
Measuring the Attack Surfaces of SAP Business
Applications

Pratyusa K. Manadhata1 Yuecel Karabulut2

Jeannette M. Wing1

May 2008
CMU-CS-08-134

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1School of Computer Science, Carnegie Mellon Univeristy, Pittsburgh, PA
2SAP Research Palo Alto, Palo Alto, CA
This research was sponsored by the US Army Research Office (ARO) under contract no. DAAD190210389, SAP

Labs, LLC under award no. 1010751, and the Software Engineering Institute. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity. This material was
based on work partially supported by the National Science Foundation, while the third author was working at the
Foundation. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation.



Keywords: Attack Surface, Attack Surface Metric, SAP Business Applications, Security Met-
rics, Security Risk Mitigation, Software Security, Software Quality



Abstract

Software vendors such as SAP are increasingly concerned about mitigating the security risk of their
software. Code quality improvement is a traditional approach to mitigate security risk; measur-
ing and reducing the attack surface of software is a complementary approach. In this paper, we
introduce a method for measuring the attack surfaces of SAP business applications implemented
in Java. We implement a tool as an Eclipse plugin to measure an SAP software system’s attack
surface in an automated manner. We demonstrate the feasibility of our approach by measuring the
attack surfaces of three versions of an SAP software system. SAP’s software developers can use the
tool as part of the software development process to improve software quality and security. SAP’s
customers can also use the tool to mitigate their security risk.





1 Introduction

There is a growing demand for secure software as we are increasingly dependent on software in our
day-to-day life. Software industry has responded to the demand by increasing effort for creating
“more secure” products and services (e.g., Microsoft’s Trustworthy Computing Initiative and SAP’s
Software LifeCycle Security efforts). How can industry determine whether this effort is paying off
and how can consumers determine whether industry’s effort has made a difference? We need
security metrics and measurements to gauge progress with respect to security; software developers
can use metrics to quantify the improvement in security from one version of their software to
another and software consumers can use metrics to compare alternative software that provide the
same functionality.

While it is very difficult to devise security metrics that definitively measure the security of
software [9], prior work has shown that a system’s attack surface measurement is an indicator
of the system’s security [11, 15]. Michael Howard of Microsoft informally introduced the notion
of a system’s attack surface [11]; Manadhata and Wing of Carnegie Mellon University (CMU)
formalized and generalized Howard’s notion and proposed an abstract but systematic attack surface
measurement method [13]. Manadhata and Wing also defined a concrete method for measuring
the attack surfaces of systems implemented in C and applied the method to two open source FTP
servers and two open source IMAP servers [16, 14].

SAP and CMU collaborated to apply CMU’s attack surface measurement method to SAP’s
business applications and platforms. SAP is the world’s largest enterprise software company with
more than 46,100 customers worldwide [2]. SAP provides a comprehensive range of enterprise
software and business applications covering all aspects of the customers’ businesses. The business
applications have a varied customer base of small, medium, and large enterprises and support a
wide range of business functionalities; hence the applications are large in size and complex in their
design [3].

1.1 Motivation

Software vendors have traditionally focused on improving code quality for improving software secu-
rity and quality. The code quality improvement effort aims toward reducing the number of design
and coding errors in software. An error causes software to behave differently from the intended
behavior as defined by the software’s specification; a vulnerability is an error that can be exploited
by an attacker. In principle, we can use formal correctness proof techniques to identify and remove
all errors in software with respect to a given specification and hence remove all its vulnerabilities.
In practice, however, building large and complex software devoid of errors, and hence security vul-
nerabilities, remains a very difficult task. First, specifications, in particular explicit assumptions,
can change over time so something that was not an error can become an error later. Second, formal
specifications are rarely written in practice. Third, formal verification tools used in practice to
find and fix errors, including specific security vulnerabilities such as buffer overruns, usually trade
soundness for completeness or vice versa. Fourth, we do not know the vulnerabilities of future, i.e.,
the errors present in software for which exploits will be developed in the future.

Software vendors have to embrace the hard fact that their software will ship with both known
and future vulnerabilities in them and many of the vulnerabilities will be discovered and exploited.
They can, however, minimize the risk associated with the exploitation of these vulnerabilities. One
way to minimize the risk is by reducing the attack surfaces of their software. A smaller attack

1



Figure 1: Attack Surface Reduction and Code Quality Improvement are complementary approaches
for improving software security.

surface makes the exploitation of the vulnerabilities harder and lowers the damage of exploitation,
and hence mitigates the security risk. As shown in Figure 1, the code quality effort and the
attack surface reduction approach are complementary; a complete risk mitigation strategy requires
a combination of both.

There is anecdotal evidence from the software industry to demonstrate that the reduction in
a software system’s attack surface mitigates the system’s security risk. For example, in case of
Microsoft, the Sasser worm, the Zotob worm, and the Nachi worm did not affect some versions of
Windows due the reduction in the attack surface of Windows [12]. Similarly, both Firefox 2.0 and
Firefox 1.5 contained a buffer overflow vulnerability in the Mozilla Network Security Services (NSS)
code for processing the SSL 2 protocol. Firefox 2.0, however, is immune to attacks that exploit the
vulnerability due to the reduction in its attack surface [17].

The motivation behind the collaboration is two-fold. First, we demonstrate that the attack
surface measurement method scales to enterprise-scale software. Second, we have the opportunity
to interact closely with SAP’s software developers and architects and get their feedback on our
measurement process. There are two goals of the collaboration.

1. The short-term goal is to instantiate Manadhata and Wing’s abstract method to obtain a
measurement method for SAP software systems and to apply the method to SAP business
applications. The measurement process will also identify possible ways to reduce the business
applications’ attack surfaces.

