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Abstract

In this thesis, we consider the problem of how one should perform com-
putations on private data. We specifically consider algorithms which preserve
the recent formalization of privacy known as differential privacy. The funda-
mental tradeoff that we consider is that of privacy and utility. For which tasks
can we perform useful computations while still preserving privacy, and what
exactly is the tradeoff between usefulness and privacy? We study this trade-
off for statistical query release, both offline and online, as well as for many
standard combinatorial optimization tasks.
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Chapter 1

Introduction

Consider the problem faced by the administrator of a database consisting of sensitive per-
sonal information – say a collection of patient medical records. The data may be extremely
valuable: perhaps it can be used to learn epidemiological information that could be used
to save lives, or to optimize the distribution of heterogeneous resources across hospitals
that serve different patient populations. However, the database administrator may not be
able to make use of the vast literature on learning and optimization, because using such al-
gorithms may reveal information about the patients in the data set. Revealing their private
data might be unacceptable from a moral, legal, and financial standpoint.

What then is the hospital administrator to do? In order to answer this question, it is
necessary to define what it is that we mean by privacy, and what sort of utility we hope to
achieve with our algorithms. In this thesis, we will use differential privacy as defined by
Dwork et al. [DMNS06, Dwo06, CDM+05, DN04] as our notion of privacy, together with
several definitions of utility for different problems.

Even before defining the words privacy and usefulness however, it is intuitively clear
that these two goals are at odds with one another. Our algorithms could simply output
random bits, independently of the private data set, and this should be “privacy preserving”
for any reasonable definition of privacy, but should provide no utility, for any reasonable
definition of utility. Conversely, our algorithm could simply publish the entire private
data set. This provides the user with full utility, but clearly does not preserve privacy in
any sense of the word. Because the twin goals of privacy and usefulness are at odds, the
fundamental question in the field of privacy preserving algorithms is how they must be
traded off against each other, and this is the question we will consider in this thesis.
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1.1 Overview of the Thesis

1.1.1 Releasing Statistical Information Privately

The main portion of this thesis concerns the problem of releasing statistical information
about a dataset privately. We will be mainly concerned with a useful class of queries
known as predicate queries, although all of our results hold more generally for the class
of linear queries. Informally speaking, a predicate query specifies a property that may or
may not be possessed by individuals in the dataset. The corresponding predicate query
asks what fraction of individuals in the dataset satisfy that property. In addition to being
a natural class of queries, the ability to accurately answer polynomially many predicate
queries is sufficient to learn in the Statistical Query learning model of Kearns [Kea98].

An immediate question is: for given privacy constraints how many predicate queries
can be answered privately, and to what accuracy? Prior work [DMNS06] has shown that
for fixed privacy and accuracy constraints, it was possible to answer linearly many queries
in the size of the database. Can we answer more?

In Chapter 3, we answer this question in the affirmative. We show that if the mech-
anism knows the queries ahead of time, it is information theoretically possible to answer
exponentially many arbitrary predicate queries over a discrete domain. In fact, it can be
possible to answer many more: we show that with a sufficiently large data set, we can
answer every query in any class of polynomially bounded VC-dimension. We also show
that this dependence on the VC-dimension of the predicate class is necessary, and optimal
up to constant factors, and that there is no private mechanism for even simple predicate
classes over continuous domains. Finally, we give specialized private-release mechanisms
for the query classes of axis-aligned rectangle queries and large-margin halfspaces. These
specialized mechanisms are much more computationally efficient than our general release
mechanism. This work originally appeared in STOC 2008, and is joint with Avrim Blum
and Katrina Ligett [BLR08].

In Chapter 4, we ask whether it is possible to achieve the results of Chapter 3 if the
mechanism does not know the queries ahead of time, but must instead privately answer
queries interactively as they arrive. We show that up to a small degradation in the parame-
ters, the answer is yes. By showing how to correlate answer perturbations between queries
online, we give the first mechanism for answering superlinearly many queries in the inter-
active model of database privacy. We also show how to implement our online mechanism
in time polynomial in the size of the predicate domain, at the expense of trading our worst-
case utility guarantees for average case guarantees. This run time is essentially optimal for
a mechanism which can answer generic predicate queries (even in the offline model), due
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to a cryptographic lower bound of Dwork et al. [DNR+09]. This work originally appeared
in STOC 2010, and is joint with Tim Roughgarden. [RR10]

In Chapter 5, we generalize the results of chapters 3 and 4 from classes of predicate
queries to the more general classes of linear queries. Although VC-dimension is no longer
an appropriate measure of query complexity for linear queries, we show that fat-shattering
dimension, which characterizes the agnostic learnability of real valued functions, is. We
show polynomially related lower and upper bounds on the magnitude of noise that must
be added to linear queries from some class C in terms of the fat-shattering dimension of
C.

In Chapter 6, we turn our attention to query release in a more restrictive model of
data privacy, in which there is no central and trusted database administrator. In this lo-
cal model, originally studied by Kasiviswanathan et al. [KLN+08], individuals maintain
control of their own private data, and interact with any release mechanism only in a dif-
ferentially private manner. This model might be vastly preferable from the centralized
model from a privacy point of view: even if there is (currently) a suitable trusted party to
act as database administrator, aggregations of large amounts of private data are vulnerable
to theft, and even absent theft, there is no guarantee that the database will be held to the
same privacy standards in perpetuity. Unfortunately, we show that predicate query release
is severely restricted in the local model. We show that no mechanism operating over a d
dimensional domain can usefully release a superpolynomial (in d) number of monotone
conjunctions to subconstant error. Monotone conjunctions are an extremely simple class
of queries, and so our lower bound holds also for any class that generalizes them (such as
conjunctions, disjunctions, halfspaces, polynomially sized decision trees, etc.) Unfortu-
nately, the small number of existing techniques for computationally efficient data release
can be implemented in the local modal, and so this result suggests that in order to develop
efficient predicate query release mechanisms for more expressive classes, fundamentally
new techniques will have to be developed to overcome the local-privacy barrier.

1.1.2 Performing Combinatorial Optimization Privately

In Chapter 7, we study private algorithms for tasks that go beyond answering statistical
queries, and demand combinatorial, rather than numeric outputs.

Consider the problem of outfitting a small number of hospitals with specialized HIV
treatment centers so that the average commute time of patients is small. This can be mod-
eled as an instance of the k-median problem, for which good approximation algorithms
are known. However the problem instance is defined in part by the home addresses of
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HIV patients, which is sensitive information, and the output of standard approximation
algorithms can reveal a great deal about their inputs. In this case, data privacy is a cru-
cial design goal, which motivates the question of how we must trade of the quality of the
solution with the constraint of differential privacy.

In contrast to previous work in differential privacy, which largely concentrated on an-
swering numeric queries, in this work we initiate a systematic study of approximation
algorithms for discrete optimization problems that preserve differential privacy. We show
that many combinatorial optimization problems indeed have good approximation algo-
rithms which preserve differential privacy, even in cases where it is impossible to preserve
cryptographic definitions of privacy while computing non-trivial approximations to even
the value of the optimal solution, let alone the solution itself. We consider the k-median
problem, weighted and unweighted vertex cover and set cover, min-cut, and the recently
introduced submodular maximization problem combinatorial public projects (CPP). This
last result is notable because the CPP problem was recently shown to be inapproximable
to polynomial multiplicative factors by any efficient and truthful mechanism [PSS08].
Our differentially private algorithm yields an approximately truthful mechanism which
achieves a logarithmic additive approximation.

For each of the results we consider, we prove tight information theoretic upper and
lower bounds, as well as give efficient differentially private algorithms. This work orig-
inally appeared in SODA 2010, and is joint work with Anupam Gupta, Katrina Ligett,
Frank McSherry, and Kunal Talwar [GLM+10].

4



Chapter 2

Background, Definitions, and Related
Work

2.1 Privacy: Why and How

Large data-sets of sensitive personal information are becoming increasingly common –
no longer are they the domain only of census agencies: now hospitals, social networks,
insurance companies, and search engines all possess vast amounts of sensitive data. These
organizations face legal, financial, and moral pressure to make their data available to the
public, but also face legal, financial, and moral pressure to protect the identities of the
individuals in their dataset. Formal guarantees trading off privacy and utility are therefore
of the utmost importance.

Unfortunately, the history of data privacy is littered with the failed attempts at data
anonymization and ad-hoc fixes to prevent specific attacks. The most egregious of these
attempts at anonymization simply scrub the dataset of obviously identifiable information
(such as names), and release the remaining data in its complete form. These failed attempts
at data privacy exhibit a common characteristic: a failure of imagination on the part of the
data curator to account for what auxiliary information an attacker may have available,
in addition to the “privately” released data set. It is this observation that will motivate
differential privacy: a guarantee that provably holds independent of the attacker’s auxiliary
information.

One of the first published attacks on publicly available data was due to Sweeney
[S+02]. She attacked a dataset administered by the Group Insurance Commission, which
consisted of medical records of employees of the state of Massachusetts. All “identifi-
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able information” (such as names, social security numbers, phone numbers, etc.) had
been removed from this dataset, and so its release had been deemed safe. It contained
only seemingly innocuous information such as birth date, gender, and zip code. However,
there was another easily accessible data set that linked birthdate, gender, and zip code
to names: the Massachusetts voter registration list. These three fields proved sufficiently
unique in combination that they were often sufficient to uniquely identify an individual in
the dataset. In particular, by cross referencing these two datasets, Sweeney was able to
identify the medical records of William Weld, the sitting Governor of Massachusetts.

The method employed by Sweeney is an example of what is known as a linkage at-
tack: in which identifying information is associated with anonymous records by cross-
referencing them with some additional source of information. Other examples abound:
One of the most well publicized is Narayanan and Shmatikov’s attack on the Netflix Prize
data set [NS08]. The Netflix competition began in 2006, with a 1 million dollar prize
promised to the team that could improve the algorithm that Netflix uses to recommend
movies to customers, by 10%. To facilitate the competition, Netflix provided a data set
consisting of over 100, 000, 000 movie ratings from over 480, 000 users. Each user was
assigned an “anonymous” identifier, and was associated with each of the movies she had
rated, together with her ratings, and the dates that the ratings were provided. Narayanan
and Shmatikov carried out a more complex linkage attack than had Sweeney. They used
the IMDB database of movie reviews – publicly available and associated with personal
identifying information – to crossreference with the Netflix data set, allowing approxi-
mate matches for date. The end result was however the same: they were able to re-identify
a substantial fraction of the users in the NetFlix data set.

Not all privacy breaches are due to linkage attacks. Another high profile privacy breach
came when AOL released a purportedly “anonymized” collection of search logs in 2006
[BZ06]. The data included the search queries of users, together with which link from
the search results was selected by the user. For privacy, user names were removed, and
replaced by random numeric identifiers. Three days after the data set was released, the
New York Times identified and interviewed a user from the data set. In order to re-identify
the user, the Times did not need any outside data set: the search queries themselves (terms
such as the name of a town, a last name, etc.) provided enough information to identify
their owner.

Each of these cases involved some ad-hoc privacy measure which failed to be pri-
vate because the database administrator neglected to anticipate a particular kind of attack
(utilizing an outside database, or the semantic content of the released data set itself). Sub-
sequently, various definitions of privacy were developed to defend against specific types
of attacks. For example, Sweeney proposed k-anonymity as a privacy definition to defend
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against the linkage attack that she used to compromise William Weld’s medical records
[S+02]. Informally, a released data set is k-anonymous if there are no released tuples of
characteristics that correspond to fewer than k individuals. Although this prevents link-
age attacks from specifically identifying individuals, it does not prevent an adversary from
learning private information about an individual. For example, if an individual’s data can
be linked to k medical records, all of which correspond to cancer patients, then the adver-
sary has still learned that the individual in question has cancer. Even in cases in which the
data is not quite so obvious (the linked records do not all have the same diagnoses, for ex-
ample), they can still provide substantial information about an individual when combined
with prior beliefs.

Because of the history of successful attacks that make use of unanticipated sources of
outside data, it seems prudent to work with a definition of privacy that provides a guar-
antee independent of whatever prior knowledge an attacker may have about the database
or about the population from which it is drawn. A moment’s thought reveals that any
such definition cannot constrain merely the object that is eventually released, but must
constrain the algorithm by which that object is constructed. In particular, any definition
of privacy that is resilient to arbitrary auxiliary information must only allow randomized
algorithms to perform ‘private’ data release. Any deterministic algorithm that computes
a non-constant function reveals with its output a great deal about its input: in particular,
it rules out certain inputs with certainty, which may substantially sharpen an adversaries
posterior beliefs over the input.

But what should a formal constraint of ‘privacy’ encode? In 1977, Dalenius proposed
a criteria for privacy in statistical databases: that nothing about an individual should be
learnable from the database that cannot be learned without the database [Dal77]. Unfortu-
nately, as shown by Dwork, this type of privacy cannot be achieved [Dwo06]. In addition
to a formalization of this statement, Dwork also provides the following illustrative exam-
ple giving the intuition behind the obstacle to achieving Dalenial privacy, which is the
presence of auxiliary information which might be available to the adversary.

Suppose one’s exact height were considered a highly sensitive piece of infor-
mation, and that revealing the exact height of an individual were a privacy
breach. Assume that the database yields the average heights of women of dif-
ferent nationalities. An adversary who has access to the statistical database
and the auxiliary information “Terry Gross is two inches shorter than the av-
erage Lithuanian woman” learns Terry Gross’ height, while anyone learning
only the auxiliary information, without access to the average heights, learns
very little. [Dwo06]
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A notable aspect of this example is that this “privacy breach” occurs even if Terry Gross
is not in the database. It seems intuitively that a proper notion of privacy should not be
violated by a release of data that is completely independent from the individual in question.

Differential Privacy, which we describe in the next section, provides exactly what we
would like: an information theoretic guarantee on the distribution from which the private
outputs of an algorithm are generated, that is independent of whatever auxiliary informa-
tion an attacker may have available to him. It is an extremely strong definition of privacy,
and the challenge in the coming chapters will be to demonstrate algorithms that satisfy it
while still obtaining a high degree of utility.

2.2 Differential Privacy

Informally, differential privacy encodes the constraint that small changes in the private
data set should only cause small changes in the output distribution of an algorithm acting
on the data. What this means is that while we hope that the outputs of our algorithms
are informative functions of their inputs, they should not be strongly correlated to any
particular element of the input. This definition has an appealing interpretation in terms
of the ability of a data set curator to collect private information from a privacy-aware
population: when asked for private data, an individual may be unwilling to provide it,
because she fears some consequence of the use of this data. However, if the data is used in
a differentially-private manner, then she can be assured that any event that she is afraid of
is (almost) no more likely to occur if she provides her data, as compared to if she does not
provide her data. No matter what she fears, therefore, she should be willing to provide her
private information to a data set curator, given only a small positive incentive for doing so
(monetary or otherwise). We shall now define differential privacy precisely.

Let D ∈ X n denote a data set or database (we will use these terms interchangeably),
which we will typically regard as an unordered set of n elements from some abstract
domain X . We should view each element of D as corresponding to a different individual,
whose privacy must be preserved. For any two data sets D and D′, we write D 4 D′ to
denote their symmetric difference. For any two data sets D and D′, we say that D and D′

are neighboring data sets if |D 4 D′| = 1 – that is, if they differ only in a single user’s
data.

An algorithm or mechanism M : X ∗ → 4(R) is a function that maps databases D ∈
X ∗ to probability distributions over some rangeR: that is, it is a randomized algorithm that
acts on databases, and randomly outputs some element from R according to a probability
distribution that depends on D.
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Definition 1. A mechanism M preserves (α, τ)-differential privacy if for every pair of
neighboring databases D and D′, and for every set of outcomes S ⊆ R, M satisfies:

Pr[M(D) ∈ S] ≤ eα Pr[M(D′) ∈ S] + τ

If τ = 0, we say that the mechanism preserves α-differential privacy.

α-differential privacy is stricter than (α, τ)-differential privacy: it constrains every
event to change in probability by only a small multiplicative factor for every element in
D that is changed. In particular, this applies to events with zero probability, and so an
α-differentially private mechanism must place positive probability on every event in its
range. In contrast, (α, τ)-differential privacy gives us the freedom to violate strict α-
differential privacy for low probability events: in particular, we may have some events
have zero probability for certain databases, but not for others. This ability will often prove
useful from an algorithm design perspective; however, since we do not want to weaken the
definition of α-differential privacy substantially, we will generally only be interested in
extremely small values of τ : ideally negligibly small – smaller than any inverse polynomial
in the parameters of the problem. In contrast, we will generally think of α as being a small
constant. It will be meaningful in some settings to speak of subconstant values for α, but it
is not hard to see that no meaningful utility guarantees are possible for values of α smaller
than O( 1

n
).1

Differential privacy is a robust definition, because it has some particularly nice com-
posability properties:

Fact 1 (Composability). If M1 preserves α1-differential privacy, and M2 preserves α2-
differential privacy, then M(D) = (M1(D),M2(D)) preserves α1 + α2-differential pri-
vacy.

Fact 2 (Post-Processing). If M : X ∗ → R preserves (α, τ)-differential privacy, and
f : R → R′ is any arbitrary (database independent) function, then f(M) : X ∗ → R′

preserves (α, τ)-differential privacy.

A key concept in the literature on data privacy is that of the `1-sensitivity of a function
f , as defined by Dwork et al. [DMNS06]. This is essentially a Lipschitz condition on f :

1If we have α = o(1/n), then even after replacing every element in some data set D, an α-
differentially private mechanism could not change the probability of any outcome by more than a factor
of exp(n · o(1/n)) = exp(o(1)) ≈ 1 – that is, it would have approximately the same output distribution for
every input database, and so would not give any useful information about D.
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Definition 2 (`1-sensitivity [DMNS06]). Given a function f : X ∗ → Rk, the `1-sensitivity
of f is:

S(f) = max
D,D′

||f(D)− f(D′)||1

where the maximum is taken over all pairs of neighboring databases.

Dwork, McSherry, Nissim, and Smith [DMNS06] defined what we will refer to as
the Laplace mechanism. The Laplace mechanism makes use of the Laplace distribution,
which is a symmetric exponential distribution:

Definition 3 (The Laplace Distribution). The Laplace Distribution (centered at 0) with
scale b is the distribution with probability density function:

Lap(x|b) =
1

2b
exp

(
−|x|

b

)

We will sometimes write Lap(b) to denote the Laplace distribution with scale b.

Definition 4 (The Laplace Mechanism [DMNS06]). Given any function f : X ∗ → Rk,
the Laplace mechanism is defined as:

ML(D, f(·), α) = f(D) + (Y1, . . . , Yk)

where Yi are independent draws from Lap(S(f)/α)

Dwork et al. prove that the Laplace mechanism preserves α-differential privacy – we
give a proof here as well for completeness in the case of nonadaptive queries, but Dwork
et al. prove the theorem for adaptive queries as well [DMNS06]:

Theorem 1 ([DMNS06]). The Laplace mechanism preserves α-differential privacy.

Proof. Let D and D′ be any pair of neighboring databases, and let f(·) be some function
f : X ∗ → Rk. Let pD denote the probability density function of ML(D, f) , and let
pD′ denote the probability density function of ML(D′, f). We compare the two at some

10



arbitrary point x ∈ Rk

pD(x)

pD′(x)
=

k∏
i=1

(
exp(−α|f(D)i−xi|

S(f)
)

exp(−α|f(D′)i−xi|
S(f)

)

)

=
k∏

i=1

exp

(
α(|f(D′)i − xi| − |f(D)i − xi|)

S(f)

)

≤
k∏

i=1

exp

(
α|f(D)i − f(D′)i|

S(f)

)

= exp

(
α · ||f(D)− f(D′)||1

S(f)

)

≤ exp(α)

where the first inequality follows from the triangle inequality, and the last follows from
the definition of sensitivity and the fact that D and D′ are neighboring databases. That

pDx
pD′ (x)

≥ exp(−α) follows by symmetry.

The Laplace mechanism is useful for privately answering numerically valued queries.
Suppose we would like to answer non-numeric queries? McSherry and Talwar [MT07]
define the exponential mechanism, which can be used to privately output objects from
some arbitrary domain while preserving differential privacy. Given some arbitrary range
R, the exponential mechanism is defined with respect so some quality function q : X ∗ ×
R → R, which maps database/output pairs to quality scores. We should interpret this
intuitively as a statement that fixing a database D, the user would prefer the mechanism to
output some element of R with as high a quality score as possible.

Definition 5 (The Exponential Mechanism [MT07]). The exponential mechanism
ME(D, q) selects and outputs an element r ∈ R with probability proportional to
exp(αq(D,r)

2S(q)
) · µ(r), where µ(r) is some base measure over R (which we will typically

take to be uniform, and so can be ignored).

McSherry and Talwar prove that the exponential mechanism preserves α-differential
privacy. It is important to note that the exponential mechanism can define a complex
distribution over a large arbitrary domain, and so it may not be possible to implement the
exponential mechanism efficiently.

Theorem 2 ([MT07]). The exponential mechanism preserves α-differential privacy.
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Proof. For clarity, we assume the range R of the exponential mechanism is finite, but
this is not necessary. As in all differential privacy proofs, we consider the ratio of the
probability that an instantiation of the exponential mechanism outputs some element r ∈
R on two neighboring databases D and D′.

Pr[ME(D, q) = r]

Pr[ME(D, q) = r]
=

(
exp(

αq(D,r)
2S(q)

)·µ(r)
∑

r′∈R exp(
αq(D,r′)

2S(q)
)·µ(r′)

)

(
exp(

αq(D′,r)
2S(q)

)·µ(r)
∑

r′∈R exp(
αq(D′,r′)

2S(q)
)·µ(r′)

)

=

(
exp(αq(D,r)

2S(q)
)

exp(αq(D′,r)
2S(q)

)

)
·
(∑

r′∈R exp(αq(D′,r′)
2S(q)

) · µ(r′)
∑

r′∈R exp(αq(D,r′)
2S(q)

) · µ(r′)

)

= exp

(
α(q(D, r′)− q(D′, r′))

2S(q)

)
·
(∑

r′∈R exp(αq(D′,r′)
2S(q)

) · µ(r′)
∑

r′∈R exp(αq(D,r′)
2S(q)

) · µ(r′)

)

≤ exp
(α

2

)
· exp

(α

2

)
·
(∑

r′∈R exp(αq(D,r′)
2S(q)

) · µ(r′)
∑

r′∈R exp(αq(D,r′)
2S(q)

) · µ(r′)

)

= exp(α)

Similarly, Pr[ME(D,q)=r]
Pr[ME(D,q)=r]

≥ exp(−α) by symmetry.

This concludes a summary of the basic building blocks of differential privacy that we
will use in this thesis. There is however by now an extensive and growing literature, which
we will review in the next section.

2.3 Predicate Queries

A large fraction of this thesis will be devoted to designing algorithms for answering predi-
cate queries, and their generalizations. Informally, predicate queries specify some quality
that a database entry might or might not posses. The predicate query asks what fraction
of the elements in the database posses the given quality. We say that a predicate f is a
boolean function f : X → {0, 1}. We say that x ∈ X satisfies f if f(x) = 1. Given a
database D, we abuse notation and write that the predicate query:

f(D) =
|{x ∈ D : f(x) = 1}|

|D|
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is the query which determines what fraction of the database D satisfies predicate f . We
will be interested in mechanisms which preserve differential privacy, but also produce
outputs which are useful for answering predicate queries. Formally:

Definition 6. A mechanism M is (ε, δ)-useful if for every database D and every set of
predicate queries C = {f1, . . . , fk}, the mechanism M(D) produces answers a1, . . . , ak

such that with probability at least 1− δ:

max
fi∈C

|fi(D)− ai| ≤ ε

That is, an (ε, δ)-useful mechanism answers every query it is supplied with correctly
(up to additive error ε) with high probability (1 − δ). We may also speak of mechanisms
which are (ε, δ)-useful with respect to a particular type of predicate query, rather than for
arbitrary sets of predicate queries. We will typically think of ε as a small constant (and
never smaller than O(1/

√
n)), whereas we should think of δ as being inverse-polynomially

small in n.

We note that the definition of usefulness does not specify how the mechanism rep-
resents the answers it supplies. For example, the mechanism could simply output the
numeric values (a1, . . . , ak). However, it could also output some datastructure from which
the answer to each query can be efficiently decoded, or a concise representation of all of
the answers. One example of such a concise representation comes in the form of a syn-
thetic database D′ ∈ X n. Such a database can encode the answers to queries in a very
natural way: ai = fi(D′).

We will sometimes make the distinction between interactive and non-interactive mech-
anisms. An interactive mechanism receives predicate queries online, and must answer each
query before seeing the next query. A non-interactive mechanism receives all queries up
front before it needs to provide any answers. We note that the Laplace mechanism can be
used to interactively answer predicate queries:

Observation 3. If f(·) is a predicate query, the `1 sensitivity of f(D) is S(f) ≤ 1
|D| . If

g(D) = (f1(D), . . . , fk(D)) is the concatenation of k predicate queries, then S(g) ≤ k
|D| .

This observation is immediate: a predicate query is simply a normalized count of the
database elements that satisfy the predicate, and this count can be incremented by at most 1
by adding a single element to the database. The sensitivity of a concatenation of k queries
can be at most the sum of their individual sensitivities, by the definition of the `1 norm.

We may of course use the Laplace mechanism to answer k predicate queries adap-
tively: the Laplace mechanism adds independent noise drawn from Lap(k/(|D|α)) to
each answer.

13



2.4 Related Work in Differential Privacy

Recent work on theoretical guarantees for data privacy was initiated by Dinur and
Nissim [DN03]. The notion of differential privacy, developed in a series of papers
[BDMN05, Dwo06, DKM+06, DMNS06], separates issues of privacy from issues of out-
side information by defining privacy as indistinguishability of neighboring databases. This
captures the notion that (nearly) anything that can be learned if your data is included in the
database can also be learned without your data. This notion of privacy ensures that users
have very little incentive to withhold their information from the database. The connection
between data privacy and incentive-compatibility was recently formalized by McSherry
and Talwar [MT07].

Dinur and Nissim studied a setting in which the private database consisted of bits held
by different users, and the data analyst wished to know the sums of random subsets of these
bits. They showed that there cannot be any private mechanism that answers n such queries
with error o(

√
n), because an adversary could use any such mechanism to reconstruct a 1−

o(1) fraction of the original database, a condition which they called blatant non-privacy.
This result was strengthened by several subsequent papers [DMT07, DY08, KRSU10].

Dwork et al. gave the original definition of differential privacy, as well as the Laplace
mechanism, which is capable of answering any k “low sensitivity” queries (including lin-
ear queries) up to error O(k). A more refined analysis of the relationship between the
laplace mechanism and function sensitivity was later given by [NRS07].

McSherry and Talwar introduced the exponential mechanism, and observed that dif-
ferential privacy could be viewed as a solution concept in game theory, which in particular
implied approximate truthfulness [MT07]. They applied the exponential mechanism to
obtain differentially private, approximately revenue maximizing auctions.

Kasiviswanathan et al. [KLN+08] applied the exponential mechanism of McSherry
and Talwar to the problem of selecting a function from some class C which best classifies
points in a private database D. They proved that any concept class C that has a PAC
learning algorithm also has a privacy preserving learning algorithm, at least if one ignores
computational constraints. In Chapter 3, we adapt the approach of [KLN+08] to show
that it is possible to release a synthetic database which may be used to usefully answer
queries about D for every predicate query in some set C, where the privacy parameter α
grows proportionally to the VC-dimension of C. Since VC-DIM(C) ≤ log |C| for any set
of predicate queries C, we may rephrase this result as follows, to compare it to the Laplace
mechanism: For a fixed database size n and accuracy and privacy targets ε and α, the
instantiation of the exponential mechanism used in Chapter 3 may answer O(2n(αε3/ log |X |))
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queries, which is nearly optimal in its dependence on n and |X |.
Since the mechanism of Chapter 3 is an instantiation of the exponential mechanism, its

naive implementation does not run in time polynomial in the parameters of the problem.
Unlike the Laplace mechanism, it also does not operate in the interactive setting – that is, it
requires that the set of functions C be provided up front, before any queries are answered.
Dwork et al. [DNR+09] showed that modulo cryptographic assumptions, no mechanism
with run time polynomial in log |X | or log k can achieve such a bound for all predicate
queries. They also gave a mechanism with run time polynomial in |X | and k that for a
fixed database size and accuracy target, could preserve (α, τ)-differential privacy while
answering O(2log2(n(αε2/ log |X |))) predicate queries. This mechanism is non-interactive.
For constant values of ε and α, this is fewer queries than the mechanism of Chapter 3 by a
superpolynomial factor, but we note that the dependence on ε is better (and optimal), and
so can provide a superior bound for sufficiently small values of ε.

Hardt and Talwar [HT10] gave a non-interactive mechanism for answering linear
queries (which slightly generalize predicate queries), as well as a lower bound, which is
optimal in terms of certain parameters of the problem. The bounds in [HT10] are incom-
parable to ours: loosely the bounds of [HT10] are better when the total number of queries
is smaller than the size of the database, and our bounds are better when the total number
of queries is significantly larger than the size of the database. We make this explicit and
generalize our bounds to linear queries in Chapter 5.

Nissim, Raskhodnikova, and Smith consider the smooth sensitivity of functions, which
is a refined analysis of the global sensitivity of functions [NRS07]. Using this tool, they
give a private algorithm for k-means clustering, which is the first example of a differen-
tially private algorithm for a combinatorial optimization task. In Chapter 7, we use differ-
ent techniques to give differentially private approximation algorithms for a large number
of tasks. Independently of our work, Feldman et al. [FFKN09] also give a differentially
private algorithm for the k-medians problem, one of the problems that we consider in
Chapter 7.

There is a large and growing literature on differential privacy, and the work mentioned
here is in no way intended to be a complete representation. We will review the most
relevant related work at the start of each chapter, and the interested reader is directed
towards several excellent surveys: [Dwo08, DS10].
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Chapter 3

Answering Exponentially Many
Predicate Queries

3.1 Introduction

As large-scale collection of personal information becomes easier, the problem of database
privacy is increasingly important. In many cases, we might hope to learn useful informa-
tion from sensitive data (for example, we might learn a correlation between smoking and
lung cancer from a collection of medical records). However, for legal, financial, or moral
reasons, administrators of sensitive datasets might not want to release their data. If those
with the expertise to learn from large datasets are not the same as those who administer
the datasets, what is to be done?

