
Non-oblivious Retroactive Data Structures

Umut A. Acar 1 Guy E. Blelloch2 Kanat Tangwongsan3

December 11, 2007
CMU-CS-07-169

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Toyota Technological Institute at Chicago (TTI-C), Chicago IL 60637. Email:umut@tti-c.org.
2Computer Science Department, Carnegie Mellon University,Pittsburgh PA 15213. Email:blelloch@cs.cmu.edu.
3Computer Science Department, Carnegie Mellon University,Pittsburgh PA 15213. Email:ktangwon@cs.cmu.edu.



Keywords: data structures, dynamization, retroactive data structures



Abstract

The idea of a retroactive version of a data structure is to maintain a time-ordered sequence of op-
erations while allowing the user to revise the operation sequence byinvoking and revoking(i.e.,
inserting and deleting, respectively) operations anywhere in the sequence—including backwards in
time. In many applications of retroactivity, operations depend on the outcomes of previous queries,
and therefore the data structures need to identify the queries whose outcome changes when a re-
vision is performed retroactively. Existing notions of retroactivity, however, do not keep track of
queries in the operation sequence. Therefore, they cannot efficiently identify the queries that be-
come inconsistent as a result of a retroactive revision.

In this paper, we propose and study a new model of retroactivity, callednon-oblivious retroactivity,
where both updates and queries are maintained as part of the operation sequence. In this model, a
revision to the operation sequence returns the earliest operation that becomesinconsistent, i.e., an
operation whose return value differs from before. This mechanism enables the user to efficiently
locate the affected operation and decide to perform furtherrevisions as necessary to reestablish the
consistency of the operation sequence. We investigate several non-oblivious data structures and
prove some lower bounds in the proposed model.

1



1 Introduction

Consider a data type that supports update and query operations. The idea of a retroactive version of the data type
is to maintain a time-ordered sequence of operations while allowing the user to revise the operation sequence by
invokingandrevokingoperations, i.e., inserting and deleting (respectively),anywhere in the sequence, including
back in time. The ability to revise the sequence of operations performed on a data structure is often helpful and
sometimes critical. For example, if incorrect informationis entered into a database, then it may be important to
find all the decisions based on this information and revise them efficiently. Similar applications of retroactivity
can be found in areas such as security and algorithm dynamization [DIL04].

Demaine, Iacono, and Langerman [DIL04] introduced two models of retroactivity, called partial and full retroac-
tivity. The models differentiate between two kinds of operations: updates and queries.Update operations(e.g.,
enqueue) modify the underlying data structure but do not return a value.Query operationsinspect the underlying
data structure and return a value (e.g., front). Both modelsallow update operations to be revoked or invoked at
any time, but they restrict queries. In partial retroactivity, queries can be invoked only at the most recent time; in
full retroactivity, queries can be invoked at any time. Neither model maintains a record of queries—only a record
of update operations is maintained. Therefore, queries cannot be revoked. Furthermore, when a revision back in
time changes the outcome of a query operation, the models will not identify the queries that will now return a
different value. In other words, the sequence of operationsare oblivious to revisions. We therefore refer to these
models of retroactivity asoblivious.

Incorporating query operations to retroactivity, however, has crucial benefits. As an example, consider a database
where some incorrect information is mistakenly entered. Without the ability to identify the queries affected by
this operation, it is difficult to correct the problem causedby the incorrect information: one has to keep a separate
record of the query operations and re-perform them after each update to check if their return values change; this
is inefficient. For the same reasons, oblivious retroactivedata structures are also difficult to compose and to use
as components in dynamic algorithms. For example, considerthe dynamization of the Dijkstra’s shortest-paths
algorithm that uses a retroactive priority queue. If the user inserts an edge into the graph, then we can retroactively
invoke a new insert operation on the priority queue based on that edge. This could affect a later deleteMin
operation and could further cause other revisions. If the retroactive structure only tracks updates, however, there
is no way to determine which operations are affected efficiently—all future operations are oblivious to the update.
We see no way, for example, to effectively use Demaine et al.’s retroactive priority queue to dynamize Dijkstra’s
algorithm. Similarly we see no way to effectively use their retroactive union find to dynamize graph connectivity.

