
An Online Algorithm for Maximizing
Submodular Functions

Matthew Streeter Daniel Golovin
December 20, 2007
CMU-CS-07-171

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported in part by NSF ITR grants CCR-0122581 and IIS-0121678 and by DARPA under
Contract #FA8750-05-C-0033.

Keywords: online algorithms, submodular functions

Abstract

We consider the following two problems. We are given as input a set of activities and a set of
jobs to complete. Our goal is to devise a schedule for allocating time to the various activities so
as to achieve one of two objectives: minimizing the average time required to complete each job,
or maximizing the number of jobs completed within a fixed time T . Formally, a schedule is a se-
quence 〈(v1, τ1), (v2, τ2), . . .〉, where each pair (v, τ) represents investing time τ in activity v. We
assume that the fraction of jobs completed, f , is a monotone submodular function of the sequence
of pairs that appear in a schedule.

In the offline setting in which we have oracle access to f , these two objectives give us, respec-
tively, what we call the MIN SUM SUBMODULAR COVER problem (which is a generalization of
the MIN SUM SET COVER problem and the related PIPELINED SET COVER problem) and what
we call BUDGETED MAXIMUM SUBMODULAR COVERAGE (which generalizes the problem of
maximizing a monotone, submodular function subject to a knapsack constraint).

We consider these problems in the online setting, in which the jobs arrive one at a time and
we must finish each job (via some schedule) before moving on to the next. We give an efficient
online algorithm for this problem whose worst-case asymptotic performance is simultaneously op-
timal for both objectives (unless P = NP), in the sense that its performance ratio (with respect
to the optimal static schedule) converges to the best approximation ratios for the corresponding
offline problems. Finally, we evaluate this algorithm experimentally by using it to learn, online, a
schedule for allocating CPU time to the solvers entered in the 2007 SAT solver competition.

1 Introduction
This paper presents algorithms for solving a specific class of online resource allocation problems.
Our online algorithms can be applied in environments where abstract jobs arrive one at a time,
and one can complete the jobs by investing time in a number of abstract activities. Provided that
the jobs and activities satisfy certain technical conditions, our online algorithm is guaranteed to
perform almost as well as any fixed schedule for investing time in the various activities, according
to two natural measures of performance. As we discuss further in §1.5, our problem formulation
captures a number of previously-studied problems, including selection of algorithm portfolios [12,
15], selection of restart schedules [14, 23], and database query optimization [5, 25].

1.1 Formal setup
The problem considered in this paper can be defined as follows. We are given as input a finite
set V of activities. A pair (v, τ) ∈ V × R>0 is called an action, and represents spending time
τ performing activity v. A schedule is a sequence of actions. We use S to denote the set of all
schedules. A job is a function f : S → [0, 1], where for any schedule S ∈ S , f(S) represents the
proportion of some task that is accomplished by performing the sequence of actions S. We require
that a job f have the following properties (here ⊕ is the concatenation operator):

1. (monotonicity) for any schedules S1, S2 ∈ S , we have f(S1) ≤ f(S1 ⊕ S2) and f(S2) ≤
f(S1 ⊕ S2).

2. (submodularity) for any schedules S1, S2 ∈ S and any action a ∈ V × R>0,

f(S1 ⊕ S2 ⊕ 〈a〉)− f(S1 ⊕ S2) ≤ f(S1 ⊕ 〈a〉)− f(S1) . (1.1)

We will evaluate schedules in terms of two objectives. The first objective is to maximize f (S)
subject to the constraint ` (S) ≤ T , for some fixed T > 0, where ` (S) equals the sum of the
durations of the actions in S. For example if S = 〈(v1, 3), (v2, 3)〉, then `(S) = 6. We refer to this
problem as BUDGETED MAXIMUM SUBMODULAR COVERAGE (the origin of this terminology is
explained in §2).

The second objective is to minimize the cost of a schedule, which we define as

c (f, S) =

∫ ∞
t=0

1− f
(
S〈t〉
)
dt (1.2)

where S〈t〉 is the schedule that results from truncating schedule S at time t. For example if S =
〈(v1, 3), (v2, 3)〉 then S〈5〉 = 〈(v1, 3), (v2, 2)〉.1 One way to interpret this objective is to imagine
that f(S) is the probability that some desired event occurs as a result of performing the actions in
S. For any non-negative random variable X , we have E [X] =

∫∞
t=0

P [X > t] dt. Thus c (f, S)
is the expected time we must wait before the event occurs if we execute actions according to the

1More formally, if S = 〈a1, a2, . . .〉, where ai = (vi, τi), then S〈t〉 = 〈a1, a2, . . . , ak−1, ak, (vk+1, τ
′)〉, where k

is the largest integer such that
∑k

i=1 τi < t and τ ′ = t−
∑k

i=1 τi.

1

schedule S. We refer to the problem of computing a schedule that minimizes c (f, S) as MIN-SUM

SUBMODULAR COVER.
In the online setting, an arbitrary sequence 〈f1, f2, . . . , fn〉 of jobs arrive one at a time, and

we must finish each job (via some schedule) before moving on to the next job. When selecting
a schedule Si to use to finish job fi, we have knowledge of the previous jobs f1, f2, . . . , fi−1 but
we have no knowledge of fi itself or of any subsequent jobs. In this setting our goal is to develop
schedule-selection strategies that minimize regret, which is a measure of the difference between
the average cost (or average coverage) of the schedules produced by our online algorithm and that
of the best single schedule (in hindsight) for the given sequence of jobs.

The following example illustrates these definitions.

Example 1. Let each activity v represent a randomized algorithm for solving some decision prob-
lem, and let the action (v, τ) represent running the algorithm (with a fresh random seed) for time
τ . Fix some particular instance of the decision problem, and for any schedule S, let f(S) be the
probability that one (or more) of the runs in the sequence S yields a solution to that instance. So
f(S〈T 〉) is (by definition) the probability that performing the runs in schedule S yields a solution
to the problem instance in time ≤ T , while c (f, S) is the expected time that elapses before a
solution is obtained. It is clear that f(S) satisfies the monotonicity condition required of a job,
because adding runs to the sequence S can only increase the probability that one of the runs is
successful. The fact that f is submodular can be seen as follows. For any schedule S and action a,
f(S ⊕ 〈a〉)− f(S) equals the probability that action a succeeds after every action in S has failed,
which can also be written as (1−f(S)) ·f(〈a〉). This, together with the monotonicity of f , implies
that for any schedules S1, S2 and any action a, we have

f(S1 ⊕ S2 ⊕ 〈a〉)− f(S1 ⊕ S2) = (1− f(S1 ⊕ S2)) · f(〈a〉)
≤ (1− f(S1)) · f(〈a〉)
= f(S1 ⊕ 〈a〉)− f(S1)

so f is submodular.

1.2 Sufficient conditions
In some cases of practical interest, f will not satisfy the submodularity condition but will still
satisfy weaker conditions that are sufficient for our results to carry through.

In the offline setting, our results will hold for any function f that satisfies the monotonicity
condition and, additionally, satisfies the following condition (we prove in §3 that any submodular
function satisfies this weaker condition).

Condition 1. For any S1, S ∈ S,

f(S1 ⊕ S)− f(S1)

` (S)
≤ max

(v,τ)∈V×R>0

{
f(S1 ⊕ 〈(v, τ)〉)− f(S1)

τ

}
.

Recall that ` (S) equals the sum of the durations of the actions in S. Informally, Condition 1
says that the increase in f per unit time that results from performing a sequence of actions S is

2

always bounded by the maximum, over all actions (v, τ), of the increase in f per unit time that
results from performing that action.

In the online setting, our results will apply if each function fi in the sequence 〈f1, f2, . . . ,
fn〉 satisfies the monotonicity condition and, additionally, the sequence as a whole satisfies the
following condition (we prove in §4 that if each fi is a job, then this condition is satisfied).

Condition 2. For any sequence S1, S2, . . . , Sn of schedules and any schedule S,∑n
i=1 (fi(Si ⊕ S)− fi(Si))

` (S)
≤ max

(v,τ)∈V×R>0

{∑n
i=1 (fi(Si ⊕ 〈(v, τ)〉)− fi(Si))

τ

}
.

This generality allows us to handle jobs similar to the job defined in Example 1, but where an
action (v, τ) may represent continuing a run of algorithm v for an additional τ time units (rather
than running v with a fresh random seed). Note that the function f defined in Example 1 is no
longer submodular when actions of this form are allowed.

1.3 Summary of results
We first consider the offline problems BUDGETED MAXIMUM SUBMODULAR COVERAGE and
MIN-SUM SUBMODULAR COVER. As immediate consequences of existing results [10, 11], we
find that, for any ε > 0, (i) achieving an approximation ratio of 4−ε for MIN-SUM SUBMODULAR

COVER is NP-hard and (ii) achieving an approximation ratio of 1− 1
e

+ ε for BUDGETED MAXI-
MUM SUBMODULAR COVERAGE is NP-hard. We then present a greedy approximation algorithm
that simultaneously achieves the optimal approximation ratio of 4 for MIN-SUM SUBMODULAR

COVER and the optimal approximation ratio of 1− 1
e

for BUDGETED MAXIMUM SUBMODULAR

COVERAGE, building on and generalizing previous work on special cases of these two problems
[11, 29].

The main contribution of this paper, however, is to address the online setting. In this set-
ting we provide an online algorithm whose worst-case performance approaches that of the of-
fline greedy approximation algorithm asymptotically (as the number of jobs approaches infinity).
More specifically, we analyze the online algorithm’s performance in terms of “α-regret”. For the
cost-minimization objective, α-regret is defined as the difference between the average cost of the
schedules selected by the online algorithm and α times the average cost of the optimal schedule
for the given sequence of jobs. For the coverage-maximization objective, α-regret is the difference
between α times the average coverage of the optimal fixed schedule and the average coverage of
the schedules selected by the online algorithm. For the objective of minimizing cost, the online
algorithm’s 4-regret approaches zero as n → ∞, while for the objective of maximizing coverage,
its 1 − 1

e
regret approaches zero as n → ∞. Assuming P 6= NP, these guarantees are essentially

the best possible among online algorithms that make decisions in polynomial time.
Our online algorithms can be used in several different feedback settings. We first consider the

feedback setting in which, after using schedule Si to complete job fi, we receive complete access
to fi. We then consider more limited feedback settings in which: (i) to receive access to fi we must
pay a price C, which is added to the regret, (ii) we only observe fi

(
Si〈t〉

)
for each t ≥ 0, and (iii)

we only observe fi (Si).

3

We also prove tight information-theoretic lower bounds on 1-regret, and discuss exponential
time online algorithms whose regret matches the lower bounds to within logarithmic factors. Inter-
estingly, these lower bounds also match the upper bounds from our online greedy approximation
algorithm up to logarithmic factors, although the latter apply to α-regret (for α = 4 or α = 1− 1

e
)

rather than 1-regret.

1.4 Problems that fit into this framework
We now discuss how a number of previously-studied problems fit into our framework.

1.4.1 Special cases of BUDGETED MAXIMUM SUBMODULAR COVERAGE

The BUDGETED MAXIMUM SUBMODULAR COVERAGE problem introduced in this paper is a
slight generalization of the problem of maximizing a monotone submodular set function subject
to a knapsack constraint [21, 29]. The only difference between the two problems is that, in the
latter problem, f(S) may only depend on the set of actions in the sequence S, and not on the order
in which the actions appear. The problem of maximizing a monotone submodular set function
subject to a knapsack constraint in turn generalizes BUDGETED MAXIMUM COVERAGE [19],
which generalizes MAX k-COVERAGE [26].