2. The long-term goal is to evaluate the possibility of integrating the measurement process with
SAP’s software development process so that SAP’s software architects and developers can use
the measurement process as a tool in a regular basis.

1.2 Contributions and Roadmap

We make the following key contributions in this paper.

2



1. We introduce a systematic method for measuring the attack surfaces of SAP business appli-
cations implemented in Java.

2. We implement a tool to measure a business application’s attack surface from the application’s
source code in an automated manner.

3. We demonstrate the utility of the measurement method and the tool by measuring and
comparing the attack surfaces of three versions of an SAP software system.

4. We identify future avenues of research to make the measurement method and the tool more
useful in practice.

The rest of this paper is organized as follows. We briefly describe Manadhata and Wing’s
abstract attack surface measurement method in Section 2. In Section 3, we describe our choice
of the SAP software system used in the collaboration. We introduce a method to measure the
attack surfaces of SAP software systems in Section 4. We describe the implementation of a tool
to measure the attack surface in Section 5. We discuss the measurement results in Section 6 and
our recommendations in Section 7. In Section 8, we describe various lessons learned from the
collaboration and discuss possible avenues of future work. We conclude with a summary in Section
9.

2 Abstract Attack Surface Measurement Method

We know from the past that many attacks, e.g., exploiting a buffer overflow, on a system take
place by sending data from the system’s operating environment into the system. Similarly, many
other attacks, e.g., symlink attacks, on a system take place because the system sends data into its
environment. In both these types of attacks, an attacker connects to a system using the system’s
channels (e.g., sockets), invokes the system’s methods (e.g., API), and sends data items (e.g., input
strings) into the system or receives data items from the system. An attacker can also send data
indirectly into a system by using data items that are persistent (e.g., files). An attacker can send
data into a system by writing to a file that the system later reads. Similarly, an attacker can
receive data indirectly from the system by using shared persistent data items. Hence an attacker
uses a system’s methods, channels, and data items present in the system’s environment to attack
the system. We collectively refer to a system’s methods, channels, and data items as the system’s
resources and thus define a system’s attack surface in terms of the system’s resources (Figure 2).

Not all resources, however, are part of the attack surface. A system’s attack surface is the subset
of the system’s resources that an attacker can use to cause damage to the system. Manadhata
and Wing introduce an entry point and exit point framework to identify these relevant resources.
Moreover, not all resources contribute equally to the measure of a system’s attack surface. A
resource’s contribution to the attack surface reflects the likelihood of the resource being used in
attacks. For example, a method running with root privilege is more likely to be used in attacks
than a method running with non-root privilege. Manadhata and Wing introduce the notion of a
damage potential-effort ratio to estimate a resource’s contribution to the attack surface. A system’s
attack surface measurement is the total contribution of the resources along the methods, channels,
and data dimensions; the measurement indicates the level of damage an attacker can potentially
cause to the system and the effort required for the attacker to cause such damage.

3



Figure 2: Intuitively, a system’s attack surface is the subset of the system’s resources (methods,
channels, and data) used in attacks on the system.

A system’s attack surface measurement does not represent code quality; hence a large attack
surface measurement does not imply that a system has many vulnerabilities and few vulnerabilities
in a system does not imply a small measurement. Instead, a larger attack surface measurement
indicates that an attacker is likely to exploit the vulnerabilities present in the system with less effort
and cause more damage to the system. Since a system’s code is likely to contain vulnerabilities,
it is prudent to reduce the system’s attack surface measurement in order to mitigate the security
risk.

2.1 Attack Surface Definition

Consider a set, S, of systems, a user, U , and a data store, D. For a given system, s ∈ S, we define its
environment, Es = 〈U, D, T 〉, to be a three-tuple where T = S \{s} is the set of systems excluding
s. The system s interacts with its environment Es; hence we define the entry points and exit points
of s with respect to Es. Figure 3 shows a system, s, and its environment, Es = 〈U, D, {s1, s2, }〉.
For example, s could be a web server and s1 and s2 could be an application server and a directory
server, respectively.

Figure 3: A system, s, and its environment, Es.

Every system in S has a set of methods. A method of a system receives arguments as input
and returns results as output. Examples of methods are the API of a system. Every system also
has a set of communication channels. The channels of a system s are the means by which the
user U or any other system in the environment communicates with s. Examples of channels are

4



TCP/UDP sockets, RPC end points, and named pipes. The user U and the data store D are global
with respect to the systems in S. The data store is a collection of data items. Examples of data
items are strings, URLs, files, and cookies. We model the data store D as a separate entity to allow
sharing of data among all the systems in S. For simplicity, we assume only one user U is present
in the environment. U represents the adversary who attacks the systems in S.

2.1.1 Entry Points

The methods of a system that receive data items from the system’s environment are the system’s
entry points. A method of a system can receive data directly or indirectly from the environment.
A method, m, of a system, s, receives a data items directly if either (a) the user U or a system,
s1, in the environment invoke m and passes data items as input to m, or (b) m reads data items
from the data store, or (c) m invokes the API of a system s1 in the environment and receives data
items as results returned. A method is a direct entry point if it receives data items directly from
the environment. Few examples of the direct entry points of a web server are the methods in the
API of the web server, the methods of the web server that read configuration files from the file
system, and the methods of the web server that invoke the API of an application server.

A method, m, of s receives data items indirectly if either (a) a method, m1, of s receives a data
item, d, directly, and either m1 passes d as input to m or m receives d as result returned from
m1, or (b) a method, m2, of s receives a data item, d, indirectly, and either m2 passes d as input
to m or m receives d as result returned from m2. A method is a indirect entry point if it receives
data items indirectly from the environment. For example, a method in the API of the web server
that receives login information from a user might pass the information to another method in the
authentication module; the method in the authentication module is an indirect entry point. The
set of entry points of a system is the union of the set of direct entry points and the set of indirect
entry points.

