Conditional Random Fields for Activity
Recognition

Douglas L. Vail

CMU-CS-08-119
April, 2008

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Manuela Veloso, Co-Chair
John Lafferty, Co-Chair
Carlos Guestrin
Dieter Fox, University of Washington

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (© 2008 Douglas L. Vail

This research was sponsored by a Graduate Fellowship from the National Physical Science Consortium;
Directorate of Contracting under grant number DABT63-99-1-0013; National Science Foundation under
grant number I1S-9900298; Air Force Research Laboratory under cooperative agreement number F30602-
00-2-0549; L3 Communication Integrated Systems, L.D. under grant number 4500244745; SRI International
under grant number 03-000211; Department of Justice under cooperative agreement number 20051JCXKO057;
DARPA under grant number NBCH1040007. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either expressed or implied,
of any sponsoring institution, the U.S. government or any other entity.

Keywords: Conditional Random Fields, Activity Recognition, Robotics, Undirected
Graphical Models, Feature Selection, M-estimators

For my father, who started it all

Abstract

To act intelligently in the presence of others, robots must use information from their sensors
to recognize the behaviors and activities of the other agents in their environment. Robots
must map from low-level, difficult to interpret data, such as position information extracted
from video, to abstract states, in particular, the activities of the other agents. In this thesis,
we explore how to bridge the gap from noisy, continuous observations about the world to
high-level, discrete activity labels for robots in the environment.

We contribute the use of conditional random fields (CRF's) for activity recognition in multi-
robot domains. We explore the appropriateness of CRFs with an empirical comparison to
hidden Markov models. We elucidate the properties of CRFs that make them well suited to
the activity recognition, namely discriminative training, the ability to robustly incorporate
rich features of the observations, and their nature as conditional models, with a variety of
synthetic and real robot data.

Accurate activity recognition requires complex and rich features of the observations. We
choose the most informative features from a large set of candidates using feature selection.
We adapt two feature selection algorithms, grafting and ¢; regularization, to conditional
random fields. We also investigate a third feature selection algorithm, which was originally
proposed for CRFs in a natural language processing domain, in an activity recognition
context. In particular, we focus on scaling feature selection to very large sets of candidate
features that we define succinctly using a rich relational feature specification language.

The reduced feature sets that we discover via feature selection enable efficient, real-time
inference. However, feature selection and training for conditional random fields is computa-
tionally expensive. We adapt an M-estimator, introduced by Jeon and Lin for log-density
estimation in ANOVA models, for fast, approximate parameter estimation in CRFs. We
provided an in depth, empirical evaluation of the properties of the M-estimator and then we
introduce a new, efficient feature selection algorithm for CRFs based around M-estimation
to identify the most important features.

Acknowledgments

I gratefully acknowledge the support of my advisors, Manuela Veloso and John Lafferty. It
has been a privilege to work with two such extraordinary people and to grow under their
guidance. These past seven years have been good for me, both as a person and a researcher,
and I owe both Manuela and John a deep debt of thanks for their role as my mentors. I am
grateful for the support and insight of my committee members, Carlos Guestrin and Dieter
Fox. I thank them for their generosity with their time and suggestions for improving my
thesis. I thank the members of the CMDragons07 robot soccer team, James Bruce, Michael
Licitra, Stefan Zickler, and Manuela Veloso for sharing their log data from the RoboCup
2007 robot soccer championship. In particular, James Bruce and Stefan Zickler helped me
work with their simulator and the data. I am grateful for the support of my friends in
the robot soccer lab, James Bruce, Sonia Chernova, Scott Lenser, Colin McMillen, Maayan
Roth, and the other members of the Coral research group.

Table of Contents

1 Introduction 21
1.1 Characteristics of Sensor Data 21
1.2 Approach 22
1.3 Contributions 23
1.4 Guide to the Thesis 24

2 Conditional Random Fields for Activity Recognition 25
2.1 Introduction 25

2.1.1 Activity Recognition 26
2.1.2 The Sequential Supervised Learning Problem 27
2.1.3 The Robot Tag Domain 28
2.2 Representation 29
2.2.1 Conditional Independence Assumptions 30
2.2.2 Clique Potentials oo 32

2.3

24

2.5

2.6

2.7

2.2.3 Features 33

Inference 35
2.3.1 Computing the Normalization Constant 36
2.3.2 Marginal Probabilities of Labels 38
Parameter Estimation o000 oo 40
2.4.1 Computing the log likelihood and its gradient 40
2.4.2 Training with multiple sequences 42
24.3 Regularization oo 43
Implementation 45
2.5.1 Log-domain addition 46
2.5.2 The Forward-Backward Algorithm 47
2.5.3 Computing £(Y|X) 48
2.5.4 Optimization 49
Properties of Conditional Random Fields 50
2.6.1 Generative versus Discriminative Models 51
2.6.2 Non-independent Observations 52
2.6.3 Transitions that Depend on Observations 53
Tag Activity Recognition Experiments 56
2.7.1 Notation o7
2.7.2 Experiments 57

2.7.3 Feature Combinations and Results H8&

2.7.4 Discriminative Training and Smoothing in the HMM 63

2.8 Chapter Summary 67
3 Feature Selection 69
3.1 Imtroduction 69
3.1.1 Typesof Features oo 70
3.1.2 Types of Feature Selection Algorithms 71
3.1.3 Evaluating Feature Selection Methods 73

3.2 Feature Selection in Conditional Random Fields 75
3.2.1 Defining “Feature” 75
3.2.2 Grafting 76
3.2.3 fy Regularization 7
3.2.4 Greedy Feature Induction 80

3.3 Experiments with Synthetic Data 83
3.3.1 Synthetic Data with Weakly Relevant Features. 83
3.3.2 Weakly Relevant Features with Grafting 85
3.3.3 Weakly Relevant Features with the Mean Field Heuristic 85
3.3.4 Model Selectiono 92

3.4 Tag Experiments 97

3.4.1 Features in the CRF 97

3.4.2 Tag Simulation Results 0L 99
3.4.3 Tag Real Data Results 100
3.5 Chapter Summary 101
Multiple Robots and Many Features 105
4.1 The RoboCup Small Size League 105
4.1.1 Roles 107
4.1.2 The Classification Task 108
4.2 Activity Recognition with Simple Features 109
4.3 Scaling to Many Features.o 110
4.3.1 Lack of Sparsity in Features in Activity Recognition 110
4.3.2 Conditional Random Fields: The Price of Training 111
4.3.3 Scaling Grafting 112
4.3.4 Scaling the Mean Field Heuristic 113
4.3.5 Scaling ¢; Regularization 115
4.4 Relational Spatial Features 116
4.4.1 A Motivating Example oo 117
4.4.2 Components of Relational Spatial Features 119
4.4.3 Relational Markov Networks 119

4.5 Relational Features for RoboCup 120

4.5.1 Object Sets, Selection Operators, and Evaluation Operators 120
4.5.2 Features of the Small Size Domain 122
4.5.3 Experiments 129
4.6 Multi-Robot Activity Recognition 130
4.6.1 Reasoning about the Roles of Other Agents 130
4.6.2 Automatically Constructing Features 133
4.6.3 Multi-Robot Relational Feature Experiments 135
4.7 Chapter Summary 141
An M-estimator for Fast Training and Feature Selection 143
5.1 Introduction 143
5.1.1 Approximate Parameter Estimation 144
5.1.2 Me-estimators 145
5.1.3 CRF Training as M-Estimation 146
5.2 A Computationally Efficient M-Estimator 147
5.2.1 The Base Modelo 149
5.2.2 Asymptotic Consistency L. 152
5.2.3 Parameter Estimation o0 153
5.2.4 Inference 154

5.3 Experiments 154

5.3.1 Synthetic Data 155
532 Robot Tag 158
5.3.3 Shallow Parsing 172
5.4 Feature Selection 174
5.5 Chapter Summary 177
Related Work 179
6.1 Activity Recognitiono 179
6.1.1 Traditional Classifiers. 179
6.1.2 Hidden Markov Models oL 180
6.1.3 Augmented Markov Models 180
6.1.4 Dynamic Baysian Networks 181
6.1.5 Conditional Random Fields 181
6.1.6 Relational Models oL 182
6.1.7 Non-Parametric Models 183
6.2 Feature Selection 183
6.2.1 Features for Activity Recognition 184
6.2.2 Training under an ¢y penalty L. 184
6.2.3 Forward Selection 186

6.2.4 Virtual Evidence Boosting 000 186

6.3 Fast Training for CRFs 187
6.3.1 Maximum Pseudo-Likelihood 187

6.3.2 Piece-wise Trainingo oo 187

6.3.3 Sparse Belief Propagation 187

6.3.4 Stochastic Gradient Methods 188

7 Conclusion 189
7.1 Contributions 190
7.2 Future Directions 191
7.3 Concluding Remarks 193

15

16

List of Figures

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Conditional Random Field Structure 29
Generative vs. Discriminative Results 52
Non-independent Feature Results 54
Observation Linked Transition Results 56
Smoothing the HMM Observation Model 64
Discriminative HMM 0. 0.0 66
Sparse Models from ¢; Regularization Intuition 78
An Example /1 Regularization Path 79
Synthetic Data with Weakly Relevant Features 84
Grafting: Adding Several Features per Iteration 86
Mean Field Heuristic Results 87
Synthetic Results: Error Rates 88
Synthetic Results: Model Sizes 90
Synthetic Results: Weakly Relevant Observations 91

17

3.9 Synthetic Results: Weakly Relevant Observations 92

3.10 Synthetic Results: State-Linked and Transition-Linked Features 95
3.11 Synthetic Results: State-Linked and Transition-Linked Features 96
3.12 Tag Real Data Results 102
4.1 RoboCup Small Size Robots 106
4.2 Relational Feature Motivation 117
4.3 Factored Model Structures Lo 131
4.4 RoboCup: Feature Selection Results 136
5.1 Second-order HMM Structure 156
5.2 Me-estimator Synthetic Results 157
5.3 Auto-regressive HMM Structureo 161
5.4 M-estimator Accuracy 162
5.5 Feature Expectations under qo L. 164
5.6 Smoothed g Results 166
5.7 Conditional go Resultso 169
5.8 Rich Features in the M-estimator 171
5.9 M-estimated Parameters oo 172
5.10 Pruning Weights in the M-estimator 175

18

List of Tables

2.1 Robot Tag Results 62
2.2 Discriminative HMM Results L. 65
3.1 Tag Simulation Results 100
3.2 Tag Robot Results 101
4.1 Roles of the CMDragons’07 Robot Soccer Team 107
4.2 Error Rates with Distance and Velocity Features 110
4.3 Object Sets for Defining Relational Features 121
4.4 Selection Operators for Defining Relational Features 122
4.5 Relational Evaluation Operators 123
4.6 Relational Feature Results L. 130
4.7 Multi-Robot Relational Feature Results 137
4.8 RoboCup: Confusion Matrix 138
4.9 Grafting: Chosen Features 139

4.10 RoboCup: Generalization Results 140

5.1 Features in the M-estimator for the Tag domain 160
5.2 M-estimator: Shallow Parsing Results 173
5.3 RoboCup: Feature Selection Results 177

20

Chapter 1

Introduction

Robots use their sensors to discover information about their own state and the state of their
environment, including the actions and behaviors of other agents, either robot or human.
Robot sensor data is typically continuous and noisy. Robots often combine sensor readings
across time in order to extract useful information.

In contrast, robots often make decisions based on discrete or abstract state information that
is far removed from noisy, low level sensor readings. For example, a robot vacuum cleaner
might choose to pause cleaning if it detects that its owner is speaking on the telephone.
The focus of this thesis is on methods to bridge the gap between the low level information
provided by sensors and high level, abstract labels for the roles, activities, or behaviors of
other robots or humans in the robot’s environment.

In the remainder of the introduction, we discuss the properties of robot sensor data that make
activity recognition from robot sensors a challenging problem. We describe the approach that
we take in this thesis before concluding with a discussion of the contributions of the thesis
and a chapter by chapter guide to the thesis.

1.1 Characteristics of Sensor Data

Recognizing activities based on robot sensor data is challenging due to a number of properties
of the sensor data. Specifically, sensor data is:

21

Multi-dimensional: Robots have many sensors such as accelerometers, joint encoders,
motor current readings, thermometers, and cameras. Integrating information from
many (potentially non-independent) sources of data adds to the challenge of activity
recognition.

Temporal: Sensor data arrives in a sequence over time. Richer information about the state
of the world can be extracted by considering multiple samples from the stream rather
than treating each sensor frame in isolation. In order to effectively classify sensor
data, we require temporal models, which increases the complexity and computational
requirements that we face.

Continuous and High Bandwidth: Sensor readings are often real valued and sampled
at high frequencies. It is difficult to map from rapidly evolving streams of noisy,
continuous values and long-lived, discrete state labels such as activity names.

Difficult to label: It is often difficult to obtain large amounts of fully labeled data when
working with robots. Running experiments with physical hardware requires a substan-
tial time investment and it is not always clear how labels should be assigned to the
resulting data once it is collected. We require algorithms that are data efficient in the
sense that they learn accurate models from limited amounts of training data.

1.2 Approach

We use graphical models, specifically, conditional random fields, as our approach for predict-
ing activity labels from robot sensor data. Conditional random fields are well suited to the
activity recognition problem because:

e Conditional random fields are models for structured prediction, i.e., they represent
relationships between labels. We model activity recognition as a temporal classification
problem using CRF's to model the sequence of activity labels rather than predicting
the labels independently.

e Conditional random fields can robustly incorporate complex, arbitrary features of their
observations in order to fuse information from a diverse set of sensors.

e Conditional random fields can draw on information from the entire observation se-
quence when predicting single labels, which means that they can consider aggregates
and averages of high bandwidth sensor data without violating model assumptions.

22

e Conditional random fields are discriminatively trained and well suited to regularization.
We can adjust the degree of smoothing in the model to minimize inaccuracies due to
over-fitting to a limited training set.

Conditional random fields are defined in terms of feature functions. A key consideration
when designing a model is which features should be included. In this thesis, we apply
feature selection to conditional random fields for activity recognition. We specify a small
collection of rules or feature prototypes using a relational feature specification language. The
prototypes are automatically expanded into a large vector of candidate features and feature
selection chooses a small subset of candidate features for the final model.

1.3 Contributions

The contributions of this thesis are as follows:

e We provide a tutorial introduction to conditional random fields and a discussion of
CRFs from an activity recognition perspective. In particular, we focus on feature
functions as a means of incorporating domain knowledge into the model.

e We present an empirical comparison between conditional random fields and hidden
Markov models for activity recognition using a robot tag domain as well as synthetic
data sets to highlight the properties of conditional random fields that make them well
suited to activity recognition.

e We empirically compare three feature selection algorithms, grafting, ¢, regularization,
and a heuristic gain metric, for feature selection in conditional random fields. We
examine computational efficiency and the sparsity of the models produced by the al-
gorithms.

o We explore feature selection in a multi-robot activity recognition domain. Specifically,
we introduce a relational language for succinctly specifying feature templates or proto-
types. We analyze the scalability of feature selection algorithms for CRFs and discuss
how to scale to extremely large sets of candidate features.

e We investigate an M-estimator, originally proposed by Jeon and Lin [42] for certain
classes of ANOVA log-density estimation, to address the computational challenge of
training conditional random fields on large data sets. We explore the suitability of
the M-estimator for parameter estimation in conditional random fields and explore the
properties of the M-estimator using a variety of synthetic and real data.

23

e We adapt the M-estimator for feature selection in conditional random fields. We
present an empirical evaluation of the M-estimator for feature selection for a multi-
robot activity recognition task.

1.4 Guide to the Thesis

The thesis is organized as follows:

Chapter 2 We present an introduction to conditional random fields from an activity recog-
nition perspective. In particular, we emphasize the properties of conditional random
fields, such as their ability to incorporate complex features of sensor data, that make
them well suited for activity recognition based on robot sensor data. We provide an
empirical comparison between CRFs and HMMs to highlight the properties properties
of CRFs that make them well suited to robot data.

Chapter 3 We provide an empirical comparison of three feature selection algorithms for
conditional random fields. We use a variety of synthetic and robot data to illustrate
the performance of each algorithm according to a variety of metrics such as the sparsity
of the resulting models, data efficiency, and model selection speed.

Chapter 4 We explore how well the feature selection algorithms from the previous chapter
scale to large sets of candidate features and multi-agent domains. In particular, we
define a relational feature specification language for multi-robot domains. We automat-
ically construct large candidate sets of features using our relational feature specification
language. We empirically explore issues such as computational efficiency and how the
feature selection algorithms can be modified to allow for tractable feature selection in
large models.

Chapter 5 We tackle the computational challenge of training and feature selection for con-
ditional random fields. We investigate the use of an asymptotically consistent M-
estimator, originally proposed by Jeon and Lin [42] for log-density ANOVA estima-
tion, for fast and approximate training of conditional random fields. In particular, we
compare the accuracy of the approximate model to a standard CRF and explore the
trade off between training speed and model accuracy. Returning to feature selection,
we explore use the M-estimator for feature selection.

Chapter 6 We give a brief overview of related work.

Chapter 7 We summarize our major findings and present future work.

24

Chapter 2

Conditional Random Fields for
Activity Recognition

Conditional random fields are discriminatively trained models for structured classification.
Activity recognition, where the observations and labels arrive in a sequence over time, is a
structured domain and conditional random fields are well suited for activity recognition. We
present an introduction to conditional random fields from an activity recognition perspective
and compare their performance with hidden Markov models, which are also popular models
for sequential classification.

2.1 Introduction

Conditional random fields (CRF's) are models for structured classification [56]. In particular,
CRF's are undirected graphical models, where the structure of the graph encodes indepen-
dence relationships between labels. The term conditional appears in the name of the model
because CRFs are probabilistic models that condition on the observations. In other words,
the structure of the graph encodes independence relationships between labels and not the
observations. The model assumes no independence relationships between observations and,
as a consequence, inference in CRF's remains tractable even when they incorporate complex
and arbitrary features of the observations.

In this chapter, we describe conditional random fields from an activity recognition point
of view. We begin by motivating the activity recognition problem and by highlighting the

25

properties of conditional random fields that make them well suited to the activity recognition
task. Our focus in this thesis is on sequential classification. We present a formal definition
of the sequential supervised learning problem and then a concrete example in the form of a
robot tag activity recognition task.

2.1.1 Activity Recognition

In order to act effectively in the presence of others, robots require information about the other
actors in their environment. Often, the other agents are either neutral, e.g. pedestrians near
a vacuum cleaning robot, or hostile, e.g. an opposing team in robot soccer [49], to the robot.
In both situations, the other agents in the environment will not directly communicate their
behaviors or actions to a robot. Neutral agents cannot be bothered to explain themselves to a
robot and hostile agents deliberately withhold information. In domains where the activities
or behaviors others are pertinent to making decisions and where that information is not
explicitly communicated, robots must rely on activity recognition to extract the required
information from their sensory data.

Mapping from noisy, continuous sensor readings to discrete activity labels is a difficult task.
In particular, models that incorporate the sensor readings directly, without additional pro-
cessing, tend to perform poorly. Individual sensor readings, such as an image from a video
camera, are difficult to interpret in their raw form. The relevant data are present, but they
are hard to leverage for classification. Instead of using the raw sensor data, we typically
transform the data via feature functions. Feature functions map the sensor data into a form
that is more useful for activity recognition.