1.4.2 Special cases of MIN-SUM SUBMODULAR COVER

The MIN-SUM SUBMODULAR COVER problem introduced in this paper generalizes several previously-
studied problems, including MIN-SUM SET COVER [11], PIPELINED SET COVER [17, 25], the
problem of constructing efficient sequences of trials [9], and the problem of constructing restart
schedules [14, 23, 28]. Specifically, these problems can be represented in our framework by jobs
of the form

f (〈(v1, τ1), (v2, τ2), . . . , (vL, τL)〉) =
1

n

n∑
i=1

(
1−

L∏
l=1

(1− pi(vl, τl))

)
. (1.3)

This expression can be interpreted as follows: the job f consists of n subtasks, and pi(v, τ) is the
probability that investing time τ in activity v completes the ith subtask. Thus, f(S) is the expected
fraction of subtasks that are finished after performing the sequence of actions in S. Assuming
pi(v, τ) is a non-decreasing function of τ for all i and v, it can be shown that any function f of this
form satisfies the monotonicity and submodularity properties required of a job. In the special case
n = 1, this follows from Example 1. In the general case n > 1, this follows from the fact (which
follows immediately from the definitions) that any convex combination of jobs is a job.

The problem of computing restart schedules places no further restrictions on pi(v, τ). PIPELINED

SET COVER is the special case in which for each activity v there is an associated time τv, and
pi(v, τ) = 1 if τ ≥ τv and pi(v, τ) = 0 otherwise. MIN-SUM SET COVER is the special case
in which, additionally, τv = 1 or τv = ∞ for all v ∈ V . The problem of constructing efficient
sequences of trials corresponds to the case in which we are given a matrix q, and pi(v, τ) = qv,i if
τ ≥ 1 and pi(v, τ) = 0 otherwise.

4

1.5 Applications
We now discuss applications of the results presented in this paper. The first application, “Com-
bining multiple heuristics online”, is evaluated experimentally in §6. Evaluating the remaining
applications is an interesting area of future work.

1.5.1 Combining multiple heuristics online

An algorithm portfolio [15] is a schedule for interleaving the execution of multiple (randomized)
algorithms and periodically restarting them with a fresh random seed. Previous work has shown
that combining multiple heuristics for NP-hard problems into a portfolio can dramatically reduce
average-case running time [12, 15, 27]. In particular, algorithms based on chronological back-
tracking often exhibit heavy-tailed run length distributions, and periodically restarting them with a
fresh random seed can reduce the mean running time by orders of magnitude [13]. Our algorithms
can be used to learn an effective algorithm portfolio online, in the course of solving a sequence of
problem instances.

1.5.2 Database query optimization

In database query processing, one must extract all the records in a database that satisfy every
predicate in a list of one or more predicates (the conjunction of predicates comprises the query).
To process the query, each record is evaluated against the predicates one at a time until the record
either fails to satisfy some predicate (in which case it does not match the query) or all predicates
have been examined. The order in which the predicates are examined affects the time required to
process the query. Munagala et al. [25] introduced and studied a problem called PIPELINED SET

COVER, which entails finding an evaluation order for the predicates that minimizes the average
time required to process a record. As discussed in §1.4, PIPELINED SET COVER is a special case
of MIN-SUM SUBMODULAR COVER. In the online version of PIPELINED SET COVER, records
arrive one at a time and one may select a different evaluation order for each record. In our terms,
the records are jobs and predicates are activities.

1.5.3 Sensor placement

Sensor placement is the task of assigning locations to a set of sensors so as to maximize the value
of the information obtained (e.g., to maximize the number of intrusions that are detected by the
sensors). Many sensor placement problems can be optimally solved by maximizing a monotone
submodular set function subject to a knapsack constraint [20]. As discussed in §1.4, this problem
is a special case of BUDGETED MAXIMUM SUBMODULAR COVERAGE. Our online algorithms
could be used to select sensor placements when the same set of sensors is repeatedly deployed in
an unknown or adversarial environment.

5

1.5.4 Viral marketing

Viral marketing infects a set of agents (e.g., individuals or groups) with an advertisement which
they may pass on to other potential customers. Under a standard model of social network dynamics,
the total number of potential customers that are influenced by the advertisement is a submodular
function of the set of agents that are initially infected [18]. Previous work [18] gave an algorithm
for selecting a set of agents to initially infect so as to maximize the influence of an advertisement,
assuming the dynamics of the social network are known. In theory, our online algorithms could be
used to adapt a marketing campaign to unknown or time-varying social network dynamics.

2 Related Work
As discussed in §1.4, the MIN-SUM SUBMODULAR COVER problem introduced in this paper gen-
eralizes several previously-studied problems, including MIN-SUM SET COVER [11], PIPELINED

SET COVER [17, 25], the problem of constructing efficient sequences of trials [9], and the problem
of constructing restart schedules [23, 14, 28].

Several of these problems have been considered in the online setting. Munagala et al. [25]
gave an online algorithm for PIPELINED SET COVER whose O (log |V|)-regret is o (n), where n
is the number of records (jobs). Babu et al. [5] and Kaplan et al. [17] gave online algorithms
for PIPELINED SET COVER whose 4-regret is o (n), but these bounds hold only in the special
case where the jobs are drawn independently at random from a fixed probability distribution. The
online setting in this paper, where the sequence of jobs may be arbitrary, is more challenging from
a technical point of view.

As already mentioned, BUDGETED MAXIMUM SUBMODULAR COVERAGE generalizes the
problem of maximizing a monotone submodular set function subject to a knapsack constraint.
Previous work gave offline greedy approximation algorithms for this problem [21, 29], which gen-
eralized earlier algorithms for BUDGETED MAXIMUM COVERAGE [19] and MAX k-COVERAGE

[26]. To our knowledge, none of these three problems have previously been studied in an online
setting.

It is worth pointing out that the online problems we consider here are quite different from
online set cover problems that require one to construct a single collection of sets that cover each
element in a sequence of elements that arrive online [1, 3]. Likewise, our work is orthogonal to
work on online facility location problems [24].

The main technical contribution of this paper is to convert some specific greedy approximation
algorithms into online algorithms. Recently, Kakade et al. [16] gave a generic procedure for con-
verting an α-approximation algorithm for a linear problem into an online algorithm whose α-regret
is o (n), and this procedure could be applied to the problems considered in this paper. However,
both the running time of their algorithm and the resulting regret bounds depend on the dimension
of the linear problem, and a straightforward application of their algorithm leads to running time
and regret bounds that are exponential in |V|.

6

3 Offline Algorithms
In this section we consider the offline problems BUDGETED MAXIMUM SUBMODULAR COVER-
AGE and MIN-SUM SUBMODULAR COVER. In the offline setting, we are given as input a job
f : S → [0, 1]. Our goal is to compute a schedule S that achieves one of two objectives: for
BUDGETED MAXIMUM SUBMODULAR COVERAGE, we wish to maximize f(S) subject to the
constraint ` (S) ≤ T (for some fixed T > 0), while for MIN-SUM SUBMODULAR COVER, we
wish to minimize the cost c (f, S).

The offline algorithms presented in this section will serve as the basis for the online algorithms
we develop in the next section.

Note that we have defined the offline problem in terms of optimizing a single job. However,
given a set {f1, f2, . . . , fn}, we can optimize average schedule cost (or coverage) by applying our
offline algorithm to the job f = 1

n

∑n
i=1 fi (as already mentioned, any convex combination of jobs

is a job).

3.1 Computational complexity
Both of the offline problems considered in this paper are NP-hard even to approximate. As dis-
cussed in §1.4, MIN-SUM SUBMODULAR COVER generalizes MIN-SUM SET COVER, and BUD-
GETED MAXIMUM SUBMODULAR COVERAGE generalizes MAX k-COVERAGE. In a classic pa-
per, Feige proved that for any ε > 0, acheiving an approximation ratio of 1 − 1

e
+ ε for MAX

k-COVERAGE is NP-hard [10]. Recently, Feige, Lovász, and Tetali [11] introduced MIN-SUM

SET COVER and proved that for any ε > 0, achieving a 4 − ε approximation ratio for MIN-SUM

SET COVER is NP-hard. These observations immediately yield the following theorems.

Theorem 1. For any ε > 0, achieving a 1− 1
e

+ ε approximation ratio for BUDGETED MAXIMUM

SUBMODULAR COVERAGE is NP-hard.

Theorem 2. For any ε > 0, achieving a 4− ε approximation ratio for MIN-SUM SUBMODULAR

COVER is NP-hard.

3.2 Greedy approximation algorithm
In this section we present a greedy approximation algorithm that can be used to achieve a 4 ap-
proximation for MIN-SUM SUBMODULAR COVER and a 1 − 1

e
approximation for BUDGETED

MAXIMUM SUBMODULAR COVERAGE. By Theorems 1 and 2, achieving a better approximation
ratio for either problem is NP-hard.

Consider the schedule defined by the following simple greedy rule. Let G = 〈g1, g2, . . .〉 be the
schedule defined inductively as follows: G1 = 〈〉, Gj = 〈g1, g2, . . . , gj−1〉 for j > 1, and

gj = arg max
(v,τ)∈V×R>0

{
f (Gj ⊕ 〈(v, τ)〉)− f (Gj)

τ

}
. (3.1)

That is, G is constructed by greedily appending an action (v, τ) to the schedule so as to maximize
the resulting increase in f per unit time.

7

Once we reach a j such that f(Gj) = 1, we may stop adding actions to the schedule. In
general, however, G may contain an infinite number of actions. For example, if each action (v, τ)
represents running a Las Vegas algorithm v for time τ and f(S) is the probability that any of the
runs in S return a solution to some problem instance (see Example 1), it is possible that f(S) < 1
for any finite schedule S. The best way of dealing with this is application-dependent. In the case
of Example 1, we might stop computing G when f(Gj) ≥ 1− δ for some small δ > 0.

The time required to computeG is also application-dependent. In the applications of interest to
us, evaluating the arg max in (3.1) will only require us to consider a finite number of actions (v, τ).
In some cases, the evaluation of the arg max in (3.1) can be sped up using application-specific data
structures.

As mentioned in §1.2, our analysis of the greedy approximation algorithm will only require
that f is monotone and that f satisfies Condition 1. The following lemma shows that if f is a job,
then f also satisfies these conditions.

Lemma 1. If f satisfies (1.1), then f satisfies Condition 1. That is, for any schedules S1, S ∈ S,
we have

f(S1 ⊕ S)− f(S1)

` (S)
≤ max

(v,τ)∈V×R>0

{
f(S1 ⊕ 〈(v, τ)〉)− f(S1)

τ

}
.

Proof. Let r denote the right hand side of the inequality. Let S = 〈a1, a2, . . . , aL〉, where al =
(vl, τl). Let

∆l = f(S1 ⊕ 〈a1, a2, . . . , al〉)− f(S1 ⊕ 〈a1, a2, . . . , al−1〉) .

We have

f(S1 ⊕ S) = f(S1) +
L∑
l=1

∆l (telescoping series)

≤ f(S1) +
L∑
l=1

(f(S1 ⊕ 〈al〉)− f(S1)) (submodularity)

≤ f(S1) +
L∑
l=1

r · τl (definition of r)

= f(S1) + r · ` (S) .