2.1.2 Exit Points

The methods of a system that send data items to the system’s environment are the system’s exit
points. For example, a method that writes into a log file is an exit point. A method of a system can
send data directly or indirectly into the environment. A method, m, of a system, s, sends a data
items directly if either (a) the user U or a system, s1, in the environment invoke m and receive data
items as results returned from m, or (b) m writes data items to the data store, or (c) m invokes
the API of a system s1 in the environment and passes data items as input to s1’s API. A method
m of s is a direct exit point if m sends data items directly to the environment. A method, m, of s
sends data items indirectly if either (a) m passes a data item, d, as input to a method, m1, of s or
m1 receives d as result returned from m , and m1 passes d directly to s’s environment, or (b) m
passes a data item, d, as input to a method, m2, of s or m2 receives d as result returned from m,
and m2 passes d indirectly to s’s environment. A method m of s is a indirect exit point if m sends
data items indirectly to the environment. The set of exit points of a system is the union of the set
of direct exit points and the set of indirect exit points.

2.1.3 Channels

An attacker uses a system’s channels to connect to the system and attack the system. Hence a
system’s channels act as another basis for attacks. An example of a channel of an IMAP server is

5



the TCP socket opened by the IMAP server.

2.1.4 Untrusted Data Items

The data store D is a collection of persistent and transient data items. The data items that are
visible to both a system s and the user U across different executions of s are the persistent data
items. Specific examples of persistent data items are files, cookies, database records, and registry
entries. The persistent data items are shared between s and U , hence U can use the persistent
data items to send (receive) data indirectly into (from) s. Hence the persistent data items act as
another basis for attacks on s. An untrusted data item of a system s is a persistent data item d
such that a direct entry point of s reads d from the data store or a direct exit point of s writes d
to the data store. The configuration files of an IMAP server are examples of the IMAP server’s
untrusted data items.

Notice that the attacker sends (receives) the transient data items directly into (from) s by
invoking s’s direct entry points (direct exit points). Since the direct entry points (direct exit
points) of s act as a basis for attacks on s, we do not consider the transient data items as a basis
for attacks on s.

2.2 Attack Surface

The set of entry points and exit points, the set of channels, and the set of untrusted data items are
the resources that the attacker can use to either send data into the system or receive data from the
system and hence attack the system. Hence given a system, s, and its environment, Es, s’s attack
surface is the triple, 〈M, C, I〉, where M is the set of entry points and exit points, C is the set of
channels, and I is the set of untrusted data items of s.

2.3 Attack Surface Measurement Method

A naive way of measuring a system’s attack surface is to count the number of resources that
contribute to the attack surface. This naive method is misleading as it assumes that all resources
contribute equally to the attack surface. In real systems, not all resources contribute equally to the
attack surface. For example, a method, m1, running as root is more likely to be used in an attack
than a method, m2, running as non-root; hence m1 contributes higher to the attack surface than
m2.

We estimate a resource’s contribution to a system’s attack surface as a damage potential-effort
ratio where damage potential is the level of harm the attacker can cause to the system in using the
resource in an attack and effort is the amount of work done by the attacker to acquire the necessary
access rights in order to be able to use the resource in an attack. The higher the damage potential,
the higher the contribution; the higher the effort, the lower the contribution.

In practice, we estimate a resource’s damage potential and effort in terms of the resource’s
attributes. Examples of attributes are method privilege, access rights, channel protocol, and data
item type. In case of systems implemented in C, we estimate a method’s damage potential in terms
of the method’s privilege. An attacker gains the same privilege as a method by using a method
in an attack. For example, the attacker gains root privilege by exploiting a buffer overflow in a
method running as root. The attacker can cause damage to the system after gaining root privilege.
Similarly, we estimate a channel’s damage potential in terms of the channel’s protocol and a data

6



item’s damage potential in terms of the data item’s type. The attacker can use a resource in an
attack if the attacker has the required access rights. The attacker spends effort to acquire these
access rights. Hence for the three kinds of resources, i.e., method, channel, and data, we estimate
the effort the attacker needs to spend to use a resource in an attack in terms of the resource’s access
rights.

We assume that we have total orderings among the values of each of the six attributes, i.e.,
method privilege and access rights, channel protocol and access rights, and data item type and
access rights. In practice, we impose these total orderings using our knowledge of a system and its
environment. For example, an attacker can cause more damage to a system by using a method run-
ning with root privilege than a method running with non-root privilege; hence root � non-root.
We use these total orderings to assign numeric values to the attributes and estimate numeric damage
potential-effort ratios using the numeric values.

Our abstract attack surface measurement method consists of the following three steps.

1. Given a system, s, and its environment, Es, we identify a set, M , of entry points and exit
points, a set, C, of channels, and a set, I, of untrusted data items of s.

2. We estimate the damage potential-effort ratio, derm(m), of each method m ∈M , the damage
potential-effort ratio, derc(c), of each channel c ∈ C, and the damage potential-effort ratio,
derd(d), of each data item d ∈ I.

3. The measure of s’s attack surface is the triple 〈
∑

m∈M

derm(m),
∑

c∈C

derc(c),
∑

d∈ I

derd(d)〉.

3 Choice of an Enterprise Software System

Choosing an appropriate software system was a vital step in our collaboration with SAP. The choice
of a system was guided by three requirements. First, the chosen system should be a heavily used
system so that reduction in its attack surface benefits a large number of SAP customers by reducing
their security risk. Second, the chosen system should be representative of SAP’s software systems;
measuring the system’s attack surface will guide us in measuring the attack surfaces of other SAP
systems. Third, the product development group in charge of the system should be committed to
the collaboration.