Conditional random fields, which are defined in terms of feature functions, are well suited
to activity recognition from robot sensor data. The relevant properties of CRF's that make
them well suited for activity recognition are:

e Conditional random fields can robustly incorporate complex, non-independent features
of the observations. Feature functions allow human model designers to inject their
domain knowledge into the model. Because they allow for non-independent features,
CRFs give model designers additional flexibility in leveraging their domain knowledge
when choosing features for the model.

e Conditional random fields are discriminatively trained to model the labels alone. With
robot data in particular, the observation data is complex and difficult to model. Condi-
tional random fields do not waste modeling effort on the difficult to predict sensor data,

26

but instead focus their modeling effort on the labels. Discriminative models tend to
have lower asymptotic error rates than generative models with similar structures [78].

e Conditional random fields, because they allow for arbitrary features of the observations
and because they do not require additional dependencies to model the observations,
often allow us to use model topologies that allow for exact inference over the labels.
In this thesis, we focus exclusively on conditional random fields with a linear chain
structure (first-order Markov assumption) over the labels because it allows for fast
inference and yields acceptably high classification accuracies.

Next, we formally define the sequential supervised learning problem and present an example
domain that centers around the game of robot tag.

2.1.2 The Sequential Supervised Learning Problem

In the sequential supervised learning problem [23], our task is to construct a hypothesis (or
classifier) h from a training set that contains a set of labeled sequences. Every position in
a sequence has an observation vector x; and a discrete label 1, where ¢ is the index into
the sequence. For time series data, t represents a discrete time step in the sequence. The
observation vector x; contains one or more variables that may either be discrete or real
valued. The labels y; are drawn from a finite set of discrete values and, in our notation,
we use |y;| to represent the size of the label set. We refer to all observations in a sequence
as X = {xy,x9,...,x7}, where T is the length of the sequence. Similarly, we refer to the
labels for a single sequence as Y = {y1,vs,...,yr}. A labeled sequence is the pair (X,Y)
and we define the training set of n labeled sequences as D = {(X,Y)®}"_,. While we use T
to denote the length of arbitrary sequences, it does not necessarily hold that the length of
(X,Y)% € D is equal to the length of (X,Y)Y) € D when i # j. Furthermore, while h is
trained on labeled sequences, the label sequence is unavailable at test time and the trained
classifier h maps from X to Y. That is, given a sequence of observations X, h predicts a
corresponding label sequence Y.

We make different assumptions about the distribution of the data in the sequential prob-
lem versus the classical supervised learning problem. In the classical version, we want to
predict a single label y from a single observation vector x and we assume that individual
observation-label pairs (z,y) in the data are independent and identically distributed (iid).
In the sequential classification problem, we assume that the data are iid at the level of entire
sequences. That is, all of the variables in (X, Y)® are independent of the variables in (X, Y")’
for i # j, but we assume nothing about the relationship between the variables within a single

27

sequence x; and y;. It is important to note that while we make no independence assumptions
within a sequence when defining the learning problem, the models that we use to solve that
learning problem will depend on such assumptions for a tractable solution.

In the next section, we present a robot tag activity recognition domain as a concrete example
of the sequential supervised learning problem.

2.1.3 The Robot Tag Domain

We use a domain inspired by the children’s game of Tag as a benchmark problem for activity
recognition. We implemented our tag domain within the CMDragons robot soccer system [14,
16], a champion robot soccer team from the Small Size League of the RoboCup robot soccer
world championship [49]. In the tag domain, three holonomic (omni-directional) robots move
on a playing field. Two of the robots navigate between a series of random locations on the
field. Each time they reach a target location, they randomly select a new point and navigate
to that target. Rather than selecting a new target after reaching a goal location, the active
robot, which we call the seeker, constantly updates its navigation target. Instead of choosing
its target randomly, the seeker uses the current position of its closest teammate as its target.
L.e. the seeker chases the closest other robot, which is why we refer to the domain as “Tag”
even though the pursued robot does not actively flee from the seeker. In our domain, the
seeker tags another robot by approaching within a threshold distance of the target (4 cm).
Once a robot has been tagged, it swaps roles with the seeker and pauses in place briefly to
allow the previous seeker to escape.

The two non-seeker robots are passive in the sense that once they choose a target, they
navigate directly to that target without regard to the position of the seeker. The passive
robots choose new points according to two schemes. In the first scheme, which we call
the hourglass scheme, they choose successive corners of the field and move in an hourglass
pattern. If the seeker lies in the quadrant that are scheduled to move into, they move to
the corner of the quadrant furthest from the seeker. In the second scheme, which we call
unconstrained, the non-seeker robots sample new targets uniformly, but with rejection, from
within the playing area. They reject candidate target points that lie within a 1 meter radius
of the seeker to provide a slight bias away from the seeker. However, once they select a
target, they will move directly toward it, even if that entails moving closer to the seeker.

The playing area is 3.5 by 4 meters in size, the robots are 20 cm in diameter, and the
seeker must approach within 4 cm of another robot in order to tag it. When a robot is first
tagged, it pauses in place for 5 seconds in order to avoid immediately re-tagging the previous
seeker. The robots receive sensor readings and make decisions at a frame rate of 60 hz. At

28

Figure 2.1: The graphical structure of a linear-chain conditional random field. The individual
labels y; form the backbone of the chain. A linear chain structure corresponds to making
a first-order Markov assumption over the labels. The entire observation sequence forms a
single node X, which connects to all labels, indicating that the model makes no independence
assumptions between the observations from individual time steps z; and that the feature
functions we use in the model are functions of the entire observation sequence (as well as
pairs of adjacent labels).

the beginning of each frame, two overhead cameras capture images of the field. A color
vision system [15] uses colored markers on the tops of the robots to extract their position
and orientation from the camera images. The system tracks the robots over time with an
extended Kalman filter and uses the positions for real time path planning. The behaviors,
which control the individual robots, are defined in terms of hierarchical state machines and
specify robot actions in terms of navigation targets.

In the formal notation of the sequential supervised learning problem, the label sequence
Y = {v1,v2,...,yr} specifies which of the three robots is the seeker at each time step. An
individual label y; takes on a value from the set {robot;, robots, robots} to indicate that the
corresponding robot is the seeker at time ¢. The observation sequence X = {xy, z9,...,x7}
contains the positions of the six robots at each time step. A single observation vector z; is a
6-tuple that contains a two-dimensional Cartesian field position for each of the three robots.
The field positions are measured in millimeters and the center point of the field is the origin
of the plane.

2.2 Representation

In sequential classification, we map from an observation sequence X to a label sequence
Y, where Y is an approximation of the true label sequence Y. Conditional random fields
model the conditional likelihood P(Y|X). We use CRFs to predict a sequence of labels by

29

computing R
argmax p(Y|X) (2.1)
Y
if we want to maximize the likelihood of the entire label sequence as a whole or

argmax Hp(yt]X) (2.2)

if we want to maximize the marginal probabilities of individual labels. In the second case,
we maximize the probability that any individual prediction y; is correct without regard to
the probability of the entire sequence p(Y|X), which generally suffers under this second
approach because Y can include unlikely or impossible transitions between vy, _; and ;.

There are two main challenges in using a probabilistic approach to sequential classification:

e We require an efficient representation for p(Y'|X). The number of possible label se-
quences |Y| grows exponentially with the length of the sequences. A naive represen-
tation of the conditional probability will quickly become intractable due to the space
required to store the model parameters.

e We require efficient algorithms for prediction label sequences, e.g. by solving (2.1) or
(2.2). More generally, we require efficient inference algorithms to answer queries using
the model.

We address the first issue, that of representation in the remainder of this section. We defer
our discussion of inference until section 2.3.

2.2.1 Conditional Independence Assumptions

Undirected graphical models, such as conditional random fields, provide compact representa-
tions for complex probability distributions by leveraging conditional independence assump-
tions between the variables of the model [84]. L.e. we make assumptions about the structure
of the data in order to create tractable representations. In the specific case of conditional
random fields, we make independence assumptions over only the labels. In this thesis, we
assume that the labels form a linear chain. In general, other model structures are possi-
ble, although the structure of the model has a dramatic effect on the efficiency of inference;
in particular, exact inference tends to be intractable when the graph structure of the la-
bels contains loops. The model structure also implicitly defines conditional independence
relationships between the model variables, as we describe here.

30

Figure 2.1 shows the structure of a linear-chain CRF. The graphical structure of the model
implicitly defines the conditional independence assumptions that it makes between the vari-
ables (nodes). Conditional independence obeys a simple rule in undirected graphical models.
Two variables y; and y; are conditionally independent iff all paths in the graph between the
two nodes are blocked by an observed variable [57]. In figure 2.1, the observation sequence
X is always observed so all paths between labels that pass through X are blocked. It then
follows that all past labels y; s.t. ¢ < t are conditionally independent of all future labels
yj s.t. j > t given the value of y (and X). In other words, the CRF shown in figure 2.1
makes a first-order Markov assumption over the label sequence.

The graphical structure of the model also provides a functional form for the distribution.
Le., if we write down a function for p(Y'|X), then that function must factor into the product
of several different terms, where each term depends on a subset of the variables in the full
model. The graphical structure of the model specifies how variables are grouped together to
form these terms, which are called clique potentials.

More formally, let G be an undirected graph with edge set E' and vertex set V. Then let p(V)
be a probability density that obeys the conditional independence assumptions encoded by G
according to the rules for conditional independence in undirected graphs. The Hammersly-
Clifford theorem states that p(V') factors into the product of separate functions and that the
functions, called clique potentials, are computed on the cliques of the graph [8,37].

(V) I ¥l (2.3)

cecliques(Q)

where 1) is an arbitrary non-negative function of the variables in clique ¢. Concretely, for the
graph structure shown in figure 2.1, the cliques of the graph contain the adjacent pairs and
the entire observation sequence ¢; = (y;—1,%:, X) and the joint probability of all variables
in the model, which we can represent, but not efficiently reason about with this particular
structure, must factor as

p(X,Y) x Hwt(ytfl,yt,X) (2.4)

In general, we compute a normalization constant

2= I v (2.5)

V' cecliques(G)

which is also referred to as the partition function, in order to obtain a proper distribution
that sums to one. Computing the partition function requires that we sum over all possible
assignments to the variables in V. This normalization computation is why inference in a
joint model p(X,Y’) is intractable for the model structure shown in figure 2.1. To allow

31

tractable inference, we compute the conditional probability p(Y|X) rather than the joint.
We can efficiently compute the normalization constant for this conditional probability with
dynamic programming, as we will describe in later sections.

The Hammersley-Clifford theorem specifies a factorization for the joint probability of all
variables in the model. The conditional probability p(Y|X) must factor according to the
clique potentials of p(X,Y"). This is trivially apparent from the fact that we can marginalize
to compute p(Y|X) from p(X,Y’) by substituting the known values of X and renormalizing
to obtain a proper (conditional) distribution. The conditional probability of the labels given
the observations in a CRF factors according to

p(Y|X) = ZLX Hwt(yt—lyytaX) (2.6)

The normalization constant is computed by summing over all possible label sequences Y,
which is tractable for certain structures, such as linear label chains, via dynamic program-
ming, as:

Zx = ZHwt(yt—lyytaX> (2-7)

The normalization constant depends on a specific sequence of observations X because CRF's
condition on observations rather than modeling them.

2.2.2 Clique Potentials

Conditional random fields represent p(Y'|X) as a normalized product of clique potentials.
In general, for undirected graphical models, clique potentials are arbitrary non-negative
functions. Conditional random fields, which are log-linear models [77], use a particular
functional form for their clique functions:

r(ye—1, 91, X) = exp(w” fi(ye—1, y1, X)) (2.8)

where w is a real valued weight vector and f is a vector of feature functions. The weights w
are the model parameters, which we estimate during training. The feature functions f; in the
feature vector f are designed to capture important domain properties, which we discuss in
the next section. The form of the clique potentials, e raised to a linear function, guarantees
that the clique potential is non-negative.

As defined in (2.8), clique potentials can vary across time steps. In other words, the model
can use entirely different functions ¢, for different values of t. In practice, we generally

32

define time-invariant or stationary clique potentials that are the same function (that takes
on different values) across time

w(t, Yi—1, Yt, X) = eXP(wa(ta Yi—1, Yt, X) (2-9)

We add the index t as an argument to indicate which clique the function is being evaluated
over. In our robot soccer domain, the arguments might be:

(t =10,y = roboty, y; = robots, X) (2.10)

and the feature functions might use ¢ to compute values in terms of the current observation
for t = 10, z1o.

2.2.3 Features

Feature functions f;(t, y;—1, y:, X) capture local properties and interactions between the vari-
ables in each clique. For example, one feature in the tag domain might indicate that robot;
is within 4 cm of robots. A second feature might indicate that robots is moving away from
robots. Feature functions are arbitrary, real valued functions of their arguments that allow
us to inject domain knowledge, such as the seeker in tag chases the closest robot, into the
model. Concretely, using ¢ (the current time) and X (the positions of all six robots over the
entire sequence) we can write a function that evaluates to 1 if the distance between robots
and the closest other robot at time ¢ is greater than that same distance at time ¢t — 1 and the
current label y; indicates that robot, is the seeker. Non-zero values of this feature suggest
that robot 2 is not the seeker, because it is moving away from the closest other robot, and the
corresponding weight in the model will take on a negative value during training to capture
this information. To illustrate how features encode information, we describe how to create
a CRF analog to a hidden Markov model [91].

A hidden Markov model is a tuple (7,7,0). The multinomial distribution 7 = p(y;) is
the prior probability of the initial label. The transition matrix 7" encodes the transition
dynamics p(y¢|y;—1) between time steps. O is the observation model and represents the
likelihood of seeing a particular observation given the current state p(z;|y;). HMMs model
the joint probability

T
(X Y) xl’yl HP yt‘yt 1 mt‘yt) (2-11)
t=2

Joint probability in an HMM factors over the same clique potentials as the feature functions
of a CRF. Neglecting the prior, we can define a CRF with the clique potentials

Ut Y1, Y8, X) = pWelye—1)p(ze|ys) (2.12)

33

where we use t as an index into X to retrieve the current observation vector x;.

Equation (2.12) shows that we can convert an HMM into an undirected graphical model,
but we have not yet shown how to define the equivalent CRF in terms of features. Beginning
with the transition matrix, we add features

k= (yt—l?:i)(ytéj) (2.13)

for all possible pairs of labels 7, j. We use the notation a=b to indicate a binary valued test
of whether a is equal to b. The expression evaluates to

) 1 ifa=b
a=b = 1 ¢ (2.14)
0 ifa#b

Only a single transition feature takes on a non-zero value in any given clique potential. The
single active feature can be thought of as selecting an entry out of the CPT for p(y;|y;—1) and
the corresponding weight as encoding log(p(y:|y:—1)). We say that the weight is equivalent to
log(p) rather than p because, in log-linear models, we exponentiate the sum of the features
when evaluating the clique potentials.

In the case of the HMM’s observation model, we create features

Ik = (yt?:i)(xt?:j) (2.15)

for all states ¢ and all discrete observations j. The corresponding weights wy, encode infor-
mation from the observation model and wy, o log(p(z¢|y:)).

Feature functions are not limited to discrete observations. For example, we encode uni-variate
Gaussian distributions over continuous observations by including the sufficient statistics of
a Gaussian as features:

($t _:u))

exp(w’ f) = 57

exp(—

2 2
T Lep —H

WGXP(902) eXP(?) eXP(T‘g)
-1 [—
wlf = —a? + pos + (— log(V 27r02)>

202 202

exp(w’ f) =

To model an observation z; as a Gaussian, we add the following features to the model:

fr= (yt?:j)
Jrr = (Y=j)ze

frve = (y=))z}

34

Note that separate features f, = (y,=7) are not necessary for different continuous variables.
Including a single feature of this form in the model is sufficient and discriminative training will
assign it the appropriate weight. Because fiy1 and fr. o depend on the value of the continuous
observation, the model includes copies of those features for each continuous observation.

The final piece of the HMM is the prior over initial states. We can add a fixed label START-
LABEL for y_; and add transition features

fk(t7yt—1,yt7X) = (t?:1>(yt?:i) (2.16)

for all states i. We can define time varying features by using ¢ as an explicit term. However,
we rarely do so because creating features that depend on specific values of ¢ leads to larger
feature vectors and harms generalization to test data.

HMMSs are very simple models and, through more complex feature functions, CRFs can
capture concepts that cannot be represented in an HMM. For example, CRFs can link
transitions to observations. An HMM cannot capture the concept that a transition always
follows a given observation. In the tag domain, if we have a function g(¢, X') that evaluates
to 1 if robot-1 was within 4 cm of robot 2 at time £ — 1, then the feature

fe(t, i1, ye, X) = (ys_1=robot;) (ys=robots)g(t, X) (2.17)

captures the property that if robot 1 is the seeker and approaches to within 4 cm of robot 2
then the seeker role will be transferred to robot 2. CRF's make fewer assumptions about the
observations than HMMs and therefore can capture concepts that cannot be represented in
an HMM. This additional flexibility is not unique to CRFs. For example, dynamic Bayesian
networks [76] can create links between observations and state transitions by modeling tran-
sitions as p(y¢|y:—1, 1), that is, by making transitions depend on the previous observation
as well as the previous state.

2.3 Inference

The second challenge of using probabilistic models for sequential classification is creating
algorithms to efficiently answer queries, such as: what is the most likely sequence of labels
for these observations? In this section, we describe inference in CRF's, which is the process
that we use to answer such queries.

35

2.3.1 Computing the Normalization Constant

The first task that we consider is computing the normalization constant Zx. The nor-
malization constant is required for most of the inference tasks that we discuss later in the
chapter. Computing Zx is challenging because it requires a summation over all possible
label sequences and the number of possible sequences grows exponentially with sequence
length. In general, computing Zx is intractable for graphs with arbitrary structures. For
tree-structured graphs, including the linear chains that we consider, there is an efficient dy-
namic programming algorithm for computing Zx, which we describe here for the linear chain
case.

To compute the partition function, we sum the product of the clique potentials for each
possible assignment to the label sequence Y. For convenience, we assume that the first entry
in the sequence at t = —1 has a fixed label y_; = START-LABEL. We return to the notation
of clique potentials as ¥ (¢, y;_1,y:, X) rather than expanding them to the exp(w” f) form for
the sake of brevity. But the clique potentials retain their log-linear form.

To compute the partition function, we must compute:

Zx = ZH%(%—hyt,X) (2.18)

Y t=1

As a concrete example, let the length of the sequence be T'= 5. In this example then:

Zx =2 333> (o, yr, X)va(yr, ya, X)tbs(ya, ys, X)tba(ys, ya X)ts (v, s, X)

Yyr Y2 Y3 Ya Y5

(2.19)
If inference is going to scale, we need an algorithm to evaluate equation (2.19) with lower
complexity than O(|y;|7), which is the complexity of the naive calculation.

Each term in the expanded equation contains two labels that are local to its portion of the
graph. However, equation (2.19) recomputes every v term when any y; changes, even though
many ¢ terms are unaffected by that local change. For example, 15 is recomputed each time
y1 takes on a different value even though 15 does not depend on g;. In the remainder of
this section, we describe how to restructure the computation to eliminate this inefficiency.
In the general case, the procedure that we describe is known as variable elimination [1],
bucket elimination [20], or the sum-product algorithm [53]. Our particular derivation for
linear-chain CRF's is equivalent to the backward pass of the forward-backward algorithm for
HMDMs [91] and similar to the discussion in [101].

