Increasing the Scalability of Dynamic Web Applications

Amit Manjhi

CMU-CS-08-105
March 2008

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Bruce M. Maggs, Co-Chair
Todd C. Mowry, Co-Chair

Christopher Olston, Co-Chair
Mahadev Satyanarayanan

Michael J. Franklin, University of California at Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright(© 2008 Amit Manjhi

Keywords: Scalability Service, Web Applications, Scalability, Opization, View Invalidation, View
Materialization.

To my parents and my wife Shruti.

Abstract

The continued growth of the Web and its increasing role indaily life has created new technical and
social challenges. On the technical side, applicationtoged on the Internet suffer from unpredictable
load, especially due to events such as breaking news (ewgricbine Katrina) and sudden popular-
ity spikes (e.g., the “Slashdot Effect”). A large number loése Web applications increasingly use a
database to generate customized and personalized resgonsgers’ requests. Because of the widely
varying load, currently there is no economical way to priovisnfrastructure for many of these applica-
tions in whichthe database system is the bottlene®k the social side, Web applications increasingly

collect sensitive data, which must be kept private.

In this dissertation we address both these technical andlstallenges. We design and implement
a Database Scalability Service (DBSS), which can offer sdé@lato data-intensive applications as a
plug-in subscription service with a per-usage charge. A Di86s by caching applications’ data and
answering queries on their behalf. It uses a large shareassinficture to absorb load spikes that may
occur in any individual application. We address two key éssin designing a DBSS: (a) the privacy
concerns of applications in allowing the DBSS to cache thaiadand (b) the performance concerns

due to the high latency applications face in accessing ttaga in a DBSS setting.

Simply encrypting all the data that passes through the DB®8tia feasible solution to an applica-
tion’s privacy concerns. On an update, the DBSS must inv&i(it least) data from its cache that have
changed . If an application encrypts all the data passiraytiir the DBSS, the DBSS cannot discern any
information about what data it is caching. The DBSS then isddrto invalidate large amounts of data

from its cache on any update, which leads to poor scalabliitydeciding how much data (that passes

through the DBSS) to encrypt, the application faces a trddestiveen privacy and scalability. On the
one hand, encryptinghore data means that the DBSS will invalidate far more than needecteas-
ing scalability. On the other hand, encryptilegsdata raises privacy concerns. We study this tradeoff
both formally and empirically. To simplify the task of maiag this tradeoff, we devise a method for
statically identifying segments of the database that cagnloeypted without impacting scalability. Ex-
periments with three realistic benchmark applicationsstiat our static method is effective. For each
application, it identifies a significant fraction of the dadae that can be encrypted without any scala-
bility penalty. Moreover, most of the data that it identifissmoderately” sensitive, which application

designers will want to encrypt, if doing so has no perforneaoverhead.

For some applications, extra information from the dataphsgond the data passing through the
DBSS, is useful in making invalidation decisions. We pregardlidation clues, a framework that allows
applications to provide this extra information to the DBSSud3lalso provide fine-grained control to the
applications for disclosing any other information to the [3Bt8at reveals little, yet limits the number of
unnecessary invalidations. Our experiments using threle M#achmark applications on our prototype
DBSS confirm that invalidation clues are indeed a low-ovedhe#fective, and general technique for

applications to balance their privacy and scalability rseed

To address the performance concerns due to the high latenepalication faces in accessing its
data in the DBSS setting, we devise compiler-driven tramsébions that reduce the number of times an
application must access its data. Using our three benchamplications, we show that our transforma-
tions apply widely and indeed reduce the number of times glicghion has to access its data. Finally,

on our prototype DBSS, we confirm that this reduction signifilseimproves scalability.

Vi

Acknowledgments

| was fortunate to have three great advisors: Todd Mowry, 8maggs, and Chris Olston. | learnt
from Todd the value of patience, from Bruce the value of huraag from Chris the value of time-
management and the practice of setting and achieving gd&lank you Todd, Bruce, and Chris for

making me a better researcher and a better person.

I would like to thank the other members of my Ph.D. thesis catteys Mahadev Satyanarayanan and
Mike Franklin, for their thoughtful comments and invalualsiuggestions that have improved both the

quality of the experimental results and the completenesisi®thesis.

Other than my advisors, | discussed my thesis research wigis#@assia Ailamaki, Anthony Tomasic,

Charlie Garrod, Phil Gibbons, and Haifeng Yu. These disomssivere invaluable in shaping this thesis.

| wrote a few other papers resulting from my course projestssummer internships. | learned a lot
from my co-authors on those papers, Mukesh Agarwal, Nikhiidady, Srini Seshan, Kedar Dhamdhere,
Vladislav Shkapenyuk, and Suman Nath, about how reseaddnis and how to best present it. | would
also like to thank members of the stampede group, partiguztiris Colohan and Shimin Chen, for

always being present to help me with any research or nomreseelated issue.

| had two memorable summer internships at Intel ResearcsbBitjh. Even after the internships, |
had a cubicle for almost a year for being affiliated with the lawant to thank all the people in Intel
Research Pittsburgh for making my stay enjoyable. In pdaicuam greatly indebted to Phil Gibbons,

my mentor during both summers, for making my internshipsipotive and fun.

In my sixth year, with two other graduate students, | staBedafer.com, a Web application that

twenty-somethings could use to manage their expenses.slavggieat experience that taught me how

Vil

to build reliable systems, and instilled in me the confidentiscipline, and determination to achieve

seemingly impossible tasks. | would like to thank everyom®wontributed to my Buxfer experience.

Seven years is a long time, but | never got bored of Pittshurginks to the Indian dinner gang — a
bunch of mostly Indian graduate students who were oftenampto cook at home. The composition of
the group changed over the years as many of the seniors geddarad new students joined the group,

but it was always fun to enjoy good, often half-priced, foodjood company.

Finally, | express my deepest gratitude to my family. | oweaeagydeal to my parents, my sister, and
my brother-in-law who were always affectionate and extrigrsapportive during the entire period. |
am indebted to my wife, Shruti, herself a graduate stude@eatrgia Tech, for providing unwavering
encouragement. Without her love, patience, encourageraedtsupport in the last few years of my

Ph.D., it would have been difficult for me to finish.

viii

Contents

Abstract \Y;

‘Acknowledgments Vil

Contents iX

‘List of Figures‘ XV
List of Tableé XiX
‘1 Introduction‘ 1
‘1.1 Example Scenarios e 2
111 E-Commer&e
1.1.2 CivicEmergency Management e 3
‘1.2 Challenges in Creating a Scalability Service for Dyname&b\Xpplications 4
‘1.3 Related Work e 7
1.3.1 Database Services e 7
1.3.2 Database Caching and Replica(tion 8
1.3.3 Privacy 10
1.3.4 Commercial Efforts. 10
1.4 OurApproach e e e 11
1.4.1 Overall Architecture 12

1.4.2 Guaranteeing Privacy and Security ina DBSS Setting. 14
1.4.3 Scalability-Conscious Security Design Methodology 15
1.4.4 Invalidation Clués 15
1.4.5 Holistic Transformations to Reduce User Latencies 16
‘1.5 Contributions e 17
‘1.6 Thesis Organization e e 18
‘2 Architecture of the Scalability Service 21
‘2.1 Home Server e e 23
‘2.2 DBSSNode e 24
2.2.1 Cache StructJre 24
2.2.2 Handling Database Queries. e 25
2.2.3 Handling Database Updates« .o... 26
2.24 CONSIStENCY o 26
2.2.5 Other ImplementationDetails ¢a..... 27

‘2.3 CDNNode e 7 2
24 Clients 28
‘2.5 Invalidation Flow e 30
‘2.6 Benchmark Applications e e 30
‘2.7 Methodology e 31
2.7.1 Evaluation Metrics 32
2.7.2 SCENANOS v v o i 34
‘2.8 Preliminary Evaluation 34
‘2.9 Summaﬁy .. 39
‘3 Simultaneous Scalability and Security for Data IntensiveNeb Applications 41
‘3.1 Security-Scalability Tradeoff 42
3.1.1 Managing the Security-Scalability Tradeoff 43

X

3.2 Framework for Studying the Security-Scalability Trafle 44
3.2.1 QueryandUpdateModel 45
3.2.2 Formal Characterization of View Invalidation Strag¢sg 46
3.2.3 Mixed Invalidation Strategieso 49

3.3 Overviewof Approach e 52
3.3.1 OurApproach. e 52
3.3.2 Example e e e e 35

3.4 IPMCharacterization 55
3.4.1 Query and Update Classification 56
3.4.2 Blindvs. Template-Inspection (Do&s =1?) 58
3.4.3 Template-Inspection vs. Statement-Inspection §Bge= A;j?) 59
3.4.4 Statement-Inspection vs. View-Inspection (DGgs=Bjj?) 59
3.4.5 Database Integrity Constraints 61

3.5 Evaluation 62
3.5.1 IPM Characterization Resillts 63
3.5.2 Magnitude of Security-Scalability Tradeoff 64
3.5.3 Security Enhancement Achieved L 65

‘3.6 Chapter Contributions e e 66

‘3.7 SUMMANY o e e e e e e e e e e e 67

‘4 Invalidation Clues for Database Scalability Services 71

‘4.1 Introduction e 71

‘4.2 An lllustrative Example L e 72

‘4.3 Using Clues for Invalidatiohs 75
4.3.1 Architecture. e 75
4.3.2 QueryandUpdate Model 76
4.3.3 The Attack Model of the DBéS 76
4.3.4 Database-Inspection Straﬂegy 77

Xi

435 TypesofClues e 77

4.4 Database Clues 78
4.4.1 Templates Requiring DatabaseClues 80
4.4.2 Implementing Database Clbes 83
4.4.3 Beyond Precise Invalidations 86

4.5 Privacy-Scalability Tradeohs 87
45.1 The Limit Casés 87
4.5.2 Trading Off Scalability for Privacy 89
453 Equality Comparisons e 89
454 OrderCompariSoNs o i e 92
455 DISCUSSION e 94

4.6 Evaluation 95
4.6.1 Characteristics of the Benchmark Applications 95
4.6.2 Scalability Benefits of InvalidationClues 95
4.6.3 Privacy Experiments e 97

‘4.7 Chapter Contributions e 98

‘4.8 Summaﬁy .. 99

‘5 Holistic Query Transformations for Dynamic Web Applicati onsL 101

‘5.1 TheMERGING Transformation: Clustering Related Queries104
5.1.1 Impacton the Total Work in the System 105
5.1.2 Code Patterns Where theRGING Transformation Applies 106
5.1.3 Algorithm for Automating th&ERGING Transformation 108
5.1.4 Other Tradeoﬁs 109

5.2 TheNONBLOCKING Transformation: Prefetching Query ResJuIts 111
5.2.1 Algorithm for Automating the ONBLOCKING Transformation 113
5.2.2 Implementation ISSues e 113

5.3 Evaluation 114

5.3.1

Scalability Impact of the Transformations

5.3.2

Latency Impact of the Transformations

5.3.3

Applicability of the Transformations

5.3.4

Coverage of thRERGING Transformation

5.3.5

Coverage of thEBONBLOCKING Transformation

5.4 Related Work s

5.4.1

Work Related to theONBLOCKING Transformation

5.4.2

Work Related to thRERGING Transformation

‘5.5 SUMMANY o e e e e e e e

‘6 Conclusion£

‘6.1 Contribution‘s

‘6.2 Future Wor‘k

A Proofs for ChapterE\
A.1 ProofsforSection3.4.4
A.2 ProofofLemmg\él

A2.1

Evaluationofaquery L

A.2.2

Additional Database Operations

A.2.3

Does the result of a query change on an inseﬁtion?

A.2.4

Bibliography

Intermediate Lemmas and Proofs

Xiii

131
131
132
133
133
134
135

139

Xiv

List of Figures

1.1 A sample code fragment from thrcTION application for finding names of users who have
posted comments about a particular user. The code fragment shows édnowdlarative code,
consisting of two query templates, is interspersed in the procedural déefocus on two
base relationsusers with attributesuser _id anduser _-name, andcomments with attributes
from _user (id andto user Jid e 4

1.2 Traditional centralized architecture. 5

1.3 Scalable architecture for database-intensive Welicapipins. In this thesis, we focus

on the Database Scalability Service (DBSS), the shadedcloud. 13
‘2.1 Traditional versus distributed architecture. 22
‘2.2 Architecture of the part of the home server used by the dBSS 24

2.3 A closed system, in which there are a fixed number of ugeuser sends a request only
when it has waited for at least “think time” after receivirigetresponse to its previous

FEQUESE. e e e e 28
2.4 The transition graph for trEOOKSTOREapplication (reproduced from the TPCW [104]

specification). e 29
‘2.5 Query, update, and invalidation pathways. 30
2.6 Total number of programs, and the number of query andtagdmplates for our three

benchmark applications. e . 31
‘2.7 Application configuration parametérs. 32

2.8 The figure shows (a) how scalability is computed as thebmurof simultaneous users
supported within a latency threshold, (b) how a reductiolaiency improves scalability. 32

‘2.9 The SIMPLE scenario used in the experiménts. 33

XV

‘2.10

The SIMPLETC scenario used in the experiments. 3 3
‘2.11 Sample update rates for aten-minuterun. Lo 35
‘2.12 Cache hit rates for the three benchmark applications.. 35
2.13 Average latency per dynamic HTTP request, at threeréift number of EBs, for the

three benchmark applications executing in a traditionatredized setting. 36
2.14 Average bandwidth usage of the home server, at thrigaht number of EBs, for the

three benchmark applications executing in a traditionatredized setting. 36
2.15 CPU usage at the home server, at three different numBBxffor the three benchmark

applications executing in a traditional centralized setti. 37
2.16 Average latency per dynamic HTTP request for the thezelimark applications exe-
‘ cuting in our scalability service setting. The adjoiningleaprovides the number of EBs

and the resource usage at the home server during the experime. 38
‘2.17 Scalability in the presence and absence ofthe DBSS. 38
‘3.1 Security-scalability tradeoff (TPC-WooOKsTOREbenchmark). 44
‘3.2 Relationships among classes of view invalidation gjrasg in the general caEe. 48
‘3.3 Security gradient. e e e 49
3.4 Aninvalidation Probability MatrixPM(U",Qf). 50
3.5 Starting with the California data privacy law, additibeaposure reduction for query

and update templates. e 69
3.6 Tradeoff between security and scalability, as a funadfacoarse-grain invalidation strat-

BOY. . 69
4.1 Privacy-Scalability tradeoff in the presence of cluése dashed box shows the region

in which an application can operate in our scheme. The sirastas, A-F, are ex-

plained later in Table 4.2. Code-analysis privacy and redy-scalability are explained

in Sectior% 4.5. tL 73
4.2 Pseudo code for computing a database update clue whentqoeplates are restricted

toasingletable. e 85
4.3 An example mapping of parameter values to place-halders. 90

XVi

4.4 The solution implied by Lemma 32i € {1,...,n} is such that the parameter valagis
theith most frequently occurring. L L 91

4.5 Impact of invalidation clues on scalability. For compan, we include the scalability

numbers withoutaDBSS. 97
‘4.6 Reduction in invalidations due to CEQUALITY-OPTIMAL mapping algorithm‘. 98
‘4.7 Improvement in privacy on using two mappings insteacmsfmapping‘. 98
‘5.1 Latency in a traditional versus distributed architeetu. 102

5.2 The holistic transformations, when applied to a Webiappbn, reduce the number of
database queries that the Web application issues per HgLieseat runtime. 103

5.3 A code fragment from theucTION application, showing the original code on the left, and the

code after applying theERGING transformation on the right. The code, an example of the Loop-
to-join pattern, finds the names of users who have posted comments alaotitalar user. We

focus on two base relationssers with attributesuser _id anduser _name, andcomments with
attributedrom _user _id andto _user id 104

5.4 An example of the merge-projection-predicates pattern, showing the dragida on the left,

and the code after applying the&eRGING transformation on the right. The code fragment is a
simplified version of the code from theucTION application, and finds the current maximum

bid and the total number of bids for an item. We focus onbitie relation with thebid and the

item _id attributes. e e 106

5.5 An example of the merge-selection-predicates pattern, showing the orgitkalon the left, and

the code after applying theERGING transformation on the right (We just show the database
gueries on the right). The simplified code fragment is fromgBeARD application, and shows

all the comments on a story in a tree format. We focus orcoimenents relation with theid ,

body, parent , andstory attributes.. 107

5.6 Query results that are invalidated on an update with templd#®BATE users SET user _name
= ? WHERE userid = ? anduser _id as 5, before and after applying tiVERGING trans-
formation. Since theiERGING transformation increases caching granularity, it leads to more
invalidations, and consequently, lessreuseofwork.. L. 110

Xvii

5.7 A simplified code fragment from theooksTOREapplication, which finds the name of an item
related to the item the user is viewing and the name of the user, given her idodd on
two base relationsusers with attributesuser _id anduser _name, anditems with attributes
item _id , item _name, andrelated . The left hand side shows the original code, while the right
hand side shows the code after applyingtl@BLOCKING transformation. 112

5.8 The figure shows how a reduction in latency improves bddla. 115

5.9 Scalability impact of the transformations. For comgam, we include the scalability
numbers without a DBSS, the leftmost bar for each application. 115

5.10 Impact of thevERGING andNONBLOCKING transformations on latency. We show the
average latency for two dynamic interactions in #80ARD benchmark. The graph
shows that th@ERGING transformation has a significant impact on the averagedgteril7

5.11 Impact of the two transformations on the average Igteha dynamic interaction in the
BBOARD application, executingina DBSS setting.117

5.12 Impact of th&lONBLOCKING transformation on the total number of misses, for the three
benchmark applications. We use ‘pfs’ as a short-hand fdefoiees

Xvili

List of Tables

3.1 An example toystore application, deno®®PLE-TOYSTORE with three query tem-
platesQ] , Q) , Q1, one update templaté|, and two base relationfys with attributes
toy _id, toy _name, gty , andcustomers with attributescust _id, cust _name. The
guestion marks indicate parameters bound at executiontime. 42

3.2 Invalidations differ depending on the amount of infotimathe DBSS can access. The
table is for updat®); with parameteb. 42

A more elaborate exampteysToREapplication having three query templa@5, Q}, Q1,
two update templated] ,U) and three base relationtoys with attributestoy _id,

toy _name, qty , customers with attributescust _id, cust _name, andcredit _card
with attributescid, number, zip _code . Attributecredit _card.cid is a foreign key
into thecustomers relation. The question marks indicate parameters bouncdeatéon

tIMe. . . . e e 45
‘3.4 Summary of IPM characterization for the exampler sToreapplication. 55
‘3.5 Notation for aspects of templates. oL 56
‘3.6 Query and update clas:ioes. 57

3.7 IPM characterization results for the three applicaiohe table entries denote the
number of update/query template pairs for which particlkéd relationships hold. . . . 63

4.1 A simplified bulletin-board example, consisting of a iuemplateQ™ and an update
templateUT on a base relatiobomments with attributesid , story , rating , andbody .
The question marks indicate parameters bound at execumient 73

4.2 Six clue scenario&—F and their effect on what the DBSS invalidates when an update
UT with id =123 anduating=rating+1 OCCUIS. .« v v e v e e e e e e e e e 75

XiX

4.3 A taxonomy of clues (The various clue types are in normiad)f Clues differ based on
whether they are attached to query results or updates, aathamhthey are computed
from parameters, result, ordatabase. 78

4.4 A simple auction example, consisting of three query fatep, two update templates,
and two base relations: (itgms with attributestem _id , seller , category , andend _date ,
and (2)users with attributesuser .id andregion . Attribute items.seller is a foreign
key into theusers relation. The question marks indicate parameters bounxkeatuéon

tIMe. . . . e e 97
4.5 Types of clues required to implement a DIS for templatiespof theSIMPLE-AUCTION

exampleinTable4.4. e 80
‘4.6 Notation for aspects of templates. oL 81
‘4.7 A query-update template pair from tReoksTorebenchmark. 89
‘4.8 A simplified query-update template pair from thecTiON benchmark. 92

4.9 Number of template pairs in the three applications wheduire database clues for
precise invalidations, classified as per the categoriesdoted in Section4.4.1. 96

5.1 Runtime HTTP interactions in which tiMERGING andNONBLOCKING transformation
apply. The “either” column represents interactions in what least one of the two
transformations apply. The “static” column representgristtions in which a static
HTML file is returned. Clearly, neither transformation camplyao such interactions. . . 118

‘5.2 Frequency of occurrence of different patterns in whe@MERGINGransformation applies.119

5.3 Average number of database queries per dynamic HTTRaatien for the three bench-
‘ marks. For our I&)enchmark applications, heERGING transformation does not affect
thecachehitratio. e 120

XX

Chapter 1

Introduction

Applications deployed on the Internet are immediately asit¥e to a vast population of potential users.
As a result, they tend to experience fluctuating and unptaolie load, especially due to events such
as breaking news (e.g., Hurricane Katrina) and sudden pdpukpikes (e.g., the “Slashdot Effect”).
Administrators currently face a “provisioning” dilemmather (i) waste money by heavily overprovi-
sioning the infrastructure, or (ii) risk being unavailalblbenever the load increases suddenly. Both of

these alternatives have a high economic cost and are uablesir

This problem is largely addressed for static content (emgages) by Content Delivery Network
(CDN) technology [23, 38, 71, 87], which offers on-demandauiity as a plug-in service. To serve a
request for static content, an application just returngéogiested file from its filesystem. By caching
the static content and returning the appropriate file onentliequest, CDNs can effectively offload
the work an application needs to do for serving static canfémabsorb load spikes (which may occur
in any individual application) and yet be cost-effective, BDmake use of a large infrastructure that
is shared across multiple applications. Hence CDNs can géied scalability and charge application

providers on a per-usage basis.

The Web is increasingly becoming more “dynamic” — the conieproduced by programs that exe-
cute at the time a request is made and is often customized lbasgeveral factors like a user’s prefer-

ences and the previous content the user has viewed. Dynamtiert allows creation of rich interactive

Chapter 1 Introduction

applications like social networks, bulletin boards, cermmergency management, and e-commerce appli-
cations, which represent the future landscape of Web agfits. Since dynamic content is generated
by programs and may depend on data not contained in the uequgst, CDN technology cannot be
used to serve dynamic content. Hence CDN technology is nbtiguit for scaling dynamic applica-

tions.

With dynamic applications, application administratorsefidhe same provisioning problerm this
thesis we show that it is possible to build a subscription-aented scalability service that provides

on-demand scalability to dynamic Web applications.

In the rest of this chapter we first illustrate the potentiahéfits of subscription-oriented scalability
services for dynamic Web applications with two example ades in Section 1.1. Next we discuss the
challenges in creating a scalability service for dynamido\aeplications in Section 1.2. Section 1.3
presents related work. We present an overview of our approaSection 1.4, our contributions in

Section 1.5, and thesis organization in Section 1.6.

1.1 Example Scenarios

1.1.1 E-Commerce

Consider a relatively small-scale Web-based e-commerceatipe whose customer base is expand-
ing. Suppose the relatively low-cost equipment on whichdfmmmerce site was originally built is
becoming saturated with load, and will soon be unable toesalivthe customers. Standard solutions
include upgrading to faster equipment on which to run the,vegplication, and/or database servers,
or moving to a parallel cluster-based architecture as ugdadre-commerce vendors. Unfortunately,
these solutions require a large investment in equipmemt, parhaps more significantly, funding for
staff with the expertise necessary to manage the more canmptastructure. Moreover, transitioning to
a new architecture will undoubtedly create new bugs and ey 1o costly application errors or system

downtime.

Section 1.1 Example Scenarios

A better option would be to subscribe to a scalability sesvoa a pay-by-usage basis. A cost curve
proportional to usage could potentially save the compargelaums of money, especially if demand
plateaus or drops. In this scenario, the equipment and neamag costs are shifted to the scalability

service provider, where they can be amortized across mdrscsbers.

1.1.2 Civic Emergency Management

Suppose the local government of a large city, such as Chicaigodered to prepare a disaster response
plan in case of a natural disaster. The government wouldtdikeave the capability of providing each
citizen, even after the event has occurred, with both géma@cindividualized instructions on how to
protect themselves. In particular, the city would like todide to provide maps and directions for each
citizen explaining where to find medical treatment, shelteicontaminated food and water, etc. In
addition, the city would like to be able to collect requestsilmmediate medical treatment from citizens
who are immobile, and to collect reports from citizens arafgssionals about the effects of the incident

in various sections of the city.

This application lends itself naturally to a Web-based enpéntation, but there are several inherent
difficulties. First, demand for the application is likelywas to occur, but if it should occur, it will
come very quickly and as a large spike. It would be costly fier ¢ity to invest in enough permanent
infrastructure to satisfy the demand, and not cost-effedt keep this infrastructure idle. Second, it is
critical to give all end users prompt and reliable accessftarination. It is even more important that
data collected from end users requiring immediate assistbe recorded reliably. Third, the delivery
of information customized to each end user, such as the ggmerof maps and directions, requires
significant computational resources. This informationncareasily be conveyed through a telephone

conversation, and in any case, the scale of the demand wakd encall-center solution impractical.

The ability to tap into a scalability service would solve gadifficulties. The city would have to
prepare software in advance and maintain a modest amouetroBment infrastructure, but could rely on

the scalability service to shoulder the network and contprtal load, when demand suddenly arrived.

3

Chapter 1 Introduction

$template := SELECT from _user _id

FROM comments

WHERE tauser _id = ?;
$query = setparams ($template, $to _id);

$result := execute($query);
foreach ($row in $result) {
$from _id := getuserid ($row);
$template := SELECT user _name
FROM users
WHERE userid = ?;
$query = setparams ($template, $from _id);
$result2 ;= execute($query);

}

Figure 1.1:A sample code fragment from thescTiION application for finding names of users who have posted

comments about a particular user. The code fragment shows how theatigelaode, consisting of two query
templates, is interspersed in the procedural code. We focus on twodbasens:users with attributesuser _id

anduser _name, andcomments with attributesfrom _user _id andto _user _id .

1.2 Challenges in Creating a Scalability Service for Dynamic Web

Applications

The example scenarios in Section 1.1 illustrate the patEbénefits of a plug-in scalability service for
current and future dynamic Web applications on the Inter@einstructing such a service for dynamic

applications is much more challenging than doing so foriti@thl static content.

Web applications are collections of programs commonlytemiin a procedural language like Java
or PHP. On an HTTP request, one or more of these programs itorganerate the response. The
programs interact with the application’s database, whmisks and manages the application’s data, by
issuing queries and updates. These queries and updatégmeally) constructed at runtime by setting
the missing parameter values in the query and uptsitglates- queries or updates, embedded in an
application’s code, missing zero or more parameter val&agure 1.1 shows a sample code fragment

from one of the benchmark applications we use. The code feagfinds the names of users who have

4

Section 1.2 Challenges in Creating a Scalability Service fardnic Web Applications

s A AXXLET
RN

Internet

LA

e
-
[—
—_

Home servers || HTTP App code | | DBMS

T EEEE
Web server App server Database

Figure 1.2: Traditional centralized architecture.

posted comments about a particular user. To achieve tlkistteescode uses two query templates, which
find: (i) the user identifiers of all users who have posted cemishabout a particular user, and (ii) the
username of a user given her identifier. The code first issue®ry based on the first template. Then

for each of the user identifiers returned in the result, iessa query based on the second template.

Web applications are typically deployed on a three-tiesztler-side architecture consisting of one or
more instances of: a web server, an application server, @adadase server. The web server manages
the HTTP interactions, the application server runs theiegipbn code, and the database server houses
the application’s database. We call these server(s), aiagd by the application, iisome server(s)
(Figure 1.2 shows the resulting architecture.) The key &dedulity is to ensure that the home server(s)
remains lightly loaded even at high request rates. Becauapgitation’s web servers and application
servers do not carry any persistent state, they can beasgliso that each replica remains lightly loaded
even at high request rates. Alternatively, an applicatemmuse a CDN that executes application code to
scale its web and application server. In fact, Akamai’'s ERige for Java service already provides this

functionality [58].

The main challenge is to design the database part of theldidstiaervice, or aDatabase Scalabil-

5

Chapter 1 Introduction

ity Service (DBSS)Wwhich can effectively offload at least some of the databasek irom the home

infrastructure’s database server(s). We describe thedkenbes below.

Reluctance of administrators to cede ownership of dataAdministrators are typically reluctant to cede
ownership of data and permit distributed data updatingideithe home organization. This re-
luctance arises with good reason, due to the security cogcdata corruption risks, and cross-

organizational management difficulties entailed.

Maintaining privacy and security of data in the face of updates In both the example applications in
Section 1.1, it is desirable that the DBSS, a third-partyisendoes not learn anything about the
application’s data. Privacy is critical more so due to thdl\pablicized instances of database
theft [103] and the security legislation in the Californiangte [24]. Guaranteeing privacy without
affecting scalability is a challenge in itself; doing so iregence of distributed updates, common
in dynamic applications, is even more difficult. Section.1.grovides details on how updates

increase the difficulty of simultaneously maintaining séglwand providing good scalability.

Guaranteeing data consistencyOne method to reduce the load on the database server(s)she or
replicate the data at multiple nodes. Because users of a Weicatpn are geographically dis-
tributed, to reduce user latencies, often these cacheplarag are widely distributed as well [6, 8,
66]. Many Web applications require strong consistency lieirtmost important data. For exam-
ple, in our civic emergency management scenario (Sectib2)].inventory data for emergency
supplies must be managed precisely — inconsistencies costdives. It is well-known that main-
taining strong consistency among replicas in a distribstetting presents significant scalability

challenges [48].

Keeping user latency acceptableviost Web applications are interactive. High user latendre® cus-
tomers away, nullifying any advantage that using a scatglsiérvice provides [59, 60]. Hence
to be effective, a scalability service should meet anotlkegrkquirement besides offloading work
from the application’s home server(s) — the final user latesfca response generated using the
scalability service should be acceptable. Meeting thisiregqent in a scalability service, whose

nodes are distributed all over the Internet, can be chalgng

6

Section 1.3 Related Work

1.3 Related Work

In this section we provide an overview of the related workoPwork related to ours can be partitioned
into four categories: database services, database caahthgeplication, privacy, and commercial ef-

forts. We discuss each in turn.

1.3.1 Database Services

As we outlined in Section 1.2, the key challenge in buildirggalability service is scaling the database
component. Existing work on providingatabase servicesan be classified into two categories: the
Database Outsourcing (DO) model and the in-house databakdddity model. In contrast, we propose

the Database Scalability Service (DBSS) model.

In the DO model, an application outsources all aspects ofagement of its database to a third
party [55]. A key concern is to safeguard the applicatiorissstive data. Since the DO provider houses
the application’s entire database, one way to ensure $gaifran application’s data is to store an en-
crypted database at the DO provider, and use encryptiomsehéhat permit query processing on en-
crypted data [3, 54, 56]. Aggarwal et al. [2] suggest an a#Bve—distribute data across multiple

independent providers that do not communicate with onehanot

In the in-house database scalability model [6, 8, 12, 66,72]),other machines within the applica-
tion’s organization are used to cache data and answer gesujts on behalf of the database server(s).
While these approaches are cheaper than buying larger databever(s), they still suffer from the same
fundamental provisioning problem, i.e., how much cachimigastructure to provision. Hence these

approaches are uneconomical for Web applications, where#ul is highly variable and unpredictable.

In contrast to work in the DO and the in-house database stiglabhodels, we consider the DBSS
model, in which onlydatabase scalabilityand not full-fledged database management, is outsourced to
a third party [84]. Under the DBSS model, application provedestain master copies of their data on
their own systems, with the DBSS only caching and serving-oedy copies on their behalf. In our

DBSS approach, query execution on third party servers is @etled, so arbitrarily strong encryption

7

Chapter 1 Introduction

of the remotely-cached data is possible. We contend that &security and data integrity standpoint,
the scalability provider model is more attractive than tt@ model in the case of Web applications with

read/write workloads (e.g., e-commerce applications).

1.3.2 Database Caching and Replication

Remote caching of database objects first received signifatgertion during the late 1980’s as a tech-
nique that improves performance without sacrificing strongsistency or 1-copy serializability [17],

in client-server object-oriented databases. The key ssaddressed were: should consistency be main-
tained by propagating changed data or invalidating cacla¢d dt remote clients (e.g., [43]), which
locking mechanisms should be used [26, 43], and whetheettdlj or “data pages” should be shipped
from the server to the clients [37, 44]. The work in this arebribt explore update propagation methods

or the security concerns due to caching of data.

