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Abstract

The M/G/K queueing system is the oldest model for multi-server systems, and has been the topic of
performance papers for almost half a century. However, even now, only coarse approximations exist for
its mean waiting time. All the closed-form (non-numerical) approximations in the literature are based on
the first two moments of the job size distribution. In this paper we prove that no approximation based on
only the first two moments can be accurate for all job size distributions, and we provide a lower bound on
the inapproximability ratio. This is the first such result in the literature. The proof technique behind this
result is novel as well and combines mean value analysis, sample path techniques, scheduling, regenerative
arguments, and asymptotic estimates. Finally, our work provides insight into the effect of higher moments
of the job size distribution on the mean waiting time.





1 Introduction

TheM/G/K queueing system is the oldest and most classical example of multi-server systems. Such multi-
server systems are commonplace in a wide range of applications, ranging from call centers to manufacturing
systems to computer systems, because they are cost-effective and their serving capacity can be easily scaled
up or down.

An M/G/K system consists ofK identical servers and a First-Come-First-Serve (FCFS) queue. The jobs
(or customers) arrive according to a Poisson process (the symbolM ) with rateλ and their service require-
ments (job sizes) are assumed to be independent, identically distributed random variables having a general
distribution (the symbolG). We useX to denote such a generic random variable. If an arriving job finds a
free server, it immediately enters service, otherwise it waits in the FCFS queue. When a server becomes free,
it chooses the next job to process from the head of the FCFS queue. We denote the load of thisM/G/K

system asρ = λE[X]
K < 1. We will focus on the metric of mean waiting time in this work, denoted as

E
[
WM/G/K

]
, and defined to be the expected time from the arrival of a customer to the time it enters ser-

vice. Throughout the paper, we assumeE[X] = 1. This is without loss of generality since the arrival rate,
the mean job size and the mean waiting time can be scaled appropriately for general values ofE[X].

Even though theM/G/K queue has received a lot of attention in the queueing literature, an exact analysis
for even simple metrics like mean waiting time for the caseK ≥ 2 still eludes researchers. To the best of
our knowledge, the first approximation for the mean waiting time for anM/G/K queue was given by Lee
and Longton [22] nearly half a century ago:

E
[
WM/G/K

]
≈

(
C2 + 1

2

)
E

[
WM/M/K

]
(1)

whereE
[
WM/M/K

]
is the mean waiting time with exponentially distributed job sizes with the same mean,

E[X], as in theM/G/K system, andC2 is the squared coefficient of variation1 (SCV) of X. Many other
authors have also proposed simple approximations for the mean waiting time, [16, 17, 21, 27, 28, 40], but
all these closed-form approximations involve only the first two moments of the job size distribution.

Whitt [39], while referring to (1) as “usually an excellent approximation, even given extra information about
the service-time distribution”, hints that approximations based on two moments of the job size distribution
may be inaccurate whenC2 is too large. Similar suggestions have been made by many authors, but there
are very limited numerical experiments to support this. While a highC2 may not be of major concern
in applications like manufacturing or customer contact centers, the invalidity of the approximation (1) is
a major problem in computer and communication systems. In Table1, we consider two values ofC2,
C2 = 19 andC2 = 99. Such high values ofC2 are typical for workloads encountered in computer systems,
such as the sizes of files transferred over the internet [2], and the CPU requests of UNIX jobs [10] and
the supercomputing jobs [14]. We consider a range of distributions (Weibull, lognormal, truncated Pareto2)
used in the literature to model computer systems workloads and compare the mean waiting time obtained
via simulations to the mean waiting time predicted by the approximation in (1). As can be seen, there is

1The squared coefficient of variation of a random variableX is defined asC2 = var(X)/ (E[X])2

2The cumulative distribution function of a truncated Pareto distribution with support[xmin, xmax] and parameterα is given by:

F (x) =
x−α

min − x−α

x−α
min − x−α

max

xmin ≤ x ≤ xmax

Therefore, specifying the first two moments and theα parameter uniquely defines a truncated Pareto distribution.
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C2 = 19 C2 = 99
E[W ] E[W ]

2-moment approx. (Eqn.1) 6.6873 33.4366
Weibull 6.0691±0.0138 25.9896±0.1773

Trunc. Pareto(α = 1.1) 5.5277±0.0216 24.6049±0.2837
Lognormal 4.9937±0.0249 19.5430±0.4203

Trunc. Pareto(α = 1.3) 4.8788±0.0249 18.7738±0.3612
Trunc. Pareto(α = 1.5) 3.9466±0.0321 10.6487±0.5373

Table 1:Simulation results for the95% confidence intervals of the mean waiting time for anM/G/K with
K = 10 andρ = 0.9. All job size distributions haveE[X] = 1.

a huge disagreement between the actual mean waiting time and the 2-moment approximation (1). Further,
even among the distributions considered in Table1, there is a substantial variation in the mean waiting times.

In this paper, we support the above experimental findings with an investigation of how other characteristics
of the job size distribution may affect the mean waiting time,E

[
WM/G/K

]
. We do so by choosing a specific

class of distributions, the hyper-exponential distributions, which are mixtures of exponential distributions.
Hyper-exponential distributions allow us the freedom to evaluate the effect of different characteristics of the
distribution while preserving the first two (and even higher) moments.

Our foremost goal is to study the range of possible values ofE
[
WM/G/K

]
when the first two moments of

X are fixed. We refer to this range as “the gap”. To define the gap, set

WC2

h = sup
{

E
[
WM/G/K

] ∣∣∣ E[X] = 1, E
[
X2

]
= C2 + 1

}
, (2)

and
WC2

l = inf
{

E
[
WM/G/K

] ∣∣∣ E[X] = 1, E
[
X2

]
= C2 + 1

}
. (3)

The gap spans(WC2

l , WC2

h ). As one of the major contributions of this paper, we prove the following
theorems:

Theorem 1.1 For any loadρ < 1 and finiteC2,

WC2

h ≥
(

C2 + 1
2

)
E

[
WM/M/K

]

whereE
[
WM/M/K

]
is the mean waiting time when the job size distribution is exponential with mean1.

Theorem 1.2 For any finiteC2,

WC2

l ≤
{

E
[
WM/M/K

]
if ρ < K−1

K

E
[
WM/M/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2−1

2 if ρ ≥ K−1
K

whereE
[
WM/M/K

]
is the mean waiting time when the job size distribution is exponential with mean1.

That is, we derive a lower bound forWC2

h and an upper bound forWC2

l . Therefore, Theorems1.1and1.2
only give a lower bound on the span of the gap for general distributions. Observe that the gap can be quite
large if theC2 of the job size distribution is high. In particular, whenρ < K−1

K , the maximum possible
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mean waiting time is at least
(

C2+1
2

)
times the minimum possible mean waiting time. We thus prove a

lower bound on the error of approximation (1). Note that the lower bound onWC2

h in Theorem1.1 is the
same as the 2-moment approximation in (1). Further, Theorems1.1 and1.2 prove thatanyapproximation
based only on the first two moments will be inaccurate for some distribution because the span of possible
values of mean waiting time is large.

Another interesting point is that, in Theorem1.2, the lower bound depends on the load,ρ. The caseρ ≥ K−1
K

is commonly known in the queueing literature as0-spare serversand the caseρ < K−1
K is known asat least

1 spare server. The criterion of spare servers is known to play a crucial role in determining whether the
mean waiting time is infinite given that the second moment of the job size distribution is not (see [29] and
references therein). Theorem1.2indicates that even when theC2 of the job size distribution is finite, having
a spare server can potentially reduce the effect ofC2 on the mean waiting time.

To prove Theorems1.1and1.2, we look at two extreme distributions in the class of 2-phase hyperexponential
distributions and obtain the mean waiting time under those job size distributions. Since the hyperexponential
distributions only allowC2 > 1, the span described by the theorems is non-empty only whenC2 > 1 even
though the theorems are true for all values ofC2. In fact, we are able to show that our lower bound for the
span of the gap is strictly positive whenK ≥ 2 andC2 > 1:

Proposition 1.3 LetE
[
WM/M/K

]
be the mean waiting time in anM/M/K with mean job size1. Define:

WC2

h ,
(

C2 + 1
2

)
E

[
WM/M/K

]

and,

WC2

l ,
{

E
[
WM/M/K

]
if ρ < K−1

K

E
[
WM/M/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2−1

2 if ρ ≥ K−1
K

For all values ofρ ∈ (0, 1), K ≥ 2 andC2 > 1,

WC2

h > WC2

l .

We provide a proof of the proposition in AppendixB.

The two bounds can actually be shown to be identical forK = 1, and in fact agree with the well-known
Pollaczek Khintchine formula

E
[
WM/G/1

]
=

(
C2 + 1

2

)
E

[
WM/M/1

]
, (4)

which shows that the mean waiting time is completely determined byC2 andE[X].

Results similar to Theorems1.1 and 1.2, were derived for the mean queue length of aGI/M/1 queue
by Eckberg [11] and extended by Whitt [38] by considering extremal interarrival time distributions. For
theGI/M/1 queue, proving such theorems is simplified due to the availability of the exact expression for
the mean queue length. In fact, forGI/M/1 queues, tight bounds on the mean queue length given the
first n moments of the interarrival time distribution can be obtained by employing the theory of complete
Tchebycheff systems [18].
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Outline

Section2 reviews existing work on obtaining closed-form, numerical and heavy-traffic approximations for
E

[
WM/G/K

]
. As mentioned earlier, we prove Theorems1.1and1.2by looking at two extreme distributions

in the class of 2-phase hyperexponential distributions. Therefore, in Section3, we begin with some numeri-
cal experiments based on the 2-phase hyperexponential distributions. These experiments help us answer the
question: “Which characteristics of the job size distribution, outside of the first two moments, are important
in determining the mean waiting time?” Sections4 and5 are devoted to proving Theorems1.1 and1.2,
respectively. In Section6, we address the question of effect of higher moments of job size distribution on
the mean waiting time. In Section7, we state conjectures on the exact values ofWC2

h andWC2

l and the
effect of higher moments of job size distribution onE

[
WM/G/K

]
. We conclude in Section8.

2 Prior Work

While there is a large body of work on approximating the mean waiting time of anM/G/K system, all the
closed-form approximations only involve the first two moments of the job-size distribution. As mentioned
earlier, to the best of our knowledge, the first approximation for the mean waiting time for anM/G/K
queue was given by Lee and Longton [22]:

E
[
WM/G/K

]
≈

(
C2 + 1

2

)
E

[
WM/M/K

]
.