36

The general rule that we follow is to “push sums into products” to eliminate redundant
computation. For example, pushing o, into the products of (2.19) yields

Zx =3 3 3N iy v X) oy, y2, X)3y, ys, X)a(ys, s, X Z% (Y1, Y5, X

Y1 Y2 Y3 Y4
(2.20)
We no longer evaluate v; through v, for different assignments to ys.

We pushed o, past the products over 9; to ¢, because they do not depend on ys. Further-
more, because 15 does not depend on y; to y3, we cache the summation over 15 for reuse.
The potential 15 depends on 14, so we cached |y,| different summations of 5, with y, as the
index into the cache.

4) = Z¢5(y4,y5,X) (2.21)

We use (in our notation for the vector of cached values after [91]. Substituting 3, into
the original expression eliminates variable ys, which is why one name for this algorithm is
variable elimination.

Zx = 3> Wi(yo, ya, Xy, v, X)s(yo, ys, X)a(ys, ya, X)Balya) (2.22)

Yr Y2 Yz Y4

Caching 3, reduces the amount of required computation to |ys|T = + |y|? operations. The

ly¢|? term is from storing |y;| values in 34, one for each possible assignment of 35. The cached
values are computed by summing over ys.

We eliminate y4 in the same way by pushing o,, past products that do not depend on ys4:

ZX - ZZZ¢1 yanla ¢2(ylyy2a ¢3 y2’y37 Z¢4 y3ay47 ﬁ4(y4) (223)

Y1 Y2 Y3

We construct a vector of cached values indexed by the non-eliminated variables from the
mixed term ¥y (ys, ys, X), i.e. y3 is the index for (s:

Z% Y3, ya, X)Ba(ya) (2.24)

Note that we use cached values of 4 rather than computing

3) = Z@D4(yg,y4,X)Z¢5(y4,y5,X) (2.25)

Reuse of cached values is the source of our increased efficiency. Reusing previous values of
[yields an efficient dynamic programming algorithm. Eliminating y, while computing Zx

37

yields a computational cost of |y;|T ~2+2|y;|? operations. Each successive variable elimination

reduces the exponent in the first term by one at the cost of |y;|* operations.
We repeat the procedure for the remaining variables:
Zx =Y (Yo, v1, X) Z%(yl,y% 21/13 Y2, Y3, X)3(y3) (2.26)
Y1

Z% Y2, Y3, X 53(93) (2.27)
Zx = Z@/Jl (v, y1, X Z% (Y1, Y2, X)Ba(y2) (2.28)
Z% Y1, Y2, X) B2(y2) (2.29)
Zx = Z% Yo, Y1, X)B1(y1) (2.30)

Y1

We have improved the time complexity for computing Zy from O(|y;|*) operations to
O(T|y;|*), which is linear in the length of the sequence.

We can write a succinct definition of [using induction:

Br(yr) =1 (2.31)
1) = Z Vi1 (Y, Yer1, X) Brra (Y1) (2.32)

Yt+1

where we interpret the meaning of entries as sums over label suffixes:
T
Z Vi1 (e, Yeg1, X) H Yo (Y1, Yo, X) (2.33)
Yiet1..1) t'=t+2

Note that the summation in (2.33) includes y; 11 as well; we break out the 1,1 term because
there is no sum over ;.

2.3.2 Marginal Probabilities of Labels

When we predict labels from a sequence of observations, we are usually interested in either
the most likely assignment to individual labels y;, i.e. argmax,, p(y;|X), or the most likely
assignment of labels for the entire sequence Y, i.e. argmaxYp(Y|X). In this section, we

38

describe how to compute p(y;|X) using the the backward style of variable elimination de-
scribed in the previous section as well as a forward style of variable elimination that we
describe below. The algorithms described here can be used to compute argmaxy p(Y'|X) as
well, using the Viterbi or max-product algorithm, which Rabiner describes in detail in [91].

To compute the marginal probability of a single label, we compute a sum over many possible
label sequences:
P(y, = label| X) = Y~ P(Y|X) (2.34)

where Y is the label sequence that contains all labels y; to yr except for y;, which is fixed
at label. We consider a concrete case for a sequence of length 7' =5 and where we compute
the marginal probability p(ys; = label| X)

P(ys = label| X) = Zwl Yo, Y1, X) D Wa(y1, 42, X)
Y2

3(ya, label, X) > " by (label, ya, X) Y~ 5(ys, ys. X) (2.35)
Ys

Ya

Noting that the right portion of this expression is identical to (3, we substitute 3 to simplify
the expression.

P(y; = label| X) = Z¢1 Yo, Y1, X Z% Y1, Yo, X)3 (v, label, X) Bs(label) (2.36)

Our cached values of 3 represent a sum over label suffixes and allow us to eliminate all of
the terms that fall after y3 in the sequence. We can use variable elimination, starting from
the front of the sequence rather than the end, to create an analogous term that represents a
sum over all possible label prefixes.

Forward elimination is virtually identical to the backward case. The only difference is due
to the inclusion of the start state yo. Taking this difference into account, the induction for
the forward elimination order is:

a1(y1) = ¥1(yo, y1, X) (2.37)
t) = Zat—l(yt—l)wt(yt—hytaX) (2-38)

The cached values of oy represent a sum over label prefixes:

at(Qt) = Z <H @bt’(yt/—la?/t',X)) wt(yt—bytaX) (2-39)

Yje-1) \t'=1

39

When computing «;, we sum over all labels that fall before t. Substituting « into equa-
tion (2.36) yields a simple expression for the marginal probability of a single label

s(label) 33 (label
Plys = label| x) = 23(label)Gs(label) (2.40)
Zx
in the specific case of our example and in general
P(y|X) = —at(ytz)ﬁt(yt) (2.41)
X

Once we cache values of a and 3, which requires O(T|y;|?) time, computing individual
marginal probabilities only requires a O(1) look up and division.

2.4 Parameter Estimation

To date, we have assumed that the values w; in the weight vector w are known. Our ability
to evaluate

¢(t7yt—17yt7X) = eXp<wa(t7yt—17yt7X)) (242)

depends on the availability of w. In this section, we describe how to train the model by
maximizing the conditional likelihood p(Y|X) of the training data, i.e., we describe how to
compute the maximum likelihood estimate (MLE) of the model parameters given a labeled
training set.

2.4.1 Computing the log likelihood and its gradient

To maximize p(Y|X), we must first be able to compute p(Y|X). For convenience, we will
work with the log likelihood ¢(Y'|X) rather than the likelihood itself for numerical reasons.
Defining our optimization in terms of the likelihood, we have

argmax p(Y'|X) = argmax ZL exp(w! F(X,Y)) (2.43)
w w X
Zx =Y exp(w'F(X,Y")) (2.44)
v
F(X,Y)=> f(t,ge-1, 00, X) (2.45)

t=1

40

We define the new term F(X,Y) to represent the sum of the feature vectors over time. The
identity exp(a)exp(b) = exp(a + b) allows us to make this change. We take the logarithm of
(2.43) to get the log-likelihood

WY |X) =w'F(X,Y) —log(Zx) (2.46)

Both of the objective functions in (2.43) and (2.46) are convex functions. In general, con-
vex optimization [11] is a tractable and well studied problem. In particular, given a convex
objective function and its gradient, there are efficient algorithms, such as conjugate gradi-
ent [87] and quasi-Newton methods such as L-BFGS [70], that provide numerical methods for
optimization. These algorithms work well for parameter estimation in conditional random
fields. In particular, Wallach describes the empirical performance of conjugate gradient [115]
and Sha and Pereira demonstrate that L-BFGS, a quasi-Newton method, offers even better
performance [97]. More recent work on stochastic gradient descent methods has offered even
higher performance, e.g. [114].

Computing the first term of the objective function in (2.46) is trivial. In the previous
section, we provided an efficient algorithm for computing Zx. The procedure for computing
log(Zx) is virtually identical, with only minor modifications to account for the transition to
log-domain arithmetic; we must perform the entire summation for Zx in the log-domain to
avoid numerical overflow rather than taking the logarithm after the fact. With an objective
function in hand, we require the gradient for that objective function:

o B 1 ol

o F(X,Y) ~log(Zy) = F(X.Y) = 5o 7y (2.47)
B 1 or T ,
=F(X,)Y) - Zx 0w, YE, exp(w” FI(X,Y")) (2.48)

= F(X,Y) - % D exp(w’ F(X,Y")F(X,Y") (2.49)
= F(X,Y) =) p(Y'[X)F(X,Y) (2.50)

The first term in the gradient is the empirical sum of the features over the training set. The
second term is the expected value of each feature under the model. These two terms are
equal for w*, the weight vector that maximizes £(Y|X). Computing the first term is a trivial.
Computing the second term requires the same dynamic programming techniques we use to
compute Zx, which we describe below.

Computing the gradient requires evaluating the feature expectations under the model

> p(Y'|X)F(X,Y) (2.51)

41

Expanding p(Y/ | X) and F; yields:

Z(Hexp (w f(t, Y[t — 1], Y'[t],) (th Y[t —1),Y'[t], X)) (2.52)

Y7 =1
We rearrange thls expression to get a form similar to our inference problems in section 2.3,
where we pushed sums into products:

_sz t yt 1 yt7) HeXp(wa(t/,yé/fl,yé/,X)) (253>

t=1 Yy’ t'=1

The arguments of the feature functions factor over the cliques of the graph, meaning that
we can exploit the structure of the problem to efficiently compute the summation. Breaking
apart the sum over Y’ to isolate the edge (y;_;,y;) yields:

ZXZZZM% 19 X) exp(” £t 51y, 41, X))

=y, v
T
Z Hexpw v,y X Z H exp(w” fF(t" yin_y, Y, X) (2.54)
,1 t—2] t'=1 [/z+1 T t=t+1

We can substitute cached values from o and 3 into this expression to eliminate the summation
over the bulk of the labels:

ZZZ]‘ (t, 911, 94 X) exp(w” f(t,yi_1, 91 X)) a1 (y-1) Be(y)) (2.55)
=1y, u
The resulting computation allows us to efficiently compute the gradient of the conditional
log likelihood.

2.4.2 Training with multiple sequences

Up until now, we have assumed a single sequence when talking about computing p(Y|X) and
(Y| X). In practice, the training set often contains many sequences. Because we assume that
the sequences are iid, this does not complicate our algorithms. The combined conditional
log likelihood of a set of sequences is:

n

> uyIx®) (2.56)

i=1
Similarly, the over all gradient can be computed by summing the gradient contributions of
the individual sequences.

42

2.4.3 Regularization

Training conditional random fields by maximizing ¢(Y| X) tends to over-fit the model parame-
ters to the training data. Often, classification accuracy is improved by adding a regularization
or smoothing term to the objective function. The regularization term is a penalty function
computed over the model parameters. Large parameter values result in larger penalties. In
this section, we consider two penalty functions the /; norm and the ¢5 norm of the weight
vector. Penalizing by the ¢, norm does not materially affect the optimization. Applying an
{1 penalty creates a non-differentiable objective function and complicates training, although
the problem remains convex and the solution is tractable. We begin with our discussion of
the /5 penalty, as it is the easier method to use for smoothing.

/5 Regularization

When training under an ¢y penalty, we optimize

1
wy = argmax (Y| X;w) — 5/\wTw (2.57)

w

We explicitly include w as a parameter of £(Y|X) to indicate that the likelihood of the
data is computed according the the parameter values of w. The constant A controls the
degree of smoothing due to the penalty. Higher values of A result in more smoothing and
A = 0 corresponds to the original objective function. Both the penalty term and /(Y| X;w)
are convex functions of w and therefore their sum is convex as well. We can compute the
gradient of the penalty term (% = —\w;) and we estimate w* by numerical optimization
exactly as before. We choose a value for A by using a holdout set, cross-validation, or similar

technique.

In equation 2.57, we used w’w as shorthand for Y, w?. In practice, we do not always sum
over all of the weights. We often will omit the weights corresponding to features of the
form (y;=label) from the penalty. The rational for omitting these weights is that generalized
linear models represent conditional probabilities as P(y|z) o exp(az +0b), where ax +b is the
canonical equation for a line. The weights that correspond to these features are analogous to
the intercept term b. We penalize the parameters in a that are combined with the observed
evidence, but we usually do not penalize the intercept terms.

43

/1 Regularization

When training under an ¢; penalty, we optimize

wy = argmax (Y| X;w) —)\Z |w;], (2.58)

As in the /5 case, \ is a positive scalar value that controls the degree of smoothing and the
penalized objective function is convex. However, the penalty function is not differentiable
at zero.

While more difficult than training with an /5 penalty, using an ¢; penalty produces sparse
models where many of the parameters exactly equal to zero [39]. For intuition, consider the
weight w; = 0. Under an /5 penalty, the partial derivative of the penalty is Aw;. To a first
order approximation, the change in the penalty is zero for moving w; away from zero. With
an /¢, penalty, the relevant partial is £\, so the change in the penalty is proportional to
A. Under an /5 penalty, a small non-zero derivative in the unpenalized objective function
will move w; away from zero. In the ¢; case, A\ serves as a threshold and prevents w; from
becoming non-zero to buy small improvements in the unpenalized objective function.

Training under an ¢; penalty for feature selection is a well studied technique for linear
regression and it is called the LASSO [106]. In the linear regression case, there is an efficient
algorithm to compute w} in the model across all settings of A — the regularization path of the
model — ranging from A sufficiently large to eliminate all features to A = 0 where the weights
are not penalized [26]. In the generalized linear model setting, which includes CRFs, there
is no such efficient algorithm for testing all relevant settings of A. In fact, it is challenging
to train the model with a single, fixed .

Despite the difficulty, there has been significant recent work on training generalized linear
models under an ¢; penalty. [82] use a predictor-corrector method to recover the full regular-
ization path, although potentially at a high computational cost. [58] consider the specialized
case of logistic regression. They exploit the existence of efficient algorithms for performing
¢y regularized linear regression for efficiently training in the logistic regression case. [50] also
consider logistic regression and they use an interior point method and warm start technique
to sample many different settings of A along the regularization path. Their warm start tech-
nique starts with a large value of A and performs a series of relaxations where the model is
initialized with the parameters from the previous iteration. Others divide the search space
into orthants, regions over which the weights do not change their sign and apply conven-
tional optimization techniques within the constrained subspace [3,46]. Notably, [3] present
a modification of L-BFGS that performs as well or better than L-BFGS on the {5 penalized
optimization problem.

44

We describe a reparameterization that transforms the unconstrained optimization in (2.58)
into a constrained problem with a well defined first derivative as done by, for example, [45].
Combined with the warm start technique used by [50], this reparameterization allows us
to train CRFs with an ¢; penalty [109]. In later experiments, we use the orthant-wise
optimization technique of Andrew and Gao [3]| because it offers superior performance. We
present a less efficient method here to avoid discussing the internals of the L-BFGS algorithm,
which are modified with Andrew and Gao’s technique.

We define a new objective function by reparameterizing the original function in terms of
two vectors, w and w~, that are related to w from equation (2.58) by w = w* — w™.
We constrain the entries of w' and w™ to be non-negative, yielding the new optimization
problem:

((Y]X)— A = - 2.59
argma ((Y]X) Z w; Zw (2.59)
st.wf €wt > 0,w; €w” >0 (2.60)

We solve this constrained optimization problem using projected conjugate gradient. Briefly,
algorithms such as conjugate gradient optimize through a series of minimizations along a line.
Each minimization begins with an initial point xy and a search direction d. The objective
function is evaluated and candidate points x, where x = 2o 4+ ad, a > 0, and a line search
algorithm is used to choose the optimal value of . The key idea of projected conjugate
gradient is that candidate points z are projected back into the feasible region before being
evaluated. In our case, that amounts to computing z,, such that z, = maz(0,z). This type
of projected optimization algorithm has long been used to solve constrained optimization
problems with simple inequality constraints [7] and is an efficient method for training CRFs
with an /; penalty.

2.5 Implementation

We have omitted a number of practical details that must be considered to build a working
conditional random field implementation. In this section, we list a few important consider-
ations regarding log-domain arithmetic, efficiency, and we provide pseudo-code for the most
important algorithms.

45

2.5.1 Log-domain addition

Computing the product of clique potentials over long sequences results in values that cannot
be represented with available floating point data types. To sidestep this issue, we store and
operate on the logarithms of the values of interest. Probabilities, which are never negative,
fit well with this representation.

Multiplication between log-domain values is trivial due to the identity log(ab) = log(a) +
log(b). Adding log-domain values with minimum loss of precision requires more care. The
naive method of computing log(a+b) starting from @ = log(a) and b = log(b) is by computing
log(exp(a) + exp(b)). The naive method is unacceptable because computing one or both of
a and b might cause overflow or underflow. Instead, we use an alternate method that avoids

explicitly computing a or b. We rearrange the naive computation as follows:

log(a + b) = log(exp(a) + exp(d)) (2.61)
= lo expl(a exp(l_))
= log (p(a) (1 + eX_p(a))) (2.62)
= log(exp(a)(1 + exp(b—a))) (2.63)
= a+ log(1 + exp(b — a)) (2.64)

Rearrangement allows us to compute exp(b — @) in place of exp(a) and exp(b). In the case
where @ > b, this minimizes the loss of numeric precision because exp(b — a) is small. In the
case where @ < b, we swap the values before performing the addition as in the pseudo-code
implementation in algorithm LOG-ADD.

LoG-ADD(a, b)

1 ifa=—-00Ab=—00
2 thep return —oo
3 ifa>b

4 then return a + log(1 + exp(b — a))
5 else return b+ log(1 +exp(a —b))

LoG-ADD takes two log-domain values as its arguments and returns their sum, also as a log-
domain value, with minimum loss of precision. The algorithm tests to verify that either a or
b is non-zero on line 1 to prevent a subtraction between two infinite values, which may result
in an undefined return value depending on details of the hardware and floating point settings.
The remainder of the algorithm is a straight forward implementation of equation (2.64) that
minimizes the loss of precisions by subtracting off the larger of @ and b as appropriate.

46

2.5.2 The Forward-Backward Algorithm

We provided an inductive definition of o and 3 in section 2.3. Here we present pseudo-code
versions of the log-domain computation. Together, these two methods are known as the
forward-backward algorithm [91].

FORWARD-PASS(X, w)

1 for y, < 1 to NUM-LABELS
2 dot«—1

3 aly][t] < w? f(t, START-LABEL, y;, X)

4 for t «+ 2 to length(X)

5 do for y, — 1 to NUM-LABELS

6 do accumulator <+ —oo

7 for 1,1 <+ 1 to NUM-LABELS

8 do edge-contrib «— wr f(t, ys_1, ye, X) + alys1][t — 1]

9 accumulator «— LOG-ADD(accumulator, edge-contrib)
10 aly[t] < accumulator

11 return o

FORWARD-PASS takes a sequence of observation vectors and a vector of weights and produces
the matrix &, where aly|[t] = log(a:(y:)). FORWARD-PASS fills in the values in & using the
induction given in equation (2.38). Lines 1-3 initialize the induction and handle the special
case of the first clique potential, which includes a special start state. On line 6, we clear our
accumulator using in fty rather than 0 because we are working with log-domain values. The
pseudo-code for the backward pass is a close analog to the code for the forward pass.