More recently, database caching has been investigated asaasnto scale dynamic Web applica-
tions. Compared to client-server object-oriented datahadeb applications see a wider variation in
the user load, as discussed in Section 1.1. Because of this/higance in user load, we believe that
the efforts in the in-house database scalability model [&2866, 70, 72], will continue to suffer from
the “provisioning” problem and will have limited applicdibj. Web applications may serve millions of
users, who are geographically distributed. To improveatnhity and user latency, many systems put
database caches on the edge of the network [6, 8, 66]. Howavamwide-area network (where there
is a possibility of network failures), strong consistenogl@ood performance cannot be guaranteed si-
multaneously [16, 42, 48]. Most caching systems sacrificesistency for performance — for example,
in the DBCache [72] and DBProxy [8] projects at IBM and the MTCad®] project at Microsoft Re-
search, an authoritative copy is maintained at the baclkdatabase(s) and caches are regularly updated
to keep them consistent with the back-end database(s).ditiay techniques like specifying a fresh-
ness constraint for queries [5], pre-declaring the accattenns of all write transactions [11], handling
the read and write transactions separately [89], and Iguggahe statically available query and update

templates [9, 32] have been proposed to lower the overhearhipitaining a desired consistency. With

8

Section 1.3 Related Work

our work, the application developer can specify the parth®fapplication for which she desires strong

consistency; for everything else, best-effort consisteaprovided.

Our approach of scaling the database involves caching ralied views and invalidating them when
data updates render them obsolete. Levy and Sagiv [68]gedneuristic methods for determining when
query statements (and hence view definitions) are indememdaipdates in many practical cases, al-
though the general query/update independence problendécidable. In the data-warehousing context,
a plethora of work [52] has been done on view maintenancehiolwon any update, the view is updated
to reflect the update; view maintenance strategies can loetog®mplement view invalidation strategies.
Gupta and Blakeley [51] provide techniques to update viewsgus subset of the query statement, the
update statement, and the updated base relation. Quasg3§]atudy view self-maintenance—for a
given view, find a set of extra views, called auxiliary views,that on any update, the view and the set

of auxiliary views can be updated without inspecting theshra$ations.

The works cited above are special cases of clues (Chaptero#yevtr, they do not address privacy
concerns. Furthermore, we demonstrate the necessity aadtades of specially designed “database-
derived” clues, in order to achieve precise invalidatioBedtion 4.4.2). The work closest to this in
technique is by Candan et al. [25]. They suggested usingifjgotjueries” to inspect portions of the
database in order to decide whether to invalidate cacheq gesults in response to database updates.
However, they used polling queries as a heuristic to getbeétvalidations, and did not use them to

implement precise invalidations.

In the context of Coda, a file system for mobile computing emvinents, Mummert et al. [78] main-
tained cache entries at multiple levels of granularity wwhadlowed trading precision of invalidation for
speed of invalidation. Satya [95] then showed by exampl@sths concept of cheap but conservative
invalidation can be useful in a variety of settings. In ourkyave also see the effects of this tradeoff.
However, in addition to the speed of invalidation, we alscufon privacy and security—on how using

conservative invalidation exposes less data to the DBSS.

Chapter 1 Introduction

1.3.3 Privacy

A key challenge of a DBSS is providing this shared scalahitifsastructure while protecting each orga-
nization’s sensitive data. There has been a lot of receettast in keeping data private, yet allowing the
computation of several functions on the data. For exampleaval et al. [4] showed how to transform

a databas® to D’ so thatD’ is privacy-preserving, but still allows a user to computeiaction f on

the database such th&tD) = f(D’). Agrawal et al. [3] present order-preserving encryptionesaes.
Since the encryption schemes preserve order, these sclenidde used to enable order-comparisons
over encrypted data like clues. However, under our attaattainehere the adversary can have access to

some plain-text to encrypted-value mappings, this schesee dot work.

Much work has been done on privacy metrics, starting withviloek on k-anonymity [101]. Un-
der k-anonymity, each record is indistinguishable fromeatst k-1 other records with respect to some
“quasi-identifying” attributes. There has been follow-wprk on creating efficient algorithms for k-
anonymity using generalization and tuple suppressiomigales [14, 67, 102]. Several improvements
over k-anonymity have also been proposed [69, 73]. Irrdgmeof which of these metrics is used
to measure privacy, the privacy-scalability tradeoff &xig the DBSS setting. These different met-
rics simply influence the exact values in the privacy-sdétglcturve. For our experiments regarding
equality-comparisons over clues, we use the simple metrjust measuring the number of distinct

values revealed to the scalability service.

Hore et al. [57] study the privacy-utility tradeoff in theaibe of the “coarseness” of the index on
encrypted data. Our bucketization technique in SectiorB4sssimilar. However, the different domain

we consider requires different optimization objectives.

1.3.4 Commercial Efforts

Akamai Technologies, a leading CDN, has an “EdgeJava” ptoddrech allows Web content providers
to execute Java servlets on Akamai's proxy servers. For pbara significant use of EdgeJava was a

widely advertised promotion staged by Logitech Corporatinrwhich peak demand exceeded 60,000

10

Section 1.4 Our Approach

user requests per second. For each request, a Java sendetidglly generated an HTML document,
indicating whether the end user was a winner, which was teered to the end user’s browser. Other
Akamai customers have used EdgeJava to perform servetraidgormations of XML to HTML. Aka-
mai provides weak consistency for cached data via TTL-bpsatthcols, with the option of associating

“do-not-cache” directives with objects that require sg@onsistency.

In the Database Outsourcing (DO) model discussed in Sett®d, there have been many recent
commercial efforts [1, 7, 33, 93]. While these services peanmon-demand database scalability and
follow a pay-per-usage model, currently they only providdimentary database functionality, both in
terms of the data model as well as the querying support. Ttet natable among these services, Ama-
zon’s SimpleDB service, supports a simple data model wheeck &able is modeled as an independent
hash table. Even the foreign key relationships betweemsatdnnot be specified. As a result of the
simple data model, the query functionality is rudimentasyneell — limited to lookups in a single table
based on a simple predicate. Therefore these serviceiimrctirrent state, can not be used by any dy-
namic Web application that uses its database extensivedddition, to use these services, applications

need to trust the service providers with their data.

Neither Akamai nor any of these commercial efforts in the D@del has, as yet, addressed or even

explored the security concerns of a third-party servicarggadata from several Web applications.

Avokia (www.avokia.com) is another notable commerciabgffvhich aims to scale the database
independently for each application running in a centrdligetting. Since Avokia’s solution is in the

centralized setting, it will inevitably suffer from the ptisioning problem.

1.4 Our Approach

Our approach exploits two basic properties of most Web egfins: the underlying data workloads

tend to (1) be dominated by redgdsnd (2) consist of a small, fixed set of query and update teiegl

1As per [61], the “visits to media upload” ratio is 20:1 foikipedia.org , 500:1 forflickr.com , and 600:1 for

youtube.com , three popular dynamic content sites on the Internet todde “reads to writes” ratio should be similar to

11

Chapter 1 Introduction

For the diverse set of benchmark applications we studiedntimber of templates varied between 10
and 100 — details in Figure 2.6. The first property makes isifda to handle all data modifications
at each application’s home server(s). With this approachjata updating is performed outside of the
home organization, and tight control over authenticatifupalates and overall data integrity is retained.
We exploit the second property, i.e., predefined query amldieptemplates, to (1) provide best-effort
consistency that places almost no overhead on the homer@reé an application, and (2) ensure
privacy and security of data in face of updates. Levy and\5&@] provide several heuristic methods
for determining when query statements are independentddtep in many practical cases. This work
can be easily extended to determine (at compile-time) tlegygiemplates that are independent of an
update template. On an update, this analysis enables the B8&Sto not only quickly narrow down
the candidate query results to consider for invalidationabgo to be sure that the invalidation is precise
(details in Chapter|3). Such an analysis can also be used IYBBS to find data that is not useful for
invalidation. Such data can be secured without affectiegstialability in the DBSS scenario (details in
Chapter 3 and Chapter 4).

We start in Section 1.4.1 by presenting our overall archirecof a scalability service for dynamic
content applications and our approach to data consist&eacyion 1.4.2, Section 1.4.3, and Section 1.4.4
address the challenge of maintaining privacy and secunitthe face of data updates. Lastly, Sec-
tion'1.4.5 addresses the challenge of keeping final userdai@cceptable.

1.4.1 Overall Architecture

Figure 1.3 depicts the overall architecture of a scalatsirvice, in which (1) a Web application’s code
is executed at trusted hosts (application “servers”), showFigure 1.3 as the CDN, (2) the code in
turn fires off database queries and updates that are hangledBSS, and (3) queries that cannot be
answered by the DBSS and updates are sent to back-end databtse the application’s home or-

ganization. We have built a prototype DBSS with this generethitecture, and used it to scale three

this ratio. Figuré 2.11 lists the writes to reads ratio for senchmark applications — reads still dominate writeicaigh the

ratio of reads to writes for the benchmark applicationsyediothan [61].

12

Section 1.4 Our Approach

wsf 10 EE 0
AL/

Content Delivery Network

.k

Database

queries/updatef Query results

< Database Scalability Service ﬁ
Database

quenes/updatewé / XJ /RQuery results
home
servers U Ej U Ej

Figure 1.3: Scalable architecture for database-inteWs®e applications. In this thesis, we focus on the

Database Scalability Service (DBSS), the shaded cloud.

data-intensive Web benchmark applications. We provideendetails about the overall design and im-

plementation of our scalability service in Chapter 2.

Any distributed system must grapple with the issue of caests. Rather than explore the wide
space of potential solutions to the consistency problemadapt a simple model of consistency. Our
model is based on the insight that only some data in Web agiits require strong consistency. For
example, only inventory data for emergency supplies in ait emergency management example (Sec-
tion 1.1.2), where inconsistencies could cost lives, negstrong consistency. For other applications like
bulletin-boards, strong consistency is not required. Sewaort two levels of consistency guarantees
— the application developer can specify the parts of theiegapn for which she desires strong con-
sistency; for everything else, best-effort consistengyravided. Additionally, we exploit the fact that
Web applications use a predefined set of query and updatdat®spo provide best-effort consistency
that places almost no overhead on the home server(s) of dicatpm. Finally, we believe that recent
work [15, 49, 50], which leverages the differing consisteneeds of different data to guarantee seri-

alizability in an environment where each read operationesia “freshness constraint”, can be used to

13

Chapter 1 Introduction

improve the consistency guarantees in our scenario.

1.4.2 Guaranteeing Privacy and Security in a DBSS Setting

As we pointed out in Section 1.2, a key challenge of a DBSS isigimg this shared scalability in-
frastructure while protecting each organization's séresitiata. The goals are (1) to limit the DBSS
administrator’s ability to observe or infer an applicattosensitive data, and (2) to limit an application’s
ability to use the DBSS to observe or infer another applicéisensitive data. Such concerns have been
increasing in the past few years, as borne by well-publitinstances of database theft [L03]. We use
privacyto denote these concerns. We sgeurityto denote a special case of privacy. While the goal
of privacy is to limit the data from being observed or infekréhe goal of security is to just limit the
data from being observed. In Chapter 3, we address the secariterns. In Chapter 4, we expand the

discussion to privacy concerns.

Security/privacy concerns dictate that a DBSS should beigeo\encryptedupdates, queries and
guery results. The home servers of applications maintastenaopies of their data and handle updates
directly, and the DBSS caches read-only (encrypted) copigaeary results that are kept consistent via

invalidation

Security/Privacy-Scalability tradeoff. There is an important security/privacy-scalability traffien

the DBSS setting. When a data update occurs, to maintain temsys the DBSS must invalidate (at
least) all the cached query results that changed. Becaudatalthat the DBSS sees is encrypted, the
DBSS needs help from the application in order to know whichltsso invalidate; such help, however,
inevitably reveals some properties about the data. (Thécappn could provide the help, either by
not encrypting the data passing through the DBSS, an appwadaise in Section 1.4.3, or by sending
invalidation clues, a more general technique we presenteiti@| 1.4.4 that allows applications to
manage their privacy and scalability needs at a fine graity)amhus, in providing help to the DBSS,
the application faces an important dilemma. On the one havealinglessabout the data means that
the DBSS will invalidate far more than needed, resulting imrengueries passed through to the home

server, decreasing scalability. On the other hand, rewgatiore about the data to the DBSS raises

14

Section 1.4 Our Approach

security/privacy concerns.

1.4.3 Scalability-Conscious Security Design Methodology

We study this security-scalability tradeoff, both analgtly and empirically, in Chapter 3. To help
manage this tradeoff, we present a static analysis meth&skation 3.3 for identifying segments of
an application’s database that are never useful for inwabd decisions. The application administrator
can stop worrying about making such data available to the DB&Seover, for all three benchmark
applications we study (details in Section|2.6), most of tagdhat can be encrypted without ir:iacting

scalability is of the type that application designers widnto encrypt, all other things being equal

Based on our static analysis method, we propose a new sdgtaioihscious security design method-
ology that features: (a) compulsory encryption of highlypstve data like credit card information,
and (b) encryption of data for which encryption does not impealability. As a result, the security-
scalability tradeoff needs to be considered only over datavhich encryption impacts scalability, thus

greatly simplifying the task of managing the tradeoff.

1.4.4 Invalidation Clues

We presentinvalidation cluesa general framework (the solution of Section 1.4.3 is aigpease) for
applications to reveal little data to the DBSS, yet prevenlesale invalidations. Invalidation clues (or
cluesfor short) are attached by the home server to query restitsex to the DBSS. The DBSS stores
thesequery clueswith the encrypted query result. On an update, the home isearesend ampdate
clueto the DBSS, which uses both query and update clues to decidetwinvalidate. We show how

specially designed clues can achieve three desirable:goals

e Limit unnecessary invalidation®ur clues provide relevant information to the DBSS that emabl

it to rule out most unnecessary invalidations.

2See Section 3.5.3 for details on what data is kept privategusirr static analysis method.

15

Chapter 1 Introduction

e Limit revealed information:Our clues enable the application to achieve a target levekotb-

rity/privacy by hiding information from the DBSS.

e Limit database overheadur clues do not enumerate which cached entries to invalidiastead,
they provide a “hint” that enables the DBSS to rule out unnemgsinvalidations. Thus, the home
server database is freed from the excessive overhead afthtvirack the exact contents of each

DBSS cache in order to enumerate invalidations.

See Section 4.2 for an illustrative example of how clues knapplications to balance their secu-

rity/privacy and scalability requirements.

We present all details on invalidation clues in Chapter 4. Weawshow invalidation clues offer
applications a low overhead control to balance their pyivaad scalability needs at a fine granularity.
Furthermore, for many query/update template pairs, exta,deyond data that is a function of query
and update statements and query results, is necessargbisgimvalidation. We identify such pairs, and
show how precise invalidation can be achieved in such casgsrerating “database-derived” clues. We
also empirically measure the scalability benefits of usiregise invalidations for the three benchmark

applications we study (described in Section 2.6).

1.4.5 Holistic Transformations to Reduce User Latencies

As discussed in the previous sections, Web applicationsusanthe services of a secure scalability
service to get on-demand scalability, at an economicalgeaydsage rate. However, just being scalable
is not sufficient. Web applications, in addition to beinglab&, must be interactive. After clicking a
web link or typing a URL into the browser’s address bar, a ugpeets the content to appear within at
most a few seconds. High user latencies can drive customeng aullifying any scalability advantage

that using a scalability service provides [59, 60].

To keep the end user latency low, it is necessary to undet t@factors that contribute to this latency
in a scalability service setting (Figure 1.3). A Web appima (Figure 1.1 shows a fragment) is a collec-

tion of programs. On any HTTP request, one or more of thesgranas is executed. To obtain the data

16

Section 1.5 Contributions

these programs need to generate the response, they isabastatueries. Frequently, these programs
issue multiple queries for each HTTP request: for the bemckrapplications we study, the average
number of queries per HTTP request varies between 1.8 andsib Table 5.3. Furthermore, for every
database query that misses in the DBSS cache, the user musé ¢hd long latency of accessing the
home server database. Hence to keep user latencies lovdesiable to either reduce the number of

database requests or hide their latencies.

In Chapter 5 we present two transformations: one for reduitiaghumber of database requests and
the other for hiding the latency of database requests. Tinassformations change both the database
queries as well as the code surrounding the queries. Wekcapph code is typically in a procedural
language like Java or PHP, while the database queries arel@clarative language like SQL. These
transformations require an understanding of both the phaet and declarative languages. They treat
the program as a whole. Therefore, we call these transfanstiolistic. In Chapter 5 we discuss why
opportunities for applying these transformations will toae to exist in current Web application code,
present algorithms for automating these transformatiors $ource-to-source compiler [39, 81], and
evaluate the effects of applying these two transformationd/eb applications, both in a traditional as

well as a scalability service setting.

1.5 Contributions

The primary contributions of this thesis are the following:

e [Chapter 2] We design, build, and evaluate fist prototype of a Database Scalability Service
(DBSS).

e [Chapter 3] We present a convenient shortcut to managingethigrisy-scalability tradeoff in the
DBSS setting. Our solution is to (statically) determine vhitata can be encrypted without any
impact on scalability. We confirm the effectiveness of oatistanalysis method, by applying
it to three realistic benchmark applications that use agbtype DBSS system we built. In all

three cases, our static analysis identifies significanigretof data that can be secured without

17

Chapter 1 Introduction

impacting scalability. The security-scalability tradedbes not need to be considered for such

data, significantly lightening the burden on the applicaadministrator managing the tradeoff.

e [Chapter 4] We proposiavalidation cluesa general framework for enabling applications to reveal
little data to the DBSS, yet provide sufficient informationlitoit unnecessary invalidations of
results cached at the DBSS. Compared with previous apprgamimgsroposed invalidation clues
provide increased scalability to the DBSS for a target sgg@privacy level, as well as more fine-
grained control of this tradeoff. Using three realistic Wednchmark applications, we illustrate
the issues and solutions for generating effective clues, by identifying categories requiring

database clues, and then evaluate the effectiveness oblatioas on our DBSS prototype.

e [Chapter 5] We propose two holistic transformations to redilne user latency of an application
executing in a DBSS setting. We discuss why opportunitieafptying these transformations will
continue to exist in Web applications and present algostfonautomating these transformations
in a source-to-source compiler. We finally evaluate thecefiéthese two transformations on three
realistic Web benchmark applications, both in the traddiocentralized setting and the DBSS

setting.

1.6 Thesis Organization

Chapter 2 describes our overall design and implementatiarscélability service for applications where
the database system is the bottleneckhe novel piece of such a service is the Database Scayabilit
Service, and Chapter 2 describes it in detail. It also dessrihe benchmark applications we use to
evaluate the DBSS, describes the setup and evaluation noddiggdwe use for all our experiments,
and presents results confirming that the database systemdeed the bottleneck in the benchmark

applications we study.

Chapter 3 describes the security-scalability tradeoff inBSB setting. It provides a formal char-
acterization of view invalidation strategies in terms ofawldata they need to access. Based on this

characterization, it presents a static method for autaaldytiidentifying data that is not useful for in-

18

Section 1.6 Thesis Organization

validation and thus can be encrypted without reducing bdéla Results on the three benchmarks we

study confirm the effectiveness of our technique.

Chapter 4 describes invalidation clues, how different tygfeslues can be used to achieve different
precisions in invalidations, how clues can be tailored tahee between privacy and scalability, and our

empirical findings using clues.

Chapter 5 describes two transformations for reducing tlea&texperienced by users of a Web appli-
cation executing in a DBSS setting. It argues why opportesiior applying these transformations exist,
identifies the various code “patterns” where these transitions apply, discusses the consequences of
these transformations other than the reduction in latesmoy,measures the effects of such transforma-

tions on three benchmark applications in a centralized dsaw@ DBSS setting.

Finally, Chapter 6 contains a summary of the important resultthis thesis, and discusses their

implications.

19

Chapter 1 Introduction

20

Chapter 2

Architecture of the Scalability Service

In this chapter we present the architecture of our scatglsiirvice. Section 1.2 laid out the challenges
in designing a scalability service. In addition to theselleinges, there are two goals that our scalability

service architecture should meet.

First the scalability service architecture should aim tagbeeral and powerful as possible, so that it
can generate any form of dynamic contastthe application administrator intends it to be generated
This approach is in contrast with that of trying to detectstreicture of dynamic content [20, 92], and
using more traditional static caching techniques to geadhe pages [27, 36, 106]. So the scalability
service architecture must be able to execute code, cacle doduments, and images, and process
database requests. Second the scalability service arthigeshould place no additional burden on the
Web application developers. Any application developedtiertraditional centralized scenario should
execute efficiently on the scalability service architegtuvithout requiring any additional effort from the
application developer. For an alternative architectuteeteasily adopted, it must not require developers

to master a dramatically different and difficult methodglog

To eliminate all scalability bottlenecks, we explore anraagh that replicates all three tiers (web
server, application server, back-end database) of théitmaal centralized architecture. Figure 2.1(a)
illustrates the traditional architecture (here all thrisest are depicted as executing on a single home

server; in general they may be spread across multiple philysérvers). Figure 2.1(b) represents our

21

Chapter 2 Architecture of the Scalability Service

Users %%%%%%%
T Vilit/s
R

Content Dellvery Network

.ll’
Internet @

Database 1
l \ \ l / / queries/updates/ & ? T Query results

Database Scalability Service

= =5 9O /O
= Database
Home servers || HTTP App code DBMS queries/updates / t f / \XQuery results
Web server Al;p-s-e;ver Database Home servers @ E@ @ E@ @ E@
(a) Traditional centralized architecture. (b) Distriiarchitecture.

Figure 2.1: Traditional versus distributed architecture.

distributed architecture, in which (1) a Web applicatioctgle is executed at trusted hosts (application
“servers”), shown by the Content Delivery Network (CDN) in figure, which provides the function-
ality of a web and application server, (2) the code in turnsfiof database queries and updates that
are handled by the Database Scalability Service (DBSS), @ndugries that cannot be answered by
the DBSS and updates are sent to back-end databases witlapgheation’s “home” organization. In
our architecture, the home server for each applicationigeovetains the capability to independently
answer requests. We have built a prototype DBSS with thisrgéaechitecture, and used it to scale

three data-intensive Web benchmark applications.

Since our scalability service architecture replicateshate tiers of the traditional centralized archi-
tecture, it automatically generates the dynamic conteth@gpplication administrator intends it to be
generated. Furthermore, no work is required to port theiegidn to the new architecture — simply a
different JDBC driver has to be loaded. However, as we discu§€hapter 5, applications executing
in a scalability service architecture may féedsresponsive (to user’s actions). Chapter 5 proposes two
transformations that automatically increase the respensss of an application executing on the DBSS

architecture.

22

Section 2.1 Home Server

Outline. In Section 2.1~ 2.4, we first present the design of the fouickdghodes in our system:
home servers, CDN, DBSS, and the clients. Section 2.5 desdhibdlow of invalidations in our system.
Section 2.6 describes the three benchmark applicationsse/éon evaluating our prototype scalability
service. Section 2.7 describes our methodology for cagrgint the experiments in this thesis. In
Section 2.8, we present detailed results to confirm that #te@bdse system is indeed the bottleneck in
a traditional centralized architecture. We also confirnt tha scalability service architecture is able to
effectively offload work from the home server(s) of the benahk applications. Finally, we summarize
in Section 2.9.

2.1 Home Server

Each home server embodies the traditional three-tiergdtaoture, which enables it to generate Web
content dynamically and serve directly as much dynamicesdrds it chooses. The top tier is a standard
web serverwhich manages HTTP interactions with clients. The webeyas/augmented with a second
tier, theapplication serverwhich can execute programs for generating responseseot€lirequest.

Finally, the third tier consists of database servehat the application uses to manage all of its data.

In our prototype each home server is implemented as followe use Tomcat [62] in its stand-
alone mode as both a web server and a servlet container,irgnatbto process client requests and
invoke and run Java Servlets. We use MySqgl4 [79] as our badkdatabase management system and

mm.mysql [75], a type IV JDBC driver, as our database driver.

To use the scalability service, the home server just hasrit@right-weight module written in Java.
On a cache miss or on an update, the DBSS contacts this modiijgravides it with the (encrypted)
query or update. The module decrypts the query or update Gessay, generates the query result
or the update acknowledgment, and does other required gmioceon the query result or the update
acknowledgment before sending it back to the DBSS nodes. e cequired processing includes
encrypting the query result and computing “database-éddftiglues for queries and updates (“Database-

derived” clues provide additional information that the DB&fle can use for more precise invalidation;

23

Chapter 2 Architecture of the Scalability Service

Decrypter | | Encrypter

Decrypt Encrypt
query/update query result
if required if required

(Encrypted) -
query / update
) i Main module JDBC

“(Encrypted) Database
query result /

update acknowledgement clues query/update
+ clues T l DIl

Clue computer

Figure 2.2: Architecture of the part of the home server usetthhé DBSS.

see Chapter 4 for details). The module reads a configuratmaffthe query and update templates in the
application, and uses this knowledge to efficiently complgeclues. Figure 2.2 shows all the software

modules at the home server and their interactions.

2.2 DBSS Node

The design of the DBSS nodes is our central contribution. TB&E® nodes cache data on behalf of
the applications. We present the cache structure of the DBS®¢tion 2.2.1. There are two main

tasks that a DBSS node has to perform: handling databaseegueril handling database updates. We
discuss these in Section 2.2.2 and Section 2.2.3, resphctinn Section 2.2.4 we present the consistency

guarantees that our system provides. Finally, in Sectidrb2ve provide other implementation details.

2.2.1 Cache Structure

In our design, the DBSS nodes cache the results of databasegj(iee., materialized views) rather
than the tables of the database itself, or arbitrary subsablVe made this choice primarily due to pri-

vacy/security concerns. If the DBSS were to cache databbtestat would need to provide efficient

24

Section 2.2 DBSS Node

query processing capabilities over encrypted data. Recerit (%3] has shown that only weak encryp-
tion can be used if queries are to be executed efficiently orypted data. Therefore, if the DBSS node

caches database tables, privacy of all data might be conigedm

Caching query results also makes the DBSS independent of theena database implementation.
This flexibility is required since different applicationsagnchoose different back-end databases. Lastly,
caching query results has the advantage that complex gueged not be re-executed, and the DBSS

does not have to implement full database functionality. (& does not need a query optimizer).

The cache at the DBSS is partitioned to ensure better read/@amncurrency. The partitions are based
on query templates. Furthermore, the cache is maintainetemory to lower the read/write latency.
Entries that do not fit into the memory are written onto thekdising a Greedy-dual-size-frequency
(GDSF) policy [13]. In GDSF, each cache entry has an assst@tority, which takes into account the
size of the entry (i.e., the query result) and the cost of aging the entry. On each reuse, an entry’s
priority is increased. Whenever an entry needs to be evitiedone with the least priority is chosen.
In our preliminary evaluation, we found GDSF to perform bethan LRU or other cache replacement

algorithms that do not consider size and cost explicitly.

2.2.2 Handling Database Queries

Onreceiving an (encrypted) database query, a DBSS nodeifistd answer the (encrypted) query from
its store of cached query results. Queries that miss inote stre forwarded to the back-end database.
Since web workloads have high reuse across database q(feriesir benchmark applications, the
hit rate varied from around 60% to 80% in typical runs), thishtecture enables the DBSS node to
effectively offload work from the database server(s) of themb organization. When the database server
sends the query result, the DBSS node stores a copy of the/feéedy query result along with any clues

that the home server sent, and forwards the result to the CBN.no

If the query template corresponding to the (encrypted)yhas been marked uncacheable, the DBSS
simply forwards the query to the home server, and forwards(émcrypted) query result back to the
CDN.

25

Chapter 2 Architecture of the Scalability Service

2.2.3 Handling Database Updates

On receiving an update, a DBSS node first sends it to the batklaabase, and waits for an acknowl-
edgment that the back-end database has applied the upgdhgn évicts from its cache (i.e., invalidates)
the query results, which it believes have changed. Nextugtrforward the update and the correspond-
ing clue to those DBSS nodes whose caches are likely to beedféy the update. Charles Garrod, a

group member, is exploring efficient techniques for cagyoat this task [46].

For determining which query results to evict from its cadhe, DBSS node can only use the query
and update clues, since all other data that it sees is erctyphis determination, or the precision with
which the DBSS can carry out the invalidation, depends on whaty and update clues the application
has provided — more the information in the clues, more peécthie DBSS can invalidate. However, as
the application provides more information in the clues,BSS nodes learn more information, and less
is the privacy. Hence there is a privacy-scalability trdtisothe DBSS setting. We study this tradeoff
in Chapter 3 and propose solutions for managing this trade&hapters 3 and 4.

2.2.4 Consistency

Rather than explore the wide space of potential solutionsd¢a@onsistency problem, our DBSS proto-
type currently supports a simple consistency model. By diefdne DBSS provides non-transactional
best-effort consistency for query results. The query ardhtgptemplates are pre-analyzed to speed up
the invalidation process. This guarantee suffices for micet application’s data. Examples of such data
include the ten best sellers in the bookstore and the latssing in the bulletin board. For data requiring
strong consistency such as the number of copies of a bookdk g1 the bookstore application, or the
inventory data for emergency supplies in our civic emergenanagement scenario in Section 1.1.2, ap-
plications can mark the corresponding query templates eaalneable. The DBSS then does not cache
query results for any such templates. Of course, markingatdjas uncacheable may increase the load
on the home server infrastructure, reducing the scalglofiour scalability service architecture. For our

benchmark applications, none of the query templates (caitofal of 94 query templates) were marked

26

Section 2.3 CDN Node

as uncacheable.

2.2.5 Other Implementation Details

The entire DBSS code is implemented in Java. It reads a coafigarfile consisting of the query and
update templates. It is multi-threaded, and uses a threatlgmd persistent connections for improved

performance.

2.3 CDN Node

The CDN nodes provide the functionality of the web server &edapplication server. The trusted appli-
cation “servers” are used to encrypt queries/updates angmtequery results, as well as run application
code. These hosts could either (1) be maintained by thecagpioln vendor—for many data-intensive
Web applications, executing application code is not thébetileneck and hence a modest number of
hosts suffice, (2) be maintained by the CDN—if the vendor $rttst CDN, or (3) be users’ machines—
there are on-going efforts to guarantee secure executiond# on a remote machine [31, 105]. This
scenario is similar to the standard security scenario ofttwsted parties communicating over an un-
trusted channel. We consider the ciphertext-only atta6k§@d the chosen-plaintext attack [96] in this

scenario—details are in Section 4.3.3.

We used Tomcat [62] to provide the functionality of a web seand an application server, i.e., the
ability to interact with a user running a web browser and thiétg to run Web applications. Addition-
ally, the application server loads our custom JDBC drivet timmnects to a DBSS node instead of the
back-end database. Loading a different driver is the onnge that an application must make to use
the DBSS infrastructure. We modified our custom JDBC drivethier so that it supports prefetching
of database queries. On a prefetch request, the JDBC drstengies the request and returns immedi-
ately. Another daemon thread, which periodically checksafty outstanding prefetch requests, issues
the prefetch request and ensures that the query resultuglran the DBSS cache, if it is not already

present there.

27

Chapter 2 Architecture of the Scalability Service

wn
@
>
a
uy)
@
0
o
<
@

System Under Test

Figure 2.3: A closed system, in which there are a fixed numbesers. A user sends a request only

when it has waited for at least “think time” after receivimg tresponse to its previous request.

2.4 Clients

To evaluate the traditional centralized architecture amdscalability service architecture, we use each
application’s workload generator. The workload genegtme programs calleé@mulated Browsers
(EBs)to emulate human users. These workload generators inteitadthe system under test, which is
either the centralized architecture or the scalabilityiserarchitecture, in a closed system model [97],
i.e., at any time in an experiment, there are a fixed numberB¥ &d an EB issues a new request
only after the application has responded to its previousiesty Furthermore, EBs simulate human
usage patterns by issuing an HTTP request, waiting for thporese, and pausing forthink timeof

X seconds after receiving the response and before requesiother Web page>-is drawn from a
negative exponential distribution with a mean of seven seso Figure 2.3 shows this closed system

model.