This approximation is very simple, is exact forK = 1 and was shown to be asymptotically exact in heavy
traffic by Köllerstr̈om [21]. The same expression is obtained by Nozaki and Ross [27] by making approxi-
mating assumptions about theM/G/K system and solving for exact state probabilities of the approximating
system, and by Hokstad [16] by starting with the exact equations and making approximations in the solution
phase. Boxma et al. [28] obtain a closed-form approximation for the mean waiting time in anM/D/K
system, extending the heavy traffic approximation of Cosmetatos [5]. Takahashi [33] obtains expressions
for mean waiting time by assuming a parametric formula. Kimura [20] uses the method of system interpo-
lation to derive a closed-form approximation for the mean waiting time that combines analytical solutions
of simpler systems.

There is also a large literature on numerical methods for approximating the mean waiting time by making
much weaker assumptions and solving for state probabilities. For example, Tijms et al. [15] assume that if
a departure from the system leaves behindk jobs where1 ≤ k < K, then the time until the next departure
is distributed as the minimum ofk independent random variables, each of which is distributed according to
the equilibrium distribution ofX. If, however, the departure leaves behindk ≥ K jobs, then the time until
the next departure is distributed asX/K. Similar approaches are followed in [16, 17, 24, 25, 30]. Boxma
et al. [28] also provide a numerical approximation forM/G/K which is reasonably accurate for job size
distributions with low variability (C2 ≤ 1) by assuming a parametric form and matching the heavy traffic
and light traffic behaviors. Other numerical algorithms include [7, 8, 9]. While these numerical methods are
accurate and usually give an approximation for the entire waiting time distribution, the final expressions do
not give any structural insight into the behavior of the queueing system and the effect ofM/G/K parameters
on waiting time.

Heavy traffic, light traffic and diffusion approximations for theM/G/K system have been studied in [4,
19, 21, 35, 39, 40]. The diffusion approximations used in [35] are based on many-server diffusion limits.
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Motivated by call center applications, there is now a huge body of literature for multiserver systems with a
large number of exponential servers; see the survey paper [12] and references therein.

Bounds on the mean waiting time forM/G/K queues (and more generally forG/G/K queues) have been
obtained by assuming various orderings (stochastic ordering, increasing convex ordering) on the distribution
of job sizes (see [6, 26, 32, 36, 37]), but these tend to be very loose as approximations. Moreover, one does
not always have the required strong orderings on the job size distribution.

We differ from the prior work in that we proveE
[
WM/G/K

]
is inapproximable within a certain factor based

on just the knowledge of the first two moments of job size distribution.

3 Experiments with theH2 distribution

Our goal in this section is to study the effect of characteristics other than the first two moments of the job size
distribution onE

[
WM/G/K

]
. To do this, we restrict our attention to the class of two-phase hyperexponential

distributions, denoted byH2 (see Definition3.1 below). Distributions in theH2 class are mixtures of two
exponential distributions and thus have three degrees of freedom. Having three degrees of freedom gives us
a method to create a set of distributions with any given first two moments and analyze the effect of some
other characteristic. A natural choice for this third characteristic is thethird momentof the distribution3.
TheH2 distribution is also convenient because it allows us to capture the effect ofsmall vs. large jobs(the
two phases of the hyperexponential) – an insight which will be very useful to us.

Definition 3.1 Let µ1 > µ2 . . . > µn > 0. Letpi > 0, i = 1, . . . , n, be such that
∑n

i=1 pi = 1. We define
then−phase hyperexponential distribution,Hn, with parametersµi, pi, i = 1, . . . , n, as:

Hn ∼





Exp(µ1) with probabilityp1

Exp(µ2) with probabilityp2

...

Exp (µn) with probabilitypn

whereExp(µi), i = 1, . . . , n, aren independent exponential random variables with mean1
µi

, i = 1, . . . , n.

Definition 3.2 Letµ1 > µ2 . . . > µn−1 > 0. Letpi > 0, i = 0, . . . , n− 1, be such that
∑n−1

i=0 pi = 1. We
define then−phase degenerate hyperexponential distribution,H∗

n, with parametersp0, µi, pi, i = 1, . . . , n,
as:

H∗
n ∼





0 with probabilityp0

Exp(µ1) with probabilityp1

...

Exp (µn−1) with probabilitypn−1

whereExp(µi), i = 1, . . . , n − 1, are n − 1 independent exponential random variables with mean1
µi

,
i = 1, . . . , n− 1.

3In [7, 39], the authors use

r =
p1/µ1

p1/µ1 + p2/µ2

as the third parameter to specify theH2 distribution. We choose the third moment because it is more universal and well understood
thanr. Further,r is an increasing function of the third moment.
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Figure 1: Illustration of the effect of the normalized 3rd moment,θ3, of the job size distribution on mean
waiting time of anM/H2/10 system (solid line). The parameters of the job size distribution were held
constant atE[X] = 1 andC2 = 19 with loadρ = 0.9. The dashed line shows the standard two-moment
approximation of (1). The values on thex−axis are the normalized third moment (5).

Figure1 shows theM/H2/K evaluated numerically using matrix analytic methods. The dashed line shows
the standard two moment approximation of (1). Note that thex−axis is actually not showingE

[
X3

]
but

rather a normalized version of the third moment,θ3, which we define as:

θ3 =
E

[
X3

]
E[X]

E
[
X2

]2 . (5)

We will use the normalized third moment,θ3, throughout the paper. Our first interesting observation is that
theM/H2/K mean waiting time actuallydrops with an increase in the third momentof X. We also observe
that the existing two moment approximation is grossly insufficient as it sits at one end of the spectrum of
possible values forE

[
WM/H2/K

]
. For lower values of the third moment the approximation is good, but it

is very inaccurate for high values. Moreover,anyapproximation based only on the first two moments will
be inaccurate for some distribution because the span of possible values of mean waiting time is large.

While the drop in mean waiting time with increasingθ3 seems very counterintuitive, this phenomenon can
partially be explained by looking at how increasingθ3 alters the distribution of load among the small and
large jobs. Letρ(x) represent the fraction of load made up by jobs of size smaller thanx. If f(x) represents
the probability density function of the job size distribution, then,

ρ(x) =
1

E[X]

∫ x

0
uf(u)du.

In Figure2, we show theρ(x) curves for distributions in theH2 class with mean1, C2 = 19 and different
values ofθ3. As reference, we also show theρ(x) curve for the exponential distribution with mean1. As can

6



0.01 1 10 100
0

0.2

0.4

0.6

0.8

1

x

ρ(
x)

θ
3
 = 1.5

θ
3
 = 1.75

θ
3
 = 3

θ
3
 = 20

Exp(1)

Figure 2:Illustration of the effect of the normalized 3rd moment,θ3, on the distribution of load as a function
of job size for theH2 class of distributions. The first two moments were held constant atE[X] = 1 and
C2 = 19. The distribution of the load for exponential distribution with mean1, labeledExp(1), is shown
for reference.

be seen from Figure2, increasingθ3 while holding fixed the first two moments of theH2 distribution, causes
the load to (almost monotonically) shift towards smaller jobs. In the limit asθ3 → ∞, theρ(x) curve for
theH2 distribution converges to theρ(x) curve for the exponential distribution with the same mean. Thus
asθ3 increases, theM/H2/K system sees smaller jobs more often, thereby causing a smaller mean waiting
time.

Based on the numerical evidence of the huge variation inE
[
WM/H2/K

]
, a natural question that arises is:

Can this span of possible values ofE
[
WM/H2/K

]
be quantified? Theorems1.1and1.2answer this question.

Theorem1.1is obtained by considering the case of a distribution in theH2 class with a lowθ3. In particular,
we consider the case of anH∗

2 distribution (see Definition3.2) which we can prove has the lowest possible
third moment of all distributions in theH2 family (with any given first two moments), and we derive the
exact mean waiting time underH∗

2 jobs size distribution. Likewise, Theorem1.2 is derived by considering
the case of anH2 distribution whereθ3 goes to∞ and we derive the asymptotic mean waiting time for that
situation. Since we restrict our attention to a subset of the entire space of distributions with given first two
moments, Theorems1.1 and1.2 provide bounds on the exact span ofE

[
WM/G/K

]
. (We state conjectures

about the exact span in Section7.)

4 Proof of Theorem 1

To prove Theorem1.1, it suffices to show the existence of a job size distribution with SCVC2 which
gives the desired expression for mean waiting time. For this purpose, we consider the following degenerate
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hyperexponential distribution4:

H∗
2 ∼

{
0 with probability C2−1

C2+1

Exp
(

2
C2+1

)
with probability 2

C2+1

It is easy to verify that the above distribution has mean1, squared coefficient of variationC2 andθ3 = 3
2 .

We denote theM/G/K system withH∗
2 job size distribution asM/H∗

2/K. It is interesting to note that the
H∗

2 distribution as defined above has the lowest third moment among all theHn distributions with mean1
and SCVC2:

Claim 4.1 Let∪n>1{Hn|C2} be the set of all hyperexponential distributions with finite number of phases,
mean1 and squared coefficient of variationC2 (C2 > 1). TheH∗

2 distribution lying in this set has the
smallest third moment among all the distributions in∪n>1{Hn|C2}.
Proof: See AppendixA.

We now analyze the mean waiting time in anM/H∗
2/K system. Since the scheduling discipline is size

independent, the distribution of waiting time experienced by zero-sized jobs and non-zero jobs is identical.
Further, to find the waiting time distribution experienced by non-zero sized jobs, we can ignore the presence
of zero-sized jobs. The waiting time distribution of the non-zero sized jobs is thus equivalent to the waiting
time distribution in anM/M/K system with arrival rate 2λ

C2+1
and mean job sizeC

2+1
2 . The latter system,

however, is just anM/M/K system with arrival rateλ and mean job size1 seen on a slower time scale,
slowed by a factorC

2+1
2 . Hence, the mean waiting time of the original system is alsoC2+1

2 times the mean
waiting time of anM/M/K system with arrival rateλ and mean job size1. That is,

E
[
WM/H∗

2 /K
]

=
(

C2 + 1
2

)
E

[
WM/M/K

]
.

5 Proof of Theorem 2

As in the proof of Theorem1.1, to prove Theorem1.2, it suffices to show the existence of a job size
distribution with SCVC2 which gives the desired mean waiting time. However, in this case, the distribution
we need is the limit of a sequence of distributions and hence the analysis will involve finding the limit of
mean waiting times of a sequence ofM/G/K systems. Since the proof involves a new technique, we begin
in Section5.1with a high level proof idea. Subsequent subsections will provide the rigorous lemmas.

5.1 Proof idea

We consider a sequence of systems where wefix the first two moments of the job size distributionand look at
increasing values ofθ3 as parameterized by a parameterε which allows for increasing the third moment asε

goes to 0. More precisely, the system parameterized byε is theM/H
(ε)
2 /K (see Section5.2, Definition5.1)

and we will consider the behavior of this sequence of systems asε → 0.