We had discussions with six different SAP product development groups before making our
choice. We identified a component of the SAP NetWeaver platform as the enterprise software
system to be used in our collaboration [4]. SAP NetWeaver is the common technology platform for
SAP business applications; the platform provides the run time environment for all SAP applications.
The platform enables development, life cycle management, composition, and integration of SAP
business applications [5]. Our chosen component is a core building block of the NetWeaver platform
and provides a critical service inside the platform. Henceforth, we refer to the chosen component
as the service.

4 Measurement Method for SAP Software Systems

In this section, we introduce a method to measure the attack surfaces of SAP software systems
implemented in Java. A majority of SAP systems are implemented in Java, JavaScript, and ABAP
(a proprietary SAP language). We leave the measurement methods for systems implemented in
JavaScript and ABAP for future work.

7



Manadhata and Wing instantiated the abstract method discussed in Section 2.3 to obtain a
measurement method for systems implemented in C [14]. Figure 4 shows the steps in their C
measurement method.

We instantiate the abstract method of Section 2.3 to obtain a measurement method for Java.
Our measurement method has the same steps as the C measurement method. The implementations
of the steps, however, are different for the method dimension; the channel dimension and the data
dimension remain unchanged.

Recall that the two key steps in measuring the attack surface along the method dimension are
(1) the identification of the entry points and the exit points (Section 4.1), and (2) the estimation of
the damage potential-effort ratio of the entry points and the exit points (Section 4.2). We describe
these two steps of our new method in the following paragraphs.

4.1 Identification of Entry Points and Exit Points

A direct entry point of a system is a method that receives data items directly from the system’s
environment. A method, m, of a system, s, implemented in Java can receive data items in three
different ways: (a) m is a method in s’s public interface and receives data items as input, (b) m
invokes a method in the interface of a system, s′, in the environment and receives data items as
result, and (c) m invokes a Java I/O library method. For example, a method, m, is a direct entry
point if m invokes the read method of the java.io.DataInputStream class.

A direct exit point of a system is a method that sends data items directly to the system’s
environment. A method, m, of a system, s, implemented in Java can send data items in three
different ways: (a) m is a method in s’s public interface and sends data items as result, (b) m
invokes a method in the interface of a system, s′, in the environment and sends data items as input,
and (c) m invokes a Java I/O library method. For example, a method, m, is a direct exit point if
m invokes the write method of the java.io.DataOutputStream class.

Given a system, s, we generate s’s call graph starting from the methods in s’s public interface.
From the call graph, we identify all methods of s that invoke either a method in the interface of a
system, s′, in s’s environment or a Java I/O library method. These methods are s’s direct entry
points and direct exit points.

We implemented a tool, described in Section 5, to measure the attack surfaces of SAP systems
in an automated manner. The tool identifies only direct entry points and direct exit points of a
system. No existing code analysis technique enabled us to identify the indirect entry points and the
indirect exit points; we leave the identification of the indirect entry points (exit points) as future
work. Hence our measurement is an under-approximation of the measure of the attack surface.

4.2 Estimation of the Damage Potential-Effort Ratio

In case of systems implemented in C, we estimate a method’s damage potential using the method’s
privilege and the attacker effort using the method’s access rights. In case of the SAP systems,
however, a method’s privilege is not a useful estimate of the method’s damage potential. The
entire code base of the NetWeaver platform runs with the same privilege, i.e., the privilege of the
application server hosting the platform. If we were to estimate the damage potential using the
privilege, we could not make any meaningful suggestion to reduce the attack surface. Hence we do
not use a method’s privilege in estimating the method’s damage potential. Instead, we estimate a
method’s damage potential using the method’s sources of input data (destinations of output data).

8



So
ur

ce
C

od
e

C
al

l g
ra

ph
 G

en
er

at
or

an
d 

A
na

ly
ze

r

E
xe

cu
tio

n
R

un
 ti

m
e

M
on

ito
ri

ng

A
tta

ck
 S

ur
fa

ce
C

om
pu

ta
tio

n

N
um

er
ic

 V
al

ue
s

A
nn

ot
at

ed
 

So
ur

ce
 C

od
e

R
un

ni
ng

Pr
oc

es
s

E
nt

ry
 P

oi
nt

s 
an

d
E

xi
t P

oi
nt

s

A
tta

ck
 S

ur
fa

ce
M

ea
su

re
m

en
t

C
ha

nn
el

s

U
nt

ru
st

ed
D

at
a 

It
em

s

In
pu

t
an

d
O

ut
pu

t
M

et
ho

ds

A
nn

ot
at

io
n

C
om

pi
la

tio
n 

an
d

Figure 4: Steps in the attack surface measurement method for systems implemented in C.

9



A method can receive (send) data items from (to) three sources: an input parameter, the data
store, and other systems present in the environment. For example, a method receives data items
from an attacker as an input parameter in case of SQL injection attacks and Cross Site Scripting
(XSS) attacks whereas the method receives data items from the data store in case of File Existence
Check attacks. Methods in SAP systems can have three different sources of input: parameter,
data store, and other systems.

Similar to systems implemented in C, we use a method’s access rights level to estimate the
attacker effort. A typical SAP system has two different types of interfaces: (1) public interfaces
that can be accessed by all entities belonging to any NetWeaver role and (2) internal interfaces
that can be accessed by only other components of the NetWeaver platform. Hence the methods in
SAP systems can be accessed with two different access rights levels: public access rights level for
methods in public interfaces and internal access rights level for methods in internal interfaces.