An EB continually strives to model the behavior of a humamigyto accomplish specific tasks such as
ordering books and browsing the new arrivals. To model settabior, an EB issues HTTP interactions

as per a Markov chain, where the states are individual progjef the Web application and edges have

28

Section 2.4 Clients

Key: <Name> Button name
Start User — Web Interaction transition via button
Session —> Web Interaction transition via HREF link
—
»
<Search>
<Search> N
Admin
Confi <Submit>
Confirm \ Admin <Search>

Request

<Search> <Submit
>
[Search Result Query

le—>_ Best Seller

New
Product

(CURL)

<Admin>

/" Product
Detail

<Search>

<Add to Cart >

Home Search

<Shopping Cart > Request

Shopping Cart

I
<

<Shopping Cart>

<Confirm
Updates >

<Checkout>

<Search>

Customer
Registration

<Continue Buy:
Returning
Customer

Buy Request

<Confirm
Buy>

<Continue Buy>
Not Returning
Customer

<Shopping
Cart >

S Buy Confirm »
™ Y <Search>
L P Order Inquiry

<Search>
<Order Status>

<Display Last Order>

Order Display

<Search>

Figure 2.4: The transition graph for tleoKsSTOREapplication (reproduced from the TPCW [104]

specification).

weights that denote the transition probability of movingnir one state to another. Figure 2.4 shows
the transition matrix for th@ooksToREapplication. The edges do not show the probabilities of the

transitions; they just show the “action” that needs to bemalor that transition to happen.

29

Chapter 2 Architecture of the Scalability Service

update _ Aquery CDN

/il

e

|_f é cache | DBSS

invalidate |_£ Z /’ J (untrusted)

Z_é (upon miss)

— home

organization

Figure 2.5: Query, update, and invalidation pathways.

2.5 Invalidation Flow

The flow of queries, updates, and invalidations in the sysgesmown in greater detail in Figure 2.5.
In the figure, diagonal shading denotes information thatigext to encryption. The DBSS maintains
a cache of encrypted queries and encrypted query resulbsgAlith each cache entry, it stores query
clues sent by the home server’s database when returningntingpeed query result. On receiving an
encrypted quer{, the DBSS determines if an entry fQris in its cache and, if so, it returns the cached
encrypted query result. Otherwise, the encrypted queyriggrded to the home database server, which
returns an encrypted query result and any associated quey. All updates are encrypted by the CDN
and routed to the home organization via the DBSS. The homenza#on applies the updates, and
returns the encrypted updates with associated update diheDBSS monitors completed updates, and

uses the query clues and update clues to invalidate cacleey igasults as needed to ensure consistency.

2.6 Benchmark Applications

We sought Web benchmarks that make extensive use of a theadatand are representative of real-
world applications. We found three publicly available bemark applications that met these criteria:
RUBIS [82], an auction system modeled afebay.com , RUBBOS [83], a simple bulletin-board-like

system inspired bglashdot.org , and TPC-W [104], a transactional e-Commerce applicatioh tha

30

Section 2.7 Methodology

Total number of programg Number of templates
Application || Total Static || Query Update
AUCTION 25 5 28 11
BBOARD 21 3 38 13
BOOKSTORE 14 0 28 16

Figure 2.6: Total number of programs, and the number of gaed update templates for our three

benchmark applications.

captures the behavior of clients accessing an online boakstWe used Java implementation of these

applications. We will henceforth refer to these applicasi@sAUCTION, BBOARD, andBOOKSTORE

respectively.

Figure 2.6 lists the total number of programs, and the nurabguery and update templates in our
three benchmark applications. The HTTP interactions ferathcTION andBBOARD applications are
significantly higher than theooksToOREapplication, and they also have a few static HTML pages.
BBOARD has the highest number of query templates, wbiteoKkSTORE has the highest number of

update templates. Figure 2.7 provides the database caatfijuparameters we used in our experiments.

2.7 Methodology

We carefully optimized the performance of the centralizezhi#éecture by enabling the query caching
feature of MySQL4, the back-end database, and by addingthess necessary to make queries execute

as quickly as possible. We also eliminated most static edritem our workload by ensuring that the

1To make the TPC-W application more representative of aweald bookseller, we changed the distribution of book
popularity in TPC-W from a uniform distribution to a Zipf digution based on the work by Brynjolfsson et al. [22]. Bryn
jolfsson et al. verified empirically that for the well-knowamline bookstoremazon.com , the popularity of books varies as
logQ = 10.526— 0.871logR, whereR is the sales rank of a book afglis the number of copies of the book sold within a

short period of time.

31

Chapter 2 Architecture of the Scalability Service

Application | DB size Parameters

AUCTION 1GB 33,667 items
100,000 registered users

BBOARD 1.5GB 213,292 comments

500,000 registered usefs

BOOKSTORE | 200 MB 10,000 items
86,400 registered users

Figure 2.7: Application configuration parameters.

«— Improved scalability —/,/" 7/

«—— Scalabilty ——~ .7 | ,
Threshold Pl
Latency curve__--~~ -7
a” "/
a’,— /"/
Latency ~.—--—"" Reduced latency curve

—

Simultaneous users supported —

Figure 2.8: The figure shows (a) how scalability is computedhe number of simultaneous users

supported within a latency threshold, (b) how a reductiolaiency improves scalability.

emulated browsers did not request any images. This modificatakes our results conservative since

the static content of a normal workload can easily be caclemibsystem.

For theBoOKSTOREbenchmark, we used the standard shopping mix. Each of oeriexgnts started

from a cold cache at the DBSS and ran for ten minutes.

2.7.1 Evaluation Metrics

The key evaluation metric is the maximum throughput (retpussrviced per second) achieved by the

scalability service architecture vs. the centralized igeckure. A secondary goal is to reduce the delays

32

Section 2.7 Methodology

Home server
node

Figure 2.9: The SIMPLE scenario used in the experiments.

5 Mby
100 ms
Home server
100 Mbps [/—= 20 Mbps = node

5 ms 5 ms

/ o DBSS

node node

Users
node

Figure 2.10: The SIMPLETC scenario used in the experiments.

experienced by end users, or at least to not increase defaysmtcally. If a user suffers a long delay in
receiving a response, the user might go away and the respensenes useless [59, 60]. It is therefore
desirable to combine the two metrics. We combine the twoinsein a user perceived scalability metric,
which is measured as the maximum number of users that coddgported while keeping the response
time below a threshold. We refer the user perceived scélahiletric asscalability in the rest of this
thesis. Figure 2.8 shows how scalability is computed. t afoows how a reduction in latency improves
the scalability metric. For our experiments, we use a latehieshold of two seconds and this latency
threshold had to be met by 90% of the HTTP requests.

33

Chapter 2 Architecture of the Scalability Service

2.7.2 Scenarios

We use two scenarios, both running on Emulab [107] for evmgaur prototype: SIMPLE and SIM-
PLE_TC, which differed in whether the CDN node was co-located whita DBSS node or not and
whether the bandwidth between the home server and the DBSSwesla bottleneck (at high scalabil-
ity) or not. The SIMPLE scenario (Figure 2.9) had just two @®ea home server machine, which had
an Intel P-111 850 MHz processor with 512 MB of memory, and a [B&®de machine, which had an
Intel 64-bit Xeon processor with 2048 MB of memory. For simoipy, the DBSS node implemented the
functionality of the CDN node. The SIMPLEC scenario (Figure 2.10) had three nodes—the SIMPLE
scenario plus a separate CDN node. The CDN node and the DBSS averected by a low latency,
high bandwidth link (5 ms latency, 20 Mbps). In the SIMPLE exment, the home server and DBSS
node were connected by a high latency, low bandwidth dujkq(100 ms latency, 2 Mbps). However,
we discovered that this bandwidth was proving to be a batknn a traditional centralized scenario.
Hence in theSIMPLE_TC setting, we increased the bandwidth to 5 Mbps from 2 Mbpsboth scenar-
ios, we used just one additional node to emulate all clienke-€lient was connected to the CDN node
by a low latency, high bandwidth duplex link (5 ms latency,0ps). These network settings model a
deployment in which a DBSS node (because there are many o) iee€niose” to the clients, most of

which are “far” from any single home server.

2.8 Preliminary Evaluation

Figure 2.11 lists sample query and update numbers for a teateniun. The updates to queries ratio is
the lowest (1:50.9) for theBOARD application and the highest (1:6.3) for tBeoKkSTOREapplication.
Figure 2.12 provides the cache hit rates measured for edtie dfiree benchmark applications under a
high load. TheBBOARD benchmark achieves high hit rates, implying that the DBS$ilshioe able to

offload much of the database work from home servers of sirapalications. The hit rates for thesC-

2Figure 4.5 and Figure 5.9 confirm that this change incredseddalability for each of the three benchmark applications

by over 20% in the centralized architecture.

34

Section 2.8 Preliminary Evaluation

Application | Users| Queries Updates Update:Query ratio
AUCTION 650 | 187.7k 13.3k updates 1:.14.1
(53.9% insertions, 46.1% modifications)
BBOARD 350 | 376.8k 7.4k updates (61.4% insertions, 1:50.9
2.4% deletions, 36.2% modifications
BOOKSTORE| 900 | 91.8k 14.5k updates (42.0% insertions, 1:6.3
3.9% deletions, 54.1% modifications

Figure 2.11: Sample update rates for a ten-minute run.

Benchmark | Users| Cache hit rate

AUCTION 650 57.4%
BBOARD 350 75.5%
BOOKSTORE| 900 66.4%

Figure 2.12: Cache hit rates for the three benchmark apigicat

TION andBOOKSTOREbenchmarks are less impressive. We need to explore TTLdlzgg@oaches [34],

which are the norm in caching static content, to improve dwhe hit rates for these two applications.

Figurel 2.13 plots the average latency per dynamic HTTP stqaéthree different number of EBs
(clients), for our three benchmark applications executingtraditional centralized setting. The latency
has three components: the client latency (the time spenhlawarage request in going from the client
to the home server and by the response in returning backprtheessing time spent in the web and
application server, and the time spent in servicing dambaguests. As the number of EBs increases,
time spent in each category increases, reflecting growiag). [do understand these variations in latency,
we also plot the average bandwidth usage and the maximum C&j¢ o$ the the home server for these
experiments in Figure 2.14 and Figure 2.15 respectivelg. TRU usage is mainly due to two categories
of processesmysqld(processes for the database server)jand (processes for the web server and the

application server). Since the home server CPU usage re20bésfor theAuCTION andBOOKSTORE

35

Chapter 2 Architecture of the Scalability Service

2,000~

3,000 [0 Database

5.000 [] Database [0 Database B Web and app server
5 [Web and app server [l Web and app server [Client latency
£ O Client latency O Client latency
£ 4,000r
§ 2,000
Q |-
3 3,000 1,000
(]
82,0001
E ! 1,000
<

1,000 H

0 0 0
240 EBs 290 EBs 340 EBs 390 EBs 80 EBs 130 EBs 180 EBs 230 EBs 210 EBs 260 EBs 310 EBs 360 EBs
AUCTION BBOARD BOOKSTORE

Figure 2.13: Average latency per dynamic HTTP request,ratttifferent number of EBs, for the three

benchmark applications executing in a traditional ceizteal setting.

5,000 5,000
5,000
4,000 4,000
s
2 4,000
g 3,000(3,000(
S 3,000r
S
< 2,000~ 2,000~
2 2,000
X
1,000 m m 1,000 1,000
0 0 0
240 EBs 290 EBs 340 EBs 390 EBs 80 EBs 130 EBs 180 EBs 230 EBs 210 EBs 260 EBs 310 EBs 360 EBs
AUCTION BBOARD BOOKSTORE

Figure 2.14: Average bandwidth usage of the home servédmex tifferent number of EBs, for the three

benchmark applications executing in a traditional cerzteal setting.

applications, it is evident that the home server CPU is thidweck for these applications. Furthermore,
for both applications, the database server uses more CPUuhbhaveb and application server, indicating
that the applications are database intensive. In conti@sthe BBOARD application, the application
and web server use more CPU than the database server. Thisdrehaxpected because tB8OARD

application is presentation heavy.

We expect the average latency to increase sharply whend&datl@neck is hit. For theucTioN and
BOOKSTOREapplications, this increase happens at 390 EBs and 360 EBsctesby, when the CPU

utilization reaches 100%. Note that most of the latencyaase is due to increases in the time spent

36

Section 2.8 Preliminary Evaluation

100 100 100
. [java

@ java . [java O mesqld
g 80 O mysqld 80 L O mysqld 80 -
o
@
Qo
< 60 60 - 60 -
o
j=2)
8
S 40 40 - 40 -
)
[
O

0 0 0
240 EBs 290 EBs 340 EBs 390 EBs 80 EBs 130 EBs 180 EBs 230 EBs 210 EBs 260 EBs 310 EBs 360 EBs
AUCTION BBOARD BOOKSTORE

Figure 2.15: CPU usage at the home server, at three diffetenber of EBs, for the three benchmark

applications executing in a traditional centralized sejti

at the web, application, and database server, consistémtié fact that the home server CPU is the
bottleneck. For theBOARD application, the latency increases sharply at 230 EBs, atidig that some
bottleneck has been hit. We know that the home server CPU ithadiottleneck in this case — since
the CPU utilization remains below 80%. Instead, we belieigtiie capacity of the link from the home
server which proves to be a bottleneck. The maximum capatitige link is 5Mbps, signifying that
its average utilization over the duration of the entire expent for 230 EBs, in case of tr@BOARD
application, is higher than 60%. That the link is the bottlehis also consistent with how sharply the

client latency increases in Figure 2.13.

Figure 2.13 plots the average latency per dynamic HTTP #qaé three different number of EBs
(clients), for our three benchmark applications executmgur scalability service setting. Note that
for each application, at similar latencies, our DBSS archutiee supports much higher number of si-
multaneous users than the traditional centralized scen&urthermore, both the CPU usage and the
bandwidth usage of the home server are well within their maxn limits, thus indicating that the home
server can handle even more load. (A higher load could nouppasted because the single DBSS node
became a bottleneck.) Figure 2.17, which plot the scatgbiietric defined in Section 2.7.1, confirms

the scalability advantages of our DBSS architecture.

37

Chapter 2 Architecture of the Scalability Service

O Database
[Latency DBSS-Database
1,000 - [J DBSS
z E (L:j‘itjgflyatcen')g‘y“DBss CPU usage (in %)Bw usage
=] -
% 800 Application |EBs| mysqld java| in kbps
[=}
g 600F AUCTION |650| 40.2 7.6 329
Dowof BBOARD |350| 265 7.4 535
<
200 - BOOKSTORE/900| 61.1 5.4 261

0
AUCTION BBOARD BOOKSTORE

Figure 2.16: Average latency per dynamic HTTP request ®thhee benchmark applications executing
in our scalability service setting. The adjoining tableypdes the number of EBs and the resource usage

at the home server during the experiment.

[0 NoDBSS
[with DBSS

800
600

400

Scalabilit%/
(number of concurrent users supported)

200

AUCTION BBOARD BOOKSTORE

Figure 2.17: Scalability in the presence and absence of BieD

The latency in Figure 2.16 consists of five components: tletclatency including the execution
time at the CDN, the latency from the CDN to the DBSS, the time tsaetihe DBSS, the latency from
the DBSS to the database, and the time spent at the databaséatdicy from the DBSS node to the
database is highest for tl@B0OARD application because trEBOARD application has the most number
of database queries per HTTP request. Compared to FiguretBel8atabase load on the home server
is substantially reduced (reflected in the lower averagmat to service back-end requests in spite of
the number of EBs in the scalability service setting being Imigher than the maximum number of

EBs in the centralized setting). This observation providesesevidence that in our scalability service

38

Section 2.9 Summary

architecture, the DBSS is able to shield the home server dsg¢dioom increasing load.

2.9 Summary

In this chapter we presented the overall architecture ad¢laability service, and the design of the major
components. We have built a prototype scalability serviitk this architecture, and used it to scale three
benchmark applications. We finished this chapter by desgrithe three benchmark applications, our
methodology for carrying out the experiments in this thesidetailed analysis of the bottlenecks in a

traditional centralized setting, and an analysis of our DR&#otype.

39

Chapter 2 Architecture of the Scalability Service

40

Chapter 3

Simultaneous Scalability and Security for Data
Intensive Web Applications

As argued in Section 1.4.3, there is an important tradedffi®en security and scalability in the DBSS
setting. Recall from Section 1.4.2 that the goals with ségarie (1) to limit the DBSS administrator’s
ability to observe an application’s sensitive data, andg2mit an application’s ability to use the DBSS
to observer another application’s sensitive data. It ismobediately clear how application administra-
tors can manage this security scalability tradeoff. In tthapter, we present our work which greatly
simplifies an application administrator’s task of managdhmg tradeoff and achieving simultaneous scal-

ability and security when using a DBSS.

We begin in Section 3.1 by providing an example that illussahe security-scalability tradeoff in
the DBSS setting and an overview of our approach. To undenmirstudy of the security-scalability
tradeoff, we present our formal characterization of cacivalidation strategies in Section 3.2, each
of which represents a natural choice in the space of seesriability options. Section 3.3 describes
our methodology for management of the tradeoff, while $&c8.4 presents our main contribution: a
static analysis method for determining which data can beygted without impacting scalability. In
Section 3.5 we present our empirical findings, which pointhi effectiveness of our technique. We

present the contributions this chapter makes in SectioarsdGsummarize in Section 3.7.

41

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

QI | SELECT toy id FROM toys WHERE toy name=?

Q) | SELECT gty FROM toys WHERE toy id=?

Q!} | SELECT cust _name FROM customers WHERE cust id=?

U | DELETE FROM toys WHERE toyid=?

Table 3.1: An example toystore application, denat@dPLE-TOYSTORE with three query templates
1,Q},Q1, one update templaté, and two base relationfoys with attributestoy _id, toy _name,
gty , andcustomers with attributescust _id, cust _name. The question marks indicate parameters

bound at execution time.

Accessible?

Temp- | Param-| Query | Invalidation

lates | eters Results| Condition

No No No Allof QI, QJ, Q}

Yes | No No All QJ, allQ}

Yes | Yes No All QI, QF if toy _id=5

Yes |Yes | Yes Q] if toy _id=5 ,

QJ if toy _id=5

Table 3.2: Invalidations differ depending on the amountédimation the DBSS can access. The table

is for updatelJ with parametes.

3.1 Security-Scalability Tradeoff

To illustrate the presence of the security-scalabilitgéaff when DBSSs are employed, we introduce a
simple example application calledMPLE-TOYSTORE, specified in Table 3.1. We focus on the applica-
tion's database accesmmplates—queries or updates missing zero or more parameter valade 3.2

lists the invalidations the DBSS needs to make on seeing afispgodate in four different scenarios;

42

Section 3.1 Security-Scalability Tradeoff

each scenario is represented by a row of the table. The sogsmkifer in what information the DBSS
is able to access. For example, if no information is accesdile., all data is encrypted, as in the first
row, then all cached query results are invalidated on sesinigstance of updatd; . However, if the
template information is accessible, as in the second raev) ttached query results of all instances of
only QI andQZ are invalidated. As the information available to a DBSS iasss (moving down the

rows), the number of invalidations it needs to make decsedkereby increasing scalability.

There is an important tradeoff between security and sddjabn the DBSS scenario. Encryption
of queries, updates and data for security purposes limgsrformation available to the DBSS for
making invalidation decisions. With limited informatiothe DBSS is forced to employ conservative
invalidation strategies to maintain consistency, resgltn excess invalidations and reduced scalability.
This basic tradeoff between security and scalability igsiftated quantitatively in Figure 3.1, which
shows measurements of the TPC-W online bookstore benchmeckited on a prototype DBSS system
we have built (details are provided in Section 3.5). Theivaltaxis plots scalability, measured as
the number of concurrent users that can be supported whelgirkg response times within acceptable
limits. The horizontal axis plots a simple measure of ségutihe number of query templates embedded
in the bookstore application for which query results arergpted as they pass through the DBSS. It is
straightforward to achieve either good security or goodadxlity by encrypting either all data or no

data. Achieving good scalability and adequate securitykaneously requires more thought.

3.1.1 Managing the Security-Scalability Tradeoff

There is often room to maneuver with respect to what datasieelde encrypted. Flexibility arises be-
cause in most Web applications, not all data is equally seasit may range from highly-sensitive data
such as credit card information, to moderately sensitita dach as inventory records, to completely

insensitive data such as the weekly best-seller list, wisichade public anyway.

In general, management of the security-scalability tréfdequires careful assessment of data sensi-
tivity, weighed against scalability goals. Unfortunatetys nontrivial to assess the scalability implica-

tions of ensuring the security of a particular portion of ttegabase. Furthermore, for data that is not

43

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

[]
800 F No Encryption Our Approach

600 |

400 r

200 - Full Encryption

Scalability
(number of concurrent users supported)

1 1 1 J
7 14 21 28

Security
(number of query templates with encrypted results)

Figure 3.1: Security-scalability tradeoff (TPC-BbWOKSTOREbenchmark).

entirely insensitive, it can be difficult to quantify semsty in a meaningful way. Therefore it is not

immediately clear how to best approach the task of managmgecurity-scalability tradeoff.

In this chapter we present a convenient shortcut, whichlgiegpthe task substantially while avoiding
undesirable compromises with respect to security or si#jablhe idea is to identify portions of the
database that can be encrypted while incurring no additipemalty to scalability. The outcome of
applying this idea is shown in the upper-right point in FigGr1, labeled “our approach.” The data that
can be encrypted using our approach does not need to be emior the security-scalability tradeoff,
thus greatly simplifying the task of managing the tradeéfénce, for the benchmark applications we

have evaluated, our approach automatically achieves gamdis/ without compromising scalability.

3.2 Framework for Studying the Security-Scalability Tradeoff

In this section we characterize when an update necessairilyes invalidation of the cached result of
a query, as a function of the information that is accessibhas formal characterization underpins our
study of the security-scalability tradeoff. We begin in 8@t 3.2.1 by providing the details of our basic

query and update model, and introducing the terminologyremation we use in the rest of the chapter.

1See Section 3.5.3 for details on what data is kept privateuodr approach.

44

Section 3.2 Framework for Studying the Security-Scalgbilradeoff

Then, in Section 3.2.2 we characterize four distinct clagdenvalidation strategies, i.e., strategies for
deciding when to invalidate a cached query result in resptmsin update, that differ in the amount of
information available to them. Finally, in Section 3.2.3 stady the mixed invalidation strategies that
arise when the information available for making invalidatdecisions varies across queries and across

updates.

3.2.1 Query and Update Model

The database components of a Web application consist ofddbteof query templates, and a fixed set
of update templates (Table 3.1 shows an example).Qet= {Q],...,Q'} andu™ = {U],...,UT}
denote the set of query and update templates, respectivgyery Q is composed of a query template
Q' to which parameter®® are attached at execution time. Formally= Q" (QP). Likewise,U =
UT(UP). Let Q[D] denote the result of evaluating queyover databas®. Let (D +U) denote the
database state resulting from application of updateA sequence of queries and updates issued at

runtime constitutes workload

Based on our study of three benchmark applications (detaBection 3.5.1), the query language is
restricted to select-project-join (SPJ) queries havinly eonjunctive selection predicates, augmented
with optional order-by and top-k constructs. SPJ querieseational expressions constructed from any
combination of project, select and join operations. As evpus work [18, 90], the selection operations
in the SPJ queries can only be arithmetic predicates haviagtthe five comparison operatdrs, <, >
,>,=}. Theorder-byconstruct affects tuple ordering in the result; andttpgek construct is equivalent
to returning the firsk tuples from the result of the query executed without thekamnstruct. We

assume multi-set operation; the projection operation doesliminate duplicates.

The update language permits three kinds of updates: iossertdeletions and modifications. Each
insertionstatement fully specifies a row of values to be added to solatae. Eachdeletionstatement
specifies an arithmetic predicate over columns of a relatiRows satisfying the predicate are to be
deleted. Eacimodificationstatement modifies non-key attributes of the row (of a retgtthat satisfies

an equality predicate over the primary key of the relation.

45

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

Assumptions for simplifying the presentation of our analyss

To simplify the presentation of our analysis (Section 2.8 &ection 4) of which information can be
encrypted without impacting scalability, we make threeuagstions about the update and query tem-
plates: First, each selection predicate either companelsudé values across two relations or compares
a value with a constant. Second, no constants that mighbandalidations are embedded in a query or
update template. Third, no queries compute Cartesian Pigdiec, each query has a non-empty selec-
tion predicate. The above assumptions always hold for twibrefe benchmark applications we study,
and are violated in less than 3% of the update/query tempkits for the third benchmark. Whenever
the assumptions do not hold, no encryption is recommendethéogiven update/query template pair.
This conservative strategy ensures that our analysis megemmends encrypting any data, for which

encryption impacts scalability.

To simplify the presentation further, we make two additioassumptions about the execution of
updates and queries: First, no query whose result is sulgjeatalidation by either an insertion or a
deletion statement in the workload returns an empty restilt$econd, each update has some effect on
the database, i.e., for each upddteD # [D +U]. In our experiments with all three of the benchmark

applications we study, these assumptions always hold, amgemo loss of scalability.

3.2.2 Formal Characterization of View Invalidation Strategies

Recall that in our current design, the DBSS caches views, wdriehesults of queries. A view invalida-
tion strategys is a function whose arguments possibly include an updatersent, a query statement,
and other information such as a cached query result. It ateduo one of | (for “invalidate”) or DNI

(for “do not invalidate”). A view invalidation strategy orrectif and only if whenever a view changes
in response to an update, all corresponding cached instafidbat view are invalidated. A formal

definition of correctness is as follows:

Correctness: A view invalidation strategys is correct iff for any quenyQ, databas®, and updatéJ,

QD] # QD +U]) = (SU,Q,...) =1).

46

Section 3.2 Framework for Studying the Security-Scalgbilradeoff

(Assume that updates are applied sequentially, and thmvalidations necessitated by one update are

carried out before the next update is applied.)

A view invalidation strategy isnvokedwhenever an update occurs. Based on what information they
access in making invalidation decisions, four classesemvalidation strategies, one for each row of
Table 3.2, may be defined as follows (The arguments to a gyratiso list the information the strategy

can access):

e Blind StrategyE (BS) S(): No information is available to make the invalidation demisi Cor-

rectness requires th&dU,Q,D : (Q[D] # QD +U])) = (S() =1).

o Template-Inspection Strategy (TIS)S(UT,QT): Only the update templaté™ and query tem-

plateQ" may be used to make the invalidation decision. Correctnegsres that3UP QD :

(QT(QY)[D] #QN(Q7)D+UTUR))) = (SUT.QT) =1).

e Statement-Inspection Strategy (SIS)S(U,Q): Only the updaté) and query statemei@ may
be used to make the invalidation decision. Correctnessnesytiiat(3D : (Q[D] # Q[D+U])) =

e View-Inspection Strategy (VIS) $(U,Q,Vp): The updatdJ, the query statemer, and the
content of the view/, = Q[Dy], whereD, denotes the state of the database at the time the view
was evaluated (i.e., prior to application of the update)y beused to decide whether to invalidate

Vp. Correctness requires th@aD : ((Q[D] =Vp) A (Q[D] # QD +U}))) = (S(U,Q,Vp) =1).

These four view invalidation strategies, natural pointshia invalidation strategy design space, are
largely based on previous work in the area of view invalmadi For example, the methods of [51]
can be used to implement a view-inspection strategy. Silyilthe methods of [68] can be used to
implement a template- or a statement-inspection stratéggally, implementing a blind strategy is

simple: invalidate all cached query results on any update.

2In earlier work [84], the ternblack-box strategwas used to refer to the same concept.

a7

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

Correct view—inspection strategies

Correct statement—inspection strategies

Correct template—inspection strategies

Correct blind strategies

(Minimal blind strategies)

(Minimal template—inspection strategies)

(Minimal statement—inspection strategies)

(Minimal view—inspection strategies)

Figure 3.2: Relationships among classes of view invalidedioategies, in the general case.

Also, every correct blind strategy is a correct templasgpaction strategy, every correct template-
inspection strategy is a correct statement-inspectiategly, and every correct statement-inspection

strategy is a correct view-inspection strategy. The mfetnips are depicted in Figure 3.2.

We now define minimality:

Minimality: A view invalidation strategys belonging to clasg” is minimalif and only if it is correct
and there exists no query stateméhtupdate statemernd, and databas® such thats invalidates
the viewQ[D] in response t&J, while another correct view invalidation strategy in classloes not.
Corresponding to each class of invalidation strategy, thergn for a minimal blind strategy (MBS),
a minimal template-inspection strategy (MTIS), a minintatsment-inspection strategy (MSIS), and a
minimal view-inspection strategy (MVIS), can be arrivediat applying the definition of minimality to

the respective class.

For arbitrary databases and workloads, no correct blirategjy is a minimal template-inspection
strategy. Similarly, no correct template-inspectiontefyg is a minimal statement-inspection strategy
and no correct statement-inspection strategy is a mininea¥-inspection strategy. (We omit formal
proofs for brevity.) Figure 3.2 depicts the relationshipsoag classes of view invalidation strategies as

a \enn diagram.

The choice of invalidation strategy determines what infation can be encrypted. On the one ex-

48

Section 3.2 Framework for Studying the Security-Scalgbilradeoff

Exposure levelsblind template stmt view

greater exposure (less encryption)

greater security
Figure 3.3: Security gradient.

treme, if a view-inspection strategy is used, neither gasemor updates, nor cached query results can
be encrypted. On the other extreme, if a blind strategy isl,usk queries, updates, and cached query

results can be encrypted.

3.2.3 Mixed Invalidation Strategies

Typically, not all of an application’s data is equally séwsi. An administrator may wish to control
encryption of information at a per-template granularityo dontrol what information to encrypt, the
administrator chooses axposure level BJT) € {blind, template,stmt} for each update template
UT € 4", and an exposure lev@(QT) € {blind,template,stmt,view} for each query template
Q" € Q. Each exposure level exposes some information of a query arpdate; all information
not exposed can then be encrypted. Dlirel exposure level exposes nothirgnplate exposes the
template;stmt exposes the entire query or update statement (i.e., teenqtat parameters); angw
(only for query templates) exposes the query statementhreniesult of executing the query. Figure 3.3

shows the range of exposure level options.

Figure 3.4 shows the possible exposure level combinatmresdiverU ™ /QT pair (the contents of the

boxes may be ignored for now). When exposure level choicesade independently for every update

3 Note that deterministic encryption is required for correathing mechanics. To check whether a given query can be
answered from the cache, a lookup operation is requiredaokcivhether the DBSS has a cached copy of the query result.
Fora VIS or SIS, the query statement serves as the lookug-key TIS, the query template along with encrypted pararseter

are used. For a BS, the encrypted query statement is used ®kup key.

49

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

Query
blind template stmt view
o blind 1 1 1 1
"c-u' — | I S
§_template 1 Ajj Aij | Ajj
stmt 1 Ajj Bij | Gij

Figure 3.4: Aninvalidation Probability MatrixPM(U;",QJ).

and query template, the invalidation strategy to use mayeberohined at the granularity of update/query
template pairs. In Figure 3.4, the shaded boxes corresotine ffour classes of invalidation strategies

introduced in Section 3.2.2. (We discuss the unshaded shaatly.)

Invalidation Probabilities

In our approach, exposure level choices determine the mimvafidation strategies employed. Given
a workload, the invalidation strategy used for a gikeh/Q" pair in turn determines thimvalidation
probability—the likelihood that the invalidation strategy invalidaitghe result of) an instance of the
guery template on seeing an instance of the update templiag€ probability distribution over template
instances are derived from the workload). Invalidationbaitalities also depend on the database, and
may change over time. In general it is difficult to estimatesth (dynamic) quantities accurately, but as
we will see we can find useful invariant relationships amdrent using static analysis alone. For the
purpose of our static analysis, we represent the invatidggrobabilities for different choices of exposure
levels as a matrix. Amnvalidation Probability MatrixIPM (UiT,QjT), illustrated in Figure 3.4, contains
invalidation probability values for each combination opegure levels fou;" andQJ-T. (Aij, Bij, andGj;

are placeholders for invalidation probabilities that deppen workload and database characteristics.)
IPM’s obey the following properties:

Property 1: The invalidation probability equals 1 if either exposueedl isblind . Clearly, whenever

no information is available about either updateor queryQ, for correctness, the cached result@f

50

Section 3.2 Framework for Studying the Security-Scalgbilradeoff

must be invalidated whenever any upddteccurs.

