
Techniques for Exploiting Unlabeled Data

Mugizi Robert Rwebangira

CMU-CS-08-164

October 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum, CMU (Co-Chair)
John Lafferty, CMU (Co-Chair)

William Cohen, CMU
Xiaojin (Jerry) Zhu, Wisconsin

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Mugizi Robert Rwebangira

This research was sponsored by the National Science Foundation under contract no. IIS-0427206, National Science
Foundation under contract no. CCR-0122581, National Science Foundation under contract no. IIS-0312814, US
Army Research Office under contract no. DAAD190210389, and SRI International under contract no. 03660211.
The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: semi-supervised, regression, unlabeled data, similarity

For my family

iv

Abstract
In many machine learning application domains obtaining labeled data is expen-

sive but obtaining unlabeled data is much cheaper. For this reason there has been
growing interest in algorithms that are able to take advantage of unlabeled data. In
this thesis we develop several methods for taking advantage of unlabeled data in
classification and regression tasks.

Specific contributions include:

• A method for improving the performance of the graph mincut algorithm of
Blum and Chawla [12] by taking randomized mincuts. We give theoretical
motivation for this approach and we present empirical results showing that
randomized mincut tends to outperform the original graph mincut algorithm,
especially when the number of labeled examples is very small.

• An algorithm for semi-supervised regression based on manifold regularization
using local linear estimators. This is the first extension of local linear regression
to the semi-supervised setting. In this thesis we present experimental results on
both synthetic and real data and show that this method tends to perform better
than methods which only utilize the labeled data.

• An investigation of practical techniques for using the Winnow algorithm (which
is not directly kernelizable) together with kernel functions and general similar-
ity functions via unlabeled data. We expect such techniques to be particularly
useful when we have a large feature space as well as additional similarity mea-
sures that we would like to use together with the original features. This method
is also suited to situations where the best performing measure of similarity does
not satisfy the properties of a kernel. We present some experiments on real and
synthetic data to support this approach.

vi

Acknowledgments
First I would like to thank my thesis committee members. Avrim Blum has been

the most wonderful mentor and advisor any student could ask for. He is infinitely pa-
tient and unselfish and he always takes into account his students particular strengths
and interests. John Lafferty is a rich fountain of ideas and mathematical insights.
He was very patient with me as I learned a new field and always seemed to have the
answers to any technical questions I had. William Cohen has a tremendous knowl-
edge of practical machine learning applications. He helped me a lot by sharing his
code, data and insights. I greatly enjoyed my collaboration with Jerry Zhu. He has
an encyclopedic knowledge of the semi-supervised learning literature and endless
ideas on how to pose and attack new problems.

I spent six years at Carnegie Mellon University. I thank the following collabora-
tors, faculties, staffs, fellow students and friends, who made my graduate life a very
memorable experience: Maria Florina Balcan, Paul Bennett,Sharon Burks,Shuchi
Chawla, Catherine Copetas, Derek Dreyer, Christos Faloutsos, Rayid Ghani, Anna
Goldenberg, Leonid Kontorovich,Guy Lebanon, Lillian Lee, Tom Mitchell, Andrew
W Moore, Chris Paciorek, Francisco Pereira, Pradeep Ravikumar, Chuck Rosenberg,
Steven Rudich, Alex Rudnicky, Jim Skees, Weng-Keen Wong,Shobha Venkatara-
man, T-H Hubert Chan, David Koes, Kaustuv Chaudhuri, Martin Zinkevich, Lie Gu,
Steve Hanneke, Sumit Jha, Ciera Christopher, Hetunandan Kamichetty, Luis Von
Ahn, Mukesh Agrawal, Jahanzeb Sherwani, Kate Larson, Urs Hengartner, Wendy
Hu, Michael Tschantz, Pat Klahr, Ayorkor Mills-Tettey, Conniel Arnold, Karumuna
Kaijage, Sarah Belousov, Varun Gupta, Thomas Latoza, Kemi Malauri, Randolph
Scott-McLaughlin, Patricia Snyder, Vicky Rose Bhanji, Theresa Kaijage, Vyas Sekar,
David McWherter, Bianca Schroeder, Bob Harper, Dale Houser, Doru Balcan, Eliz-
abeth Crawford, Jason Reed, Andrew Gilpin, Rebecca Hutchinson, Lea Kissner,
Donna Malayeri, Stephen Magill, Daniel Neill, Steven Osman, Peter Richter, Vladislav
Shkapenyuk, Daniel Spoonhower, Christopher Twigg, Ryan Williams, Deepak Garg,
Rob Simmons, Steven Okamoto, Keith Barnes, Jamie Main,, Marcie Smith, Marsey
Jones, Deb Cavlovich, Amy Williams, Yoannis Koutis, Monica Rogati, Lucian Vlad-
Llita, Radu Niculescu, Anton Likhodedov, Himanshu Jain, Anupam Gupta, Manuel
Blum, Ricardo Silva, Pedro Calais, Guy Blelloch, Bruce Maggs, Andrew Moore, Ar-
jit Singh, Jure Leskovec, Stano Funiak, Andreas Krause, Gaurav Veda, John Lang-
ford, R. Ravi, Peter Lee, Srinath Sridhar, Virginia Vassilevska, Jernej Barbic, Nikos
Hardevallas . Of course there are many others not included here. My apologies if I
left your name out. In particular, I thank you if you are reading this thesis.

Finally I thank my family. My parents Magdalena and Theophil always encour-
aged me to reach for the sky. My sisters Anita and Neema constantly asked me when
I was going to graduate. I could not have done it without their love and support.

viii

Contents

1 Introduction 1
1.1 Motivation and Summary. 1
1.2 Problem Description. 5

1.2.1 Semi-supervised Classification. 5
1.2.2 Semi-supervised Regression. 6
1.2.3 Learning with Similarity functions. 8

2 Related Work 11
2.1 Semi-supervised Classification. 11

2.1.1 Generative Methods. .12
2.1.2 Discriminative Methods. 13

2.2 Semi-supervised Regression. .20
2.2.1 Transductive Regression algorithm of Cortes and Mohri. 21
2.2.2 COREG (Zhou and Li). 22
2.2.3 Co-regularization (Sindhwani et al.). 22

2.3 Learning with Similarity functions. 23

3 Randomized Mincuts 25
3.1 Introduction. .25
3.2 Background and Motivation. .28
3.3 Randomized Mincuts. .29
3.4 Sample complexity analysis. .32

3.4.1 The basic mincut approach. 32
3.4.2 Randomized mincut with “sanity check”. 33

3.5 Graph design criteria. .34
3.6 Experimental Analysis. .36

3.6.1 Handwritten Digits. .36
3.6.2 20 newsgroups. .38
3.6.3 UCI Datasets. .39
3.6.4 Accuracy Coverage Tradeoff. 39
3.6.5 Examining the graphs. 40

3.7 Conclusion .41

ix

4 Local Linear Semi-supervised Regression 43
4.1 Introduction and Motivation .43

4.1.1 Regression. .43
4.1.2 Local Linear Semi-supervised Regression. 45

4.2 Background. .48
4.2.1 Parametric Regression methods. 48
4.2.2 Non-Parametric Regression methods. 48
4.2.3 Linear Smoothers. .49

4.3 Local Linear Semi-supervised Regression. 51
4.4 An Iterative Algorithm .57
4.5 Experimental Results. .59

4.5.1 Algorithms .59
4.5.2 Parameters. .59
4.5.3 Error metrics. .60
4.5.4 Computing LOOCV .60
4.5.5 Automatically selecting parameters. 60
4.5.6 Synthetic Data Set: Gong. 61
4.5.7 Local Learning Regularization. 66
4.5.8 Further Experiments. .67

4.6 Discussion. .69
4.7 Conclusion .70

5 Learning by Combining Native Features with Similarity Functions 71
5.1 Motivation. .71

5.1.1 Generalizing and Understanding Kernels. 72
5.1.2 Combining Graph Based and Feature Based learning Algorithms.. . . . 73

5.2 Background. .75
5.2.1 Linear Separators and Large Margins. 75
5.2.2 The Kernel Trick. .76
5.2.3 Kernels and the Johnson-Lindenstrauss Lemma. 77
5.2.4 A Theory of Learning With Similarity Functions. 77
5.2.5 Winnow. .78

5.3 Learning with Similarity Functions. 79
5.3.1 Choosing a Good Similarity Function. 79

5.4 Experimental Results on Synthetic Datasets. 83
5.4.1 Synthetic Dataset:Circle. 83
5.4.2 Synthetic Dataset:Blobs and Line. 85

5.5 Experimental Results on Real Datasets. 87
5.5.1 Experimental Design. .87
5.5.2 Winnow. .87
5.5.3 Boolean Features. .87
5.5.4 Booleanize Similarity Function. 87
5.5.5 SVM .87
5.5.6 NN .88

x

5.5.7 Results .88
5.6 Concatenating Two Datasets. .89
5.7 Discussion. .89
5.8 Conclusion .90
5.9 Future Work. .90

Bibliography 93

xi

xii

List of Figures

3.1 A case where randomization will not uniformly pick a cut. 31
3.2 “1” vs “2” on the digits dataset with the MST graph (left) andδ 1

4
graph (right). . 37

3.3 Odd vs. Even on the digits dataset with the MST graph (left) andδ 1
4

graph (right). 37
3.4 PC vs MAC on the 20 newsgroup dataset with MST graph (left) andδ 1

4
graph

(right). .38
3.5 Accuracy coverage tradeoffs for randomized mincut andEXACT. Odd vs. Even

(left) and PC vs. MAC (right). 40
3.6 MST graph for Odd vs. Even: percentage of digiti that is in the largest compo-

nent if all other digits were deleted from the graph.. 41

4.1 We want to minimize the squared difference between the smoothed estimate at
Xi and the estimated value atXi using the local fit atXj 52

4.2 WKR on the Gong example,h = 1
128

. 63
4.3 LLR on the Gong example,h = 1

128
. 64

4.4 LLSR on the Gong example,h = 1
512

, γ = 1 . 65

5.1 The Näıve similarity function on the Digits dataset. 82
5.2 The ranked similarity and the naı̈ve similarity plotted on the same scale. 83
5.3 The Circle Dataset. .84
5.4 Performance on the circle dataset. 84
5.5 Accuracy vs training data on the Blobs and Line dataset. 86

xiii

xiv

List of Tables

3.1 Classification accuracies of basic mincut, randomized mincut, Gaussian fields,
SGT, and the exact MRF calculation on datasets from the UCI repository using
the MST andδ 1

4
graph. .39

4.1 Performance of different algorithms on the Gong dataset. 62
4.2 Performance of LLSR and WKR on some benchmark datasets. 69
4.3 Performance of LLR and LL-Reg on some benchmark datasets. 69

5.1 Performance of similarity functions compared with standard algorithms on some
real datasets. .88

5.2 Structure of the hybrid dataset. 89
5.3 Performance of similarity functions compared with standard algorithms on a hy-

brid dataset .89

xv

xvi

Chapter 1

Introduction

1.1 Motivation and Summary

In the modern era two of the most significant trends affecting the use and storage of information

are the following:

1. The rapidly increasing speed of electronic microprocessors.

2. The even more rapidly increasing capacity of electronic storage devices.

The latter has allowed the storage of vastly greater amounts of information than was possible

in the past and the former has allowed the use of increasingly computationally intensive algo-

rithms to process the collected information.

However, in the past few decades for many tasks the supply of information has outpaced

our ability to effectively utilize it. For example in classification we are supplied with pairs of

variables(X, Y) and we are asked to come up with a function that predicts the corresponding

Y values for a newX. For example we might be given the images of handwritten digits and

1

the corresponding digit that they represent and be asked to learn an algorithm that automatically

classifies new images into digits. Such an algorithm has many practical applications, for example

the US Postal Service uses a similar algorithm for routing its mail[41].

The problem is that obtaining the initial training data which we need to use for learning can

be expensive and might even require human intervention to label each example. In the previ-

ous example we would need someone to examine every digit in our dataset and determine its

classification. In this case the work would not require highly skilled labor but it would still be

impractical if we have hundreds of thousands of unlabeled examples.

Thus, a natural question is whether and how we can somehow make use of unlabeled exam-

ples to aid us in classification. This question has recently been studied with increasing intensity

and several algorithms and theoretical insights have emerged.

First, as with all learning approaches we will need to make assumptions about the problem

in order to develop algorithms. These assumptions typically involve the relationship between the

unlabeled examples and the labels we want to predict. Examples of such assumptions include:

Large Margin Assumption - The data can be mapped into a space such that there exists a linear

separator with a“large margin” that separates the (true) positive and (true) negative exam-

ples. “Large margin” has a technical definition but intuitively it simply means that the

positive and negative examples are far apart. TSVM [45] is an example of an algorithm

that uses this assumption.

Graph Partition - The data can be represented as a graph such that the (true) positive and (true)

negative examples form two distinct components. The graph mincut algorithm [12] which

we will discuss in chapter 3 makes this type of assumption.

2

Cluster Assumptions - Using the given distance metric the (true) positive examples and the

(true) negative examples fall into two distinct clusters. This assumption is fairly general

and in particular the two previous assumptions can be regarded as special cases of this

assumption.

We will discuss these assumptions further in chapter 2 of this thesis.

Furthermore, if we make certain assumptions about the unlabeled data that turn out to not be

true in practice not only will the unlabeled data not be helpful, it may actually cause our algo-

rithm to perform worse than it would have if it ignored the unlabeled data. This is especially true

if we do not have enough labeled data to perform cross validation. Thus unlabeled data should

certainly be incorporated with care in any learning process.

From this discussion it is clear that there probably does not exist any universally applicable

semi-supervised learning algorithm which performs better than all other algorithms on problems

of interest. The usefulness of any semi-supervised learning algorithm will depend greatly on

what kinds of assumptions it makes and whether such assumptions are met in practice. Thus we

need to develop a variety of techniques for exploiting unlabeled data and practical experience in

addition to theoretical guidance in choosing the best algorithm for specific situations.

In this thesis we develop three such methods for exploiting unlabeled data. First, we present

the randomized graph mincut algorithm. This is an extension of the graph mincut algorithm for

semi-supervised learning proposed by Blum and Chawla [12]. When the number of labeled ex-

amples is small the original graph mincut algorithm has a tendency to give severely unbalanced

labelings (i.e. to label almost all examples as positive or to label almost all examples as negative).

We show how randomization can be used to address this problem and we present experimental

3

data showing substantially improved performance over the original graph mincut algorithm.

Secondly, we present an algorithm for semi-supervised regression. The use of unlabeled data

for regression has not been as well developed as it has been in classification. In semi-supervised

regression we are presented with pairs of values(X, Y) where theY values are real numbers

and in addition we have a set of unlabeled examplesX ′. The task is to estimate theY value

for the unlabeled examples. We present Local Linear Semi-supervised Regression which is a

very natural extension of both local Linear Regression and of the Gaussian Fields algorithm for

semi-supervised learning of Zhu et al. [85]. We present some experimental results showing that

this algorithm usually performs better than purely supervised methods.

Lastly, we examine the problem of learning with similarity functions. There has been a vast

tradition of learning with kernel function in the machine learning community. However kernel

functions have strict mathematical definitions (e.g. kernel functions have to be positive semi-

definite). Recently there has been growing interest in techniques for learning even when the

similarity function does not satisfy the mathematical properties of a kernel function. The con-

nection with semi-supervised learning is that many of these techniques require more examples

than the kernel based methods but the additional data can be unlabeled. That is, we can exploit

the similarity between examples for learning even when we don’t have the labels. Thus if we

have large amounts of unlabeled data we would certainly be interested in using suitably defined

similarity functions to improve our performance.