There have been a series of lower bound results [DN03, DMNS06, DMT07] that sug-
gested that non-interactive databases (or interactive databases that can be queried a linear
number of times) cannot accurately answer all queries, or an adversary will be able to re-
construct all but a 1−o(1) fraction of the original database exactly (obviously a very strong
violation of privacy). These lower bounds in fact only preclude answering queries to very
high accuracy, but as a result, attention in the privacy community shifted to the design of
interactive mechanisms that answer only a sublinear number of queries. However, since
these mechanisms may only answer a sublinear number of queries in total (not per user),
after which point they must be destroyed, this limits their practicality in situations where
the number of queries that might be asked is comparable to or larger than the number of
entries in the database.

In this chapter, motivated by learning theory, we propose the study of privacy-
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preserving mechanisms that are useful for all queries in a particular class (such as all
conjunctive queries or all halfspace queries). In particular, we focus on predicate queries
of the form, “what fraction of the database entries satisfy predicate ϕ?” and say that a san-
itized output is useful for a class C if the answers to all queries in C have changed by at
most some ±ε. Building on the techniques of Kasiviswanathan et al. [KLN+07], we show
that for discretized domains, for any concept class with polynomial VC-dimension, it is
possible to release differential-privacy-preserving databases that are simultaneously useful
for all queries in the concept class. The algorithm may not be computationally efficient
in general, though we do have a computationally efficient method for range queries over a
finite interval with bounded precision.

Unfortunately, we show that for non-discretized domains, under the above definition
of usefulness, it is impossible to publish a differentially private non-interactive database
that is useful for even quite simple classes such as interval queries. We next show how,
under a natural relaxation of the usefulness criterion, one can release information that can
be used to usefully answer (arbitrarily many) halfspace queries while satisfying privacy. In
particular, instead of requiring that useful mechanisms answer each query approximately
correctly, we allow our algorithm to produce an answer that is approximately correct for
some nearby query. This relaxation is motivated by the notion of large-margin separators
in learning theory [AB99, Vap98, SS02]; in particular, queries with no data points close
to the separating hyperplane must be answered accurately, and the allowable error more
generally is a function of the fraction of points close to the hyperplane.

We also introduce a new concept, distributional privacy, which makes explicit the
notion that when run on a database drawn from a distribution, privacy-preserving mecha-
nisms should reveal only information about the underlying distribution, and nothing else.
A database privatization mechanism satisfies distribution privacy if for all distributions D
over database points, drawing an entirely new database from D does not change the prob-
ability of any outcome of the privatization mechanism by more than some small amount.

We show that distributional privacy is a strictly stronger guarantee than differential
privacy by showing that any mechanism that satisfies distributional privacy also satisfies
differential privacy, but that there are some functions that can be answered accurately while
satisfying differential privacy, and yet reveal information about the particular database
(although not about any particular database element) that is not “distributional.”

We also show, in section 3.8.2, a lower bound on the noise that must be added to
privately answered predicate queries.
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3.1.1 Related Work

Prior work on interactive mechanisms has implied a number of impossibility results for
non-interactive mechanisms. Dinur and Nissim [DN03] show that if a database adminis-
trator answers all “subset sum” with less than o(

√
n) noise, this would allow an adversary

to reconstruct a 1−o(1) fraction of the database1. Dwork et al. [DMT07] show that even if
the privacy-preserving mechanism is allowed to answer a small constant fraction of queries
arbitrarily, if the remaining queries still are perturbed with o(

√
n) noise, an adversary can

still reconstruct the database.

Dwork et al. [DMNS06] introduced the Laplace mechanism, and showed that it was
possible to answer queries interactively with noise proportional to their `1 sensitivity. For
predicate queries, this comes with the caveat that for nontrivial accuracy and privacy guar-
antees, the mechanism can only answer a sublinear number of queries in total, and then no
further information about the database can ever be released. Blum et al. [BDMN05] con-
sider a model of learning and show that concept classes that are learnable in the statistical
query (SQ) model are also learnable from a polynomially sized dataset accessed through
an interactive differential-privacy-preserving mechanism. We note that such mechanisms
still may only answer a fixed number of queries in total.

Most similar to the work in this Chapter is the recent work of Kasiviswanathan et al.
[KLN+07]. Kasiviswanathan et al. study what can be learned privately when what is de-
sired is that the hypothesis output by the learning algorithm satisfies differential privacy.
They show that in a PAC learning model in which the learner has access to the private
database, ignoring computational constraints, anything that is PAC learnable is also pri-
vately PAC learnable. We build upon the technique in their paper to show that in fact,
it is possible to privately release a dataset that is simultaneously useful for any function
in a concept class of polynomial VC-dimension. This resolves an open question posed
by [KLN+07] about whether a VC-dimension analogue of Occam’s razor holds in their
private learning model. Kasiviswanathan et al. also study several restrictions on learning
algorithms, show separation between these learning models, and give efficient algorithms
for learning particular concept classes.

In this work, we study non-interactive database release mechanisms, which may be
used to answer an unlimited number of queries. Blum et al. [BDMN05] consider running
machine learning algorithms on datasets that are accessed through interactive privacy-
preserving mechanisms. In contrast, we show how to release data sets from which one can
usefully learn the values of all functions in restricted concept classes.

1Consider a database that is a collection of private bits b1, . . . , bn, where bi ∈ {0, 1}. A subset sum query
specifies a subset of [n] and corresponds to the sum of the corresponding bits.
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3.1.2 Motivation from Learning Theory

From a machine learning perspective, one of the main reasons one would want to perform
statistical analysis of a database in the first place is to gain information about the popula-
tion from which that database was drawn. In particular, a fundamental result in learning
theory is that if one views a database as a collection of random draws from some distribu-
tion D, and one is interested in a particular class C of boolean predicates over examples,
then a database D of size Õ(VCDIM(C)/ε2) is sufficient so that with high probability,
for every query q ∈ C, the proportion of examples in D satisfying q is within ±ε of the
true probability mass under D [AB99, Vap98].2 Our main result can be viewed as asking
how much larger does a database D have to be in order to do this in a privacy-preserving
manner: that is, to allow one to (probabilistically) construct an output D̂ that accurately
approximates D with respect to all queries in C, and yet that reveals no extra information
about database D.3 In fact, our notion of distributional privacy (Section 3.7) is motivated
by this view. Note that since the Laplace mechanism can handle arbitrary queries of this
form so long as only o(n) are requested, our objective is interesting only for classes C
that contain Ω(n), or even exponentially in n many queries. We will indeed achieve this
(Theorem 4), since |C| ≥ 2VCDIM(C).

3.1.3 Organization

We present essential definitions in Section 3.2. In Section 3.3, we show that, ignoring
computational constraints, one can release sanitized databases over discretized domains
that are useful for any concept class with polynomial VC-dimension. We then, in Section
3.4, give an efficient algorithm for privately releasing a database useful for the class of in-
terval queries. We next turn to the study of halfspace queries over Rd and show in Section
3.5 that, without relaxing the definition of usefulness, one cannot release a database that is
privacy-preserving and useful for halfspace queries over a continuous domain. Relaxing
our definition of usefulness, in Section 3.6, we give an algorithm that in polynomial time,
creates a sanitized database that usefully and privately answers all halfspace queries. We

2Usually, this kind of uniform convergence is stated as empirical error approximating true error. In our
setting, we have no notion of an “intrinsic label” of database elements. Rather, we imagine that different
users may be interested in learning different things. For example, one user might want to learn a rule to
predict feature xd from features x1, . . . , xd−1; another might want to use the first half of the features to
predict a certain boolean function over the second half.

3Formally, we only care about D̂ approximating D with respect to C, and want this to be true no matter
how D was constructed. However, if D was a random sample from a distributionD, then D will approximate
D and therefore D̂ will as well.
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present an alternative definition of privacy and discuss its relationship to differential pri-
vacy in Section 3.7. In section 3.8.2, we give a separation of interactive and non-interactive
databases for predicate queries.

3.2 Definitions

In this section, we briefly recall some relevant definitions.

For a database D, let M be a database access mechanism. For an interactive mecha-
nism, we will say that M(D, Q) induces a distribution over outputs for each query Q. For
a non-interactive mechanism, we will say that M(D) induces a distribution over outputs.

We say that an interactive database access mechanism M satisfies α-differential pri-
vacy if for all neighboring databases D1 and D2 (differing in only a single element), for
all queries Q, and for all outputs x,

Pr[M(D1, Q) = x] ≤ eα Pr[M(D2, Q) = x].

We say that a non-interactive database sanitization mechanism A satisfies α-differential
privacy if for all neighboring databases D1 and D2, and for all sanitized outputs D̂,

Pr[M(D1) = D̂] ≤ eα Pr[M(D2) = D̂].

In Section 3.7, we propose an alternate definition of privacy, distributional privacy,
and show that it is strictly stronger than differential privacy. For simplicity, however, in
the main body of the paper, we use the standard definition, differential privacy. All of these
proofs can be adapted to the distributional privacy notion.

We recall that the Laplace mechanism ML(D, f(·), α) is a database access mech-
anisms that can answer any low-sensitivity query while preserving differential privacy.
However, lower bounds of Dinur and Nissim [DN03] and Dwork et al. [DMNS06] imply
that such mechanisms can only answer a sublinear number of queries on any database.
Note that these mechanisms can only answer a sublinear number of queries in total, not
per user.

We propose to construct database access mechanisms whose results can be released to
the public, and so can necessarily be used to answer an arbitrarily large number of queries.
We seek to do this while simultaneously preserving privacy. Note that differential privacy
precludes the use of several naive techniques: for example, simply outputting a subsam-
ple of our private database will not preserve differential privacy – since the presence of
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an individual in the database would give him a nonzero probability of appearing in the
subsample, whereas in his absence, his probability of appearing in the subsample would
drop to 0. We cannot hope to be able to usefully answer arbitrary queries. We instead seek
to answer restricted classes of queries while preserving “usefulness,” which we define as
follows:

Definition 7 (Usefulness definition 1). A database mechanism A is (ε, δ)-useful for
queries in class C if with probability 1 − δ, for every Q ∈ C and every database D,
for D̂ = A(D), |Q(D̂)−Q(D)| ≤ ε.

Mechanisms satisfying this definition must output databases that appear to be similar
to D with respect to the functions in C only – with respect to other queries, D and D̂ may
be completely different.

3.3 General release mechanism

In this section we show that (ignoring computational considerations) it is possible to
release a non-interactive database useful for any concept class with polynomial VC-
dimension, while preserving α-differential privacy, given an initial database of polynomial
size. Our use of the exponential mechanism is inspired by its use by Kasiviswanathan et
al. [KLN+07].

The results in this section are presented for answering boolean valued predicate queries
over the boolean hypercube. However, this is easily generalized to real valued functions
over some arbitrary domain X: f : X → [0, 1], where the desired quantity is the average
value of f over the elements of the private database. We handle this level of generality in
Chapter 5.

Theorem 4. For any class of functions C, and any database D ⊂ {0, 1}d such that

|D| ≥ O

(
dVCDIM(C)log(1/ε)

ε3α
+

log(1/δ)

αε

)

we can output an (ε, δ)-useful database D̂ that preserves α-differential privacy. Note that
the algorithm is not necessarily efficient.

We give an (inefficient) algorithm that outputs a sanitized database D̂ of size
Õ(VCDIM(C)/ε2). We note that the size of the output database is independent of the
size of our initial database. This is sufficient for (ε, δ)-usefulness because the set of all
databases of this size forms an ε-cover with respect to C of the set of all possible databases.
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Lemma 1 ([AB99, Vap98]). Given any database D there exists a database D̂ of size
m = O(VCDIM(C)log(1/ε)/ε2) such that maxh∈C |h(D)− h(D̂)| < ε/2.

Proof. By [AB99], a uniformly random sample D̂ from D of size m =
O(VCDIM(C)log(1/ε)/ε2) will have the property that maxh∈C |h(D)− h(D̂)| < ε/2
with constant probability. In particular, some database with this property must exist.

We note that we use the above sample complexity result merely existentially: we do
not actually ever take a sample from our private database, and releasing such a sample
would be a privacy violation.

We now instantiate the exponential mechanism of McSherry and Talwar [MT07] for
the problem of outputting databases as follows:

Definition 8. For any function q : (({0, 1}d)n × ({0, 1}d)m) → R and input database
D, the exponential mechanism outputs each database D̂ with probability proportional to
eq(D,D̂)αn/2.

Theorem 5 ([MT07]). The exponential mechanism preserves (α)-differential privacy.

Proof of Theorem 4. We use the exponential mechanism and define our quality function q
to be:

q(D, D̂) = −max
h∈C

∣∣∣h(D)− h(D̂)
∣∣∣

Note that GSq = 1/n. In order to show that this mechanism satisfies (ε, δ)-usefulness, we
must show that it outputs some database D̂ with q(D, D̂) ≥ −ε except with probability δ.

Any output database D̂ with q(D, D̂) ≤ −ε will be output with probability at most
proportional to e−αεn/2. There are at most 2dm possible output databases, and so by a
union bound, the probability that we output any database D̂ with q(D, D̂) ≤ −ε is at most
proportional to 2dme−αεn/2.

Conversely, we know by Lemma 1 that there exists some D̂ ∈ ({0, 1}d)m) such that
q(D, D̂) ≥ −ε/2, and therefore that such a database is output with probability at least
proportional to e−αεn/4.

Let A be the event that the exponential mechanism outputs some database D̂ such
that q(D, D̂) ≥ −ε/2. Let B be the event that the exponential mechanism outputs some
database D̂ such that q(D, D̂) ≤ −ε. We must show that Pr[A]/ Pr[B] ≥ (1− δ)/δ.
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Pr[A]

Pr[B]
≥ e−αεn/4

2dme−αεn/2

=
eαεn/4

2dm

Setting this quantity to be at least 1/δ > (1− δ)/δ, we see that it is sufficient to take

n ≥ 4

εα

(
dm + ln

1

δ

)

≥ O

(
dVCDIM(C)log(1/ε)

ε3α
+

log(1/δ)

αε

)
.

This result extends in a straightforward manner to the case of any discretized database
domain, not just a boolean space.

Theorem 4 shows that a database of size Õ(dVCDIM(C)
ε3α

) is sufficient in order to output
a set of points that is ε-useful for a concept class C, while simultaneously preserving α-
differential privacy. If we were to view our database as having been drawn from some
distribution D, this is only an extra Õ( d

εα
) factor larger than what would be required to

achieve ε-usefulness with respect to D, even without any privacy guarantee! In fact, as we
will show in Theorem 17, it is impossible to release a database that is o(1/

√
n)-useful for

the class of parity functions while preserving privacy, and so a dependence on ε of at least
Ω(1/ε2) is necessary.

The results in this section only apply for discretized database domains, and may not be
computationally efficient. We explore these two issues further in the remaining sections of
this chapter.

3.4 Interval queries

In this section we give an efficient algorithm for privately releasing a database useful for
the class of interval queries over a discretized domain, given a database of size only poly-
nomial in our privacy and usefulness parameters. We note that our algorithm is easily
extended to the class of axis-aligned rectangles in d dimensional space for d a constant;
we present the case of d = 1 for clarity.
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Consider a database D of n points in [0, 1] in which the entries are discretized to b
bits of precision; our bounds will be polynomial in b (in Corollary 9 we show some dis-
cretization is necessary). Given a1 ≤ a2, both in [0, 1], let Ia1,a2 be the indicator function
corresponding to the interval [a1, a2]. That is:

Ia1,a2(x) =

{
1, a1 ≤ x ≤ a2;
0, otherwise.

Definition 9. An interval query Q[a1,a2] is defined to be

Q[a1,a2](D) =
∑
x∈D

Ia1,a2(x)

|D| .

Note that GSQ[a1,a2]
= 1/n, and we may answer interval queries while preserving

α-differential privacy by adding noise proportional to Lap(1/(αn)).

Given a database D, we will use α′-differential privacy preserving interval queries to
perform a binary search on the interval [0, 1] and partition it into sub-intervals containing
probability mass in the range [ε1/2−ε2, ε1/2+ε2]. Because of the discretization, the depth
of this search is at most b. We will then output a dataset that has (ε1/2) · n points in each
of these intervals. Because we have constructed this dataset using only a small number
of privacy preserving queries, its release will also preserve privacy, and it will be (ε, δ)-
useful for the class of interval queries with an appropriate choice of parameters. Finally,
this simple mechanism is clearly computationally efficient.

Theorem 6. With α′ = (εα)/4b, ε1 = (ε/2) and ε2 = (ε2/8), the above mechanism
preserves α-differential privacy while being (ε, δ)-useful for the class of interval queries
given a database of size:

|D| ≥ O

(
b(log b + log(1/εδ))

αε3

)

Proof. We first bound the number of privacy preserving queries our algorithm makes.
It finally produces 2/ε1 intervals. Since D is defined over a discretized space, we can
identify each interval with the at most b queries on its path through the binary search
procedure, and so we will make a total of at most 2b/ε1 = 4b/(ε) α′-differential privacy
preserving queries. Since the differential-privacy parameter composes, with α′ = (εα)/4b,
our algorithm indeed preserves α differential privacy.

Suppose that the binary search procedure indeed returns intervals each containing
probability mass in the range [ε1/2 − ε2, ε1/2 + ε2]. Any query will intersect at most
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two of these intervals only partially. In the worst case, this introduces ε1 = ε/2 error
to the query (ε1/2 error from each interval that partially overlaps with the query). Since
each query can only overlap at most 2/ε1 intervals, and each interval contains a probability
mass that deviates from the true probability mass in D by at most ε2, this introduces an
additional 2ε2/ε1 = ε/2 error, for a total error rate ≤ ε. Therefore, to complete the proof,
we only need to bound the size of D necessary such that the probability that any of the
2b/ε1 privacy preserving queries returns an answer that deviates from the true answer (in
D) by more than ε2 is less than δ. Let us call this event FAILURE. Since the event that
any single query has error rate ≥ ε2 is Pr[Lap(1/(α′n)) ≥ ε2] ≤ eα′ε2n, this follows from
a simple union bound:

Pr[FAILURE] ≤ 2b

ε1

e(−εα/4b)ε2n ≤ δ.

Solving, we find

n ≥ 4b(log 2b) + log(1/ε1δ)

αεε2

= O

(
b(log b + log(1/εδ))

αε3

)

is sufficient.

We note that although the class of intervals (and more generally, low dimensional axis-
aligned rectangles) is a simple class of functions, it nevertheless contains exponentially (in
b) many queries, and so it is not feasible to simply ask all possible interval queries using
an interactive mechanism.

While it is true that intervals (and low dimensional axis-aligned rectangles) have con-
stant VC-dimension and polynomial ε-cover size, we can trivially extend the above results
to the class of unions of t intervals by dividing ε by t and answering each interval sep-
arately. This class has VC-dimension O(t) and exponentially large ε-cover size, and the
running time of our algorithm grows by only a factor of t. This yields the following theo-
rem:

Theorem 7. There exist classes of functions C with VC-Dimension t for which there are
differentially private release mechanisms M that have running time poly(t) and data re-
quirements poly(t, α, 1/ε, log 1/δ, log X) such that M is (ε, δ) useful with respect to C,
and preserves α-differential privacy.
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3.5 Lower bounds

Could we possibly modify the results of Sections 3.4 and 3.3 to hold for non-discretized
databases? Suppose we could usefully answer an arbitrary number of queries in some
simple concept class C representing interval queries on the real line (for example, “How
many points are contained within the following interval?”) while still preserving privacy.
Then, for any database containing single-dimensional real valued points, we would be able
to answer median queries with values that fall between the 1/2 − δ, 1/2 + δ percentile of
database points by performing a binary search on D using A (where δ = δ(ε) is some small
constant depending on the usefulness parameter ε). However, answering such queries is
impossible while guaranteeing differential privacy. Unfortunately, this would seem to rule
out usefully answering queries in simple concept classes such as halfspaces and axis-
aligned rectangles, that are generalizations of intervals.

Theorem 8. No mechanism A can answer median queries M with outputs that fall be-
tween the 1/2−k, 1/2+k percentile with positive probability on any real valued database
D, while still preserving α-differential privacy, for k < 1/2 and any α.

Proof. Consider real valued databases containing elements in the interval [0, 1]. Let
D0 = (0, . . . , 0) be the database containing n points with value 0. Then we must have
Pr[A(D0,M) = 0] > 0. Since [0, 1] is a continuous interval, there must be some value
v ∈ [0, 1] such that Pr[A(D0,M) = v] = 0. Let Dn = (v, . . . , v) be the database con-
taining n points with value v. We must have Pr[A(Dn,M) = v] > 0. For 1 < i < n,
let Di = (0, . . . , 0︸ ︷︷ ︸

n−i

, v, . . . , v︸ ︷︷ ︸
i

). Then we must have for some i, Pr[A(Di,M) = v] = 0 but

Pr[A(Di+1,M) = v] > 0. But since Di and Di+1 differ only in a single element, this
violates differential privacy.

Corollary 9. No mechanism can be (ε, δ)-useful for the class of interval queries, nor for
any class C that generalizes interval queries to higher dimensions (for example, halfs-
paces, axis-aligned rectangles, or spheres), while preserving α-differential privacy, for
any ε = o(n) and any α.

Proof. Consider any real valued database containing elements in the interval [0, 1]. If A is
(ε, δ)-useful for interval queries and preserves differential privacy, then we can construct
a mechanism A′ that can answer median queries with outputs that fall between the 1/2 −
k, 1/2 + k percentile with positive probability while preserving differential privacy. By
Theorem 8, this is impossible. A′ simply computes D̂ = A(D), and performs binary
search on D̂ to find some interval [0, a] that contains n/2± ε points. Privacy is preserved
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since we only access D through A, which by assumption preserves differential privacy.
With positive probability, all interval queries on D̂ are correct to within ±ε, and so the
binary search can proceed. Since ε = o(n), the result follows.

We may get around the impossibility result of Corollary 9 by relaxing our definitions.
One approach is to discretize the database domain, as we do in Sections 3.3 and 3.4.
Another approach, which we take in Section 3.6, is to relax our definition of usefulness:

Definition 10 (Usefulness definition 2). A database mechanism A is (ε, δ, γ)-useful for
queries in class C according to some metric d if with probability 1 − δ, for every Q ∈ C
and every database D, |Q(A(D))−Q′(D)| ≤ ε for some Q′ ∈ C such that d(Q,Q′) ≤ γ.

We remark that this relaxed definition of usefulness corresponds to the idea of margin
in learning theory. In the next section, we instantiate this to give a mechanism for large-
margin halfspace queries. We may alternatively view it as follows: we wish to receive
an estimate of the fraction of positive points according to a halfspace classifier that must
correctly classify any point that is “very” positive or negative (i.e. far from the halfspace),
but is given the freedom to misclassify points that are very near the halfspace. This might
be an acceptable guarantee if we believe that our data is drawn from a noisy source, and
have low confidence for the classification of points that lie very near the target halfspace.

3.6 Answering Halfspace Queries

Here, we consider databases that contain n elements in Rd. In this section, we show
how to efficiently release information useful (according to definition 10) for the class of
halfspace queries for any constant γ > 0. Throughout this section, we assume without loss
of generality that the database points are scaled into the unit sphere. Additionally, when
we project the points into a lower-dimensional space, we rescale them to the unit sphere.
A halfspace query specifies a hyperplane in Rd and asks how many points fall above it:

Definition 11. Given a database D ⊂ Rd and unit length y ∈ Rd, a halfspace query Hy is

Hy(D) =
|{x ∈ D :

∑d
i=1 xi · yi ≥ 0}|
|D| .

The assumption that halfspaces pass through the origin is without loss of generality
since we can view translated halfspaces as passing through the origin in a space of dimen-
sion d + 1.
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In this section, we give an algorithm that is (ε, δ, γ)-useful for the class of halfspace
queries. For a point x we will write x̂ for the normalization x/||x||2. We define the distance
between a point x and a halfspace Hy by d(x,Hy) = |x̂ · y|. For convenience, we define
the distance between two halfspaces Hy1 and Hy2 to be the sin of the angle between y1 and
y2; by a slight abuse of notation, we will denote this by d(y1, y2). In particular, for a point
x and two halfpaces Hy1 and Hy2 , d(x,Hy1) ≤ d(x, Hy2) + d(y1, y2). If d(y1, y2) ≤ γ we
say that Hy1 and Hy2 are γ-close. Given a halfspace Hy1 , our goal is to output a value v
such that |v − Hy2(D)| < ε for some Hy2 that is γ-close to Hy1 . Equivalently, we may
arbitrarily count or not count any point x ∈ D such that d(x,Hy1) ≤ γ. We note that γ
is similar to the notion of margin in machine learning, and that even if Hy1 and Hy2 are
γ-close, this does not imply that Hy1(D) and Hy2(D) are close, unless most of the data
points are outside a γ margin of Hy1 and Hy2 .

We circumvent the halfspace-lower bound of Corollary 9 by considering a class of
discretized halfspaces:

Definition 12. A halfspace query Hy is b-discretized if for each i ∈ [d], yi can be specified
with b-bits. Let Cb be the set of all b-discretized halfspaces in Rd.

We first summarize the algorithm, with the parameters to be specified later. Our use
of random projections is similar to that in the work of Indyk and Motwani [IM98] on
approximate nearest neighbor queries.

Our algorithm performs m random projections P1, . . . , Pm of the data onto Rk. A
random projection of n points from Rd to Rk is defined as follows:

Definition 13. A random projection Pi from Rd to Rk is defined by a d× k random matrix
Mi with entries chosen independently and uniformly at random from {−1, 1}. We write
the projection of point x ∈ Rd as Pi(x) = (1/

√
k)x · Mi. We write the projection of a

database D ∈ (Rd)n as Pi(D) = {Pi(x) : x ∈ D}.

For each projected database Pi(D) we ask O(1/γk−1) privacy-preserving canonical
halfspace queries. To answer a halfspace query Hy, for each projection Pi, we consider
HPi(y) and associate with it the answer of the closest canonical halfspace in that projection.
Finally, we return the median value of these queries over all m projections.

Theorem 10 (Johnson-Lindenstrauss [DG99, BBV06]). Consider a random projection P
of a point x and a halfspace Hy onto a random k-dimensional subspace. Then

Pr[|d(x,Hy)− d(P (x), HP (y))| ≥ γ/4] ≤ 2e−((γ/16)2−(γ/16)3)k/4.

That is, projecting x and Hy significantly changes the distance between the point and the
halfspace with only a small probability.
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We choose k such that the probability that projecting a point and a halfspace changes
their distance by more than γ/4 is at most ε1/4. Solving, this yields

k ≥ 4 ln(8/ε1)

(γ/16)2 − (γ/16)3
.

Given a halfspace Hy and a point x, we say that a projection P makes a mistake relative
to x and Hy if d(x,Hy) ≥ γ/4, but sign(x · y) 6= sign(P (x) · P (y)). We have chosen k
such that the expected fraction of mistakes relative to any halfspace Hy in any projection P
is at most ε1/4. By Markov’s inequality, therefore, the probability that a projection makes
more than ε1n mistakes relative to a particular halfspace is at most 1/4.

The probability δ1 that more than m/2 projections make more than ε1n mistakes rel-
ative to any discretized halfspace is at most 2bde−m/12 by a Chernoff bound and a union
bound. Solving for m, this gives

m ≥ 12

(
ln

(
1

δ1

)
+ ln(2)bd

)
.

For each projection Pi, we select a (3/4)γ-net of halfspaces Ni, such that for every
vector y1 ∈ Rk corresponding to halfspace Hy1 , there exists a halfspace Hy2 ∈ Ni such
that d(y1, y2) ≤ (3/4)γ. We note that |Ni| = O(1/γk−1). For each projection Pi and for
each Hy ∈ Ni, we record the value of

vi
y = ML(Pi(D), Hy, α/(m|Ni|)).

We note that since we make m|Ni| queries in total, these queries preserve α-differential
privacy.

Taking a union bound over the halfspaces in each Ni, we find that the proba-
bility δ2 that any of the vi

y differ from Hy(Pi(D)) by more than ε2 is at most m ·
O(1/γ)k−1e−(ε2nα)/(mO(1/γk−1)). Solving for n, we find that

n ≥ log(1/δ2) + log m + (k − 1) log(1/γ) + mO(1/γ)k−1

ε2α

= O

(
1

ε2α

(
log(1/δ2) + log log 1/δ1 + log bd + log(1/ε1)

+ (log 1/δ1 + bd)(1/ε1)
(4 log(1/γ))/((γ/16)2−(γ/16)3)

))
.
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To respond to a query Hy, for each projection Pi we first compute

Hy′i = argmin
Hy′

i
∈Ni

d(P (y), y′i).

We recall that by construction, d(P (y), y′i) ≤ (3/4)γ. We then return the median value
from the set {vi

y′i
: i ∈ [m]}.

Theorem 11. The above algorithm is (ε, γ, δ)-useful while
maintaining α-differential privacy for a database of size
poly(log(1/δ), 1/ε, 1/α, b, d) and running in time poly(log(1/δ), 1/ε, 1/α, b, d), for
constant γ.

Proof. Above, we set the value of m such that for any halfspace query Hy, with proba-
bility at most δ1, no more than an ε1 fraction of the points have the property that they are
outside of a γ margin of Hy but yet their projections are within a (3/4)γ margin of HPi(y),
where i is the index of the median projection. Therefore, answering a query Hy′ , where
y′ is (3/4)γ-close to Pi(y), only introduces ε1 error. Moreover, we have chosen n such
that except with probability δ2, the privacy-preserving queries introduce no more than an
additional ε2 error. The theorem follows by setting ε1 = ε2 = ε/2 and δ1 = δ2 = δ/2, and
setting n,m, and k as above.

3.7 Distributional Privacy

In this section, we propose an alternative definition of privacy motivated by the idea that
private databases are actually collections of individuals drawn from some underlying pop-
ulation. Our definition formalizes the idea that we want algorithms that give us informa-
tion about the underlying population, without providing any information that is specific
to the sample. Our definition will guarantee that with high probability, the outcomes of a
private mechanism when run on two databases sampled from the same underlying popu-
lation should be indistinguishable. For each mechanism, we will require that this property
hold for every population simultaneously, which will give us a stronger guarantee than
differential privacy.