BACKWARD-PASS(X, w)

1 for y, + 1 to NUM-LABELS

2 do Jyllength(X)] = 0

3 for ¢« length(X)—1to 1

4 do for y; + 1 to NUM-LABELS

5 do accumulator «— —oo

6 for ;.1 < 1 to NUM-LABELS

7 do edge-contrib wa<t + 1,9, Yeg1, X) + B[yt+1][t +1]
8 accumulator «— LOG-ADD(accumulator, edge-contrib)
9 Blye][t] <« accumulator

0

10 return 3

47

BACKWARD-PASS takes a sequence of observation vectors and a vector of weights as argu-
ments and produces a matrix 3, where Gly|[t] = log(5:(y)). Lines 1-2 initialize the induc-
tion. We use log(1) = 0 in the initialization rather than 1 because we are using log-domain
values.

2.5.3 Computing /(Y|X)

The partition function Zx is required to compute the log-likelihood. Computing log(Zx)
from @; or f; is trivial, as shown below.

CarLc-LoG-Z(a)

1 Z+ —

2 for yr < 1 to NUM-LABELS

3 do z «— LoG-ADD(z, alyr|[T))
4 return z

CALC-LOG-Z computes the log-domain version of the normalization constant Zx from the
vector ap with a sum over log-domain values. With the normalization constant in hand, it
is straightforward to compute the log-likelihood of a sequence.

CaLc-LoG-LIKE(X, Y, w)
feature-sums[1..NUM-FEATURES] « 0
fort—1toT
do feature-sums « feature-sums +f(t, Y[t — 1], Y][t], X)
zZ «— CALC-LOG-Z(FORWARD-PASS(X, w))
return w’ feature-sums —Zz

U k> W N+~

CALC-LoG-LIKE computes the conditional log likelihood for a single sequence (X, Y’). Lines
1-3 compute the empirical sums of the features on the sequence, line 4 computes the normal-
ization constant, and line 5 combines these two pieces to produce the actual log likelihood.
In terms of computational cost, the call to FORWARD-PASS is the most expensive portion of
the code. The feature sums, which do not depend on w, can be precomputed and cached.
And the cost of taking an inner product and subtracting a scalar value in line 5 is minor
when compared to the O(T|y;|?) cost of FORWARD-PASS.

48

CALC-GRADIENT(X, Y, w)

1 gradient[1..NUM-FEATURES] < 0
2 fort<—1toT
3 do gradient < gradient +f(t,Y [t — 1], Y[t], X)
4 @&« FORWARD-PASS(X, w)
5 (3« BACKWARD-PASS(X,w)
6 Zz« CaLc-LoG-Z(a)
7T t—1
8 for y, — 1 to NUM-LABELS
9 do log-p « w? f(t, START-LABEL, 3, X) + Bly|[t] — 2
10 p «+ exp(log-p)
11 gradient < gradient —p - f(t, START-LABEL, y;, X)
12 for t < 2 to Length(X)
13 do for y, — 1 to NUM-LABELS
14 do for y; 1 < to NUM-LABELS
15 do log-p «— alys][t — 1] +w” f(t, ys1,y:, X) + Bly][t] — 2
16 p « exp(log-p)
17 gradient «— gradient —p - f(t,yi—1, Yz, X)

18 return gradient

CALC-GRADIENT begins by computing the empirical sum of the features over the training
set in lines 1-3. As in CALC-LOG-LIKE, the feature sums can be cached between iterations
to avoid wasted computation. Lines 4-5, which compute & and 3 are computationally
expensive. This cost can be reduced by sharing cached values of @ between CALC-LOG-
LikE and CALC-GRADIENT. Lines 7-11 handle the special case of the gradient calculation
for t = 1. Special handling is needed to handle yy = START-LABEL and because & is not
used when computing log-p for the first time step. Lines 12-17 repeat the same basic pattern
as the special case for ¢t = 1, except that & is used to compute log-p and the loop in line 14
sums over all possible labels for the previous time step.

2.5.4 Optimization

There are a number of ways to optimize a CRF implementation. The central ideas that we
use are that feature vectors are often sparse and that computations can be cached for reuse.
Features generally use an indicator function to select a particular combination of labels and,
potentially, observations, which results in a feature vector that contains many values that
are exactly equal to zero. The sparsity of the feature vector allows for fast operations on the
features.

49

We perform two key operations with the feature vector. We take the inner product between
f and another vector, typically w. We also add a scaled version of f into an accumulator
vector, for example, during the gradient calculation. The sparsity of the feature vector
improves the efficiency of these operations by allowing us to eliminate multiplications by
zero when computing the inner product and by skipping the zero terms when performing
the scaled accumulate.

The sparsity of the feature vector also facilitates caching feature evaluations. In FORWARD-
PAss and BACKWARD-PASs, we evaluate f(t,y;—1,y:, X) for all possible combinations of
y;—1 and ;. However, these values do not depend on w and consequently can be computed
once at the start of training and cached. In the worst case, this cache requires O(T|y:|*| f|)
storage. A sparse feature vector f allows us to cache only non-zero features.

When there is not sufficient memory to cache full feature vectors, caching the inner product
between the features and the weight vector can improve performance. The inner product is
required in FORWARD-PASS, BACKWARD-PASS, as well as in CALC-GRADIENT. However,
because the inner product depends on w, this cache must be recomputed during each iteration
of the optimization. But, since only a scalar value needs to be cached, the required memory
is O(T|y:|*), which makes this optimization applicable when there is insufficient memory to
store entire feature vectors.

The final optimization that we mention is that the feature sums over time F' also do not
depend on w and therefore can be computed once at the start of training and reused. In
practice, it is worth noting that the contributions due to F® from different sequences i €
{1..n} are additive. When computing /(Y ®|X® we add in a term for w? F®) for each
sequence. And in the gradient computation, we add in a term of F® directly. Rather than
caching many individual feature sums, the sums themselves FY can be added together to
form a single vector. This can result in substantial memory savings in situations where the
feature vector is large and there are many sequences.

2.6 Properties of Conditional Random Fields

In this section, we use synthetic data to illustrate the properties of conditional random fields
that make them well suited for the activity recognition problem. In particular, we compare
the accuracy of generative versus discriminative models in experiments with a CRF, which
contains features that make it equivalent to a discriminatively trained HMM, and an HMM
with MLE parameters. We also show that conditional random fields are robust to non-
independent observations and illustrate how to create features that link state transitions to

50

particular observations.

2.6.1 Generative versus Discriminative Models

Ng and Jordan [78] compared the classification accuracy of a naive Bayes classifier to logistic
regression on data sets from the UCI Machine Learning Repository [4] as the size of the
training set was varied. They found that naive Bayes outperformed logistic regression for
very small training sets, but logistic regression had a lower asymptotic error rate as the
size of the training set increased. We performed the same comparison for the sequential
classification case using HMMs and CRFs. We created an HMM that makes a naive Bayes
style independence assumption over entries in the observation vector z;. We also created a
CRF with a set of features that gave it the same representational power as the HMM. The
CRF was effectively a discriminatively trained HMM.

We created synthetic data using the Pima Indians Diabetes data set from the UCI repository.
The data set contained 768 instances with binary labels and 8 continuous attributes. Each
instance contains data from a single person, so there is no notion of sequence in the data.
We created sequential data using a first-order Markov transition function as follows. We
broke the full data set into training and test sets, each containing half of the instances. We
subdivided the training and test sets according to the labels of each instances to produce
four groups of instances: positive training examples, negative training examples, positive test
examples, and negative test examples. We generated a chain of labels from the first-order
Markov chain. We filled in observations vectors for each label in the sequence by randomly
choosing an example from the appropriate sample pool. When drawing observations for a
training sequence with a positive label, we copied observations from a data point in the
positive test pool. We drew uniformly (with replacement) from each pool.

Figure 2.2 shows average error rates and 95% confidence intervals for CRFs and HMMs
on synthetic sequences. We generated 1,000 training and test sequences for each training
sequence length that we considered between 10 and 500 time steps. The test sequences had
a fixed length of 500; only the length of the training sequences was varied. The results show
the same trend that [78] described where the generative model (the HMM) outperforms the
discriminative model for small training sets (short sequences) and the discriminative model
(the CRF) outperforms the generative model as the length of the amount of training data
grows sufficiently large. The CRF comes to dominate the HMM for very short sequence
lengths, which suggests that there is no problem using CRFs with robot data even though
gathering robot data is time consuming and difficult. Our empirical results for the CRF
versus HMM case support the idea that a discriminatively trained CRF will have a lower

51

0.5 T T T T T T T T T
+ CRF
X HMM

0.45

0.4

4
w
a

Error Rate

o
w
T

025

0.2

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Training Sequence Length

Figure 2.2: A comparison between the error rates on test data of a conditional random field
and a hidden Markov model trained on synthetic sequences as the length of the training se-
quence is varied. We chose the features of the conditional random field to make it equivalent
to a discriminatively trained hidden Markov model. For short training sequences, the hidden
Markov model has a lower error rate. As the amount of training data is increased, the con-
ditional random field comes to dominate the HMM. The error bars indicate 95% confidence
intervals. The pattern where the generative model does better with little training data and
the discriminative model dominates in the asymptotic case is exactly what we would expect
from [78], which showed the same trend between logistic regression versus a naive Bayes
classifier.

error rate than an equivalent generative model.

2.6.2 Non-independent Observations

Conditional random fields can incorporate non-independent features without suffering due
to over-counting the evidence. Discriminative training in CRFs gives us the freedom to
consider a rich class of features without suffering a penalty if the various features are not
independent. In these experiments, we empirically show that generative models, such as
HMDMs are harmed by redundant features because they over-count the evidence presented
by those features.

We constructed a synthetic data set with a mix of independent and non-independent obser-

92

vations. We generated a sequence of binary labels according to a first-order Markov chain
with a 75% chance of self-transitions. We created observation vectors z; that contained a mix
of independent and non-independent features. We included an equal number of each type —
independent or non-independent — in x;, but we varied the length of x; across trials. So, if
x; had a total size of 2n observations, n of the observations were independent and n of them
were correlated with one another. We constructed the correlated observations by taking a
single copy of the label 3; and adding 20% noise. We then duplicated this single noisy value
n times to create n identical observations. To create the independent observations, we again
copied the label variable y;. However, we added 25% noise to each of n independent copies
of y; rather than adding noise a single time and duplicating one value, we made n copies of
y; and independently chose whether or not to corrupt a given copy with noise.

Figure 2.3 shows the error rates for an HMM and a CRF with HMM-equivalent features as
the number of each type of observation n is varied. The conditional random field is able to
use the increasing number of independent observations to steadily decrease its error rate as
n increases. The error rate of the HMM increases with n. Despite the increasing amount
of information present in the observation vector x;, the performance of the HMM degrades.
The decreasing accuracy is due to the fact that the duplicate observations are less noisy
than the independent observations and the HMM makes a naive Bayes type of assumption
in its observation model. Because the HMM assumes the n non-independent observations
are independent, it over counts the information that they provide about the label. Because
the non-independent observations are less noisy than the independent ones, the independent
observations cannot correct for the case where the duplicate observations are incorrect. The
HMM could avoid this problem of non-independent observations by modeling the joint prob-
ability of the observation vector. However, modeling the joint would require a number of
parameters that is exponential in n, which is what motivated the naive Bayes assumption in
the first place. As a discriminative model, the CRF avoids over counting evidence and does
not pay the resulting penalty in classification accuracy that follows from making a naive
Bayes type independence assumptions between non-independent observations.

2.6.3 Transitions that Depend on Observations

Conditional random fields can include complex features of adjacent label pairs and the entire
observation sequence. In particular, CRFs can use information from the observations to
influence transition probabilities. For example, in an assisted living or nursing context, a
robot charged with aiding the elderly needs to detect emergencies, such as an unexpected fall.
Observing the patient on the floor may indicate that a fall took place or maybe the patient
is stretched out to watch television. On the other hand, observing the patient falling almost

53

0.2 ;
-~ CRF

P

018} X
X
016} X
X
0141 % % %
012}
o
&
T o1t 1
s
o i3
0.08}
kX
0.06 5
1
0.04} ES
=

0.02}- =

Number of Copies

Figure 2.3: Error rates for a conditional random field and a hidden Markov model with a
mix of independent and non-independent observations. The observation vector x; contained
a total of 2n values (n is the horizontal axis). The first n values were identical. We copied
the label y; with 20% noise once and repeated that single value n times. The second n values
were independent. We created n independent copies of the label 1y, with 25% noise. The
error rate of the conditional random field fell as n increased because the CRF can exploit the
increasing amount of information in the second n values of ;. The error rate of the HMM
increased because of the increasing amount of redundant information in the first n values of
Zy.

certainly indicates that a transition from the robot’s nominal state to an emergency state is
in order. The short lived observation of the fall indicates that a transition into a long-lasting
state is in order. The long lived observation of the patient on the floor is evidence that an
emergency may be underway, but it is not as conclusive as the fall, which is the reason the
situation became an emergency.

HMMs, which model transitions as p(y;|y;—1) cannot include observed information to in-
fluence transition probabilities. More complex directed models, such as dynamic Bayesian
networks [76] do have this ability, but they are limited in the amount of past information that
they can incorporate; the number of parameters in the model becomes intractable in DBNs if
information from too many previous time steps is used. Conditional random fields, because
they condition on the observations, can include arbitrary features of the entire observation
sequence. For example, when estimating the state at time ¢, a CRF can incorporate a binary
feature that indicates whether or not the observations show a patient falling at any point in

o4

the k minutes preceding t. A DBN, because it is a joint model of both labels and observa-
tions, would need to include links from the current state to all observations in the & minute
window. To detect falls at arbitrary time steps, all labels would need to link to large swathes
of the observation sequence, meaning that each observation has many parents. The size
of the CPTs that represent the probability of observations given their parent labels would
become intractably large because the number of parameters in the CPTs is exponential in
the number of their parents. CRF's, which do not model the probability of the observations,
do not include such parameters and do not suffer from this explosion in the number of model
parameters when features are computed over many past observations.

We generated synthetic data where the state transitions depend on the previous observation
to highlight the effect of linking transitions to observations. The CRF that we used in these
experiments was not equivalent to an HMM, because it included features that cannot be
represented in an HMM. Each observation vector z; contained two values. The first value
was a copy of the correct label y; with 25% noise. The second value was the boolean result
of a fair coin flip that contained no information about the label. We generated the label
sequences using first-order Markov dynamics with one important difference. Rather than
generating a single conditional probability table to store p(y;|y;—1), we created two tables.
We used the coin flip from z;_; to select which transition probabilities to use when sampling
y;. lLe. the coin flip is a mixture parameter for our transition model. We generated our
two transition matrices by randomly sampling a value from [0, 1], which we used as the self-
transition probability in the first transition model. In the second transition model, we used
1 — p as the probability of a self-transition.

Figure 2.4 shows the average error rates of a CRF and an HMM as the transition probability
was varied. The HMM, which expresses p(X,Y") as the product of terms p(y:|y:—1)p(x¢|ye),
was not able to use the observed outcome of the coin flip from the previous time step and had
a higher error rate than the CRF when the transition dynamics of the two different transition
matrices were the most different at either side of the plot. The CRF, which included features
of the form f = (y;_1=i)(y;=7)(7;_1=k), was able to model the two different transition
functions and gained an advantage from doing so at the edges of the plot where the functions
were the most different. In our synthetic example, a DBN which linked the current state to
the previous observation would also perform well. However, because DBNs are joint models
that include observation probabilities, there is a limit to the number of parents that any
given observation can have before the model grows intractably large.

%)

0.3

025

0.2

o
o

Error Rate

0.1

0.05F

0

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P(transition)

Figure 2.4: Error rates for a conditional random field and a hidden Markov model when
label transitions depend on the observation. The observation vector x; contains two values.
The first value is a copy of the label y; with 25% noise. The second value is the binary result
of a fair coin flip and carries no information about the label. The label transition probability
depends on the result of the coin flip. In the coin toss is heads, the label remains unchanged
with probability p. If the coin comes up tails, the label changes with probability p. Because
the CRF can include features that link transitions to the previous observation, the error rate
for the CRF falls as p moves away from .5.

2.7 Tag Activity Recognition Experiments

We present activity recognition results using the robot tag example domain that we first
introduced in [112]. In the next section, we review the formal definition of the classification
problem, i.e. we specify what the labels and observations are in this domain, and introduce
the notation that we use to specify feature functions. We compare a CRF to an HMM using
the same set of features. In both cases, we compute a function g(¢, X') using information
from the observations. In the HMM, we model ¢(¢, X) as a uni-modal Gaussian. In the
CRF, we add equivalent features that take the form:

ft 1,06, X) = (yt?zlabel)g(t,X) (2.65)
Ft Y1, 90, X) = (ye=label)g(t, X) (2.66)

56

In some cases, which we explicitly note, we include features that the HMM cannot represent.
These features take the form

f(t yi-1, 96, X) = (ye—1=label) (y,=label)g(, X) (2.67)
Ftye1, 96 X) = (ye-1=label) (y=label)g(t, X)? (2.68)

We have no way of linking these features to transitions in the HMM, but we do include
g(t, X) as a uni-modal Gaussian in our model of p(x¢|y;).

2.7.1 Notation

In the robot tag domain, we identify which robot is the seeker at each time step. We refer to
the ID of the seeker at time ¢ as the label y;, and define the set of labels for the entire sequence
Y = {y1,99,...,yr}. Similarly, we define the input observations X = {x,zs,...,x7} where
x; is a vector of the observations from time step t. In the tag domain, the observation vector
contains the two dimensional position of each robot in the environment; i.e., x; contains
three pairs of Cartesian coordinates.

We define functions g(¢, X) that we use as building blocks for features in the CRF and HMM.
We use pos,., for the position of robot r at time ¢. Position values are available directly from
the observation z; at each time step. We also define also use vel,;, = pos,; — pos,; ;) to
estimate the velocity of robot r at time ¢.

2.7.2 Experiments

We generated experimental data from both the hourglass and the unconstrained variants of
the tag domain. These data were generated from a physics-based simulator for holonomic
robots that included realistic acceleration and velocity constraints on the robots. We gen-
erated training and test sets that were each approximately 20 minutes in length. Since the
simulator operates at a rate of 60 hz, this means that each sequence contained more than
70,000 observation vectors, each labeled with the identity of the seeker at that time step.
The observation vectors themselves consisted of three two-dimensional positions, one for each
robot. These positions form the basis of the features passed to the models for classification.

In all experiments, the CRF included intercept features (f; = (y,=j)) as well as transition
features (f; = (y;_1=%)(y:=7)) as a base model. We added more specialized features on top
of these. We did not augment the HMM with these types of features because it already has
a separate transition model and prior probability over start states.

57

2.7.3 Feature Combinations and Results

We experimented with a wide variety of features in both models. Below, we discuss and
interpret the performance of the CRF and the HMM with various combinations of features
using the results shown in table 2.1.

Raw Positions Only

In the initial set of experiments, we trained the HMM and CRF on the raw positions of each
robot; in other words, the models were given x; as input at each time step. The goal of
these experiments was to verify that some sort of computed features are indeed required for
reasonable classification accuracy.

To complement the HMM’s Gaussian observation model, the CRF included features for x;[k]
and (x;[k])? for each of the k values in x;. Concretely, we added features built around

g(t, X) = x4[k] (2.69)

to the model, where k is the index to one coordinate of a robot’s location in the raw obser-
vation vector.

