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Abstract

The M/G/K queueing system is the oldest model for multi-server systems, and has been the topic of
performance papers for almost half a century. However, even now, only coarse approximations exist for
its mean waiting time. All the closed-form (nhon-numerical) approximations in the literature are based on
the first two moments of the job size distribution. In this paper we prove that no approximation based on
only the first two moments can be accurate for all job size distributions, and we provide a lower bound on
the inapproximability ratio. This is the first such result in the literature. The proof technique behind this
result is novel as well and combines mean value analysis, sample path techniques, scheduling, regenerative
arguments, and asymptotic estimates. Finally, our work provides insight into the effect of higher moments
of the job size distribution on the mean waiting time.






1 Introduction

TheM /G /K queueing system is the oldest and most classical example of multi-server systems. Such multi-
server systems are commonplace in a wide range of applications, ranging from call centers to manufacturing
systems to computer systems, because they are cost-effective and their serving capacity can be easily scaled
up or down.

An M/G/K system consists ok identical servers and a First-Come-First-Serve (FCFS) queue. The jobs
(or customers) arrive according to a Poisson process (the symipalith rate A and their service require-

ments (job sizes) are assumed to be independent, identically distributed random variables having a general
distribution (the symbof7). We useX to denote such a generic random variable. If an arriving job finds a
free server, itimmediately enters service, otherwise it waits in the FCFS queue. When a server becomes free,
it chooses the next job to process from the head of the FCFS queue. We denote the loadQiGHE

system ap = %[X] < 1. We will focus on the metric of mean waiting time in this work, denoted as
E[WM/G/K], and defined to be the expected time from the arrival of a customer to the time it enters ser-
vice. Throughout the paper, we assuBeX| = 1. This is without loss of generality since the arrival rate,

the mean job size and the mean waiting time can be scaled appropriately for general vefij&3.of

Even though thé//G /K queue has received a lot of attention in the queueing literature, an exact analysis
for even simple metrics like mean waiting time for the caSe> 2 still eludes researchers. To the best of
our knowledge, the first approximation for the mean waiting time fodBftG/ K queue was given by Lee

and Longton22] nearly half a century ago:

E[WM/G/K} ~ (CQ i 1) E[WM/M/K} 1)
2

whereE [WM/M/K] is the mean waiting time with exponentially distributed job sizes with the same mean,

E[X], as in theM /G /K system, and>? is the squared coefficient of variatib(SCV) of X. Many other

authors have also proposed simple approximations for the mean waiting/1i6né.7[ 21, 27, 28, 40], but

all these closed-form approximations involve only the first two moments of the job size distribution.

Whitt [39], while referring to [l) as “usually an excellent approximation, even given extra information about
the service-time distribution”, hints that approximations based on two moments of the job size distribution
may be inaccurate whefi? is too large. Similar suggestions have been made by many authors, but there
are very limited numerical experiments to support this. While a ifighmay not be of major concern

in applications like manufacturing or customer contact centers, the invalidity of the approxinitien (

a major problem in computer and communication systems. In Thb¥ee consider two values af?,

C? =19 andC? = 99. Such high values af? are typical for workloads encountered in computer systems,
such as the sizes of files transferred over the inte2jetahd the CPU requests of UNIX job&d] and

the supercomputing jobd4]. We consider a range of distributions (Weibull, lognormal, truncated Pareto
used in the literature to model computer systems workloads and compare the mean waiting time obtained
via simulations to the mean waiting time predicted by the approximatiof)inAs can be seen, there is

The squared coefficient of variation of a random variaklés defined a£? = var(X)/ (E[X])?
2The cumulative distribution function of a truncated Pareto distribution with SUppRkk, Tma] and parametet is given by:

—a —«
Loin — L
— min
F(x) -« —a
mmin — Tmax

Tmin S T S Tmax

Therefore, specifying the first two moments and éhparameter uniquely defines a truncated Pareto distribution.



C?=19 C? =99
E[W] E[W]
2-moment approx. (Eqil) || 6.6873 33.4366

Weibull 6.06910.0138| 25.9896:0.1773
Trunc. Paretda = 1.1) 5.527#-0.0216| 24.6049:0.2837
Lognormal 4.993'A40.0249| 19.5430:0.4203

Trunc. Paretda = 1.3)

4.8788:0.0249

18.7738:0.3612

3.9466+0.0321

10.64840.5373

Trunc. Paretda = 1.5)

Table 1:Simulation results for the5% confidence intervals of the mean waiting time fordiiG/ K with
K =10andp = 0.9. All job size distributions hav&[X] = 1.

a huge disagreement between the actual mean waiting time and the 2-moment approxithakartlger,
even among the distributions considered in Tdhkkere is a substantial variation in the mean waiting times.

In this paper, we support the above experimental findings with an investigation of how other characteristics
of the job size distribution may affect the mean waiting tigly//¢/%] . We do so by choosing a specific
class of distributions, the hyper-exponential distributions, which are mixtures of exponential distributions.
Hyper-exponential distributions allow us the freedom to evaluate the effect of different characteristics of the
distribution while preserving the first two (and even higher) moments.

Our foremost goal is to study the range of possible vaIuer[WM/G/K} when the first two moments of
X are fixed. We refer to this range as “the gap”. To define the gap, set

we? :sup{E[WM/G/K} ‘ E[X] = 1,E[X?] :02+1}, @)

and
we* = inf{E[WM/G/K] ‘ E[X]=1,E[X?] =C2+ 1}. 3)

The gap spanQWlCQ, W,LC?). As one of the major contributions of this paper, we prove the following
theorems:

Theorem 1.1 For any loadp < 1 and finiteC?,

W s (C’22+ 1) E[WM/M/K]

whereE [WM/M/K] is the mean waiting time when the job size distribution is exponential with tean

Theorem 1.2 For any finiteC?,
e? < {E[WM/M/K] fp< Bt
l = _ 2_ . _
VM) 4 1l [~ S O ity > B

P
whereE [WWM/M/K] is the mean waiting time when the job size distribution is exponential with tean

That is, we derive a lower bound ﬂWhC2 and an upper bound f(ch2. Therefore, Theorenik.1 and1.2
only give a lower bound on the span of the gap for general distributions. Observe that the gap can be quite

large if theC? of the job size distribution is high. In particular, when< % the maximum possible
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mean waiting time is at Iea{t%) times the minimum possible mean waiting time. We thus prove a

lower bound on the error of approximatiof)( Note that the lower bound oW,?2 in Theoreml.1is the

same as the 2-moment approximationIjh (Further, Theorems.1 andl1.2 prove thatany approximation

based only on the first two moments will be inaccurate for some distribution because the span of possible
values of mean waiting time is large.

Another interesting pointis that, in Theordn?, the lower bound depends on the loadThe case > %

is commonly known in the queueing literatureaspare serverand the caspg < % is known asat least

1 spare server The criterion of spare servers is known to play a crucial role in determining whether the
mean waiting time is infinite given that the second moment of the job size distribution is no2gsaamd
references therein). Theoréh® indicates that even when tii& of the job size distribution is finite, having

a spare server can potentially reduce the effe¢tobn the mean waiting time.

To prove Theoreni$.1andl.2, we look at two extreme distributions in the class of 2-phase hyperexponential
distributions and obtain the mean waiting time under those job size distributions. Since the hyperexponential
distributions only allowC? > 1, the span described by the theorems is non-empty only WHen 1 even

though the theorems are true for all value<Bt In fact, we are able to show that our lower bound for the
span of the gap is strictly positive whéa > 2 andC? > 1:

Proposition 1.3 LetE [W/M/K] be the mean waiting time in al /A /K with mean job sizé. Define:

W}?Q s <C22+1> E[WM/M/K}

and,
W a {E[wM/M/K} ifp< it
l E[WM/M/K] + ﬁ [,0— Klgl] 022—1 if p > KE1

For all values ofp € (0,1), K > 2andC? > 1,
W > wee,

We provide a proof of the proposition in Appendx

The two bounds can actually be shown to be identicalor= 1, and in fact agree with the well-known
Pollaczek Khintchine formula

E[W]W/G/l} _ <C22—|—1> E[WM/]V[/l}’ (4)

which shows that the mean waiting time is completely determined®gndE[X].

Results similar to Theoremk.1 and/1.2, were derived for the mean queue length offa/M /1 queue

by Eckberg 1] and extended by Whit{38] by considering extremal interarrival time distributions. For
the GI/M/1 queue, proving such theorems is simplified due to the availability of the exact expression for
the mean queue length. In fact, f6t/ /M /1 queues, tight bounds on the mean queue length given the
first n moments of the interarrival time distribution can be obtained by employing the theory of complete
Tchebycheff systemd.B].