Property 2: The invalidation probability is the same for all cases inichhone exposure level is
template and the other is some exposure level other thiead . (We denote this invalidation prob-
ability by Ajj € [0,1].) Recall from Section 3.2.1 our assumptions that the selegtiedicates cannot
compare two database values of the same relation and tleen® @onstants in the update (query) tem-
plates. Under these assumptions, knowledge of the quedatepparameters but not the update (query)
parameters does not aid in reducing invalidations becduesguery (update) parameters cannot be com-
pared to anything. Similarly, knowledge of the query rebult not the update parameters does not aid

in reducing invalidations. (We omit formal proofs for brgv)

Property 3: The invalidation probabilities constitute a gradient @&move from top-left to bottom-right
in Figure 3.4, i.e., > Aij > Bij > Gjj > 0. Clearly, under minimal invalidation strategies, invations

cannot increase if more information is available for makimgalidation decisions.

From the above discussion, it follows that invalidatiorastgy classes corresponding to unshaded
boxes in Figure 3.4 are of no interest since theydamminatecby those corresponding to shaded boxes,
i.e., the shaded boxes permit lower exposure while offettiegsame invalidation probability. In certain
instances, additional domination relationships can bedouFirst, for certain update/query template
pairsU;T /QT, it can be shown thad; = 1 (meaning minimal template inspection invalidation stgats
are equivalent to minimal blind strategies for such updptery template pairs). Similarly, in some cases
Bij = Aij (meaning minimal statement inspection strategies arevalgut to minimal template inspec-
tion strategies for such update/query template pairs)irasoime caseS;; = Bjj (meaning minimal view
inspection strategies are equivalent to minimal stateimspection strategies for such update/query tem-
plate pairs). We examine how to identify and exploit suctesas Section 3.4. Before we approach this
topic, we first describe our overall approach to managingéuweirity-scalability tradeoff while meeting

scalability requirements.

51

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications
3.3 Overview of Approach

In this section we outline our approach for managing the riggescalability tradeoff, given scalability
requirements. As Figure 3.3 shows, one may control sechyitgadjusting the exposure level of an
application’s update and query templates. We first providieapproach in Section 3.3.1, and then
present a brief example in Section 3.3.2 that illustratesafsproach.

3.3.1 Our Approach

A natural approach to solve the security-scalability mamagnt problem is to model it as a constrained
optimization problem where each potential solution, iag,assignment of an exposure level to every
template of the application, has an “overhead” and a “sgcuvalue; the objective is to maximize

the “security” value while keeping the “overhead” below aegi threshold. However, the approach is
impractical because assigning meaningful security valogand predicting overhead values of, each

potential solution is virtually impossible.

We advocate a new scalability-conscious security desighodelogy, which uses the following prac-

tical three-step approach for managing the security-bddiatradeoff, given a scalability requirement:

1. Beginning with maximum exposure for all templates, i.&pasure levektmt for each update
template and exposure lewsdw for each query template, reduce exposure levels (i.e., todhe
left in Figure 3.3) based on cases in which data absolutebt fweiencrypted. Such requirements

may be decided in an ad-hoc manner, or based on a data praxasutch as [24].

2. Using our static analysis techniques (described shorigluce exposure level of each template

for which doing so does not impact scalability.

3. Prioritize remaining exposure level reduction posgibg based on security considerations and

adjust with respect to the tradeoff with scalability.

Step 2 is the focus of our work. We divide Step 2 into two sigpst

52

Section 3.3 Overview of Approach

Step 2(a): Characterize IPM domination relationships. Determine for eachJiT/QjT pair whether
(@) Aij =1, (b) Bij = Ajj, and (c)Cij = Bj;. ldentifying these relationships is a challenge; Sectidns
dedicated to this task.

Step 2(b): Eliminate high-exposure options whenever posdidwithout hurting scalability. The
inputs to this step include: (a) IPM tables with the inforroatfrom IPM characterization (Step 2a)
plugged in, and (b) the initial exposure levels of templdi@sed on requirements that certain data must
absolutely be encrypted (Step 1). The goal of Step 2b is tonmaly reduce the exposure level for each
template without impacting scalability. Since scalapiig impacted whenever invalidation probabilities
change, the key idea in achieving maximal reduction of enpokevels is to ensure that the invalidation
probability of no update/query template pair (as given lgy[tPM table) changes due to a reduction in

the exposure level of a template.

Algorithm MinExposure can be used to find the minimal exposure levels that offerdheesscalability
as the initial exposure levels of the templates. It repéatiesvers the exposure level of a template
if doing so does not increase any invalidation probabilitynes 4—12 use this idea for lowering the
exposure level of query templates, and Lines 13-21 use dbis for lowering the exposure level of
update templates. Furthermore, since the algorithm lotherexposure level of a template if and only if
doing so does not increase any invalidation probability,fthal exposure levels are independent of the

order in which the templates in Line 4 and Line 13 are seleftiedxposure level reduction.

We next provide an example that illustrates our approach.

3.3.2 Example

Consider theroysToREapplication shown in Table 3.3, an extension of our eadi®IPLE-TOYSTORE
application of Table 3/1. As Step 1, the administrator mayl decide that credit card numbers are
not to be exposed, and accordingly reduce the exposuredéw;; to template . Using the notation
introduced in Section 3.2.&(U,) = template.

The next step is Step 2a, in which the IPM domination relatigos are characterized. The results for

53

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

QI SELECT toy_id FROM toys WHERE toy _name="?

Q) [SELECT gty FROM toys WHERE toy.id="

Q! [SELECT cust _name FROM customers, credit _card

WHERE custid=cid and zip _code=?

UJ |DELETE FROM toys WHERE toyid=?

UJ |INSERT INTO credit _card (cid, number, zip _code)

VALUES (2, 2, ?)

Table 3.3: A more elaborate exampleysToREapplication having three query templa@, Qg,Qg,
two update templatdsjlT ,U2T and three base relationmys with attributestoy _id, toy _name, qty ,
customers with attributescust _id, cust _name, andcredit _card with attributescid, number,

zip _code. Attribute credit _card.cid is a foreign key into theustomers relation. The question

marks indicate parameters bound at execution time.

the ToysTOREapplication are provided in Table 3.4. To understand iivielig how these relationships
are determined, let us focus on the first row, i.e., entriesesponding taJ] . Since no instance &
can affect the result of any instance@f, no instance ot)] will trigger invalidation of the result of
any instance oQg soA;3 = 0. However, since an instanceubf can affect the result of an instance of
QJ or Qf, A;2 > 0 andA;1 > 0. As we show in Section 3.4, whenev&| > 0, Ajj = 1. Hence A1 =
A1 = 1. Further, using our analysis in Section 3.4, it can be mefitthatB;1 = A1, i.e., knowledge
of the parameters & andQ] does not aid in reducing invalidations. Al€a; = B>, i.e., additional
knowledge of the content of the result of an instanc&df when the parameters off andQJ are
already known, does not aid in reducing invalidations. Bnaince A;3 = 0, A13 = B13 = Cj3 holds

trivially due to Property 3 (Section 3.2.3).

Step 2b, in which AlgorithnMinExposure is invoked, follows the IPM characterization step. When

invoked on theroysToreapplication (Table 3.3) with inputs &U,]) = template (Step 1) and Ta-

54

Section 3.4 IPM Characterization

Qf (=1) | Q} (=2) | Q] (=3)

Air=1 | Ap=1 |A3=0
Ul | Bu=Au | Bio<Ap | Bia=Ag3
(i=1) | C11<By1 | Ci2=B12 | Ci3=Ba3

Ap1=0 | Ap=0 |Ax3=1
UJ | Bar=Ap1 | Boo=Ag | By < Ags
(i=2) | Co1=B21 | Coo=Bp2 | C23=B23

Table 3.4: Summary of IPM characterization for the exammalgsTOREapplication.

ble 3.4 (Step 2a), the algorithm used for Step 2b reducessexpdevel of query templateg from view
totemplate , and of query templat@; fromview tostmt . By reducing the exposure level in this way,
the inventory (quantity of toys in stock) and the customendgraphic (customers in an area) are no
longer exposed. An application provider may prefer not foose this moderately sensitive information,
all else being equal. Further, we confirm that the additi@ealrity this reduction in exposure enables
does not impact scalability. As before, cached resultsstaimces oQ} are only invalidated by instances
of U] if thetoy _id match, and cached results of all instance@§fare invalidated by any instance of
uj.

Having presented our overall approach, we next describetbaletermine IPM domination relation-

ships using static analysis (Step 2a).

3.4 |IPM Characterization

Recall from Section 3.3.1 that IPM characterization entaiétermining statically for eadhiT/QjT pair,
whether (@)Aij = 1, (b) Bij = Ajj, and (c)Cij = Bjj. We discuss in Sections 3.4.2 — 3.4.4, how to
determine for a givek) T /QT pair whether each of these relationships holds. Then, iti®e8.4.5 we
discuss how additional information, beyond those consiiep to now, affect IPM values. But, first in

Section 3.4.1, we introduce some terminology for classdyjuery and update templates in a way that

55

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

Symbol| Meaning

SUT) | Attributes used in any of the selection predicates

(i.e., selection and join conditions) of"

M(UT) | Attributes modified byJ

S(Q") | Attributes used in selection predicates or

order-by constructs a®"

P(QT) | Attributes retained in the result 6"

Table 3.5: Notation for aspects of templates.

is useful for our analysis.

3.4.1 Query and Update Classification

Defineselection attributesf update template T (denotedS(U 7)) to be attributes used in any selection
predicate (i.e., a selection or a join condition)wf. (If UT is an insertionS(UT) = {}.) Further define
modified attributegM(UT)) of UT, selection attribute$S(Q")) of query templateQ", andpreserved
attributes(P(Q')) of Q" asin Tablé 3.5. [T is an insertion or a deletioM (UT) is defined to be the set
of all attributes in the table in which the insertion or delettakes place. For theoYSTOREapplication
(Table 3.3)S(Q]) = {toys.toy name}, P(Q]) = {toys.toy_id}, S(U]) = {toys.toy_id}, M(U]) =

{toys.toy_id, toys.toy name,toys.qty}.

Recall from Section 3.2.1 that queries are restricted to becSEroject-Join (SPJ) queries having
conjunctive selection predicates, augmented with optiorter-by, and top-k constructs. Further define
two (possibly overlapping) classes of queries: ones willy equality joins or no joins (denoted for
equality), and ones with no top-k constructg). As before, there are three classes of updates: insertions
(denotedI), deletions {0), and modifications4/). We say an update (query) template belongs to a

particular update (query) class if any instance of the up{taiery) template belongs to the class.

For our static analysis, it is important to know whether amstance of an update template can ever

affect the result of any instance of a query template. Fotiguthe terminology of [90], an update

56

Section 3.4 IPM Characterization

7]

QTecE Qis a query with only equality join
QT e Qis a SPJ query with

no top-k constructs

UlTer U is an insertion
Ulreo U is a deletion
UTewm U is a modification

UT isignorablefor QT [(UT Q") € G &

((UT,.Q" eg) MUT)N(PQTUSQN) = {}
QT isresult-unhelpful |(UT,Q") e # &

forUT ((UT,Q") € #) |SUT)NP(QT) = {}

Table 3.6: Query and update classes.

templateU T is ignorable with respect to a query templa@' if and only if no attributes modified
by the update template are either preserved by the queryldempr used in the selection predicate
of the query template. Le§ denote the set of all such update/query template pairs,(U€., Q) €
G=MUTN(PQTUSQT)) = {}. For example, in theoysTorEapplication (Tablé 3/3), update

templateU] is ignorable with respect to query templ&g.

It is also important to know whether a query result has angrinftion that aids in reducing invalida-
tions. A query templat®' is result-unhelpfulvith respect to an update templaté if and only if none
of the selection attributes of the update template are preddy the query template. Léf denote the
set of all such update/query template pairs, {l8., Q") € # < SUT)NP(QT) = {}. For example, in
theToysTOREapplication (Table 3.3), query templa(t% is result-unhelpful for update templaug.

In Table 3.6, we summarize the different classes of tempkatel properties of update/query template

pairs.

57

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications
3.4.2 Blind vs. Template-Inspection (Doegy; = 1?)

Begin by considering the case in which both update and quergleges are exposed. If any instance of
update templatd;" could cause invalidation of cached results of all possitdéginces of query template
QJ-T, thenAj; = 1. Hence, there is no advantage to using a minimal temphagection strategy instead
of a minimal blind strategy, i.e., knowledge of the query pdate templates does not aid in decreasing

invalidations. For exampléy;1 equals 1 in theoysToREapplication (Table 3.4).

Furthermore, ifAjj is greater than O, they; equals 1, i.e.Ajj > 0= Ajj = 1. The implication holds
because the invalidation behavior of a template-inspectoategy is the same for all instances of an
update/query template pair. So if there exists some inetaﬁbliT that causes invalidation of cached
results of some instance @, then 'any’ instance olfJiT causes invalidation of cached results of 'all’

instances oQJ-T. Thus,A;j either equals O or 1.

Lemma 1 provides the necessary and sufficient conditiondetarmining ifA;; equals 0.

Lemma 1. With assumptions as in Section 3.2.1, invalidation proligoA;; equals 0 if and only if the
update template Uis ignorable with respect to the query templatp.@ormally, Aj = 0 (U,Q[) €
G. Otherwise, A = 1.

Proof. We only prove the “if” part of this Lemma, and omit the prooftbé “only if” part for brevity.

An instance of an update template can only change the vafue attributes inV(UT). Further,
the result of an instance of a query templa}e changes only if values of any of the attributes in the
union of P(Q]) andS(Q]) changes. If the two setd(U;") andP(Q]) US(Q]), don't intersect, then
no instance ob)” can invalidate the cached query result of any instand@]of.e.,M(U;") N (P(Q) U
S(Q[)) = {} = Aj = 0. Using the definition of whekJ;" is ignorable with respect tQ], we get
U',QJ) e #H = Aj=0. O

58

Section 3.4 IPM Characterization

3.4.3 Template-Inspection vs. Statement-Inspection (Do& = Aij?)

For a given update/query template pair, if whenever a mihiem@plate-inspection strategy (MTIS)
evaluates to invalidate (denoted 1), a minimal statemespéction strategy (MSIS) also evaluates to
l, thenBjj = Ajj, i.e., knowledge of update and query parameters in additidhe update and query
template does not aid in decreasing invalidations. Shycean take only two possible values, 0 or 1, if

Bij = Ajj, then eitheBj; = Ajj = 0 orBjj = Ajj = 1.

Case 1(Bj =Ajj =0): Property 3 (Section 3.2.3) implies that the equaBfy = A;j = 0 holds if
and only ifAjj = 0. Furthermore, from Lemma 1, we know the necessary and igmificonditions for
Ajj being 0. Combining the two statemenBs; = Ajj = 0 holds if and only if the update template is
ignorable with respect to the query template, Bg.— Aj =0< (UT,Q]) € G.

Case 2(Bj =Ajj =1): The equalityA;j = 1 is a necessary condition f@j; = Aj = 1. Using
Lemma 1, the previous statement can be rewritten as: upeiaglateU;” must not be ignorable with
respect to query templat@jT for the equalityBj; = Aj; = 1 to hold. This necessary condition fBy; =
Ajj = 1 is however not a sufficient condition since a MSIS also haswedge of the parameters of the
update and the query statement. This knowledge may alloW®BiS to infer that an instance (b.fiT
does not affect the cached query result of some instan@% oFor exampleA;> = 1 butBi> < 1 in the

ToYsTOREapplication (Table 3.4).

However, ifSUT) N S(QJ-T) = {}, then knowing the parameters in addition to the update aedyqu
templates cannot aid in decreasing invalidations. Henc#fi@isnt condition forBj; = Ajj = 1is: If no
attribute is common to the selection predicates of both fiaate and query template, and the update
template is not ignorable with respect to the query temptaenB;j = Ajj = 1, i.e.,(S(U) ﬂS(QjT) =
{HAWU,Qf) ¢ 6)=Bj=A;=1.

3.4.4 Statement-Inspection vs. View-Inspection (Do&3j = B;j?)

For a given update/query template, if whenever a minimaéstant-inspection strategy (MSIS) eval-

uates to invalidate (denoted), a minimal view-inspectstrategy (MVIS) also evaluates to |, then

59

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

Ci; = Bjj, i.e., knowledge of the query result in addition to the updatd query statement does not aid
in decreasing invalidations. From Property 3 (Section33,Z;; < Bj;. In this subsection we provide
several sufficient conditions for the equally = B;j; by identifying important classes of update/query
pairs for which the equality holds. For other classes, weridean example instance b{T and QJ-T

for which Gj; < Bjj. Next, we consider the three classes of updates in turnrtioss, deletions, and

modifications.

Insertions. This paragraph applies if the update is an insertion. If igseare limited to SPJ queries
having conjunctive selection predicates, with equalitth@goin operator, augmented by optional order-
by constructs, then whenever a MSIS evaluates to |, a MVIS@laluates to |, i.e(U" € I) A (QjT €
ENN) = Cjj = Bjj. We prove this result as Lemma 4 in Appendix A.1. This ressiloir most
significant contribution in finding sufficient conditions'1G;; = Bjj. For exampleC,3 equalsBy3 for the
ToysTOREapplication (Table 3/4), as predicted by this result. H®vewhen the query template either
has one or more df<, <, >, >} appearing in the join predicat@I ¢ E), or has a top-k construc@§r ¢
AN0), CGij may be less thaBj, as illustrated when the upddMdSERT INTO toys (toy _id, toy _name,
qty) VALUES (15, ‘toyB’, 10) is paired with either of the following queries:

a) SELECT tl.toy _id, tl.qty, t2.toy _d, t2.qty
FROM toys as t1, toys as t2
WHERE tl.toy _-name='toyA’ AND t2.toy = _name=‘toyB’
AND tl.qty > t2.qty

Suppose the query result has just one tyfde 3, 12, 2) . A minimal statement-inspection strat-
egy will invalidate the cached query result, sinceg’ with gty > 10 might exist in the database.
However, a minimal view-invalidation strategy, with thedwiedge of the cached query result, which

implies that there is ntioyA’ with gty > 3 , will not invalidate the query result.

b) SELECT MAX(qty) FROM toys

Suppose the result of this top-k quenits A minimal statement-inspection strategy will necesgaril

invalidate the cached query result, since the curnemigty) might be less thad0. However, a

60

Section 3.4 IPM Characterization

minimal view-invalidation strategy, with the knowledge the query result, will not invalidate the

cached query result.

Deletions. This paragraph applies if the update is a deletion. If theygtemplate is result-unhelpful
with respect to the update template, then whenever a MSl8ates to invalidate (1), a MVIS also eval-
uates to I, i.e.(UiT,QjT> € H = Cjj = Bij. We prove this result formally as Lemma 5 in Appendix A.1.
For example, the equaliti€, = B, andC;3 = B3 hold for theToysTOREapplication (Table 3.4), as
predicted by this result. Moreover, the /QI pair of theToysToREapplication is an example where

the precondition of this result is not met a@¢h < By1.

Modifications. This paragraph applies if the update is a modification. Hezithe update template
is ignorable with respect to the query template or the quemyplate is result-unhelpful with respect to
the update template, then whenever a MSIS evaluates tadatal(l), a MVIS also evaluates to |, i.e.,
<UiT,QjT> € GUAH = Cjj = Bjj. We prove this result formally as Lemma 6 in Appendix A.1. Elover,
if the precondition of this result is not mél;; may be less thaBij, as with the following update/query

pair:
UPDATE toys SET qty=10 WHERE toy _id=5

SELECT toy _id FROM toys WHERE qty > 100

Let the toy withtoy _id=5 be absent from the cached query result. A minimal statemmspction
strategy will necessarily invalidate the cached queryltglsecause the cached result could contain the

toy withtoy _id = 5 . A minimal view-inspection strategy will not invalidate it

3.4.5 Database Integrity Constraints

So far the IPM values are based on the DBSS'’s (optional) krdye®f the update statement, the query
statement, and the query result. The DBSS can further loveevdlues of the invalidation probabilities
Ajj, Bij, andCjj, i.e., increase the precision of invalidation decisionsubing database integrity con-

straints. Databasategrity constraintsare conditions on the database that must be satisfied anak i

61

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

i.e., all instances of the database must satisfy the contstraNe expect the DBSS to know the basic
database integrity constrai%lssmd thus use them for providing greater scalability to gygliaations.
We list two such basic database integrity constraints hedodt show, using theoysTOREapplication

(Table 3.3), how knowledge of the constraints can affeaiesbf the IPM:

1. Primary key constraint: Consider the query templa@}. If toy _id is the primary key of the
toys relation, then théoys table cannot have more than one tuple with the same valiog aid .
As a result, no insertion into thteys relation affects the cached query result of any instance of

the query templat@, .

2. Foreign key constraint Consider the query templa@%. We already assume that attribute
of thecredit _card relation is a foreign key intoustomers relation, i.e., the value of thed
attribute for any tuple of theredit _card relation should be the same as the value of the attribute
cust _id for some tuple in theustomers relation. Further, any insertion into tlvastomers
relation inserts a newust _id , which cannot join with any tuple in theedit _card relation. As

a result, no insertion into thaistomers relation affects the cached query result of any instance
T
of Q3.

For any update/query template pair, if either of the twognitg constraints applie#yj becomes zero.

Furthermore, as Property 3 (Section 3.2.3) implies;jit= 0, then the equalitpij = Bjj = Cj; = 0 holds.

3.5 Evaluation

Using our prototype DBSS (described in Chapter 2), we evaduladev well our scalability-conscious

security design methodology works in practice. Before preisg these results, we first describe in
Section 3.5.1 how the templates of our benchmark applieatidescribed in Section 2.6, differ from the
assumptions outlined in Section 3.2.1. We also presentétidde3.5.1 the IPM characterization results

4For all three benchmark applications that we study (detaiection 3.5.11), database integrity constraints fab ihie

category of insensitive data, and so revealing it to the DB&3 not compromise security.

62

Section 3.5 Evaluation

Number of U /QT pairs for which

A=1

Application| A=B = B<A B=A

=C=0|C<B|IC=B|IC<B|IC=B

AUCTION 267 2 25 14 0

BBOARD 488 0 25 25 2

BOOKSTORE 405 0 22 18 3

Table 3.7: IPM characterization results for the three appilbns. The table entries denote the number

of update/query template pairs for which particular IPMatieinships hold.

of applying our static analysis to the benchmark applicestio Next, in Section 3.5.2 we confirm that
blanket encryption of all data passing through the DBSS lyrbatts scalability. Finally, in Section 3.5.3
we find that our scalability-conscious security design roéthogy enables significantly greater security

without impacting scalability.

3.5.1 IPM Characterization Results

The update/query templates of the benchmark applicatienssed (Sectian 2.6) differ from the assump-
tions outlined in Section 3.2.1 in one significant way: betw&% and 11% of the query templates for
each application have aggregation or group-by construsggiregationis one ofmin, max, count,

sum, avg, andgroup-byallows application of aggregation functions to tuples ®usd by some at-
tribute. Our current model does not handle aggregation amapgby queries. For our evaluation, we
separately consider each update/query template pair,evtherquery has an aggregation or group-by
construct, and manually determine the behavior of each effdlr classes of minimal invalidation
strategies of Section 3.2.2.

Table 3.7 summarizes the IPM characterization resultsithree applications, assuming the DBSS

63

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

has knowledge of the two types of database integrity coinssranentioned in Section 3.4.5. Each row of
Table 3.7 corresponds to an application. The table enteasté the number of update/query template
pairs for which particular IPM relationships hold. The ficsiumn lists the number of update/query
template U T /QT) pairs for which the equalith = B = C = 0 holds. For each application, the majority
of UT /QT pairs fall in this category. For the remainiblf /QT pairs, invalidation probabilityh equals

1. ThesdJ T /QT pairs are further divided into four categories, represbiethe next four columns of
Table 3.7, depending on whethgr< A or B = A, and whethe€ < B or C = B. As Table 3.7 shows,
equalitiedB = A and/orC = B hold for the majority of the template pairs. Accordingly; tbese template
pairs, reducing the exposure of templates does not inciereskdations. Thus, the analysis presented

in Section 3.4 applies to the applications we studied.

3.5.2 Magnitude of Security-Scalability Tradeoff

We performed our experiments in the SIMPLE scenario and thodology described in Section 2.7.
Figure' 3.6 plots the scalability of an application as a fiorcbf the invalidation strategy used by the
DBSS, for all three applications. The y-axis plots scalfhitneasured as specified in Section 2.7. On
the x-axis, we consider an instance of each of the four cdasS@validation strategies introduced in
Section 3.2.2. (The same invalidation strategy is used fanpalate/query template pairs.) For the
BBOARD application, in which each HTTP request results in aboutiegabase requests, with the poor
cache behavior of a blind or a template inspection strateglyeven a small number of clients can be

supported within the response time threshold specified ati@e2.7.

For each application, the leftmost strategy, a minimal viespection strategy (MVIS), offers the
best scalability, but the worst security (full exposure bfdata). On the other extreme, the rightmost
strategy, a minimal blind strategy (MBS), offers the besusi&g (full encryption of all data), but the
worst scalability. Figure 3.6 confirms the claim made in ®ec8.1 that blanket encryption of all data

(thereby requiring a blind invalidation strategy) sigrafitly hinders scalability.

64

Section 3.5 Evaluation
3.5.3 Security Enhancement Achieved

In this section we show that for all three applications, laicanalysis step of our scalability-conscious
security design methodology enables significantly gresgeurity without impacting scalability. Recall
Figure 3.1 of Section 3.1.1, which plots scalat%itaersus security, for a simple metric of security that
counts the number of query templates for which results cagnlbeypted. Our static analysis identifies
21 out of the 28 query templates associated withstheksToREapplication, for which encrypting the
results has no impact on scalability. While encouraging, tésult does not tell the whole story. Here

we examine in greater depth the degree of security afforgedibstatic analysis.

As discussed in Section 3.3.1, the outcome of our staticyaisa{Step 2) depends on the initial de-
termination of what highly sensitive data absolutely mustelncrypted (Step 1). To make this deter-
mination, we defer to the well-known California data privdayw [24], which, when applied to our

applications, mandates securing all credit card inforomati

Figurel 3.5 plots the exposure levels of query and update lggespboth before and after our static
analysis is invoked. The top three graphs correspond to tlkeygemplates of each application, and
the bottom three graphs correspond to the update templdtesy-axis of each graph plots the possible
exposure levels for a template (low exposure on the bottogh; éxposure on top). The x-axis plots the
query or update templates associated with an applicatioincreasing order of exposure. The dashed
lines show the initial exposure levels mandated by the Gailidcdata privacy law (only a little encryption
is needed to comply); the solid lines show the final exposewel$ resulting from the application of our
static analysis. The area between the lines gives an idée oétuction in exposure achieved using our

approach.

Much of the data whose exposure level can be reduced due spatigranalysis turns out to be moder-
ately sensitive, and therefore the reduction in exposurddiikely be a welcome security enhancement.

To illustrate, we supply examples of moderately sensitata dhat can be encrypted:

SComputational overhead of encryption and decryption isaken into account. Optimizing the encryption and decryp-

tion process is beyond the scope of this work.

65

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

e AUCTION application: the historical record of user bids (i.e., usbrd B dollars on itenC at time
D).

e BBOARD application: the ratings users give one another based ayuthléy of their postings (i.e.,

userA gave useB a rating ofC).

e BOOKSTOREapplication: book purchase association rules discoveyethd vendor (i.e., cus-

tomers who purchase bod@koften also purchase bodX.

In all cases scalability is not affected—it remains the samthat of MVIS in Figure 3.6.

3.6 Chapter Contributions

We developed a formal characterization of view invalidastrategies in terms of what data they access,
and used the formal characterization to cleanly formulagesecurity-scalability management problem.
We then presented a method for automatically identifying diaat can be encrypted without reducing
scalability at all. Our method is based on static analysithefdata access templates of a given Web
application. It determines which query results, queryestegnts, and update statements associated with

the application can be encrypted without impacting scétgbi

Our experiments over a prototype DBSS system showed thats&Veb applications can encrypt the
majority of query results, as well as a substantial fractibparameters to query and update statements,
with no scalability penalty. Furthermore, much of the ddtattis secured at no cost, falls into the
moderately sensitive category. This type of data would eattto be classified as compulsory for
encryption, yet application designers may well choose gt it, if armed with the knowledge that

doing so does not impact scalability.

Our static analysis method enables a new scalability-¢onscsecurity design methodology that
greatly simplifies the task of managing the security-sabiiptradeoff: First, an administrator identifies
highly-sensitive data (perhaps by applying a security lamg sets it aside for compulsory encryption.

Second, our static analysis method is invoked to determimehwof the remaining data can be encrypted

66

Section 3.7 Summary

without impacting scalability. As a result, the adminigtraonly needs to weigh the security-scalability
tradeoff over the substantially reduced set of data itemsvfoch encryption may have scalability im-

plications.

3.7 Summary

In this chapter we explored ways to secure the data of Wehcapipins that use the services of a shared
DBSS to meet their database scalability needs. At the hedteoproblem is the tradeoff between
security and scalability that occurs in this framework. Whpdates occur, the DBSS needs to invalidate
data from its cache. The amount of data invalidated varipemni@ging on the information exposed to the
DBSS. The less information exposed to the DBSS, the more datadins required, and the lower the

scalability.

We presented a convenient shortcut to manage the secaallgidity tradeoff. Our solution is to
(statically) determine which data can be encrypted witlamytimpact on scalability. We confirmed the
effectiveness of our static analysis method, by applying three realistic benchmark applications that
use a prototype DSSP system we built. In all three casestatio analysis identified significant portions
of data that could be secured without impacting scalabillfpe security-scalability tradeoff did not
need to be considered for such data, significantly lightettie burden on the application administrator

managing the tradeoff.

67

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

Algorithm MinExposure: Reduce exposure levels of application templategWe assign numeric val-
ues corresponding to each exposure level as folldusd =1, template =2, stmt =3, view =4. Let py
represent the value in thé& row, I'" column of IPM(UT,QT).)

Inputs: ¢', QT, IPM(UT,QT) for each(UT,Q") € U™ x QT initial exposure levels BJT) and E(QT)
for each template it U QT

Output: updated exposure level$UE") and E(QT) for each template irtiT U QT

0l done« false
02 while done= false
03 done« true

04 foreachQ' € QT whereE(QT) > 1

05 | —E(QT)

06 foreachUT ¢ U'

07 k—1

08 while pij = py 1) andk < E(UT)
09 k—k+1

10 if Pri = Pri-1)

11 done« false

12 E(QT) «—I1-1

13 foreachUT € U™ whereE(UT) > 1
14 k—EUT)
15 foreachQ" € QT

16 l—1

17 while pyj = py_1); andl <E(QT)
18 [—141

19 if pxi = P-1),

20 done~ false

21 E(UT) k-1

68

Section 3.7 Summary

Query templates:

initial oo initial oo initial oo
final final final
@ view O HO
3
1<
5 stmt
(%2}
o
(=8
>
uw template

.
1 7 25 28 1 8 20 36 1 8 22 28
Query Templates Query Templates Query Templates

Update templates:

initial oo initial oo initial oo
final — final — final —
o
& stmt p
[
5
8 /
< template -
[WN}
1 11 12 15 1 3 16
Update Templates Update Templates Update Templates
(&) AUCTION (b) BBOARD (C) BOOKSTORE

Figure 3.5: Starting with the California data privacy lawdaidnal exposure reduction for query and

update templates.

800~
600

400

Scalabilit%/
(number of concurrent users supported)

200

AUCTION BBOARD BOOKSTORE

Figure 3.6: Tradeoff between security and scalability, asation of coarse-grain invalidation strategy.

69

Chapter 3 Simultaneous Scalability and Security for Datensit’e Web Applications

70

Chapter 4

Invalidation Clues for Database Scalability
Services

Recall from Section 1.4.4 that invalidation clues preseneaegal framework for applications to re-
veal little data to the DBSS, yet prevent wholesale invailitet. For completeness, we reproduce the
description of invalidation clues from Section 1.4.4 in @&t 4.1. Section 4.2 provides an overview
of invalidation clues using an example. Section 4.3 andi@edt.4 show how different types of clues
can be used to achieve different precisions in invalidatid@®ection 4.5 discusses how clues can be tai-
lored to balance between privacy and scalability. Secti6mphesents our empirical findings. Section 4.7

summarizes the contributions this chapter makes. Firtadigfion 4.8 presents a summary of the chapter.

