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Abstract

In this thesis | present algorithms for the analysis of microarray expressio
data from multiple species. These algorithms are used to identify core genes in
two biological systems, the cell cycle and the immune response.

With data generated from high throughput biological experiments, it is now
becoming possible to study organisms at the systems level. One of the fisst que
tions facing researchers is the identification of the core components ofjlmalo
subsystems within an organism. This task is made difficult by the high levels of
experimental and biological noise associated with these experiments. fesadd
these problems | introduce a new computational framework for combining data
from multiple species, for both improving prediction accuracy and identifirimg
portant subsets of genes involved in a given system. The computatiamedvirork
is based on Markov random fields which allow the integration of microamaly a
sequence data from multiple species. Applying this framework to study czé cy
regulated genes, | have identified genes representing the core mgaifitier cell
cycle. These findings are supported by both complementary high-throudafa
and motif analysis. In addition, | apply this computational framework to study im-
mune response in human and mouse. | show that by using Gaussian rigldsm
instead of discrete Markov random fields we are able to achieve bettaaagdn
predicting immune response genes. Finally, we identify a list of immune respons
genes that are conserved between cell types and species for exfregrmental
study.
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Chapter 1

Introduction

1.1 Background

1.1.1 Systems Biology and Conservation in Biological Systems

With data generated from high throughput biological experiments, it is rew b
coming possible to study organisms at the systems level. Systems biology studies
the dynamics and interactions between the components of a biological system. O
of the first questions facing researchers is to identify the componeriglogical
subsystems, within an organism.

One important approach for this task is to identify conserved genes betwee
species related at suitable evolutionary distance. Under evolutionacyiselpres-
sure, proteins essential for survival are more likely to stay the same or istmila
their ancestors. In fact, comparative studies of eukaryotic speciesrbagaled
conservation at multiple levels, despite the fact that they were separatgu:biy
ation events millions of years ago [Holm and Sander, 1996, Hardie et 88].19
For example, the control mechanism regulating the onset of mitosis is common to
all eukaryote cells [Nurse, 1990].

Proteins and RNAs (including miRNA, siRNA, etc) are the two major workhorse
in the cell. Our discussion will focus on proteins, but in principle it is alsdieap
ble to RNAs. The function of a protein is determined by its structure, which is in
turn determined by its amino acid or nucleic acid sequence. Currently, it is much
more expensive and time-consuming to determine the structure than the saquen
of a new protein, and it is very hard to computationally predict structurescan
sequences. Therefore, when researchers want to study the fmofionknown
proteins, they often have to rely on sequences directly.

Functional annotation of proteins can serve as an example. When pewple fi
a new protein and want to determine its function, they can look for knowteipi

1



2 Chapter 1. Introduction

with similar sequences and hypothesize that they have the same functidn [Bor
etal., 1998, Wilson et al., 2000]. In practice, sequence similarity is usuédiyia

good indicator of structural and functional conservation, but thezealso coun-
terexamples where proteins with similar structures have low sequence similarity
[Holm and Sander, 1996].

In addition to sequences that encode proteins, non-coding sequaecaiso
found to be conserved between some species [Duret et al., 1993h&wubtal.,
2000, Kellis et al., 2003, Xie et al., 2005]. Parts of the non-coding regiery.
cis-regulatory sequences, are believed to play an important role in tigtiestal
regulation, so the conservation of non-coding sequences may imply teergan
tion of interaction networks between species.

1.1.2 DNA Microarrays

A DNA microarray is an array of short single stranded DNA segment®lips”)
printed densely on a solid surface, e.g. glass or plastic [Schena et34], 1tScan

be used to analyze the gene expression profiles for thousands af gjendtane-
ously. Due to its small format and high density, a few microliters are enough fo
detection of target genes [Schena et al., 1995].

Microarray technology is based on the complementarity property of DNA and
RNA molecules. In short, DNA or RNA sequences are made up of fourstgpe
bases, and two of them are complementary to the other two, i.e. they are able to
match and bind to each other. Therefore it is possible to identify a target gen
transcript using a “probe” sequence complementary to the target. By iatiach
thousands of well-designed probe sequences on a microarray andngdtem
to the gene transcripts in a sample, we are able to identify all the genessegres
in the sample.

To make microarrays work, we need a way to quantify how much DNA is
bound to each probe. This is done by tagging all the DNA in the sample by flu-
orescent material. After hybridization, a process to match sample DNA with the
probes, unmatched DNA is removed and the matched DNA can be quantified by
measuring the intensity of fluorescence.

There are two major types of microarrays, one is spotted microarrayef&ch
et al., 1995], and the other is oligonucleotide microarrays [Lockhart,e1206].

In spotted microarrays, two samples to be compared are labeled with twaedtffer
fluorophores. They are mixed and hybridized to a single microarray anchtio
of fluorescent intensity is used to quantify the change of gene expndssils. It
is easy to observe up- or down-regulation using spotted microarratys'stuard
to know the absolute levels. The second type of microarrays usually escurity
one DNA sample and is calibrated by control probes on the microarragsefiine
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Figure 1.1: (a): A schematic diagram for spotted microarrays. (b): ansch
microarray image. (Source: Wikipedia).



4 Chapter 1. Introduction

multiple microarrays are needed for cross sample comparison, but it ibledss
observe absolute expression values.

1.1.3 Potential of Data Integration

Following the completion of genome sequencing projects for multiple model specie
[Goffeau et al., 1996, Arabidopsis Genome Initiative, 2000, Adams e2@(00,
Venter et al., 2001, Waterston et al., 2002, Stein et al., 2003], it is pogsible
carry out comparative studies at the whole genome scale [Ureta-Vidi) 2003].

The major principle of comparative genomics is as follows: common traits of two
organisms are the result of functionally conserved proteins or RNAisjvae en-
coded by DNA sequences conserved between the species since thedntason
ancestor. Conversely, proteins and RNAs responsible for spe@esispraits are
encoded by divergent DNA sequences [Hardison, 2003].

Comparative genomics has shown to be a very promising field and sequence
comparison has become a standard tool when looking for homology begjgaes.

In many applications, the BLAST algorithm [Altschul et al., 1990, 1997] edui®
search for sequence similarity, and a cut-off score is used to determiherti-
ogy relations.

However, there is an inherent limitation to sequence-based methods.nSegue
only provide static information about the organisms, while in many cases what w
want to understand is the dynamic aspects of the proteins. We argue thmrieis
ficial to integrate static information with data measuring dynamic properties of the
biological system. For example, gene expression microarrays are ablesome
the expression level of all genes in a cell at a given time point. Using multiple
microarrays at different time points, we can obtain expression time seriegdny
gene in the genome (Figure 1.2). This information is very useful for wtaleding
changes of biological systems over time [Wodicka et al., 1997, Brown and B
stein, 1999, Debouck and Goodfellow, 1999], and is complementary tddtie s
information from sequences.

On the other hand, data produced from dynamic experiments are often con
founded by a number of factors. For example, measurement of geressiqn is
affected by both biological noise and technical noise. The former mayéed
the intrinsic property of gene expression networks [Rao et al., 20@ghtion of
the global pool of house keeping genes, and fluctuations in environhoemiz-
tions that affect all genes [Pedraza and van Oudenaarden, Z0G5latter may be
caused by fluctuations in probe, target and array preparation, in tralnation
process, and effects resulting from image processing [Schuchétaadlt 2000].

As a result, gene expression is best modeled by random variableseffootie, if
we assume homologous genes are more likely to have similar expressionsprofile
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Figure 1.2: (a) Gene expression time series for two budding yeast cyggines,
MCM6 and CDC20 in a block-release experiment. (b) Gene expressiongiies s

in block-release experiment for human cycling genes Mcm6 and Cdc2éh ate
homologous to the two genes in (a). The cell cycle period is approximately 80
minutes in (a) and 15 hours in (b). (Data from Spellman et al. [1998] anitiélt

et al. [2002]).



6 Chapter 1. Introduction

we may be able to take advantage of correlation between expression ologsmo
and integrate measurements from different species to derive morateoesults.

In this case, static sequence data are able to complement noisy dynamicaneasur
ments, enabling us to better interpret experimental observations. For lexdigp

ure 1.2 shows the time series for two budding yeast genes, MCM6 and G2G&@

two homologous human genes, Mcm6 and Cdc20. By examining the time series, it
is obvious that budding yeast CDC20 and MCM®6 are periodically expdeddu-

man Cdc20 is also periodically expressed, although with less amplitude or more
fluctuation. However, it is much harder to tell whether human Mcmé is cycling
or not. But if we know these genes are homologous to each other, it wiitboo
our confidence that Mcm6 is also a cycling gene. Indeed, human Mcm@lesco

a protein involved in DNA replication, and its expression is regulated by the ce
cycle [Dalton and Whitbread, 1995].

1.2 Gene Expression Programs

There are many biological processes within a living cell. In order to maintain
a healthy state, all these activities must be regulated at multiple levels, e.g. the
transcription, transportation, and degradation of proteins. Transeripfigenes,

or gene expression, is the first stage of protein assembly, and is higilated

in all species. In fact, if the principle of parsimony is applicable here, then th
regulation of protein assembly should happen at the earliest possiblelstagase

it can save energy and nutrients which may be vital for the survival ireedr
conditions. On the other hand, there is also the need to be able to respond in
time to environmental changes, and it may require the regulation of sometgenes
happen in later stages.

1.2.1 Cell Cycle

The cell cycle, the process in which cells divide, is the most basic procesdb in
cellular organisms. A cell dies if the cell cycle goes wrong and it canmpicete
itself. In higher eukaryotes, cells become cancerous when they los®licand
keep dividing. Many genes related to the cell cycle are regulated in adperio
way, and it is likely that they are periodically expressed, peaking at the sthere
required.

To identify periodically expressed genes, cells in a population are fiesitad
at the same stage of the cell cycle. After released from arrest, the mohreyized
cells are profiled by microarray experiments at multiple time points. By examining
the expression time series, it is possible to identify genes whose exprésgbdn
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changes with the cell cycle. However, there are borderline casegliehard to
decide whether a gene is cycling or not (Figure 1.2 (b)). By combiningeseze
homology and cycling expression, we may be able to recover a more ocblsete
of cycling genes.

Some of the cycling genes are conserved across species during avoByio
comparing lists of cycling genes from several species, including ydastspand
humans, we can derive a core set of cycling genes, as well as cyelag gpecific
to a single species. It is very likely these core cycling genes make up aentiess
part of the cell cycle machinery, while species-specific cycling gereegeaponsi-
ble for other recurrent activities developed only in that species.

1.2.2 Immune Response

The immune system is developed in higher eukaryotes to protect the host fro
pathogens. There are many types of immune cells, including specialized cells
that are capable of recognizing and responding to alien substanaesxdfople,
macrophages can engulf and digest alien particles, a process caltputptusis.
Dendritic cells are another type of immune cells that can process antigens and
present fragments to “train” and activate other cells (T cells and B cells)ein th
immune system. Dendritic cells are very important for the host to develop antigen
specific immunity.

Upon contact with infectious agents, receptor proteins in immune cells are acti-
vated, and they in turn activate related pathways leading to proper sfmpro-
tect the host. Toll-like receptors (TLRs) are one of such receptorasntighly
conserved between species [Lemaitre et al., 2003, Beutler, 2004k &teeseveral
types of TLRs, leading to different pathways. To better understandagthiec-
ular mechanism of the immune response, one important challenge is to identify
genes participating in these pathways. Because genes that are tidigresx-
pressed after infection are very likely to play a role in the immune resporise, it
useful to first identify these genes.

Genes in immune response are constantly under negative selection@ressu
they tend to be more conserved. Therefore by incorporating sequdanmation,
we will be able to better identify essential genes in the immune response pathway

In contrast to the cell cycle expression program, which is probably common
to all type of cells in an organism, the expression program in immune cells varies
between different infectious agents. Moreover, there are multiple tyfgesmune
cells, and they have different responses to the same infectious agent.



8 Chapter 1. Introduction

1.3 Functional Analysis of Gene Expression Programs

As biological knowledge is being accumulated, it is desirable to have a oiemie
way to incorporate it into the analysis of new biological findings. Functional a
notation projects, such as Gene Ontology (GO) [Ashburner et al., 2p8fide a
controlled vocabulary that can be used to describe the properties e$.gelsing
the vocabulary, people can summarize known information about genest@ned
the annotations into databases, which can be used for future analysis.

When studying gene expression programs, it is often the case that et subs
of genes are observed to be significantly different from the rest, esfngbn-
duced, repressed, or in general differentially expressed. It ysusaful if one can
quickly characterize the gene set based on existing knowledge, if itinerganes
that have already been studied. This can also be used for functicighent
for unknown genes [Zhou et al., 2002]. One approach is to look foctfanal
annotations that are “enriched” in the set of observed genes. Thegelied” an-
notations can be regarded as a qualitative summary of the experimentaheutco
This type of enrichment analysis is also helpful for other computation$ysinaf
gene expression programs, where it can provide quick feedbacknbmnarizing
the computational results.

1.4 Graphical Models for Data Integration and Functional
Analysis

Probabilistic graphical models have been proposed to deal with many lzalge s
statistical learning and inference problems. In a graphical model, ramdoables
are represented by nodes, and the dependency structure is népdelsg edges
between nodes. The main idea of graphical models is to capture the conditiona
independencies between random variables, and it gives rise to mangrefilgo-
rithms for learning and inference.

There are two major classes of graphical models. One class is directetbmode
or Bayes Networks, and the other is undirected models, or Markov nafigdds.
In a directed model, nodes are connected by directed edges, and thitorizh
probability is encoded directly on the edges. Figure 1.3 (a) shows a simettedtir
model.

In a undirected model, we define potential functions on cliques of the graph
and the joint probability is expressed by the product of potential functiodet! by
a normalization constant. Figure 1.3 (b) shows an example of a simple undirecte
model of three nodes.

There exist efficient algorithms to estimate parameters from data, and compute
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(@) (b)

Figure 1.3:Two types of graphical models. (a) is a directed model ofgmedes, in which
Y and Z are conditionally independent giveXi. Conditional probabilityP(Y|X) and

P(Z|X) are defined on edg&¥Y and X Z. (b) is an undirected model of three nodes, in
which we defingotential functions), (Y, Z), ¥2(Z, X), andys (X, Y) on the three edges.
The joint probability is represented by the product of aligmdial functions:P(X,Y, Z) x
wl(Ya Z)w2(Z7X)w3(Xa Y)

the posterior of random variables given the data the estimated parametkirsg ma
it feasible for dealing with large datasets of thousands of variables.

Our basic idea for integrating data is to use correlation information from se-
guence similarity to “connect” genes and the experimental observations into a
graph. Since the relation of sequence similarity has no direction, it is natural
apply undirected models to this problem. In the simplest form, we use nodes to
represent the functional label of genes, e.g. whether a gene is a/clelregu-
lated gene. We use potential functions on edges to model correlation infonma
from sequence homology, and use node potential to model informationditoen
experiments, e.g. microarray measurements.

For the functional analysis problem, we are going to adopt a view where the
observed gene set is “generated” from latent biological proces§be. goal is
then to identify these latent processes. In this case, a directed graiuidal is
more suitable because it is straight-forward to represent the genegratisess by
directed relations.

1.5 Previous Work

There are a number of previous papers on combining sequence aress®gp
data to study similarities in expression between different species. For &xamp
Bergmann et al. [2004] clustered data from six different species toifgemodules

of genes that are co-expressed. Stuart et al. [2003] identified ‘er@alg a group

of homologous genes from four different species (one gene frah species),
and then used correlation coefficients to link metagenes forming a cossiqume
network.
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Our approach differs from these papers in several important aspéts un-
like prior work that relied on clustering to identify groups of co-exprdsgenes
under a wide range of conditions, our approach usdassificationframework to
achieve a different goal: identifying a set of conserved systems geSesond,
prior work only looked at pairwise expression similarities, whereas ourishgn
utilizes the complete graph topology to propagate information. Finally, previous
papers used sequence similarity as a binary value (similar or not). In sprdte
framework uses the extent of this similarity to determine edge weights. Therhighe
the similarity the greater the importance of neighboring genes for determining the
final label assignment. More specific studies have been carried osbhoe bio-
logical systems and we expand on those in the relevant chapters.

Enrichment analysis has become an increasingly popular method for imngalyz
gene sets. Perhaps the most commonly used method of GO enrichment dsalysis
based on computing a p-value using the hypergeometric distribution (thegeype
metric method or the “Classic” method). Although itis widely used, there still exist
some unsolved challenges. For example, the functional categories in(ib¢ole
ogy are organized into a hierarchical structure, while the hypergeonnegticod
assumes they are independent. This assumption leads to underestimation of p-
values and the hypergeometric method often returns very redundatisrdhere
are a number of efforts that try to address this problem Grossmann 20856][
Alexa et al. [2006]. In my thesis, | am going to introduce a new method thwicex
itly takes into account the hierarchical structure of GO, and dramatically wepro
on existing methods.

