking accuracy and unstable leg positioning for standing. The program needed 

to be restarted, and then updated with the current board state, to overcome this issue. 

The robot was able to reliably pick up every chess piece except for knights. The 

knight pieces are unique in that they are not concentrically symmetric due to the horseʼs 

head. On occasion, the robot would attempt to pick up the knight along the sides of the 

head where the grasping surface is thin and flat. The foam of the gripper would enforce 

a friction grip for some time, but the piece would eventually slip out of the grasp. If the 

robot took a different approach angle to the knights, it would perform the manipulations 

with ease. 

Despite these shortcuts and isolated failures, the robot was able to complete more 

than 90% of its attempted manipulations and chess moves. It was a competitive player 

in the challenge despite having certain handicaps in comparison to its robotic 

opponents, some of which had overhead cameras, which eliminated the occlusion 

problem, and some of where were large, fixed arms with no mobility. The vision system 

never misperceived an opponentʼs move and was able to overcome all occlusion issues. 

The chess engine made competitive opening moves and chose multiple opportune 

captures. The manipulation system rarely missed picking up a piece when all hardware 
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was working properly, and it was able to reliably place pieces within an inch of their 

desired location. 

2. Grasper Use on Chiara As Well As HandEye in Simulation 

The rewritten Grasper successfully executed both 3D and 2D manipulations. It lent 

itself to easily specifying 3D manipulations of chess pieces. Furthermore, the same 

code running on a planar three-link arm system called the HandEye was able to perform 

2D manipulations of playing tic-tac-toe in simulation [10]. This shows that the Grasper 

was written at an appropriate abstraction level to handle either dimensional case. 

 

V. Conclusions 

The Grasper extensions learned through this project could easily be applied to other 

games, such as checkers, go, or backgammon. Playing chess introduced occlusions 

and had a crowded board that the other games do not have, forcing the Grasper to 

solve harder problems. With the work of this project, implementing a system to play any 

of these other games would be much easier. 

The new servos on the delta series Chiara cannot be justified until determining their 

life expectancy. For four times the cost of the cheaper AX-12+ servos, the RX-28 servos 

need to prove that their lifespan and reliability merit the investment. That being said, it is 

clear that the motions provided by the RX-28 servos are smoother and appear stronger 

than motions provided by the AX-12+ servos. Continual use of the delta series Chiara 

should validate the RX-28 servoʼs cost. 
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Writing a new line extractor was necessary in order to reliably extract the kinds of 

lines seen on the chessboard. The other line extractors in Tekkotsu did not reliably 

extract lines of single pixel-width. Furthermore, many assumptions were exploited from 

the previous knowledge that the perceived lines would form a uniform grid. Even though 

the new line extractor was developed for a particular feature set, it could be used in 

work toward a general method of extracting regular structures. 

Since three-dimensional manipulation was completed with a vertical approach to 

pieces, arm path planning was reduced to a 2D problem. This was necessary because 

Tekkotsuʼs RRT implementation only worked in a 2D world. For true three-dimensional 

manipulation, a full 3D RRT implementation could be used to reach underneath 

archways and around obstacles with different footprints at different heights. 

The higher-level planner for interleaving Pilot and Grasper requests highlights the 

need for a general higher-level planner in Tekkotsu. I wrote my own planner specifically 

for playing chess, but a more general planner could have handled playing chess and 

been extensible to other tasks without requiring a user to write his or her own. The work 

in this project brings Tekkotsu out of the plane, but not into a full-fledged 3D capable 

framework. 

 

VI. Future Work 

There are many opportunities for further work with this project. Currently, the 

Grasper can only handle one technique for 3D manipulation using a single gripper. A 

more sophisticated manipulation algorithm could determine the appropriate grasping 
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technique to complete a task on the fly when given the gripper, hardware capabilities of 

the robot, and object being manipulated.  

To play a full game of chess, the system needs to be able to walk around the sides 

of the board to reach the other half. Given a sufficient amount of time, this could be 

incorporated into the existing codebase. 

Using color segmentation to identify where chess pieces are in camera images 

works well, but being able to identify particular pieces in the image would allow for much 

easier perception of the opposing playerʼs move and for detecting errors. A more 

sophisticated pattern recognition algorithm could be incorporated and allow for easier 

perception. In order to perceive promotions correctly, some form of piece detection 

would be necessary. As the system stands now, it has no way of knowing whether an 

opposing pawn would promote to a queen, knight, or bishop. Visually identifying the 

piece would be necessary to determine which promotion occurred. 

Being able to play chess opens up possibilities for having the robot play other board 

games. Checkers, Connect Four, and backgammon could each be played using 

techniques explored in this project. 

 

VII. Acknowledgments 

I would like to thank Professor Dave Touretzky for advising me throughout this 

project and spearheading the new gripper and robot design; Ethan Tira-Thompson for 

his help with using and fixing Tekkotsu; Glenn Nickens for his work on the 2D version of 

the Grasper; and the design team of Wayne Chung, Nathanial Paffett-Lugassy, and 



	
   49	
  

Federico Rios for creating the delta series Chiara. This work was supported in part by 

National Science Foundation award DUE-0717705 to David S. Touretzky. 

 

 

 

 
References 
 
[1] E. Olson, “AprilTags,” http://april.eecs.umich.edu/, accessed May 2010 
 
[2] “GNU Chess,” GNU Operating System, http://www.gnu.org/software/chess/, 

accessed April 2010 
 
[3] J. Kuffner and S. LaValle, RRT-Connect: An Efficient Approach to Single-Query 

Path Planning. 2000 
 
[4]  “Tekkotsu,” Tekkotsu Lab, http://www.tekkotsu.org, accessed May 2010 
 
[5] D. S. Touretzky, “Chiara Robot,” http://chiara-robot.org/, accessed May 2010 
 
[6] D. S. Touretzky, N. S. Halelamien, E. J. Tira-Thompson, J. J. Wales, and K. Usui, 

Dual-coding representations for robot vision programming in Tekkotsu, Auton 
Robot (2007) 22:425-435 

 
[7] D. S. Touretzky, E. J. Tira-Thompson, “The Tekkotsu Crew: Teaching Robot 

Programming at a Higher Level,” AAAI-2010. July 13, 2010. Atlanta, GA 
 
[8] Wikipedia, “Chess Piece,” http://en.wikipedia.org/wiki/Chess_piece, accessed 

July 2010 
 
[9]  Wikipedia, “Homography,” http://en.wikipedia.org/wiki/Homography, accessed 

May 2010 
 
[10] W. Winston and C. Freeman, “Tic-Tac-Toe,” 

http://www.andrew.cmu.edu/user/wwan1/15-494%20website/index.html, 
accessed July 2010 