Rearranging this inequality gives f(S1⊕S)−f(S1)
`(S)

≤ r, as claimed.

The key to the analysis of the greedy approximation algorithm is the following fact, which is
the only property of G that we will use in our analysis.

Fact 1. For any schedule S, any positive integer j, and any t > 0, we have

f(S〈t〉) ≤ f(Gj) + t · sj
where sj is the jth value of the maximum in (3.1).

Fact 1 holds because f(S〈t〉) ≤ f(Gj⊕S〈t〉) by monotonicity, while f(Gj⊕S〈t〉) ≤ f(Gj)+t·sj
by Condition 1 and the definition of sj .

8

3.2.1 Maximizing coverage

We first analyze the performance of the greedy algorithm on the BUDGETED MAXIMUM SUB-
MODULAR COVERAGE problem. The following theorem shows that, for certain values of T , the
greedy schedule achieves the optimal approximation ratio of 1− 1

e
for this problem. The proof of

the theorem is similar to arguments in [21, 29].

Theorem 3. Let L be a positive integer, and let T =
∑L

j=1 τj , where gj = (vj, τj). Then
f
(
G〈T 〉

)
>
(
1− 1

e

)
maxS∈S

{
f
(
S〈T 〉

)}
.

Proof. Let C∗ = maxS∈S
{
f
(
S〈T 〉

)}
, and for any positive integer j, let ∆j = C∗ − f (Gj). By

Fact 1, C∗ ≤ f (Gj) + Tsj . Thus

∆j ≤ Tsj = T

(
∆j −∆j+1

τj

)
.

Rearranging this inequality gives ∆j+1 ≤ ∆j

(
1− τj

T

)
. Unrolling this inequality, we get

∆L+1 ≤ ∆1

(
L∏
j=1

1− τj
T

)
.

Subject to the constraint
∑L

j=1 τj = T , the product series is maximized when τj = T
L

for all j.
Thus we have

C∗ − f (GL+1) = ∆L+1 ≤ ∆1

(
1− 1

L

)L
< ∆1

1

e
≤ C∗

1

e
.

Thus f (GL+1) > (1− 1
e
)C∗, as claimed.

Theorem 3 shows that G gives a 1− 1
e

approximation to the problem of maximizing coverage
at time T , provided that T equals the sum of the durations of the actions in Gj for some positive
integer j. Under the assumption that f is a job (as opposed to the weaker assumption that f satisfies
Condition 1), the greedy algorithm can be combined with the partial enumeration approach of
Khuller et al. [19] to achieve a 1− 1

e
approximation ratio for any fixed T . The idea of this approach

is to guess a sequence Y = 〈a1, a2, a3〉 of three actions, and then run the greedy algorithm on the
job f ′(S) = f (Y ⊕ S) − f (Y) with budget T − T0, where T0 is the total time consumed by the
actions in Y . The arguments of [19, 29] show that, for some choice of Y , this yields a

(
1− 1

e

)
-

approximation. In order for this approach to be feasible, actions must have discrete durations, so
that the number of possible choices of Y is finite.

3.2.2 Minimizing cost

We next analyze the performance of the greedy algorithm on the MIN-SUM SUBMODULAR COVER

problem. The following theorem uses the proof technique of [11] to show that the greedy schedule
G has cost at most 4 times that of the optimal schedule, generalizing results of [11, 17, 25, 27, 28].
As already mentioned, achieving a better approximation ratio is NP-hard.

9

Theorem 4. c (f,G) ≤ 4
∫∞
t=0

1−maxS∈S
{
f
(
S〈t〉
)}

dt ≤ 4 minS∈S c (f, S).

Proof. Let Rj = 1 − f (Gj); let xj =
Rj

2sj
; let yj =

Rj

2
; and let h(x) = 1 −maxS

{
f
(
S〈x〉

)}
. By

Fact 1,

max
S

{
f(S〈xj〉)

}
≤ f (Gj) + xjsj = f (Gj) +

Rj

2
.

Thus h(xj) ≥ Rj − Rj

2
= yj . The monotonicity of f implies that h(x) is non-increasing and also

that the sequence 〈y1, y2, . . .〉 is non-increasing. As illustrated in Figure 1, these facts imply that∫∞
x=0

h(x) dx ≥
∑

j≥1 xj (yj − yj+1). Thus we have∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt =

∫ ∞
x=0

h(x) dx

≥
∑
j≥1

xj (yj − yj+1) (Figure 1)

=
1

4

∑
j≥1

Rj
(Rj −Rj+1)

sj

=
1

4

∑
j≥1

Rjτj

≥ 1

4
c (f,G) (monotonicity of f)

which proves the theorem.

y1
x1

y2
x2

y3
x3

y4
x4

y5

x5

x

h(x)

Figure 1: An illustration of the inequality
∫∞
x=0

h(x) dx ≥
∑

j≥1 xj (yj − yj+1). The left hand
side is the area under the curve, whereas the right hand side is the sum of the areas of the shaded
rectangles.

10

3.2.3 A refined greedy approximation algorithm

A drawback of G is that it greedily chooses an action gj = (v, τ) that maximizes the marginal
increase in f divided by τ , whereas the contribution of (v, τ) to the cost of G is not τ but rather∫ τ

t=0

1− f (Gj ⊕ 〈(v, t)〉) dt .

This can lead G to perform suboptimally even in seemingly easy cases. To see this, let V =
{v1, v2}, let S1

t = 〈(v1, t)〉, and let S2
t = 〈(v2, t)〉. Let f be a job defined by

f(S1
t) =

{
1 if t ≥ 1
0 otherwise

whereas
f(S2

t) = min {1, t} .

For any schedule S = 〈a1, a2, . . . , aL〉 containing more than one action, let f(S) = maxLl=1 f(〈al〉).
It is straightforward to check that f satisfies the monotonicity and submodularity conditions re-
quired of a job.

Here the optimal schedule is S∗ = 〈(v2, 1)〉, with cost c (f, S∗) =
∫ 1

t=0
1− t dt = 1

2
. However,

if ties in the evaluation of the arg max in (3.1) are broken appropriately, the greedy algorithm will
choose the schedule G = 〈(v1, 1)〉, with cost c (f,G) = 1.

To improve performance in cases such as this, it is natural to consider the schedule G′ =
〈g′1, g′2, . . .〉 defined inductively as follows: G′j =

{
g′1, g

′
2, . . . , g

′
j−1

}
and

g′j = arg max
(v,τ)∈V×R>0

{
f
(
G′j ⊕ 〈(v, τ)〉

)
− f

(
G′j
)∫ τ

t=0
1− f

(
G′j ⊕ 〈(v, t)〉

)
dt

}
. (3.2)

Theorem 5 shows that G′ achieves the same approximation ratio as G. The proof is similar to
the proof of Theorem 4, and is given in Appendix A.

Theorem 5. c (f,G′) ≤ 4
∫∞
t=0

1−maxS∈S
{
f
(
S〈t〉
)}

dt ≤ 4 minS∈S {c (f, S)}.

Furthermore, it can be shown that, in contrast to G, G′ is optimal in the important special case
when V = {v}, action (v, τ) represents running a Las Vegas algorithm v (with a fresh random
seed) for time τ , and f(S) equals the probability that at least one of the runs in S returns a solution
to some particular problem instance (as described in Example 1).

3.2.4 Handling non-uniform additive error

We now consider the case in which the jth decision made by the greedy algorithm is performed
with some additive error εj . This case is of interest for two reasons. First, in some cases it may
not be practical to evaluate the arg max in (3.1) exactly. Second, and more importantly, we will
end up viewing our online algorithm as a version of the offline greedy algorithm in which each
decision is made with some additive error. In this section we analyze the original greedy schedule

11

G as opposed to the refined schedule G′ described in the previous section, because it is the original
schedule G that will form the basis of our online algorithm (as we discuss further in §5, devising
an online algorithm based on G′ is an interesting open problem).

We denote by Ḡ = 〈ḡ1, ḡ2, . . .〉 a variant of the schedule G in which the jth arg max in (3.1) is
evaluated with additive error εj . More formally, Ḡ is a schedule that, for any j ≥ 1, satisfies

f
(
Ḡj ⊕ ḡj

)
− f

(
Ḡj

)
τ̄j

≥ max
(v,τ)∈V×R>0

{
f
(
Ḡj ⊕ 〈(v, τ)〉

)
− f

(
Ḡj

)
τ

}
− εj (3.3)

where Ḡ0 = 〈〉, Ḡj = 〈ḡ1, ḡ2, . . . , ḡj−1〉 for j > 1, and ḡj = (v̄j, τ̄j).
The following two theorems summarize the performance of Ḡ. The proofs are given in Ap-

pendix A, and are along the same lines as that those of theorems 3 and 4.

Theorem 6. Let L be a positive integer, and let T =
∑L

j=1 τ̄j , where ḡj = (v̄j, τ̄j). Then

f
(
Ḡ〈T 〉

)
>

(
1− 1

e

)
max
S∈S

{
f
(
S〈T 〉

)}
−

L∑
j=1

εj τ̄j .

Theorem 7. Let L be a positive integer, and let T =
∑L

j=1 τ̄j , where ḡj = (v̄j, τ̄j). For any

schedule S, define cT (f, S) ≡
∫ T
t=0

1− f
(
S〈t〉
)
dt. Then

cT
(
f, Ḡ

)
≤ 4

∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt+
L∑
j=1

Ej τ̄j .

where Ej =
∑

l<j εlτ̄l.

4 Online Algorithms
In this section we consider the online versions of BUDGETED MAXIMUM SUBMODULAR COV-
ERAGE and MIN-SUM SUBMODULAR COVER. In the online setting we are fed, one at a time, a
sequence 〈f1, f2, . . . , fn〉 of jobs. Prior to receiving job fi, we must specify a schedule Si. We then
receive complete access to the function fi. We measure the performance of our online algorithm
using two different notions of regret. For the cost objective, our goal is to minimize the 4-regret

Rcost ≡
n∑
i=1

cT (Si, fi)− 4 ·min
S∈S

{
n∑
i=1

c (S, fi)

}

for some fixed T > 0. Here, for any schedule S and job f , we define cT (S, f) =
∫ T
t=0

1− f
(
S〈t〉
)
dt

to be the value of c (S, f) when the integral is truncated at time T . Some form of truncation is nec-
essary because c (Si, fi) could be infinite, and without bounding it we could not prove any finite
bound on regret (our regret bounds will be stated as a function of T).

12

For the objective of maximizing the coverage at time T , our goal is to minimize the (1 − 1
e
)-

regret

Rcoverage ≡
(

1− 1

e

)
max
S∈S

{
n∑
i=1

fi
(
S〈T 〉

)}
−

n∑
i=1

fi (Si)

where we require that E [` (Si)] = T , in expectation over the online algorithm’s random bits. In
other words, we allow the online algorithm to treat T as a budget in expectation, rather than a hard
budget.

Our goal is to bound the expected values of Rcost (resp. Rcoverage) on the worst-case sequence
of n jobs. We consider the so-called oblivious adversary model, in which the sequence of jobs is
fixed in advance and does not change in response to the decisions made by our online algorithm,
although we believe our results can be readily extended to the case of adaptive adversaries. Note
that the constant of 4 in the definition ofRcost and the constant of 1− 1

e
in the definition ofRcoverage

stem from the NP-hardness of the corresponding offline problems, as discussed in §3.1.
For the purposes of the results in this section, we confine our attention to schedules that consist

of actions that come from some finite set A, and we assume that the actions in A have integer
durations (i.e. A ⊆ V × Z>0). Note that this is not a serious limitation, because real-valued action
durations can always be discretized at whatever level of granularity is desired.

