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Abstract

Due to preferences for design and implementation simplicirrent data or-
ganization and management in database systems are basedpba assumptions
about storage devices and workload characteristics. Bidhen the major design
principle since the inception of database systems. Whilel#vece- and workload-
oblivious approach worked well in the past, it falls shortemttonsidering today’s
demands for fast data processing on large-scale dataaetsatle various character-
istics. The ignorance of rich and diverse features in botices and workloads has
posed unnecessary performance trade-offs in existindpds¢esystems.

This dissertation proposes efficient, flexible, and robwada drganization and
management for database systems by enhancing the inberagth workloads and
hardware devices. It achieves the goal through three steps.

First, a microbenchmark suite is needed for quick and ate@naaluation. The
proposed solution is DBmbench, a significantly reduced dalmicrobenchmark
suite which simulates OLTP and DSS workloads. DBmbench esahlick evalua-
tion and provides performance forecasting for real laiggdesbenchmarks.

SecondClothoinvestigates how to build a workload-concious buffer poailm
ager by utilizing query payload informatioflothodecouples the in-memory page
layout from the storage organization by using a new queegcifip layout called
CSM Due to its adaptive structur€SM eliminates the long-standing performance
trade-offs ofNSM and DSM, thus achieving good performance for both DSS and
OLTP applications, two predominant database workloads wonflict characteris-
tics. Clothodemonstrates that simple workload information, such asyquegyloads,
is of great value to improve performance without increasiogplexity.

The third step looks at how to use hardware information tmielate perfor-
mance trade-offs in existing device-oblivious desigMultiMap is first proposed
as a new mapping algorithm to store multidimensional data disks without los-
ing spatial locality. MultiMap exploits the new adjacency model of disks to build
a multidimensional structure on top of the linear disk spdt®utperforms exist-
ing mapping algorithms on various spatial queries. LatedtiMap is expanded to
organize intermediate results for hash join and externméhgpwhere the 1/0 perfor-
mance of different execution phases exhibits similar traifie as those in 2-D data
accesses. Our prototype demonstrates an up to 2 times iempemt over the exist-
ing implementation in memory limited executions. The abwve projects complete
Clothoby showing the benefits of exploiting detailed hardwareufiess.
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Chapter 1

Introduction

Data organization and management in database managerstahsystudy how to store data
on devices efficiently regarding space utilization anddertime to index, fetch, and process the
information. The research area on this subject covers a vadety of topics. For instance, a
few topics that are closely related to this dissertatioruithe low-level data structure designs,
such as page layouts for indices and relational tablesriiigac designs, such as strategies for
space allocation and data sharing; architectural desgytdy as the dividing of functionalities
among different modules and the defining of interfaces fartmodular communication.

Data organization and management play central roles irbdagamanagement systems and
have a direct impact on system functionalities and perfoaa Therefore, they have been the
subject of numerous studieg @ ﬁ , , 40] since the ganee of relational databases. Re-
search continues as the memory hierarchy remains thetedtkd3] in database systems, and no
single solution serves all needs in database systems whtestluctures, storage device char-
acteristics, workload access patterns, and performaqcgeenents vary significantly from time
to time and from application to application. In this highlyelse environment, data organization
and management that can adapt to the differences will be rasileent to changes, and will thus
be able to maintain consistently good performance. To &eltfés goal, desirable data organiza-
tion strategies will need to promote close interactionsveen software and hardware. In other
words, these strategies will need to show a deeper unddistpof data structures and their
access patterns, as well as an understanding of the cha@stcseof underlying storage devices
and their technical trends.

This chapter is intended to promote the idea that a deeperstachding of storage devices is
needed in data organization and management for databdasensyd his chapter also outlines the
structure of the dissertation, highlights the contribasioand briefly summarizes the content of
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each of the following chapters. The thesis governing thudment is the following: Database
Management Systems can become more robust by eliminatifiyrpance trade-offs related
to inflexible data layout in the memory and disk hierarchye KBy to improving performance
is to adapt the data organization to workload characteristiashich is achieved (a) by intelli-
gently using query payload information when managing théebytfool, (b) by decoupling the
in-memory layout from the storage organization, and (c) Xposing the semi-sequential access
path available on modern disks to the storage manager.

As the thesis statement indicates, this dissertation ceote designing and implementing
adaptable data management and organization for databsteensyby carefully exposing the in-
formation of query requests and detailed hardware charsiits. Specifically, it addresses the
problem from the following aspects: (a) a simple yet repnesieve database microbenchmark
suite for quick and accurate evaluation; (b) adaptable pagerits for relational tables, and (c)
algorithms for mapping logical geometric addresses to ipayslisk addresses for multidimen-
sional data access. In the rest of this chapter, each sestibprovide the following: (a) a
brief introduction to the background of the topic and howeitates to the thesis statement, (b)
an explanation of the problems in existing approaches tiogivated the current work, and (c) a
summary of the high-level ideas and solutions contributethts thesis.

1.1 Difficulties in database benchmarking at microarchitec-
tural level

With the proliferation of database workloads on serverglaigse benchmarks have been widely
used to evaluate and compare performance on server atanged&xisting prevalent database
benchmarks, such as the benchmarks [76] proposed by Ttams&rocessing Performance
Council (TPC), are designed to mimic different behavior of-kearld workloads running on
database systems, thus they focus on overall system faattipand performance. As a result,
these benchmarks consist of complex query execution onlaegg datasets which can easily
reach the scale of terabyte. The complexity in query exenwnd the size of datasets make ex-
isting database benchmarks inapplicable in microardhiteand memory system research due
to the following reasons.

First, microarchitecture simulation tools used by compuatehitects are typically five or
more orders of magnitude slower than real machines. Thosght take months or even longer
to conduct an experiment with a full database benchmark.not acceptable at the early design
stage where several design options need to be evaluatediat-artd-error setting. Second, the
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execution of a full database benchmark is complicated. ®&tance, DSS workloads typically
have complex query plans consisting of tens or hundredsatper OLTP workloads involve
concurrent transactions running queries on top of shargslrees. The execution complexity
makes it hard to do experiments in a controllable way andripgant the bottlenecks. Third, the
installation of conventional database benchmarks is tioresuming and error-prone. It takes an
expert several days or weeks to set up an experiment envanoinwhere performance-sensitive
parameters are assigned with the proper values.

The solution to the above problems is, naturally, scalesirddatabase benchmarks which
has been adopted in previous research projects in varioiexte [E%F 8(9)71%5 5[,‘75]. These
studies all employ ad hoc abbreviations of benchmarks witloge that the reduced bench-
marks possess the same characteristics as their full-eizeterparts. Unfortunately, scaling
down database benchmarks is tricky: changes in dataset sjaery execution orders, and/or
parameter values may cause severe and unpredictableidewatharacteristics.

DBmbench, the first project of the thesis work, is a small amtegentative database mi-
crobenchmark suite designed with the goal to mimic the perdmce behavior of TPC-H and
TPC-C. By identifying and executing the primary operationdimtivo benchmarks, DBmbench
systematically scales down the dataset sizes and querylexitygsignificantly and accurately
captures the processor and memory performance behavior. bBich is also used in other
projects of my thesis work to conduct sensitivity analysisquery selectivities and payloads.
The details of DBmbench are discussed in Chapter 3 .

1.2 Problems of static page layouts for relational tables

Conventional relational database systems provide a camgappresentation of data in relations
or tablesﬁ?]. Each table is stored in fixed-sized pages yppiadl size from 4 to 64 KB, which

is also the minimal transferring unit between storage devend main memory. Page layout,
also known astorage modeldescribes the records that are contained within a page @mnd h
they are laid out. It usually has a header which stores somadata, such as the number of
records in the page and the size of the free space. Recordearestored according to the
corresponding layout. Since the page layout determine$ kglards and which attributes of a
relation are stored in a single page, the storage model gexqbloy a database system has far-
reaching implications for the performance of a particularkioad [3]. The most widely used
page layouts in commercial database systems are the N-argg8tModel NSM) [EZ], which
stores full records sequentially within a page, and the Dgmsition Storage ModeDSM) [18],
which partitions the table vertically into single-attrtbusubtables and stores them separately.
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(a) A table with 3 attributes. (b) In NSM. (c) In DSM.

Figure 1.1: Diagrams oNSMandDSM. This graph shows how a simple table with three at-
tributes is stored in theiISMandDSM layouts respectively.

Figure 1.1 shows a simple exampleNSMandDSM with a three-attribute table.

Access patterns on database tables, by and large, fallita@ategories. One is the full-
record access frequent in Online Transaction ProcessihdRDapplications, where all (or
almost all) attributes of records are usually requestede fl-record access is analogous to
accessing a table along the row direction. The other is thigapeecord access, represented by
Decision Support System (DSS) applications, where veryafsbutes of records are processed.
This can be viewed as accessing a table along the columrtidime@hese two prevalent access
patterns have exactly opposite characteristics. Exigtage layouts optimized for them employ
different design strategies, as the best page layout fopatiern usually performs poorly for the
other.

Existing approaches face a performance trade-off by fiedipting the application’s domi-
nant access pattern, and then by choosing a page layoutipgdifior that pattern at the expense
of the other. Among the existing page layouts in the liteatdlSMis preferable for OLTP
workloads, whereaBSM and its variation &6] are better choices for DSS wa#t Fig-
ure1.2 illustrates the performance trade-offdN&FM andDSM. In this example, a simple table
scan query is posed on a table with 15 attributes. We varyuheoer of attributes referenced by
the query and measure the total query execution ti&M outperformdNSMwhen the number
of attributes referenced is small, wherédSMis clearly the winner when more attributes are
requested. Neither option can offer good performance adhesspectrum.

Therefore, systems using a predetermined page layout lmaspdediction are not able to
adapt to workload changes. If the actual access patteratéevirom the prediction, the perfor-
mance plummets. In addition, workloads with mixed chanssties are becoming more com-
mon in the real world where two access patterns could appd¢heisame system and are equally
important. In this case, solutions with one static page uaydSMor DSM, fail. Several so-
lutions have been proposed to address the performancedffsde-ractured MirrorJISB] tries
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Figure 1.2: Performance trade-offs d6EMandDSM. In this example, we store a 15-attribute
table iInNSMandDSMrespectively and measure the execution time of a simple-sddn query
on this table as a function of the number of attributes reieed by the query.

to combine the advantages B6MandDSM by storing tables in two layouts to accommodate
the workload changes. Unfortunately, keeping two copiedatd doubles the required storage
space and complicate data management because two copeewtm/maintained in synchrony
to preserve data integrity. Focusing on the CPU cache peafocen thePAX layout E4] provides
another approach for unifying the two layouts by organiziegords in @DSM formatwithin a
page. WhilePAX performs very well for both access patterns at the CPU cacled e faces
the same problem d¢SMat the storage level. The Data Morphing techni(@ [31] egithe
idea of PAX by reorganizing records within individual pages based entbrkloads that change
over time. It increases the flexibility of memory pages, h#se fine-grained changes cannot
address the trade-offs involved in accessing non-volatdeage. These solutions bring some
degree of flexibility for mitigating the problems caused Igtis page layouts, but they are far
from adequate in that they either pose extra complexity ta deanagement or they only focus
on one level of the memory hierarchy.

Clothg as one part of théatesdatabase storage manager, solves the performance tfade-of
problem inherent to a particular page layout by decouplvagin-memory page layout from the
storage organizatiorClothoproposes a flexible page layout callgbbtho Storage ModelCSM)
that can change its structure and content in order to meetitfeeent needs of various queries
and to match the unique features of different storage dsvidéde benefit of the decoupling
is twofold. First, pages in the buffer pool can be tailoredhe specific needs of each query.
The query-specific pages save memory space and 1/0O bandvddond, data at each memory
hierarchy level can be organized in a way that can fully expihe device characteristics at that
level. Clothq together with other components in the Fates databasegetprajectEQEdEG],
also investigates the architectural issues of buildingomsband adaptable storage manager for
database systems.



This thesis project implemen@othoon top ofAtropos[&)]. The experimental results show
thatClothowith CSMpage layout is able to eliminate the trade-offs that exist@MandDSM.
It combines the best performance of the two page layoutd Evals of the memory hierarchy.
A detailed description is presented in Chapter 4.

1.3 Trade-offs of storing multidimensional data on disks

Multidimensional datasets are widely used to represengmgghic information, present multi-
media datasets, and to model multidimensional objectstim $@entific computing (such as the
3-D model of earth in earthquake simulation) and businepficgtions (such as the data cubes
in OLAP applications). Their growing popularity has brotigfre problem of efficient storage
and retrieval of multidimensional data to the fore. The majeallenge is to find a mapping
algorithm that maps logical geometric addresses, sucheasabrdinates of data, to locations
on disks, usually identified by logical block numbet8{). The goal of mapping algorithms
is to preserve spatial locality as much as possible on diskisag nearby objects in the original
geometric space are stored in close-by disk blocks. Thegptppf preserving spatial locality is
often calledclusteringin the literature. Since neighboring data are usually amsbsogether, al-
gorithms with better clustering will have better I/O perf@nce because fetching nearby blocks
is more efficient than fetching remote blocks.

The existing mapping algorithms have not been very sucgksispreserving spatial locality.
The fundamental obstacle is the conflict between multidsieeral data and the traditionalear
abstractionof storage devices offered by standard interfaces such ak B@&er the abstraction,
storage devices are simplified as a sequence of blocksfieerty LBNs. Therefore, to organize
multidimensional data on linear disks, all existing majgpaigorithms have to put an order on
the dataset. Generally speaking, there are two ways to do(djaserialize all data based on a
pre-selected dimension (often called major order), or §&) space-filling curves [42].

A simple implementation that serializes data along a pleesad dimension, calleNaive
traverses a dataset as following. For example, in a two-asioaal (2-D) spacéX, Y), data are
ordered first along th& axis, then the&” axis, as Figure 1.3(a) shows. This mapping scheme
perfectly preserves the spatial locality on tReaxis because successive points on hexis
are stored physically onto contiguous disk blocks. Howeierompletely ignores the spatial
locality of theY axis. The result is the optimal sequential access alongth&is and the worst
random-like access for'. Sarawagi et aI.E?] optimize the naive mapping by first aiivgy
the original space into multidimensional tiles, callddinks according to the predicted access
patterns. Together with other techniques, such as stoethgndant copies sorted along different
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Figure 1.3: Two mapping algorithms based on linearizatidre graph illustrates holNaiveand
Hilbert mapping algorithms map the cells in a 4x4 2-D grid to a lingace. The numbers in the
cells indicate the order of the cells, i.e., the cells wildbared on the disk sequentially according
to this order.

dimensions, this chunk-based solution is up to an order giiiade faster over the unoptimized
method. However, their work adopts the linear abstracsont still faces the same problem as
theNaiveapproach of losing spatial locality on non-major orders.

Alternatively, one can traverse a multidimensional spacéliowing a space-filling curve.
Space-filling curves are continuous, non-intersectingesithat pass ¢over’) all points in a
space. The fractal dimensio[64] of space-filling curvesigually greater than 1, which makes
them “dense” and “closer” to a multidimensional object. fdiere, space-filling curves are
preferable to théaivelinear mapping. Some well-known space-filling curves arayaroded
Curve EC%], Hilbert CurveZ], and Z-ordering Cur\E[M]. Figul.3(b) shows the mapping
based on Hilbert Curve on a 2-D grid. Moon et al. [42] analyzeal ¢lustering properties of
Hilbert Curve and indicate that it has better clustering thaorderingCurve, and hence better
I/0 performance in terms of average per-node access timié&dthe approaches which linearize
along a single major order, space-filling curves do not famy dimension, but rather balance
their performance along all dimensions, which results ittebgerformance for range queries.
Unfortunately, space-filling curve-based solutions &ditle the problem of losing spatial locality.
The performance improvement also comes at the high costsofddhe sequential bandwidth
on all dimensions. Finally, space-filling curve-based miagm@lgorithms are not practical for
dimensions higher than three. In fact, some space-fillimgegican not even be generalized to
higher dimension%ide].

In the rest of the dissertatiohlilbert denotes the linear mapping algorithm that uses Hilbert
Curve. Figure 1.4 illustrates the trade-offs of t&iveandHilbert mapping algorithms on a 3-D
dataset. In this example, the dataset has three dimensigns, andZ, whereX is selected as
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Figure 1.4: Performance trade-offsidhiveandHilbert mapping. This graph shows the average
I/O response time to fetch contiguous points along eachmioa, X, Y, andZ, using different
mapping algorithms.

the major order in thé&aive mapping. The experiment accesses contiguous points akmiy e
dimension and measures the average 1/O response time. ddedffs are easy to see. The
Naive mapping optimizes the performance on the major ordexhile severely compromising
the performance on the other two dimensiohsand Z. The Hilbert mapping balances the
performance on all dimensions at the cost of losing the sag@idandwidth: the response time
on all dimensions in thédilbert mapping is almost two orders of magnitude longer than the
response time on th& dimension in théNaivemapping.

Naturally, a solution that eliminates the trade-offs wob&lpreferred. However, under the
assumption of the linear disk abstraction, the loss of aplaitality of multidimensional datasets,
as well as the performance trade-offs, are inevitable. Aew algorithms that seek to solve this
problem need to resolve the discord of dimensionaltyltiMap, an algorithm used to map data
to disks, solves the problem by building a multidimensionealv for disks based on a novel ad-
jacency modelMultiMap allows applications to store data without any serializatibherefore,
it is able to preserve spatial locality of multidimensioniata and eliminate the performance
trade-offs.MultiMap is an example of how detailed knowledge about storage decae aid in
solving some long-standing problems in database systestail®abouMultiMap are discussed
in Chapter 5.

1.4 Opposite access patterns during query execution

ClothoandMultiMap are able to address the performance trade-offs caused aiaonflict
I/O access patterns, the opposite access patterns thatadbeigrom the data structures (e.g.
relational tables and multidimensional data structur&€lgre also exist “temporal” conflict I/O
access patterns in database systems: the opposite /G gateesrns in different phases during
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guery execution. The idea is to organize the intermediateltein a smart way so that access
to the intermediate results in all execution phases araesiticThis work focuses on two major
database operators, (a) hash join and (b) external sorting.

Hash join, as an efficient algorithm to implement equijoisgommonly used in commercial
database systems. In its simplest form, the algorithm fugtle a hash table on the smaller
(build) relation, and then probes the hash table using tuples fnentarger probe relation to
find matches. In the real world, database systems adoptigasaf a more practical algorithm,
called theGRACEhash join algorithmEﬁ], to avoid excessive disk accessestd a lack of
memory resourcesSGRACEbegins by partitioning the two joining relations into snealsub-
relations (also called “partitions”) using a certain haghdtion on the join attributes such that
each sub-relation of the build relation and its hash tabiditato the main memory. It then joins
each pair of build and probe sub-relations separately d®isimplest algorithm. The two phases
of the GRACEalgorithm are called the “partition phase” and the “probag@i respectively.

In the partition phase, the algorithm writes out tuples idifterent partitions based on the
hash value of the join attributes. In practice, accessedffereht partitions are interleaved, which
results in a random access pattern. In contrast, duringrtfteephase, the algorithm reads and
processes each partition one after another. The optiroizati /0O performance in these two
phases conflicts with each other; sequential access in caephill inevitably cause random
access in the other phase. A popular practice is to optinmeegtobe phase. In this manner,
partitions are stored sequentially, so that fetching omgtjma incurs efficient sequential access,
whereas the interleaved writing to all partitions is dona irmndom fashion.

Similarly, conflicting 1/0 access patterns are also founthie external sorting algorithms.
External sorting algorithms [37] are used to sort massivewarts of data that do not fit into
main memory. Generally speaking, external sorting algorg have two phases. The first phase
partitions the data into smaller chunks using differeraitsgies. The second phase processes
these chunks and outputs the final sorted file. Based on trexetitf strategies in the first phase,
external sorting can be roughly classified into two gro@: [(@) distribution-based sorting and
(b) merge-based sorting. Both face the sequential versuonaraccesses in the two phases.
Details are discussed in Chapter 6.

This dissertation proposes a solution that exploits thelnewposed adjacency model in
order to eliminate the expensive random I/O access. Thishieeed by organizing partitions (in
the hash join algorithm) and chunks (in the external sorilggrithm) along the semi-sequential
access paths. Details are discussed in Chapter 6. This warlother example of how a deeper
understanding of hardware features can help to organize rdate efficiently and hence, to
improve performance.



1.5 Thesis road map and structure

To solve the problems described in the previous sectiomsdtksertation first proposes DBm-
bench as a significantly reduced database microbenchmigeknduch simulates OLTP and DSS
workloads. DBmbench enables quick evaluation on new desigshgprovides forecasting for per-
formance of real large scale benchmarks. After that, | deamgl develogClotho, a new buffer
pool manager for database management syst@iaho decouples the in-memory page layout
from the storage organization by using a new query-speeificut calledCSM CSM as a flexi-
ble page layout, combines the best performandgS¥andDSM, achieving good performance
for both DSS and OLTP workloads. The layout for two-dimensiaables inClotho inspires
the idea of mapping data in high dimensional spaces to diskshweads to the next project:
MultiMap. MultiMap is a new mapping algorithm that stores multidimensionah detto disks
without losing spacial localityMultiMap exploits the new adjacency model for disks to build a
multidimensional structure on top of the linear disk spdteutperforms existing multidimen-
sional mapping schemes on various spatial queries. | laitexetthe multidimensional structure
to improve the performance of two database operators tivat dygposite 1/0 access patterns in
their different execution phases.

The rest of the thesis is organized as follows. Chapter 2 expthe basic concepts of adja-
cent blocks and semi-sequential access paths as the bankidgnoowledge. Chapter 3 introduces
DBmbench. Chapter 4 presents fregesdatabase storage architecture with a focu€ttha
Chapter 5 presentdultiMap, a new locality-preserving mapping algorithm to store idiutten-
sional datasets. Chapter 6 continues to explore the oppiesibrought by the new disk model
in two major query operators, hash join and external sortkigally, Chapter 7 concludes my
thesis work.
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Chapter 2

Background: adjacency model for modern
disks

For completeness, this chapter reviews the adjacency noodehich Fatesand MultiMap are
built. This chapter provides the background informaticat ik necessary for understanding this
dissertation. Detailed explanations and evaluations sK tichnologies across a range of disks
from a variety of vendors are provided by Schlosser e@]. [62

2.1 The traditional model for disks

It is well understood that a disk access consists of two ghdsst, the disk head moves to the
destination track; second, the head waits until the ragadiisk platter brings the target block
right under the head. After this, the head starts moving #ia tb or from the media. The time
spent on the mechanical movements of the disk head and ttierptaoften callegositioning
cost Accordingly, there are two components associated witlitloephases respectively: seek
time and rotational latency [55].

Compared to the actual time spent reading/writing data, dséipning cost—or the overhead
of one disk access— is very high. For small chunks of dataptleehead could be more than
90% of the total time [58]. Therefore, the most efficient wayatcess data is the one that pays
the positioning cost only once (i.e., at the beginning ofdbeess). After the initial positioning
cost, the disk head just reads/writes data continuoushgeShe traditional abstraction for disks,
such as SCSI, is a sequence of fixed-size blocks identified ¢yndsig block numbers, the
above access path can be easily expressed by accessingtsdqliek blocks. For other access
patterns involving non-contiguous blocks, the linear @asion falls short of giving any insight
on the relationships among those blocks, thus simply catagg any non-sequential accesses
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Figure 2.1: Conceptual seek profile of modern disk drives nstiation of adjacent blocks.

as “random accesses.” In practice, most of the random aex@ssur the overhead of seek time
and rotational latency. With the above model, when it is rastgible to store data in sequential
disk blocks, applications will blindly use non-contigudalecks that happen to be available at
that time. This often leads to bad I/O performance.

The recent development of disk technologies sparks rdsesrcmew disk models that can
disclose more features to upper applications without lirdgprogrammers. This chapter de-
scribes the one proposed by Schlosser eQI. [62], calleAdiecency model. This new model
exposes the second most efficient access paths, referredeéogsequential access paths, which
are later utilized to store multidimensional datasets.

The new adjacency model introduces two primary conceptjacent blocksand semi-
sequential accesd he rest of this chapter explains them in detail. As descritsy Schlosser et
aI.qEZ], the necessary disk parameters can be exposedlicamms in an abstract, disk-generic
manner.

2.2 Adjacent disk blocks

The conceﬁt of adjacent blocks is based on two characteyiefimodern disks as shown in
Figure 2.1 [62]:

1. Short seeks of up to some cylinder distari¢eare dominated by the time to settle the head
on a destination track;

2. Firmware features that are internal to the disk can ifleatnd, thus, access blocks that
require no rotational latency after a seek.