The key steps involved in the analysis are as follows:

1. We first observe that theH(ε)
2 job size distribution is made up of two classes of jobs – small jobs and

large jobs. We useNs andN` to denote the number of small and large jobs, respectively.

4We use the notationExp(µ) to denote an exponential random variable with mean1
µ

.
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2. We show that the expected number of large jobs,E
[
N

M/H
(ε)
2 /K

`

]
, vanishes asε goes to zero; therefore

it suffices to consider only small jobs (see Section5.3).

3. For eachM/H
(ε)
2 /K system, we construct another system,U (ε), which stochastically upper bounds

the number of small jobs in the correspondingM/H
(ε)
2 /K system. That is,

N
M/H

(ε)
2 /K

s ≤st NU(ε)

s

(see Section5.4).

4. To analyzeNU(ε)

s , we consider two kinds of periods:good periods – when there are no large jobs
in the system, andbad periods – when there is at least one large job in the system. Our approach
is to obtain upper bounds on the mean number of small jobs during the good and bad periods,

E
[
NU(ε)

s | good period
]

andE
[
NU(ε)

s | bad period
]
, respectively, and obtain an upper bound onE

[
NU(ε)

s

]

using the law of total probability:

E
[
NU(ε)

s

]
= E

[
NU(ε)

s | good period
]
Pr[good period] + E

[
NU(ε)

s | bad period
]
Pr[bad period]

We obtain upper bounds on the mean number of small jobs during the good and bad periods using the
following steps (see Section5.5):

(a) We first look at the number of small jobs only atswitching points. That is, we consider the
number of small jobs only at the instants when the system switches from a good period to a bad
period and vice versa.

(b) To obtain bounds on the number of small jobs at the switching points, we define a random
variable∆, which upper bounds theincrementin the number of small jobs during a bad period.
Further, by our definition, the upper bound∆ is independent of the number of small jobs at
the beginning of the bad period. To keep the analysis simple, this independence turns out to be
crucial.

(c) Next we obtain a stochastic upper bound on the number of small jobs at the end of a good period
by solving a fixed point equation of the form

A
d= Φ(A + ∆)

whereA is the random variable for (the stochastic upper bound on) the number of small jobs at
the end of a good period.

(d) Finally, we obtain the mean number of small jobsduring the good and bad periods from the
mean number of small jobs at the switching points.

5. Similar toU (ε), for eachM/H
(ε)
2 /K system, we also construct a system,L(ε), which stochastically

lower bounds the number of small jobs in the correspondingM/H
(ε)
2 /K system. That is,

N
M/H

(ε)
2 /K

s ≥st NL(ε)

s

(see Section5.6). We omit the analysis ofL(ε) since it is similar to analysis ofU (ε). Note, that we
indeed obtain

E
[
NU(ε)

s

]
= E

[
NL(ε)

s

]
+ o(1)

Convergence ofE
[
NM/H

(ε)
2 /K

]
follows from convergence of its upper and lower bounds.
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6. Finally, we use Little’s law to obtain mean waiting time,E
[
WM/H

(ε)
2 /K

]
, from the mean number of

waiting jobs,E
[
NM/H

(ε)
2 /K

]
−Kρ.

5.2 Preliminaries

Below we give a formal definition of theH(ε)
2 class of job size distributions.

Definition 5.1 We define a family of distributions parameterized byε as follows:

H
(ε)
2 =





Exp
(
µ

(ε)
s

)
with probabilityp(ε)

Exp
(
µ

(ε)
`

)
with probability1− p(ε)

µ(ε)
s > µ

(ε)
`

whereµ
(ε)
s , µ

(ε)
` andp(ε) satisfy,

p(ε)

µ
(ε)
s

+
1− p(ε)

µ
(ε)
`

= E
[
X(ε)

]
= 1

2
p(ε)

(
µ

(ε)
s

)2 + 2
1− p(ε)

(
µ

(ε)
`

)2 = E
[(

X(ε)
)2

]
= C2 + 1

6
p(ε)

(
µ

(ε)
s

)3 + 6
1− p(ε)

(
µ

(ε)
`

)3 = E
[(

X(ε)
)3

]
=

1
ε

For proving the upper bound on the lower boundWC2

l of E[W ], we look atE
[
WM/H

(ε)
2 /K

]
asε → 0. That

is, the third moment of service time goes to∞. Below we present some elementary results on the asymptotic
behavior of the parameters of theH

(ε)
2 distribution, which will be used in the analysis in Section5.5.

Lemma 5.2 Theµ
(ε)
s , µ

(ε)
` andp(ε) can be expressed in terms ofε as5:

µ(ε)
s = 1 +

3
2
(C2 − 1)2ε + Θ(ε2)

µ
(ε)
` = 3(C2 − 1)ε + 18C2(C2 − 1)ε2 + Θ(ε3)

p(ε) = 1− 9
2
(C2 − 1)3ε2 + Θ(ε3)

Corollary 5.3 Asε → 0,

p(ε) → 1 , µ
(ε)
s → 1

1−p(ε)

µ
(ε)
`

→ 0 , 1−p(ε)
�
µ

(ε)
`

�2 → C2−1
2

5We say a functionh(ε) is Θ(g(ε)) if

0 < lim inf
ε→0

����
h(ε)

g(ε)

���� ≤ lim sup
ε→0

����
h(ε)

g(ε)

���� < ∞

Intuitively, this means that the functionsh andg grow at the same rate, asymptotically, asε → 0.
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Corollary5.3 is saying that as the third moment grows, asymptotically, all the load is made uponly by the
small jobs, whose mean approaches1. While the mean size of the large jobs also grows linearly in the third
moment (asymptotically), the probability that a large job arrives vanishes at a faster rate. Thus, intuitively,
our M/H

(ε)
2 /K system rarely encounters a large job in the limit asε → 0. Note that, asε → 0, the

H
(ε)
2 distribution converges in distribution to theExp(1) distribution. Thus, the stationary queue length and

waiting time distributions of the sequence ofM/H
(ε)
2 /K systems also converge in distribution to the queue

length and waiting time distributions of the correspondingM/M/K system [3, 31]. However, convergence
in distributiondoes notimply convergence of the means. Indeed, in the case whereρ > K−1

K , we find that
the mean of the limiting system is notE

[
WM/M/K

]
. This can be easily verified forK = 1, where the mean

waiting time is given by the Pollaczek-Khintchine formula (4).

5.3 Bounding the number of large jobs

The following lemma proves that to bound the mean number of jobs in anM/H
(ε)
2 /K system within6 o(1)

, it suffices to consider only the small jobs.

Lemma 5.4 E
[
N

M/H
(ε)
2 /K

`

]
= o(1)

Proof: We will upper bound the expected number of large customers in the system by (a) giving high
priority to the small customers and letting the large jobs receive service only when there are no small jobs in
the system, and (b) by allowing the large customers to be served by at most one server at any time. Further,
we increase the arrival rate of small customers toλ and increase the mean size of the small customers
to 1. Specifically, letN`

(ε)
be the steady-state number of customers in anM

(
λ(1− p(ε))

)
/M

(
µ

(ε)
`

)
/1

queue with service interruptions, where the server is interrupted for the duration of the busy period of an
M(λ)/M(1)/K queue. ByM(a)/M(b)/k, we mean anM/M/k queue with arrival ratea and service rate
b. It is easy to see that

E
[
N

M/H
(ε)
2 /K

`

]
≤ E

[
N`

(ε)
]
.

The proof is completed by the following lemma:

Lemma 5.5 E
[
N`

(ε)
]

= o(1)

Proof in AppendixA.

5.4 Construction ofU (ε): the upper bounding system forNM/H
(ε)
2 /K

s

Figure3 illustrates the behavior of systemU (ε). Denote periods where there are no large jobs (including
when the system is idle) asgoodperiods, and periods when there is at least 1 large job as abad period.
During a good period, the small jobs receive service according to a normalK server FIFO system. As soon

6We say a functionh(ε) is o(g(ε)) if

lim
ε→0

����
h(ε)

g(ε)

���� = 0

Intuitively, h becomes insignificant when compared withg, asymptotically, asε → 0.

11



Queues up at server 1

Number of
large jobs

Bad’ phase
(1 large job)

Bad’’ phase
(> 0 large jobs)

Good period Bad period Good period

(0 large jobs) (0 large jobs)

Large job arrives
Gets preemptive prio at server 1

Second large job arrives
Queues up at server 1
Service of small jobs ceases

Good period begins
Service of small jobs resumes

Third large job arrives

Figure 3:Construction of systemU (ε) which upper bounds the number of jobs in anM/H
(ε)
2 /K

as a large job arrives, we say that a bad period begins. The bad period consists of up to 2 phases, calledbad′

andbad′′. A bad′ phase spans the time from when a large job first arrives until either it leaves or a second
large job arrives (whichever happens earlier). A bad′′ phase occurs if a second large job arrives while the
first large job is still in the system, and covers the period from when this 2nd large job arrives (if it does)
until there are no more large jobs in the system.

The large job starting a bad period preempts the small job at server1 (if any) and starts receiving service.
The small jobs are served by the remaining(K−1) servers. If a second large job arrives during a bad period
while the first large job is still in system, starting a bad′′ phase, we cease serving the small jobs and continue
serving the large jobs byonlyserver1 until this busy period of large jobs ends (there are no more large jobs).
When the last large job leaves, we resume the service of small jobs according to a normalK server FIFO
system.

Analyzing systemU (ε) is simpler than analyzing the correspondingM/H
(ε)
2 /K system because inU (ε), the

large jobs form anM/M/1 system independent of the small jobs, due to preemptive priority and service by
only one server. The small jobs operate in a random environment where they have eitherK, (K − 1) or 0
servers.

Lemma 5.6 The number of small jobs in anM/H
(ε)
2 /K system,N

M/H
(ε)
2 /K

s , is stochastically upper bounded

by the number of small jobs in the corresponding systemU (ε), NU(ε)

s .

Proof: Straightforward using stochastic coupling.

Stability of system U (ε): Since systemU (ε) is not work conserving, there are values ofε for which it is
unstable, even whenρ < 1. Therefore we restrict our attention to the following range ofε:

12



b’

Number of
small jobs

∆b’’

∆b’

N1,g
*

time
T

T

T

Bad’ phase Bad’’ phase

Good period Bad period

b’’

b

Figure 4:Notation used for analysis of systemU (ε)

Lemma 5.7 The upper bounding system,U (ε), is stable forε < ε′ where

ε′ =
1
6

[
(C2 + 1)2

4(1− ρ)
+ 1

]−1

.

Proof in AppendixA.