In case of an SAP system, we annotate the system’s code base to indicate the access rights levels
of the system’s interfaces. We generate the call graph of the annotated code base and determine
the sources of input and the access rights levels of the methods from the call graph. Notice that a
method may have multiple sources of input. Similarly, a method may be accessible with multiple
access rights levels. We identify such a method as a direct entry point (direct exit point) multiple
times.

Similar to systems implemented in C, we impose total orderings among the sources of input and
the access rights levels and assign numeric values to the sources of input and access rights levels in
accordance to the total orderings. The exact choice of the numeric values is subjective and depends
on a system and its environment. We discuss a specific way of assigning the numeric values in
case of the service in Section 5.3. We estimate a method’s damage potential-effort ratio from the
numeric values assigned to the method’s source of input and access rights level.

5 Implementation of a Measurement Tool

In this section, we describe a tool we implemented to measure the attack surfaces of SAP systems
implemented in Java. There are two key objectives that guided the implementation of the tool:
(1) the tool should be an integral part of the software development process, and (2) the software
developers and architects can use the tool easily and frequently without spending too much time
and effort. The software developers and architects at SAP are already under time pressure; hence
it is crucial for the adoption of the tool that we do not burden them with more work and we do
not require them to go out of their normal routine to use the tool.

SAP’s software developers use a customized version of the Eclipse Integrated Development
Environment (IDE) for their software development activities [7]. We implemented our tool as a
plugin for the Eclipse IDE so that the developers can use the tool inside their software development
environment. We show a screen shot of our tool in Figure 5 and describe the tool in details in the
following paragraphs.

5.1 Call Graph Generation

A key component of our tool is the generation of a system’s call graph from the system’s source code.
We use two different techniques to generate the call graph to provide a precision-scalability tradeoff
to the software developers: the TACLE Eclipse plugin developed at the Ohio State University,

10



Figure 5: Screenshot of the Attack Surface Measurement tool implemented as an Eclipse plugin.

11



which gives a very precise call graph, but does not scale well to large programs [10]; and an Eclipse
API, which gives a less precise call graph, but scales [8].

The TACLE plugin provides us an off-the-shelf implementation of the Rapid Type Analysis
(RTA) algorithm to perform type analysis and construct call graphs [6]. The plugin performs the
operations on a Java project inside a Java Development Tools (JDT) environment. The plugin
implements the RTA algorithm using an Abstract Syntax Tree (AST) analysis [18]; for each Java
class included in the source code, the algorithm constructs and stores the AST of the class in main
memory. Hence the algorithm does not scale well to large software systems that contain a large
number of Java classes. Moreover, to construct a complete call graph, the plugin requires the source
code of all the Java libraries and Java Archives (JAR) used for the compilation of the code base.
In practice, we do not expect the software developers to possess the source code of the libraries
required by their software. For example, the service requires 23 SAP JARs for its compilation. It
is unrealistic to expect the developers of the service to include the source code of these 23 JARs in
their Java development project.

The Eclipse IDE has an internal API for the construction of call graphs from Java source code.
The API is included in the org.eclipse.jdt.internal.corext.callhierarchy package of the
IDE [8]. The API does not require the source code of the libraries and JARs used by a system’s
code base; hence scales well to large code bases. The constructed call graph, however, is less precise
than the call graph generated by the TACLE plugin. For example, the API does not resolve an
interface method to a class method that implements the interface method. We extended the API by
finding all class methods that implement an interface method and then including the implementing
methods in the call graph. The resulting call graph, however, is an over-approximation of the actual
call graph as only one of the class methods will be invoked in place of the interface method. Hence
our measurement is an over-approximation of the measure of the attack surface.

5.2 Entry Points and Exit Points Identification

Our tool identifies a system’s entry points and exit points from the system’s call graph. A method
of a system is an entry point (exit point) if the method invokes a method in the public interface of
another system present in the environment or a Java I/O library method. Hence our tool needs the
list of interface methods of other systems and the list of Java I/O library methods. We provide the
list of methods to the tool through two configuration files: osmethods.txt and dsmethods.txt.

The service invokes the methods of many SAP systems included in the NetWeaver platform.
Invocation of an interface method, however, is only relevant to the attack surface measurement if
the invocation results in data transfer from the service to other systems in its environment or vice
versa. We used the javadoc description of the interfaces and interface methods included in the 23
SAP JAR libraries needed by the service and identified 25 interfaces and 126 interface methods to
be relevant to the attack surface measurement. We discussed the methods with the developers of
the service to avoid any error and included the methods in the osmethods.txt configuration file
of our tool.

The service does not read or write any untrusted data items from the data store. Hence there
were no Java I/O library methods to identify as relevant. But in general, we should provide the
list of relevant methods through the dsmethods.txt configuration file.

12



5.3 Numeric Value Assignment

Another key component of our tool is the estimation of the numeric damage potential-effort ratios
of a system’s entry points and exit points. We estimate the damage potential and the attacker
effort in terms of the sources of input and the access rights level, respectively. The tool determines
the sources of input and the access rights levels from the system’s call graph; the tool, however,
requires the numeric values assigned to the different sources of input and the access rights levels
to estimate numeric damage potential-effort ratios. We provide these numeric values through a
configuration file, weights.txt.

The methods of the service have three different sources of input: parameter, data store, and
other system. As discussed in Section 4.2, different types of attacks on the service require the
methods to have different sources of input. We assign numeric values to the sources of input by
correlating the sources with possible attacks on the service.

SAP conducted a threat modeling process for the service. The process identified possible attacks
on the service and assigned severity ratings to the attacks. We correlated the sources of inputs
with the possible attacks identified by the threat modeling process. For each source of input, we
computed the average severity rating of the attacks that require the source of the input. We show
the sources of input in the first column and the average severity ratings in the second column of
Table 1.