Outline

Section2 reviews existing work on obtaining closed-form, numerical and heavy-traffic approximations for
E[WM/G/K]. As mentioned earlier, we prove Theorein#and1.2by looking at two extreme distributions

in the class of 2-phase hyperexponential distributions. Therefore, in S8¢tiabegin with some numeri-

cal experiments based on the 2-phase hyperexponential distributions. These experiments help us answer the
guestion: “Which characteristics of the job size distribution, outside of the first two moments, are important

in determining the mean waiting time?” Sectiofignd5 are devoted to proving Theorertsl and1.2,
respectively. In Sectiofl, we address the question of effect of higher moments of job size distribution on

the mean waiting time. In Sectidf we state conjectures on the exact valuesigf and W ” and the

effect of higher moments of job size distribution BfilV*/¢/X]. We conclude in Sectic8.

2 Prior Work

While there is a large body of work on approximating the mean waiting time 8f A6’/ K system, all the
closed-form approximations only involve the first two moments of the job-size distribution. As mentioned
earlier, to the best of our knowledge, the first approximation for the mean waiting time fbf /&y K
gueue was given by Lee and Longt@&¥[;

E[WM/G/K} ~ <C22+1> E[WM/M/K]

This approximation is very simple, is exact fA&r = 1 and was shown to be asymptotically exact in heavy
traffic by Kollerstiom [21]. The same expression is obtained by Nozaki and R2gsly making approxi-
mating assumptions about thé/G / K system and solving for exact state probabilities of the approximating
system, and by Hokstad ] by starting with the exact equations and making approximations in the solution
phase. Boxma et al2B] obtain a closed-form approximation for the mean waiting time inVanhD /K
system, extending the heavy traffic approximation of Cosmet&josThkahashi'33] obtains expressions

for mean waiting time by assuming a parametric formula. Kim@gi fises the method of system interpo-
lation to derive a closed-form approximation for the mean waiting time that combines analytical solutions
of simpler systems.

There is also a large literature on numerical methods for approximating the mean waiting time by making
much weaker assumptions and solving for state probabilities. For example, Tijmsl&] alsgume that if

a departure from the system leaves behkrjdbs wherel < k < K, then the time until the next departure

is distributed as the minimum @findependent random variables, each of which is distributed according to
the equilibrium distribution ofX. If, however, the departure leaves behingd K jobs, then the time until

the next departure is distributed &3 K. Similar approaches are followed i€, 17, 24, 25, 30]. Boxma

et al. 28] also provide a numerical approximation fof /G /K which is reasonably accurate for job size
distributions with low variability C? < 1) by assuming a parametric form and matching the heavy traffic
and light traffic behaviors. Other numerical algorithms incllid)@[9]. While these numerical methods are
accurate and usually give an approximation for the entire waiting time distribution, the final expressions do
not give any structural insight into the behavior of the queueing system and the efié¢t)f K parameters

on waiting time.

Heavy traffic, light traffic and diffusion approximations for thé/G /K system have been studied i [
19, 121,135,139, 4Q]. The diffusion approximations used i89] are based on many-server diffusion limits.



Motivated by call center applications, there is now a huge body of literature for multiserver systems with a
large number of exponential servers; see the survey pageaifd references therein.

Bounds on the mean waiting time féf /G / K queues (and more generally 167 G/ K queues) have been
obtained by assuming various orderings (stochastic ordering, increasing convex ordering) on the distribution
of job sizes (see, 26,32, 36,'37]), but these tend to be very loose as approximations. Moreover, one does
not always have the required strong orderings on the job size distribution.

We differ from the prior work in that we prove [WM/G/K] is inapproximable within a certain factor based
on just the knowledge of the first two moments of job size distribution.

3 Experiments with the H, distribution

Our goal in this section is to study the effect of characteristics other than the first two moments of the job size
distribution onE [WM/G/K] . To do this, we restrict our attention to the class of two-phase hyperexponential
distributions, denoted byl (see Definitiori3.1 below). Distributions in thed, class are mixtures of two
exponential distributions and thus have three degrees of freedom. Having three degrees of freedom gives us
a method to create a set of distributions with any given first two moments and analyze the effect of some
other characteristic. A natural choice for this third characteristic ighind momentof the distributior.

The H,, distribution is also convenient because it allows us to capture the effeatalf vs. large jobgthe

two phases of the hyperexponential) — an insight which will be very useful to us.

Definition 3.1 Lety; > po... > pu, > 0. Letp; > 0,7 =1,...,n, be suchthad"? , p; = 1. We define
then—phase hyperexponential distributioH,,, with parameterg:;, p;,i =1, ...,n, as:

Exp(p1)  with probability p;
Exp(ug)  with probability ps

H, ~
Exp (un,) with probabilityp,,

whereExp(u;), i = 1,...,n, aren independent exponential random variables with mépn =1,...,n.
Definition 3.2 Letjy > pig ... > py—1 > 0. Letp; > 0,i = 0,...,n — 1, be such thad "7~ p; = 1. We
define thexn—phase degenerate hyperexponential distributidfj, with parametergy, p;, pi, i =1,...,n,
as:

0 with probability pg

Exp(u1) with probability p;

Hy~ 9.

Exp (un—1) with probabilityp,, 1

whereExp(u;), i = 1,...,n — 1, aren — 1 independent exponential random variables with m(l-:}a,n

1=1,...,n—1.

3In [7,139], the authors use
__ m/m
p1/p1 + p2/ 2
as the third parameter to specify thi distribution. We choose the third moment because it is more universal and well understood
thanr. Further,r is an increasing function of the third moment.
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Figure 1:lllustration of the effect of the normalized 3rd momefy, of the job size distribution on mean
waiting time of anM /H,/10 system (solid line). The parameters of the job size distribution were held
constant aE[X] = 1 andC? = 19 with loadp = 0.9. The dashed line shows the standard two-moment
approximation ofI). The values on the—axis are the normalized third momeB).(

Figurel shows thel//Hs/ K evaluated numerically using matrix analytic methods. The dashed line shows
the standard two moment approximation . (Note that thez—axis is actually not showing [ X?] but
rather a normalized version of the third momeit,which we define as:

E[X°]E[X]

E[x2]? ©

3 =

We will use the normalized third momemt, throughout the paper. Our first interesting observation is that
the M/ H,/ K mean waiting time actuallgrops with an increase in the third momenitX . We also observe

that the existing two moment approximation is grossly insufficient as it sits at one end of the spectrum of
possible values foE [WM/H2/K]. For lower values of the third moment the approximation is good, but it

is very inaccurate for high values. Moreovany approximation based only on the first two moments will

be inaccurate for some distribution because the span of possible values of mean waiting time is large.

While the drop in mean waiting time with increasifggseems very counterintuitive, this phenomenon can
partially be explained by looking at how increasifigalters the distribution of load among the small and
large jobs. Lep(x) represent the fraction of load made up by jobs of size smallerih#nf (x) represents
the probability density function of the job size distribution, then,

ple) = gy [ uftude

In Figure2, we show thep(x) curves for distributions in thél, class with mean, C? = 19 and different
values off;. As reference, we also show thér) curve for the exponential distribution with me&nAs can



p(x)

0901 — 1 | 10 | 100

Figure 2:lllustration of the effect of the normalized 3rd momefit, on the distribution of load as a function
of job size for theH; class of distributions. The first two moments were held constaBf & = 1 and
C? = 19. The distribution of the load for exponential distribution with meatabeledExp(1), is shown
for reference.

be seen from Figui2, increasing’s while holding fixed the first two moments of tl#6, distribution, causes

the load to (almost monotonically) shift towards smaller jobs. In the limitsas> o, the p(z) curve for

the H, distribution converges to the(z) curve for the exponential distribution with the same mean. Thus
asfs increases, thé//Hy / K system sees smaller jobs more often, thereby causing a smaller mean waiting
time.

Based on the numerical evidence of the huge variatid (i //#2/K] a natural question that arises is:
Can this span of possible valueﬂb[fWM/H?/K] be quantified? Theorerdslandl.2answer this question.
Theorenil.1is obtained by considering the case of a distribution inAheslass with a lowds. In particular,

we consider the case of df; distribution (see Definitio.2) which we can prove has the lowest possible
third moment of all distributions in thél, family (with any given first two moments), and we derive the
exact mean waiting time undéf; jobs size distribution. Likewise, Theorehi is derived by considering

the case of aii/, distribution wherd&)s goes tooo and we derive the asymptotic mean waiting time for that
situation. Since we restrict our attention to a subset of the entire space of distributions with given first two
moments, Theorenik.1 and1.2 provide bounds on the exact spanE{fWM/G/K]. (We state conjectures
about the exact span in Secti@n

4 Proof of Theorem 1

To prove Theorend.l, it suffices to show the existence of a job size distribution with SC¥/which
gives the desired expression for mean waiting time. For this purpose, we consider the following degenerate



hyperexponential distributiot
- 0 with probability $;=1
2™ ) Exp (CQLJFJ with probability 2

It is easy to verify that the above distribution has méasquared coefficient of variatiofi> andfs; = %
We denote thé//G /K system withH job size distribution ad//H; /K. Itis interesting to note that the
H; distribution as defined above has the lowest third moment among all trdistributions with mearn
and SCVC?:

Claim 4.1 LetU,~1{H,|C?} be the set of all hyperexponential distributions with finite number of phases,
mean1 and squared coefficient of variatia®> (C? > 1). The H; distribution lying in this set has the
smallest third moment among all the distributions.ip.1{ H,,|C?}.