We say that an interactive database mechanism A satisfies (α, β)-distributional privacy
if for any underlying population of database elements D, with probability 1 − β, two
databases D1 and D2 consisting of n elements drawn without replacement fromD, for any
query Q and output x satisfies

Pr[A(D1, Q) = x] ≤ eα Pr[A(D2, Q) = x].
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Similarly, for non-interactive mechanisms, a mechanism A satisfies (α, β)-distributional
privacy if for any underlying population of database elements D, with probability 1 − β,
two databases D1 and D2 consisting of n elements drawn without replacement from D,
and for all sanitized outputs D̂,

Pr[A(D1) = D̂] ≤ eα Pr[A(D2) = D̂].

For example, suppose that a collection of hospitals in a region each treats a random sample
of patients with disease X . Distributional privacy means that a hospital can release its data
anonymously, without necessarily revealing which hospital the data came from. Actually,
our main motivation is that this definition is particularly natural from the perspective of
learning theory: given a sample of points drawn from some distribution D, one would like
to reveal no more information about the sample than is inherent in D itself.

We will typically think of β as being exponentially small, whereas α must be Ω(1/n)
for A to be useful.

3.7.1 Relationship Between Definitions

It is not a priori clear whether either differential privacy or distributional privacy is a
stronger notion than the other, or if the two are equivalent, or distinct. On the one hand,
differential privacy only provides a guarantee when D1 and D2 differ in a single element,4

whereas distributional privacy can provide a guarantee for two databases D1 and D2 that
differ in all of their elements. On the other hand, distributional privacy makes the strong
assumption that the elements in D1 and D2 are drawn from some distribution D, and al-
lows for privacy violations with some exponentially small probability β (necessarily: with
some small probability, two databases drawn from the same distribution might neverthe-
less be statistically completely different). However, as we show, distributional privacy is a
strictly stronger guarantee than differential privacy. For clarity, we prove this for interac-
tive mechanisms only, but the results hold for non-interactive mechanisms as well, and the
proofs require little modification.

Theorem 12. If A satisfies (α, β)-distributional privacy for any β = o(1/n2), then A
satisfies α-differential privacy.

Proof. Consider any database D1 drawn from domain R, and any neighboring database
D2 that differs from D1 in only a single element x ∈ R. Let D be the uniform distribution
over the set of n + 1 elements D1 ∪ {x}. If we draw two databases D′

1, D
′
2 from D, then

4We get tα-differential privacy for D1 and D2 that differ in t elements.
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with probability 2/n2 we have {D′
1, D

′
2} = {D1, D2}, and so if β = o(1/n2), we have

with certainty that for all outputs D̂ and for all queries Q,

Pr[A(D1, Q) = D̂] ≤ eα Pr[A(D2, Q) = D̂].

Therefore, A satisfies α-differential privacy.

We now give an example to show that distributional privacy is a strictly stronger guar-
antee than differential privacy.

Definition 14. Define the mirrored mod m function as follows:

Fm(x) =

{
x mod m, if x mod 2m < m;
2m− x− 1 mod m, otherwise.

For a database D ∈ {0, 1}n, define the query

Qm(D) =
Fm(

∑n−1
i=0 D[i])

|D| .

Note that the global sensitivity of any query Qm satisfies GSQm ≤ 1/n. Therefore, the
mechanism A that answers queries Qn by A(D, Qm) = Qm(D) + Z where Z is drawn
from Lap(1/(αn)) = Lap(GSQm/α) satisfies α-differential privacy, which follows from
the results of Dwork et al. [DMNS06].

Theorem 13. There exist mechanisms A with α-differential privacy, but without (α, β)-
distributional privacy for any α < 1, β = o(1) (that is, for any meaningful values of
α, β).

Proof. Consider databases with elements drawn fromD = {0, 1}n and the query Q2/α. As
observed above, a mechanism A such that A(D,Qi) = Qi(D) + Z for Z ∼ Lap(1/(αn))
has α-differential privacy for any i. Note however that with constant probability, two
databases D1, D2 drawn from D have |Q2/α(D1) − Q2/α(D2)| ≥ 1/(αn). Therefore, for
any output x, we have that with constant probability,

Pr[A(D1, Q2/α) = x]

Pr[A(D2, Q2/α) = x]
= e−α|Q2/α(D1)−Q2/α(D2)|

≤ e−αn( 1
αn

)

=
1

e
.
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Although there are simpler functions for which preserving distributional privacy re-
quires more added noise than preserving differential privacy, the mirrored-mod function
above is an example of a function for which it is possible to preserve differential privacy
usefully, but yet impossible to reveal any useful information while preserving distribu-
tional privacy.

We emphasize that the order of quantifiers is important in the definition of distribu-
tional privacy: a distributionally private mechanism must provide a simultaneous guar-
antee for all possible underlying populations, and it is for this reason that distributional
privacy is stronger than differential privacy. We also note that in order for distributional
privacy to imply differential privacy, it is important that in the definition of distributional
privacy, database elements are drawn from some underlying populationD without replace-
ment. Otherwise, for any non-trivial distribution, there is some database D∗ that is drawn
with probability at most 1/2n, and we may modify any distributional-privacy preserv-
ing mechanism A such that for every query Q, A(D∗, Q) = D∗, and for any Di 6= D∗,
A(Di, Q) behaves as before. Since this new behavior occurs with probability ≤ β over
draws from D for β = O(1/2n), A still preserves distributional privacy, but no longer pre-
serves differential privacy (which requires that the privacy guarantee hold for every pair of
neighboring databases).

3.8 Lower Bounds

3.8.1 VC Dimension Lower Bounds

In this chapter, we have provided upper bounds on the sample complexity necessary for
a useful and private data release mechanism in terms of the VC-dimension of the class of
queries of interest. It is also possible to prove lower bounds on sample complexity in terms
of VC-dimension. However, we defer the discussion of these lower bounds until Chapter
5, in which we prove these lower bounds in a more general setting.

3.8.2 Parity: a 1/
√

n lower bound

Dwork et al. [DMNS06] provide a separation between interactive and non-interactive
differential-privacy preserving mechanisms for a class of queries that are not predi-
cate queries. They also provide a separation between interactive and non-interactive
“randomized-response” mechanisms for parity queries (defined below), which are pred-
icate queries. “Randomized-response” mechanisms are a class of non-interactive mecha-
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nisms that independently perturb each point in D and release the independently perturbed
points. Here, we provide a small separation between interactive mechanisms and arbi-
trary non-interactive mechanisms that output datasets useful for parity queries. We prove
this separation for mechanisms that preserve differential privacy—our separation therefore
also holds for distributional-privacy preserving mechanisms.

Definition 15. Given a database D containing n points in {−1, 1}d, and for S ⊆
{1, . . . , d}, a parity query is given by

PQS =

∣∣{x ∈ D :
∏

i∈S xi = 1}
∣∣

|D| .

We show that for any non-interactive mechanism A that preserves α-differential pri-
vacy for α = Ω(1/poly(n)) and outputs a database D̂ = A(D), there exists some
S ⊆ {1, . . . , d} such that |PQS(D̂)− PQS(D)| = Ω(1/

√
n). This provides a separation,

since for any S, GSPQS
= 1/n, and so for for any S, with high probability, the interactive

mechanism A(D,Q) of [DMNS06] satisfies |A(D, PQS) − PQS(D)| = o(1/
√

n) while
satisfying α-differential privacy. This also shows that our bound from Theorem 4 cannot
be improved to have a o(1/ε2) dependence on ε.

We begin with the claim that given some database D consisting of n distinct points in
{−1, 1}d, any non-interactive α-differential privacy preserving mechanism that outputs a
sanitized database must with high probability output a database D̂ that differs from D on
at least half of its points.

Claim 14. If the non-interactive mechanism A preserves α-differential privacy for α =
Ω(1/poly(n)), Pr[|D̂ ∩D| ≥ n/2] < 1/2.

We next present a few facts from discrete Fourier analysis.

Proposition 15. For any function h : {−1, 1} → R, we may express h as a linear com-
bination of parity functions: h(x) =

∑
S⊆{1,...,d} ĥ(S)χS(x), where χS(x) =

∏
i∈S xi.

Moreover, the coefficients ĥ(S) take values

ĥ(S) =
1

2d

∑

x∈{−1,1}d

g(x)χS(x).

Proposition 16 (Parseval’s Identity). For any function h : {−1, 1} → R,

1

2d

∑

x∈{−1,1}d

h(x)2 =
∑

S⊆{1,...,d}
ĥ(S)2.
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Lemma 2. For D1, D2 ∈ ({−1, 1}d)n, if |D1∩D2| ≤ n/2, then there exists S ∈ {1, . . . , d}
such that |PQS(D1)− PQS(D2)| = Ω(1/

√
n)5.

Proof. Let f(x) : {−1, 1}d → {0, 1} be the indicator function of D1: f(x) = 1 ⇔ x ∈
D1. Similarly, let g(x) : {−1, 1}d → {0, 1} be the indicator function of D2. By our
hypothesis, ∑

x∈{−1,1}n

|f(x)− g(x)| ≥ n/2.

Therefore,

n/2 ≤
∑

x∈{−1,1}d

|f(x)− g(x)|

=
∑

x∈{−1,1}d

(f(x)− g(x))2

= 2d
∑

S⊆{1,...,d}
(f̂(S)− ĝ(S))2,

where the first equality follows from the fact that f and g have range {0, 1}, and the second
follows from Parseval’s identity and the linearity of Fourier coefficients. Therefore, there
exists some S ⊆ {1, . . . , d} such that (f̂(S)− ĝ(S))2 ≥ n/22d+1, and so |f̂(S)− ĝ(S)| ≥√

n/(2d
√

2)). We also have

f̂(S)− ĝ(S)

=
1

2d

∑

x∈{−1,1}d

f(x)χS(x)− 1

2d

∑

x∈{−1,1}d

g(x)χS(x)

=
1

2d

∑
x∈D1

χS(x)− 1

2d

∑
x∈D2

χS(x)

=
n

2d−1
(PQS(D1)− PQS(D2)).

Therefore, |(PQS(D1)− PQS(D2)| ≥ Ω(1/
√

n), which completes the proof.

Combining the Claim 14 and Lemma 2, we get our result:

Theorem 17. For any non-interactive mechanism A that outputs a database D̂1 = A(D1)
and preserves α-differential privacy for α = Ω(1/poly(n)), with probability > 1/2 there
exists some S ⊆ {1, . . . , d} such that |PQS(D1)− PQS(D̂1)| = Ω(1/

√
n).

5Note that we are implicitly assuming that d = Ω(log n)

36



3.9 Conclusions

In this work, we view the problem of database privacy through the lens of learning theory.
This suggests both a new definition of privacy, distributional privacy (which we show is
strictly stronger than differential privacy), and the idea that we can study usefulness rel-
ative to particular classes of functions. We are able to show that it is possible to release
privacy-preserving databases that are useful for all queries over a discretized domain in
a concept class with polynomial VC-dimension. We show that this discretization is nec-
essary by proving that it is impossible to privately release a database that is useful for
halfspace queries without relaxing our definition of usefulness, but we demonstrate an
algorithm that does so efficiently under a small relaxation of this definition.

This work demonstrates that the existing very strong lower bounds for useful, privacy-
preserving, non-interactive mechanisms are not insurmountable, but can be circumvented
by a number of reasonable relaxations to the standard definitions. However, our paper
leaves a number of important questions open. Prime among them is the question of ef-
ficient private data release—we have shown that information theoretically it is possible
to release a database that is useful for any concept class with polynomial VC-dimension
(under our original, strong definition of usefulness) while preserving differential privacy,
but we know how to do this efficiently only for the simplest classes of functions. Is it
possible to efficiently privately and usefully release a database for every concept class with
polynomial VC-Dimension? Is it possible for the class of conjunctions? For the class of
parity functions?

We have also only managed to achieve high accuracy private data release at the cost
of interactivity. Our mechanisms must be given all of their queries up front. In the next
chapter, however, we show that this restriction is not necessary by giving a mechanism
which achieves roughly the same bounds, but in the online setting.
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Chapter 4

Answering Queries Interactively: The
Median Mechanism

4.1 Introduction

Achieving differential privacy requires “sufficiently noisy” answers [DN03]. For example,
suppose we’re interested in the result of a query f — a function from databases to some
range — that simply counts the fraction of database elements that satisfy some predicate
ϕ on X . A special case of a result in Dwork et al. [DMNS06] asserts that the following
mechanism is α-differentially private: if the underlying database is D, output f(D) + ∆,
where the output perturbation ∆ is drawn from the Laplace distribution Lap( 1

nα
) with

density p(y) = nα
2

exp(−nα|y|). Among all α-differentially private mechanisms, this one
(or rather, a discretized analog of it) maximizes user utility in a strong sense [GRS09].

What if we care about more than a single one-dimensional statistic? Suppose we’re
interested in k predicate queries f1, . . . , fk, where k could be large, even super-polynomial
in n. A natural solution is to use an independent Laplace perturbation for each query
answer [DMNS06]. To maintain α-differential privacy, the magnitude of noise has to scale
linearly with k, with each perturbation drawn from Lap( k

nα
). Put another way, suppose one

fixes “usefulness parameters” ε, δ, and insists that the mechanism is (ε, δ)-useful, meaning
that the outputs are within ε of the correct query answers with probability at least 1 − δ.
This constrains the magnitude of the Laplace noise, and the privacy parameter α now
suffers linearly with the number k of answered queries. This dependence limits the use of
this mechanism to a sublinear k = o(n) number of queries.

In Chapter 3 we showed that it is in principle possible to do better. Specifically, in
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chapter 3 the exponential mechanism of McSherry and Talwar [MT07] is used to show
that, for fixed usefulness parameters ε, δ, the privacy parameter α only has to scale loga-
rithmically with the number of queries.1 This permits simultaneous non-trivial utility and
privacy guarantees even for an exponential number of queries. Moreover, this dependence
on log k is necessary in every differentially private mechanism (see the lower bound in
Chapter 5).

The mechanism in chapter 3 suffers from two drawbacks, however. First, it is non-
interactive: it requires all queries f1, . . . , fk to be given up front, and computes (noisy)
outputs of all of them at once.2 By contrast, independent Laplace output perturbations
can obviously be implemented interactively, with the queries arriving online and each an-
swered immediately. There is good intuition for why the non-interactive setting helps:
outperforming independent output perturbations requires correlating perturbations across
multiple queries, and this is clearly easier when the queries are known in advance. In-
deed, prior to the present work, no interactive mechanism better than independent Laplace
perturbations was known.

Second, the mechanism in Chapter 3 is highly inefficient. It does not run even in time
polynomial in the size of the database domain X , which we itself often view as exponential
in the natural parameters of the problem. As a minimal goal, we might want a mechanism
that has running time polynomial in n, k, and |X|; Dwork et al. [DNR+09] prove that this
is essentially the best one could hope for (under certain cryptographic assumptions). The
mechanism in chapter 4 does not achieve even this because it requires sampling from a
non-trivial probability distribution over an unstructured space of exponential size. Dwork
et al. [DNR+09] recently gave a (non-interactive) mechanism running in time polynomial
in X that is better than independent Laplace perturbations, in that the privacy parameter
α of the mechanism scales as 2

√
log k with the number of queries k (for fixed usefulness

parameters ε, δ).

Very recently, Hardt and Talwar [HT10] gave upper and lower bounds for answering
noninteractive linear queries which are tight in a related setting. These bounds are not
tight in our setting, however, unless the number of queries is small with respect to the
size of the database. When the number of queries is large, our mechanism actually yields
error significantly less than required in general by their lower bound 3. This is not a

1More generally, linearly with the VC dimension of the set of queries, which is always at most log2 k.
2Or rather, it computes a compact representation of these outputs in the form of a synthetic database.
3We give a mechanism for answering k “counting queries” with (unnormalized) coordinate-wise er-

ror O(n2/3 log k(log |X|/α)1/3). This is less error than required by their lower bound of roughly
Ω(

√
k log(|X|/k)/α) unless k ≤ Õ((nα/ log |X|)4/3). We can take k to be as large as k =

Ω̃(2(nα/ log |X|)1/3
), in which case our upper bound is a significant improvement – as are the upper bounds
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contradiction, because when translated into the setting of [HT10], our database size n
becomes a sparsity parameter that is not considered in their bounds.

4.1.1 Our Results

We define a new interactive differentially private mechanism for answering k arbitrary
predicate queries, called the median mechanism.4 The basic implementation of the me-
dian mechanism interactively answers queries f1, . . . , fk that arrive online, is (ε, δ)-useful,
and has privacy α that scales with log k log |X|; see Theorem 18 for the exact statement.
These privacy and utility guarantees hold even if an adversary can adaptively choose each
fi after seeing the mechanism’s first i − 1 answers. This is the first interactive mecha-
nism for answering predicate queries with noise less than the Laplace mechanism, and its
performance is close to the best possible even in the non-interactive setting.

The basic implementation of the median mechanism does not run in time polynomial
in |X|, and we give a polynomial time variant with a somewhat weaker utility guaran-
tee. (The privacy guarantee is as strong as in the basic implementation.) This alternative
implementation runs in time polynomial in n, k, and |X|, and satisfies the following (Theo-
rem 22): for every sequence f1, . . . , fk of predicate queries, for all but a negligible fraction
of input distributions, the efficient median mechanism is (ε, δ)-useful.

This is the first efficient mechanism with a non-trivial utility guarantee and polyloga-
rithmic privacy cost, even in the non-interactive setting.

4.1.2 The Main Ideas

The key challenge to designing an interactive mechanism that outperforms the Laplace
mechanism lies in determining the appropriate correlations between different output per-
turbations on the fly, without knowledge of future queries. It is not obvious that anything
significantly better than independent perturbations is possible in the interactive setting.

Our median mechanism and our analysis of it can be summarized, at a high level, by
three facts. First, among any set of k queries, we prove that there are O(log k log |X|)
“hard” queries, the answers to which completely determine the answers to all of the other
queries (up to ±ε). Roughly, this holds because: (i) by a VC dimension argument, we can
focus on databases over X of size only O(log k); and (ii) every time we answer a “hard”

of [BLR08] and [DNR+09].
4The privacy guarantee is (α, τ)-differential privacy for a negligible function τ ; see Section ?? for defi-

nitions.
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query, the number of databases consistent with the mechanism’s answers shrinks by a con-
stant factor, and this number cannot drop below 1 (because of the true input database).
Second, we design a method to privately release an indicator vector which distinguishes
between hard and easy queries online. We note that a similar private ‘indicator vector’
technique was used by Dwork et al. [DNR+09]. Essentially, the median mechanism
deems a query “easy” if a majority of the databases that are consistent (up to ±ε) with
the previous answers of the mechanism would answer the current query accurately. The
median mechanism answers the small number of hard queries using independent Laplace
perturbations. It answers an easy query (accurately) using the median query result given by
databases that are consistent with previous answers. A key intuition is that if a user knows
that query i is easy, then it can generate the mechanism’s answer on its own. Thus an-
swering an easy query communicates only a single new bit of information: that the query
is easy. Finally, we show how to release the classification of queries as “easy” and “hard”
with low privacy cost; intuitively, this is possible because (independent of the database)
there can be only O(log k log |X|) hard queries.

Our basic implementation of the median mechanism is not efficient for the same rea-
sons as for the mechanism in [BLR08]: it requires non-trivial sampling from a set of
super-polynomial size. For our efficient implementation, we pass to fractional databases,
represented as fractional histograms with components indexed by X . Here, we use the
random walk technology of Dyer, Frieze, and Kannan [DFK91] for convex bodies to per-
form efficient random sampling. To explain why our utility guarantee no longer holds for
every input database, recall the first fact used in the basic implementation: every answer
to a hard query shrinks the number of consistent databases by a constant factor, and this
number starts at |X|O(log k) and cannot drop below 1. With fractional databases (where
polytope volumes play the role of set sizes), the lower bound of 1 on the set of consistent
(fractional) databases no longer holds. Nonetheless, we prove a lower bound on the vol-
ume of this set for almost all fractional histograms (equivalently probability distributions),
which salvages the O(log k log |X|) bound on hard queries for databases drawn from such
distributions.

4.1.3 Related Work

The central questions in the study of private data release are first, “to what accuracy ε
can a single query be answered while preserving α-differential privacy”, and second, once
satisfied with an accuracy ε, “how must the privacy cost α of ε-accurate data release scale
with the number of queries answered?” The answer to the first question is already well un-
derstood (see [DMNS06, NRS07, GRS09]). In this work we address the second question.
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This question has been studied from several perspectives, and an important distinction in
the field has been the difference between interactive and non-interactive mechanisms. A
non-interactive mechanism takes as input a set of queries (all at once), and then privately
outputs either a set of answers, or a data structure from which the set of answers can be
recovered5. An interactive mechanism receives and answers queries online, and the entire
transcript of the mechanism must be privacy preserving.

The first differentially-private mechanism proposed was the Laplace mechanism of
Dwork et al. [? ]. The Laplace mechanism interactively answers queries by computing
their answers, and adding to them noise drawn from the Laplace distribution with magni-
tude proportional to the sensitivity of the query. The Laplace mechanism has the advantage
of being simple, efficient, and interactive, and it can answer a small number of insensitive
queries highly accurately – in fact, for a single query, its discrete analogue (the geomet-
ric mechanism) was recently proved to be optimal [GRS09]. However, since it handles
each query independently, when used to answer k queries, the privacy cost of the Laplace
mechanism scales linearly with k. Until this work this was the best known dependence on
k for interactive privacy preserving mechanisms.

In Chapter 3 we gave a non-interactive mechanism for answering every query in some
set C with privacy cost that scales with the VC dimension of C. Since the VC dimension
of a set of functions is always upper bounded by the logarithm of its cardinality, this
mechanism has a privacy cost that scales with log k, for a set of k queries. Put another way,
given a privacy budget α and a utility constraint ε, the mechanism of Chapter 3 can answer
exponentially more queries than the Laplace mechanism. Moreover, this dependence on
log k was shown to be necessary for any privacy preserving mechanism (see Chapter 5).
Unfortunately, the mechansim of Chapter 3 cannot be implemented interactively, and was
not known how to be implemented efficiently.

Dwork et al. [DNR+09] show that modulo cryptographic assumptions, no mechanism
that has a privacy cost that depends only logarithmically in k can be implemented in time
poly(log k, log |X|), even non-interactively (although the question remains open for spe-
cific query classes of interest). They also give a mechanism that runs in time poly(k, |X|)
which has privacy cost which scales O(2

√
log k). Unfortunately, their mechanism also can-

not be implemented interactively.

In this paper, we give a mechanism which can be implemented interactively, and that
guarantees privacy cost which scales polylogarithmically in k. This is the first interactive
mechanism which has a sublinear dependence on k, and yields an exponential improve-

5This may take the form of, for example, a ‘synthetic dataset’ that is accurate on the set of queries posed
to the mechanism, but is nevertheless privacy preserving. Other kinds of data structures have been proposed,
however. See Chapter 3 and [DNR+09]
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ment in its dependence on k even compared to the best polynomial time non-interactive
mechanism. We first present the algorithm in an inefficient form, and then show how to
implement it in time polynomial in |X| by sampling from convex polytopes.

4.2 The Median Mechanism: Basic Implementation

We now describe the median mechanism and our basic implementation of it. As described
in the Introduction, the mechanism is conceptually simple. It classifies queries as “easy”
or “hard”, essentially according to whether or not a majority of the databases consistent
with previous answers to hard queries would give an accurate answer to it (in which case
the user already “knows the answer” if it is told that the query is easy). Easy queries
are answered using the corresponding median value; hard queries are answered as in the
Laplace mechanism.

To explain the mechanism precisely, we need to discuss a number of parameters. We
take the privacy parameter α, the accuracy parameter ε, and the number k of queries as
input; these are hard constraints on the performance of our mechanism.6 Our mechanism
obeys these constraints with a value of δ that is inverse polynomial in k and n, and a value
of τ that is negligible in k and n, provided n is sufficiently large (at least polylogarithmic
in k and |X|, see Theorem 18). Of course, such a result can be rephrased as a nearly
exponential lower bound on the number of queries k that can be successfully answered as
a function of the database size n.7

The median mechanism is shown in Figure 4.1, and it makes use of several additional
parameters. For our analysis, we set their values to:

m =
160000 ln k ln 1

ε

ε2
; (4.1)

α′ =
α

720m ln |X| = Θ

(
αε2

log |X| log k log 1
ε

)
; (4.2)

γ =
4

α′εn
ln

2k

α
= Θ

(
log |X| log2 k log 1

ε

αε3n

)
. (4.3)

6We typically think of α, ε as small constants, though our results remain meaningful for some sub-
constant values of α and ε as well. We always assume that α is at least inverse polynomial in k. Note that
when α or ε is sufficiently small (at most c/n for a small constant c, say), simultaneously meaningful privacy
and utility is clearly impossible.

7In contrast, the number of queries that the Laplace mechanism can privately and usefully answer is at
most linear.
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1. Initialize C0 = { databases of size m over X }.

2. For each query f1, f2, . . . , fk in turn:

(a) Define ri as in (4.4) and let r̂i = ri + Lap( 2
εnα′ ).

(b) Let ti = 3
4

+ j · γ, where j ∈ {0, 1, . . . , 1
γ

3
20
} is chosen with probability

proportional to 2−j .

(c) If r̂i ≥ ti, set ai to be the median value of fi on Ci−1.

(d) If r̂i < ti, set ai to be fi(D) + Lap( 1
nα′ ).

(e) If r̂i < ti, set Ci to the databases S of Ci−1 with |fi(S)−ai| ≤ ε/50; otherwise
Ci = Ci−1.

(f) If r̂j < tj for more than 20m log |X| values of j ≤ i, then halt and report
failure.

Figure 4.1: The Median Mechanism.

The denominator in (4.2) can be thought of as our “privacy cost” as a function of the
number of queries k. Needless to say, we made no effort to optimize the constants.

The value ri in Step 2(a) of the median mechanism is defined as

ri =

∑
S∈Ci−1

exp(−ε−1|fi(D)− fi(S)|)
|Ci−1| . (4.4)

For the Laplace perturbations in Steps 2(a) and 2(d), recall that the distribution Lap(σ) has
the cumulative distribution function

F (x) = 1− F (−x) = 1− 1

2
e−x/σ. (4.5)

The motivation behind the mechanism’s steps is as follows. The set Ci is the set of
size-m databases consistent (up to ±ε/50) with previous answers of the mechanism to
hard queries. The focus on databases with the small size m is justified by a VC dimension
argument, see Proposition 20. Steps 2(a) and 2(b) choose a random value r̂i and a random
threshold ti. The value ri in Step 2(a) is a measure of how easy the query is, with higher
numbers being easier. A more obvious measure would be the fraction of databases S in
Ci−1 for which |fi(S) − fi(D)| ≤ ε, but this is a highly sensitive statistic (unlike ri, see
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Lemma 7). The mechanism uses the perturbed value r̂i rather than ri to privately commu-
nicate which queries are easy and which are hard. In Step 2(b), we choose the threshold ti
at random between 3/4 and 9/10. This randomly shifted threshold ensures that, for every
database D, there is likely to be a significant gap between ri and ti; such gaps are useful
when optimizing the privacy guarantee. Steps 2(c) and 2(d) answer easy and hard queries,
respectively. Step 2(e) updates the set of databases consistent with previous answers to
hard queries. We prove in Lemma 6 that Step 2(f) occurs with at most inverse polynomial
probability.

Finally, we note that the median mechanism is defined as if the total number of queries
k is (approximately) known in advance. This assumption can be removed by using suc-
cessively doubling “guesses” of k; this increases the privacy cost by an O(log k) factor.

4.3 Analysis of Median Mechanism

This section proves the following privacy and utility guarantees for the basic implementa-
tion of the median mechanism.

Theorem 18. For every sequence of adaptively chosen predicate queries f1, . . . , fk arriv-
ing online, the median mechanism is (ε, δ)-useful and (α, τ)-differentially private, where
τ is a negligible function of k and |X|, and δ is an inverse polynomial function of k and n,
provided the database size n satisfies

n ≥ 30 ln 2k
α

log2 k

α′ε
= Θ

(
log |X| log3 k log 1

ε

αε3

)
. (4.6)

We prove the utility and privacy guarantees in Sections 4.3.1 and 4.3.2, respectively.8

4.3.1 Utility of the Median Mechanism

Here we prove a utility guarantee for the median mechanism.

Theorem 19. The median mechanism is (ε, δ)-useful, where δ = k exp(−Ω(εnα′)).

8If desired, in Theorem 18 we can treat n as a parameter and solve for the error ε. The maximum error
on any query (normalized by the database size) is O(log k log1/3 |X|/n1/3α1/3); the unnormalized error is
a factor of n larger.
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Note that under assumption (4.6), δ is inverse polynomial in k and n.

We give the proof of Theorem 19 in three pieces: with high probability, every hard
query is answered accurately (Lemma 4); every easy query is answered accurately (Lem-
mas 3 and 5); and the algorithm does not fail (Lemma 6). The next two lemmas follow
from the definition of the Laplace distribution (4.5), our choice of δ, and trivial union
bounds.

Lemma 3. With probability at least 1− δ
2
, |ri − r̂i| ≤ 1/100 for every query i.

Lemma 4. With probability at least 1 − δ
2
, every answer to a hard query is (ε/100)-

accurate for D.

The next lemma shows that median answers are accurate for easy queries.

Lemma 5. If |ri − r̂i| ≤ 1/100 for every query i, then every answer to an easy query is
ε-accurate for D.

Proof. For a query i, let Gi−1 = {S ∈ Ci−1 : |fi(D) − fi(S)| ≤ ε} denote the databases
of Ci−1 on which the result of query fi is ε-accurate for D. Observe that if |Gi−1| ≥
.51 · |Ci−1|, then the median value of fi on Ci−1 is an ε-accurate answer for D. Thus
proving the lemma reduces to showing that r̂i ≥ 3/4 only if |Gi−1| ≥ .51 · |Ci−1|.

Consider a query i with |Gi−1| < .51 · |Ci−1|. Using (4.4), we have

ri =

∑
S∈Ci−1

exp(−ε−1|fi(D)− fi(S)|)
|Ci−1|

≤ |Gi−1|+ e−1|Ci−1 \Gi−1|
|Ci−1|

≤ ( 51
100

+ 49
100e

)|Ci−1|
|Ci−1|

<
74

100
.

Since |ri − r̂i| ≤ 1/100 for every query i by assumption, the proof is complete.