In this paper, we propose a model ofnon-oblivious retroactivityand proceed to design and analyze several non-
oblivious retroactive data structures. Henceforth, we usethe term “retroactive data structures” to refer to non-
oblivious data structures unless otherwise stated. Our model maintains all operations (both queries and updates)
as part of the operation sequence. When the user performs a retroactive revision by invoking or revoking an
operation, the user is notified of the next operation that becomesinconsistent, i.e., an operation whose return
value differs from before. This mechanism allows the user topropagate the effects of the revision through
the operation sequence. For example, if a piece of incorrectinformation is entered into a database, then the
erroneous operation can be revoked when discovered. After such a revision, the data structure will return the first
inconsistent operation. The user can then take corrective actions, e.g., revoke the inconsistent operation. Based
on this notion of propagation, our data structures can be used to dynamize static algorithms (cf.Section 3). Our
data structures only report the operations that are inconsistent and no more.

All our results rely on an order-maintenance data structureto keep track of a time line consisting of time stamps.
We writeR for the number of operations in the operation sequence andT for the total number of allocated time
stamps1. Table 1summarizes the time bounds for each retroactive revision (except for ordered sets) and total

1This can be significantly larger thanr when multiple retroactive data structures are used.

2



space usage of the data structures. All our bounds are expected amortized where the expectations are taken over
internal randomization. We show matching lower bounds for stacks and priority queue.

Data Structure Time Space

Dictionary O(log log T ) O(R)
Queue O(log log T ) O(R)
Stack O(log R/ log log R) O(R)

Priority Queue O(log R) O(R)
Ordered Set ‡ O((m + 1)n log R) O(R)

Table 1: Time and space bounds for retroactive data
structures. (‡: for a sequence ofn revised updates
andm revoked queries)

We note that the results we present are not comparable and
sometimes quite different from those known for the obliv-
ious case. For example for the oblivious fully retroactive
priority queues, Demaine et al. achieve aO(

√
r log r) time

per update forr operations. In the non-oblivious case,
however, we are able to achieveO(log r) time. In this
case the non-oblivious version seems easier since all that
is required is that it report the next inconsistent operation.
In priority queues, invoking a new insert operation back
in time will make some future deleteMin inconsistent. By
performing an additional deleteMin operation, the user can
cancel the effect of the previous update and the data struc-

ture can reach a consistent state quickly. On the other hand,for oblivious, ordered dictionaries, Demaine et al.
achieveO(log r) per update forr operations. In the non-oblivious case, we are able to achieveO((m+1)n log r)
time, wheren is the number of revised updates andm is the number of revoked queries. This matches the time
previous bound when the queries are not maintained (as in theoblivious case) in the amortized sense. When
queries are included, the problem seems harder.

2 Preliminaries and Notations

In this section, we define some notations and survey results that will be used throughout the paper. Forx1 ≤ x2,
we denote by[x1, x2] the closed interval betweenx1 andx2; that is, we define[x1, x2] = {x : x1 ≤ x ≤ x2}.
Extending this notation, we write([x1, x2], y) to denote a line segment connecting(x1, y) and(x2, y). Similarly,
we define(x, [y1, y2]) to be the line segment connecting(x, y1) and(x, y2). It is possible that the right (or top)
endpoint is infinite, in which case the notation represents aray extending indefinitely from the starting point. We
now move on to surveying results we need in this paper.

Order maintenance and ordered subsets.The order maintenance (OM) problem is to maintain an orderedset
T while supporting the following operations:insert(x) inserts a new elementy immediately followingx in the
ordering ofT and returns it;delete(x) deletes the elementx from T ; andorder(x, y) for x, y ∈ T returns true if
x precedesy in the ordering ofT . Dietz and Sleator [DS87] and Bender et al. [BCD+02] described algorithms
that support all operations inO(1) worst-case time. We make use of the OM data structure throughout this paper
and will often refer to the elements ofT as time stamps.