As mentioned in §1.2, our results in the online setting will hold for any sequence 〈f1, f2, . . . , fn〉
of functions that satisfies Condition 2. The following lemma shows that any sequence of jobs sat-
isfies this condition. The proof follows along the same lines as the proof of Lemma 1, and is given
in Appendix A.

Lemma 2. Any sequence 〈f1, f2, . . . , fn〉 of jobs satisfies Condition 2. That is, for any sequence
S1, S2, . . . , Sn of schedules and any schedule S,∑n

i=1 fi(Si ⊕ S)− fi(Si)
` (S)

≤ max
(v,τ)∈V×R>0

{∑n
i=1 fi(Si ⊕ 〈(v, τ)〉)− fi(Si)

τ

}
.

4.1 Background: the experts problem
In the experts problem, one has access to a set of k experts, each of whom gives out a piece of
advice every day. On each day i, one must select an expert ei whose advice to follow. Following
the advice of expert j on day i yields a reward xij . At the end of day i, the value of the reward xij
for each expert j is made public, and can be used as the basis for making choices on subsequent
days. One’s regret at the end of n days is equal to

max
1≤j≤k

{
n∑
i=1

xij

}
−

n∑
i=1

xiei
.

Note that the historical performance of an expert does not imply any guarantees about its future
performance. Remarkably, randomized decision-making algorithms nevertheless exist whose re-
gret grows sub-linearly in the number of days. By picking experts using such an algorithm, one can

13

guarantee to obtain (asymptotically as n→∞) an average reward that is as large as the maximum
reward that could have been obtained by following the advice of any fixed expert for all n days.

In particular, for any fixed value of Gmax, where Gmax = max1≤j≤k
{∑n

i=1 x
i
j

}
, the random-

ized weighted majority algorithm (WMR) [22] can be used to achieve worst-case regretO
(√

Gmax ln k
)
.

If Gmax is not known in advance, a putative value can be guessed and doubled to achieve the same
guarantee up to a constant factor.

4.2 Unit-cost actions
In the special case in which each action takes unit time (i.e., A ⊆ V × {1}), our online algorithm
OGunit is very simple. OGunit runs T experts algorithms:2 E1, E2, . . . , ET , where T is the number
of time steps for which our schedule is defined. The set of experts is A. Just before job fi arrives,
each experts algorithm Et selects an action ait. The schedule used by OGunit on job fi is Si =
〈ai1, ai2, . . . , aiT 〉. The payoff that Et associates with action a is fi

(
Si〈t−1〉 ⊕ a

)
− fi

(
Si〈t−1〉

)
.

Algorithm OGunit

Input: integer T , experts algorithms E1, E2, . . . , ET .

For i from 1 to n:
1. For each t, 1 ≤ t ≤ T , use Et to select an action ait.

2. Select the schedule Si = 〈ai1, ai2, . . . , aiT 〉.

3. Receive the job fi.

4. For each t, 1 ≤ t ≤ T , and each action a ∈ A, feed back
fi
(
Si〈t−1〉 ⊕ a

)
− fi

(
Si〈t−1〉

)
as the payoff Et would have received

by choosing action a.

Let rt be the regret experienced by experts algorithm Et when running OGunit, and let R =∑T
t=1 rt. The key to the analysis of OGunit is the following lemma, which relates the regret

experienced by the experts algorithms to the regret on the original online problem.

Lemma 3. Rcoverage ≤ R and Rcost ≤ TR.

Proof. We will view OGunit as producing an approximate version of the offline greedy schedule
for the function f = 1

n

∑n
i=1 fi. First, view the sequence of actions selected by Et as a single

“meta-action” ãt, and extend the domain of each fi to include the meta-actions by defining fi(S ⊕
ãt) = fi(S ⊕ ait) for all S ∈ S. Thus, the online algorithm produces a single schedule S̃ =
〈ã1, ã2, . . . , ãT 〉 for all i. By construction,

rt
n

= max
a∈A

{
f
(
S̃〈t−1〉 ⊕ a

)
− f

(
S̃〈t−1〉

)}
−
(
f
(
S̃〈t−1〉 ⊕ ãt

)
− f

(
S̃〈t−1〉

))
.

2In general, E1, E2, . . . , ET will be T distinct copies of a single experts algorithm, such as randomized weighted
majority.

14

Thus OGunit behaves exactly like the greedy schedule Ḡ for the function f , where the tth decision
is made with additive error rt

n
.

Furthermore, the fact that the sequence 〈f1, f2, . . . , fn〉 satisfies Condition 2 implies that for
any integer t (1 ≤ t ≤ T) and any schedule S, we have

f(S̃〈t−1〉 ⊕ S)− f(S̃〈t−1〉)

` (S)
≤ max

(v,τ)∈V×R>0

{
f(S̃〈t−1〉 ⊕ 〈(v, τ)〉)− f(S̃〈t−1〉)

τ

}
.

Thus the function f satisfies Condition 1, so the analysis of the greedy approximation algorithm
in §3.2 applies to the schedule S̃. In particular, Theorem 6 implies that Rcoverage ≤

∑T
t=1 rt = R.

Similarly, Theorem 7 implies that Rcost ≤ TR.

To complete the analysis, it remains to bound E [R]. First, note that the payoffs to each ex-
perts algorithm Et depend on the choices made by experts algorithms E1, E2, . . . , Et−1, but not
on the choices made by Et itself. Thus, from the point of view of Et, the payoffs are gener-
ated by a non-adaptive adversary. Suppose that randomized weighted majority (WMR) is used
as the subroutine experts algorithm. Because each payoff is at most 1 and there are n rounds,
E [rt] = O

(√
Gmax ln |A|

)
= O

(√
n ln |A|

)
, so a trivial bound is E [R] = O

(
T
√
n ln |A|

)
. In

fact, we can show that the worst case is when Gmax = Θ
(
n
T

)
for all T experts algorithms, leading

to the following improved bound. The proof is given in Appendix A.

Lemma 4. Algorithm OGunit, run with WMR as the subroutine experts algorithm, has E [R] =

O
(√

Tn ln |A|
)

in the worst case.

Combining Lemmas 3 and 4 yields the following theorem.

Theorem 8. Algorithm OGunit, run with WMR as the subroutine experts algorithm, has E [Rcoverage]

= O
(√

Tn ln |A|
)

and E [Rcost] = O
(
T
√
Tn ln |A|

)
in the worst case.

4.3 From unit-cost actions to arbitrary actions
In this section we generalize the online greedy algorithm presented in the previous section to ac-
commodate actions with arbitrary durations. Like OGunit, our generalized algorithm OG makes
use of a series of experts algorithms E1, E2, . . . , EL (for L to be determined). On each round
i, OG constructs a schedule Si as follows: for t = 1, 2, . . . , L, it uses Et to choose an action
ait = (v, τ) ∈ A, and appends this action to Si with probability 1

τ
. The payoff that Et associates

with action a equals 1
τ

times the increase in f that would have resulted from appending a to the
schedule-under-construction.

15

Algorithm OG
Input: integer L, experts algorithms E1, E2, . . . , EL.

For i from 1 to n:
1. Let Si,0 = 〈〉 be the empty schedule.

2. For each t, 1 ≤ t ≤ L,

(a) Use Et to choose an action ait = (v, τ) ∈ A.

(b) With probability 1
τ
, set Si,t = Si,t−1⊕〈a〉; else set Si,t = Si,t−1.

3. Select the schedule Si = Si,L.

4. Receive the job fi.

5. For each t, 1 ≤ t ≤ L, and each action a ∈ A, feed back

xit,a =
1

τ
(fi (Si,t−1 ⊕ a)− fi (Si,t−1))

as the payoff Et would have received by choosing action a.

Our analysis of OG follows along the same lines as the analysis of OGunit in the previous
section. As in the previous section, we will view each experts algorithm Et as selecting a single
“meta-action” ãt. We extend the domain of each fi to include the meta-actions by defining

fi(S ⊕ ãt) =

{
fi(S ⊕ ait) if ait was appended to Si
fi(S) otherwise.

Thus, the online algorithm produces a single schedule S̃ = 〈ã1, ã2, . . . , ãL〉 for all i.
For the purposes of analysis, we will imagine that each meta-action ãt always takes unit time

(whereas in fact, ãt takes unit time per job in expectation). We show later that this assumption does
not invalidate any of our arguments.

Let f = 1
n

∑n
i=1 fi, and let S̃t = 〈ã1, ã2, . . . , ãt〉. As in the previous section, the fact that

the sequence 〈f1, f2, . . . , fn〉 satisfies Condition 2 implies that f satisfies Condition 1 (even if the
schedule S1 in the statement of Condition 1 contains meta-actions). Thus S̃ can be viewed as a
version of the greedy schedule in which the tth decision is made with additive error (by definition)
equal to

εt = max
(v,τ)∈A

{
1

τ

(
f(S̃t−1 ⊕ a)− f(S̃t−1)

)}
−
(
f(S̃t−1 ⊕ ãt)− f(S̃t−1)

)
(where we have used the assumption that ãt takes unit time).

As in the previous section, let rt be the regret experienced by Et. In general, rt
n
6= εt. However,

we claim that E [εt] = E
[
rt
n

]
. To see this, fix some integer t (1 ≤ t ≤ L), let At = 〈a1

t , a
2
t , . . . , a

n
t 〉

16

be the sequence of actions selected by Et, and let yit be the payoff received by Et on round i (i.e.,
yit = xi

t,ai
t
). By construction,

yit = E
[
fi(S̃t−1 ⊕ ãt)− fi(S̃t−1)|At, S̃t−1

]
.

Thus,

rt
n

= max
(v,τ)∈A

{
1

τ

(
f(S̃t−1 ⊕ a)− f(S̃t−1)

)}
− E

[
f(S̃t−1 ⊕ ãt)− f(S̃t−1)|At, S̃t−1

]
.

Taking the expectation of both sides of the equations for εt and rt then shows that E [εt] = E
[
rt
n

]
,

as claimed.
We now prove a bound on E [Rcoverage]. As already mentioned, f satisfies Condition 1, so

the greedy schedule’s approximation guarantees apply to f . In particular, by Theorem 6, we have
Rcoverage ≤

∑T
t=1 rt. Thus E [Rcoverage] ≤ E [R], where R =

∑T
t=1 rt.

To bound E [Rcoverage], it remains to justify the assumption that each meta-action ãt always
takes unit time. Regardless of what actions are chosen by each experts algorithm, the schedule
is defined for L time steps in expectation. Thus if we set L = T , the schedules Si returned by
OG satisfy the budget in expectation, as required in the definition of Rcoverage. Thus, as far as
Rcoverage is concerned, the meta-actions may as well take unit time (in which case ` (Si) = T with
probability 1). Combining the bound on E [R] stated in Lemma 4 with the fact that E [Rcoverage] ≤
E [R] yields the following theorem.

Theorem 9. Algorithm OG, run with input L = T , has E [Rcoverage] ≤ E [R]. If WMR is used as

the subroutine experts algorithm, then E [R] = O
(√

Tn ln |A|
)

.