Figure 2.1(a) shows a conceptual view of seek time as a famaif cylinder distance for
modern disks. For very short distances of upCtaylinders, seek time is near constant and
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Figure 2.2: Disk trends for 10,000 RPM disks. Seagate inteduhe Cheetah disk family in

1997 and Quantum/Maxtor introduced its line of Atlas 10kdis1 1999. Notice the dramatic

increase in track density, measured in Tracks Per Inch (BRige 2000. The most recent disks
introduced in 2004 Cheetah 10k.7 and Atlas 10k V (not showrhéngraph) have densities
of 105,000 and 102,000 TPI respectively, and settle tim@sl ms shorter than their previous
counterparts.

dominated by the time it takes for the disk head to settle erd#fstination track, referred to as
settle time If each of these cylinders is composedidtracks, up toD = R x C tracks can be
accessed from a starting track for equal cost.

While settle time has always been a factor in positioning Heskds, the dramatic increase in
areal density over the last decade has brought it to thedsrghown in Figure 2.2. At lower track
densities (e.g., in disks introduced before the year 2084y, a single cylinder can be reached
within the settle period. However, with the large increasé&rack density since the year 2000,
up toC can now be reached.

The growth of track density has been one of the strongestdrerdisk drive technology over
the past decade, while settle time has decreased ver ltlas shown in Figure 2.2 for two
families of enterprise-class 10,000 RPM disks from two maatufrers. With such trends, more
cylinders can be accessed as track density continues tovgnde/ settle time has improved very
little. The Maxtor Atlas 10k Il disk from the previous exateasC' = 17, and up to 8 surfaces
for a total capacity of 73 GB. Thus, it hd$ = 136 adjacent blocks, according to the definition.

While each of thes® tracks contains many disk blocks, there is one block on gack that
can be accessed immediately after the head settles on ttieaties track, with no additional
rotational latency. These blocks can be viewed as bailj@centto the starting block. Accessing
any of these adjacent blocks takes just the settle time, thenum time to access a block on
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Conservatism| D | Settle time
0° 136 1.10 ms
10° 180 1.25ms
20° 380| 1.45ms

Table 2.1: Adding extra conservatism to the base skew ofor the Atlas 10k 111 disk.

another track.

Figure 2.1(b) illustrates the adjacent blocks on a disk. &given starting block, there are
D adjacent disk blocks, one in each of theadjacent tracks. All adjacent blocks have the same
offset from the starting block because the offset is deteechiby the number of degrees the
disk platters rotate within the settle time. For exampld}ifdenotes the offset, with a settle
time of 1 ms and a rotational period of 6 ms (i.e., for a 10,000MR#sk), the offset will be
W = (1/6 x 360°) = 60°.

As settle time is not deterministic (i.e., due to externarations, thermal expansion, etc.), it
is useful to add some extra conservatisnilfao avoid rotational misses and to avoid suffering
full revolution delay. Adding conservatism increases theber of adjacent trackd), that can
be accessed within the settle time at the cost of addedantdtiatency, as shown in Table 2.1
for the Atlas 10k 111 disk.

2.2.1 Semi-sequential access

Accessing successive adjacent disk blocks ena#es-sequentiadlisk accessr[ZJGO], which

is the second most efficient disk access method after puneeséigl access. Figure 2.1(b)
shows two potential semi-sequential paths from a startisig lolock. Traversing the first semi-
sequential path accesses the first adjacent disk block otdréng block, and then the first
adjacent block of each successive destination block. Tsawgthe second path accesses the
successivdast or Dth adjacent blocks. Either path achieves equal bandwidtipitgethe fact
that the second path accesses successive blocks that aregbinfurther away from the starting
block. Recall that the first, second, or (up fo)h adjacent block can be accessed for equal cost.

2.3 Quantifying access efficiency

A key feature of adjacent blocks is that, by definition, they be accessed immediately after
the disk head settles. To quantify the benefits of such acsegpose an application is accessing
d non-contiguous blocks that map within tracks. Without explicit knowledge of adjacency,
accessing each pair of such blocks will incur, on averagatiomal latency of half a revolution,

14



8 Comparison of access times

ONormal
B Adjacent

Time [ms]

Maxtor Atlas 10k I Seagate Cheetah 36ES

Figure 2.3: Quantifying access times.This graph compdresatcess times to blocks located
within C cylinders. For both disks, the average rotational latea&iins. For the Atlas 10k 111
disk, C' = 17 and seek time within' ranges from 0.8 ms to 1.2 ms. For the Cheetah 36ES disk,
(C'=12 and seek time ranges from 0.7 ms to 1.2 ms.

in addition to the seek time equivalent to the settle timehdfse blocks are specifically chosen
to be adjacent, then the rotational latency is eliminatetitae access to theé blocks is much
more efficient.

A system that takes advantage of accesses to adjacent blatpesforms traditional systems.
As shown in Figure 2.3, such a system, labeled Adjacent.eofatpns a traditional system, la-
beled Normal, by a factor of 4, thanks to the elimination bfatiational latency when accessing
blocks withinC' cylinders. Additionally, the access time for the Normalecaaries considerably
due to variable rotational latency, whereas the accessvamability is much smaller for the Ad-
jacent case; this is entirely due to the difference in seak tvithin theC' cylinders, as depicted
by the error bars.

2.4 Hiding low-level details from software

While the adjacency model advocates exposing adjacent LBldpgbcations, it is unrealistic
to burden application developers with such low-level detas settle time, physical skews, and
data layout in implementing the algorithm described abdvee application need not know the
reasons for why disk blocks are adjacent, it just needs toblee ta identify them through a
GETADJACENT call to a software library or logical volume manager integfdhat encapsulates
the required low-level parameters. This software layerepast on the host as a device driver or
within a disk array. It would either receive the necessarapeeters from the disk manufacturer
or extract them from the disk drives when the logical volusmitially created.

For a long time, the linear abstraction of disks has imposeitidtions on database systems
in storing relational tables and other datasets with moaa thne dimension. The new adja-
cency model for disks and the semi-sequential access tthes ke rotational latency bring new
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opportunities to data layout designs in the database contynudatabase should enhance the
interaction with storage devices to understand the despesific features and to exploit them.
Through carefully-designed interfaces, the improvedradgon can improve performance with-
out sacrificing the design and implementation simplicity.

This thesis will demonstrate how the semi-sequential acpath is later utilized bytropos
to store relational tables and WyultiMap to store multidimensional datasets without losing
spatial localities. It is also used to organize intermediasults in hash join and external sorting
(Chapter 6).
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Chapter 3

DBmbench

Make everything as simple as possible, but not simpler.
— Albert Einstein

This chapter presents DBmbench, a small yet representaiadase benchmark for com-
puter microarchitecture. With the proliferation of datadavorkloads on servers, much recent
research on server architecture has focused on databasendysnchmarks. The TPC bench-
marks for the two most common server workloads, OLTP and D&% been used extensively in
the database community to evaluate the database systetiohaiity and performance. Unfor-
tunately, these benchmarks fall short of being effectivaicroarchitecture and memory system
research due to several key shortcomings. First, settintdpei@xperimental environment and
tuning these benchmarks to match the workload behavioit@fést involves extremely complex
procedures. Second, the benchmarks themselves are coamalgteclude accurate correlation
of microarchitecture- and memory-level bottlenecks to oh@ant workload characteristics. Fi-
nally, industrial-grade configurations of such benchmariestoo large and preclude their use in
detailed but slow microarchitectural simulation studié$uture servers. In this paper, we first
present an analysis of the dominant behavior in DSS and OLdiRleads, and highlight their
key processor and memory performance characteristicsh&veihtroduce a systematic scaling
framework to scale down the TPC benchmarks. Finally, we gsegghe DBmbench, consisting
of two substantially scaled-down benchmarkd:PC-H anduTPC-C that accurately 95%)
capture the processor and memory performance behavior $fdd8 OLTP workloads.

3.1 Introduction

Database workloads — such as Decision Support SystBi&§ @nd Online Transaction Pro-
cessing OLTP) — are emerging as an important class of applications in ¢nees computing

17



market. Nevertheless, recent reseE[EQ, 35] indithseshese workloads perform poorly on

modern high-performance microprocessors. These stud@g that database workloads have

drastically different processor and memory performan@atteristics as compared to conven-

tional desktop and engineering workloads [71] that havenlikee primary focus of microarchi-

tecture research in recent years. As a result, researcberdbth the computer architecture and

database communities are increasingly interested inudfformance evaluation of database
2

workloads on modern hardware platforrgsﬁﬂ{@ 6595435].

To design microprocessors on which database workloadsmperfell, computer architects
need benchmarks that accurately represent these workloBtsre are a number of require-
ments that suitable benchmarks should satisfy. First, nmodle-issue out-of-order superscalar
processors include a spectrum of mechanisms to extradtgdsra and enhance instruction ex-
ecution throughput. As such, the benchmarks must faithfislimic the performance of the
workloads at the microarchitecture-level to allow for iIrs to pinpoint the exact hardware
bottlenecks. Second, microarchitecture simulation tﬁire also typically five or more or-
ders of magnitude slower than real hardware @ 80]. Tonaflr practical experimentation
turnaround, architects need benchmarks that are scaled damations of the workload?[30]
and have minimal execution time. Third, the benchmark bienahould be deterministic when
across scaled datasets and varying system configuratiaikwo for conclusive experimenta-
tion. Finally, the benchmark sources or executables sheithér be readily availablg[n] or at
most require installation and setup skills characteristia typical computer system researcher
and designer.

Unfortunately, conventional DSS and OLTP database bendsnePC-HandTPC-C @],

fall far short of satisfying these requirements. The TPCchemarks have been primarily de-
signed to test functionality and evaluate overall perfarogaof database systems on real hard-
ware. These benchmarks have orders of magnitude largeutexetimes than needed for use
in simulation. To allow for practical experimentation taround, most prior studieg [E, , 9,
EZ,,E5] employ ad hoc abbreviations of the benchm@daled down datasets and/or a
subset of the original queries) without justification. Masfythese studies tacitly assume that
microarchitecture-level performance behavior is presgrv

Moreover, the TPC benchmarks’ behavior at the microarchite-level may be non-deterministic
when scaled. The benchmarks include complex sequencesatfad@ operations that may be
reordered by the database system depending the nature sédjoence, the database system
configuration and the dataset size, thereby substantiatlying the benchmark behavior. Recent
research by Hankins et MSO], rigorously analyzes miaioiéecture-level performance metrics
of scaled datasets f@PC-Cworkloads and concludes that performance metrics ceasattthm
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when the dataset is scaled below 12GB. Unfortunately, sutdsetsizes are still too large to
allow for practical simulation turnaround.

Finally, the TPC benchmark kits for most state-of-the-atiatbase systems are not readily
available. Modern database systems typically include omerhundred configuration and instal-
lation parameters. Writing and tuning the benchmarks a@ogitt the specifications [76] on a
given database system to represent a workload of intergsteqaire over six months of exper-
imentation even by a trained database system manager [@4kqgnires skills beyond those at
hand for a computer system designer.

In this chapter, we preseBBmbencha benchmark suite representing DSS and OLTP work-
loads tailored to fit the requirements for microarchiteettesearch. The DBmbench is based
on the key observation that the executions of database oam&lare primarily dominated by a
few intrinsic database system operations — e.g., a se@lisntin or a join algorithm. By iden-
tifying these operations, microarchitecture-level betiawf the workloads can be mimicked by
benchmarks that simply trigger the execution of these dp@&sin the database system. We
present the DBmbench benchmarks in the form of simple datatpasries, readily executable
on database systems, and substantially reducing exeadioplexity as compared to the TPC
benchmarks. Moreover, by isolating operation executistand-alone benchmarks, the datasets
can be scaled down to only hundreds of megabytes while negutt deterministic behavior pre-
cluding any optimizations in operation ordering by the Bakte system.

Using hardware counters on an Intel Pentium Il platformning IBM DB2, we show that
the DBmbench benchmarks can match a key set of microaralmélvel performance behavior,
such as cycles-per-instruction (CPI), branch predictiocugacy, and miss rates in the cache
hierarchy, of professionally tuned TPC benchmarks for DB&viitin 95% (for virtually all
metrics). As compared to the TPC benchmarks, the DBmbenchaD8®LTP benchmarks: (1)
reduce the number of queries from 22 and 5 to 2 and 1 simpleegu@spectively, (2) allow for
scaling dataset sizes down to 100MB, and (3) reduce the dweiraber of instructions executed
by orders of magnitude.

The remainder of this chapter is organized as follows: 88(@&i2 presents a brief survey of
recent database workload characterization studies ancksiearch on microbenchmarks. Sec-
tion|3.3 describes a framework to scale down database bemkkmand the design of DBmbench.
Section 3.4 discusses the experimental setup and the mesed to characterize behavior at the
micro-architecture level. Sections 3.5 evaluates thersgéilamework and the DBmbench. Sec-
tion|3.6 concludes the chapter and outlines future work.
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3.2 Related work

Database workloads evaluation at the architectural levalprerequisite toward improving the
suboptimal performance of database applications on tegmgtessors. Itidentifies performance
bottlenecks in software and hardware and points out thectibre of future efforts. Several
workloads characterization effor[s E%E{S[SE 12,, 3),ekplore the characteristics of OLTP
and/or DSS on various hardware platforms using either alssoale database or a subset of
a standard workload or both. Three studres@, 54, 75] emphdke scale-down issues and
demonstrate that the modified benchmarks they use do nat &ffe results. However, they
still lack detailed analysis based on sufficient experimamt database systems with different
scales. Most recently, Diep et MZO] report how varying tonfiguration parameters affects
the behavior of an OLTP workload. They propose a parametgoreonsisting of number of
processors, disks, warehouses, and concurrent cliengptesent an OLTP configuration. They
then formulate empirical relationships of the configunasi@and show how these configurations
change the critical workload behavior. Hankins et al [3Qjtanue this work by first proposing

two metrics, average instructions per transacti®xj and average cycles per instructid®R(])

to characterize OLTP behavior. Then they conduct an extensimpirical examination of an

Oraclebased commercial OLTP workload on a wide range of the prapoedrics. Their results

show that the IPX and CPI behavior follows predictable tremtdgh can be characterized by
linear or piece-wise linear approximations.

There are a number of recent proposals for microbenchnadatabase systems. The first
processor/memory behavior comparison of sequential-andnrandom-access patterns across
four database systen@ [3] uses an in-memory TPC-like miadbeark. The microbenchmark
used consists of a sequential scan simulating a DSS worldndda non-clustered index scan
approximating random memory accesses of an OLTP worklo#tiodgh the microbenchmark
suite is sufficiently similar to the behavior of TPC benchksafor the purposes of the study,
a comprehensive analysis varying benchmark configuratawarpeters is beyond the scope of
that paper. Another studﬁ34] evaluates the behavior ofrélai microbenchmark. Their mi-
crobenchmark simulates two sequential scan queries (QQé&nftom the TPC-H suite, whereas
for TPC-C, it devises read-only queries that generate randemary/disk access to simulate the
access pattern of OLTP applications. Computation compiexiects the representativeness of
the proposed micro-DSS benchmark, while the degree of dagafmultiprogramming affects the
micro-OLTP benchmark.

In this work, we build on the previous work as follows. First address the scaling problem
from a database’s point of view in addition to the traditiomécroarchitecture-approaches. We
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examine how query complexity, as one important dimensiothefscaling framework, can be
reduced while preserving their key hardware level charesties. Second, we use a wealth of
metrics that are important to obtain a complete picture eftbrkload behavior. Third, we build

microbenchmarks for both DSS and OLTP workload.

3.3 Scaling down benchmarks

This section outlines a framework to scale down benchma¥ke. identify three dimensions
along which we can abbreviate benchmarks and discuss thesiss/olved when scaling database
benchmarks workload along the dimensions. Then, we présemiesign of DBmbench.

Decision-support system (DSS) workloads are typicallyatizrized by long, complex queries
(often 1MB of SQL code) running on large datasets at low caricy levels. DSS queries are
characterized from sequential access patterns (throum@ sgans or clustered index scans).
By contrast, on-line transaction processing (OLTP) worttdoeonsist of short read-write query
statements grouped in atomic units calimhsactionsdg]. OLTP workloads have high concur-
rency levels, and the users run many transactions at thetsamerl he queries in the transactions
typically use non-clustered indices and access few rectivds=fore OLTP workloads are char-
acterized by concurrent random accesses.

The prevalent DSS benchmark is TPCE [28]. TPC-H consistsgiftaables, twenty-two
read-only queries(§1—-()22) and two batch update statements, which simulate the tiet\of a
wholesale supplier. For OLTP, the TPC-C benchmark portraye@esale supplier and several
geographically distributed sale districts and associatehouses [76]. It is comprised of nine
tables and five different types of transactions. TPC-H is liseaecuted in a single-query-at-a-
time fashion while TPC-C models multiple clients running comently.

3.3.1 A scaling framework

A database benchmark is typically composed of a dataset amorkdoad (set of queries or
transaction) to run on the dataset. Inspired by the diflesrbetween DSS and OLTP outlined
in Section 3.3, we scale down a full benchmark along threleogdnal dimensions, shown in
Figure 3.1: workload complexity, dataset size, and levelasfcurrency.

In order to scale down a benchmark’s workload complexitg approach is to choose a sub-
set of the original querie&&%@ﬁ]. Another approactoiseduce the query complexity by
removing parts of the query or reducing the number of itenteénlSELECT clause. Both meth-
ods effectively reduce query complexity at the cost of $@ang representativeness; choosing
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Figure 3.1: Benchmark-scaling dimensions.

a subset of queries may exclude important queries thatfgignily affect behavior, while the
complexity reduction method may inadvertently result iardatic changes to the query plans
and thus modify the benchmark’s behavior.

Scaling down along the dataset size dimension is fairlyghitborward, because benchmark
specifications typically provide rules or software to schide/n datasets. The main concern when
scaling down along this dimension is to preserve the pedioe characteristics of the workload,
as reducing the database size is likely to alter the quensgland consequently the instruction
mix) and cause performance bottlenecks to shift. Similataling the level of concurrency is
straightforward, because benchmarks include in theiriBpattons the how many users should
run per data unit. It is important to abide by the scalingsutethe specifications, to maintain
the data and usage properties.

3.3.2 Framework application to DSS and OLTP benchmarks

From the perspective of benchmark evaluation, DSS quereesastly read-only and usually
access a large portion of the dataset. While there are alsb batlates, read-only operations
are the critical part in a DSS workload. Queries are execatedat-a-time, and the execution
process for each query is predictable and reproducibleth&umore, while DSS queries vary
enormously in functionality, they typically spend most logir time executing basic query oper-
ations such as sequential scan and/or join.

When examining the optimizer's suggested plans for TPC-Higsiewe find that 50%
gueries are dominated by table scans (over 95% of their &rectime is estimated to be due
to table scans) whereas 25% of the queries spend more tha®bié time executing nested-
loop joins. The remaining 25% of the queries executed tatd@s for about 75% on average
and nested-loop joins for about 25% on average. Therefagezam represent scan-bound and
join-bound queries by executing the two dominant operators

Considering the complexity and depth of a TPC-H query plas,résult may seem counter-
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Table T1 Table T2

CREATE TABLE T1 ( CREATE TABLE T2 (
al | NTEGER NOT NULL, al | NTEGER NOT NULL PRI MARY KEY,
a2 | NTEGER NOT NULL, a2 | NTEGER NOT NULL,
a3 | NTEGER NOT NULL, a3 | NTEGER NOT NULL,
<paddi ng>, <paddi ng>

FOREI GN KEY (al) references T2 );

Table 3.1: DBmbench database: table definitions.

intuitive; however, the major part of the filtering is donéls lowest levels of the operator tree,
and the result size is reduced dramatically as executiotimgas to the upper levels of the tree.
In conclusion, DSS workloads can be scaled down by (1) cocistg representative queries
that execute the dominant operators; (2) using small dstésat fit in the research testbed. The
concurrency level is already low in DSS.

OLTP workloads are characterized by a large number of coectiand continuous update-
intensive transactions that generate random-like menuwgss patterns. Queries in OLTP work-
loads are simple and only touch a small fraction of the d&at&ielTP execution is quite different
from that of DSS, in that it involves a stream of concurreahsactions including numerous sim-
ple queries and insert/update statements. Scaling dowrP@Ehchmarks involves decreasing
the number of concurrent clients and reducing the datases.sifo accurately mimic the work-
load’s scattered dataset access pattern, the concunemtscthould execute one or more queries
with random access to memory.

3.3.3 DBmbench design

DBmbench is a microbenchmark suite that can emulate DSS aié @forkloads at the com-
puter architectural level. DBmbench includes two tablesthnele simple queries. The design
principles are (1) keeping table schemas and queries asesampossible; (2) focusing on the
dominant operations in DSS and OLTP.

DBmbench tables. DBmbench uses two tables, T1 and T2, as shown in Table 3.1. T1
and T2 have three fields eadfl, a2, anda3, which will be used by the DBmbench queries.
“paddi ng” stands for a group of fields that are not used by any of theigsienVe use the
values of these fields apaddi ng” to make records 100 Byte long, which approximates the
average record length of TPC-H and TPC-C. The type of these fietd®s no difference in
the performance, and by varying its size we can experimetht @viferent record sizes without
affecting the benchmark’s queries.
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uSS query uNJ query nIDX query
SELECT di stinct (a3)| SELECT avg (T1. a3) SELECT avg (a3)
FROM T1 FROM T1, T2 FROM T1
WHERE Lo < a2 < Hi VWHERE T1.al=T2.al AND Lo < Tl.a2 < H | WHERE Lo < a2 < Hi
ORDER BY a3

Table 3.2: DBmbench workload: queries.

The values of field:1 is in the range ot and150, 000. The field ofa2 takes values randomly
within the range ofl to 20, 000 anda3 values are uniformly distributed betwegémand50. Since
al is the primary key of T2, T2 has50, 000 records which are ordered hy. For each record in
T2, arandom number of rows withji . . . 7] are generated in T1. The distributions and values in
these tables are a properly scaled-down subset of the ddtddiions and values in tHmeitem
and orderstable of TPC-H. Whether to create indices on T1 and T2 dependbetype of
workloads DBmbench is trying to mimic. Details are in the redtion.

DBmbench queries. Based on the discussion in Section 3.3.2, the design of theDISS
crobenchmark mainly focuses on simplifying query compiexiMoreover, as discussed pre-
viously, scan and join operators typically dominate DSSrg@xecution time. Therefore, we
propose two queries for the DSS microbenchmark, referradid@PC-H, as follows: sequential
scan query with sort(SS) and join query/(NJ). The first two columns of Table 3.2 show the
SQL statements for these two queries.

The 4SS query is a sequential scan over table T1. We will use inilsite the DSS queries
whose dominant operators are sequential scans. The twmegs in the predicatd,, and
H;, are used to obtain different selectivities. The order-lause sorts the query results by
the values in the a3 field, and is added for two reasons. Biost,is an important operator in
DSS queries, and the order-by clause increases the quemyledty effectively to overcome
common shortcomings in existing microbenchma&&& 34cddd, the clause will not alter
the sequential scan access method, which is instrumenti@gtérmining the basic performance
characteristics. TheSS query is run against T1 without any indices.

Previous microbenchmarks use aggregation functions iptbjection list to minimize the
server/client communication overheggﬁg 34]. To prevhaatdptimizer from omitting the sort
operator,uSS uses “distinct” instead of the aggregate. “Distinctingtiates duplicates from
the answer and achieves the same methodological advarsdige aggregate, because the num-
ber of distinct values i3 is small (less than or equal &), and does not interfere with the
performance characteristics. Our experiment result©borate these hypotheses.

Although previously proposed microbenchmark suiEs [F@roomit the join operator, it
is actually an important component in DSS queries and hasdiferent behavior from table
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scan [3]. To mimic the DSS workload behavior accurately, westler the join operator and
propose theNJ query to simulate the DSS queries dominated by the joiredqe The predicate
“L, < Tl.a2 < H;" adds an adjustable selectivity to the join query so that a@ @ontrol the
number of qualifying records by changing the valueg.gandH;. An index on7'2.al is created
for the uNJ query to reduce the execution time.

The OLTP microbenchmark, which we callPC-C, consists of one non-clustered index scan
query @IDX), shown in the third column of Table 3.2. Accordingly, mdex on7'1.a2 is created
as the non-clustered index. Th¢DX query is similar to theuSS query inuTPC-H. The key
difference is that, when evaluating the predicate in the€mhclause, the table scan through the
non-clustered index generates a TPC-C-like random accessrpathe proposedIDX query
is a read-only query which only partly reflects the type ofaw in TPC-C. The transactions
also include a significant number of write statements (uggjansertions, and deletions). In
our experiments, however, we found that adding updatesed®Bmbench had no effect in
the representativeness of the benchmark. The reason jdikkaqueries, updates use the same
indices to locate data, and the random accesses on thettadolegh index search is the dominant
behavior in TPC-C. Therefore, théDX query is enough to represent the benchmark. We scale
down the dataset to the equivalent of one warehouse (100M& }rennumber of concurrent
users to ten (as directed by the TPC-C specification).