In the rest of this chapter we will describe the problems that this thesis addresses in greater

detail. In chapter 2 we will discuss some of the related work that exists in the literature. In chap-

ters 3,4 and 5 we will describe the actual results that were obtained in studying these problems.

4

1.2 Problem Description

1.2.1 Semi-supervised Classification

The classification problem is central in machine learning and statistics. In this problem we are

given as input pairs of variables(X1, Y1), ...(Xm, Ym) where theXi are objects of the type that

we want to classify (for example documents or images) and theYi are the corresponding labels

of the Xi (for example if theXi are newspaper articles then theYi might indicate whetherXi

is an article about machine learning). The goal is to minimize error rate on future examplesX

whose labels are not known. The special case whereYi can only have two possible values is

known as binary classification. This problem is also called supervised classification to contrast

it with semi-supervised classification.

This problem has been extensively studied in the machine learning community and several

algorithms have been proposed. A few of the algorithms which gained broader acceptance are

perceptron, neural nets, decision trees and support vector machines. We will not discuss super-

vised classification further in this thesis but there are a number of textbooks which provide a

good introduction to these methods [31, 32, 39, 56, 77, 78].

In the semi-supervised classification problem, in addition to labeled examples(X1, Y1), ...(Xm, Ym)

we also receive unlabeled examplesXm+1, ...Xn. Thus we havem unlabeled examples andn−m

unlabeled examples.

In this setting we can define two distinct kinds of tasks:

1. To learn a function that takes anyX and computes a correspondingY .

2. To compute a correspondingYi for each of our unlabeled examples without necessarily

5

producing a function that makes a prediction for any new pointX (this is sometimes re-

ferred to astransductive classification).

This problem only began to receive extensive attention in the early 90s although several algo-

rithms were known before that. Some of the algorithms that have been proposed for this problem

include the Expectation-Maximization algorithm proposed by Dempster, Laird and Rubin[30],

the co-training algorithm proposed by Blum and Mitchell[13], the graph mincut algorithm pro-

posed by Blum and Chawla[12], the Gaussian Fields algorithm proposed by Zhu, Gharamani

and Lafferty[85] and Laplacian SVM proposed by Sindhwani, Belkin and Niyogi[68].We will

discuss these algorithms further in chapter 2 of this thesis.

This area is still the subject of a very active research effort. A number of researchers have

attempted to address the question of “Under what circumstances can unlabeled data be useful

in classification” from a theoretical point of view [3, 22, 59, 80] and there also has been great

interest from industrial practitioners who would like to make the best use of their unlabeled data.

1.2.2 Semi-supervised Regression

Regression is a fundamental tool in statistical analysis. At its core regression aims to model

the relationship between 2 or more random variable. For example, an economist might want to

investigate whether more education leads to an increased income. A natural way to accomplish

this is to take number of years of education as the dependent variable and annual income as the

independent variable and to use regression analysis to determine their relationship.

Formally, we are given as input(X1, Y1), ...(Xn, Yn) where theXi are the dependent variables

andYi are the independent variables. We want to predict for anyX the value of the correspond-

6

ing Y . There are two main types of techniques used to accomplish this:

1. Parametric regression: In this case we assume that the relationship between the variable

is of a certain type (e.g. a linear relationship) and we are concerned with learning the

parameters for a relationship of that type which best fit the data.

2. Non-parametric regression: In this case we do not make any assumptions about the type of

relationship that holds between the variables, but we derive this relationship directly from

the data.

Regression analysis is heavily used in the natural sciences and in social sciences such as

economics, sociology and political science. A wide variety of regression algorithms are used

including linear regression, polynomial regression and logistic regression among the parametric

methods and kernel regression and local linear regression among the non-parametric methods.

A further discussion of such methods can be found in any introductory statistics textbook[77, 78].

In semi-supervised regression in addition to getting the dependent and independent variables

X andY we are also given an addition variableR which indicates whether or not we observe

that value ofY . In other words we get data(X1, Y1, R1), ...(Xn, Yn, Rn) and we observeYi only

if Ri = 1.

We note that the problem of semi-supervised regression is more general than the semi-

supervised classification problem. In the latter case theYi are constrained to have only a finite

number of possible values whereas in regression theYi are assumed to be continuous. Hence

some algorithms designed for semi-supervised classification (e.g. graph mincut[12]) are not

applicable to the more general semi-supervised regression problem. Other algorithms such as

Gaussian Fields [85]) are applicable to both problems.

7

Although semi-supervised regression has received less attention than semi-supervised classi-

fication a number of methods have been developed dealing specifically with this problem. These

include the transductive regression algorithm proposed by Cortes and Mohri [23]and co-training

style algorithms proposed by Zhou and Li [82], Sindhwani et al.[68] and Brefeld et al.[17]. We

will discuss these related approaches in more detail in chapter 2.

1.2.3 Learning with Similarity functions

In many machine learning algorithms it is often useful to compute a measure of the similarity be-

tween two objects. Kernel functions are a popular way of doing this. A kernel functionK(x, y)

takes two objects and outputs a positive number that is a measure of the similarity of the objects.

A kernel function must also satisfy the mathematical condition of positive semi-definiteness.

It follows from Mercer’s theorem that any kernel function can also be interpreted as an inner

product in some Euclidean vector space. This allows us to take advantage of the representation

power of high-dimensional vector spaces without having to explicitly represent our data in such

spaces. Due to this insight (known as the “kernel trick”) kernel methods have become extremely

popular in the machine learning community, resulting in widely used algorithms such as Support

Vector Machines [62, 64, 65].

However, sometimes it turns out that a useful measure of similarity does not satisfy the math-

ematical conditions to be a kernel function. An example is the Smith-Waterman score [76] which

is a measure of the alignment of two protein sequences. It is widely used in molecular biology

and has been empirically successful in predicting the similarity of proteins. However, the Smith-

Waterman score is not a valid kernel function and hence cannot be directly used in algorithms

8

such as Support Vector Machines.

Thus there has been a growing interest in developing more general methods for utilizing sim-

ilarity functions which may not satisfy the positive semi-definite requirement. Recently, Balcan

and Blum [2] proposed a general theory of learning with similarity functions. They give a natu-

ral definition of similarity function which contains kernel functions as a sub-class and show that

effective learning can be done in this framework.

Although the work in this area is still very preliminary, there is strong interest due to the

practical benefits of being able to exploit more general kinds of similarity functions.

9

10

Chapter 2

Related Work

In the last decade or so there has been a substantial amount of work on exploiting unlabeled

data. The survey by Zhu [83] is the most up to date summary of work in this area. The recent

book edited by Chapelle et al. [25] is a good summary of work done up to 2005 and attempts to

synthesize the main insights that have been gained. In this chapter we will mainly highlight the

work that is most closely related to our own.

2.1 Semi-supervised Classification

As with supervised classification, semi-supervised classification methods fall into two categories:

1. Generative methods which attempt to model the statistical distribution that generates the

data before making predictions.

2. Discriminative methods which directly make predictions without assumptions about the

distribution the data comes from.

11

2.1.1 Generative Methods

Expectation-Maximization (EM)

Suppose the examples are(x1, x2, x3, ..., xn) and the labels are(y1, y2, y3, ...yl). Generative

models try to model the class conditional densitiesp(x|y) and then apply Bayes’ rule to compute

predictive densitiesp(y|x).

BAYES’ RULE: p(y|x) = p(x|y)p(y)R
y p(x|y)p(y)dy

In this setting unlabeled data gives us more information aboutp(x) and we would like to use

this information to improve our estimate ofp(y|x). If information aboutp(x) is not useful to

estimatingp(y|x) (or we do not use it properly) then unlabeled data will not help to improve our

predictions.

In particular if our assumptions about the distribution the data comes from are incorrect then

unlabeled data can actually degrade our classification accuracy. Cozman and Cohen explore this

effect in detail for generative semi-supervised learning models [27].

However, if our generative model forx is correct then any additional information aboutp(x)

will generally be useful. For example suppose thatp(x|y) is a gaussian. Then the task becomes

to estimate the parameters of the gaussian. This can easily be done with sufficient labeled data,

but if there a few labeled examples unlabeled data can greatly improve the estimate. Castelli and

Cover [22] provide a theoretical analysis of this scenario.

A popular algorithm to use in the above scenario is the Expectation-Maximization algorithm

proposed by Dempster, Laird and Rubin [30]. EM is an iterative algorithm that can be used to

12

compute Maximum-Likelihood estimates of parameters when some of the relevant information

is missing. It is guaranteed to converge and is fairly fast in practice. However it is only guaran-

teed to converge to a local minima.

An advantage of generative approaches is that knowledge about the structure of a problem

can be naturally incorporated by modelling it in the generative model. The work by Nigam et

al. [57] on modelling text data is an example of this approach. They model text data using a

Näıve Bayes classifer and then estimate the parameters using EM. But as stated before, if the as-

sumptions are incorrect then using unlabeled data can lead to worse inferences than completely

ignoring the unlabeled data.

2.1.2 Discriminative Methods

As stated before, in semi-supervised classification we wish to exploit the relationship between

p(x) andp(y|x). with generative methods we assume that the distribution generating the data has

a certain form and the unlabeled data helps us to learn the parameters of the distribution more

accurately. Discriminative methods do not bother to try and model the distribution generating

the datap(x), hence in order to use unlabeled data we have to make “a priori” assumptions on

the relationship betweenp(x) andp(y|x).

We can categorize discriminative methods for semi-supervised learning by the kind of as-

sumption they make on relationship between the distribution of examples and the conditional

distribution of the labels. In this survey we will focus on a family of algorithms that use what is

known as the Cluster Assumption.

13

The Cluster Assumption

The cluster assumption posits a simple relationship betweenp(x) and p(y|x): p(y|x) should

change slowly in regions wherep(x) has high density. Informally this is equivalent to saying that

examples that are “close” to each other should have “similar” labels.

Hence, gaining information aboutp(x) gives information about the high density region (clus-

ters) in which examples should be given the same label. This can also be viewed as a “reordering”

of the hypothesis space: We give preference to those hypotheses which do not violate the cluster

assumption.

The cluster assumption can be realized in variety of ways and leads to a number of different

algorithms. Most prominent aregraph based methodsin which a graph is constructed that con-

tains all the labeled and unlabeled examples as nodes and the weight of an edge between nodes

indicates the similarity of the corresponding examples.

We note that graph based methods are inherently transductive although it is easy to extend

them to the inductive case by taking the predictions of the semi-supervised classification as train-

ing data and then using a non-parametric supervised classification algorithm such as k-nearest

neighbor on the new example. In this case classification time will be significantly faster than

training time. Another option is to rerun the entire algorithm when presented with a new exam-

ple.

14

Graph Based Methods

Graph Mincut

The graph mincut algorithm proposed by Blum and Chawla [12] was one of the earliest graph

based methods to appear in the literature. The essential idea of this algorithm is to convert semi-

supervised classification into ans-t mincut problem[26] . The algorithm is as follows:

1. Construct a graph joining examples which have similar labels. The edges may be weighted

or unweighted.

2. Connect the positively labeled examples to a “source” node with “high-weight” edges.

Connect the negatively labeled examples to a “sink” node with “high-weight” edges.

3. Obtain ans-tminimum cut of the graph and classify all the nodes connected to the “source”

as positive examples and all the nodes connected to the sink as negative examples.

There is considerable freedom in the construction of the graph. Properties that are empiri-

cally found to be desirable are that the graph should be connected, but that it shouldn’t be too

dense.

As stated the algorithm only applies to binary classification, but one can easily imagine ex-

tending it to general classification by taking a multi-way cut. However, this would entail a

significant increase in the running time as multi-way cut is known to be NP-complete. We note

that there has been substantial work in the image-segmentation literature on using multi-way cuts

(e.g. Boykov et al. [16].)

15

This algorithm is attractive because it is simple to understand and easy to implement. How-

ever, a significant problem is that it can often return very “unbalanced” cuts. More precisely,

if the number of labeled examples is small, thes-t minimum cut may chop off a very small

piece of the graph and return this is as the solution. Furthermore, there is no known natural way

to “demand” balanced cut without running into a significantly harder computational problem.

(The Spectral Graph Transduction algorithm proposed by Joachims is one attempt to do this ef-

ficiently) [44].

In chapter 3 of this thesis we report on techniques for overcoming this problem of unbal-

anced cuts and show significant improvement in results compared to the original graph mincut

algorithm.

Gaussian Fields Method

This central idea of this algorithm is to reduce semi-supervised classification to finding the min-

imum energy of a certain Gaussian Random Field[85].

The algorithm is as follows:

1. Compute a weightWij between all pairs of examples.

2. Find real valuesf that minimize the energy functionalE(f) = 1
2

∑
i,j wij(f(i) − f(j))2

(where the value of the labeledfi’s are fixed.)

3. Assign each (real)fi to one of the discrete labels.

It turns out that the solution to step (2) is closely connected to random walks, electrical

networks and spectral graph theory. For example, if we think of each edge as a resistor, it is

16

equivalent to placing a battery with positive terminal connected to the positive labeled examples,

negative terminal connected to the negative labeled examples and measuring voltages at the un-

labeled points.

Further, this method can also be viewed as a continuous relaxation of the graph mincut

method. More importantly the solution can be computed using only matrix operations for the

cost of inverting au× u matrix (whereu is the number of labeled examples).

A major advantage of this method is that is fairly straightforward to implement. In addition,

unlike graph-mincut it can be generalized to the multi-label case without a significant increase in

complexity.

However, note that as stated it could still suffer from an “unbalanced” labelings. Zhu et al.

[85] report on using a “Class Mass Normalization” heuristic to force the unlabeled examples to

have the same class proportions as the labeled examples.

Laplacian SVM

The main idea in this method is to take the SVM objective function and add an extra regulariza-

tion penalty that penalizes similar examples that have different labels[6].

More precisely the solution for SVM can be stated as

f ∗ = argminf ∈ HK = 1
l

∑l
i=1 V (xi, yi, f) + γ||f ||2K

V (xi, yi, f) is some loss function such as squared loss(yi − f(xi))
2 or soft margin loss

17

max{0, 1− yif(xi)}.

The second term is a regularization that imposes smoothness condition on possible solutions.

In Laplacian SVM the solution is the following:

f ∗ = argminf ∈ HK = 1
l

∑l
i=1 V (xi, yi, f) + γA||f ||2K + γI

(u+l)2

∑
i,j wij(f(i)− f(j))2

The extra regularization term imposes an additional smoothness condition over both the la-

beled and unlabeled data. We note that the extra regularization term is the same as the objective

function in the Gaussian Fields method.

An advantage of this method is that it easily extends to the inductive case since the represen-

ter theorem still applies.

f ∗(x) =
∑l+u

i=1 αiK(xi, x). (Representer Theorem)

On the other hand, implementation of this method will necessarily be more complicated since

it involves solving a quadratic program.

Transductive SVM (TSVM)

Transductive SVM was first proposed by Vapnik [[74],[75]] as a natural extension of the SVM

algorithm to unlabeled data. The idea is very simple: instead of simply finding a hyperplane that

maximizes the margin on the labeled examples we want to find a hyperplane that maximizes the

margin on the labeled and unlabeled examples.

18

Unfortunately this simple extension fundamentally changes the nature of the optimization

problem. In particular the original SVM leads to a convex optimization problem which has a

unique solution and can be solved efficiently. TSVM does not lead to a convex optimization

problem (due to the non-linear constraints imposed by the unlabeled data) and in particular

there is no known method to solve it efficiently.