Proof: See AppendiAl ]

We now analyze the mean waiting time in &/ H; /K system. Since the scheduling discipline is size
independent, the distribution of waiting time experienced by zero-sized jobs and non-zero jobs is identical.
Further, to find the waiting time distribution experienced by non-zero sized jobs, we can ignore the presence
of zero-sized jobs. The waiting time distribution of the non-zero sized jobs is thus equivalent to the waiting
time distribution in anM /M / K system with arrival rat%% and mean job siz@%. The latter system,
however, is just anV/ /M /K system with arrival rate. and mean job sizé seen on a slower time scale,
slowed by a facto@. Hence, the mean waiting time of the original system is éi%bl times the mean
waiting time of anM /M /K system with arrival rate and mean job sizé. That is,

E{WM/HQ‘/K} _ <022+1> E[WM/M/K]

5 Proof of Theorem 2

As in the proof of Theoreni.l, to prove Theoreni.2, it suffices to show the existence of a job size
distribution with SCVC? which gives the desired mean waiting time. However, in this case, the distribution
we need is the limit of a sequence of distributions and hence the analysis will involve finding the limit of
mean waiting times of a sequenceMf/G/ K systems. Since the proof involves a new technique, we begin
in Sectior5.1with a high level proof idea. Subsequent subsections will provide the rigorous lemmas.

5.1 Proofidea

We consider a sequence of systems wheréixibe first two moments of the job size distributdom look at
increasing values df; as parameterized by a paramet&rhich allows for increasing the third momenteas

goes to 0. More precisely, the system parameterizedsbjheM/HQ(E)/K (see Sectiok.2, Definition5.1)
and we will consider the behavior of this sequence of systeras-a$.

The key steps involved in the analysis are as follows:

1. We first observe that thHéE) job size distribution is made up of two classes of jobs — small jobs and
large jobs. We usé&/; and NV, to denote the number of small and large jobs, respectively.

“We use the notatioRxp () to denote an exponential random variable with mgan

8



(&)
2. We show that the expected number of large j&bs) ZM/HQ /K} , vanishes asgoes to zero; therefore

it suffices to consider only small jobs (see Secta¥).

3. For eachM/Hée)/K system, we construct another systéi?), which stochastically upper bounds
the number of small jobs in the correspondMqHée)/K system. That is,

(e)
M/H. K (€)
Ns / 2 / Sst NSU

(see Sectioh.4).

4. To analyzeNsU(6>, we consider two kinds of periodgjood periods — when there are no large jobs
in the system, antdad periods — when there is at least one large job in the system. Our approach
is to obtain upper bounds on the mean number of small jobs during the good and bad periods,

E [N§]<€)| good periO(}i andE [NSU(”\ bad perio%i, respectively, and obtain an upper bouncE{WsU(E)}
using the law of total probability:

E [Ng<€)] —E {NSU(E)\ good perio%iPr[good periodl+ E {NSUM\ bad perio%iPr[bad periodl

We obtain upper bounds on the mean number of small jobs during the good and bad periods using the
following steps (see Secti@b5):

(a) We first look at the number of small jobs only switching points That is, we consider the
number of small jobs only at the instants when the system switches from a good period to a bad
period and vice versa.

(b) To obtain bounds on the number of small jobs at the switching points, we define a random
variableA, which upper bounds thiecrementin the number of small jobs during a bad period.
Further, by our definition, the upper bourd is independent of the number of small jobs at
the beginning of the bad period. To keep the analysis simple, this independence turns out to be
crucial.

(c) Nextwe obtain a stochastic upper bound on the number of small jobs at the end of a good period
by solving a fixed point equation of the form

AL ®A+A)

whereA is the random variable for (the stochastic upper bound on) the number of small jobs at
the end of a good period.

(d) Finally, we obtain the mean number of small jathsring the good and bad periods from the
mean number of small jobs at the switching points.

5. Similar toU©, for eachM/Hée)/K system, we also construct a systelft), which stochastically
lower bounds the number of small jobs in the correspondif‘/g{ée)/K system. That s,

(e)
M/H. K (e
Ns / 2 / Zst Ns

(see Sectio®.6). We omit the analysis of(¢) since it is similar to analysis dff (). Note, that we
indeed obtain

E[NSU(E)} - E[NSL“)] +o(1)

Convergence of [NM/Hy)/K} follows from convergence of its upper and lower bounds.

9



6. Finally, we use Little’s law to obtain mean waiting tirr‘:é[WM/H§€>/K], from the mean number of

waiting jobs,E [NM/Hée)/K} — Kp.

5.2 Preliminaries

Below we give a formal definition of thHQ(E) class of job size distributions.
Definition 5.1 We define a family of distributions parameterized lag follows:

©) i L (6)
Hée) _ Exp ( ps with probability p
Exp (1\9)  with probability1 — p(©

g
ul >
wherep!?, /L[) andp(© satisfy,
(e) —ple -
g+ =E[x9] =1
Hes My .

2(;9(?)2 +21(M_(§;€; = E_(X(e)>2} — 0?41
s ¢
plo) +61_p(6) _ E—(X(E))T 1

6
ORI

For proving the upper bound on the lower bouw@f2 of E[W], we look atE [WM/H@/K} ase — 0. That
is, the third moment of service time goessto Below we present some elementary results on the asymptotic
behavior of the parameters of tlﬁgg) distribution, which will be used in the analysis in Secl@é.
Lemma 5.2 Theu!?, u{” andp(©) can be expressed in termscods®:
3
p =14 5(C* = 1P+ 0(e)

) = 3(C2 = 1)e +18C2(C? — 1)é* + O(Y)
9

ﬁ@:1—§«ﬂ—1ﬁ8+@@%
Corollary 5.3 Ase — 0,
L N A |
Cilr i
*We say a functioth(e) is ©(g(e)) if
0 < lim inf % < lim sup % < o0

Intuitively, this means that the functiohsandg grow at the same rate, asymptotically,eas> 0.

10



Corollary5.23is saying that as the third moment grows, asymptotically, all the load is madelypy the

small jobs, whose mean approache¥Vhile the mean size of the large jobs also grows linearly in the third
moment (asymptotically), the probability that a large job arrives vanishes at a faster rate. Thus, intuitively,
our M/Hée)/K system rarely encounters a large job in the limitcas> 0. Note that, as — 0, the

Héﬁ) distribution converges in distribution to tfigxp(1) distribution. Thus, the stationary queue length and
waiting time distributions of the sequenceMT/HQ(E)/K systems also converge in distribution to the queue
length and waiting time distributions of the correspondidg)// K system 8, 31]. However, convergence

in distributiondoes noimply convergence of the means. Indeed, in the case where’%, we find that

the mean of the limiting system is nB{WW//*/K]_ This can be easily verified fdi = 1, where the mean
waiting time is given by the Pollaczek-Khintchine formui. (

5.3 Bounding the number of large jobs

The following lemma proves that to bound the mean number of jobs MﬁHQ(E)/K system withirf o(1)
, it suffices to consider only the small jobs.

(€)
Lemma 5.4 E[NZWHQ /K] = o(1)

Proof: We will upper bound the expected number of large customers in the system by (a) giving high
priority to the small customers and letting the large jobs receive service only when there are no small jobs in
the system, and (b) by allowing the large customers to be served by at most one server at any time. Further,
we increase the arrival rate of small customers\tand increase the mean size of the small customers

to 1. Specifically, IetZW(E) be the steady-state number of customers irj\/a(v\u _p(e))) /M (Mﬁ) /1

gueue with service interruptions, where the server is interrupted for the duration of the busy period of an
M(M\)/M(1)/K queue. ByM (a)/M (b)/k, we mean ar\/ /M /k queue with arrival rate and service rate

b. Itis easy to see that

() _
E [le/% /K] < E[Ne(ﬂ .
The proof is completed by the following lemma:
Lemma 5.5 E[E(e)] = o(1)
Proof in AppendiXA. |

(e)
5.4 Construction of U®): the upper bounding system for N."/*2 /%

Figure3 illustrates the behavior of systeti(). Denote periods where there are no large jobs (including
when the system is idle) agpod periods, and periods when there is at least 1 large joblmdgeriod.
During a good period, the small jobs receive service according to a néfrsatver FIFO system. As soon

®We say a functiorh(e) is o(g(e)) if

Intuitively, h becomes insignificant when compared wjtrasymptotically, ag — 0.
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Good period Bad period Good period

. Bad' phase | Bad'’ phase |
(Olargejobs) | (1largejob) (> Olargejobs) - (Olargejobs)

Number of

large jobs m

Largejob arrives Third largejob arrives

Gets preemptive prio at server 1 Queues up at server 1
Second largejob arrives Good period begins
Queues up at server 1 Service of small jobs resumes
Service of small jobs ceases

Figure 3:Construction of systerfi () which upper bounds the number of jobs inMjHQ(G)/K

as a large job arrives, we say that a bad period begins. The bad period consists of up to 2 phasbkadcalled
andbad’. A bad phase spans the time from when a large job first arrives until either it leaves or a second
large job arrives (whichever happens earlier). A’bptase occurs if a second large job arrives while the
first large job is still in the system, and covers the period from when this 2nd large job arrives (if it does)
until there are no more large jobs in the system.