Table 2.1 show two things. First, the raw observations by themselves do not provide enough
information for either model to perform well. In the case of the hourglass domain, the prob-
lem is simple enough that the CRF, which correctly labels 53.6% of the test set, performs far
better than the baseline performance achievable by random guessing (approximately 33%).
For this simple domain, at least, there is an advantage to training the model discriminatively
as the CRF does better than the HMM, although this advantage seems to disappear with
the more complex, unconstrained data set where both models perform poorly.

Velocities

We used our domain knowledge that the velocities of the robots are important in the tag
domain to replace the raw observations. We build our new set of features around robot
velocities:

g(t, X) = vel,, (2.70)

Table 2.1 confirms that using velocity as a feature in the classifier yields dramatically im-
proved classification accuracy.

58

Velocity Thresholds

Incorporating velocity information into the models greatly improved accuracy. The seeker’s
five second pause is an obvious explanation for the improvement. Rather than feeding raw
velocities into the models, we constructed features that test if the velocity is below a certain
threshold for a single time step or for a series of consecutive time steps. Such features more
clearly capture the notion of a stopped or stopping robot. As a natural complement to
testing if a robot’s velocity is below a threshold, it makes intuitive sense to test if the robot’s
velocity is above a threshold as well. This second form of feature will be correlated with
non-seeker robots as well as the seeker when it has finished pausing after first being tagged.
We constructed features from the functions:
t
g(t, X) = H [vel,.i||2<k
i=t—w+1
¢ ?
gt, X) = [Ivelnill2>k

i=t—w+1

In our experiments, we chose the velocity threshold & to be 20% of the robots’ maximum
velocity.

In addition to testing the effectiveness of incorporating specific domain knowledge into the
models, these velocity thresholds allow us to perform another test as well; hidden Markov
models assume that observations are independent given their labels. Creating features from
overlapping portions of the observation sequence X, violates the assumptions of the model.
An HMM with such overlapping features is no longer a proper generative model and the
likelihood function for the HMM is no longer correct due to over counting of the evidence.
By testing the HMM and CRF with differently sized windows, we tested how much, if at all,
violating the independence assumptions of the HMM harmed classification accuracy.

The results for the CRF in table 2.1 are unambiguous. The conditional random field be-
comes more accurate as the size of the window is increased. Incorporating information from
many different time steps into feature functions does not violate any of the independence
assumptions made by the CRF.

The HMM results are less clear cut. With the hourglass data set, the accuracy of the HMM
decreases as the window size is increased, perhaps due to the increasingly severe violation of
the independence assumptions of that model. In contrast, HMM performance increases as
the window size is increased with the more complex, unconstrained data set. It is not clear
why performance suffers with larger window sizes on the simple data set but then improves
on the more complex data.

59

Chasing Features

The velocity threshold features showed that using domain knowledge to create features can
improve model accuracy. Aside from the seeker pausing in place after being tagged, the other
defining characteristic of the seeker role is that the seeker chases other robots. To capture
this property of the tag domain, we created a “chasing” function to capture whether each
robot was moving towards one of the other robots using the dot product of robot velocity
with the vector pointing from one robot to the other.

(posrg,t - pOSTl ,t) Velm t

g(t, X) = 2.71
%) = Tpos,, . = pos,. 12 Tvelnall (2.71)

As with the velocity threshold functions, incorporating domain knowledge in the form of
feature functions improves accuracy. Table 2.1 shows that classification accuracy in the
hourglass domain breaks 95% for the first time while accuracy in the unconstrained domain
breaks 80% for the first time.

Distance Thresholds

Activity recognition in the game of tag is a matter of detecting transitions. In one time step,
robot 1 is the seeker. During the next time step, robot 1 approaches close enough to tag a
different robot and that new robot becomes the seeker. We are interested in detecting the
points where the seeker role is passed between players.

By looking at the distances between pairs of robots over a series of adjacent time steps, we
can create features to detect when a hand off of the seeker role may have occurred. At first,
this simply appears to be a matter of tracking whenever two robots are in close proximity
and having a feature act as a flag at these points, with one flag for each pair of robots that
could be involved in the transaction.

However, there are many time steps when robots will be close to each other and no hand off
will take place; when a robot is first tagged, it halts in place. It takes the former seeker time
to deaccelerate and move away from the newly created seeker. During this time, both robots
will be within the threshold distance, although no hand off is possible. In other words, it is
only possible for a hand off to occur during the first frame that two robots are within the
threshold distance.

A second complication arises because the execution order of the robot behaviors is not fixed
in the simulator. In some situations, the non-seeker will close the gap between itself and the

60

seeker and in others the seeker will close the gap with its action. Depending on which order
these events take place, the hand off of the seeker role can occur in either the first time step
when the robots are below the threshold distance or during the second time step. Accounting
for both possible times when a hand off could have occurred, we define the function

g(t, X) = ((disty(r1,12)<k) + (dist_y (1, 72)<k)) (dist,_s(r1, 72) k) >0 (2.72)

We use g(t, X) to create transition linked features that detect when a hand off was possible
as well as the negation of those features to capture situations when it was impossible for
the seeker role to be transferred between two robots. Note that the HMM cannot link
transitions to observations, so it is at a disadvantage in these experiments. We used the
following features in the CRF and incorporated g(¢, X) as an observation in the HMM.

fk(tyyt—laynX) = (yt,lélabel)(yt,l?zlabel)g(t,X) (2~73)
fk(tv yt—hytaX) = (yt_l?zlabel)(yt_lélabel)(l - g(tv X)) (2-74)

In the negation case, the model learned negative weights to make label sequences Y in which
such transitions occur less likely than sequences that lack forbidden state transitions.

The results in table 2.1 are surprising. These distance threshold based state transitions ex-
actly capture the underlying dynamics of the process that generated the data, yet using only
these features results in lackluster performance. The first set of results, labeled “Distance
(U)”, show what happens when the feature values are not normalized to have mean zero and
a variance of one. After all, such normalization is rarely necessary with binary features.

However, consider how often two robots will first approach close enough together for a tag
event to take place. These are the only situations where the distance threshold features will
take on a non-zero value. This situation happens approximately 200 times in the twenty
minute training set. Now consider how often the features corresponding to self-transitions
take on a non-zero value. One of these features fires for virtually each of the roughly 70, 000
time steps in the training set. The expected value of the regular transition features is much
larger than the expected value of the distance threshold features. Any difference in the
empirical value of the regular transitions and their expected value under the model will
dominate the function gradient during optimization.

Rather than eliminating the regular transition features, which would leave the optimizer
stranded in a plateau and unable to make any progress, we normalize the distance thresholded
transitions. Normalizing the distance threshold features produces no appreciable change in
the accuracy in the hourglass domain and the accuracy in the unconstrained domain improves
slightly. However, there is a major difference in the log likelihood of the test set for both
domains, which indicates that the model achieves a better fit on the test set even if this
improvement is not enough to greatly change the accuracy of the models.

61

Hourglass Unconstrained

Features HMM CRF {(Y|X) HMM CRF /{(Y|X)
Positions 33.1 53.6 -959.7 37.1 37.8 -1354.5
Velocities 68.4 89.4 -7T17.1 557 704 -1206.5
Velocity Thresholds

W = &th sec. 625 71.2 -8180 46.8 58.6 -11486

W = 0.1 sec. 63.0 739 -784.3 46.0 624 -1099.2

W = 0.5 sec. 63.6 80.6 -708.8 689 719 -983.1

W = 1.0 sec. 60.2 83.1 -721.8 67.8 753 -980.9

W = 1.5 sec. 56.9 85.5 -T31.7 688 T77.8 -1004.7

W = 2.0 sec. 53.7 8&7.1 -751.1 721 773 -1036.3
Chasing 75.8 954 -622.3 65.5 80.4 -1058.3
Distance (U) 46.6 49.5 -779.7 435 423 -604.4
Distance (N) 46.6 499 -200.6 43,5 58.0 -2234
Distance & Chasing (U) 756 99.3 -90.6 65.8 939 -181.8
Distance & Chasing (N) 75.6 99.3 -1153 65.8 97.6 -112.2
Many Features 724 981 -1722 634 985 -1789
Redundant Features 72.4 957 -509.3 527 93.8 -6432.3

Table 2.1: CRF and HMM accuracy for identifying the seeker in the simplified hourglass
and unconstrained tag domains. (U) and (N) indicate that the binary distance threshold
features were either unnormalized or normalized in the corresponding trials.

Distance Thresholds with Chasing Features

A natural question that arises is whether or not the distance threshold features are capable
of increasing the accuracy of the CRF. In theory, they perfectly capture the characteristics
of the domain, but in practice training the model with only these features is difficult. As
a test, we combined the distance threshold features with the chasing features to see if the
combination of the features together would out perform either set of features on its own.

As the results in table 2.1 illustrate, there is indeed a synergistic effect between the two
feature sets. One set of features, the chasing features, captures the behavior of the seeker
when it is moving. The other set, the distance threshold features, captures when the seeker
role transitions from one robot to another. The resulting models exhibit higher log likelihoods
on the test set as well as, when the distance thresholds are normalized, better accuracies
than any other features tried thus far.

62

Many Features

In the final set of experiments, we examined how the models perform when all of the previ-
ously discussed features were used at the same time. In the case of the windowed velocity
thresholds, we used a a window size of 1 to avoid deliberately breaking the independence
assumptions of the HMM.

As a second experiment, we included all of these “helpful” features, as well as redundant
features to test how vulnerable the models are to over fitting. The extra features we added
were the raw position observations, the change in distance between each robot and its closest
neighbor, each robot’s = and y velocity components, and a series of dot products along each
robot’s trajectory to measure how linearly the robot was moving as non-seeker robots tend to
travel in straight lines. While all of these additional features potentially include information
about the domain, this information is either provided by the existing features or of somewhat
dubious utility.

The results in table 2.1 show an initial increase in accuracy for the CRF when the first
collection of features are added to the model and then a decrease with the addition of
redundant features on the unconstrained data set. On the hourglass data set, even the
addition of the first set of features lowers the final accuracy of the model, probably because
of over fitting. Over fitting reduces accuracy immediately with the simple data set but only
with the addition of redundant features for the more complex data. The degree of over
fitting is especially evident from the large decrease in the log likelihood of the test set for
the unconstrained data set with redundant features.

2.7.4 Discriminative Training and Smoothing in the HMM

The results in 2.1 show that a CRF, with HMM-equivalent features, consistently outperforms
an HMM when we use MLE to learn model parameters in the HMM. In this section, we
explore ways to close the accuracy gap between the two models. We investigate smoothing
the observation model of the HMM to see if additional smoothing can increase its accuracy.
We also consider discriminative training for the HMM to see if the accuracy gap is due to
the different training regimes.

To model the observation probability p(x;|y;), we make a naive Bayes style independence
assumption over the components of the observation vector in the HMM. Breaking the prob-

63

0.25

0.2

0.15

Error Rate

0.1

0.05F

I I I I I
1 15 2 25 3 35 4
Multiplier for ¢

Figure 2.5: Smoothing the HMM Observation Model: We tested the effect of smoothing
the observation model of the HMM on the error rate in the tag domain. To smooth the
Gaussian observation model, we multiplied the original standard deviations of the elements
in the observation vector o; by a scalar value.

ability down into the individual elements of the observation vector yields

placly) = []paililly) (275)

where x;[i] is the i-th element of the observation vector at time t. We model individual
elements as Gaussians and use (u;, 0;) the refer to the parameters of the distribution that
we use to model the i-th element.

To smooth the HMM, we begin with the MLE parameters and then we increased the variance
of each normal distribution. If p(a[i]|ys) ~ N(u;,07) in the MLE parameters, we multiply o
by a scalar A to yield a smoothed distribution N (u;, (Ao;)?). Figure 2.5 shows the error rate
as A is increased and the HMM contains velocity and “chasing” features. We chose those two
particular features because they do not violate the independence assumptions of the HMM
and there is a large gap between the HMM and CRF accuracies when they are combined.
Up to a certain point, smoothing the model does lower the error rate of the HMM on test
data. However, smoothing alone is insufficient to close the accuracy gap between the HMM
and the CRF. The error rates for an unsmoothed HMM, a CRF, and the most accurate
smoothed HMM are shown in table 2.2.

64

CRF 93.5%
HMM with MLE parameters 76.3%
Smoothed HMM 82.6%
Discriminatively trained HMM 94.2%

Table 2.2: Accuracies for the CRF, a traditionally trained HMM, a smoothed HMM, and a
discriminatively trained HMM with velocity and chasing features.

Smoothing alone does not close the gap between an HMM with MLE parameters and a dis-
criminatively trained CRF, even when the CRF only contains features that make it equivalent
to a discriminatively trained HMM. To test whether or not the gap between the two models
was due to discriminative training, we implemented a simple coordinate-wise discriminative
training method for HMMs. Our algorithm maximizes the conditional likelihood of the train-
ing set by adjusting the model parameters of the HMM one at a time in a series of discrete
steps. The step size that we used each iteration was proportional to 1/4/7, where j is the
current iteration of training and we normalized multi-nomial distributions, e.g. the transi-
tion matrix, after each step to maintain proper distributions. Similarly, we also bounded the
variances of Gaussians to non-negative values. In practice, there are faster alternatives for
discriminatively training HMMs, e.g. [19], and there is no reason to use the HMM param-
eterization in place of a CRF with HMM-equivalent features. The purpose of our training
algorithm is to test whether or not a discriminatively trained HMM is as accurate as a CRF
with HMMe-equivalent features and to directly compare the discriminatively trained model
parameters to the MLE HMM parameters.

Table 2.2 shows the accuracies of a CRF with HMM-equivalent features and a discrimina-
tively trained HMM. Both the CRF and the discriminatively trained HMM yield high accu-
racies on test data. The discriminatively trained HMM has slightly higher performance. One
possible explanation is that the CRF over-fits more severely. Training the CRF took approxi-
mately 1 minute of CPU time. We stopped HMM training after 48 hours; our coordinate-wise
algorithm is effective, but not efficient. Early stopping of HMM training may have resulted
in less over-fitting.

Both version of the HMM had approximately the same transition matrices and prior prob-
abilities for the initial state. The two models differed only in their observation models.
Figure 2.6 shows the normal distributions over each of the 9 elements of the observation
vector for the two models. The MLE parameters reflect the true distribution of the data
in the training set. The parameters in the discriminatively trained HMM do not accurately
reflect the distribution of the training data. Instead, the discriminatively trained version
of the observation model contains parameters that maximize the conditional probability of

65

0035

Figure 2.6: We compare the observation models from a discriminatively trained HMM with
the MLE parameters. The top row represents the velocity of each robot. The bottom two
rows represent the “chasing” feature, which detects if one robot is moving towards another.

the labels p(Y|X) given the training data. In the case of robot velocities, the resulting dis-
tributions are similar to the MLE parameters, with slightly shifted means. In the case of
the chasing features, the means moved slightly and the variance increased significantly. In-
creasing the variance by the same factor for all distributions, as in our previous experiments,
did not reduce the error rate as well as using discriminative training to choose means and
variances on an individual basis rather than applying the same amount of smoothing across
all observations.

The accuracies in table 2.2 show that discriminative training closes the gap between the HMM
and a CRF. The plots in figure 2.6 show that discriminative training produces distributions
over the observations that do not reflect the empirical distribution of the observations in the
training set. In our results, the best models of p(Y|X), which produce higher classification

66

accuracies than a joint model, do not model the true distribution of the observations in X.

2.8 Chapter Summary

In this chapter:

e We presented a comprehensive introduction to conditional random fields that focused
on why CRF's are well suited to activity recognition from robot sensor data.

e We described how conditional random fields represent conditional likelihood and how
to use inference in the models to answer queries about label sequences.

e We provided a detailed description of how to implement a conditional random field
and gave pseudo-code implementations for key functions. We also discussed how to
optimize a CRF implementation.

e We used synthetic data to highlight important properties of conditional random fields
for activity recognition from robot sensor data.

e We provided a detailed example of designing features for activity recognition using a
robot tag domain.

e We compared between a CRF and a discriminatively trained HMM and demonstrated
that discriminative training has the potential to produce more accurate models.

67

68

Chapter 3

Feature Selection

In this chapter, we present an introduction to feature selection in conditional random fields.
We introduce three feature selection algorithms and explore the properties of the algorithms
using a variety of real and synthetic data.

3.1 Introduction

In the previous chapter, we used a robot tag domain to explore activity recognition in con-
ditional random fields. We found that low level information on its own, i.e. the positions
of the robots, was not sufficient for accurate activity recognition. We found that complex,
domain specific features were needed to produce low error rates in the final model. How-
ever, we also found that including too many features led to over-fitting, which reduced our
classification accuracy on unseen test data. These observations provide our motivation for
feature selection. We require complex features to achieve high classification accuracy, but
we must be selective about which features we include to avoid over-fitting.

We have a second motivation for limiting the number of features in our model. The time
required to perform inference on unseen test data increases linearly with the number of fea-
tures. We desire models that are useful on real robots. Real robots must rapidly respond to
their changing environment, so fast inference is critical. Furthermore, real robots face severe
computational limitations. Computationally intensive tasks, such as vision and localization,
compete with other models for processing time. Feature selection is desirable because it
produces light-weight models that require fewer resources to implement in a real robotic

69

system.

We begin our discussion of feature selection with a formal categorization for different types
of features and with a general overview of activity recognition. We review the main classes of
feature selection algorithms and justify our choice of embedded methods for feature selection
in conditional random fields.

3.1.1 Types of Features

Previous work on feature selection distinguishes between various features based on their
relevance to the classification task [10]. Intuitively, a feature is relevant if it provides infor-
mation about the labels. John et al. formally define two classes of relevant features: strongly
relevant and weakly relevant [43]. We restate their definition, updated for the sequential
classification setting, below:

Strongly Relevant A feature is strongly relevant if it is possible to find two training ex-
amples that differ only in their label and the value of that particular feature. I.e.,
the classifier should assign different labels to the examples and the sole distinguish-
ing characteristic is that one feature. Using the formal definition of John et al.:
feature f; is strongly relevant iff there exist two labeled sequences of equal length
(X,Y) and (X’,Y’) such that P(X,Y) > 0; P(X,Y') > 0; Y # Y’; and VtVj #
i fit e,y X) = fi(ty,_1,y,, X') where y;_1,y; are adjacent labels from Y and
y;_1, Y, are adjacent labels from Y.

Weakly Relevant A feature is weakly relevant if it is not strongly relevant given the current
set of features in the model, but it can be made strongly relevant by removing some
or all of other features.

Irrelevant A feature is irrelevant if it is not strongly relevant when it is the sole feature in
the model.

The relevance of a feature depends on the other features in the model. A strongly relevant
feature might become weakly relevant as new features are added to the model. The notion
that relevance leads into the final definition of this section:

Incremental Usefulness Given a learner and its current set of active features A, a feature
fi is incrementally useful if the error rate of the learner trained with feature set AU f;
is lower than the error rate of the learner trained with feature set A [18].

70

3.1.2 Types of Feature Selection Algorithms

Feature selection algorithms fall into three broad categories: Filters, Wrappers, and Em-
bedded Methods [10]. We review these three categories of feature selection algorithms and
discuss their suitability for feature selection in conditional random fields.

Filters

Filters use a fast heuristic to estimate the relevance of all candidate features and then train
the model using the highest ranked set of features [10]. The relevance of each feature is
computed in a batch process and all top candidates are added as a single group; filters do
not reevaluate candidate features in light of an existing active set. As a consequence, feature
selection with filters is computationally efficient because each feature is evaluated a single
time.