The ordered subsets (OS) problem is to maintain a setT supporting the OM operations, along with a set of sub-
setsS = {S1, S2, . . . , Sn} of T , each supporting the following operations:insert(Si, x) insertsx ∈ T into Si,
delete(Si, x) deletesx from Si, findPrev(Si, x) for x ∈ T returnsmax{e ∈ Si|e ≤ x}, andfindNext(Si, x) re-
turnsmin{e ∈ Si|e ≥ x}. The OS problem also supports adding (removing) an empty setto (from)S. Assuming
that each element ofT belongs to at most one subset, Mortensen [Mor06] shows that the OS problem can be main-
tained in expectedO(log log |T |) time per operation. Lifting this restriction, Blelloch andVassilevska [BV07]
show that the OS problem can be solved such the OM operations areO(1) time, adding and removing sets from
S takeO(1) worst-case time, insert and delete takeO(log log |T |) expected amortized time, andfindNext and
findPrev takeO(log log |T |) worst-case time; the total space is bounded byO(|T | + ∑n

i=1(1 + |Si|)).
Dynamic orthogonal point location. The variant of dynamic orthogonal point-location problem we consider
is to maintain a setS of segments of the form([x1, x2], y) while supporting the following operations:insert(e)
inserts a new segmente into S; delete(e) deletes the segmente from S; andabove(x, y) reports the first segment
of S that the ray extending from(x, y) hits. Note that when the segments are horizontal, the query—now called

3



right(x, y)—can be analogously supported. This and related problems have been extensively studied in literature.
We describe two results here. A simple modification of Mehlhorn and Näher’s dynamic segment tree [MN90]
can support all above operations inO(log |S| log log |S|) per operation, requiringO(|S| log |S|) space. Recently
Blelloch [Ble07] shows a data structure for this problem that supports updates and queries in amortizedO(log |S|)
time per operation and uses linear space.

3 The Framework

Consider a data typeD and letO be the set of operations defined onD andV be the set of values that these
operations may return. A data type defines a functionF: O∗ → V that maps sequences of operations to the value
returned by the last operation in the sequence starting witha predefined initial state. For example, ifD is a queue
of tasks, then the operation setO includesenqueue anddequeue operations and the return values consist ofnull

(to be returned byenqueue anddequeue when the queue is empty) and all possible tasks. The queue data-type
defines a function that maps an operation sequence to a memberof V starting with an empty queue.

Given a total-ordered set oftime stampsT , we define atrace for D as a setR ⊆ O × V × T , where each time
stamp appears at most once. Intuitively, we think of a trace as a sequence of operations together with their return
values ordered with respect to time. For example, the trace for a sequence of operations on a queue consists of
the operations along with the returned elements (if any) ordered in time. Fort ∈ T , we define PREFIX(R, t)
as the sequence of operations inR up to t (inclusive) in time order. Note that PREFIX(R, t) contains only the
operations (not the returned values nor the times). We say that an element(o, v, t) of the trace isconsistentif
v = F (PREFIX(R, t))—i.e., it is associated with the correct value given the preceding operations. We say that a
trace is consistent if all elements are consistent.

For a data typeD = (O,V, F ), theretroactive versionDr maintains a traceR for each instance and provides an
operation for creating a new instance and revision operations for updating the trace:

• new() : Returns an empty traceR for a new instance.

• invoke(R, o, t) : Updates the traceR by inserting(o, v, t), computesv = F (PREFIX(R, t)), and returns
the tuple consisting ofv and the time of the earliest inconsistent operation inR.

• revoke(R, t) : Updates the traceR by removing the element with timet (if any) and returns the time of
the earliest inconsistent operation inR.

We refer toinvoke andrevoke operations asrevisions. Although the model allows revisions at any time, for our
results, we assume that revisions are applied as part of amonotone revision sequence—a sequence of revisions
on an initially consistent trace such that (1) the times of the revisions is increasing, and (2) for each revision at
time t, all operation at times beforet are consistent.