However there are encouraging empirical results: Thorsten Joachims proposed an algorithm

that works by first obtaining a supervised SVM solution then doing a coordinate descent to im-

prove the objective function. It showed significant improvement over purely supervised methods

and scaled up to 100,000 examples [45].

Die Bie and Cristianini proposed a semi-definite programming relaxation of the TSVM[9][10].

They then further proposed an approximation of this relaxation and showed that at least in some

cases they attain better performance than the version of TSVM proposed by Joachims. However,

their method is not able to scale to more than 1000 examples.

TSVM is very attractive from a theoretical perspective as it inherits most of the justifications

of SVM and the large-margin approach, however as of now it is still very challenging from an

implementation point of view.

Spectral Graph Transducer (SGT)

The central idea in this method is to ensure that the proportions of positive and negative examples

is the same in the labeled and unlabeled sets[44]. As we noted this is an issue in several methods

based on the Cluster Assumption such as graph mincut[12] and Gaussian Fields[85] .

19

SGT addresses this issue by reducing the problem to an unconstrained ratio-cut in a graph

with additional constraints to take into account the labeled data. Since the resulting problem is

still NP-Hard, the real relaxation of this problem is used for the actual solution. It turns out that

this can be solved efficiently.

Joachims reports some impressive experimental results in comparison with TSVM, kNN and

SVM. Furthermore, the algorithm has an easy to understand and attractive intuition. However,

the reality is that it is not (so far) possible to solve the original problem optimally and it is not

clear what the quality of the solution of the relaxation is. Some experimental results by Blum et

al. [14] indicate that SGT is very sensitive to fine tuning of its parameters.

2.2 Semi-supervised Regression

While some semi-supervised classification such as Gaussian Fields can be directly applied to

semi-supervised regression without any modifications, there has been relatively little work di-

rectly targeting semi-supervised regression. It is not clear if this is due to lack of interest from

researchers or lack of demand from practitioners.

Correspondingly the theoretical insights and intuitions are not as well developed for semi-

supervised regression as they are for semi-supervised classification. In particular so far no tax-

onomy for semi-supervised regression methods has been proposed that corresponds to the tax-

onomy for semi-supervised classification methods.

Still, the overall task remains the same: to use information about the distribution ofx to im-

prove our estimates ofp(y|x). To this end, we need to make an appropriately useful assumption.

20

The Manifold assumption is one such candidate: We assume that the data lies along a low di-

mensional manifold.

An example of this would be if the true function we are trying to estimate is a 3 dimensional

spiral. If we only have a few labeled examples, it would be hard to determine the structure of the

entire manifold. However, if we have sufficiently large amount of unlabeled data, the manifold

becomes much easier to determine. The Manifold assumption also implies the Smoothness as-

sumption: Examples which are close to each other, have similar labels. In other words we expect

the function to not “jump” suddenly.

2.2.1 Transductive Regression algorithm of Cortes and Mohri

The transductive regression algorithm of Cortes and Mohri[23] minimizes an objective function

of the following form:

E(h) = ||w||2 + C
∑m

i=1(h(xi)− yi)
2 + C ′ ∑m+u

i=m+1(h(xi)− ŷi)
2

Here the hypothesish is a linear function of the formh(x) = w ·Φ(x) wherew is a vector in

vector spaceF , x is an element inX andΦ is a feature map fromX toF . In additionC andC ′

are regularization parameters,yi is the values of theith labeled example and̂yi is an estimate for

theith unlabeled example. The task is to estimate the vectorw of weights.

A strong attraction of this method is that it is quite computationally efficient: It essentially

only requires the inversion of anD × D matrix whereD is the dimension ofF the space into

which the examples are mapped. Cortes and Mohri [23] report impressive empirical results on

various regression datasets. However, it is not clear how much performance is sacrificed by as-

21

suming the hypothesis is of the formh(x) = w ·Φ(x). It would be interesting to compare with a

purely non-parametric method.

2.2.2 COREG (Zhou and Li)

The key idea of this method is to apply co-training to the semi-supervised regression task [82].

The algorithm uses two k-nearest neighbor regressors with different distance metrics, each of

which labels the unlabeled data for the other regressor. The labeling confidence is estimated

through consulting the influence of the labeling of unlabeled examples on the labeled ones.

Zhou and Li report positive experimental results on mostly synthetic datasets. However, since

this was the first paper to deal with semi-supervised regression, they were not able to compare

with more recent techniques.

The concept of applying co-training to regression is attractive, however it is not clear what

unlabeled data assumptions are being exploited.

2.2.3 Co-regularization (Sindhwani et al.)

This technique also uses co-training but in a regularization framework[68].

More precisely the aim is to learn two different classifiers by optimizing an objective function

that simultaneously minimizes their training error and their disagreement with each other.

Brefeld et al. [17] use the same idea, they are also propose a fast approximation that scales

linearly in the number of training examples.

22

2.3 Learning with Similarity functions

In spite of (or maybe because of) the wide popularity of kernel based learning methods in the

past decade, there has been relatively little work on learning with similarity functions that are not

kernels.

The paper by Balcan and Blum [2] was the first to rigorously analyze this framework. The

main contribution was to define a notion of good similarity function for learning which was in-

tuitive and included the usual notion of a large margin kernel function.

Recently Srebro [70] gave an improved analysis with tighter bounds on the relation between

large margin kernel functions and good similarity functions in the Balcan-Blum sense. In par-

ticular he showed that large margin kernel functions remain good when used with a hinge loss.

He also gives examples where using a kernel function as a similarity function can produce worse

margins although his results do not imply that the margin will always be worse if a kernel is used

as a similarity function.

A major practical motivation for this line of research is the existence of domain specific

similarity functions (typically defined by domain experts) which are known to be successful but

which do not satisfy the definition of a kernel function. The Smith-Waterman score used in biol-

ogy is a typical example of such a similarity function. The Smith-Waterman score is a measure of

local alignment between protein sequences. It is considered by biologist to be the best measure

of homology (similarity) between two protein sequences.

However, it does not satisfy the definition of a kernel function and hence cannot be used in

23

kernel based methods. To deal with this issue Vert et al. [76] construct a convolution kernel to

“mimic” the behavior of the Smith-Waterman score. Vert et al. report promising experimental

results, however it is highly likely that the original Smith-Waterman score provides a better mea-

sure of similarity than the kernelized version. Hence techniques that use the original similarity

measure might potentially have superior performance.

In this work we will focus on using similarity functions with online algorithms like Winnow.

One motivation for this is in our approach similarity functions are most useful if we have large

amounts of unlabeled data. For large datasets we need fast algorithms such as Winnow.

Another advantage of Winnow specifically is that it can learn well even in presence of irrel-

evant features. This is important in learning with similarities as we will typically create several

new features for each examples and only a few of the generated features may be relevant to the

classification task.

Winnow was proposed by Littlestone [53] who analyzed some of its basic properties. Blum

[11] and Dagan [28] demonstrated that Winnow could be used in real world tasks such as calen-

dar scheduling and text classification. More recent experimental work has shown that versions

of Winnow can be competitive with the best offline classifiers such as SVM and Logistic Regres-

sion [Bekkerman [5], Cohen & Carvalho [20] [21].]

24

Chapter 3

Randomized Mincuts

In this chapter we will describe the randomized mincut algorithm for semi-supervised classi-

fication. We will give some background and motivation for this approach and also give some

experimental results.

3.1 Introduction

If one believes that “similar examples ought to have similar labels,” then a natural approach to

using unlabeled data is to combine nearest-neighbor prediction—predict a given test example

based on its nearest labeled example—with some sort of self-consistency criteria, e.g., that sim-

ilar unlabeledexamples should, in general, be given the same classification. The graph mincut

approach of Blum and Chawla [12] is a natural way of realizing this intuition in a transductive

learning algorithm. Specifically, the idea of this algorithm is to build a graph on all the data

(labeled and unlabeled) with edges between examples that are sufficiently similar, and then to

partition the graph into a positive set and a negative set in a way that (a) agrees with the labeled

data, and (b) cuts as few edges as possible. (An edge is “cut” if its endpoints are on different

sides of the partition.)

25

The graph mincut approach has a number of attractive properties. It can be found in poly-

nomial time using network flow; it can be viewed as giving the most probable configuration of

labels in the associated Markov Random Field (see Section3.2); and, it can also be motivated

from sample-complexity considerations, as we discuss further in Section3.4.

However, it also suffers from several drawbacks. First, from a practical perspective, a graph

may have many minimum cuts and the mincut algorithm produces just one, typically the “left-

most” one using standard network flow algorithms. For instance, a line ofn vertices between

two labeled pointss andt hasn− 1 cuts of size 1, and the leftmost cut will be especially unbal-

anced. Second, from an MRF perspective, the mincut approach produces the most probable joint

labeling (the MAP hypothesis), but we really would rather label nodes based on theirper-node

probabilities (the Bayes-optimal prediction). Finally, from a sample-complexity perspective, if

we could average over many small cuts, we could improve our confidence via PAC-Bayes style

arguments.

Randomized mincut provides a simple method for addressing a number of these drawbacks.

Specifically, we repeatedly add artificial random noise to the edge weights,1 solve for the min-

imum cut in the resulting graphs, and finally output a fractional label for each example corre-

sponding to the fraction of the time it was on one side or the other in this experiment. This is

not the same as sampling directly from the MRF distribution, and is also not the same as picking

truly random minimum cuts in the original graph, but those problems appear to be much more

difficult computationally on general graphs (see Section3.2).

A nice property of the randomized mincut approach is that it easily leads to a measure of con-

1We add noise only to existing edges and do not introduce new edges in this procedure.

26

fidence on the predictions; this is lacking in the deterministic mincut algorithm, which produces a

single partition of the data. The confidences allow us to compute accuracy-coverage curves, and

we see that on many datasets the randomized mincut algorithm exhibits good accuracy-coverage

performance.

We also discuss design criteria for constructing graphs likely to be amenable to our algorithm.

Note that some graphs simply do not have small cuts that match any low-error solution; in such

graphs, the mincut approach will likely fail even with randomization. However, constructing the

graph in a way that is very conservative in producing edges can alleviate many of these problems.

For instance, we find that a very simple minimum spanning tree graph does quite well across a

range of datasets.

PAC-Bayes sample complexity analysis [54] suggests that when the graph has many small

cuts consistent with the labeling, randomization should improve generalization performance.

This analysis is supported in experiments with datasets such as handwritten digit recognition,

where the algorithm results in a highly accurate classifier. In cases where the graph does not

have small cuts for a given classification problem, the theory also suggests, and our experiments

confirm, that randomization may not help. We present experiments on several different datasets

that indicate both the strengths and weaknesses of randomized mincuts, and also how this ap-

proach compares with the semi-supervised learning schemes of Zhu et al. [85] and Joacchims

[44]. For the case of MST-graphs, in which the Markov random field probabilitiescanbe effi-

ciently calculated exactly, we compare to that method as well.

In the following sections we will give some background on Markov random fields, describe

our algorithm more precisely as well as our design criteria for graph construction, provide

sample-complexity analysis motivating some of our design decisions, and finally give some ex-

27

perimental results.

3.2 Background and Motivation

Markov random field models originated in statistical physics, and have been extensively used in

image processing. In the context of machine learning, what we can do is create a graph with

a node for each example, and with edges between examples that are similar to each other. A

natural energy function to consider is

E(f) =
1

2

∑
i,j

wij|f(i)− f(j)| = 1

4

∑
i,j

wij(f(i)− f(j))2

wheref(i) ∈ {−1, +1} are binary labels andwij is the weight on edge(i, j), which is a measure

of the similarity between the examples. To assign a probability distribution to labelings of the

graph, we form a random field

pβ(f) =
1

Z
exp (−βE(f))

where the partition functionZ normalizes over all labelings. Solving for the lowest energy

configuration in this Markov random field will produce a partition of the entire (labeled and

unlabeled) dataset that maximally optimizes self-consistency, subject to the constraint that the

configuration must agree with the labeled data.

As noticed over a decade ago in the vision literature [37], this is equivalent to solving for a

minimum cut in the graph, which can be done via a number of standard algorithms. Blum and

Chawla [12] introduced this approach to machine learning, carried out experiments on several

datasets, and explored generative models that support this notion of self-consistency.

The minimum cut corresponds, in essence, to the MAP hypothesis in this MRF model. To

produce Bayes-optimal predictions, however, we would like instead to sample directly from the

28

MRF distribution.

Unfortunately, that problem appears to be much more difficult computationally on general

graphs. Specifically, while random labelings can be efficiently sampledbeforeany labels are

observed, using the well-known Jerrum-Sinclair procedure for the Ising model [42], after we ob-

serve the labels on some examples, there is no known efficient algorithm for sampling from the

conditional probability distribution; see Dyer et al. [33] for a discussion of related combinatorial

problems.

This leads to two approaches:

1. Try to approximate this procedure by adding random noise into the graph.

2. Make sure the graph is a tree, for which the MRF probabilities can be calculated exactly

using dynamic programming.

Here, we will consider both.

3.3 Randomized Mincuts

The randomized mincut procedure we consider is the following. Given a graphG constructed

from the dataset, we produce a collection of cuts by repeatedly adding random noise to the edge

weights and then solving for the minimum cut in the perturbed graph.

In addition, now that we have a collection of cuts, we remove those that are highly un-

balanced. This step is justified using a simpleε-cover argument (see Section3.4), and in our

experiments, any cut with less than 5% of the vertices on one side is considered unbalanced.2

2With only a small set of labeled data, one cannot in general be confident that the true class probabilities are

29

Finally, we predict based on a majority vote over the remaining cuts in our sample, outputting

a confidence based on the margin of the vote. We call this algorithm “Randomized mincut with

sanity check” since we use randomization to produce a distribution over cuts, and then throw out

the ones that are obviously far from the true target function.

In many cases this randomization can overcome some of the limitations of the plain mincut

algorithm. Consider a graph which simply consists of a line, with a positively labeled node at one

end and a negatively labeled node at the other end with the rest being unlabeled. Plain mincut

may choose from any of a number of cuts, and in fact the cut produced by running network flow

will be either the leftmost or rightmost one depending on how it is implemented. Our algorithm

will take a vote among all the mincuts and thus we will end up using the middle of the line as a

decision boundary, with confidence that increases linearly out to the endpoints.

It is interesting to consider for which graphs our algorithm produces a true uniform distribu-

tion over minimum cuts and for which it does not. To think about this, it is helpful to imagine we

collapse all labeled positive examples into a single nodes and we collapse all labeled negative

examples into a single nodet. We can now make a few simple observations. First, a class of

graphs for which our algorithmdoesproduce a true uniform distribution are those for which all

thes-t minimum cuts are disjoint, such as the case of the line above. Furthermore, if the graph

can be decomposed into several such graphs running in parallel betweens andt (“generalized

theta graphs” [19]), then we get a true uniform distribution as well. That is because any mini-

mums-t cut must look like a tuple of minimum cuts, one from each graph, and the randomized

mincut algorithm will end up choosing at random from each one.

On the other hand, if the graph has the property that some minimum cuts overlap with many

close to the observed fractions in the training data, but onecanbe confident that they are not extremely biased one

way or the other.

30

others and some do not, then the distribution may not be uniform. For example, Figure3.1shows

a case in which the randomized procedure gives a much higher weight to one of the cuts than it

should (≥ 1/6 rather than1/n).

3 ... n2
1

n...32
1

a

b c

+

+ −

−

Figure 3.1:A case where randomization will not uniformly pick a cut

Looking at Figure3.1 ,in the top graph, each of then cuts of size 2 has probability1/n

of being minimum when random noise is added to the edge lengths. However, in the bottom

graph this is not the case. In particular, there is a constant probability that the noise added to

edgec exceeds that added toa andb combined (ifa, b, c are picked at random from[0, 1] then

Pr(c > a+ b) = 1/6). This results in the algorithm producing cut{a, b} no matter what is added

to the other edges. Thus,{a, b} has a much higher than1/n probability of being produced.