Our final lemma shows that the median mechanism does not fail and hence answers ev-
ery query, with high probability; this will conclude our proof of Theorem 19. We need the
following preliminary proposition, which instantiates the standard uniform convergence
bound with the fact that the VC dimension of every set of k predicate queries is at most
log2 k [Vap96]. Recall the definition of the parameter m from (4.1).
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Proposition 20 (Uniform Convergence Bound). For every collection of k predicate
queries f1, . . . , fk and every database D, a database S obtained by sampling points from
D uniformly at random will satisfy |fi(D)− fi(S)| ≤ ε for all i except with probability δ,
provided

|S| ≥ 1

2ε2

(
log k + log

2

δ

)
.

In particular, there exists a database S of size m such that for all i ∈ {1, . . . , k},
|fi(D)− fi(S)| ≤ ε/400.

In other words, the results of k predicate queries on an arbitrarily large database can
be well approximated by those on a database with size only O(log k).

Lemma 6. If |ri − r̂i| ≤ 1/100 for every query i and every answer to a hard query
is (ε/100)-accurate for D, then the median mechanism answers fewer than 20m log |X|
hard queries (and hence answers all queries before terminating).

Proof. The plan is to track the contraction of Ci as hard queries are answered by the
median mechanism. Initially we have |C0| ≤ |X|m. If the median mechanism answers a
hard query i, then the definition of the mechanism and our hypotheses yield

ri ≤ r̂i +
1

100
< ti +

1

100
≤ 91

100
.

We then claim that the size of the set Ci = {S ∈ Ci−1 : |fi(S) − ai| ≤ ε/50} is at most
94
100
|Ci−1|. For if not,

ri =

∑
S∈Ci−1

exp(−ε−1|fi(S)− fi(D)|)
|Ci−1|

≥ 94

100
· exp

(
− 1

50

)
>

92

100
,

which is a contradiction.

Iterating now shows that the number of consistent databases decreases exponentially
with the number of hard queries:

|Ck| ≤
(

94

100

)h

|X|m (4.7)

if h of the k queries are hard.

48



On the other hand, Proposition 20 guarantees the existence of a database S∗ ∈ C0

for which |fi(S
∗) − fi(D)| ≤ ε/100 for every query fi. Since all answers ai produced

by the median mechanism for hard queries i are (ε/100)-accurate for D by assumption,
|fi(S

∗) − ai| ≤ |fi(S
∗) − fi(D)| + |fi(D) − ai| ≤ ε/50. This shows that S∗ ∈ Ck and

hence |Ck| ≥ 1. Combining this with (4.7) gives

h ≤ m ln |X|
ln(50/47)

< 20m ln |X|,

as desired.

4.3.2 Privacy of the Median Mechanism

This section establishes the following privacy guarantee for the median mechanism.

Theorem 21. The median mechanism is (α, τ)- differentially private, where τ is a negli-
gible function of |X| and k when n is sufficiently large (as in (4.6)).

We can treat the median mechanism as if it has two outputs: a vector of answers
a ∈ Rk, and a vector d ∈ {0, 1}k such that di = 0 if i is an easy query and di = 1 if i is
a hard query. A key observation in the privacy analysis is that answers to easy queries are
a function only of the previous output of the mechanism, and incur no additional privacy
cost beyond the release of the bit di. Moreover, the median mechanism is guaranteed to
produce no more than O(m log |X|) answers to hard queries. Intuitively, what we need to
show is that the vector d can be released after an unusually small perturbation.

Our first lemma states that the small sensitivity of predicate queries carries over, with
a 2/ε factor loss, to the r-function defined in (4.4).

Lemma 7. The function ri(D) = (
∑

S∈C exp(−ε−1|f(D)− f(S)|)/|C| has sensitivity 2
εn

for every fixed set C of databases and predicate query f .
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Proof. Let D and D′ be neighboring databases. Then

ri(D) =

∑
S∈C exp(−ε−1|f(D)− f(S)|)

|Ci|

≤
∑

S∈Ci
exp(−ε−1(|f(D′)− f(S)| − n−1))

|Ci|
= exp

(
1

εn

)
· ri(D

′)

≤
(

1 +
2

εn

)
· ri(D

′)

≤ ri(D
′) +

2

εn

where the first inequality follows from the fact that the (predicate) query f has sensitivity
1/n, the second from the fact that ex ≤ 1 + 2x when x ∈ [0, 1], and the third from the fact
that ri(D

′) ≤ 1.

The next lemma identifies nice properties of “typical executions” of the median mech-
anism. Consider an output (d, a) of the median mechanism with a database D. From D
and (d, a), we can uniquely recover the values r1, . . . , rk computed (via (4.4)) in Step 2(a)
of the median mechanism, with ri depending only on the first i−1 components of d and a.
We sometimes write such a value as ri(D, (d, a)), or as ri(D) if an output (d, a) has been
fixed. Call a possible threshold ti good for D and (d, a) if di = 0 and ri(D, (d, a)) ≥ ti+γ,
where γ is defined as in (4.3). Call a vector t of possible thresholds good for D and (d, a)
if all but 180m ln |X| of the thresholds are good for D and (d, a).

Lemma 8. For every database D, with all but negligible (exp(−Ω(log k log |X|/ε2)))
probability, the thresholds t generated by the median mechanism are good for its output
(d, a).

Proof. The idea is to “charge” the probability of bad thresholds to that of answering hard
queries, which are strictly limited by the median mechanism. Since the median mechanism
only allows 20m ln |X| of the di’s to be 1, we only need to bound the number of queries i
with output di = 0 and threshold ti satisfying ri < ti + γ, where ri is the value computed
by the median mechanism in Step 2(a) when it answers the query i.

Let Yi be the indicator random variable corresponding to the (larger) event that
ri < ti + γ. Define Zi to be 1 if and only if, when answering the ith query, the median
mechanism chooses a threshold ti and a Laplace perturbation ∆i such that ri + ∆i < ti
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(i.e., the query is classified as hard). If the median mechanism fails before reaching query i,
then we define Yi = Zi = 0. Set Y =

∑k
i=1 Yi and Z =

∑k
i=1 Zi. We can finish the proof

by showing that Y is at most 160m ln |X| except with negligible probability.

Consider a query i and condition on the event that ri ≥ 9
10

; this event depends only on
the results of previous queries. In this case, Yi = 1 only if ti = 9/10. But this occurs with
probability 2−3/20γ , which using (4.3) and (4.6) is at most 1/k.9 Therefore, the expected
contribution to Y coming from queries i with ri ≥ 9

10
is at most 1. Since ti is selected

independently at random for each i, the Chernoff bound implies that the probability that
such queries contribute more than m ln |X| to Y is

exp(−Ω((m log |X|)2)) = exp(−Ω((log k)2(log |X|)2/ε4)).

Now condition on the event that ri < 9
10

. Let Ti denote the threshold choices that
would cause Yi to be 1, and let si be the smallest such; since ri < 9

10
, |Ti| ≥ 2. For every

ti ∈ Ti, ti > ri−γ; hence, for every ti ∈ Ti\{si}, ti > ri. Also, our distribution on the j’s
in Step 2(b) ensures that Pr[ti ∈ Ti \ {si}] ≥ 1

2
Pr[ti ∈ Ti]. Since the Laplace distribution

is symmetric around zero and the random choices ∆i, ti are independent, we have

E[Zi] = Pr[ti > ri + ∆i]

≥ Pr[ti > ri] · Pr[∆i ≤ 0]

≥ 1
4
Pr[ti > ri − γ]

= 1
4
E[Yi]. (4.8)

The definition of the median mechanism ensures that Z ≤ 20m ln |X| with probabil-
ity 1. Linearity of expectation, inequality (4.8), and the Chernoff bound imply that
queries with ri < 9

10
contribute at most 159m ln |X| to Y with probability at least

1− exp(−Ω(log k log |X|/ε2)). The proof is complete.

We can now prove Theorem 21, namely that the median mechanism preserves (α, τ)
differential privacy where τ is a negligible function of |X| and k.

Proof of Theorem 21: Fix a database D, queries f1, . . . , fk, and a subset S of possible
mechanism outputs. For simplicity, we assume that all perturbations are drawn from a
discretized Laplace distribution, so that the median mechanism has a countable range;
the continuous case can be treated using similar arguments. Then, we can think of S
as a countable set of output vector pairs (d, a) with d ∈ {0, 1}k and a ∈ Rk. We

9For simplicity, we ignore the normalizing constant in the distribution over j’s in Step 2(b), which is
Θ(1).
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write MM(D, f) = (d, a) for the event that the median mechanism classifies the queries
f = (f1, . . . , fk) according to d and outputs the numerical answers a. If the mechanism
computes thresholds t while doing so, we write MM(D, f) = (t, d, a). Let G((d, a), D)
denote the vectors that would be good thresholds for (d, a) and D. (Recall that D and
(d, a) uniquely define the corresponding ri(D, (d, a))’s.)

We have
Pr[MM(D, f) ∈ S] =

∑

(d,a)∈S

Pr[MM(D, f) = (d, a)]

≤ τ +
∑

(d,a)∈S

Pr[MM(D, f) = (t, d, a)]

= τ +
∑

(d,a)∈S

∑

t∈G((d,a),D)

Pr[MM(D, f) = (t, d, a)]

with some t good for (d, a), D, and where τ is the negligible function of Lemma 8. We
complete the proof by showing that, for every neighboring database D′, possible output
(d, a), and thresholds t good for (d, a) and D,

Pr[MM(D, f) = (t, d, a)] ≤ eα · Pr[MM(D′, f) = (t, d, a)]. (4.9)

Fix a neighboring database D′, a target output (d, a), and thresholds t good for (d, a)
and D. The probability that the median mechanism chooses the target thresholds t is
independent of the underlying database, and so is the same on both sides of (4.9). For the
rest of the proof, we condition on the event that the median mechanism uses the thresholds
t (both with database D and database D′).

Let Ei denote the event that MM(D, f) classifies the first i queries in agreement with
the target output (i.e., query j ≤ i is deemed easy if and only if dj = 0) and that its
first i answers are a1, . . . , ai. Let E ′i denote the analogous event for MM(D′, f). Observe
that Ek, E ′k are the relevant events on the left- and right-hand sides of (4.9), respectively
(after conditioning on t). If (d, a) is such that the median mechanism would fail after
the `th query, then the following proof should be applied to E`, E ′` instead of Ek, E ′k. We
next give a crude upper bound on the ratio Pr[Ei|Ei−1]/ Pr[E ′i|E ′i−1] that holds for every
query (see (4.10), below), followed by a much better upper bound for queries with good
thresholds.

Imagine running the median mechanism in parallel on D, D′ and condition on the
events Ei−1, E ′i−1. The set Ci−1 is then the same in both runs of the mechanism, and
ri(D), ri(D

′) are now fixed. Let bi (b′i) be 0 if MM(D, f) (MM(D′, f)) classifies query i
as easy and 1 otherwise. Since ri(D

′) ∈ [ri(D) ± 2
εn

] (Lemma 7) and a perturbation
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with distribution Lap( 2
α′εn) is added to these values before comparing to the threshold ti

(Step 2(a)),
Pr[bi = 0 | Ei−1] ≤ eα′ Pr[b′i = 0 | E ′i−1]

and similarly for the events where bi, b
′
i = 1. Suppose that the target classification is

di = 1 (a hard query), and let si and s′i denote the random variables fi(D) + Lap( 1
α′n) and

fi(D
′) + Lap( 1

α′n), respectively. Independence of the Laplace perturbations in Steps 2(a)
and 2(d) implies that

Pr[Ei|Ei−1] = Pr[bi = 1 | Ei−1] · Pr[si = ai | Ei−1]

and
Pr[E ′i|E ′i−1] = Pr[b′i = 1 | E ′i−1] · Pr[s′i = ai | E ′i−1].

Since the predicate query fi has sensitivity 1/n, we have

Pr[Ei | Ei−1] ≤ e2α′ · Pr[E ′i | E ′i−1] (4.10)

when di = 1.

Now suppose that di = 0, and let mi denote the median value of fi on Ci−1. Then
Pr[Ei|Ei−1] is either 0 (if mi 6= ai) or Pr[bi = 0 | Ei−1] (if mi = ai); similarly, Pr[E ′i|E ′i−1]
is either 0 or Pr[b′i = 0 | E ′i−1]. Thus the bound in (4.10) continues to hold (even with e2α′

replaced by eα′) when di = 0.

Since α′ is not much smaller than the privacy target α (recall (4.2)), we cannot afford
to suffer the upper bound in (4.10) for many queries. Fortunately, for queries i with good
thresholds we can do much better. Consider a query i such that ti is good for (d, a) and D
and condition again on Ei−1, E ′i−1, which fixes Ci−1 and hence ri(D). Goodness implies
that di = 0, so the arguments from the previous paragraph also apply here. We can
therefore assume that the median value mi of fi on Ci−1 equals ai and focus on bounding
Pr[bi = 0 | Ei−1] in terms of Pr[b′i = 0 | E ′i−1]. Goodness also implies that ri(D) ≥ ti + γ
and hence ri(D

′) ≥ ti +γ− 2
εn
≥ ti +

γ
2

(by Lemma 7). Recalling from (4.3) the definition
of γ, we have

Pr[b′i = 0 | E ′i−1] ≥ Pr[ri − r̂i < γ
2
]

= 1− 1
2
e−γα′εn/4

= 1− α

4k
(4.11)

and of course, Pr[bi = 0 | Ei−1] ≤ 1.
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Applying (4.10) to the bad queries — at most 180m ln |X| of them, since t is good for
(d, a) and D — and (4.11) to the rest, we can derive

Pr[Ek] =
k∏

i=1

Pr[Ei : Ei−1]

≤ e360α′m ln |X|︸ ︷︷ ︸
≤eα/2 by (4.2)

· (1− α

4k
)−k

︸ ︷︷ ︸
≤(1+

α
2k

)k≤eα/2

·
k∏

i=1

Pr[E ′i : E ′i−1]

≤ eα · Pr[E ′k],

which completes the proof of both the inequality (4.9) and the theorem. ¥

4.4 The Median Mechanism: Polynomial Time Imple-
mentation

The basic implementation of the median mechanism runs in time |X|Θ(log k log(1/ε)/ε2). This
section provides an efficient implementation, running in time polynomial in n, k, and |X|,
although with a weaker usefulness guarantee.

Theorem 22. Assume that the database size n satisfies (4.6). For every sequence of adap-
tively chosen predicate queries f1, . . . , fk arriving online, the efficient implementation of
the median Mechanism is (α, τ)-differentially private for a negligible function τ . More-
over, for every fixed set f1, . . . , fk of queries, it is (ε, δ)-useful for all but a negligible
fraction of fractional databases (equivalently, probability distributions).

Specifically, our mechanism answers exponentially many queries for all but an
O(|X|−m) fraction of probability distributions over X drawn from the unit `1 ball, and
from databases drawn from such distributions. Thus our efficient implementation always
guarantees privacy, but for a given set of queries f1, . . . , fk, there might be a negligibly
small fraction of fractional histograms for which our mechanism is not useful for all k
queries.

We note an important nuance of our utility guarantee: even for the small fraction of
fractional histograms for which the efficient median mechanism may not satisfy our useful-
ness guarantee, it does not output incorrect answers: it merely halts after having answered
a sufficiently large number of queries using the Laplace mechanism. Therefore, even for
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this small fraction of databases, the efficient median mechanism is an improvement over
the Laplace mechanism: in the worst case, it simply answers every query using the Laplace
mechanism before halting, and in the best case, it is able to answer many more queries.

We give a high-level overview of the proof of Theorem 22 which we then make for-
mal. First, why isn’t the median mechanism a computationally efficient mechanism? Be-
cause C0 has super-polynomial size |X|m, and computing ri in Step 2(a), the median value
in Step 2(c), and the set Ci in Step 2(e) could require time proportional to |C0|. An obvious
idea is to randomly sample elements of Ci−1 to approximately compute ri and the median
value of fi on Ci−1; while it is easy to control the resulting sampling error and preserve
the utility and privacy guarantees of Section 4.3, it is not clear how to sample from Ci−1

efficiently.

We show how to implement the median mechanism in polynomial time by redefining
the sets Ci to be sets of probability distributions over points in X that are consistent (up
to ± ε

50
) with the hard queries answered up to the ith query. Each set Ci will be a con-

vex polytope in R|X| defined by the intersection of at most O(m log |X|) halfspaces, and
hence it will be possible to sample points from Ci approximately uniformly at random
in time poly(|X|, m) via the grid walk of Dyer, Frieze, and Kannan [DFK91]. Lem-
mas 3, 4, and 5 still hold (trivially modified to accommodate sampling error). We have
to reprove Lemma 6, in a somewhat weaker form: that for all but a diminishing frac-
tion of input databases D, the median mechanism does not abort except with probability
k exp(−Ω(εnα′)). As for our privacy analysis of the median mechanism, it is independent
of the representation of the sets Ci and the mechanisms’ failure probability, and so it need
not be repeated — the efficient implementation is provably private for all input databases
and query sequences.

We now give a formal analysis of the efficient implementation.

4.4.1 Redefining the sets Ci

We redefine the sets Ci to represent databases that can contain points fractionally, as op-
posed to the finite set of small discrete databases. Equivalently, we can view the sets Ci as
containing probability distributions over the set of points X .

We initialize C0 to be the `1 ball of radius m in R|X|, mB
|X|
1 , intersected with the

non-negative orthant:

C0 = {F ∈ R|X| : F ≥ 0, ||F ||1 ≤ m}.
Each dimension i in R|X| corresponds to an element xi ∈ X . Elements F ∈ C0 can
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be viewed as fractional histograms. Note that integral points in C0 correspond exactly to
databases of size at most m.

We generalize our query functions fi to fractional histograms in the natural way:

fi(F ) =
1

m

∑

j:fi(xj)=1

Fj.

The update operation after a hard query i is answered is the same as in the basic im-
plementation:

Ci ←
{

F ∈ Ci−1 : |fi(F )− ai| ≤ ε

50

}
.

Note that each updating operation after a hard query merely intersects Ci−1 with the pair
of halfspaces:

∑

j:fi(xj)=1

Fj ≤ mai +
εm

50
and

∑

j:fi(xj)=1

Fj ≥ mai − εm

50
;

and so Ci is a convex polytope for each i.

Dyer, Kannan, and Frieze [DFK91] show how to δ-approximate a random sample from
a convex body K ∈ R|X| in time polynomial in |X| and the running time of a membership
oracle for K, where δ can be taken to be exponentially small (which is more than sufficient
for our purposes). Their algorithm has two requirements:

1. There must be an efficient membership oracle which can in polynomial time deter-
mine whether a point F ∈ R|X| lies in K.

2. K must be ‘well rounded’: B
|X|
2 ⊆ K ⊆ |X|B|X|

2 , where B
|X|
2 is the unit `2 ball in

R|X|.

Since Ci is given as the intersection of a set of explicit halfspaces, we have a simple
membership oracle to determine whether a given point F ∈ Ci: we simply check that F
lies on the appropriate side of each of the halfspaces. This takes time poly(|X|,m), since
the number of halfspaces defining Ci is linear in the number of answers to hard queries
given before time i, which is never more than 20m ln |X|. Moreover, for each i we have
Ci ⊆ C0 ⊂ mB

|X|
1 ⊂ mB

|X|
2 ⊂ |X|B|X|

2 . Finally, we can safely assume that BX
2 ⊆ Ci by

simply considering the convex set C ′
i = Ci + BX

2 instead. This will not affect our results.

Therefore, we can implement the median mechanism in time poly(|X|, k) by using
sets Ci as defined in this section, and sampling from them using the grid walk of [DFK91].
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Estimation error in computing ri and the median value of fi on Ci−1 by random sampling
rather than brute force is easily controlled via the Chernoff bound and can be incorporated
into the proofs of Lemmas 3 and 5 in the obvious way. It remains to prove a continuous
version of Lemma 6 to show that the efficient implementation of the median mechanism
is (ε, δ)-useful on all but a negligibly small fraction of fractional histograms F .

4.4.2 Usefulness for Almost All Distributions

We now prove an analogue of Lemma 6 to establish a usefulness guarantee for the efficient
version of the median mechanism.

Definition 16. With respect to any set of k queries f1, . . . , fk and for any F ∗ ∈ C0, define

Goodε(F
∗) = {F ∈ C0 : max

i∈{1,2,...,k}
|fi(F )− fi(F

∗)| ≤ ε}

as the set of points that agree up to an additive ε factor with F ∗ on every query fi.

Since databases D ⊂ X can be identified with their corresponding histogram vectors
F ∈ R|X|, we can also write Goodε(D) when the meaning is clear from context.

For any F ∗, Goodε(F
∗) is a convex polytope contained inside C0. We will prove that

the efficient version of the median mechanism is (ε, δ)-useful for a database D if

Vol(Goodε/100(D))

Vol(C0)
≥ 1

|X|2m
. (4.12)

We first prove that (4.12) holds for almost every fractional histogram. For this, we need a
preliminary lemma.

Lemma 9. Let L denote the set of integer points inside C0. Then with respect to an
arbitrary set of k queries,

C0 ⊆
⋃
F∈L

Goodε/400(F ).

Proof. Every rational valued point F ∈ C0 corresponds to some (large) database D ⊂ X
by scaling F to an integer-valued histogram. Irrational points can be arbitrarily approxi-
mated by such a finite database. By Proposition 20, for every set of k predicates f1, . . . , fk,
there is a database F ∗ ⊂ X with |F ∗| = m such that for each i, |fi(F

∗)− fi(F )| ≤ ε/400.
Recalling that the histograms corresponding to databases of size at most m are exactly the
integer points in C0, the proof is complete.
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Lemma 10. All but an |X|−m fraction of fractional histograms F satisfy

Vol(Goodε/200(F ))

Vol(C0)
≥ 1

|X|2m
.

Proof. Let

B =

{
F ∈ L :

Vol(Goodε/400(F ))

Vol(C0)
≤ 1

|X|2m

}
.

Consider a randomly selected fractional histogram F ∗ ∈ C0. For any F ∈ B we have:

Pr[F ∗ ∈ Goodε/400(F )] =
Vol(Goodε/400(F ))

Vol(C0)
<

1

|X|2m

Since |B| ≤ |L| ≤ |X|m, by a union bound we can conclude that except with probability
1

|X|m , F ∗ 6∈ Goodε/400(F ) for any F ∈ B. However, by Lemma 9, F ∗ ∈ Goodε/400(F
′)

for some F ′ ∈ L. Therefore, except with probability 1/|X|m, F ′ ∈ L \ B. Thus, since
Goodε/400(F

′) ⊆ Goodε/200(F
∗), except with negligible probability, we have:

Vol(Goodε/200(F
∗))

Vol(C0)
≥ Vol(Goodε/400(F

′))
Vol(C0)

≥ 1

|X|2m
.

We are now ready to prove the analogue of Lemma 6 for the efficient implementation
of the median mechanism.

Lemma 11. For every set of k queries f1, . . . , fk, for all but an O(|X|−m) fraction of
fractional histograms F , the efficient implementation of the median mechanism guaran-
tees that: The mechanism answers fewer than 40m log |X| hard queries, except with prob-
ability k exp(−Ω(εnα′)),

Proof. We assume that all answers to hard queries are ε/100 accurate, and that |ri− r̂i| ≤
1

100
for every i. By Lemmas 3 and 4 — the former adapted to accommodate approximating

ri via random sampling — we are in this case except with probability k exp(−Ω(εnα′)).

We analyze how the volume of Ci contracts with the number of hard queries answered.
Suppose the mechanism answers a hard query at time i. Then:

ri ≤ r̂i +
1

100
< ti +

1

100
≤ 91

100
.
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Recall Ci = {F ∈ Ci−1 : |fi(F ) − ai| ≤ ε/50}. Suppose that Vol(Ci) ≥ 94
100

Vol(Ci−1).
Then

ri =

∫
Ci−1

exp(−ε−1|fi(F )− fi(D)|)dF

Vol(Ci−1)

≥ 94

100
exp

(
− 1

50

)
>

92

100
,

a contradiction. Therefore, we have

|Ck| ≤
(

94

100

)h

Vol(C0), (4.13)

if h of the k queries are hard.

Since all answers to hard queries are ε/100 accurate, it must be that Goodε/100(D) ∈
Ck. Therefore, for an input database D that satisfies (4.12) — and this is all but an
O(|X|−m) fraction of them, by Lemma 10 — we have

Vol(Ck) ≥ Vol(Goodε/100(D)) ≥ Vol(C0)

|X|2m
. (4.14)

Combining inequalities (4.13) and (4.14) yields

h ≤ 2m ln |X|
ln 50

47

< 40m ln |X|,

as claimed.

Lemmas 4, 5, and 11 give the following utility guarantee.

Theorem 23. For every set f1, . . . , fk of queries, for all but a negligible fraction of frac-
tional histograms F , the efficient implementation of the median mechanism is (ε, δ)-useful
with δ = k exp(−Ω(εnα′)).

4.4.3 Usefulness for Finite Databases

Fractional histograms correspond to probability distributions over X . Lemma 10 shows
that most probability distributions are ‘good’ for the efficient implementation of the Me-
dian Mechanism; in fact, more is true. We next show that finite databases sampled from
randomly selected probability distributions also have good volume properties. Together,

59



these lemmas show that the efficient implementation of the median mechanism will be
able to answer nearly exponentially many queries with high probability, in the setting in
which the private database D is drawn from some ‘typical’ population distribution.
DatabaseSample(|D|):

1. Select a fractional point F ∈ C0 uniformly at random.

2. Sample and return a database D of size |D| by drawing each x ∈ D independently at
random from the probability distribution over X induced by F (i.e. sample xi ∈ X
with probability proportional to Fi).

Lemma 12. For |D| as in (4.6) (as required for the Median Mechanism), a database sam-
pled by DatabaseSample(|D|) satisfies (4.12) except with probability at most O(|X|−m).

Proof. By lemma 10, except with probability |X|−m, the fractional histogram F selected
in step 1 satisfies

Vol(Goodε/200(F ))

Vol(C0)
≥ 1

|X|2m
.

By lemma 20, when we sample a database D of size |D| ≥ O((log |X| log3 k log 1/ε)/ε3)
from the probability distribution induced by F , except with probability δ =
O(k|X|− log3 k/ε), Goodε/200(F ) ⊂ Goodε/100(D), which gives us condition (4.12).

We would like an analogue of lemma 10 that holds for all but a diminishing fraction
of finite databases (which correspond to lattice points within C0) rather than fractional
points in C0, but it is not clear how uniformly randomly sampled lattice points distribute
themselves with respect to the volume of C0. If n >> |X|, then the lattice will be fine
enough to approximate the volume of C0, and lemma 10 will continue to hold. We now
show that small uniformly sampled databases will also be good for the efficient version
of the median mechanism. Here, small means n = o(

√
|X|), which allows for databases

which are still polynomial in the size of X . A tighter analysis is possible, but we opt
instead to give a simple argument.

Lemma 13. For every n such that n satisfies (4.6) and n = o(
√
|X|), all but an O(n2/|X|)

fraction of databases D of size |D| = n satisfy condition (4.12).

Proof. We proceed by showing that our DatabaseSample procedure, which we know via
lemma 12 generates databases that satisfy (4.12) with high probability, is close to uniform.
Note that DatabaseSample first selects a probability distribution F uniformly at random
from the positive quadrant of the `1 ball, and then samples D from F .
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For any particular database D∗ with |D∗| = n we write PrU [D = D∗] to denote
the probability of generating D∗ when we sample a database uniformly at random, and we
write PrN [D = D∗] to denote the probability of generating D∗ when we sample a database
according to DatabaseSample. Let R denote the event that D∗ contains no duplicate
elements. We begin by noting by symmetry that: PrU [D = D∗|R] = PrN [D = D∗|R]
We first argue that PrU [R] and PrN [R] are both large. We immediately have that the
expected number of repetitions in database D when drawn from the uniform distribution
is

(
n
2

)
/|X|, and so PrU [¬R] ≤ n2

|X| . We now consider PrN [R]. Since F is a uniformly
random point in the positive quadrant of the `1 ball, each coordinate Fi has the marginal of
a Beta distribution: Fi ∼ β(1, |X|−1). (See, for example, [Dev86] Chapter 5). Therefore,
E[F 2

i ] = 2
|X|(|X|+1)

and so the expected number of repetitions in database D when drawn

from DatabaseSample is
(

n
2

) ∑|X|
i=1 E[F 2

i ] =
2(n

2)
|X|+1

≤ 2n2

|X| . Therefore, PrN [¬R] ≤ 2n2

|X| .

Finally, let B be the event that database D fails to satisfy (4.12). We have:

Pr
U

[B] = Pr
U

[B|R] · Pr
U

[R] + Pr
U

[B|¬R] · Pr
U

[¬R]

= Pr
N

[B|R] · Pr
U

[R] + Pr
U

[B|¬R] · Pr
U

[¬R]

≤ Pr
N

[B|R] · Pr
U

[R] + Pr
U

[¬R]

≤ Pr
N

[B] · PrU [R]

PrN [R]
+ Pr

U
[¬R]

≤ PrN [B]

1− 2n2

|X|
+

n2

|X|

= O(
n2

|X|)

where the last equality follows from lemma 12, which states that PrN [B] is negligibly
small.

We observe that we can substitute either of the above lemmas for lemma 10 in the
proof of lemma 11 to obtain versions of Thoerem 23:

Corollary 24. For every set f1, . . . , fk of queries, for all but a negligible fraction of
databases sampled by DatabaseSample, the efficient implementation of the median mech-
anism is (ε, δ)-useful with δ = k exp(−Ω(εnα′)).