Dynamization. As an example of how retroactive data structures can be used to dynamize static algorithms,
consider Dijkstra’s algorithm for single-source shortestpaths. Suppose that we execute the algorithm on a given
graph using a retroactive priority queue and a retroactive array that stores the computed distances (we initialize
the elements of the array to infinity). Suppose now we insert an edge fromu to v (deletions are symmetric). We
go back in time and invoke an insert operation for that edge. If inserting the edge does not change the output,
then we are done. Otherwise, this invoke operation will return the deleteMin operation that removesv. At this
point, we re-perform the deleteMin operation to obtain the distance tov and update the result array ifv’s distance
is still infinity (otherwise,v’s distance has already been determined and we are done). We then relax all the
edges outgoing fromv by revoking the corresponding insert operations and invoking them again with the new
distance. These operations will return further inconsistencies, which we will process by moving to the earliest
one repeating until no more inconsistencies remain. Although we do not prove it here, the resulting algorithm
closely matches the bounds of Ramalingam and Rep’s dynamic shortest-paths algorithm [RR96]. In general,

4



by identifying the operations that become inconsistent after a revision, non-oblivious retroactive data structures
allow dynamization of static algorithms by using a straightforward propagation mechanism.

4 General Theory

We study non-oblivious retroactive data structures in relation to other data structures. A natural question to ask
is when automatic retroactivity is possible. Despite the differences between the models, the rollback method
described in Demaine et al. provides a general technique forautomatic non-oblivious retroactivity with a slight
modification. Instead of remembering only the update operations, we also remember the query operations, and
thus we can trivially determine which operation is inconsistent when we “play back” the sequence. It is straight-
forward to prove the following theorem:

Theorem 4.1 Given a data structure where each operation takesT (n) worst-case time, the rollback method
yields a (non-oblivious) retroactive data structure that supports the same set of operations retroactively in time
O(rT (n)), wherer is the number of operations occurring after the time that theaction takes place.

Unsurprisingly, the rollback method is in most cases far less efficient than a specially designed retroactive data
structure for the task at hand. Perhaps more surprising is the result that there are data structures for which the
rollback method is essentially the best possible. We consider an example of such data structures here. The data
structure maintains a counterX and supports one operationincr(), which incrementsX and returns the value
of X right before the increment. Initially we perform a sequenceof m incr() operations. Going back in time,
we perform anincr() operation at the beginning of the sequence. This has a cascading effect that requires every
incr() operation to be revoked and re-performed. For this reason, we cannot hope to be more efficient than the
rollback method.

Finally, we note that any fully retroactive data structure can be made non-oblivious by applying the rollback
method to the sequence of queries. This, however, is generally very inefficient, because it requires invoking all
the queries after a revision even when unnecessary. Consider, for example, a stack data structure and a sequence
of n push operations followed byn pop operations. Inserting apush operation at the start of this trace will require
all pop operations to be re-executed, even though there are no inconsistent operations. Our results show that we
can be much more efficient with a non-oblivious stack data structure (Section 6).

5 Dictionaries and Arrays

We now turn our attention to developing efficient retroactive data structures for specific problems. In this section,
we discuss a dictionary data structure. Note that arrays area special case of dictionaries when the identity
mapping is used. Given a universe of keysK and a universe of valuesV , a dictionary maintains a setD ⊆ K×V
in which each key appears at most once and supports the operations:

• insert(k, v) : Add (k, v) to D, replacing the old value fork if one.

• delete(k) : Delete any element with keyk from D.

• lookup(k) : Return{(k′, v) ∈ D : k′ = k}.

We assume a universal class of hash functions overK so hashing can be used to implement the dictionary.

Theorem 5.1 A retroactive dictionaryDr with traceR over timesT can be maintained inO(|R|) space so that
all operations takeO(log log |T |) expected amortized time.

Proof: Our solution maintains a dictionaryDK mapping each keyk appearing inR to a setSk, a dictionaryDT
mapping each time appearing inR to the key involved in that operation, and a setPQ storing each key that has

5



an inconsistent operation.DK andDT use universal hashing (e.g., [WC79]) for constant expected amortized
access and update. The setsSk ⊆ T × V × {insert, delete, lookup} contain the time, value at that time, and
operation type for all the operations onk in R. They are stored as ordered subsets ofT . We say that a key is
inconsistentif it contains an inconsistentlookup. The setPQ contains all inconsistent keysk, and is stored as an
ordered subset ofT based on the time of the earliest inconsistent operation fork.