We assigned numeric values to the sources of input in proportion to the average severity ratings.
Manadhata and Wing’s parameter sensitivity analysis suggests that the difference between the
numeric values assigned to successive damage potential levels should be in the range of 3-14 [14].
Hence we chose the midpoint, 8.5, of the range as the difference. For example, we assigned 1 to the
source other system, and 1 + (3− 1)× 8.5 = 18 to the source data store. We show the numeric
values in third column of Table 1.

Source of Input Average Severity Rating Numeric Value
other system 1 1
data store 3 18
parameter 5 35

Table 1: Numeric values assigned to the sources of input.

The methods of the service can be accessed by two different access rights level: public and
internal. We imposed the following total ordering among the access rights level: internal >
public. The parameter sensitivity analysis suggests that the difference between the numeric values
assigned to successive access rights level should be high (15-20). Hence we chose a difference of 17.
We show the numeric values assigned to the access rights level in Table 2.

Access Rights Level Numeric Value
public 1

internal 18

Table 2: Numeric values assigned to the access rights levels.

We use the numeric values shown in Table 1 and Table 2 to compute the numeric damage

13



potential-effort ratios. For example, consider an entry point, m, of a system, s. m is a method
in s’s public interface and has two input parameters; m also invokes three interface methods of a
system, s′, in the environment. Then m’s damage potential is 2×35+3×1 = 73. If m is accessible
with the public access rights level, then m’s damage potential-effort ratio is 73/1 = 73. Similarly,
if m is accessible with the internal access rights level, then m’s damage potential-effort ratio is
73/18 = 4.05.

5.4 Usage of the Tool

The software developers can use our tool to generate a system’s call graph rooted at any method
of the system and to compute the attack surface measurement from the call graph. The developers
can choose the method in the Outline view window of the Eclipse IDE. Figure 5 shows the two
options for measuring the attack surface in the right context menu of the Outline window; the
developers can choose the option appropriate for their scalability and precision requirements.

SAP’s software systems have multiple interfaces and each interface typically contains multiple
methods. To compute the attack surface of an SAP system, we create a new Java class with only a
main method. The main method invokes all the methods included in the interfaces of the system.
We generate a call graph rooted at the main method and compute the attack surface of the system.

The tool generates its output in the form of a text file, containing (1) the system’s attack surface
measurement, (2) a list of the system’s entry points and exit points, and (3) for each entry point
(exit point), a list of input sources, the access rights level, and its contribution to the attack surface
measurement. The software developers can use the detailed output as a guide in reducing the attack
surfaces of their software. For example, they can focus on the top x% of the entry points and the
exit points to reduce the attack surface. They can also focus on the top contributing interfaces and
components instead of considering the entire code base of the system.

Our tool allows the developers to perform incremental measurements. They can measure the
increase in the attack surface due to the addition of a new interface method by generating a call
graph rooted at the method; they do not have to measure the attack surface of the entire system.
They can also measure the potential reduction in the attack surface due to the removal of an
interface method.

The tool also allows the developers to consider many what-if scenarios during software de-
velopment. For example, the developers can easily determine the effect of adding a new feature
to the system on the system’s attack surface. Similarly, while reducing the attack surface, they
can consider the removal of different features and the effect of the removal on the attack surface
measurement. They can use the incremental measurements to make an informed decision.

6 Results and Discussion

We measured the attack surfaces of three different of the service included in three different versions
of the NetWeaver platform. We identify the three version of the service as S1, S2, and S3. The S1
version is the first released version of the service, followed by S2 and S3 versions, respectively.

We only considered the method dimension of the attack surface in our measurement. The three
versions of the service do not use any persistent data items and open only one channel, i.e., a TCP
socket. Hence we did not measure the attack surface along the channel dimension and the data
dimension.

14



The S3 version of the service implements 8 public interfaces and 2 internal interfaces. The S2
and S1 versions implement 9 and 8 public interfaces, respectively, and no internal interfaces. We
show the number of entry points and exit points of the three versions for each access rights level in
Table 3.

Version
Count

Public Internal
S3 71 4
S2 67 0
S1 63 0

Table 3: The number of entry points and exit points of the three versions of the service for each
access rights level.

We estimated the damage potential-effort ratio of each entry point (exit point) as described in
Section 5.3; the ratio is the contribution of the entry point to the attack surface. We summed up the
contributions of the entry points and the exit points to obtain the attack surface measurement along
the method dimension. We show the attack surface measurements in Table 4. The measurements
indicate that the S3 version has the highest security risk along the method dimension followed by
S2 and S1.

Version Attack Surface Measurement
S3 5298.44
S2 4687.00
S1 4649.00

Table 4: Attack surface measurements of the three versions of the service.

The S1 version is the first version of the service released to the customers. The S2 version
is backward compatible with S1 for the convenience of the customers. Moreover, S2 added new
features to S1 resulting in an increase in the number of public interfaces. Hence the set of methods of
S2 is a superset of the set of methods of S1 and as shown in Table 4, the attack surface measurement
of S2 is greater than S1.

The S3 version is the latest version of the service released to the customers. The S3 version
differs from the S2 version in two significant ways: (1) S3 converted a public interface of S2 to an
internal interface to mitigate security risk, and (2) S3 added new features to the service resulting
in an increase in the number of public interfaces and internal interfaces. If no new features were
added, the attack surface measurement of S3 would have been smaller than S2 due to the conversion
of a public interface to an internal interface. The increase in the number of total interfaces due to
the addition of new features, however, increases the attack surface measurement of S3. Hence as
shown in Table 4, the attack surface measurement of S3 is greater than S2.