Corollary 25. For every set f1, . . . , fk of queries, for all but an n2/|X| fraction of uni-
formly randomly sampled databases of size n, the efficient implementation of the median
mechanism is (ε, δ)-useful with δ = k exp(−Ω(εnα′)).
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4.5 Conclusion

We have shown that in the setting of predicate queries, interactivity does not pose an infor-
mation theoretic barrier to differentially private data release. In particular, our dependence
on the number of queries k nearly matches the optimal dependence of log k achieved in
the offline setting in Chapter 3. We remark that our dependence on other parameters is
not necessarily optimal: in particular, [DNR+09] achieves a better (and optimal) depen-
dence on ε. We have also shown how to implement our mechanism in time poly(|X|, k),
although at the cost of sacrificing worst-case utility guarantees. The question of an inter-
active mechanism with poly(|X|, k) runtime and worst-case utility guarantees remains an
interesting open question. More generally, although the lower bounds of [DNR+09] seem
to preclude mechanisms with run-time poly(log |X|) from answering a superlinear num-
ber of generic predicate queries, the question of achieving this runtime for specific query
classes of interest (offline or online) remains largely open. Recently a representation-
dependent impossibility result for the class of conjunctions was obtained by Ullman and
Vadhan [UV10]: either extending this to a representation-independent impossibility result,
or circumventing it by giving an efficient mechanism with a novel output representation
would be very interesting.
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Chapter 5

Differential Privacy and the
Fat-Shattering Dimension of Linear
Queries

5.1 Introduction

In this chapter, we consider databases D which are real valued vectors, and the class
of queries that we consider correspond to linear combinations of the entries of D. For-
mally, we consider databases D ∈ Rn

+, and queries of the form q ∈ [0, 1]n. The answer
to query q on database D is simply the dot-product of the two vectors: q(D) = q · D.
This model has previously been considered ([DN03, DMT07, DY08, HT10]), and gen-
eralizes the class of count queries or predicate queries, which has also been well studied
([DMNS06, BLR08, DNR+09, RR10, UV10]), including in chapters 3 and 4 of this thesis,
as well as many other settings including coresets, studied by [FFKN09]. In order to see
how linear queries generalize predicate queries, imagine representing the database not as a
collection of elements from X , but instead as a histogram vector of length X , with one en-
try for every element in X . The value of a predicate query is then the dot product between
the histogram vector of the database, and the truth table of the predicate. This of course
results in a database representation that is of size |X|, which is potentially exponentially
larger than our previous database representations – but in this chapter, we are interested in
information theoretic bounds, and are not concerned with computational cost.

The fat-shattering dimension (FSD) of a class of real-valued functions C over some
domain is a generalization of the Vapnik-Chervonenkis dimension, and characterizes a
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distribution-free convergence property of the mean value of each f ∈ C to its expectation.
The fat-shattering dimension of a class of functions C is known to characterize the sample
complexity necessary to PAC learn C in the agnostic framework [ABDCBH97, BLW94]:
that is, ignoring computation, the sample complexity that is both necessary and sufficient
to learn C in the agnostic framework is polynomially related to the fat-shattering dimen-
sion of C.

Our main result is a similar information theoretic characterization of the magnitude
of the noise that must be added to the answer to each query in some class C in terms of
the fat-shattering dimension of C, FSD(C). We show polynomially related information
theoretic upper and lower bounds on the noise that must be added to each query in C in
terms of FSD(C). This generalizes the results of Chapter 3 to linear queries, and gives the
first analysis of generic linear queries using some parameter other than their cardinality.
This yields the first mechanism capable of answering a possibly infinite set of generic
linear queries, and the first non-trivial lower bound for infinite classes of non-boolean
linear queries. As a consequence, we extend results of Kasiviswanathan et al. and Chapter
3 [KLN+08, BLR08] relating the sample complexity necessary for agnostic PAC learning
and private agnostic PAC learning from classes of boolean valued functions to classes of
real valued functions.

5.1.1 Related Work and Our Results

Dinur and Nissim studied the special case of linear queries for which both the database
and the query are elements of the boolean hypercube {0, 1}n [DN03]. Even in this special
case, they showed that there cannot be any private mechanism that answers n queries with
error o(

√
n), because an adversary could use any such mechanism to reconstruct a 1−o(1)

fraction of the original database, a condition which they called blatant non-privacy. This
result was strengthened by several subsequent papers [DMT07, DY08].

Dwork et al. gave the original definition of differential privacy, as well as the Laplace
mechanism, which is capable of answering any k “low sensitivity” queries (including lin-
ear queries) up to error O(k). A more refined analysis of the relationship between the
laplace mechanism and function sensitivity was later given by [NRS07].

In Chapter 3, we considered the question of answering predicate queries over a
database drawn from some domain X . This can be viewed as a special case of linear
queries in which the queries are restricted to lie on the boolean hypercube, and the database
must be integer valued: D ∈ Zn

+. There, we give a mechanism for answering every query
in some class C with noise that depends linearly on the VC-dimension of the class of
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queries. This is a quantity that is at most log |C| for finite classes C, and can be finite even
for infinite classes. In Chapter 4, we gave a mechanism which achieved similar bounds in
the online model, in which the mechanism does not know the set of queries that must be
answered ahead of time, and instead must answer them as they arrive. We generalize the
technique of the preceding chapters to apply to general linear queries. VC-dimension is
no longer an appropriate measure of query complexity in this setting, but we show that a
quantity known as Fat-Shattering dimension plays an analogous role.

Hardt and Talwar give matching upper and lower bounds on the noise that must be
added when answering k ≤ n linear queries of roughly Θ(

√
k log(n/k)

α
), and [KRSU10] give

similar lower bounds. In contrast, we prove bounds in terms of different parameters, and
can handle arbitrarily (even infinitely) large values of k. For finite sets of k queries, our
mechanism adds noise roughly O

(
||D||2/3

1 · ( log k log n
α

)1/3
)

. Note that this is significantly

less noise than even the lower bound of [HT10] for k ≥ Ω(||D||4/3
1 ), and to achieve low

relative error η (i.e. error ε = η||D||1), our mechanism requires only that ||D||1 be poly-
logarithmic in k, rather than polynomial in k. For infinite classes of queries |C|, the log k
in our bound can be replaced with the fat shattering dimension of the class C. We also
show a lower bound in terms of the fat shattering dimension of the class C, which is the
first non-trivial lower bound for infinite classes of non-boolean linear queries.

5.2 Preliminaries

A database is some vector D ∈ Rn
+, and a query is some vector q ∈ [0, 1]n. We write that

the evaluation of q on D is q(D) = q · D. We write ||D||1 =
∑n

i=1 Di to denote the `1

norm of D, and note that for any query q, q(D) ∈ [0, ||D||1]. We let C denote a (possibly
infinite) class of queries. We are interested in mechanisms that are able to provide answers
ai for each qi ∈ C so that the maximum error, defined to be maxi∈C |qi(D) − ai| is as
small as possible. Without loss of generality, we restrict our attention to mechanisms
which actually output some synthetic database: mechanisms with range R = Rn

+. That is,
if our mechanism outputs some synthetic database D′, we take ai to be qi(D

′) for each i.1

We formalize our notion of utility and relative utility for a randomized mechanism M :

Definition 17 (Usefulness and Relative Usefulness). A mechanism M : Rn
+ → Rn

+ is
(ε, δ)-useful with respect to a class of queries C if with probability at least 1− δ (over the

1This is without loss of generality, because given a different representation for each answer ai to error ε, it
is possible to compute a synthetic database D′ with error at most 2ε using the linear program of [DNR+09].
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internal coins of the mechanism), it outputs a synthetic database D′ such that:

sup
qi∈C

|qi(D)− qi(D
′)| ≤ ε

For 0 < η ≤ 1, M is (η, δ)-relatively useful with respect to C for databases of size s if it
is (η||D||1, δ)-useful with respect to C for all input databases D with ||D||1 ≥ s.

That is, useful mechanisms should have low error for each query in C. We now define
differential privacy:

Definition 18 (Differential Privacy [DMNS06]). A mechanism M : Rn
+ → Rn

+ is α-
differentially private, if for any two databases D1, D2 such that ||D1 −D2||1 ≤ 1, and for
any S ⊆ Rn

+:
Pr[M(D1) ∈ S] ≤ eα Pr[M(D2) ∈ S]

The standard notion of differential privacy need only hold for mechanisms defined
over integer valued databases D1, D2 ∈ Nn, which is a weaker condition. Our upper
bounds will hold for the stronger notion of differential privacy, and our lower bounds for
the weaker notion. A useful observation is that arbitrary (database independent) functions
of differentially private mechanisms are also differentially private:

Fact 3. If M : Rn
+ → Rn

+ is α-differentially private, and if f : Rn
+ → Rn

+ is a (possibly
randomized) function, then f(M) is α-differentially private.

5.2.1 Fat Shattering Dimension

Fat-shattering-dimension is a combinatorial property describing classes of functions of
the form f : X → [0, 1] for some domain X . It is a generalization of the Vapnik-
Chervonenkis-dimension, which is a property only of classes of boolean valued functions
of the form f : X → {0, 1}. In this section, we generalize these concepts slightly to
classes of linear queries, where we view our linear queries as linear combinations of func-
tions f : X → [0, 1], where we let X be the set of standard basis vectors of Rn.

Let B = {ei}n
i=1 denote the set of n standard basis vectors of Rn (ei is the vector with

a 1 in the i’th coordinate, and a 0 in all other coordinates). For any S ⊆ B of size |S| = d,
we say that S is γ-shattered by C if there exists a vector r ∈ [0, 1]d such that for every
b ∈ {0, 1}d, there exists a query qb ∈ C such that for each ei ∈ S:

qb(ei)

{ ≥ ri + γ, if bi = 1;
≤ ri − γ, if bi = 0.

Note that since the range of each query is [0, 1], γ can range from 0 to 1/2.
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Definition 19 (Fat Shattering Dimension [BLW94, KS94]). The γ-fat-shattering dimen-
sion of a class of linear queries C is:

FSDγ(C) = max{d ∈ N : C γ − shatters some S ⊆ B with |S| = d}

In the special case when γ = ri = 1/2 for all i, note that the fat shattering dimension
of a class of boolean valued functions is equal to its VC-dimension.

For finite classes C, we will let k = |C| denote the cardinality of C. The following
observation follows immediately from the definition of fat-shattering dimension:

Observation 26. For finite classes C, FSDγ(C) ≤ log k for all γ > 0, where k = |C|.

5.3 Lower Bound

In this section, we show that any α-differentially private mechanism that answers every
linear query in some class C must add noise at least linear in the fat-shattering dimension
of C at any scale. The bound that we prove in this section is in terms of the privacy
parameter α and the fat shattering dimension of the class. It differs from the upper bound
proved in the next section by several important parameters, which include a log n term and
a term depending on the size of the database. Beimel et al. [BKN10] have shown that
the log n term in the upper bound is necessary in some contexts. The database that we
construct in our lower bound is of size O(γ · FSDγ(C)). Therefore, in order to prove a
nontrivial lower bound on the relative error achievable by a private mechanism, it would
be necessary to remove a factor of γ from our current bound. This is possible in the
context of VC-dimension, and we conjecture that it should also be possible for a bound in
terms of fat-shattering dimension, and is merely a limitation of our techniques as present.
The problem of proving a tight lower bound encapsulating all of the relevant parameters
remains an interesting open question. We now proceed with the lower bound:

Theorem 27. For any δ bounded away from 1 by a constant, let M be a mechanism M
that is (ε, δ) useful with with respect to some class of linear queries C. If M preserves
α-differential privacy, then

ε ≥ Ω

(
sup

0<γ≤1/2

γ2 · FSDγ(C)

eα

)

We begin with some preliminaries which allow us to prove some useful lemmas:
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Given some class of linear queries C and any γ > 0, let S ⊆ B be a collection of
basis-vectors of size FSDγ(C) that are γ-shattered by C, and let r ∈ [0, 1]FSDγ(C) be the
corresponding vector as in the definition of fat-shattering dimension. We now partition S
into 1/γ pieces. For each j ∈ {1, . . . , 1/γ}, let:

Sj = {ei ∈ S : (j − 1) · γ < ri ≤ j · γ}
Since the sets {Sj} partition S, By the pigeon-hole principle, there exists some j∗ such
that |Sj∗ | ≥ γ · |S| = γ · FSDγ(C). Let d = |Sj∗ |.

We consider subsets T ⊂ Sj∗ of size |T | = d/2. For each such subset, we consider the
database DT =

∑
ei∈T ei. Let bT ∈ {0, 1}d be the vector guaranteed by the definition of

fat shattering dimension such that:

bT
i =

{
1, ei ∈ T ;
0, otherwise.

Let qT ∈ C be the query that corresponds to bT as in the definition of fat shattering
dimension, and let CSj∗ = {qT : T ⊆ Sj∗ , |T | = d/2}.

We first show that each function qT takes its highest value on DT and cannot take large
values on databases DT ′ for sets T ′ that differ significantly from T .

Lemma 14. For all qT ∈ CSj∗ and for all T ′ ⊆ Sj∗ with |T ′| = d/2:

qT (DT )− qT (DT ′) ≥ γ

2
· |T 4 T ′|

Proof.

qT (DT )− qT (DT ′) =
∑
ei∈T

qT (ei)−
∑

ei∈T ′
qT (ei)

=

( ∑

ei∈T∩T ′
qT (ei)− qT (ei)

)
+

∑

ei∈T\T ′
qT (ei)

−
∑

ei∈T ′\T
qT (ei)

≥

 ∑

ei∈T\T ′
ri + γ


−


 ∑

ei∈T ′\T
ri − γ




≥ 2γ · |T \ T ′| −
(

max
i∈T ′\T

ri − min
i∈T\T ′

ri

)
· |T \ T ′|

≥ γ · |T \ T ′|

68



where the last inequality follows from the fact that T, T ′ ⊂ Sj∗ which was constructed
such that: (

max
i∈Sj∗

ri − min
i∈Sj∗

ri

)
≤ γ

holds. Observing that |T 4 T ′| = 2|T \ T ′| completes the proof.

With this lemma, we are ready to prove the main technical lemma for our lower bound:

Lemma 15. For any δ bounded away from 1 by a constant, let M be an (ε, δ)-useful
mechanism with respect to class C. Given as input M(DT ), where DT is an unknown
private database for some T ⊆ Sj∗ with |T | = d/2, with constant probability 1− δ, there
is a procedure to reconstruct a new database DT ∗ such that |T 4 T ∗| ≤ 4ε

γ
.

Proof. Suppose that mechanism M is (ε, δ) useful with respect to C for some constant
δ bounded away from 1. Then by definition, with constant probability, given input DT ,
it outputs some database D′ such that for all qi ∈ C, |qi(DT ) − qi(D

′)| ≤ ε. For each
T ′ ⊆ Sj∗ with |T ′| = d/2 let:

v(T ′) = qT ′(DT ′)− qT ′(D
′)

and let T ∗ = argminT ′ v(T ′). Therefore, we have:

v(T ∗) ≤ v(T ) = qT (DT )− qT (D′) ≤ ε (5.1)

where the last inequality follows from the usefulness of the mechanism. We also have:

v(T ∗) = qT ∗(DT ∗)− qT ∗(D
′)

≥ qT ∗(DT ∗)− qT ∗(DT )− ε

≥ γ

2
· |T 4 T ∗| − ε

where the first inequality follows from the usefulness of the mechanism, and the second
inequality follows from lemma 14. Combining this with equation 5.1, we get:

|T 4 T ∗| ≤ 4ε

γ

We are now ready to prove the lower bound:
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Proof of Theorem. Let T ⊂ Sj∗ with |T | = d/2 be some randomly selected subset. Let
DT =

∑
ei∈T ei be the corresponding database. By lemma 15, given M(DT , ε), with

probability 1−δ there is a procedure P to reconstruct a database DT ∗ such that |T4T ∗| ≤
4ε/γ. Throughout the rest of the argument, we assume that this event occurs. Let x ∈ T be
an element selected from T uniformly at random, and let y ∈ S \T be an element selected
from S \ T uniformly at random. Let T ′ = T \ x ∪ {y}. Observe that:

Pr[x ∈ P (M(DT , ε))] ≥ d/2− 2ε/γ

d/2
= 1− 4ε

γ · d

Pr[x ∈ P (M(DT ′ , ε))] ≤ 2ε/γ

d/2
=

4ε

γ · d
Since ||DT −DT ′ ||1 ≤ 2, we have by the definition of α-differential privacy and fact 3:

eα ≥ Pr[x ∈ P (M(DT , ε))]

Pr[x ∈ P (M(DT ′ , ε))]

≥
1− 4ε

γ·d
4ε
γ·d

=
γ · d
4ε

− 1

Solving for ε, we find that:

ε ≥ Ω

(
γ · d
eα

)

Since this holds for all choices of γ, the claim follows from the fact that d ≥ γFSDγ(C).

5.4 Upper Bound

We now show that (ignoring the other important parameters), it is sufficient to add noise
linear in the fat shattering dimension of C to simultaneously guarantee usefulness with
respect to C and differential privacy. Unlike our lower bound which was not quite strong
enough to state in terms of relative error, our upper bound is most naturally stated as a
bound on relative error.

We make use of a theorem of Bartlett and Long [BL95] (improving a bound of Alon
et al. [ABDCBH97]) concerning the rate of convergence of uniform Glivenko-Cantelli
classes with respect to their fat-shattering dimension.
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Theorem 28 ([BL95] Theorem 9). Let C be a class of functions from some domain X into
[0, 1]. Then for all distributions P over X and for all η, δ ≥ 0:

Pr

[
sup
f∈C

∣∣∣∣∣
1

m

m∑
i=1

f(xi)− Ex∼P[f(x)]

∣∣∣∣∣ ≥ η

]
≤ δ

where {xi}m
i=1 are m independent draws from P and

m = O

(
1

η2

(
dη/5 ln2 1

η
+ ln

1

δ

))

where dη/5 = FSDη/5(C).

We use this theorem to prove the following useful corollary:

Corollary 29. Let C be a class of linear functions with coefficients in [0, 1] from Rn
+ to R.

For any database D ∈ Rn
+, there is a database D′ ∈ Nn with

||D′||1 = O

(
dη/5

η2
· log2

(
1

η

))

such that for each q ∈ C,
∣∣∣∣q(D)− ||D||1

||D′||1 q(D′)

∣∣∣∣ ≤ η||D||1

where dη/5 = FSDη/5(C).

Proof. Let B = {ei}n
i=1 denote the set of n standard basis vectors over Rn. Let PD be the

probability distribution over B that places probability Di/||D||1 on ei. Note that for any
q ∈ C:

Eei∼PD
[q(ei)] =

n∑
i=1

Di

||D||1 q(ei) =
1

||D||1
n∑

i=1

q(Diei) =
q(D)

||D||1

Let x1, . . . , xm be m = O
(

1
η2

(
dη/5 ln2 1

η
+ ln 2

))
independent draws from PD, and let

D′ =
∑m

i=1 xi. Then:

q(D′) =
n∑

i=1

q(D′
iei) =

m∑
i=1

q(xi)
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By lemma 28, we have:

Pr

[∣∣∣∣
q(D′)

m
− q(D)

||D||1

∣∣∣∣ ≥ η

]
= Pr

[∣∣∣∣∣
1

m

m∑
i=1

q(xi)− Eei∼PD
[q(ei)]

∣∣∣∣∣ ≥ η

]

≤ 1

2

In particular, there exists some D′ ∈ Nn with ||D′||1 = m that satisfies
∣∣∣ q(D′)
||D′||1 −

q(D)
||D||1

∣∣∣ ≤
η. Multiplying through by ||D||1 gives the desired bound.

Armed with Corollary 29, we may now proceed to instantiate the exponential mecha-
nism over a sparse domain, analogously to the instantiation of the exponential mechanism
in chapter 4.

Definition 20 (The Exponential Mechanism [MT07]). Let D be some domain, and let
s : Rn

+ ×D → R be some quality score mapping database/domain-element pairs to some
real value. Let

∆s ≥ max
r∈D

sup
D1,D2∈R+

n :||D1−D2||1≤1

|s(D1, r)− s(D2, r)|

be an upper bound on the `1 sensitivity of s. The exponential mechanism defined with
respect to domain D and score s is the probability distribution (parameterized by the
private database D) which outputs each r ∈ D with probability proportional to:

r ∼ exp

(
s(D, r) · α

2∆s

)

Theorem 30 (McSherry and Talwar [MT07]). The exponential mechanism preserves α-
differential privacy.

We let m = O
(

dη/5

η2 · log2
(

1
η

))
, and define the domain of our instantiation of the

exponential mechanism to be:

D = {D′ ∈ Nn : ||D′||1 = m}
We note that |D| = nm. Finally, we sample each D′ ∈ D with probability proportional to:

D′ ∼ exp


−

supq∈C

∣∣∣q(D)− ||D||1
||D′||1 · q(D′)

∣∣∣α

4


 (5.2)
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and output the database Dout ≡ ||D||1
||D′||1 · D′2. Observe that for any two databases D1, D2

such that ||D1 −D2||1 ≤ 1 we have:

sup
q∈C

|q(D1)− ||D1||1
||D′||1 · q(D

′)| − sup
q∈C

|q(D2)− ||D2||1
||D′||1 · q(D

′)| ≤

||D1 −D2||1 +
|||D1||1 − ||D2||1|

m
≤

1 +
1

m

Therefore, the distribution defined in equation 5.2 is a valid instantiation of the exponential
mechanism, and by [MT07] preserves α-differential privacy. It remains to show that the
above instantiation of the exponential mechanism yields a useful mechanism with low
error. In particular, it gives us a relatively useful mechanisms with respect to classes C for
databases that have size linear in the fat shattering dimension of C, or only logarithmic in
|C| for finite classes C. This is in contrast to the bounds of [HT10] that require databases
to be of size polynomial in |C| before giving relatively-useful mechanisms.

Theorem 31. For any constant δ and any query class C, there is an (η, δ)-relatively useful
mechanism that preserves α-differential privacy for any database of size at least:

||D||1 ≥ Ω̃

(
FSD2η/5(C) log n

αη3

)

Proof of Theorem. Recall that the domain D of our instantiation of the exponential mech-
anism consists of all databases D′ ∈ Nn with ||D′||1 = m with m = O

(
dη/5

η2 · log2
(

1
η

))
}

In particular, by corollary 29, there exists a D∗ ∈ D such that:
∣∣∣∣q(D)− ||D∗||1

||D′||1 q(D∗)

∣∣∣∣ ≤ η||D||1

By the definition of our mechanism, such a D∗ is output with probability proportional to
at least:

D∗ ∼ exp(−η||D||1α
4

)

2If ||D||1 is not public knowledge, it can be estimated to small constant error using the Laplace mecha-
nism [DMNS06], losing only additive constants in the approximation parameter ε and privacy parameter α.
This does not affect our results.
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Similarly, any DB ∈ D such that
∣∣∣q(D)− ||DB ||1

||D′||1 q(D∗)
∣∣∣ ≥ 2η||D||1 is output with proba-

bility proportional to at most:

DB ∼ exp(−η||D||1α
2

)

Let DB denote the set of all such DB. Because |D| = nm, we have that:

Pr[D′ = D∗]
Pr[D′ ∈ DB]

≥ exp(−η||D||1α
4

)

nm · exp(−η||D||1α
2

)
= n−m · exp

(
η||D||1α

2

)

Rearranging terms, we have:

Pr[D′ ∈ DB] ≤ nm exp

(
−η||D||1α

2

)

Solving, we find that this bad event occurs with probability at most δ for any database
D with:

||D||1 ≥ Ω

(
m log n

ηα
+ log

1

δ

)

= Ω̃

(
FSD2η/5(C) log n

αη3

)

We remark that the above mechanism is the analogue of the general release mechanism
of Chapter 3, and answers linear queries in the offline setting, when all queries C are
known to the mechanism in advance. This is not necessary, however. In the same way as
above, corollary 29 can also be used to generalize the Median Mechanism of Chapter 4, to
achieve roughly the same bounds, but in the online setting, in which queries arrive online,
and the mechanism must privately answer queries as they arrive, without knowledge of
future queries. This results in the following theorem:

Theorem 32. There exists a mechanism such that for every sequence of adaptively chosen
queries q1, q2, . . . arriving online, chosen from some (possibly infinite) set C (unknown to
the mechanism), the mechanism is (η, δ) useful with respect to C and preserves (α, τ)-
differential privacy, where τ is a negligible function of n, for any database D with size at
least:

||D||1 ≥ Ω̃

(
FSD2η/5(C) log n

αη3

)

Remark: Notice that for finite classes of linear queries, we may replace the fat shatter-
ing dimension in the bounds of both theorems 31 and 32 with log |C| if we so choose.
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5.5 Conclusion

In this paper, we have generalized the techniques used in Chapters 3 and 4 from the class
of predicate queries to the more general class of linear queries. This gives the first mecha-
nism for answering every linear query from some class C with noise that is bounded by a
parameter other than the cardinality of C; in particular, we have given the first mechanism
for answering all of the linear queries in certain infinite classes of queries beyond predicate
queries. We have shown that the relevant parameter is the Fat-Shattering dimension of the
class, which is a generalization of VC-dimension to non-boolean valued queries. In partic-
ular (ignoring other parameters), it is necessary and sufficient to add noise proportional to
the fat shattering dimension of C. Our results show, among other things, that the sample
complexity needed to privately agnostically learn real valued functions is polynomially
related to the sample complexity needed to non-privately agnostically learn real valued
functions.

At a high level, the same technique can be applied for any class of queries, all of
the answers to which can be summarized by some ‘small’ object. It is then sufficient to
instantiate the exponential mechanism only over this much smaller set of objects (rather
than the set of all databases) to obtain a useful mechanism. In the case of linear queries,
we have shown that the answers to many queries can be summarized by integer valued
databases with small `1 norm. An interesting future direction is to determine what types of
nonlinear (but low sensitivity) queries have similar small summarizes from which useful
mechanisms can be derived.
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Chapter 6

Data Release in the Local Privacy Model

6.1 Introduction

So far, we have considered a centralized model of data privacy, in which there exists a
database administrator who has direct access to the private data. What if there is instead
no trusted database administrator? Even if there is a suitable trusted party, there are many
reasons not to want private data aggregated by some third party. The very existence of an
aggregate database of private information raises the possibility that at some future time, it
will come into the hands of an untrusted party, either maliciously (via data theft), or as a
natural result of organizational succession. A superior model – from the perspective of the
owners of private data – would be a local model, in which agents could (randomly) answer
questions in a differentially private manner about their own data, without ever sharing
it with anyone else. In the context of predicate queries, this seems to severely limit the
expressivity of a private mechanism’s interaction with the data: The mechanism can ask
each user whether or not her data satisfies a given predicate, and the user may flip a coin,
answering truthfully only with slightly higher probability than answering falsely. In this
model, which was first considered by [KLN+08], what is possible?

In this chapter, we prove that it is not possible to release even the very simple class
of monotone conjunctions to subconstant error in the local privacy model (In contrast, in
chapters 3 and 4, we showed that in the centralized model, conjunctions can be released
to inverse polynomial error). This of course rules out the release of any class that can
be used to express conjunctions, to subconstant error (for example disjunctions, decision
lists, halfplanes, etc.)

We observe that this can be viewed as a barrier result of sorts: because any release
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mechanism that uses the private database only to answer a polynomial number of predicate
queries can be implemented in the local model, no such mechanism can be used to answer
conjunctions to subconstant error. But this is the technique that we used to give efficient
release mechanisms for the classes of axis aligned rectangles and large margin halfspaces
in chapter 3 – and very few other computationally efficient techniques are known. This
suggests that the problem of efficiently releasing even very simple classes of predicate
queries requires the development of fundamentally new techniques.

6.2 The Local Privacy Model

The local privacy model was introduced by Kasiviswanathan et al. [KLN+08] in the con-
text of learning. The local privacy model formalizes randomized response: there is no
central database of private data. Instead, each individual maintains possession of their
own data element (a database of size 1), and answers questions about it only in a differen-
tially private manner. Formally, the database D ∈ Xn is a collection of n elements from
some domain X , and each xi ∈ D is held by an individual.

Definition 21 ([KLN+08] (Local Randomizer)). An α-local randomizer R : X → W is
an α-differentially private algorithm that takes a database of size n = 1.

In the local privacy model, algorithms may interact with the database only through a
local randomizer oracle:

Definition 22 ([KLN+08] (LR Oracle)). an LR oracle LRD(·, ·) takes as input an index i ∈
[n] and an α-local randomizer R and outputs a random value w ∈ W chosen according
to the distribution R(xi), where xi ∈ D is the element held by the i’th individual in the
database.

Definition 23 ([KLN+08] (Local Algorithm)). An algorithm is α-local if it ac-
cesses the database D via the oracle LRD, with the following restriction: If
LRD(i, R1), . . . , LRD(i, Rk) are the algorithm’s invocations of LRD on index i, where
each RJ is an αj-local randomizer, then α1 + . . . + αk ≤ α

Because differential privacy is composable, it is easy to see that α-local algorithms are
α-differentially private.

Observation 33 ([KLN+08]). α-local algorithms are α-differentially private.
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Kasiviswanathan et al. are concerned with the task of learning under the constraint of
differential privacy [KLN+08]. In the PAC learning setting, we view the database domain
to be X = {0, 1}d×{0, 1}, where an element (x, y) ∈ X consists of a bitstring x of length
d, and a binary label y. Given a class C of boolean predicates over {0, 1}d, we say that the
error of a predicate h ∈ C is:

err(h) =
1

n
· |{(x, y) ∈ D : h(x) 6= y}|

The goal of a learning algorithm is to select a hypothesis h in C so as to minimize err(h).
In the (proper) PAC setting, it is assumed that there is some hypothesis h ∈ C with
err(h) = 0.

Definition 24 (PAC Learning). A predicate class C is PAC learnable using class C ′ if
there exists an algorithm A such that for all concepts h∗ ∈ C and all distributions D over
{0, 1}d and all (ε, δ) ∈ (0, 1/2), there exists an algorithm that given z1, . . . , zn, where
each zi = (x1, h

∗(xi)) where each xi is an i.i.d. draw from D, outputs a hypothesis h ∈ C ′

satisfying:
Pr[err(h) ≤ ε] ≥ 1− δ

where both n and the running time of the algorithm are bounded by a polynomial in d, ε,
and log 1/δ.

In the context of privacy, we may view the database as defining a (discrete) distribution
over {0, 1}d, and we require further that the algorithm A satisfy α-differential privacy.

Kasiviswanathan et al. show that ignoring computation, private PAC learning in the
centralized privacy model is equivalent to non-private PAC learning [KLN+08]. They also
show that private learning in the local privacy model is equivalent to a restricted form of
PAC learning known as Statistical Query Learning, due to Kearns [Kea98]. Therefore,
they obtain a lower bound for learning parity functions, originally proved by [Kea98] and
generalized by Blum et al. [BFJ+94] for SQ-learning.