The large job starting a bad period preempts the small job at seffieany) and starts receiving service.
The small jobs are served by the remain{iig— 1) servers. If a second large job arrives during a bad period
while the first large job is still in system, starting a Bauhase, we cease serving the small jobs and continue
serving the large jobs bynly serverl until this busy period of large jobs ends (there are no more large jobs).
When the last large job leaves, we resume the service of small jobs according to a Aos@aler FIFO
system.

Analyzing systent/(¢) is simpler than analyzing the correspondMgHQ(E)/K system because iii(9, the

large jobs form an\/ /M /1 system independent of the small jobs, due to preemptive priority and service by
only one server. The small jobs operate in a random environment where they havesgitiiér— 1) or 0
servers.

(©)
Lemma 5.6 The number of small jobs in :M/Hée)/K systemz\fSM/H2 /K, is stochastically upper bounded
by the number of small jobs in the corresponding systéfh NV

Proof: Straightforward using stochastic coupling. |

Stability of system U(©): Since systeni/(¢) is not work conserving, there are valuesedbr which it is
unstable, even whem < 1. Therefore we restrict our attention to the following range:of

12



Good period Bad period

Number of ‘
small jobs - Bad’ phase Bad'’ phase

| time——
Ty | I |

Ty

Figure 4:Notation used for analysis of systeiit¢)

Lemma 5.7 The upper bounding systehi(?), is stable forc < ¢ where

Proof in AppendixAl.

5.5 Analysis of systent/(©

Figure4 introduces the notation we will use in this section. Since in this section we focus only on the
analysis of systeni/(¢), we will omit superscripting the random variables used in analysi&/tsy for
readability. Unless explicitly superscripted, random variables correspond t&thsystem. We define the
following random variables:

e N7, = the number of small jobat the endof a good period, that is, when the system switches from

a good to a bad period

e Ny = the number of small jobat the endof a bad period, that is, when the system switches from a
bad to a good period

e N, , = the number of small jobduringa good period
e N, = the number of small jobduring a bad period

e A, = theincrementn the number of small jobs during a Bagkriod (when small jobs havg< — 1)
servers available)

e Ay (n) = theincrementin the number of small jobs during a Hazeriod given that the bageriod
begins withn small jobs

13



e A, = theincrementin the number of small jobs during a Bageriod (where the service of small
jobs has been blocked)

° Ab = Ab/(O) + Ab//

We denote the fraction of time spent in a good, bad; bad bad phase byPr[g], Pr[b], Pr[t/] andPr[b"]
respectively.

By the law of total probability,
E[Ns] = E[Ns4]Pr[g] + E[N; ] Pr[b] (6)

In Sectior5.5.1, we derive stochastic upper bounds8g, and N, ;, which give us an upper boun@®)( on
E[Ns]. In Section$.5.2and5.5.3 we derive expressions for the quantities appearing)inThese are used
to obtain the final upper bound &jN] at the end of Sectich.5.1

5.5.1 Stochastic Bounds

Obtaining a stochastic upper bound onN;, : Let ®(A) be a mapping between non-negative random
variables wher&( A) gives the random variable for the number of small jobs at the end of a good period,
given that the number at the beginning of the good period is gived.bizet Ns*,g be the solution to the
following fixed point equation:

NES d \ Tk
Ngg=®(Ng,+ Ap) @)

Lemma 5.8
d —
Ns,g = N;g <st N:,g
Proof: The first relation follows since the length of a good period is exponential and its termination is

independent of the number of small jobs. Henceghyditional PASTA [34] (see also13] for a similar use
of conditional PASTA),

d
Nsvg = N:g

Intuitively, A, stochastically upper bounds the increment in the number of small jobs during a bad period
since it assumes there were zero small jobs at the beginning of the bad period and hence ignores the depar-
tures of those small jobs. Therefore, solving the fixed point equatjogies a stochastic upper bound on

Ny ;. Aformal proof of the stochastic inequality is Appenix ]

Obtaining a stochastic upper bound onV, ; : The required upper bound is given by the following lemma.

Lemma 5.9
Ns,b Sst N;g + Ab’(O) + Ib”|bA/\ (Tb"e)

whereA) (Ty.) is the number of arrivals of a Poisson process (with rateluring a random time interval
Ty denoting theexcessof the length of a bdt period, and wherd,, denotes an indicator random
variable which isl with probability Pr[b”]/Pr|[b].

14



Proof: Observe that the first term in the upper bound is a stochastic upper bound on the number of small
jobs at the beginning of a bad period. The second term denotes a stochastic upper bound on the increment
in the number of small jobs during a Bazhase. Finally, the third term denotes the “average increment” in

the number of small jobs during a Baghase. See Appendix for the complete proof. |

Combining the bounds ol , and N, ;, we get an upper bound & /N]:

E[N] < E[N;,|Prlgl + E[N}, + Ay (0) + Ly p Ay (T, ) | Prib] (8)

To complete the proof, we need expressions for each of the quantities in eq@jtitm $ectior5.5.2we
will obtain expressions foE[A (0)] for the casep < £=% andp > £=L. In Sectior5.5.3we will obtain
E[N;g]. However, to do this, we will need the first two moments\of E[A,] andE[A7], which are also
derived in Sectioi5.5.2 To obtainPr[b], recall that the large jobs form awW /M /1 system. Hence (see

Lemmab5.2 for expressions fop(©) anduée)),

A1 =p)
M

+0(e?)

Pr[b] = Pr[> 1 large joh) =

_ 3Kp(C* —1)%
=

Further, in the proof of Lemm&.12, we prove

Pr(b"] B
Pr[b] E[A)\ (Tb”e)} - 9(1)
Finally, substituting the expressions 8N} |, E[Ay (0)], %E[A,\ (Tyr.)] andPrb] into equation/8),

we get

: K-1
Caseip < "=

E[V,] < E[NM/M/K} +o(1)

Case:p > £-1
e, < (E[vnn] o Koo [, K11 o)
o= 1-p” K 2 ‘
K (p— %) BKp(C? —1)%
—i—( 3(C2—1)e +0(1) < 5 >+0(1)
K K-1]?C?-1 K—-1]C?-1
_ M/M/K P _ 2 _
E[N |+ _p[p K} ; +K,0[p K} o+ o)
K K-1]C%-1
_ M/M/K P o n—1
B[N 4 _p[p K} 5— +o(l)
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5.5.2 Obtaining E[A;] and E[A?]

Recall that we defined,
Ay = Ab/(O) + Ay
whereA (0) is the random variable for the number small jobs at the end of adbede given that it starts

with 0 small jobs and\,- is the number of small of jobs that arrive during a batiase.

Lemmab.10gives the expressions f&{A, (0)] andE[A7 (0)]. Lemmab.12gives the asymptotic expres-
sions forE[A+] andE[A7, ] which will be sufficient for our purposes of obtainifgV;] within o(1).

Lemma 5.10
Caseip < 522

Case;p > &1
K (p— %)
E[Ay(0)] = 3(02—_56 +06(1)
2 (., K-1)\2
e230] = 5 =gt o ()

Proof: We can think ofA; (0) as the number of jobs in at//M /K — 1 with arrival rateA\s = Ap
and service ratg at timeT ~ Exp () (8 = A(1 — p) + u¢) given that it starts empty. Let us call this
NMO)/Mps)/K=1(T) - Let NMQs)/M(K=Dus)/1(T) be the number of jobs in ai//M /1 with arrival
rate \s and service ratéK — 1)u, at time7" given that it starts empty. Then,

NMOME=Dm) 1) < NMOD/M@)/ K1) < NMOD/MIE-Dm)/ 1) 4 (K — 1) (9)

To see why(9) is true, first note that using coupling]™ (As)/M(1s)/K=1(T) can be (stochastically) sand-
wiched betweedv M (As)/M((K=1)us)/1(T) and the number of jobs in al /M /K — 1 where the service is
stopped when the number of jobs goes belgw- 1. Finally, again using coupling, the number of jobs in
this latter system can be stochastically upper bounded Hy*s)/M (K=Dus)/1(T) 4 (K — 1).