1.6 Contribution

In my thesis, | propose a new framework to integrate sequence and mégroata,
and use it to identify genes in the two expression programs, the cell cydlhan
immune response.

The major contribution of this thesis is a principled framework for integrating
high-throughput biological datasets. It allows combining correlated el&stasross
different species and/or cell types for more accurate analysis of @qression
programs. In addition, this thesis presents a generative model for fualctioaly-
sis of gene expression programs.

| believe the algorithms and methods introduced in this thesis will help re-
searchers better utilize the rich information in the ever-growing amount f hig
throughput datasets. | also believe generative models can be a poteeiftor
solving other problems in the analysis of biological data, especially when more
knowledge of the underlying biological mechanisms becomes available.
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1.7 Organization

This thesis develops probabilistic models in a framework that combines multi-
species microarray data and applies the models to two gene expressicemnsog
Because the analysis of gene expression programs usually resulteisajenwe
first develop a tool for functional analysis of gene sets in Chapter &hwte will

use in the subsequent chapters. In Chapter 3, we develop a probakilisti

to combine gene expression time series and protein sequence data anid @pply
identify a core set of cell cycle genes. In Chapter 4, we develop an iagmodel

to combine gene expression data and sequence data, and apply it to ioheratiéy
immune response genes conserved between two cell types and/or in handhan a
mouse. The last chapter outlines potential application of the framework vee ha
developed to other areas.
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Chapter 2

A Generative Model for Gene
Function Enrichment Analysis

While the main goal of this thesis is to develop models for analysis of multi-species
microarray data, in this chapter we first develop a tool, which we will use in the
following chapters to analyze functional enrichment in various gene smttifieéd

by our models. Unlike other existing tools for the same task, in many casesbur to
is able to characterize the functionality of a gene set with much less reduyndian

the following sections, we will introduce the probabilistic model for our tootl an
compare its performance with several other methods.

2.1 Introduction

High-throughput experiments in molecular biology are generating largetitjea
of data, which enable researchers to study biological systems, suehasxpres-
sion programs. In many cases these datasets are in the form of lists sf geme
example, it can be a set of differentially expressed genes, or the tafgetsan-
scription factor. However, due to the size of the lists it is often difficult to nadiypu
inspect them to functionally characterize the experimental outcome. Toawer
this challenge, researchers increasingly rely on computational anagsis cu-
rated databases of functional annotations. These include the Gene @n(i6I0)
[Ashburner et al., 2000] and the MIPS [Mewes et al., 2002] datalaaseng oth-
ers. In these databases genes are annotated by standardized temmariging
existing knowledge of the genes. For example, in Gene Ontology categoees
used to indicate a gene’s known functions or related biological progesse

While using curated functional databases to analyze high-throughpat-exp
iments has led to some success, there are many problems remain to be solved.

13
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One challenge is multiple hypotheses testing, because GO contains thodisand o
categories which are all tested for enrichment for the same gene set gra
Bar-Joseph, 2006]. Another challenge lies in the fact that the catsgorighich
genes are assigned are not independent, making it hard to determinet ibfa se
identified significant categories are indeed different functional outsporaather

a redundant view of the same biological process. For example, GO dategee
organized into a hierarchy with more general categories close to thermdotare
specific categories at the bottom. Genes annotated by a specific term are implic
itly annotated to all parent terms, resulting in highly overlapping categories. |
addition, many genes are assigned to multiple categories that do not shiare a d
rected path in the GO hierarchy, resulting in overlapping categories thabthe
detected using the hierarchical structure. In both cases, the depgrotwveen
categories make it hard to identify the most informative functional annotations
In fact, when using GO to compute hypergeometric p-values, which is the most
common method used [Fischer et al., 2006], researchers often resawaral re-
dundant categories as the top hits (see Table 2.2) which both mask othetanipor
categories and make it hard to determine the most relevant category.

2.2 Prior Work

The problems caused by dependency of the GO categories have begnized

and a few methods were developed to address them. One of the first attempts
was the use of ‘GO Slim’ (http://www.geneontology.org/GO.slims.shtml), a leaner
version of GO containing a manually picked small set of categotigd ¢f the
current~ 24,000 categories in GO) with a small overlap between them. While
useful, this method only retains the general categories and does nateprogre
specific ones which are often most interesting to biologists. Other attempts were
proposed by a few recent papers. Grossmann et al. [2006] adgugtuthlue for a
specific category by taking into account the immediately more general terms (the
parents). This can often lead to the removal of false positives, since abthe

more specific categories are eliminated if their parent category is determibed to
significant. Alexa et al. [2006] proposed two algorithms to correct thalpes

for a specific GO term. The first algorithm, ‘Elim’, tests the enrichment of each
GO category in a gene set by examining the GO hierarchy in a bottom-up order
Once a GO category is determined to be significant, all genes associated with it
are removed in the following analysis of its ancestral (more general) cé&ego
The other algorithm, ‘Weight’, uses a similar strategy but rather than completely
removing genes in significant categories it down-weights them for the rémgain
categories.
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2.3 Our Method: Probabilistic Generative Model

While these methods are more powerful, they only utilize local information in the
graph structure (parent-child or bottom-up). Thus, they cannot atéoulonger
range relationships and global dependencies such as highly ovedagategories
that do not share a directed path. In addition, all the above-mentioned asetho
return a (sometimes long) list of GO categories with their p-values requiring the
user to select a cutoff in order to further analyze the resulting list.

Our approach is different. From a biological point of view, one of thalgof
using functional databases is to identify a set of biological proceskgsddo the
specific study. Thus, it would be natural to use a generative model talfyladben-
tify the set of significant GO categories and processes that ‘gentttatazbserved
list. Our goal is to identify a (preferably small) set of categories that togeitie
count for the set of genes observed. Since many experiments studyicategh
responses involving several processes, the categories can camdifierent lo-
cations and levels in the hierarchy. However, highly overlapping catsgyuuill
not be selected since one of them is often enough to explain the subsegefites
belonging to these categories.

We applied our method, which we term GenGO (GENerative GO analysis), to
analyzing the GO hierarchy for yeast and humans. We used a contrabdybis
(in which subsets of categories are selected and the goal is to recovgidhe
den) categories), microarray expression data and ChlP-chip datatfospecies.
GenGO was able to drastically reduce the false positive rates, eventafistical
correction. As we show, GenGO consistently outperforms both the orikymesr-
geometric method and the methods considering only local structural demmesie
in some cases dramatically so.

2.4 The Activation Graph for GO Categories

We developed a generative model to identify a subset of active GO caggo
When designing the method we placed special emphasis on simplicity and speed.
GO analysis is often an interactive process in which users change theimlists
analyze multiple lists (for example different gene clusters or differenetargf
transcription factors). Thus for a method to be successful it shouldin@uatable

in a reasonable time to allow interactive analysis.

To explain our method, one can think of this problem in terms of a bi-partite
graph representing the relationships between GO categories and Bignues 2.1).
Nodes on the left side of the graph represent GO categories and orottes right
represent all genes annotated in that species. We connect a genwittod GO
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node by an edge if and only if the gene is annotated to belong to that GO gatego
We denote genes that were identified in the experiment as ‘ON’ or activgeares
that were not identified as ‘OFF’ or inactive. Similarly, when a biologicalcgss
(corresponding to a specific GO category) is active, we representsietting its
GO node to ‘ON’ and when it is inactive, we set its state to ‘OFF’.

ABCDE .
BCD || CD _> ®
V=2
N XX .
D & ®
®
GO Hierarchy Activation Graph

\/ Active GO node . Active gene node
— =2 Activation edge O Inactive gene node

Figure 2.1: Construction of an activation graph. Left: A diagram showif@O
hierarchy of four categories and the five genes annotated by thegecasgletters

in each rectangle). Because of the true path rule, each gene anngtatedtbgory

in the GO hierarchy is also annotated by all its parent categories. Right: The
activation graph corresponding to this GO hierarchy when observieg tirthe
genes (A,B,C). In this graph, we connect a gene node with a GO noda dfrdwy if

the gene is annotated by that GO category. For this set of genes thecatégery

is determined to be the orange category. Note that due to noise there isthaiene

is selected even though it does not belong to the active category (Ak aadso
responsible for the fact that a gene belonging to the active category selected

(D).

To find this set we define a probabilistic model on the activation graph (oenta
ing both gene and GO nodes). The model accounts for noise in the exptime
and GO data. We develop an algorithm that identifies active GO categories by
maximizing the likelihood of this model conditioned on the set of active genes.
The final outcome is a small subset of active GO nodes that together extiiain
set of active genes. We describe the model in details in the following sections
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2.5 Probabilistic Model for Activation Graphs

We assume a generative model for gene activation. In this model we fiest se
a subset of GO categories and activate all genes in these categorigsa Ken-
dom process (representing noise, errors in GO assignments and paotidédge)
inactivates, with probability — p, genes in each of the selected categories and
activates, with probability, genes in categories that were not selected leading to
the observed gene set. Given a list of active (selected) genes anaof astive GO
categories, we can define the following sets

e A, active gene nodes connected to at least one active GO node

A,, active gene nodes not connected to any active GO nodes

I inactive gene nodes
e S, edges connecting nodesrwith active GO nodes

¢ S, edges connecting nodesrwith inactive GO nodes

Using these symbols we define the following log-likelihood function which we
would like to maximize:

L(Clp,q,G) = |Ag|logp + |An|log g + |Sy| log(1 — p) + | Sy |log(1 — q) — a|C]|
(2.1)

whered is the set of active (selected) gene nodes (the inglid,the set of active
GO nodes, andlX | represents the size of the group (4,4, A, etc.). This func-
tion captures our generative model. With probabifitgenes belonging to active
categories would remain activel {). With probabilityg genes that do not belong
to any active category would be activatedl,j. Similarly, with probabilityl — p
genes in active categories will become inacti¥g)(and with probabilityl — ¢
genes in inactive categories will remain inactiv, ). The last term in the likeli-
hood function penalizes the size of the set of active GO categd€igsso that the
model will prefer a smaller set of categories when explaining the selecteit se
genes. The hyperparameters a positive number controlling the penalization.

The above likelihood model is a function of the selected set of active GO cat-
egories (denoted bg"). In the next section we present an algorithm for finding
such a set that maximizes this likelihood. We also present a method for optimiz-
ing the values for the noise parametgrandq. Once the algorithm terminates we
compute a p-value score for each of the selected categories using&ypeatric
distribution and return an ordered list of selected categories to the user.
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2.5.1 Optimization by Greedy Search

Given an input list of active genes from an experiment, we would like tachixte
a set of active GO categorie€’) that maximizes the likelihood function (Eq 2.1).
This is an NP-hard problem (e.g. it can be shown that the Maximal Set Gove-
lem can be reduced to it). Thus, we use a simple and fast greedy ségodthen
to look for a local maximum of the likelihood function.
The algorithm is as followsp(andgq are fixed in this part; they can either be
optimized in an outer loop as we discuss below or set by the user in advance.)
Algorithm 1 (Find the best GO set for given parameters)

1. Initialize Cy to be the empty set

2. Atiterationi, we consider all possible one-step changes of the current set of
active GO categories};), and compare the likelihood of the resulting sets.
Let

| = argmax;cc, L(C;\{t}) andt} = argmax,ep\ ¢, L(Ci U {t}),

whereT is the set of all GO categories. Thus among all possible reduc-
tions of C;, C;” = C;\{t}} has the highest likelihood. Similarly, among all
possible expansions ¢f;, C;t = C; U {#}} has the highest likelihood.

)

3. Ifthe likelihood ofC; is higher than that of bot&;” andC;, letC;1 = C;
and go to step 2.

4. If the likelihood oij is higher than the likelihood of’;, let C; 11 = C’j
and go to step 2. Otherwise go to the next step.

5. returnC.

It is important to note that including more GO categories will not necessarily
lead to improved likelihood and thus the algorithm above does not overfittiae d
The reason is that there is an associated penalty if the category addedesclu
genes that were not selected. Adding a category for which many of iesgeare
not selected or if they were selected they are already explained by elketes
categories will usually lead to reduction in the likelihood.

Once the algorithm terminates, we use the set of active categories as the fina
result. For these categories we compute a p-value using the hypergeaisetric
tribution and return the list, ordered by the p-value significance scoreetosir.
Corrected p-values can also be computed either by using the Bonfeamection
or by carrying out randomization tests [Ernst and Bar-Joseph, 2006]
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2.5.2 Optimizing Parameters

There are two parameters in our mogegndg. p is the probability that an active
GO node will activate a gene belonging to that GO category and q is the-proba
bility that a gene node becomes active without being activated by any G& nod
A higherp means a higher participation rate of the related genes in the biological
process, and/or less uncertainty in the activation relation between a G&anad
the related go nodes. A highgmeans a larger portion of the genes are allowed
to be explained by background noise or errors in the current ontologryd g can
be set manually according to the estimation of noise level. These two parameters
can also be optimized by maximizing the log likelihood defined previously. The
algorithm is as follows:

Algorithm 2 (Find the best GO set by learning parametesadq)

1. Initialization. Sepy = 0.5, 0 = |G|/|R
andR is the reference set.

, WhereG is the set of active genes,

2. Carry out steps in Algorithm 1, using andg;.

3. Based the solution found in the previous step, we compute the maximum
likelihood estimation op andg:

Pit1 = 7'149'
| Ag| + Syl
qi+1 = 7'14”'
| An| =+ [Snl

4. if max(|pi+1 — pil, |gi+1 — qi]) > €, 9o to step 2, otherwise stope i€ a
small positive number to control convergence.)

Because both steps in Algorithm 1 and 2 only increase the likelihood, thethtgor
above is guaranteed to converge to a local maximum.

The hyperparameter can be chosen by experiments and we found it generally
works well when settingr = 3.0.

GO annotation data. Gene ontology files (release 2007-06) were downloaded
from the Gene Ontology websitét(p: // ft p. geneont ol ogy. org/). GO
annotations for humans and yeast were extracted from the Gene2Gliasiata
which was downloaded from the NCBI websitd ¢p: / / ft p. ncbi . nl m ni h.
gov/ ) on Jun 26, 2007. GO categories were filtered such that only those with at
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least 5 genes would be used. In this study, we focused on the Biological P
cess categories, but our methodology is also applicable to Cellular Contzorten
Molecular Function categories.

Precision/Recall curves. Precision/Recall plots were done using the ROCR
package in RKttp://ww. r-project.org/). Each point in the preci-
sion/Recall curve corresponds to a score (or p-value) cutoff. Teeigion and
the recall are defined as follows

Precision= TP/(TP + FP)Recall= TP/(TP + FN),

where TP is the number of true positives (true active categories belowutbf)c
FP is the number of false positives (inactive categories below the cuaoff)FN
is the number of false negatives (true active categories above the)cutoff

Precision/recall curves are more informative than Receiver OperatingaC-
teristic (ROC) curves when working with highly skewed datasets [DavisGoatl-
rich, 2006]. This is exactly the case when working with GO enrichment aisaly
which the vast majority of categories are not expected to be enrichedyarree
dataset.

Comparison. For comparison with the Classic method we used the hypergeo-
metric p-value analysis from STEM [Ernst and Bar-Joseph, 2006].u¥de the
Parent-Child method implemented by Ontologizkt {p: / / www. chari te.
de/ ch/ medgen/ ont ol ogi zer/ reconb06/ i ndex. ht m ), and the Weight
and Elim methods implemented in the topGO package (release 1.2.1) in R (release
2.5.1). For both Classic and Parent-Child methods, p-values are compitited w
Bonferroni correction, which is a commonly used method for multiple testing cor
rection.

In every GO analysis task we performed for a species, we used the s&tole
of annotated genes as the reference set. To generate the precisiboiree for
a method in a specific experiment, we followed the strategy in Grossmann et al.
[2006] and accumulated all p-values frdm) random gene sets.

Ranking induced genes in amino acid starvationFor each yeast gene in the
amino acid starvation experiment, we looked at its second highest expréssb
throughout the whole time series, and ranked all genes according bythées v

2.6 Results

2.6.1 Comparison by Selecting a Subset of Categories

We first tested our method (GenGO) using GO data for yeast and humams. W
followed the same procedures in Grossmann et al. [2006] and Alexa[20ab]
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for objective comparison of different GO analysis methods. For eagbiesnl,
2, or 5 GO categories were randomly selected as ‘active’, and a subset e$ gen
associated with each active category were randomly pick@&d or 50% of genes
in each of the selected categories). In addition, we randomly selé&@ient 15%
of the remaining genes (from inactive categories) and combined the twiysats
active and non-active categories to form the input to the GO analysistdthe
large run time of some of the methods we were comparing to (Elim and Weight),
for each experiment,00 random sets were generated using the same parameters.