31

3.4 Sample complexity analysis

3.4.1 The basic mincut approach

From a sample-complexity perspective, we have a transductive learning problem, or (roughly)

equivalently, a problem of learning from a known distribution. Let us model the learning scenario

as one in which first the graphG is constructed from data without any labels (as is done in our

experiments) and then a few examples at random are labeled. Our goal is to perform well on the

rest of the points. This means we can view our setting as a standard PAC-learning problem over

the uniform distribution on the vertices of the graph. We can now think of the mincut algorithm

as motivated by standard Occam bounds: if we describe a hypothesis by listing the edges cut

usingO(log n) bits each, then a cut of sizek can be described inO(k log n) bits.3 This means we

need onlyO(k log n) labeled examples to be confident in a consistent cut ofk edges (ignoring

dependence onε andδ).

In fact, we can push this bound further: Kleinberg [48], studying the problem of detecting

failures in networks, shows that the VC-dimension of the class of cuts of sizek is O(k). Thus,

only O(k) labeled examples are needed to be confident in a consistent cut ofk edges. klein-

berg et al. [50] reduce this further toO(k/λ) whereλ is the size of theglobal minimum cut in

the graph (the minimum number of edges that must be removed in order to separate the graph

into two nonempty pieces, without the requirement that the labeled data be partitioned correctly).

One implication of this analysis is that if we imagine data as being labeled for us one at a

time, we can plot the size of the minimum cut found (which can only increase as we see more

labeled data) and compare it to the global minimum cut in the graph. If this ratio grows slowly

with the number of labeled examples, then we can be confident in the mincut predictions.

3This also assumes the graph is connected — otherwise, a hypothesis is not uniquely described by the edges cut.

32

3.4.2 Randomized mincut with “sanity check”

As pointed out by Joachims [44], minimum cuts can at times be very unbalanced. From a sample-

complexity perspective we can interpret this as a situation in which the cut produced is simply

not small enough for the above bounds to apply given the number of labeled examples available.

From this point of view, we can think of our mincut extension as being motivated by two lines of

research on ways of achieving rules of higher confidence.

The first of these are PAC-Bayes bounds [52, 54]. The idea here is that even if no single

consistent hypothesis is small enough to inspire confidence, if many of them are “pretty small”

(that is, they together have a large prior if we convert our description language into a probability

distribution) then we can get a better confidence bound by randomizing over them.

Even though our algorithm does not necessarily produce a true uniform distribution over all

consistent minimum cuts, our goal is simply to produce as wide a distribution as we can to take

as much advantage of this as possible. Furthermore results of Freund et al.[35] show that if we

weight the rules appropriately, then we can expect a lower error rate on examples for which their

vote is highly biased.

Again, while our procedure is at best only an approximation to their weighting scheme, this

motivates our use of the bias of the vote in producing accuracy/coverage curves. We should also

note that recently Hanneke[38] has carried out a much more detailed version of the analysis that

we have only hinted at here.

The second line of research motivating aspects of our algorithm is work on bounds based on

ε-cover size, e.g., Benedek et al.[7]. The idea here is that suppose we have a known distribution

D and we identify some hypothesish that has many similar hypotheses in our class with respect

33

to D. Then ifh has a high error rate over a labeled sample, it is likely thatall of these similar hy-

potheses have a high true error rate,even if some happen to be consistent with the labeled sample.

In our case, two specific hypotheses we can easily identify of this form are the “all positive”

and “all negative” rules. If our labeled sample is even reasonably close to balanced — e.g., 3

positive examples out of 10 — then we can confidently conclude that these two hypotheses have

a high error rate, and throw outall highly unbalanced cuts, even if they happen to be consistent

with the labeled data.

For instance, the cut that simply separates the three positive examples from the rest of the

graph is consistent with the data, but can be ruled out by this method.

This analysis then motivates the second part of our algorithm in which we discard all highly

unbalanced cuts found before taking majority vote. The important issue here is that we can con-

fidently do this even if we have only a very small labeled sample. Of course, it is possible that by

doing so, our algorithm is never able to find a cut it is willing to use. In that case our algorithm

halts with failure, concluding that the dataset is not one that is a good fit to the biases of our

algorithm. In that case, perhaps a different approach such as the methods of Joachims[44] or

Zhu et al. [85] or a different graph construction procedure is needed.

3.5 Graph design criteria

For a given distance metric, there are a number of ways of constructing a graph. In this section,

we briefly discuss design principles for producing graphs amenable to the graph mincut algo-

rithm. These then motivate the graph construction methods we use in our experiments.

34

First of all, the graph produced should either be connected or at least have the property that

a small number of connected components cover nearly all the examples. Ift components are

needed to cover a1 − ε fraction of the points, then clearly any graph-based method will needt

labeled examples to do well.4

Secondly, for a mincut-based approach we would like a graph that at least has some small

balanced cuts. While these may or may not correspond to cuts consistent with the labeled data,

we at least do not want to be dead in the water at the start. This suggests conservative methods

that only produce edges between very similar examples.

Based on these criteria, we chose the following two graph construction methods for our ex-

periments.

MST: Here we simply construct a minimum spanning tree on the entire dataset. This graph is

connected, sparse, and furthermore has the appealing property that it has no free param-

eters to adjust. In addition, because the exact MRF per-node probabilitiescanbe exactly

calculated on a tree, it allows us to compare our randomized mincut method with the exact

MRF calculation.

δ-MST: For this method, we connect two points with an edge if they are within a radiusδ of

each other. We then view the components produced as supernodes and connect them via an

MST. Blum and Chawla [12] usedδ such that the largest component had half the vertices

(but did not do the second MST stage). To produce a more sparse graph, we chooseδ so

4This is perhaps an obvious criterion but it is important to keep in mind. For instance, if examples are uniform

random points in the 1-dimensional interval[0, 1], and we connect each point to its nearestk neighbors, then it is not

hard to see that ifk is fixed and the number of points goes to infinity, the number of components will go to infinity

as well. That is because a local configuration, such as two adjacent tight clumps ofk points each, can cause such a

graph to disconnect.

35

that the largest component has1/4 of the vertices.

Another natural method to consider would be ak-NN graph, say connected up via a minimum

spanning tree as inδ-MST. However, experimentally, we find that on many of our datasets this

produces graphs where the mincut algorithm is simply not able to find even moderately balanced

cuts (so it ends up rejecting them all in its internal “sanity-check” procedure). Thus, even with a

small labeled dataset, the mincut-based procedure would tell us to choose an alternative graph-

creation method.

3.6 Experimental Analysis

We compare the randomized mincut algorithm on a number of datasets with the following ap-

proaches:

PLAIN MINCUT : Mincut without randomization.

GAUSSIAN FIELDS: The algorithm of Zhu et al.[85].

SGT: The spectral algorithm of Joachims [44].

EXACT: The exact Bayes-optimal prediction in the MRF model, which can be computed

efficiently in trees (so we only run it on the MST graphs).

Below we present results on handwritten digits, portions of the 20 newsgroups text collection,

and various UCI datasets.

3.6.1 Handwritten Digits

We evaluated randomized mincut on a dataset of handwritten digits originally from the Cedar

Buffalo binary digits database [41]. Each digit is represented by a 16 X 16 grid with pixel values

ranging from 0 to 255. Hence, each image is represented by a 256-dimensional vector.

For each size of the labeled set, we perform 10 trials, randomly sampling the labeled points

36

2 4 6 8 10 12 14 16 18 20
55

60

65

70

75

80

85

90

95

100

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT
EXACT

2 4 6 8 10 12 14 16 18 20
55

60

65

70

75

80

85

90

95

100

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT

Figure 3.2:“1” vs “2” on the digits dataset with the MST graph (left) andδ 1
4

graph (right).

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT
EXACT

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT

Figure 3.3:Odd vs. Even on the digits dataset with the MST graph (left) andδ 1
4

graph (right).

from the entire dataset. If any class is not represented in the labeled set, we redo the sample.

One vs. Two: We consider the problem of classifying digits, “1” vs. “2” with 1128 images.

Results are reported in Figure3.2. We find that randomization substantially helps the

mincut procedure when the number of labeled examples is small, and that randomized

mincut and the Gaussian field method perform very similarly. The SGT method does not

perform very well on this dataset for these graph-construction procedures. (This is perhaps

an unfair comparison, because our graph-construction procedures are based on the needs

of the mincut algorithm, which may be different than the design criteria one would use for

37

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT
EXACT

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT

Figure 3.4:PC vs MAC on the 20 newsgroup dataset with MST graph (left) andδ 1
4

graph (right).

graphs for SGT.)

Odd vs. Even: Here we classify 4000 digits into Odd vs. Even. Results are given in Figure3.3.

On the MST graph, we find that Randomized mincut, Gaussian fields, and the exact MRF

calculation all perform well (and nearly identically). Again, randomization substantially

helps the mincut procedure when the number of labeled examples is small. On theδ-

MST graph, however, the mincut-based procedures perform substantially worse, and here

Gaussian fields and SGT are the top performers.

In both datasets, the randomized mincut algorithm tracks the exact MRF Bayes-optimal predic-

tions extremely closely. Perhaps what is most surprising, however, is how good performance is

on the simple MST graph. On the Odd vs. Even problem, for instance, Zhu et al. [85] report for

their graphs an accuracy of 73% at 22 labeled examples, 77% at 32 labeled examples, and do not

exceed 80% until 62 labeled examples.

3.6.2 20 newsgroups

We performed experiments on classifying text data from the 20-newsgroup datasets, specifically

PC versus MAC (see Figure3.4). Here we find that on the MST graph, all the methods perform

similarly, with SGT edging out the others on the smaller labeled set sizes. On theδ-MST graph,

38

SGT performs best across the range of labeled set sizes. On this dataset, randomization has much

less of an effect on the mincut algorithm.

DATASET |L|& |U | FEAT. GRAPH M INCUT RAND MINCUT GAUSSIAN SGT EXACT

MST 92.0 90.9 90.6 90.0 90.6

VOTING 45+390 16 δ 1
4

92.3 91.2 91.0 85.9 —

MST 86.1 89.4 92.2 89.0 92.4

MUSH 20+1000 22 δ 1
4

94.3 94.2 94.2 91.6 —

MST 78.3 77.8 79.2 78.1 83.9

IONO 50+300 34 δ 1
4

78.8 80.0 82.8 79.7 —

MST 63.5 64.0 63.7 61.8 63.9

BUPA 45+300 6 δ 1
4

62.9 62.9 63.5 61.6 —

MST 65.7 67.9 66.7 67.7 67.7

PIMA 50+718 8 δ 1
4

67.9 68.8 67.5 68.2 —

Table 3.1:Classification accuracies of basic mincut, randomized mincut, Gaussian fields, SGT,

and the exact MRF calculation on datasets from the UCI repository using the MST andδ 1
4

graph.

3.6.3 UCI Datasets

We conducted experiments on various UC Irvine datasets; see Table3.1. Here we find all the

algorithm perform comparably.

3.6.4 Accuracy Coverage Tradeoff

As mentioned earlier, one motivation for adding randomness to the mincut procedure is that we

can use it to set a confidence level based on the number of cuts that agree on the classification of a

particular example. To see how confidence affects prediction accuracy, we sorted the examples by

39

0 500 1000 1500 2000 2500 3000 3500 4000
75

80

85

90

95

100

A
cc

ur
ac

y

Examples sorted by confidence

Randmincut on MST

EXACT on MST

Randmincut on δ

0 200 400 600 800 1000 1200 1400 1600 1800 2000
65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Examples sorted by confidence

Randmincut on MST

EXACT on MST

Randmincut on δ

Figure 3.5:Accuracy coverage tradeoffs for randomized mincut andEXACT. Odd vs. Even (left)

and PC vs. MAC (right).

confidence and plotted the cumulative accuracy. Figure3.5 shows accuracy-coverage tradeoffs

for Odd-vs-Even and PC-vs-MAC. We see an especially smooth tradeoff for the digits data,

and we observe on both datasets that the algorithm obtains a substantially lower error rate on

examples on which it has high confidence.

3.6.5 Examining the graphs

To get a feel for why the performance of the algorithms is so good on the MST graph for the digits

dataset, we examined the following question. Suppose for somei ∈ {0, . . . , 9} you remove all

vertices that are not digiti. What is the size of the largest component in the graph remaining?

This gives a sense of how well one could possibly hope to do on the MST graph if one had

only one labeled example of each digit. The result is shown in Figure3.6. Interestingly, we see

that most digits have a substantial fraction of their examples in a single component. This partly

explains the good performance of the various algorithms on the MST graph.

40

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

in
 L

ar
ge

st
 C

om
po

ne
nt

Digit

Figure 3.6:MST graph for Odd vs. Even: percentage of digiti that is in the largest component if

all other digits were deleted from the graph.

3.7 Conclusion

The randomized mincut algorithm addresses several shortcomings of the basic mincut approach,

improving performance especially when the number of labeled examples is small, as well as

providing a confidence score for accuracy-coverage curves. We can theoretical motivate this ap-

proach from a sample complexity and Markov Random Field perspective.

The experimental results support the applicability of the randomized mincut algorithm to var-

ious settings. In the experiments done so far, our method allows mincut to approach, though it

tends not to beat, the Gaussian field method of Zhu et al. [85]. However, mincuts have the nice

property that we can apply sample-complexity analysis, and furthermore the algorithm can often

easily tell when it is or is not appropriate for a dataset based on how large and how unbalanced

the cuts happen to be.

The exact MRF per-node likelihoods can be computed efficiently on trees. It would be inter-

esting if this can be extended to larger classes of graphs.

41

42

Chapter 4

Local Linear Semi-supervised Regression

4.1 Introduction and Motivation

In many machine learning domains, labeled data is much more expensive than labeled data. For

example, labeled data may require a human expert or an expensive experimental process to clas-

sify each example. For this reason there has been a lot of interest in the last few years in machine

learning algorithms than can make use of unlabeled data [25]. The majority of such proposed al-

gorithms have been applied to the classification task. In this chapter we focus on using unlabeled

data in regression. In particular, we present LLSR, the first extension of Local Linear Regression

to the problem of semi-supervised learning.

4.1.1 Regression

Regression is a fundamental tool in statistical analysis. At its core regression aims to model the

relationship between 2 or more random variables. For example, an economist might want to

investigate whether more education leads to an increased income. A natural way to accomplish

this is to take number of years of education as the dependent variable and annual income as the

43

independent variable and to use regression analysis to determine their relationship.

Formally, we are given as input(X1, Y1), ...(Xn, Yn) where theXi are the independent vari-

ables andYi are the dependent variables. We want to predict for anyX, the value of the corre-

spondingY . There are two main types of techniques used to accomplish this:

1. Parametric regression: In this case we assume that the relationship between the variable

is of a certain type (e.g. a linear relationship) and we are concerned with learning the

parameters for a relationship of that type which best fit the data.

2. Non-parametric regression: In this case we do not make any assumptions about the type of

relationship that holds between the variables, but we derive this relationship directly from

the data.

Regression analysis is heavily used in the natural sciences and in social sciences such as

economics, sociology and political science. A wide variety of regression algorithms are used

including linear regression, polynomial regression and logistic regression (among the parametric

methods) and kernel regression and local linear regression (among the non-parametric meth-

ods). A further discussion of such methods can be found in any introductory statistics textbook

[77, 78].