Therefore, usingg), we only need to evaluate the first and second momemg'éfs)/M (K—1us)/1(T) to
obtainE[A, (0)] andE[AZ (0)] within an error of©(1) and©(E[Ay (0)]), respectively. We do this next.

Case:p < £-1
For this case thd//M /K — 1 system is stable during bapghases, and hence

E[Ay (0)] = O(1)
E[A7(0)] = 0(1).

. K-1
Case:p > =~

The following lemma gives the expressions for the first and second mome&!6f)/M (K—=1us)/1 ()
for the case > &1,
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Lemma5.11 LetT ~ Exp(5) and s > (K — 1)us. Then,

E[NM(AS)/M((K_WS)A(T)] A — (f;— Dus (1)
E[(NM(AS)/M((KA)MS)A(T))z] _o ()\s — (f;— 1)%)2 o <;> |

Proof of Lemmal5.11 See AppendiA.

Substituting in the expressions fag, As andu, from Lemmabs.2 and using the inequalitydf, we obtain
the expressions in the statement of the lemma. ]

Lemma 5.12 The asymptotics for the first and second moments,ofare given by:

ElAy] = O(1)

E[AZ] =0 <1>

€

Proof: See AppendiA. |

5.5.3 Obtaining E[N; ]

We will use the following lemma to obtai [N, |.

Lemma 5.13 Consider anM /M /K system with arrival rate\ and mean job sizg~!. We interrupt this

M /M /K system according to a Poisson process with rat@nd at every interruption, a random number

of jobs are added to the system. The number of jobs injected are i.i.d. random variables which are equal
in distribution to some non-negative random variatle Let NU/"") denote the number of jobs in this
M/M/K system. IE[A] = o (1), we have,

Q

E[N(W)} - E[NM/M/K] i SE[A7]

Proof in AppendixAl

To use the above lemma, we will consider &fy M /K with arrival rate)\p(e), mean job size%, a =
Hy

A1 —pl9) andA LYNY Using the expression fdE[A;] derived in Sectioi®.5.2, one can check that the
condition of Lemmdb.13is met. Therefore,

1A(1 = pl)E[AZ]
2 Kupu— X

E[NZ,] = E[NMAUK] 4 +o(1) (10)

Substitutinge [A?] from Sectiorb.5.2,

Caseip < &1

1A (3(C* =1)°¢) 0 ()
2 Kup—A

- E{NM/M/K} +o(1)

E[N;,] = E[NMA/K] +o(1)
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large jobs

Large job arrives Second large job arrives | |Large job completes service
All existing jobs instantaneously Instantaneously completes | |Normal service of small jobs
complete service service resumes

Small jobs receive service at a total
rate of (K—1)p®

Figure 5:Construction of systemi(¢) which lower bounds the number of jobs in MVHQ(G)/K

: K-1
Case:p > =

E[N?,]

2(  K—1)\2
A - 17e) (354 )
Kp— +o(1)
2 _ 1122 _
:E[J\IM/M/ﬂJr K7p [p—K 1] -1

=E [VM/M/K] +%

1—p K 2

5.6 Construction of L(): the lower bounding system

Case:p > £=1

Figurel5 shows the behavior of systeit®) for this case. As before, denote the periods where there are

no large jobs in the system gsod periods, and periods when there is at least 1 large jdimdgperiods.

During a good period, the small jobs receive service according to a ndks@rver FIFO system. As

soon as a large job arrives to begin the bad period, all the small jobs currently in the system instantaneously
complete service. That is, the system restarts withrge job. Any large jobs that arrive during this bad
period complete service instantaneously. Further, whenever there are leg&thath) small jobs in the

system during a bad period, they are collectively served at a total réfé of1) ug@.

The analysis of systerh(®) is simplified because the large jobs formafy)/1/1 system independent of

the small jobs. The length of a bad period is distributedias (Mf)) and the length of a good period is
distributed agixp (A(l — p(ﬁ))). Further, during a bad period, the number of small jobs behaves as in an
M/M/1 queue with arrival ratép(® and service rateK — 1)H§E) starting with an empty system.

Case:p < £=1

For this case we can consider an alternate lower bounding system which simplifies the analysis. In the lower
bounding system, systeiii©), all large jobs instantaneously complete service on arrival. Thus the number

of large jobs is alway8 and the number of small jobs behaves as il&f\// K with arrival rateAp(©) and
mean job size{.
Hs
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C? =19 C? =99
E[W] 93 E[W] 93

2-moment approx. (Eqil) || 6.6873| - 33.4366 -
Weibull 6.0691| 4.2 | 25.9896| 8.18
Truncated Paretor = 1.1) || 5.5241| 4.24 | 24.5788| 6.30
Lognormal 4,9937| 20 | 19.5548| 100

Truncated Parety = 1.3) || 4.8770| 7.59 | 18.8933| 16.85
Truncated Parety = 1.5) || 3.9504| 20 | 10.5404| 100

Table 2: Results from simulating an//G /K with K = 10 andp = 0.9. All job size distributions have
E[X]=1.

C* =19 C? =99
EW] | 65 | E[W] 05
2-moment approx. (Eqil) || 0.2532| - 1.2662 -
Weibull 0.1374| 4.2 | 0.4638| 8.18
Truncated Paretn = 1.1) || 0.0815| 4.24 | 0.2057| 6.30
Lognormal 0.0854| 20 | 0.2154| 100
Truncated Paretgy = 1.3) || 0.0538| 7.59 | 0.0816| 16.85
Truncated Paretoy = 1.5) || 0.0355| 20 | 0.0377| 100

Table 3: Results from simulating an//G /K with K = 10 andp = 0.6. All job size distributions have
E[X] = 1.

(©)
Lemma 5.14 The number of small jobs in aM/Hée)/K system,NsM/H2 /K

bounded by the number of small jobs in the corresponding sny@mNsL(e).

, Is stochastically lower

Proof: Straightforward using stochastic coupling. [ |

6 Effect of higher moments

In Theoremdl.1 and1.2, we proved that the first two moments of the job size distribution alone are insuf-
ficient to approximate the mean waiting time accurately. In Se@jdoy means of numerical experiments,

we observed that within thé&l, class of distributions, the third moment of the job size distribution has a
significant impact on the mean waiting time. Further, we observed thaifgob size distributions, in-
creasing the third moment causes the mean waiting time to drop. It is, therefore, only natural to ask the
following questions: Are three moments of the job size distribution sufficient to accurately approximate the
mean waiting time, or do even higher moments have an equally significant impact? Is the qualitative effect
of 4th and higher moments similar to the effect of the 3rd moment or is it the opposite? In this section, we
touch upon these interesting and largely open questions.

We first revisit the simulation results of Talle Table2 shows the simulation results of Talilsagain,

but with an additional column — the normalized third moment of the job size distribution. Observe that
the lognormal distribution and the Pareto distribution witk= 1.5 haveidentical first three momentget

exhibit very different mean waiting times. This behavior is compounded when the system load is reduced
to p = 0.6 (Table3). As we saw in Sectio3, the disagreement in the mean waiting time for the lognormal
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Pareto (a=1.5, C2:19)
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Figure 6:The distribution of load as a function of job size for the lognormal and bounded Pareid (5)
distributions for two values of squared coefficient of variation. Although the lognormal and Pareto distri-
butions have identical first three moments, the distribution of load among different job sizes is drastically
different.

and the truncated Pareto distribution can be partly explained by the very different lggkihgurves for
these distributions, shown in Figué= The bulk of the load in the lognormal distribution is constituted by
larger jobs as compared to the truncated Pareto distribution.

The example of lognormal and Pareto £ 1.5) distributions suggests that even knowledge of three mo-
ments of the job size distribution may not be sufficient for accurately approximating the mean waiting time.
So what is the effect of higher moments on the mean waiting flimé2gin answering this question, we will
follow a similar approach as in Secti8where we looked at thé5 job size distribution. However, we first

need to expand the class of job size distributions to allow us control over the 4th moment. For this purpose,
we choose th&-phase degenerate hyperexponentialss of distribution, denoted bi;. Analogous to

the H distribution, H3 is the class of mixture of three exponential distributions where mean of one of the
phases i$) (see Definitior8.2). Compared to thél, class, the/{; class has one more parameter and thus
four degrees of freedom, which allow us control over the 4th moment while holding the first three moments
fixed.

We now extend the numerical results of Figlirby considering job size distributions in ti#&] class with
the same mean and SCV as the example illustrated in Figuewever, to demonstrate the effect of the 4th
moment, we choose two values@fand plot theE[11] curves as a function of the 4th moment in Figidre
As a frame of reference, we also show the mean waiting time undddtheb size distribution (with the
same first three moments &5) and that undefZ; distribution (with the same first twvo momentsd$).