In this chapter, we focus oprivacy. Note that our notion of privacy encapsulates the notion of
security. Recall from Section 1.4.2 that the goals with myvare (1) to limit the DBSS administrator’s
ability to observe or infer an application’s sensitive datad (2) to limit an application’s ability to use

the DBSS to observe or infer another application’s sensitata.

4.1 Introduction

Invalidation Clues. We presentnvalidation clues a general framework for enabling applications to

71

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

reveal little data to the DBSS, yet prevent wholesale inaiahs. Invalidation clues (aluesfor short)
are attached by the home server to query results returndetbBSS. The DBSS stores thaggery
clueswith the encrypted query result. On an update, the home isearesend amipdate clugo the
DBSS, which uses both query and update clues to decide whatdbtidate. In this chapter, we show

how specially designed clues can achieve three desirabls:go

(1) Limit unnecessary invalidation®ur clues provide relevant information to the DBSS that emébl

to rule out most unnecessary invalidations.

(2) Limit revealed information:Our clues enable the application to achieve a target pritgdyiding

information from the DBSS.

(3) Limit database overheadOur clues do not enumerate which cached entries to invalidastead,
they provide a “hint” that enables the DBSS to rule out unnemgsnvalidations. Thus, the home server
database is freed from the excessive overhead of havingdbk tine exact contents of each DBSS cache

in order to enumerate invalidations.

Compared with previous approaches [6, 8, 12, 66, 70, 72, 14ir8lidation clues provide applica-
tions significantly improved tradeoffs between privacy andlability. This difference is demonstrated
in Figure 4.1 (discussed in detail in Section 1.3.1), whieimpares prior work in database scaling tech-

nology to our scheme. Only our scheme enables the favonatledffs inside the dashed box.

4.2 An lllustrative Example

This section introduces invalidation clues via an examglensider the applicatioeIMPLE-BBOARD,
specified in Table 4!1. In this application, queries folldve templateQ' (requesting information on
comments, with rating above a threshold, made on a partistday) and updates follow the template
UT (changing a comment’s rating). The DBSS caches the (enatyptsults of previous queries and

uses any clues at hand to decide what to invalidate on anewpdat

Figure 4.1 plots six different scenarios of clues that thate the privacy-scalability tradeoff an appli-

cation faces with various schemes, us81gIPLE-BBOARD as an example. It also plots prior work in

72

Section 4.2 An lllustrative Example

) [4, 5, 6, 20, 22, 23]

(Code-analysis privacy, clues offer
maximum scalability) fine-grained control
— % :
A iC /

°) o
B[24] | D

Scalability —

(Maximum privacy,
read-only scalability)

'
L4

Privacy —

Figure 4.1: Privacy-Scalability tradeoff in the presenteloes. The dashed box shows the region in
which an application can operate in our scheme. The six sicsnA—F, are explained later in Table 4.2.

Code-analysis privacy and read-only scalability are ergldiin Section 4.5.1.

SIMPLE-BBOARD

Q" | SELECT id, body FROM comments WHERE story=? AND rating>=?

UT | UPDATE comments SET rating=rating+? WHERE id=?

Table 4.1: A simplified bulletin-board example, consistofga query templat®' and an update tem-
plateUT on a base relatiocomments with attributesid , story , rating , andbody. The question marks

indicate parameters bound at execution time.

database scaling technology. Most of this work [6, 8, 12,786,72] does not address privacy concerns,
and as a result, can attain more scalability than our athite (e.g., by not encrypting data, cached
guery results may be incrementally maintained at the cadhgt®ad of just invalidated). Our previous
work [74] (plotted asB in the figure) showed how to encrypt data that is not usefuirfealidation.
Without the general notion of clues introduced here, howete previous work was unable to achieve

the favorable tradeoffs in the figure’s dashed box, evenmuadeaker attack model.

Table 4.2 summarizes the clue scenarios and what happensanhgdate occurs. Scenafiaepicts
a scenario in which the DBSS gets a copy of the entire datalnaisse@s the updateg (value of 123 and
rating increment of 1 in the example update) and hence can perfeeoigerinvalidation (we formalize

the notion in Section 4.3.4). Because the increase in rafjrig lbcan never cause =123 to drop out

73

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

of a query result, the only case where the result is invadidia whend =123 is not in the query result
but itsstory matchesQ’s story and its newating now exceed€)’s rating parameter. Scenarie
depicts the other extreme—a scenario with no clues; in sashs; the DBSS has no way of knowing
which (encrypted) cache result for an earlier encryptedygiseinvalidated by this (encrypted) update.
Hence, it must invalidate the entire cache on an update. g &i4.1 shows, while the former provides
maximum scalability (for invalidation based approachas)ro privacy, the latter provides maximum

privacy but minimum scalability.

ScenarioB translates the solution proposed in [74] into the termigglof this chapter. [74] did not
have a notion of clues and privacy was “all-or-nothing”—th#erent attributes in parameters or the
query results could not be encrypted independently. Insttémario, the DBSS does not know tey
andrating of id =123, so if thed is not in the unencrypted query result, then the DBSS doesnmt k

whether thed should now be added and hence it must invalidate.

Because our clues can be arbitrarily fine-grained, our schemables better choices than previous
schemes. Scenarld, for example, has the same invalidations as sceri&riaut additionally encrypts
the body of comments—only thé& field is revealed, in order to enable checking for a particidla
ScenaridC uses better clues than scenakie-they reveal less information (e.g., thtery , rating , re-
sultid s but not the resuliody s), yet enable precise invalidation as in Scenaridncluding thestory
andrating of id =123 in the update clue is an example of a “database-dernled”(discussed in Sec-

tion'4.4), because these attributes are not in the updateearak need to be looked-up in the database.

Finally, scenarid uses Bloom-filteJéto hide even thel s, at a cost of a small probability of an unnec-
essary invalidation. This example illustrates how cludsrdine-grained control to an application—the
size of the Bloom-filter in this case—to choose a desired loalah privacy and scalability, as depicted

by the range of choices in the curved line for scen&trio

A Bloom-filter [19] encodes a set as a short bit vector. Eadbemin the set is represented by setting thév)'th,
hz(v)'th and hz(v)'th bit in the bit vector, for three hash functiohg, hy, andhs. A query result is invalidated if the three
bits set in the update clue Bloom-filter are all set in the guéwe Bloom-filter. A longer Bloom-filter reduces the numbér

unnecessary invalidations but reveals more about the data.

74

Section 4.3 Using Clues for Invalidations

Query Clue for Q Update Clue Query Q Result invalidated
A entire database; 123,1 if id =123 should be added

Q's story &rating given itsstory & rating
B| entire query result (unencrypted 123,1 if id =123 is absent from query result
C Q's story &rating 123, and its as in scenario A

id values in result story &rating
D| id values (only) in query result 123 as in scenario B
E|Qsstory &rating , Bloom-filter off Bloom-filter of {123}, [scenario A, with some false positives

id values in result and 123'sstory &rating due to Bloom-filter
F none none if any update occurs

Table 4.2: Six clue scenarigs—F and their effect on what the DBSS invalidates when an update

with id =123 andating=rating+1 occurs.

4.3 Using Clues for Invalidations

In this section we describe how clues can be used for inv@dige. We begin in Section 4.3.1 by
describing the architecture that is the context for our woBection 4.3.2 provides the details of our
basic query and update model, and introduces the termip@ad notation we use in the rest of the
chapter. Section 4.3.3 describes the attack model of the DBIS, in Section 4.3.4, we formalize the
notion of precise invalidations. Finally, in Section 4.8/6 present various types of clues and provide

examples of when each type is useful.

4.3.1 Architecture

The overall system architecture is as described in Chaptefte invalidation flow is described in
Section 2.5. Depending on how the query clues and update aheecomputed, this general formulation
can emulate any invalidation strategy in the DBSS settingpalticular, the application, via clues, can

send relevant data (about the rest of the database) to the B&E®H may enable the DBSS to achieve

75

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

more precise invalidation.

4.3.2 Query and Update Model

Our query and update model is based on our study of three be&hWeb applications (details in
Section 4.6.1). In our model there are a fixed set of query letegpand a fixed set of update templates. A
query is composed of a query template to which parametemi@ehed at execution time. Likewise, an
update is composed of an update template to which paranageastached at execution time. (Examples
are in Tables 4.1, 4.4, 4.7, and 4.8.) A sequence of querigsipaiates issued at runtime constitutes a

workload

The query language is restricted to select-project-joPUjSjueries having only conjunctive selection
predicates, augmented with optional order-by and top-lsttants. SPJ queries are relational expres-
sions constructed from any combination of project, seledtjain operations (except Cartesian product).
As in previous related work [18, 74, 90], the selection opers in the SPJ queries can only be arith-
metic predicates having one of the five comparison operdtars<, >, >, =}. Theorder-byconstruct
affects tuple ordering in the result; and ttog-k construct is equivalent to returning the fikstuples
from the result of the query executed without the top-k carcst We assume multi-set semantics; the

projection operation does not eliminate duplicates.

The update language permits three kinds of updates: iossertdeletions and modifications. Each
insertionstatement fully specifies a row of values to be added to solatme. Eachdeletionstatement
specifies an arithmetic predicate over attributes of aicglaRows satisfying the predicate are deleted.
Eachmodificationstatement modifies non-key attributes of a row selectedrdoupto an equality pred-

icate on the relation’s primary key.

4.3.3 The Attack Model of the DBSS

In this chapter we use the following default “no-clue” saema The DBSS knows the application’s

database schema, including the primary keys and foreigs, leyd the application’s query and update

76

Section 4.3 Using Clues for Invalidations

templates. On a query or update, the DBSS is informed as tdwvaplate has been used, but not the
instantiated parameters. We will consider various scesavhere clues are added on top of this default

scenario.

When considering privacy, we assume that a DBSS can pose as ‘@unsep of” being honest-but-
curious. An honest-but-curious DBSS invalidates correaflyper the query and update clues, but tries
to infer the contents of the encrypted query results, enedygueries, and encrypted updates, i.e., the
DBSS is limited to ciphertext-only attacks [96]. Additiohyaposing as a user enables the DBSS to issue
gueries and updates, observe which clues are generatech@athte values in unencrypted queries and

updates to clues, i.e., the DBSS can perform chosen-plaiatizcks [96].

4.3.4 Database-Inspection Strategy

We formalize the notion oprecise invalidationas the invalidation behavior of an idealized strategy
that can inspect any portion of the database to determinetwd@iched query results to invalidate for a
given update. A cached query result for a quéynust be invalidated if and only if the update alters
the answer t@. We call such a strategy @atabase-Inspection Strategy (DIF) DIS invalidates the
minimal number of query results—any other (correct) irdaion strategy invalidates at least the query
results invalidated by a DIS. Thus a DIS is a useful lower libagainst which we can compare how

successful particular clues are in helping the DBSS makéidateon decisions.

4.3.5 Types of Clues

Recall that we distinguish betweepiery clueqattached to encrypted query results) ampadlate clues
(attached to encrypted updates). We further classify qaedyupdate clues based on what data are used
to compute them. A query clue might b@arameterquery clue, aesultquery clue, or @alatabasejuery
clue, based on whether it is computed from the query paras)ebe query result, or the database itself.
Similarly, an update clue might beparameterupdate clue or databaseupdate clue based on whether

itis computed from the update parameters or the databasie Note that the contents of different types

77

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

Computed from

Attached to|Parameters Result Database

guery result parameter query clueresult query cluedatabase query clue

update parameter update clue database update clue

Table 4.3: A taxonomy of clues (The various clue types arearmal font). Clues differ based on
whether they are attached to query results or updates, aetherthey are computed from parameters,

result, or database.

of clues may overlap. Table 4.3 summarizes the taxonomyuefcl

Consider thesiMPLE-AUCTION application shown in Table 4.4. For each of its query/uptiatgplate
pairs, Table 4.5 lists the different kind of clues requiredmplement a DIS. In the first row, it suffices
to have result query clues and parameter update clues, én trdmplement a DIS. In other words, the
set ofitem _id values in the query result together with tieen _.id from the update statement suffice.
Invalidation is ruled out in the second and third rows sinipjyexamining the templates. It is also ruled
out in the last row because of the foreign key relationshigthe fourth row, only theegion attributes
need to be matched for a DIS—so the query and updates clu@ssagefunction of their instantiated
parameters. For the fifth row, invalidation of cached resaftany instance of the query templadé
in response to an update templaté cannot be ruled out just by inspecting the query result, yjuer
parameters, or update parameters. For example, increte@ngd date may mean that the item in
UlT now satisfies the cachddg guery—but only if the item has the appropriatgegory andregion
(information available only in the database). So parameelr result clues are insufficient to prevent

wholesale invalidation. Database clues are needed.

4.4 Database Clues

The previous section motivated the use of database cluag t&sIMPLE-AUCTION example. We begin

this section by identifying in Section 4.4.1 families of cmwn query/update classes where database

78

Section 4.4 Database Clues

SIMPLE-AUCTION

QI | SELECT item id, category, end _date
FROM items WHERE seller=?

QJ | SELECT user_id FROM users WHERE region=?

Q! | SELECT item _id FROM items, users
WHERE items.seller=users.user _id
AND items.category="?
AND items.end _date>=?

AND users.region="?

U] | UPDATE items SET end date=end _date+? DAYS

WHERE item.id="?

UJ | INSERT INTO users (user _id, region)

VALUES (2, ?)

Table 4.4: A simple auction example, consisting of threergjtemplates, two update templates, and
two base relations: (Ijems with attributesitem _id , seller , category , andend _date , and (2)users
with attributesuser _id andregion . Attributeitems.seller is a foreign key into thasers relation. The

guestion marks indicate parameters bound at execution time

clues are required for precise invalidation. Section 4dds2usses the problems with achieving precise
invalidations usinglatabase querglues, and then presents our solution ugilagabase updatelues.

Finally, while database clues enable precise invalidatmmsome workloads the overhead of computing
them can be higher than their savings. Section 4.4.3 pregeattical techniques that further reduce

overheads and/or increase privacy by relaxing the preeigdidation requirement.

79

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

Pair (Query clue Update clué
(QI,Ul) | (result, parameter
(QI,UJ) | (,) (never invalidates: different relations)
(Q1, U | (,) (never invalidates: different relations)
(QF,Ul) | (parameter, parametgr
(QF,Ul) | (database, parameteor
(parameter, database
(QF,UF) | () (never invalidates: foreign key constraint)

Table 4.5: Types of clues required to implement a DIS for teweppairs of theSIMPLE-AUCTION

example in Table 4/4.
4.4.1 Templates Requiring Database Clues

We begin by introducing some terminology for classifyingequand update templates in a way that
is useful for our analysis. Then, we enumerate the querghgpdasses for which database clues are

required for precise invalidation.

Query and Update Classification

Define theselection attributesf an update templaté T (denotedS(UT)) to be the attributes used in any
selection predicate (i.e., a selection or a join conditiothewhere clause) oUT. (If UT is an insertion,
S(UT) = {}.) Further define thenodified attributegM(UT)) of UT, theselection attribute$S(Q")) of

a query templat®', and thepreserved attributegP(Q")) of QT as in Tablé 4.6. IJT is an insertion
or a deletion from a relationyl(UT) is defined to be the set of all attributes in the relation. Fer t
SIMPLE-BBOARD application (Table 4.1)SUT) = {comments.id}, M(UT) = {comments.rating},

S(Q") = {comments.story,comments.rating}, andP(Q") = {comments.id, comments.body}.

80

Section 4.4 Database Clues

Symbol| Meaning

S(UT) | Attributes used in the selection/join predicates

of UT (i.e., in thewhere clause)

M(UT) | Attributes modified byJ

S(Q") | Attributes used in the selection/join predicates

or order-by constructs @’

P(Q") | Attributes preserved in the result Qf

(i.e., in theselect clause)

Table 4.6: Notation for aspects of templates.

Enumeration of Classes

We identify important classes of update/query templatesp&or which database clues are necessary for
achieving the invalidation behavior of a DIS. For all theathlasses in the query and update model we

consider, described in Section 4.3.2, database clues aneoessary. (We omit proofs for brevity.)

For ease of understanding, we divide the classes into these categories. A common condition
across all three categories is that the update not be “igtedravith respect to the query. We say an
update template ignorablewith respect to a query template if and only if none of theilaites mod-
ified by the update template belong to either the selectiqgreserved attributes of the query template.
Formally, an update is ignorable if and onlyMf(UT) N (S(QT) UP(Q")) is empty. For simplicity in the
discussion below, we assume that there are no foreign kestraamis. The discussion can easily be ex-
tended to handle foreign keys. Next, we enumerate the tlategaries. For each category, if applicable,

we provide separate examples for insertion, deletion, andifloation templates.

Category I. The rules for the first category are: (a) the update might dddast one row to the
query result, and (b) there is at least one attribute betantp the query’s selection attributes whose

final value is not specified in the update. The intuition bdtims rule is that as long as there is at least

81

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

one attribute whose value needs to be examined in the databasder to determine whether or not the
update affects the query result, a database clue is reqiice@xample, in Table 4.4, consider the query

Q! with either modification template; , or the following insertion and modification templates:

INSERT INTO items (item _id, seller, category, end _date) VALUES (?, ?, ?, ?)
UPDATE items SET end_date=? WHERE item _id="?

Category Il. The rules for the second category are: (a) the query invaviep-k predicate, and
(b) the query fails to preserve at least one of its order-Iiybates that is modified by the update.
The intuition behind this rule is that because of the topddprate, even when an update affects some
tuple in the database that is absent from the query resuttight affect the query result. For exam-
ple, consider the query templa8ELECT item .id FROM items WHERE category=? ORDER BY end _date
FETCH 11" to 218t rowsT2 paired with any of the following templates:

INSERT INTO items (item _id, seller, category, end _date) VALUES (?, ?, ?, ?)

DELETE FROM items WHERE itemid="?

UPDATE items SET category=? WHERE item _id=?

Category lll. The rule for the third category is: there is at least onelatte in the selection predicate
of the update template that is not preserved by the queryl&epThe intuition behind this rule is
that the query result does not contain sufficient infornmatio determine whether the update affects
the query result or not. For example, consider the query kBPELECT end date FROM items WHERE

category=? paired with either of the following:

DELETE FROM items WHERE itemid=?
UPDATE items SET end_date=? WHERE item _id="?

2Such a query arises, e.g., when the application wants tb &td display the second page of query results.

82

Section 4.4 Database Clues

4.4.2 Implementing Database Clues

We now discuss how to implement database clues, so as tovacmseprecise invalidations as a DIS,

while minimizing both the overheads and the amount reveaibedit the data.

Problems with Using Database Query Clues.One way to achieve a DIS is to use database query
clues. The goal for a database query clue is to provide all#ta from the database that could po-
tentially help in deciding if a future update would affecétbiven query result. Self-maintaining view
techniques [90] could be used to identify the minimal suctad&or example, for query templa@
in Table 4.4, the techniques in [90] would suggest the DBS®e&atwo database fragments: (a) the
seller , category , andend _date of each item in thétems table, and (b) theegion of each user in the

users table.

For Web applications, because the set of update templakemign in advance, the amount of data
stored can sometimes be reduced. In the previous examplause of the limited update templates,
it suffices to cache allem _id s that satisfy all but thend _date predicate of the instantiatddg query;
these are the only rows that can possibly become part of theygesult as a result (ble updating the

end _date for some item.

In general, given many cached queries and a richer colleofiapdate templates than in teevPLE-
AUCTION example, the amount of auxiliary data stored to maintairvibes can be quite large. As a
result, this approach suffers from two significant problersst, the cached portions of the database
must themselves be maintained, resulting in additionalt®ead and additional clues to enable the main-
tenance. For example, maintaining tiagion information would mean that instances of updu@,
which could previously be ignored f@] (because attributgems.seller is a foreign key into the
users relation), can no longer be ignored. Second, because threagppotentially reveals large por-

tions of the database, it does not offer any reasonableqyriva

Our Solution. Instead, our approach is to achieve a DIS by generating tbearg database infor-
mation at runtime as database update clues. Because alegptat centrally handled by our system,

such clues are computed at the home organization. Datalpasgeuclues make sense in our setting

83

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

where the query templates are known. For example, for thatendmplatéJlT in Table 4.4, knowing
the query templates enables the clue to be computed fronfousvalues: theategory of the specific
item being updated, the old and newmd date s of the item, and theegion of the specific seller of the
item. Together with parameter query clues stored with atamsted query, these enable a DBSS to

achieve a DIS, by checking whether these four values nosfg&ias a result of the update.

With database update clues, there is no overhead of kedpng ¢onsistent because the clue is gen-
erated on-the-fly with every update. However, generatiegitkach time places extra load on the home
server’s organization. Hence, it is not obvious whethelinlcesase in scalability from precise invalida-
tion outweighs the decrease in scalability from generatweglues. Fortunately, for the templates in the
three realistic benchmarks we study, the work to generatdabdse update clue is rather minimal. In
particular, out of the over 1000query template, update templatpairs, only 21 require database clues
(details are in Section 4.6.1). Of these 21, almost all afitihequire fetching a single row from a table
and perhaps a single associated row from a joining table ﬁnei(Qg,UlT) example above. Moreover,

for these same reasons, database update clues achievehediey.

We use the following procedure for determining clues. Mdshe work is precomputed offline given
the set of templates for an application. For our three apfiios, we performed this precomputation by
hand; however, it would not be difficult to automate much ad firocess. For example, precomputing
which update templates are ignorable by which query teraplean be automated by extract®@,")
andM(U;") for each update templat$” andS(Q]) andP(Q[) for each query templat®], and then
testing whetheM (U)N (S(QT) UP(QT)) is empty. Similarly, there are simple, easily automatelgsru
for determining pairs made ignorable by foreign key comstsa The precomputed results are stored
in a table for fast reference during execution. For thosespaing database update clues, a script is
generated and stored in the table for computing the cluaur€id4.2 shows how a database update clue
is computed for single table SPJ queries. (Note that'ifis a modification template, the algorithm in
Figure/ 4.2 must be called twice, onbeforeand onceafter applying the update.)T is a deletion
template, the algorithm must only be callbdforeapplying the update.) This algorithm can readily
be extended to handle top-k and join queries. After the axben there are only a few pairs in our

benchmarks, which fall outside the query and update modedomsider, that we currently only know

84

Section 4.4 Database Clues

Algorithm: For update template UT and SPJ query templateQ', find the database-update clue.

Inputs: update template U query template ®

Output: database-update clue C as an associative array

1 1fUT is an insertionreturn

2X —MUT)N(PQ")USQT))

31f X ={}, return /* ignorable update */

4ifUT is a deletion

5 X< SQ)

6 for eachattr a € X,

7 C{a} « “value ofa in the row being updated”

8return C

Figure 4.2: Pseudo code for computing a database updatevblere query templates are restricted to a

single table.

85

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

how to do by hand.

4.4.3 Beyond Precise Invalidations

Thus far, we have focused on the goal of matching DIS’s optmaber of invalidations. However,
because of the minimal invalidations requirement, we haeeificed opportunities to further minimize
overheads and maximize privacy. In this section, we presadral simple techniques that further reduce

overheads and/or increase privacy by relaxing the presigdidation requirement.

Opportunistic Database Clues. Although the overheads of computing database clues aremaini
depending on the workload, their overheads can still bedrigian their savings in some cases. In the
three benchmarks we study, there are cases where most aivilglation savings arise from a small
subset of the database update clues. While generating thesseis worthwhile, generating the other
clues (where the savings is small) costs more than the saviig address such concerns, we use a
simple OPPORTUNISTICStrategy that monitors the workload for invalidation sgdrand then gener-
ates database update clues only when the savings exceesdsnaated threshold of the (appropriately
normalized) cost to generate the clue. Although more wiatdemvalidations are needed whenever
we do not generate a database update clue, the overall sffactincrease in scalability, as shown in
Section 4.6.

Increasing Privacy through Hashing and Bloom-filters. As argued above, for most updates the
amount of revealed data is small (e.g., four values in thetgpdiue for theQJ, U) example). How-
ever, even revealing four values per update may be more #wired if there are thousands to millions
of updates. Fortunately, in many cases, the revealed vaheassed solely for equality tests with query
parameters, e.g., thategory andregion values in the(QE,Uf) clue. In such cases, the actual values
can be obscured by using a one-way hash function. The egtesditis assumed to succeed if the hashed
values match. Such an approach will always invalidate wikenired for correctness, but it introduces
a very small probability of an unnecessary invalidation ttue hash collision. Thus, for all practical

purposes, it is as good as a DIS strategy, but with betteagyiv

86

Section 4.5 Privacy-Scalability Tradeoffs

In other common cases, the revealed values are used for @ydgrarisons with query parameters,
e.g., theend _date value in the(Qg,UlU clue. In such cases, the actual values can be hidden to garyin

degrees as a tradeoff against invalidation precision, hb®discussed in Section 4.5.

Finally, another common case involves testing whether &qodar value in an update clue is in a
set of values in a result query clue. For example, considesitiPLE-BBOARD example in Table 4.1
and the corresponding result query clue and parameter egtiag in Scenari® of Table 4.2. These
clues enable exact matching idfs but reveal all théd values in the query result. Instead, as shown
in ScenarioE of Table 4.2, we can obscure thegevalues by using Bloom-filters [19], as discussed
in Section 4.2. Although Bloom-filters introduce a small mblity of unnecessary invalidations (the
probability is tunable by the number of hash functions usethe filter and the size of the bit vector),

for all practical purposes, it is as good as exact matchingwith better privacy.

4.5 Privacy-Scalability Tradeoffs

In this section we study privacy-scalability tradeoffs e tDBSS setting, considering the attack model
of Section 4.3.3. We begin in Section 4.5.1 by showing thatehs a fundamental tradeoff between
privacy and scalability in our DBSS setting. Section 4.5¢hthresents an overview of how applications
could get extra privacy by having the DBSS carry out unnecgs$saalidations. Next, in Sections 4.5.3

and 4.5.4, we study representative query and update tesmpdats from our benchmark applications,
and present configurable clues for these pairs. Finally ati@g4.5.5, we discuss how our current work

applies to entire applications, beyond a single query anldigatemplate pair.

45.1 The Limit Cases

Recall the dashed box in Figure 4.1 from Section 4.1, whiclstithtes the privacy-scalability tradeoff
that an application faces in our DBSS setting, where (a) the ®B& an attack model as described
in Section 4.3.3 and (b) the home server does not track the stahe DBSS’s cache. We denote

ascode-analysis privacthe level of privacy that an application can attain by entingpthe data not

87

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

useful for invalidation (determined statically by anahgithe application code as in [74]). On the other
hand, minimal scalability is achieved when the DBSS invaéidall its cache entries on any update, i.e.,
queries can only be answered from the cache as long as théoadniemains read-only. We call this

level of minimal scalabilityead-only scalability

As we show next, if an application achieves the maximum &déla it gets code-analysis privacy
(the upper left corner of the dashed box in Figure 4.1), aitdei€hieves the maximum privacy, it gets
read-only scalability (the lower right corner of the dasbed in Figure 4.1). Thus, applications cannot
hope for both good scalability and good privacy.

Maximum privacy implies read-only scalability. An application achieves the maximum privacy if
the DBSS it is using cannot distinguish between any two enedyguery results in its cache. Because
the DBSS can pose as a user and issue updates, on any updeteakior none of an application’s
query results should be invalidated. Otherwise, the DBSSdgstinguish between query results that
were invalidated and those that were not invalidated. feuntiore, for any non-trivial workload, it is
likely that an update invalidates some query result. Becthesdome server does not track what the
DBSS'’s cache contains, for privacy and correctness, it regtihe DBSS to invalidate all query results

on every update. Thus the application achieves read-oalgisitity.

Maximum scalability implies code-analysis privacy. An application achieves maximum scalability
when the invalidation behavior of the DBSS resembles a Datab@pection Strategy (Section 4.3.4).
We focus on two representative cases: (a) the invalidagarstbn involves an equality comparison, and
(b) the invalidation decision involves an order comparislincase (a), the DBSS can repeatedly issue
updates till the query result is invalidated. Since the lidaion is precise and the DBSS is issuing
the updates, the DBSS learns the value of the data in the gasut used for invalidation. In case
(b), the DBSS first computes an ordering between encrypted/ gasults. It can do so easily, based
on the frequency with which a query result is invalidatedot@\that cache evictions do not affect the
maintenance of the frequency count, because (i) the DBSSlwagsastore the query result just for the
purposes of maintaining this frequency count, and (ii) tbeé server does not track the contents of a

DBSS'’s cache.) It can then pose as a user and do a binary sesttoh ordered query results to find the

88

Section 4.5 Privacy-Scalability Tradeoffs

Q' | SELECT i_stock FROM item WHERE i _id=?

UT | UPDATE item SET i _stock=? WHERE i _id=?

Table 4.7: A query-update template pair from 8®oksTOREbenchmark.

value corresponding to an encrypted query result. Thustin tases, equality and order comparisons,

maximum scalability results in the code-analysis privacy.

4.5.2 Trading Off Scalability for Privacy

In order to increase privacy, applications have to sacrdwadability—by allowing needless invalida-

tions. Through representative query and update templatefpam our applications, we next show how
clues provide applications with a convenient knob to batatheir privacy and scalability needs. We
consider two cases, depending on whether invalidatiormvavequality comparisons (Section 4.5.3) or

order comparisons (Section 4.5.4).

4.5.3 Equality Comparisons

Consider an actual template pair, shown in Table 4.7, fromBtheksTORE benchmark (details in
Section 4.6.1) where the invalidation decision involveg@uality comparison. For precise invalidation,
the DBSS needs the attribute valuad in the query and the update. However, in creating a clue,
applications want to limit the information that is reveaksud may not want to reveal the exactd

value.

One natural way to do so is to map parameter vgluxesome space of place-holders and then only
reveal place-holders as clues to a DBSS. {&t ... ,a,} be the parameter values afé, ... ,en} be

the place-holders. Left be the function that determines the mapping. The mappindpeaepresented

3In general, the discussion here applies to all attributeessed in invalidation equality comparisons, not jusaester

values.

89

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

parameter
values , place-holders
function f
ar e o €
% . E
: .« e
. m
a /

Figure 4.3: An example mapping of parameter values to ptexdeers.

by a bipartite graph as in Figure 4.3. Computing the query eutbdate clue then just involves finding
the place-holder corresponding to the parameter value.DBS invalidates a cached query result if
the values of the place-holders in the query and update catehnm An example is the hash function
discussed in Section 4.4.3.

In this setting, all that the DBSS can see is the place-haldiésg its capabilities, it can at most infer
the mappingf used to generate the place-holders. A metric of privacyisgétting then is the number
of place-holdersn that the application chooses. The lower this number is, #tebthe privacy is. In
the extreme, if there is just one place-holder, the DBSS caleam anything about the parameters. On
the other extreme, a higher means the DBSS can more precisely infer the parameter vdlaeget

mapped to an encrypted value.

Because the query resultsaf constituent parameter values that are mapped to a single-plalder
get invalidated whenever an update wathy of the constituent values is issued, the valuendias an
opposite effect on the scalability. A higharusually means that there are less unnecessary invalidation
and the scalability is higher. Thus an application can tir@evalue ofm to balance its privacy and

scalability requirements.

Next, we show that an application can use knowledge of thguérecy distribution of parameters
to further choose clues that maximize its scalability foraeqg privacy value. Before proceeding, we

introduce some notation.

Let p;j denote the probability with which an update with parameteis issued. Formallyy ; p; =

1. For each of the place-holder valugslet domain-sizen; and cumulative probabilit?, denote the

90

Section 4.5 Privacy-Scalability Tradeoffs

Py, >= >=Pj, >= Pj,
1 m—1
Figure 4.4: The solution implied by Lemma R.€ {1,...,n} is such that the parameter valag is the

ith most frequently occurring.

number of parameter values mapped to a place-hejderd the sum of their probabilities, respectively.
Formally, fori € {1,...,m}, ni = [{aj|f(aj) =&}, andP = 3 t(5,)—¢ Pj- AlSO T ni=n,andy ™, P =
1.

If the application knows thej values, for a given fixed privacy value, we show how it can choose a
mapping that minimizes the total number of invalidatiome(termy " , ;P represents the total number
of invalidations). Formally, the constrained optimizatiproblem is to find theEQUALITY-OPTIMAL
mapping that minimize§ ", niP, given the constraints"; nj = nandy™ ;R = 1. Lemma 2 provides

the key insight required to find trEBQUALITY-OPTIMAL mapping.