Definition 25. For each S ⊆ [d] there exists a parity function χS(x) : {0, 1}d → {0, 1}
defined as follows:

χS(x) =

(∑
i∈S

xi

)
mod 2

The class of parity functions is defined to be Cp = {χS : S ⊆ [d]}. Note that |Cp| = 2d.

Definition 26. Let C be a class of boolean predicates f : {0, 1}n → {0, 1}, and let D
be a distribution over {0, 1}n. The SQ-Dimension of C with respect to D is defined to
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be SQ-DIM(C, D) = d, where d is the largest integer such that C contains d functions
f1, . . . , fd with the property that for all i 6= j we have:

|Pr
D

[fi(x) = fj(x)]− Pr
D

[fi(x) 6= fj(x)]| ≤ 1

d3

Theorem 34 ([BFJ+94]). Let C be a class of boolean functions over {0, 1}n and D be a
distribution such that SQ-DIM(C, D) = d ≥ 16. Then any algorithm that makes statistical
queries with tolerance 1/d1/3 must make at least d1/3/2 queries to learn C to error less
than 1/2− 1/d3.

We first observe that any subset of the parity functions C ′
p ⊆ Cp has SQ-Dimension

|C ′
p| with respect to the uniform distribution:

Observation 35. Let C ′
p ⊆ Cp be some subset of the parity functions, and let U be the

uniform distribution over {0, 1}n. Then we have SQ-DIM(C ′
p, D) = |C ′

p|.

This follows since every two distinct parity functions χT (x), χT ′(x) contain some vari-
able xi in their symmetric difference, and so have no correlation over the uniform distri-
bution.

Theorem 36 ([Kea98, KLN+08]). Let C ′
P ⊂ CP be any subset of parity functions with

superpolynomial cardinality: |C ′
P | ≥ dω(1). Then any private learning algorithm in the

local privacy model cannot (ε, δ) learn C ′
P for any ε bounded away from 1/2 by a constant.

In this chapter, we extend this lower bound to show that no private algorithm in the
local model can (ε, δ)-usefully release conjunctions (or even small subsets of conjunctions)
for any ε = o(1).

We first observe that absent computational constraints, the problem of learning par-
ity functions is strictly easier than the problem of usefully releasing the class of parity
functions. We may view the bitstring/label pairs (x, y) in the database as single bitstrings
x ∈ {0, 1}d+1, with xd+1 = y. Let S ⊆ [d] be the set that defines some parity function
χS(x) over {0, 1}d, and consider χS∪{d+1}(x), a parity function over {0, 1}d+1. We have:

χS∪{d+1}(D) =
1

n

∣∣{x ∈ D : χS∪{d+1}(x) = 1}
∣∣

=
1

n
|{x ∈ D : χS(x) 6= xd+1}|

=
1

n
|{x ∈ D : χS(x) 6= y}|

= err(χS(x))
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If we have an (ε, δ)-useful mechanism with respect to a subset of parity queries, we there-
fore also have an (ε, δ) learning algorithm: we simply exhaustively search through the set
of all parity queries χS such that y ∈ S, and select the one with the lowest value, which as
we have shown, corresponds to the parity query with lowest error up to an additive ε.

We therefore have the following corollary:

Corollary 37. Let C ′
P ⊂ CP be any subset of parity functions with superpolynomial car-

dinality: |C ′
P | ≥ dω(1). There does not exist an algorithm in the local-privacy model that

makes only polynomially many queries and is (ε, δ) useful with respect to C ′
P , for any ε

bounded away from 1/2 by a constant.

We will now show how corollary 37 precludes a locally private release algorithm for
monotone conjunctions to subconstant error.

Definition 27. For each S ⊆ [d] there exists a monotone conjunction cS(x) : {0, 1}d →
{0, 1} defined as follows:

cS(x) =
∏
i∈S

xi

The class of conjunctions is defined to be Cc = {cS : S ⊆ [d]}. Note that |Cc| = 2d.

Note that monotone conjunctions are a very simple class, contained within the class of
conjunctions, disjunctions, decision lists, halfplanes, and other standard predicate classes
of interest. Therefore a lower bound for the class of monotone conjunctions is a serious im-
pediment to locally-private data release. Moreover, unlike parity functions, conjunctions
are easy to learn in the SQ-model (and therefore in the local privacy model). Therefore,
our result shows a formal separation between what is possible to learn in the local privacy
model, and what is possible to release.

We first observe that for each parity function χS(x), we can define a real valued poly-
nomial fS(x) : Rd → R such that for every x ∈ {0, 1}d, fS(x) = χS(x): We do this in the
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natural way, using multilinear polynomial interpolation:

fS(x) =
∑

y∈{0,1}d

χS(y) ·
( ∏

i:yi=1

xi

)
·
( ∏

i:yi=0

(1− xi)

)

=
∑

y:
∑

i∈S yi mod 2=1

( ∏
i:yi=1

xi

)
·
( ∏

i:yi=0

(1− xi)

)

=

|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 ·
(∏

j∈T

xj

)

=

|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 · cT (x)

By restricting the above derivation to the domain {0, 1}d and by invoking linearity, it is
therefore also easy to see:

χS(D) =

|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 · cT (D) (6.1)

for any database D.

That is, we have shown how to express parities over sets of size |S| as linear combina-
tions of conjunctions over sets of size at most |S|. Suppose for point of contradiction that
there existed an (ε, δ)-useful mechanism for monotone conjunctions for some ε = o(1).
That is, except with probability δ, some mechanism M provides answers aS for each
cS ∈ Cc such that |aS − cS(D)| ≤ ε. Then using equation 6.1, we could compute the
approximate value of each parity function χS(x):

|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 · aT ≤
|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 · (cT (D) + (−1)i−1ε)

=

|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 · cT (D) +

|S|∑
i=1

∑

T⊆S:|T |=i

2i−1 · ε

= χS(D) + ε ·
(

S∑
i=1

(|S|
i

)
· 2i−1

)

= χS(D) +

(
3|S| − 1

2

)
· ε
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where the first inequality follows from the hypothesized usefulness of the release mecha-
nism, and the second equality follows from equation 6.1. We can similarly derive:

|S|∑
i=1

∑

T⊆S:|T |=i

(−2)i−1 · aT ≥ χS(D)−
(

3|S| − 1

2

)
· ε

Together, we have shown that an (ε, δ)-useful mechanism for conjunctions with up to s
variables yields an (ε′, δ)-useful mechanism for parities of up to s variables, with ε′ =
O(3s · ε).

By setting s = O(log 1
ε
), we can take ε′ to be 1/4. However, since ε = o(1) by

assumption, we have that log 1
ε

= ω(1). Let C ′
p = {χS ∈ Cp : |S| ≤ s}. We have:

|C ′
p| = dω(1). By corollary 37, we know that ε′ cannot be bounded away from 1/2 by a

constant, and so we have derived a contradiction. We have therefore proven the following
theorem:

Theorem 38. No release mechanism in the local privacy model that makes only dO(log(1/ε))

queries can be (ε, δ) useful with respect to monotone conjunctions with at most 1/ε vari-
ables, for any polynomially sized database D.

Remark: Note that this is tight: for ε = O(1), the mechanism which simply asks
for the answer to each of the dO(1/ε) conjunctions of size at most O(1/ε) asks only
polynomially many queries, and achieves error ε per query given a database D of size
|D| = poly(d, 1/α).

6.3 Conclusion: The Local Privacy Barrier for Efficient
Release Mechanisms

Theorem 38 precludes answering (even small subsets of) monotone conjunctions to sub-
constant error using mechanisms that operate in the local privacy model and make only
polynomially many (in d) queries, given a database that is also polynomially sized in
d. Clearly, this lower bound also holds for any mechanism in the centralized privacy
model that could be implemented in the local privacy model: in particular, any mechanism
that interacts with the database by only asking a polynomial number of counting queries.
Unfortunately, the only existing efficient release mechanisms known for answering a su-
perpolynomial number of queries work in this manner, including the release mechanisms
we gave in Chapter 3 for axis aligned rectangles, and large margin halfspaces. These tech-
niques will not extend to even very simple classes of functions that include small monotone
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conjunctions as a special case (for example, halfspaces without the large margin guaran-
tee).

Nevertheless, one of the main open questions in differential privacy is how to construct
computationally efficient mechanisms for answering large numbers of counting queries
from natural classes (We must restrict ourselves to natural classes of queries, since results
of [DNR+09] suggest that there may not be any efficient mechanism for generic counting
queries). In this chapter, we have shown that such mechanisms may require fundamentally
new techniques: specifically, techniques that cannot be implemented in the local privacy
model (such as the exponential mechanism, in general), but that can be implemented effi-
ciently. This provides both a guide for future research – we must develop these techniques
– and a rule of thumb to rule out approaches that cannot possibly work: those that can be
implemented in the local privacy model.
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Chapter 7

Differentially Private Combinatorial
Optimization

7.1 Introduction

Consider the following problems:

• Assign people using a social network to one of two servers so that most pairs of
friends are assigned to the same server.

• Open a certain number of HIV treatment centers so that the average commute time
for patients is small.

• Open a small number of drop-off centers for undercover agents so that each agent is
able to visit some site convenient to her (each providing a list of acceptable sites).

The reader may immediately recognize that (ignoring other constraints that may arise)
the above problems can be simplistically modeled as instances of well-known combinato-
rial optimization problems: respectively the minimum cut problem, the k-median problem,
and the set cover problem. While the min cut problem is known to be efficiently solvable,
the k-median problem is NP hard but admits an efficient constant factor approximation.
Similarly, the set cover problem is NP hard and has an efficient logarithmic approximation
algorithm. Moreover, good heuristics have been designed for these problems, and hence
the above problems may be considered well-studied and solved.

However, in the above scenarios and in many others, the input data (friendship rela-
tions, medical history, agents’ locations) consists of sensitive information about individu-
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als. Often customer expectations, legal obligations, security concerns, or a desire to gather
better quality data necessitate that confidentiality of the private input data is guaranteed.
This privacy constraint (formalized below), ignored by the modeling above, is often an
important design goal and hence one may prefer an private algorithm that gives slightly
suboptimal solutions to a non-private optimal algorithm. Given that the most benign (or
even the most beneficial) of actions possibly leaks sensitive information, how should we
design algorithms for the above problems? What are the fundamental trade-offs between
the utility of these algorithms and the privacy guarantees they give us?

In this chapter we initiate a systematic study of the problem of designing algorithms
for combinatorial optimization problems under the constraint of differential privacy. In-
formally, the differential privacy definition requires the distribution of outcomes of the
computation to not change significantly (in a precise sense) when one individual changes
her input data. This is a very strong privacy guarantee: no matter what auxiliary infor-
mation an adversary may have, it will not be able to learn anything significant about any
individual that it couldn’t have learnt were the individual not to participate in the database
at all. While this guarantees privacy of an individual’s sensitive data, it nevertheless al-
lows the computation to respond when many individuals change their data, as any useful
computation must do.

This work explores the challenges of producing combinatorial objects by differentially
private computation. One interesting feature of these problems is the interplay between
efficiency and privacy in imposing approximation constraints. The exponential mecha-
nism [MT07] is a natural approach to attack such search problems. However, as we shall
see, while it gives good utility guarantees for some problems such as k-median, it may
lead to solutions very far from optimal on many others like minimum cut. A second hur-
dle to applying the exponential mechanism is its computational inefficiency when the set
of candidate outcomes is exponentially large, which is usually the case for combinatorial
optimization problems. Both these factors force us to design new algorithms—algorithms
that efficiently output good solutions while guaranteeing differential privacy.

7.1.1 Our Results

We first look at the minimum cut problem. Given a graph G = (V,E), the goal is to
partition the vertices into two sets (S, S) so as to minimize the number of edges going from
one set to the other. We consider the edges of the graph as the sensitive inputs and the goal
is to output a partition that does not reveal the presence or absence of individual edges.
It is not hard to see that we cannot expect to output the minimum cut while guaranteeing
privacy. Previous results on differentially private computation [DMNS06] show that one
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can solve the decision problem well, and output the value of the minimum cut up to an
additive error of O(1

ε
) while guaranteeing ε-differential privacy.

Our results work for the search problem where a cut itself must be output: for this case,
we show that an additive error of Ω( log n

ε
) is necessary to guarantee ε-differential privacy.

This and other lower bounds in this work are information theoretic bounds that derive from
the privacy constraint and hold irrespective of computational constraints. We then give an
(inefficient) differentially-private algorithm that outputs a partition of V that matches this
lower bound. Finally, we present a polynomial-time variant of the algorithm which gives
the same error bound and satisfies a slight relaxation of differential privacy.

For the k-median problem, we treat the clients’ locations as their sensitive information.
Once again, we show that any private algorithm must incur a certain additive error, and
give an inefficient algorithm that matches the lower bound. We cannot however expect
to design a polynomial time algorithm with the same guarantees, as the problem itself is
APX-hard even in the absence of privacy constraints. Hence, we instead give an algorithm
with both multiplicative and additive overheads that satisfies differential privacy.

Vertex Cover and New Challenges. We next turn our attention to covering problems
such as the VERTEX COVER problem, in which we must select a small set of vertices that
cover an input set of (sensitive) edges. Previous work on this problem had investigated the
alternate notion of “functional” privacy, and had concluded that privately approximating
even the value of the optimal vertex cover within a factor of n1−ξ is not possible under
standard complexity assumptions [HKKN01]. Our use of differential privacy allows us to
bypass these lower bounds and report a 2-approximation to the value of the optimal cover
(with a small additive error) in the unweighted case.

What if we want to privately output a vertex cover instead of just its value? Interest-
ingly, covering problems differ in one crucial aspect from the k-median and minimum cut
problems: the (private) data imposes hard constraints that must be satisfied by a solution.
Put differently, while private data only influences the objective function in the k-median
problem, the data determines the constraints defining the set of feasible solutions in the
case of the vertex cover problem. And this hard covering constraint make it impossible
to output an explicit yet small vertex cover while preserving privacy: any differentially
private algorithm constrained to always output an explicit vertex cover must output n− 1
vertices, as leaving out two vertices u and v leaks the information that the edge (u, v) is
certainly not present, violating differential privacy.

How can we get around this hurdle? We do so by allowing the algorithm to output
an orientation for each of the

(|V |
2

)
possible edges; the orientation implicitly defines a

87



vertex cover for any subset of edges, without needing to reveal the subset itself. In other
words, instead of explicitly outputting a feasible solution, we output a variable for each
possible constraint that can be used to satisfy this constraint. If we think VC as a facility
location problem, one does not need to publish the list of facilities; it is enough to tell each
client which location to go to. Similarly, we tell each edge which end point to use. The
privacy guarantee is that any set of edges can get together, but they will not be able to learn
anything about any edge not in the collusion. In the undercover agent example above, the
output enables each agent to know which drop-off location to use. At the same time, it
ensures that the agent cannot from this information infer the presence or absence of other
agents. The privacy guarantee we give is actually significantly stronger: an arbitrary set
of agents can collude and still not be able to infer the location of any other agent from the
algorithm’s output.

Having resolved the representation issue, we can now turn to the computational ques-
tion: given a set of edges E, how do we find an orientation efficiently but privately? How
can we use enough information about the edge set to give us a good approximation, but not
so much as to violate privacy? We give an ε-differentially private randomized algorithm
that outputs an orientation whose expected cost is at most (2 + 16/ε) times the optimum.
For the weighted version of the problem, the approximation guarantee weakens slightly
to 16(1 + 1/ε). In both cases, as the privacy guarantees strengthen (with decreasing ε),
the approximation guarantees weaken proportionally—this loss is essential, as we show
by a lower bound proving that the 1/ε loss is natural and necessary, regardless of com-
putational considerations. We give similar upper and lower bounds for SET COVER and
uncapacitated facility location problems.

Differential Privacy versus Truthfulness. Our results have potential implications to
non-privacy related problems as well, as we discuss in the context of the recent Combina-
torial Public Project problem, a special case of submodular maximization introduced by
Papadimitriou et al. [PSS08]. They showed that the problem can admit either truthfulness
or efficient approximation, but not both simultaneously. In contrast to this negative result,
we show that under differential privacy (which can be interpreted as an approximate but
robust alternative to truthfulness) we can achieve the same approximation factor as the
best non-truthful algorithm, plus an additive logarithmic loss.

Finally, we prove a private boosting lemma. Randomized algorithms usually come
with guarantees on their performance in expectation, with the understanding that inde-
pendently repeating the random experiment and picking the best among the solutions can
provide similar guarantees with high probability. When working with sensitive inputs, this
is not a feasible approach: while each trial may leak a very small amount of informa-
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tion about an individual, publishing results of repeated trials may reveal individual data.
We show how to take a private algorithm that gives bounds in expectation and convert it
into one that privately gives a high probability performance guarantee. Moreover, if the
original algorithm is polynomial time, then so is the modified one.

Table 7.1 summarizes the bounds we prove in this paper. For each problem, from left
to right, it reports the best known non-private approximation guarantees, our best efficient
ε-differentially private algorithms, and in each case matching upper and lower bounds
for inefficient ε-differentially private algorithms. For a few of the efficient algorithms
(marked with a †) the guarantees are only for an approximate form of differential privacy,
incorporating a failure probability δ, and scaling the effective value of ε up by ln(1/δ).

Non-private Efficient Algorithms Information Theoretic
Vertex Cover 2×OPT [Pit85] (2 + 16/ε)×OPT Θ(1/ε)×OPT

Wtd. Vertex Cover 2×OPT [Hoc82] (16 + 16/ε)×OPT Θ(1/ε)×OPT
Set Cover ln n×OPT [Joh74] O(ln n + ln m/ε)×OPT Θ(ln m/ε)×OPT

Wtd. Set Cover ln n×OPT [Chv79] O(ln n(ln m + ln ln n)/ε)×OPT † Θ(ln m/ε)×OPT
Min Cut OPT [FF56] OPT + O(ln n/ε) † OPT + Θ(ln n/ε)

CPPP (1− 1/e)×OPT [NWF78] (1− 1/e)×OPT−O(k ln m/ε) OPT−Θ(k ln(m/k)/ε)

k-Median (3 + γ)×OPT [AGK+04] 6×OPT + O(k2 ln2 n/ε) OPT + Θ(k ln(n/k)/ε)

Table 7.1: Summary of Results

Secure Function Evaluation vs. Differential Privacy

Prior work on Secure Function Evaluation (SFE) tells us that in fact the minimum cut in
a graph can be computed in a distributed fashion in such a way that computations reveals
nothing that cannot be learnt from the output of the computation. While this is a strong
form of a privacy guarantee, it may be unsatisfying to an individual whose private data
can be inferred from the privately computed output. Indeed, it is not hard to come up with
instances where an attacker with some limited auxiliary information can infer the presence
or absence of specific edges from local information about the minimum cut in the graph.
By relaxing the whole input privacy requirement of SFE, differential privacy is able to
provide unconditional per element privacy, which SFE need not provide if the output itself
discloses properties of input.
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7.1.2 Related Work

The problem of private approximation was introduced by Feigenbaum et al. [FIM+06],
where the constraint of functional privacy was used to require that two inputs with the same
output value (e.g. the size of an optimal vertex cover) must produce the same value under
the approximation algorithm. With this constraint, Halevi et al. [HKKN01] show that
approximating the value of vertex cover to within n1−ξ is as hard as computing the value
itself, for any constant ξ. These hardness results were extended to search problems by
Beimel et al. [BCNW06], where the constraint is relaxed to only equate those inputs whose
sets of optimal solutions are identical. These results were extended and strengthened by
Beimel et al. [BHN07, BMNW07].

Nonetheless, Feigenbaum et al. [FIM+06] and others show a number of posi-
tive approximation results under versions of the functional privacy model. Halevi et
al. [HKKN01] provide positive results in the function privacy setting when the algorithm
is permitted to leak few bits (each equivalence class of input need not produce identical
output, but must be one of at most 2b possible outcomes). Indyk and Woodruff also give
some positive results for the approximation of `2 distance and a nearest neighbor problem
[IW06]. However, the privacy guarantee in functional privacy is similar to SFE and does
not protect sensitive data that can be inferred from the output.

7.2 Definitions

7.2.1 The Exponential Mechanism

One particularly general tool that we will often use is the exponential mechanism of
[MT07]. This construction allows differentially private computation over arbitrary do-
mains and ranges, parametrized by a query function q(A, r) mapping a pair of input data
set A (a multiset over some domain) and candidate result r to a real valued “score”. With
q and a target privacy value ε, the mechanism selects an output with exponential bias in
favor of high scoring outputs:

Pr[E ε
q(A) = r] ∝ exp(εq(A, r)) . (7.1)

If the query function q has the property that any two adjacent data sets have score
within ∆ of each other, for all possible outputs r, the mechanism provides 2ε∆-differential
privacy. Typically, we would normalize q so that ∆ = 1. We will be using this mecha-
nism almost exclusively over discrete ranges, where we can derive the following simple
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analogue of a theorem of [MT07], that the probability of a highly suboptimal output is
exponentially low:

Theorem 39. The exponential mechanism, when used to select an output r ∈ R gives 2ε∆-
differential privacy, letting ROPT be the subset of R achieving q(A, r) = maxr q(A, r),
ensures that

Pr[q(A, E ε
q(A)) < max

r
q(A, r)− ln(|R|/|ROPT|)/ε− t/ε] ≤ exp(−t) . (7.2)

The proof of the theorem is almost immediate: any outcome with score less
than maxr q(A, r) − ln(|R|/|ROPT|)/ε − t/ε will have normalized probability at most
exp(−t)/|R|; each has weight at most exp(OPT− t)|ROPT|/|R|, but is normalized by at
least |ROPT| exp(OPT) from the optimal outputs. As there are at most |R| such outputs
their cumulative probability is at most exp(−t).

7.3 Private Min-Cut

Given a graph G = (V,E) the minimum cut problem is to find a cut (S, Sc) so as to
minimize E(S, Sc). In absence of privacy constraints, this problem is efficiently solvable
exactly. However, outputting an exact solution violates privacy, as we show in Section
7.3.1. Thus, we give an algorithm to output a cut within additive O(log n/ε) edges of
optimal.

The algorithm has two stages: First, given a graph G, we add edges to the graph to
raise the cost of the min cut to at least 4 ln n/ε, in a differentially private manner. Second,
we deploy the exponential mechanism over all cuts in the graph, using a theorem of Karger
to show that for graphs with min cut at least 4 ln n/ε the number of cuts within additive t of
OPT increases no faster than exponentially with t. Although the exponential mechanism
takes time exponential in n, we can construct a polynomial time version by considering
only the polynomially many cuts within O(ln n/ε) of OPT.

Algorithm 1 The Min-Cut Algorithm
1: Input: G = (V,E),ε.
2: Let H0 ⊂ H1, . . . ,⊂ H(n

2)
be arbitrary strictly increasing sets of edges on V .

3: Choose index i with probability proportional to exp(−ε|OPT(G∪Hi)− 8 ln n/ε|).
4: Choose cut C with probability proportional to exp(−εCost(G ∪Hi, C)).
5: Output C.
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Our result relies on a result of Karger about the number of near-minimum cuts in a
graph [Kar93]

Lemma 16 ([Kar93]). For any graph G with min cut C, there are at most n2α cuts of size
at most αC.

By enlarging the size of the min cut in G ∪ Hi to at least 4 ln n/ε, we ensure that the
number of cuts of value OPT(G∪Hi)+t is bounded by n2 exp(εt/2). The downweighting
of the exponential mechanism will be able to counteract this growth in number and ensure
that we select a good cut.

Theorem 40. For any graph G, the expected cost of ALG is at most OPT + O(ln n/ε).

Proof. First, we argue that the selected index i satisfies 4 ln n/ε < OPT(G ∪ Hi) <
OPT(G) + 12 ln n/ε with probability at least 1 − 1/n2. For OPT > 8 ln n/ε, Equation
7.2 ensures that the probability of exceeding the optimal choice (H0) by 4 ln n/ε is at most
1−1/n2. Likewise, for OPT < 8 ln n/ε, there is some optimal Hi achieving min cut size
8 ln n/ε, and the probability we end up farther away than 4 ln n/ε is at most 1− 1/n2.

Assuming now that OPT(G∪Hi) > 4 ln n/ε, Karger’s lemma argues that the number
ct of cuts in G ∪ Hi of cost at most OPT(G ∪ Hi) + t is at most n2 exp(εt/2). As we
are assured a cut of size OPT(G ∪ Hi) exist, each cut of size OPT(G ∪ Hi) + t will
receive probability at most exp(−εt). Put together, the probability of a cut exceeding
OPT(G ∪Hi) + b is at most

Pr[Cost(G ∪Hi, C) > OPT(G ∪Hi) + b] ≤
∑

t>b

exp(−εt)(ct − ct−1) (7.3)

≤ (exp(ε)− 1)
∑

t>b

exp(−εt)ct (7.4)

≤ (exp(ε)− 1)
∑

t>b

exp(−εt/2)n2(7.5)

The sum telescopes to exp(−εb/2)n2/(exp(ε/2) − 1), and the denominator is within a
constant factor of the leading factor of (exp(ε) − 1), for ε < 1. For b = 8 ln n/ε, this
probability becomes at most 1/n2.

Theorem 41. The algorithm above preserves 2ε-differential privacy.

Remark: Note that the first instance of the exponential mechanism in our algorithm
runs efficiently (since it is selecting from only

(
n
2

)
objects), but the second instance does
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not. However, using Karger’s algorithm we can efficiently (with high probability) generate
all cuts of size at most OPT + k ln n/ε for any constant k. If we are willing to tolerate a
polynomially small δ = O(1/nk) to achieve (ε, δ)-privacy, we can select only from such
a pre-generated polynomially sized set, and achieve (ε, δ)-differential privacy efficiently.
We omit the details from this extended abstract.

7.3.1 Lower Bounds

Theorem 42. Any ε-differentially private algorithm for min-cut must incur an expected
additive Ω(ln n/ε) cost over OPT, for any ε ∈ (3 ln n/n, 1

12
).

Proof. Consider a ln n/3ε-regular graph G = (V,E) on n vertices such that the mini-
mum cuts are exactly those that isolate a single vertex, and any other cut has size at least
(2 ln n/3ε) (a simple probabilistic argument establishes the existence of such a G; in fact
a randomly chosen ln n/3ε-regular graph has this property with high probability).

Let M be an ε-differentially private algorithm for the min-cut. Given the graph G, M
outputs a partition of V . Since there are n = |V | singleton cuts, there exists a vertex v
such that the mechanism M run on G outputs the cut ({v}, V \ {v}) with probability at
most 1/n, i.e.

Pr[M(V, E) = ({v}, V \ {v}) ≤ 1

n
.

Now consider the graph G′ = (V,E ′), with the edges incident on v removed from G,
i.e. E ′ = E \ {e : v ∈ e}. Since M satisfies ε-differential privacy and E and E ′ differ in
at most ln n/2ε edges,

Pr[M(V, E ′) = ({v}, V \ {v})] ≤ 1/n1/2.

Thus with probability (1 − 1√
n
), M(G′) outputs a cut other than the minimum cut

({v}, V \{v}). But all other cuts, even with these edges removed, cost at least (ln n/3ε)−1.
Since OPTis zero for G′, the claim follows.

7.4 Private k-Median

We next consider a private version of the metric k-median problem: There is a pre-
specified set of points V and a metric on them, d : V × V → R. There is a (private)
set of demand points D ⊆ V . We wish to select a set of medians F ⊂ V with |F | = k
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to minimize the quantity Cost(F ) =
∑

v∈D d(v, F ) where d(v, F ) = minf∈F d(v, f). Let
∆ = maxu,v∈V d(u, v) be the diameter of the space.

As we show in Section 7.4.1, any privacy-preserving algorithm for k-median must in-
cur an additive loss of Ω(∆ · k ln(n/k)/ε), regardless of computational constraints. We
observe that running the exponential mechanism to choose one of the

(
n
k

)
subsets of me-

dians gives an (computationally inefficient) additive guarantee.

Theorem 43. Using the exponential mechanism to pick a set of k facilities gives an
O(

(
n
k

)
poly(n))-time ε-differentially private algorithm that outputs a solution with expected

cost OPT + O(k∆ log n/ε).

We next give a polynomial-time algorithm that gives a slightly worse approximation
guarantee. Our algorithm is based on the local search algorithm of Arya et al. [AGK+04].
We start with an arbitrary set of k medians, and use the exponential mechanism to look
for a (usually) improving swap. After running this local search for a suitable number of
steps, we select a good solution from amongst the ones seen during the local search. The
following result shows that if the current solution is far from optimal, then one can find
improving swaps.

Theorem 44 (Arya et al. [AGK+04]). For any set F ⊆ V with |F | = k, there exists a set
of k swaps (x1, y1), . . . , (xk, yk) such that

∑k
i=1(Cost(F ) − Cost(F − {xi} + {yi})) ≥

Cost(F )− 5OPT.

Corollary 45. For any set F ⊆ V with |F | = k, there exists some swap (x, y) such that

Cost(F )− Cost(F − {xi}+ {yi}) ≥ Cost(F )− 5OPT

k
.

Algorithm 2 The k-Median Algorithm
1: Input: V , Demand points D ⊆ V , k,ε.
2: let F1 ⊂ V arbitrarily with |F1| = k, ε′ ← ε/(2∆(T + 1)).
3: for i = 1 to T do
4: Select (x, y) ∈ Fi× (V \Fi) with probability proportional to exp(−ε′×Cost(Fi−

{x}+ {y})).
5: let Fi+1 ← Fi − {x}+ {y}.
6: end for
7: Select j from {1, 2, . . . , T} with probability proportional to exp(−ε′ × Cost(Fj)).
8: output Fj .
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Theorem 46. Setting T = 6k ln n and ε′ = ε/(2∆(T + 1)), the k-median algorithm
provides ε-differential privacy and except with probability O(1/poly(n)) outputs a solution
of cost at most 6OPT + O(∆k2 log2 n/ε).

Proof. We first prove the privacy. Since the Cost function has sensitivity ∆, Step 4 of
the algorithm preserves 2ε′∆ differential privacy. Since Step 4 is run at most T times and
privacy composes additively, outputting all of the T candidate solutions would give us
(2ε′∆T ) differential privacy. Picking out a good solution from the T candidates costs us
another 2ε′∆, leading to the stated privacy guarantee.