3.4 Experimental methodology

In this section, we present the experimental environmedtaethodology we use in the work.
Industrial-strength large-scale database servers aga ofinfigured with fully optimized high-
performance storage devices so that the execution prosdgpically CPU- rather than 1/O-

bound. A query’s processor execution and memory accesadatlaistics in such settings domi-

nate overall performanc@ [9]. As such, we ignore I/O agtiwitthis work and focus on microarchitecture-
level performance.

We conducted our experiments on a 4-way 733 MHz Intel Penliiuserver. Pentium Il is a
3-way out-of-order superscalar processor with 16 KB |lered-instruction and data caches, and
a unified 2 MB level-two cache. The server has 4 GB of main mgraad four SCSI disks of
35 GB capacity. To measure microarchitecture-level peréorce, we use the hardware counters
featured in the processors to count events or measure impetatencies.® We use Intel’s

We have also verified that the microarchitecture-level egennts between the TPC benchmarks and DBm-
bench match on a Pentium 4 platform. However, we are not aofaaa execution time breakdown model for the
platform to match the stall time components, and theref@®mit these results in the interest of brevity.
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EMON tool to operate the counters and perform measuremértis. counted events include
the total number of retired instructions, the number of eatlisses at each level, mispredicted
branch instructions, and CPU cycles, etc.

We use IBM DB2 UDB V.7.2 with Fix Package 1&19] on Linux (kerweksion 2.4.18) as
the underlying database management system, and run TPC-HRMDeC benchmarks. As in
prior WOI‘kE,@,EZBL";S], we focus on the read-only queridiich are the major components
of the TPC-H workload, but our results can easily be extendéaclude the batch updates. For
our experiments, we used a slightly modified version of th€-I3Pkit provided by IBM which
has been optimized for DB2. Prior WOM [3] suggests that comsmkeDBMS exhibit similar
microarchitecture-level performance behavior when mgrdatabase benchmarks. Therefore,
expect the results in this work to be applicable to otherlukga servers.

For TPC-H, we record statistics for the entire execution othal queries. We measure work
units in order to minimize the effect of startup overheadctEaork unit consists of multiple
queries of the same type but with different values of the Swits parameters (i.e., selectivity
remains the same, but qualifying records vary). We run eaotk wnit multiple times, and
measure events per run. The measurement is repeated saversito eliminate the random
factors during the measurement. The reported results lesgetharb% discrepancy across
different runs.

For TPC-C, we count a pair of events during a five-second fixed tnterval. We measure
events multiple times and in different order each time. Hoexperiments, we ensure that the
standard deviation is always lower tha#h and compute an average over the per-event collected
measurements.

When scaling dataset sizes, we also change the system catifiguparameters to ensure
the setup is valid. Database systems include a myriad ofracgtconfigured parameters. In the
interest of brevity and to allow for practical experimeritaharound time, in this work we focus
on the buffer pool size as the key database system parameteyt As database applications are
heavily memory-bound, the buffer pool size: (1) is expetteldlave the most fundamental effect
on processor/memory performance, and (2) often deterrntieeslues of other memory-related
database system parameters. For TPC-C, where the numberafreent users is intuitively
important for the system performance, we also vary the @egfeoncurrency. While we have
studied other parameters (such as degree of parallelisenfligdvnot find any insightful results
based on them.

When measuring performance, we are primarily interestetierfallowing characteristics:
(1) query execution time breakdown, (2) memory stall timeaidown in terms of cycles lost
at various cache levels and TLBs, (3) data and instructioheatisses ratios at each level (4)
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branch misprediction ratio.

To break down query execution time, we borrow the model psedaand validated in‘ [3]
for the the Pentium III family of processors. In this modeliegy execution time is divided
into cycles devoted to useful computation and stall cyclestd various microarchitecture-level
mechanisms. The stalls are further decomposed into diffesgegories. Hence, the total execu-
tion time 7, can be expressed by the following equation:

To=Tc+Ty+Tp+Tr —Tovr

T is the actual computation timé&j, is wasted cycles due to misses in the cache hierafGhy;
refers to stalls due to the branch prediction unit includirgnch misprediction penalty and BTB
miss penalty;Ir is the stalls due to structural hazards in the pipeline ddadk of functional
units or physical rename registefg;y ;, indicates the cycles saved by the overlap of the stall
time because of the out-of-order execution engine.

T is further broken down into six components:

Ty =Trap + T +Trep +Tror +Tpres +Tires

These are stalls caused by L1 cache misses (data and imstjuti2 cache misses (data and
instruction), and TLB misses respectively.

3.5 Evaluation

In this section, we compare and contrast the microarchitedevel performance behavior of the
TPC and DBmbench benchmarks. We first present results for 8&tenchmarks followed by
results for the OLTP benchmarks.

3.5.1 Analyzing the DSS benchmarks

When taking a close look at the query plans provided by themopér, we corroborate our
intuition from 3.3.2 that one of the two “scan” or “join” opors account for more th&iy%
of the total execution time in each of the TPC-H queries. We figl that these two operators
remain dominant across database system configurationsatemsktisizes. Therefore, we classify
the TPC-H queries into two major groups: “scan bound” queny ‘qmin bound” query. We
evaluate the microarchitecture-level performance theseps on a 10GB dataset.

Figure 3.2(a) shows the representative execution timektdoeens of the two groups. Each

27



< 100% T = 100% T p—
M resource stalls @ ITLB stalls
80% + O br-mispred stalls 80% + ; tg :__'f:gﬁs
@ memory stalls W L1 I-stalls
£ 60% T O computation 60% T O L1 D-stalls
40% + 40% +
T 20% T T 20% +
0%

0%
scan join scan join
bound bound bound bound

Normalized execution time (%
Normalized memory stalls (%

(a) TPC-H execution time breakdown. (b) TPC-H memory stall breakdown.

Figure 3.2: TPC-H time breakdowns.Representative time blieaks for the “scan bound” and

“join bound” groups, which spend their execution time mpimh sequential scan and join oper-
ators respectively.
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Figure 3.3:uSS vs. TPC-H “scan bound” query. The graphs show the time bovaks ofuSS
and TPC-H “scan bound” queries. For th€S query, we vary its selectivity froiVs to 100%
to show how selectivity affects the behavior.

bar shows the contributions of the three primary microdedhural stall components (memory
stalls, branch stalls, and resource stalls) as a perceatdlige total query execution time.

These results corroborate prior findingg_[b, 9] that on ayethe processor is idle more than
80% of the time when executing the TPC-H queries. In both grolyesperformance bottlenecks
are memory-related and resource-related stalls, eacluaiiieg for approximately25% to 50%
of the execution time. While we can not measure the exact aafube resource-related stalls,
our conjecture is that they are related to the load/storedue to the high overall fraction of
memory accesses in these queries.

Not surprisingly, the queries in the “join bound” group ha/kigher computation time com-
ponent because joins are more computationally intensize ffequential scans. Furthermore,
control-flow in joins are data-dependent and irregular, anduch the “join bound” group ex-
hibits a higher branch misprediction stall (ouéf%) component as compared to the “scan bound”
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group whose execution is dominated by loops exhibiting igémé branch misprediction stall
time.

Figure 3.2(b) depicts a breakdown of memory stall time. Theré indicates that the “scan
bound” group’s memory stalls are dominated (0%&¥0) by L2 data misses. These queries sim-
ply thrash the L2 cache by marching over the entire datasedarsuch have no other relatively
significant memory stall component.

Unlike the “scan bound” queries, the “join bound” querieffesufrom frequent L1 i-cache
and i-TLB misses. These queries exhibit large and dynaméche footprints that can not fitin a
2-way associative 16KB cache. The dynamic footprint natdithese queries is also consistent
with their irregular control flow nature and their high branmisprediction stalls. Moreover,
frequent branch misprediction also inadvertently poButlee i-cache with the wrong-path in-
structions, thereby increasing the miss rate.

3.5.2 Comparison touTPC-H

In this section, we compare the microarchitecture-levelppmance behavior of the “scan bound”
and “join bound” TPC-H queries against theif PC-H counterparts. As before, TPC-H results
assume a 10GB dataset while liEPC-H results we present correspond to a significantly scaled
down 100MB dataset.

Figure 3.3(a) compares the execution time breakdown ofi8® query and TPC-H queries
in the “scan bound” group. The x-axis in the left graph refiébe selectivity of the predicate in
the uSS query. These results indicate that the execution timekdosvn of the TPC benchmark
is closely mimicked by the DBmbench. Our measurements itelitat the absolute benchmark
performances also match, averaging a CPI of approximatgly 4.

The 4SS query with high selectivity sorts more records, therelaygasing the number of
branches in the instruction stream. These branches do hidieany patterns and are difficult
to predict, which unavoidably results in a higher branchpmadiction rate. As shown in Fig-
ure3.3(d), theuSS query successfully captures the representative ckasdics of the TPC-H
gueries in the “scan bound” group: it exposes the same bettless and has similar percentages
of each component. Figure 3.3(b) compares the memory stdkdowns of the:SS query
and the “scan bound” queries. Th&S query exposes the same bottlenecks at the L2 (for data
accesses) and L1 instruction caches.

To mimic the “join bound” queries, we focus on the nested lgmp because it is the only
join operator that appears to be dominant. To represent TB®@dthavior accurately, we build
an index on the join fields when evaluatiniyJ. We do so because most join fields in the TPC-H
workload have indices, and the index decreases the quecytixe time significantly.
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Figure 3.5:uTPC-H vs. TPC-H.The graphs compare the miss ratigsléfC-H and TPC-H

Figurel 3.4 examines the execution time breakdown ofitNé query and the “join bound”
gueries. It shows that selectivity significantly affecte #xecution time breakdown of thé\J
query, and 20% selectivity best represents the characteristics of a ‘joiand” query. We also
verify that the absolute performance measured in CPI matoiggeen the TPC queries and the
scaled down DBmbench query with2a% selectivity. The average CPI for these benchmarks
are approximately 2.95.

Figure 3.5(a) and Figure 3.5(b) compare the stall evenufagies across the benchmarks
suites. Much like the “scan bound” queries, the executiop®$ is dominated by L2 cache
misses. Similarly, besides the high fraction of L2 cachésstthe execution of:NJ much like
the “join bound” queries also incurs a high rate of L1 i-canfisses and branch mispredictions.
The L1 d-cache misses are often overlapped Moreover, thmladifferences in event counts
between the benchmark suites are negligible.

In summary, the simplgSS and:NJ queries it TPC-H closely capture the microarchitecture-
level performance behavior of the “scan bound” and “joinfuiqueries in the TPC-H workload
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Figure 3.6: TPC-C time breakdowns.

respectivelyu TPC-H reduces the number of queries in TPC-H from 22 to 2. Maep¥ PC-H
allows for scaling down the dataset with predictable beatrafrom 10GB to 100MB. We mea-
sure a reduction in the total number of instructions exetétem 1.8 trillion in TPC-H to 1.6
billion in 4 TPC-H, making: TPC-H a suitable benchmark suite for microarchitecture ktran
and research.

3.5.3 Analyzing the OLTP benchmarks

Figure 3.6 shows the execution time and memory stall bremkddor a150-warehouse]00-
client TPC-C workload corresponding to a 15GB dataset. Mikehthe TPC-H results, these
results corroborate prior findings on microarchitectuneel performance behavior of TPCB [3].
The effect of the high instruction cache miss rates resw@himcreased memory stall compo-
nent, which is nevertheless dominated by L2 stall time dwutata accesses. The reason is that,
although the L2 data miss rate is not that high, in TPC-C eactdt@ miss reflects 1/0 delays
(TPC-C incurs I/O costs regardless of the dataset size, bedtlogs the transaction updates).

3.5.4 Comparison touTPC-C

Figure 3.7(a) compares the execution time breakdown ofildX query and the TPC-C bench-
mark. It shows that thelIDX query with 0.01% and0.1% selectivity mimics the execution
time breakdown of TPC-C. Increasing the selectivity 1%, however, also achieves the desired
memory stall breakdown (shown in Figure 3.7(b)). The irgéng result here is that selectivity
is important to fine-tune memory stall breakdown.
The execution of a singlelDX query exhibits fewer stall cycles caused by L1 instrooti

cache misses. This is because the TPC-C workload has manyroamity running transactions
which aggravate the localities in the instruction strears.dah improve the similarity by running
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Figure 3.7:uIDX vs. TPC-C. The graphs show the time breakdowngléfX and TPC-C.

multiple xIDX queries. We increase the L1 instruction cache miss raia .017 to 0.032 with
10 currently running queries, which is similar to the L1 instion cache miss rate of TPC-C
(~ 0.036).

Figurel 3.8 shows the miss ratios @DX with a 0.1% selectivity and TPC-C. We can see
from the graph that the branch misprediction rate of/tH&X query is the performance metric
that is far from the real TPC-C workload. The simpler execupath of the:IDX query might be
the reason for this discrepancy. The branch mispredicatsgannot be improved with a higher
degree of concurrency. Fortunately, this discrepancy doeaffect the performance bottleneck,
as shown in Figure 3.7(a). This branch prediction mismdiolever, results in a small overall
CPI difference of 8.4 fouIDX as compared to 8.1 for TPC-C.
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Figure 3.8:uIDX vs. TPC-C.The graph compare the miss ratiogddX and TPC-C

A single uIDX query is not enough to mimic the instruction-relatedfpenance behavior of
TPC-C. We can achieve better approximation by running meliifiDX queries. As for the data
cache, the:IDX query represents TPC-C well on the L1 data cache. Lesditpaaour simple
1IDX query’s execution, however, causes a higher L2 dataeaubs rate.

In summary, theuIDX query can expose the execution bottlenecks of TPC-C sistuhy.
Running multipleIDX queries (usuallyi0) can closely mimic the execution path of the TPC-C
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workload with a7.06% relative error. The:IDX query fails to approximate the branch mispre-
diction rate of the TPC-C workload. We should take this intooamt when predicting the branch
behavior of the TPC-C benchmarkTPC-C reduces the dataset size from 10GB to 100MB as
compared to TPC-C. It also reduces five transactions contpapproximately 50 queries to just

a single query. The total number of instructions executedrpasaction is reduced from 91.65
million in TPC-C to 2.75 million inuTPC-C.

3.6 Chapter summary

Database applications and systems are emerging as theapdipuiot dominant) commercial
workloads. Computer architects are increasingly relyingatabase benchmarks to evaluate fu-
ture server designs. Unfortunately, conventional daebaschmarks are prohibitively complex
to set up, and too large to experiment with and analyze whaluatimg microarchitecture-level
performance bottlenecks.

This chapter proposes DBmbench, a benchmark suite repiregdd$S and OLTP work-
loads tailored to the requirements for microarchitect@search. The rationale of DBmbench
is based on the observation that the execution of databashiparks are decided by a small
set of database operations. At the microarchitecture,lévelexecution of complicated database
queries are broken down into executions of a handful dagabperations with each having a
small code footprint and unique performance charactesisBy identifying these key database
operations for DSS and OLTP workloads, DBmbench proposesa senple queries that use
the key database operations as their building blocks. Bygdein DBmbench is able to preserve
the performance characteristics of their large countéspar

DBmbench identifies that sequential scan and nested loopajeirthe two operators that
primarily dominate the performance of TPC-H, a widely usecsd®rkload. The two operators
take more than 90% of the execution time of all TPC-H queriad, they show very different
performance behavior. Therefore, we use two types of gaiésienimic the TPC-H queries: the
1SS query for sequential scan and fi¢J query for join. BothuSS anduNJ match the CPIs
of sequential scan and join queries, which are 4.1 and 2e8pectively. In addition, they also
closely, usually with a less than 5% relative error, captueedetailed characteristics such as
cache miss ratios at different levels of the memory hierarée find that selectivity affects the
#NJ query more than it does uS. Both queries reduce the number of instructions executed
by 1000x.

OLTP workloads, such as TPC-C, present more challenges asdhemore variations in
the execution of these workloads due to the concurrencyaimstction executions. ThdDX
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guery, a read-only non-clustered index scan, capturesrinefgy access pattern, random ac-
cess, of TPC-C, thus its performance behavior resemblesfti@@-C, especially on exposing
bottlenecks. But singlglDX query falls short of capturing the complex interaction@ng con-
currently running transactions in the TPC-C execution. RugmultiplezIDX queries (usually
10) improves the representativeness on detailed statitich as cache miss rate with a 7.06%
relative error. uTPC-C, consisting of 10 concurrently runnipdDX queries, also reduces the
number of instructions executed per transactiondy.

Although DBmbench is originally designed for microarchiteal research, itis also valuable
for database system research, especially in sensitiviyysis because the simple queries in
DBmbench do a good job atisolating operation executionss iEbiation makes it easy to control
experiments and to study the effect of a single operatioreofopnance. The small set of tunable
knobs in DBmbench also makes performance analysis and c@opanore manageable. The
other projects in this thesis use DBmbench to conduct seitgiéinalysis on query selectivities
and payloads.

Admittedly, DBmbench can not perfectly mimic the performarehavior of TPC-H and
TPC-C, but it achieves its goal of providing a simple, more wul#ble, yet representative
database workload for microarchitecture research toddoattlenecks and gain insight into per-
formance characteristics at the early design stage wittt slmm-around time.
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Chapter 4

Fates database management system storage
architecture

The life of data in Fates:
First, Clotho spins the thread of life with her distaff: gentng request for data.

Then, Lachesis decides the length of the thread with her:rdietermining the 1/0 request size.
Finally, Atropos cuts the thread with her scissors: fetchamgl returning the data.

This chapter describes the design and implementation d¢fdtesdatabase storage manager,
with a focus onClotho, and evaluates its performance under a variety of worklosdsy both
disk arrays and simulated MEMS-based storage devices.

As database application performance depends on the titlizaf the memory hierarchy,
smart data placement plays a central role in increasinditp@nd in improving memory uti-
lization. Existing techniques, however, do not optimizeesses to all levels of the memory
hierarchy and for all the different workloads, because esticfage level uses different technol-
ogy (cache, memory, disks) and each application accessasusimg different patterns. The
Fatesdatabase storage manager addresses this problem by gydlages of data that are tai-
lored to match the characteristics of the medium in whicly #re stored, i.e., on disk, in main
memory, and in CPU caches. On disk, data layout is tailoredgaihderlying storage devices
such that tables can be accessed efficiently in either dioenth memory, pages are tailored
to individual queries, such that only the required fieldsemfards are fetched from disk, saving
disk bandwidth and reducing memory footprint. Memory pagespartitioned into minipages,
which optimizes CPU cache performance, as inRAX page IayoutE4]. In contrast to previ-
ous systems, ifrates data page layouts adecoupled meaning that their format is different
at each level of the memory hierarchy. TRatesarchitecture consists of three main compo-
nents, which are named for the three Fates of Greek mytholGtpthois the buffer pool and
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storage management component which manages in-memorynasidlodata layoutAtroposis

a logical volume manager which exposes device-specifidlsl@funderlying storage devices
to allow efficient access to two-dimensional data structuteastly, theFatessystem leverages
device-specific performance characteristics provideUéu;hesis(ﬁQ] to tailor access to storage.

4.1 Introduction

Page structure and storage organization have been thesobfgimerous studieg[@ 31,
40], because they play a central role in database systemrpenhce. Research continues as no
single data organization serves all needs within all systémparticular, the access patterns re-
sulting from queries posed by different workloads can vaggificantly. One query, for instance,
might access all the attributes in a talflditrecord accesk while another accesses only a subset
of them fartial-record access Full-record accesses are typical in transactional (QLappli-
cations where insert and delete statements require tire eatiord to be read or written, whereas
partial-record accesses are often found in decision-stgystem (DSS) queries. Moreover,
when executing compound workloads, one query may accessdsesequentially while others
access the same records “randomly” (e.g., via non-clusiedex). Currently, database storage
managers implement a single page layout and storage oagimmzcheme, which is utilized by
all applications running thereafter. As a result, in an emuinent with a variety of workloads,
only a subset of query types can be serviced well.

Several data page layout techniques have been proposed litetiature, each targeting a
different query type. Notably, the N-ary Storage Mod¢S(M) [52] stores records consecutively,
optimizing for full-record accesses, while penalizingt@drecord sequential scans. By con-
trast, the Decomposition Storage ModBISM) [EB] stores values of each attribute in a separate
table, optimizing for partial-record accesses, while fieimg queries that need the entire record.
More recently,PAX [ﬁ] optimizes cache performance, but not memory utilizatiéFractured
mirrors* ] reduceDSM's record reconstruction cost by using an optimized stmecéind scan
operators, but need to keepldBM-organized copy of the database as well to support fulliekco
access queries. None of the previously proposed schemeisiggaa universally efficient so-
lution, however, because they all make a fundamental assumghat the pages used in main
memory must have the same contents as those stored on disk.

This chapter describes havates a dynamic and automated database storage manager, ad-
dresses the above problems by decoupling in-memory datatiéiym on-disk storage layout to
exploit unique device-specific characteristics acrossrtémory hierarchy.

Fatesconsists of three independent components, named aftergbdElesses in Greek mythol-
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ogy: Atroposis the volume managO] which enables efficient accesstsa dimensional
data structures stored both in disk arrays and in MEMS-bsisgdge devices (MEMStoreMGB,
El] through new simple interfacelsachesisﬂa] utilizes the explicit device-specific information
provided byAtroposto construct efficient I/O requests for varying and mixed kimaids without
manual tuningClotho [@] is the buffer pool manager which manages query-spetifia pages
dynamically based on queries’ needs. The contents of inanggquery-specific pages could be
different from the on-disk pages, hence the meaning of “dpliog”.

This decoupling offers two significant advantages. Fitspptimizes storage access and
memory utilization by fetching from disk only the data agm$by a given query. Second, it al-
lows new two-dimensional storage mechanisms to be exgltitenitigate the trade-off between
the NSM and DSM storage models. The break of conventional view of single static page
layouts provides the flexibility of using different page days that perform best for the current
workload at the current memory hierarchy level.

Among the thred-atescomponents, this chapter focuses on the design and a pretoty
plementation ofClothowithin the Shore database storage manager [13]. Expersametit disk
arrays show that, with only a single storage organizatienfgpmance of DSS and OLTP work-
loads is comparable to the page layouts best suited for #pective workload (i.e DSM and
PAX, respectively). Experiments with a simulated MEMStorefeanthat similar benefits will
be realized with these future devices as well.

The remainder of this chapter is organized as follows. 8ecti2 introduces background
knowledges and related work. Section 4.3 describes theugésmd data organization iRates
Section 4.4 presents tHeatesarchitecture and the relationship among its three comgsnen
Section 4.5 describes the designfafopos Section 4.6 details ho@lotho, the new buffer pool
manager, constructs query-specific pages using the nevwememy page layout. Section 4.7
describes our initial implementation, and Section 4.8 @@s this implementation for several
database workloads using both a disk array logical volundesasimulated MEMStore.

4.2 Background and related work

Conventional relational database systems store data in$izegpages (typically 4 to 64 KB). To
access individual records of a relation (table) requesyealduery, a scan operator of a database
system accesses main memory. Before accessing data, a pagérstle fetched from non-
volatile storage (e.g., a logical volume of a disk arraydimtain memory. Hence, a page is the
basic allocation and access unit for non-volatile stor#gdatabase storage manager facilitates
this access and sends requests to a storage device to fetcbdbssary blocks.
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A single page contains a header describing what recordsoatained within and how they
are laid out. In order to retrieve data requested by a quesgaa operator must understand the
page layout, (a.k.a. storage model). Since the page laygatrdines what records and which
attributes of a relation are stored in a single page, theageomodel employed by a database
system has far reaching implications on the performancepaftcular workload [3].

The page layout prevalent in commercial database systeatledd\-ary storage model
(NSM), is optimized for queries with full-record access commomn on-line transaction pro-
cessing (OLTP) workloadNSM stores all attributes of a relation in a single pe@a [52] arid f
records are stored within a page one after another. Acaessiull record is accomplished by
accessing a particular record from consecutive memorytitota Using an unwritten rule that
access to consecutive logical blocks (LBNS) in the storagecdes more efficient than random
access, a storage manager maps single page to consecutige IBNs, an entire page can be
accessed by a single I/O request.

An alternative page layout, called the Decomposition $ferlodel DSM) d;B], iS opti-
mized for decision support systems (DSS) workloads. Sin8& Queries typically access a
small number of attributes and most of the data in the pageti®nched in memory by the scan
operator,DSM stores only one attribute per page. To ensure efficientgtodavice access, a
storage manager mapsSM pages with consecutive records containing the same &tribto
extents of contiguous LBNs. In anticipation of a sequentiahsthrough records stored in mul-
tiple pages, a storage manager can prefetch all pages irxtarg with a single large 1/0, which
is more efficient than accessing each page individually paate 1/0.