Lemma 2. For a given privacy value, the minimum number of invalidasies achieved when: for any
two place-holdersijeand g with domain-sizeness than domain-size nthe probability with which an
update using a value mapped tagissued is higher than the probability with which an updategs

value mapped tojds issued.

Proof. Suppose the number of invalidations is minimum, and yettlaee two place-holdes ande;

with nj < nj such that for valug mapped tag (f(x) =) and valuey mapped tej (f(y) =€j), px < py.

In the expression for the number of invalidations, the dbation of terms in whichp, and py appear
IS nj px + njpy. By swappingx andy, this contribution is reduced, thereby reducing the totahher of

invalidations. Hence, the original mapping was not minimaroontradiction. O

Lemma 2 implies that the final solution has a form as showngniféi 4.4, where the parameter values
are arranged in a sorted order of the probabilities with Wwithey are issued, and only parameter values

with consecutive ranks can map to the same place-holderth@namplication of Lemma 2 is that the

91

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

Q' | SELECT * FROM items WHERE endlate>=?

UT | INSERT INTO items VALUES (?, ..., ?)

Table 4.8: A simplified query-update template pair from Al TION benchmark.

problem of finding arEQUALITY-OPTIMAL mapping has theptimal sub-structur@roperty, i.e., parts
of the mapping are themselves optimal solutions to partseoptoblem. Dynamic Programming, which
uses memoization to get rid of repeated computations, casdxbto solve this problem @(nm) space

andO(n’m) time.

In Section 4.6.8 we show that in the common caseE@UALITY-OPTIMAL mapping reduces the
number of invalidations by around 20%, when compared to algtic mapping which maps an equal
number of parameter values to each place-holder. Thus liicagipns know the probability distribution
with which parameters are chosen when issuing updates,cthreychoose clues that maximize their

scalability for a target privacy.

4.5.4 Order Comparisons

Consider the template pair shown in Table 4.8. This pair isftbe AuCTION benchmark (details in
Section 4.6.1), and the invalidation decision involves edeo comparison on the end date of an item
being auctioned. For precise invalidations, the DBSS nedwselattribute valuend _date in the query

and the update. However, the application may not want tcatetie exacend _date value.

As with equality comparisons, we can apply an approach bas@gapping parameter values to some
space of place-holders and then revealing only place-mwldethe clues. Assume parameter values
{a1,...,an} witha; <ap < ... < a,and place-holdergey,...,en} withey < ey < ... < ey. Let f be the
function that determines the mapping. The application canam Order-Preserving-Encryption-Scheme
(OPES) [3] to map the parameter values to place-holders thatlthe order is preserved. Use of an
OPES ensures thatdf < a; thenf(a) < f(a;). An honest-but-curious DBSS can learn a total ordering

on the place-holders either immediately (if it can obseeeexecution of the invalidation code), or over

92

Section 4.5 Privacy-Scalability Tradeoffs

time (if it can only observe which results are invalidateldhwever, privacy is still preserved since the
DBSS cannot associate place-holders to actual parametersv@ds in [3]). In contrast to an honest-
but-curious DBSS, use of an OPES provides little privacy wiih attack model. The DBSS by posing
as a user can initiate queries with known parameter valueseroe the clues generated, and correlate
place-holders to the parameter values. Moreover, sin@itearn a total ordering on the place-holders
(as mentioned above), it can use binary search to quicklytfiegharameter value(s) corresponding to a

place-holder.

For place-holders; andej with g < ej in query clues, leta, be the maximum value that gets
mapped tog anda be the minimum value that gets mappedefo Formally, ax = max; g,)—e and
& = MiNg(5)—¢- The DBSS can use binary search because in all of the aboveilations, g < e;
impliesak < a, i.e., the order is preserved when mapping parameter valugsery. Thus any place-
holder corresponds to a disjoint range of parameter valwbsse end-points can be determined by

binary search.

To defeat binary search, our key observation is that forembrinvalidations, the order has to be
preserved onlpetweerparameters of queries and parameters of updates, ardmssthe parameters
of queries and updates. Formally, for two query (or updaaeameter values; anda; with a < aj and
mappingf, f(a) < f(a;) need not be true. This flexibility enables us to twe mapping functiondy
(to map query parameters) afigl(to map update parameters) so thaifs a query parameter arql is

an update parameter with < a;, thenfq(a) < fu(a;j).

One family of such mappings is where a non-negative numbsrbgacted from each query param-
eter and a non-negative number is added to each update garafermally, fq(a) = a —rq(a) and
fu(aj) = aj+ru(aj), whererg(a) andry(aj) are always non-negative, but can even be randomly gen-
erated. With such a mapping, the DBSS can no longer use birargtsto quickly find the parameters
corresponding to a place-holder because evan<fa;, neitherfy(a) < fgq(aj) nor fu(a) < fu(aj) may

be true.

A Mapping with a Provable Guarantee. Next, we show how an application can use the two map-

pings for greater privacy. Assunfg is the identity function, i.e.fy(a;) is always zero. The choice of

93

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

rq allows the application to control its privacy-scalabilitpdeoff. For parameter valueg < ... < ap,
an application not wanting to let the DBSS learn the orderrmfgion can measure privacy leak as
the number of pairs for which the DBSS can figure out the comed¢ring. Privacyp can then be
measured simply by normalizing the privacy leak and subtrgat from 1. Formally, privacy(p) = 1-
ﬁfki P(fq(ai) < fgq(aj)), whereP(a < aj) = 1 if fg(a) < fq(aj), 1/2 if fy(a) = fq(aj), and O
otherwise.

Under such a definition and assuming that all parameter sate equi-probable, we show how for
a fixed number of invalidations, an application can chagselues that maximize its privacy. We call

such a mapping theRDER-OPTIMAL mapping.

Lemma 3. In an ORDER-OPTIMAL mapping, for any two parameter valuesamnd g with g < aj, if

rq(@) and ry(a;) are non-zero, thengta;) > fq(a;).

Proof. By contradiction. Assume in arORDER-OPTIMAL mapping, there exist two values anda;
with g < aj, for whichrg(a) > 0 andrg(aj) > 0. If rq(a;) is increased by 1 ang,(a) is decreased by

1, the total number of invalidations remain the same, bupthecy increases. Hence contradiction.]

An implication of Lemma 3 is that for any given number of iridakionsi, to find ORDER-OPTIMAL,
the following two steps should be carried out: (1) Find value, <a 11 <...a 1 sothata 1 =a;. (2)
Starting with the maximung;, map eacly; to a_; till the invalidation limit is reached. If the invalidation

limit is reached in am; getting toa_;, allow theg; to reach whatever value is reachable.

Section 4.6.3 shows that for a given scalability value, thiagping enables twice the privacy of an
OPES.

4.5.5 Discussion

For our query and update modany invalidation decision in an application fundamentally atwes
either an equality comparison (or its generalization totansembership test) or an order comparison.

Thus, our above results can be applied to the entire apiplicatiote, however, that care must be taken

94

Section 4.6 Evaluation

in treating queries or updates with conjunctions betwe#hraetic predicates that share attributes (e.g.,

WHERE enddate > ? AND end _date < ? + 30 DAYS).

4.6 Evaluation

We evaluated our proposed clues by implementing them in oatofype DBSS and then measuring
the scalability advantages of using various types of ioion clues. In this section, we describe
characteristics of our benchmark applications in Sectiéri4and our scalability results in Section 4,6.2.
Finally, in Section 4.6.3 we measure the effectiveness ofamhniques in helping an application manage

its privacy-scalability tradeoff.

4.6.1 Characteristics of the Benchmark Applications

We used the benchmark applications described in SectiorTBdfe were a few queries in these bench-
mark applications (12 out of 94 templates) that did not confto our query model (Section 4.3.2), e.g.,

aggregate queries. For these queries, we use parameteysatiicctues but not database clues.

Table/ 4.9 provides, for each of the three applications, thmber of template pairs which require
database clues for precise invalidations, and classifex® thccording to the categories introduced in
Section 4.4.1. As the table shows, only 21 (out of the ovefD}1@@irs require database clues, and all but
2 of these fall into Category |I.

4.6.2 Scalability Benefits of Invalidation Clues

We performed our experiments in the SIMPLE scenario and #bodology described in Section 2.7.
Figure 4.5 plots the scalability of an application as a fiorcof the invalidation strategy used by the
DBSS, for all three applications. The y-axis plots scal@hiineasured as specified in Section 2.7. On

the x-axis, we consider five cases: one corresponding tosioga DBSS, one corresponding to not

95

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

Number of UT,QT) pairs in category

Application | Category || Category Il| Category llI

AUCTION 9 1 0
BBOARD 7 0 0
BOOKSTORE 3 1 0

Table 4.9: Number of template pairs in the three applicathich require database clues for precise

invalidations, classified as per the categories introdirc&kction 4.4.1.

using clugé, and the other three corresponding to DBSS strategies basdifferent classes of clues:
Clues (excl. DB clueshich uses only parameter and result chy&ues (incl. DB clueswhich uses
parameter, result, and database update clues (as prese&ection 4.4.2), an@pportunisti¢ which

uses thedPPORTUNISTICStrategy presented in Section 4/4.3.

In all applications, using a DBSS with invalidation cluesrsigantly increased scalability. This
agrees with previous work [74], which can be viewed as hawdogsidered specific types of (non-
database) clues. Because the rightmost strategy, Oppstrtyhieuristically uses database update clues
only when the increase in scalability is higher than the logad, it offers the most scalability, for all
three applications. As the figure shows, the results fostheARD application differ from the others
in two respects. First, when no clues are used, not even d saraber of clients can be supported
within the response time threshold specified in Section Phis is because each HTTP request results
in about ten database requests, most of which suffer cactsem(due to no clues being used). Second,
the overhead of computing database update clues is higivediathe decrease in invalidations. Hence,
as Figure 4.5 shows, using database update clues whengquéaetkfor precise invalidations results in
worse scalability. Figure 4.5 thus confirms the claim mad&etion 4.4.3 that the use of database

update clues must be carefully weighed against the expbeteefit.

4The scalability of this strategy is the same as the MinimahJkate-Inspection Strategy (MTIS) of [74].
5The scalability of this strategy is the same as the Minimalwinspection Strategy (MVIS) of [74].

96

Section 4.6 Evaluation

No DBSS

Clues (excl. DB clues)
Clues (incl. DB clues)
Hybrid

800

EOEO

600

Scalabilit%/
(number of concurrent users supported)

400

200

AUCTION BBOARD BOOKSTORE

Figure 4.5: Impact of invalidation clues on scalability.rlEomparison, we include the scalability num-
bers without a DBSS.

4.6.3 Privacy Experiments

Figure 4.6 shows the reduction in the number of invalidaioThe workload used is the template
pair in Table 4.7, with the parameter values chosen acagitinthe Zipf distribution inBBOOKSTORE
over a domain of 100 values. The y-axis plots the percentagection in invalidations in using our
EQUALITY-OPTIMAL mapping (Section 4.5.2), over a simplistic mapping whiclpsnan equal number
of parameter values to each place-holder. (The percentagetion is a crude estimate of the scalability
improvement an application can achieve by switching tE@WALITY-OPTIMAL mapping.) On the
x-axis, we plot the number of place-holders. (Recall fromti®act.5.2 that fewer place-holders implies
greater privacy.) As expected, when all parameter valuesrapped to a single place-holder or most
are mapped to separate place-holders (right part of théngrapth mapping algorithms result in almost
the same number of invalidations. In other cases, howdweEQUALITY-OPTIMAL algorithm reduces
invalidations by around 20%. The benefits increase as thghdison over the parameters becomes

more skewed.

Figure[4.7 plots the improvement in privacy due to using twappings instead of one mapping,
as described in Section 4.5.4. The workload used is the &mplair in Table 4.8, with parameter

97

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

40

20 -
10

O 1 1 h
0 20 40 60 80 100

Number of place-holders

in Invalidations

% reduction

Figure 4.6: Reduction in invalidations due to ®@@UALITY-OPTIMAL mapping algorithm.

2

3 1 : ,

® F X Using one mapping —&—
S 075 s Using two mappings ---%----
) e

- 05} Xt

(7] X Xag

N ek

= 025 o SOV

€ TR
S 0 =

z 0 0.5 1

Normalized Privacy

Figure 4.7: Improvement in privacy on using two mappingsdad of one mapping.

values chosen uniformly-at-random, over a domain of 100e&l The x-axis plots normalized privacy,

measured as per the definition in that section. The y-axits plormalized scalability, measured as

max—I;
max— min’

and minimum, respectively, of tHe over all data point§. For the one mapping approach, we use an

wherel | is the number of invalidations for thi¢h data point and max and min are the maximum

order-preserving encryption scheme, augmented so thdipheuhdjacent values could be mapped to
a single place-holder. For the two mappings approach, wensdentity mapping, and theRDER-
OPTIMAL mapping described in Section 4.5.4. For a given scalabiliiyh our two mapping approach,
the privacy is almost twice that of a one-mapping approadthofigh these results are skewed by the
specific privacy measure we use, we believe that the factovafjap between the curves demonstrates

a significant opportunity for using two-mapping approaches

4.7 Chapter Contributions

In this chapter, we made the following contributions:

e We presented invalidation clues, a general framework tf@tsapplications a low overhead, fine-

grained control to balance their privacy and scalabilitgdss and provides better tradeoffs than

98

Section 4.8 Summary

previous approaches. We also provided examples of sevarAgarable invalidation clues.

e We showed how to keep application data secure/private umgeneral attack model where the
DBSS can pose as a user, issuing queries and update, and geming the invalidations in an

attempt to learn other user’s data.

¢ We identified families of common query/update classes wiera information is needed from the
database in order to perform precise invalidations. We sdatvat generating these “database-
derived” clues in response to an update typically requiczessing only one or two database
rows. We presented a strategy that uses such clues only Waeacalability benefit from reduced

invalidations outweighs the cost of computing the clue.

e Using experiments with three Web benchmark applicationgeakstore (TPC-W), an auction
(RUBIS), and a bulletin-board (RUBB0S)—running on our prop&yDBSS, we demonstrated
the scalability benefits of our proposed clues. We also usptesentative queries from these
benchmarks to show the effectiveness of our configurabksdluproviding an improved privacy

versus scalability tradeoff.

4.8 Summary

Database scalability services (DBSSs) are an extension ofsCbat offload work from and absorb
load spikes for individual application databases, themreloyoving a key bottleneck for many Web ap-
plications without the expense/headaches of an overgiomed server farm. This chapter presented
invalidations cluesa general framework and techniques for enabling apptinatio reveal little data

to the DBSS, yet provide sufficient information to limit unessary invalidations of results cached
at the DBSS. Compared with previous approaches, our propaselidiation clues provide increased
scalability to the DBSS for a target privacy level, as well azenfine-grained control of this tradeoff.
Using three realistic Web benchmark applications, wetilated the issues and solutions for generating
effective clues, e.g., by identifying categories req@raatabase clues, and then we demonstrated the

solutions on our DBSS prototype.

99

Chapter 4 Invalidation Clues for Database Scalability Ses/ic

100

Chapter 5

Holistic Query Transformations for Dynamic
Web Applications

Web applications are interactive. User studies [59, 60ghshown that high user latencies drive cus-
tomers away. Therefore it is important that we preserve leer latencies with a scalability service,
even under high load. For our experiments throughout tigisishwe take this into account by requiring

responses to have a latency of two seconds or less.

To ensure low user latencies, it is important to understadthis latency arises. A Web application
is a collection of programs. On an HTTP request, an apptinaserver runs one or more of these
programs to generate the response. To access the data thgsenms need to generate the response,
they issue database queries. Frequently, the progranes nissliiple database queries for each HTTP
interaction: e.g., for the benchmark applications we sttitly average number of queries per dynamic
HTTP request varies between 1.8 and 9.1 (Table 5.3). In &itmadl centralized setting, these database
queries are answered by a database server, which is in thee administrative domain and connected
to the application server(s) by a high bandwidth, low lajelrtk. As a result, these multiple round-
trips have little impact on the overall latency a user exgraes. The user latency is dominated by the
high latency of reaching the web server of the applicatioguife 5.1(a) shows the different latency

components in a traditional centralized setting.

In a scalability service setting, the DBSS first tries to ansavelatabase request from its cache. If

101

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

DB queries, low latency

\/Web server App server Database

HTTP response, high latency

(a) Latency in a traditional centralized architecture.

_ DB queries, Misses in
—— = — low latency M
CDN DBSS Database

(b) Latency in a distributed architecture.

Figure 5.1: Latency in a traditional versus distributech@ecture.

the request hits in the DBSS cache, the delay in obtaining tleeyqesult is minimal. However, if the

request misses in the cache, the user must endure the deettimg the response back from the home
server database. This delay is typically long because thlalsiity service nodes are geographically
distributed. Figure 5.1(b) shows the different latency ponments in a scalability service setting. Even
after methods to boost the cache hit rate are employed bglsliyl service nodes, users are likely to

experience a high latency in the scalability service sgifimultiple database requests miss the cache
on an HTTP request.

To reduce the user latency, it is desirable to either eliteidatabase requests or hide their latencies.
There are several reasons why opportunities to do so appeartient Web applications. First, these
applications are typically written for a traditional cealized setting, in which there is minimal overhead
of issuing multiple database requests. So applicationldpees frequently do not optimize for the

number of database requests the application issues. Sexpigtation developers find it convenient to

102

Section 5 Holistic Query Transformations for Dynamic Welphgations

Web Application Code

Procedural
program with
embedded SQ

,

|

|

Holistic

homste
transformations

Transformed Code

Transformed
program and SQL

|

|

Figure 5.2: The holistic transformations, when applied td/eb application, reduce the number of

database queries that the Web application issues per HTLieseat runtime.

abstract database values as objects in the program, agar#tht is also adopted by Object Relational
Mapping tools [41, 85]. If they need multiple values, thegtjissue multiple queries. Third, there are
instances where it is easier for developers to express itiain logic in the procedural language and
issue multiple, short queries because it is closer to hovd#te is actually presented to the user, as in

the example in Figure 5.5.

In this work we propose two transformations that rewrite dipplication code to either eliminate
database requests or hide their latencies. Our first tramafn, theMERGING transformation, elimi-
nates queries by clustering related queries. Our seconsfftrenation, theWONBLOCKING transforma-

tion, hides the long latency in fetching query results, bgriapping the execution of queries.

Both transformations that we propose change the databaseegjas well as the application code
surrounding them. Web applications are commonly writtea procedural language like Java or PHP
whereas they issue database queries in a declarative agtypically SQL. Applying these trans-
formations requires an understanding of the procedurguage as well as the declarative language.
These transformations affect the program as a whole. Tovereie call these transformatiohslistic
(Figure 5.2). To evaluate the effectiveness of these toamgftions, we have applied it to three bench-
mark applications. While we currently applied them manuyally believe that the algorithms (described
in Section 5.1.3 and Section 5.2.1) should be straightfaivia automate in a source-to-source com-

piler [39, 81]. We next discuss the transformations indnaillly in the next two sections.

103

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

$template:=SELECT from _user _id
FROM comments
WHERE tauser _id = ?;
$query:= setparams ($template, $to _id);
$result:= execute($query);
foreach ($row in $result) {
$from _id:= getuserid ($row);
$template:=SELECT user _name

$template:=SELECT from _user _id, user _name
FROM comments, users
WHERE fromuser _id = user _id
AND to_user _id = ?;
$query:= setparams ($template, $to _id);

FROM users -
WHERE usetid = 2 $result:= execute($query)
$query:= setparams ($template, $from _id);
$result2:= execute($Squery);
}
(a) Original code (b) After th&1ERGING transformation

Figure 5.3:A code fragment from theucTION application, showing the original code on the left, and the code
after applying thenERGING transformation on the right. The code, an example of the Loop-to-join patieds
the names of users who have posted comments about a particular usescleh two base relationssers

with attributesuser _id anduser _name, andcomments with attributesfrom _user _id andto _user _id .

5.1 The MERGING Transformation: Clustering Related Queries

We explain thevERGING transformation using an illustrative example. Consideléftehand side code
fragment of Figure 5.3 which is taken from thecTioN benchmark. The program issues several short
inter-related queries and the procedural code combinasrdsellts. In a DBSS setting, for each query
that results in a cache miss at the DBSS node, the user musedhduong delay of accessing the home
server database. Assuming a constant hit rate at the DBS$,daehatency observed by the end-user
is proportional to the number of queries issued in an HTTEradtion. ThevERGING transformation
transforms the left-hand side to the equivalent right-hside code, merging all the short inter-related
gueries into one join query. The program then needs to issi®ne query instead of the previdds- 1

queries, assuming the loop is repedtetimes.

104

Section 5.1 Th&ERGING Transformation: Clustering Related Queries

5.1.1 Impact on the Total Work in the System

While it is certainly possible for th&lERGING transformation to either decrease or increase the total
amount of work done in the system, we do not expect it to atfextotal amount of work in the system.
We use the termwvork to mean the use of any resources like disk I/O or CPU in the systa most
cases, like the example in Figure 5.3, we simply expect itimnge the division of work between the
application and the database server(s). The example, wiiclves a simple one-to-one join operation,
is likely to require the same amount of work even after MERGING transformation. For a complete
understanding of the consequences of this optimizatiomameever discuss instances in which applying

this transformation might decrease or increase the totalatof work in the system.

Applying theMERGING transformation can decrease the total amount of work if tialzhse is able to
execute the queries more efficiently after applying thedfiemnation. This happens when the database
can execute a larger task more efficiently than executingraégmall tasks: e.g., if the application
code in Figure 5.3 involved a many-to-many join instead obae-to-one join. The left hand side code
will still implement a nested loop join in the applicationttvia pre-determined outer table whereas on
the right hand side, the database optimizer will be able ta dwich better task at optimizing the join
based on the cardinality and selectivity estimations otaies involved and the available indices. See
[29] for an overview of query optimization in relational daases. This reduction in work would be
reflected in improved scalability in both the centralizedaaedl as the DBSS setting. Since deployed
application code is unlikely to have such inefficiencies,deenot expect such opportunities to exist in
a deployed application code. As expected, we did not find @appdunities for significantly reducing
work in the three benchmark applications we used. As a rasealtlid not see any measurable scalability
improvement due to theERGING transformation in any of the benchmark applications in #&@lized

setting.

Applying theMERGING transformation can increase the total amount of work in yis¢esn when one
or more of the queries being merged is issued conditionklty.example, consider a slightly modified
version of Figure 5.3. Imagine that the loop is executed drthye returned result contained at least ten

rows. Then applying the transformation can increase tted &mhount of work if most of the returned

105

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

$template1:=SELECT MAX(bid) FROM bids
WHERE itemid = ?;
$queryl:= setparams ($templatel, $item _id);

$template:=SELECT MAX(bid), COUNT(¥)

) . FROM bids
$resultl:= execute($queryl); WHERE itemid = 2
$template2:=SELECT COUNT(*) FROM bids Squery:= setparams (Stemplate, $item _id);

WHERE itemid = ?,
$query2:= setparams ($template2, $item _id);
$result2;= execute($query?);

$result.= execute($query);

(a) Original code (b) After th&ERGING transformation

Figure 5.4:An example of the merge-projection-predicates pattern, showing the drigide on the left, and the
code after applying th®ERGING transformation on the right. The code fragment is a simplified version of the
code from theaucTION application, and finds the current maximum bid and the total number of bidsfibem.

We focus on théids relation with thebid and thetem _id attributes.

results had fewer than ten rows. To decide whether to appytiansformation in such “speculative”
situations or not, we use estimates of the relative costgadfiating the query result and the frequencies
with which the different queries are issued. In practice,witt not apply this transformation when
doing so increases the total amount of work. Only once in eachmark applications, we had to decide
whether to apply this transformation speculatively or nateccurred in theBBOARD benchmark and

we decided to speculatively apply the transformation.

In the example in Figure 5.3, theERGING transformation converted a loop in the application code to
a database join. We call this pattern the “loop-to-jointeat. In the next section we list all the patterns

that we found in the three benchmark applications.

5.1.2 Code Patterns Where themnERGING Transformation Applies

Based on our study of the three benchmark applications, wedfthree code patterns where hERG-
ING transformation applies. In Table 5.2 of Section 5.3 we |lmvHrequently each of these patterns
exist in the benchmark applications.

Loop-to-join: In this pattern the application first issues a query to getipialvalues and then for each

106

Section 5.1 Th&ERGING Transformation: Clustering Related Queries

$template:=SELECT id, body FROM comments
WHERE parent = 0 AND story = ?;

$query:= setparams ($template, $sid);

$result= execute($query);

push _comments (Stack, $result);

while (($comment:=pop (Stack)) '= NULL) {
print ($comment);
$cid:=get _id ($comment);
$template:=SELECT id, body FROM comments

WHERE parent = ? AND story = ?;

$query:= setparams ($template, $cid, $sid);
$result ;= execute($query);
push _comments (Stack, $result);

$template:=SELECT id, body, parent

FROM comments

WHERE story = ?;
$query:= setparams ($template, $cid, $sid);
$result:= execute($query);

(a) Original code (b) After th&1ERGING transformation

Figure 5.5:An example of the merge-selection-predicates pattern, showing the omgidalon the left, and the
code after applying th®ERGING transformation on the right (We just show the database queries on the right)
The simplified code fragment is from tlEBOARD application, and shows all the comments on a story in a tree

format. We focus on theomments relation with theid , body, parent , andstory attributes.

value (using a loop structure), issues another databasg ques code pattern can be transformed
to a single database join query, as in the example in Fig@re(ut of the three patterns we found,
this pattern occurs the most frequently. In fact, it occuarall three benchmark applications that

we study.

Merge-projection-predicates: In this pattern the application issues multiple queriesiiccession that
are identical except in the attributes they project. Thdecpattern can be transformed to a single
database query where the projection clause is a union ofrifjegbion clauses of the original
queries. For instance, in theucTION benchmark example in Figure 5.4, a query to find the
maximum bid on an item is followed by another query to find thenber of bids for the same

item.

For any merge-projection-predicates pattern ME&GING optimization reduces the total work in

the system. For the example in Figure 5.4, afterMERGINGransformation, the database must

107

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

lookup just one row instead of looking up the row twice, sgvim both the disk I/O and CPU
costs. Of course, these costs will be reduced only if thebdaeis “row” oriented, which is true
of most general purpose databases today. While this pattests & theAuCTION andBBOARD
benchmarks, we do not expect this pattern to occur frequénttla deployed Web application.
This pattern might exist only when it is difficult to optimizavay the pattern: e.g., (1) there is
a significant time gap among when the different componentiggideing issued, and (2) some

component queries are issued speculatively.

Merge-selection-predicates:In this pattern the application issues multiple queriesuocgssion that
are identical except in a selection clause. This code pattan be transformed to a single database
query where the differing selection clause is dropped aadtinibute used in the dropped selection
clause is added to the projection attributes. For examplinaBBOARD benchmark, when a user
views a story, all the comments for the story are to be diguag a tree format (The comments
on a story can be viewed as a tree with the story being the east) comment being a node of
the tree, and comments which are replies to a particular camyrdetermining the children-parent
relationships in the tree). In the original code, to achigwe task, a tree traversal is done, and at
each tree node, a new query is issued to fetch the childrememnts. The issued query does a
selection on th@arent and thestory attribute. Applying this transformation, all the comments
on the story can be obtained using a single query: the issuey gimply does a selection on the
story attribute, as illustrated in Figure 5.5. We found this pattenly in theBBOARD application
where it existed because the original code more closelycteflhow the data is actually presented

to the user.

5.1.3 Algorithm for Automating the MERGING Transformation

In this section we present an algorithm for automatingmMieR GING transformation, which should be
straightforward to implement in a source-to-source coenp89, 81]. As with any compiler transforma-
tion, the algorithm can bail out if it does not completely argtand the program. Additionally, for ease

of exposition, we assume that this transformation modifipsogram of the application code only up

108

Section 5.1 Th&ERGING Transformation: Clustering Related Queries

to the first update statement. The algorithm works by idgintlf the three code patterns: loop-to-join,
merge-projection-predicates, and merge-selectionigatets, and then making appropriate changes in

each case.

Loop-to-join pattern: For the loop-to-join pattern, we build on the work done inimiting nested
queries over 25 years ago [64]. We first identify loops in thegpam. We then check if: (1)
the loop iterates using the result of a previous query, (@)Jdbp issues a query in each iteration,
and (3) the previous query is executed whenever the loopuee®c Moreover, to avoid issuing

speculative queries, we check if the loop is executed wheartbe previous query is executed.

Once the pattern is identified, we can use work done by [64¢pdace the small queries by a
merged query. Additionally, variables that used the restiiny of the small queries must be

reinitialized to use the result of the merged query.

Merge-projection-predicates pattern: For the merge-projection-predicates, we check if (1) tlhesd
guery is executed whenever the first query is executed (wsintgyol-flow-analysis [77]), and (2)
the queries are identical except the projection predicdtéisese pre-conditions are satisfied, the
two queries can be merged as in Figure 5.4. Finally, vargathiat used the result of any of the

gueries being merged must be reinitialized to use the reétlie merged query.

Merge-selection-predicates pattern:For the merge-selection-predicates, we check if: (1) therou
query is executed whenever the loop is executed and vica yessg control-flow-analysis), and
(2) the queries are identical, except one selection cldtideese pre-conditions are met, the query
is transformed as per the example in Figure 5.5. Finallyiabées that used the result of any of

the queries being merged must be reinitialized to use thatreisthe merged query.

5.1.4 Other Tradeoffs

There are other advantages and disadvantages of apply@ngetRGING transformation, beyond just

reducing latencies.

109

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

SELECT from_user _id, user _name
SELECT user _name FROM comments, users

FROM users WHERE fromuser _id = user _id AND to _user _id = ?
WHERE usetid = 5

Invalidated if the query result contains the ugdb

(a) Invalidations in the original code (b) Invalidations after applyingMtE® GING transformation

Figure 5.6:Query results that are invalidated on an update with templat®’BATE users SET user _name =
? WHERE userid = ? anduser _id as 5, before and after applying tMeRGING transformation. Since the

MERGING transformation increases caching granularity, it leads to more invalidatinds,onsequently, less reuse

of work.

Interactions with query result caching For our DBSS setting, in which the query results are cached,
the MERGING transformation, which merges short related queries intong lquery, increases
the caching granularity. Increasing the caching granylamplies that on an invalidation, a
larger cache entry, which is more expensive to compute,vialidated. For example, in Fig-
ure 5.6, rather than invalidating the result of a simple lgokuery, in the transformed code, the
updateUPDATE users SET user _-name = ? WHERE userid = 5 invalidates the result of the

join query, a query result which is more expensive to compute

Because of the possibility of increased invalidation ovathehe latency reduction due to this
transformation must be weighed carefully against the emd invalidation, before applying this
transformation in a setting that caches query results. &lobenchmark applications, the increase

in invalidations was minimal, and so we always decided tdyattys transformation.

Impact on privacy In Chapter 3 and Chapter 4, we discussed how applications sanesiie privacy of
their data in a DBSS setting. TMERGING transformation, by making query results larger, lowers
the number of distinct query results in an application’skimad. On the one hand, if only query
results, parameters, or templates can be clues (as in Ci#jptdre MERGING transformation
lowers the number of distinct privacy levels at which the lmapion can operate. On the other
hand, if arbitrary clues are possible (as in Chapter 4)MBRGING transformation has no effect

on the number of distinct privacy levels at which the appia@acan operate.

110

Section 5.2 Th&lONBLOCKING Transformation: Prefetching Query Results

5.2 The NONBLOCKING Transformation: Prefetching Query Results

After issuing a database query, a Web application waitshfequery result. In many cases, this wait is
unnecessary since the the next database query does notldap#me answer to the current query. In
such cases, the user latency can be greatly reduced by mpedathe query executions. In this section
we present thelONBLOCKING transformation, which can overlap executions of multiplemges that do

not depend on each other by “prefetching” query results.

To illustrate how this transformation can be applied to aecfrdgment, consider Figure 5.7, which
shows two functionally-equivalent code fragments fromgleKSTOREapplication. The program on
the right shows the code after applying tReNBLOCKING transformation. Foguery2, we execute
both the methodsexecutenon blockingandexecute While the methoaxecutenon blockingdoes not
block and only serves to populate the cache with the quenltrélse executanethod fetches the query
result to be used in the program. If the latency of the firsaldase request tg and the latency of the

second request g, this transformation reduces the overall latency ftgmt, to max{t,, tp}.