We next show the approximation guarantee. By Corollary 45, so long as Cost(Fi) ≥
6OPT, there exists a swap (x, y) that reduces the cost by at least Cost(Fi)/6k. As there
are only n2 possible swaps, the exponential mechanism ensures through (7.2) that we are
within additive 4 ln n/ε′ with probability at least 1 − 1/n2. When Cost(Fi) ≥ 6OPT +
24k ln n/ε′, with probability 1− 1/n2 we have Cost(Fi+1) ≤ (1− 1/6k)× Cost(Fi).

This multiplicative decrease by (1−1/6k) applies for as long as Cost(Fi) ≥ 6OPT+
24k ln n/ε′. Since Cost(F0) ≤ n∆, and n∆(1 − 1/6k)T ≤ ∆ ≤ 24k ln n/ε′, there must
exist an i < T such that Cost(Fi) ≤ 6OPT + 24k ln n/ε′, with probability at least (1 −
T/n2).

Finally, by applying the exponential mechanism again in the final stage, we select from
the Fi scoring within an additive 4 ln n/ε′ of the optimal visited Fi with probability at least
1− 1/n2, again by (7.2). Plugging in the value of ε′, we get the desired result. Increasing
the constants in the additive term can drive the probability of failure to an arbitrarily small
polynomial.

7.4.1 k-Median Lower Bound

Theorem 47. Any ε-differentially private algorithm for the k-median problem must incur
cost OPT + Ω(∆ · k ln(n/k)/ε) on some inputs.

Proof. Consider a point set V = [n] × [L] of nL points, with L = ln(n/k)/10ε, and
a distance function d((i, j), (i′, j′)) = ∆ whenever i 6= i′ and d((i, j), (i, j′)) = 0. Let
M be a differentially private algorithm that takes a subset D ⊆ V and outputs a set of
k locations, for some k < n

4
. Given the nature of the metric space, we assume that M

outputs a k-subset of [n]. For a set A ⊆ [n], let DA = A× [L]. Let A be a size-k subset of
V chosen at random.

We claim that that EA,M [|M(DA) ∩ A|] ≤ k
2

for any ε-differentially private algorithm

95



M . Before we prove this claim, note that it implies the expected cost of M(DA) is k
2
×∆L,

which proves the claim since OPT = 0.

Now to prove the claim: define φ := 1
k
EA,M [|A ∩M(DA)|]. We can rewrite

k · φ = EA,M [|A ∩M(DA)|] = k · Ei∈[n]EA\{i},M [1i∈M(DA)] (7.6)

Now changing A to A′ := A \ {i}+ {i′} for some random i′ requires altering at most 2L
elements in DA′ , which by the differential privacy guarantee should change the probability
of the output by at most e2εL = (n/k)1/5. Hence

Ei∈[n]EA′,M [1i∈M(DA′ )] ≥ φ · (k/n)1/5. (7.7)

But the expression on the left is just k/n, since there at at most k medians. Hence φ ≤
(k/n)4/5 ≤ 1/2, which proves the claim.

Corollary 48. Any 1-differentially private algorithm for uniform facility location that out-
puts the set of chosen facilities must have approximation ratio Ω(

√
n).

Proof. We consider instances defined on the uniform metric on n points, with d(u, v) = 1
for all u, v, and facility opening cost f = 1√

n
. Consider a 1-differentially private mecha-

nism M when run on a randomly chosen subset A of size k =
√

n. Since OPT is kf = 1
for these instances, any o(

√
n)-approximation must select at least k

2
locations from A in

expectation. By an argument analogous to the above theorem, it follows that any differen-
tially private M must output n/20 of the locations in expectation. This leads to a facility
opening cost of Ω(

√
n).

7.5 Vertex Cover

We now turn to the problem of (unweighted) vertex cover, in which we must select a set of
vertices of minimal size so that every edge in the graph is incident to at least one vertex. In
the privacy-preserving version of the problem, the private information we wish to conceal
is the presence of absence of each edge.

Approximating the Vertex Cover Size. As mentioned earlier, the problem of ap-
proximating the vertex cover size was used as the polynomial inapproximability result
of [HKKN01, BCNW06] under the constraint of functional privacy. Despite this, any
approaches to approximating the size of the optimal vertex cover are immediately com-
patible with differential privacy. E.g., the size of a maximum matching times two is a
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2-approximation, and only changes in value by at most two with the presence or absence
of a single edge. Hence, this value plus Laplace(2/ε) noise provides ε-differential privacy
[DMNS06]. (It is important that we use maximum rather than just maximal matchings,
since the size of the latter is not uniquely determined by the graph, and the presence or
absence of an edge may dramatically alter the size of the solution.)

Interestingly, for weighted vertex cover with maximum weight wmax (studied in Sec-
tion 7.5.3), we have to add in Lap(wmax/ε) noise to privately estimate the weight of the
optimal solution, which can be much larger than OPT itself. The mechanism in Section
7.5.3 avoids this barrier by only implicitly outputting the solution and gives us a O(1/ε)
multiplicative approximation with ε-differential privacy.

Private approximation algorithms for the Vertex Cover search problem. As noted
in the introduction, any differentially private algorithm for vertex cover that outputs an ex-
plicit vertex cover (a subset of the n vertices) must output a cover of size at least n−1 with
probability 1 on any input, an essentially useless result. This lower bound exists because
differential privacy requires that any output that is possible under some input is possible
under all inputs. In order to address this challenge, we change our target output slightly,
and allow our algorithm to output, rather than a subset of the vertices, an orientation of the
edges (including non-existent edges) so as to minimize the size of the set of destinations
of existing edges. Such an orientation may be viewed as a privacy-preserving set of in-
structions that allows for the construction of a good vertex cover in a distributed manner:
in the case of the undercover agents mentioned in the introduction, the complete set of
active dropoff sites (nodes) is not revealed to the agents, but an orientation on the edges
tells each agent which dropoff site to use, if she is indeed an active agent.

7.5.1 Approximating Solutions: Unweighted Vertex Cover

Many algorithms exist that provide a factor-two approximation to the unweighted ver-
tex cover, such as selecting all endpoints of a maximal matching, or repeatedly adding
a random endpoint of a random uncovered edge. Although some are randomized, none
that we know of have outputs that can be made to satisfy differential privacy. One sim-
ple non-private 2-approximation to vertex cover [Pit85] repeatedly selects an uncovered
edge uniformly at random, and includes a random endpoint of the edge. We can view the
process, equivalently, as selecting a vertex at random with probability proportional to its
uncovered degree. We will take this formulation and mix in a uniform distribution over the
vertices, using a weight that will grow as the number of remaining vertices decreases. As
mentioned above, our goal is to output an orientation for each edge (regardless of whether
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it is actually present). The way we will do this will be to output a permutation of the ver-
tex set; we will infer from this that an edge is oriented toward whichever of its endpoints
appears first in the permutation.

Let us start from G1 = G, and let Gi be the graph with n − i + 1 vertices remaining.
We will write dv(G) for the degree of vertex v in graph G. The algorithm ALG in step i
chooses from the n − i + 1 vertices of Gi with probability proportional to dv(Gi) + wi,
for an appropriate sequence 〈wi〉. Taking wi = (4/ε) × (n/(n − i + 1))1/2 provides ε-
differential privacy and a (2 + 16/ε) approximation factor, the proof of which will follow
from the forthcoming Theorem 49 and Theorem 50.

Algorithm 3 Unweighted Vertex Cover
1: let n ← |V |, V1 ← V,E1 ← E.
2: for i = 1, 2, . . . , n do
3: let wi ← (4/ε)×

√
n/(n− i + 1).

4: pick a vertex v ∈ Vi with probability proportional to dEi
(v) + wi.

5: output v. let Vi+1 ← Vi \ {v}, Ei+1 ← Ei \ ({v} × Vi).
6: end for

Theorem 49 (Privacy). ALG’s differential privacy guarantee is max{1/w1,
∑

i 2/iwi} ≤
ε for the settings of wi above.

Proof. For any two sets of edges A and B, and any permutation π, let di be the degree of
the ith vertex in the permutation π and let mi be the remaining edges, both ignoring edges
incident to the first i− 1 vertices in π.

Pr[ALG(A) = π]

Pr[ALG(B) = π]
=

n∏
i=1

(wi + di(A))/((n− i + 1)wi + 2mi(A))

(wi + di(B))/((n− i + 1)wi + 2mi(B))
.

When A and B differ in exactly one edge, di(A) = di(B) for all i except the first endpoint
incident to the edge in the difference. Until this term mi(A) and mi(B) differ by exactly
one, and after this term mi(A) = mi(B). The number of nodes is always equal, of course.
Letting j be the index in π of the first endpoint of the edge in difference, we can cancel all
terms after j and rewrite

Pr[ALG(A) = π]

Pr[ALG(B) = π]
=

wj + dj(A)

wj + dj(B)
×

∏
i≤j

(n− i + 1)wi + 2mi(B)

(n− i + 1)wi + 2mi(A)
.

An edge may have arrived in A, in which case mi(A) = mi(B) + 1 for all i ≤ j, and each
term in the product is at most one; moreover, dj(A) = dj(B) + 1, and hence the leading
term is at most 1 + 1/wj < exp(1/w1), which is bounded by exp(ε/2).
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Alternately, an edge may have departed from A, in which case the lead term is no
more than one, but each term in the product exceeds one and their product must now be
bounded. Note that mi(A) + 1 = mi(B) for all relevant i, and that by ignoring all other
edges we only make the product larger. Simplifying, and using 1 + x ≤ exp(x), we see

∏
i≤j

(n− i + 1)wi + 2mi(B)

(n− i + 1)wi + 2mi(A)
≤

∏
i≤j

(n− i + 1)wi + 2

(n− i + 1)wi + 0

=
∏
i≤j

(
1 +

2

(n− i + 1)wi

)

≤ exp

(∑
i≤j

2

(n− i + 1)wi

)

The wi are chosen so that
∑

i 2/(n− i + 1)wi = (ε/
√

n)
∑

i 1/2
√

i is at most ε.

Theorem 50 (Accuracy). For all G, E[ALG(G)] ≤ (2 + 2 avgi≤n wi) × |OPT (G)| ≤
(2 + 16/ε)|OPT(G)|.

Proof. Let OPT (G) denote an arbitrary optimal solution to the vertex cover problem on
G. The proof is inductive, on the size n of G. For G with |OPT (G)| > n/2, the theorem
holds. For G with |OPT (G)| ≤ n/2, the expected cost of the algorithm is the probability
that the chosen vertex v is incident to an edge, plus the expected cost of ALG(G \ v).

E[ALG(G)] = Pr[v incident on edge] + Ev[E[ALG(G \ v)]] .

We will bound the second term using the inductive hypothesis. To bound the first term, the
probability that v is chosen incident to an edge is at most (2mwn + 2m)/(nwn + 2m), as
there are at most 2m vertices incident to edges. On the other hand, the probability that we
pick a vertex in OPT (G) is at least (|OPT (G)|wn + m)/(nwn + 2m). Since |OPT (G)|
is non-negative, we conclude that

Pr[v incident on edge] ≤ (2 + 2wn)(m/(nwn + 2m)) ≤ (2 + 2wn) Pr[v ∈ OPT (G)]

Since 1[v ∈ OPT (G)] ≤ |OPT (G)|− |OPT (G\v)|, and using the inductive hypothesis,
we get

E[ALG(G)] ≤ (2 + 2wn)× (|OPT (G)| − Ev[|OPT (G \ v)|]) + (2 + 2 avg
i<n

wi)× Ev[|OPT (G \ v)|]
= (2 + 2wn)× |OPT (G)|+ (2 avg

i<n
wi − 2wn)× Ev[|OPT (G \ v)|]
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The probability that v is from an optimal vertex cover is at least (|OPT (G)|wi+m)/(nwi+
2m), as mentioned above, and (using (a + b)/(c + d) ≥ min{a/c, b/d}) is at least
min{|OPT (G)|/n, 1/2} = |OPT (G)|/n, since |OPT (G)| < n/2 by assumption. Thus
E[|OPT (G \ v)|] is bounded above by (1− 1/n)× |OPT (G)|, giving

E[ALG(G)] ≤ (2 + 2wn)× |OPT (G)|+ (2 avg
i<n

wi − 2wn)× (1− 1/n)× |OPT (G)| .

Simplification yields the claimed results, and instantiating wi completes the proof.

Hallucinated Edges. Here is a slightly different way to implement the intuition behind
the above algorithm: imagine adding O(1/ε) “hallucinated” edges to each vertex (the
other endpoints of these hallucinated edges being fresh “hallucinated” vertices), and then
sampling vertices without replacement proportional to these altered degrees. However,
once (say) n/2 vertices have been sampled, output the remaining vertices in random order.
This view will be useful to keep in mind for the weighted vertex cover proof. (A formal
analysis of this algorithm is in Section 7.6.)

7.5.2 Vertex Cover Lower Bounds

Theorem 51. Any algorithm for the vertex cover problem that prescribes edge-
orientations with ε-differential privacy must have an Ω(1/ε) approximation guarantee,
for any ε ∈ ( 1

n
, 1].

Proof. Let V = {1, 2, . . . , d 1
2ε
e}, and let M be an ε-differentially private algorithm that

takes as input a private set E of edges, and outputs an orientation ME : V × V → V ,
with ME(u, v) ∈ {u, v} indicating to the edge which endpoint to use. Picking two dis-
tinct vertices u 6= v uniformly at random (and equating (u, v) with (v, u)), we have by
symmetry:

Pru,v[M∅((u, v)) 6= u] = 1
2
.

Let ?u = (V, {u} × (V \ {u})) be the star graph rooted at u. Since ?u and ∅ differ in at
most 1

2ε
− 1 < 1

ε
edges and M satisfies ε-differential privacy, we conclude that

Pru,v[M?u((u, v)) 6= u] ≥ 1
2e

.

Thus the expected cost of M when input a uniformly random ?u is at least 1
2e
×d 1

2ε
e, while

OPT(?u) is 1. We can repeat this pattern arbitrarily, picking a random star from each
group of 1/ε vertices; this results in graphs with arbitrarily large vertex covers where M
incurs cost 1/ε times the cost.
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7.5.3 Weighted Vertex Cover

In the weighted vertex cover problem, each vertex V is assigned a weight w(v), and the
cost of any vertex cover is the sum of the weights of the participating vertices. One can
extend the unweighted 2-approximation that draws vertices at random with probability
proportional to their uncovered degree to a weighted 2-approximation by drawing ver-
tices with probability proportional to their uncovered degree divided by their weight. The
differentially private analog of this algorithm essentially draws vertices with probability
proportional to 1/ε plus their degree, all divided by the weight of the vertex; the algorithm
we present here is based on this idea.

Define the score of a vertex to be s(v) = 1/w(v). Our algorithm involves hallucinating
edges: to each vertex, we add in 1/ε hallucinated edges, the other endpoints of which are
imaginary vertices, whose weight is considered to be ∞ (and hence has zero score). The
score of an edge e = (u, v) is defined to be s(e) = s(u) + s(v); hence the score of a
fake edge f incident on u is s(f) = s(u), since its other (imaginary) endpoint has infinite
weight and zero score. We will draw edges with probability proportional to their score,
and then select an endpoint to output with probability proportional to its score. In addition,
once a substantial number of vertices of at least a particular weight have been output, we
will output the rest of those vertices.

Assume the minimum vertex weight is 1 and the maximum is 2J . For simplicity, we
round the weight of each vertex up to a power of 2, at a potential loss of a factor of two
in the approximation. Define the jth weight class Vj to be the set of vertices of weight 2j .
In addition, we will assume that |Vj| = |Vj+1| for all weight classes. In order to achieve
this, we hallucinate additional fake vertices. We will never actually output a hallucinated
vertex. Let Nj denote |Vj|.

Algorithm 4 Weighted Vertex Cover
1: while not all vertices have been output do
2: pick an uncovered (real or hallucinated) edge e = (u, v) with probability propor-

tional to s(e).
3: output endpoint u ∈ e with probability proportional to s(u).
4: while there exists some weight class Vj such that the number of nodes of class j or

higher that we’ve output is at least Nj/2 = |Vj|/2 do
5: pick the smallest such value of j
6: output (“dump”) all remaining vertices in Vj in random order.
7: end while
8: end while
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We imagine the ith iteration of the outer loop of the algorithm as happening at time
i; note that one vertex is output in Step 3, whereas multiple vertices might be output in
Step 6. Let ñi be the sum of the scores of all real vertices not output before time i, and m̃i

be the sum of the scores of all real edges not covered before time i.

Privacy Analysis

Theorem 52. The weighted vertex cover algorithm preserves O(ε) differential privacy.

Proof. Consider some potential output π of the private vertex cover algorithm, and two
weighted vertex cover instances A and B that are identical except for one edge e = (p, q).
Let p appear before q in the permutation π; since the vertex sets are the same, if the outputs
of both A and B are π, then p will be output at the same time t in both executions. Let vt

be the vertex output in Step 3 at time t in such an execution; note that either p = vt, or p is
output in Step 6 after vt is output.

The probability that (conditioned on the history) a surviving vertex v is output in Step 3
of the algorithm at time i is:

∑
edges e Pr[pick e] · Pr[output v | pick e] =

∑
e3v

s(e)
m̃i+ñi/ε

· s(v)
s(e)

= (d(v)+1/ε)·s(v)
m̃i+ñi/ε

.

Since we compare the runs of the algorithm on A and B which differ only in edge e, these
will be identical after time t when e is covered, and hence

Pr[M(A)=π]
Pr[M(B)=π]

= (dA(vt)+1/ε)s(vt)
(dB(vt)+1/ε)s(vt)

∏
i≤t

(
m̃B

i +ñi/ε

m̃A
i +ñi/ε

)
.

Note that if the extra edge e ∈ A \ B then dA(vt) ≤ dB(vt) + 1 and m̃B
i ≤ m̃A

i , so
the ratio of the probabilities is at most 1 + ε < exp(ε). Otherwise, the leading term is less
than 1 and m̃B

i = m̃A
i + s(e), and we get

Pr[M(A)=π]
Pr[M(B)=π]

≤ ∏
i≤t

(
1 + s(e)

ñi/ε

)
≤ exp

(
s(e) · ε ·∑i≤t

1
ñi

)
.

Let Tj be the time steps i ≤ t where vertices in Vj are output in π. 1
ñi

. Letting 2j∗ be
the weight of the lighter endpoint of edge e, we can break the sum

∑
i≤t

1
ñi

into two pieces
and analyze each separately:

∑
i≤t

1
ñi

=
∑

j≤j∗
∑

i∈Tj

1
ñi

+
∑

j>j∗
∑

i∈Tj

1
ñi

,
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For the first partial sum, for some j ≤ j∗, let
∑

i∈Tj

1
ñi

= 1
ñi0

+ 1
ñi1

+ . . . + 1
ñiλ

such

that i0 > i1 > . . . > iλ. We claim that ñi0 ≥ 2−j∗Nj∗/2. Indeed, since e has not yet
been covered, we must have output fewer than Nj∗/2 vertices from levels j∗ or higher, and
hence at least Nj∗/2 remaining vertices from Vj∗ contribute to ñi0 .

In each time step in Tj , at least one vertex of score 2−j is output, so we have that
ñi` ≥ 2−j∗Nj∗/2 + ` · 2−j . Hence

∑
i∈Tj

1
ñi
≤ 1

2−j∗Nj∗/2
+ 1

2−j∗Nj∗/2+2−j + . . . + 1
2−j∗Nj∗/2+Nj 2−j .

Defining θ = 2−j∗+j ·Nj∗/2, the expression above simplifies to

2j
(

1
θ

+ 1
θ+1

+ . . . + 1
θ+Nj

)
≤ 2j ln

(
θ+Nj

θ

)
= 2j ln

(
1 +

Nj

θ

)
.

Now using the assumption on the size of the weight classes, we have Nj ≤ Nj∗ =⇒
Nj/θ ≤ 2j∗−j+1, and hence

∑
i∈Tj

1
ñi
≤ (j∗ − j + 2)2j , for any j ≤ j∗. Finally,

∑
j≤j∗

∑
i∈Tj

1
ñi
≤ ∑

j≤j∗(j
∗ − j + 2)2j = O(2j∗).

We now consider the other partial sum
∑

j>j∗
∑

i∈Tj

1
ñi

. For any such value of i, we know
that ñi ≥ 2−j∗Nj∗/2. Moreover, there are at most Nj∗/2 times when we output a vertex
from some weight class j ≥ j∗ before we output all of Vj∗; hence there are at most Nj∗/2
terms in the sum, each of which is at most 1

2−j∗ Nj∗/2
, giving a bound of 2j∗ on the second

partial sum. Putting the two together, we get that

Pr[M(A) = π]

Pr[M(B) = π]
≤ exp(s(e) · ε ·O(2j∗)) = exp(O(ε)),

using the fact that s(e) ≤ 2 · 2−j∗ , since the lighter endpoint of e had weight 2j∗ .

Utility Analysis

Call a vertex v interesting if it is incident on a real uncovered edge when it is picked.
Consider the weight class Vj: let I1

j ⊆ Vj be the set of interesting vertices output due to
Steps 3, and I2

j ⊆ Vj be the set of interesting vertices of class j output due to Step 6. The
cost incurred by the algorithm is

∑
j 2j(|I1

j |+ |I2
j |).

Lemma 17. E[
∑

j 2j|I1
j |] ≤ 4(1+ε)

ε
OPT
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Proof. Every interesting vertex that our algorithm picks in Steps 3 has at least one real
edge incident on it, and at most 1

ε
hallucinated edges. Conditioned on selecting an inter-

esting vertex v, the selection is due to a real edge with probability at least 1/(1 + 1
ε
).

One can show that the (non-private) algorithm A that selects only real edges is a 2-
approximation [Pit85]. On the other hand each vertex in I1

j can be coupled to a step
of A with probability ε/(1 + ε). Since we rounded up the costs by at most a factor of two,
the claim follows.

Lemma 18. E[|I2
j |] ≤ 6 E[

∑
j′≥j |I1

j′|]

Proof. Let tj denote the time that class j is dumped. Recall that by (7.5.3), we pick a sur-
viving vertex v with probability ∝ (d(v) + 1

ε
) · s(v) at each step. This expression summed

over all uninteresting vertices is ∪j′≥jVj′ is at most (1/ε)
∑

j′≥j 2−j′Nj′ ≤ 2−j+1Nj/ε.
On the other hand, at each step before time tj , all the interesting vertices in I2

j are
available and the same expression summed over them is at least 2−j|I2

j |/ε. Thus for
any t ≤ tj , conditioned on outputting a vertex vt ∈ ∪j′≥jVj′ in Step 3, the probabil-

ity that it is interesting is at least
|I2

j |2−j/ε

(|I2
j |2−j+21−jNj)/ε

≥ |I2
j |

3Nj
(using |I2

j | ≤ Nj). Now

since we output Nj/2 vertices from ∪j′≥jVj′ in Step 3 before time tj , we conclude that

E
[ ∑

j′≥j |I1
j′|

∣∣ |I2
j |

] ≥ Nj

2
× |I2

j |
3Nj

=
|I2

j |
6

. Taking expectations completes the proof.

We can now compute the total cost of all the interesting vertices dumped in Steps 6 of
the algorithm.

E[cost(
⋃
j

I2
j )] =

∑
j

2j E[|I2
j |]

≤ 6
∑

j

2j
∑

j′≥j

E[|I1
j′|]

≤ 6
∑

j′
E[|I1

j′|]2j′+1

≤ 12 · E[cost(
⋃
j

I1
j )].

Finally, combining this calculation with Lemma 17, we conclude that our algorithm gives
an O(1

ε
) approximation to the weighted vertex cover problem.
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7.6 Unweighted Vertex Cover Algorithm: An Alternate
View

In this section, we consider a slightly different way to implement the vertex cover al-
gorithm. Given a graph G = (V, E), we mimic the randomized proportional-to-degree
algorithm for αn rounds (α < 1), and output the remaining vertices in random order. That
is, in each of the first αn rounds, we select the next vertex i with probability proportional
to d(i)+1/ε: this is equivalent to imagining that each vertex has 1/ε “hallucinated” edges
in addition to its real edges. (It is most convenient to imagine the other endpoint of these
hallucinated edges as being fake vertices which are always ignored by the algorithm.)

When we select a vertex, we remove it from the graph, together with the real and hal-
lucinated edges adjacent to it. This is equivalent to picking a random (real or hallucinated)
edge from the graph, and outputting a random real endpoint. Outputting a vertex affects
the real edges in the remaining graph, but does not change the hallucinated edges incident
to other vertices.

Privacy Analysis. The privacy analysis is similar to that of Theorem 49: imagine the
weights being wi = 1/ε for the first αn rounds and wi = ∞ for the remaining rounds,
which gives us 2

∑n
i=(1−α)n

1
iwi
≤ ε ( 2α

1−α
)-differential privacy.

Utility Analysis. To analyze the utility, we couple our algorithm with a run of the non-
private algorithm A that at each step picks an arbitrary edge of the graph and then picks a
random endpoint: it is an easy exercise that this an 2-approximation algorithm.

We refer to vertices that have non-zero “real” degree at the time they are selected
by our algorithm as interesting vertices: the cost of our algorithm is simply the number of
interesting vertices it selects in the course of its run. Let I1 denote the number of interesting
vertices it selects during the first αn steps, and I2 denote the number of interesting vertices
it selects during its remaining (1−α)n steps, when it is simply ordering vertices randomly.
Clearly, the total cost is I1 + I2.

We may view the first phase of our algorithm as selecting an edge at random (from
among both real and hallucinated ones) and then outputting one of its endpoints at random.
Now, for the rounds in which our algorithm selects a real edge, we can couple this selection
with one step of an imagined run of A (selecting the same edge and endpoint). Note that
this run ofAmaintains a vertex cover that is a subset of our vertex cover, and that once our
algorithm has completed a vertex cover, no interesting vertices remain. Therefore, while
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our algorithm continues to incur cost, A has not yet found a vertex cover.

In the first phase of our algorithm, every interesting vertex our algorithm selects has
at least one real edge adjacent to it, as well as 1/ε hallucinated edges. Conditioned on
selecting an interesting vertex, our algorithm had selected a real edge with probability at
least ε′ = 1/(1 + 1/ε). Let R denote the random variable that represents the number of
steps A is run for. E[R] ≤ 2OPT since A is a 2-approximation algorithm. By linearity
of expectation:

2OPT ≥ E[R] ≥ ε′ · E[I1] (7.8)

We now show that most of our algorithm’s cost comes from the first phase, and hence that
I2 is not much larger than I1.

Lemma 19.
E[I1] ≥ ln

(
1

1− α

)
· E[I2]

Proof. Consider each of the αn steps of the first phase of our algorithm. Let ni denote
the number of interesting vertices remaining at step i. Note that {ni} is a non-increasing
sequence. At step i, there are ni interesting vertices and n− i+1 remaining vertices. Note
that the probability of picking an interesting vertex is strictly greater than ni/(n − i + 1)
at each step. We may therefore bound the expected number of interesting vertices picked
in the first phase:

E[I1] >

αn∑
i=1

E[ni]

n− i + 1
≥ E[nαn]

n∑

i=(1−α)n

1

i
≥ ln

(
1

1− α

)
· E[nαn]

Noting that E[I2] ≤ E[nαn] completes the proof.

Combining the facts above, we get that

E[cost]

OPT
≤ 2

ε′

(
1 +

1

ln(1− α)−1

)
. (7.9)

7.7 Set Cover

We now turn our attention to private approximations for the Set Cover: as for vertex cover,
we do not explicitly output a set cover, but instead output a permutation over the sets in
the set system so that each universe element is deemed covered by the first set in this
permutation that contains it. Our algorithms for set cover give the slightly weaker (ε, δ)-
privacy guarantees.
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7.7.1 Unweighted Set Cover

We are given a set system (U,S) and must cover a private subset R ⊂ U . Let the cardi-
nality of the set system be |S| = m, and let |U | = n. We first observe a computationally
inefficient algorithm.

Theorem 53. The exponential mechanism, when used to pick a permutation of sets, runs
in time O(m!poly(n)) and gives an O(log(em/OPT)/ε)-approximation.

Proof. A random permutation, with probability at least
(

m
OPT

)−1 has all the sets in OPT
before any set in OPTc. Thus the additive error is O(log

(
m

OPT

)
/ε).

The rest of the section gives a computationally efficient algorithm with slightly worse
guarantees: this is a modified version of the greedy algorithm, using the exponential mech-
anism to bias towards picking large sets.

Algorithm 5 Unweighted Set Cover
1: Input: Set system (U,S), private R ⊂ U of elements to cover, ε,δ.
2: let i ← 1, Ri = R. ε′ ← ε/2 ln( e

δ
).

3: while not all sets in S have been output do
4: pick a set S from S with probability proportional to exp(ε′|S ∩Ri|).
5: output set S.
6: Ri+1 ← Ri \ S, i ← i + 1.
7: end while

Utility Analysis

At the beginning of iteration i, say there are mi = m− i + 1 remaining sets and ni = |Ri|
remaining elements, and define Li = maxS∈S |S ∩ Ri|, the largest number of uncovered
elements covered by any set in S. By a standard argument, any algorithm that always picks
sets of size Li/2 is an O(ln n) approximation algorithm.

Theorem 54. The above algorithm achieves an expected approximation ratio of O(ln n +
ln m
ε′ ) = O(ln n + ln m ln(e/δ)

ε
).

Proof. As there is at least one set containing Li elements, our use of the exponential mech-
anism to select sets combined with Equation 7.2 ensures that the probability we select a set
covering fewer than Li − 3 ln m/ε elements is at most 1/m2. While Li > 6 ln m/ε, with
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probability at least (1− 1/m) we always select sets that cover at least Li/2 elements, and
can therefore use no more than O(OPT ln n) sets. Once Li drops below this bound, we
observe that the number of remaining elements |Ri| is at most OPT ·Li. Any permutation
therefore costs at most an additional O(OPT ln m/ε′).

Privacy

Theorem 55. The unweighted set cover algorithm preserves (ε, δ) differential privacy for
any ε ∈ (0, 1), and δ < 1/e.

Proof. Let A and B be two set cover instances that differ in some element I . Say that SI

is the collection of sets containing I . Fix an output permutation π, and write si,j(A) to
denote the size of set Sj after the first i− 1 sets in π have been added to the cover.