The argument bounding E [Rcost] is similar, although somewhat more involved, and is given
in Appendix A. Relative to the case of unit-cost actions addressed in the previous section, the
additional complication here is that ` (Si) is now a random variable, whereas in the definition of
Rcost the cost of a schedule is always calculated up to time T . This complication can be overcome
by making the probability that ` (Si) < T sufficiently small, which can be accomplished by setting
L � T and applying concentration inequalities. However, E [R] grows as a function of L, so we
do not want to make L too large. It turns out that the (approximately) best bound is obtained by
setting L = T lnn.

Theorem 10. Algorithm OG, run with input L = T lnn, has E [Rcost] = O(T lnn · E [R] +

T
√
n). In particular, E [Rcost] = O

(
(lnn)

3
2T
√
Tn ln |A|

)
if WMR is used as the subroutine

experts algorithm.

4.4 Dealing with limited feedback
Thus far we have assumed that, after specifying a schedule Si, the online algorithm receives com-
plete access to the job fi. We now consider three more limited feedback settings that may arise in
practice:

17

1. In the priced feedback model, to receive access to fi we must pay a price C. Each time we
do so, C is added to the regret Rcoverage, and TC is added to the regret Rcost.

2. In the partially transparent feedback model, we only observe fi
(
Si〈t〉

)
for each t > 0.

3. In the opaque feedback model, we only observe fi (Si).

The priced and partially transparent feedback models arise naturally in the case where action
(v, τ) represents running a deterministic algorithm v for τ (additional) time units in order to solve
some decision problem. Assuming we halt once some v returns an answer, we obtain exactly the
information that is revealed in the partially transparent model. Alternatively, running each v until
it terminates would completely reveal the function fi, but incurs a computational cost.

Algorithm OG can be adapted to work in each of these three feedback settings. In all cases,
the high-level idea is to replace the unknown quantities used by OG with (unbiased) estimates of
those quantities. This technique has been used in a number of online algorithms (e.g., see [2, 4, 7]).

Specifically, for each day i and expert j, let x̂ij ∈ [0, 1] be an estimate of xij , such that

E
[
x̂ij
]

= γxij + δi

for some constant δi (which is independent of j). In order words, we require that 1
γ

(
x̂ij − δi

)
is

an unbiased estimate of xij . Furthermore, let x̂ij be independent of the choices made by the experts
algorithm.

Let E be an experts algorithm, and let E ′ be the experts algorithm that results from feeding back
x̂ij to E (in place of xij) as the payoff E would have received by selecting expert j on day i. The
following lemma relates the performance of E ′ to that of E .

Lemma 5. The worst-case expected regret that E ′ can incur over a sequence of n days is at most
R
γ

, where R is the worst-case expected regret that E can incur over a sequence of n days.

Proof. Let x̂ = 〈x̂1, x̂2, . . . , x̂n〉 be the sequence of estimated payoffs. Because the estimates x̂ij
are independent of the choices made by E ′, we may imagine for the purposes of analysis that x̂ is
fixed in advance. Fix some expert j. By definition of R,

E

[
n∑
i=1

x̂iei
|x̂

]
≥

(
n∑
i=1

x̂ij

)
−R .

Taking the expectation of both sides with respect to the choice of x̂ then yields

E

[
n∑
i=1

(
γxiei

+ δi
)]
≥

n∑
i=1

(
γxij + δi

)
−R

or rearranging,

E

[
n∑
i=1

xiei

]
≥

(
n∑
i=1

xij

)
− R

γ
.

Because j was arbitrary, it follows that E ′ has worst-case expected regret R
γ

.

18

4.4.1 The priced feedback model

In the priced feedback model, we use a technique similar to that of [7]. With probabiltiy γ, we will
pay cost C in order to reveal fi, and then feed the usual payoffs back to each experts algorithm Et.
Otherwise, with probability 1− γ, we feed back zero payoffs to each Et (note that without paying
cost C, we receive no information whatsoever about fi, and thus we have no basis for assigning
different payoffs to different actions). We refer to this algorithm as OGp. By Lemma 5, E [rt]
is bounded by 1

γ
times the worst-case regret of Et. By bounding E [Rcoverage] and E [Rcost] as a

function of γ and then optimizing γ to minimize the bounds, we obtain the following theorem, a
complete proof of which is given in Appendix A.

Theorem 11. Algorithm OGp, run with WMR as the subroutine experts algorithm, has E [Rcoverage] =

O
(

(C ln |A|) 1
3 (Tn)

2
3

)
(when run with inputL = T) and has E [Rcost] =O

(
(T lnn)

5
3 (C ln |A|) 1

3 (n)
2
3

)
(when run with input L = T lnn) in the priced feedback model.

4.4.2 The partially transparent feedback model

In the partially transparent feedback model, each Et will run a copy of the Exp3 algorithm [2],
which is a randomized experts algorithm that only requires as feedback the payoff of the expert
it actually selects. In the partially transparent feedback model, if Et selects action ait = (v, τ) on
round i, it will receive feedback fi (Si,t−1 ⊕ ait)−fi (Si,t−1) if ait is appended to the schedule (with
probability 1

τ
), and will receive zero payoff otherwise. Observe that the information necessary to

compute these payoffs is revealed in the partially transparent feedback model. Furthermore, the
expected payoff that Et receives if it selects action a is xit,a, and the payoff that Et receives from
choosing action a on round i is independent from the choices made by Et on previous rounds. Thus,
by Lemma 5, the worst-case expected regret bounds of Exp3 can be applied to the true payoffs xit,a.

The worst-case expected regret of Exp3 is O
(√

n |A| ln |A|
)

, so E [R] = O
(
L
√
n |A| ln |A|

)
.

This bound, combined with Theorems 9 and 10, establishes the following theorem.

Theorem 12. Algorithm OG, run with Exp3 as the subroutine experts algorithm, has E [Rcoverage] =

O
(
T
√
n |A| ln |A|

)
(when run with inputL = T) and has E [Rcost] = O

(
(T lnn)2

√
n |A| ln |A|

)
(when run with input L = T lnn) in the partially transparent feedback model.

4.4.3 The opaque feedback model

In the opaque feedback model, our algorithm and its analysis are similar to those of OGp. With
probability 1− γ, we feed back zero payoffs to each Et. Otherwise, with probability γ, we explore
as follows. Pick t uniformly at random from {1, 2, . . . , L}, and pick an action a = (v, τ) uniformly
at random fromA. Select the schedule Si = Si,t−1⊕a. Observe fi(Si), and feed 1

τ
times this value

back to Et as the payoff associated with action a. Finally, feed back zero for all other payoffs.
We refer to this algorithm as OGo. The key to its analysis is the following observation. Letting

19

x̂it,a denote the payoff to experts algorithm Et for choosing action a = (v, τ) on round i, we have

E
[
x̂it,a
]

= γ · 1

L
· 1

|A|
· 1

τ
· f(Si,t−1 ⊕ a) =

γ

L |A|
xit,a + δi

where xit,a = 1
τ

(f(Si,t−1 ⊕ a)− f(Si,t−1)) and δi = γ
L|A|τ f(Si,t−1). Thus, x̂it,a is a biased estimate

of the correct payoff, and Lemma 5 implies that E [rt] is at most L|A|
γ

times the worst-case expected
regret of Et.

The performance of OGo is summarized in the following theorem, which we prove in Ap-
pendix A.

Theorem 13. Algorithm OGo, run with WMR as the subroutine experts algorithm, has E [Rcoverage] =

O
(
T (|A| ln |A|) 1

3n
2
3

)
(when run with inputL = T) and has E [Rcost] = O

(
(T lnn)2(|A| ln |A|) 1

3n
2
3

)
(when run with input L = T lnn) in the opaque feedback model.

4.5 Lower bounds on regret
In Appendix A we prove the following lower bounds on regret. The lower bounds apply to the
online versions of two set-covering problems: MAX k-COVERAGE and MIN-SUM SET COVER.
The offline versions of these two problems were defined in §1.4. The online versions are special
cases of the online versions of BUDGETED MAXIMUM SUBMODULAR COVERAGE and MIN-
SUM SUBMODULAR COVER, respectively. For a formal description of the online set covering
problems, see the text leading up to the proofs of Theorems 14 and 15 in Appendix A.

It is worth pointing out that the lower bounds hold even in a distributional online setting in
which the jobs f1, f2, . . . , fn are drawn independently at random from a fixed distribution.

Theorem 14. Any algorithm for online MAX k-COVERAGE has worst-case expected 1-regret

Ω

(√
Tn ln |V|

T

)
, where V is the collection of sets and T = k is the number of sets selected

by the online algorithm on each round.

Theorem 15. Any algorithm for online MIN-SUM SET COVER has worst-case expected 1-regret

Ω

(
T
√
Tn ln |V|

T

)
, where V is a collection of sets and T is the number of sets selected by the

online algorithm on each round.

In Appendix A we show that there exist exponential-time online algorithms for these online set
covering problems whose regret matches the lower bounds in Theorem 14 (resp. Theorem 15) up
to constant (resp. logarithmic) factors.

Note that the upper bounds in Theorem 8 match the lower bounds in Theorems 14 and 15 up to
logarithmic factors, although the former apply to (1− 1

e
)-regret and 4-regret rather than 1-regret.

20

4.6 Refining the online greedy algorithm
We now discuss two simple modifications to OG that do not improve its worst-case guarantees,
but that often improve its performance in practice (we make use of both of these modifications in
our experimental evaluation).

4.6.1 Avoiding duplicate actions

In many practical applications, it is never worthwhile to perform the same action twice. As an ex-
ample, suppose that an action a = (v, τ) represents performing a run of length τ of a deterministic
algorithm v (and then removing the run from memory), and f(S) = 1 if performing the actions in
S yields a solution to a problem instance, and f(S) = 0 otherwise. Clearly, performing a twice can
never increase the value of f . In cases such as this, the online algorithm OG as currently defined
may never “figure out” that it should avoid performing the same action twice, as the following
example illustrates.

Example 2. Let A = {a1, a2, . . . , aT} be a set of T actions that each take unit time, and for all
i, let fi(S) equal 1

T
times the number of distinct actions that appear in S. Thus, the schedule

S∗ = 〈a1, a2, . . . , aT 〉 has fi(S∗) = 1 for all i, and is optimal in terms of coverage. Suppose we
run OG on the sequence of jobs 〈f1, f2, . . . , fn〉. All actions yield equal payoff to E1. If E1 is a
standard experts algorithm such as randomized weighted majority, it will choose actions uniformly
at random. Given that E1 chooses actions uniformly at random, E2 will (asymptotically) choose
actions uniformly at random as well. Inductively, all actions will be chosen at random. If so, the
probability that any particular experts algorithm selects a unique action is 1 − (1 − 1

T
)T (which

approaches 1− 1
e

as T →∞). By linearity of expectation, the expected fraction of actions that are
unique is exactly this quantity.