We used precision/recall curves to compare GenGO with four other methods
(Materials and Methods). These included ‘Classic’ (hypergeometricdastthe
three other methods listed above. The results are plotted in Figures 2.2) (yeas
and 2.3 (human). For all settings, the performance of GenGO dominatdbexl o
methods. When the noise level is low, the performance of GenGO is close to
optimal (left columns in Figures 2.2 and 2.3). When the noise level is high, the
performance drops for all methods, though GenGO is still the best. Evernigtih
noise and multiple categories (as is the case for most real experiments\0GenG
can achieve’s0% precision for high recall levels6(0%-80%). As for the other
methods, in most cases ‘Weight' is the second best and ‘Classic’ is usually th
worst, indicating that all methods previously proposed for the task indeawuap
upon the standard usage of GO.

Note that while the precision usually drops as the recall increases, gk ¢
be cases where the precision actually improves even though recall iasimge
For example, in Figure 2.2(a) the ‘GenGO’ method correctly assigns thestowe
p-values to some of the selected categories, which results in a very higjkipne
rate at low recall rates. However, when the recall increasésltodue to some
non-selected categories that are (incorrectly) assigned a low p-tladuprecision
drops t00.9. As the recall continues to increase, the precision increases again
because the method recovers the rest of the selected categories withog pp
much non-selected categories.

2.6.2 Analysis of Noise Datasets

To test the ability of GenGO to overcome the multiple hypothesis testing problem,
5% and10% of all human genes were randomly selected as a test set, and the five
algorithms were run to identify significant categories. The procedureepsated

100 times, and the percentages of sets without any significant GO categories (p
value < 0.001 with Bonferroni correction where applicable) are listed for each of
the methods in Table 2.1. Even after correction the Classic method, which is the
most commonly used, identified significant categories in all experiments. When
10% of genes were selected at random, all methods, except for GenGO wkbntifi
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(a) One Selected Category (p=0.9, q=0.01) (b) One Selected Category (p=0.5, q=0.15)
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Figure 2.2: Comparison using GO for yeast. Performance compariswe ofiéith-
ods on data generated using the yeast GO database. We use p tomepeefac-
tion of genes that are identified from an active GO category (true positieefor

a category, see Materials and Methods) and g to represent the fraeties that
are selected but do not belong to any active category. (a) Selectingategory
with p = 0.9, ¢ = 0.01 (b) Selecting one category with= 0.5, ¢ = 0.15. (c¢)
and (d): same as (a) and (b) but using two categories. (e) and iffie séth five
categories. Note that even when the noise is substantial (G8ffgof genes in
selected categories amd% of all other genes, second column) GenGO is still able
to accurately recover most of the correct categories.
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Figure 2.3: Performance comparison of five methods on data generatgcus
man GO database. (a-f) same as in figure 2.2 for human GO data.
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significant categories in at least 50% of the experiments. In contrasGGevas
able to determine that no such significant category exists for more9ttanof
tested noise sets.

Random Genes Classic| Parent-Child| Elim | Weight | GenGO
1% 69% 100% 67% 64% 100%
5% 0% 83% 74% 1% 98%
10% 0% % 51% | 44% 100%

Table 2.1: Analysis of random gene sel$s, 5%, and10% of all human genes
were randomly selected as a test set, and the five algorithms were run toyidentif
significant categories. Categories were only selected if they achievedlagp<
0.001 following Bonferroni correction for multiple hypothesis testing. Trecp-

dure is repeated 100 times, and the percentages of sets without any sijai@a
categories are listed in the table. As can be seen, while GenGO correctly dete
mined that there were no significant categories in more than 98% of tests, othe
methods identified much more erroneous categories in these experiments.

2.6.3 Comparison on Microarray Experiment for Yeast

Testing GenGO using real expression data is more challenging since tumgr
truth’ is unknown in most cases. Still, when the biological condition is clearly
defined, it is possible to determine whether a set of GO categories praviesl
summary of the experimental setup.

Enrichment Analysis of Cell Cycle Genes

We have initially applied GenGO to analyze the well studied cell cycle expres-
sion dataset from Spellman et al. [1998]. We used&b@ genes determined to
be cycling during the mitotic cell cycle in budding yeast. Figure 2.4 plots the lo-
cation in the GO hierarchy of the top five categories identified by four of tkee fi
methods (see also Table 1 and Supplementary Figure 3). The results Higiidigh
advantages of GenGO. For example, while both GenGO and Classic siutiges
identify “mitotic cell cycle” as the most significant category, the Classic method
returns highly redundant categories including “mitotic cell cycle”, “cetfleypro-
cess”, and “cell cycle”. The Parent-Child method [Grossmann et al§]2818o
returns redundant categories (“cell cycle process”, and “celetythough it does

a better job in finding the more specific “microtubule-based process” whiah is
lated to cytoskeleton changes during cell cycle progression [Spellmank28].
Both Elim and Weight fail to identify the most appropriate category for this data
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(cell cycle) though they do identify a number of relevant specific categioin con-
trast, GenGO contains both the correct high level categories (‘cell’amte‘cell
division’) as well as more specific categories (“chromatin assembly ossbsa
bly”) that play an important role in DNA replication and chromosome segragatio
Note that cell division here is not redundant with cell cycle. While “celtley
describes the different phases of the cell cycle, their regulation, laeckpoints,
‘cell division’ refers to the process of separation of daughter cellsviting the

cell cycle.

Classic Parent-Child | Elim Weight GenGO
mitotic cell | cell cycle microtubule | microtubule | mitotic cell
cycle nucleation nucleation | cycle
DNA cell  cycle| mitotic sister| mitotic sister| DNA
replication process chromatid chromatid replication
cohesion cohesion
cell cycle DNA mitotic DNA strand| microtubule-
metabolic spindle elongation based
process organization | during DNA | process
and biogene- replication
sis
cell  cycle| microtubule- | DNA mitotic cell division
process based replication spindle
process initiation organization
and biogene-
sis
DNA- DNA telomere telomere chromatin
dependent | replication maintenance| maintenance| assembly
DNA via via or disassem;
replication recombinationrecombination bly

Table 2.2: Top five GO categories identified by different methods from theflist

periodically expressed yeast genes during the mitotic cell cycle.

Enrichment Analysis of Amino Acid Starvation Response Genes

We repeated the above analysis using the top 500 induced genes in amist@agcid
vation experiments [Gasch et al., 2000]. Only GenGO and Weight corrideihy
tified “amino acid biosynthetic process” as the most significant categobjq 2a3
and Figures 2.5- 2.9). The next significant category identified by GeisGsul-
fur metabolic process”. It includes genes required in recycling sulfuabodites,
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Figure 2.4: Comparison of top five GO categories identified in the yeastywd c
genes Spellman et al. [1998] by four methods. (a): top five GO categdeas
tified using the Classic method (hypergeometric p-value) are highlightedenGre
represents the most significant category identified. The five categepessent
highly redundant view of only two biological processes, as highlightethbyed
circles. (b): Parent-Child method Grossmann et al. [2006]. (c): Weigtthod
Alexa et al. [2006]. (d) GenGO.
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which are known to be highly expressed under amino acid starvation [Thanta
Surdin-Kerjan, 1997]. In addition, an interesting finding by GenGO is “osaic-
charide catabolic process”. During amino acid starvation, besides theflaokino
acid there is a cellular need to produce energy which is carried out mairthjigy
process [Natarajan et al., 2001]. Another category identified by Geri@fiino
acid catabolic process”, describes the process that generates amméramcickx-
isting proteins, which is a known consequence of amino acid starvatioontrest,
the categories identified by Elim are too specific: three of the five categanées
subcategories of “amino acid biosynthetic process” and can be better sinedna
by the latter. The Classic method again identifies redundant categorigsnior

acid metabolic process”,

metabolic process”.

carboxylic acid metabolic process”, and "amiib a

| Classic | Parent-Child | Elim | Weight | GenGO |
nitrogen nitrogen arginine amino acid| amino acid
compound | compound | biosynthetic | biosynthetic | biosynthetic
metabolic metabolic process process process
process process
carboxylic organic acid| glutamate glutamate sulfur metabolic
acid metabolic biosynthetic | metabolic process
metabolic process process process
process
organic amino sulfate sulfur amino acid
acid acid and| assimilation | amino acid| catabolic
metabolic derivative metabolic process
process metabolic process
process
amino acid| amine transposition| main  path-| purine base
metabolic metabolic RNA- ways of | metabolic
process process mediated carbohydrate| process
metabolic
process
amino acid| cellular methionine | glutamine monosaccharide
and biosynthetic | biosynthetic | family catabolic  pro-
derivative process process amino acid| cess
metabolic catabolic
process process

Table 2.3: Top five GO categories identified by different methods from theflist
yeast genes induced following amino acid starvation [Gasch et al., 2000].
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Figure 2.5: Top five categories identified by the hypergeometric methocefsty
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Figure 2.6: Top five categories identified by Parent-Child method for ypsasts
induced in amino acid starvation.

2.6.4 Analysis of Human Expression Data

We repeated the analysis described above using human immune respoese ex
ments from [Nau et al., 2002]. 977 genes were identified as differentigiessed
when host cells were exposed to one or more bacterial pathogens.id-setlall
methods have correctly identified “immune response” in the top two categories
(Table 2.4). However, as was the case for yeast, the Classic methatketaany
redundant categories. Parent-Child returned two very generalbeaed biologi-

cal process’ and ‘regulation of biology’) which do not provide insigtio the set

of genes. Interestingly both Elim and Weight identified ‘response to vassine
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of the top five categories. Since only bacteria were used in this study thggocate
should not have been identified. It was likely selected by these method® due
its overlap with the more general ‘immune response’ category. In additioreto th
‘immune response’ and ‘wound response’ categories identified by Geéh@&so
identified ‘taxis’ which is clearly relevant due to the mobility need for macrgplsa
during immune response [Jones, 2000]. GenGO also identified “regutdtamop-
tosis” which plays an important role in determining the drastically differensfate
for macrophages after infection [Grassrat al., 2001, Navarre and Zychlinsky,
2000, Rojas, 1997]. The final category identified, “URNA aminoacylatiorthés
process that joins an amino acid to its cognate tRNA, which is an important step in
protein translation [Park et al., 2005].

| Classic Parent-Child| Elim | Weight | GenGO |
immune biological immune immune immune
response process response response response
immune immune inflammatory | response response
system system response to wounding | to wounding
process process
response response chemotaxis cell taxis
to stress to stimulus proliferation
response cell response chemotaxis | regulation
to stimulus | proliferation | to virus of apoptosis
response biological anti-apoptosis| response tRNA aminoa-
to wounding | regulation to virus cylation

Table 2.4: Top five GO categories identified from the list of human genes dete

mined to be differentially expressed following exposure to bacteria.

2.6.5 Application to ChlP-chip Data Analysis

ChlIP-chip [Harbison et al., 2004] is an experimental technique the cosBiHeo-
matin ImmunoPrecipitation with microarrays (“chip”), which can be used to iden-
tify the targets of transcription factors. These targets can later be uskeddight
on the functional role of that factor, which can be done by using GO tordéte
the function of the resulting gene target set [Bar-Joseph et al., 2008]have
compared the GO enrichment analysis of the different methods for thegarfe
transcription factors from yeast and human.

For yeast we have looked at Swi6, a cell cycle regulator of G1 trargarip
[Nasmyth and Dirick, 1991]. Table 2.5 presents the results of the five method
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for this factor. Except for Elim and Weight, which did not return ‘cell leyan

their top 5 hits, the three other methods correctly selected this as the top gategor
for Swi6. However, the hypergeometric and parent-child again retusirsst of
redundant categories (‘cell-cycle’, ‘cell cycle process’). Intcast, GenGO was
able to balance the more detailed and more high level categories. Specifically it
was the only one to correctly identify ‘reproduction’ as one of the top categ

for Swi6, a role that is well documented [Leem et al.].

In

Classic Parent-Child | Elim Weight GenGO
cell cycle cell cycle regulation of| regulation of| cell cycle
cyclin- cyclin-
dependent | dependent
protein protein
kinase kinase
activity activity
mitotic cell | cell  cycle| G1/S- interphase of external
cycle process specific mitotic cell | encapsulating
transcription | cycle structure

organization

mitotic and

cell cycle biogenesis
regulation of| biological cell wall | regulation of| DNA repli-
progression | regulation organization | progression | cation
through and through
cell cycle biogenesis | mitotic cell

cycle
regulation of| regulation of| axial bud site| axial bud site| reproduction
cell cycle cellular pro-| selection selection
cess

cell  cycle| regulation of| positive cell wall | regulation of
process cell cycle regulation organization | transcription

of DNA | and

replication biogenesis

Table 2.5: Categories for Swi6 targets identified by ChIP-chip experiments.

We have also looked at the analysis of targets of E2F1, a human cell egcle r
lator. Ren et al. [2002] have studied the targets of E2F1 and basediodetaled
analysis determined in their title that “E2F integrates cell cycle progression with
DNA repair, replication, and G2/M checkpoints”. While all GO analysis meth-
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ods correctly identified E2F1's role in controlling various aspects of theypee,
GenGO was only method to rank all three functions (replication, DNA repair a
G2/M checkpoint) in its top 5 categories. (See Table 2.6).

Classic Parent-Child | Elim Weight GenGO
DNA cell  cycle| cell division | DNA repli- | DNA repli-
metabolic process cation cation
process
cell  cycle| cell cycle DNA repli- | mitosis Double-
process cation strand
break repair
cell cycle DNA DNA repli- | cell division | mitotic
metabolic cation checkpoint
process initiation
DNA repli- | response tg mitosis regulation of| mitotic sister
cation endogenous progression | chromatid
stimulus through cell| segregation
cycle
cell  cycle| regulation of| regulation of| DNA repair | G2/M tran-
phase cell cycle cyclin- sition of
dependent mitotic cell
protein cycle
kinase
activity

Table 2.6: Categories for Human E2F1 targets identified by ChIP-chipriexpe
ments.

2.7 Summary

The use of GO to analyze large datasets is rapidly becoming a standaedyrec
in many high throughput experimental studies. The ability to utilize decades of
prior work that have been curated into a single database allow reseatolyain
initial insight regarding their experiment and can often suggest nopalthgsis for
follow-up work [Ihmels et al., 2002, Eisen et al., 1998]. However, in meases
the result of this GO analysis is a long list of significant categories. This snake
it hard to interpret the results and determine what the most significantly edrich
functions are in the selected set of genes.

In this chapter we described a generative model for identifying a smadkesub
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of categories that, combined, explain the observed set of genes. Tirdhaiy

we presented maximizes a global likelihood function to achieve this task. Our
results suggest that GenGO is effective in minimizing false positives whileeat th
same time it can accurately balance the set of categories it returns, inchating
high level and specific categories. GenGO was shown to work very wedbth
simulated data and real data from a number of different experimentaligeesn
and species. Unlike other methods it does not require an extra steprfectiug

for multiple hypothesis testing resulting in categories that are both signifioant a
unique.



Chapter 3

|dentification of Cell Cycle
Regulated Genes

3.1 Overview

The cell is a dynamic system in which gene expressions are highly regulzied
ing the cell cycle, a cell goes through several stages to replicate its gevaédal
and organelles, and divide into two daughter cells. As a result, eventsdaa
this process are regulated with regard to the cell cycle. Especially, treereaany
genes expressed periodically, peaking at different stages of theyctdl

One of the first questions facing researchers is how to identify theseyotdl
regulated genes, or cycling genes. Many methods for identifying cyckemgsg
have been suggested. For example, Spellman et al. [1998] used Foaner
form to identify cycling genes in budding yeast. Wichert et al. [2004kented
statistical methods for identifying periodically expressed genes and apbéed
(separately) to human and yeast. Lu et al. [2004] and Bar-Josefdh[20@4]
presented methods for deconvolving yeast expression data in orderrtovithe
identification of cycling genes. De Lichtenberg et al. [2005] used sabvet ook
at the amplitude of the expression value peak as well as the peak in therFourie
spectrum around the cell cycle period. All of the above methods identifgyde
genes by ranking genes insingle species according to a score computed from
their expression time series.

With microarray data available for more species, researchers havealstarte
study the conservation of the cell cycle expression. Surprisingly, Rugtial.
[2004] found the expression of cycling genes are not well congdreéveen two
closely related species, budding and fission yeast. There could be gasons
for this discrepancy. One possibility is gene expression is not cordseoue an-

35
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other possible explanation is lists for different species are derived asfierent
methods, which have poor consistency.

In this chapter we present a method for combining experiments from multiple
species. Our algorithm combines sequence and expression data to itlemtt
of cycling genes. By considering sequence information we can usegsrand
homologs to overcome noise and cutoff problems in individual species.sidg u
expression data we can detéatctionalconservation, that is, sets of genes that are
not only similar in sequence but also similar in function.