As is evident from Figuré, the fourth moment can have as significant an impact on the mean waiting
time as the third moment. Further, as the 4th moment is increased, the mean waiting time increases from
E[WM/H2/K] to E[WM/H:/K] Therefore, the qualitative effect of the 4th moment is opposite to that of
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Figure 7: lllustration of the effect ofith moment of the service distribution on mean waiting time of an

M /Hj /10 system for two values of the normalized third moment. Dashed line shows the mean waiting
time under an,, service distribution with the same first three moments and the light dotted line shows the
mean waiting time under al; service distribution with the same first two moments asiHedistribution.

The mean and squared coefficient of variation of the job size distribution were held condtaht] at 1

andC? = 19 with loadp = 0.9 (same as Figuri).

the third moment.

The effect of the fourth moment also helps explain the disagreement between the mean waiting time for the
lognormal, the truncated Pareto & 1.5) and theH, distributions. For the casg€? = 19, the lognormal
distribution has a much higher 4th momeBt{§*] = 64 x 10°) than the Pareto[X*] = 5.66 x 10°)

and theH, (E[X*] = 4.67 x 10°) distribution withf; = 20. While this is a possible cause for a higher
mean waiting time under the lognormal distribution, there is still disagreement between the mean waiting
time under the lognormal distribution and thg distribution (see Figuré) with the same first 4 moments,
indicating that even higher moments are playing an important role as well!

In conclusion, by looking at a range of distributions including hyperexponential, Pareto and lognormal
distributions, we see that the moments of the job size distribution may not be sufficient to accurately predict
the mean waiting time. Other characteristics, such as the distribution of load among the small and large job
sizes, may lead to more accurate approximations.

7 Conjectures

In this section, we make conjectures on tight bounds on the mean delayMf/ &Y K queueing system
given firstn moments for general.
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7.1 Sharp two-moment bounds

In Theoremél.1and1.2, we proved a lower bound oivC” and an upper bound divC*. Here we make
the following conjectures on their exact expressions:

Conjecture 7.1 For anyp < 1 and finiteC?,
Wi = (€ + 1) E[WM/PIK]

whereE [WM/P/K] is the mean waiting time when all the jobs have a constantlisize
Conjecture 7.2 For any finiteC?,
E[WM/D/K] if p< £2L
K-1
K

E[WM/DIK] 4 Ly - KA O if >

W =

whereE [WM/P/K] is the mean waiting time when all the jobs have a constantisize

A proof of Conjectur&.1might follow these lines: Itis easy to prove th&iC” > (C2+1)E[WM/P/K] py
considering theD; distribution (mixture of two point masses with one point mads aee DefinitionC.2),
and following the same argument that we used forAfjedistribution in proving Theoreni.l. However,

proving thatV” < (C2+1)E[WM/P/K] seems non-trivial, but we provide some justification. First, note

170/
thatE [WM/D/K] > w and hence the bound in Conjectitéis indeed tighter than Theorehil.

Further, for anM /G /1, the mean delay iexactly linearin C? and one expects the effect of variability to

go down as more servers are added. However, we demonstrate a distributid?; (thstribution) which
exposes the entire effect of variability - and hence seems to create a worst case scenario. Third, it is known
(see Theorerg.3) that given the first two moments, the; distribution is the unique positive distribution

that minimizes all moments higher than the second moment - and therefore extremal.

A proof of Conjecture?.2 might follow these lines: It should not be too difficult to extend the proof of
Theorem1.2 by defining aDge) sequence of distributions (parameterized mixture of two point masses,
analogous td{;)) to prove that

o {E[WM/D/K] if p <

WS B b L - KA1 S i p > KL

=

|N‘

However, proving the tightness of the above bound seems non-trivial.

It is interesting to note that thB; andDge) distributions were previously used by Whi&g] as interarrival
distributions to obtain extreme values for the mean queue length i@ f#&//1 queue.

7.2 Bounds based on higher moments

Just as we have proved (and made stronger conjectures about) the inapproximability of the mean waiting
time given the first two moment of the job size distribution by giving the span of the possible values of
the mean waiting time, it is useful to know how this span shrinks as we successively know more and more
moments. For the third moment, while Figitsuggests that within th& class of job size distributions,
increasing the third moment causes a drop in the mean waiting time, this statement is too restrictive to be
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useful. Letm = (mj,ma,...,m,) € R" be such that there exists a positive random variablesith
E[XY] = m;, i = 1,...,n. Forn odd, defineD(m) to denote the uniquéf!-phase hyperdeterministic

distribution (DefinitionC.1) with moments(my, ..., m,). Forn even, definé@*(m) to denote the unique
(% + 1)- phase degenerate hyperdeterministic distribution (Defin@@) with momentgmy, ..., my).
Let

W (m) :sup{E[WM/G/K} !E[Xi] =my, i = 1,...,n},
and
Wi (m) :inf{E[WM/G/K} E[XT] = m, i = 1n}

We conjecture the following,

Conjecture 7.3 Letm = (my,...,m,), n > 2, be a valid moment sequence for positive distributions. Let
m’ = (my,...,my—1). Then,
Case 1:n odd

(i) Wi (m) = E [WM/D%m')/K]

(i) Wi(m) = E[WM/Pm)/K],

(i) Wi(mq,...,my_1,x) is strictly decreasing ic whenk > 1.
Case 2:n even

(i) Wi (m) = E[WM/P"(m)/K],

(i) Wi(m) = E[w1/Pem)/ic],

(i) Wi(ma,...,my_1,x) is strictly increasing inc whenkK > 1.

Further, forn odd, W, (m) = W,(m’); and forn even,W;(m) = W;(m’).

Implications of Conjectures|7.1,[7.2and 7.2 Our goal is to estimate [WM/G/K]. If we are given only

the mean of the job size distribution, we only have enough information to fix a lower bouEgBH/¢/K].

This lower bound is given b [W/P/X]. Now, if we are told the second moment of the job size distri-
bution, we can fix an upper bound &W/G/K]. This upper bound is given by’? + 1)E [W/P/K],

(If p > % we also refine our lower bound.) By determining the third moment of job size distribu-
tion, from Case 1 of Conjectufé3 we canrefineour lower bound to something much tighter (in fact, to
E[WM/DQ/K}) but thislower bound decreases as the third moment increa$ég upper bound remains
unchanged. Therefore, if thikg of the job size distribution is small, the lower bound obtained by considering
the first three moments is itself very close to the upper bound (which in turn is close to the approximation in
(1).

Similarly, knowledge of the fourth moment wikkfine the upper boundn the mean waiting time (bring it
down), while knowledge of the fifth moment wilfine the lower boundn the mean waiting time (raise
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it), and so forth for alternating higher even and odd morem& conjecture further that these bounds are
achieved by thé),, and D} distributions (defined in Definitior€.1 andC.2 as mixtures of point masses,
analogous to Definition8.1and3.2), respectively.

8 Conclusions

In this paper, we addressed the classical problem of approximating the mean waiting tim&/@tgii
gueueing system. While there is a huge body of work on developing closed-form approximations for the
mean waiting time, all such approximations are based only on the first two moments of job size distribution.
In this work, we proved that it is impossible to develop any approximation, based on only the first two
moments, that is accurate for all job size distributions. We did this by finding the possible range of values
for the mean waiting time, given the first two moments of the job size distribution, and showing that the

maximum possible value is at Iee(s%) times the minimum possible value.

Further, we suggest thatomentsare not the ideal job size characteristic on which to base approximations
for mean waiting time. Moments of the job size distribution can, at best, provide bounds on the mean wait-
ing time which may be too far to be useful. The moment sequeande useful if one of the moments
(appropriately normalized) is small. As an example, if the job size distribution has a small normalized third
moment, then an approximation based on only the first two moments is likely to be accurate. However,
there are also many distributions like the lognormal distribution (all of whose moments are high), for which
moments are not useful in accurately predicting mean waiting time. Other characteristics, such as the dis-
tribution of load among different job sizes, may be more representative for the purpose of approximating
mean waiting time.
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A Proofs

Proof of Claim 4.1: The proof will proceed in two steps. We first show that #g distribution lying

in {H>|C?} has the smallest third moment {if/;|C?} for all C? > 1. Then we will give a method,
which given anyn-phase hyperexponential distribution fer> 2, allows one to create am — 1)-phase
hyperexponential distribution with the same first two moments but a smaller third moment. Using this
method one can, in the end, obtainHp distribution with a smaller third moment and combine it with first
step of the proof to prove the claim.