To improve performance on examples such as this one, we may force the online algorithm to
return a schedule with no duplicate actions as follows. Just before job fi arrives, obtain from each
experts algorithm Et a distribution over A (for experts algorithms such as randomized weighted
majority, it is straightforward to obtain this distribution explicitly). We then sample from these
distributions as follows. We first sample from E1 to obtain an action ai1. To obtain action ait for
t > 1, we repeatedly sample from the distribution returned by Et until we obtain an action not
in the set

{
ai1, a

i
2, . . . , a

i
t−1

}
(given the distribution, we can simulate this step without actually

performing repeated sampling).
With this modification, OG always achieves coverage 1 for the job f described in example

2. Furthermore, this modification preserves the worst-case guarantees of the original version of
OG (under the assumption performing the same action twice never increases the value of any
function fi). Informally, this follows from the fact that the expected payoff received by sampling
from the modified distribution can never be smaller than the expected payoff received by sampling
from the original distribution (because the payoffs associated with the experts corresponding to
actions already in the schedule are all zero). For this reason, this modification never increases the
worst-case regret of the experts algorithms, and our previous analysis carries through unchanged.

21

4.6.2 Independent versus dependent probabilities

Recall that in the case of arbitrary-cost actions, when an experts algorithm selects an action (v, τ)
we add this action to the schedule independently with probability 1

τ
. The fact that this addition

is performed independently of the actions that are already in the schedule can lead to undesirable
behavior, as the following example illustrates.

Example 3. Let V = {v} consist of a single activity, let f(S) = 1 if S contains the action (v, T),
and let f(S) = 0 otherwise. Thus, the schedule S∗ = 〈(v, T)〉 maximizes f(S〈T 〉). However,
E [f(S)] ≤ 1− (1− 1

T
)T if S is a schedule returned by OG. This is true because at most T experts

algorithms can select the action (v, T), but in each case the action is only added to the schedule
with probability 1

T
, so the probability that (v, T) is added to the schedule is at most 1− (1− 1

T
)T ,

which approaches 1− 1
e

as T →∞.

We can fix this problem as follows. When experts algorithm Et selects an action at = (v, τ),
we increase the probability that the action is in the schedule by 1

τ
. In other words, if at has been

picked by k experts algorithms so far but has still not been added to the schedule, then we add it to
the schedule with probability 1

τ−k . Thus, if τ consecutive experts algorithms select the same action
(v, τ), it will always be added to the schedule exactly once.

The schedules produced by this modified online algorithm still consume T time steps in expec-
tation, and our previous analysis carries through to give same regret bounds on Rcoverage that were
stated in Theorem 9. Unfortunately, the analysis for the bounds on Rcost stated in Theorem 10
depends critically on the use of independent probabilities, and does not carry through after having
made this modification. Nevertheless, in our experiments in §6 we found that this modification was
helpful in practice.

5 Open Problems
The results presented in this paper suggest several open problems:

1. Avoiding discretization. As currently defined, our online algorithm can only handle finite
set of actions A. Thus, to apply this online algorithm to a problem in which the actions
have real-valued durations between 0 and 1, one might discretize the durations to be in
the set

{
1
T
, 2
T
, . . . , 1

}
. To achieve the best performance, one would like to set T as large

as possible, but the time and space required by the online algorithm grow linearly with
T . It would be desirable to avoid discretization altogether, perhaps after making additional
smoothness assumptions about the jobs fi. A possible approach would be to consider the
limiting behavior of our algorithm as T → ∞, for some particular choice of subroutine
experts algorithm.

2. Lower bounds on 4-regret and 1 − 1
e

regret. The lower bounds proved in §4.5 apply only
to 1-regret, whereas our online algorithms optimize either 4 regret (in the case of Rcost) or
1− 1

e
regret (in the case of Rcoverage). It would be interesting to prove lower bounds on Rcost

and Rcoverage. Such lower bounds would hold for online algorithms that make decisions in
polynomial time, under the assumption that P 6= NP.

22

3. An online version of the refined greedy approximation algorithm G′. Recall that in §3.2
we showed that the offline greedy approximation algorithm is sub-optimal for a simple job
involving two activities, and then considered an alternative greedy approximation algorithm
that produces an optimal schedule for this job. The online algorithm presented in §4 is based
on the original greedy approximation algorithm, and thus it also performs sub-optimally on
this simple example. Although it appears non-trivial to do so, it would be interesting to
develop an online version of the alternative greedy approximation algorithm that performed
optimally on such examples.

6 Experimental Evaluation on SAT 2007 Competition Data
The annual SAT solver competition (www.satcompetition.org) is designed to encourage
the development of efficient Boolean satisfiability solvers, which are used as subroutines in state-
of-the-art model checkers, theorem provers, and planners. The competition consists of running
each submitted solver on a number of benchmark instances, with a per-instance time limit. Solvers
are ranked according to the number of instances they solve within each of three instance categories:
industrial, random, and hand-crafted.

In this section we evaluate the online algorithm OG by using it to combine solvers from the
2007 SAT competition. To do so, we used data available on the competition web site3 to con-
struct a matrix t, where ti,j is the time that the jth solver required on the ith benchmark instance.
We used this data to determine whether or not a given schedule would solve an instance within
the time limit T (schedule S solves instance i if and only if, for some j, S〈T 〉 contains actions
(hj, τ1), (hj, τ2), . . . , (hj, τL) with

∑L
l=1 τl ≥ ti,j). Within each instance category, we compared

OG to the offline greedy schedule, to the individual solver that solved the most instances within
the time limit, and to a schedule that ran each solver in parallel at equal strength. We ran OG in
the full-information feedback model.

Table 1 summarizes the results. In each category, the offline greedy schedule and the online
greedy algorithm solved more instances than any solver that was entered in the competition, and
solve more instances than the naı̈ve parallel schedule.

Table 1: Number of benchmark instances solved within time limit.

Category (#Instances) Offline Online Parallel Top solver
Industrial (234) 147 149 132 139
Random (511) 350 347 302 257
Hand-crafted (201) 114 107 95 98

3We use the data from phase 2 of the competition, available at http://www.cril.univ-artois.fr/
SAT07/.

23

www.satcompetition.org
http://www.cril.univ-artois.fr/SAT07/
http://www.cril.univ-artois.fr/SAT07/

7 Conclusions
This paper considered an online resource allocation problem that generalizes several previously-
studied online problems, and that has applications to algorithm portfolio design and the optimiza-
tion of query processing in databases. The main contribution of this paper was an online version of
a greedy approximation algorithm whose worst-case performance guarantees in the offline setting
are the best possible assuming P 6= NP.

References
[1] Noga Alon, Baruch Awerbuch, and Yossi Azar. The online set cover problem. In Proceedings

of the 35th annual ACM Symposium on Theory of Computing, pages 100–105, 2003.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[3] Giorgio Ausiello, Aristotelis Giannakos, and Vangelis Th. Paschos. Greedy algorithms for
on-line set-covering and related problems. In Twelfth Computing: The Australasian Theory
Symposium (CATS2006), pages 145–151, 2006.

[4] Baruch Awerbuch and Robert Kleinberg. Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches. In Proceedings of the 36th annual ACM Sympo-
sium on Theory of Computing, pages 45–53, 2004.

[5] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom.
Adaptive ordering of pipelined stream filters. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 407–418, 2004.

[6] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David Helmbold, Robert Schapire, and
Manfred Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

[7] Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, 51:2152–2162, 2005.

[8] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities – a survey.
Internet Math., 3(1):79–127, 2006.

[9] Edith Cohen, Amos Fiat, and Haim Kaplan. Efficient sequences of trials. In Proceedings of
the 14th annual ACM-SIAM Symposium on Discrete Algorithms, pages 737–746, 2003.

[10] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

[11] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorith-
mica, 40(4):219–234, 2004.

24

[12] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126:43–62,
2001.

[13] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena
in satisfiability and constraint satisfications problems. Journal of Automated Reasoning,
24(1/2):67–100, 2000.

[14] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search through
randomization. In Proceedings of the Fifteenth National Conference on Artificial Intelligence,
pages 431–437, 1998.

[15] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics approach to hard
computational problems. Science, 275:51–54, 1997.

[16] Sham Kakade, Adam Kalai, and Katrina Ligett. Playing games with approximation algo-
rithms. In Proceedings of the 39th annual ACM Symposium on Theory of Computing, pages
546–555, 2007.

[17] Haim Kaplan, Eyal Kushilevitz, and Yishay Mansour. Learning with attribute costs. In
Proceedings of the 37th annual ACM Symposium on Theory of Computing, pages 356–365,
2005.

[18] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 137–146, 2003.

[19] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum coverage prob-
lem. Information Processing Letters, 70(1):39–45, 1999.

[20] Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graph-
ical models. In Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-05), pages 324–331, 2005.

[21] Andreas Krause and Carlos Guestrin. A note on the budgeted maximization of submodular
functions. Technical Report CMU-CALD-05-103, Carnegie Mellon University, 2005.

[22] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

[23] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas algo-
rithms. Information Processing Letters, 47:173–180, 1993.

[24] Adam Meyerson. Online facility location. In FOCS ’01: Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, pages 426–431, 2001.

[25] Kamesh Munagala, Shivnath Babu, Rajeev Motwani, Jennifer Widom, and Eiter Thomas.
The pipelined set cover problem. In Proceedings of the International Conference on Database
Theory, pages 83–98, 2005.

25

[26] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maxi-
mizing submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

[27] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining multiple heuristics
online. In Proceedings of the Twenty-Second Conference on Artificial Intelligence, pages
1197–1203, 2007.

[28] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Restart schedules for ensembles
of problem instances. In Proceedings of the Twenty-Second Conference on Artificial Intelli-
gence, pages 1204–1210, 2007.

[29] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32:41–43, 2004.

Appendix A: Additional Proofs
Theorem 5. c (f,G′) ≤ 4

∫∞
t=0

1−maxS∈S
{
f
(
S〈t〉
)}

dt ≤ 4 minS∈S {c (f, S)}.

Proof. Recall that G′ = 〈g′1, g′2, . . .〉, where G′j = 〈g′1, g′2, . . . , g′j−1〉 and

g′j = arg max
(v,τ)∈V×R>0

f
(
G′j ⊕ (v, τ)

)
− f

(
G′j
)∫ τ

t′=0
1− f

(
G′j + (v, t′)

)
dt′

. (7.1)

Let s′j equal the jth value of the arg max in (7.1), multiplied by the quantity 1 − f(G′j). We will
make use of the following claim.
Claim 1. For any schedule S, any positive integer j, and any t ≥ 0, f

(
S〈t〉
)
≤ f

(
G′j
)

+ ts′j .

Proof. Fix an action a = (v, τ). By monotonicity of f , we have
∫ τ
t′=0

1− f
(
G′j ⊕ 〈(v, τ)〉

)
dt′ ≤

τ(1− f
(
G′j
)
), or equivalently,

1

τ
≤

1− f
(
G′j
)∫ τ

t′=0
1− f

(
G′j + (v, τ)

)
dt′

.

This and the definition of s′j imply

f
(
G′j ⊕ 〈a〉

)
− f

(
G′j
)

τ
≤
(
1− f

(
G′j
))
·

f
(
G′j ⊕ 〈a〉

)
− f

(
G′j
)∫ τ

t′=0
1− f

(
G′j ⊕ 〈(v, t′)〉

)
dt′
≤ s′j .

The claim then follows by exactly the same argument that was used to prove Fact 1.

The remainder of the proof parallels the proof of Theorem 4. Using Claim 1 and the argument
in the proof of Theorem 4, we get that∫ ∞

t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt ≥
∑
j≥1

xj(yj − yj+1)

26

where xj =
Rj

2s′j
, yj =

Rj

2
, and Rj = 1− f

(
G′j
)
. Letting g′j = (vj, τj), we have

∑
j≥1

xj(yj − yj+1) =
1

4

∑
j≥1

∫ τj

t′=0

1− f
(
G′j ⊕ 〈(vj, t′)〉

)
dt′ =

1

4
c (f,G′) .

which proves the theorem.