5.5 Analysis of systemU (ε)

Figure4 introduces the notation we will use in this section. Since in this section we focus only on the
analysis of systemU (ε), we will omit superscripting the random variables used in analysis byU (ε) for
readability. Unless explicitly superscripted, random variables correspond to theU (ε) system. We define the
following random variables:

• N∗
s,g ≡ the number of small jobsat the endof a good period, that is, when the system switches from

a good to a bad period

• N∗
s,b ≡ the number of small jobsat the endof a bad period, that is, when the system switches from a

bad to a good period

• Ns,g ≡ the number of small jobsduringa good period

• Ns,b ≡ the number of small jobsduringa bad period

• ∆b′ ≡ the incrementin the number of small jobs during a bad′ period (when small jobs have(K − 1)
servers available)

• ∆b′(n) ≡ the incrementin the number of small jobs during a bad′ period given that the bad′ period
begins withn small jobs

13



• ∆b′′ ≡ the incrementin the number of small jobs during a bad′′ period (where the service of small
jobs has been blocked)

• ∆b = ∆b′(0) + ∆b′′

We denote the fraction of time spent in a good, bad, bad′ and bad′′ phase byPr[g], Pr[b], Pr[b′] andPr[b′′]
respectively.

By the law of total probability,

E[Ns] = E[Ns,g]Pr[g] + E[Ns,b]Pr[b] (6)

In Section5.5.1, we derive stochastic upper bounds onNs,g andNs,b, which give us an upper bound, (8), on
E[Ns]. In Sections5.5.2and5.5.3, we derive expressions for the quantities appearing in (8). These are used
to obtain the final upper bound onE[Ns] at the end of Section5.5.1.

5.5.1 Stochastic Bounds

Obtaining a stochastic upper bound onNs,g : Let Φ(A) be a mapping between non-negative random
variables whereΦ(A) gives the random variable for the number of small jobs at the end of a good period,
given that the number at the beginning of the good period is given byA. Let N̄∗

s,g be the solution to the
following fixed point equation:

N̄∗
s,g

d= Φ(N̄∗
s,g + ∆b) (7)

Lemma 5.8

Ns,g
d= N∗

s,g ≤st N̄∗
s,g

Proof: The first relation follows since the length of a good period is exponential and its termination is
independent of the number of small jobs. Hence, byconditionalPASTA [34] (see also [13] for a similar use
of conditional PASTA),

Ns,g
d= N∗

s,g

Intuitively, ∆b stochastically upper bounds the increment in the number of small jobs during a bad period
since it assumes there were zero small jobs at the beginning of the bad period and hence ignores the depar-
tures of those small jobs. Therefore, solving the fixed point equation (7) gives a stochastic upper bound on
N∗

1,g. A formal proof of the stochastic inequality is AppendixA.

Obtaining a stochastic upper bound onNs,b : The required upper bound is given by the following lemma.

Lemma 5.9

Ns,b ≤st N̄∗
s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)

whereAλ (Tb′′e) is the number of arrivals of a Poisson process (with rateλ) during a random time interval
Tb′′e denoting theexcessof the length of a bad′′ period, and whereIb′′|b denotes an indicator random
variable which is1 with probabilityPr[b′′]/Pr[b].

14



Proof: Observe that the first term in the upper bound is a stochastic upper bound on the number of small
jobs at the beginning of a bad period. The second term denotes a stochastic upper bound on the increment
in the number of small jobs during a bad′ phase. Finally, the third term denotes the “average increment” in
the number of small jobs during a bad′′ phase. See AppendixA for the complete proof.

Combining the bounds onNs,g andNs,b, we get an upper bound onE[Ns]:

E[Ns] ≤ E
[
N̄∗

s,g

]
Pr[g] + E

[
N̄∗

s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)
]
Pr[b] (8)

To complete the proof, we need expressions for each of the quantities in equation (8). In Section5.5.2we
will obtain expressions forE[∆b′(0)] for the casesρ < K−1

K andρ ≥ K−1
K . In Section5.5.3we will obtain

E
[
N̄∗

s,g

]
. However, to do this, we will need the first two moments of∆b, E[∆b] andE

[
∆2

b

]
, which are also

derived in Section5.5.2. To obtainPr[b], recall that the large jobs form anM/M/1 system. Hence (see

Lemma5.2for expressions forp(ε) andµ
(ε)
` ),

Pr[b] = Pr[≥ 1 large job] =
λ(1− p(ε))

µ
(ε)
`

=
3Kρ(C2 − 1)2ε

2
+ Θ(ε2)

Further, in the proof of Lemma5.12, we prove

Pr[b′′]
Pr[b]

E[Aλ (Tb′′e)] = Θ(1)

Finally, substituting the expressions forE
[
N̄∗

s,g

]
, E[∆b′(0)], Pr[b′′]

Pr[b] E[Aλ (Tb′′e)] andPr[b] into equation (8),
we get

Case:ρ < K−1
K

E[Ns] ≤ E
[
NM/M/K

]
+ o(1)

Case:ρ ≥ K−1
K

E[Ns] ≤
(

E
[
NM/M/K

]
+

K2ρ

1− ρ

[
ρ− K − 1

K

]2 C2 − 1
2

)
(1−Θ(ε))

+

(
K

(
ρ− K−1

K

)

3(C2 − 1)ε
+ Θ(1)

)(
3Kρ(C2 − 1)2ε

2

)
+ o(1)

= E
[
NM/M/K

]
+

K2ρ

1− ρ

[
ρ− K − 1

K

]2 C2 − 1
2

+ K2ρ

[
ρ− K − 1

K

]
C2 − 1

2
+ o(1)

= E
[
NM/M/K

]
+

Kρ

1− ρ

[
ρ− K − 1

K

]
C2 − 1

2
+ o(1)

15



5.5.2 Obtaining E[∆b] and E
[
∆2

b

]

Recall that we defined,

∆b = ∆b′(0) + ∆b′′

where∆b′(0) is the random variable for the number small jobs at the end of a bad′ phase given that it starts
with 0 small jobs and∆b′′ is the number of small of jobs that arrive during a bad′′ phase.

Lemma5.10gives the expressions forE[∆b′(0)] andE
[
∆2

b′(0)
]
. Lemma5.12gives the asymptotic expres-

sions forE[∆b′′ ] andE
[
∆2

b′′
]

which will be sufficient for our purposes of obtainingE[Ns] within o(1).

Lemma 5.10
Case:ρ < K−1

K

E[∆b′(0)] = O(1)

E
[
∆2

b′(0)
]

= O(1)

Case:ρ ≥ K−1
K

E[∆b′(0)] =
K

(
ρ− K−1

K

)

3(C2 − 1)ε
+ Θ(1)

E
[
∆2

b′(0)
]

=
2
9

K2
(
ρ− K−1

K

)2

(C2 − 1)2ε2
+ Θ

(
1
ε

)

Proof: We can think of∆b′(0) as the number of jobs in anM/M/K − 1 with arrival rateλs = λp
and service rateµs at timeT ∼ Exp (β) (β = λ(1 − p) + µ`) given that it starts empty. Let us call this
NM(λs)/M(µs)/K−1(T ). Let NM(λs)/M((K−1)µs)/1(T ) be the number of jobs in anM/M/1 with arrival
rateλs and service rate(K − 1)µs at timeT given that it starts empty. Then,

NM(λs)/M((K−1)µs)/1(T ) ≤stN
M(λs)/M(µs)/K−1(T ) ≤st NM(λs)/M((K−1)µs)/1(T ) + (K − 1) (9)

To see why (9) is true, first note that using coupling,NM(λs)/M(µs)/K−1(T ) can be (stochastically) sand-
wiched betweenNM(λs)/M((K−1)µs)/1(T ) and the number of jobs in anM/M/K − 1 where the service is
stopped when the number of jobs goes belowK − 1. Finally, again using coupling, the number of jobs in
this latter system can be stochastically upper bounded byNM(λs)/M((K−1)µs)/1(T ) + (K − 1).

Therefore, using (9), we only need to evaluate the first and second moments ofNM(λs)/M((K−1)µs)/1(T ) to
obtainE[∆b′(0)] andE

[
∆2

b′(0)
]

within an error ofΘ(1) andΘ(E[∆b′(0)]), respectively. We do this next.

Case:ρ < K−1
K

For this case theM/M/K − 1 system is stable during bad′ phases, and hence

E[∆b′(0)] = O(1)

E
[
∆2

b′(0)
]

= O(1).

Case:ρ > K−1
K

The following lemma gives the expressions for the first and second moments ofNM(λs)/M((K−1)µs)/1(T )
for the caseρ > K−1

K .
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Lemma 5.11 LetT ∼ Exp(β) andλs > (K − 1)µs. Then,

E
[
NM(λs)/M((K−1)µs)/1(T )

]
=

λs − (K − 1)µs

β
+ Θ(1)

E
[
(NM(λs)/M((K−1)µs)/1(T ))2

]
= 2

(
λs − (K − 1)µs

β

)2

+ Θ
(

1
β

)
.

Proof of Lemma 5.11: See AppendixA.

Substituting in the expressions forµs, λs andµ` from Lemma5.2 and using the inequality (9), we obtain
the expressions in the statement of the lemma.

Lemma 5.12 The asymptotics for the first and second moments of∆b′′ are given by:

E[∆b′′ ] = O(1)

E
[
∆2

b′′
]

= Θ
(

1
ε

)

Proof: See AppendixA.

5.5.3 Obtaining E
[
N̄∗

s,g

]

We will use the following lemma to obtainE
[
N̄∗

s,g

]
.

Lemma 5.13 Consider anM/M/K system with arrival rateλ and mean job sizeµ−1. We interrupt this
M/M/K system according to a Poisson process with rateα, and at every interruption, a random number
of jobs are added to the system. The number of jobs injected are i.i.d. random variables which are equal
in distribution to some non-negative random variable∆. Let N (Int) denote the number of jobs in this
M/M/K system. IfE[∆] = o

(
1
α

)
, we have,

E
[
N (Int)

]
= E

[
NM/M/K

]
+

α
2 E

[
∆2

]

Kµ− λ
+ o(1).

Proof in AppendixA.