A wide range of heuristics are used with filter methods, e.g. correlation, mutual information,
and information gain [10,36]. For example, the RELIEF algorithm [47,48] computes a
heuristic estimate of feature relevance on an instance by instance basis. For a single labeled
training example e = (z,y);, RELIEF locates two other training examples e, and e; such
that e, is the example most similar to e that has the same label as e and e; is the example
most similar to e with a different label. RELIEF is restricted to binary classification tasks,
although others have introduced extended versions for multi-class problems [52]. RELIEF
increases the weight of features that help distinguish between the neighbors e, and e;. The
intuition is that features that help distinguish between closely related examples are relevant.

Filter methods suffer in the presence of many weakly relevant features [10], which makes
them poorly suited for activity recognition domains. In the Tag domain from the previous
chapter, features that link state transitions to the observation that one robot is within a
threshold distance of another perfectly capture the transition dynamics of the domain, if
the correct value for the distance threshold is used. However, usually the correct distance
is unknown and we must include many candidate distances. Filter methods will select all
such features even though only the distance threshold closest to the true value is strongly
relevant, because filters do not reevaluate their scoring metrics in light of previously selected
features.

71

Wrappers

Wrappers evaluate candidate sets of features by fully training a model that includes only
the candidate features and evaluating it using cross-validation or held-out data [51]. Le.
wrappers use the classification algorithm as a subroutine in a search over the space of possible
feature sets. A given feature can either be active or inactive, so there are 2" possible feature
sets, where n is the number of features. Due to the size of the search space, exhaustive
search is intractable.

Wrappers potentially avoid the problem of weakly relevant features because they evaluate
candidate sets of features using the actual classification algorithm. By definition, weakly
relevant features provide strictly less information than strongly relevant features, so the
search space will always contain a smaller model that performs at least as well as any model
that contains weakly relevant features, neglecting noise due to cross-validation and assuming
ties are broken in favor of smaller models. Similarly, wrappers can select features that are
only useful in the presence of other features. For example, wrappers can potentially find the
correct set of features when the correct label depends on the parity of those features.

Wrappers have the ability to discover the optimal feature subset. However, feature selection
using wrappers requires a large amount of computation. Using a wrapper strategy with
forward search (no backtracking) to choose 100 features from a candidate set of 1,000 features
requires training the model more than 95,000 times. Training a CRF after making a small
change in its feature set is faster than training a CRF from scratch. However, CRFs often
include thousands or millions of features, e.g. [97], and simple forward selection with wrappers
trains the model O(n?) times. Wrappers do not scale to large feature sets. The largest
number of features considered in [51] was 180 features. The median number of features in
that work was 13. Computational considerations rule out wrappers for large scale feature
selection.

Embedded Methods

Embedded feature selection algorithms are the least clearly defined of the three categories.
Embedded methods combine the process of feature selection with the process of training
the final model [10]. Combining feature selection with training allows embedded methods
to strike a balance between filters and wrappers. Filters select the candidate features before
training the model and therefore cannot fully capture interactions between groups of features.
Wrappers train the model for every candidate subset of the features, which comes with a high
computational cost. Embedded methods are less myopic than filters; they take previously

72

selected features into account. They are also more computationally efficient than wrappers,
e.g. they can use cheaper (albeit less accurate) scoring metrics to search through the space
of feature sets.

Embedded feature selection algorithms have a long history. For example, inductive decision
tree learners (e.g. [12,89,90]), can be viewed as embedded feature selection algorithms.
Choosing a feature or attribute to create a split in a decision tree can be viewed as selecting
a feature. Learning an entire decision tree can be viewed as embedded feature selection
because previously chosen features affect which features are chosen for splits further down
in the tree; during learning, the training set is divided and examples are passed down a
particular path from the root to the leaves of the tree as if the examples were being classified.
Each leaf is then split by choosing a feature based only on the examples present at that leaf.
In this way, the previously selected features, which select the examples present in each leaf,
affect the choice of future features.

We focus on embedded methods for feature selection in conditional random fields. When
ruling out filters, we presented the example of choosing a distance threshold in the Tag
activity recognition task. Because embedded features take previously selected features into
account, they handle weakly relevant features more robustly than filters. In addition, embed-
ded methods are more tractable from a computational standpoint than wrappers. We will
discuss three different embedded methods: grafting [85], ¢; regularization (e.g., [39]), and
a CRF-specific feature induction algorithm due to McCallum [73]. We discuss these three
algorithms after a brief discussion of the evaluation metrics that we will use to compare
them.

3.1.3 Evaluating Feature Selection Methods

We will evaluate feature selection algorithms across several different dimensions.

Trade-off between Accuracy and Sparsity Our primary concern is to create models
that can accurately label unseen sequences of observations. An obvious metric for
comparing different feature selection algorithms is to compare how accurately the re-
sulting models label test data. A second metric to consider is the sparsity of the
resulting models. It is not enough for a model to have a low error rate; for the sake of
parsimony and to reduce the computational burden of applying the model, we require
accurate models that incorporate the minimum number of features. There is, of course,
a trade-off between these two dimensions and it is interesting to compare how different
feature selection algorithms manage the trade off between classification accuracy and

73

the number of features in the model and to identify what factors, such as the size of
the training set, affect that trade-off.

Robustness to Irrelevant Features The purpose of feature selection is to select a small
subset of strongly relevant features from a potentially large set of either weakly rele-
vant or irrelevant features. To compare different feature selection algorithms, we can
examine what happens to the classification accuracy of the resulting models as the
training set is augmented with an increasing number of irrelevant and weakly relevant
features. We can also track the number of such undesirable features that are included
in the final models as the amount of noise in the training set increases.

Data Efficiency Training data is a scarce and precious resource. Good feature selection
algorithms should be able to identify strongly relevant features from modest amounts
of training data. We can compare how well the different algorithms fare as the size of
the training set is varied.

Time Efficiency We will consider this in more detail in the next chapter, but it is important
to consider the computational burden of feature selection. Even if the resulting sparse
model allows for cheap inference at test time, we require algorithms that efficiently
discover that sparse set of features from a potentially large candidate set.

Generalization Closely related to data efficiency, how well does the resulting model gener-
alize across related data sets? For example, it is much easier in practice to gather data
in simulation than using real robots. It would be beneficial if we could use abundant
simulator data to train a model that also performs well when tested on data from real
robots. In other words, how well do the resulting models generalize between related
sets of data? A trade-off that we make with feature selection algorithms is that less
sparse algorithms may generalize better than a more efficient counter part. Classifi-
cation accuracy and generalization to new domains is interesting to test to see if one
algorithm produces models that are less brittle than the others.

Effectiveness for Parameter Selection We can consider a variety of parameters in our
model. For example, in the last chapter, we presented a tag domain where one robot
needed to approach within a fixed distance of another in order to tag its target. As
designers of models, we do not always know the correct value of such thresholds. Can
feature selection choose the correct parameter given features that incorporate many
options? This is exactly the same as identifying the most strongly relevant feature in
the presence of other weakly relevant features. A common issue is whether or not a
given feature should be state-linked or transition-linked. Can feature selection choose
between the two? An additional type of parameter discovery that we can do is to correct
degree of polynomials when we model our data with an additive model. Including 22
features gives us a Gaussian. Are higher order terms helpful or do they merely over-fit?

74

3.2 Feature Selection in Conditional Random Fields

In this section, we talk about feature selection in the specific context of conditional random
fields. We specify what we mean by feature in the case of CRFs. We then describe three
feature selection algorithms, two of which are general algorithms that can be applied to many
types of classifier, and a third, CRF-specific algorithm.

3.2.1 Defining “Feature”

We define conditional random fields as a vector of weights and a vector feature function
f(t,yi—1, ye, X). We will often write a single prototype, such as:

fi(tv Yt—1, Y, X) = (?/t—l?:label)@t?:label) (3-1)

as a shorthand for several individual features in the vector function f. Expanding out this
shorthand for the binary label case would yield:

fitt, g1, ye, X) = (ye—1=True) (y;=True) (3.2)
fi(t i1, y, X) = (y4—1=False)(y;=True) (3.3)
et i1, ve, X) = (ys—1=True)(y,=False) (3.4)
filt, ye1,ye, X) = (y;_1=False)(y;=False) (3.5)

In summary, a single prototype is responsible for generating several features. When we talk
about feature selection, we are talking about choosing among the features rather than among
the prototypes. As an example of why we do this, consider the Tag domain from the previous
chapter. A useful prototype in Tag is:

Fi = Wer20) () (dist (4, §) <v) (3.6)

The three features generated from the above prototype that capture self-transitions, i.e.
situations where the “It” role is not transferred, are irrelevant — of course robot 7 is within
v millimeters of itself! In more complex situations, e.g. if we tested the distance between
robots not involved in the role transfer, additional features are both irrelevant and increase
over-fitting. Selecting on a feature-wise rather than prototype-wise basis allows the feature
selection process to potentially reduce over-fitting at the cost of an increased number of
candidates (by a factor of |y|? in the above example).

In general, we use two types of features:

1)

State-Linked Features are features with prototypes of the form:

fi = (ye=label)g(t, X), (3.7)

where ¢ is an arbitrary function that does not depend on ;1 or y;. E.g., we capture

information about continuous variables with g(¢, X) = z; and g(t, X') = 2.

Transition-Linked Features are features that with prototypes of the form:
fi = (yr—1=label) (y;=label)g(t, X), (3.8)

where ¢ is an arbitrary function that does not depend on y;_; or y,. We encode first-
order Markov transitions by setting g(¢, X) = 1.

3.2.2 Grafting

Grafting is an embedded feature selection method that combines the task of training the
model with choosing which features to include in it [85]. Grafting uses a greedy forward
selection strategy to choose features. It begins training with an empty model that includes
no features. During each each iteration, grafting adds a single feature to the set of active
features and retrains the model using the expanded set. Training the model with the new
feature is significantly faster than training the model from scratch because the weights from
the previous iteration provide a starting point close to the new optimum; training must
discover a weight for the new feature and adjust the weights of the original features to take
into account the added feature, but in general the new optimum will lie close to the previous
weight vector.

Grafting uses a heuristic to choose which feature to add during each iteration. In theory,
we would like to maximize the incremental usefulness (section 3.1.1) of the added feature.
Computing the true gain in accuracy for each candidate feature would, of course, yield a
wrapper based approach and we have already rejected wrapper approaches because they are
too slow. Rather than training the model with each candidate feature, grafting uses the
gradient of the objective function as a heuristic to choose among candidate features and
selects f; according to:

argmax
i

(2

0 E(Y|X;w)' (3.9)

76

Less formally, grafting computes the gradient of the objective function ¢(Y|X) with respect
to the weights and chooses the feature corresponding to the weight with the largest absolute
partial derivative!.

Grafting can incorporate regularization in order to smooth the model during training and
feature selection. Perkins et al. discuss how to incorporate an {y penalty, which charges a
fixed penalty for each non-zero weight in the model; an ¢; penalty, which charges a penalty
proportional to the absolute magnitude of the weights; and an ¢ penalty, which charges
a penalty proportional to the sum of the squares of the weights. Using any of these regu-
larization methods requires choosing scalar parameters to control the degree of smoothing.
To avoid choosing between one and three extra parameters, we used no regularization when
training with grafting. Instead, after using grafting to choose a subset of the features, we use
{5 regularization to smooth a model that includes only the chosen subset of the features. Re-
training with regularization after the fact provides the benefit of smoothing the final model
parameters, although with the cost of retraining and potentially changing which features are
included because no smoothing is done during feature selection.

3.2.3 [/, Regularization

Training a model with an ¢, penalty produces a sparse model where many of the parameters
are exactly equal to zero [39]. In conditional random fields, we remove features with zero
weight from the model because they do not affect classification. We use ¢; regularization
for feature selection by varying the magnitude of the ¢; penalty to create candidate models
with different numbers of active features. We then use cross-validation or a holdout set to
choose among the resulting candidates.

Instead of maximizing the log-likelihood /(Y | X'), we maximize the penalized log-likelihood
to learn the parameter vector w*:

w*(\) = argmax (Y | X;w) —)\Z |w;], (3.10)

where) is a scalar parameter that controls the degree of smoothing. We vary the magnitude
of X to create different candidate models. High values of A correspond to large penalties for

LGrafting uses the gradient of the log-likelihood of the training set rather than the gradient of the error
rate for the same reason that we train our models by maximizing log-likelihood rather than accuracy — we
cannot exactly compute the gradient of the error rate. However, Gross el al. [35] describe a training method
for conditional random fields that minimizes an approximation of the error rate. Their approximation is
differentiable and, in principle, the gradient of the approximate loss might provide a good heuristic for
grafting.

7

0.5

T T
J— 1 Penalty

045 - - L2 Penalty | |

0.4

035

0.3

025§

Penalty for w

02F % ;o
0.5 N s
01f N P

0.05 ~ 4

Figure 3.1: The penalty associated with non-zero values of a single weight w; under an ¢,
penalty and an ¢, penalty. The derivative of the ¢ penalty is zero or close to zero in the
neighborhood w; = 0. Moving w; slightly away from zero to improve the objective function
((Y'|X) incurs almost no penalty under ¢y regularization. Moving w; away from zero under
¢ regularization immediately incurs a penalty proportional to dw;. Therefore, w; will remain
zero unless the gradient of the objective function 9¢(Y|X)/0w; is large enough to offset the
penalty.

non-zero weights and hence result in models with fewer non-zero parameters.

In addition to producing sparse models, the penalized objective function (3.10) also smooths
the model, which tends to reduce over-fitting to the training set. That is to say, because the
penalty is proportional to absolute magnitude of the weights, smaller weights are favored over
larger weights, which results in a more parsimonious model. The penalty term is convex, and
therefore the penalized objective function remains convex, although, adding the penalty term
means that the objective function is no longer differentiable, which complicates training, as
we described in chapter 2.

Figure 3.1 provides intuition as to why training with an ¢; penalty results in models with
some parameters exactly equal to zero, but training with other common penalty functions,
such as an /5 penalty, which penalizes by the square of the weights, does not. Consider a
single weight in the neighborhood around w; = 0. Under an ¢, penalty, the partial derivative
of the penalty is proportional to Aw;. To a first order approximation, the change in the
penalty is zero for moving w; away from zero. With an ¢; penalty, the relevant partial

78

Robot Data: L1 Regularization Path in the Tag Domain
0.01 T T T

0.005 B

-0.011 B

-0.015 N|

Weight

-0.02-

-0.025 B

-0.03 -

-0.035 q

~0.04 I I I I

‘WX|1/‘WX= 0|1)

Figure 3.2: A portion of the ¢; regularization path for a CRF trained for activity recognition
in the robot tag domain. Each line in the plot represents the weight associated with a feature
in the CRF. For high values of the regularization parameter A (left side), all features have
weights of zero and the model contains no features. As A is decreased, features enter the
model by taking on non-zero weights. The horizontal axis corresponds to |wy|1/|wa=ol|1, that
is, the ¢; norm of the weights for each value of A\ normalized by the ¢; norm of the weights
that result when the model is trained without regularization.

is £, so the change in the penalty is proportional to A\. Under an ¢, penalty, a small
non-zero derivative in the unpenalized objective function will move w; away from zero. In
the ¢; case, A serves as a threshold and prevents w; from becoming non-zero to buy small
improvements in the unpenalized objective function. We could potentially charge a larger
penalty for moving weights away from zero, e.g. an f, penalty, which charges a fixed amount
per non-zero weight, but that would create a non-convex objective function and significantly
increase the difficulty of parameter estimation.

To perform feature selection using ¢; regularization, we train the model using many different
values of the smoothing parameter A\ and choose among the resulting set of weights using
cross-validation or classification accuracy on a holdout set. We then select the features with
non-zero weights. We begin with)y large enough that all weights in the model are equal
to zero by computing Ao = max [9¢(Y|X)/O0w;| for w = 0. In other words, we compute the
gradient at w = 0 and take the absolute value of the partial with the largest magnitude
for A\g. We then train the model many times with successively smaller values of \. We

79

decay A\ between iterations according to \;1; = a)\;, where « is a positive decay parameter
with a value less than 1 such as .9. We initialize training for each new value of A\ with the
trained weights from the previous value of A\. As Koh et al. noted, this warm start technique
dramatically reduces the required training time. Using this warm start technique, we have
tested 500 descending values of A in the time it would take to train the model from scratch
five times; reusing previous results makes training orders of magnitude faster. Figure 3.2
shows an example of the first few models that result from this process.

3.2.4 Greedy Feature Induction

In [73], McCallum introduced a CRF specific feature induction algorithm that computes the
approximate gain [in the log-likelihood of the training set according to the model] that would
result from adding and re-training with each candidate feature. In [67], Liao et al. introduce
a modified version of boosting [28], called wirtual evidence boosting, that uses a smoother
gain approximation, which we discuss in chapter 6. In this section, we present the derivation
for McCallum’s approximate gain computation.

Exactly computing the incremental usefulness of individual features requires a prohibitive
amount of computation. However, by making a mean field assumption that removes temporal
links from the model either by substituting in true labels for adjacent time steps (i.e. pseudo-
likelihood) or by using the most likely labels for neighboring time steps (i.e. a mean field
assumption), we can efficiently approximate the incremental usefulness of single features.

We begin with an exact expression for the conditional likelihood of the training set and make
a series of approximations to derive the heuristic gain estimate of [73]:

po(Y[X;w) = ngig(w];(FX(;)l)/’)) (3.11)

F(X,Y) =Y f(t g1, 00, X) (3.12)

Augmenting the model with an additional feature g that has weight u yields:
exp(w F(X,Y) + pG(X,Y))

pe(Y[X;w, 1) = S exp(aTF(X. V7] + nG(X. V7)) (3.13)
_ exp(wF(X,Y)) exp(pG(X,Y)) (3.14)

>y exp(w F(X,Y")) exp(pG(X,Y"))
GX,Y)=> gt ye—1,y1, X) (3.15)

80

Optimizing this expression, over both p and w, is equivalent to regular maximum likelihood
training. To speed the gain computation, we will hold w fixed and consider an optimization
over p alone. This is an approximation and will yield a different result than optimizing
over both w and u because we prevent w from changing in response to the inclusion of g.
To isolate p, we multiple the numerator and denominator by the reciprocal of the original
normalization constant:

Zo =Y exp(w"F(X,Y")) (3.16)

Multiplying the numerator and denominator yields:

L exp(w F(X,Y)) exp(uG(X,Y))
Sy 2 exp(w F(X, V")) exp(uG(X, V"))
(V1Y) exp(uG(X, V)
Sy po(Y1X) exp(nG(X, V7))

Py(Y X w0, 1) =

(3.17)

(3.18)

The advantage of this form is that it allows us to compute py once and reuse that same value
during the gain computations for many candidate features g. Discovering the best u for each
candidate feature is then a one dimensional optimization problem that can be solved using
Newton’s method or a simple line search rather than a more expensive algorithm such as
conjugate gradient, as is required for the multi-dimensional case when w is also updated in
response to candidate features.