Step 1:Let X be a random variable distributed according to the followtfigdistribution:

5 JExp(p1) wp.p
Exp (u2) w.p.1-p

We get the following relation between the momentskoénd the parameters of the distribution:

E[X*]E[X]  E[XY*  p(1-p) {1 - 1]2
6 4 M2

- o e

It is easy to see that since the right hand side is non-negative, the smallest possible ﬁlﬁé]ogiven

2 2
the first two moments i% and is realised by letting; — oo (or o — o0), that is, by the degenerate
hyperexponential distribution.
Step 2: If the H,, distribution has a phase with meanthen pick any two phases with non-zero mean.
Replace these two phases with tH¢ distribution with the same first two moments as those of the condi-
tional distribution, conditioned on being in these two phases. Merge the phases mi@hn. Using step
1 above, this replacement necessarily create:an 1)-phase hyperexponential distribution with smaller
third moment while preserving the first two. If tli&, distribution has no phase with meé@nperform the
above step twice to reduce the number of phases by 1. |

Proof of Lemma 5.5 Recall thatNLfelL is defined to be the steady-state number of customers in an

M (M1 —p9)) /M (Mﬁ) /1 queue with service interruptions where the server is interrupted for the du-

ration of the busy period of af/ (\)/M(1)/K queue. Since this is a geometrically ergodic process, the
second moment of the busy period of this queue is finite &gt x be the busy period of this queue. Define

Pt = A1 =p)/nif.
Our aim is to prove:

E[ﬁﬁ} = o(1)

The lemma follows by specializing results for th&/G /1 queue with server breakdowns to the special case
considered here, see e.d].[ Let G be a so-calledjeneralizedservice time, which is the service time of
a large customer plus the total duration of service interruptions while that customer was in service. Define

Vg(e) to be the system time (response time) of large customers in the modified queue. From Adan & Resing

[1], we get [ }
. E[G? st
E[Vi"] = El6] + (1 fim) 2£:[G% " (1 ii[g[gj;]) 25[3171;]' "
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Hereps = pf)(l + E[Ba1,x]/A). The first two moments aff are given by

1 E[B
ElG] = (1 + [“K]> (12)
1y A
¢
and that )
2 E[B 1
E[G?] = o (1 [;“]) + — g E[BS1 k] (13)
() He

From these equations, it follows thB{G] = ©(1/¢) andE[G?] = ©(1/€?). This impIiesE[Vg(E)} =
O(1/¢). By Little’s law, E[m(ﬂ —A(1-— p(e))E[Vg(e)] , which impliesE [m@} = 0(e). -

Proof of Lemma/5.7.  Consider a further modification of systeifi) where the small jobs are not served
during the entire bad period. That is, even when there is only a single large job in the system, we already
stop serving small jobs. The fraction of time this modified systé is busy with large jobs is given by

1’{’:). The load of the small jobs is less thanThus, systent/(©) will be stable ifp < 1 — 1’{’;;) .
122 127)

Sincep(© < 1 andu' > 1, we have

Now,

(6) 1—p(€) S L _ 1
&) 3
e

It is easy to verify that for alk < €, the upper bound in the rightmost expression above is smaller than
(1-p). m

Proof of Lemma5.& Recall thatb(A) was defined as the mapping between non-negative random variables
where®(A) gives the random variable for the number of jobs at the end of a good period given that the
number at the beginning of the good periodlisLet ¥'(A) be another mapping between random variables
defined by:

T(A) = Ay + > (i + Ay (i)
=0

That is,¥(A) gives the number of small jobs at the end of a bad period given that the number at the start is
A. Further, the following facts can be easily verified via coupling:

1. A <q Ay = P(A41) <s P(A2)
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2. Ab/(O) > st Ab/(l) >t - Ab/(l) > Ab/(i + 1) > ...

The last fact impliesl (A) < A + Ay (0) + Ay = + Ay. This gives us a way to stochastically upper
boundN; . We definedZV;g to be the solution to the following fixed point equation:
d

N, = ®(N;, + Ap)

Also,

4

Ngg = ®(¥(Nsy))

Let Y (0) = Y(0) = 0. Further, letY (n + 1) = ®(¥ (Y (n))) andY (n + 1) = ®(Y(n) + A,). Since the
Markov chains defined by the transition functich§¥'(-)) and®(- + A;) are positive recurrent (we proved
systemU (©) stable fore < ¢’ but the proof implies the stability of this system as well) and irreducible,

Ng,= lim Y(n)

n—oo
N;,= lim Y (n)
? n—0o0
SinceY (n) < Y (n) for all n by induction,N , <. N7 ,. ]

Proof of Lemma5.S:  (We suppress the superscrije} throughout for readability.) LeN,; denote the
number of jobs during the baghase ana\V ;» denote the number of jobs during the Badhase. We will
stochastically boundV, ;y and N, ;» separately using stochastic coupling.

Bound for N, ;: We know that the lengths of baghases of systerfi(¢) are i.i.d. random variables. Let

Ty denote a random variable which is equal in distribution to these. It is easy to se¥;thas equal in
distribution to the number of small jobs in the following regenerative process. The system regenerates after
i.i.d. periods whose lengths are equal in distributior¥§o At each regeneration the system starts with

a random number of small jobs sampled from the distributioVgf and then the system evolves as an
M/M/K — 1 with arrival rateAp and service ratg, until the next renewal.

Now, N, can be stochastically upper bounded by the number in system in another regenerative process
where the renewals happen in the same manner but at every renewal the system starts with a random number
of jobs sampled from the distribution d@';‘,g. These jobs never receive service. However, we also start
anotherM /M /K — 1 from origin (initially empty) with arrival rate\p and service ratg, and look at the

total number of small jobs.

Finally, sinceT} is an exponential random variable, by PASTA, the distribution of number of jobs at a
randomly chosen time (or & — o0) is the same as the number of jobs at a random chosen renewal.
Therefore,

Ny <ot NI, + Ay (0) (14)

Bound for N, ;. To obtain stochastic upper bound 8f ,», we follow the same procedure as above. Itis
easy to see thaV, ;- is stochastically upper bounded by the number of jobs in the following regenerative
system. The renewals happen after i.i.d. intervals which are equal in distribufipn the random variable

for the length of a batiphase in systerty(9). At every renewal, the system starts with a random number
of jobs sampled from the distribution @?;jg + Ay(0) and external arrivals happen at a ratéhere are

29



no departures) until the next renewal. 7§t denote the excess @, and A, (7") denote the number of
arrivals in timeT" of a Poisson process with rake This gives us the following stochastic bound g,

Ns,b” Sst N;k,g + Ab/(O) + A)\ (Tb”e) (15)
The excess of,» comes into the picture because we need the number of jobs at a randomly chosen instant

of time during the ballphase. The time elapsed since the starting of d phdse until this randomly chosen
instant of time is distributed d§,. ., the excess df},. Finally, combining/l4) and (L5),

Nop <ot NI, + Ay (0) + Ly p Ax (Tyre) (16)

n
Proof of Lemma/5.1% The z-transform of N M (As)/M((K=1)us)/1(T is given by ([L3], Theorem 4):

where,

pE
(K = 1ps(1 =€)

and¢ is the root of the polynomial in the denominator/f!(A+)/M((K=1)us)/1(T () in the interval(0, 1).
Letn be the other root (lying iti1, o0)).

Po =

By differentiating the transform irl{y), we have

E[NM(AS)/M((K—l)Ms)/l(T)} = L
n—1
E[(NM(AS)/M((K 1)us)/1(T))2} CESE + —

Factoring the denominator 0fT), we can writen as,

p
)\s - (K - l)lqu

n=1+ +0(8%

which results in the expressions in the lemma. |

Proof of Lemmal5.12 Let ﬁ;/(s) denote the Laplace transform for the length of the’haltase of a bad
period. It is easy to show that gin?gT/(s), Ay (Tyr.)(2) is given by:

o — 1 o
A)\ (Tb//e)(z) = / Pr[Tb// Z t]e_/\t(l_z)dt
t

E[Ty] Ji=o
_1- Ty (M1 — 2))
A1 — 2)E[Ty]

The Laplace transform ., ﬁ;/(s), is given by

HEE) A(1 = p'9) B(
(© @) 4 N
py” AL =p©) 7 + A1 = pl))

Ton(s) =
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whereB(s) is the Laplace transform for the length of busy periods af&//1 with arrival rateX(1—p(©))
and service ratg”.

Note that thex-transform ofA, is:

ut? A1 —p©)

B*(\(1 - 2))
A=) + A1 = p)

Ayi(z) =

andAbu( ) # A( ve)(z) sinceTy is not an exponential random variable.

Substituting the values from Sectidr?, we get the following asymptotics which will be sufficient for our
purposes:

E[Ay] = 0O(1) (18)
E[AZ] =0 C) (19)
E[Ax (Ti,)] = © (1) (20)

Pr [b//} . E [Tb//] , .
Bl E[Ax (Tyre)] = ng) Ve —p(f))E[A/\ (Tyre)] = ©(1) (21)
m

Proof of Lemmal5.12 Recall thatN{/") denotes the number of jobs in the interrupfgdM / K system.