In semi-supervised regression in addition to getting the dependent and independent variables

X andY we are also given an addition variableR which indicates whether or not we observe

that value ofY . In other words we get data(X1, Y1, R1), ...(Xn, Yn, Rn) and we observeYi only

if Ri = 1.

We note that the problem of semi-supervised regression is more general than the semi-

44

supervised classification problem. In the latter case theYi are constrained to have only a finite

number of possible values whereas in regression theYi are assumed to be continuous. Hence

some algorithms designed for semi-supervised classification (e.g. graph mincut[12]) are not

applicable to the more general semi-supervised regression problem. Other algorithms such as

Gaussian Fields [85]) are applicable to both problems.

Although semi-supervised regression has received less attention than semi-supervised classi-

fication, a number of methods have been developed dealing specifically with this problem. These

include the transductive regression algorithm proposed by Cortes and Mohri [23]and co-training

style algorithms proposed by Zhou and Li [82], Sindhwani et al.[68] and Brefeld et al.[17].

4.1.2 Local Linear Semi-supervised Regression

In formulating semi-supervised classification algorithms, an often useful motivating idea is the

Cluster Assumption: the assumption that the data will naturally cluster into clumps that have the

same label. This notion of clustering does not readily apply to regression, but we can make a

somewhat similar “smoothness” assumption: we expect the value of the regression function to

not “jump” or change suddenly. In both cases we expectexamples that are close to each other to

have similar values.

A very natural way to instantiate this assumption in semi-supervised regression is by find-

ing estimateŝm(x) that minimize the following objective function (subject to the constraint that

m̂(xi) = yi for the labeled data):

∑
i,j

wij(m̂(xi)− m̂(xj))
2

45

wherem̂(xi) is theestimatedvalue of the function at examplexi, wij is a measure of the

similarity between examplesxi andxj andyi is the value of the function atxi (only defined on

the labeled examples).

This is exactly the objective function minimized by the Gaussian Fields algorithm proposed

by Zhu, Gharamani and Lafferty [85].

This algorithm has several attractive properties:

1. The solution can be computed in closed form by simple matrix operations.

2. It has interesting connections to Markov Random Fields, electrical networks,spectral graph

theory and random walks. For example, for the case of boolean weightswij, the estimates

m̂(xi) produced from this optimization can be viewed as the probability that a random walk

starting atxi on the graph induced by the weights, would reach a labeled positive example

before reaching a labeled negative example. These connections are further explored in

works by Zhu et al. [84, 85].

However, it suffers from at least one major drawback when used in regression: It is “locally

constant.” This means that it will tend to assign the same value to all the example near a particu-

lar labeled example and hence produce “flat neighborhoods.”

While this behavior is desirable in classification, it is often undesirable in regression applica-

tion where we frequently assume that the true function is “locally linear.” By locally linear we

mean that(on some sufficiently small scale) the value of an example is a “linear interpolation”

of the value of its closest neighbors. (From a mathematical point of view local linearity is a

consequence of a function being differentiable.)Hence if our function is of “locally linear” type

then a “locally constant” estimator will not provide good estimates and we would prefer to use

46

an algorithm that incorporates a local linearity assumption.

The supervised analogue of Gaussian Fields is Weighted Kernel Regression (also known as

the Nadaraya-Watson estimator) which minimizes the following objective function:

∑
i

wi(yi − m̂(x))2

wherem̂(x) is the value of the function at examplex,yi is the value ofxi andwi is a measure

of the similarity betweenx andxi.

In the supervised case, there already exists an estimator that has the desired property: Local

Linear Regression, which findsβx so as to minimize the following objective function:

n∑
i=1

wi(yi − βT
x Xxi)

2

with

Xxi =




1

xi − x


 .

Hence, a suitable goal is to derive a local linear version of the Gaussian Fields algorithm.

Equivalently, we want a semi-supervised version of the Local Linear estimator.

In the remainder of this chapter we will give some background on non-parametric regression,

describe the Local Linear Semi-supervised Regression algorithm and show the results of some

experiments on real and synthetic data.

47

4.2 Background

The general problem of estimating a function from data has been extensively studied in the

statistics community. There are two broad classes of methods that are used: Parametric and

Non-parametric. We describe these in turn below.

4.2.1 Parametric Regression methods

These approaches assume that the function that is being estimated is of a particular type and then

try to estimate the parameters of the function so that it will best fit the observed data.

For example, we may assume that the function we seek is linear but the observations have

been corrupted with Gaussian noise:

y = βT x + εi (with εi ∼ N(0, σ2)).

Parametric methods have some advantages compared to non-parametric methods:

1. They are usually easier to analyze mathematically.

2. They usually require less data in order to learn a good model.

3. They are typically computationally less intensive.

However, they also have several disadvantages, especially if the assumptions are not entirely

correct.

4.2.2 Non-Parametric Regression methods

These approaches do not assume that the function we are trying to estimate is of a specific type.

i.e given

yi = m(xi) + εi

48

the goal is to estimate the value ofm(x) at each point.

The main advantage of non-parametric approaches is that they are more flexible than para-

metric methods and hence they are able to accurately represent broader classes of functions.

4.2.3 Linear Smoothers

Linear smoothers are a class of non-parametric methods in which the function estimates are a

linear function of the response variable:

ŷ = Ly

whereŷ are the new estimates,y are the observations andL is a matrix which may be con-

structed based on the data.

Linear smoothers include most commonly used non-parametric regression algorithms and in

particular all the algorithms we have discussed so far are linear smoothers. We discuss how we

can view each of them as linear smoothers below.

Weighted Kernel Regression

The objective is to find the number̂m(x) that minimizes the least squares error

∑
i

wi(yi − m̂(x))2.

The minimizer of this objective function is

m̂(x) =

∑
i wiyi∑
i wi

= Ly.

49

Local Linear Regression

The objective is to findβx that minimizes the least squares error

n∑
i=1

wi(yi − βT
x Xxi)

2

where

Xxi =




1

xi − x


 .

The minimizer of the objective function is

β̂x = (XT
x WxXx)

−1XT
x Wxy

whereXx is then × (d + 1) matrix (XT
xi) and the matrixWx is then × n diagonal matrix

diag(wi).

The local linear estimate ofm(x) is

m̂(x) = eT
1 (XT

x WxXx)
−1XT

x Wxy = Ly.

Gaussian Fields

The objective is to findf that minimizes the energy functional

E(f) =
∑
i,j

wij(fi − fj)
2

with the constraint that some of thefi are fixed.

It can be shown that

50

E(f) = fT ∆f

where∆ = D−W is thecombinatorial graph Laplacianof the data,W is the weight matrix

andD is the diagonal matrix withDii =
∑

j wij.

If fL denotes the observed labels andfU denotes the unknown labels then the minimizer of

the energy functional is

fU = ∆−1
UU∆ULfL = Ly

where∆UU and∆UL are the relevant submatrices of the graph Laplacian.

4.3 Local Linear Semi-supervised Regression

Our goal is to derive a semi-supervised analogue of Local Linear Regression so we want it to

have the following properties.

1. It should fit a linear function at each point like Local Linear Regression.

2. The estimate for a particular point should depend on the estimates for all the other examples

like in Gaussian Fields. In particular we want to enforce some smoothness in how the linear

function changes.

More specifically, letXi andXj be two examples andβi andβj be the local linear fits atXi

andXj respectively.

Let

Xji =




1

Xi −Xj


 .

51

ThenXT
jiβj is the estimated value atXi using the local linear fit atXj. Thus the quantity

(βi0 −XT
jiβj)

2

is the squared difference between the smoothed estimate atXi and the estimated value atXi

using the local fit atXj. This situation is illustrated in figure4.1

X
j X

i

} (β
i0

 − X
ji
T β

j
)2

β
i0

X
ji
T β

j

β
j0

 β
j

 β
i

Figure 4.1:We want to minimize the squared difference between the smoothed estimate atXi

and the estimated value atXi using the local fit atXj

We can take the sum of this quantity over all pairs of examples as the quantity we want to

minimize:

52

Ω(β) =
1

2

n∑
i=1

n∑
j=1

wij(βi0 −XT
jiβj)

2

with the constraint that some of theBi are fixed.

Lemma 1.1The manifold regularization functionalΩ(β) can be written as the quadratic form

Ω(β) = βT ∆β

where the local linear Laplacian∆ = [∆ij] is then× n block matrix with(d + 1)× (d + 1)

blocks∆ij = diag(Di)− [Wij] where

Di =
1

2

∑
j

wij(e1e
T
1 + XijX

T
ij)

and

Wij = wij




1 (XT
j −XT

i)

(Xj −Xi) 0


 .

Proof:

Let n be the number of examples.

Let d be the number of dimensions.

Let X be ad× n matrix (the data).

Let W be asymmetricn× n matrix. (the similarity betweenXi andXj)

Let β be an× (d + 1) length vector. (the coefficients we want to learn).

Let βi be theβid+1 to βi(d+1) coefficients inβ. (the coefficients forXi)

53

Let Xi be [Xi1 . . . Xid]
T (Theith column ofX)

Let Xij be [1 (Xi −Xj)
T]T

Let e1 be [1 0 0 . . . 0]T

Let di be
∑

j Wij

Starting with the objective function:

Ω(β) =
∑

i

∑
j

Wij(X
T
ii Bi −XT

ijBj)
2 (by definition)

We first expand the expression to get:

=
∑

i

∑
j

WijB
T
i XiiX

T
ii Bi−

∑
i

∑
j

2WijB
T
i XiiX

T
ijBj +

∑
i

∑
j

WijB
T
j XijX

T
ijBj (expanding)

Taking the first term we note that:

∑
i

∑
j

WijB
T
i XiiX

T
ii Bi =

∑
i

BT
i diXiiX

T
ii Bi = BT ∆1B

Where[(∆1)ii] = diXiiX
T
ii

Next looking at the second term we get:

S =
∑

i

∑
j

2WijB
T
i XiiX

T
ijBj =

∑
i

∑
j

2BT
i WijXiiX

T
ijBj

=
∑

i

∑
j

2BT
j WjiXjjX

T
jiBi =

∑
i

∑
j

2BT
i WijXjiX

T
jjBj

So we can derive the following expression for the second term:

S =
1

2
(S + S) =

1

2

∑
i

∑
j

2BT
i Wij(XiiX

T
ij + XjiX

T
jj)Bj = BT ∆2B

54

Where[(∆2)ij] = Wij(XiiX
T
ij + XjiX

T
jj)

Finally looking at the third term in the original expression:

∑
i

∑
j

WijB
T
j XijX

T
ijBj =

∑
j

BT
j (

∑
i

WijXijX
T
ij)Bj = BT ∆3B

Where[(∆3)ii] =
∑

j WijXjiX
T
ji

So in conclusion:

Ω(β) =
∑

i

∑
j

Wij(X
T
ii Bi −XT

ijBj)
2 = BT ∆B

where∆ = diag(Di)− [Wij] and

diag(Di) = ∆1 + ∆3

[Wij] = ∆2

¥

The term we just derived is the local linear manifold regularizer. Now we add another term

to account for the labeled examples and minimize the sum.

Lemma 1.2.

LetRγ(β) be the manifold regularized risk functional:

55

Rγ(β) =
1

2

n∑
j=1

∑
Ri=1

wij(Yi −XT
jiβj)

2 +
γ

2
Ω(β)

HereRi = 1 meansi is a labeled example andγ is a regularization constant. We can simplify

this to:

=
1

2

n∑
j=1

(Yi −Xjβj)
T Wj(Yi −Xjβj) +

γ

2
βT ∆β

The minimizer of this risk can be written in closed form as:

β̂(γ) = (diag(XT
j WjXj) + γ∆)−1)(XT

1 W1Y, . . . , XT
1 W1Y)T

Proof.

The expression we want to minimize is:

1

2

n∑
j=1

∑
Ri=1

Wij(Yi −XT
jiBj)

2 +
γ

2

1

2

n∑
i=1

n∑
j=1

Wij(Bi0 −XT
jiBj)

2

Using the previous lemma this is equivalent to:

=
1

2

n∑
j=1

(Y −XjBj)
T Wj(Y −XjBj) +

γ

2
BT ∆B

We can expand the first term:

=
1

2

n∑
j=1

Y T WjY − 1

2

n∑
j=1

BT
j XT

j WjY − 1

2

n∑
j=1

Y T WjXjBj +
1

2

n∑
j=1

BT
j XT

j WjXjBj +
γ

2
BT ∆B

After some rearrangement we get:

=
1

2
Y T (

n∑
j=1

Wj)Y −BT [XT
j WjY] +

1

2
BT diag(XT

j WjXj)B +
γ

2
BT ∆B

56

Now we letQ = diag(XT
j WjXj), P = [XT

j WjY], C = 1
2
Y T (

∑n
j=1 Wj)Y

The expression now becomes:

= C − BT P +
1

2
BT QB +

γ

2
BT ∆B

Now we differentiate with respect toB and set to zero:

= −P + QB + γ∆B = 0

which leads to:

=> B = (Q + γ∆)−1P

So in conclusion the expression which minimizes the manifold regularized risk functional is:

β̂(γ) = (diag(XT
j WjXj) + γ∆)−1)(XT

1 W1Y, . . . , XT
1 W1Y)T

¥

4.4 An Iterative Algorithm

As defined here the LLSR algorithm requires inverting an(d+1)×n(d+1) matrix. This may be

impractical ifn andd are large. For example forn = 1500, d = 199 the closed form computation

would require inverting a300, 000× 300, 000 matrix, a matrix that would take roughly720 GB

of memory to store in Matlab’s standard double precision format.

57

Hence, it is desirable to have a more memory efficient method for computing LLSR. An iter-

ative algorithm can fulfill this requirement.

Theorem 1.3 If we initially assignBi arbitrary values for alli, and repeatedly apply the

following formula, then theBi will converge to the minimum of the LLSR objective function:

Bi = [
∑
Rj=1

WijXjiX
T
ji+γ

∑
j

Wij(XiiX
T
ii +XjiX

T
ji)]

−1(
∑
Rj=1

WijXjiYj+γ
∑

j

Wij(XiiX
T
ij+XjiX

T
jj)Bj)

Proof.

The objective function is:

1

2

n∑
j=1

∑
Ri=1

Wij(Yi −XT
ijBj)

2 +
γ

2

1

2

∑
i

∑
j

Wij(X
T
ii Bi −XT

ijBj)
2

If we differentiate w.r.t toBi and set to0 we get:

[
∑
Rj=1

WijXjiX
T
ji+γ

∑
j

Wij(XiiX
T
ii +XjiX

T
ji)]Bi =

∑
Rj=1

WijXjiYj+γ
∑

j

Wij(XiiX
T
ij+XjiX

T
jj)Bj

After rearranging:

⇒ Bi = [
∑
Rj=1

WijXjiX
T
ji+γ

∑
j

Wij(XiiX
T
ii +XjiX

T
ji)]

−1(
∑
Rj=1

WijXjiYj+γ
∑

j

Wij(XiiX
T
ij+XjiX

T
jj)Bj)

Hence the iterative algorithm is equivalent to doing “exact line search” for eachBi. In other

words, given that all other variables are constant, we find the optimal value ofBi so as to mini-

mize the objective function.

This means that at each step the value of the objective function must decrease. But since

the objective function is a sum of squares, it can never be less than 0. Hence the iteration will

58

eventually converge to a local minima. If we further note that the objective function is convex,

then it only has one global minimum and that will be the only fixed point of the iteration.Hence

the iteration will converge to the global minimum of the objective function. ¥

As we noted previously, ifn = 1500, d = 199 the closed form computation would re-

quire720 GB of memory but the iterative computation only requires keeping a vector of length

n × (d + 1) and inverting a(d + 1) × (d + 1) matrix which in this case only takes 2.4 MB of

memory. So we save a factor of almost 300,000 in memory usage in this example.