To use the above lemma, we will consider anM/M/K with arrival rateλp(ε), mean job size 1

µ
(ε)
1

, α =

λ(1 − p(ε)) and∆ d= ∆b. Using the expression forE[∆b] derived in Section5.5.2, one can check that the
condition of Lemma5.13is met. Therefore,

E
[
N̄∗

s,g

]
= E

[
NM/M/K

]
+

1
2

λ(1− p(ε))E
[
∆2

b

]

Kµ− λ
+ o(1) (10)

SubstitutingE
[
∆2

b

]
from Section5.5.2,

Case:ρ < K−1
K

E
[
N̄∗

s,g

]
= E

[
NM/M/K

]
+

1
2

λ
(

9
2(C2 − 1)3ε2

)
Θ

(
1
ε

)

Kµ− λ
+ o(1)

= E
[
NM/M/K

]
+ o(1)
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(ε)
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Large job completes service
Normal service of small jobs
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Instantaneously completes
service

0 large jobs 1 large job 0 large jobs

Large job arrives

All existing jobs instantaneously
complete service

Small jobs receive service at a total
rate of (K−1) µs

Number of

Figure 5:Construction of systemL(ε) which lower bounds the number of jobs in anM/H
(ε)
2 /K

Case:ρ ≥ K−1
K

E
[
N̄∗

s,g

]

=E
[
NM/M/K

]
+

1
2

λ
(

9
2(C2 − 1)3ε2

) (
2
9

K2(ρ−K−1
K )2

(C2−1)2ε2

)

Kµ− λ
+ o(1)

=E
[
NM/M/K

]
+

K2ρ

1− ρ

[
ρ− K − 1

K

]2 C2 − 1
2

+ o(1)

5.6 Construction ofL(ε): the lower bounding system

Case:ρ ≥ K−1
K

Figure5 shows the behavior of systemL(ε) for this case. As before, denote the periods where there are
no large jobs in the system asgoodperiods, and periods when there is at least 1 large job asbad periods.
During a good period, the small jobs receive service according to a normalK server FIFO system. As
soon as a large job arrives to begin the bad period, all the small jobs currently in the system instantaneously
complete service. That is, the system restarts with1 large job. Any large jobs that arrive during this bad
period complete service instantaneously. Further, whenever there are less than(K − 1) small jobs in the

system during a bad period, they are collectively served at a total rate of(K − 1)µ(ε)
s .

The analysis of systemL(ε) is simplified because the large jobs form anM/M/1/1 system independent of

the small jobs. The length of a bad period is distributed asExp
(
µ

(ε)
`

)
and the length of a good period is

distributed asExp
(
λ(1− p(ε))

)
. Further, during a bad period, the number of small jobs behaves as in an

M/M/1 queue with arrival rateλp(ε) and service rate(K − 1)µ(ε)
s starting with an empty system.

Case:ρ ≤ K−1
K

For this case we can consider an alternate lower bounding system which simplifies the analysis. In the lower
bounding system, systemL(ε), all large jobs instantaneously complete service on arrival. Thus the number
of large jobs is always0 and the number of small jobs behaves as in anM/M/K with arrival rateλp(ε) and
mean job size 1

µ
(ε)
s

.
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C2 = 19 C2 = 99
E[W ] θ3 E[W ] θ3

2-moment approx. (Eqn.1) 6.6873 - 33.4366 -
Weibull 6.0691 4.2 25.9896 8.18

Truncated Pareto(α = 1.1) 5.5241 4.24 24.5788 6.30
Lognormal 4.9937 20 19.5548 100

Truncated Pareto(α = 1.3) 4.8770 7.59 18.8933 16.85
Truncated Pareto(α = 1.5) 3.9504 20 10.5404 100

Table 2: Results from simulating anM/G/K with K = 10 andρ = 0.9. All job size distributions have
E[X] = 1.

C2 = 19 C2 = 99
E[W ] θ3 E[W ] θ3

2-moment approx. (Eqn.1) 0.2532 - 1.2662 -
Weibull 0.1374 4.2 0.4638 8.18

Truncated Pareto(α = 1.1) 0.0815 4.24 0.2057 6.30
Lognormal 0.0854 20 0.2154 100

Truncated Pareto(α = 1.3) 0.0538 7.59 0.0816 16.85
Truncated Pareto(α = 1.5) 0.0355 20 0.0377 100

Table 3: Results from simulating anM/G/K with K = 10 andρ = 0.6. All job size distributions have
E[X] = 1.

Lemma 5.14 The number of small jobs in anM/H
(ε)
2 /K system,N

M/H
(ε)
2 /K

s , is stochastically lower

bounded by the number of small jobs in the corresponding systemL(ε), NL(ε)

s .

Proof: Straightforward using stochastic coupling.

6 Effect of higher moments

In Theorems1.1 and1.2, we proved that the first two moments of the job size distribution alone are insuf-
ficient to approximate the mean waiting time accurately. In Section3, by means of numerical experiments,
we observed that within theH2 class of distributions, the third moment of the job size distribution has a
significant impact on the mean waiting time. Further, we observed that forH2 job size distributions, in-
creasing the third moment causes the mean waiting time to drop. It is, therefore, only natural to ask the
following questions: Are three moments of the job size distribution sufficient to accurately approximate the
mean waiting time, or do even higher moments have an equally significant impact? Is the qualitative effect
of 4th and higher moments similar to the effect of the 3rd moment or is it the opposite? In this section, we
touch upon these interesting and largely open questions.

We first revisit the simulation results of Table1. Table2 shows the simulation results of Table1 again,
but with an additional column – the normalized third moment of the job size distribution. Observe that
the lognormal distribution and the Pareto distribution withα = 1.5 haveidentical first three moments, yet
exhibit very different mean waiting times. This behavior is compounded when the system load is reduced
to ρ = 0.6 (Table3). As we saw in Section3, the disagreement in the mean waiting time for the lognormal
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Figure 6:The distribution of load as a function of job size for the lognormal and bounded Pareto (α = 1.5)
distributions for two values of squared coefficient of variation. Although the lognormal and Pareto distri-
butions have identical first three moments, the distribution of load among different job sizes is drastically
different.

and the truncated Pareto distribution can be partly explained by the very different lookingρ(x) curves for
these distributions, shown in Figure6. The bulk of the load in the lognormal distribution is constituted by
larger jobs as compared to the truncated Pareto distribution.

The example of lognormal and Pareto (α = 1.5) distributions suggests that even knowledge of three mo-
ments of the job size distribution may not be sufficient for accurately approximating the mean waiting time.
So what is the effect of higher moments on the mean waiting time?To begin answering this question, we will
follow a similar approach as in Section3 where we looked at theH2 job size distribution. However, we first
need to expand the class of job size distributions to allow us control over the 4th moment. For this purpose,
we choose the3-phase degenerate hyperexponentialclass of distribution, denoted byH∗

3 . Analogous to
theH∗

2 distribution,H∗
3 is the class of mixture of three exponential distributions where mean of one of the

phases is0 (see Definition3.2). Compared to theH2 class, theH∗
3 class has one more parameter and thus

four degrees of freedom, which allow us control over the 4th moment while holding the first three moments
fixed.

We now extend the numerical results of Figure1 by considering job size distributions in theH∗
3 class with

the same mean and SCV as the example illustrated in Figure1. However, to demonstrate the effect of the 4th
moment, we choose two values ofθ3 and plot theE[W ] curves as a function of the 4th moment in Figure7.
As a frame of reference, we also show the mean waiting time under theH2 job size distribution (with the
same first three moments asH∗

3 ) and that underH∗
2 distribution (with the same first two moments asH∗

3 ).

As is evident from Figure7, the fourth moment can have as significant an impact on the mean waiting
time as the third moment. Further, as the 4th moment is increased, the mean waiting time increases from
E

[
WM/H2/K

]
to E

[
WM/H∗

2 /K
]
. Therefore, the qualitative effect of the 4th moment is opposite to that of
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(a)θ3 = 3 (b) θ3 = 20
Figure 7: Illustration of the effect of4th moment of the service distribution on mean waiting time of an
M/H∗

3/10 system for two values of the normalized third moment. Dashed line shows the mean waiting
time under anH2 service distribution with the same first three moments and the light dotted line shows the
mean waiting time under anH∗

2 service distribution with the same first two moments as theH∗
3 distribution.

The mean and squared coefficient of variation of the job size distribution were held constant atE[X] = 1
andC2 = 19 with loadρ = 0.9 (same as Figure1).

the third moment.

The effect of the fourth moment also helps explain the disagreement between the mean waiting time for the
lognormal, the truncated Pareto (α = 1.5) and theH2 distributions. For the caseC2 = 19, the lognormal
distribution has a much higher 4th moment (E

[
X4

]
= 64 × 106) than the Pareto (E

[
X4

]
= 5.66 × 106)

and theH2 (E
[
X4

]
= 4.67 × 106) distribution withθ3 = 20. While this is a possible cause for a higher

mean waiting time under the lognormal distribution, there is still disagreement between the mean waiting
time under the lognormal distribution and theH∗

3 distribution (see Figure7) with the same first 4 moments,
indicating that even higher moments are playing an important role as well!

In conclusion, by looking at a range of distributions including hyperexponential, Pareto and lognormal
distributions, we see that the moments of the job size distribution may not be sufficient to accurately predict
the mean waiting time. Other characteristics, such as the distribution of load among the small and large job
sizes, may lead to more accurate approximations.

7 Conjectures

In this section, we make conjectures on tight bounds on the mean delay of anM/G/K queueing system
given firstn moments for generaln.
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7.1 Sharp two-moment bounds

In Theorems1.1 and1.2, we proved a lower bound onWC2

h and an upper bound onWC2

l . Here we make
the following conjectures on their exact expressions:

Conjecture 7.1 For anyρ < 1 and finiteC2,

WC2

h =
(
C2 + 1

)
E

[
WM/D/K

]

whereE
[
WM/D/K

]
is the mean waiting time when all the jobs have a constant size1.

Conjecture 7.2 For any finiteC2,

WC2

l =

{
E

[
WM/D/K

]
if ρ < K−1

K

E
[
WM/D/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2

2 if ρ ≥ K−1
K

whereE
[
WM/D/K

]
is the mean waiting time when all the jobs have a constant size1.

A proof of Conjecture7.1might follow these lines: It is easy to prove thatWC2

h ≥ (C2+1)E
[
WM/D/K

]
by

considering theD∗
2 distribution (mixture of two point masses with one point mass at0, see DefinitionC.2),

and following the same argument that we used for theH∗
2 distribution in proving Theorem1.1. However,

proving thatWC2

h ≤ (C2 +1)E
[
WM/D/K

]
seems non-trivial, but we provide some justification. First, note

thatE
[
WM/D/K

] ≥ E
�
W M/M/K

�
2 , and hence the bound in Conjecture7.1is indeed tighter than Theorem1.1.

Further, for anM/G/1, the mean delay isexactly linearin C2 and one expects the effect of variability to
go down as more servers are added. However, we demonstrate a distribution (theD∗

2 distribution) which
exposes the entire effect of variability - and hence seems to create a worst case scenario. Third, it is known
(see TheoremC.3) that given the first two moments, theD∗

2 distribution is the unique positive distribution
that minimizes all moments higher than the second moment - and therefore extremal.