A page layout optimized for CPU cache performance, cafaX dZ], offers good CPU-
memory performance for both individual attribute scans 88xjueries and full-record accesses
in OLTP workloads. Thd?AX layout partitions data across into separate minipages.nglesi
minipage contains data of only one attribute and occupiesexutive memory locations. Col-
lectively, a single page contains all attributes for a gigen of records. Scanning individual
attributes inPAX accesses consecutive memory locations and thus can taetage of cache-
line prefetch logic. With proper alignment to cache-lireesi, a single cache miss can effectively
prefetch data for several records, amortizing the highhateof memory access compared to
cache access. Howev&AX does not address memory-storage performance.

All of the described storage models share the same chasticter They (i) are highly opti-
mized for one workload type, (ii) focus predominantly on éaesl of the memory hierarchy, (iii)
use a static data layout that is determigatiori when the relation is created, and (iv) apply the
same layout across all levels of the memory hierarchy, eveagh each level has unique (and
very different) characteristics. As a consequence, theréntierent performance trade-offs for
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Data Cache—Memory | Memory—Storage
Organization | OLTP | DSS | OLTP DSS
NSM v/ X v X
DSM X Vv X Vv
PAX V V V X

Table 4.1: Summary of performance with current page layouts

each layout that arise when a workload changes. For exaifid,or PAX layouts waste mem-
ory capacity and storage device bandwidth for DSS worklpsidse most data within a page is
never touched. Similarly, BSM layout is inefficient for OLTP queries accessing random full
records. To reconstruct a full record withattributesy pages must be fetched and- 1 joins on
record identifiers performed to assemble the full recorgddition to wasting memory capacity
and storage bandwidth, this access is inefficient at thagéodevice level; accessing these pages
results in random one-page I/0s. In summary, each pagetlaybibits good performance for a
specific type of access at a specific level of memory hieramfighown in Table 4.1.

Several researchers have proposed solutions to addresspbgormance trade-offs. Rama-
murthy et al. proposed fractured mirrors that store dateoiihh NSMand DSM layouts EB] to
eliminate the need to reload and reorganize data when goatteans change. Based on the work-
load type, a database system can choose the appropriaterdatazation. Unfortunately, this
approach doubles the required storage space and complaatize management; two physically
different layouts must be maintained in synchrony to preselata integrity. Hankins and Pa-
tel [31] proposed data morphing as a technique to reorgalaiteewithin individual pages based
on the needs of workloads that change over time. Since mayphkes place within memory
pages that are then stored in that format on the storageajdtiese fine-grained changes can-
not address the trade-offs involved in accessing non-l@kstbrage. The multi-resolution block
storage model (MBSMﬁ%B] groud3SMtable pages together into superpages, improlisyl
performance when running decision-support systems.

MEMStores [Eh] are a promising new type of storage devicthha the potential to provide
efficient accesses to two-dimensional data. Schlosser gigdosed data layout for MEMStores
that exploits their inherent access paralleli@ [63]. Yaletdevised an efficient mapping of
database tables to this layout that takes advantage of itpeaucharacteristics of MEMStor81]
to improve query performance.

In summary, these solutions either address only some of@éhifermance trade-offs or are
applicable to only one level of the memory hierarcliatesbuilds on the previous work and
uses a decoupled data layout that can adapt to dynamic cheangerkloads without the need to
maintain multiple copies of data, to reorganize data layouto compromise between memory
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Storage format Memory format
PAGE 1 || PAGE HDR (ID, Age) |

1237[43221563] 7658
SELECT ID 1237 4322|1563 7658
FROM R

Jane | John [ Jim | Susan
WHERE Age>30

Table R 30]s2]4s20] 30|52(45(20
ID | Name | Age
1237] Jane
4322] John | 52 PAGE 2
1563 Jim | 45 | f2ses[1015]2534[8791]
7658 | Susan | 20
28651 Tom | 311 [Fron T emy [Jean] Kate
1015] Jerry | 25

2534| Jean | 54 31 | 25 | 54

8791 | Kate | 33
31[25]54]33
A-page C-page

2865|1015|2534|8791|

33

Unused space

Figure 4.1: Decoupled on-disk and in-memory layouts.

and I/O access efficiency.

4.3 Decoupling data organization

From the discussion in the previous section, it is clear tlesigning a static scheme for data
placement in memory and on non-volatile storage that pesorell across different workloads

and different device types and technologies is difficultstéad of accepting the trade-offs in-
herent to a particular page layout that affects all levelshef memory hierarchy, we propose
decoupling the in-memory page layout from the storage azgéion. This section introduces

the high-level picture of the data organization as well aaitezl in-memory page layout used in
Fatesthrough a simple example. It also explains some terminekgsed in later section.

4.3.1 An example of data organization irFates

Fatesallows for decoupled data layouts and different represiems of the same table at the
memory and storage levels. Figurel4.1 depicts an example, tAbwith three attributesl! D,
Nane, andAge. At the storage level, the data is organized into A-pagesA4mage contains all
attributes of the records; only one A-page needs to be fdtttheetrieve a full record. Exploiting
the idea used ifPAX M] an A-page organizes data into minipages that groupegaftom the
same attribute for efficient predicate evaluation, while tést of the attributes are in the same
A-page. The storage and organization of A-pages on storagees are decided b&tropos
and transparent to other components. This all&ieposto use optimized methods for placing
the contents of the A-page onto the storage medium. Thexefmt only doedtroposfully
exploit sequential scan for evaluating predicates, butsib places A-pages carefully on the
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Figure 4.2: C-page layout.

device to ensure near-sequential (or semi-seque‘ntia) #&@ess when reconstructing a record.
The placement of A-pages on the disk is further explaineckitign 4.5.

The rightmost part of Figure 4.1 depicts a C-page, which igtireemory representation of a
page. The page frame is sized by the buffer pool manager amdtie order of 8 KB. A C-page
is similar to an A-page in that it also contains attributeuesl grouped in minipages, to maximize
processor cache performance. Unlike an A-page, howevepag€sanly contains values for the
attributes the query accesses. Since, the query in the éxamly uses theé D andAge, the
C-page only includes these two attributes, maximizing mgrablization. Note that the C-page
uses data from two A-pages to fill up the space “saved” fronttomgiNane. In the rest of this
chapter, we refer to the C-page layout as @etho storage modelGSM). Details of CSMare
discussed in Section 4.3.2. Note that how C-pages are stothd main memory is independent
of the organization of A-pages.

4.3.2 In-memory C-page layout

Figure 4.2 depicts two examples of C-pages for a table with &tibutes of different sizes. In
our design, C-pages only contain fixed-size attributes. alféetsize attributes are stored sepa-
rately in other page layouts (see Section 4.7.2). A C-pageaoma page header and a set of
minipages, each containing data for one attribute and aoldy holding all attributes needed
by queries. In a minipage, a single attribute’s values anedtin consecutive memory locations
to maximize processor cache performance. The current nuofilbecords and presence bits are
distributed across the minipages. Because the C-page onijdsdixed-size attributes, the size
of each minipage is determined at the time of table creation.

The page header stores the following information: page iti@first A-page, the number of
partial A-pages contained, the starting address of eacagema bit vector indicating the schema
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of the C-page’s contents, and the maximal number of recoedsc#n fit in an A-page.

Figure 4.2(a) and Figure 4.2(b) depict C-pages with com@ett partial records, respec-
tively. The leftmost C-page is created for queries that acfidsrecords, whereas the rightmost
C-page is customized for queries touching only the first tvribates. The space for minipages
3 and 4 on the left are used to store more partial records fdufitianal A-pages on the right. In
this example, a single C-page can hold the requested adésilftam three A-pages, increasing
memory utilization by a factor of three.

On the right side of the C-page we list the number of storagecddrocks each minipage
occupies. In our example each block is 512 bytes. Dependirtgerelative attribute sizes, as
we fill up the C-page using data from more A-pages there maye smused space. Instead of
performing costly operations to fill up that space, we chdoseave it unused. Our experiments
show that, with the right page size and aggressive prefajchinis unused space does not cause
a detectable performance deterioration (details abowukspilization are in Section 4.8.7).

4.4 Overview ofFates architecture

Fatesis a new storage architecture for database systems thdesrhb decoupled data organi-
zation. Thanks to the flexibility of query-specific pagegadarocessing ifratesis able to adapt
to the vastly different characteristics at each level oftiemory hierarchy. The challenge is
to ensure that this decoupling works seamlessly withinenirdatabase systems. This section
describes the key components of #etesarchitecture.

4.4.1 System architecture

The difficulty in building Fateslies in implementing the necessary changes without undue in
crease in system and code complexity. The three moduleateésconfine changes within each
component that do not modify the query processing interface

Figure 4.3 shows the thré@tescomponents to highlight the interplay among them and their
relationship to database systems as well. Each componanhdapendently take advantage
of enabling hardware/OS technologies at each level of thmang hierarchy, while hiding the
details from the rest of the system. This section outlinesrtile of each component. The
changes to the components are further explained in Seetiérend 4.5 while details specific to
our prototype implementation are provided in Section 4.2 ilroduce each component from
the top to the bottom.

The operatorsare essentially predicated scans that access data froranmany pages stored
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Figure 4.3: Interaction among three componentsates

in a common buffer pool. They take advantage of the quergiBp@age layout of C-pages that
leverages the L1/L2 CPU cache characteristics and cachetgndbgic for efficient access to
data. The scan operators are essentially a patatho. They are discussed separately to give a
clearer picture of the three componentds-ates

Clotho manages C-pages in the buffer pool and enables sharing aliffiesent queries that
need the same data. In traditional buffer pool managersffarlpage is assumed to have the
same schema and contents as the corresponding relatiGtotho, however, this page may con-
tain a subset of the table schema attributes. To ensurenghanrrectness during updates, and
high memory utilization, th€lotho buffer pool manager maintains a page-specific schema that
denotes which attributes are stored within each bufferge fiee., the page schema). The chal-
lenge of this approach is to ensure minimal I/O by deterngirsharing and partial overlapping
across concurrent queries with minimal book-keeping ovadh Section 4.6 details the buffer
pool manager operation in detail.

Lachesis maps A-pages to specific logical volume’s logical blockdlecbLBNs. Since the
A-page format is different from the in-memory layout, therage manager rearranges A-page
data on-the-fly into C-pages using the query-spe@f®&M layout. Unlike traditional storage
managers where pages are also the smallest accessLawitgsisstorage manager selectively
retrieves a portion of a single A-page. With scatter/galt@and direct memory access (DMA),
the pieces of individual A-pages can be delivered directiy the proper memory frame(s) in the
buffer pool as they arrive from the logical volumieachesissimply sets up the appropriate 1/0
vectors with the destination address ranges for the regqaié®8Ns. The data is placed directly
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to its destinations withoutachesi% involvement or the need for data shuffling and extraneous
memory copies. To efficiently access data for a variety obss@atternd,achesisrelies on
adjacent blocks provided by the logical volume managggpos

Atropos (Logical Volume Manager, LVM) maps volume LBNs to the physiglacks of the
underlying storage device(s). It is independent of thelweta system and is typically imple-
mented with the storage system (e.g., disk array). AtteposLVM leverages the traditional
sequential access path (e.g., all blocks mapped onto ckedMEMStore track) to store mini-
pages containing the same attributes for efficient scansabset of attributes (column direction
access). It utilizes the semi-sequential access pathstomgsof consecutive first adjacent blocks
to store a single A-page (row direction access). At@posLVM is briefly described in Sec-
tion[4.5 and detailed elsewhelg[ 0, 633lotho need not rely on thé&troposLVM to create
query-specific C-pages. With conventional LVMs, it can maplbA-page to a contiguous run
of LBNs with each minipage mapped to one or more discrete LBNsvd¥er, with these con-
ventional LVMs, access only along one dimension will be edht. Also, the actual storage
devices managed Atroposcould be conventional magnetic disks or new MEMStore.

4.4.2 Advantages ofates architecture

Fatesis a dynamic, robust and autonomous storage architectudafabase systems. It has the
following advantages over existing approaches.

Leveraging unique device characteristicsAt the volatile (main memory) leveFatesuses
CSM a data layout that maximizes processor cache utilizatjominimizing unnecessary ac-
cesses to memoryCSM organizes data in C-pages and also groups attribute valuesstoe
that only useful information is brought into the processaches [ Hl]. At the storage-device
level, the granularity of accesses is naturally much coafde objective is to maximize memory
utilization for all types of queries by only bringing intoglbuffer pool data that the query needs.

Query-specific memory layout.With memory organization decoupled from storage layout,
Fatescan decide what data is needed by a particular query, reqagsthe needed data from
a storage device, and arrange the data on-the-fly to an aggam that is best suited for the
particular query needs. This fine-grained control over vdaah is fetched and stored also puts
less pressure on buffer pool and storage system resourcest Bgquesting data that will not be
needed, a storage device can devote more time to serviaju@ses for other queries executing
concurrently and hence speed up their execution.

Dynamic adaptation to changing workloads. A storage architecture with flexible data
organization does not experience performance degradatiem query access patterns change
over time. Unlike systems with static page layouts, wheeehiinding of data representation to
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workload occurs during table creation, this binding is donéatesonly during query execution.
Thus, a system with decoupled data organizations can eaddlyt to changing workloads and
also fine-tune the use of available resources when they aer gontention.

4.5 Atropos logical volume manager

This section briefly describes the storage device-speatia drganization and the mechanisms
exploited byAtroposin creating logical volumes that consist of either disk dsior a single
MEMStore.

4.5.1 Atropos disk array LVM

To store a table, a 2-D data structure, on digkspposutilizes the semi-sequential access path
consisting of the consecutive first adjacent blocks, tagrathth the traditional sequential access
path to provide efficient I/O operations along both row di@t and column direction. It also
exploits automatically-extracted knowledge of disk trackindaries, using them as its stripe unit
boundaries for achieving efficient sequential accAsmposexposes these boundaries explicitly
to Clothoso that it can use previously proposed “track-aligned dk{eraxtentg, which provide
substantial benefits for streaming patterns interleaved other 1/0 activity ESEQ]. Finally,
as with other logical volume managefdroposdelivers aggregate bandwidth of all disks in the
volume and offers the same reliability/performance trafis-of traditional RAID schemegﬂw].

Please refer to Chapter 2 for the explanation of adjacenkblacd semi-sequential accesses.
This section focuses on how a page is stored on disks.

4.5.2 Efficient database organization withAtropos

With Atropos Lachesiscan lay out A-pages such that access in one dimension of ithe ita
sequential, and access to the other dimension is semisegjuéigure 4.4 shows the mapping
of a simple table with 12 attributes and 1008 records to Aegagiored on aAtroposlogical
volume with four disks. A single A-page includes 63 recordd anaps to the diagonal semi-
sequential LBNs, with each minipage mapped to a single LBN. Wdwaessing one attribute
from all recordsAtroposcan use four track-sized, track-aligned reads. For exaragequential
scan of attribute Al results in a access of LBN O through LBN 1®cessing a full A-page
results in three semi-sequential accesses, one to eachHdislexample, fetching attributes Al
through A12 for record O results in three semi-sequentieésses, each proceeding in parallel
on different disks, starting at LBNs 0, 64, and 128.
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Figure 4.4: Mapping of a database table with 12 attributés Atvoposwith 4 disks.The numbers

to the left of disk O are thé BN's mapped to the gray disk locations connected by the arrow and
not the first block of each row. The arrow illustrates effitisami-sequential access fetching
single A-page with 63 records. A single sequential I/O for/i8N's can efficiently fetch one
attribute from 1008 records striped across four disks.

Atroposhides the details of underlying storage devices througplgiinterfaces that support
more than one access paths. It works harmoniously with ctioeage devices other than tradi-
tional disks, such as MEMStores. Details absttoposand MEMStores can be found in the
previous WOFKM?)].

4.6 Clotho buffer pool manager

Due to the query-specific feature, a C-page can contain aesatgiibute (similar tdSM), a
few attributes, or all attributes of a given set of recordilsr to NSMandPAX) depending on
query needs. The responsibility Gfotho, the new buffer pool manager Fates is to construct
and manage C-pages to ensure both the query-specific featlidata sharing among multiple
concurrently running queries. This section first discusBegyeneral design choices for buffer
pool managers, followed by the unique challenges fa€tatho. After that, we present the
design details for Clotho.
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4.6.1 Buffer pool manager design space

Before discussing the design space of a buffer pool managefiyst describe the performance
metrics used in our analysis. The final performance of a bpfbel manager is evaluated by the
average time to serve a request from a scan operator. Fotea batlerstanding of how each
design aspect affects the performance, we break down tree authe service time into two

components: buffer pool miss rate and management cost.

e Buffer pool miss rate is the number of missed pages (pagesjatiided by the total
number of requested pages. It indicates how often a buffer manager needs to fetch
pages from disks. Since fetching a page from disks is tworerdemagnitude slower
than visiting a page in main memory, buffer pool miss rate &asgnificant impact on
the overall performance: waiting for pages from disks drigcally increases the average
service time of a buffer pool manager.

e Management cost is the time spent on metadata maintenahd implies the complex-
ity of buffer pool management. It includes maintaining theKup table structure, keep
tracking of the status of all frames in memory, etc. Apprasctrying to reduce buffer
pool miss rate might have negative effects on managementoesto the complicated
data structures or algorithms employed by these techniques

We summarize the design choices for buffer pool manageratabdse systems as consisting
of the following dimensions: in-memory data organizatipage lookup algorithms, replacement
policies, and metadata management. Among them, in-menedey arganization is the most
crucial dimension.

In-memory data organization refers to the way in which data are laid out in main memory.
In almost all systems, buffer pool managers store data mdsaof the same size as disk pages.
NSM DSM, PAX, and C-pages o€SM discussed in this chapter are examples of organizing
data in pages with different layouts. The choice of in-mendata organization influences the
designs of other three dimensions. Performance-wisefettsfboth buffer pool miss rate and
management cost. An in-depth analysis is presented in tttesaetion.

A page lookup algorithm checks whether a requested page is present in the buffer pool
(page hit or miss). It decides how fast a lookup operationkbEaperformed. A hash table with
page IDs as search keys is widely adopted by convention&rbpdol managers for its O(1)
search complexity. Lookup operations are usually fast anigh@rformance-crucial.

A replacement policy determines the victim pages to be evicted from the buffet pben
there is no enough space for newly requested pages. Basea @tdthss history of pages,
different algorithms have been proposed in the literatarexploit the temporal locality in data
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accesses, thus reducing buffer pool miss rate.
Metadata managementincludes data structures and algorithms used to keep trattleo
status of each buffer pool frame. It varies with the choicaslefor the other design dimensions.
Performance trade-offs exist among the above design diorens For instance, optimiz-
ing in-memory data organization, such as maximizing spditization, could complicate man-
agement, resulting in more management overhead. For didradi buffer pool manager that
employs a static page layout, the design of in-memory dajarezation is straightforward. The
in-memory page layout simply adopts the same structuresasttdisk layout which is selected a
prior based on predicted workload characteristics. Théhilléy introduced byCSMalso brings
in complexity and variations for this design dimension. Hext section discusses the design
choices for in-memory data organization and the new oppdits/challenges fo€lotha

4.6.2 Design spectrum of in-memory data organization

In-memory data organization affects buffer pool miss rateugh effective memory capacity,

which is the amount of memory storing relevant data. By h@dimore data to be accessed
in the future, a buffer pool manager can reduce buffer possmate. Therefore, we choose
memory utilization rate as one optimization objective ofmemory data organization. In a

multi-query execution environment, data sharing oppatiesacross different queries present
another optimization target.

Memory utilization rate

Memory utilization rates defined as the percentage of the entire allocated memanessed
to buffer relevant data. Ideally, it would be 100%, meanirguéier pool manager never wastes
space to store undesired data. In reality, due to implertientartifact or preference for simple
management, there are extraneous data and/or replicaténdée buffer pool. The first refers
to the attributes that are not needed by any queries durgiglifetime in the buffer pool; the
second is the data that have multiple copies in the buffef. pbbese two kinds of undesired
data waste 1/0 bandwidth and memory space, increase thempiageate, and thus impair the
performance.

Memory utilization rate is workload-dependent. But gergrapeaking, buffer pool man-
agers using th&iISM andPAX page layouts suffer from extraneous data due to alwaysifgich
all attributes regardless of queries’ needs. In contragfebpool managers based on th&M
andCSMlayouts can store only requested data (attributes) whalling some memory space to
store replicate copies for faster data processing and lasagement cost.
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The design spectrum of in-memory data organization on mgundization rate spans from
0% to 100%, withDSM at 100% if no replicates andSM and PAX at some point in between
depending on workloads. Buffer pool managers usi/ihave a wide range of memory utiliza-
tion rate. Depending on the strategies of choosing C-pagensa$ in the presence of multiple
queries, the order the queries enter the execution engidehair relative execution speeds, the
memory utilization rate could vary from 100% to less than 5@%he most pessimistic cases).

We propose three buffer pool management strategies: thefiesis simply retrieving full
pages for all queries. This method is essentially the santigeasaditional buffer pool manager
usingNSMtlike page layouts. The second strategy is always fetchumgygspecific pages. The
buffer pool is free of extraneous data but may contain repicopies of some data, therefore
extra structures are needed to maintain data consistendhelsecond method, full pages are
used for update queries. The last strategy is the one we &pfite Clotho prototype, which is
discussed in details in the next section.

Data sharing opportunities

The data sharing discussed in this section happens at thelgrigy of buffer pool frames, i.e., if
two queries access the same buffer pool frame, they arengftars frame no matter whether they
access the same set of attributes or the same set of recoatis.sBaring opportunities among
concurrent queries are determined by the relationshipsm$ets, the attribute set and the record
set, of queries and buffer pool frames. At any point of tinmayrsg a frame is possible only when
both sets of the buffer pool frame contain those of the qaerldhe complexity of data sharing
in Clothocomes from the fact that concurrent queries do not necéssadess the same set of
attributes. Attribute sets of different queries may beaiigj inclusive, or otherwise overlapping.
The observation is also true for record sets.

With the NSMandPAX page layouts, the attribute sets of buffer pool frames asdme as
the relational table schemas stored in them because fullspaige used regardless. In h8M
case, queries join multiple single-attribute pages tomstract records containing requested at-
tributes. In both situations, pages brought into the byffesl by one query can always be used
by others. Therefore data sharing is easy and straightfdewBhe CSM layout with a query-
specific attribute set brings up new issues. Should querg®mse of the existinGSMpages
with overlapping attributes? If yes, how? If no, how to emabhta sharing among different
queries? Generally speaking, data sharing is desirable. clllenge here is to keep a good
balance between management cost and memory utilizatien rat
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Figure 4.5: Components i@lothobuffer pool manager.

4.6.3 Design choices i€lotho buffer pool manager

This section describes the design choices madelbtgho, namely, the in-memory data organiza-
tion, the data structure and algorithm for page lookup, #pacement policy, and the metadata
management. Figure 4.5 depicts three important componoéttis Clothobuffer pool manager,
separated by vertical dotted lines. The leftmost is célekdema Managewxhich keeps updating
the latest information of activeage schemalsased on new and retiregiery schemator each
relation. A page schema is a bit vector describing the atie#held by a C-page. Active page
schemas are the ones currently in Schema Manager. It is osketide what attributes should
be fetched from disks, indicated by the arrow from Schemadganto the buffer pool. A query
schema is also a bit vector, describing the attributes imglesirelation that are referenced by
a query. Both schemas are based on individual relations. dlesielation may have multiple
disjoint page schemas, and a single query may have multijgleycgchemas, each corresponding
to a relation referenced by the query. Schema Manager betorige metadata management cat-
egory and is discussed in details in Section 4.6.3. The midoinponent is a hash table to look
up requested A-pages in the buffer pool. Its responsibititjudes the page lookup operation as
well as choosing victim pages based the adopted replacgmoéay. We explain how it works

in Section 4.6.3. The rightmost depicts the shared buffet with 4 example C-pages.

During query execution, the three components collaboretieda following way: when a new
guery comes in, Schema Manager checks the query schemagpa@daigsithe page schemas for
all relations involved. A page lookup searches for the retpeepage iandthe corresponding
guery schema to decide whether it is a hit or miss. If it is aspas 1/0O request for the missing
page is issued using the page id and a proper page schemehtal&ta from disks.

The rest of this section first reviews the layout of C-pagesflyrithe rightmost part), fol-
lowed by the page lookup operation. The algorithm employe&thema Manager to enable
data sharing among different queries is discussed after tha
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In-memory data organization

Clotho adopts C-page (Figure 4.2) as its in-memory data organizédionat to match various
needs from different queries. Details of the C-page layauthss the metadata in page headers
and the arrangement of minipages, can be found in Sectich A\& recapitulate some important
characteristics about C-pages that are closely relate@ttmfic of this section.

Each frame in the buffer pool stores a C-page which has a gh@zaler followed by one or
more partial A-pages. The global header contains, amorey atletadata, the page schema, the
page id of the first partial A-page, and the total number ofiglaf-pages.