Ideally, whenever the program that dynamically generadtesHTTP response starts running, we
would like to issue prefetch requests for all queries thatpghogram will issue during its execution.
However, issuing a prefetch request for each query, at #ré at the program’s execution, might not
always be possible because: (1) one of the parameters otihg i the result of a previous query, (2)
the query is conditionally issued and the condition usesdhelt of a previous query, and (3) there is an

update statement before the query that may affect the qasutr

Formally, each program of a Web application can be repredes a directed acyclic graph, where
the nodes are database accesses, and there is an edge lietweedes if one node has to be executed
after the other node for correctness. We call this graptdttabase dependence grapha program.
Given this directed acyclic graph, a database access casied as soon as all database accesses that
are its ancestors in the directed acyclic graph have coegblé¥ith this formulation, the latency that a

user sees can be brought down significantly.

Note that this transformation normally does not change theust of work that must be done, it just

111

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

$templatel:=SELECT item _name

FROM items i1, items i2

WHERE il.id = i2.related

AND i2.id = ?;

$queryl:= setparams ($templatel, $id);
$resultl:= execute($queryl);
$template2:=SELECT user _name FROM users

WHERE usetid = ?;
$query2:= setparams ($templatel, $user _id);
$result2 ;= execute($query2);

(a) Original code

$template2:=SELECT user _name FROM users
WHERE userid = ?;
$query2:= setparams ($template2, $user _id);
executenon.blocking ($query2);
$templatel:=SELECT item _name
FROM items i1, items i2
WHERE il.id = i2.related
AND i2.id = ?;
$queryl:= setparams ($templatel, $id);
$resultl:= execute($queryl);
$result2.= execute($query?2);

(b) After thelONBLOCKING transformation

Figure 5.7: A simplified code fragment from theooksToREapplication, which finds the name of an item

related to the item the user is viewing and the name of the user, given her idoci&e on two base relations:

users with attributesuser _id anduser _name, anditems with attributestem _id , item _name, andrelated . The

left hand side shows the original code, while the right hand side shovestieeafter applying thRONBLOCKING

transformation.

improves the scheduling of the work. However, if a prefeissued for a query that is conditionally

executed, the result of the prefetch will not always be uS¢kile issuing such “speculative” prefetches

increases the total work in the system, it allows a scatglsiervice to trade off reduced latency for

extra work done in the system. For our evaluation, we isspedudative prefetches whenever possible,

since the queries wemot issued only in case of error conditions — an infrequent aetue for any

application.

Application of this transformation can be automated — wdimeitan algorithm for automatically

applying this transformation in Section 5.2.1. FinallySaction 5.2.2 we discuss other issues relating

to this transformation.

Section 5.2 Th&lONBLOCKING Transformation: Prefetching Query Results

5.2.1 Algorithm for Automating the NONBLOCKING Transformation

In this section we present an algorithm for automatingdb&BLOCKING transformation, which should
be straight-forward to implement in a source-to-sourcemiten[39, 81]. As with any compiler trans-
formation, the algorithm can bail out if it does not complgtenderstand the program. For ease of
exposition, we make two assumptions. First, similar to $mueption in Section 5.1.3, we assume that
the algorithm modifies a program of the application code aplyo the first update statement. The work
on query-update-independence [68] can be used to remavetiriction. Second, we assume that there
are no edges in the database dependence graph of the pragrdefined before. The dependence graph
for a program can be computed using data-flow techniques pM#@r allowing for the assumptions, the

algorithm is:

1. Let Q be the list of all the queries in the program that appear eedoly database modification.
The goal is to place aon-blocking-executiinction call to every queryg appearing in the lis@Q,

at the beginning of the program.

2. For every query, put a copy of all variable initializations that quayyses directly or indirectly
(through some other variable) at the beginning of the progrdext, put anon-blocking-execute
function call after all these variable initializations.n8e the database dependence graph has no

edges, the order in which the queries are selected fromah@ liloes not matter.

5.2.2 Implementation Issues

We now describe three issues regarding the implementatithhe prefetch mechanism that we evaluate

later in Section 5.3.5.

Prefetching support in the runtime layer For this transformation to work, the runtime layer must sup-
port the execution of non-blocking queries. In our impletaéon, as an admission control mech-
anism to avoid overloading the database, the DBSS node nmatéixed number of connections

to the home server database. The runtime layer must decidieeonumber of connections to

113

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

allocate to fulfilling prefetch requests. For our implenaimn, we dynamically allocated the
connections used for fulfilling prefetch requests, depegmdin how many were available after ful-
filling the regular database requests. Of course, if theablbf@at the prefetch was requesting was

already present in the cache, we just filtered the prefetch.

Timing of prefetches For hiding latencies due to a miss, it is critical that thefgighes be issued at
the right time. On the one hand, if the prefetch is issued liateill not be able to hide the
latency due to the miss. On the other hand, if it is issued imedldvance, its result might be
invalidated by a later update and it becomes useless. Froraxperiments, we found out that
none of our prefetches were “early” even if we issued thenhatearliest possible time — when
the program generating the HTTP response started its esac®o we just used this policy in our

implementation.

5.3 Evaluation

We evaluate the two transformatiom&ERGING and NONBLOCKING—by applying them to the three
benchmark applications (i.eAUCTION, BBOARD, andBOOKSTORB described earlier in Section 2.6 and
then measuring the resulting scalability improvementsteNloat we measure scalability as the number
of simultaneous users that can be supported with latencgireng under a threshold. We performed

our experiments in the SIMPLE C scenario using the methodology described in Section 2.7.

We start in Section 5.3.1 and Section 5.3.2 by evaluatingffeets of these transformations on scal-
ability and latency, both in the traditional centralizedtiog as well as the DBSS setting. Next, we
list the frequencies with which the two transformationslggp our benchmark applications in Sec-
tion'5.3.3. We finally present the detailed “coverage” ressof the two transformations in Section 5.3.4
and Section 5.35.

114

Section 5.3 Evaluation

«— Improved scalability —/,/" 7
S 7
«——— Scalability —— - ’

. a
Threshold g
s o
Latency curve__-- o
I 4”’ /
’¢’ “/
—” ,‘/
Latency .—-—""" Reduced latency curve

—_

Simultaneous users supported —

Figure 5.8: The figure shows how a reduction in latency imgsacalability.

§ Il NoDBSS
5 [0 No Transformations
% B MERGING
= B NONBLOCKING
3’, 800 [0 Both Transformations
@
]
>2
Ec 600
50
©3
"G 400+
o
©
& 200F
S
>
<

AUCTION BBOARD BOOKSTORE

Figure 5.9: Scalability impact of the transformations. Eomparison, we include the scalability num-

bers without a DBSS, the leftmost bar for each application.

5.3.1 Scalability Impact of the Transformations

So far, we have focused on how the MERGING and NONBLOCKIN@gfarmations reduce the la-
tency of an HTTP request in the DBSS setting. However, we usalsitity as the single unifying metric

in this thesis. We measure scalability as the number of $amabus users that can be supported with
latency remaining under a threshold. Figure 5.8 shows hogdadation in latency improves the scala-
bility metric. Because of the reduced latency, the scalgbilithe figure increases from “scalability” to

“improved scalability.”

115

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

Figure 5.9 plots the scalability of an application as a fiorcbf the code transformations used, for
all three benchmark applications. The y-axis plots schigbmeasured as specified in Section|2.7.
On the x-axis, we consider five cases: one correspondingttosmog the DBSS, one corresponding to
using the DBSS but no transformations, and the other threesmonding to using either or both the

transformations.

For clarity, we did not plot the bar for using the transforimas in the centralized setting. The results
were identical to not using the transformation in the cdizied setting, showing that these transforma-
tions do not have any effect on the performance in a centi@lgetting. In all applications, using a
DBSS significantly increased scalability. Turning on thensfarmations further improved scalability.
The MERGING transformation has the most effect on 8BOARD application and the least effect on the
BOOKSTOREapplication. On the other hand, tN®NBLOCKING transformation has the most effect on

theBooksToOREbenchmark and the least effect on #®0ARD benchmark.

The two transformationsS¥ERGING andNONBLOCKING, are complementary. While theERGING
transformation can be applied only when the queriesedaeded theNONBLOCKING transformation can
be applied only when the queries aret related Consequently, we expect that both transformations
must be applied for the best scalability. Figure/ 5.9 shows e scalability indeed increases the most

when both transformations are applied simultaneously.

5.3.2 Latency Impact of the Transformations

Even though a single unifying metric like ‘scalability’ iglpful in comparisons, it is not always able to
correctly portray the magnitude of a change. The scalglitiprovements due to these transformations,
at around 10%, seem minor. To understand the results beteplot the average latencies for two
popular interactions in thBBOARD application. (We chosBBOARD because the latency effects of the

transformations oBBOARD is the highest.)

Figure 5.10 shows the effect of the transformations on tleeame latency, for two dynamic interac-
tions of theBBOARD application, executing in a DBSS setting. Applying both sfanmations reduces

latency by over 50%. Of the two transformations, #EeRGING transformation causes a greater reduc-

116

Section 5.3 Evaluation

Il No Transformations
2,800 O MERGING
[l Both Transformations

T

2,100

1,400

Average latency in ms

700

ViewStory BrowseStoriesByCategory

Figure 5.10: Impact of th&ERGING and NONBLOCKING transformations on latency. We show the
average latency for two dynamic interactions in #BOARD benchmark. The graph shows that the

MERGING transformation has a significant impact on the averagedgten

[0 Database
[Latency DBSS-Database
1,000 [~ B DBSS
> [J Latency CDN-DBSS
g Il Client latency
) 800 -
>
Q
<]
2 600 [~
=
0]
1)
g 400
-
<
200 -
0) .
No Transformations Both Transformations

Figure 5.11: Impact of the two transformations on the avedatency of a dynamic interaction in the

BBOARD application, executing in a DBSS setting.

tion in latency. The larger impact of theERGING transformation agrees with the scalability results in
Figure 5.9. Figure 5.10 also shows that both transformatiwa complementary: applying both reduces

the latency more than applying either of them.

Figure 5.11 evaluates the impact of the two transformationthe average latency of a dynamic inter-
action in thesBOARD application, executing in a DBSS setting. The latency césmsisfive components:
the client latency including the execution time at the CDN tietwork latency from the CDN to the
DBSS, the time spent at the DBSS, the latency from the DBSS tcetfaddse, and the time spent at the

117

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

Percentage of runtime HTTP interactions

Application | Static| MERGING transformation. NONBLOCKING transformation| Either
AUCTION 15.9% 15.2% 3.8% | 15.7%
BBOARD 7.4% 69.8% 28.5% | 70.1%
BOOKSTORE| 0.0% 0.8% 58.6% | 59.4%

Table 5.1: Runtime HTTP interactions in which MERGING andNONBLOCKING transformation apply.
The “either” column represents interactions in which atsteane of the two transformations apply.
The “static” column represents interactions in which aisteff ML file is returned. Clearly, neither

transformation can apply to such interactions.

database. almost all the latency decrease is due to a reductihe network latency from the CDN to
the DBSS.

A latency decrease often does not result in a commensuraldiy increase. For example, while
these two transformations reduce the average latency byf@8%te BBOARD application (Figure 5.11),
they increase the scalability by only about 10% (Figure.5™®) understand this difference, we need
to refer back to Figure 5.8. In the figure, the latency de@easl the scalability increase are related
by the slope of the latency-users curve. This slope govemmsrhuch the scalability will increase due
to a decrease in latency. Steeper the curve, more is the, glopgdess is the impact on scalability due
to any reduction in latency. There is another factor thatrmutes to why a latency decrease does not
result in a commensurate scalability increase. Theseftianations sometimes tend to impact low-
latency interactions more than high-latency interactidfa the ViewStory interaction of th@BOARD
application, while the latency reduction for low-latenoyaractions was 78%, the latency reduction for

the high-latency interactions was only 58%.

118

Section 5.3 Evaluation

Total query Percentage of query templates where the patterns apply
Application templates Loop-to-join| Merge-projection-predicates Merge-selection-predicates
AUCTION 28 25.0% 3.6% 0.0%
BBOARD 38 26.3% 13.2% 5.3%
BOOKSTORE 28 7.1% 0.0% 0.0%

Table 5.2: Frequency of occurrence of different patternghith theMERGINGransformation applies.

5.3.3 Applicability of the Transformations

Table 5.1 lists the percentage of runtime HTTP interactionghich these transformations apply. The
“either” column represents interactions in which at leas¢ of the two transformations apply. The
“static” column represents interactions in which a statidVL page is returned. Clearly, neither trans-
formation can apply to such interactions. Even after inicigdhe static interactions (interactions which
return a HTML file), one of these transformations applied terdl5%, 70%, and 59% of all runtime

HTTP interactions for th&aucCTION, BBOARD, and theBOOKSTORE benchmarks, respectively. For
the BBOARD application, thevERGING transformation applies to over 69% of all HTTP interactiens

this high percentage is one of the reasons whyMBeGING transformation is particularly effective in

increasing scalability (Figure 5.9) and reducing laterféigiire 5.10) of theBBOARD application. A

similar argument can be made for tkeNBLOCKING transformation and theoOKSTOREapplication.

5.3.4 Coverage of thevERGING Transformation

Table 5.2 lists the total number of query templates per beack application and the number of times
we could find the different “patterns” described in Sectioh.B. We found the maximum number of
patterns in theBBOARD benchmark where th®ERGING transformation could be applied to almost

half of the query templates. In contrast, thleoksTOREbenchmark had the fewest opportunities for

1All interactions that had a latency below the threshold weategorized as low-latency interactions. The latenciegwe

measured after the two transformations were applied.

119

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

Average number of database queries

per dynamic HTTP interaction

Application | Cache hitratio| original code| after theMERGING transformation| % decrease
AUCTION 57.4% 2.6 2.1 19%
BBOARD 75.5% 9.1 19 79%
BOOKSTORE 66.4% 1.78 1.77 1%

Table 5.3: Average number of database queries per dynami®Hfiteraction for the three benchmarks.

For our benchmark applications, tleeRGING transformation does not affect the cache hit ratio.

applying this transformation. As for the patterns, the ni@zjuently occurring pattern was loop-to-join,

while the most uncommon pattern was merge-selection-gaitss.

Table 5.3 lists the average number of database queries pandy HTTP interaction for all three
benchmark applications both before and after applyingtbrRGING transformation, and computes the
percentage decrease due to the transformation. The maxaearease, 79%, occurs for tBBOARD
benchmark and the minimum decrease, 1%, occurs f@dttxsTOREbenchmark. These results are in
line with the results in Table 5.2 where thieRGING transformation applies most to the query templates
of BBOARD benchmark, and least to the query templates ofabeksSTOREbenchmark. The table
also provides the cache hit rates for the benchmark apiglicsat From the cache hit rates, the average
number of round trips from the DBSS node to the back-end databade that th®1IERGING transfor-
mation saves can be easily computed — 0.21, 1.76, and 0.008+tdps are saved for theUCTION,
BBOARD, andBOOKSTOREbenchmarks. These huge savings foreB®ARD application is reflected in
Figure 5.11 — the ‘latency DBSS-Database’ decreases by a#h0ms.

5.3.5 Coverage of theWONBLOCKING Transformation

Figure/ 5.12 plots how effective ti@ONBLOCKINGransformation is in hiding the cache misses. The

y-axis plots the misses and prefetches for each of the besa®isniThe original misses have been nor-

120

Section 5.3 Evaluation

[Wasted prefetches
[Filtered prefetches
| ... Useful prefetches
150 [] Partially useful prefetches
B Still miss

Original misses
normalized to 100%

Still |Partial Useful FiIteredWasteﬂl
Application |mis§ Pfs Pfs Pfs Pfs

100[-

. . Misses and prefetches
(original misses normalized to 100)

AUCTION 87.9 11.0 11 7.4 0.1

BBOARD 947 1.7 3.6 8.2 0.4

AUCTION BBOARD BOOKSTORE

BOOKSTORH 88.8 6.2 5.0 68.4 2.2

Figure 5.12: Impact of th@ONBLOCKING transformation on the total number of misses, for the three

benchmark applications. We use ‘pfs’ as a short-hand fdefiriees.

malized to 100). After prefetches are issued, these misges still remain a missstill misg, meaning
no prefetch was issued for it, or the prefetches were coelglétiseful prefetchgsor partially use-
ful (partially useful prefetchgsn hiding the latency of a miss. Some prefetches were filtdne the
caching layer because the object was present in the c&dterdd prefetches The final category was
of those prefetches that were issued speculatively, aner nsed Wasted prefetchg@sThis category of
prefetches wastes bandwidth and CPU cycles. As the figuresstibe fraction of such prefetches is

fairly small, which justifies our decision for issuing spktive prefetches in Section 5.2.

From Table 5.1 we expect many prefetches to be issued fadlmx sTOREapplication. Figure 5.12
shows that while this is true, most of the prefetches turntole useless since they are filtered by the
caching layer. Still, this transformation is able to hideetey for around 10% of the misses. For the
AUCTION application, even though fewer prefetches are issuedstilisble to hide latency for around
10% of the misses. For tlBBOARD application, fewest prefetches are issued, and the tranafmn is
able to hide latency for only about 4% of the misses. The bddlaimprovement due to this transfor-
mation depends to some degree on the percentage of misstsetpeefetches are able to hide: whereas
we see a small impact of this transformation on the scatghofi the AUCTION and theBOOKSTORE

applications, the impact is almost zero on the scalabilithe BBOARD application (Figure 5.9).

121

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

5.4 Related Work

Related research can be classified into two main areas: (@) wadrk related to theWONBLOCKING

transformation, and (2) prior work related to theRGING transformation. We discuss each in turn.

5.4.1 Work Related to theNONBLOCKING Transformation

TheNONBLOCKING transformation aims to hide the latency of a miss in the DBS&edy prefetching
the query result. A lot of prior work has been done on prefetzhA commonly used technique is to
issue prefetches by detecting patterns in misses. Thisitpod has been used widely for hiding latency
of page faults in virtual memory systems [35], reducing as¢emes of static web pages [40, 80, 86], and
improving the overall performance of file systems [65]. Ofis®, for this technique to work, a pattern
must be established. No prefetches can be issued while ttegnsaare being established. Second, this

technique no longer remains useful when the access pattanges.

Patterson et al. [88] propose an alternative approach tectiet) patterns in misses. Applications
must be manually modified to generate hints about their aqoeatterns. Follow-up work by Chang et
al. [28] automates this process of generating the access &milarly, Mowry et al. [76] and Brown
et al. [21], show how compiler analysis integrated with denS support and a runtime layer, to adjust
to dynamic conditions, can be used to effectively managsipaiymemory for out-of-core applications.
The compiler analysis was used to insert prefetch and eeleatuctions in the application code. While
the goal of using application-specific knowledge to hidenates is the same in these efforts as in our
system, we focus on a different domain than virtual memoigremces and file reads and writes. Their

work did not require analysis of SQL code embedded in a progra

5.4.2 Work Related to theMERGING Transformation

The work closest to oUMERGING transformation is Cassyopia [91], a vision paper that prepdke

use of compiler techniques for clustering system calls abttie overhead of crossing address spaces

122

Section 5.4 Related Work

is reduced. Our technique is fundamentally similar to Cassyowe want to reduce the latency due
to multiple database queries by clustering these datahsseq. However, there are significant differ-
ences. First, the domains are different — our work seekgi®thie overhead of network latency whereas
their work seeks to hide the overhead of context switchirtggéen processes. Second, we identify im-
portant patterns where thERGING transformation can be applied. Third we argue why such pette

will continue to exist in future Web applications.

Most database vendors support stored procedures [100hvetiimv applications to invoke a block
of procedural and declarative code at the database. Ouoagipiof merging queries has several key
advantages over using stored procedures. First, it isfeigntly harder for the database to optimize the
execution of queries that use stored procedures than tmiagetthe execution of SQL queries [29, 30].
Second, it is significantly harder to maintain the consisyeof a cache containing results of stored
procedures. (If the results of stored procedures are ndtechao work is offloaded from the home

server database.)

Work on optimizing the execution of nested queries [47] hastig focused on decorrelation tech-
niques [45, 64], which try to transform a given nested quatyg a form that does not use the nested
subquery construct. Guravannavar et al. [53] propose imgarmested iteration methods as an alter-
native to decorrelation. Decorrelation techniques entii#equery optimizer to use better plans such
as hash join for evaluating the nested query. TiERGING transformation for the loop-to-join pattern
essentially performs decorrelation. Compared to nested/gqumimization, the differences are: (1) the
transformation is carried out by the compiler instead ofdabase optimizer, and (2) the primary mo-
tivation for the transformation is to reduce the number afn-trips an application needs to make to

access its data instead of improving the performance.

Some database optimizers implement multi-query optinand94, 98], where they identify common
sub-expressions in a sequence of queries to speed up aliénes, However, to be applicable, these
optimizers need to see a batch of queries at once — a modetaffffrom how the Web applications
normally work, where they have at most one outstanding qiMoyeover, in a multi-query optimization

setting, the database does most of the work, while foMBRGING transformation, the compiler does

123

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

most of the work — it needs to understand database querieslhasithe procedural code surrounding

them, identify patterns in the application code, and thandform the patterns accordingly.

Object relational mapping tools like Java’s Hibernate [dd¢l Ruby-on-Rails’s Active Records [85]
resultin Web application code that issue several simplet-irelated queries, all of which can be merged
into a single query. Both Hibernate and Active Records provideks to replace these inter-related
gueries by a single query — Hibernate users can write querid€L, the Hibernate Query Language,
where as Active Record users can write explicit SQL queriag. v@rk seeks to automate this process

of merging inter-related queries.

The MERGING transformation can be viewed as a repatrtitioning of workveeh the application and
database server. Yang et al. [108] present techniques eonatitally partition a Web application into
client and server parts, in order to optimize the applicesioesponse time. To be applicable, the Web
application must be written in a custom language Hilda [1@nilarly, the Abacus system [10] auto-
mates the placement of objects written in a custom languagsontrast, thenERGING transformation
does not require applications to be rewritten in a custorguage; it can be applied directly to legacy

applications.

5.5 Summary

A single HTTP request in a dynamic Web application typicalyues multiple database queries. In a
DBSS setting, database queries that miss in the cache of th& D8&, have to endure the high latency
of accessing the home server database. In this chapter wegao two holistic transformations#eRG-

ING andNONBLOCKING — which can be implemented in a source-to-source compirg§2]. These
transformations reduce the latency by either clusteritajed queries or overlapping query execution.
By manually inspecting our application code, we found opydties to apply these transformations in
over 15%, 49%, and 74% of all dynamic interactions forAb€TION, BBOARD, and theBOOKSTORE
respectively. These transformations had almost no impadhe scalability in a centralized setting.

However, in a DBSS setting, these transformations increzadalslity by over 10%.

124

Section 5.5 Summary

These transformations are useful in any setting where teadg of accessing the query results from
the machine executing the application is non-negligibler. éxample, in a shared web-service hosting
scenario where the application and the database serveallypiun on separate clusters of machines,

latencies are often between 16ms and 20ms [99], and ther#fese transformations will be useful.

We believe that these two transformations will continue@aubeful. First, as users of Web applica-
tions become more demanding, these applications will agingly be deployed in environments where
there is a significant latency in accessing their data froar tode. Second, as Web applications be-
come functionally more complex, they will issue more dasgbeequests per HTTP requests. Finally,
just like queries, we believe that even updates could beesoad to reduce the number of round-trips an

application has to make to access its data.

125

Chapter 5 Holistic Query Transformations for Dynamic Web Kgations

126

Chapter 6

Conclusions

The world is gradually moving to a service oriented archiies as is evident by the increasing popular-
ity of Web services offered byoogle.com and traditional software services offereddalesforce.com

The growing popularity of CDNs is another facet of the samedreCDNs allow Web applications to
outsource the delivery of content at an economical payusage model, freeing application administra-
tors from the difficult task of creating and maintaining adtructure for delivering content. However,
CDN technology is not sufficient for dynamic Web applicatiovizere the database is the bottleneck. In
this thesis we proposed a DBSS which can offload the work froapatication’s database server(s). The
DBSS forms the key component of a scalability service, whantgrovide the same benefit as CDNs to
dynamic Web applications. We addressed two key issues igrdeg a DBSS: (a) the privacy concerns
in caching applications’ data, and (b) the performance eorxdue to the high latency applications face

in accessing their data in a DBSS setting.

In assuaging applications’ privacy concerns, we discal/rat there is an important privacy-scalability
tradeoff in the scalability service setting. We studied thadeoff both formally and empirically. We
provided two solutions for managing this tradeoff: (i) Agatithm for identifying data that can be kept
private without any scalability penalty, (ii)) A more genleapproach called invalidation clues for fine-
grained control over this privacy-scalability tradeoffeWerified the effectiveness of both our solutions

by executing three benchmark applications on our protosgadability service system.

127

Chapter 6 Conclusions

To address the performance concerns arising due to the &tighcly applications face in accessing
their data in a DBSS setting, we proposed two transformatioaisreduce the number of times appli-
cations must access their data. We confirmed that thesddraragions apply widely and are indeed
effective in reducing the number of times applications nacstess their data. We verified the effective-
ness of our transformations by executing the three bendhamplications in a traditional centralized

setting as well as our prototype scalability service system

6.1 Contributions

This thesis made the following contributions:

e We designed, built, and evaluated first prototype of a DBSS, which comprised the centerpiece
of our scalability service architecture for dynamic apaiions. We used our prototype scalabil-
ity service to scale three benchmark applicationsAaaoTION, a BBOARD, and aBOOKSTORE
benchmark) — for each application, we increased the sditydty a factor of at least 2. To identify
the bottlenecks in the system, we also presented a breakofothva latency a user experiences in

a centralized setting as well as a DBSS setting.

e We presented a convenient shortcut to managing the sesaatgbility tradeoff that appears in
the DBSS setting. Our solution is to (statically) determirtéol data can be encrypted without
any impact on scalability. We confirmed the effectivenessusfstatic analysis method, by apply-
ing it to three benchmark applications. In all three casasstatic analysis identified significant
portions of the data that could be secured without impacicegability. Moreover, a large part
of this identified data was “moderately sensitive,” whiclplagation administrators would want
to encrypt, if they knew that doing so did not have a scalghyienalty. The security-scalability
tradeoff did not need to be considered for the data that wadiited by our static analysis, sig-
nificantly lightening the burden on the application adnthator managing the tradeoff.

e We presentednvalidations cluesa general framework that enabled applications to revékd li

data to the DBSS, yet provide sufficient information to limiinecessary invalidations of results

128

Chapter 6.2 Future Work

cached at the DBSS. Compared with previous approaches,datial clues provided increased
scalability to the DBSS for a target security/privacy lewad, well as more fine-grained control
of this tradeoff. Using three realistic Web benchmark aggtions, we illustrated the issues and
solutions for generating effective clues, e.g., by idemtg categories requiring database clues,

and then evaluated the solutions on our DBSS prototype.

¢ We described two complementary compiler-driven holiggmsformations that lowered the total
delay an application code had to endure to access its datan 6T TP request. We presented
algorithms for automating these transformations in a sstwesource compiler [39, 81]. Using an
AUCTION, a BBOARD, and aBOOKSTOREbenchmark, we confirmed that these transformations:
() applied to around 25%, 75%, and 50% of the runtime int@vas for theAuCTION, BBOARD,
and thesooksToREbenchmark applications, and (ii) indeed reduced the usendst in a DBSS
setting. Our results showed that applying both transfamnatimultaneously improves scalability

the most — the scalability improved by over 10% for each a&apibn benchmark.

6.2 Future Work

DBSSs and scalability services for dynamic content apptinatare natural extensions of CDNs. In
this thesis we introduced scalability services and addresso key problems that applications using a
scalability service would encounter. Our system is notydad real world deployment yet. A large-
scale evaluation of the DBSS is needed to understand therpenfice of the scalability service in the
real world. There is another promising avenue for futurekwéis we saw in Chapter 5, multiple round-
trips over the wide-area network can result in significatilyher user latency. A compiler-analysis
based tool coupled with a runtime component that can autoatigtplace code and data together in the

scalability service infrastructure will be extremely udeh this framework.

129

Chapter 6 Conclusions

130

Appendix A

Proofs for Chapter 3

A.1 Proofs for Section 3.4.4

Lemma 4. Let the update template be an insertion, and the query temfla a SPJ query having
conjunctive selection predicates, with equality as the @perator, augmented by an optional order-by
construct. For the update/query template pair, whenevemamal statement-inspection strategy (MSIS)
evaluates to invalidate (denoted I), a minimal view-insppecstrategy (MVIS) also evaluates to |, i.e.,
U e DAQ] € ENN) = Gij = Bjj.

Proof. See Appendix A.2. O

Lemma 5. If the update template is a deletion, and the query tempatesult-unhelpful with respect to
the update template, then for the update/query templatewhenever a minimal statement-inspection
strategy (MSIS) evaluates to invalidate (denoted I), a matiview-inspection strategy (MVIS) also
invalidates to I, i.e.(U;" € D) A ((U,Q]) € #) = Cij = Byj.

Proof. If the query template is result-unhelpful with respect te tipdate template, then by definition,
no attribute used in the selection conditions of the upda@eserved by the query, i.QUiT,QD €
H = SUT)N P(QJ-T) = {}. Therefore there is no information in the query result tizet aid in reducing

invalidations. Henc€jj equalsB;;. O

131

Chapter A Proofs for Chapter 3

Lemma 6. If the update template is a modification and either the updeteplate is ignorable with

respect to the query template, or, the query template idtresinelpful with respect to the update tem-
plate, then for the update/query template pair, whenevemamal statement-inspection strategy (MSIS)
evaluates to invalidate (denoted I), a minimal view-insjpecstrategy (MVIS) also evaluates to |, i.e.,

(U € M) AU, Q) € GUH) = Cj = Byj.

Proof. Lemma 6 can be proved in two parts:

Part 1 ((UiT,QjT> € G = Cjj = Bj): If the update template is ignorable with respect to the query
template, then Lemma 1 states tiat equals 0, i.e.,(UiT,QjT) € G = Ajj = 0. Further, property 3
(Section 3.2.3) implies that &j = 0, then the equality; = Bjj = Cjj = 0 holds. Henc€jj equalsb;;.

Part 2 ((Uf,Q) € # = Cjj = Byj): If the query template is result-unhelpful with respect te th
update template, then by definition, no attribute used is#hection conditions of the update is preserved
by the query, i.e(U",Qf) € # = SUT)NP(Q]) = {}. Therefore there is no information in the query

result that can aid in reducing invalidations. HegeequalsBj;. O

A.2 Proof of Lemmal4

In this section we prove Lemma 4. To keep the proof simple,asérict the query language so that no
tuple of the result uses more than one tuple from any single balation. (This restriction, for example,
rules out self-joins.) Our proof can, however, be extenasithat this assumption is not needed. We start
by providing background on evaluation of a SPJ query in AppeA.2.1. Then, in Appendix A.2/2,
we describe additional database operations we use in oaof. pio Appendix A.2.3, we discuss under
what conditions the result of a query changes because ofartion. Finally, we formulate intermediate

results as lemmas and prove Lemma 4 in Appendix A.2.4.

132

Chapter A.2 Proof of Lemma 4

A.2.1 Evaluation of a query

Let there ben relationsRy, ..., R, over which quenQ is defined. Any quer@ that meets our assump-

tions can be evaluated in the following four steps:

1. EvaluateRcp as the Cartesian ProductRf, ..., Ry, i.e.,Rcp=R1 x ... x Rn.
2. Keep tuples of the Cartesian Product that satisfy all Selepredicates.
3. Order the tuples according to the order-by constructasent.

4. Prune the attributes of the tuple, according to the ptigle@peration. (Note that duplicates are

not eliminated because of the multi-set semantics.)