A proof of Conjecture7.2 might follow these lines: It should not be too difficult to extend the proof of
Theorem1.2 by defining aD

(ε)
2 sequence of distributions (parameterized mixture of two point masses,

analogous toH(ε)
2 ) to prove that

WC2

l ≤
{

E
[
WM/D/K

]
if ρ < K−1

K

E
[
WM/D/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2

2 if ρ ≥ K−1
K .

However, proving the tightness of the above bound seems non-trivial.

It is interesting to note that theD∗
2 andD

(ε)
2 distributions were previously used by Whitt [38] as interarrival

distributions to obtain extreme values for the mean queue length in theGI/M/1 queue.

7.2 Bounds based on higher moments

Just as we have proved (and made stronger conjectures about) the inapproximability of the mean waiting
time given the first two moment of the job size distribution by giving the span of the possible values of
the mean waiting time, it is useful to know how this span shrinks as we successively know more and more
moments. For the third moment, while Figure1 suggests that within theH2 class of job size distributions,
increasing the third moment causes a drop in the mean waiting time, this statement is too restrictive to be
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useful. Letm = (m1, m2, . . . , mn) ∈ <n be such that there exists a positive random variableX with
E

[X i
]

= mi, i = 1, . . . , n. For n odd, defineD(m) to denote the uniquen+1
2 -phase hyperdeterministic

distribution (DefinitionC.1) with moments(m1, . . . , mn). Forn even, defineD∗(m) to denote the unique(
n
2 + 1

)
- phase degenerate hyperdeterministic distribution (DefinitionC.2) with moments(m1, . . . , mn).

Let

Wh(m) = sup
{

E
[
WM/G/K

] ∣∣E[
Xi

]
= mi, i = 1, . . . , n

}
,

and

Wl(m) = inf
{

E
[
WM/G/K

] ∣∣E[
Xi

]
= mi, i = 1, . . . , n

}
.

We conjecture the following,

Conjecture 7.3 Letm = (m1, . . . , mn), n > 2, be a valid moment sequence for positive distributions. Let
m′ = (m1, . . . ,mn−1). Then,
Case 1:n odd

(i) Wh(m) = E
[
WM/D∗(m′)/K

]
.

(ii) Wl(m) = E
[
WM/D(m)/K

]
.

(iii) Wl(m1, . . . ,mn−1, x) is strictly decreasing inx whenK > 1.

Case 2:n even

(i) Wh(m) = E
[
WM/D∗(m)/K

]
.

(ii) Wl(m) = E
[
WM/D(m′)/K

]
.

(iii) Wh(m1, . . . , mn−1, x) is strictly increasing inx whenK > 1.

Further, forn odd,Wh(m) = Wh(m′); and forn even,Wl(m) = Wl(m′).

Implications of Conjectures 7.1, 7.2and 7.3: Our goal is to estimateE
[
WM/G/K

]
. If we are given only

the mean of the job size distribution, we only have enough information to fix a lower bound onE
[
WM/G/K

]
.

This lower bound is given byE
[
WM/D/K

]
. Now, if we are told the second moment of the job size distri-

bution, we can fix an upper bound onE
[
WM/G/K

]
. This upper bound is given by(C2 + 1)E

[
WM/D/K

]
.

(If ρ ≥ K−1
K we also refine our lower bound.) By determining the third moment of job size distribu-

tion, from Case 1 of Conjecture7.3, we canrefineour lower bound to something much tighter (in fact, to
E

[
WM/D2/K

]
) but this lower bound decreases as the third moment increases. The upper bound remains

unchanged. Therefore, if theθ3 of the job size distribution is small, the lower bound obtained by considering
the first three moments is itself very close to the upper bound (which in turn is close to the approximation in
(1)).

Similarly, knowledge of the fourth moment willrefine the upper boundon the mean waiting time (bring it
down), while knowledge of the fifth moment willrefine the lower boundon the mean waiting time (raise
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it), and so forth for alternating higher even and odd moments7. We conjecture further that these bounds are
achieved by theDn andD∗

n distributions (defined in DefinitionsC.1 andC.2 as mixtures of point masses,
analogous to Definitions3.1and3.2), respectively.

8 Conclusions

In this paper, we addressed the classical problem of approximating the mean waiting time of anM/G/K
queueing system. While there is a huge body of work on developing closed-form approximations for the
mean waiting time, all such approximations are based only on the first two moments of job size distribution.
In this work, we proved that it is impossible to develop any approximation, based on only the first two
moments, that is accurate for all job size distributions. We did this by finding the possible range of values
for the mean waiting time, given the first two moments of the job size distribution, and showing that the

maximum possible value is at least
(

C2+1
2

)
times the minimum possible value.

Further, we suggest thatmomentsare not the ideal job size characteristic on which to base approximations
for mean waiting time. Moments of the job size distribution can, at best, provide bounds on the mean wait-
ing time which may be too far to be useful. The moment sequencecan be useful if one of the moments
(appropriately normalized) is small. As an example, if the job size distribution has a small normalized third
moment, then an approximation based on only the first two moments is likely to be accurate. However,
there are also many distributions like the lognormal distribution (all of whose moments are high), for which
moments are not useful in accurately predicting mean waiting time. Other characteristics, such as the dis-
tribution of load among different job sizes, may be more representative for the purpose of approximating
mean waiting time.

9 Acknowledgements

Varun Gupta and Mor Harchol-Balter were supported by NSF Grant CNS-0719106 (SGER: Collaborative
Research: CSR-SMA) and by the Microsoft Breakthrough Research Grant 2007. Jim Dai and Bert Zwart
were supported in part by NSF grants CMMI-0727400 and CNS-0718701.

References

[1] I. J. B. F. Adan and J. Resing.Queueing theory. Eindhoven University of Technology, 2002.

[2] Paul Barford and Mark Crovella. Generating representative web workloads for network and server
performance evaluation.Proceeding of ACM SIGMETRICS/Performance’98, pages 151–160, 1998.

[3] A.A. Borovkov. Stochastic Processes in Queueing Theory. Nauka, Moscow, 1972.

[4] D.Y. Burman and D.R. Smith. A light-traffic theorem for multi-server queues.Math. Oper. Res.,
8:15–25, 1983.

7We may need to impose certain regularity conditions on the job size distribution, such as that the moment sequence uniquely
determines the distribution.

24



[5] G.P. Cosmetatos. Some approximate equilibrium results for the multiserver queue (M/G/r). Opera-
tional Research Quarterly, 27:615–620, 1976.

[6] D.J. Daley and T. Rolski. Some comparibility results for waiting times in single- and many-server
queues.J. Appl. Prob., 21:887–900, 1984.

[7] Jos H. A. de Smit. A numerical solution for the multiserver queue with hyper-exponential service
times.Oper. Res. Lett., 2(5):217–224, 1983.

[8] Jos H. A. de Smit. The queueGI/M/s with customers of different types or the queueGI/Hm/s.
Adv. in Appl. Probab., 15(2):392–419, 1983.

[9] Jos H. A. de Smit. The queueGI/Hm/s in continuous time.J. Appl. Probab., 22(1):214–222, 1985.

[10] Allen Downy and Mor Harchol-Balter. Exploiting process lifetime distributions for dynamic load
balancing.ACM Transactions on Computer Systems, 15(3):253–285, August 1997.

[11] A.E. Eckberg Jr. Sharp bounds on Laplace-Stieltjes transforms, with applications to various queueing
problems.Math. Oper. Res., 2(2):132–142, 1977.

[12] Noah Gans, Ger Koole, and Avi Mandelbaum. Telephone call centers: tutorial, review, and research
prospects.Manufacturing and Service operations Management, 5:79–141, 2003.

[13] Varun Gupta, Mor Harchol-Balter, Alan Scheller-Wolf, and Uri Yechiali. Fundamental characteristics
of queues with fluctuating load. InProceedings of ACM SIGMETRICS, pages 203–215, 2006.

[14] Mor Harchol-Balter and Bianca Schroeder. Evaluation of task assignment policies for supercomputing
servers. InProceedings of 9th IEEE Symposium on High Performance Distributed Computing (HPDC
’00), 2001.

[15] M.H. van Hoorn H.C. Tijms and A. Federgruen. Approximations for the steady-state probabilities in
theM/G/c queue.Adv. Appl. Prob., 13:186–206, 1981.

[16] Per Hokstad. Approximations for theM/G/m queue.Operations Research, 26(3):510–523, 1978.

[17] Per Hokstad. The steady state solution of theM/K2/m queue. Adv. Appl. Prob., 12(3):799–823,
1980.

[18] Samuel Karlin and William J. Studden.Tchebycheff systems: With applications in analysis and statis-
tics. John Wiley & Sons Interscience Publishers, New York, 1966.

[19] T. Kimura. Diffusion approximation for anM/G/m queue.Operations Research, 31:304–321, 1983.

[20] T. Kimura. Approximations for multi-server queues: system interpolations.Queueing Systems, 17(3-
4):347–382, 1994.
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A Proofs

Proof of Claim 4.1: The proof will proceed in two steps. We first show that theH∗
2 distribution lying

in {H2|C2} has the smallest third moment in{H2|C2} for all C2 > 1. Then we will give a method,
which given anyn-phase hyperexponential distribution forn > 2, allows one to create an(n − 1)-phase
hyperexponential distribution with the same first two moments but a smaller third moment. Using this
method one can, in the end, obtain anH2 distribution with a smaller third moment and combine it with first
step of the proof to prove the claim.

Step 1: Let X be a random variable distributed according to the followingH2 distribution:

X ∼
{

Exp (µ1) w.p. p

Exp (µ2) w.p. 1− p

We get the following relation between the moments ofX and the parameters of the distribution:

E
[
X3

]
E[X]

6
− E

[
X2

]2

4
=

p(1− p)
µ1µ2

[
1
µ1
− 1

µ2

]2

It is easy to see that since the right hand side is non-negative, the smallest possible value ofE
[
X3

]
given

the first two moments is
3E
�
X2
�2

2E[X] and is realised by lettingµ1 →∞ (or µ2 →∞), that is, by the degenerate
hyperexponential distribution.

Step 2: If the Hn distribution has a phase with mean0, then pick any two phases with non-zero mean.
Replace these two phases with theH∗

2 distribution with the same first two moments as those of the condi-
tional distribution, conditioned on being in these two phases. Merge the phases with0 mean. Using step
1 above, this replacement necessarily creates an(n − 1)-phase hyperexponential distribution with smaller
third moment while preserving the first two. If theHn distribution has no phase with mean0, perform the
above step twice to reduce the number of phases by 1.