We use probabilistic graphical models, and in particular Markov randddsfie
to combine these data sources. We represent genes as nodes in thewgtap
edges corresponding to sequence similarity as determined by a BLASH &&wh
node (gene) is assigned an initial score which is determined by the express
experiment. Starting with this score we propagate information along the etiges o
the graph until convergence. Thus, if a node with a medium score is cath®
a set of nodes with high scores, the information from the neighboringsreatebe
used to elevate our belief in the assignment of this node, and vice versa.

3.2 The Model

P9%°%°9%° ..
(OO0 GaRT) ™0 mm

0B B0 i@
00000606

Figure 3.1:A graphical model for two species. Dark nodes are score noepsesenting
the score derived from such experiments. The lighter nodegene nodes. Gene nodes
are connected by edges if their sequence is similar.

We formulate the problem of assigning cyclic status to genes using similarity

network models introduced in the previous chapter. There are two typesies in

the graph we use for this problem (see Figure 3.1). The first redsegenes and

the second represents expression scores from the related cell gpeléngents.
Edges between gene nodes correspond to sequence similarity, and eagight
which depends on that similarity. These edges are used to capture theoratd
dependencies of phylogenetically related genes. All edges betweameangde

and its corresponding score node have the same weight and cowldsgba gene
nodes’ potentials.
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To generate the edges between potential homologous genes, we rufifBLAS
between all pairs of genes in the two species. We insert an edge betwegaries
nodes (either belonging to the same species or to two different speciesjrif th
BLAST score is higher than a fixed threshold. We use a conservatio#f such
that we are fairly confident that when an edge is added to the graph, ahgetves
it connects are very likely to be homologous. While we use a cutoff to determine
whether we place an edge or not, edges that are present in the geaphighted
based on their BLAST score. The resulting graph comprises of a senhokcted
components, as demonstrated in the diagram in Figure 3.1.

To represent the latent status of a gene (whether or not it is a cell oy g
we associate a hidden varialflg with each gene nodeC; = 1 means that this
gene is cell cycle regulated, otherwiSg= 0.

Based on the definitions above, the joint probability distribution over the ran-
dom variables”; of this model is defined as follows [Pearl, 1988]

L= T [T va(cicy) @)

i7j

wherey; (C;) is the node potential function (derived from the score nodg)C;, C;)

is the edge potential function, aadis the partition function, i.e. the normalization
term. Potential functions capture constraints on a single variable or bebngan

of dependent variables. For example, if two gene nadewdj are connected by
an edge with a large weight, it is likely that they are functionally related. Thus,
the potential function will penalize assignments that are different in thereliffe
nodes (e.g., setting; to 0 andC} to 1). Below we discuss the cycling score and
the potential function in detail.

3.2.1 Cycling Scores

A key to our algorithm is to apply a consistent scoring method to all specigs use
The method we use takes into account both the periodicity and the amplitude of the
time series, and use the same method on all datasets.

Once such an expression score has been derived, each sceris rmsgigned
the corresponding gene’s scorg, We assume tha$; is drawn from a mixture
distribution. Specifically, we assume two different distributions (for epelties):
a cell cycle specific distribution, which applies to all genes that are cdk cgg-
ulated, and a null, or background distribution which applies to all otherggene

An important practical issue is to choose the form of the two component dis-
tributions of theS; scores. While the Gaussian distribution has been successfully
applied to model expression values, here we are modeling scores tlukrsed
from such values, and not the values themselves. In many cases,ceuel are
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derived by taking the max value of some transformation. Cell cycle sctoelaa

tion involves taking the maximum peak of the expression time series or the Fourier
transform and the resulting distribution often has a heavy tail and is more@pp
ately modeled as an Extreme Value Distribution (EVD). This heavy tail projmerty
clearly noticeable in the scores assigned to known cycling genes as saeth
Figure 3.2.

Score Distributions of Human Cell Cycle
Genes and Non Cell Cycle Genes

~ rlepe

e genes

density
0.00 0.02 0.04 0.06 0.08 0.10 0.12

-30 -20 -10 0 10
cycling score

Figure 3.2: Empirical distribution for genes annotated as cycling in GO anéshe

of the genes. As can be seen, these two distributions significantly overdding

it hard to infer cyclic status from the expression score alone. The dgirdution

of the cell cycle genes has a heavy tail, and looks more like an Extreme Value
Distribution than a normal distribution.

The EVD is defined using two parameters: locatiohgnd scalek). Its PDF
is given by:

]. a—x a—x
p(«T) = EG_QXP{ b } e b

The location and scale parameters of EVD are similar to the mean and variance
parameters of the Gaussian distribution. As in a Gaussian, they control thee mo
and the spread of the distribution, though they do not necessarily porréso the
mean and variance. Using the EVD mixture model we need to fit four paramneter
for each speciesy, by, a1, by where

Sz‘ ’ Cz =0 ~ EVD(ao,bo)
Si ’ Cz =1 ~ EVD(al,bl)
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The values of these parameters are fitted to the score distributions using-an EM
type algorithm. As with any EM algorithm, the initial guess plays an important
role in reaching a good local maximum. To initialize the parameters for the null
distribution we permute each of the original time series randomly to simulate the
expression levels of non cell-cycle genes. Scores are calculatedfesmartificial
expression data, and are subsequently used to estimate the parametersudif th
score distribution. To initialize the score for cell-cycle genes, we compile a list
of such genes that appear in the corresponding papers and usetde aicthese
genes to derive a maximume-likelihood estimate of the parameters.

3.2.2 Node Potential Function
The node potential function is defined using Bayes rule as

Using the EVD mixture assumption, the potential function becomes

tio
;(0) =Pr(C; =0|S;) = )
i (0) r(C; = 0|S;) .
(1) =Pr(C; = 1|S;) = o

where

1 _ ap=5; | ap—5;
tio=(1—-F)- %e eXp{ bo }e b0

tin =P - it27(3>(r){{111’7151}e%
b1
andP. is a prior probability for cycling genes in the species to whitielongs.
In practice, we requirg, = b, so that the two score distributions have a similar
spread. This guarantees that the posterior score will have the saniregraskhe
expression scores when there are no edges in the graph.

3.2.3 Edge Potential Functions

Our edge potential functions capture the a-priori functional similarity betvgene
pairs. This is based on our assumption regarding evolutionary cotisaredgene
functions, namely, that genes that are highly similar in sequence are likely to b
similar in function. We use BLAST [Altschul et al., 1990] to determine seqeenc
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similarity. As mentioned earlier, we do not transform these BLAST scores into
binary features. Rather, we use the similarity score to determine the edgéiglote
which penalizes contradictory assignments. The penalty is proportionawo h
close the two genes’ sequences are.

For each query sequence, the BLASTALL program returns an Eevahal a
bit scoreS. The relation between them I = mn2~° wherem is the length of
the query sequence ands the length of the genome of the second species. Note
that bit scores are not “symmetric” as they depend on the total genome.|diogth
overcome this, and generate a single similarity score for pairs of genestwhes
weight on edgéi, ;) to

1
wij = 5 (bij + bji)

whereb;; is the BLAST bit score of gengagainst geng. Usingw; ; we define
the edge potential as

$if(Ci, C) = 27O O,

This potential function penalizes assignments that do not agree betweescted
nodes. )\ is an externally specified parameter that controls the impact of edge po-
tentials relative to the node potentials.

3.3 Learning the Parameters of Our Model

The model parameters we need to learn are the score distribution paraofeters
every species. We learn the score distribution paraméigr$g, a1, b;) in an it-
erative manner using an EM-style algorithm. We start with an informativesgues
for the score parameters, as mentioned above. Based on the scoretitstsilve
determine a posterior assignment to nodes using belief propagation, ascwssd
below. Following convergence of the belief propagation algorithm we @esgstit)
label assignments to update the score distribution parameters. We therthepea
steps by performing belief propagation again based on the updateddiéstiteu-
tions and so forth until both the label assignment and score distributiomptaes

do not change anymore.

3.3.1 lterative Step 1: Inference by Belief Propagation

To infer the node status variablég, we need to compute the marginal posterior
label distribution on each gene node. This posterior is hard to computelyglirec
because of the intractable normalization teéfnm Formula (3.1). Fortunately, for
these types of graphical models, we can use a standard belief propaajgtathm
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for inference avoiding the direct calculation of thegerm [Pearl, 1988]. Note that
our graph is loopy and thus the belief propagation algorithm is not guachite
converge to a global maximum. Still, as was shown in Yedidia et al. [2003], in
practice these algorithms achieve good results in loopy networks as well.

The belief propagation algorithm consists of two steps: ‘Message passing
where each node sends its current belief to all its neighbors, and ‘belizite’,
where nodes update their belief based on the messages received. ciiseuthe
messages depend on the node’s expression score and the belieksftiggnare
similar in sequence. The algorithm is summarized below.

1. ‘Message passing’. The messages sent by hameode;j about its belief in
an assignment af to j is :

mi,j(l) — Z (% ¢z] k 1 H mnz

k=0,1 neN(i)\j

Where N (1) is the set of neighbors of noden the graph. Intuitively, this
message informgabouti’'s agreement with an assignment of 1jtdn order

to determine this; takes into account its own belief (from its score node),
the strength of the edge betwegind;j and the belief of’s neighbors about
the right assignment th For the belief in a 0 assignment we simply replace
every 1 with 0 in the above equation. Note that the weighting parameéser
already incorporated into the edge potential function and so it is incdgzbra
into the message as well.

2. ‘Belief update’. The belief of in an assignment of 1 is computed by setting:

() 1/1”1% H m]z

JEN(3)

wherev is a normalization constant to make beliefs sumto 1. As can be seen,
i's belief depends on both its original score and the messages it refmined
its neighbors about what they ‘believe’ should be assigned to

3.3.2 lterative Step 2: Updating the score distribution

Using the belief computed in the inference step, we update the score distributio
parameters. Our goal is to maximize the auxiliary funcigf®, ©9)), which is
defined as the expected log likelihood of the complete data over the obseored
given the parameteB®() = (a!?, a\?, 5(9)) at theg'th iteration.

We were unable to find a reference for deriving update rules for tHe Eik-
ture distribution. We have thus derived these ourselves. In generatritee cin
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update rule for this distribution we need to simplify tgefunction and separate

the parameters into two terms which can be maximized independently. If we re-
quire thatby = by, then for each species we have three parameters: two location
parametersg anda; and one scale parameterWe can find the location parame-
ters that maximizé) easily if we knowb, but there is no close form solution for
However, we can use numerical methods to solvéfdrhe final update rules for
each species are as follows

N
P
al(g+1) = —log #, [1=0,1
ED DAy o7
1
plotl) — —
B

where N is the number of genes in that speci€g, represent®(C; = [|.S;, ©9),
[ = 0,1, andg is the root of the equation:

1 _Zz:{o&} Zf\; SiPi
P N
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Equation (3.2) can be solved using linear line search since the reascenadpte
of 3 is not large. Note that the Newton-Raphson method does not work here,
because the solution is very close to the local extrema of the function.

Our algorithm is summarized in Table 3.1.

3.4 Identification of Conserved Cell Cycle Genes

3.4.1 Simulated Data

To test our model using simulated data we first generated the graph strircior
the two species as discussed before. We then generated labels (i.e.g oyclin
not) for nodes in the graph using a Gibbs sampler method that took into @ccoun
previously assigned neighboring nodes when assigning labels to individdes.
After generating the labels we assigned scores to nodes. We used ®ve (ov
lapping) score distributions, one for the nodes with= 1 and the other for those
with C; = 0. In all experiments we used a fixed distribution for one species. How-
ever, each experiment used a different distribution for the secorulesperhese
distributions varied in their separability, ranging from highly separable tolyigh
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Table 3.1: Algorithm for combining microarray expression data from multiple
species.

Input:

1. For each gene, expression scfye

2. Graph structure (edge weights)

Output:

For each gene its posterior cycling stat(s,
Initialization :

For each species compute estimatesifor, andb
using permutation analysis and original lists

Iterate until convergence

1. Carry out Belief Propagation to determine
a posteriotC; for each gene

2. Use the computed posterior to recompute the EVD
parameters for the score distribution in each species

overlapping (see Figure 3.3). We have next hidden the node assignenshissed
our algorithm to infer these assignments. We repeated this process 10 times fo
each set of score distributions.

Figure 3.3 presents the results of two of these experiments. As can hdgeen
relying on the graph structure we were able to improve the recovery otibésiel
assignments when compared to label assignments that are based on af¢htoff
score alone. As the separation between the two distributions became smaller the
difference between the two methods became more apparent. For the kesdhéep
distributions our algorithm performed much better than the score only method by
relying more heavily on the distribution of the other species.

These results indicate that under the evolutionary assumptions we stated in
the introduction, our algorithm can improve the assignment of cycling gergks a
correctly recover more such genes.

It is worth noting that exact inference in general graphs is a NP-hatglgm.
Belief propagation is an efficient algorithm for approximate inference raptip
with loops. As a result, in addition to the noise in microarray measurements, the
computed posterior probabilities are also affected by how good the dpaticn
is.
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Comparing Graph-Based and

Score Distributions with Better Separation Score-Only Methods on Simulation Datad
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Figure 3.3: Simulation results. 20% of the nodes were labeled with 1 and the
rest were labeled with 0. (a) Score distribution and (b) Recovery rata ¥eell
separated distribution. Both score based (dashed line) and gragh(baké line)
methods were able to correctly recover the node assignments. (c) Sstateidon
and (d) Recovery rate for an overlapping score distribution. Note thdewur
graph based method can still achieve good precision and recall the lsreed
method does significantly worse, especially for the higher recall rates¢at®%).

3.4.2 Identification of Cell Cycle Genes

To date, cell cycle expression was measured in more than six species. nrAs me
tioned above, the two most studied species are budding yeast and huBwhs.
provide access to a number of different validation sets, and are théid fme
comparison of our algorithm and score based methods.

We downloaded expression data from the corresponding websitesfbuth
ding yeast [Spellman et al., 1998] and human [Whitfield et al., 2002] celecyc
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papers. All protein sequences for genes in these species were doedlfrom
the NCBI ftp server (http://ftp.ncbi.nim.nih.gov). We used BLASTALL [Altschul
et al., 1990] to score all pairs of genes in both species.

Identifying Cycling Human Genes

To test the success of our algorithm for the task of identifying cycling huyeaes

we used the GO human annotations. Of the 7254 human genes in the dataset we
used, 498 were annotated by GO as cycling. We first ranked humas gsimg
expression scores and the naive method mentioned above. Next, veel thiekn

using the posterior score computed by our algorithm.

Performance of Graph-based Model
on GO annotations

100 120

80

60

# cell cycle genes recovered
40

20

— gra —based
- - combined rank
score only
- random

0

0 200 400 600 800 1000
top # of genes

Figure 3.4: ldentification of Human Cell Cycle Genes. The Y axis is the nuofber
GO annotated human cell cycle genes in the top 1000 genes with highestgreste
Our method (solid line) performs better than the score only method (dashed line)
and the naive method for combining sequence and expression data (dwod)ed
Specifically for lower score thresholds our method achieves an improveshen
over 20% over both other methods in terms of the number of accuratelyerecbyv
cell cycle genes.

Figure 3.4 presents the precision recall curve for GO annotated cyaimgsg
for the top ranked 1000 human genes. Based on the analysis in the opgial
per [Whitfield et al., 2002], roughly 1000 genes are determined to be gyclin
which is why we focus on the top 1000. As can be seen, all three methddsmpe
substantially better than a random ordering (dashed-dotted curve).aCiogpur
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method with a score based method we see that while at the very high expressio
score (bottom left) we do slightly worse, overall, and in particular for loseeres

our algorithm provides results that are superior to score based metSpdsifi-
cally, for the top 1000 genes our algorithm was able to rec28&r more genes
(135 vs. 110) when compared to both, the score only method and the nalvedne
for combining sequence and expression data.

Note that while we relied on the GO list for this analysis, it is not complete.
It is possible that there are many cycling genes which are not on that lists, Th
the recall rate is probably much higher than the one we report here. Asawe
Figure 3.2, there is substantial overlap between the expression sdoitaitlizy of
genes annotated as cycling and genes those do not belong to this categjdng
it hard for a score only method to identify a large set of cycling human gdnes
contrast, our graph based method was able to partially overcome this prbblem
relying on the graph neighborhoods.

While our algorithm has achieved better performance, it also makes some er-
rors. We show one of the false negatives, budding yeast CDC5, ineF3gb. From
the expression time series, CDC5 is clearly a cycling gene. Its posterimalptiby
falls below the threshold because of non-cycling homologs in its graph maigh
hood. However, we should note that these cases are rare. For examlglévo
obviously cycling genes are not included in our list cycling genes in bigdgiast,
which means even if the false negatives is ten times the number, the false nega-
tive rate would still be less tha3f%s. On the other hand, it is harder to determine
false positives because we don't have a list of non-cycling genesxXyect false
positives would be less of a problem because our algorithm only elevateesh
terior of genes with at least a border line cyclic score. In fact, the rdmRast
genes doesn’t change much when we compare the result from ouitfalgaevith
the result based on cyclic scores alone (Figure 3.6).