To reduce the expense of computing the normalization term, McCallum uses a mean field
approximation, similar to pseudo-likelihood, that treats the individual time steps in the
training sequence as independent. In other words, the approximation removes the edges
between time steps in the graph structure of the model and yields the following expression
for the approximate likelihood of the training set:

exp(w” [f(t, -1, Y&, X) + f(t + 1, 41, Ges1, X))
AlY X5 w) H >y exp(wT [f(t, g1, yp, X) + f(E+ L yp, G, X))

(3.19)

We write py instead of py to indicate that we are computing an approximation similar to
pseudo-likelihood. As before, we use y; to indicate summing over potential labels. In the
approximate case, y; represents a single label rather than an entire label sequence. Finally,
we use ;1 and 9,1 to indicate the values used in place of adjacent labels when computing
the feature vectors that involve ;. These values are held fixed at either the true labels from
the training set, which is exactly pseudo-likelihood, or assigned as the most likely labels
according to the label-wise marginal probabilities computed by the current model, which
amounts to making a mean field approximation. McCallum discusses both variations [73].

81

As before, we compute the gain in terms of adding a single new feature g with weight pu:

H exp(wTF(X, y) + MG(X7 Yi))

Py(Y[X5w, 1) = LS T F (X + nCX.40) (3.20)
_H exp(w’ F (X, y)) exp(uG(X, y1)) (3.21)

y P F (X, yp)) exp(uG(X, y}))
F(X, Yi) = f(tayt—l,yt, X)+ ft+ 1y, 941, X) (3.22)
G(X,y) = g(t, -1, 91, X) + g(t + 1, Yo, 1, X) (3.23)
(3.24)

To isolate p, we will multiply both the numerator and denominator by the reciprocal of the
normalization constant from a single time step in the model for py:

20 = Z exp(w’ F(X,y))) (3.25)

Yy

which yields:

Py(Y X500, 1) =

I = exp(w’ F(X, y)) exp(pG(X, 1)) (3.26)

2y = exp(wl F(X, yp) exp(uG(X, y}))
_ Po (e X5 w) exp(uG(X, Ye))
t Zyg ﬁo(yt|X; w) exp(uG(X, yzlt))

where po(y|X; w) is an approximate version of the marginal py(y,|X;w). Of course, since
the marginals do not depend on p, there is no reason to avoid the true marginal probability
from the current model. We can use the true marginals to improve the quality of the
approximation.

(3.27)

In practice, we work with the log-domain version of the above, which, when we substitute
the true marginal probabilities (or log probabilities) is:

LY IX 5w,) = > 0l X5 w) + pG(X, yr) —log | > p(yel X5 w) exp(uG(X,4p) | (3.28)

Yy

The normalization term remains awkward due to the need to take the logarithm of a sum.
However, we can use our log-domain addition operator @ that we defined in chapter 2 to
rewrite the expression as:

LY IX 5w, 1) = S 6l X) + nG (X,) = @D (¢l X) + nG (X 1)) (3:29)

Y

82

We can further simplify by noting that the first term does not depend on p or g and omit
it to yield an expression for the approximate gain for incorporating ¢ into the model with
weight

gain(g,) = 0(X,Y;w, u) — (X, Y;w) (3.30)
gain(g, 1) & Y uG(X,) — @D (UulX) + nG(X. 1)) (3.31)

i

McCallum also considered an additional method for speeding training. Because we assume
that the individual time steps are independent, that means it is easy to compute the ap-
proximate gain using only a subset of the training data. Specifically, McCallum considered
the subset of examples currently misclassified by the algorithm. As a result, the gain com-
putation grows faster as the model improves and the number of training points used in the
gain computation shrinks as the error rate drops.

3.3 Experiments with Synthetic Data

We used experiments with synthetic data to illustrate the differences between the three
feature selection methods.

3.3.1 Synthetic Data with Weakly Relevant Features

We created synthetic data that contained a mix of strongly relevant and weakly relevant
features. We generated label sequences using a first-order Markov transition matrix with a
75% chance of self-transitions between binary labels. We generated an observation sequence
where each individual observation vector z; contained k groups of n correlated continuous
values. We sampled the n values in each group so that one value is strongly relevant and the
remaining n — 1 values are weakly relevant. Each observation vector z; contained k strongly
relevant values and (n — 1)k weakly relevant values.

We sampled the individual values in the observation vector from the three normal distribu-
tions shown in figure 3.3. We drew the values so that they were either informative, i.e. they
provided information about the true label y;, or uninformative. Informative observations
were drawn from N (ur,0?) or N(up,0?), depending on the correct value (true or false) of
the label 1. To provide an ambiguous observation, we drew from the average of the two
informative distributions N (AZH4E, 202).

83

0.1

T
0
1

—-

0.09 —N"
= corrupted observation

008}
007}
.06}

2 o0st

0.04F
003t

0.02 -

0.01F

Figure 3.3: We used three Gaussian distributions as the emission model to generate observa-
tions in the synthetic data set. In the synthetic data, the observation at a given time step ¢
is either informative or uninformative. For simplicity, although =z, is a vector, we use x; here
as if it were a scalar value. In the case of informative observations, the observation x; is sam-
pled from either P(z;|y; = false) = N(up,0?) or P(z|y; = true)N(ur, 0?) depending on the
value of the binary label ;. In the case where the observation is corrupted by noise and car-
ries no information about the label, the observation x; is sampled from P(z;) = N(uc,20?).
In our experiments pup = —1, up = 1, uc = 0, 0% = 25.

We created a group of n correlated observations by drawing a single value vy from the
informative distribution corresponding to the true label y,. We copied vy into the remaining
values v1...v,_1. The n observations were not independent samples from the informative
distribution, they were copies of a single sample. We then drew a single uniform random
value ¢ ~ U(0,1). We used this single random value to determine which of the n — 1 weakly
relevant observations to replace with an uninformative observation. For each of the n — 1
values v;,7 € [1,n — 1], we replaced v; with a sample from the non-informative distribution
if .057 < c¢. Because we use the same random sample ¢ to test all n — 1 correlated values and
all n values were originally copies of the same sample from the informative distribution, v;
is at least as informative as v; for ¢ < j. Since vy is never replaced with an uninformative
value, it strictly dominates the other copies and renders them weakly relevant.

84

3.3.2 Weakly Relevant Features with Grafting

Grafting uses the gradient of the log-likelihood to select which features to add at each
iteration. One of the parameters that we control is the number of features that we add
before retraining the model and recomputing the gradient. If we add only a single new feature
before retraining the model and recomputing the gradient, we will always take into account
the effect of previously selected features when computing scores for candidate features. If
we add m features at a time, the scores for the m features are not independent. In domains
with many weakly relevant features, selecting features via grafting with high values of m
creates larger models.

We use synthetic data with many weakly relevant features to illustrate this point. Using
the scheme outlined in the previous section, we generated sequences that contained k = 10
strongly relevant features and (n — 1)k = 40 weakly relevant features, i.e. n = 5. We used
grafting to train CRFs that modeled the observations as independent, uni-variate normal
distributions and varied the number of features that we added at each time step.

Figure 3.4 shows the error rate on test data versus the number of features in the models for
grafting when we add 1, 8, or 32 features before retraining and recomputing the gradient.
As we expected, there is a clear trend towards larger models when we add more features per
iteration. Adding more than a single feature at a time reduces the total amount of com-
putation required for feature selection, because the computational cost for grafting mostly
comes from retraining after adding new features, but the price for reduced computation is
less sparse models and slightly increased error rates due to over-fitting.

3.3.3 Weakly Relevant Features with the Mean Field Heuristic

When we use the mean field heuristic to score candidate features, we must choose between
computing the score on the full training set or only the mislabeled portion of the data.
We also must choose whether or not to use the true labels from the training set (pseudo-
likelihood) or the most likely labels according to the model. The first decision, whether
or not to use all of the training set, affects how much computation is required to score
candidate features. The second decision, how to select label values for adjacent time steps,
does not appreciably change the computational requirements of scoring candidates, but it
can potentially change the quality of the scoring metric.

Figure 3.5 shows that there is a large difference between the variants that use the entire
training set and the variants that compute the approximate gain using only mislabeled

85

T T
— Add-1
v Add-8
= = = Add-32||

021

Error Rate

015

0.1

0.05F

I I I I I I I I
0 50 100 150 200 250 300 350 400
Number of Active Features

Figure 3.4: Error rate versus model size as we vary the number of features that we add
before retraining and recomputing the gradient in grafting.

examples. Using the entire training set reduces the number of features in the model where
the test loss is minimized and slightly lowers the best error rate for the model. There is no
significant different for pseudo-likelihood versus mean field when the entire training set is
used, but for the mistakes only case, the mean field algorithm appears to select slightly more
features than pseudo-likelihood, although the two variants very similar performance.

Varying the Amount of Training Data

We use our synthetic data with weakly relevant features to compare the performance of the
three feature selection algorithms as the size of the training set is varied. In many domains,
it is difficult or costly to acquire large amounts of training data. We desire feature selection
algorithms that perform well when little data is available. We compare how well the feature
selection methods perform in terms of model sparsity, error rate on test data, and the number
of weak features that they include in the model. As before, we use the same synthetic data
with £ = 10 strongly relevant features and 40 weakly relevant features. Based on the results
of our previous experiments, we add one feature per iteration to grafting. For the mean field
heuristic, we use the entire training set when scoring features and we use the true labels
from the training set for adjacent time steps rather than the most likely labels according to
the model.

86

o
3

T T T
= Pseudo-Likelihood All Data

= = = Pseudo-Likelihood Mistakes Only
11 Mean Field All Data [
Mean Field Mistakes Only

I
IS
o

I
~

o

w

o
i

it T _ e 1 .
D OOEEX KEE AR l”‘*‘I—"‘*““‘ii"'!ﬁ’

S

Error Rate
o o
— o N o
[$)] n (&) w
T T

o

=4

=}

a
T

o

I I I I I I I I
0 50 100 150 200 250 300 350 400
Number of Active Features

Figure 3.5: Error rate versus the number of features when we perform feature selection using
the mean field heuristic to score features. We varied whether the true labels or most likely
labels (according to the model) were used for the pseudo-likelihood style approximation.
We also varied whether or not only mislabeled training examples were used to compute the
approximate gain scores for the features.

Figure 3.6 shows the average accuracy of the models produced by the feature selection
algorithms versus the size of those models for training sequence lengths of 128, 256, 512, and
1024 time steps. When T = 128, there is a noticeable gap between the minimum error rate
of grafting and the other two algorithms. Greedy algorithms tend to over-fit when too little
training data is available and grafting is the most greedy of the three algorithms. Forward
selection using the mean field heuristic to score candidate features is also greedy, but the
scoring metric is less myopic than the gradient of the log-likelihood. ¢; regularization is
the least greedy, because it allows weights to freely enter and exit from the model during
training. Furthermore, ¢; regularization smooths the final model, which tends to reduce
over-fitting. As the length of the training sequences increases, the gap in the minimum error
rate between the algorithms vanishes.

A second noticeable trend in figure 3.6 is that ¢; regularization consistently produces larger
models than the other two algorithms. The most accurate models for the other two algo-
rithms consistently contain fewer features than the best models produced by ¢; regularization.
/1 regularization has a larger “sweet spot” than the other two algorithms, which produce ac-
curate models in only a narrow range of sizes. Because ¢, regularization produces smoothed
models, it discovers accurate sets of parameters across a wide range of model sizes.

87

Error Rate on Test Data

Synthetic Data: Accuracy versus Model Size

03

025

021

0151

01r

0.05

Graftin
L‘ Regularization

' Mean Field

20

40

60

I I
80 100 120
Number of Active Features

L
140

L L L
160 180 200

a) Training Sequence Length = 128

—— Grafting
““““ L‘ Regularization

== Mean Field

Error Rate on Test Data

0.2r

0151

0.1

0.05[

—— Graftin

L‘ Regularization
Mean Field

20

40

60

80

Number of Active Features

100

L
120

L
140

L L L
160 180 200

b) Training Sequence Length = 256

05

= Grafting
““““ L1 Regularization

== Mean Field

Error Rate on Test Data
I

Error Rate on Test Data
o
o
&

0.05 q 0.05[R

0 L L L L L L L L L L 0 L L L L L L L L L L
[20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Number of Active Features Number of Active Features

c¢) Training Sequence Length = 512 d) Training Sequence Length = 1024

Figure 3.6: Starting from a model with no features, the three feature selection algorithms
augment a CRF with additional features during training. In general, the error rate on test
data decreases as relevant features are added and then increases as additional features lead
to over fitting. The four plots show this behavior as the length of the training sequence varies
from 128 (a) to 1024 (d) time steps. In all cases, the length of the test sequence was fixed at
1000 time steps and the curves are averages from slightly more than fifty independent trials
where new synthetic sequences were created for each trial.

In practice, we use cross-validation or a hold-out set to choose one of the candidate models
produced by feature selection. Figure 3.7 displays the error rates and other properties of the

88

candidate models that we selected rather than of all candidate models. When we look at
the error rate versus the length of the training sequence, we see that all of the models begin
at approximately 50% error, which corresponds to random guessing to choose a label. The
error rates drop as the size of the training set increases, although the error rate for grafting
decreases more slowly than for the other two algorithms. The CRF's include features of the
form:

f = (y:=label)y, (3.32)
[= (y:Hlabel)v? (3.33)

for each value of the fifty observations v; € z; and each of the two possible label assign-
ments. Looking at the total number of active features in the final models, it is clear that
(1 regularization is less selective than the other two algorithms. As more training data be-
comes available, it moves towards including all 20 strongly relevant features. The number
of weakly relevant features included by ¢; regularization does seem to level off eventually,
however. The variance in the size of the models chosen by grafting and using the mean
field heuristic increases dramatically when the error rate starts to drop. The two greedy
approaches seem to have higher variance when little training data is available.

Varying the Number of Weakly Relevant Variables

We tested the performance of the three feature selection algorithms as we increased the
number of weakly relevant features in the model. We constructed synthetic data using the
same rules as before with k groups of n observations, where n — 1 of the observations are
weakly relevant. We again used k = 10 groups and we varied n, the number of observations
in each group.

The results in figure 3.8 exhibit the same pattern that we saw as the amount of training
data was varied. The two greedy algorithms select fewer features than ¢; regularization and
have a more pronounced dip around the best model versus the broad basin of good models
discovered by ¢, regularization. The actual value of the minimum loss on test data does not
vary strongly with the number of weakly relevant variables. However, the amount of over
fitting does increase with the number of weakly relevant variables.

Figure 3.9 summarizes the properties of the models that were selected by minimizing the
loss on the holdout data. The error rate does not change significantly with the number
of weakly relevant features. There is not a visible trend in the total number of features
selected with the two greedy algorithms, but ¢; regularization yields an increasing number of
features as the number of weakly relevant variables increases. Breaking down the additional

89

0.6

05

Error Rate on Test Data

02F

01r

) ©
S =3
T

Number of Selected Strong Features
~
S
T

N
S
T

=)
T

¢) Number of Selected Strong Features

04r

031

@
S
T

a
=]
T

IS
S
T

@
S
T

Synthetic Data: Performance of the Selected Model

T
Graftin
L‘ Regularization

= = =Mean Field

4 5 6 7
Iogz(Traming Sequence Length)

a) Error Rate

x Grafting
o L, Regularization
O Mean Field

@ ki)

o

i 0
i o Eﬁ ¥ % B e = 7

2 3

. .
[4 5 6 7 9 10 "
log,,(Training Sequence Length)

T
x Graftin
o L, Regularization

801~ O Mean Field

Number of Selected Features
IS @
3 3
e
—e—
==

I fo

4 5 6 7
Iogz(Trammg Sequence Length)

b) Total Number of Selected Features

90

x Grafting
o L, Regularization
80 © Mean Field

~
S

a @
3 3
e

@
3
T

Number of Selected Weak Features
5
e
—a—

N
S
T

=)

o

. . .
0 1 2 3 4 5 6 7
Iogz(Trammg Sequence Length)

d) Number of Selected Weak Features

Figure 3.7: We used a holdout set to select model parameters for ten different training
sequence lengths. We used each algorithm to generate candidate feature sets for each length
and chose the models with the lowest error rates on the held-out data. Plot (a) shows the
resulting error rates on unseen test data for each training sequence length. The x-axis is
log, (sequencelength). The remaining three plots characterize the resulting models for each
sequence length by displaying the total number of features included in the final model (b),
the number of strong features included in each model (c), and the number of weak features
included in each model (d). All results are averages over slightly more than 50 independent

trials and .95 confidence intervals are shown.

Synthetic Data:

Accuracy versus Model Size

0
Number of Active Features

a) 3 Weakly Relevant Variables

Number of Active Features

c¢) 7 Weakly Relevant Variables

T T T T T T T T
Graftin —— Graftin
““““ L‘ Regularization PR L‘ Regularization
== Mean Field = = Mean Field

pet 8
<1 @

=] 4 o 4
3 B
= =
< <

S B S g
2 2
51 51
o o«

<] 021 il 5 0.2r q
i i

0.15 T 0.15F B

01k 4 0.1k i

0.05 4 0.051 i

0 I I I I I I I 0 1 I I I
0 20 40 100 120 140 160 [50 100 150 200

Number of Active Features

b) 5 Weakly Relevant Variables

Number of Active Features

d) 9 Weakly Relevant Variables

T T
= Grafting = Grafting
““““ L‘ Regularization o L1 Regularization
== Mean Field == Mean Field

1 g
s} ®
Q il]
? = @
3 3
= =
< <
5 Bl 5
2 2
51 51
< <

s 02r- q 5 0.2 q
w w

015 il 0.15[il

0.1 1 011]

0.05 q 0.05[q

0 0
[50 100 150 200 250 300 0 50 100 150 200 250 300 350 400

Figure 3.8: Error rate versus the number of weakly relevant observation copies per strongly

relevant observation.

features into strongly relevant and weakly relevant, the additional features selected under an
(1 penalty are weakly relevant.

91

Synthetic Data: Performance of the Selected Model

06 T £
Grafting
““““ L, Regularization x Grafting
— = = Mean Field 80| o L‘ Regularization 4
05F B O Mean Field
700 }]
g 041 B § 60 B
8 g
% frd
g g sor 1
5 03[B 8
e &
& 5 401 7
5 i —aEe—RET T - coo SRS = S0 %
w
02f B 3 30f B
20 B
ol i ER R op I o B oo o
10 E
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 1
Number of Weakly Relevant Copies Number of Weakly Relevant Copies
a) Error Rate b) Total Number of Selected Features
90 T T T 90 T T T
x Graftin x Grafting
o L, Regularization o L, Regularization
8o O Mean Field 8o O Mean Field
70F B 70 B
2 El T
8 eor E Foor E
2 ®
5 sof 1 £ s0f]
3 B
g 3 1
i 40r N g 40 } } |
5 °
8 30} B 8 30} B
gor g s
2] [z
20+ il o m T @ o B 20+ % g
X0
10F o Lo B 10 B
xq X X0 @ @ T x0
* * I, 5 B I Is w ¥ @ E@
% 1 2 3 4 5 6 8 9 10 11 % 1 2 3 4 5 6 7 8 9 10 11
Number of Weakly Relevant Copies Number of Weakly Relevant Copies
¢) Number of Selected Strong Features d) Number of Selected Weak Features

Figure 3.9: We varied the number of weakly relevant copies that we included for each strongly
relevant observation and report error rates as well as model composition as the number of
copies is increased from 1 (2 observations per group, 20 total) to 9 (10 observations per
group, 100 total).

3.3.4 Model Selection

For any given function of the observations g(¢, X), we can create two types of features:
state-linked or transition linked.

fi =(y,=label)g(t, X) State-linked (3.34)
f; =(yi—1=label)(y,=label)g(t, Xz) Transition-linked (3.35)

We tested the three feature selection algorithms with respect to their ability to detect whether
or not a given function g(¢, X) should be used in either a state-linked or transition-linked
context.