We now prove the theorems concerning the performance of the greedy schedule Ḡ, in which
the jth evaluation of the arg max in (3.1) is performed with additive error εj . To ease notation, let
Ḡ = 〈g1, g2, . . .〉, where gj = (vj, τj). Let sj =

f(Ḡj+1)−f(Ḡj)

τj
. To prove Theorems 6 and 7, we will

make use of the following fact, which can be proved in exactly the same way as Fact 1.

Fact 2. For any schedule S, any positive integer j, and any t > 0, we have f(S〈t〉) ≤ f(Ḡj) + t ·
(sj + εj).

Theorem 6. Let L be a positive integer, and let T =
∑L

j=1 τj , where gj = (vj, τj). Then

f
(
Ḡ〈T 〉

)
>

(
1− 1

e

)
max
S∈S

{
f
(
S〈T 〉

)}
−

L∑
j=1

εjτj .

Proof. Let C∗ = maxS∈S
{
f
(
S〈T 〉

)}
, and for any positive integer j, let ∆j = C∗ − f (Gj). By

Fact 2, C∗ ≤ f
(
Ḡj

)
+ T (sj + εj). Thus

∆j ≤ T (sj + εj) = T

(
∆j −∆j+1

τj
+ εj

)
.

Rearranging this inequality gives ∆j+1 ≤ ∆j

(
1− τj

T

)
+ τjεj . Unrolling this inequality (and using

the fact that 1− τj
T
< 1 for all j), we get

∆L+1 ≤ ∆1

(
L∏
j=1

1− τj
T

)
+

L∑
j=1

τjεj .

Let E =
∑L

j=1 τjεj . Subject to the constraint
∑L

j=1 τj = T , the product series is maximized when
τj = T

L
for all j. Thus we have

C∗ − f
(
ḠL+1

)
= ∆L+1 ≤ ∆1

(
1− 1

L

)L
+ E < ∆1

1

e
+ E ≤ C∗

1

e
+ E .

Thus f
(
ḠL+1

)
> (1− 1

e
)C∗ − E, as claimed.

27

Theorem 7. Let L be a positive integer, and let T =
∑L

j=1 τj , where gj = (vj, τj). For any

schedule S, define cT (f, S) ≡
∫ T
t=0

1− f
(
S〈t〉
)
dt. Then

cT
(
f, Ḡ

)
≤ 4

∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt+
L∑
j=1

Ejτj .

where Ej =
∑

l<j εlτl.

Proof. Let Rj = 1− f (Gj), let R′j = Rj −Ej . Assume for the moment that RL ≥ EL, so that R′j
is non-negative for j ≤ L. Let s′j = sj + εj . By construction,

R′j −R′j+1 = f
(
Ḡj+1

)
− f

(
Ḡj

)
+ εjτj = τjs

′
j . (7.2)

Let xj =
R′

j

2s′j
; let yj =

R′
j

2
; and let h(x) = 1−maxS

{
f
(
S〈x〉

)}
. By Fact 2,

max
S

{
f(S〈xj〉)

}
≤ f (Gj) + xjs

′
j = f (Gj) +

R′j
2

.

Thus h(xj) ≥ Rj −
R′

j

2
=

Rj+Ej

2
≥ yj . The monotonicity of f implies that h(x) is non-increasing

and (together with the fact that Ej is non-decreasing as a function of j) implies that the sequence
〈y1, y2, . . .〉 is non-increasing. As illustrated in Figure 1, these facts imply that

∫∞
x=0

h(x) dx ≥∑L
j=1 xj (yj − yj+1). Thus we have∫ ∞

t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt =

∫ ∞
x=0

h(x) dx

≥
L∑
j=1

xj (yj − yj+1) (Figure 1)

=
1

4

L∑
j=1

R′j

(
R′j −R′j+1

)
s′j

=
1

4

L∑
j=1

R′jτj (equation (7.2))

=
1

4

(
L∑
j=1

Rjτj −
∑
j≥1

Ejτj

)

≥ 1

4
cT (f,G)− 1

4

L∑
j=1

Ejτj (monotonicity of f)

which proves the theorem, subject to the assumption that RL ≥ EL.

28

Now suppose RL < EL. Let K be the largest integer such that RK ≥ EK , and let TK =∑K
j=1 τj . By the argument just given,

cTK (f,G) ≤ 4

∫ ∞
t=0

1−max
S∈S

{
f
(
S〈t〉
)}

dt+
K∑
j=1

Ejτj .

Thus to prove the theorem, it suffices to show that cT (f,G) ≤ cTK (f,G) +
∑L

j=K+1 Ejτj . This
holds because

cT (f,G)− cTK (f,G) =

∫ T

t=TK

1− f
(
Ḡ〈t〉

)
dt

≤ (T − TK)(1− f(Ḡ〈TK〉))

= (T − TK)RK+1

< (T − TK)EK+1

≤
L∑

j=K+1

Ejτj .

Lemma 2. Any sequence 〈f1, f2, . . . , fn〉 of jobs satisfies Condition 2. That is, for any sequence
S1, S2, . . . , Sn of schedules and any schedule S,∑n

i=1 fi(Si ⊕ S)− fi(Si)
` (S)

≤ max
(v,τ)∈V×R>0

{∑n
i=1 fi(Si ⊕ 〈(v, τ)〉)− fi(Si)

τ

}
.

Proof. Let r denote the right hand side of the inequality. Let S = 〈a1, a2, . . . , aL〉, where al =
(vl, τl). Let

∆i,l = fi(Si ⊕ 〈a1, a2, . . . , al〉)− f(Si ⊕ 〈a1, a2, . . . , al−1〉) .

29

We have

n∑
i=1

fi(Si ⊕ S) =
n∑
i=1

(
fi(Si) +

L∑
l=1

∆i,l

)
(telescoping series)

≤
n∑
i=1

(
fi(Si) +

L∑
l=1

(fi(Si ⊕ 〈al〉)− f(Si))

)
(submodularity)

=
n∑
i=1

fi(Si) +
L∑
l=1

n∑
i=1

(fi(Si ⊕ 〈al〉)− f(Si))

≤
n∑
i=1

fi(Si) +
L∑
l=1

r · τl (definition of r)

=
n∑
i=1

fi(Si) + r · ` (S) .

Rearranging this inequality gives
Pn

i=1 fi(Si⊕S)−fi(Si)

`(S)
≤ r, as claimed.

Lemma 4. Algorithm OGunit with randomized weighted majority as the subroutine experts algo-
rithm has E [R] = O

(√
Tn ln |A|

)
in the worst case.

Proof. Let k = |A|. Let xt be the total payoff received by Et, and let gt = xt + rt be the total
payoff that could have been received by Et in hindsight (had it been forced to choose a fixed expert
each day). Because

∑T
t=1 xt ≤ n, we have

∑T
t=1 gt ≤ n+R. Using WMR, E [rt] = O

(√
gt ln k

)
.

Using WMR, the actual value of rt will be tightly concentrated about its expectation, as can be
shown using Azuma’s inequality. In particular, because gt ≤ n, the probability that R > n
is exponentially small. Assuming R ≤ n, we have

∑T
t=1 gt ≤ 2n. Subject to this constraint,∑T

t=1

√
gt is maximized when gt = 2n

T
for all t. Thus in the worst case, E [R] = O

(√
Tn ln k

)
.

In order to prove Theorem 10, we first prove the following lemma. The lemma relates the
expected cost of the schedule Si (selected by OG on round i) to the expected cost Si would incur
if, hypothetically, each of the “meta-actions” selected by each experts algorithm Et consumed unit
time on every job (require that this assumption was made in the analysis in the main text).

Lemma 6. Fix a sequence of jobs 〈f1, f2, . . . , fn〉 and an integer i (1 ≤ i ≤ n). Let Si be the
schedule produced by OG to use on job fi, and let Si,t−1 denote the partial schedule that exists
after the first t− 1 experts algorithms has selected actions. Then

E
[
c`(Si) (fi, Si)

]
≤ E

[
L∑
t=1

(1− fi(Si,t−1))

]
.

30

Proof. Fix some t. Let ait = (v, τ) be the action selected by Et on round i, and define

cit =

{ ∫ τ
t′=0

1− fi(Si,t−1 ⊕ 〈(v, t′)〉) dt′ if ait is appended to Si
0 otherwise.

By construction, c`(Si) (fi, Si) =
∑L

t=1 c
i
t. Because ait is appended to Si with probability 1

τ
, and

because fi is monotone, we have

E
[
cit|Si,t−1

]
=

1

τ

∫ τ

t′=0

1− fi(Si,t−1 ⊕ 〈(v, t′)〉) dt′ ≤ 1− fi(Si,t−1) .

Taking the expectation of both sides yields E [cit] ≤ E [1− fi(Si,t−1)]. Then by linearity of expec-
tation,

E
[
c`(Si) (fi, Si)

]
= E

[
L∑
t=1

cit

]
≤ E

[
L∑
t=1

(1− fi(Si,t−1))

]
.

Theorem 10. Algorithm OG, run with input L = T lnn, has E [Rcost] = O(T lnn · E [R] +

T
√
n). In particular, E [Rcost] = O

(
(lnn)

3
2T
√
Tn ln |A|

)
if WMR is used as the subroutine

experts algorithm.

Proof. The arguments in the main text showed that OG can be viewed as a version of the greedy
schedule for the function f = 1

n

∑n
i=1 fi, in which the tth decision is made with additive error εt,

under the assumption that all “meta-actions” ãit require unit time on every job. Thus by Theorem
7, we have

n∑
i=1

L∑
t=1

(1− fi(Si,t−1)) ≤ 4 ·min
S∈S

{
n∑
i=1

c (fi, S)

}
+ nL

L∑
t=1

εt . (7.3)

Also recall from the main text that E [εt] = E
[
rt
n

]
, where rt is the regret experienced by Et, and

that we define R =
∑L

t=1 rt. Thus, we have

E

[
n∑
i=1

c`(Si) (fi, Si)

]
≤ E

[
n∑
i=1

L∑
t=1

(1− fi(Si,t−1))

]
(Lemma 6)

≤ 4 ·min
S∈S

{
n∑
i=1

c (fi, S)

}
+ L · E [R] . (equation 7.3)

If it was always the case that ` (Si) ≥ T , then we would have cT (fi, Si) ≤ c`(Si) (fi, Si), and
this inequality would imply E [Rcost] ≤ L · E [R]. In order to bound E [Rcost], we now address the
possibility that ` (Si) < T . Letting pi = P [`(Si) < T], we have

E
[
cT (Si, fi)

]
= (1− pi) · E

[
cT (Si, fi) |`(Si) ≥ T

]
+ pi · E

[
cT (Si, fi) |`(Si) < T

]
≤ E

[
c`(Si) (fi, Si)

]
+ pi · T .

31

Putting these inequalities together yields

E [Rcost] ≤ L · E [R] + T
n∑
i=1

pi . (7.4)

We now bound pi. As already mentioned, E [` (Si)] = L regardless of which actions are selected by
the various experts algorithms. If L� T , then ` (Si) will be sharply concentrated about its mean,
as we can prove using standard concentration inequalities (e.g., Theorem 5 of [8]). In particular,
for any λ > 0, we have

P [` (Si) ≤ L− λ] <= exp

(
− λ2

2LT

)
.