Notice that S3’s attack surface measurement would have been greater than its current measure-
ment if all its interfaces were public; the presence of internal interfaces results in a minimal attack
surface measurement. Hence the addition of the internal interfaces was a good design decision that
reduced the attack surface measurement and hence mitigated the security risk of the service.

15



7 Recommendations

The results discussed in the previous section show that our new attack surface measurement ap-
proach is feasible for SAP’s complex business applications. The relative ordering among the service’s
three measurements conforms to the expected ordering. The measurement results can be used as
a guide to reduce the service’s attack surface measurement. We, however, need further research
before we can integrate the attack surface measurement method with SAP’s software development
life cycle; we discuss possible directions for further research in section 8.

A system’s attack surface measurement can be used in other contexts besides the obvious, i.e.,
as an indication of the system’s security risk. We describe four possibilities below; a useful direction
of future work is to explore other usage of the attack surface measurement.

7.1 Usage by SAP Developers

We envision two possible uses of attack surface measurements by SAP’s software developers. First,
software developers and architects can use the minimum and the maximum attack surface mea-
surement estimates discussed in Section 8.3 to prioritize software testing effort. For example, if a
system’s attack surface measurement is closer to the maximum, then they should invest more in
testing efforts; if the measurement is closer to the minimum, they can reduce their testing effort.

Second, SAP’s software developers can use attack surface measurements as a guide while im-
plementing patches of security vulnerabilities in SAP software systems. A good patch should not
only remove a vulnerability from a system, but also should not increase the system’s attack surface.
Software developers can use our tool to ensure that their patches do not increase the attack surface.

7.2 Usage by SAP Customers

We also envision two possible uses of attack surface measurements by SAP’s consumers. First,
SAP’s customers often customize SAP software by adding new code to SAP software. The customers
can use our tool to measure their customized software’s attack surfaces. They can get a sense of
their security risk by comparing their measurements with the measurements of the original software
released by SAP.

Second, software consumers often have to make a choice between several possible configurations
of software. For example, SAP business applications can be configured in many different ways;
SAP customers choose the configuration best for them. Configuring large enterprize-scale software
is a complex process; hence choosing an appropriate configuration is a non-trivial and error-prone
task. SAP’s customers could use a system’s attack surface measurement as a guide in choosing
an appropriate configuration. Since a system’s attack surface measurement is dependent on the
system’s configuration, they would choose a configuration that results in a smaller attack surface
exposure.

8 Future Work

In this section, we discuss possible avenues of future work.

16



8.1 Validation of the Method

A key challenge in security metrics research is the validation of the metric. Manadhata and Wing
performed three empirical studies to validate the abstract measurement method and the mea-
surement results of systems implemented in C [14]. A possible direction of future research is to
explore validation ideas in the context of SAP business applications. Validation of SAP business
applications’ attack surface measurements may turn out to be easier than validation in the gen-
eral context. We, however, need more research to identify suitable variables to correlate with the
business applications’ attack surface measurements.

A possible validation approach would be to integrate the attack surface measurement and re-
duction process with the software development process of an SAP business application and then
observe the benefits of attack surface reduction after the release of the application. If the newer
version of the application undergoes attack surface reduction, then we would expect to see fewer
exploitable vulnerabilities in the newer version than the older versions over similar time periods.

8.2 Improvements of the Measurement Tool

Based on the feedback received from the SAP product development group, we have identified three
possible extensions of the tool to make it more useful for software developers. First, the tool cur-
rently outputs its result in the form of a text file. We could improve the tool by presenting the
results in a graphical window inside the Eclipse IDE so that the developers can access the measure-
ment results within the IDE. Second, we could improve the usability of the tool by implementing
a Graphical User Interface (GUI) to update the configuration information required by the tool.
Third, the tool currently measures the attack surfaces of systems implemented in Java. The tool
would be more useful in practice if we were to extend the tool to measure the attack surfaces of
software implemented in other languages such as JavaScript and ABAP [1].

8.3 Attack Surface Range Analysis

The result of our attack surface measurement method guides the software developers to focus on
a system’s relevant parts to reduce the system’s attack surface. For example, the developers can
analyze the top contributing entry points and exit points instead of the entire code base to reduce
the attack surface. The result, however, does not help in deciding when to stop the reduction
process. In order to address this issue, a possible extension of our work is to develop a method to
estimate the minimum and the maximum possible attack surface measurements of a system given
the system’s functionality. We briefly describe such a method in the following paragraph.

In order to estimate the minimum and the maximum attack surface measurements, we need to
estimate an entry point’s (exit point) minimum and maximum contributions to the attack surface,
i.e., we need to estimate the minimum and the maximum damage potential-effort ratios. We can
estimate the minimum and the maximum damage potential-effort ratios from the range of numeric
values assigned to damage potential and effort. We also need to estimate the appropriate number
of entry points and exit points required to implement the system’s functionality. In the absence
of such an estimate, we can simplify our analysis by assuming that the appropriate number is the
same as the observed number of entry points and exit points. Hence we can estimate the minimum
and the maximum attack surface measurements by multiplying the number of entry points and exit
points with the minimum and the maximum damage potential-effort ratios, respectively.

17



9 Summary

In summary, we have introduced a method to measure the attack surfaces of SAP software imple-
mented in Java. We have implemented a tool as an Eclipse plug-in to measure the attack surface
in an automated manner. We have demonstrated the use of the method and the tool by measuring
and comparing the attack surfaces of three versions of an SAP software system. We have also
learned important lessons on how to improve our measurement method and our measurement tool
to make the measurement process more useful in practice.

We view our work as a useful and pragmatic approach for quantifying the security risk of SAP
business applications. We believe that our understanding over time will enable us to further refine
our measurement approach.