Proof of Lemma 5.5: Recall thatN (ε)
`,lp is defined to be the steady-state number of customers in an

M
(
λ(1− p(ε))

)
/M

(
µ

(ε)
`

)
/1 queue with service interruptions where the server is interrupted for the du-

ration of the busy period of anM(λ)/M(1)/K queue. Since this is a geometrically ergodic process, the
second moment of the busy period of this queue is finite. LetBλ,1,K be the busy period of this queue. Define

ρ
(ε)
` = λ(1− p(ε))/µ

(ε)
` .

Our aim is to prove:

E
[
N`

(ε)
]

= o(1)

The lemma follows by specializing results for theM/G/1 queue with server breakdowns to the special case
considered here, see e.g. [1]. Let G be a so-calledgeneralizedservice time, which is the service time of
a large customer plus the total duration of service interruptions while that customer was in service. Define

V`
(ε)

to be the system time (response time) of large customers in the modified queue. From Adan & Resing
[1], we get

E
[
V`

(ε)
]

= E[G] +
(

ρG

1− ρG

)
E

[
G2

]

2E[G]
+

(
λE[Bλ,1,K ]

1 + λE[Bλ,1,K ]

) E
[
B2

λ,1,K

]

2E[Bλ,1,K ]
. (11)
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HereρG = ρ
(ε)
` (1 + E[Bλ,1,K ]/λ). The first two moments ofG are given by

E[G] =
1

µ
(ε)
`

(
1 +

E[Bλ,1,K ]
λ

)
(12)

and that

E
[
G2

]
=

2(
µ

(ε)
`

)2

(
1 +

E[Bλ,1,K ]
λ

)2

+
1

µ
(ε)
`

λE
[
B2

λ,1,K

]
. (13)

From these equations, it follows thatE[G] = Θ(1/ε) andE
[
G2

]
= Θ(1/ε2). This impliesE

[
V`

(ε)
]

=

Θ(1/ε). By Little’s law, E
[
N`

(ε)
]

= λ(1− p(ε))E
[
V`

(ε)
]
, which impliesE

[
N`

(ε)
]

= Θ(ε).

Proof of Lemma 5.7: Consider a further modification of systemU (ε) where the small jobs are not served
during the entire bad period. That is, even when there is only a single large job in the system, we already
stop serving small jobs. The fraction of time this modified systemU (ε) is busy with large jobs is given by
1−p(ε)

µ
(ε)
`

. The load of the small jobs is less thanρ. Thus, systemU (ε) will be stable ifρ < 1− 1−p(ε)

µ
(ε)
`

.

Sincep(ε) ≤ 1 andµ
(ε)
s ≥ 1, we have

1− p(ε)

(
µ

(ε)
`

)2 ≤
C2 + 1

2

1− p(ε)

(
µ

(ε)
`

)3 ≥
1
6ε
− 1

Now,

1− p(ε)

µ
(ε)
`

=

(
1−p(ε)
�
µ

(ε)
`

�2

)2

1−p(ε)
�
µ

(ε)
`

�3

≤

(
C2+1

2

)2

1
6ε − 1

It is easy to verify that for allε < ε′, the upper bound in the rightmost expression above is smaller than
(1− ρ).

Proof of Lemma5.8: Recall thatΦ(A) was defined as the mapping between non-negative random variables
whereΦ(A) gives the random variable for the number of jobs at the end of a good period given that the
number at the beginning of the good period isA. Let Ψ(A) be another mapping between random variables
defined by:

Ψ(A) = ∆b′′ +
∞∑

i=0

(i + ∆b′(i))I{A=i}

That is,Ψ(A) gives the number of small jobs at the end of a bad period given that the number at the start is
A. Further, the following facts can be easily verified via coupling:

1. A1 ≤st A2 =⇒ Φ(A1) ≤st Φ(A2)
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2. ∆b′(0) ≥st ∆b′(1) ≥st . . .∆b′(i) ≥ ∆b′(i + 1) ≥ . . .

The last fact impliesΨ(A) ≤st A + ∆b′(0) + ∆b′′
def
= A + ∆b. This gives us a way to stochastically upper

boundN∗
s,g. We definedN̄∗

s,g to be the solution to the following fixed point equation:

N̄∗
s,g

d= Φ(N̄∗
s,g + ∆b)

Also,

N∗
s,g

d= Φ(Ψ(N∗
s,g))

Let Y (0) = Ȳ (0) = 0. Further, letY (n + 1) = Φ(Ψ(Y (n))) andȲ (n + 1) = Φ(Ȳ (n) + ∆b). Since the
Markov chains defined by the transition functionsΦ(Ψ(·)) andΦ(·+ ∆b) are positive recurrent (we proved
systemU (ε) stable forε < ε′ but the proof implies the stability of this system as well) and irreducible,

N∗
s,g = lim

n→∞Y (n)

N̄∗
s,g = lim

n→∞ Ȳ (n)

SinceY (n) ≤st Ȳ (n) for all n by induction,N∗
s,g ≤st N̄∗

s,g.

Proof of Lemma 5.9: (We suppress the superscript(ε) throughout for readability.) LetNs,b′ denote the
number of jobs during the bad′ phase andNs,b′′ denote the number of jobs during the bad′′ phase. We will
stochastically boundNs,b′ andNs,b′′ separately using stochastic coupling.

Bound for Ns,b′ : We know that the lengths of bad′ phases of systemU (ε) are i.i.d. random variables. Let
Tb′ denote a random variable which is equal in distribution to these. It is easy to see thatNs,b′ is equal in
distribution to the number of small jobs in the following regenerative process. The system regenerates after
i.i.d. periods whose lengths are equal in distribution toTb′ . At each regeneration the system starts with
a random number of small jobs sampled from the distribution ofN∗

s,g and then the system evolves as an
M/M/K − 1 with arrival rateλp and service rateµs until the next renewal.

Now, Ns,b′ can be stochastically upper bounded by the number in system in another regenerative process
where the renewals happen in the same manner but at every renewal the system starts with a random number
of jobs sampled from the distribution of̄N∗

s,g. These jobs never receive service. However, we also start
anotherM/M/K − 1 from origin (initially empty) with arrival rateλp and service rateµs and look at the
total number of small jobs.

Finally, sinceTb′ is an exponential random variable, by PASTA, the distribution of number of jobs at a
randomly chosen time (or ast → ∞) is the same as the number of jobs at a random chosen renewal.
Therefore,

Ns,b′ ≤st N̄∗
s,g + ∆b′(0) (14)

Bound for Ns,b′′ : To obtain stochastic upper bound onNs,b′′ , we follow the same procedure as above. It is
easy to see thatNs,b′′ is stochastically upper bounded by the number of jobs in the following regenerative
system. The renewals happen after i.i.d. intervals which are equal in distribution toTb′′ , the random variable
for the length of a bad′′ phase in systemU (ε). At every renewal, the system starts with a random number
of jobs sampled from the distribution of̄N∗

s,g + ∆b′(0) and external arrivals happen at a rateλ (there are
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no departures) until the next renewal. LetTb′′e denote the excess ofTb′′ andAλ(T ) denote the number of
arrivals in timeT of a Poisson process with rateλ. This gives us the following stochastic bound onNs,b′′ ,

Ns,b′′ ≤st N̄∗
s,g + ∆b′(0) + Aλ (Tb′′e) (15)

The excess ofTb′′ comes into the picture because we need the number of jobs at a randomly chosen instant
of time during the bad′′ phase. The time elapsed since the starting of a bad′′ phase until this randomly chosen
instant of time is distributed asTb′′e, the excess ofTb′′ . Finally, combining (14) and (15),

Ns,b ≤st N̄∗
s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e) (16)

Proof of Lemma 5.11: Thez-transform ofNM(λs)/M((K−1)µs)/1(T ) is given by ([13], Theorem 4):

N̂M(λs)/M((K−1)µs)/1(T )(z) =
βz − (K − 1)µs(1− z)p0

βz − ((K − 1)µs − λsz)(1− z)
(17)

where,

p0 =
βξ

(K − 1)µs(1− ξ)

andξ is the root of the polynomial in the denominator ofN̂M(λs)/M((K−1)µs)/1(T )(z) in the interval(0, 1).
Let η be the other root (lying in(1,∞)).

By differentiating the transform in (17), we have

E
[
NM(λs)/M((K−1)µs)/1(T )

]
=

1
η − 1

E
[
(NM(λs)/M((K−1)µs)/1(T ))2

]
=

2
(η − 1)2

+
1

η − 1

Factoring the denominator of (17), we can writeη as,

η = 1 +
β

λs − (K − 1)µs
+ Θ(β2)

which results in the expressions in the lemma.

Proof of Lemma 5.12: Let T̃b′′(s) denote the Laplace transform for the length of the bad′′ phase of a bad

period. It is easy to show that giveñTb′′(s), ̂Aλ (Tb′′e)(z) is given by:

̂Aλ (Tb′′e)(z) =
1

E[Tb′′ ]

∫ ∞

t=0
Pr[Tb′′ ≥ t]e−λt(1−z)dt

=
1− T̃b′′(λ(1− z))
λ(1− z)E[Tb′′ ]

The Laplace transform ofTb′′ , T̃b′′(s), is given by

T̃b′′(s) =
µ

(ε)
`

µ
(ε)
` + λ(1− p(ε))

+
λ(1− p(ε))

µ
(ε)
` + λ(1− p(ε))

B̃2(s)
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whereB̃(s) is the Laplace transform for the length of busy periods of anM/M/1 with arrival rateλ(1−p(ε))
and service rateµ(ε)

` .

Note that thez-transform of∆b′′ is:

∆̂b′′(z) =
µ

(ε)
`

µ
(ε)
` + λ(1− p(ε))

+
λ(1− p(ε))

µ
(ε)
` + λ(1− p(ε))

B̃2(λ(1− z))

and∆̂b′′(z) 6= Â (Tb′′e)(z) sinceTb′′ is not an exponential random variable.

Substituting the values from Section5.2, we get the following asymptotics which will be sufficient for our
purposes:

E[∆b′′ ] = O(1) (18)

E
[
∆2

b′′
]

= Θ
(

1
ε

)
(19)

E[Aλ (Tb′′e)] = Θ
(

1
ε

)
(20)

Pr[b′′]
Pr[b]

E[Aλ (Tb′′e)] =
E[Tb′′ ]

µ
(ε)
` − λ(1− p(ε))

E[Aλ (Tb′′e)] = Θ(1) (21)

Proof of Lemma 5.13: Recall thatN (Int) denotes the number of jobs in the interruptedM/M/K system.