Convergence of Loopy Belief Propagation

In general, belief propagation is not guaranteed to converge on h giiiploops.
Several sufficient conditions for the algorithm to converge to a unigeel fpoint
are known [Tatikonda and Jordan, 2002, Ihler et al., 2006, Mooij lappen,
2007]. For example, one sufficient condition that guarantees the igEnee of
Loopy belief propagation is

max > logd(thu) < 1 (3.3)
ueN(t)
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Figure 3.5: Example of a false negative cycling gene. Budding yeastsGp&
cycling gene, but was not recovered by our algorithm.

where

2 Yis(a, b)

) = S st d
is the dynamic range measure of potential functign For our model, the dynamic
range measure of edge potential function is simply exp{A\wg }, wherews, is
the edge weight, and is a non-negative hyper-parameter controlling how much
a gene’s cycling status is affected by its homologs’ status. It can be satetinéh
graph we construct from sequence similarity satisfies the sufficienttammad/hen
Ais small (close to zero). Using condition in Eq 3.3, the algorithm is guaranteed to
converge on the graph for four species wher A <~ 7.7 x 10~5. However, this
condition is too conservative. Empirically, Loopy belief propagation cage®on
this graph when\ < 0.01, but may fail to converge with a larger To put it into
perspective, tha we learned and showed to improve prediction accuracy is around
0.0005, which is within the range where Loopy belief propagation converges.

Comparison with Graph Cut Algorithm

Graph Cut is another popular method for learning labels in Markov rarfosds
[Boykov et al., 1998, 2001], which can use both labeled and unlabeliedBlum
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Figure 3.6: Comparison of expression score ranks and posterics.rdrte ex-
pression score rank and posterior rank for budding yeast gefesx-axis is the
expression score rank (the lower the rank the more cyclic the gene isileterto
be by the scoring method) and the y-axis is the rank based on our mettaid, (ag
the lower the better). As can be seen, the ranks for most of the genes cltamge
much. The red dashed line represents the posterior threshold usecttegelieg
genes, and the green dashed line is the corresponding threshold ifkpngssion
scores are used. Almost all genes that are elevated by our method tlicastac
tus have a rather high cyclic expression score (though some are nighaastthe
cutoff for score alone, which is where the two methods differ).

and Chawla, 2001]. Similar to belief propagation, Graph Cut is an appréxima
inference algorithm that finds assignment of node labels that maximizes thie like
hood. It works by looking for a set of edges with minimal total weight (a minimum-
cut) that separates the positively labeled and negatively labeled nodies. rék
moving the cut, an unlabeled node is assigned a positive (negative) labed if
reachable from a positive (negative) node.

Tappen and Freeman [2003] compare Graph Cut and belief propaguation
stereo vision problems, and in their study the results from both algorithmeiare ¢
parable. Graph Cut is able to achieve lower energy on those problembetiah
propagation, but empirically it does not imply better performance in recuyéne
ground truth. In another study by Mahamud [2006], the author sholief peop-
agation can achieve better performance. It is interesting to see whetyeh Gut
can achieve better performance for our model. Both Graph Cut and petipé-
gation are polynomial-time algorithms. Standard max-flow algorithms can be used
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to solve for th minimum-cut problem, and the worst case runtime complexity is
O(N3), whereN is the number of nodes in the graph [Boykov and Kolmogorov,
2004]. In contrast, the time complexity of belief propagatio®{§'N), whereT

is the number of iteration to converge [Mahamud, 2006]. Empirical studwsho
the speed of Graph Cut algorithms is efficient and comparable to beliehgaep
tion on vision problem where the Markov random field models are gridtstred.
However it is not clear how fast the two algorithms can run on our problem.

For comparison, we apply the standard max-flow algorithm [Ford and Fulk-
erson, 1956] to learn the human cell cycle genes, using budding yelasycle
genes as labeled data. Because there is no labeled data for non-cgrigsy ge
randomly choos&0% genes from unlabeled genes to use as negative training data.
From the results, we can see the Graph Cut algorithm can achieve simdesiqgme
and recall, but it runs much slower than the belief propagation algorithm.

Algorithm Recall | Precision Time
Graph Cut 0.14 0.26 37 min
Belief Propagation 0.14 0.27 1 min 22 sec

Table 3.2: Comparison of Graph Cut and belief propagation.

3.4.3 Identification of Groups of Orthologous Cycling Genes

By incorporating information from sequence similarity, we are able to identify a
more consistent set of cycling genes. To further discover groupstiodlogous
cycling genes across species, we apply the Markov clustering (MClyitdm
[Enright et al., 2002] to the graph of cycling genes. MCL has been stiowvork

well in detecting protein families, and it can handle the presence of multi-domain
proteins in the graph. The resulting groups provide candidates foefuctinser-
vation analysis in the next section. At the same time, by looking at the grapi-neig
borhood represented by these groups, one can easily see the powealgorithm

to recover cycling genes with relatively weak expression scores. utegraph
neighborhood is shown in Figure 3.7. Fission yeast nda3, a microtubmipazo
nent, is a known cell cycle gene [Javerzat et al., 1996] . On the top ofé-&)7 we

plot the graph neighborhood of nda3. As can be seen, it contains nmamynkcy-
cling genes from the four species. On the bottom we plot the expressiaasfin

8 different fission yeast cell cycle datasets. As can be seen, in astgas of these
conditions nda3 seems to be cycling (the right panel). However, eithaubedts
expression levels are low in the other experiments or because of otterimegptal
problems, it does not seem to be cycling in the other conditions. Usingssipne
data alone, we would not assign a cyclic status to this gene. Howeveydeech
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Figure 3.7: Microtubule component clique and expression profiles &iofig/east
Nda3 in eight experiments [Rustici et al., 2004, Oliva et al., 2005, Peraj. et
2005]. Nda3, a known cell division gene [Javerzat et al., 199GRind a high
cycling score but is not one of the 600 top cycling fission genes basedpas-
sion analysis. Using our method its score is correctly elevated due to itsreeque
similarity to high scoring genes.

3.5 Biological Analysis of Conserved Cycling Genes

We applied our algorithm to the expression time series of budding yeastnfissio
yeast,Arabidopsis and humans, using data from [Spellman et al., 1998, Rustici
et al., 2004, Menges et al., 2002, Whitfield et al., 2002]. After obtainindiske
of cycling genes in each species, we divided them into several gragesion
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whether a gene is specific to only one species, or is conserved in twe, thrall
of the four species.

We compare conserved cycling genes with species-specific cycling,gaesne
well as the existing lists of cycling genes. In the following discussion, wetgen
the set of human cycling genes conserved in all four species by ¢6&4and
those conserved in three species (humans and the two yeasts) by, GGG 3tc.

3.5.1 GO Analysis of Conserved Cell Cycle Genes

The CCCa3 list gives us our first look at the conserved core of peadiditran-
scribed genes across evolution. Even though CCC3 contains relaivelgenes
(0.4% to 1.3% of the total number of genes for each species) many of these genes
play a role in key processes required for growth. Using the enrichmeiy-a
sis tool (GenGO) developed in Chapter 2, we identified categories thatemer
riched in this set. For budding yeast these categories include “mitotic cddl"cyc
(p-value =4 % 10~17), “DNA replication” (p-value =2 x 10~'3) and “chromatin
assembly/disassembly” (p-valued= 10~'2). Similar enrichments were found for
human conserved cycling genes and for fission yeast. For example, “nuiétitic
cycle” (p-value =3 * 10~15), DNA replication (p-value 9 * 10~14), and “spindle
organization and biogenesis” (p-valué =10~ 7) are enriched in humans, and cell
cycle (p-value =1079), “chromatin assembly/disassembly” (p-value6=") are
enriched in fission yeast.

3.5.2 Interaction between Cycling Yeast Genes and Key Tragsiption
Factors

In eukaryotic cells, gene expression is regulated by transcription facidarge
class of proteins that are able to bind to DNA. For some species, reseatwve
found transcription factors that play an important role in regulating perigelie
expression. As a result, cycling genes are more likely to be regulated by the
transcription factors. We used a dataset for protein-DNA binding [idarbet al.,
2004] to compare our budding yeast results with the original list of Spelktah
which was based on score alone. We extracted the binding informaticad {p<
0.005) for the nine transcription factors that have been previously rstowglay

key roles in regulating cell cycle progression [Simon et al., 2001] (FigB€a)).

We found 2.5% more interactions between these nine TFs and the top 830 gene
on our list when compared with the Spellman list (621 vs. 606, note that a gene
could be counted multiple times if more than one TF interacts with it). We also
tried the binding information with a stricter p-value 0.001), where our method
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also found slightly more interactions (477 vs. 474). While this improvement is fa
less dramatic than the results presented for the human data, it still implies that our
method can improve cell cycle assignment even for high quality datasets, dike th
yeast cell cycle expression data [Wichert et al., 2004].

We also compared the DNA-protein interaction between the cycling genes and
two human transcription factors known to involved in cell cycle control [Bieai.,
2002] (Figure 3.8 (b)). In both cases, the percentage of genesltimutine tran-
scription factors is significantly higher for the conserved list than for thdris
Whitfield et al. [2002], and both are higher than the human-specific list.

3.5.3 Gene Expression in GO Phase or Developmental Arrest

In contrast to normal dividing cells, cells in GO phase do not grow or divilth
this phase, genes that are part of the cell cycle machinery are probgblyssed
at a lower level or not expressed at all. We use the data in [Gasch €@} @
test this idea. As we show in Figure 3.8 (c), after entering GO phase, dnage/
expression level of conserved cycling genes becomes significantly tbese that
of the budding yeast specific genes, while the list in [Spellman et al., 1998] lie
somewhere in between. This finding supports the view that the core ckdlopge
chinery enters a low activity state while species-specific cycling genésipate

in other pathways, e.g. metabolic pathways, necessary for maintaining itige liv
state. It is also possible that the latter genes are responsible for réagtitree
core cell cycle machinery to enter the mitotic cell cycle again.

For Arabidopsis we test the similar idea using expression data iAebidop-
sis mutant whose flowers enter developmental arrest following stage 12f\ag
et al., 2005] (Figure 3.8 (d)). The cells in the stem of the mutant are ustiek as
control. It can be seen, following the developmental arrest, the averquession
level of conserved cycling genes goes down while it remains the samernmahor
dividing cells in the stem.

3.5.4 Protein-Protein Interactions Between Cycling Genes

We further show that there are much more protein-protein interactions acoong
served cycling genes than average cycling genes, and so they ardikalyré¢o
work together in a few modules than spreading over a large set of moddasse
large scale protein-protein interaction data sets in [Gavin et al., 2006aKretal.,
2006] for budding yeast and data in [Rual et al., 2005] for human c&tsgen-
erate an empirical distribution of interaction numbers, we randomly dranetsibs
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Figure 3.8: (a) shows the number of interactions between budding yeastge
genes with nine key transcription factors involved in cell cycle controkipismn
et al., 2004]. Our list of cycling genes has slightly higher number of bintliag
those in [Spellman et al., 1998]. (b) shows the percentage of cycling hgeres
bound by two cell cycle transcription factors [Ren et al., 2002]. Caseskeycling
genes have a significant higher percentage of bindings than that in [$ithéfial.,
2002], which is in turn higher than that in human specific cycling genesh@ys
the average expression level of cycling budding yeast genes in @@agéasch
et al., 2000]. Conserved cycling genes have significant lower awarggression
level than those in Spellman et al., while budding yeast specific cycling gewes
a higher expression level. (d) Flower cells of Arabidosis6 arf-8 mutant show
developmental arrest at stage 12, while cells in stem are normal [Nagph| e
2005]. We compare the average expression level of conservedgygsimes and
those in [Menges et al., 2002]. The conserved genes have a lowessiqn level
during developmental arrest. (e), (f), and (g) show the number aéiprprotein
interactions between conserved cycling genes, comparing with the nurminer o
teractions within a random set of cycling genes [Gavin et al., 2006, Kregal.,
2006, Rual et al., 2005]
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from the list of all cycling genes, and count the number of interactions wéaat
subset. It can be seen, for budding yeast there are significantly nieradtions
between the conserved set (Figure 3.8 (e) and (f)). While the interacimiong
conserved human genes are not as significantly enriched (Figure)B.8/¢gnote

that there are much fewer interactions in the human data set and there might be
more unknown interactions.

3.5.5 Gene Expression in Human Normal Tissues and Cancer Cell
Lines

We compared the average gene expression level in human normal tishees,
most cells have stopped growing. We used the data set in Shyamsundar et a
[2005], and tested the significance of differences by t-test. For allesssuthe

data set, we find that the expression of conserved cycling genes isttamghat of
human-specific cycling genes, and genes in Whitfield et al. [2002] liesvgbete

in between. In 22 out of 36 tissues the difference between the coudssev@and
genes in [Whitfield et al., 2002] is significant (p-valge0.05), and the difference
between the latter and human-specific genes is significant in almost all t{8&ues
out of 36, p-value< 0.05) (Figure 3.9 (a), (b)).

In contrast to cells in normal tissues, cancer cells usually divide agggbss
and cell cycle regulated genes are expected to be expressed in higdisr /e
used data for two colon cancer cell lines from Provenzani et al. [288& found
conserved genes are indeed expressed in higher levels than thosgfialut al.
[2002]. We have found further support when comparing expredsiais of an
asynchronous cell population where cells are dividing, and that of hualés in
GO phase, where cells have stopped growing. (Figure 3.9 (d)). Tiression level
of the conserved set is high in the former and dips in the latter populationhwhic
makes it a better indicator of the cell cycle state of the population.

3.5.6 Percentage of Conserved Cycling Genes

Figure 3.10 presents the number of conserved genes for the difear@ntionary
distances represented in our datasets. About 21% of the budding siod fieast
cycling genes reside in cliques containing genes from these two spe@&2jC
When adding human genes, roughly 10% of cycling yeast genes and 8% o
cling human genes are included in such cliques (CCC3). Finally, between 5%
and 7% of cycling genes in all four species are conserved in seqaedoexpres-

sion (CCC4). We note that although our original sequence similarity criterém
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Figure 3.9: (a) and (b) show the average expression levels of cyaimgsgn nor-
mal human tissues [Shyamsundar et al., 2005]. In all cases, consgriaty

genes have significant lower expression levels than human-specilicgcgenes.
(c) shows the average expression level in two colon cancer cell limeggRzani
et al., 2006]. Conserved cycling genes have a higher averagessipréevel than
those in [Whitfield et al., 2002]. (d) shows the average expression lgvaks/n-
chronous cell population and the GO phase [Cam et al., 2004].
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based on BLAST e-values, following the clique analysis the resulting sets ar
very good agreement with curated homology databases Penkett etCGa].[Zor
example, 82% of budding yeast genes in CCC2 have a curated fissishhgea
molog in CCC2. Similarly, 82% of fission yeast genes in CCC2 have a curated
budding yeast homolog in CCC2.

ccc4
39 (7.8%)

72 (9.0%)
68 (11.3%)
83 (8.3%)

cce2
154 (19.3%)
140 (23.3%)

600 (100%) 1000 (100%)

Arabidopsis S. cerevisiae S. pombe H. Sapiens

500 (100%) 800 (100%)

Figure 3.10: Conservation of cycling genes: percentage of cortseyeting genes
in the four species.

3.5.7 Maotif Analysis for Budding and Fission Yeast Genes

To further validate our findings of a large overlap between the cyclingganthe
two yeast species, we turned to motif analysis. Several transcriptiondaate
conserved between budding and fission yeaah[8r, 2005]. A possible explana-
tion for expression conservation (or lack thereof) is in the conservétiolack of
conservation) of a binding motif for these cycling genes.

We started by looking at genes bound by the budding yeast factor Swiéhw
regulates transcription at the G1/S transition [Breeden and Nasmyth, M8 &x-
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tracted three lists for this factor. The first, denoted BY6, contained cyblidging
yeast genes in CCC2 determined to be bound by Swi6 [Harbison et al], 204
second list, denoted FY6C, contained fission yeast genes that bothn/@@C?2

and had homologs in BY6. These genes were determined to be cycling and co
served by our method. The third list (FY6NC) contained non-cycling fisg@ast
genes with cycling budding yeast homologs bound by Swi6. This latter ligtser
as a negative control because it contains genes that have lost tHigig sfatus be-
tween the two species. Four motif finders were run on each dataset; SERIBR
[Mahony et al., 2005b,a], BioProspector [Liu et al., 2001], Conseft¢edz et al.,
1990], and AlignACE [Roth et al., 1998] (see Materials and methods, bétow
details). All four motif finding algorithms were able to identify the Swi6é motif in
BY6 and FY6C, indicating that this motif is conserved between the two species,
at least for some of the conserved cycling genes. In sharp contoast,af these
motif finders was able to identify the Swi6 motif in the upstream regions of genes
in FY6NC.