Acknowledgments

We would like to thank Effrat Keren for her enthusiastic collaboration on the project. The project
results would not have been possible without her support.

We would like to thank Sherman Yahali and his team for hosting us. We would like to thank
the following members of the team for patiently answering our never-ending list of questions: Eyal
Gal, Robert Krien, Shani Ozeri, Oren Ronen, Yael Schuldenfrei, and Vitaly Vainer.

We would like to thank Daniel Clemens for his help on issues related to project management.
We would like to thank Ike Nassi, Paul Hofmann, and Anne Hardy for their leadership roles

and encouragement.
We would like to thank Michael Hartmann and Sachar Paulus of SAP Product Security for

sponsoring the project and for their support and encouragement throughout the project.
Finally, we would like to thank all SAP folks, especially the NetWeaver security group, with

whom we had many fruitful discussions during the course of the project.

References

[1] SAP AG. Abap development. https://www.sdn.sap.com/irj/sdn/abap. 8.2

[2] SAP AG. SAP - business software solutions applications and services. http://www.sap.com/
index.epx. 1

[3] SAP AG. SAP - enterprise solutions technology leader. http://www.sap.com/about/index.
epx. 1

[4] SAP AG. SAP NetWeaver. http://www.sap.com/platform/netweaver/index.epx. 3

[5] SAP AG. SAP NetWeaver products. https://www.sdn.sap.com/irj/sdn/nw-products. 3

[6] David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function calls. In
OOPSLA ’96: Proceedings of the 11th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 324–341, New York, NY, USA, 1996.
ACM. 5.1

[7] Eclipse. Eclipse - an open development platform. http://www.eclipse.org/. 5

18

https://www.sdn.sap.com/irj/sdn/abap
http://www.sap.com/index.epx
http://www.sap.com/index.epx
http://www.sap.com/about/index.epx
http://www.sap.com/about/index.epx
http://www.sap.com/platform/netweaver/index.epx
https://www.sdn.sap.com/irj/sdn/nw-products
http://www.eclipse.org/


[8] Eclipse. Eclipse package org.eclipse.jdt.internal.corext.callhierarchy. http://mobius.inria.
fr/eclipse-doc/org/eclipse/jdt/internal/corext/callhierarchy/package-summary.
html. 5.1

[9] Seymour E. Goodman and Herbert S. Lin, editors. Toward a Safer and More Secure Cy-
berspace. The National Academics Press, 2007. 1

[10] PRESTO Research Group. TACLE project. http://presto.cse.ohio-state.edu/tacle/.
5.1

[11] M. Howard, J. Pincus, and J.M. Wing. Measuring relative attack surfaces. In Proc. of Work-
shop on Advanced Developments in Software and Systems Security, 2003. 1

[12] Michael Howard. Personal communication, 2005. 1.1

[13] P. K. Manadhata, D. K. Kaynar, and J. M. Wing. A formal model for a system’s attack
surface. In Technical Report CMU-CS-07-144, July 2007. 1

[14] P. K. Manadhata, K. M.C. Tan, R. A. Maxion, and J. M. Wing. An approach to measuring a
system’s attack surface. In Technical Report CMU-CS-07-146, August 2007. 1, 4, 5.3, 8.1

[15] P. K. Manadhata and J. M. Wing. Measuring a system’s attack surface. In Technical Report
CMU-CS-04-102, January 2004. 1

[16] P. K. Manadhata, J. M. Wing, M. A. Flynn, and M. A. McQueen. Measuring the attack
surfaces of two FTP daemons. In ACM CCS Workshop on Quality of Protection, October
2006. 1

[17] Gervase Markham. Reducing attack surface. http://weblogs.mozillazine.org/gerv/
archives/2007/02/reducing_attack_surface.html. 1.1

[18] Mariana Sharp, Jason Sawin, and Atanas Rountev. Building a whole-program type analysis
in Eclipse. In Eclipse Technology Exchange Workshop at OOPSLA, pages 6–10, 2005. 5.1

19

http://mobius.inria.fr/eclipse-doc/org/eclipse/jdt/internal/corext/callhierarchy/package-summary.html
http://mobius.inria.fr/eclipse-doc/org/eclipse/jdt/internal/corext/callhierarchy/package-summary.html
http://mobius.inria.fr/eclipse-doc/org/eclipse/jdt/internal/corext/callhierarchy/package-summary.html
http://presto.cse.ohio-state.edu/tacle/
http://weblogs.mozillazine.org/gerv/archives/2007/02/reducing_attack_surface.html
http://weblogs.mozillazine.org/gerv/archives/2007/02/reducing_attack_surface.html

	1 Introduction
	1.1 Motivation
	1.2 Contributions and Roadmap

	2 Abstract Attack Surface Measurement Method
	2.1 Attack Surface Definition
	2.1.1 Entry Points
	2.1.2 Exit Points
	2.1.3 Channels
	2.1.4 Untrusted Data Items

	2.2 Attack Surface
	2.3 Attack Surface Measurement Method

	3 Choice of an Enterprise Software System
	4 Measurement Method for SAP Software Systems
	4.1 Identification of Entry Points and Exit Points
	4.2 Estimation of the Damage Potential-Effort Ratio

	5 Implementation of a Measurement Tool
	5.1 Call Graph Generation
	5.2 Entry Points and Exit Points Identification
	5.3 Numeric Value Assignment
	5.4 Usage of the Tool

	6 Results and Discussion
	7 Recommendations
	7.1 Usage by SAP Developers
	7.2 Usage by SAP Customers

	8 Future Work
	8.1 Validation of the Method
	8.2 Improvements of the Measurement Tool
	8.3 Attack Surface Range Analysis

	9 Summary
	Acknowledgments
	Bibliography