Let N̂ (Int)(z) be thez-transform ofN (Int) and let∆̂(z) be thez-transform of∆. Since the interruptions
happen according to a Poisson process,N (Int) also denotes the random variable for the number of jobsjust
beforethe interruptions. Letf map thez-transform of the distribution of number of jobs in anM/M/K
at timet = 0 to thez-transform of the distribution of number of jobs after theM/M/K system has run

(uninterrupted) forT ∼ Exp (α) time. The solution forN̂ (Int)(z) is given by the following fixed point
equation:

N̂ (Int)(z) = f
(
N̂ (Int)(z)∆̂(z)

)

Our next goal is to derive the functionf(·). Let pi(t) denote the probability that there arei jobs in the
M/M/K system at timet. We can write the following differential equations forpi(t):

d

dt
p0(t) = −λp0(t) + µp1(t) (22)

d

dt
pi(t) = λpi−1(t)− (λ + iµ)pi(t) + (i + 1)µpi+1(t) . . . 1 ≤ i ≤ K − 1 (23)

d

dt
pi(t) = λpi−1(t)− (λ + Kµ)pi(t) + Kµpi+1(t) . . . i ≥ K (24)

Let Π̂(z, t) =
∑∞

i=0 pi(t)zi. Using the above differential equations, we have:

∂

∂t
Π̂(z, t) = Π̂(z, t)

[
sµ

(
1
z
− 1

)
+ λ (z − 1)

]
(25)

+ µ

(
1− 1

z

) [
Kp0(t) + (K − 1)zp1(t) + . . . + zK−1pK−1(t)

]
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Let Π̂α(z) =
∫∞
0 Π̂(z, t)αe−αtdt andpi,α =

∫∞
0 pi(t)αe−αtdt. Integrating by parts, we get:

Π̂α(z) = Π̂(z, 0) +
Π̂α(z)

α

[
Kµ

(
1
z
− 1

)
+ λ (z − 1)

]

+
µ

α

(
1− 1

z

) [
Kp0,α + (K − 1)zp1,α + . . . + zK−1pK−1,α

]

To obtain N̂ (Int)(z), we substitutêΠα(z) = N̂ (Int)(z), Π̂(z, 0) = N̂ (Int)(z)∆̂(z) and pi,α = pi =
Pr

[
N (Int) = i

]
. This gives:

N̂ (Int)(z) =
µ

[
Kp0 + (K − 1)zp1 + . . . + zK−1pK−1

]

(Kµ− λz)− αz
(

1−b∆(z)
1−z

) (26)

SinceN̂ (Int)(1) = 1, we get

Kp0 + (K − 1)p1 + . . . + pK−1 = K − λ

µ
− α

µ
E[∆] (27)

The sum on the left is precisely the expected number of idle servers atT ∼ Exp (α). Finally,

E
[
N (Int)

]
=

d

dz
N̂ (Int)(z)

∣∣∣∣
z=1

(28)

=
µC

Kµ− λ− αE[∆]
+

λ + α
2

(
E

[
∆2

]
+ 3E[∆]

)

Kµ− λ− αE[∆]
(29)

where,

C = 0 ·K · p0 + (K − 1) · 1 · p1 + (K − 2) · 2 · p2 + . . . + 1 · (K − 1) · pK−1

To calculateC we need the following relations obtained from integrating by parts the differential equations
(22)-(23):

−λp0,α + µp1,α = α [p0,α − p0(0)]
λpi−1,α − (λ + iµ)pi,α + (i + 1)µpi+1,α = α [pi,α − pi(0)] . . . 1 ≤ i ≤ K − 1

which yieldspi,α = p0,α
1
i!

(
λ
µ

)i
+ o(α). Combining with (27) and the assumption thatE[∆] = o

(
1
α

)
, we

getpi = πi + o(1) for i ≤ K, whereπi are the stationary probabilities of anM/M/K system with arrival
rateλ and mean job size1µ . Using this, we have:

µC + λ

Kµ− λ− αE[∆]
= E

[
NM/M/K

]
+ o(1)

whereE
[
NM/M/K

]
is the mean number of jobs in a stationaryM/M/K queue with arrival rateλ and

service rateµ. (To see thatE
[
NM/M/K

]
can be written in the above form, set∆ ≡ 0.) Finally,

E
[
N (Int)

]
= E

[
NM/M/K

]
+

α
2 E

[
∆2

]

Kµ− λ
+ o(1)

sinceαE[∆] = o(1).
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B Proof of Proposition 1.3

The proof is trivial forρ < (K − 1)/K. Forρ ≥ (K − 1)/K, the inequalityWC2

h > WC2

l is equivalent to

C2 − 1
2

E
[
WM/M/K

]
>

1
1− ρ

[
ρ− K − 1

K

]
C2 − 1

2
. (30)

Recall that we still takeE[X] = 1 without loss of generality so thatρ ≥ K/(K − 1) is equivalent to
λ ≥ K − 1. Let C(K, λ) be the probability of wait in anM/M/K. It is easily shown that

E
[
WM/M/K

]
=

C(K, λ)
K − λ

. (31)

Therefore, (30) holds if (we have assumedC
2−1
2 > 0)

C(K, λ) > [λ− (K − 1)] . (32)

It is known thatC(K, λ) is a strictly convex function inλ on [0,K] (see [23]). Since (32) trivially holds for
λ = K − 1, and since the right hand side of (32) has derivative (w.r.t.λ) 1, it suffices to show that

d

dλ
C(K, λ)|λ=K < 1. (33)

Let Aλ be a random variable that is Poisson with rateλ. It is well known that

C(K,λ) =
1

ρ + (1− ρ)P (Aλ≤K)
P (Aλ=K)

. (34)

Using this expression, we find that

d

dλ
C(K, λ)|λ=K =

1
K

P (AK ≤ K − 1)
P (AK = K)

=
1
K

K−1∑

k=0

P (AK = k)
P (AK = K)

. (35)

Now, note that
P (AK = K − 1)

P (AK = K)
=

KK−1/(K − 1)!
KK/K!

= 1.

If k < K − 1 we find that
P (AK = k)

P (AK = k + 1)
=

k + 1
K

< 1,

which implies that
P (AK = k)

P (AK = k + 1)
< 1, k < K − 1.

Consequently, forK ≥ 2, we see that

d

dλ
C(K,λ)|λ=K =

1
K

K−1∑

k=0

Kk/k!
KK/K!

< 1, (36)

which completes the proof of the proposition.
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C Hyperdeterministic distributions and their extremal properties

In this section we discuss the utility of hyperdeterministic distributions in obtaining bounds on various
metrics based on moments or other partial information of the random variable involved via the theory of
Tchebycheff systems. The following discussion is borrowed from the work of Eckberg [11] who applied the
theory of Tchebycheff systems to queueing problems. A full treatment of appears in [18].

C.1 Definitions

We first define then-phase hyperdeterministic distribution,Dn, and then-phase degenerate hyperdetermin-
istic distribution,D∗

n, in DefinitionsC.1andC.2, respectively.

Definition C.1 Let 0 ≤ x1 < x2 . . . < xn. Letpi > 0, i = 1, . . . , n, be such that
∑n

i=1 pi = 1. We define
then−phase hyperdeterministic distribution,Dn, with parametersxi, pi, i = 1, . . . , n, as:

Dn ∼





x1 with probabilityp1

x2 with probabilityp2

...

xn with probabilitypn.

Definition C.2 Let 0 < x1 < x2 . . . < xn−1. Let pi > 0, i = 0, . . . , n − 1, be such that
∑n−1

i=0 pi = 1.
We define then−phase degenerate hyperdeterministic distribution,D∗

n, with parametersp0, xi, pi, i =
1, . . . , n− 1, as:

D∗
n ∼





0 with probabilityp0

x1 with probabilityp1

...

xn−1 with probabilitypn−1.

C.2 Tchebycheff inequalities and principal representations

The area of Tchebycheff inequalities is concerned with solving problems of the following kind: We are
given a partial characterization of a random variableX in terms of generalized moment constraints:

Pr[0 ≤ X ≤ B] = 1 (37)

E[gi(X)] = mi, 1 ≤ i ≤ n. (38)

Let T = {X|X satisfies (37) and (38)}. Given another functionf , we wish to determine the bounds

βl = inf{E[f(X)]|X ∈ T },
βu = inf{E[f(X)]|X ∈ T }.

Define the functiong0(x) = 1, 0 ≤ x ≤ B, and denote the moment space associated with{g0, g1, . . . , gn}
as

Mn+1 =
{
c ∈ <n+1 | ci =

∫ B

0
gi(u)dµ(u), 0 ≤ i ≤ n, for someµ ∈ D

}
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whereD is the set of all non-decreasing right continuous functions for which the indicated integrals exist.
For a pointc0 in the interior ofMn+1, we define theunique lower and upper principal representation (pr)
as follows:

Upper pr(µ̄) Lower pr(µ)
n even n/2 mass points in(0, B), one atB n/2 mass points in(0, B), one at 0
n odd (n− 1)/2 mass points in(0, B), one at 0, one atB (n + 1)/2 mass points in(0, B)

We say that functions{g0, g1, . . . , gn} form a Tchebycheff system over[a, b] provided the determinants

U

(
0, 1, · · · , n

x0, x1, · · · , xn

)
=

∣∣∣∣∣∣∣∣∣

g0(x0) g0(x1) · · · g0(xn)
g1(x0) g1(x1) · · · g1(xn)

...
...

...
gn(x0) gn(x1) · · · gn(xn)

∣∣∣∣∣∣∣∣∣

are strictly positive whenevera ≤ x0 < x1 < · · · < xn ≤ b. The functionsg0, g1, . . . , gn are referred to as
a complete Tchebycheff system if{g0, g1, · · · , gr} is a Tchebycheff system for eachr = 0, 1, · · · , n. The
following theorem describes the random variables that attain the extremal valuesβl andβu:

Theorem C.3 (Markov-Krein) If{g0, g1, . . . , gn} and{g0, g1, . . . , gn, f} are Tchebycheff systems on[0, B],
then

βl =
∫

f(u)dµ(u)

βu =
∫

f(u)dµ̄(u),

whereµ andµ̄ are the unique lower and upper principal representations, respectively, ofc = {1,m1, . . . ,mn}.
Note that the upper and lower principal representations belong to the classesDn or D∗

n for somen. The
Markov-Krein Theorem shows that for a large family of moment constraints, and in particular given a few
raw moments, random variables with hyperdeterministic distribution maximize or minimize the expected
values of a large class of functions. Statements of the form similar to conjectures presented in Section7 for
anM/G/K system with a partial characterization of the job size distribution can be proven forGI/M/1
systems with partial characterization of the interarrival distribution by consideringf(x) = e−sx (see Whitt
[38]). The applicability of Tchebycheff systems in verifying Conjecture7.3 is a potentially interesting
research direction.
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