4.5 Experimental Results

To understand the behavior of the algorithm we performed some experiments on both synthetic

and real data.

4.5.1 Algorithms

We compared two purely supervised algorithms with Local Linear Semi-supervised Regression.

WKR - Weighted Kernel Regression

LLR - Local Linear Regression

LLSR - Local Linear Semisupervised Regression

4.5.2 Parameters

There are two free parameters that we have to set for LLSR (and one (kernel bandwidth) for

WKR and LLR).

h - kernel bandwidth

59

γ - Amount of Semisupervised Smoothing

4.5.3 Error metrics

LOOCV MSE - Leave-One-Out-Cross-Validation Mean Squared Error. This is what we actu-

ally try to optimize (analogous to training error).

MSE - This is the true Mean Squared Error between our predictions and the true function (anal-

ogous to test error).

4.5.4 Computing LOOCV

Since we do not have access to the MSE we pick the parameters so as to minimize the LOOCV

MSE. Computing the LOOCV MSE in a naı̈ve way would be very computationally expensive

since we would have to run the algorithmO(n) times.

Fortunately for a linear smoother we can compute the LOOCV MSE by running the algorithm

only once. More precisely if̂y = Ly then

LOOCV MSE=
n∑

i=1

(
yi − ŷi

1− Lii

)2

4.5.5 Automatically selecting parameters

We experimented with a number of different ways of picking the parameters. In these experi-

ments we used a form of coordinate descent.

Picking one parameter

To pick one parameter we just reduce the bandwidth until there is no more improvement in

LOOCV MSE.

60

1. Initially set bandwidth to 1 and compute LOOCV MSE.

2. Seth = h/2 and compute the resulting LOOCV MSE.

3. If the LOOCV MSE decreases then go back to step 2 else go to step 4

4. Output theh which had the lowest LOOCV MSE.

Picking two parameters

To pick two parameters we succesively halve the parameter which yields the biggest decrease in

LOOCV MSE.

1. Initially set both bandwidth and smoothing parameter to 1 and compute LOOCV MSE.

2. Seth = h/2 while leavingγ alone and compute LOOCV MSE.

3. Setγ = γ/2 while leavingh alone and compute LOOCV MSE.

4. If either steps 2 or 3 decreased the LOOCV MSE then choose the setting which had the

lower LOOCV MSE and go back to step 2 else go to step 5.

5. Output the parameter setting which had the lowest MSE.

These procedures are a crude form of gradient descent.

Although they are not guaranteed to be optimal they are (somewhat) effective in practice.

4.5.6 Synthetic Data Set: Gong

The Gong function is a popular function for testing regression algorithms.

Interval:0.5 to 1.5

Data Points: Sampled uniformly in the interval. (Default= 800)

Labeled Data Points: Sampled uniformly from the data points. (Default= 80).

RED = Estimated values

BLACK = Labeled examples

True function:y = 1
x

sin 15
x

61

σ2 = 0.1 (Noise)

Figures4.2, 4.3 and4.4 show the results of running WKR, LLR and LLSR respectfully on

this example. A table summarizing the results is given below in table4.1. As can be seen LLSR

performs substantially better than the other methods in its MSE and from the figures one can see

that solution produced by LLSR is much smoother than the others.

Algorithm MSE

WKR 25.67

LLR 14.39

LLSR 7.99

Table 4.1:Performance of different algorithms on the Gong dataset

62

Weighted kernel Regression

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LOOCV MSE: 6.536832 MSE: 25.674466

Figure 4.2:WKR on the Gong example,h = 1
128

Discussion

There is significant bias on the left boundary and at the peaks and valleys. In this case it seems

like a local linear assumption might be more appropriate.

63

Local Linear Regression

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LOOCV MSE: 80.830113 MSE: 14.385990

Figure 4.3:LLR on the Gong example,h = 1
128

Discussion

There is less bias on the left boundary but there seems to be over fitting at the peaks. It seems

like more smoothing is needed.

64

Local Linear Semi-supervised Regression

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LOOCV MSE: 2.003901 MSE: 7.990463

Figure 4.4:LLSR on the Gong example,h = 1
512

, γ = 1

Discussion

Although the fit is not perfect, it is the best of the 3. It manages to avoid boundary bias and fits

most of the peaks and valleys.

65

4.5.7 Local Learning Regularization

Recently Scḧolkopf and Wu [63] have proposed Local Learning Regularization (LL-Reg) as a

semi-supervised regression algorithm. They also propose a flexible framework that generalizes

many of the well known semi-supervised learning algorithms.

Suppose we can cast our semi-supervised regression problem as finding thef that minimizes

the following objective function:

fT Rf + (f − y)T C(f − y)

We can easily see that thef that minimizes this objective function is

f = (R + C)−1Cy

The first term is the “semi-supervised” component and imposes some degree of “smooth-

ness” on the predictions. The second term is the “supervised” part indicating the agreement of

the predictions with the labeled examples. By choosing different matricesR andC we obtain

different algorithms. Typically C is chosen to be the identity matrix so we focus on the choice of

R.

It turns out that popular semi-supervised learning algorithms such as the harmonic algorithm

[85] and NLap-Reg [81] can be cast in this framework with an appropriate choice ofR. For ex-

ample to get the harmonic algorithm of Zhu, Gharamani and Lafferty [85]we chooseR to be the

combinatorial graph Laplacian. To get the NLap-Reg algorithm of Zhou et al. [81] we chooseR

to be the normalized graph Laplacian.

Scḧolkopf and Wu [63] propose to use the following as the first term in the objective function

66

∑
(fi − oi(xi))

2

whereoi(xi) is the local prediction for the value ofxi based on the value of its neighbors.

Again we can choose different functions for the local predictoro(x) and get correspondingly

distinct algorithms.

Key point: If the local prediction atxi is a linear combination of the value of its neighbors

then we can write
∑

(fi − oi(xi))
2 asfT Rf for some suitableR.

To see this note that

∑
(fi − oi(xi))

2 = ||f − o||2

But if each prediction is a linear combination theno = Af (for some matrixA) and

||f − o||2 = ||f − Af ||2 = ||(I − A)f ||2 = fT (I − A)T (I − A)f

HenceR = (I − A)T (I − A).

So the only thing we have to do is pick the functionoi(xi) then theR will be fixed.

Scḧolkopf and Wu [63] propose using kernel ridge regression as the local predictor. This will

tend to enforce a roughly linear relationship between the predictors. This makes LL-Reg a good

candidate to compare against LLSR.

4.5.8 Further Experiments

To gain a better understanding of the performance of LLSR we also compare with (LL-Reg) in

addition to WKR and LLR on some real world datasets. The number of examples(n), dimen-

67

sions(d) and number of labeled examples(nl) in each dataset are indicated in tables4.2and4.3.

Procedure

For each dataset we select a random labeled subset, select parameters using cross validation and

compute the root mean squared error of the predictions on the unlabeled data. We repeat this 10

times and report the mean and standard deviation. We also report OPT, the root mean squared

error of selecting the optimal parameters in the search space.

Model Selection

For model selection we do a grid search in the parameter space for the best Leave-One-Out Cross

Validation rms error on the unlabeled data.

We also report the rms error for the optimal parameters within the range.

For LLSR we search overγ ∈ { 1
100

, 1
10

, 1, 10, 100}, h ∈ { 1
100

, 1
10

, 1, 10, 100}

For LL-Reg we search overλ ∈ { 1
100

, 1
10

, 1, 10, 100}, h ∈ { 1
100

, 1
10

, 1, 10, 100}

For WKR we search overh ∈ { 1
100

, 1
10

, 1, 10, 100}

For LLR we search overh ∈ { 1
100

, 1
10

, 1, 10, 100}

68

Results

Dataset n d nl LLSR LLSR-OPT WKR WKR-OPT

Carbon 58 1 10 27±25 19±11 70±36 37±11

Alligators 25 1 10 288±176 209±162 336±210 324±211

Smoke 25 1 10 82±13 79±13 83±19 80±15

Autompg 392 7 100 50±2 49±1 57±3 57±3

Table 4.2:Performance of LLSR and WKR on some benchmark datasets

Dataset n d nl LLR LLR-OPT LL-Reg LL-Reg-OPT

Carbon 58 1 10 57±16 54±10 162±199 74±22

Alligators 25 1 10 207±140 207±140 289±222 248±157

Smoke 25 1 10 82±12 80±13 82±14 70±6

Autompg 392 7 100 53±3 52±3 53±4 51±2

Table 4.3:Performance of LLR and LL-Reg on some benchmark datasets

4.6 Discussion

From these results combined with the synthetic experiments, LLSR seems to be most helpful on

one dimensional datasets which have a “smooth” curve. The Carbon dataset happens to be of

this type and LLSR performs particularly well on this dataset. On the other datasets performs

competitively but not decisively better than the other algorithms. This is not surprising give the

motivation behind the design of LLSR which was to smooth out the predictions, hence LLSR is

likely to be more successful on datasets which meet this assumption.

69

4.7 Conclusion

We introduce Local Linear Semi-supervised Regression and show that it can be effective in taking

advantage of unlabeled data. In particular, LLSR seems to perform somewhat better than WKR

and LLR at fitting “peaks” and “valleys” where there are gaps in the labeled data. In general if

the gaps between labeled data are not too big and the true function is “smooth” LLSR seems to

achieve a lower true Mean Squared Error than the purely supervised algorithms.

70

Chapter 5

Learning by Combining Native Features

with Similarity Functions

In this report we describe a new approach to learning with labeled and unlabeled data using

similarity functions together with native features, inspired by recent theoretical work [2, 4]. In the

rest of this report we will describe some motivations for learning with similarity functions, give

some background information, describe our algorithms and present some experimental results on

both synthetic and real examples. We give a method that given any pairwise similarity function

(which need not be symmetric or positive definite as with kernels) can use unlabeled data to

augment a given set of features in a way that allows a learning algorithm to exploit the best

aspects of both. We also give a new, useful method for constructing a similarity function from

unlabeled data.

5.1 Motivation

Two main motivations for learning with similarity functions are (1) Generalizing and Under-

standing Kernels and (2) Combining Graph Based or Nearest Neighbor Style algorithms with

Feature Based Learning algorithms. We will expand on both of these below.

71

5.1.1 Generalizing and Understanding Kernels

Since the introduction of Support Vector Machines [62, 64, 65] in the mid 90s, kernel methods

have become extremely popular in the machine learning community. This popularity is largely

due to the so-called “kernel trick” which allows kernelized algorithms to operate in high dimen-

sional spaces without incurring a corresponding computational cost. The ideas is that if data is

not linearly separable in the original feature space kernel methods may be able to find a linear

separator in some high dimensional space without too much extra computational cost. And fur-

thermore if data is separable by a large margin then we can hope generalize well from not too

many labeled examples.

However, in spite of the rich theory and practical applications of kernel methods, there are a

few unsatisfactory aspects. In machine learning applications the intuition behind a kernel is that

they serve as a measure of similarity between two objects. However, the theory of kernel meth-

ods talks about finding linear separators in high dimensional spaces that we may not even be able

to calculate much less understand. This disconnect between the theory and practical applications

makes it difficult to gain theoretical guidance in choosing good kernels for particular problems.

Secondly and perhaps more importantly, kernels are required to be symmetric and positive-

semidefinite. The second condition in particular is not satisfied by many practically useful sim-

ilarity functions(for example the Smith-Waterman score in computational biology [76]). In fact,

in Section5.3.1we give a very natural and useful similarity function that does not satisfy either

condition. Hence if these similarity functions are to be used with kernel methods, they have to

be coerced into a “legal” kernel. Such coercion may substantially reduce the quality of the simi-

larity functions.

From such motivations, Balcan and Blum [2, 4] recently initiated the study of general simi-

72

larity functions. Their theory gives a definition of a similarity function that has standard kernels

as a special case and they show how it is possible to learn a linear separator with a similarity

function and give similar guarantees to those that are obtained with kernel methods.

One interesting aspect of their work is that they give a prominent role to unlabeled data. In

particular unlabeled data is used in defining the mapping that projects the data into a linearly sep-

arable space. This makes their technique very practical since unlabeled data is usually available

in greater quantities than labeled data in most applications.

The work of Balcan and Blum provides a solid theoretical foundation, but its practical im-

plications have not yet been fully explored. Practical algorithms for learning with similarity

functions could be useful in a wide variety of areas, two prominent examples being bioinformat-

ics and text learning. Considerable effort has been expended in developing specialized kernels

for these domains. But in both cases, it is easy to define similarity functions that are not legal

kernels but match well with our desired notions of similarity (for an example in bioinformatics

see Vert et al. [76]).

Hence, we propose to pursue a practical study of learning with similarity functions. In par-

ticular we are interested in understanding the conditions under which similarity functions can be

practically useful and developing techniques to get the best performance when using similarity

functions.

5.1.2 Combining Graph Based and Feature Based learning Algorithms.

Feature-based and Graph-based algorithms form two of the dominant paradigms in machine

learning. Feature-based algorithms such as Decision Trees[56], Logistic Regression[51], Winnow[53],

73

and others view their input as feature vectors and use feature values directly to make decisions.

Graph-based algorithms, such as the semi-supervised algorithms of [6, 12, 14, 44, 63, 84, 85],

instead view examples as nodes in a graph for which the only information available about

them is their pairwise relationship (edge weights) to other nodes in the graph. Kernel methods

[62, 64, 65, 66] can also be viewed in a sense as graph-based approaches, thinking ofK(x, x′) as

the weight of edge(x, x′).

Both types of approaches have been highly successful, though they each have their own

strengths and weaknesses. Feature-based methods perform particularly well on text data, for

instance, where individual keywords or phrases can be highly predictive. Graph-based methods

perform particularly well in semi-supervised or transductive settings, where one can use simi-

larities to unlabeled or future data, and reasoning based on transitivity (two examples similar to

the same cluster of points, or making a group decision based on mutual relationships) in order to

aid in prediction. However, they each have weaknesses as well: graph-based (and kernel-based)

methods encode all their information about examples into the pairwise relationships between ex-

amples, and so they lose other useful information that may be present in features. Feature-based

methods have trouble using the kinds of “transitive” reasoning made possible by graph-based

approaches.

It turns out again, that similarity functions provide a possible method for combining these two

disparate approaches. This idea is also motivated by the same work of Balcan and Blum[2, 4] that

we have referred to previously. They show that given a pairwise measure of similarityK(x, x′)

between data objects, one can essentially construct features in a straightforward way by collect-

ing a setx1, . . . , xn of random unlabeled examples and then usingK(x, xi) as theith feature of

examplex. They show that ifK was a large-margin kernel function then with high probability

the data will be approximately linearly separable in the new space. So our approach to combining

74

graph based and feature based methods is to keep the original features and augment them (rather

than replace them) with the new features obtained by the Balcan-Blum approach.

5.2 Background

We now give background information on algorithms that rely on finding large margin linear

separators, kernels and the kernel trick and the Balcan-Blum approach to learning with similarity

functions.

5.2.1 Linear Separators and Large Margins

Machine learning algorithms based on linear separators attempt to find a hyperplane that sepa-

rates the positive from the negative examples; i.e if examplex has labely ∈ {+1,−1} we want

to find a vectorw such thaty(w · x) > 0.