We have extended the motif analysis discussed above to study ten additional
transcription factors that were determined to play a key role in regulatinghgyc
genes in budding yeast [Pramila et al., 2006, Simon et al., 2001]. Foo¢tuse
factors we extracted all cycling budding yeast genes determined to tel tyu
this factor [Harbison et al., 2004] and their fission yeast homologs. Adievéor
Swi6, we further divided the fission yeast genes into two sets; the firdhios
fission yeast genes in CCC2 and the second (a negative control lishjreonon-
cycling fission yeast homologs of cycling budding yeast genes. Nextaw¢he
four motif finders on each dataset.

The results are presented in Table3.3. Here we report on the numbetibf mo
finders that identified the correct motif for each factor and on the ptxgerof
genes in the set that contained this motif. Similar to the results obtained for Swi6,
the other two G1/S factors, namely Swi4 and Mbp1, exhibit the optimal motif
conservation pattern; the expected motifs are found in both the fissiohgadhs
cycle genes and the positive control of conserved budding yeastyod genes,
but are not found in the negative control set of non-cycling fissi@stygenes. For
G2/M, the Fkh2 sets display similar, although less significant, pattern (twauof fo
motif finders identified the correct motif for the cycling set). However, Fahd
Fkh2 motifs also appear, although less strongly, in the negative contsol Be
total, FKH-like motifs are present in eight of the 11 negative control dega3ée
M/G1 phase analysis is complicated by small dataset size. This may result from
the lack of conservation between the two species for this phadddB 2005]. As
a result, motif match for this set is either weak (Swi5) or nonexistent (Mcm1 and
Yox1).
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Positive Extended
Fission Negative control positive
Budding - yeast control (conserved control
yeast Transcription cell (fission yeast budding (all
factor .
phase cycle | non-cell-cycle yeast budding
genes genes) cell-cycle yeast
genes) CC genes
G1l/s Swi4 4 0 4 4
Swi6 4 0 4 4
Mbpl 4 0 4 4
G2/M Fkhl 0 2 1 3
Fkh2 2 2 1 2
Ndd1 0 0 4 4
M/G1 Mcm1* 0 0 3 4
Ace2 4b 0 (04 4
Swis ~2b 0 ~2b 1
Yox1 0b 0° 3b 3
Yhpl 0° 0° 1° ~ 10

Table 3.3: Motif analysis of the conserved cycling genes in budding asidriis
yeast. For each set and each factor we list the number of motif finders {oprjo

that identified the correct motif. Each motif finder often recovers multipleecorr
motifs, and each motif is associated with a list of predicted instances in promoter
regions. We report the percentage of promoters that contain instarecksted by

at least one-third of the correct motifs. The first and third columns ar€@@2
genes in budding and fission yeast, respectively. The second colummtynling
fission yeast genes with homologous cycling budding yeast genes. déitgoAal

data file 3 for further details: Mcm1 regulates genes in G2/M and M/@IThese
datasets contain ten genes or fewerweak matches to the known motif.

3.5.8 Essentiality of Conserved Cycling Genes

Finally, we show that conserved cycling genes are more likely to be edggmries,
without which the cell is unable to survive or to proceed through the celecy
normally. We carry out the analysis on both budding yeast and human cells.
Percentage of essential budding yeast geneg-or budding yeast, we use the
knockout data from th8accharomyceSenome Deletion Project consortium [Winzeler
et al., 1999]. We compared several sets, including the set of all cyolinggj the

set of conserved cycling genes, and the set of cycling genes with hgs(rie-
gardless of cycling or not) in other species. The last set is chosen o st

much information we can gain by incorporating microarray expression datzn

be seen that the set of cycling genes conserved in four spec@é’{) has the
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highest percentage of essential gends2%), much higher than any other sets in
the comparison (Figure 3.11).
Percentage of essential human geneBor humans, we base our analysis on large-
scale RNAI knock-down experiments [Mukherji et al., 2006]. In theidgtieach
of the 24, 373 predicted human genes were knocked down, covesirtg% of all
protein-coding genes in the human genome. Analysis of the resulting cells sho
that depletion ofl, 152 genes strongly affects the normal progression of the cell
cycle. We use this list of essential genes, and carry out the same armalysisdid
in the budding yeast. As we can see in Figure 3.11, the sets of consgulad)c
genes again have the highest percentage of essential gérigs for CCC3 and
17.3% for CC'C4). In contrast, the full set of cycling genes has similar percentage
of essential genes to a random set of genes of the same size. Combjmiegstn
data and sequence data in a naive way only slightly increases the pgeenta
essential genes 08%.

Together we show that, by combining sequence data and microarragsijre
data, we are able to identify a more coherent set of cycling genes.

3.6 Summary

By combining information from sequence and expression, we were ablentfid
a large set of genes as conserved in both sequence and cycling statasiofour
different species: budding yeast, fission yeast, humans, and Apaisdo

A number of previous studies comparing cycling gene lists derived indepen
dently for each species concluded that only a small number of genesreerced
between these species. For example, Rustici et al. [2004] concludezhtiid %
to 10% of cycling budding yeast genes have a cycling homolog in fission yeast.
Jensen et al. [2006] identified only five orthologous groups to be coedde-
tween the four species (aboli of the cycling genes). However, due to experi-
mental noise and difference in computing cyclic scores, direct compaoidists
cycling genes across species will significantly underestimate the numbenof ¢
served cycling genes.

Our results are strongly supported by additional analyses. We shoueytiaigy
genes conserved in multiple species have much stronger cell cycle tehestars
than the full list for each single species. There are also extensivedtiteraiwithin
the set of conserved cycling genes, and almost half of the CCC4 yeass gure
essential. These observations and GO analysis indicates that thesegapese
a crucial part of the cell cycle system. Together, these findings suppoclaim
that we have derived a core conserved set of cycling genes.
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Figure 3.11: The importance of the core cycling genes. (a) Percentagseantial
genes in different sets of budding yeast genes [Winzeler et al., 1998jough
18% of budding yeast genes are essential, only 15% of cycling gemessential.
Our analysis resolves this apparent contradiction by showing that tleeicea
cycling genes lists contain a much higher percentage of essential géléesa(itl
46% for CCC3 and CCC4). Sequence alone cannot account for thigbigent-
age (27%), indicating the importance of the combined analysis. (b) Similar-analy
sis for the human lists using data from RNA interference knockdown &rpeats
[Mukheriji et al., 2006].



Chapter 4

Comparative Study of Gene
Expression Regulation in
Immune Response

4.1 Overview

4.1.1 The Immune System

Functions and components of the immune systeniMost multicellular organisms
rely on their immune system to defend against the infection from a multitude of
pathogens. In addition, the immune system is also responsible for remoadg de
cells, tumor cells, or cells infected by pathogens. There are two compoofents
the immune system, namely the innate immune system and the adaptive immune
system. The innate immune system is believed to be evolutionarily older and it
exists in organisms from plants to humans. In contrast, the adaptive immuemsys
only exists in vertebrates.

The immune system comprises of many types of cells, including macrophages,
dendritic cells, neutrophils, natural killer cells, B-cells, T-cells, and tHay dif-
ferent roles in the immune response. To understand how these cells calatm
fend off pathogens of great diversity, we first need to know how tkeegt differ-
ently to infections.

Gene expression in immune response depends on the types of the thu|
and bacteria. After encountering pathogens, some of the host genes may be dif-
ferentially expressed. Such changes in expression may have differtterns over
a time course. Some genes may be induced, and some others may be depresse
in response to the infection. The response pattern of a gene depetits loost

61
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() (b)
Figure 4.1: (a) A macrophage and (b) a dendritic cell. (source: Wikipedia

cell type in which the gene is expressed. This cell-type specific genessipn
pattern enables different immune cells to carry out different functionserini
mune response . The host immune response also varies greatly depemdiry
type of pathogens that trigger the response. The host cells may actvgiiffer-

ent pathways when challenged by Gram-negative and Gram-posititeriaads
another example, it has been known that some bacteria will induce veeyetitf
host response if one of the bacterial genes is switched off [McGadtral., 2004].
Other complicating factors include the susceptibility of the host and whetts¢r ho
cells have been exposed to interferon.

4.1.2 Application of Microarrays in Immunology

There have been many studies using microarrays to compare immune gege exp
sion programs under different conditions. For example, Huang et@1]Zom-
pared the gene expressions in human dendritic cells infected by varithegpas

and derived both a common set and pathogen-specific sets of difftlyepia
pressed genes. Boldrick et al. [2002] carried out similar studies ontoraarophages,
and they also studied the effect of different doses. Chaussalde[20@3] identi-

fied a set of commonly expressed genes in both human macrophagesdriticde
cells, as well as genes uniguely expressed in one the of two cell typaddition,
there are studies comparing the effect of hosts factors and bactetikdnge on

the gene expression profiles [Hoffmann et al., 2004, van Erp et al5]200
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In all these studies, genes are ranked according to a score, e.gchfnide,
and a set of differentially expressed genes is selected using an griitreshold,
e.g. ranging from 2-fold change to 3-fold change. Genes in this set mayther
clustered into groups, and a few genes are selected for further Siddje this
approach has already generated many interesting results, it may havd gesss
that play an important role in immune response if they just fall below the thresh-
old. This problem is especially important because microarray data arkyuserg
noisy.

4.1.3 Comparative Study of the Immune System

Conservation of the immune system There is considerable conservation of the
immune system at the genomic level between different species, especiadly ge
related to the innate immune response. For example, toll-like receptors, a ma-
jor class of pattern recognition proteins, are found to be highly condexemoss

all species [Aderem and Ulevitch, 2000]. It is interesting to find out howhmuc

of the immune system is conserved during evolution by comparative studgsacr
species. At the same time, this conservation provides us with correlation infor
mation between species, which can be used to better interpret noisy expatime
results.

Identifying Immune Response Genes by Combining Data from Multiple
Species.Microarray expression experiments that study immune response to bac-
teria infection can be divided along several lines. Here we focus oe sueh
divisions: Cell type, bacteria type and host species.

Innate immunity is the result of the collective responses of different immune
cells, which are differentiated from multipotential hematopoietic stem cells [Keller
and Snodgrass, 1990]. To understand the roles of and possibldaytehgtween
different types of immune cells, it is important to identify both the common re-
sponses of differentimmune cells, as well as responses unique toia cettéype.
Identification of genes differentially expressed in macrophages bun elendritic
cells, and vice versa, may highlight their specific functions and help usrstzchd
mechanisms leading to their different immune response roles. In addition to the
different cells, specific bacteria types are known to trigger very diffeinnate
immune responses [Nau et al., 2002]. Specifically, response to Grativgpasd
Gram-negative bacteria is activated by different membrane receptbretognize
molecules associated with these bacteria. Finally, many of the key components
in the innate immune system are highly conserved [Hoffmann et al., 1999]. Fo
example, the structure of Toll-like receptors (TLRs), a class of membeoep¥
tors that recognizes molecules associated with bacteria, is highly codderve
Drosophila to mammals. It is less known though to what extent the immune re-
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sponse program is conserved and what other genes play a role in tisisreed
response.

While each of these subsets of experiments (macrophages vs. dendrianh
VS. mouse etc.) can be analyzed separately using ranking methods amditien
pared to each other, due to noise in gene expression data methods that eely
score cutoff become much less reliable for genes closer to the threshodd fl.,
2007]. Thus, analyzing responses to different pathogens and timepacing the
lists derived for each experiment may not identify a comprehensive lisirofine
response genes. Similarly, while comparing the expression changesdddne
similar bacteria in human and mouse may lead to the identification of conserved
immune response patterns, direct comparison of these profiles acpesgmants
is sensitive to noise and orthology assignments, leading to unreliable resdlts a
underestimation of conservation [Lu et al., 2007].

It is therefore desirable to combine microarray gene expression datiasats
different studies to overcome noise in the datasets and jointly infer genear¢hat
involved in immune response. In Chapter 3 we have combined expressicetdata
from four species to identify conserved cell cycle genes. The uridgrlgea is
that pairs of orthologous genes are more likely than random pairs osderiee
involved in the same cellular system. Thus, if one of the genes in the pair has a
high microarray expression score while the other has a medium scoranxese
the high scoring gene to elevate our belief in its ortholog, and vice versa. Our
method in Chapter 3 used discrete Markov random fields to construct adgyno
graph between genes in different species. Next, we developed afrelpefgation
algorithm to propagate information across species allowing orthologowesden
be analyzed concurrently.

Here we extend this method in several ways so that it can be applied to ana-
lyzing immune response data. Unlike the cell cycle, which we assumed wiorked
a similar way in all cell types of a specific species, here we are interestaxdtin b
common responses and distinguishing responses for each dividing féli® re-
quires a different analysis of the posterior values assigned to nodesgneph. In
addition, for the immune response analysis, genes are represented multigle time
in the graph (once for each cell and bacteria type) leading to a new ¢ppph
ogy. We are also interested in multiple labels for immune response (up, dotn, n
changing) compared to the binary labels we used for cell cycle analysibn@
or not). Finally, we use a Gaussian random field instead of a discreteoMeak-
dom field. Instead of simply connecting genes with high sequence similarity, the
edges in the graph are determined in a novel way that enables us to better utiliz
the information contained in sequence homology, leading to improved prediction
performance.

In the following sections, we will introduce our model for integration of inho-
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mogeneous immune response datasets.

4.2 The Model

We formulate the problem of identifying immune response genes using pliebab
tic similarity network models. In particular, we use Gaussian random field&¢BR
to model the assignment of gene labels. Gaussian random fields ardad e
of Markov random fields. In a GRF, every node follows a normal distidgio and
all nodes jointly follow a multivariate normal distribution.

There are two types of nodes in our graphical model (Figure 4.2). Téte fi
type is a gene node; it represents the status of a gene in a certain cefttype,
certain host species, in response to a certain type of pathogen. He@ngider
two cell types (macrophages and dendritic cells), two host species (lsuamain
mice), and two pathogen types (Gram-negative and Gram-positive ba.ciEnia
number of gene statuses can be either two (involved in immune respong @rno
three (suppressed, induced, or unchanged during immune respbosajmplic-
ity, we will describe our model using two gene classes, but will presentthéts
based on both two and three classes in the Results section. Correspionelaad
gene node is also a score node, representing the observation ofs&pref the
corresponding gene. Together, the GRF jointly models the statuses oha# ge
all cell types, all species, and under both types of infection conditions.

The edges in the GRF represent the conditional dependencies betateses
of genes. We put an edge between two gene nodes when thaypai@i more
likely to have the same status than otherwise. Specifically, there are two cases
where we add an edge. In the first case, for each gene node in thie, gva
connect it with another gene node if the two genes share high sequerileegity,
and the experiments related to both nodes are on the same cell type andhbacter
type. The assumption is that genes with similar sequence are more likely to have
similar functions in the same type of cells and under the infection of the same type
of bacteria. The edge potential function, defined on the edges, ingedugenalty
when two genes with high sequence similarity are assigned different statinse
the second case, we connect a gene node with another gene node if thedes
represent the same gene in the same type of cell (or infected by the santd type
bacteria). Here we assume the genes are likely to function similarly in the same
type of cells, or under the same type of infection. Again, the potential fumctio
penalizes the situation where a gene is assigned different status urfdeerdif
conditions. The amount of penalty depends on the strength or weightexdtézh
the edge. Different edges may have different weights. The joint pilityais
defined as the product of the node potential functions and edge pofenttbns,
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Figure 4.2: Diagram of the Gaussian random field (GRF) model. (a) Araphg

in the GRF containing homologous human and mouse genes. The whitéode
represents the (latent) status of the human dgeimemacrophages under infection

of Gram-positive bacteriak,, represents the genes status in macrophages under
infection of Gram-negative bacteria; andh; represent the statuses of the same
genes in dendritic cells under the infection of Gram-positive or Gram-rvegasic-
teria.m;,m,, m:{, andm are similarly defined for the homologous mouse gene
m. Two white nodes are connected by an edge if they represent the samage
two experiments, either on the same cell type or under the infection of the same
type of bacteria. We also connect two white nodes if they represent hgouso
genes in the same cell type and under the infection of the same type of hacteria
The black nodes represent the observation from the expression dataritain cell

type and under the infection of the appropriate bacteria. They are ciatheith

the white nodes representing the corresponding genes under the samiteono

(b) A high level diagram of the GRF model. Each dotted box representb-a su
graph of four nodes related to the same gene as those shown in (aadmedge
represents four edges connecting the nodes of homologous genesvin tihatted
boxes, in the same way as shown in (a).

divided by a normalization function. We can infer the status of individuakgédy
estimating the joint maximum a posteriori (MAP) assignment of all nodes.