Let N(I7t)(z) be thez-transform of N(/"") and letA(z) be thez-transform ofA. Since the interruptions
happen according to a Poisson proc@és ™) also denotes the random variable for the number of josts
beforethe interruptions. Leff map thez-transform of the distribution of number of jobs in &f/M /K

at timet = 0 to the z-transform of the distribution of nlin@r of jobs after th&/M /K system has run

(uninterrupted) forT' ~ Exp («) time. The solution forN(U7t)(z) is given by the following fixed point
equation:

NUm(2) = f (W(z)ﬁ(z))

Our next goal is to derive the functiofy-). Let p;(t) denote the probability that there argobs in the
M /M /K system at time. We can write the following differential equations for(t):

olt) = () + i (1) 22)
D pi(t) = Mia(0) = A impi(t) + (6 + Dpapiga (1) d<i<K-1 (3
%pi(t) = )\pi_l(t) - ()\ + Ku)pi(t) + K,upiﬂ(t) a2 K (24)

LetIl(z,t) = Y20 pi(t)zt. Using the above differential equations, we have:
0 ~ 1
7H(Z7t) = H( 2, ) spl—-—1])+ A (Z - 1) (25)

i (1 - 1) [Kpo(t) + (K — 1)zpa(t) + ... + 25 pge_1(8)]
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LetTl,(z) = I II(z, t)oe tdt andp; o = Iy~ pi(t)aedt. Integrating by parts, we get:

el ()

= I (
fia(2) = fi(=,0) + 2
1
(1 - z) Kpoo+ (K —1)zp1a+...+ ZK_lpK—l,a]

To obtain Nn9)(2), we substitutell,(z) = NUn0(z), [i(2,0) = NI (2)A(z) andpia = pi =
Pr[NUnt) = ]. This gives:

p[Kpo+ (K —1)zp1 + ...+ 28K Ipg4]

(Kp—Az) —az (%@)
Sincejm(l) = 1, we get
A«

Kpo+(K—1)p1+...+pK_1:K—E—EE[A] 27)

The sum on the left is precisely the expected number of idle servérs-aExp (a). Finally,
E [NW)} = 4 NG () (28)

<z =1
_ uC A+ ¢ (E[A?] + 3E[A]) (29)
Kpu— X —aE[A] Kp— X —aE[A]

where,

C=0-K-p+(K-1)-1-p1+(K—-2)-2-po+...+1-(K—1) -px_1
To calculateC’ we need the following relations obtained from integrating by parts the differential equations
(22)-(293):

_>‘p0,a + HPla = & [Po,a - PO(O)]
ADi—t,a — (A ip)pia + (i + 1)ppis1,a = a [pia — pi(0)] L 1<i<K -1

which yieldsp; o = po.a 5 (%)l + o(a). Combining with 27) and the assumption thE{A] = o (1), we
getp; = m; + o(1) for i < K, wherer; are the stationary probabilities of ad/M /K system with arrival

rateA and mean job siz%. Using this, we have:

uC + A —E[
Ku—X—aE[A]

NM/M/K] +o(1)

where E[NM/M/K] is the mean number of jobs in a stationdr/M//K queue with arrival rate\ and
service ratg:. (To see thak [N*/M/K] can be written in the above form, sat= 0.) Finally,

3E(o7)
(Int)| _ M/M/K 2

e[ —E[N }JFK;L—AJFO(U

sinceaE[A] = o(1). |
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B Proof of Proposition1.3

The proof is trivial forp < (K —1)/K. Forp > (K — 1)/ K, the inequalityW,?2 > ch2 is equivalent to

c? -1 1 K—-11C?%?-1
E M/M/K _ )
2 [W ]>1—p Pk 2 (30)

Recall that we still tak€E[X| = 1 without loss of generality so that > K/(K — 1) is equivalent to
A > K — 1. LetC(K, \) be the probability of wait in ad//M /K. It is easily shown that

E[WM/M/K} - CK(K_i) (31)

Therefore,80) holds if (we have assume(éfQ;1 > 0)
C(K,\) > [A— (K —-1)]. (32)

Itis known thatC' (K, \) is a strictly convex function itk on [0, K| (see R3]). Since B2) trivially holds for
A = K — 1, and since the right hand side &2] has derivative (w.r.tA) 1, it suffices to show that

d
DCE Ah=x < 1. (33)

Let A, be a random variable that is Poisson with ratdt is well known that

1
C(K,\) = . (34)
p+ (1= ) p(ri)
Using this expression, we find that
K-1
d 1 PAxk<K-1) 1 P(Ag = k)
HNOE AN D=k = & Pl =K) K 2 Plix=K) (35)
Now, note that
P(Axk =K-1) Kf1/(K-1) )
P(Ax =K) KE/K! ‘
If £ < K —1 we find that
P(Ax =k)  k+1 <1
P(Axk =k+1) K ’
which implies that
P(Ax =k)
1 K —1.
PlAr =k +1) ~ P
Consequently, foiX > 2, we see that
K—1
d 1 Kk /k!
JC(Kv M=k = % ;;) W <1, (36)

which completes the proof of the proposition.
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C Hyperdeterministic distributions and their extremal properties

In this section we discuss the utility of hyperdeterministic distributions in obtaining bounds on various
metrics based on moments or other partial information of the random variable involved via the theory of
Tchebycheff systems. The following discussion is borrowed from the work of Eckb#rgrho applied the
theory of Tchebycheff systems to queueing problems. A full treatment of appedg}.in [

C.1 Definitions

We first define thex-phase hyperdeterministic distributiab,,, and then-phase degenerate hyperdetermin-
istic distribution,D;, in DefinitionsC.1andC.2, respectively.

Definition C.1 Let0 < x; < x3... < x,. Letp; > 0,7 =1,...,n, be suchthad " , p; = 1. We define
then—phase hyperdeterministic distributioP,,, with parameters:;, p;, ¢ = 1,...,n, as:

x1  with probability p;

D xo  With probability ps

x, With probability p,,.

Definition C.2 Let0 < 3 < #3... < 1. Letp; > 0,7 = 0,...,n — 1, be such thap "~ p; = 1.
We define the:—phase degenerate hyperdeterministic distributidrj,, with parametersy, x;,p;, i =
1,...,n—1,as:

0 with probability pg

D 1 with probability p;

n

Tp_1 With probabilityp, 1.

C.2 Tchebycheff inequalities and principal representations

The area of Tchebycheff inequalities is concerned with solving problems of the following kind: We are
given a partial characterization of a random variakllén terms of generalized moment constraints:

Prio <X <B]=1 (37)
Elg:(X)]=m;, 1<i<n. (38)

Let 7 = {X|X satisfies/87) and 388)}. Given another functiorf, we wish to determine the bounds

B = mf{E[f(X)]|X € T},
fu = f{E[f(X)][X € T}.

Define the functioryy(z) = 1,0 < x < B, and denote the moment space associated Withg:, ..., gn}
as

B
ML — {c c prntl | ci = / gi(uw)du(u), 0 <i <n, for someu € D}
0
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whereD is the set of all non-decreasing right continuous functions for which the indicated integrals exist.
For a pointc? in the interior of M™*!, we define theinique lower and upper principal representation (pr)
as follows:

Upper pr(i) Lower pr ()
n even n/2 mass points iff0, B), one atB n/2 mass points if0, B), one at 0
nodd | (n —1)/2 mass points irf0, B), one at0, one aB | (n + 1)/2 mass points ir{0, B)

We say that function$§go, g1, - - . , gn } form a Tchebycheff system ovér, b] provided the determinants

go(zo) go(x1) -+ go(zn)
g 0Len Y gi(zo) g1(@1) -+ gi(@n)
Lo, L1, " ,Tn B
gn(xO) gn(xl) gn(xn)
are strictly positive whenever < zy < x1 < --- < x,, < b. The functiongy, g1, . . ., g, are referred to as

a complete Tchebycheff system{i§o, g1, - - , g- } is a Tchebycheff system for each= 0,1,--- ,n. The
following theorem describes the random variables that attain the extremal valkeds3, :

Theorem C.3 (Markov-Krein) If{go, g1, - - . , gn } @nd{go, 91, - - -, gn, f } are Tchebycheff systems[on 5],
then

5= [ fwdutu)
5= [ fwdntw)

wherey andfi are the unique lower and upper principal representations, respectivaty=0f 1, my, ..., m,}.

Note that the upper and lower principal representations belong to the clagsaesD;, for somen. The
Markov-Krein Theorem shows that for a large family of moment constraints, and in particular given a few
raw moments, random variables with hyperdeterministic distribution maximize or minimize the expected
values of a large class of functions. Statements of the form similar to conjectures presented iriAfection

an M /G/K system with a partial characterization of the job size distribution can be proven/fay//1
systems with partial characterization of the interarrival distribution by considgfing= ¢~** (see Whitt

[38]). The applicability of Tchebycheff systems in verifying Conjectiité is a potentially interesting
research direction.
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