C-pages introduce high flexibility to database systems, withcaveat that data sharing
among multiple queries becomes a tricky problem: it is nayéna straightforward page id
(record set) match, but a more complex decision involvintp lpage ids and attribute sets. Be-
fore delving into the sharing algorithm details, | first déise the data structure and algorithm for
page lookup. It is closely related to data sharing: being &bfind C-pages containing needed
attributes and records is a prerequisite of data sharinghgrooncurrent queries.

Page lookup inClotho

When looking for a page, a traditional database buffer poolagar searches for the correspond-
ing page id in the hash table to determine whether the pagememory. To support page lookup
among query-specific C-pages@iothag the hash table dflothocontains the page ids of all par-
tial A-pages currently in the buffer pool, augmented by taggoschemas of the corresponding
C-pages that contain these partial A-pages. When looking f@ge in the hash tabl€lotho
still uses a key generated based on the page id, but a hit newohmaeet two conditions: first,
the page id matches one A-page page id; second, the scheoasates with the partial A-page
subsumes the query schema. Note that a query schema, noe agagna is used to decide
whether there is a match. This has the advantage that evamtivbgage schema of a C-page
is not active any more, the pages fetched earlier using tihierea can still be utilized by later
gueries with a smaller attribute set.

Clothoadopts the traditional LRU algorithm to select a victim C-@adhen no free frames
are available. Since the victim C-page may contain multigidial A-pages, we have to make
sure all the partial A-pages in that C-page are removed frarh#sh table. This is done by
looking up the hash table using the A-page ids and the schéthatdC-page.
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4.6.4 Data sharing inClotho

This section presents the ideas to enable data shar®igiha. Like all buffer pool managers, the
Clothobuffer pool manager sets its performance goals for datarghas follows: (a) maximize
sharing, ensuring high memory utilization rate, (b) mirammbook-keeping cost to keep buffer
pool operations quick, and (c) maintain consistency in ties@nce of updates.

First, let us examine the options of data sharing in the pes®f query-specific pages
through an example of two queries with overlapped attrilsetis. Assume that query Q1 asks
for attributesa; anda, of a tableT” and query Q2 asks for attributeg anda; of the same table.
Using a simple approach, the buffer pool manager could erea separate C-pages tailored
to each query. This approach ignores the sharing posmbilithen these queries scan the table
concurrently and could have shared the data,0fTo achieve a better memory utilization rate,
the buffer pool manager can instead keep track of minipafjes and share them between the
two queries. However, this approach incurs too much bo@pikey overhead, and is inefficient
in practice. It is basically equivalent to the managemeri$M pages, but at a much smaller
granularity.

TheClothobuffer pool manager balances memory utilization rate antlagament complex-
ity. This is achieved by the collaboration between Schemadgar and the page lookup logic.
The role of Schema Manager is to make sure that a C-page in ffex pool can be utilized
by as many queries as possible. In this sense, C-pages arevoidead-specific than query-
specific for a single query. The page lookup logic is to agsash query to find those C-pages,
as described above.

For each active table, Schema Manager keeps a list of pagessifor C-pages that belong
to the table and aractive meaning they are used to fetch data from disks.

Whenever a query starts executing, for each relation refecehy the query, Schema Man-
ager notes the query schema and inspects the other, alretidy, page schemas. If the new
guery schema accesses a disjoint set of attributes fronttiee active queries, Schema Manager
adds the new page schema to the list and uses it to fetch newé&s-p@therwise, it merges the
new schema with the most-efficient overlapping one alreadyeémory. The algorithm in Fig-
ure 4.6 modifies the page schema liss(gh), which is initially empty, based on the query schema
(g_sch). Once the query is complete, the system removes thespamding query schema from
the list and adjusts the page schema list accordingly ubmgurrently active query schemas.

During query execution the page schema list dynamicallypt&d@ changing workloads de-
pending on the concurrency degree and the overlaps amotigutatsets accessed by queries.
This list ensures that queries having common attributessbare data in the buffer pool while
gueries with disjoint attributes will not affect each othbr the above example, Q1 first comes
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if read-only querghen
if Ip_sch D q_sch then
Do nothing
else ifq_sch N allp_sch = @ then
Add g.sch to the schema list
else
New p.sch =U(q-sch, {p-sch | p-sch N q_sch # @})
Add the new psch to the list
end if
else ifit is a write query (update/delete/insettien
Use full schema as thesgh
Modify the list: only one full psch now
end if

Figure 4.6: Buffer pool manager algorithm.

along, the buffer pool manager creates C-pages witanda,. When Q2 arrives, the buffer
pool manager will create a C-page with, a,, andas for these two queries. After Q1 finishes,
C-pages with only:, andas will be created for Q2.

One characteristic of the schema updating algorithm isitleatjuery with a large attribute
set comes after a query with a smaller attribute set, yet élcegss the same set of records, the
existing C-pages with the smaller schema are of no use to ttemdequery because there will
not be a buffer pool hit. In other word€lotho does not fetch only the missing attributes and
rearrange the existing partial A-pages to create a new C-pébea larger attribute set. This
is opted out due to too much bookkeeping because the buffdrrpanager has to keep track
of the progress for all queries that are processing this @.pdg addition, fetching only the
missed attributes and rearrange them in memory, in practaes not bring substantially better
performance. In our design, the existing queries can keegimg on the old copy while the
new query starts processing the new C-page with a enlargexlgzhgma. Here, we are trading
memory space for simple and quick management. However,ubeas processing the old copy
will start using the new C-page once they are done with the gb&@e.

The memory utilization rate will decrease when the aboveate happens. In an unfavor-
able case, two or more queries with overlapping attribute agk for the same record set, but
the queries with larger attribute sets always come afteqtiexies with smaller attribute sets,
forcing Clothoto fetch a new C-page with an enlarged schema every time a nety games in.
The theoretical worst case would be a query sequence in whechext query asks for one more
attribute from the same A-page than the previous one. TlgghHeof the sequence can be as large
as the number of total attributes in a full A-page. Take ai$jpeexample, for a page size of 8 KB
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and a block size of 512 Bytes, the maximum number of attributes A-page is 15 (one block
for each attribute and one block for the page header.) Wetwll5 attributes as, ... ,a15. As-
sume we have a sequence of 15 queries, Query 1 through Quexiprisich Query i comes after
Query (i-1). All of them access the same A-page with a page.iQuery 1 asks fou,; Query

2 asks fora; andas; so on and so forth. After Query 15 comes in, the buffer podl véve 15
C-pages, each containing a subset of A-pRgé&he attribute:, is in all C-pages constructed for
the 15 queries, thus it has 15 copies; similaglyhas 14 copies, etc. If these C-pages will not be
used later, the memory utilization rate is as lowi @85. In a more general form, the theoretical
lowest memory utilization rate is/(number of attributes in anA — page). Fortunately, the
chance of the worst case is very small, if not zero, in realiegions. Because a small variation
in the assumptions, such as the arriving time of queriesjtieey schemas, the query execution
time, and/or the attribute sizes, will completely change picture and significantly boost the
memory utilization rate. We have never observed the woisg gaour experiments except in a
carefully and deliberately-set experiment. The aboverigife purpose of theoretical analysis.

We also employ the following idea to avoid unfavorable casesiuch as possible. When
the number of partial A-pages that can be held by a C-pagedshas 2 Clothowill use the full
schema to fetch the entire requested A-page. But Schema Miadags not update the schema
list. The benefits are twofold: first, space in C-pages is rfoblank, thus wasted; second, this
C-page can be used by all queries. The extra cost to get th&-fdige is negligible.

Most of the time, database systems benefit from the flexiblagep, as the evaluation in
Section 4.8 shows. The schema management algorithm withiest any favorable cases, which
are quite common in real applications. For instance, gaevith disjoint attribute sets or disjoint
record sets or disjoint attribute sets and record sets caamihe C-pages tailored to their needs
without any duplicate data; queries with smaller attritages and record sets that are contained
in exiting C-pages can readily make use of them. Even in thavanéble cases, after the schema
list is updated with a full schem&lotho acts like a traditional buffer pool manager with the
NSMor PAXlayout.

4.6.5 Maintaining data consistency inClotho

With the algorithm in Figure 4.6, the buffer pool may containltiple copies of the same mini-
page. To ensure data consistency when a transaction mai@lgzgageClothouses the mecha-
nisms described below to fetch the latest copy of the datéer @ueries.

As described in Section 4.6.3, a buffer pool hit requirestti@requested page id matches one
of the A-page page ids, and the requested schema is a suliketroftched A-page’s schema.
In the case of write queries, i.e., insertions, deletionsl, @pdatesClotho uses full-schema C-
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pages. There are two reasons for the full-schema design; ifisertions and deletions need
full-record access and modify all respective minipageamdigss; second, full-schema pages for
updates help keep buffer pool data consistent at littletahdil cost, as explained below.

When a write query is looking up an A-page, it invalidates alhe other buffered A-pages
with the same page id and partial schemas. Thus, after the @peration, there is only one A-
page containing the valid copy of the modified data and it hagull-schema. According to the
page lookup algorithm, queries asking for updated recartisa modified A-page automatically
obtain the (only) correct dirty page from the buffer poon& the A-page with updated data has
a full schema, the updated page will serve all other queskisg for records in this page until it
is flushed to the diskClothodoes not affect locking policies because page data orgaomza
transparent to the lock manager. Since deletion of recdwdsya operates on full C-pageSSM
can work with any existing deletion algorithms, such as (pkedeletion” [Hl]. Another reason
for the full-schema design is that it is more efficient andevat® write out a whole A-page than
writing out several C-pages with partial A-pages. The pracesithat collect, coalesce, and write
out dirty pages need no changes at all.

4.7 Implementation details

Clotho and Lachesisare implemented within the Shore database storage ma@]ewhile
Atroposis implemented as a separate software library. This sedéenribes the implementation
of C-pages, scan operators, akttopos The implementation does not modify the layout of index
pages.

4.7.1 Creating and scanning C-pages

We implementedCSMas a new page layout in Shore, according to the format destnibSec-
tion'4.3.2. The only significant change in the internal Shoage structure is that the page header
is aligned to occupy one block (512 B in our experiments). ésatibed in Sectian 4.6, the orig-
inal buffer pool manager is augmented with schema manadgeimi@nmation to control and
reuse C-page contents. These modifications were minor aftedino the buffer pool module.
To access a set of records, a scan operator issues a reqtlesbidfer pool manager to return
a pointer to the the C-page with the (first of the) records rstpee This pointer consists of the
first A-page id in the C-page plus the page schema id.

If there is no appropriate C-page in the buffer pool to seneerdquest, the buffer pool
manager allocates a new frame for the requested page. Ifillsehe page header with schema
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information that allows the storage manager to determinetwhata (i.e., minipages) is needed.
This decision depends on the number of attributes in theyquagrioad and on their relative sizes.
Once the storage manager determines from the header irtformwehat minipages to request, it
constructs an I/O vector with memory locations for indivadlminipages and issues a batch of
I/0 requests to fetch them. Upon completion of the individi@s, the requested blocks with
minipages are “scattered” to their appropriate locations.

We implemented two scan operators: S-scan is similar toragoarator oiNSMpages, with
the only difference that it only scans the attributes a@@ &y the query. (in the predicate and
in the payload).Clotho invokes S-scan to read tuples containing the attributekarptedicate
and those in the payload, reads the predicate attributesif #ime condition is true returns the
payload. The second scan operator, Sl-scan, works siygnl@arbn index scan. Sl-scan first
fetches and evaluates only the attributes in the predic#tea makes a list of the qualifying
record ids, and finally retrieves the projected attributiies directly. Section 4.8.2 evaluates
these two operators. To implement the above changes, we about 2000 lines of C++ code.

4.7.2 Storing variable-sized attributes

Our current implementation stores fixed-sized and varialded attributes in separate A-pages.
Fixed-sized attributes are stored in A-pages as describ&#ction 4.3.1. Each variable-sized
attribute is stored in a separate A-page whose format idasinnd aDSM page. To fetch the
full record of a table with variable-sized attributes, th&rage manager issues one (batch) I/O to
fetch the A-page containing all of the fixed-size attribwted an additional I/O for each variable-
sized attribute in the table. As future work, we plan to desitprage of variable-sized attributes
in the same A-pages with fixed-sized attributes using aitieilsize estimationg[4] and overflow
pages whenever needed.

4.7.3 Logical volume manager

The Atroposlogical volume manager prototype is implemented as a softwhrary which is
linked with the client application, in this case Shore. Iagdice, the functions oAtroposwould
be added to a traditional disk array logical volume managderour case, the software LVM
determines how I/O requests are broken into individual U8k and issues them directly to the
attached SCSI disks using thdev/ sg Linux raw SCSI device.

Since real MEMStores do not exist yet, tAwoposMEMStore LVM implementation relies
on simulation. It uses an existing model of MEMS-based g@mevices [61] integrated into
the DiskSim storage subsystem simulaBr [21]. The LVM pssceins the I/O timings through

56



NSM —+— NSM —+—
DSM —x—
4l PAX —%—

CcSM —5—

Runtime rel. to NSM

Runtime rel. to NSM

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Query payload [# of attributes] Query payload [# of attributes]
(a) Atropos disk LVM. (b) MEMStore.
80 T T
S-scan —+—
70 | Slscan —X—
60
o
& 50
g 401
S a0} AT
@ +
20 +
10
0 . . . . .
0.0001 0.001 0.01 0.1 1 10 100
Selectivity [%]

(c) Scan operators performance.

Figure 4.7: Microbenchmark performance for different lag The graphs show the total mi-
crobenchmark query run time relativeNSM The performance of S-scan and Sl-scan is shown
for CSMlayout running orAtroposdisk array.

DiskSim and uses main memory for storing data.

Disks don’t always work the way you want them to. Both of thes#ems would be solved
by adding proper batching semantics to SCSI requests. Thevadisld only schedule batches of
requests once all of the requests in the batch have arrived.

The schedulers in the Cheetah (and maybe in the Atlas10kh)} diandle not-ascending
semi-sequential requests. The solution in our implemimtas to only issue two requests to a
disk at any one time.

Semi-sequential batches will always incur one half of atioteof initial latency because the
first request delivered always gets scheduled first. Theisalbere is to use a model of the disk
to predict which request should be delivered first based ttiomal position after the seek.

Zero-latency access doesn’t give all of the benefits you evexpect since the data must still
be delivered to the host in order.

The real solution to these problems would be to define proptrhing semantics in SCSI.
There is provision to link requests together, which onlysstinat unlinked requests will be de-
ferred until all of the linked requests have been received.
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4.8 Evaluation

This section evaluates the benefits of decoupling in-mendatg layout from storage device
organization using oufatesprototype. The evaluation is presented in two parts. Thegdasg
uses representative microbenchmarks [67] to perform atséysanalysis by varying several
parameters such as the query payload (projectivity) andsdiectivity in the predicate. The
second part of the section presents experimental resaitsrinnning DSS and OLTP workloads,
demonstrating the efficiency dfateswhen running these workloads with only one common
storage organization. The microbenchmarks include gsigrith sequential and random access,
point updates, and bulk insert operations and evaluateg¢ifermance of the worst- and best-
case scenarios.

4.8.1 Experimental setup

The experiments are conducted on a two-way 1.7 GHz Pentiureah Xvorkstation running
Linux kernel v. 2.4.24 and RedHat 7.1 distribution. The maeHbr the disk array experiment
has 1024 MB memory and is equipped with two Adaptec Ultral6@e/$CSI adapters, each
controlling two 36 GB Seagate Cheetah 36ES disks (ST336706L&AtroposLVM exports

a single 35 GB logical volume created from the four disks méRperimental setup and maps it
to the blocks on the disks’ outermost zone.

An identical machine configuration is used for the MEMStaxpeximents; it has 2 GB of
memory, with half used as data store. The emulated MEMStarapeters are based on the G2
MEMStore @] that includes 6400 probe tips that can simmdtausly access 16 LBNs, each of
size 512 bytes; the total capacity is 3.46 GB.

All experiments compar€SMto theNSM, DSM, andPAX implementations in Shoré&SM
andPAX are implemented as described [n [4], wherB&M is implemented in a tight, space-
efficient form using the tuple-at-a-time reconstructiogaaithm é?;]. ForCSM the Atropos
LVM uses its default configuration [60]. THRESM, DSM, or PAX page layouts don’t take advan-
tage of the semi-sequential access thabposprovides. However, they still run over the logical
volume which is effectively a conventional striped logigalume with the stripe unit size equal
to individual disks’ track size to ensure efficient sequardccess. Unless otherwise stated, the
buffer pool size in all experiments is set to 128 MB and pagesforNSM PAXandDSM are
8 KB. For CSM both the A-page and C-page sizes are also set to 8 KB. The TPGkegu
used in our experiments (Q1, Q6, Q12, Q14) do not referencabla-sized attributes. TPC-C
new-order transaction has one query asking for a variabéastribute C_ DATA, which is stored
separately as described in Section 4.7.2.
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4.8.2 Microbenchmark performance

To establislFatesbaseline performance, we first run a range query of the 8#hECT AVE al),
Av@ a2), ... FROMR WHERE Lo < a2 < Hi. R has 15 attributes of typleL OAT,
and is populated with 8 million records (roughly 1 GB of dat&)l attribute values are uni-
formly distributed. We show the results of varying the giepayload by increasing the number
of attributes in the select clause from one up to the entrerce and the selectivity by changing
the values ofl.o and Hi. We first run the query using sequential scan, and then usmana
clustered index to simulate random access. The order oftthieudes accessed does not affect
the performance results, becauseoposuses track-aligned exten58] to fetch each attribute
for sequential scans.

Queries using sequential scan

Varying query payload. Figurel 4.7 compares the performance of the microbenchmagkyq
with varying projectivity for the four data layout€SMuses the S-scan operator. The data are
shown for a query with 10% selectivity; using 100% selettiexhibits the same trends.

Fatesshows the best performance at both low and high proje@svitiAt low projectivity,
CSMachieves comparable performancé®M, which is the best page layout when accessing a
small fraction of the record. The slightly lower running &mof DSM for the one attribute value
in Figure|4.7(a) is caused by a limitation of the Linux opergitsystem that prevents us from
using DMA-supported scatter/gather I/O for large trarsfeAs a result, it must read all data
into a contiguous memory region and do an extra memory coggdatter’ data to their final
destinations.DSM does not experience this extra memory copy; its pages cauntbesbatim
to the proper memory frames. Like@SM, CSM effectively pushes the project to the I/O level.
Attributes not involved in the query will not be fetched frahe storage, saving I/0O bandwidth,
memory space, and accelerating query execution.

With increasing projectivityCSMperformance is better than or equal to the best case at the
other end of the spectrum, i.&NSMandPAX, when selecting the full record@SMs suboptimal
performance at high projectivities is due to the additignails needed between the table frag-
ments spread out across the logical volu@tho, on the other hand, fetches the requested data
in lock-step from the disk and places it in memory us&§M maximizing spatial locality and
eliminating the need for a joirClothoperforms a full-record scan ovex3Jaster when compared
to DSM. As shown in Figure 4.7(b), the MEMStore performance shdwssame results.

The size of an 1/0 vector for scatter/gather 1/0 in Linux isilied to 16 elements, while commercial UNIX-es
support up to 1024 elements.

59



Runtime
NSM 58s
DSM 236s
PAX 63s
CSM 57s

=]

a o
=]

Runtime [msec]
ey
o

0O 2 4 6 8 10 12 14 16
Query payload [# of attributes]

(a) Point queries. (b) Full scan.

Figure 4.8: Microbenchmark performance fstroposLVM.

Comparison of S-scan and Sl-scanFigure 4.7(c) compares the performance of the above
query for the S-scan and Sl-scan operators. We vary satgdtiom 0.0001% to 20% and use
a payload of four attributes (the trend continues for higdedectivities). As expected, Sl-scan
exhibits better performance at low selectivities, whel®@a&san wins as the selectivity increases.
The performance gain comes from the fact that only pagestong qualified records are pro-
cessed. The performance deterioration of Sl-scan witleasing selectivity is due to two factors.
First, SI-scan must process a higher number of pages thaars-At selectivity equal to 1.6%,
all pages will have qualifying records, because of uniforaaddistribution. Second, for each
qualifying record, Sl-scan must first locate the page, theoutate the record address, while
S-scan uses a much simpler same-page record locater. Tihezgptcan use Sl-scan or S-scan
depending on which one will perform best given the estimatddctivity.

Point queries using random access

The worst-case scenario fGtothodata placement schemes is random point tuple access (access
to a single record in the relation through a non-clusterel@x). As only a single record is ac-
cessed, sequential scan is never used; on the contrarg paytoad increas€3SMis penalized

more by the semi-sequential scan through the disk to obtitineaattributes in the record. Fig-

ure 4.8(a) shows that, when the payload is only a few ate&)@SM performs closely titNSM
andPAX As the payload increases tlkdSM performance becomes slightly worse, although it
deteriorates much less tHagM performance.

Updates

Bulk updates (i.e., updates to multiple records using se@alecan) exhibit similar performance
to queries using sequential scan, when varying eithertsatgor payload. Similarly, point up-
dates (i.e., updates to a single record) exhibit compaabt®rmance across all data placement
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Figure 4.9: Performance of buffer pool managers with d#f¢mpage layouts.This figure com-
pares the average /O requests per 5000 tuples during tloeitexe of a table-scan query with
different page layouts.

methods as point querie€lothoupdates single records using full-schema C-pages, therg$or
performance is always 22% worse tHdB8M, regardless of payload. To alleviate this behavior,
we are currently investigating efficient ways to use partetord C-pages for updates as we do
for queries. As with point queries, the performanc®&M deteriorates much faster.

Full table scans and bulk inserts

When scanning the full table (full-record, 100% selectiviby when populating tables through
bulk insertions Clotho exhibits comparable performance &M andPAX, whereadDSM per-
formance is much worse, which corroborates previous m&lji Figure 4.8(b) shows the total
running time when scanning tableand accessing full records. The results are similar when do-
ing bulk inserts. Our optimized algorithm issues trackyadid 1/0 requests and uses aggressive
prefetching for all data placement methods. Because butkrigas an I/O intensive operation,
space efficiency is the only factor that will affect the refatbulk-loading performance across
different layouts. The experiment is designed so that eapbuit is as space-efficient as possi-
ble (i.e., table occupies the minimum number of pages pl&3siCSM exhibits similar space
efficiency and the same performanca\s&MandPAX

4.8.3 Buffer pool performance

This section evaluates the performance of the buffer poolager. The first experiment runs the
same microbenchmark described in Section 4.8.2 to comparpdrformance oNSM, DSM,

andClotha. In this experiment, we generate and run a sequence of sablequeries accessing
a random set of attributes with a pre-selected expectedzet $he expected set size varies
from 1 to 15 which corresponds to queries referencing a siagtibute to queries referencing
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Figure 4.10: Miss rates of different buffer pool managengsTigure shows the miss rates of
different buffer pool managers with various buffer pooksiz

all attributes. We measure the average 1/0 requests issresDP0 tuples, which is equivalent
to the average buffer pool miss rate. Sirig8M has the lowest miss rate due to only storing
relevant data, we normalize the resultsNSMandClothobased on the result @SM.

In Figure 4.9, the X axis is the average number of attribigésrenced by the query sequence,
increasing from 1 to 15. The Y axis is the normalized resulte® I/O requests per 5000 tuples,
therefore the lower the better. As we expec8M has the fewest I/O requests when accessing
the same amount of tuples, especially when the attributsizetis small. This is becaufsM
only fetches and stores relevant data. By issuing one I/Cestapd the same size, the buffer pool
with DSM obtain more relevant data th&SM and PAX Clotho matches the performance of
DSMat the leftmost end and both outperfoNBMandDSM. As the attribute set size increases,
itis more likely that two queries i€lothohave overlapped schemas, which may result in fetching
duplicate data from disks. This is the reason for the inangaldO request number. When the
attribute set size continues increasing, the number of éuests of all page layouts converge
since all fetch full pages from disks.

The second experiment compares the miss rates of the thitbedsenentioned in the Sec-
tion 4.6.2. For a better presentation, we denote the firsebpbol as "F-page” indicating that
full pages will always be used. We call the second one as {&paeaning that query- specific
pages are used for each query except update queries whiggadak will be fetched. The third
one is referred to as "D-page” because it dynamically chaupgge schemas in the buffer pool
when queries come and go.

We run TPC-H 1 GB queries using different buffer pool managetis various buffer pool
sizes. Figure 4.10 shows that when buffer pool size is smididn the working set, all of the
three buffer pool managers behave similarly. But with thegase of the buffer pool size, D-page

62



TPC-H Benchmark

[ENSM ODSM [EPAX ECSM |

Runtime relative to NSM
o
o<}

Q1 Q6 Q12 Q4 Q1 Q6 Q12  Ql4
Atropos disk array Query # MEMS device

Figure 4.11: TPC-H performance for different layouts.Thefgrenance is shown relative to
NSM

outperforms the other two due to the fact that it balancesdbmmonality” and “uniqueness”
of queries in a dynamic way. The buffer pool with the "D-pagégorithm uses the precious
resource of main memory more efficiently by fetching onlyessary information as much as
possible.