Pr[M(A) = π]

Pr[M(B) = π]
=

n∏
i=1

(
exp(ε′ · si,πi

(A))/(
∑

j exp(ε′ · si,j(A)))

exp(ε′ · si,πi
(B))/(

∑
j exp(ε′ · si,j(B)))

)

=
exp(ε′ · st,πt(A))

exp(ε′ · st,πt(B))
·

t∏
i=1

(∑
j exp(ε′ · si,j(B))∑
j exp(ε′ · si,j(A))

)

where t is such that Sπt is the first set containing I to fall in the permutation π. After t, the
remaining elements in A and B are identical, and all subsequent terms cancel. Moreover,
except for the tth term, the numerators of both the top and bottom expression cancel, since
all the relevant set sizes are equal. If A contains I and B does not the first term is exp(ε′)
and the each term in the product is at most 1.

Now suppose that B contains I and A does not . In this case, the first term is
exp(−ε′) < 1. Moreover, in instance B, every set in SI is larger by 1 than in A, and
all others remain the same size. Therefore, we have:

Pr[M(A) = π]

Pr[M(B) = π]
≤

t∏
i=1

(
(exp(ε′)− 1) ·∑j∈SI exp(ε′ · si,j(A)) +

∑
j exp(ε′ · si,j(A))∑

j exp(ε′ · si,j(A))

)

=
t∏

i=1

(1 + (exp(ε′)− 1) · pi(A))

where pi(A) is the probability that a set containing I is chosen at step i of the algorithm
running on instance A, conditioned on picking the sets Sπ1 , . . . , Sπi−1

in the previous steps.

By the definition of t, no set containing I has been chosen in the first t − 1 rounds;
since at each round i ≤ t, the probability of not choosing I is at most 1− pi(A) (it is even
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smaller on instance B), the probability that I is not chosen in the first t − 1 rounds is at
most

∏t−1
i=1(1 − pi(A)) ≤ exp(−∑t−1

i=1 pi(A)). Setting this quantity to be less than δ, we
have that with probability at least 1− δ,

t−1∑
i=1

pi(A) ≤ ln δ−1.

Conditioning on this event, we can continue the analysis from above:

Pr[M(A) = π]

Pr[M(B) = π]
≤

t∏
i=1

exp((exp(ε′)− 1)pi(A)) ≤ exp(2ε′
t∑

i=1

pi(A))

≤ exp(2ε′(ln(
1

δ
) + pt(A))) ≤ exp(2ε′(ln(

1

δ
) + 1)).

Thus except with probability (1 − δ), the affect of I on the distribution is at most
exp(ε).

Corollary 56. For ε < 1 and δ = 1/poly(n), there is an O( ln n ln m
ε

)-approximation algo-
rithm for the unweighted set cover problem preserving (ε, δ)-differential privacy.

7.7.2 Weighted Set Cover

We are given a set system (U,S) and a cost function C : S → R. We must cover a private
subset R ⊂ U . W.l.o.g., let minS∈S C(S) = 1, and denote maxS∈S C(S) = W . Let the
cardinality of the set system be |S| = m, and let |U | = n.

Algorithm 6 Weighted Set Cover

1: let i ← 1, Ri = R, Si ← S , ri ← n, ε′ = ε
2 ln(e/δ)

, T = Θ
( log m+log log(nW )

ε′
)

2: while ri ≥ 1/W do
3: pick a set S from Si with probability proportional to exp

(
ε′
( |S∩Ri|−ri ·C(S)

))
or halve with probability proportional to exp(−ε′T )

4: if halve then
5: let ri+1 ← ri/2, Ri+1 ← Ri, Si+1 ← Si, i ← i + 1
6: else
7: output set S
8: let Ri+1 ← Ri \ S, Si+1 ← Si − {S}, ri+1 ← ri, i ← i + 1
9: end if

10: end while
11: output all remaining sets in Si in random order
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Let us first analyze the utility of the algorithm. If R = ∅, the algorithm has cost zero
and there is nothing to prove. So we can assume that OPT ≥ 1. We first show that (whp
) ri ' Ri/OPT.

Lemma 20. Except with probability 1/ poly(m), we have ri ≥ |Ri|
2OPT

for all iterations i.

Proof. Clearly r1 = n ≥ |R1|/2OPT. Since for ri to fall below |Ri|/2, it must be in
( |Ri|

2OPT
, |Ri|
OPT

] and be halved in Step 6 of some iteration i. We’ll show that this is unlikely:
if at some iteration i, |Ri|

2OPT
≤ ri ≤ |Ri|

OPT
, then with high probability, the algorithm will not

output halve and thus not halve ri. Since all remaining elements Ri can be covered at
cost at most OPT, there must exist a set S such that |S∩Ri|

C(S)
≥ |Ri|

OPT
, and hence |S ∩Ri| ≥

C(S) · |Ri|
OPT

≥ C(S) · ri.

Hence ui(S) := |S ∩ Ri| − ri · C(S) ≥ 0 in this case, and the algorithm will output
S with probability at least proportional to 1, whereas it outputs halve with probabil-
ity proportional to exp(−ε′T ). Thus, Pr[ algorithm returns halve ] < exp(−ε′T ) =
1/ poly(m log nW ). Since there are m sets in total, and r ranges from n to 1/W , there are
at most m + O(log nW ) iterations, and the proof follows by a union bound.

Let us define a score function ui(S) := |S ∩ Ri| − ri · C(S), and ui(halve) := −T :
note that in Step 4 of our algorithm, we output either halve or a set S, with probabilities
proportional to exp(ε′ui(·)). The following lemma states that with high probability, none
of the sets output by our algorithm have very low scores (since we are much more likely
to output halve than a low-scoring set).

Lemma 21. Except with probability at most 1/ poly(m), Step 4 only returns sets S with
ui(S) ≥ −2T .

Proof. There are at most |Si| ≤ m sets S with score ui(S) ≤ −2T , and so one is output
with probability at most proportional to m exp(−2Tε). We will denote this bad event by
B. On the other hand, halve is output with probability proportional to exp(−Tε). Hence,
Pr[halve]/ Pr[B] ≥ exp(Tε)/m, and so Pr[B] ≤ m/ exp(Tε) ≤ 1/ poly(m log nW ).
Again there are at most m + O(log nW ) iterations, and the lemma follows by a trivial
union bound.

We now analyze the cost incurred by the algorithm in each stage. Let us divide the
algorithm’s execution into stages: stage j consists of all iterations i where |Ri| ∈ ( n

2j ,
n

2j−1 ].
Call a set S interesting if it is incident on an uncovered element when it is picked. Let Ij

be the set of interesting sets selected in stage j, and C(Ij) be the total cost incurred on
these sets.
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Lemma 22. Consider stages 1, . . . , j of the algorithm. Let i∗ be the index of the last
iteration in stage j, and let S1, S2, . . . , Si∗ be the sets selected in the first i∗ iterations of
the algorithm. Then except with probability 1/ poly(m), we can bound the cost of the
interesting sets in stage j by:

∑

j′≤j

C(Ij′) ≤ 4jOPT · (1 + 2T ).

Proof. By Lemma 21 all the output sets have ui(Si) ≥ −2T whp . Rewriting, each Si

selected in a round j′ ≤ j satisfies

C(Si) ≤ |Si ∩Ri|+ 2T

ri

≤ 2j′+1 OPT

n
(|Si ∩Ri|+ 2T ),

where the second inequality is whp , and uses Lemma 20. Now summing over all rounds
j′ ≤ j, we get

∑

j′≤j

C(Ij′) ≤
∑

j′≤j

2j′+1 OPT

n

( ∑
i s.t. Si∈Ij′

(|Si ∩Ri|+ 2T
))

.

Consider the inner sum for any particular value of j′: let the first iteration in stage j′ be
iteration i0—naturally Ri ⊆ Ri0 for any iteration i in this stage. Now, since Si ∩Ri ⊆ Ri0

and Si ∩ Ri is disjoint from Si′ ∩ Ri′ , the sum over |Si ∩ Ri| is at most |Ri0|, which is at
most n

2j′−1 by definition of stage j′. Moreover, since we are only concerned with bounding
the cost of interesting sets, each |Si ∩Ri| ≥ 1, and so |Si ∩Ri|+ 2T ≤ |Si ∩Ri|(1 + 2T ).
Putting this together, (7.7.2) implies

∑

j′≤j

C(Ij′) ≤
∑

j′≤j

2j′+1 OPT

n
× n

2j′−1
(1 + 2T ) = 4j OPT (1 + 2T ),

which proves the lemma.

Theorem 57 (Utility). The weighted set cover algorithm incurs a cost of
O(T log nOPT) except with probability 1/ poly(m).

Proof. Since the number of uncovered elements halves in each stage by definition,
there are at most 1 + log n stages, which by Lemma 22 incur a total cost of at most
O(log n OPT · (1 + 2T )). The sets that remain and are output at the very end of the
algorithm incur cost at most W for each remaining uncovered element; since ri < 1/W at
the end, Lemma 20 implies that |Ri| < 2OPT/W (whp ), giving an additional cost of at
most 2OPT.
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We can adapt the above argument to bound the expected cost by O(T log n OPT).
(Proof in the full version.)

Theorem 58 (Privacy). For any δ > 0, the weighted set cover algorithm preserves (ε, δ)
differential privacy.

Proof. We imagine that the algorithm outputs a set named “HALVE” when Step 4 of the
algorithm returns halve, and show that even this output is privacy preserving. Let A and
B be two set cover instances that differ in some element I . Say that SI is the collection of
sets containing I . Fix an output π, and write ui,j(A) to denote the score of πj (recall this
may be halve) after the first i− 1 sets in π have been selected.

Pr[M(A) = π]

Pr[M(B) = π]
=

n∏
i=1

(
exp(ε′ · ui,πi

(A))/(
∑

j exp(ε′ · ui,j(A)))

exp(ε′ · ui,πi
(B))/(

∑
j exp(ε′ · ui,j(B)))

)

=
exp(ε′ · ut,πt(A))

exp(ε′ · ut,πt(B))
·

t∏
i=1

(∑
j exp(ε′ · ui,j(B))∑
j exp(ε′ · ui,j(A))

)

where t is such that Sπt is the first set containing I to fall in the permutation π. After t, the
remaining elements in A and B are identical, and all subsequent terms cancel. Moreover,
except for the tth term, the numerators of both the top and bottom expression cancel, since
all the relevant set sizes are equal. If A contains I and B does not the first term is exp(ε′)
and the each term in the product is at most 1.

Now suppose that B contains I and A does not . In this case, the first term is
exp(−ε′) < 1. Moreover, in instance B, every set in SI is larger by 1 than in A, and
all others remain the same size. Therefore, we have:

Pr[M(A) = π]

Pr[M(B) = π]
≤

t∏
i=1

(
(exp(ε′)− 1) ·∑j∈SI exp(ε′ · ui,j(A)) +

∑
j exp(ε′ · ui,j(A))∑

j exp(ε′ · ui,j(A))

)

=
t∏

i=1

(
1 + (eε′ − 1) · pi(A)

)

where pi(A) is the probability that a set containing I is chosen at step i of the algorithm
running on instance A, conditioned on picking the sets Sπ1 , . . . , Sπi−1

in the previous steps.

By the definition of t, no set containing I has been chosen in the first t − 1 rounds;
since at each round i ≤ t, the probability of not choosing I is at most 1− pi(A) (it is even
smaller on instance B), the probability that I is not chosen in the first t − 1 rounds is at
most

∏t−1
i=1(1− pi(A)) ≤ exp(−∑t−1

i=1 pi(A)).
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There are two cases: If exp(−∑t−1
i=1 pi(A)) ≤ δ, certainly Pr[M(A) = π] ≤

Pr[M(B) = π] + δ, which completes the proof. Otherwise,

t−1∑
i=1

pi(A) ≤ ln δ−1.

Continuing the analysis from above,

Pr[M(A) = π]

Pr[M(B) = π]
≤

t∏
i=1

exp((exp(ε′)− 1)pi(A)) ≤ exp

(
2ε′

t∑
i=1

pi(A)

)

≤ exp

(
2ε′

(
ln

(
1

δ

)
+ pt(A)

))
≤ exp

(
2ε′

(
ln

(
1

δ

)
+ 1

))
.

Thus, in this second case, as desired, the effect of I on the output distribution is at most a
multiplicative exp(ε).

7.7.3 Removing the Dependence on W

We can remove the dependence of the algorithm on W with a simple idea. For an instance
I = (U,S), let Sj = {S ∈ S | C(S) ∈ (nj, nj+1] }. Let U j be the set of elements such
that the cheapest set containing them is in Sj . Suppose that for each j and each S ∈ Sj ,
we remove all elements that can be covered by a set of cost at most nj−1, and hence define
S ′ to be S ∩ (U j ∪ U j−1). This would change the cost of the optimal solution only by a
factor of 2, since if we were earlier using S in the optimal solution, we can pick S ′ and at
most n sets of cost at most nj−1 to cover the elements covered by S \S ′. Call this instance
I ′ = (U,S ′).

Now we partition this instance into two instances I1 and I2, where I1 =
(∪j evenU

j,S ′), and where I2 = (∪j oddU
j,S ′). Since we have just partitioned the uni-

verse, the optimal solution on both these instances costs at most 2OPT(I). But both
these instances I1, I2 are themselves collections of disjoint instances, with each of these
instances having wmax/wmin ≤ n2; this immediately allows us to remove the dependence
on W . Note that this transformation is based only on the set system (U,S), and not on the
private subset R.

Theorem 59. For any ε ∈ (0, 1), δ = 1/ poly(n), there is an O(log2n(log m +
log log n)/ε)-approximation for the weighted set cover problem that preserves (ε, δ)-
differential privacy.
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7.7.4 Lower bounds

Theorem 60. Any ε-differentially private algorithm that maps elements to sets must have
approximation factor Ω(log m/ε), for a set cover instance with m sets and ((log m)/ε)O(1)

elements, for any ε ∈ (2 log m/m
1
20 , 1).

Proof. We consider a set system with |U | = N and S a uniformly random selection of m
size-k subsets of U . We will consider problem instances Si consisting of one of these m
subsets, so OPT(Si) = 1.

Let M be an ε-differentially private algorithm that on input T ⊆ U , outputs an assign-
ment f mapping each element in U to some set in S that covers it. The number of possible
assignments is at most mN . The cost on input T under an assignment f is the cardinality
of the set f(T ) = ∪e∈T f(e).

We say assignment f is good for a subset T ⊆ U if its cost |f(T )| is at most l = k
2
.

We first show that any fixed assignment f : U → [m], such that |f−1(j)| ≤ k for all j, is
unlikely to be good for a randomly picked size-k subset T of U .

The number of ways to choose l sets from among those with non-empty f−1(·) is
at most

(
N
l

)
. Thus the probability that f is good for a random size-k subset is at most(

N
l

) (
lk
N

)k. Setting k = N1/10, and l = k
2
, this is at most

(
Ne

l

)l (
lk

N

)k

=

(
ek3

2N

)k/2

≤ 2−k log N/4.

Let m = 22εk. The probability that f is good for at least t of our m randomly picked
sets is bounded by

(
m

t

) (
2−k log N/4

)t ≤ 22εkt2−tk log N/4 ≤ 2−tk log k/8.

Thus, with probability at most 2−Nk log k/8, a fixed assignment is good for more than
N of m randomly chosen size-k sets. Taking a union bound over mN = 22εkN possible
assignments, the probability that any feasible assignment f is good for more than N sets
is at most 2−Nk log k/16. Thus there exists a selection of size-k sets S1, . . . , Sm such that no
feasible assignment f is good for more than N of the Si’s.

Let pM(∅)(Si) be the probability that an assignment drawn from the distribution defined
by running M on the the empty set as input is good for Si. Since any fixed assignment
is good for at most N of the m sets, the average value of pM(∅) is at most N/m. Thus
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there exists a set, say S1 such that pM(∅)(S1) ≤ N/m. Since |Si| = k and M is ε-
differentially private, pM(S1)(S1) ≤ exp(εk)pM(∅)(S1) < 1

2
. Thus with probability at least

half, the assignment M picks on S1 is not good for S1. Since OPT(S1) = 1, the expected
approximation ratio of M is at least l/2 = log m

4ε
.

Additionally, one can take s distinct instances of the above problem, leading to a new
instance on s ·N elements and s ·m sets. OPT is now s, while it is easy to check that any
private algorithm must cost Ω(s · l) in expectation. Thus the lower bound in fact rules out
additive approximations.

7.7.5 An Inefficient Algorithm for Weighted Set Cover

For completeness, we now show that the lower bound shown above is tight even in the
weighted case, in the absence of computational constraints. Recall that we are given a
collection S of subsets of a universe U , and a private subset R ⊆ U of elements to be
covered. Additionally, we have weights on sets; we round up weights to powers of 2, so
that sets in Sj have weight exactly 2−j . Without loss of generality, the largest weight is 1
and the smallest weight is w = 2−L.

As before, we will output a permutation π on S, with the understanding that the cost
cost(R, π) of a permutation π on input R is defined to be the total cost of the set cover
resulting from picking the first set in the permutation containing e, for each e ∈ R.

Our algorithm constructs this permutation in a gradual manner. It maintains a per-
mutation πj on ∪i≤jSi and a threshold Tj . In step j, given πj−1 and Tj−1, the algorithm
constructs a partial permutation πj on ∪i≤jSj , and a threshold Tj . In each step, we use the
exponential mechanism to select an extension with an appropriate base distribution µj and
score function q. At the end of step L, we get our permutation π = πL on S.

Our permutations πj will all have a specific structure. The weight of the ith set in the
permutation, as a function of i will be a unimodal function that is non-increasing until Tj ,
and then non-decreasing. In other words, πj contains sets from Sj as a continuous block.
The sets that appear before Tj are said to be in the bucket. We call a partial permuta-
tion respecting this structure good. We say a good permutation π extends a good partial
permutation πj if πj and π agree on their ordering on ∪i≤jSi.

We first define the score function that is used in these choices. A natural objective
function would be cost(R, πj) = min

π extends πj
cost(R, π), i.e. the cost of the optimal

solution conditioned on respecting the partial permutation πj . We use a slight modification
of this score function: we force the cover to contain all sets from the bucket and denote as
c̃ost(R, π) the resulting cover defined by R on π. We then define c̃ost(R, πj) naturally as
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min
π extends πj

c̃ost(R, π). We first record the following easy facts:

Observation 61. For any R, minπ c̃ost(R, π) = minπ cost(R, π) = OPT. Moreover, for
any π, c̃ost(R, π) ≥ cost(R, π).

To get (πj, Tj) given (πj−1, Tj−1), we insert a permutation σj of Sj after the first Tj−1

elements of πj−1, and choose Tj , where both σj and Tj are chosen using the exponential
mechanism. The base measure on σj is uniform and the base measure on Tj − Tj−1 is the
geometric distribution with parameter 1/m2.

Let c̃ost(A, (σj, Tj)) be defined as c̃ost(A, πj) − c̃ost(A, πj−1), where πj is con-
structed from πj−1 and (σj, Tj) as above. The score function we use to pick (σj, Tj)

is scorej(R, (σj, Tj)) = 2j c̃ost(R, (σj, Tj)). Thus Pr[(σj, Tj)] ∝ (1/m2(Tj −
Tj−1)) exp(εscore((σj, Tj))).

Let the optimal solution to the instance contain nj sets from Sj . Thus OPT =∑
j 2−jnj . We first show that c̃ost(R, πL) is O(OPT log m/ε). By Observation 61, the

approximation guarantee would follow.

The probability that the nj sets in OPT fall in the bucket when picking from the base
measure is at least 1/m3nj . When that happens, c̃ost(R, πj) = c̃ost(R, πj−1). Thus the
exponential mechanism ensures that except with probability 1/poly(m):

c̃ost(R, πj) ≤ c̃ost(R, πj−1) + 4 · 2−j log(m3nj)/ε = c̃ost(R, πj−1) + 12 · 2−jnj log m/ε

Thus with high probability,

c̃ost(R, πL) ≤ c̃ost(R, π0) + 12
∑

j

2−jnj log m/ε

= OPT + 12OPT log m/ε

Finally, we analyze the privacy. Let e ∈ U be an element such that the cheapest set
covering U has cost 2−je . Let A and B be two instances that differ in element e. It is easy
to see that |c̃ost(A, (σj, Tj)) − c̃ost(B, (σj, Tj))| is bounded by 2−j for all j. We show
something stronger:

Lemma 23. For any good partial permutation πj and any A,B such that A = B ∪ {e},

|score(A, (σj, Tj))− scorej(B, (σj, Tj))| ≤
{

0 if j > je

2je−j+1 ifj ≤ je
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Proof. Let πB be the permutation realizing c̃ost(B). For j ≤ je, if e is covered by a set in
the bucket in πB, then the cost of πB is no larger in instance A and hence c̃ost(A, πj) =

c̃ost(B, πj)
1. In the case that the bucket in πB does not cover e, then c̃ost(A, πj) ≤

c̃ost(A, πB) = c̃ost(B, πB) + 2−je = c̃ost(B, πj) + 2−je . Since this also holds for πj−1,
this implies the claim from j ≤ je.

For j > je, observe that the first set in πB that covers e is fully determined by the
partial permutation πj , since the sets in ∪i>jeSi do not contain e. Thus c̃ost(A, (σj, Tj)) =

c̃ost(B, (σj, Tj)) and the claim follows.

Then for any j ≤ je, lemma 23 implies that for any (σj, Tj), exp(ε(score(A, (σj, Tj))−
score(B, (σj, Tj)))) ∈ [exp(−ε2je−j+1), exp(ε2je−j+1)]. Thus

Pr[σj, Tj|A]

Pr[σj, Tj|B]
∈ [exp(−2j−je+2ε), exp(2j−je+2ε)]

Moreover, for any j > je, this ratio is 1. Thus

Pr[σj, Tj|A]

Pr[σj, Tj|B]
∈ [Πj≤je exp(−2j−je+2ε), Πj≤je exp(2j−je+2ε)]

⊆ [exp(−8ε), exp(8ε)],

which implies 8ε-differential privacy.

7.8 Combinatorial Public Projects (Submodular Maxi-
mization)

Recently Papadimitriou et al.[PSS08] introduced the Combinatorial Public Projects Prob-
lem (CPP Problem) and showed that there is a succinctly representable version of the
problem for which, although there exists a constant factor approximation algorithm, no
efficient truthful algorithm can guarantee an approximation ratio better than m

1
2
−ε, un-

less NP ⊆ BPP . Here we adapt our set cover algorithm to give a privacy preserving
approximation to the CPP problem within logarithmic (additive) factors.

In the CPP problem, we have n agents and m resources publicly known. Each
agent submits a private non-decreasing and submodular valuation function fi over sub-
sets of resources, and our goal is to select a size-k subset S of the resources to maximize

1We remark that this is not true for the function cost, and is the reason we had to modify it to c̃ost.
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∑n
i=1 fi(S). We assume that we have oracle access to the functions fi. Note that since each

fi is submodular, so is
∑n

i=1 fi(S), and our goal is to produce a algorithm for submodular
maximization that preserves the privacy of the individual agent valuation functions. With-
out loss of generality, we will scale the valuation functions such that they take maximum
value 1: maxi,S fi(S) = 1.

Once again, we have an easy computationally inefficient algorithm.

Theorem 62. The exponential mechanism when used to choose k sets runs in time
O(

(
m
k

)
poly(n)) and has expected quality at least OPT −O(log

(
m
k

)
/ε).

We next give a computationally efficient algorithm with slightly worse guarantees. We
adapt our unweighted set cover algorithm, simply selecting k items greedily:

Algorithm 7 CPP Problem
1: Input: A set of M of m resources, private functions f1, . . . , fn, a number of resources

k, ε, δ.
2: let M1 ← M , F (x) :=

∑m
i=1 fi(x), S1 ← ∅, ε′ ← ε

8e ln(2/δ)
.

3: for i = 1 to k do
4: pick a resource r from Mi with probability proportional to exp(ε′(F (Si + {r}) −

F (Si))).
5: let Mi+1 ← Mi − {r}, Si+1 ← Si + {r}.
6: end for
7: Output Sk+1.

7.8.1 Utility Analysis

Theorem 63. Except with probability O(1/poly(n)), the algorithm for the CPP problem
returns a solution with quality at least (1− 1/e)OPT−O(k log m/ε′).

Proof. Since F is submodular and there exists a set S∗ with |S| = k and F (S) = OPT,
there always exists a resource r such that F (Si+{r})−F (Si) ≥ (OPT−F (Si))/k. If we
always selected the optimizing resource, the distance to OPT would decrease by a factor
of 1− 1/k each round, and we would achieve an approximation factor of 1− 1/e. Instead,
we use the exponential mechanism which, by (7.2), selects a resource within 4 ln m/ε′

of the optimizing resource with probability at least 1 − 1/m3. With probability at least
1−k/m3 each of the k selections decreases OPT−F (Si) by a factor of (1−1/k), while
increasing it by at most an additive 4 ln m/ε′, giving (1− 1/e)OPT + O(k ln m/ε′).
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7.8.2 Privacy Analysis

Theorem 64. For any δ ≤ 1/2, the CPP problem algorithm preserves (8ε′(e −
1) ln(2/δ), δ)-differential privacy.

Proof. Let A and B be two CPP instances that differ in a single agent I with util-
ity function fI . We show that the output set of resources, even revealing the order in
which the resources were chosen, is privacy preserving. Fix some ordered set of k re-
sources, π1, . . . , πk write Si =

⋃i−1
j=1{π(j)} to denote the first i − 1 elements, and write

si,j(A) = FA(Si + {j}) − FA(Si) to denote the marginal utility of item j at time i in
instance A. Define si,j(B) similarly for instance B. We consider the relative probability
of our mechanism outputting ordering π when given inputs A and B:

Pr[M(A) = π]

Pr[M(B) = π]
=

k∏
i=1

(
exp(ε′ · si,πi

(A))/(
∑

j exp(ε′ · si,j(A)))

exp(ε′ · si,πi
(B))/(

∑
j exp(ε′ · si,j(B)))

)
,

where the sum over j is over all remaining unselected resources. We can separate this into
two products

k∏
i=1

(
exp(ε′ · si,πi

(A))

exp(ε′ · si,πi
(B))

)
·

k∏
i=1

(∑
j exp(ε′ · si,j(B))∑
j exp(ε′ · si,j(A))

)
.

If A contains agent I but B does not, the second product is at most 1, and the first is at
most exp(ε′

∑k
i=1(FI(Si)− FI(Si−1))) ≤ exp(ε′). If B contains agent I , and A does not,

the first product is at most 1, and in the remainder of the proof, we focus on this case. We
will write βi,j = si,j(B) − si,j(A) to be the additional marginal utility of item j at time i
in instance B over instance A, due to agent I . Thus

Pr[M(A) = π]

Pr[M(B) = π]
≤

k∏
i=1

(∑
j exp(ε′ · si,j(B))∑
j exp(ε′ · si,j(A))

)

=
k∏

i=1

(∑
j exp(ε′βi,j) · exp(ε′ · si,j(A))∑

j exp(ε′ · si,j(A))

)

=
k∏

i=1

Ei[exp(ε′βi)],

119



where βi is the marginal utility actually achieved at time i by agent I , and the expectation
is taken over the probability distribution over resources selected at time i in instance A.
For all x ≤ 1, ex ≤ 1 + (e− 1) · x. Therefore, for all ε′ ≤ 1, we have:

k∏
i=1

Ei[exp(ε′βi)] ≤
k∏

i=1

Ei[1 + (e− 1)ε′βi]

≤ exp((e− 1)ε′
k∑

i=1

Ei[βi]).

We must therefore show that with high probability, the sum of expected marginal utilities
of agent I is small, which we will denote by C =

∑k
i=1 Ei[βi].

We note that the realized total utility of agent i is at most 1:
∑k

i=1 βi,πi
≤ 1. If C is

large, then the realized utility of agent i has a large deviation from its expected value; such
realizations π must be rare. By a Chernoff bound, this occurs only with small probability:

Pr[|
k∑

i=1

βi,πi
− C| ≥ C − 1] ≤ 2 exp

(−(C − 1)2

3C − 1

)
.

Setting this probability to be at most δ and solving for C, we find that except with proba-
bility δ, C ≤ 8 ln(2/δ). Therefore, with probability 1− δ we have:

Pr[M(A) = π]

Pr[M(B) = π]
≤ exp((e− 1)ε′ · 8 ln

(
2

δ

)
)

which proves the theorem.

Remark: By choosing ε′ = ε/k, we immediately get ε-differential privacy and expected
utility at least OPT − O(k2 ln m/ε). This may give better guarantees for some values of
k and δ.

We remark that the k-coverage problem is a special case of the CPP problem. There-
fore:

Corollary 65. The CPP algorithm (with sets as resources) is an (ε, δ)-differential privacy
preserving algorithm for the k-coverage problem achieving approximation factor at least
(1− 1/e)OPT−O(k log m log(2/δ)/ε).
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7.8.3 Truthfulness

The CPP problem can be viewed as a mechanism design problem when each agent i has a
choice of whether to submit his actual valuation function fi, or to lie and submit a different
valuation function f ′i if such a misrepresentation yields a better outcome for agent i. A
mechanism is truthful if for every valuation function of agents j 6= i, and every valuation
function fi of agent i, there is never a function f ′i 6= fi such that agent i can benefit by
misrepresenting his valuation function as f ′i . Intuitively, a mechanism is approximately
truthful if no agent can make more than a slight gain by not truthfully reporting.

Definition 28. A mechanism for the CPP problem is γ-truthful if for every agent i, for
every set of player valuations fj for j 6= i, and for every valuation function f ′i 6= fi:

E[fi(M(f1, . . . , fi, . . . , fn))] ≥ E[fi(M(f1, . . . , f
′
i , . . . , fn))]− γ

Note that 0-truthfulness corresponds to the usual notion of (exact) truthfulness.

(ε, δ)-differential privacy in our setting immediately implies (2ε + δ)-approximate
truthfulness.We note that Papadimitriou et al. [PSS08] showed that the CPP problem is
inapproximable to an m

1
2
−ε multiplicative factor by any polynomial time 0-truthful mech-

anism. Our result shows that relaxing that to γ-truthfulness allows us to give a constant
approximation to the utility whenever OPT ≥ 2k log m log(1/γ)/γ for any γ.

7.8.4 Lower Bounds

Theorem 66. No ε-differentially private algorithm for the maximum coverage problem
can guarantee profit larger than OPT− (k log(m/k)/20ε).

The proof is almost identical to that of the lower bound Theorem 47 for k-median, and
hence is omitted.
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