We created synthetic data with binary labels and continuous observations. We drew our
label sequences from a Markov chain with a 75% chance of self-transitions. We sampled
pairs of observations:

N D ify =t
il ~ § VU7)i = true (3.36)
N(pp,0%) if y, = false
N 2 if gy =t
2li + 1] ~ (e, ”2) Yo XOL 3 = true (3.37)
N(pup,0°) if y_1 xor y, = false
(3.38)
where up = —1, ur = 1, 0 = 5. L.e., the observation vector contains pairs of co-variates that

carry information about the current label and the parity of the previous and current labels
respectively. We always added observations in pairs, one state-linked observation paired with
one transition-linked observation, and varied the number of pairs from between 1 and 10.

The results in figure 3.10 show the error rates of the final models as well as what types of
features were incorporated into the final models by the three feature selection algorithms.
The error rate decreased as more state-linked and transition-linked pairs of variables were
added to the observation vector. Each pair contained two independent and informative
observations, so this is what we would expect; adding independent observations improves
accuracy. It is not clear why the error rate leveled off rather than continuing to decrease as
more features were added.

Figure 3.10 shows the compositions of the models. Because the number of features changed
with the number of variables in the data sets, we plot information about the number of
correctly parametrized features, i.e., features that use state-linked features for state-linked
variables and transition-linked features for transition-linked variables; the number of infor-
mative but overparameterized features, i.e., transition-linked features used with state-linked
variables; and the number of irrelevant features, i.e., state-linked features coupled with
transition-linked variables, as the percentage of each type of feature included in the final
model out of the total number of such features available. For example, if there is one state-
linked variable and one transition linked variable in the data, there are then 12 correctly
parametrized features. Four of the twelve correctly parametrized features are from the proto-
types f = (ys=label)xq and f = (y;=label)x?, ;. and the remaining eight are from the pro-
totypes (y;_1=label)(y;=label) s and (y,_1=label)(y;=label)z? . The model contains
eight features that are informative but over-parametrized due to the state-linked variable

93

being used in features that capture state transitions as follows: (y;_i=label)(y;=label)Z sz
and (y;_;=label)(y;=label)x?, , . Finally, the model contains four irrelevant features from
the prototypes f = (ys=label)Zyans and f = (y;=label)z? . which contain no information
because it depends on the parity of y; 1 and vy, Z4qns needs to be considered both of those
label variables in order to provide useful information. In the plot, if the composition of the
data set results in twelve relevant features and three of these are included in the model,
the resulting point would be plotted as containing 25%. When the data set contains two
state-linked and two transition-linked variables, then there are a total of 24 relevant features
and 6 of them would have to be present for the final model to score 25%.

Looking at the trend of correctly parametrized features, grafting selects significantly fewer
features than the other two algorithms. The number of included features, as a percentage
of available features, remains relatively flat as the number of variables in the observation
vector increases. It is possible for models to perform well without including all of the correctly
parametrized features because the model is over-parametrized; we include both features for
y; = true and y, = false, which is not necessary in the binary case. Just like representing
the probability of a coin flip as ppeaqs = -6 and pyais = -4, we can eliminate half of the values.
So it is not concerning that not all of the parameters are chosen, although it is of note that
grafting produces the same accuracy with fewer features.

If we consider informative, but over-specialized features, i.e., transition-linked features for
state-linked observations, grafting produces the smallest models. The mean field heuris-
tic selects the most over-specialized features and ¢; regularization falls between the other
two. Turning to the irrelevant feature case, the mean field heuristic and ¢; regularization
switch places with the later incorporating significantly more irrelevant features than the
other two algorithms. The mean field heuristic’s tendency to select transition-linked fea-
tures for state-linked observations is explained by the fact that we use a pseudo-likelihood
style approximation to break temporal links in the mean-field heuristic. Because we use
the true values for adjacent labels from the training set, transition-linked features receive
artificially high scores, even when coupled with state-linked observations.

Figure 3.11 shows the order in which the three feature selection algorithms add the different
types of features for observations that contain ten feature pairs. We include both variants
of the mean field heuristic — the variant that uses the true labels for adjacent time steps and
the variant that uses the most likely labels for adjacent time steps. We also show error rate
as the gray dotted line as a percentage (out of 100 rather than 1), although it is not included
in the key and the label on the y-axis specifies the number of features; error rate is the only
one of the trends that decreases.

Grafting (Figure 3.11 (a)) adds a mix of correctly parametrized features (transition-linked

94

Synthetic Data: Model Selection

0.4 T T T T T T T T T 1 T T T T T T T T T T
O Grafting o Grafting
o o Yoo | o Yeatss |
§§% 0.8 q
0.3 T S
T[OE @ 071
W g o# U
0250 WE 5. @ 5 il 8 osfr % 1
: T ay i
& o2 Bl 3 05F % J[ﬂ % % 4
5 g % %
i [
0.15F 1 § 04r []
Foal b ; p B]
01r q ©
Poaod |
0.05 il
0.1 il
0 I I I I I I I I I I 0 I I I I I I I I I 1
0 1 2 3 4 5 6 7 8 10 1 0 1 2 4 5 7 10 1
Number of State-Linked/Trans-Linked Variable Pairs Number of State-Linked/Trans-Linked Variable Pairs
a) Error Rate b) Correctly Parametrized Features
1 T T T 1 T T T
O Grafting O Grafting
O Mean Field O Mean Field
09 « L, Regularization | 0.9 « L, Regularization [
0.8 T 0.8 T
071 %; q 0.7 q
06}%%%%%§%¥ %1[b |
0.5F % T

I
Irrelevant Features (%)

o
=
T
i1
i
—x—
1
i
]
i
i
|
st
.

I]

Transition Features for State-Linked Variable (%)
o
o
T

03f % % % , 0af %§ §§ ﬁﬁ ' i
02 % % % % % % % 1 02} o, % % B
01k 4 0.1F ﬁi I 5 % B
©
o R S T
[1 2 3 4 5 6 7 8 9 10 " 0 1 2 3 4 5 6 7 8 10 "
Number of State-Linked/Trans-Linked Variable Pairs Number of State-Linked/Trans-Linked Variable Pairs
¢) Informative-Over-Specialized Features d) Irrelevant Features

Figure 3.10: Selecting State-Linked or Transition-Linked features

features with transition-linked observations and state-linked features with state-linked ob-
servations) as well as useful-but-over-parametrized features (transition-linked features with
state-linked observations) until the error rate becomes flat at about 50 features. Then irrel-
evant features are mixed in with the others to over-fit to noise in the training data. None
of the four classes of features are exhausted until the very end. There are 80 of each type
of transition-linked feature and 40 of each type of state-linked feature and no feature class
reaches the limit until the model approaches its maximum number of features.

95

Synthetic Data

: Model Selection

80 T T T 80 T T =TT
State Feature / State Var A State Feature / State Var K
““““ State Feature / Trans Var - <o State Feature / Trans Var !
70 | = = Trans Feature / State Var ;0 70 | = = Trans Feature / State Var ! 1
Trans Feature / Trans Var , - Trans Feature / Trans Var Il
o,
60 . 60 ! R
o ’
g - g v
s - =S ’
. 50 . 50 ; 4
3 3
@ @
3 3
3 3
S 40 s 40
w w " S
5 5 r
3 g ’ !
€ 30 £ 30 .
5 S
z z ’
v
20 20 !
4
-
-
10F 10 -
-
'
’
ol IARAXENN) N L L L ole L L s o L
0 50 100 150 200 50 100 150 200
Number of Features Number of Features
a) Grafting b) Mean Field: True Label (PL)
80 ; ; 80 . ! — v
State Feature / State Var State Feature / State Var 4
““““ State Feature / Trans Var A oo State Feature / Trans Var !
701 | .= = Trans Feature / State Var & 70[| = = Trans Feature / State Var < 4
Trans Feature / Trans Var ' Trans Feature / Trans Var -
-
60~ LT 60 ’ 1
RE -
® r o ’
3 - - ”
s - s K
5 50r i 2% 1 il
8 2 ’
E s
T 40 s
& s
B 5
3 3
€ 30r €
1 S
z z
20
) /] o -
LU
o
el
.
0 1

oy 1 I
0 50 100 150 200

Number of Features

00
Number of Features

c) {1 Regularization d) Mean Field: Most Likely Label

Figure 3.11: Selecting State-Linked or Transition-Linked features

¢; regularization (Figure 3.11 (c)) also adds a mix of correctly parametrized features until
the error rate plateaus at around 80 or 90 features, which falls after grafting bottoms out.
¢ regularization is less greedy than grafting and does max out its counts for the correctly
parametrized features before the model reaches its maximum size; transition-linked features
for transition-linked observations level off before the maximum size, as do state-linked fea-
tures for state-linked observations.

The mean field heuristic (Figure 3.11 (b) and (d)) changes its selection order depending

96

on whether or not we use the true labels from the training set or the most likely labels
according to the current model for adjacent time steps when we break the temporal links
in the model. In the pseudo-likelihood case, where we use the true labels (b), the mean
field heuristic chooses transition-linked features to the exclusion of state-linked features and
the error rate has a long plateau before it drops as state-linked features are added to the
model. Pseudo-likelihood over emphasizes transition linked features. When the most likely
adjacent labels are used, the error rate begins to drop earlier during the training process and
state-linked features are included from the start.

3.4 Tag Experiments

We used our robot tag domain from the previous chapter as a benchmark problem to compare
the three feature selection algorithms. We generated data sets using both actual robots and
a robot simulator to test how well models trained on simulated data generalized to data from
real robots. In both cases, the training, hold out, and test sets each contained ten minutes
of data, or since the system operates at 60 hz, 36,000 time steps.

The experiments with regularization required testing many different values of the regular-
ization parameter A. In the case of training with an ¢; penalty, there is a clear notion of a
regularization path starting with a A set high enough that all features have zero weights and
extending through lower values of A until most or all weights in the model have non-zero
weights. To generate such a path, we chose an initial value Ag large enough that no features
were present in the model and then set Ay, 1 = .9\, for each succeeding trial. In the case of
{5 regularization, there is not such a clear notion of a regularization path, so we reused the
same X values that were used in the ¢; trials.

3.4.1 Features in the CRF

The CRF included the same features in all of experiments. There were a total of 1200
features in the model, all of which were designed to be relevant to the classification task.
We use pos(7) to denote the position vector for robot i and vel(i) to denote the velocity of
robot ¢, as estimated from the difference of two adjacent position observations.

97

Intercept and Transition Features

f = (y:=i) (3.39)
[= (yt—l?:i)(ytéj) .

S
(@)
=

These features allow the model to encode prior probabilities p(y;) and transition prob-
abilities p(y; | yi—1).

Raw Observations
[= (ye=i)a, k] (3.41)
[= i)z k] (3.42)

These features allow the model to estimate sufficient statistics corresponding to mod-
eling each component of the observation x; as a one dimensional normal distribution.

Robot Velocities
f = (ye=i)vel(j) (3.43)
f= (=) (vel(5))? (3.44)
Velocities are of interest because the seeker robot pauses in place after being tagged.

Chasing Features

F = (s2)(pos(j) — pos(k)) vel(k) (3.45)
f = (=) ((pos(j) — pos(k)) vel(k))* (3.46)
As an example of a more complex feature, the chasing features attempt to capture
whether or not robot k appears to be chasing the closest other robot j. It computes

the direction from robot k£ to robot j and then projects the velocity of robot k onto
this direction to determine if robot k is moving towards robot j.

Velocity Correlations

[= (y=iyvel(j) vel(k) (3.47)
= (ye=i)(vel(§) " vel(k))?

S
oo
Nt

We included features to capture the correlation between the velocities of robot j and
robot k by considering the inner product of their velocities.

98

Velocity Thresholds

f = (g (vel(j) <k) (3.49)

These features test whether the velocity of robot j falls below a threshold k. The
thresholds k& were chosen to range from 5 to 100 mm/sec in steps of 5 mm/sec.

Distance Thresholds

= (g 0) (925) (pos(i) — pos(f)) T (pos(i) — pos(4)) <k?) (3.50)
= Wer20) () ((pos(i) — pos(7))” (pos(i) — pos(j))>

Distance thresholds k& where chosen from 200 mm to 1000 mm in steps of 50 mm.
Recall that the robots have radii of 90 mm; distance thresholds ranged from robots
touching to almost a meter apart. We also include equivalent features to indicate when
the distance was greater than the same thresholds.

3.4.2 Tag Simulation Results

Table 3.1 shows the results of feature selection using data from a robot simulator. The first
column lists the feature selection algorithm that we used. We tested both variants of the
mean field heuristic. PL indicates the pseudo-likelihood style scoring and ML indicates that
we used the maximum likelihood predictions from the model. The second column lists the
number of features with non-zero weights in the final model. When we train on simulated
data and perform no feature selection, 34 of the 1200 weights remain at zero because those
features are unsupported in the noise free training data.

We are interested in how well models trained on data from a simulator generalize to data
from real robots. The third column shows the mean error rate for the models when evaluated
against test data from the simulator. The fourth column provides the error rate when the
test data comes from real robots. There is little variation in error rate when we test against
simulated data. No feature selection performs the worst, due to over-fitting. The most
greedy approach, grafting, has the second highest error rate. There is a large difference
when we compare how well the models generalize to real data. In every case, the error rate
increases. But for the ML variant of the mean field heuristic, it increases quite sharply from
3.8% to 56.8%. The weights chosen by the mean field heuristic when trained on simulated
data are specific to simulated data. This high level of over-fitting may be because feature
selection depends on which labels are the most likely according to the model and feature
selection further reinforces biases in the model.

99

Table 3.1: Tag Simulation Results

Selection Number of Unsmoothed Retrained with ¢, Smoothing
Algorithm Features | Simulation Robots | Simulation Robots
None 1164 8.8 26.7 3.4 N/A

Grafting 37 6.2 12.5 2.2 7.5
Mean Field (PL) 165 1.6 13.5 1.4 5.9
Mean Field (ML) 132 3.8 56.8 2.6 4.6

/1 Reg. 161 1.8 8.2 3.2 74

The error rates when we test on simulation data suggest that the models are over-fitting. We
retrained the models using only the features chosen by feature selection and an ¢ penalty
for smoothing. The results in the 5th column of table 3.1 show that a smoothed model,
containing only the selected features, outperforms the original model for all of the algorithms
except for /1 regularization. ¢ regularization does not require additional smoothing to reduce
over-fitting.

We also retrained the models, using only the selected features and with /5 smoothing on
real robot data. When we retrain on robot data, the high error rate from the mean field
heuristic vanishes. The large error from before was due to the values of the weights, not the
selected set of features. Using the features and weights generated by training on simulated
data produces a very high error rate when we test on real robot data. The error rates for
the other models also decrease slightly from when we used the original weight parameters
with the real robot test set. Even ¢, regularization sees a benefit from retraining on the real
data (and choosing a model with a holdout set that is also composed of real robot data).

3.4.3 Tag Real Data Results

We performed the same set of experiments as above using real robot data for training and
feature selection and the results are shown in table 3.2. With real robot data, no feature
selection assigned non-zero weight to all 1200 candidate features; there were no unsupported
features with noisy, real data. Grafting chose very few features (11) for activity recognition
from the real data. The additional noise inherent in real data potentially results in more
over-fitting and may explain why grafting chose so few features; past 11 features, grafting
may have chosen features that matched the training data closely, but did not generalize well
to the holdout or test sets.

When we used the chosen models to predict labels for simulated data, except for the no

100

Table 3.2: Tag Robot Results

Selection Number of Unsmoothed Retrained with ¢, Smoothing
Algorithm Features | Simulation Robots | Simulation Robots
None 1200 23.5 16.1 N/A 9.7

Grafting 11 3.3 7.0 2.8 7.0
Mean Field (PL) 190 3.0 7.6 0.8 7.7
Mean Field (ML) 190 13.8 25.6 1.5 7.2

/1 Reg. 227 7.1 5.9 2.8 7.3

feature selection case, the error rate decreased. The simulated labels are easier to predict,
so generalization works well moving from a hard problem to an easier problem. Retraining
the models with only the selected features and an ¢y penalty for smoothing decreased the
error rate for no feature selection and the ML variant of the mean field heuristic, the two
algorithms that over-fit the worse. Grafting chose so few features that smoothing did not
affect the error rate and ¢; regularization, as before, was harmed by retraining with an /5
penalty.

Figure 3.12 (a) shows two different views of feature selection using the three algorithms with
the real robot data set. The first plot shows the error rate versus the size of the models. The
error rate for grafting is not smooth and contains many local minima, which suggests that
grafting is not adding features in the optimal order. On the real data, grafting chose very
few features, possibly because the gradient is a poor heuristic for choosing which feature to
add next and grafting quickly begins to over-fit. The error rate for ¢; regularization follows
a much smoother path. The mean field heuristic (for the pseudo-likelihood case) selects an
intermediate number of features.

Figure 3.12 (b) shows the error rates of the candidate models versus the cumulative training
time to generate each candidate model. Grafting, with its simple, greedy heuristic requires
far less time than the other two algorithms. ¢, regularization takes longer than grafting, but
produces lower error rates, albeit from less sparse models. The mean field heuristic takes
the longest of the three methods to reach its minimum error rate.

3.5 Chapter Summary

We have provided an empirical comparison of three feature selection algorithms for condi-
tional random fields. Comparing the algorithms along the metrics that we outlined earlier,

101

T
Grafting

= = =Mean Field Induction
L, Regularization

T

Grafting

= = =Mean Field Induction
. L‘ Regularization

0.2

)
°
@
)
°
o

Error Rate (%)

Error Rate (%]

iR

1 I I I I I I I I
0 50 100 150 200 250 300 [5 10 15 20
Number of Features Training Time (hours)

a) Error Rates vs. Size b) Error Rate vs. Training Time

Figure 3.12: Error rate versus the number of features in the model and error rate versus
training time for the three feature selection algorithms.

we found:

Accuracy and Sparsity Grafting, the greediest of the algorithms selects the fewest fea-
tures. To reduce over-fitting, models produced by grafting should be retrained with
an ly penalty. ¢; regularization produced significantly larger models than grafting,
but those models tended to have slightly lower error rates on test data than smoothed
models generated by running grafting and then retraining with an ¢y penalty.

Data Efficiency We noticed a correlation between more greedy algorithms and higher error
rates for limited training data.

Time Efficiency Grafting, with its simple heuristic, is the fastest of the methods. The
mean field heuristic, which also computes scores for individual candidate features, is
the slowest algorithm because its scoring metric is many times slower than the gradient
computation that grafting uses to score the features.

Generalization /; regularization showed the best performance in generalizing from a model
trained on simulator data to classifying real robot data. It is unclear which variant of
the mean field heuristic we should use. The pseudo-likelihood variant tended to over
emphasize transition-linked features with synthetic data. And the most likely neighbor
variant performed poorly on the tag data sets.

Model Selection All of the feature selection methods worked, to some extent, for model
selection. The pseudo-likelihood variant of the mean field heuristic performed the worst

102

because it over emphasizes transition features due to the assumption that it uses to
break temporal links for its gain computation.

103

104

Chapter 4

Multiple Robots and Many Features

In this chapter, we turn to the problem of feature selection in multi-robot domains with
many features. We use data recorded by the CMDragons robot soccer team during the
games of the RoboCup 2007 world championship to compare the effectiveness of grafting, ¢,
regularization, and the mean fiel