4.8.4 DSS workload performance

To quantify the benefits of decoupled layout for databaséhMads, we run the TPC-H decision
support benchmark on our Shore prototype. The TPC-H datdetB and the buffer pool size
is 128 MB.

Figurel 4.11 shows execution times relativeN8M for four representative TPC-H queries
(two sequential scans and two joins). The leftmost groupaos bepresents TPC-H execution on
Atropos whereas the rightmost group represents queries run onwdased MEMStore.NSM
andPAX perform the worst by a factor of 1.24— 2.0x (except forDSMin Q1) because they
must access all attributes. The performancB®M s better for all queries except Q1 because of
the benchmark’s projectivityCSMperforms best because it benefits from projectivity andds/oi
the cost of the joins thaDSM must do to reconstruct records. Again, results on MEMStore
exhibit the same trends.

4.8.5 OLTP workload performance

The queries in a typical OLTP workload access a small numbeeanrds spread across the
entire database. In addition, OLTP applications have stugsert and delete statements as well
as point updates. WitNSMor PAX page layouts, the entire record can be retrieved by a single-
page random I/O, because these layouts map a single pagesecttive LBNsClothospreads
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Layout | NSM DSM PAX CSM
TpmC | 1115 141 1113 1051

Table 4.2: TPC-C benchmark results wikroposdisk array LVM.

a single A-page across non-consecutive LBNs of the logidalwe, enabling efficient sequential
access when scanning a single attribute across multippedeand less efficient semi-sequential
scan when accessing full records.

The TPC-C benchmark approximates an OLTP workload on oureSpiatotype with all
four data layouts using 8 KB page size. TPC-C is configured $ftlvarehouses, 100 users, no
think time, and 60 s warm-up time. The buffer pool size if 128 Mo it only caches 10% of
the database. The completed transactions per minute (TgméZjghput is repeatedly measured
over a period of 120 s.

Table 4.2 shows the results of running the TPC-C benchmarlexpsctedNSM and PAX
have comparable performance, whid$M yields much lower throughput. Despite the less ef-
ficient semi-sequential acce€3SMachieves only 6% lower throughput thidsM and PAX by
taking advantage of the decoupled layouts to construct @gp#uat are shared by the queries
accessing only partial records. On the other hand, the émtqgooint updates penaliZeSMs
performance: the semi-sequential access to retrieveditdirds. This penalty is in part compen-
sated by the buffer pool manager’s ability to create andeshages containing only the needed
data.

4.8.6 Compound OLTP/DSS workload

Benchmarks involving compound workloads are important theoito measure the impact on
performance when different queries access the same lagitahe concurrently. Witlrates the
performance degradation may be potentially worse than ettier page layouts. The originally
efficient semi-sequential access to disjoint LBNs (i.e.,@&iT P queries) could be disrupted by
competing I/Os from the other workload creating inefficiaotess. This does not occur for other
layouts that map the entire page to consecutive LBNs that edetbhed in one media access.

We simulate a compound workload with a single-user DSS (TR @«tkload running con-
currently with a multi-user OLTP workload (TPC-C) against stnoposdisk LVM and measure
the differences in performance relative to the isolateckleads. The respective TPC workloads
are configured as described earlier. In previous [58]demonstrated the effectiveness of
track-aligned disk accesses on compound workloads; hereompare all of the page layouts
using these efficient I/Os to achieve comparable resultSR&-H.

As shown in Figure 4.12, undue performance degradation doesccur: CSM exhibits
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Figure 4.12: Compound workload performance for differepolds. This figure shows the slow-
down off TPC-H query 1 running time when it runs with TPC-C beamelk relative to the case
when it runs in isolation and the impact on TPC-C performance.

the same or lesser relative performance degradation tleottrer three layouts. The figure
shows indicative performance results for TPC-H query 1 (stlexhibit similar behavior) and
for TPC-C, relative to the base case when OLTP and DSS quemeseparately. The larger
performance impact of compound workloads on DSS WM shows that small random 1/0
traffic aggravates the impact of seeks necessary to recchaldSMpage. Comparin@SMand
PAX, the 1% lesser impact 8AX on TPC-H query is offset by 2% bigger impact on the TPC-C
benchmark performance.

4.8.7 Space utilization

Since theCSMA-page partitions attributes into minipages whose minisied is equal to the size

of a single LBN,CSMis more susceptible to the negative effects of internalnfragtation than
NSMor PAX Consequently, a significant amount of space may potenballyasted, resulting in
diminished access efficiency. WiAX, minipage boundaries can be aligned on word boundaries
(i.e., 32 or 64 bits) to easily accommodate schemas with vegiance in attribute sizes. In that
caseClothomay use large A-page sizes to accommodate all the attrilautiesut undue loss in
access efficiency due to internal fragmentation.

To measure the space efficiency of B8MA-page, we compare the space efficienciN&M
andCSMlayouts for the TPC-C and TPC-H schemBSM exhibits the best possible efficiency
among all four page layouts. Figure 4.13 shows the spacéeeific of CSMrelative toNSMfor
all tables of TPC-C and TPC-H as a function of total page sizewc8gfficiency is defined as
the ratio between the maximum number of records that can tdleedanto aCSMpage and the
number of records that fit into &dSMpage.

A 16 KB A-page suffices to achieve over 90% space utilizatamrefl but the customer and
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Figure 4.13: Space efficiencies witEMpage layout.

stock tables of the TPC-C benchmark. A 32 KB A-page size aeBiever 90% space efficiency
for the remaining two tables. Both customer and stock tallelside an attribute that is much
larger than all other attributes. The customer table iresua 500 byte lon§ DATA attribute
containing “miscellaneous information”, while the nextgest attribute has a size of 20 bytes.
The stock table includes a 50 by8eDATA attribute, while the next largest attribute is 24 bytes.
Both of these attributes are rarely used in the TPC-C benchmark

4.9 Chapter summary

Page layouts for relational tables are among the most fuadthdata structures in database
systems. How relational tables are organized in memory andisks affects all aspects of
data processing. Due to preferences for simplicity, in-imgnpage layouts have been chosen
to be the same as on-disk page layouts. While this design ely&atly reduces the design
and implementation complexity, it imposes inflexibility page layout designs in a dynamic
environment, which results in performance trade-offs ffecent workloads. Applications have
to select one layout a priori that is optimized for predicpedvalent workload characteristics.
The reality in database workloads is that the two most comwarkloads, OLTP and DSS, have
exactly conflict preferences for page layouts, nanNbMandDSM. Therefore, one page layout
optimized for one type of workloads penalizes severely teggpmance of the other type of
workloads. For example, OLTP workloads can run 20 timegfastNSMthan onDSM, while
DSS workloads can run 56 times fasterl@®M than onNSMin our prototype evaluation. This
long-standing performance trade-off has been botherisgarehers for years.

Fatess contribution is eliminating this trade-off by decougim-memory page layout from

66



on-disk data organization. The rationaleFaitesis that page layouts at different levels of the
storage hierarchy should be designed such that they caoiextinct features of different
storage hardward-atesfetches only relevant data and dynamically assembles egpwific in-
memory pages for running queries. The desigkraikeshas its own trade-off between flexibility
and implementation simplicity. On the spectrum of flextigiknd simplicity, existing approaches
using static and uniform page layouts can be viewed at onemthdthe maximum simplicity
whereas approaches using fully dynamic pages in memory #re ather end with the maximum
flexibility. Fatesmakes the following design choices to stay balanced on thetepn. First,
Fatesuses the same page size for both in-memory and on-disk pagesnd, only read-only
gueries are considered using query-specific pages; fratdsallows duplicate data in memory
and guarantees data integrity by the algorithm in Figure 4.6

Another contribution ofatesis its modularized architecturdzatesconsists of three inde-
pendent but closely interacting componer@$tho, Lachesis and Atropos Each component
has well-designed interfaces that hide details from othadlutes while providing necessary in-
formation to enhance inter-module interactidratesgreatly improves the interaction between
workloads and hardware by passing down the query paylodderation to the buffer pool
manager and exposing the semi-sequential access pathsdemmubsks to the storage manager.

Experiments with ouFatesimplementation show that it achieves the best case perforena
of bothNSMandDSM on OLTP and DSS workloads respectivekatesoutperformsDSM on
TPC-C by a factor ofi0x and outperformdNSM on TPC-H by a factor ofl .24x-2.0x. In
addition, for non-best case workloadéstesprevails by as much as 2 times and 8 times for a real
disk array and future MEMS-based storage devices.

Last but not leastFatess achievement can be summarized from another interestigtea
which inspires the following work oMultiMap. The disk layout of A-pages, the on-diSiSM
pages, proposes an elegant way to store two-dimensiorse$ttattures on disks so that accesses
along both dimensions are efficient, namely sequentialsscaad semi-sequential access. A
natural following-up question is that can we expand the l&yo multidimensional structures.
We address this question in the next Chapter.
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Chapter 5

MultiMap: Preserving disk locality for
multidimensional datasets

Build a multidimensional disk.

This chapter introduce$JultiMap, an algorithm for mapping multidimensional datasets so
as to preserve the data’s spatial locality on disks. Witmeuealing disk-specific details to ap-
plications, MultiMap exploits modern disk characteristio provide full streaming bandwidth
for one (primary) dimension and maximally efficient nonsexgtial access (i.e., minimal seek
and no rotational latency) for the other dimensions. Thig isontrast to existing approaches,
which either severely penalize non-primary dimensionsadrtd provide full streaming band-
width for any dimension. Experimental evaluation of a ptgpe implementation demonstrates
MultiMap’s superior performance for range and beam queri@s average, MultiMap reduces
total I/O time by over 50% when compared to traditional limead layouts and by over 30%
when compared to space-filling curve approaches such adeting and Hilbert curves. For
scans of the primary dimension, MultiMap and traditionakhrized layouts provide almost two
orders of magnitude higher throughput than space-fillingeapproaches.

5.1 Introduction

Applications accessing multidimensional datasets aneasingly common in modern database
systems. The basic relational model used by conventiortabdae systems organizes infor-
mation with tables or relations, which are 2-D structurepattal databases directly manage
multidimensional data for applications such as geograpifigcmation systems, medical image
databases, multimedia databases, etc. An increasing mwhapplications that process multi-
dimensional data run on spatial databases, such as sceotifiputing applications (e.g., earth-
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guake simulation and oil/gas exploration) and businesp@tigystems using online analytical
processing@LAP) techniques.

Existing mapping algorithms based on the simple linearrab8on of storage devices of-
fered by standard interfaces such as SCSI are insufficientddtloads that access out-of-core
multidimensional datasets. To illustrate the problem sader mapping a relational database ta-
ble onto the linear address space of a single disk drive agiadbvolume consisting of multiple
disks. A naive approach requires making a choice betweemgtthe table in row-major or
column-major order, trading off access performance altwegtivo dimensions. While access-
ing the table in the primary order is efficient, with requdstsequential disk blocks, access in
the other order is inefficient: accesses at regular strinas ishort seeks and variable rotational
latencies, resulting in near-random-access performadireilarly, range queries are inefficient
if they extend beyond a single dimension. The problem is rser@us for higher dimensional
datasets: sequentiality can only be preserved for a simglergsion and all other dimensions will
be, essentially, scattered across the disk.

The shortcomings of non-sequential disk drive accesses mativated a healthy body of
research on mapping algorithms using space-filling cursash as Z-orderin([él?], Hilbert
curves[EJZ], and Gray-coded curves [23]. These approachesse the multidimensional dataset
and impose a total order on the dataset when storing dataske. dihey can help preserve local-
ity for multidimensional datasets, but they do not allowesses along any one dimension to take
advantage of streaming bandwidth, the best performancekaldive can deliver. This is a high
price to pay, since the performance difference betweearsirgy bandwidth and non-sequential
accesses is at least two orders of magnitude.

Recent work%Z] describes a new generalized model of diskkedcadjacency model, for
exposing multiple efficient access paths to fetch non-gootiis disk blocks. With this new
model, it becomes feasible to create data mapping algosithat map multiple data dimensions
to physical disk access paths so as to optimize access tothar@ne dimension.

This chapter describ@dultiMap, a data mapping algorithm that preserves spatial locality o
multidimensional datasets by taking advantage of the ad@cmodel MultiMap maps neigh-
boring blocks in the dataset into specific disk blocks on g &racks, callecadjacent blocks
such that they can be accessed for equal positioningacaktithout any rotational latency. We
describe a general algorithm fbtultiMap and evaluatéultiMap on a prototype implementa-
tion that uses a logical volume of real disk drives with 3-[@l&RD datasets. The results show
that, on averageMultiMap reduces total I/O time by over 50% when compared to the naive
mapping and by over 30% when compared to space-filling cyspecaches.

The remainder of the chapter is organized as follows. Se@&i@ describes related work.
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Section 5.8 introducellultiMap in detail. Section 5.4 provides a analytical cost model fher t
NaiveandMultiMap mapping algorithms. Section 5.5 evaluates the performahbéultiMap.
Section 5.6 summarizes the workMtiltiMap.

5.2 Related work

Organizing multidimensional data for efficient access hea®ine increasingly important in both
scientific computing and business support systems, wheeseiasizes are terabytes or more.
Queries on these datasets involve data accesses on diffi@remsions with various access pat-
terns [29]77252]. Data storage and management for massiltelimensional data have two
primary tasks: data indexing, whose goal is to quidklyatethe needed data, and data place-
ment, which arranges data on storage devices sodtravingthem is fast. There is a large body
of previous work on the two closely related but separatectoas they apply to multidimensional
datasets. Our work focuses on data placement which hapfiengdexing.

Under the assumption that disks are one-dimensional dewegious data placement meth-
ods have been proposed in the literature, such abl#inee mapping, described in the previous
section, and spacing-filling curve mappings utilizing Zerng ], Hilbert ], or Gray-
coded curveEZF;]. The goal is to order multidimensional dateh that spatial locality can be
preserved as much as possible within the 1-D disk abstradfitth the premise that nearby ob-
jects in the multidimensional space are also physicallgelon disk, they assume that fetching
them will not incur inefficient random-like accesses. Theparty of preserving spatial locality
is often calledclustering[42].

Optimizations on naive mappin57] such as dividing thginal space into multidimen-
sional tiles based on predicted access patterns and stotitigple copies along different dimen-
sions improve performance for pre-determined workloadeswéver, the performance deterio-
rates dramatically for workloads with variable accessquatf, the same problem Bisive

Recently, researchers have focused on the lower level ofttinage system in an attempt
to improve performance of multidimensional queries. Pathat work proposes to expand the
storage interfaces so that the applications can optimitee gplacement. Gorbatenko et g [25]
and Schindler et al. [60] proposed a secondary dimensionsks evhich has been utilized to
store 2-D database tables. Multidimensional clusterin®B2 [@] consciously matches the
application needs to the disk characteristics to improeepgtrformance of OLAP applications.
Others have studied the opportunities of building two disi@mal structures to support database
applications with new alternative storage devices, sudEES-based storage devic[, 81].

Another body of related research focuses on hovdeclustermultidimensional datasets
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across multiple dist[JE ‘[1@2@£ 51] to optimize spladiccess methonSE%] and

improve throughput.

5.3 Mapping multidimensional data

To map an N-dimensional\-D) dataset onto disks, we firstimpose/srD grid onto the dataset.
Each discrete cell in the grid is assigned to/ésD coordinate and mapped to one or more disk
blocks. A cell can be thought of as a page or a unit of memoncation and data transfer,
containing one or more points in the original geometric spaeor clarity of explanation, we
assume that a single cell occupies a single LBN (logical blagkber) on the disk, whose size
is typically 512 bytes. In practice, a single cell can occumitiple LBNs without any impact
on the applicability of our approach.

MultiMap exploits the new adjacency model to map multidimensiontds#ds to disks. The
terminologies of the adjacency model and a brief explanaifdhem can be found in Chapter 2.

5.3.1 Examples

For simplicity, we first illustrateMultiMap through three concrete examples for 2-D, 3-D, and
4-D uniform datasets. The general algorithm for non-umifatatasets are discussed in later
sections.

Notation Definition

T disk track length (varies by disk zone)
D number of blocks adjacent to each LBN
N dimensions of the dataset

Dim; notations of theV dimensions

S; length of Dim;

K; length of Dim, in the basic cube

o time to access next sequential block

Q time to access any adjacent block

Table 5.1: Notation definitions. Fdpim, S, andK,0 <7 < N — 1.

The notations used in the examples and later discussiorsi@e in Table 5.1. In the fol-
lowing examples, we assume that the track length i8 5:(5), each block has 9 adjacent blocks
(D =9), and the disk blocks start from LBN 0.

Example of 2-D mapping.Figure 5.1 shows hoMultiMap maps a§ x 3) 2-D rectangle to
a disk. The numbers in each cell are its coordinate in the fufr(w,, z1) and the LBN to which
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Figure 5.2: Mapping 3-D dataset.

the cell is mapped. Cells along the first dimension (L&, or the row direction), are mapped
sequentially to consecutive LBNs on the same track. For elartie five cells on the bottom
row are mapped to LBN 0 through LBN 4 on the same track.

Cells along the second dimensian, or the column direction) are mapped to successive
first adjacent blocks. Suppose LBN 5 is the first adjacent btddkBN O and LBN 10 is the
first adjacent block of LBN 5, then the cells @f, 1) and (0, 2) are mapped to LBN 5 and 10,
as shown in Figure 5/1. In this way, spatial locality is presd for both dimensions: fetching
cells onDimg achieves sequential access and retrieving cell®on; achieves semi-sequential
access, which is far more efficient than random access. &ltti@t once the mapping of the
left-most cell(0, 0) is determined, mappings of all other cells can be calculatée mapping
occupiesS; = 3 contiguous tracks.

Example of 3-D mapping.In this example, we use a 3-D dataset of the size § x 3). The
mapping is iterative, starting with mapping 2-D layers. Aswn in Figure 5.2, the lowest 2-D
layer is mapped in the same way described above with théxéll0) stored in LBN 0. Then,
we use the third adjacent block of LBN 0, which is LBN 15, to stire cell(0, 0, 1). After that,
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Figure 5.3: Mapping 4-D dataset.

the second 2-D layer can be mapped in the similar way as theeanhple. Continuing this
procedure, we map the cél), 0, 2) to the third adjacent block of LBN 15 (LBN 30) and finish
the mapping of all cells on the last layer after that.

SinceD = 9, access alon@im, also achieves semi-sequential bandwidth by fetching suc-
cessive adjacent blocks. Therefore, the spatial localityan, is also preserved (the locality of
Dimg and Dim, are guaranteed by the 2-D mapping). Note that the width df &aer (5;) is
restricted by the value ab to guarantee efficient access alobgn, as well. We will discuss
the case wherg; > D in the general mapping algorithm. The resulting 3-D mapm@ocupies
(51 x Sy =3 x 3 =09) contiguous tracks.

Example of 4-D mapping. The 4-D example, shown in Figure 5.3, maps a dataset of the
sizeb x3x3x2)(S =T=5,5 =3,5 = 3,53 =2). Iteratively, we start by mapping the
first 3-D cube in the 4-D space using the same approach deddrilthe 3-D example. Then, we
use the ninth adjacent block of LBN 0 (LBN 45) to store the ¢@ID, 0, 1). Once the mapping
of (0,0,0,1) is determined, the second 3-D cube can be mapped using tleeZ&mapping
approach and so on.

As described, access alongms also achieves semi-sequential bandwidth, as lorfg asd
Sy satisfy the restriction{S; x S3) < D.

5.3.2 TheMultiMap algorithm

As illustrated in the previous section, mapping an N-D spacan iterative extension of the
problem of mapping — 1)-D spaces. In addition, the size of the dataset one can maipks
while preserving its locality is restricted by disk paraerst We define basic cubeas the largest
data cube that can be mapped without losing spatial locaitythe length ofDim; in the basic
cube, must satisfy the following requirements:

74



L :=MAP(z[0], z[1], ..., [N —1]):
1bn := (start_lbn + x[O]) mod T + |start_lbn/T| T
step:=1
i:=1
repeat
for j =0toz[i] —1do
1bn := GETADJACENT(1bn, step)
end for
step := step * K]i]
1:=1+1
until (¢ >= N)
RETURN(1bn)
K] =K;
start_lbn = 1stLBN of basic cube (storing cdll, ..., 0))
GETADJACENT: getstep-th adjacent block ofbn

Figure 5.4: Mapping a cell in space to an LBN.

Ky, < T (5.1)
Number of tracks in a zone
Ky, < 3 (5.2)
L. K,
N—-2
K; < D (5.3)

i=1

Equation 5.1 restricts the length of the first dimension eflasic cube to the track length.
Note that track length is not a constant value due to zoninglisks, but is found through
GETTRACKBOUNDARIES. Equation 5.2 indicates that the last dimension of the lagie is subject
to the total number of tracks in each zone, and zones withaime drack length are considered a
single zone. Equation 5.3 sets a limit on the length&pfo Ky_». The volume of thé NV — 2)-

D space HN ? K;, must be less thah. Otherwise, the locality of the last dimension cannot
be preserved because accessing the consecutive cellstabigst dimension cannot be done
within the settle time.

The basic cube is mapped as followlim, is mapped along each tracklim, is mapped
to the sequence of successive first adjacent blocksini; 1 (1 < i < N — 2) is mapped to a
sequence of successi(/}§[§:1 K;)-th adjacent blocks.

The MultiMap algorithm, shown in Figure 5.4, generalizes the above phaee The inputs
of MAP are the coordinate of a cell in the basic cube, and the ouspiliei. BN to store that
cell. MAP starts from the cell0,0,...,0). Each inner iteration proceeds one step aléng;,
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which on a disk corresponds to a jump ovéf, x K,--- x K, ;) adjacent blocks. Therefore,
each iteration of the outer loop goes from ¢ell0], . .., z[i —1],0,...,0) to cell (z[0], ..., x[i —
1], z[¢],0,...,0).

Because of the zoning on disks, the track length decreasestfr® outer zones to the inner
zones. The parameter @fin the algorithm refers to the track length within a singleeoUser
applications can obtain the track length information fréma propose@ETTRACKBOUNDARIES
call implemented either in the storage controller or in aicewdriver. A large dataset can be
mapped to basic cubes of different sizes in different zoNestiMap does not map basic cubes
across zone boundaries.

MultiMap preserves spatial locality in data placemebim, is mapped to the disk track so
that accesses along this dimension achieve the disk’'sdqliential bandwidth. All the other di-
mensions are mapped to a sequence of adjacent blocks véhedif steps. Any two neighboring
cells on each dimension are mapped to adjacent blocks at/itnatks away (see Equation 5.3).
So, requesting these (non-contiguous) blocks resultsnm-sequential accesses.

5.3.3 Maximum number of dimensions supported by a disk

The number of dimensions that can be supportelbifiMap is bounded byD and the values of
K;. But, a substantial number of dimensions can usually be stgghdOne can always map the
first dimension Dimg, along disk tracks, and map the last dimensioinyy_,, along successive
last (D-th) adjacent blocks. The redt—2 dimensions must fit itD tracks (refer to Equation 5.3).
Consider basic cubes with equal length along all dimensiBhss --- = Ky_, = K. Based on
Equation 5.3, we get:

N < |[2+4logg D] (K > 2) (5.4)
Niae = L2+10g2 DJ (55)

For modern disksD is typically on the order of hundreds, allowing mapping fammathan 10
dimensions. For most physical simulations and OLAP apptiog, this is more than sufficient.

5.3.4 Mapping large datasets

The basic cube in Section 5.3.2 serves as an allocation tieihwe map larger datasets to disks.
If the original space is larger than the basic cube, we pamtit into basic cubes to get a new
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N-D cube with a reduced size of

(7] 22])

Under the restrictions of the rules about the basic cube simystem can choose the best
basic cube size based on the dimensions of its datasets. aBgsibe larger the basic cube
size, the better the performance because the spatialtipo&linore cells can be preserved. The
least flexible size ig<,, because the track length is not a tunable parameter. Ietigh of the
dataset’s, and hence basic cub&s,(also Kj) is less tharil’, we simply pack as many basic
cubes next to each other along the track as possible. Nigtufalt all possible, it is desirable to
select a dimension whose length is at Ié&sind set it ad)imy.

In the case wher§, = K, < T, MultiMap will waste (T' mod K;) * [[\," K, blocks per
[T/ K,| basic cubes due to unmapped space at the end of each tracke@rcentage of the
wasted space i6I' mod K,)/T. In the worst case, it can be 50%. Note this only happens to
datasets where all dimensions are much shorter Thalf space is a big concern and datasets
do not favorMultiMap, a system can simply revert to linear mappings. In the caszently >
Ky = T, MultiMap will only have unfilled basic cubes at the very end. Within &, ddultiMap
uses the same format as other mapping algorithms, and dherethas the same in-cell space
efficiency.