Setting λ = L − T and simplifying yields pi ≤ exp
(
− L

2T
+ 1
)
. Setting L = T lnn then yields

pi ≤ e√
n

, so the right hand side of (7.4) is O (T
√
n). Thus E [Rcost] = O (T lnn · E [R] + T

√
n),

as claimed. Substituting the bound on E [R] stated in Lemma 4 then proves the claim about WMR.

Theorem 11. Algorithm OGp, run with WMR as the subroutine experts algorithm, has E [Rcoverage] =

O
(

(C ln |A|) 1
3 (Tn)

2
3

)
(when run with inputL = T) and has E [Rcost] =O

(
(T lnn)

5
3 (C ln |A|) 1

3 (n)
2
3

)
(when run with input L = T lnn) in the priced feedback model.

Proof. Let M be the number of exploration rounds (so E [M] = γn). The maximum payoff to
any single expert cannot exceed M . Thus, by Lemma 5 and the regret bound of WMR, we have
E [rt|M] = O

(
1
γ

√
M ln |A|

)
. Using the fact that E

[√
X
]
≤
√

E [X] for any non-negative
random variable X , this implies

E [rt] = E [E [rt|M]] = O

(
1

γ

√
E [M] ln |A|

)
= O

(√
n

γ
ln |A|

)
.

By Theorem 9, we have E [Rcoverage] ≤ E [R] + Cγn = O
(
L
√

n
γ

ln |A|
)

+ Cγn. Setting γ =(
L
C

√
ln|A|
n

) 2
3

then yields E [Rcoverage] = O
(

(C ln |A|) 1
3 (Ln)

2
3

)
, as claimed.

Similarly, by Theorem 10, we have E [Rcost] ≤ L·E [R]+T
√
n+TCγn = L·O

(
L
√

n
γ

ln |A|+ Cγn
)

,

so the same setting of γ yields E [Rcost] = O
(
L

5
3 (C ln |A|) 1

3n
2
3

)
.

Theorem 13. Algorithm OGo, run with WMR as the subroutine experts algorithm, has E [Rcoverage] =

O
(
T (|A| ln |A|) 1

3n
2
3

)
(when run with inputL = T) and has E [Rcost] = O

(
(T lnn)2(|A| ln |A|) 1

3n
2
3

)
(when run with input L = T lnn) in the opaque feedback model.

Proof. We showed in the main text that E
[
x̂it,a
]

= γ
L|A|x

i
t,a + δi, where x̂it,a is the estimated payoff

fed back by OGo and xit,a is the true payoff. Thus by Lemma 5, E [rt] is bounded by |A|L
γ

times
the worst-case regret of Et. Using the same argument we used in the proof of Theorem 11, we get

32

E [R] = O
(
L
√

n
γ′ ln |A|

)
, where γ′ = γ

|A|L . By Theorem 9, we have E [Rcoverage] ≤ E [R] +

γn = O
(
L
√

n
γ′ ln |A|

)
+ Cγ′n, where C = L |A|. As in the proof of Theorem 9, setting γ′ =(

L
C

√
ln|A|
n

) 2
3

then yields E [Rcoverage] = O
(

(C ln |A|) 1
3 (Ln)

2
3

)
= O

(
T (|A| ln |A|) 1

3n
2
3

)
, and

the same setting of γ′ yields E [Rcost] = O
(
L

5
3 (C ln |A|) 1

3n
2
3

)
= O

(
(T lnn)2(|A| ln |A|) 1

3n
2
3

)
.

We now prove lower bounds on regret. As mentioned in the main text, our lower bounds will
hold for the online versions of MAX k-COVERAGE and MIN-SUM SET COVER.

We consider the following online version of MAX k-COVERAGE. One is given a collection C
of sets, where each set in C is a subset of a universe E = {e1, e2, . . . , en}. One cannot examine
the sets (or even determine their cardinalities) directly. On round i of the game, one must specify a
subcollection C ⊂ C, with |C| = k. One then receives a reward of 1 if element ei belongs to some
set in the collection, and receives a reward of zero otherwise. One then learns as feedback which
sets ei belonged to.

This problem is a special case of the online version of BUDGETED MAXIMUM SUBMODULAR

COVERAGE. To see this, let V = C be the set of activities, and think of the action (v, τ) as
including the set v in the collection assuming τ ≥ 1, and having no effect otherwise. For any
schedule S, let fi(S) = 1 if one of the sets added to the collection by S contains ei, and let
fi(S) = 0 otherwise. Then BUDGETED MAXIMUM SUBMODULAR COVERAGE on the sequence
of jobs 〈f1, f2, . . . , fn〉, with time limit T = k, is exactly the problem just described.

The online version of MIN-SUM SET COVER is similar, except that instead of specifying a
subcollection of cardinality k, one specifies a sequence of k sets from C. One then incurs a loss
equal to the number of sets one must look through in the sequence in order to find ei, or a loss of k
if ei does not appear in the sequence at all. By the arguments just given, this is equivalent to online
MIN-SUM SUBMODULAR COVER on the sequence of jobs 〈f1, f2, . . . , fn〉, where T = k is the
time at which schedule costs are truncated.

To prove lower bounds on regret, we will require the following technical lemma. The proof is
a straightforward generalization of the proof of Lemma 3.2.1 of [6], which considered the special
case p = 1

2
.

Lemma 7 ([6]). Let X1, X2, . . . , Xs be s independent random variables, where Xi equals the
number of heads in n flips of a coin with bias p. Let µ = np and let σ =

√
np(1− p). Then

E [max {X1, X2, . . . , Xs}] = µ+ Ω
(
σ
√

ln s
)

.

Theorem 14. Any algorithm for online MAX k-COVERAGE has worst-case expected 1-regret

Ω

(√
Tn ln |V|

T

)
, where V is the collection of sets and T = k is the number of sets selected

by the online algorithm on each round.

33

Proof. Let V be a collection of sets. On each round of the online game, whether or not a given
set covers the element will be determined by flipping a coin of bias p = 1

2T
. Thus, regardless

of which T sets are selected by the online algorithm, the probability that it covers the element is
q = 1−

(
1− 1

2T

)T ∈ [1
2
, 1√

e
], and the expected number of elements the online algorithm covers is

nq.
We now consider the number of elements that could have been covered in hindsight. Let

R =
√

n
T

ln |V|
T

. Partition V into T bins, each of size s = |V|
T

. Let S∗i denote the set in the ith

bin which covers the largest number of elements, and let C∗ = {S∗1 , S∗2 , . . . , S∗T}. To prove the
theorem, it suffices to show that C∗ covers nq + Ω (TR) elements in expectation.

Let a collection C = {S1, S2, . . . , ST} consist of a random set drawn from each bin. In ex-
pectation C covers nq elements. Let xi := |S∗i | − |Si| and note that xi ≥ 0 and E [xi] = Ω (R)
by Lemma 7. Randomly mark xi elements of S∗i and let Mi and Ui denote the marked and un-
marked elements of S∗i , respectively. Note that the collection {Ui : 1 ≤ i ≤ T} covers nq ele-
ments in expectation. Let X denote the (random) number of additional elements covered by the
collection {Mi : 1 ≤ i ≤ T} (i.e., X = | ∪i Mi − ∪iUi|). We claim that E [X] = Ω (TR). To
prove this, define ξ to be the event “for all S ∈ C, |S| ≤ n/T ” and let Y be the number of
marked elements covered exactly once in C∗. We will show that E [Y | ξ] P [ξ] = Ω (TR). Since
E [Y | ξ] · P [ξ] ≤ E [Y] ≤ E [X], this is sufficient to complete the proof.

Fix i and any element e ∈ Mi. Then P [e uniquely covered | ξ] =
∏

j 6=i
(
1− |S∗j |/n

)
≥

(1 − 1/T)T−1 ≥ 1/e. This implies E [Y | ξ] ≥ 1
e
E [
∑

i |Mi|] = 1
e
Ω (TR), since, as mentioned,

E [|Mi|] = Ω (R) for all i. Finally, the Chernoff bound easily yields P [ξ] ≥ (1− |V| · exp {−n/8T}) =
1− o(1), and so E [Y | ξ] · P [ξ] = Ω (TR) as claimed.

The lower bound in Theorem 14 is optimal up to constant factors. To see this, observe that run-
ning randomized weighted majority with one expert for each of the

(|V|
T

)
possible collections of T

sets yields worst-case regretO
(√

n ln
(|V|
T

))
= O

(√
nT ln |V|

T

)
for online MAX k-COVERAGE,

using the fact that
(|V|
T

)
≤
(
|V|e
T

)T
. Similarly, using a separate expert for each of the O

(
|V|T

)
possible permutations of T sets yields regretO

(
T
√
Tn ln |V|

)
for online MIN-SUM SET COVER,

which shows that the lower bound in Theorem 15 is optimal up to logarithmic factors.

Theorem 15. Any algorithm for online MIN-SUM SET COVER has worst-case expected 1-regret

Ω

(
T
√
Tn ln |V|

T

)
, where V is a collection of sets and T is the number of sets selected by the

online algorithm on each round.

Proof. We use the same construction as in the proof of Theorem 14. Define the coverage time
of a schedule Si = 〈Si1, Si2, . . . , SiT 〉 to be the smallest t such that Sit covers the ith element, or
T if no such t exists. As in the proof of Theorem 14, the probability that the online algorithm
covers any particular element is q. Given that the online algorithm covers an element, the expected
coverage time is zT for some z < 1

2
. Thus, any online algorithm has expected coverage time

t̄ = qzT + (1− q)T for each element.

34

Now consider the schedule S∗ = 〈S∗1 , S∗2 , . . . , S∗T 〉, where S∗i = Ui ∪ Mi was defined in
the proof of Theorem 14, and let the sets be indexed in random order. The schedule U =
〈U1, U2, . . . , UT 〉 is statistically equivalent to a random schedule, and thus has expected cover-
age time t̄ per element. Using S∗ in place of U causes X additional elements to be covered, where

E [X] = Ω

(√
Tn ln |V|

T

)
. Because the sets in S∗ are ordered randomly, the expected coverage

time for each of the X additional elements is at most T
2

. Thus, the total expected coverage time of

S∗ is smaller than that of U by at least T
2
E [X] = Ω

(
T
√
Tn ln |V|

T

)
.

35

	Introduction
	Formal setup
	Sufficient conditions
	Summary of results
	Problems that fit into this framework
	Special cases of Budgeted Maximum Submodular Coverage
	Special cases of Min-Sum Submodular Cover

	Applications
	Combining multiple heuristics online
	Database query optimization
	Sensor placement
	Viral marketing

	Related Work
	Offline Algorithms
	Computational complexity
	Greedy approximation algorithm
	Maximizing coverage
	Minimizing cost
	A refined greedy approximation algorithm
	Handling non-uniform additive error

	Online Algorithms
	Background: the experts problem
	Unit-cost actions
	From unit-cost actions to arbitrary actions
	Dealing with limited feedback
	The priced feedback model
	The partially transparent feedback model
	The opaque feedback model

	Lower bounds on regret
	Refining the online greedy algorithm
	Avoiding duplicate actions
	Independent versus dependent probabilities

	Open Problems
	Experimental Evaluation on SAT 2007 Competition Data
	Conclusions