4.2.1 Computing Weight Matrix

When assigning the edge weights, we employ a similar approach to the one in
Chapter 3, where we use a Markov random field to jointly model gene statuse
multiple species. In that model, the edges in the graph are weighted by BLAST
[Altschul et al., 1990] scores between pairs of genes. Given twosgesrnected
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in the graph, the edge weight (BLAST bit score) represents the segséanilarity
between the two genes, which in turn capturesatiori dependency between
their statuses. However, in a Markov random field model, an edge ssyisethe
dependency between the two nodes conditional on the statuses of alhotles
[Bishop, 2006]. In contrast, sequence similarity is computed for a paiepég
regardless of other genes. In other words, what a BLAST scoreirespis the
marginal dependency between the two genes’ statuses.

We address this discrepancy based on a connection between edgé&s\aeigh
the covariance matrix of Gaussian random fields. The edge weights ofFa GR
can be organized into a (symmetric) matrix, where each row (and each dolumn
corresponds to a node, and each element in the matrix is the weight on the edg
connecting the corresponding nodes. This weight matrix is the same asé¢hgeinvy
of the covariance matrix of the GRF [Zhu, 2005].

Using this observation, we can build a similarity matrix based on BLAST
scores, and use its inverse as the weight matrix on the GRF. Each rowedeahd
column) in the similarity matrix corresponds to a gene. If the BLAST bit score
between two genes is above a cutoff, we set the corresponding elem#@sim-
ilarity matrix to that score. Otherwise, it's set to zero. We use a stringentf sato
that we are fairly confident of the functional conservation when wegagioh-zero
element.

Because the similarity matrix contains scores for all genes in two species, the
computational cost to invert it is very high. Instead, we compute an appabe
inverse. We first convert the whole matrix into a diagonal block matrix bykighar
clustering algorithm [Enright et al., 2002], then compute the approximateseve
by inverting each block independently. The matrix inversion is done bys8par
Approximate Inverse Preconditioner [Deshpande et al.].

Finally, we assign edge weights based on this inverse matrix. Note that each
gene is represented by four nodes in the graph, because it is preddifier-
ent experiments on two cell types and two pathogen types. For edgesctiogn
gene nodes in the same cell type and pathogen type, we set the weigitt-acco
ing to the inverse similarity matrix. For edges connecting nodes that are identica
except for cell type, we use a single edge weight, a hyper-parameaieedges
connecting nodes that are identical except for pathogen type, weetismgther
hyper-parameter.

4.2.2 Expression Score Distribution

The gene expression score is a numeric summary computed from the gene’s
croarray time series. We assume that for each gene population (in theftase
gene classes: involved in immune response or not; in the case of threel geses:
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induced, suppressed, or unchanged during immune response) the giltow a
Gaussian distribution with its own mean and variance. Due to the simplicity of
the model and noise in the microarray experiments, the Gaussian distributons a
highly overlapped, which makes them hard to separate by expressi@aone

[Lu et al., 2006].

4.2.3 Node Potential Function

The node potential functions capture information from gene expressiean &or
each geneé, let C; denote its (hidden) status; denote its expression scorg,
denote the random variable in the GRF associated with the géhean be a
binary variable if we consider two gene classes (involved in immune respgons
not), or a ternary variable if we consider three gene classes (indsuggpkessed, or
unchanged)S; andy; are both real variables. Because egctollows a (different)
normal distribution, we need to have a way to link a gene’s probability of lgatgn
to each class with the corresponding normal distribution. This is achievéueby
probit link function. Take two gene classes for example. j;die the probability
of genei being involved in immune response conditional on its expression score
Si

PI‘(S,‘Cz = 1) Pr(C’i = 1) + Pr(SZ‘CZ = 0) PI"(CZ' = 0)

The node potential function is defined as

U(yi) = d(yilpw = ' (p;),0° = 1) (4.1)

whereg(y;| 11, o?) is the probability density function for the normal distribution
with meany and variance?, and® ! (z) is the probit function, i.e. the inverse cu-
mulative distribution function for the standard normal distribution. In othendsip
the information from a gene’s expression score is encoded by a noistrébation
of y; such thap; = Pr(y; > 0).

In the case of three gene clas$€s € {—1,0,+1}), we can use the following
formulas to link the probabilities af’; andy;:

Pr(C; = 11S;) =Pr(y; > 1) 4.2)
Pr(C; = —118;) =Pr(y; < —1) (4.3)
PI‘(CZ' = O‘SZ) :Pr(—l <y; < 1) (4.4)
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It can be proved that given any (non-zero) probability mass functio;pwe
can find a normal distributiotV (12, %) such that these formulas are satisfied when

yi ~ N(p,0?).

4.2.4 Edge Potential Function

The edge potential functions capture the conditional dependenciesdrepags

of gene nodes. The assumptions here are that (1) genes with highensecimi-
larity are more likely than otherwise to have the same or similar functions; and (2)
a given gene is more likely than otherwise to have the same function acibss ce
types and across pathogens.

First we will define the edge potential functions for edges connectingggen
in the same cell type and under infection of the same type of bacteria. In this
case, the edge potential function depends on the weight matrix we intduce
Section 4.2.1. Note that although all elements in the BLAST score matrix are non-
negative (sequence similarities are non-negative), its inverse matrix maybg-
ative elements. As a consequence, edge weights can be either positegative.

A positive edge weight means the statuses of the two gene nodes aregbpsiiv
related, conditional on the status of all other gene nodes. A negatiesvesight
means they are negatively correlated, conditional on all other gens.node

The following edge potential function captures this dependengyig a posi-
tive hyperparameter):

- exp{—Xolwij|(yi +y;)*}  if wi; <0

When the edge weight;; is positive, the edge potential function places a
penalty ify; andy; are different. The larger the difference, the higher the penalty.
Likewise, whenw;; is negative, the edge potential function introduces a penalty
based on how closg andy; are to each other. The penalty becomes higher when
they; andy; are closer.

For edges connecting the same gene in the same cell type but under infection
of different type of bacteria, the edge potential function is defined as

V1(yi,y5) = exp{—A1(y; — y;)*}

where)\; is a positive hyperparameter. Similarly for edges connecting the same
gene under the infection of the same type of bacteria but in different pelstyhe
edge potential is defined as
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Vo (yi, y;) = exp{—Aa(yi — y;)*}

where )\ is a positive hyperparameter. Together, the joint likelihood function
is defined as

L= % [T [T wotwi up) [T 1 winwi) [T (v, ) (4.5)

4.3 Learning the Model Parameters

In this section we will present our algorithm based on two gene classesalTh
gorithm can be extended to three gene classes by using different noelgial
functions (See discussion in Section 4.2.3). We need to learn the paraofaters
expression score distributions for each combination of cell types, hestes, and
pathogen types. In each case, there are four paraneigrs:, 11, 07), i.e. the
means and variances of the two different Gaussian distributions, omsponding
to the scores of immune response genes, the other corresponding tortee afco
the remaining genes.

We learn these parameters in an iterative manner, by an EM-style algorithm.
We start from an initial guess of the parameters. Based on these pasmeter
infer “soft” posterior assignments of labels to the genes using a versidmeof
belief propagation algorithm on the GRF. The posterior assignments arenin tur
used to update the score distribution parameters. We repeat the beliefatiop
algorithm based on the new parameters to infer updated assignments of labels
This procedure goes on iteratively until the parameters and the assigraoeris
change anymore.

4.3.1 Iterative Step 1: Inference by Belief Propagation

Given the model parameters, we want to compute the posterior marginalutistrib
tion for each latent variablg;, from which we can derive for each gene node the
posterior probability of being involved in immune response. It is hard to céenpu
the posteriors directly because the computational complexity of the normalization
function in the joint likelihood function scales exponentially. However, dud¢o
dependency structure in the GRF, we can adapt the standard Beliefgatmm
algorithm [Yedidia et al., 2003] for GRF, and use it to compute all the posserio
efficiently. Unlike MRFs defined on discrete variables, variables in GR&sa@n-
tinuous and follow normal distributions. The current estimation of the marginal
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posterior (“belief”) of every latent variablg in the GRF is a normal distribution.
Similarly, the “messages” passed between nodes are also normal distisbution
The Belief Propagation algorithm consists of the following two steps: “mes-
sage passing”, where every node in the GRF passes its current betitfit®
neighbors, and “belief update”, where every node updates its bekefdban all
incoming messages. The algorithm starts from a random guess of the beliefs
messages, and then repeats these two steps until the beliefs converge.

1. Message passing. In this step, every ngdeomputes a message for each
of its neighborsy;, sendingy;’s belief of y;'s distribution. The message
is based on the potential functions, which represent local informatiare(no
potential) and pairwise constraints (edge potential), as well as incoming mes-
sages from all);’s neighbors excepj;.

mij(y;) — [ Ywiy)vw) [ meiv)

vi KEN (i)\j

2. Belief update. Once nodg has received messages from all its neighbors,
it updates the current belief incorporating all these messages and the loca
information from the node potential. The update rule is as follows

ily) — o) [T muity)

! kEN (i)
wherev; is a normalization constant to makgy;) a proper distribution.

Because all the messages and beliefs are normal distributions, they it be
resented by the corresponding means and variances. More importatitig, ¢ase
the message update rule and belief update rule can be formulated into rules up
dating the means and variances directly, thus avoiding computationally éxens
integration operations. The exact update rules are given in the appendix

4.3.2 lterative Step 2: Updating the Score Distribution

The posterior computed in step 1 is based on the currenyithéeration) estima-
tion of parameters, collectively denoted ®#). The goal now is to determine the
parameters that maximize the expected log-likelihood of the complete data over the
observed expression scores given the parameététs= (M(()g), a((]g), A9 59y,

To update the parameters of the score distributions, we first compute the pos
terior probability of a gene being involved in immune response, based omthe p

terior of y;. This is the same as applying the reverse probit function:
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For simplicity, we use the following notations
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The updated distribution parameters for a Gaussian mixture are computed by
standard rules
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4.4 Results

4.4.1 Immune Response Data

Immune response data. Immune response microarray experiments wienedetr
from supporting websites of [Detweiler et al., 2001, Chaussabel e0&3, Huang

et al., 2001, Lang et al., 2002, Hoffmann et al., 2004, van Erp et al§,200Caf-

frey et al., 2004, Draper et al., 2006, Granucci et al., 2001], totalinde2a sets.

The data sets include experiments on macrophages and dendritic cells inshuman
and mice. For each cell type we have included experiments using Gram#Apositi
and Gram-negative bacteria, except for mouse dendritic cells, for wicbnly
found Gram-negative bacteria datasets. Human and mouse orthologdavere
loaded from Mouse Genome Database [Eppig et al., 2005]. Tables 4.4.2nd
summarize the datasets used in this paper.
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Host/Cell Type Gram- Datasets Gram+ Dataset$
Human Macrophages 4 2
Human Dendritic Cellg 3 2
Mouse Macrophages 3 6
Mouse Dendritic Cells 1 0

Table 4.1: Summary of immune response datasets used.

Host/Cell Type Gram- Datasets Gram+ Datasets
Human Macrophages = Samonella enterica | Mycobacterium tuberculosis
subspeciesyphimurium
Human Dendritic Cellg Escherichia coli Mycobacterium tuberculosis

Mouse Macrophages| Lipopolysaccharide Listeria monocytogenes
Group Bstreptococcus

Mouse Dendritic Cells| Escherichia coli

Table 4.2: Summary of infectious agents used.

4.4.2 Computing Expression Scores

Computing expression scores. For each gene in each experiment, rassiop
score is computed from the gene expression time series data. The sasedson

the slope of the time series to capture both the change in expression levéfeand
time between infection and response. Specifically, we first determine thefsign
a gene’s scoresf) by comparing the absolute values of the highest and the lowest
expression levels. The score is positive if the former is higher, or rvegitihe
latter is higher. Denote the time point that corresponds to the highest sixpres
level (in the former case) or to the lowest expression level (in the latte) eas;.

The score is computed as followS; = s; * expressiofy;) /t;.

Due to different protocols being used and experimental noise, agrédmen
tween different datasets, even if done using the same type of cells atatidac
may sometimes be low . For example, the overlap between lists of fission yeast
cell cycle genes identified in three studies [Rustici et al., 2004, Oliva 2G05,
Peng et al., 2005] is 0B0%. Nevertheless, since each dataset contains new ob-
servation of the same underlying biological process, combining them may bette
capture the biological truth. Here we want to combine scores from diffesger-
iments on the same host cell type and bacteria type. For example, thereeare fiv
datasets where human macrophages were infected by Gram negatershand
we would like to combine the five scores for each gene into one.

To test for the consistency between the datasets to be combined, we define the
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Host/Cell Type Gram | Consistency p-value
Human Macrophagey -+ 0.577 < 0.001
Human Macrophages — 0.490 < 0.001

Human Dendritic Cell§  + 0.610 < 0.001
Human Dendritic Cell§ — 0.546 < 0.001
Mouse Macrophages| + 0.466 < 0.001
Mouse Macrophages| — 0.553 < 0.001

Table 4.3: Consistency between immune response datasets.

following measure

# of genes ranked in top 1000 in at leastx{|D|/2, 2} datasets
1000

for each cell/bacteria type, whefB| is the number of datasets. We compare it to
the consistency of randomized data, and compute an empirical p-valde #Tap
In each case, the consistency is significant with a p-val@e001.

Consistency=

4.4.3 Recovering Known Human Immune Response Genes

Recovering known human immune response genes. To evaluate thevmaréar of

our model, we retrieved 642 human innate immune response genes frorbasgata
[Kelley et al., 2005], and used them as the labeled data. We learned thé mode
parameters by three-fold cross validation using the labeled data. We campar
the performance of GRF, MRF, and the baseline model where genesn&ezrby
their expression score alone. We use the fraction of known immune Espgenes
recovered by a model as the performance measure. Because th@seiLoie re-
sponse genes we used does not have labels indicating the cell typesadiiomf
conditions, we treat a gene as “positive” regardless of the cell typebaattria
type. For GRF and MRF models, the genes were ranked by their highsistipo
probability (in any of the cell or bacteria types). For the baseline model,ghegy

are ranked by their expression scores. As we show in Figure 4.3, [REhaad
MRF models outperform the baseline model. These models are able to infer a be
ter gene’s posterior probability by transferring information between thmeggene
across cell types or from homologous genes across species. Atesadhd of top

10% genes, MRF is able to recoveg?% of known immune response genes, com-
pared with26% by the baseline model. Encouragingly, GRF leads to the biggest
improvement in performance. Of the tap% high scoring genes based on the
posterior computed by GRB5% are known immune response genes}da %
increase compared to the baseline (score only) model.
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Figure 4.3: Performance comparison of the Gaussian random field (@ERHM-
proved weights, the Markov random field (MRF), and the baseline mobdetav
genes are ranked by their expression scores. Using MRF we wertbakleover

18% known immune genes in the t6f: of ranked genes. This is a 28% im-
provement compared with the baseline model (which recovers 14% of the iemmun
genes). The GRF model is able to recover 25% known immune genes atribe sa
threshold, a 79% improvement over the baselyne method and a 38% imprdavemen
over the MRF model.

4.4.4 ldentification of Common Response Genes

Identification of common response genes by combined analysis. Basea on th
learned posterior probabilities, we ranked the genes for each cell typacim
species, for both Gram-positive and Gram-negative infections. We iadsh&ff
ortholog pairs that are assigned high posterior in all cell types and infietyfpes.
These genes are commonly induced by all bacteria in both macrophagdsrand
dritic cells across the two species. We first compared our list with a seliatate
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genes commonly induced in human macrophages by various bacteria. This latte
list was derived from expression experiments that were not includedriarwaly-

sis [Nau et al., 2002]. The results confirmed the lists we identified. Thdapver
between the two lists was highly significant with a p-valuke 7 x 10~2° (p-value
computed using hypergeometric distribution).

We also compared our list with top 500 genes induced/lggobacterium tu-
berculosisin mouse bronchoalveolar lavage (BAL) cells. Usually BAL cells in-
clude a large portion of macrophages and some dendritic cells. Again,we sa
is a significant overlap between our list and the top induced genes in Bid. ce
(p-value =1.50 x 1077).

To reveal the functions of the common response genes we carried oahGO
richment analysis using STEM [Ernst and Bar-Joseph, 2006]. Thehed GO
categories include many common categories involved in immune responses, in-
cluding “immune response” (p-valug9 x 10~%), “inflammatory response” (p-
value=2.5 x 10~7), “cell-cell signaling” (p-valuez.1 x 10~°), “defense response”
(p-valued.5 x 1079), and “response to stress” (p-valug= x 107°).