When using multiple disksviultiMap can apply existing declustering strategies to distribute
the basic cubes of the original dataset across the disksregingpa logical volume just as tra-
ditional linear disk models decluster stripe units acrosgétipie disks. The key difference lies
in how multidimensional data is organized on a single digkiltiMap thus works nicely with
existing declustering methods and can enjoy the increageanghput brought by parallel 1/0
operations. In the rest of our discussion, we focus on thispeance ofMultiMap on a single
disk, with the understanding that multiple disks will scH@ throughput by adding disks. The
access latency for each disk, however, remains the samelieggmof the number of disks.

5.3.5 Mapping non-grid structure datasets

MultiMap can be directly applied to datasets that are partitionemregular grids, such as the
satellite observation data from NASA's Earth Observatigat&m and Data Information System
(EOSDIS) ] and tomographic (e.g., the Visible Human €cbjor the National Library of
Medicine) or other volumetric datase[22]. When the distiobn of a dataset is skewed, a
grid-like structure applied on the entire dataset wouldlliga poor space utilization. For such
datasets, one should detect uniform subareas in the datasepplyMultiMap locally.
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Since the performance improvementdidiltiMap stem from the spatial locality-preserving
mappingwithin a basic cube, non-grid datasets will still benefit frbtaltiMap as long as there
exist subareas that can be modeled with grid-like strustarel are large enough to fill a basic
cube. The problem of mapping skewed datasets thus reducésntiifying such subareas and
mapping each of them into one or more basic cubes.

There are several existing algorithms that one can adoptdatiose areas, such as density-
based clustering methods. In this paper, we use an apprbathitilizes index structures to
locate the sub-ranges. We start at an area with a uniformdigon, such as a leaf node or
an interior node on an index tree. We grow the area by incatpay its neighbors of similar
density. The decision of expanding is based on the tradebaffween the space utilization and
any performance gains. We can opt for a less uniform areargsds the suboptimal space
utilization will not cancel the performance benefit broughtMultiMap. As a last resort, if such
areas can not be found (e.g, the subarea dimensions do & diirhensions of the basic cubes),
one can revert to traditional linear mapping techniques.

We demonstrate the effectiveness of this method by mappiegla@on-uniform dataset used
in earthquake simulationg[78] that uses an octree as iesxineExperimental results with this
dataset are shown in Section 5.5.

5.3.6 Supporting variable-size datasets

MultiMap is an ideal match for the static, large-scale datasets teatammonplace in science.
For example, physics or mechanical engineering applicafiwoduce their datasets through sim-
ulation. After a simulation ends, the output dataset is iegueried for visualization or analysis
purposes, but never updatéd [46]. As another example, \wdig®r-based applications, such as
telescope or satellite imaging systev{1£ [29], generate langounts of new data at regular inter-
vals and append the new data to the existing database in-ddadkashion. In such applications,
MultiMap can be used to allocate basic cubes to hold new points wigepring spatial locality.

For applications that need to perform online updates toidiolensional datasetsjultiMap
can handle updates just like existing linear mapping tephes. To accommodate future inser-
tions, it uses a tunable fill factor of each cell when the ahitlataset is loaded. If there is free
space in the destination cell, new points will be storedegh@&therwise, an overflow page will
be created. Space reclaiming of underflow pages are triggdse by a tunable parameter and
done by dataset reorganization, which is an expensive tpefar any mapping technique.
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5.4 Analytical cost model

To further evaluate the effectivenesshddiltiMap, we developed an analytical model to estimate
the I/O cost for any query against a multidimensional datddse model calculates the expected
cost in terms of total I/0 time for thHaiveand theMultiMap mappings given disk parameters,
the dimensions of the dataset and the size of the query. Odelndoes not predict the total cost
for the the space curve mapping. Although it is possible tionete the number aflusters which

are groups of consecutive LBNs for a given qu@ [42], no wak been done on investigating
the distribution of distances between clusters, which Wdel required for an accurate analytical
model. Such investigation, as well as the derivation of suntodel, is beyond the scope of this
work.

In the following discussion, we use the notations definedahld 5.1 in Section 5.3.1. As
with traditional disk 1/0 cost models, we express the tot@l ¢ost of a query as a sum of two
parts: the total positioning time overhead,,;, and the total data transfer timé€,.,. The
positioning time overhead is the time needed to positiordibke heads to the correct locations
before data can be accessed. The transfer time is the tirmadaata from the media. The model
does not include the cost of transporting the data to the fidss constant overhead is the same
for both Naive andviultiMap mappings and depends on the interconnect speed and the numbe
of blocks returned, here referred to as the volume of theyquer

Suppose we have a range query of the &igeq,, . . ., ¢.—1), whereg; is the size ofDim;, in
anN-dimensional cube of sizg5, 51, . . ., S,—1). Cuy, is calculated by the volume of the query
multiplied by the transfer time per disk block, C,, is a function of the number of movements
of the disk heads, referred to psnpsin the LBN sequence, and their corresponding distances.
The total I/O cost of a query is thus expressed as:

Ccost - Cpos + C:r er
Nijmp

Coost = Z (Seek(d;) + 1;) + o Volume gyery

=1

<

where N, is the number of jumps incurred during the query executibns thedistancethe
disk heads move in thg-th jump, expressed as the number of tracks, grid the rotational
latency incurred during each jump after the disk heads fisestking. The functiorbeek(d)
determines the seek time for a given distaii¢eom a pre-measured seek time profile.

Given the mapping of afy-dimensional cube for both the Naive and MeltiMap mappings,
the most efficient path to fetch all points is first throuBln,, then Dim, etc. We definaon-
consecutive pointlor Dim; as two adjacent points whose coordinates for all But:; are the
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same and that are mapped to non-contiguous LBNs. Therefqueyoccurs when we fetch
these non-consecutive points and the distance of the jumgeacalculated as the difference
of the LBNs storing these two non-consecutive points. Wedbihe cost model based on the
above analysis. We assume that in addition to a seek, eaghijwurs a constant rotational
latency equal to half a revolutioRgtLat, which is the average rotational latency when accessing
a randomly chosen pair of LBNs. Finally, we assume some imitist for positioning disk heads
prior to fetching the first block obim, and denote this overhedd,,;;.

5.4.1 Analytical cost model for Naive mapping

The following equations calculate the query I/O cost forkave model.

n—1
Ca: er — O HQz (56)
=0
Cpos = Clnit + Z (Seek(d;) + RotLat) —1) H q]] (5.7)
Jj=i+1
TS — a0+ 1- 307 (<qj 1) TH=h )

Equation 5.6 calculates the total transfer time; the pecibtransfer timeg, is multiplied by
the query volume, which is the product of all ceIIs returngdHhe query. Equation 5.7 calculates
the positioning overhead. The terfyp, — 1) H] _i+19; calculates the number of jumps along
Dim;, wherei > 0. Equation 5.8 computes the distance of such jumps aldng;. This
distance is the LBN difference of the two pointsy, ..., x; 1, z;, Tiv1,. .., T,—1) and (zo +
qos- -+, Ti1+ qi—1,%; + 1,241, ..., v,_1) divided by the track lengthl'.

5.4.2 Analytical cost model forMultiMap mapping

The following equations calculate the query I/O cost forMdtiMap model.
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Coer = o | a (5.9)

Cros = Cinie + (Seek(dy) + RotLat) Nju,(qo, Ko, So) +

n—1

[(oz(qi — Njp (a5, K3, 85)) + (Seek(d;) + RotLat) Njmy (g1, K3, S:)) [ [ qj] (5.10)

j=it+l

B Hn 1 K Sj
d = { - W ]1:[0 [EW (5.11)
B i Locs(qi, K, S;) i Locs(q;, K, S;)
Nimp(Gi, K3, Si) = ({K—‘ - 1) [Sp— + [?—‘ (1 [— ) (5.12)
Locs(qi, K;,S;) = Lock(qi, K;) ({%J { J) + {Lsoc;mz]d it J (5.13)
Lock(qi, K;) = K;— (¢ mod (K;+ 1))+ (5.14)

The transfer cost (Equation 5.9) is the same as the transéto€ theNaivemodel. Equa-
tion[5.10 calculates the positioning cost and consists @&ethierms. The first ternt,;;, is
the initial positioning cost, the second term is the positig cost when reading alongim,
and the third term is the positioning cost when reading albwg;, wherei > 0. SinceMul-
tiMap partitions the/V-dimensional cube into smaller basic cubes, the sequetit@sses along
Dimy are broken when moving from one basic cube to the next. Thesterm(Seek(dy) +
RotLat) Njn, (g0, Ko, So) accounts for the overhead of seek and rotational latenctiphiet by
the expected number of such jumps (determined by Equati®).5.

The third term of Equation 5.10 is similar to the second temr&quation 5.7 for the Naive
model, but includes two additional expressions for cakmgathe cost along)im;. The ex-
pressiona (¢; — N;my(gi, K, S;)) accounts for the cost of semi-sequential accesses to adja-
cent blocks when retrieving the points along thih dimension. The expressideek(d;) +
RotLat) N, (i, K;, S;) accounts for the cost of jumps from one basic cube to the next.

Equation 5.11 calculates the distance of each jumpDem;. This distance depends on
the volume of each basic cubf];”, ! K, which determines the number of LBNs needed when
mapping one basic cube. The teﬁr) [ 1 determines how many basic cubes are mapped be-
tween two basic cubes containing two successive paigts (., x;, ..., x,_1) and o, ..., x; +
Ky ...,y 1).

Given query size;, basic cube sizé;, and original space Siz&, N;,., (¢, K;, S;) (Equa-
tion|5.12) calculates the expected number of jumps acrosis lbabes along that dimension.
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With query size ofy;, there are5; — ¢; + 1 possible starting locations in the original spatecg

of the possible starting locations will cau%%l — 1 jumps alongDim; while the remaining lo-
cations will cause one more jump. To calculate the expeatetber of jumps, we simply add the
probabilities for each possible type of starting locationgtiplied by the number of such jumps.
The probability of the minimal number of jumps is the ratiolets(q;, K;, S;) andS; — ¢; + 1.
Therefore, the probability Ohﬂ jumps is] — £ocgletinsi)

To determinelLocs (Equation 5.13), we first count the locations within a basioecthat will
cause the minimal number of jumps, denoted.as, (Equation 5.14), and multiply it by the
total number of complete basic cubes that the possiblarsiddcations can span, given by the
expressior{%J — L;—J Finally, we add the number of locations causing the minimahber

of jumps in the last (possibly incompletely mapped) baskwecuvhich is{MJ

Lock (qi,K;)

5.5 Evaluation

We evaluateMultiMap’s performance using a prototype implementation that rwesigs against
multidimensional datasets stored on a logical volume caagrof real disks. The three datasets
used in our experiments are a synthetic uniform 3-D grids#dta real non-uniform 3-D earth-
guake simulation dataset with an octree index, and a 4-D Od# R cube derived from TPC-H.
For all experiments, we compakéultiMap to three linear mapping algorithmbtaive Z-order,
andHilbert. Naivelinearizes anV-D space along@)im,. Z-order andHilbert order the/N-D
cells according to their curve values.

5.5.1 Experimental setup

We use a two-way 1.7 GHz Pentium 4 Xeon workstation runningukikernel 2.4.24 with
1024 MB of main memory and one Adaptec Ultral60 SCSI adaptenexting two 36.7 GB
disks: a Seagate Cheetah 36ES and a Maxtor Atlas 10k Ill. Quiotype system consists of
a logical volume manager (LVM) and a database storage man@pe LVM exports a single
logical volume mapped across multiple disks and identifdjacent blocks [62]. The database
storage manager maps multidimensional datasets by ngjlizigh-level functions expected by
the LVM.

The experiment datasets are stored on multiple disks.TiM g¥nerates requests to all the
disks during our experiments, but we report performanceltefrom a single disk. This ap-
proach keeps the focus on average 1/O response times, wipend only on the characteristics
of a single disk drive. Using multiple drives improves thell throughput of our experiments,
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but does not affect the relative performance of the mappiveare comparing.

We run two classes of queries in the experimem®sam queriesre 1-D queries retrieving
data cells along lines parallel to the dimensions. Quenrethe earthquake dataset examining
velocity changes for a specific point over a period of timeexamples of beam query in real
applications. Range queriegetch an N-D equal-length cube with a selectivity pf6. The
borders of range queries are generated randomly acrosatireagomain.

5.5.2 Implementation

Our implementation of thélilbert andZ-order mappings first orders points in thé-D space,
according to the corresponding space-filling curves. Tpes&s are then packed into cells with
a fill factor of 1 (100%). Cells are stored sequentially on dgigkth each occupying one or more
disk blocks, depending on the cell size. As we are only corerewith the cost of retrieving data
from the disks, we assume that some other method (e.g. ax)ihde already identified all data
cells to be fetched. We only measure the I/O time needednsfeathe desired data.

For Hilbert andZ-order mappings, the storage manager issues 1/O requests for ldisksb
in the order that is optimal for each technique. After idigiig the LBNs containing the de-
sired data, the storage manager sorts those requests mdasg&BN order to maximize disk
performance. While the disk’s internal scheduler shouldle & perform this sorting itself (if
all of the requests are issued together), it is an easy ggton for the storage manager that
significantly improves performance in practice.

When executing beam queriddultiMap utilizes sequentiallpim,) or semi-sequential (other
dimensions) accesses. The storage manager identifiesliBdiethat contain the data and is-
sues them directly to the disk. No sorting is required. Fstance, in Figure 5.1, if a beam query
asks for the first column (LBN 0, 5, and 10), the storage manggeerates an 1/O request for
each block and issues them all at once. The disk’s interrredckder will ensure that they are
fetched in the most efficient way, i.e., along the semi-satiakpath.

When executing a range query usikltiMap, the storage manager will favor sequential
access over semi-sequential access. Therefore, it wah fgocks first along)img, thenDim,,
and so on. Looking at Figure 5.1 again, if the range queryrigHe first two columns of the
dataset (0, 1, 5, 6, 10, and 11), the storage manager wik igsee sequential accesses along
Dimg to fetch them. That s, three 1/O requests for (0, 1), (5,89, @0, 11). Favoring sequential
over semi-sequential access for range queries provides performance as sequential access is
still significantly faster than semi-sequential accessunimplementation, each cell is mapped
to a single disk block of 512 Byte.
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Figure 5.5: Performance of queries on the synthetic 3-Dsgéata

5.5.3 Synthetic 3-D dataset

For these experiments, we use a uniform synthetic datafletlod4 x 1024 x 1024 cells. We
partition the space into chunks of at m@sb x 259 x 259 cells that fit on a single disk and
map each chunk to a different disk of the logical volume. Fathbdisks in our experiments,
MultiMap usesD = 128.

Beam queries. The results for beam queries alohgm,, Dim,, and Dim, are presented
in Figure| 5.5(a). The graphs show the average I/O time péfaisk block). The values are
averages over 15 runs, and the standard deviation is lesd %af the reported times. Each run
selects a random value between 0 and 258 for the two fixed dioenand fetches all cells (0
to 258) along the remaining dimension.

As expectedNaiveperforms best alongpim,, the major order, as it utilizes efficient sequen-
tial disk accesses with average time of 0.035 ms per cell.ddew accesses along the non-major
orders take much longer, since neighboring cells alérig:; and Dim, are stored 259 and
67081 @59 x 259) blocks apart, respectively. Fetching each cell aldrigy, experiences mostly
just rotational latency; two consecutive blocks are oftaritee same track. Fetching cells along
Dims results in a short seek (1.3 ms for each disk) followed bytiartal latency.

84



True to their goalsZ-orderandHilbert achieve balanced performance across all dimensions.
They sacrifice the performance of sequential accessedltiaécan achieve foDim,, result-
ing in 2.4 ms per cell irZ-order mapping and 2.0 ms per cell Hilbert, versus 0.035 ms for
Naive(almost 5% worse).Z-orderandHilbert outperformNaivefor the other two dimensions,
achieving 22%—-136% better performance for each ditilbert shows better performance than
Z-order, which agrees with the theory thidilbert curve has better clustering propertig [42].

MultiMap delivers the best performance for all dimensions. It matthe streaming perfor-
mance ofNaivealong Dim, despite paying a small penalty when jumping from one badie cu
to the next one. As expectddultiMap outperformsZ-orderandHilbert for Dim, and Dim, by
25%—35% andNaiveby 62%—214% for each disk. FinallylultiMap achieves almost identical
performance on both disks, unlike the other techniquesaumexthese disks have comparable
settle times, and thus the performance of accessing adjaloeks alongDim, and Dim.

Range queries. Figure 5.5(b) shows the speedups of each mapping technédaiéve to
Naiveas a function of selectivity (from 0.01% to 100%). The X axses a logarithmic scale.
As before, the performance of each mapping follows the serberved for the beam queries.
MultiMap outperforms other mappings, achieving a maximum speed@p©k, while Z-order
andHilbert mappings observe a maximum speedup.64 x and1.11x, respectively.

Given our dataset size and the range of selectivities fr@h%.to 100%, these queries fetch
between 900 KB and 8.5 GB data from a single disk. The perfoo@af range queries are
determined by two factors: the closeness of the requireckbl@he clustering property of the
mapping algorithm) and the degree of sequentiality in thdseks. In the low selectivity range,
the amount of data fetched is small and there are few se@li@gtesses. Therefordjlbert
(up to 1%) andzZ-order (up to 0.1%) outforniNaivedue to their better clustering property. As
the value of selectivity increasddaivehas relatively more sequential accesses. Thus, its over-
all performance improves, resulting in lower speedups loéomappings. This trend continues
until the selectivity hits a point (around 40% in our expegmt) where all mappings have com-
parable sequential accesses but different degrees oéhgst In this caselilbert andZ-order
again outperforniNaive As we keep increasing the value of selectivity to fetch lyethie entire
dataset, the performance of all mapping techniques coayeegause they all retrieve the cells
sequentially. The exact turning points depend on the trangth and the dataset size. Most
importantly,MultiMap always performs the best.

5.5.4 3-D earthquake simulation dataset

The earthquake dataset models earthquake activity in a Jdelem slice of earth of 28 x 38 km
area in the vicinity of Los Angeles [77]. We use this dataseaia example of how to apply
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Figure 5.6: Performance of queries on the 3-D earthqualesdat

MultiMap to skewed datasets. The points in the 3-D dataset, callegsnbdve variable densities
and are packed into elements such that the 64 GB datasenh#atied into a 3-D space with
113,988,717 elements indexed by an octree. Each elemetgas@ode in the octree.

In our experiments, we use an octree to locate the leaf nd@gscontain the requested
points. Naiveuses X as the major order to store the leaf nodes on disks ad&rerder and
Hilbert order the leaf nodes according to the space-filling curvaesal ForiMultiMap, we first
utilize the octree to find the largest sub-trees on whichhadlleaf nodes are at the same level,
i.e., the distribution is uniform on these sub-trees. Alfientifying these uniform areas, we start
expanding them by integrating the neighboring elementsaieof the similar density. With the
octree structure, we just need to compare the levels of draegits. The earthquake dataset has
roughly four uniform subareas. Two of them account for mbiEnt60% elements of the total
datasets. We then appWultiMap on these subareas separately.

The results, presented in Figure 5.6, exhibit the same $resdhe previous experiments.
MultiMap again achieves the best performance for all beam and rargyéegu It is the only
mapping technique that achieves streaming performancerierdimension without compro-
mising the performance of spatial accesses in other dirmessiFor range queries, we select
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Figure 5.7: Performance of queries on the 4-D OLAP dataset.

representative selectivities for the applications.

55.5 4-D OLAP dataset

In this section, we run experiments on an OLAP cube derivexh fihe TPC-H tables as follows:

CREATE TABLE Sal es(

int OrderDay, int ProductType,

int NationlD, int Quantity,

<ot her information>)

This table schema is similar to the one used in the IBM’s MDithensional Clustering
paper[H8]. We choose the first four attributes as the fouledsions of the space and form an
OLAP cube of size (2361, 150, 25, 50) according to the uniglees of these attributes. Since
each unique combination of the four dimensions does not baeegh points to fill a cell or
disk block, we roll up alongx der Day to increase the number of points per combination, i.e.,
combine two cells into one cell alo@ der Day. This leads to a cube of size (1182, 150, 25,
50) for a 100 GB TPC-H dataset. Each cell in the cube corregptimthe sales of a specific
order size for a specific product sold to a specific countripiwi® days.

The original cube is partitioned into chunks to fit on eaclk dighose dimensions are (591,
75, 25, 25). The value ab is the same as the 3-D experiments, and the results are tgdsen
in Figure 5.7. For easy comparison across queries, we répoeverage I/O time per cell. The
details of OLAP queries are as follows:

Q1. “How much profit is made on product P with a quantity of Q to cou@rover all
dates?

Q2: “How much profit is made on product P with a quantity of Q ordene@d@pecific date
over all countries?
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Q1 and Q2 are beam queries on the major order (OrderDay) amh-anajor dimension
(NationID), respectively. As expecteNaiveoutperformsHilbert andZ-order by two orders of
magnitude for Q1, whil&Z-orderandHilbert are almost twice as fast &mivefor Q2. MultiMap
achieves the best performance for both.

Q3: “How much profit is made on product P of all quantities to coy@rin one year? The
2-D range query Q3 accesses the major order (OrderDay) amdammmajor order (Quantity),
so Naivecan take advantage of sequential access to fetch all regubkicks along the major
dimension then move to the next line on the surface. HeNegye outperformsZ-order and
Hilbert. MultiMap matchedNaives best performance, achieving the same sequential acoess o
the major order.

Q4: “How much profit is made on product P over all countries, qua#iin one year?Q4
is a 3-D range query. Because it also involves the major oriheertsion,Naive shows better
performance than the space-filling curve mappings by at tgasorder of magnitudélultiMap
slightly outperformsNaivebecause it also preserves locality along other dimensions.

Q5: “How much profit is made on 10 products with 10 quantities ovecdifhtries within
20 days? Q5 is a 4-D range query. As expected, b@order andHilbert demonstrate better
performance thaiNaive MultiMap performs the best. For the two different disks, it achieves
166%—-187% better performance thidaive 58%-103% better performance tharorder and
36%—-42% better performance thiiibert.

5.5.6 Analytical cost model and higher dimensional datasets

For the results presented in this section, we used parasrtbtgrcorrespond to the Atlas 10 k 111
disk. We determined the values empirically from measurdésehour disks. The average rota-
tional latencyRotLat = 3 ms,C,,;; = 8.3 ms, which is the average rotational latency plus the
average seek time, defined as the third of the total cylindéaince. Based on our measurements,
we setc = 0.015 ms andvr = 1.5 ms with the conservatism of 3(Table 2.1 in Section 2.2).
We setT" = 686, which is equal to the number of sectors per track in the emiest zone. To
evaluate the model’s accuracy, we first compare its predistwith our measurements from the
experiments on 3-D and 4-D data sets and summarize thesadgiihi Table 5.2. As shown,
the prediction error our model is for most cases less than @&baout of 24 predicted values
are within 20%. The model estimates the cost based on thetcellBNs mappings, which are
accurate no matter what the dimensions are. Thereforeyéukction error is independent of the
dimensions.

We can use the model to predict the performance trendd/t@r space withV > 4. Fig-
urel 5.8 shows the predicted performance for beam queribsani8-D dataset with each dimen-
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sion being 12 cells. These results exhibit the same treniti®as for 3-D and 4-D, demonstrating
thatMultiMap is effective for high-dimensional datasets.

3-D experiments
Naive MultiMap
Query | Measured| Model A Measured | Measured| A
(ms) (ms) (ms) (ms)

Dimy 0.03| 0.03| 0% 0.04 0.03| 13%
Dimy 27| 27| 0% 1.7 15| 8%
Dimso 52| 43| 17% 15 15| 0%
1% 294 | 291 | 1% 205 168 | 18%
2% 1086 | 1156 | 6% 722 723 | 0%
3% 2485 | 2632 | 5% 1626 1758 | 8%

4-D experiments
Dimy 0.02| 0.02| 0% 0.02 0.02| 0%
Dimy 55| 50| 9% 2.1 19| 9%
Dimg 22| 4.0 82% 2.1 19| 9%
Dimg 486| 51| 5% 1.8 16| 11%
64 1142 | 1065| 7% 513 436 | 15%
104 5509 | 5016 | 9% 1996 2150| 8%
124 8905 | 8714 | 2% 3590| 3960| 9%

Table 5.2: Comparison of measured and predicted I/O times.

1/O time per cell [ms]

T T T
Naive I
MultiMap T

o P N W A~ OO N 00 ©
T T T T T T T T

Dimy Dim; Dim, Dimy Dim, Dimg Dimg Dim,

Figure 5.8: Estimated cost of beam queries in 8-D space.