Linear separators are currently among the most popular machine learning algorithms, both

among practitioners and researchers. They have a rich theory and have been shown to be effective

in many applications. Examples of linear separator algorithms are Perceptron[56], Winnow[53]

and SVM [62, 64, 65]

An important concept in linear separator algorithms is the notion of “margin.” Margin is

considered a property of the dataset and (roughly speaking) represents the “gap” between the

positive and negative examples. Theoretical analysis has shown that the performance of a linear

separator algorithm is directly proportional to the size of the margin (the larger the margin the

better the performance). The following theorem is just one example of this kind of result:

75

Theorem In order to achieve errorε with probability at least1 − δ, it suffices for a linear

separator algorithm to find a separator of margin at leastγ on a dataset of size

O(
1

ε
[
1

γ2
log2 (

1

γε
) + log (

1

δ
)]).

Here, the margin is defined as the minimum distance of examples to the separating hyperplane

if all examples are normalized to have length at most 1. This bound makes clear the dependence

onγ, i.e as the margin gets larger, substantially fewer examples are needed [15, 66] .

5.2.2 The Kernel Trick

A kernel is a functionK(x, y) which satisfies certain conditions:

1. continuous

2. symmetric

3. positive semi-definite

If these conditions are satisfied then Mercer’s theorem [55] states thatK(x, y) can be ex-

pressed as a dot product in a high-dimensional space i.e there exists a functionΦ(x) such that

K(x, y) = Φ(x) · Φ(y)

Hence the functionΦ(x) is a mapping from the original space into a new possibly much

higher dimensional space. The “kernel trick” is essentially the fact that we can get the results

of this high dimensional inner product without having to explicitly construct the mappingΦ(x).

The dimension of the space mapped to byΦ might be huge, but the hope is the margin will be

large so we can apply the theorem connecting margins and learnability.

76

5.2.3 Kernels and the Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma[29] states that a set ofn points in a high dimensional Eu-

clidean space can be mapped down into anO(log n/ε2) dimensional Euclidean space such that

the distance between any two points changes by only a factor of(1± ε).

Arriaga and Vempala [1] use the Johnson-Lindenstrauss Lemma to show that a random linear

projection from theφ-space to a space of dimensioñO(1/γ2) approximately preserves linear

separability. Balcan, Blum and Vempala [4] then give an explicit algorithm for performing such

a mapping. An important point to note is that their algorithm requires access to the distribution

where the examples come from in the form of unlabeled data. The upshot is that instead of

having the linear separator live in some possibly infinite dimensional space, we can project it

into a space whose dimension depends on the margin in the high-dimensional space and where

the data is linearly separable if it was linearly separable in the high dimensional space.

5.2.4 A Theory of Learning With Similarity Functions

The mapping discussed in the previous section depended onK(x, y) being a legal kernel func-

tion. In [2] Balcan and Blum show that it is possible to use a similarity function which is not

necessarily a legal kernel in a similar way to explicitly map the data into a new space. This

mapping also makes use of unlabeled data.

Furthermore, similar guarantees hold: If the data was separable by the similarity function

with a certain margin then it will be linearly separable in the new space. The implication is that

any valid similarity function can be used to map the data into a new space and then a standard

linear separator algorithm can be used for learning.

77

5.2.5 Winnow

Now we make a slight digression to describe the algorithm that we will be using. Winnow is

an online learning algorithm proposed by Nick Littlestone [53]. Winnow starts out with a set of

weights and updates them as it sees examples one by one using the following update procedure:

Given a set of weightsw = {w1, w2, w3, . . . wd} ∈ Rd and an example{x = {x1, x2, x3, . . . xd} ∈
{0, 1}d}

1. If (w · x ≥ d) then setypred = 1 else setypred = 0. Outputypred as our prediction.

2. Observe the true labely ∈ {0, 1} If ypred = y then our prediction is correct and we do

nothing. Else if we predicted negative instead of positive, we multiplywi by (1 + εxi) for

all i ; if we predicted positive instead of negative then we multiplywi by (1− εxi) for all i.

An important point to note is that we only update our weights when we make a mistake.

There are two main reasons why Winnow is particularly well suited to our task.

1. Our approach is based on augmenting the features of examples with a plethora of extra

features. Winnow is known to be particularly effective in dealing with many irrelevant

features. In particular, suppose the data has a linear separator ofL1 marginγ. That is,

for some weightsw∗ = (w∗
1, . . . , w

∗
d) with

∑ |w∗
i | = 1 and some thresholdt, all positive

examples satisfyw∗ · x ≥ t and all negative examples satisfyw∗ · x ≤ t − γ. Then the

number of mistakes the Winnow algorithm makes is bounded byO(1
γ2 log d). For example,

if the data is consistent with a majority vote of justr of thed features, wherer ¿ d, then

the number of mistakes is justO(r2 log d) [53].

2. Experience indicates that unlabeled data becomes particularly useful in large quantities. In

order to deal with large quantities of data we will need fast algorithms, Winnow is a very

78

fast algorithm and does not require a large amount of memory.

5.3 Learning with Similarity Functions

SupposeK(x, y) is our similarity function and the examples have dimensionk

We will create the mappingΦ(x) : Rk → Rk+d in the following manner:

1. Drawd examples{x1, x2, . . . , xd} uniformly at random from the dataset.

2. For each examplex compute the mappingx → {x,K(x, x1),K(x, x2), . . . ,K(x, xd)}

Although the mapping is very simple, in the next section we will see that it can be quite

effective in practice.

5.3.1 Choosing a Good Similarity Function

The Näıve approach

We consider as a valid similarity function any functionK(x, y) that takes two inputs in the ap-

propriate domain and outputs a number between−1 and1. This very general criteria obviously

does not constrain us very much in choosing a similarity function.

But we would also intuitively like our similarity function to assign a higher similarity to pairs

of examples that are more ”similar.” In the case where we have positive and negative examples

it would seem to be a good idea if our function assigned a higher average similarity to examples

that have the same label. We can formalize these intuitive ideas and obtain rigorous criteria for

”good” similarity functions [2].

79

One natural way to construct a similarity function is by modifying an appropriate distance

metric. A distance metric takes pairs of objects and assigns them a non-negative real number. If

we have a distance metricD(x, y) we can define a similarity function,K(x, y) as

K(x, y) =
1

D(x, y) + 1

Then ifx andy are close according to distance metricD they will also have a high similarity

score. So if we have a suitable distance function on a certain domain the similarity function

constructed in this manner can be directly plugged into the Balcan-Blum algorithm.

Scaling issues

It turns out that the approach outlined previously has scaling problems, for example with the

number of dimensions. If the number of dimensions is large then the similarity derived from the

Euclidian distance between any two objects in a set may end up being close to zero (even if the

individual features are boolean). This does not lead to a good performance.

Fortunately there is a straightforward way to fix this issue:

Ranked Similarity

We now describe an alternative way of converting a distance function to a similarity function that

addresses the above problem. We first describe it in the transductive case where all data is given

up front, and then in the inductive case where we need to be able to assign similarity scores to

new pairs of examples as well.

Transductive Classification

1. Compute the similarity as before.

80

2. For each examplex find the example that it is most similar to and assign it a similarity

score of 1, find the next most similar example and assign it a similarity score of(1− 2
n−1

),

find the next one and assign it a score of(1 − 2
n−1

· 2) and so on until the least similar

example has similarity score(1− 2
n−1

· (n− 1)). At the end, the most similar example will

have a similarity of+1, the least similar example will have a similarity of−1, with values

spread linearly in between.

This procedure (we’ll call it ”ranked similarity”) addresses many of the scaling issues with

the näıve approach as each example will have a ”full range” of similarities associated with it and

experimentally it leads to much to better performance.

Inductive Classification

We can easily extend the above procedure to classifying new unseen examples by using the

following similarity function:-

KS(x, y) = 1− 2Probz∼S[d(x, z) < d(x, y)]

whereS is the set of all the labeled and unlabeled examples.

So the similarity of a new example is found by interpolating between the existing examples.

Properties of the ranked similarity

One of the interesting things about this approach is that similarity is no longersymmetric, as the

similarity is now defined in a way analogous to nearest neighbor. In particular, you may not be

the most similar example for the example that is most similar to you.

This is notable because this is a major difference with the standard definition of a kernel (as

a non-symmetric function is definitely not symmetric positive definite) and provides an example

81

where the similarity function approach gives more flexibility than kernel methods.

Comparing Similarity Functions

One way of comparing how well a similarity function is suited to a particular dataset is by using

the notion of a strongly(ε, γ)-good similarity function as defined by Balcan and Blum [2]. We

say thatK is a strongly(ε, γ)- good similarity function for a learning problemP if at least a(1−ε)

probability mass of examplesx satisfyEx′∼P [K(x′, x)|l(x′) = l(x)] ≥ Ex′∼P [K(x′, x)|l(x′) 6=
l(x)] + γ (i.e most examples are more similar to examples that have the same label).

We can easily compute the marginγ for each example in the dataset and then plot the exam-

ples by decreasing margin. If the margin is large for most examples, this is an indication that the

similarity function may perform well on this particular dataset.

0 500 1000 1500
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5.1:The Näıve similarity function on the Digits dataset

82

0 500 1000 1500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Naive Similarity
Ranked Similarity

Figure 5.2:The ranked similarity and the naı̈ve similarity plotted on the same scale

Comparing the näıve similarity function and the ranked similarity function on the Digits

dataset we can see that the ranked similarity function leads to a much higher margin on most of

the examples and experimentally we found that this also leads to a better performance.

5.4 Experimental Results on Synthetic Datasets

To gain a better understanding of the algorithm we first performed some experiments on synthetic

datasets.

5.4.1 Synthetic Dataset:Circle

The first dataset we consider is a circle as shown in Figure5.3Clearly this dataset is not linearly

separable. The interesting question is whether we can use our mapping to map it into a linearly

separable space.

83

We trained it on the original features and on the induced features. This experiment had

1000 examples and we averaged over 100 runs. Error bars correspond to 1 standard deviation.

The results are given in figure5.4. The similarity function that we used in this experiment is

K(x, y) = (1/(1 + ||x− y||)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.3:The Circle Dataset

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110

Number of Labelled Examples

A
cc

ur
ac

y

Original Features
Similarity Features

Figure 5.4:Performance on the circle dataset

84

5.4.2 Synthetic Dataset:Blobs and Line

We expect the original features to do well if the features are linearly separable and we expect

the similarity induced features to do particularly well if the data is clustered in well-separated

“blobs”. One interesting question is what happens if data satisfies neither of these conditions

overall, but has some portions satisfying one and some portions satisfying the other.

We generated this dataset in the following way:

1. We selectedk points to be the centers of our blobs and randomly assign them labels in

−1, +1.

2. We then repeat the following processn times:

a We flip a coin.

b If it comes up heads then we setx to random boolean vector of dimensiond andy = x1

(the first coordinate ofx).

c If it comes up tails then we pick one of thek centers and flipr bits and setx equal to the

result and sety equal to the label of the center.

The idea is that the data will be of two types, 50% is completely linearly separable in the

original features and 50% is composed of several blobs. Neither one of the feature spaces by

themselves should be able to represent the combination well, but the features combined should

be able to work well.

As before we trained the algorithm on the original features and on the induced features.

But this time we also combined the original and induced features and trained on that. This

experiment had 1000 examples and we averaged over 100 runs. Error bars correspond to 1

standard deviation. The results are seen in figure5.5. We did the experiment using both the

näıve and ranked similarity functions and got similar results, and in figure5.5 we show the

results usingK(x, y) = (1/(1 + ||x− y||).

85

Figure 5.5:Accuracy vs training data on the Blobs and Line dataset

As expected both the original features and the similarity features get about 75% accuracy

(getting almost all the examples of the appropriate type correct and about half of the examples

of the other type correct) but the combined features are almost perfect in their classification

accuracy. In particular this example shows that in at least some cases there may be advantages

to augmenting the original features with additional features as opposed to just using the new

features by themselves.

86

5.5 Experimental Results on Real Datasets

To test the applicability of this method we ran experiments on UCI datasets. Comparison with

Winnow, SVM and NN (1 Nearest Neighbor) is included.

5.5.1 Experimental Design

For Winnow, NN, Sim and Sim+Winnow each result is the average of 10 trials. On each trial

we selected 100 training examples at random and used the rest of the examples as test data. We

selected 200 random examples as landmarks on each trial.

5.5.2 Winnow

We implemented Balanced Winnow with update rule (1 ± e−εXi). ε was set to.5 and we ran

through the data5 times on each trial (cuttingε by half on each pass).

5.5.3 Boolean Features

Experience suggests that Winnow works better with boolean features, so we preprocessed all the

datasets to make the features boolean. We did this by computing a median for each column and

setting all features less than or equal to the median to0 and all features greater than or equal to

the median to1.

5.5.4 Booleanize Similarity Function

We also wanted the booleanize the similarity function features. We did this by selecting for each

example the10% most similar examples and setting their similarity to 1 and setting the rest to0.

5.5.5 SVM

For the SVM experiments we used Thorsten JoachimsSV Mlight [46] with the standard settings.

87

5.5.6 NN

We assign each unlabeled example the same label as that of the closest example in Euclidean

distance.

In Table5.1 below, we present the results of these algorithms on a range of UCI datasets.

In this table,n is the total number of data points,d is the dimension of the space, andnl is the

number of labeled examples.We highlight all performances within 5% of the best for each dataset

in bold.

5.5.7 Results

In Table5.1below, we present the results of these algorithms on a range of UCI datasets. In this

table,n is the total number of data points,d is the dimension of the space, andnl is the number of

labeled examples.We highlight all performances within 5% of the best for each dataset in bold.

Dataset n d nl Winnow SVM NN SIM Winnow+SIM

Congress 435 16 100 93.79 94.93 90.8 90.90 92.24

Webmaster 582 1406 100 81.97 71.78 72.5 69.90 81.20

Credit 653 46 100 78.50 55.52 61.5 59.10 77.36

Wisc 683 89 100 95.03 94.51 95.3 93.65 94.49

Digit1 1500 241 100 73.26 88.79 94.0 94.21 91.31

USPS 1500 241 100 71.85 74.21 92.0 86.72 88.57

Table 5.1:Performance of similarity functions compared with standard algorithms on some real

datasets

We can observe that on certain types of datasets such as the Webmaster dataset (a dataset of

documents) a linear separator like Winnow performs particularly well, while standard Nearest

Neighbor does not perform as well. But on other datasets such as USPS(a dataset comprised

of images) Nearest Neighbor performs much better than any linear separator algorithm. The

88

important thing to note is that the combination of Winnow plus the similarity features always

manages to perform almost as well as the best available algorithm.

5.6 Concatenating Two Datasets

In the section 5.4 we looked at some purely synthetic datasets. An interesting idea is to consider

a ”hybrid” dataset obtained by combining two distinct real datasets. This models a dataset which

is composed of two disjoint subsets that are part of a larger category.

We ran an experiment combining the Credit dataset and the Digit1 dataset. We combined the

two datasets by padding each example with zeros so they both ended up with the same number

of dimensions as seen in the table below:

Credit (653× 46) Padding (653× 241)

Padding (653× 46) Digit1 (653× 241)

Table 5.2:Structure of the hybrid dataset

We ran some experiments on the combined dataset using the same settings as outlined in the

previous section:

Dataset n d nl Winnow SVM NN SIM Winnow+SIM

Credit+Digit1 1306 287 100 72.41 51.74 75.46 74.25 83.95

Table 5.3:Performance of similarity functions compared with standard algorithms on a hybrid

dataset

5.7 Discussion

For the synthetic datasets (Circle and Blobs and Lines) the similarity features are clearly useful

and have superior performance to the original features. For the UCI datasets we observe that the

89

combination of the similarity features with the original features does significantly better than any

other approach on its own. In particular it is never significantly worse than the best algorithm on

any particular dataset. We observe the same result on the ”hybrid” dataset where the combination

of features does significantly better than either on its own.