Many of the classic players of innate immune activation and inflammation are
recovered. For example, TNF is a proinflammatory cytokine and stimulates the
acute phase reaction [Lukacs et al., 1995]. IL1 is an important mediator of in
flammatory response and involved in cell proliferation, differentiation, aap-
tosis [Mizutani et al., 1991, Bratt and Palmblad, 1997]. The list also inslude
chemokines that recruit and activate leukocytes (CCL3, CCL4, CC&E;1()
[Wolpe et al., 1988] or attracts T-cells (CXCL9) [Valbuena et al., 2008]so
important to the regulation of inflammation response is IL10, a well-known anti-
inflammatory molecule [Lammers et al., 2003]. In addition, ETS2, NFkB, and
JUNB are all very important transcription factors for inflammation. [SunAand
dersson, 2002].

To identify the pathways involved in common immune response, we searched
for networks enriched by common response genes using Ingenuity &afval-
ysis (IngenuityR Systems, www.ingenuity.com). One of such networks is shown
in Figure 4.4.

4.4.5 Immune Response Conserved in Specific Cell Types

Immune response conserved in specific cell types. In addition to geneaaay
induced across all dividing factors, we also identified genes that dezatifially
expressed between the two cell types. We identified 127 genes that hlgihig
duced in dendritic cells in both bacteria types across human and mousegbut a
not induced in macrophages. Many of the genes are known to be dssogith
functions of dendritic cells, especially the antigen processing and patieen For
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Figure 4.4: One of the networks of genes commonly induced in both dendritic
cells and macrophages when infected by bacteria, in both human and ritwese.
network was constructed by Ingenuity Pathway Analysis (Inge@8ystems,
www.ingenuity.com). The gray-colored nodes are genes inferred taressed

at high levels in all cell types, regardless of the bacteria type or spedibge-
colored nodes are genes interacting with commonly induced genes. Notegihe la
fraction of the pathway recovered by our method. Many known immunenssep
genes are present in this network. IL1 is an important mediator of inflammatory
response and involved in cell proliferation, differentiation, and ap@pbBzutani

et al., 1991, Bratt and Palmblad, 1997]. ETS2 is an important transcrif@eiarf

for inflammation. CCL3, CCL4, and CCL5 are chemokines that recruit atid a
vate leukocytes [Wolpe et al., 1988]. The profiles for one of thesesyeDEL5,

are shown in Figure 4.6
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Figure 4.5: One of the networks of genes strongly induced in dendritic cells
but less so, unchanged, or suppressed in macrophages. (Thd leghe same

as in Figure4.4). The network was constructed by Ingenuity Pathwaly#iaa
(Ingenuity® Systems, www.ingenuity.com). The gray-colored nodes are genes in-
ferred to be expressed at high levels in both dendritic cells and macgephie-
gardless of the bacteria type or species. White-colored nodes argeigtsracting

with commonly induced genes. Many known immune response genes aeatpres
in this network. CD86 is an essential co-stimulatory molecule that delivers this
second signal and is also a marker of dendritic cell maturation. TAP is irtvolve
in the transportation of peptides generated by the proteosome from theldgtos
endoplasmic reticulum, which is an important step in MHC class | antigen pre-
sentation, a major function of dendritic cells. The profiles of CD86 are shinow
Figure 4.7
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example, components of the proteosome are prominently represented imése ge
determined to be induced in dendritic cells. The proteosome is a multi-protein
complex responsible for cleaving cytosolic proteins and is a necesssirgtip
in MHC class | antigen presentation, a major function of dendritic cells. Peptide
generated by the proteosome are then transported from the cytosol asTdic
reticulum by TAP, also represented in the gene list, where they are loadtx o
MHC | molecules. Once the peptide-MHC | complex is displayed on the DC sur-
face, the canonical class | pathway of antigen presentation is complet@eAn
presentation by DC is also accomplished through the class Il pathway ab€the
specific gene list includes HLA-DRA, a human MHC Il (class Il) surfac@ecule.
In addition to peptide-MHC complexes, T cell activation during antigen prtese
tion requires a second signal. CD86 is an essential co-stimulatory molectile tha
delivers this second signal and is also a marker of dendritic cell matur&»aé
is represented in the gene list. Also in the gene list enriched for expraagiem-
dritic cells are TNFSF9 and TNFSF4. These molecules are cytokines tlyah pla
role in antigen presentation between dendritic cells and T lymphocytes. CD93 is
represented in the DC results. This molecule is involved in the phagocytosis of
apoptotic bodies. It is believed that phagocytosis of apoptotic bodiesruirite
cells has important effects on tolerance.

We searched pathways enriched by these genes, and one of theedméath
works in shown below in Figure 4.5.

We have also identified 157 genes that are more likely to be induced in mageph
than in dendritic cells. Among these genes, IFNGR1 is important for macgegha
to detect interferon-gamma (also known as type Il interferon), a keyadictg cy-
tokine of macrophages. HMGBL is believed to be involved in inflammation and
sepsis. Itis a chromatin structural protein that is released from some sellsya
tokine and is associated with fatal outcome from inflammation in sepsis. Another
interesting gene is ADAM12, which is from a family of proteinases that ardylike
involved in tissue remodeling/wound healing by macrophages.

4.5 Summary

By combining expression experiments across species, cell types atedid&ygpe
we were able to obtain a core set of innate immune response genes. e set
identified contained many of the known key players in this response andhalso
cluded novel predictions. We have also identified the unique signaturecobpteages
and dendritic cells leading to insights regarding the set of processeatadtin
each of these cells type as part of the response.

While our method assumes that homologous genes share similar functions, it
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Figure 4.6: Expression profiles of CCL5 which was identified by our metsd

a common immune response gene. (a) and (b) are expression profiregrian
CCLS5 in dendritic cells and macrophages during immune response. (c)dand (
expression profiles for mouse CCLS5 in dendritic cells and macrophadesex-
pression of both genes are strongly induced following infection.

is still sensitive to the observed expression profiles. Thus, if two homalisgtay
different expression patterns they would be assigned to differenbcélcteria
types. Still, the reliance on homology is a very useful feature for mostsyehe

we have shown, using this assumption we can drastically improve the ability of ou
method to recover the correct set of genes.
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Figure 4.7: Expression profiles of CD86, a gene identified to be actiatigydn
dendritic cells. (a) and (b) are expression profiles for human CD86 narite
cells and macrophages during immune response. (c) and (d) are ®®prpso-
files for mouse CD86 in dendritic cells and macrophages. For both spéuées,
expression of the gene is induced after infection in dendritic cells, butanged
in macrophages.
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Chapter 5

Conclusions and Future Work

In previous chapters, | have described the development of a gemenatidel for
functional analysis of gene sets and two probabilistic models for combiradg-an

sis of multi-species microarray data, and the application of the models to the cell
cycle and innate immune response gene expression programs. Theaesaltm-
marized in Section 5.1. In Section 5.2 | discuss some of the open problems and
extensions for future work.

5.1 Conclusions

With the growing amount of high-throughput biological data, modern biolsgy
becoming more of a data-driven science. It is important to develop angt app
computational methods that can take full advantage of the available datacialcr
issue is to integrate data of different types and from different sodelsetter
analysis of biological systems.

5.1.1 Generative Model for Functional Analysis of Gene Sets

In this thesis, | have first presented an algorithm to incorporate the infanma

in Gene Ontology [Ashburner et al., 2000], including both annotationstad
hierarchical structure of the ontology, for functional analysis of gaste. While

many tools have already been developed for the same task, our methd&OGen
has the distinctive feature that it takes into account the full dependénmiise
encoded in GO, and has shown dramatic performance improvements in ssgse ca

The method is based on a generative probabilistic model, where | assume that

the biological processes in a cell can have one of the two states, ‘actitiaac-

tive’, and genes are activated by their associated biological prace$be algo-

83
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rithm then looks for a small set of active biological processes that cstreliplain
the set of observed genes. | compare GenGO with three other existingdaetho
simulated gene sets, using both annotations on budding yeast and huimapgr-T
formance of GenGO is close to perfect when the noise level is low, and stihmu
better than all other methods even with high level of noise. Finally, | apply3&en
to the analysis of real data from a number of different experiments auiesp and
shows that it is able to avoid much redundancy and accurately balancettok s
GO categories it returns, including both high level and specific categories

5.1.2 Random Field Models for Analysis of Cross-Species Data

For cross species analysis, | have presented algorithms combininghseqieta

and gene expression data from multiple species and cell types to studyddmyun
ing gene expression program. As | have shown in different parts dhés, this

approach has led to better identification of the genes participating in thessiqre
programs.

For the cell cycle, | propose a Markov random field model that jointly mod-
els the cell cycle status of genes in multiple species. According to this model, a
gene is more likely to be a cycling gene if its cyclic (expression) score is highe
Also, when two genes are similar in the sequence and one of them hases-bord
line cyclic score, it is more likely to be a cycling gene if the other gene is a cycling
gene. The algorithm looks for the assignment of the cell-cycle statuseméxat
imizes the joint likelihood of all cyclic scores and sequence similarity. | compare
the performance of our method with the method that uses only expressign data
and show that our method is able to recover more known cycling geneshéd-or
innate immune response, | propose a Gaussian random field model, whietsmod
the response status of genes in two cell types from two species, infgcteaum-
ber of different bacteria. | show that the Gaussian random field maté&nmns
better than the Markov random field model, as well as the method that uses only
expression data, in recovering known immune genes.

| have also presented methods to delineate the core components that-are con
served across species/cell types, as well as those belong to speediesspell
types. For the cell cycle program, | am able to find a core set of coedemncling
genes. | analyze the conserved cycling genes using a number of comgdeyne
high-throughput datasets, and show that these genes have muclestioagcter-
istic of cell cycle regulation than the full list of cycling genes. | also complaee
core set with the full set of cycling genes and show it has much higheeptge
of essential genes. For the immune response expression programtifyidets
of genes with conserved response. For example, CCL5 is shown to teeihch
both dendritic cells and macrophages in both mouse and human. | also identify
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sets of genes that are specifically induced in one cell type, but not iritiee and

the differential induction is conserved between human and mouse. Ongplexa

is CD86, which is induced in dendritic cells in both human and mouse, but not in
macrophages.

While this thesis presents a number of computational tools for data integration,
there is still much work left in the area. In the following section | will talk about
some of the future directions.

5.2 Future Work

5.2.1 Biological Validation of Conserved Immune Response @Ges

In Chapter 4 | have identified a few sets of genes that are conserveglimiiune
response between two cell types and between human and mouse. To Yatihe
date our results, we are planning to do more host-pathogen experimeetiddaan
is to pick some bacterium previously not used in our study (Table 4.2),tadg s
the host immune response induced by it. It would be a good indicator oéssidfc
the set of conserved response genes are induced by this new bacteriu

5.2.2 Extensions of GenGO

In Chapter 2, | propose a generative model, GenGO, for functiomdysis of gene
sets. In the model, | assume that genes are in one of two states, eitheadative
active. In other words, the state of a gene is assumed to be discretevétpine
many cases the activity of a gene may be better modeled by a continuoudezariab
For example, when profiling gene expression by microarrays, in additiof-to
serving which genes are up- or down-regulated, one also obser/@satmnitude

of the expression change, which is a continuous number. It would beste wé
information if the measurement is discretized into just two classes.

Here | describe a possible way to extend the model to support continiaves.s
The idea is to model a gene’s activity state by a continuous variabje, oh and
assume an active biological process can “generate” the activity stateaskibsi-
ated genes, following a beta distribution. For genes not associated witctvngy
biological processes, their state follows another beta distribution. Thedlstta
bution is a continuous distribution df, 1] with two parameters. Its probability
density function can be either unimodal or bimodal, providing great modeérg fl
ibility. It is possible to determine the set of active biological processes by-max
mizing the likelihood of observed activity of all genes (normalized to within])
over all possible sets of GO categories.



86 Chapter 5. Conclusions and Future Work

Another possible extension is to regularize the objective function using-stru
tural information of the GO hierarchy. In our current model, the likelihaaaict
tion is penalized by the number of active GO categories. An interpretationsof th
penalty term is it corresponds to the prior probability of a set of GO categor
being active. However, this formulation ignores the relation between GG cate
gories. There are several possible ways to incorporate the struictimathation.

For example, we can penalize the objective function by both the numbetivé ac
categories, as well as the inverse distance between these categauidisely, the
latter means we prefer GO categories to be more spread out in the GO Imerarc
Another possible source of prior information is the size of (i.e. the numbgpzds

in) an GO category. For example, we may want to penalize GO categoriesewho
size is either too big or too small, reflecting our belief that these categoriéssare
likely to be active.

5.2.3 Extensions of Random Field Models

In Chapter 4, | propose to use Gaussian random field models with the eénvers
weight matrix, and show it achieves better performance than Markownarield
models in predicting immune response genes. The Markov random field isodel
based on the original weight matrix. It would be interesting to compare sultse

to Markov random field models with thieverse weight matrix, and see how much

of the improvement is due to the inverse weight matrix.

One direction for future work is to find better ways to learn the graph streictu
of Gaussian random field models from data. Currently, | learn the steubtuus-
ing the SPAI algorithm [Grote and Huckle, 1997] to compute a sparse appate
inverse of the weight matrix, which essentially tries to look #orthat minimize
the Robina’s norm

WX —I||F

whereW is the weight matrix and is the identity matrix. The algorithm starts
from some given sparse matrix, e.g. a diagonal matrix, then searchasniar
trix that augments the sparsity structure as well as decreases the objentive
tion. Many other ways have been proposed to learn a sparse grapéxdfople,
one can choose to maximize tlhg-penalized log-likelihood (e.g. [Banerjee and
El Ghaoui, 2008, Friedman et al., 2008]). It would be interesting to coenttrer
different methods for learning the graph structure, and their impact opréukc-
tion accuracy.

Another direction is to extend the random field models to handle multiple
classes. In the study of cell cycle and immune response expressioramsg
the model assigns genes into two (cycling or not) or three classes (ulatesd;
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down-regulated, and unchanged). While this approach has donscaatdy good

job, in some cases we may need to handle more classes. For example, some im-
mune response genes may be induced immediately after the host cell’s iexjmosu
the pathogen, while others may be induced in later stages. In order tcETaa
various dynamical responses of a gene expression program, weonaasisify the
genes based on when their expression profiles change. One possilitelveadle
multiple classes of expression patterns is outlined as follows. First we define
modal expression pattern profiles, e.g. “early up”, “late up”, “up dowdown

up”, etc. For each gene expression time series, we compute its distancedo the
profiles. Now we define a random field where each node is a (latemtim Gaus-

sian with mean equal to a gene’s distance vector, and the edges aedderw
homology. By approximating this random field by a Gaussian random field, we
may be able to perform efficiently inference and determine the class merigbersh
for each gene.

5.2.4 Cross-Species Study of Biological Networks and Beyond

The major tool | use in this thesis is probabilistic graphical models. Probabilistic
graphical models have several advantages in integrating informatiort, thieg
have the ability to represent complicated dependency structure thatoeacdp-
tured by independent pair-wise relationship. Second, by taking intauattbe
information encoded by the graph, graphical models enable learningdotima-
beled and unlabeled data. | plan to extend and apply the framework tedsen
this thesis to other areas in computational biology.

In this thesis | focused on identification of conserved or species-spgeifie
sets. However, genes usually work together to carry biological furgtidrhe
interaction and regulation of genes are better represented as netWbek® are
already some studies on cross-species analysis of protein-proteirciitenaet-
works [Sharan et al., 2005]. It is interesting to extend our frameworkdrniss
species analysis of regulation networks, to identify conserved anéespguecific
regulatory modules.

Higher order organisms such as humans have more than one type of dells. A
though the different types of cells have the exactly the same genome, their may
look and behave vastly different. One of the reasons for this differenbecause
the cells don’'t have the same epigenetic modifications. The information in epige-
netic modifications controls the accessibility to the promoter of a gene, and thus
regulates the gene’s expression patterns. One challenge in the styalgerietics
is how to integrate data from different types of cells to infer the underlypig e
genetic regulation code. | believe by developing new computational tootkatar
integration, we will be able to better understand the epigenetic programs.
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The accelerated accumulation of expression and sequence data prgnade
opportunities for cross-species study of biological systems, but alsespoew
computational challenges. Large datasets often impose higher computabshal
and thus it is crucial to develop fast learning and inference algorithmae$®w
efficient methods have been proposed in other areas, such as ugingiamtion
to speed up computation [Potetz 2007], using asynchronous messagegfas
faster convergence of belief propagation [Elidan et al.], and usingesoformu-
lations [Wainwright 2005]. | am interested in developing and applyingiefiic
algorithms to solve large-scale problems. Due to complicated interactions Ipetwee
biological properties, some problems may have heterogeneous correlation
ture. Itis interesting to develop models that can capture multiple (latent) clafsses
relationship, and learn the classes from data.

In sum, | believe our computational framework will play an important role in
the cross-species study of biological systems, and | look forward togse®re
applications of the framework to open problems.
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