5.6 Chapter Summary

MultiMap is a breakthrough on disk layouts for multidimensional datshat it extends the
traditional linear abstraction of disks. In the worldMtltiMap, disks are not in a linear space
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anymore: they are in a multidimensional space where the kmevn sequential path and the
new semi-sequential paths construct different dimensiotise space.

The contributions oMultiMap are twofolds. First, it presents a simple interface thaesak
the coordinates of a point in a multidimensional space asthpnd returns thébn to store
the point. This interface depicts disks as a multidimerai@pace. Second and more impor-
tantly, by using this interfacéMultiMap solves the fundamental problem of preserving spatial
locality for multidimensional data on disks because it doesneed to do linearization as ex-
isting solutions have to. As a resuMultiMap does not face the performance trade-offs among
different dimensions, thus demonstrating substantiatavgment over traditional mapping tech-
niques. On averag®JultiMap reduces total I/O time by over 50% when compared to tradation
linearized layouts and by over 30% when compared to spdoegfidurve approaches such as
Z-ordering and Hilbert curves. For scans of the primary disien, MultiMap and traditional
linearized layouts provide almost two orders of magnitudgér throughput than space-filling
curve approaches.

MultiMap achieves its goals by successfully exploiting the detadledce-specific informa-
tion about semi-sequential access. The desighlatiMap is about how to leverage this new
technigue without increasing the implementation compyexirhe interface mapping a multi-
dimensional point to a disk block carefully hides the seegtgential access details from user
applications without compromising the functionality.

Last but not least, the disk technology development treridash increasing track density
and slow improvement on seek time and rotational latencyyimmore dimensions supported on
disks, which make#tultiMap even more useful in the future. Currently, the typical maximu
number of dimensions supported by a modern disk is 10.

This chapter is a further exploration of how to utilize sesaguential access paths to elim-
inate the performance trade-offs among multiple dimerssiohhe next chapter continues the
journey from another angle: how to eliminate the perforneainade-offs among different execu-
tion phases.
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Chapter 6

Data organization for hash join and
external sorting

This chapter discusses how a database system can utiliserfiesequential access to organize
intermediate results for hash join and external sorting.dWgeover that the performance trade-
offs shown in accessing multidimensional datasets alsst @xithe two phases of theRACE
hash join algorithm and external sorting algorithms. Theflicting I/0O access patterns are not
caused by the high dimensionality of datasets, but rathehéydifferent orders in which the
two operators process data. In existing systems, one plidsese two operators achieves the
sequential bandwidth while the other phase suffers théamfcy of random accesses.

The solution proposed in this dissertation exploits theissquential access path to store the
intermediate results between the two phases. While keepengdod performance of the sequen-
tial access in one phase, the solution replaces expensidemaaccesses with semi-sequential
accesses in the other phase, resulting in up to a 50% shdétidinhe. This performance is
achieved without modifying the kernel algorithms. The #ghis chapter explains the conflict-
ing I/O accesses, followed by the solutions there are unmedvia this project. The last part of
the chapter presents the experimental results to evalbajgetrformance of the new solution on
a prototype system.

6.1 Hash join

Hash join 3&3&83], as an efficient algorithm tolempent equijoins, is widely used in
commercial database systems. In its simplest form, wheauwagable memory is large enough,
the algorithm first reads in the smalldxufld) relation and builds a hash table based on the value
of the join attributes. Then it scans the largemope relation, and for each tuple from the probe
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relation, it probes the hash table to find matches. In thelsshpcenario, the only I/O operations
are one scan on each join relation and one sequential writeéautput.

In the real world, database systems adopt more sophigtiadgerithms, such as teRACE
hash join aIgorithn‘@G], to deal with the problem of exceeslisk accesses when the memory is
too small to hold the build relation and/or the hash tableckecal hash join algorithms usually
take a two-phase approach. The first phase is called “partthase” in which the algorithm
partitions the two joining relations into smaller sub-telas (also called “partitions”) using a
hash function on the join attributes. In the second phasefjtin phase”, the algorithm joins
each pair of the build and probe partitions that have the $asle value as in the simple scenario.
The number of partitions is based on the sizes of the avail@gimory and the size of the build
relation. A key point is that the build partition and the h&adble built upon it must fit in memory.
If a build partition turns out to be too big for the memory besa of a skewed hash distribution,
the above two-phase process is applied recursively.

Due to multiple read and write operations, hash join alpang are I/O-intensive in na-
ture. Since the introduction of tRACEhash join algorithm, a lot of work has been done
to minimize the 1/O operations by keeping as many interntedpartitions in memory as pos-
sible 27,@6@3&3 83]. The approach presented in thipteindakes a different angle by
exploring more efficient ways to organize intermediateipans on disks. If partitions must be
read/written, what are the best ways to do it?

The next section explains the challenges of optimizing I&fgrmance for hash join algo-
rithms, followed by our solution.

6.1.1 Opposite I/O accesses in partition phase and join phase

This section delineates the 1/0 access patterns in the tasgshof theGRACEhash join al-
gorithm. Figure 6.1 shows the procedure for joining two éablR and S. The numbers in the
circles denote the execution order. Following the ordes, dlyorithm first partitions the join
relations (Figure 6.1(a)) as follows. Step 1 reads in the jelation (e.g. relation R) in chunks
with a typical size of several KB. A hash function is used tccokdte the hash value of each
tuple and put it into corresponding buckets. In this examiple hash function has three buckets
(thus three partitions), coded with different colors: gel] orange, and brown. When a bucket
is full, the algorithm writes it to disk in chunks, as denotgdstep 2. Assuming that the hash
function is adequate, each final partition contains rougidysame number of records. In this
example, each partition occupies 6 disk chunks. More inapdist, in practice, the three buckets
in memory are usually filled and written out alternatelyufesg in interleaved writes to differ-
ent partitions, as illustrated by the vertical arrow in Fgy6.1(a). The interleaved writes to disks
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Figure 6.1:GRACEhash join algorithm. The graph illustrates the two phaséseGRACEhash
join algorithm. The vertical arrow at step 2 indicates itlgaved writes to three partitions, but
not a writing order from partition 1 to partition 3.

form a random-like access pattern.

After both join relations are partitioned, the algorithnmess the join phase (Figure 6.1(b)).
In this phase, the algorithm joins pairs of partitions theatdnthe same hash value in the previous
phase. Without losing generality, the graph uses the padadition i as an example to illustrate
the procedure. Step 3 reads in the entire partition i of R anld$a hash table based on the join
attributes. Step 4 reads in the partition i of S in chunksbpsathe hash table with each tuple in
the chunk, and outputs the matched ones, as shown in step 5.

In today'’s systems, the 1/O access patterns in steps 3 gmnd stéhich scan the join partitions
(denoted by the horizontal arrow), conflict with the 1/0 aax@atterns in step 2. Sequential
accesses at step 3 and 4 result in random accesses at stegqu2ethe interleaved 1/0 operations
at step 2 are now writing to non-contiguous blocks spreadsaadisks.

6.1.2 Organizing partitions along the semi-sequential path

The performance trade-offs caused by the conflicting I/Gess@atterns in the hash join al-
gorithm can be resolved by utilizing the semi-sequentigeas path. This idea is similar to
MultiMap in which the random access at step 2 is replaced with the much afficient semi-
sequential access. The high-level idea is to align all pam8 along a semi-sequential access
path. In other words, the chunks of different partitiond tir@ of the same offset in the partition
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Partition 3

will be stored in the consecutive adjacent blocks. FiguPed@picts the data placement strategy
with more details.

Figure 6.2 is a detailed picture of step 2 taken from Figutéaf.where the algorithm writes
full buckets to the disk. Boxes with solid sides in the exang#aote chunks, the basic unit of
a read/write operation. Boxes with dotted sides denote distkb, usually of 512 bytes. The
chunk size in this example is thus 3 disk blocks. For simplithe example assumes the size of
each partition equals the track length (i.e., 18 blockséngtaph) and disk block O is the starting
disk block. Al, A2, and A3 are the first chunks in the threeiparts, and are defined to be of
the same offset from the beginning of the partitions to whingy belong. Numbers in the dotted
boxes (disk blocks) are LBNs. Suppose that chunk Al is staréuki first 3 blocks, from LBN O
to LBN 2. With the knowledge of the adjacency model, the neva gigiccement algorithm picks
the adjacent block of LBN 2 to be the first block of Chunk A2. Foamyple, if LBN 18 is the
adjacent block of LBN 2, then Chunk A2 is stored in the blockstisig from LBN 18. Similarly,
the starting block of Chunk A3 is stored in the adjacent blddk&N 20, which is LBN 36 in the
example. In this way, writing A1, A2, and A3 incurs semi-seqtial access. By only paying the
cost of settle time, the disk head can read LBN 18 after acog&®8N 2, without any rotational
latency. This also holds true for the access from LBN 20 to LBN 36

Implementation concerns, such as how to issue I/O requadth@w to handle larger par-
titions, are shared by hash join and external sorting. Toezethey are discussed together in
Section 6.3.1.

6.2 External sorting

External sorting algorithms are used to order large daakat cannot fit into memory. Similar
to hash join algorithms, they typically have two phases. fiits¢ phase generates a set of files
and the second phase processes these files to output the sestét. Based on how the first
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phase generates the set of files, external sorting can balyocigssified into two group&?Q]:

1. Distribution-based sorting: The input data file is pamtied into N partitions, with each
partition covering a range of valuelg[37]. All elements imtpi@an i are larger than the
elements in the partitions from 0 to (i-1) and smaller tham ¢fements in the partitions
from (i+1) to (N-1). The second phase then sorts each partseparately and concatenates
them as the final output.

2. Merge-based sorting: The first phase partitions the ififguinto equal-sized chunks and
sorts them separately in main memory. The sorted chunkscaltedruns are written to
disks. The second phase merges the sorted runs and outptitsatrsorted file.

External memory sorting performance is often limited by gérformance. Extensive re-
search has been done on formalizing the 1/0O cost in theoryn@namizing the amount of data
written to and read from disks in implementaticgn [E & fiﬁm%] Zhang et. al.@4] im-
prove the performance of external mergesort by dynamicadiysting the memory allocated
to the operation. Equal buffering and extended forecagBb§ are enhanced versions of the
standard double buffering and forecasting algorithms itharove the external mergesort per-
formance by exploiting the fact that virtually all moderrskl perform caching and sequential
prefetch. Some efforts aim at using a co-processor, suchPas ® offload compute-intensive
and memory-intensive tasks to the GPU to achieve higheréffpmance and better main mem-
ory performance [26]. Other approaches seek to minimize&i@ by reading in run chunks in a
particular order that involves minimal disk seeks, suchhage¢chnique otlustering ]. This
dissertation chooses a similar anglechssteringtowards optimizing the 1/O performance by
reading in run chunks in a disk-concious way. Different frttva previous research, our idea is
to organize the intermediate partitions along the new saqutential path.

6.2.1 Opposite I/O accesses in two phases

The conflict I/O access patterns in the distribution-basetng algorithm are the same as in
hash join. The writes to different partitions in the first paare random if the algorithm chooses
to optimize the later read operations by storing each partgequentially.

The merge-based sorting algorithm is different, depicteBigure 6.3. This diagram shows
the procedure of sorting a file named D. In the partition pH&sgure 6.3(d)), at step 1, the
algorithm reads in sequentially a certain amount of datadaa be held in main memory and
sorts it using any existing sorting algorithms. Then theéesbchunk, called aun, is written out
sequentially at step 2. The graph shows the generation afttheun. After the entire file is
consumed, the merge phase applies merge sort on all rups3(stand outputs the final sorted
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Figure 6.3: Merge-based external sorting algorithm. Tlaplillustrates the two phases in the
merge-based external sorting algorithm.

file (step 4). At step 3, the three runs are fetched into menmociiunks. If the data being sorted
is not highly skewed, reading in chunks from different rureswisually interleaved, which causes
random access patterns on disks.

6.2.2 Organizing runs along the semi-sequential path

Adopting an idea similar to the one used in the solution ohhjam, the runs are aligned along
the semi-sequential access path. That is, the chunks efeiiff runs that are of the same offset in
the run will be stored in the consecutive adjacent block® [aout details of each run, such as
the adjacent block selection, are the same as in hash joinambeen discussed in Section 6.1.2
( Refer to Figure 6.2).

6.3 Evaluation

This section describes the implementation of a prototypeldped on a logical volume com-
prised of real disks that is used to evaluate the performafites new data organization for hash
join and external sorting.
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6.3.1 Implementation

The prototype system is implemented on a two-way 1.7 GHzilant Xeon workstation run-
ning Linux kernel 2.4.24 with 1024 MB of main memory and oneafitec Ultral60 SCSI adapter
connecting two 36.7 GB disks: a Seagate Cheetah 36ES and amdbds 10k Ill. This proto-
type system consists of a logical volume manager (LVM) ardogperators of th&RACEhash
join algorithm [68] and the merge-based external sorting.[3

Hash join and external sorting algorithm implementation. We adopt the optimized hash
join implementation from Chen et al [16]. It uses a slottedepsigucture with support for fixed-
length and variable-length attributes in tuples. The hasbtion is a simple XOR and shift-based
function. It converts join attributes of any length to 4-Yiash codes. The same hash codes are
used in both the partition and the join phase. Partition nrensare hash codes modulo the total
number of partitions which are calculated based on thessitaiof the relations. Hash bucket
numbers in the join phase are the hash codes modulo the Halshstae. The merge-based
external sorting algorithm is implemented using Quick sorthe partition phase to sort each
run.

Double buffering. We also implement a simple buffer pool manager with the fioncof
double buffering. Double buffering is a commonly used teghe to exploit CPU resources
during I/O operation by overlapping CPU and I/O processihgldo helps to accommodate the
different filling (or consuming) speeds of different paatits (or runs). In the hash join operator,
when a bucket is full, it is put in a full bucket list, and a frieecket will be linked in to fill in
the vacancy. When there are full buckets for all partitionthere are no more free buckets, a
worker thread will write them out and put the buckets backaftee list. In external mergesort,
reading run chunks is triggered when the memory space fan &roalf empty.

Skewed datasetsThe approaches proposed in this chapter work nicely witfoumiy dis-
tributed datasets, meaning the hash function in hash jo#s dogood job at distributing tuples
equally or the values of sort keys in external mergesortamdamly distributed. Datasets with
highly skewed distributions pose some obstacles. For ebagnmpan extreme case, the writing
of hash join partitions or the reading of external sort ruressquential, no interleaving reads or
writes at all. In this case, our approach would not help toroue performance because first, no
semi-sequential access batches will be issued; secondgetfuential access is the fastest. Gen-
erally speaking, the skewness of datasets determines grhethiing join partitions (hash join)
and reading run chunks (external sorting) are interlealredther words, skewed datasets have
better 1/0 performance than uniformly distributed datasetom our approaches’ point of view,
as far as the interleaving reads/writes exist, it can hefprave the 1/0 performance. If no such
an interleaving access pattern, it will not hurt perforneatither.
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Track-aligned extents. In the current prototype, disk space for tables, partitia@rsruns
is allocated in extents. An extent is a set of contiguous biskks. This prototype utilizes
previously proposed “track-aligned extent$f’a§<tents)i5§, @] to achieve efficient sequential
access. The idea of track-aligned extents exploits autoaligtextracted knowledge of disk
track boundaries, using them as the extent size. If a pmartidr a run is larger than the track
capacity, the system just allocates another extent on anaew for it.

Large memory. The performance improvement gained from our approachessmom the
idea of replacing random read/write of chunks with semigagal access. If the chunk size is
very big, the time it takes to read/write a chunk will be lomgdpich makes the overhead of disk
seeks less important or even negligible. In a system withl@amemory, it tends to use large
chunk sizes. In this case, our approaches cease to be helpfalperformance diminishing is
shown in the experiments in the next section.

The next section compares our solutions to existing appesaevhere no care is taken to
avoid random accesses.

6.3.2 Experiment results

The first half of this section evaluates the hash join algaritin the experiments, build relations
and probe relations have the same schema which consistsloyte foin key and a fixed-length
payload. No selection or projection operations are peréaiinecause they are orthogonal to
the study. Output records consist of all fields from the twia jelations. The tuple size in the
following experiments is 100 bytes, and the sizes of thdioela are 1 GB and 2 GB. Values of
the join key are randomly distributed. All tuples in the buiklation have matches in the probe
relation. All partitions and the hash table built on themifjhtly in main memory; therefore, no
recursion is involved.

We vary memory size from 5 MB to 60 MB and measure the total inmtime of the hash
join algorithm, shown in Figure 6.4(a). By "Old”, we denoteettraditional semi-sequential-
oblivious approach, and by "New”, we refer to the new solutiiscussed in the previous sec-
tions. The total running time is broken down into five compusefrom the bottom to the top:
(a) “partition read” is the total time spent reading in thmjeelations; (b) “partition comp” refers
to the computational cost in the partition phase to caleutetsh keys and to distribute tuples;
(c) “partition write” is the time spent writing filled bucketvhich is the optimization target; (d)
“Join read” and (e) “join comp” are the costs in the join phadgdch consists of the time to read
in the join partition and to build/probe the hash table.

When the memory size is small, the bucket size is also smadirefare, writing out the par-
titions incurs more 1/O requests for small data chunks,|tesuin worse performance. The new
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Figure 6.4: Running time breakdown for hash join and extesoding algorithms. The graph

plots the running time of the “Old” and "New” approaches wiilicreasing memory sizes. The
“old” solution refers to the existing implementation thated not take the advantage of semi-
sequential access while the “new” solution exploits thetdiee to store the intermediate parti-
tions.

organization of aligning partitions along the semi-sediaépath helps to mitigate the problem.
In the case where the memory size is 5 MB, the "New” approachaesithe “partition write”
time by a factor of 2. The performance improvement diminsshg memory size increases be-
cause of the increased bucket size. Large bucket size isnjgve I/O requests with large data
chunks. In this case, the benefit of saving rotational latérecomes less manifest.

The same trend is observed in the performance evaluatioheoexternal sorting algorithm,
as Figure 6.4(b) shows. In this experiment, a table of 1 GBorted using the same set of
memory sizes (i.e., from 5 MB to 60 MB). Values of the sort atite are uniformly distributed.
The legend used in Figure 6.4(b) refers to different openatperformed in the external sorting
algorithm, from the bottom to the top: (a) “partition read'tihe time spent reading in the data file
at the beginning; (b) “partition write” is the time spent tmg the sorted runs; (c) “merge read”
refers to the cost of reading data from different partitionghe merge phase; and (d) “merge
write” is the time spent writing out the final sorted file. Triodts goal, our solution successfully
reduces the cost of “merge read” by a factor of 2 when the mgsire is small. The advantage
of organizing intermediate partitions along the semi-sadial path decreases as more memory
is available.

In real applications, the memory available for the operetiof hash join and external sorting
is quite limited because this part of memory is allocatedftbe private space of each execution
process. In a system with a high concurrency degree, thisapgroach helps to sustain good
performance with less memory. This is also beneficial to theramodules in the entire system.
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6.4 Chapter summary

In this chapter, we propose a new way to optimize the 1/0O perémce for two important
database operators, hash join and external sorting, bpiéirgl the semi-sequential access path
for organizing intermediate partitions. Our purpose ismpliove the performance of the worst
scenarios in hash join and external sorting, where the heatiss of partitions/runs result in a
random disk access pattern.

The performance improvement is achieved by eliminatingeagve random accesses during
the execution of the two operators in current systems. Tiperaxents demonstrate that our
prototype exhibits a speedup of a factor of two when compsodchditional techniques when
the available memory is limited (less than 1% of the dataige).s Moreover, we achieve this
speedup without the need of modifying existing algorithifisis project is another example that
a deeper understanding of hardware features can factigaeorganization in database systems.
However, we also find out that the performance improvememirdshes as more memory is
available. The approach achieves the same performancestisg@solutions when the memory
size is larger than 6% of the dataset. Large memory size @npdirge 1/0 request size, which
makes the overhead of a random disk access, seek time atidmatdatency, less important in
performance.

Although the memory size in a system will keep increasingdigiin the future, the available
memory to hash join and external sorting will not increase similar speed. In fact, since this
part of memory is allocated on a per thread basis, the incrga®ncurrency degree will put
a restriction on the memory space allocated to hash join aretrel sorting, which makes the
approaches in this chapter stay valuable in the future.
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Chapter 7
Conclusions

Thesis statement
“Database Management Systems can become more robust hyagiingiperformance
trade-offs related to inflexible data layout in the memord disk hierarchy. The key to
improving performance is to adapt the data organization toklaad characteristics, which is
achieved (a) by intelligently using query payload inforirmatwhen managing the buffer pool,
(b) by decoupling the in-memory layout from the storage oigrtion, and (c) by exposing the
semi-sequential access path available on modern disk®tsttitage managér.

Existing database management systems use static datézatganacross all layers of the mem-
ory hierarchy: the same data layout is used in CPU caches, mamory, and disks. The
single format design simplifies the implementation of datsbsystems and works well in the
early days when most hardware were dumb devices and majdtomads shared similar char-
acteristics. Unfortunately, the “one layout fits all” satut does not meet the ever-increasing
performance requirements of today’s applications whezdtgh diversity of workloads asks for
different, sometimes even conflict, designs of data laydathe meantime, this simple solution
fails to leverage many advanced features being added tag&t@levices, missing opportunities
which could have been exploited to improve performance.

In this thesis, we propose flexible and efficient data orgeiun and management for database
systems to address these problems. Our solutions inclyides¢aled-down database benchmark
suite for quick evaluation; (b) an adaptive buffer pool ngeravhich applie€SM, a dynamic
page layout, to customize in-memory content to query paldpéc) a new mapping algorithm,
MultiMap, that exploits the new adjacency model of disks to provideu#tidimensional struc-
ture on top of the linear disk space for efficiently storingltdimensional data; and (d) a new
way to organize intermediate results for external sortimgj lzash join.

First, DBmbench provides a significantly scaled-down dagalmenchmark suite that accu-
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rately mimics the characteristics of the most commonly 388 and OLTP workloads, TPC-H

and TPC-C, at the microarchitecture-level. This is done bgtifigng and isolating a small set of

operations that primarily dominate the executions of thekleads. DBmbench simplifies exper-
iment setup, reduces experiment running time, and easerpefnce analysis. More importantly,
DBmbench faithfully preserves the major characteristiaheir large-scale counterparts. DBm-
bench is also valuable database system research, espaciaéinsitivity analysis. The other

projects in this thesis employ it to study the performanéect$ of individual parameters on the
entire system.

Clothois a buffer pool manager which adapts to changing worklogdsgdzoupling the in-
memory page layout from the storage organization. The ge#irmusolves the problem inherent
to existing static page layouts, i.e., the performanceeti@its between two major database work-
loads TPC-H and TPC-C. LikBSM, Clothoasks for only requested attributes, which makes it
the best choice for TPC-H-like workloads. LikSM Clothoalso performs well for full record
accesses as in TPC-C-like workloads, thanks to the new seuesgal access path on disks.
However,Clothois not burdened with the details of the semi-sequentialsscpath. The decou-
pling allows the volume manager to organize pages on diskdtst exploits the characteristics
of the storage devices.

MultiMap is a mapping algorithm to store multidimensional datasetdisks. Instead of us-
ing the over-simplified linear abstraction of diskéultiMap utilizes the semi-sequential access
path to build a multidimensional view on disks, thus elinting the restrictions posed by the
linear abstraction. Thanks to the multidimensional alesitva, the spatial locality of multidi-
mensional datasets can be preserved on disks which tresstesuperior performance for range
and beam queries. On averaly®jltiMap reduces total 1/0 time by over 50% when compared to
traditional linearized layouts and by over 30% when comghémespace-filling curve approaches.

Continuing the exploration of building hardware-aware athos, We investigate the idea
of utilizing the semi-sequential access path to organirnmediate partitions in hash join and
external sorting. It eliminates the costly random accessessing in the current implementation,
thus optimizing the 1/0 performance without modifying therkel algorithms. This solution is
especially useful in systems with scarce resources. Therements on our prototype demon-
strate a speedup of a factor of two over the traditional immgletation.

FromClothoto the data placement for hash join and external sortingpitbjects of this dis-
sertation revolve around the theme of enhancing the irtierabetween software and hardware
and demonstrate the significant performance benefits btdayghfrom various aspects.

The evolution of computer system has shown two evident deuaj trends. One is that
computer hardware, such as processors, main memory, &sj kéeps evolving with more so-
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phisticated built-in intelligence; the other is that contggsoftware, from low-level firmware up
to user applications, is becoming more and more complicatelddiversified due to the ever in-
creasing demands for performance and features. Undertihese=nds, it is increasingly crucial
to design software that collaborates with hardware deyites exploiting their characteristics

to the fullest.
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