5.8 Conclusion

In this report we explored techniques for learning using general similarity functions. We experi-

mented with several ideas that have not previously appeared in the literature:-

1. Investigating the effectiveness of the Balcan-Blum approach to learning with similarity

functions on real datasets.

2. Combining Graph Based and Feature Based learning Algorithms.

3. Using unlabeled data to help construct a similarity function.

From our results we can conclude that generic similarity functions do have a lot of potential

for practical applications. They are more general than kernel functions and can be more easily

understood. In addition by combining feature based and graph based methods we can often get

the ”best of both worlds.”

5.9 Future Work

One interesting direction would be to investigate designing similarity functions for specific do-

mains. The definition of a similarity function is so flexible that it allows great freedom to exper-

iment and design similarity functions that are specifically suited for particular domains. This is

not as easy to do for kernel functions which have stricter requirements.

Another interesting direction would be to model some realistic theoretical guarantees relating

90

the quality of a similarity function to the performance of the algorithm.

91

92

Bibliography

[1] Rosa I. Arriaga and Santosh Vempala. Algorithmic theories of learning. InFoundations of
Computer Science, 1999.5.2.3

[2] M.-F. Balcan and A. Blum. On a theory of learning with similarity functions.ICML06,
23rd International Conference on Machine Learning, 2006. 1.2.3, 2.3, 5, 5.1.1, 5.1.2,
5.2.4, 5.3.1, 5.3.1

[3] M.-F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins and low-
dimensional mappings.ALT04, 15th International Conference on Algorithmic Learning
Theory, pages 194—205.1.2.1

[4] M.F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins, and
low-dimensional mappings.Machine Learning, 65(1):79–94, 2006.5, 5.1.1, 5.1.2, 5.2.3

[5] R. Bekkerman, A. McCallum, and G. Huang. categorization of email into folders: Bench-
mark experiments on enron and sri corpora,. Technical Report IR-418, University of Mas-
sachusetts,, 2004.2.3

[6] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples.Journal of Machine Learning
Research, 7:2399–2434, 2006.2.1.2, 5.1.2

[7] G.M. Benedek and A. Itai. Learnability with respect to a fixed distribution.Theoretical
Computer Science, 86:377—389, 1991.3.4.2

[8] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. InAdvances in
Neural Information Processing Systems 10, pages 368—374. MIT Press, 1998.

[9] T. De Bie and N. Cristianini. Convex methods for transduction. InAdvances in Neural
Information Processing Systems 16, pages 73—80. MIT Press, 2004.2.1.2

[10] T. De Bie and N. Cristianini. Convex transduction with the normalized cut. Technical
Report 04-128, ESAT-SISTA, 2004.2.1.2

[11] A. Blum. Empirical support for winnow and weighted majority algorithms: results on a
calendar scheduling domain.ICML, 1995.2.3

[12] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts.
In Proceedings of the 18th International Conference on Machine Learning, pages 19—26.
Morgan Kaufmann, 2001.(document), 1.1, 1.2.1, 1.2.2, 2.1.2, 2.1.2, 3.1, 3.2, 3.5, 4.1.1,
5.1.2

[13] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In

93

Proceedings of the 1998 Conference on Computational Learning Theory, July 1998.1.2.1

[14] A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using ran-
domized mincuts.ICML04, 21st International Conference on Machine Learning, 2004.
2.1.2, 5.1.2

[15] Avrim Blum. Notes on machine learning theory: Margin bounds and luckiness functions.
http://www.cs.cmu.edu/ avrim/ML08/lect0218.txt, 2008.5.2.1

[16] Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient ap-
proximations. InIEEE Computer Vision and Pattern Recognition Conference, June 1998.
2.1.2

[17] U. Brefeld, T. Gaertner, T. Scheffer, and S. Wrobel. Efficient co-regularized least squares
regression.ICML06, 23rd International Conference on Machine Learning, 2006. 1.2.2,
2.2.3, 4.1.1

[18] A. Broder, R. Krauthgamer, and M. Mitzenmacher. Improved classification via connectivity
information. InSymposium on Discrete Algorithms, January 2000.

[19] J. I. Brown, Carl A. Hickman, Alan D. Sokal, and David G. Wagner. Chromatic roots of
generalized theta graphs.J. Combinatorial Theory, Series B, 83:272—297, 2001.3.3

[20] Vitor R. Carvalho and William W. Cohen. Notes on single-pass online learning. Technical
Report CMU-LTI-06-002, Carnegie Mellon University, 2006.2.3

[21] Vitor R. Carvalho and William W. Cohen. Single-pass online learning: Performance, vot-
ing schemes and online feature selection. InProceedings of International Conference on
Knowledge Discovery and Data Mining (KDD 2006). 2.3

[22] V. Castelli and T.M. Cover. The relative value of labeled and unlabeled samples in pattern-
recognition with an unknown mixing parameter.IEEE Transactions on Information Theory,
42(6):2102—2117, November 1996.1.2.1, 2.1.1

[23] C.Cortes and M.Mohri. On transductive regression. InAdvances in Neural Information
Processing Systems 18. MIT Press, 2006.1.2.2, 2.2.1, 4.1.1

[24] S. Chakrabarty, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks.
In Proceedings of ACM SIGMOD International Conference on Management of Data, 1998.

[25] O. Chapelle, B. Scḧolkopf, and A. Zien, editors.Semi-Supervised Learning. MIT Press,
Cambridge, MA, 2006. URLhttp://www.kyb.tuebingen.mpg.de/ssl-book .
2, 4.1

[26] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. MIT Press, 1990.
2.1.2

[27] F.G. Cozman and I. Cohen. Unlabeled data can degrade classification performance of gen-
erative classifiers. InProceedings of the Fifteenth Florida Artificial Intelligence Research
Society Conference, pages 327—331, 2002.2.1.1

[28] I. Dagan, Y. Karov, and D. Roth. Mistake driven learning in text categorization. InEMNLP,
pages 55—63, 1997.2.3

[29] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of the johnson-lindenstrauss

94

http://www.kyb.tuebingen.mpg.de/ssl-book�

lemma. Technical report, 1999.5.2.3

[30] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm.Journal of the Royal Statistical Society, Series B, 39(1):1—38, 1977.
1.2.1, 2.1.1

[31] Luc Devroye, Laszlo Gÿorfi, and Gabor Lugosi. A Probabilistic Theory of Pattern
Recognition (Stochastic Modelling and Applied Probability). Springer, 1997. ISBN
0387946187. URLhttp://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20 \&path=ASIN/0387946187 . 1.2.1

[32] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley-Interscience Publi-
cation, 2000.1.2.1

[33] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum. On the relative complexity of ap-
proximate counting problems. InProceedings of APPROX’00, Lecture Notes in Computer
Science 1913, pages 108—119, 2000.3.2

[34] Maria florina Balcan and Avrim Blum. A pac-style model for learning from labeled and un-
labeled data. InIn Proceedings of the 18th Annual Conference on Computational Learning
Theory (COLT, pages 111–126. COLT, 2005.

[35] Y. Freund, Y. Mansour, and R.E. Schapire. Generalization bounds for averaged classifiers
(how to be a Bayesian without believing). To appear in Annals of Statistics. Preliminary
version appeared in Proceedings of the 8th International Workshop on Artificial Intelligence
and Statistics, 2001, 2003.3.4.2

[36] Evgeniy Gabrilovich and Shaul Markovitch. Feature generation for text categorization
using world knowledge. InProceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 1048—1053, Edinburgh, Scotand, August 2005. URLhttp:
//www.cs.technion.ac.il/ ∼gabr/papers/fg-tc-ijcai05.pdf .

[37] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary
images.Journal of the Royal Statistical Society, Series B, 51(2):271—279, 1989.3.2

[38] Steve Hanneke. An analysis of graph cut size for transductive learning. Inthe 23rd Inter-
national Conference on Machine Learning, 2006.3.4.2

[39] T. Hastie, R. Tibshirani, and J. H. Friedman.The Elements of Statistical Learning. Springer,
2001. ISBN 0387952845. URLhttp://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20 \&path=ASIN/0387952845 . 1.2.1

[40] Thomas Hofmann. Text categorization with labeled and unlabeled data: A generative model
approach. InNIPS 99 Workshop on Using Unlabeled Data for Supervised Learning, 1999.

[41] J.J. Hull. A database for handwritten text recognition research.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16:550—554, 1994.1.1, 3.6.1

[42] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising model.
SIAM Journal on Computing, 22:1087—1116, 1993.3.2

[43] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: An approach to ap-
proximate counting and integration. In D.S. Hochbaum, editor,Approximation algorithms
for NP-hard problems. PWS Publishing, Boston, 1996.

95

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387946187�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387946187�
http://www.cs.technion.ac.il/~gabr/papers/fg-tc-ijcai05.pdf�
http://www.cs.technion.ac.il/~gabr/papers/fg-tc-ijcai05.pdf�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387952845�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387952845�

[44] T. Joachims. Transductive learning via spectral graph partitioning. InProceedings of the
20th International Conference on Machine Learning (ICML), pages 290—297, 2003.2.1.2,
2.1.2, 3.1, 3.4.2, 3.6, 5.1.2

[45] T. Joachims. Transductive inference for text classification using support vector machines.
In Proceedings of the16th International Conference on Machine Learning (ICML), 1999.
1.1, 2.1.2

[46] Thorsten Joachims.Making large-Scale SVM Learning Practical. MIT Press, 1999.5.5.5

[47] David Karger and Clifford Stein. A new approach to the minimum cut problem.Journal of
the ACM, 43(4), 1996.

[48] J. Kleinberg. Detecting a network failure. InProc. 41st IEEE Symposium on Foundations
of Computer Science, pages 231—239, 2000.3.4.1

[49] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pair-
wise relationships: Metric labeling and markov random fields. In40th Annual Symposium
on Foundations of Computer Science, 2000.

[50] J. Kleinberg, M. Sandler, and A. Slivkins. Network failure detection and graph connectivity.
In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, pages 76—85, 2004.3.4.1

[51] Paul Komarek and Andrew Moore. Making logistic regression a core data mining tool: A
practical investigation of accuracy, speed, and simplicity. Technical Report CMU-RI-TR-
05-27, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 2005.5.1.2

[52] John Langford and John Shawe-Taylor. PAC-bayes and margins. InNeural Information
Processing Systems, 2002.3.4.2

[53] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm.Machine Learning, 1988.2.3, 5.1.2, 5.2.1, 5.2.5, 1

[54] D. McAllester. PAC-bayesian stochastic model selection.Machine Learning, 51(1):5—21,
2003.3.1, 3.4.2

[55] Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s theorem, feature maps, and
smoothing. InCOLT, pages 154–168, 2006.5.2.2

[56] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.1.2.1, 5.1.2, 5.2.1

[57] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from labeled
and unlabeled documents. InProceedings of the Fifteenth National Conference on Artificial
Intelligence. AAAI Press, 1998.2.1.1

[58] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380—393, April 1997.

[59] Joel Ratsaby and Santosh S. Venkatesh. Learning from a mixture of labeled and unlabeled
examples with parametric side information. InProceedings of the 8th Annual Conference
on Computational Learning Theory, pages 412—417. ACM Press, New York, NY, 1995.
1.2.1

[60] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290:2323—2326, 2000.

96

[61] Sebastien Roy and Ingemar J. Cox. A maximum-flow formulation of the n-camera stereo
correspondence problem. InInternational Conference on Computer Vision (ICCV’98),
pages 492—499, January 1998.

[62] Bernhard Scholkopf and Alexander J. Smola.Learning with Kernels. MIT Press, 2002.
1.2.3, 5.1.1, 5.1.2, 5.2.1

[63] Bernhard Scholkopf and Mingrui Wu. Transductive classification vis local learning regu-
larization. InAISTATS, 2007.4.5.7, 5.1.2

[64] John Shawe-Taylor and Nello Cristianini.Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004. ISBN 0521813972.1.2.3, 5.1.1, 5.1.2, 5.2.1

[65] John Shawe-Taylor and Nello Cristianini.An introduction to support Vector Machines:
and other kernel-based learning methods. Cambridge University Press, 1999.1.2.3, 5.1.1,
5.1.2, 5.2.1

[66] John Shawe-taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Struc-
tural risk minimization over data-dependent hierarchies.IEEE transactions on Information
Theory, 44:1926–1940, 1998.5.1.2, 5.2.1

[67] J. Shi and J. Malik. Normalized cuts and image segmentation. InProc. IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 731—737, 1997.

[68] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized approach to semi-supervised
learning with multiple views.Proc. of the 22nd ICML Workshop on Learning with Multiple
Views, 2005.1.2.1, 1.2.2, 2.2.3, 4.1.1

[69] Dan Snow, Paul Viola, and Ramin Zabih. Exact voxel occupancy with graph cuts. InIEEE
Conference on Computer Vision and Pattern Recognition, June 2000.

[70] Nathan Srebro. personal communication, 2007.2.3

[71] Josh Tenenbaum, Vin de Silva, and John Langford. A global geometric framework for
nonlinear dimensionality reduction.Science, 290, 2000.

[72] S. Thrun, T. Mitchell, and J. Cheng. The MONK’s problems. a performance comparison of
different learning algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon Uni-
versity, December 1991.

[73] UCI. Repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 2000.

[74] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.
2.1.2

[75] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.2.1.2

[76] J.-P Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. In
B. Scholkopf, K. Tsuda, and J.-P. Vert, editors,Kernel methods in Computational Biology,
pages 131—154. MIT Press, Boston, 2004.1.2.3, 2.3, 5.1.1

[77] Larry Wasserman. All of Statistics : A Concise Course in Statistical Inference
(Springer Texts in Statistics). Springer, 2004. ISBN 0387402721. URLhttp:
//www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20 \

97

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387402721�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387402721�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387402721�

&path=ASIN/0387402721 . 1.2.1, 1.2.2, 4.1.1

[78] Larry Wasserman.All of Nonparametric Statistics (Springer Texts in Statistics). Springer,
2007. ISBN 0387251456. URLhttp://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20 \&path=ASIN/0387251456 . 1.2.1,
1.2.2, 4.1.1

[79] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and its
application to image segmentation.IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 15:1101—1113, 1993.

[80] Tong Zhang and Frank J. Oles. A probability analysis on the value of unlabeled data for
classification problems. InProc. 17th International Conf. on Machine Learning, pages
1191–1198, 2000.1.2.1

[81] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Scholkopf. Learning with local and
global consistency. InAdvances in Neural Information Processing Systems 16. MIT Press,
2004.4.5.7

[82] Z.-H. Zhou and M. Li. Semi-supervised regression with co-training.International Join
Conference on Artificial Intelligence(IJCAI), 2005.1.2.2, 2.2.2, 4.1.1

[83] X. Zhu. Semi-supervised learning literature survey. Technical Re-
port 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
http://www.cs.wisc.edu/∼jerryzhu/pub/sslsurvey.pdf.2

[84] X. Zhu. Semi-supervised learning with graphs. 2005. Doctoral Dissertation.2, 5.1.2

[85] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields
and harmonic functions. InProceedings of the 20th International Conference on Machine
Learning, pages 912—919, 2003.1.1, 1.2.1, 1.2.2, 2.1.2, 2.1.2, 2.1.2, 3.1, 3.4.2, 3.6, 3.6.1,
3.7, 4.1.1, 4.1.2, 2, 4.5.7, 5.1.2

98

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387251456�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387251456�

