Non-oblivious Retroactive Data Structures

Umut A. Acar? Guy E. Blelloch? Kanat Tangwongsar?

December 11, 2007
CMU-CS-07-169

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Toyota Technological Institute at Chicago (TTI-C), Chiody 60637. Email:umut@tti-c.org
2Computer Science Department, Carnegie Mellon UniverBitysburgh PA 15213. Emaiblelloch@cs.cmu.edu
3Computer Science Department, Carnegie Mellon UniverBitjsburgh PA 15213. Emaiktangwon@cs.cmu.edu

Keywords: data structures, dynamization, retroactive data strastur

Abstract

The idea of a retroactive version of a data structure is totagi a time-ordered sequence of op-
erations while allowing the user to revise the operatiorusage byinvoking andrevoking(i.e.,
inserting and deleting, respectively) operations anywlethe sequence—including backwards in
time. In many applications of retroactivity, operationpeled on the outcomes of previous queries,
and therefore the data structures need to identify the em@vhose outcome changes when a re-
vision is performed retroactively. Existing notions ofroelctivity, however, do not keep track of
queries in the operation sequence. Therefore, they cafficiertly identify the queries that be-
come inconsistent as a result of a retroactive revision.

In this paper, we propose and study a new model of retrofgtaallednon-oblivious retroactivity
where both updates and queries are maintained as part op#inatmn sequence. In this model, a
revision to the operation sequence returns the earliesatipe that becomesconsistenti.e., an
operation whose return value differs from before. This na@idm enables the user to efficiently
locate the affected operation and decide to perform fumidsions as necessary to reestablish the
consistency of the operation sequence. We investigataaaven-oblivious data structures and
prove some lower bounds in the proposed model.

1 Introduction

Consider a data type that supports update and query opezalibe idea of a retroactive version of the data type
is to maintain a time-ordered sequence of operations whdeiag the user to revise the operation sequence by
invokingandrevokingoperations, i.e., inserting and deleting (respectivelpywhere in the sequence, including
back in time. The ability to revise the sequence of operatjmerformed on a data structure is often helpful and
sometimes critical. For example, if incorrect informatisrentered into a database, then it may be important to
find all the decisions based on this information and revisentlefficiently. Similar applications of retroactivity
can be found in areas such as security and algorithm dyn&ariZ®IL04].

Demaine, lacono, and Langermdd[04] introduced two models of retroactivity, called partiadanll retroac-
tivity. The models differentiate between two kinds of opienas: updates and queriedpdate operationge.g.,
enqueue) modify the underlying data structure but do natmed value Query operationgnspect the underlying
data structure and return a value (e.g., front). Both moalédsv update operations to be revoked or invoked at
any time, but they restrict queries. In partial retroatyivijueries can be invoked only at the most recent time; in
full retroactivity, queries can be invoked at any time. IReitmodel maintains a record of queries—only a record
of update operations is maintained. Therefore, queriesatdre revoked. Furthermore, when a revision back in
time changes the outcome of a query operation, the moddisetiidentify the queries that will now return a
different value. In other words, the sequence of operatwablivious to revisions. We therefore refer to these
models of retroactivity asblivious

Incorporating query operations to retroactivity, howewas crucial benefits. As an example, consider a database
where some incorrect information is mistakenly enteredthVit the ability to identify the queries affected by
this operation, it is difficult to correct the problem causgdhe incorrect information: one has to keep a separate
record of the query operations and re-perform them aften epdate to check if their return values change; this
is inefficient. For the same reasons, oblivious retroaaa structures are also difficult to compose and to use
as components in dynamic algorithms. For example, contidedynamization of the Dijkstra’s shortest-paths
algorithm that uses a retroactive priority queue. If the irsgerts an edge into the graph, then we can retroactively
invoke a new insert operation on the priority queue basedhahddge. This could affect a later deleteMin
operation and could further cause other revisions. If th@aetive structure only tracks updates, however, there
is no way to determine which operations are affected effilyierall future operations are oblivious to the update.
We see no way, for example, to effectively use Demaine satraltroactive priority queue to dynamize Dijkstra’s
algorithm. Similarly we see no way to effectively use theiroactive union find to dynamize graph connectivity.

In this paper, we propose a modelradin-oblivious retroactivityand proceed to design and analyze several non-
oblivious retroactive data structures. Henceforth, wethseterm “retroactive data structures” to refer to non-
oblivious data structures unless otherwise stated. Ouehmodintains all operations (both queries and updates)
as part of the operation sequence. When the user performsoaative revision by invoking or revoking an
operation, the user is notified of the next operation thabibmssinconsistenti.e., an operation whose return
value differs from before. This mechanism allows the useprmpagate the effects of the revision through
the operation sequence. For example, if a piece of incoméatmation is entered into a database, then the
erroneous operation can be revoked when discovered. Aitérarevision, the data structure will return the first
inconsistent operation. The user can then take correctitiens, e.g., revoke the inconsistent operation. Based
on this notion of propagation, our data structures can be tesdynamize static algorithms (&@ection 3. Our
data structures only report the operations that are instargiand no more.

All our results rely on an order-maintenance data strudiukeep track of a time line consisting of time stamps.
We write R for the number of operations in the operation sequencelafud the total number of allocated time
stampsd Table 1summarizes the time bounds for each retroactive revisiroe(# for ordered sets) and total

1This can be significantly larger tharwhen multiple retroactive data structures are used.

space usage of the data structures. All our bounds are expantortized where the expectations are taken over
internal randomization. We show matching lower bounds facks and priority queue.

We note that the results we present are not comparable and
sometimes quite different from those known for the obliv-

| Data Structure] Time | Space| ious case. For example for the oblivious fully retroactive
Dictionary O(loglogT') O(R) | priority queues, Demaine et al. achiev®&,/r log ') time
Queue O(loglogT) O(R) | per update forr operations. In the non-oblivious case,
Stack O(log R/loglog R) | O(R) | however, we are able to achiev®logr) time. In this
Priority Queue O(log R) O(R) | case the non-oblivious version seems easier since all that
Ordered Set | 1 O((m +1)n logR) | O(R) | is required is that it report the next inconsistent operatio

_ _ In priority queues, invoking a new insert operation back
Table 1. Time and space bounds for retroactive dgfgime will make some future deleteMin inconsistent. By
structures. {(for a sequence of revised updates herforming an additional deleteMin operation, the user can
andm revoked queries) cancel the effect of the previous update and the data struc-
ture can reach a consistent state quickly. On the other Handblivious, ordered dictionaries, Demaine et al.
achieveO(log r) per update for operations. In the non-oblivious case, we are able to aelidvmn+1) n logr)
time, wheren is the number of revised updates ands the number of revoked queries. This matches the time
previous bound when the queries are not maintained (as inklixous case) in the amortized sense. When
queries are included, the problem seems harder.

2 Preliminaries and Notations

In this section, we define some notations and survey resudtsatill be used throughout the paper. kor< z-,
we denote by, 29| the closed interval between andxs; that is, we defingry, x3] = {z : 21 < x < x9}.
Extending this notation, we writgz1, 2], y) to denote a line segment connecting, y) and(z2, y). Similarly,
we define(x, [y1, y2]) to be the line segment connectifig, y1) and(z, y2). It is possible that the right (or top)
endpoint is infinite, in which case the notation represemég/a@xtending indefinitely from the starting point. We
now move on to surveying results we need in this paper.

Order maintenance and ordered subsetsThe order maintenance (OM) problem is to maintain an ordse¢d
7 while supporting the following operationiisert(z) inserts a new elementimmediately followingz in the
ordering of7 and returns ittlelete(x) deletes the elementfrom 7'; andorder(z, y) for z,y € 7T returns true if
x precedeg in the ordering of7 . Dietz and Sleatorl)S87 and Bender et a.BCD™02] described algorithms
that support all operations i@(1) worst-case time. We make use of the OM data structure thouighis paper
and will often refer to the elements @f as time stamps.

The ordered subsets (OS) problem is to maintain & ssiipporting the OM operations, along with a set of sub-
setsS = {51,5s,...,S,} of T, each supporting the following operatiorissert(S;, z) insertsx € 7 into .S;,
delete(S;, z) deletesr from S;, findPrev(S;,) for x € T returnsmax{e € S;|e < z}, andfindNext(S;, z) re-
turnsmin{e € S;|le > z}. The OS problem also supports adding (removing) an emptp $bm) S. Assuming
that each element @f belongs to at most one subset, Mortenddorf06] shows that the OS problem can be main-
tained in expected (log log |7|) time per operation. Lifting this restriction, Blelloch aiMdssilevska BV07]
show that the OS problem can be solved such the OM operatiert3(4) time, adding and removing sets from
S take O(1) worst-case time, insert and delete tak@og log |7|) expected amortized time, arfithdNext and
findPrev takeO(log log |T'|) worst-case time; the total space is boundedXy7 | + >, (1 + |S;|)).

Dynamic orthogonal point location. The variant of dynamic orthogonal point-location problera @onsider
is to maintain a sef of segments of the forrfix;, z2], y) while supporting the following operationssert(e)
inserts a new segmeainto S; delete(e) deletes the segmeafrom S; andabove(z, y) reports the first segment
of S that the ray extending frorti,) hits. Note that when the segments are horizontal, the queopalled

3

right(x, y)—can be analogously supported. This and related problewestiegen extensively studied in literature.
We describe two results here. A simple modification of Mehthand Naher’s dynamic segment tré¢N90]
can support all above operations(tlog | S| log log |S|) per operation, requirin@(|S|log |S|) space. Recently
Blelloch [Ble07] shows a data structure for this problem that supports esdatd queries in amortizé{log |S|)
time per operation and uses linear space.

3 The Framework

Consider a data typ® and letO be the set of operations defined énand V' be the set of values that these
operations may return. A data type defines a functiolW* — V that maps sequences of operations to the value
returned by the last operation in the sequence startinganpitedefined initial state. For example[ifis a queue

of tasks, then the operation setincludesenqueue anddequeue operations and the return values consishoil

(to be returned bgnqueue anddequeue when the queue is empty) and all possible tasks. The queadyjs
defines a function that maps an operation sequence to a mefmbestarting with an empty queue.

Given a total-ordered set time stamp¥d’, we define aracefor D asaselR C O x V x 7T, where each time
stamp appears at most once. Intuitively, we think of a trace sequence of operations together with their return
values ordered with respect to time. For example, the traca sequence of operations on a queue consists of
the operations along with the returned elements (if anyg@d in time. For € 7, we define REFIX(R,t)

as the sequence of operationsRnup tot (inclusive) in time order. Note thatREFIX(R,t) contains only the
operations (not the returned values nor the times). We satyatth elemento, v, t) of the trace ionsistentf

v = F(PREFIX(R,t))—i.e., it is associated with the correct value given the @déty operations. We say that a
trace is consistent if all elements are consistent.

For a data type = (O, V, F'), theretroactive versionD,. maintains a trac® for each instance and provides an
operation for creating a new instance and revision operatior updating the trace:

e new() : Returns an empty trace for a new instance.

e invoke(R,o0,t) : Updates the trac® by inserting(o, v,t), computesy = F(PREFIX(R,t)), and returns
the tuple consisting af and the time of the earliest inconsistent operatioRin

e revoke(R,t) : Updates the trac® by removing the element with time(if any) and returns the time of
the earliest inconsistent operation/in

We refer toinvoke andrevoke operations agevisions Although the model allows revisions at any time, for our
results, we assume that revisions are applied as partradredtone revision sequere@ sequence of revisions
on an initially consistent trace such that (1) the times efriwvisions is increasing, and (2) for each revision at
timet, all operation at times beforteare consistent.

Dynamization. As an example of how retroactive data structures can be wsdgnamize static algorithms,
consider Dijkstra’s algorithm for single-source shorfesths. Suppose that we execute the algorithm on a given
graph using a retroactive priority queue and a retroactikeyahat stores the computed distances (we initialize
the elements of the array to infinity). Suppose now we insegdge fromu to v (deletions are symmetric). We
go back in time and invoke an insert operation for that edfj@skrting the edge does not change the output,
then we are done. Otherwise, this invoke operation willmethe deleteMin operation that removesAt this
point, we re-perform the deleteMin operation to obtain tistaghce tav and update the result arrayuit distance

is still infinity (otherwise,v’s distance has already been determined and we are done)heivadlax all the
edges outgoing from by revoking the corresponding insert operations and imgkhem again with the new
distance. These operations will return further inconaisies, which we will process by moving to the earliest
one repeating until no more inconsistencies remain. Alghowe do not prove it here, the resulting algorithm
closely matches the bounds of Ramalingam and Rep’s dynamitest-paths algorithmRR9§. In general,

by identifying the operations that become inconsisterradtrevision, non-oblivious retroactive data structures
allow dynamization of static algorithms by using a strdigtward propagation mechanism.

4 General Theory

We study non-oblivious retroactive data structures inti@tato other data structures. A natural question to ask
is when automatic retroactivity is possible. Despite thiéetBnces between the models, the rollback method
described in Demaine et al. provides a general techniquauimmatic non-oblivious retroactivity with a slight
modification. Instead of remembering only the update oerat we also remember the query operations, and
thus we can trivially determine which operation is incotesis when we “play back” the sequence. It is straight-
forward to prove the following theorem:

Theorem 4.1 Given a data structure where each operation tai&s) worst-case time, the rollback method
yields a (non-oblivious) retroactive data structure thapports the same set of operations retroactively in time
O(rT'(n)), wherer is the number of operations occurring after the time thatahton takes place.

Unsurprisingly, the rollback method is in most cases fas kfficient than a specially designed retroactive data
structure for the task at hand. Perhaps more surprisingeisetbult that there are data structures for which the
rollback method is essentially the best possible. We censid example of such data structures here. The data
structure maintains a countéf and supports one operatidmer(), which incrementsX and returns the value

of X right before the increment. Initially we perform a sequenten incr() operations. Going back in time,
we perform arincr() operation at the beginning of the sequence. This has a déagoaitect that requires every
incr() operation to be revoked and re-performed. For this reasercamnot hope to be more efficient than the
rollback method.

Finally, we note that any fully retroactive data structues e made non-oblivious by applying the rollback
method to the sequence of queries. This, however, is géneml inefficient, because it requires invoking all
the queries after a revision even when unnecessary. Confsidexample, a stack data structure and a sequence
of n push operations followed bypop operations. Insertingpush operation at the start of this trace will require
all pop operations to be re-executed, even though there are nosistent operations. Our results show that we
can be much more efficient with a non-oblivious stack datzctiire Section .

5 Dictionaries and Arrays

We now turn our attention to developing efficient retroaetilata structures for specific problems. In this section,
we discuss a dictionary data structure. Note that arraysaapecial case of dictionaries when the identity
mapping is used. Given a universe of kdysind a universe of valuds, a dictionary maintains asét C K x V'

in which each key appears at most once and supports the iopstat

e insert(k,v) : Add (k,v) to D, replacing the old value fdk if one.
e delete(k) : Delete any element with kelyfrom D.
e lookup(k) : Return{(k',v) € D : k' = k}.
We assume a universal class of hash functions avep hashing can be used to implement the dictionary.

Theorem 5.1 A retroactive dictionaryD, with traceR over timesZ can be maintained i®(|R|) space so that
all operations take)(log log |7|) expected amortized time.

Proof: Our solution maintains a dictionay X' mapping each key appearing inR to a setSy, a dictionaryDT
mapping each time appearing®to the key involved in that operation, and a #&) storing each key that has

5

an inconsistent operation) K and DT’ use universal hashing (e.gW[79) for constant expected amortized
access and update. The s8fsC 7 x V x {insert, delete, lookup} contain the time, value at that time, and
operation type for all the operations énn R. They are stored as ordered subsetd ofWe say that a key is
inconsistentf it contains an inconsisterdokup. The setP@ contains all inconsistent key:s and is stored as an
ordered subset df based on the time of the earliest inconsistent operatiok.for

Forinvoke(insert(k,v), t) we insert(t, v, insert) into Sy. Forinvoke(lookup(k),) we findv from the predecessor
of ¢ in Sy, insert(t, v, lookup) into Sy, and returrv. Forinvoke(delete(k),) we insert(t, -, delete) into Sy. For
any revoke at timet we useDT to find the appropriate ke¥ and then delete the elementtatrom Sj. If
performing an insert is on a new kéythen a new sef, is inserted intaD K, and if revoking an insert removes
the last element frons;, thenk is deleted fromD K. For any revision on key at timet let u be the successor
operation inSy. If the current value of. differs from its predecessor we inserinto PQ) at timet, otherwise we
deleteu from PQ. All revisions updateDT. Finally we report the minimum time IR, or oo if PQ is empty.

All operations described take at mastlog log |7 |) amortized expected time for the ordered subset operations.
The space is linear in the number of entries in all $hewhich has a one-to-one correspondence to elements in
R, and the space faD K, DT" and PQ which are all at most linear in the length of the trace. |

6 Stacks

Consider a stack data structufethat supports the operatiopssh(k), which pushes the kej to the top ofS,
andpop(), which pops and returns the value at the togpofin this section, we discuss a retroactive stack data
structure and show a lower bound. We first consider a closédyead problem called the dynamicl prefix-sum
problem, which we use as a subroutine in the retroactivek stata structure.

6.1 Dynamic=1 prefix-sum problem

An instance of the dynamig¢-1 prefix-sum problem maintains a s€tC 7 x {—1,+1} where7 is an total-
ordered set of time stamps and supports the following oip@st insert(t, v) inserts the pair(¢,v) into S;
delete(¢) removes the unique pair with first coordindtérom S; prefix_sum(t) reports}_, .., v; pred(t,)
reportsmax{t’ : t' < tandr =)., v}; andsucc(t,r) reportsmin{t’ : ¢ > tandr = 3 .y v}2.

In this section, we develop a solution to this problem. Irtipalar we show that an instanceof the dynamic
+1 prefix-sum problem can be maintained(|S|) space such that all operations taRélog | S|/ log log |S|)
time. Itis easy to obtain af¥(log |.S|) upper bound for all the operations using a balanced binagith all the
elements ofS at the leaves and storing partial sums and minimum valuesdon subtree. However, to achieve
the promised bound we need to develop a specialized seauctuse, called ary-structure, described below.

Lemma 6.1 (S-structure) Let the word size bee = O(log N). Lete be a sufficiently small constant. An
O(log® N)-element array of integers in the range O(NN), O(NN)] can be maintained i (log® N) space such
that the following operations each takes amortized) time: incr(a, b) incrementsA[:] for all i € Z N [a, b];
decr(a, b) decrementsA[i] for all ¢ € Z N [a,b]; prev(a,x) reportsmax{i € Z : i < aandA[i] > z}; and
next(a,z) reportsmin{i € Z : i > a and A[i] > z}.

Proof: Pickd = 1/log® N, sologc N < N° < N. Our construction relies on a lemma of Mortensktof03]
and the observation that an(log® V)-element array of integers in the ranffe N°] can be represented in a
single word such that one can increment any elements sinadtesly inO(1) time—given that an appropriate
bitmask can be constructed@(1). In this proof we refer to the array we just described &sarray (“compact
array”).

2This problem should be contrasted with the well-studiedixims problemDie89, PD04, in which one maintains a fixed-length
array A and supports the operationpdate(i, v) which setsA[i] to v, andsum(¢) which reportsy _; _; A[]. The data structure doest
support predecessor and successor queries.

For each entryd[i], we maintain three quantities: (&) is the number of increments modulé® performed on
Ali], (2) m; is the number of decrements modid performed onA[i], and (3)a; is the “approximate” value of
the entryA[i]. The following invariant relates these quantitiei] = a; - N° + (p; — m;), wherea;, p;, m; > 0.
We maintain twoC-arrays,P for p;'s and M for m;'s. We store the values;’s in a structure described in
Lemma 3.2 of MortenserMor03]. Built on ¢-heap of Fredman and WillardF{W94), the structure of Mortensen
can maintain arO(log® N)-element array of integers in the rangeO(N'=%), O(N'~9)] in O(log® N) space
such that updating the value of a specific element tékdg and the queryeport(A,i,5) = {k : i < A[k] < j}
takesO(1) time.

The operatiorincr (decr resp.) is supported by bulk-incrementing the correspandintries of theP array (M
array resp.), which take®(1) time. Only when an overflow occurs do we need to perform exwekwIf an
entryp; (or m;) overflows, set it td) and update:;. Note that multiplez;’s may need to be updated at the same
time, but when this happens, we will have performed at |é&sbperations; sinc&® > log® N, we can charge
the cost of updating,’s to thoseN® operations.

Letlo(z) = = mod N°® andhi(z) = |z/N°|. Theprev(a,z) operation can be supported @(1) as follows:
first computeCy = {i : m; = hi(z)}, C; = {i : m; = 1 + hi(z)}, andCso = {i : m; > 2 + hi(z)}, each

of which can be discovered i@(1) time by areport query. Then we compute the following sets; = {i €

Co : pi —m; > lo(x)}, andS; = {i € Cy : N° 4+ p; —m; > lo(x)}, which can be accomplished by simple
arithmetic operations and look-up tables of si2@V). It is easy to verify thaty U S U C>o = {i : Afi] > z}.

We note that each of these sets can be compactly represengebitavector in a single word, and hence unions
and intersections can be done in constant time. Finallysidenthatnax{i : i > a an A[i] > x} corresponds to
the most significant bit—in an appropriate bit-vector repreaation—of the s€tS, U .S; UCs2) N[a — 1] . The
msb can be computed in constant time using the techniquesdihfran and WillardFW94]. The next operation

is symmetrical. |

We are now in a position to prove the key theorem of this sectio

Theorem 6.2 (Dynamic Prefix-Sum Search Structure)An instanceS of the dynamict-1 prefix-sum problem
can be maintained i®(]S|) space such that all operations takglog | S|/ log log |:S|) time.

Proof: We store the elements ¢f ordered byt at the leaves of a weight-balanced B-tree (WBB-tré&j(3,
Wil85, Die89 of order B = log® N. While other alternatives exist, our data structure ise=t$0d describe with
a WBB-tree. An internal node with the childrenuy, ..., up keeps track of the following information:

e v.psumis the sum of all values (the component) stored inside this subtree.

e v.prefiXi] is the sum of thepsun’s of the subtrees,, ..., u; (i.e., v.prefifi] = >
definev.prefi0] = 0.

¢ v.bottondi| records the following information. Let{u;) be the set of times of all the operations stored at
leaves of the subtreg;. For reasons that will become apparent, we defibettonii| as(v.prefixi — 1] —
min{prefix_sum(t) : t € £(u;)}). Essentiallypottondi] records the value of the smallgstfix_sum inside
the subtree rooted at in a form which is easy to update.

%

=1 uj.psum). Let us

These fields are stored in ti$estructures of Lemma&.1so that (bulk) updates and queries takel) time. We
now describe how to answer queries. Ipesfix_sum(t), we sum up the appropriate values frefix array of
the nodes along the root-to-leaf path. Ipesd(t,), the key observation is that the subtree rooted ebntains
a time with prefix sumr if and only if the least prefix-sum value in the subtree is astmo Starting at a leaf
corresponding te, we walk up the tree (towards the root) until we find a node ltlaatthe target prefix-sum value
inside the subtree. We now follow the largest child that pesss the target value until we reach a leaf. grae
operation Lemma 6.} allows for determining the largest child that contains tdmget value irO(1). Thesucc
operation is symmetrical.

For insertions and deletions, we insert or delete a leafentithe and update the summary fields whose values
change. Note that we can only affect values of the nodes altengath we traverse. Moreover, the values change
by at mostl and can be updated in bulk (1) using operations of th&-structure. In a WBB-tree, a node

is marked before a split, which then occurs at the markedipnsiKnown boundsAV03, Mor03] show that
there is enough time to create two copies for each side b#fersplit takes place. Using the global-rebuilding
technique of OvermargJjve83, we perform deletions by simply removing the leaves with@organizing the
tree; in the meantime, a new tree is gradually constructed. |

6.2 Efficient Retroactive Stacks
We describe an efficient retroactive stack that builds ordimamic+1 prefix-sums of the previous section.

Theorem 6.3 A retroactive stackS, with trace R can be maintained it (|R|) space such that any revision

operation takes amortized (log’i 5‘27'%‘) time.

Proof: We keep all stack operations in a dynamic prefix-sum searabtate PSS of Theorem 6.2 Each stack
operation is assigned a valyauish is +1 andpop is —1. This translation gives thatefix_sum(t), the prefix sum
of up to timet, is the height of the stack &t For a traceR, we define the rank at timeto be the height of the
stack at that time.

During a revision process, we maintain a (standard) stgo&f inconsistenpop’s. The stack has the property
that the trace is consistent up to the time at the top of trekstBhus, when the trace is consistesit,is empty.
Forinvoke(push(k),t), we insert(¢, +1) into PSS, use asucc query to compute thpop operation whose value
now changes, and add it 1. If the newpush operation has rank thepop operation whose value is affected has
rankr — 1. Forinvoke(pop(), t), we insert(t, —1) into PSS and use @red query to determine the corresponding
push. If the newpop has rankr, use asucc query to find the earliest next operation with rank 1 and push it

to the stack (if not at the stack’s top already). Note thabimethis operation, the stack was consistent up to the
time at the then top of the stack; invoking such an operatanistroduce an earlier inconsistent time, which we
place at the stack’s top.

For revoke(t), we remove the corresponding entry frdt8S. If the operation is gush, use asucc query to
compute thepop operation that previously popped this key and push #tdf the element is not already there.
When we revoke a pop, chances are that it is the pop with thiesdanconsistent time, in which case we remove
t from the top of the stack and calculate the new inconsistaré.tFor all cases of revoking op, if the pop
being revoked has rank locate the next operation with ramk— 1 and push it taS7 (if not there already).

After revisions some operations may re-synchronize. We ciean upS; and report the next inconsistent time.
To clean up, check thpop operation at the top of;: we use apred query to determine the value ofpmp
operation if one were to re-issue it at that time. If the vahegches the original value of thp operation, we
discard it from the stack—the operation is no longer incstesit.3 Repeat this process until no more element is
removed or the stack is empty. Finally we report the time atdip ofS; as the earliest inconsistent time.

In all above operations, the queriescc and pred take O(log |R|/ log log |R|) per operation. Each operation
on Sy takesO(1). Therefore, any revision operation takes amortizgdog |R|/loglog |R|) time. Since the
revision sequence is monotone, each elemetyafan be discarded only once. Thus its cost can be charged to
the operation that places it to the stack. |

3This requires an equality check on the keys. Even if the keystdccept equality, we can match by comparing the time ef th
corresponding push operations for the keys.

6.3 A Lower-bound

In this section, we show that the stack data structure pteden the previous section is the best possible up to
constant factors by proving the following theorem:

Theorem 6.4 There is a sequence of > n operations on a retroactive stack whe®| = O(n) that require

1. .
Qiopingy) time.

The argument outlined below is a simple reduction from thekewancestor problem. The marked-ancestor
problem is to maintain a data structure on a fixed rooted treepport the following operationsnark(v) marks
the nodev, unmarkv) unmarks the node, andfirstmarkedv) reports the first marked node on the path from
to the root node. In FOCS’98, Alstrup et aAHIR98] showed that,

Theorem 6.5 (Alstrup-Husfeldt-Rauhe) In the cell-probe model with word size(log n), there is a sequence
of m > n operations in the marked ancestor problemronodes that require® (m log n/loglog n) time.

We now briefly describe the reduction. Consider an Eules tm the tree. For each nodelet f, and/, be

the first and last times the tour visits Marking v (unmarking resp.) corresponds to invoking (revoking reap.
pair of push atf,, and pop at,. The quenyfirstmarkedv) can be answered by considering the result of a pop at
f»*. We can support each operation in the marked-ancestorgunolising a constant number of retroactive stack
operations, concluding the proof.

7 Queues

Consider ajueuedata structure) with the following operationsenqueue(e), which puts the elementto the end
of @, anddequeue(), which removes and returns the element at the front of theejué/e prove the following:

Theorem 7.1 A retroactive queué), with traceR over times7 can be maintained i¥(|R|) space so that all
operations take)(log log |7|) expected amortized time.

Proof: We maintain two ordered sets indexed on their first compongnt 7 x U x (7 U {null}) stores the
times, values, and corresponding dequeue times @hglieue operations;D C 7 x (7 U {null}) stores the
dequeue times and corresponding enqueue times ééalkeue operations. Both sets are kept as ordered-subset
structures. LetookAt(t) return the time of thenqueue operation at the front of the queue at timandnull

if the queue is empty. Note thatokAt(¢) can be computed i (log log |7|) by apred query onD and asucc
query onk.

Forinvoke(enqueue(e), t), we insert(t, e, null) into E and sep to thedequeue pair of theenqueue right aftert.
Forinvoke(dequeue(), t), we insert(t, lookAt(t)) into D and sep to the successor afin D. In both cases, we
update the corresponding pair as necessary.

Revoking an operation removes the corresponding elememt 2 or £ depending on the operation. We then
update the corresponding pair as necessary. If revokirg@ureue, we setp to thedequeue pair of theenqueue
being revoked. If revoking dequeue, we setp to thedequeue operation right aftet.

To report the earliest inconsistent time, we consjddf p is unset or if theenqueue pair of p is the same as what
lookAt returns, the trace is consistent. Otherwise, we report |

8 Ordered Sets

Given an ordered universe of ke¥§, an ordered set maintaird$ C K, with the operations:

“To restore the trace back to the original state, we need akéna pop and subsequently revoke both of them.

e insert(k) : Insertk into D.
e delete(k) : Deletek from D
e succ(k) : Returnmin{%¥’ € D : k' > k}.

Itis straightforward to allow data to be associated withskad to support a corresponding predecessor query, but
we leave these out to simplify the exposition. We assume d@hgparison model fof{ and under this model an
ordered dictionary has a lower bound(@flog | D|) time for at least some of the operations. A retroactive versi
cannot do better. We show, however, that we can match the looeends within expectation and amortization.

Theorem 8.1 A retroactive ordered seD, with trace R can be maintained irO(|R|) space such that any
revision sequence involving revised updatesir(sert or delete) andm revokedsucc operations take® ((m +
1)nlog|R|) time.

Proof: The retroactive version of the dictionary data structure daaatural geometric representation. Consider
Figurel below representing a set oisert, delete, andsucc operations over time.

Let the vertical axis ff-axis) represent keys and the hor-
izontal axis {-axis) represent the timeg. An instance
Key of a retroactive data structure can be represented as pla-
nar segments and points. A horizontal segniént ¢}, k)
denotes the lifespan of the keéy—it is inserted at; and
deleted att,. A vertical segmentt, [k, k2]) denotes the
querysucc(ky) at timet whose return key i%;. Insertions
and deletions are represented by points at the correspond-
- ing keys and times, and we also include points at the top
Time of each vertical segment. As always, we assume that each
_ _ _ operation occurs at a unique time (i.e., we can uniquely re-
Figure 1: The geometric representation. fer 1o an operation by its time). Since the standard setup
and the geometric representation are equivalent, we wealtlism interchangeably in subsequent discussions as
convenient.

The set of horizontal segments and set of vertical segmentsare stored as two point-location data structures
(cf., Section2). These structures support the quetesve(k, t), which reports the first horizontal segment hit
by the ray shooting upward from the poifit k), andright(k, ¢), which reports the first vertical segment hit by
the ray shooting rightward from the poifit, k). We also store all points in seff; indexed by their keyt (y-
coordinate). The sets can be accessed using a balancechtFécamd each set can be stored as a balanced tree
on7. The geometric representation is the Bet V' U (U, Sk).

For any revision involving an updaténgert or delete) we immediately update the point corresponding to the
revision and the horizontal segment it affects. This ingshinserting, deleting, extending, or trimming the

horizontal segment, and can be done using at most two iossréind deletions on the point location structure.
This can leave the geometric interpretation inconsistgntfdr example, introducing segment crossings. We
cannot, however, afford to fix all these since a single updatgd created(|R|) such inconsistencies. The idea

will be to only keep track of the earliest inconsistency facle key.

During a monotone revision sequence on the retroactivetsteliwe therefore allow for the following two kinds
of inconsistencies: appen inconsistendg a vertical segment for which the top point does not lie onriziontal
segment, and eross inconsistencig a vertical segment that crosses multiple horizontal sggsn We associate
an open inconsistency with the key of its top point and a cnoessnsistency with all the keys for horizontal
segments it crosses. During the whole revision sequenceairgaim for each key: the earliest inconsistenay,
associated with it, and also keep a priority quét@ over time of all these earliest inconsistencies. This alow

10

us to track the overall earliest inconsistency. In the dismn below we assumi(Q) is updated whenevey, is
updated.

When we invoke an insert, or revoke a delete on kegt timet we can insert or extend a horizontal segment,
which can either create cross inconsistencies or fix opeansistencies. If; is a open inconsistency we delete
it. Because of the monotone revision sequence conditiae ttennot be any more inconsistencieskotf i, is

a cross inconsistency, we do nothing (we already know theineansistency). If there is nig. we search for the
next cross inconsistency usinght(k,¢) and if there is one we insert it ag.

When we invoke a delete, or revoke an insert onkey timet we can delete or trim a horizontal segment, which
can create open inconsistencies or fix cross inconsisteri€ig, is a cross inconsistency orsacc(k’) operation

at timet’ we delete;,—there cannot be more inconsistencieskolf i, is an open inconsistency we do nothing.
If there is noi, we check for the next open inconsistencySipnand if there is one we insert it ag.

For aninvoke(succ(k), t) we do amabove(k, t) to find £/, add the vertical segmeft, [k, k]), and returrt’. No
inconsistencies are affected. Consideewake(t) for ansucc operation at. The vertical segment associated
with this operation could be involved in up tdanconsistencies whetieis the number of revised updates so far
in the monotone revision sequence (only these can creatasistencies). This is bounded hy For each key

k that has an inconsistency fafcan be found inP(Q) we need to identify the next inconsistency, if there is one,
and update,. For cross inconsistencies we search for it wight(%, ¢t) and and for an open inconsistency we
uses;.

All revisions except revoking succ operation involve at most a constant number of point locatdictionary,
ordered set, or priority queue operations which all tekég |R|) worst case time. The revoke okacc opera-
tions takes at mosbg | R | time per inconsistency for a total eflog |R | time. The total time is therefore bounded
by (m + 1)nlog |R| total time. The space is bounded by the space required bwthpdint location structures
and the set$. This is all linear in the number of operations in the tréce |

9 Priority Queues

In this section, we consider a priority queue data struct@igen a total-ordered universe of kel a priority
gqueue maintains a sét) C K and supports the following operations:

e insert(k) : insert a keyk to the priority queue. We assumez PQ).
e min() : return the minimum key oPQ@ or null if PQ is empty. This operation doemt delete the key.
e delete(k) : delete the key: if existed.

Theorem 9.1 A retroactive priority queue’@,. with trace’ R over times7 can be maintained ii©(|R|) space
so that all operations tak&(log |R|) expected amortized time.

Proof: We use the same setup as that of the retroactive orderedSsstsopn § except that now all vertical
segments begin af = —oo and correspond tenin queries. Recall that aopen inconsistencis a vertical
segment for which the top point does not lie on a horizontghsnt, and aross inconsistencis a vertical
segment that crosses multiple horizontal segments.

For all keys, we keep their earliest open inconsistent tinBeg, we maintain only a single cross inconsistency
for the least key with a cross inconsistency. This crossistey must appear before all other cross inconsis-
tencies, because if a vertical segment (query) intersdutsizontal segment of a bigger key, the vertical segment
intersects the segment of the smallest key — all verticaingggs begin afy = —oo. For this reason, when
we revoke a querynfin), at most one cross inconsistency has to be updated. Inyakiimsert(k) or revoking
adelete(k) may introduce more cross inconsistency; however, we onlg @ do aright query if thek is the
minimum key with a cross inconsistency. |

11

In this setting, we do not need a general point-location ditecture: theabove query always starts gt= —oo,
and theright query deals with a special type of segments—their bottonp@nts are at-occ. In both cases,
variants of McCreight’s priority search treMIEC85, Wil00] can be used to achiev@(log |S|) time andO(|S])
space with simple balanced tree operations by storing aiti@ua value (minimum) at each internal node.

We recall that sorting. elements requireQ(n log n) in the comparison model. Since we can use a priority queue
to sort, there is a sequence®@tn) operations on a retroactive priority queue that reqQife log n) time.

10 Discussions

It remains an interesting open problem to see if a retroacdtidered-set data structure can be maintained in
O(log |R|) time, matching the sorting lower-bound in the comparisomeho

References

[AHR98] Stephen Alstrup, Thore Husfeldt, and Theis Rauhearkéd ancestor problems. FOCS '98: Proceedings
of the 39th Annual Symposium on Foundations of Computen&gipages 534-544, Washington, DC, USA,
1998. IEEE Computer Society.

[AVO03] Lars Arge and Jeffrey Scott Vitter. Optimal externalemory interval managementSIAM J. Compuf.
32(6):1488-1508, 2003.

[BCD*02] Michael A. Bender, Richard Cole, Erik D. Demaine, Marfiarach-Colton, and Jack Zito. Two simplified
algorithms for maintaining order in a list. lrecture Notes in Computer Scienpages 152—-164, 2002.

[Ble07] Guy E. Blelloch. Space-efficient dynamic orthoglgmaint location, segment intersection, and range repgrtin
(submitted to SODA08), 2007.

[BVO7] Guy E. Blelloch and Virginia Vassilevska. Orderedsets with applications. (submitted to SODA'08), 2007.
[Die89] Paul F. Dietz. Optimal algorithms for list indexiagd subset rank. IWADS pages 39-46, 1989.

[DILO4] Erik D. Demaine, John lacono, and Stefan LangernRetroactive data structures. 8ODA '04: Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete @lyois pages 281-290, Philadelphia, PA, USA,
2004. Society for Industrial and Applied Mathematics.

[DS87] P. F. Dietz and D. D. Sleator. Two algorithms for maining order in a list. IfProceedings of the 19th ACM
Symposium on Theory of Computing (STOQ#&ges 365-372, 1987.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotwus algorithms for minimum spanning trees and
shortest paths]. Comput. Syst. S¢#8(3):533-551, 1994.

[McC85] Edward M. McCreight. Priority search tree3lAM J. Comput.14(2):257-276, 1985.
[MN90] Kurt Mehlhorn and Stefan Naher. Dynamic fractiocakcadingAlgorithmicg 5(2):215-241, 1990.

[Mor03] Christian Worm Mortensen. Fully-dynamic two dinmséonal orthogonal range and line segment intersection
reporting in logarithmic time. I8ODA '03: Proceedings of the 14th annual ACM-SIAM symposiudiscrete
algorithms pages 618—627, Philadelphia, PA, USA, 2003. Society fdustrial and Applied Mathematics.

[Mor06] Christian Worm Mortensen. Fully dynamic orthogbramge reporting on ranSIAM J. Comput.35(6):1494—
1525, 2006.

[Ove83] Mark H. OvermarsThe Design of Dynamic Data StructureSpringer, 1983.

[PD04] Mihai Paatrascu and Erik D. Demaine. Tight bouraiglie partial-sums problem. BODA '04: Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete @lyos pages 20-29, Philadelphia, PA, USA,
2004. Society for Industrial and Applied Mathematics.

[RR96] G. Ramalingam and T. Reps. On the computational cexityl of dynamic graph algorithmsTheoretical
Computer Sciencd 58(1-2):233-277, 1996.

12

Mark N. Wegman and Larry Carter. New classes and agfiins of hash functions. Proceedings of the 20th

[WCT79]
Annual IEEE Symposium on Foundations of Computer Scjgages 175-182, 1979.

[Wil85] Dan E. Willard. Reduced memory space for multi-dims@énal search trees (extended abstract) STACS
pages 363—-374, 1985.

[Wil00] Dan E. Willard. Examining computational geometvgn emde boas trees, and hashing from the perspective of

the fusion treeSIAM J. Comput.29(3):1030-1049, 2000.

13

	Introduction
	Preliminaries and Notations
	The Framework
	General Theory
	Dictionaries and Arrays
	Stacks
	Dynamic 1 prefix-sum problem
	Efficient Retroactive Stacks
	A Lower-bound

	Queues
	Ordered Sets
	Priority Queues
	Discussions