Recall that for any databa$® we useQ[D] to denote the result of evaluati@goverD. Let a tuple

t in the Cartesian Produ&cp be a cross product of tuples ..., t, belonging to relation®y, ..., Ry,
respectively, i.eicp =1t1 x ... X ty, Wheretcp € RepAti € R, V1 <i < n. If tcp satisfies the selection
predicates of quer®, then some tuplé, same ascp but perhaps with fewer attributes, is present in
Q[D]. Now, consider a databa&¥ with the same schema & and only one tuplé in each relation
R. Then,Q[D'] = {t'}. In fact, for any tuple’ in Q[D], a databas®’ with the same schema &
but only one tuple per relation can be constructed so@ff] = {t'}. We call such a databa¥ as

aSingle-Tuple-Per-Relation (STPR) databasel denote the set of such databases for a database/query
pair asDs(D, Q).

We next introduce database operations permitted in oureinaork.

A.2.2 Additional Database Operations
We define the following three additional database operation

1. Subset relation for databases (denoted For given database instand@gandD», D; is asubset
of D2 (denotedD; C Dy) if D3 has the same schemal@g and each relation iD; is a subset of

corresponding relation iD-.

133

Chapter A Proofs for Chapter 3

2. Union function for databases (denotegt For given database instandg@g andD, with the same
schema, the union dd1 andD> is a database where each relatiorbinu D is the set union of

the corresponding relations By andD».

3. Minimize function for databasdslenotedm): For a given databade and queryQ, the output,
which we call min-Database and denot, Q), of the minimize function is database that satisfies
the following two properties: a) The result of evaluating tjuery on the database is the same,
irrespective of whether the evaluation is done before @rafpplying the minimize function , i.e.,
Q[D] = QIm(D,Q)], and b) The query when evaluated on any subset of the mirbBsgathat is
not the min-Database itself, yields a result other tém(D, Q)], i.e.,VD1 C m(D,Q) (m(D, Q) C
D1 Vv Q[D1] # Q[m(D,Q)]). To evaluate a minimize function, we use the following rgswhich
we state without proof: A tuplé is present in a relatioR of the min-Database if and only if
the tuple is present in relatidR of any of the STPR databases corresponding to the databdse an

query. Using our union functiom(D, Q) = Uprcagp,q)D'-

A.2.3 Does the result of a query change on an insertion?

We start by defining two terms: local selection predicatabsjam-attributes, which are relevant for the
discussion of whether query res@{D] changes on insertidd or not. Assume that insertids adds a

tuplet to relationR;.

Local selection predicatesf a queryQ with respect to an insertidd are selection predicates of the
query that do not involve attributes of any relations otlantR;. For example, “toyname = ?” would
be a local selection predicate@ﬂ' for any insertion to théoys relation of theToysTOREapplication
(Table 3.3).

Join-attributesof a queryQ with respect to an insertiod are attributes of relatioR; that occur in
any selection predicate that also involves attributes gfratation other thamR,. For example, attribute

cid is a join attribute of quer@% with respect to insertio)] of the ToysToREapplication.

InsertionU affects the result of quer® if and only if:

134

Chapter A.2 Proof of Lemma 4

1. The inserted tuplesatisfies the local selection predicates.

2. Tuplet joins with other tuples of the database. Whether or not thie ttgm join with other tuples

depends only on the tuple’s values for the join attribute.

Next for an insertion/query pair, we define a special claskatdbases for which the insertion changes

the result of a query.

Complementary databasé:complementary database for an insertibmqueryQ pair, denotedc, is
a database which becomes a STPR database after Wpdsdplied to it, i.e.Pc+U € Ds(Dc+U, Q).
Itis easy to see that a complementary database exists dh¢yiriserted tuple satisfies the local selection

predicates.

A.2.4 Intermediate Lemmas and Proofs

Lemma 7. For any given database D, insertion U, and query Q, the reseflevaluating the query before
and after applying the insertion to the database are difierd and only if a complementary database
Dc corresponding to the insertion/query pair is a subset of database, i.e., (D] # QD+ U] <
IDc (Dc+U € Dg(Dc+U,Q)).

Proof. Proof of the “if” part : Let tupletcp represent the Cartesian Product of tuples of the comple-
mentary database with insertibh Tupletcp satisfies all selection predicates of the query and so, some
tuplet’, same agcp but perhaps with fewer attributes, is present in the regulieoquery evaluated after
the insertion. Further, since duplicates are not elimohatben projection is applied, the result of the
guery evaluated over the database containing the insenpéeltas one tuple more than the result of the

guery evaluated over the database not containing the @ustrple.

Proof of the “only if” part by construction : If the result of queryQ changes because of insertidn
then because of the evaluation process in Appendix A.2etettannot be fewer tuples in the result after
the insertion. In factQ[D + U] will have one tuple more tha@[D], which means the sebs(D +U, Q)

will have one more member than the g&(D, Q). Let insertiorlJ inserts tuple in relationR;. Database

135

Chapter A Proofs for Chapter 3

Dc can be constructed by removitgrom the database that is presentZi(D + U, Q), but not in

Ds(D, Q). It can be verified thabDc is indeed a complementary database. O

Lemma 8. Assume there exists a complementary databastbDan insertion/query pair. Then for any
database, either the results of evaluating the query on tilnmal database before and after applying
insertion U are different, or the results of evaluating theegy on the min-Database before and after the

union with the complementary database are same{{Q¢m(D, Q)] # Q[m(D,Q)+U]) vV (QIm(D, Q)] =
Q[m(D7 Q) U DC])

Proof. If the results of evaluating the query on the minimal dataebi@fore and after applying insertion
U are different, then the proof is complete. Otherwise, tiselteof evaluating the query on the minimal

database before and after applying insertioare the same, i.e.,

Qm(D,Q)] = Q[m(D, Q) +U] (A.1)

From Appendix A.2.3, we know that for logic expression (Atd)hold, either the inserted tuple fails
to a) satisfy the local selection predicates, or b) join vather tuples. Because of the assumption in
Lemmal 8 about existence of complementary database, theedgeple must fail to join with other

tuples for logic expression (A.1) to hold.

Assume the insertion adds tugléo relationR;. Also assumer is the value of the inserted tuple’s
join attributes. Since does not join with other tuples, and min-Database has n@sugplat do not
contribute to the result, there can be no tupldrjrwith value of join attributes equal te. So when

union of complementary databasge is taken withm(D, Q), the result of the query does not change, i.e.,

We are now ready to prove Lemma 4.

Proof. Proof of Lemma/4 by contradiction. Assume to the contrary that there exists quéxyan
instance ofQ, insertionU, an instance ob);", current database instanBg (before the application

of updateU), and a current view/, so that insertiot causes a minimal statement-inspection strategy

136

Chapter A.2 Proof of Lemma 4

(MSIS) $; to invalidate the cached result of the query but does notecausinimal view-inspection

strategy (MVIS)S$, to invalidate the cached result of the query.

By definition of a MSIS (Section 3.2.2), it follows that theneiss database instan& such that

applying insertiord changes the result of evaluating qu€n the database instance, i.e.,
D (QD) # QD +U)) (A2)

Applying Lemmad 7 to logic expression (A.2) implies that th@xists complementary databd3e

corresponding to the insertion/query pair.

Further, from the definition of a MVIS, it follows that on anptdbas®, if query Q evaluates t&/p,
then applying update to the database does not affect the result of evaluatingydpen the database,

i.e.,

~3D ((QID] = Vp) A (QID] # QD+ U])) (A3)
or, ¥D((QID] =Vp) = (QID] = QD +U}))) (A4)

We now construct a databaBéthat does not obey logic expression (A.4), i@QD'] =V, AQ[D'] #
QD' +U].

Recall that databadec is a complementary database corresponding tdJth® pair and database
Dp is the current database instance before application of pdate. We clainD’ = m(Dy, Q) U Dc.
Mathematically,Q[Dp] = Vp. By definition of a minimize function (Appendix A.2.2), we knahat
the result of evaluating the query on the minimal datatmad®p, Q) is alsoVy, i.e., Qm(Dp, Q)] = V.
Further, because a complementary database exists forsegiam/query pair and logic expression (A.4)
applies, the second condition of Lemma 8 holds, and thetrefelaluating the query on the minimal

database both before and after the union with a complemedabas®c remains the same, i.e.,

Q[m(Dp, Q)] = Qm(Dp, Q) UDc] (A.5)

Using Lemma 77 in conjunction with logic expression (A.5)lgiethat the result of the query changes on
applying the insertion to the databaséDp, Q) UDc, i.e.,Q[m(Dp, Q) UDc] # Q[m(Dp, Q) UDc +U].

137

Chapter A Proofs for Chapter 3

Moreover, sinc®Q[m(Dp, Q)] = V), logic expression (A.5) implieQ[m(Dp, Q) UDc] = V. SoQ[D'] =
Vp AQ[D'] # Q[D’ + U] for D' = m(Dp, Q) UDc. Hence contradiction. O

138

Bibliography

[1] AdventNet Inc. Zoho Creatohttp://creator.zoho.com

[2] G.Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. e&padi, R. Motwani, U. Srivastava,
D. Thomas, and Y. Xu. Two can keep a secret: A distributeditacture for secure database
services. IrProc. CIDR 2005.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikantarahg Xu. Order preserving encryp-
tion for numeric data. IProc. SIGMOD 2004.

[4] Rakesh Agrawal, Ramakrishnan Srikant, and Dilys Thomaisa&y preserving OLAP. IiProc.
SIGMOD 2005.

[5] Fuat Akal, Can Tirker, Hans-3drg Schek, Yuri Breitbart, Torsten Grabs, and Lourens Veare-F
grained replication and scheduling with freshness andectress guarantees. Rioc. VLDB
2005.

[6] M. Altinel, C. Bornhvd, S. Krishnamurthy, C. Mohan, H. Piegh, and B. Reinwald. Cache
tables: Paving the way for an adaptive database cacherom VLDB 2003.

[7] Amazon Web Servicettp://aws.amazon.com

[8] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxydyfAamic data cache for Web
applications. IrProc. ICDE, 2003.

[9] K. Amiri, S. Sprenkle, R. Tewari, and S. Padmanabhan. &kpl templates to scale consistency
maintenance in edge database cache®rtic. Eighth International Workshop on Web Content
Caching and DistributionHawthorne, New York, September 2003.

[10] Khalil Amiri, David Petrou, Gregory R. Ganger, and Ga&hGibson. Dynamic function place-
ment for data-intensive cluster computing.USENIX Annual Technical Conferen@900.

139

http://creator.zoho.com
http://aws.amazon.com

A Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Amza, A. Cox, and W. Zwaenepoel. Conflict-aware scheduior dynamic content applica-
tions. INUSENIX Symposium on Internet Technologies and Sysg&03.

Cristiana Amza, Gokul Soundararajan, and Emmanuel @Gtcdinansparent caching with strong
consistency in dynamic content web sites.I@% '05: Proceedings of the 19th annual interna-
tional conference on Supercomputiméew York, NY, USA, 2005.

Martin Arlitt, Ludmilla Cherkasova, John Dilley, Richiedrich, and Tai Jin. Evaluating content
management techniques for Web proxy caches.Prvceedings of the Workshop on Internet
Server Performance (WISP99)999.

Roberto J. Bayardo and Rakesh Agrawal. Data privacy thraymimal k-anonymization. In
ICDE '05: Proceedings of the 21st International ConferenceD@ta Engineering (ICDE’05)
Washington, DC, USA, 2005.

Philip A. Bernstein, Alan Fekete, Hongfei Guo, Raghu Ransikan, and Pradeep Tamma.
Relaxed-currency serializability for middle-tier cachiagd replication. I'SIGMOD '06: Pro-
ceedings of the 2006 ACM SIGMOD international conference anddement of datdNew York,
NY, USA, 2006.

Philip A. Bernstein and Nathan Goodman. An algorithmdoncurrency control and recovery in
replicated distributed databasé@sCM Transactions on Database Systef{g), 1984.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Guenad Concurrency Control and Recov-
ery in Database SystemAaddison-Wesley, 1987.

Jo€ A. Blakeley, Neil Coburn, and P. Larson. Updating derivedtrehs: Detecting irrelevant
and autonomously computable updat®@€M Transactions on Database Systefi®§3), 1989.

Burton H. Bloom. Space/time trade-offs in hash codinchvallowable errorsCommun. ACM
13(7), 1970.

Daniel Brodie, Amrish Gupta, and Weisong Shi. Accelegidynamic web content delivery
using keyword-based fragment detectidournal of Web Engineerin@005.

[21] Angela Demke Brown and Todd C. Mowry. Taming the memoryshagsing compiler-inserted

releases to manage physical memory intelligently08DI’00: Proceedings of the 4th conference
on Symposium on Operating System Design & Implemenid@ienkeley, CA, USA, 2000.

140

A Bibliography

[22] Erik Brynjolfsson, Yu (Jeffrey) Hu, and Michael D. Smit@onsumer surplus in the digital econ-
omy: Estimating the value of increased product variety d#iherbooksellers.Management Sci-
ence 49(11), 2003 http:/lwww.heinz.cmu.edu/"mds/cs.pdf

[23] CacheFly.http://www.cachefly.com

[24] California Senate. Bill SB 1386itp://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1 400/sh_138
2002.

[25] K. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View atidation for dynamic content
caching in multitiered architectures. Rroc. VLDB 2002.

[26] Michael J. Carey, Michael J. Franklin, Miron Livny, and@ene J. Shekita. Data caching tradeoffs
in client-server dbms architectures. Prnoc. SIGMOD 1991.

[27] Jim Challenger, Arun lyengar, Karen Witting, Camerondtat; and Paul Reed. A publishing
system for efficiently creating dynamic web contentPhoc. INFOCOM 2000.

[28] Fay Chang and Garth A. Gibson. Automatic i/o hint generethrough speculative execution. In
OSDI '99: Proceedings of the third symposium on Operatirggesys design and implementation
Berkeley, CA, USA, 1999.

[29] Surajit Chaudhuri. An overview of query optimization relational systems. I®ODS '98:
Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGARposwm on Principles of
database systemBlew York, NY, USA, 1998.

[30] Surajit Chaudhuri and Kyuseok Shim. Optimization of gegwith user-defined predicateésCM
Transactions on Database Syste24(2), 1999.

[31] B. Chen and R. Morris. Certifying program execution withigegrocessors. IdSENIX HotOS
Workshop2003.

[32] Chun Yi Choi and Qiong Luo. Template-based runtime irdatiion for database-generated web
contents. IMsia Pacific Web Conferenc2004.

[33] Coghead Inchttp://www.coghead.com

[34] E. Cohen, E. Halperin, and H. Kaplan. Performance aspefctlistributed caches using TTL-
based consistency. IAroc. Twenty-Eighth International Colloquium on Automatanguages
and ProgrammingCrete, Greece, July 2001.

141

http://www.heinz.cmu.edu/~mds/cs.pdf
http://www.cachefly.com
http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html
http://www.coghead.com

A Bibliography

[35] Kenneth M. Curewitz, P. Krishnan, and Jeffrey ScottéafittPractical prefetching via data com-
pression. I'SIGMOD '93: Proceedings of the 1993 ACM SIGMOD internatioc@hference on
Management of dafa 993.

[36] Anindya Datta, Kaushik Dutta, Helen Thomas, Debra \éaMkeer, Suresha, and Krithi Ramam-
ritham. Proxy-based acceleration of dynamically gendratetent on the world wide web: an
approach and implementation. Rioc. SIGMOD New York, NY, USA, 2002.

[37] David J. DeWitt, Philippe Futtersack, David Maier, aRdrnando Velez. A study of three al-
ternative workstation-server architectures for obje@rded database systems. Rroc. VLDB
1990.

[38] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaramar BnWeihl. Globally distributed content
delivery. IEEE Internet Computings(5):50-58, 2002.

[39] Laurie J. Hendren et al. Soot: a java optimization freuoek.
http://www.sable.mcgill.ca/soot/

[40] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. Web prefatchetween low-bandwidth clients
and proxies: potential and performanceSIGMETRICS '99: Proceedings of the 1999 ACM SIG-
METRICS international conference on Measurement and nrggleficomputer system£999.

[41] Hibernate: Relational Persistence for Java and .N&p://www.hibernate.org

[42] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric AeBer, and Paul Gauthier. Cluster-
based scalable network services Symposium on Operating Systems Principl€97.

[43] M. Franklin and M. Carey. Client-server caching reviditén Proc. International Workshop on
Distributed Object ManagemeriEdmonton, Canada, August 1992.

[44] Michael J. Franklin, Michael J. Carey, and Miron LivnyldBal memory management in client-
server database architecturesPhoc. VLDB San Francisco, CA, USA, 1992.

[45] Richard A. Ganski and Harry K. T. Wong. Optimization ofsted sql queries revisite&IGMOD
Record 16(3), 1987.

[46] Charlie Garrod, Amit Manjhi, Anastassia Ailamaki, HipilB. Gibbons, Bruce M. Maggs,
Todd C. Mowry, Christopher Olston, and Anthony Tomasic. Saalaconsistency man-
agement for web database caches. Technical report, Carigllen University, 2006,
http://www.cs.cmu.edu/"manjhi/scalableConsistency.p df .

142

http://www.sable.mcgill.ca/soot/
http://www.hibernate.org
http://www.cs.cmu.edu/~manjhi/scalableConsistency.pdf

A Bibliography

[47] G. Graefe. Executing nested queriesCionference on Database Systems for Business, Technol-
ogy and the Wel2003.

[48] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The danggreplication and a solution. Froc.
SIGMOD, Montreal, Canada, June 1996.

[49] Hongfei Guo, Per-Ake Larson, and Raghu Ramakrishnan. i@getith "good enough” currency,
consistency, and completeness.MbDB '05: Proceedings of the 31st international conference
on Very large data base2005.

[50] Hongfei Guo, Per-Ake Larson, Raghu Ramakrishnan, andtBian Goldstein. Relaxed currency
and consistency: how to say "good enough” in SQL.SIGMOD '04: Proceedings of the 2004
ACM SIGMOD international conference on Management of ddtav York, NY, USA, 2004.

[51] Ashish Gupta and Jose A. Blakeley. Using partial infaiiorato update materialized views.
Information System20(9), 1995.

[52] Ashish Gupta and Iderpal Singh Mumick, editoMaterialized views: techniques, implementa-
tions, and applicationsMIT Press, Cambridge, MA, USA, 1999.

[53] Ravindra Guravannavar, H. S. Ramanujam, and S. Sudargbptimizing nested queries with
parameter sort orders. MLDB '05: Proceedings of the 31st international conferenceVery
large data bases2005.

[54] Hakan Hacigumus, Bala lyer, Chen Li, and Sharad Mehr&xacuting SQL over encrypted data
in the database service provider modelPhoc. SIGMOD 2002.

[55] Hakan Hacigumus, Bala lyer, and Sharad Mehrotra. Pmogidatabase as a service. Pnoc.
ICDE, 2002.

[56] Hakan Hacigumus, Bala lyer, and Sharad Mehrotra. Efficeéxecution of aggregation queries
over encrypted relational databases. 9th International Conference on Database Systems for
Advanced Application2004.

[57] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privggserving index for range queries. In
Proc. VLDB 2004.

[58] Akamai Technologies Inc. Akamai and IBM unveil edge catipg solution.
www.akamai.com/html/about/press/releases/2002/press _050802.html

143

www.akamai.com/html/about/press/releases/2002/press_050802.html

A Bibliography

[59] Akamai Technologies Inc. and Jupiter Research Inc. Akaend Jupiter Research iden-
tify ‘4 seconds’ as the new threshold of acceptability fotaleweb page response times.

http://www.akamai.com/html/about/press/releases/200 6/press_110606.html

[60] Akamai Technologies Inc. and Quocirca. Akamai and quac identify 4
second’ performance threshold for european web-based rpeiste applications.
http://www.edgejava.net/html/about/press/releases/2 007/press_110707.html

[61] Time Inc. Who's really participating in web 2.Btp://www.time.com/time/business/article/0,8599,16
[62] Jakarta Project. Apache Tomcat.

[63] Murat Kantarcioglu and Chris Clifton. Security issuesguerying encrypted data. Technical
Report TR-04-013, Purdue University, 2004.

[64] Won Kim. On optimizing an sql-like nested que”ACM Transactions on Database Systei(8),
1982.

[65] Thomas M. Kroeger and Darrell D. E. Long. Predicting filesstem actions from prior events. In
ATEC’96: Proceedings of the Annual Technical Conference oBNU% 1996 Annual Technical
ConferenceBerkeley, CA, USA, 1996.

[66] Per-Ake Larson, Jonathan Goldstein, and Jingren ZMtcache: Transparent mid-tier database
caching in sql server. IHCDE '04: Proceedings of the 20th International ConferenceDmata
Engineering Washington, DC, USA, 2004.

[67] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnbartognito: efficient full-domain
k-anonymity. InProc. SIGMOD New York, NY, USA, 2005.

[68] A.Y.Levy and Y. Sagiv. Queries independent of updated?roc. VLDB 1993.

[69] Ninghui Li, Tiancheng Li, and Suresh Venkatasubraraanit-closeness: Privacy beyorid
anonymity and’-diversity. InProc. ICDE 2007.

[70] W. Li, O. Po, W. Hsiung, K. S. Candan, D. Agrawal, Y. AkcaadaK. Taniguchi. CachePortal
II: Acceleration of very large scale data center-hostedlzde-driven web applications. Pnoc.
VLDB, 2003.

[71] Limelight Networks.http://www.limelightnetworks.com

144

http://www.akamai.com/html/about/press/releases/2006/press_110606.html
http://www.edgejava.net/html/about/press/releases/2007/press_110707.html
http://www.time.com/time/business/article/0,8599,1614751,00.html
http://www.limelightnetworks.com

A Bibliography

[72] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo(@B Lindsay, and J. F. Naughton.
Middle-tier database caching for e-businessPtac. SIGMOD 2002.

[73] Ashwin Machanavajjhala, Johannes Gehrke, DanielriKdad Muthuramakrishnan Venkitasub-
ramaniam. I-diversity: Privacy beyond k-anonymity. 28nd IEEE International Conference on
Data Engineering2006.

[74] Amit Manjhi, Anastassia Ailamaki, Bruce M. Maggs, Todd l@owry, Christopher Olston, and
Anthony Tomasic. Simultaneous scalability and securityd@ta-intensive web applications. In
SIGMOD '06: Proceedings of the 2006 ACM SIGMOD internaticc@hference on Management
of data New York, NY, USA, 2006.

[75] Mark Matthews. Type IV JDBC driver for MySQL.

[76] Todd C. Mowry, Angela K. Demke, and Orran Krieger. Autdinaompiler-inserted i/o prefetch-
ing for out-of-core applications. I®SDI '96: Proceedings of the second USENIX symposium on
Operating systems design and implementatidew York, NY, USA, 1996.

[77] Steven S. Muchnick Advanced compiler design and implementatidforgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1997.

[78] L. Mummert and M. Satyanarayanan. Large granularigheacoherence for intermittent connec-
tivity. In USTC’94: Proceedings of the USENIX Summer 1994 Technical @make on USENIX
Summer 1994 Technical ConferenBerkeley, CA, USA, 1994.

[79] MySQL AB. MySQL database server.

[80] Alexandros Nanopoulos, Dimitrios Katsaros, and YariManolopoulos. A data mining algorithm
for generalized web prefetchinEEE Transactions on Knowledge and Data Engineerittyf5),
2003.

[81] ObjectWeb Consortium. ASnttp://asm.objectweb.org
[82] ObjectWeb Consortium. Rice University bidding systéttp:/rubis.objectweb.org/

[83] ObjectWeb Consortium. Rice University bulletin board stgm.
http://jmob.objectweb.org/rubbos.html

[84] Christopher Olston, Amit Manjhi, Charles Garrod, Anasia Ailamaki, Bruce M. Maggs, and
Todd C. Mowry. A scalability service for dynamic web appliocats. InProc. CIDR 2005.

145

http://asm.objectweb.org
http://rubis.objectweb.org/
http://jmob.objectweb.org/rubbos.html

A Bibliography

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Ruby on Rails http://www.rubyonrails.org

Venkata N. Padmanabhan and Jeffrey C. Mogul. Using ptiediprefetching to improve world
wide web latencySIGCOMM Comput. Commun. Re26(3), 1996.

Panther Expresdittp://www.pantherexpress.com

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolskyda. Zelenka. Informed prefetching
and caching. I'SOSP '95: Proceedings of the fifteenth ACM symposium on Qpgrsystems
principles New York, NY, USA, 1995.

Christian Plattner and Gustavo Alonso. Ganymed: Séaledplication for transactional web
applications. IrMiddleware 2004.

Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, dadnifer Widom. Making views self-
maintainable for data warehousing. Rmoc. Fourth International Conference on Parallel and
Distributed Information System$996.

Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunang Richard D. Schlichting. Cassy-
opia: compiler assisted system optimization.HOTOS’03: Proceedings of the 9th conference
on Hot Topics in Operating Systen2903.

Lakshmish Ramaswamy, Arun lyengar, Ling Liu, and Fredi§@ls. Automatic detection of frag-
ments in dynamically generated web pagesWwWW ’'04: Proceedings of the 13th international
conference on World Wide Welew York, NY, USA, 2004.

Relationals, Inchttp://www.longjump.com

Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh.Bhifibeent and extensible algorithms
for multi query optimization SIGMOD Recorg29(2), 2000.

Mahadev Satyanarayanan. Fundamental challenges lmemmomputing. InFifteenth Annual
ACM Symposium on Principles of Distributed Computib@96.

Bruce Schneier.Applied Cryptography: Protocols, Algorithms, and Source €ad C. John
Wiley & Sons, 1996.

Bianca Schroeder, Adam Wierman, and Mor Harchol-Bal@pen versus closed: a cautionary
tale. INNSDI'06: Proceedings of the 3rd conference on 3rd SymposiuiNeiworked Systems
Design & ImplementatiorBerkeley, CA, USA, 2006.

146

http://www.rubyonrails.org
http://www.pantherexpress.com
http://www.longjump.com

A Bibliography
[98] Timos K. Sellis. Multiple-query optimizationACM Transactions on Database Syste¥(1),
1988.

[99] Simple measurements on the infrastructure of Dreambedeading Web-hosting company.
http://www.dreamhost.com/

[100] Michael Stonebraker, Jeff Anton, and Eric Hanson elBging a database system with procedures.
ACM Transactions on Database Systef3), 1987.

[101] L. Sweeney. k-anonymity: A model for protecting piyalnternational journal of uncertainty,
fuzziness, and knowledge-based systeoi2.

[102] Latanya Sweeney. Achieving k-anonymity privacy paiion using generalization and suppres-
sion. International journal of uncertainty, fuzziness, and kneage-based systemi(5), 2002.

[103] The Washington Post. Advertiser charged in massivetabdse theft.
http://www.washingtonpost.com/wp-dyn/articles/A4364 -2004Jul21.html July,
2004.

[104] Transaction Processing Council. TPC-W specificatiension 1.7.

[105] Trusted Computing Group. Trusted Platform Module M&pecification, Version 1.2.
http://www.trustedcomputing.org

[106] Mark Tsimelzon, Bill Weihl, Joseph Chung, Dan Franthyld®asso, Chirs Newton, Mark Hale,
Larry Jacobs, Conleth O’'Connell, and Mark Nottingham (eglitdESI Language Specification
1.0. http://www.w3.0rg/TR/2001/NOTE-esi-lang-20010804

[107] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Sh&uruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar. An integrated expental environment for distributed
systems and networks. Proc. OSD] 2002.

[108] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alanrbers, Johannes Gehrke, and Jayavel
Shanmugasundaram. A unified platform for data driven welliGgiwns with automatic client-
server partitioning. IWWW New York, NY, USA, 2007.

[109] Fan Yang, Jayavel Shanmugasundaram, Mirek RiedewattlJohannes Gehrke. Hilda: A high-
level language for data-driven web applicationsPhoc. ICDE, 2006.

147

http://www.dreamhost.com/
http://www.washingtonpost.com/wp-dyn/articles/A4364-2004Jul21.html
http://www.trustedcomputing.org
http://www.w3.org/TR/2001/NOTE-esi-lang-20010804

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Example Scenarios
	1.1.1 E-Commerce
	1.1.2 Civic Emergency Management

	1.2 Challenges in Creating a Scalability Service for Dynamic Web Applications
	1.3 Related Work
	1.3.1 Database Services
	1.3.2 Database Caching and Replication
	1.3.3 Privacy
	1.3.4 Commercial Efforts

	1.4 Our Approach
	1.4.1 Overall Architecture
	1.4.2 Guaranteeing Privacy and Security in a DBSS Setting
	1.4.3 Scalability-Conscious Security Design Methodology
	1.4.4 Invalidation Clues
	1.4.5 Holistic Transformations to Reduce User Latencies

	1.5 Contributions
	1.6 Thesis Organization

	2 Architecture of the Scalability Service
	2.1 Home Server
	2.2 DBSS Node
	2.2.1 Cache Structure
	2.2.2 Handling Database Queries
	2.2.3 Handling Database Updates
	2.2.4 Consistency
	2.2.5 Other Implementation Details

	2.3 CDN Node
	2.4 Clients
	2.5 Invalidation Flow
	2.6 Benchmark Applications
	2.7 Methodology
	2.7.1 Evaluation Metrics
	2.7.2 Scenarios

	2.8 Preliminary Evaluation
	2.9 Summary

	3 Simultaneous Scalability and Security for Data Intensive Web Applications
	3.1 Security-Scalability Tradeoff
	3.1.1 Managing the Security-Scalability Tradeoff

	3.2 Framework for Studying the Security-Scalability Tradeoff
	3.2.1 Query and Update Model
	3.2.2 Formal Characterization of View Invalidation Strategies
	3.2.3 Mixed Invalidation Strategies

	3.3 Overview of Approach
	3.3.1 Our Approach
	3.3.2 Example

	3.4 IPM Characterization
	3.4.1 Query and Update Classification
	3.4.2 Blind vs. Template-Inspection (Does Aij=1?)
	3.4.3 Template-Inspection vs. Statement-Inspection (Does Bij=Aij?)
	3.4.4 Statement-Inspection vs. View-Inspection (Does Cij=Bij?)
	3.4.5 Database Integrity Constraints

	3.5 Evaluation
	3.5.1 IPM Characterization Results
	3.5.2 Magnitude of Security-Scalability Tradeoff
	3.5.3 Security Enhancement Achieved

	3.6 Chapter Contributions
	3.7 Summary

	4 Invalidation Clues for Database Scalability Services
	4.1 Introduction
	4.2 An Illustrative Example
	4.3 Using Clues for Invalidations
	4.3.1 Architecture
	4.3.2 Query and Update Model
	4.3.3 The Attack Model of the DBSS
	4.3.4 Database-Inspection Strategy
	4.3.5 Types of Clues

	4.4 Database Clues
	4.4.1 Templates Requiring Database Clues
	4.4.2 Implementing Database Clues
	4.4.3 Beyond Precise Invalidations

	4.5 Privacy-Scalability Tradeoffs
	4.5.1 The Limit Cases
	4.5.2 Trading Off Scalability for Privacy
	4.5.3 Equality Comparisons
	4.5.4 Order Comparisons
	4.5.5 Discussion

	4.6 Evaluation
	4.6.1 Characteristics of the Benchmark Applications
	4.6.2 Scalability Benefits of Invalidation Clues
	4.6.3 Privacy Experiments

	4.7 Chapter Contributions
	4.8 Summary

	5 Holistic Query Transformations for Dynamic Web Applications
	5.1 The merging Transformation: Clustering Related Queries
	5.1.1 Impact on the Total Work in the System
	5.1.2 Code Patterns Where the merging Transformation Applies
	5.1.3 Algorithm for Automating the merging Transformation
	5.1.4 Other Tradeoffs

	5.2 The nonblocking Transformation: Prefetching Query Results
	5.2.1 Algorithm for Automating the nonblocking Transformation
	5.2.2 Implementation Issues

	5.3 Evaluation
	5.3.1 Scalability Impact of the Transformations
	5.3.2 Latency Impact of the Transformations
	5.3.3 Applicability of the Transformations
	5.3.4 Coverage of the merging Transformation
	5.3.5 Coverage of the nonblocking Transformation

	5.4 Related Work
	5.4.1 Work Related to the nonblocking Transformation
	5.4.2 Work Related to the merging Transformation

	5.5 Summary

	6 Conclusions
	6.1 Contributions
	6.2 Future Work

	A Proofs for Chapter 3
	A.1 Proofs for Section 3.4.4
	A.2 Proof of Lemma 4
	A.2.1 Evaluation of a query
	A.2.2 Additional Database Operations
	A.2.3 Does the result of a query change on an insertion?
	A.2.4 Intermediate Lemmas and Proofs

	Bibliography