For invoke(insert(k, v), t) we insert(t, v, insert) intoSk. Forinvoke(lookup(k), t) we findv from the predecessor
of t in Sk, insert(t, v, lookup) into Sk, and returnv. For invoke(delete(k), t) we insert(t, ·, delete) into Sk. For
any revoke at time t we useDT to find the appropriate keyk and then delete the element att from Sk. If
performing an insert is on a new keyk, then a new setSk is inserted intoDK, and if revoking an insert removes
the last element fromSk thenk is deleted fromDK. For any revision on keyk at timet let u be the successor
operation inSk. If the current value ofu differs from its predecessor we insertu into PQ at timet, otherwise we
deleteu from PQ. All revisions updateDT . Finally we report the minimum time inPQ, or∞ if PQ is empty.

All operations described take at mostO(log log |T |) amortized expected time for the ordered subset operations.
The space is linear in the number of entries in all theSk, which has a one-to-one correspondence to elements in
R, and the space forDK, DT andPQ which are all at most linear in the length of the trace. �

6 Stacks

Consider a stack data structureS that supports the operationspush(k), which pushes the keyk to the top ofS,
andpop(), which pops and returns the value at the top ofS. In this section, we discuss a retroactive stack data
structure and show a lower bound. We first consider a closely related problem called the dynamic±1 prefix-sum
problem, which we use as a subroutine in the retroactive stack data structure.

6.1 Dynamic±1 prefix-sum problem

An instance of the dynamic±1 prefix-sum problem maintains a setS ⊆ T × {−1,+1} whereT is an total-
ordered set of time stamps and supports the following operations: insert(t, v) inserts the pair(t, v) into S;
delete(t) removes the unique pair with first coordinatet from S; prefix sum(t) reports

∑

(s,v):s≤t v; pred(t, r)

reportsmax{t′ : t′ < t andr =
∑

(s,v):s<t′ v}; andsucc(t, r) reportsmin{t′ : t′ > t andr =
∑

(s,v):s<t′ v}2.
In this section, we develop a solution to this problem. In particular we show that an instanceS of the dynamic
±1 prefix-sum problem can be maintained inO(|S|) space such that all operations takeO(log |S|/ log log |S|)
time. It is easy to obtain anO(log |S|) upper bound for all the operations using a balanced binary tree with all the
elements ofS at the leaves and storing partial sums and minimum values foreach subtree. However, to achieve
the promised bound we need to develop a specialized search structure, called anS-structure, described below.

Lemma 6.1 (S-structure) Let the word size beu = O(log N). Let ε be a sufficiently small constant. An
O(logε N)-element array of integers in the range[−O(N), O(N)] can be maintained inO(logε N) space such
that the following operations each takes amortizedO(1) time: incr(a, b) incrementsA[i] for all i ∈ Z ∩ [a, b];
decr(a, b) decrementsA[i] for all i ∈ Z ∩ [a, b]; prev(a, x) reportsmax{i ∈ Z : i < a andA[i] ≥ x}; and
next(a, x) reportsmin{i ∈ Z : i > a andA[i] ≥ x}.

Proof: Pick δ = 1/ logε N , so logε N < N δ < N . Our construction relies on a lemma of Mortensen [Mor03]
and the observation that anO(logε N)-element array of integers in the range[0, N δ ] can be represented in a
single word such that one can increment any elements simultaneously inO(1) time—given that an appropriate
bitmask can be constructed inO(1). In this proof we refer to the array we just described as aC-array (“compact
array”).

2This problem should be contrasted with the well-studied prefix-sums problem [Die89, PD04], in which one maintains a fixed-length
arrayA and supports the operationsupdate(i, v) which setsA[i] to v, andsum(i) which reports

∑

j<i
A[i]. The data structure doesnot

support predecessor and successor queries.

6



For each entryA[i], we maintain three quantities: (1)pi is the number of increments moduloN δ performed on
A[i], (2) mi is the number of decrements moduloN δ performed onA[i], and (3)ai is the “approximate” value of
the entryA[i]. The following invariant relates these quantities:A[i] = ai ·N δ + (pi −mi), whereai, pi,mi ≥ 0.
We maintain twoC-arrays,P for pi’s andM for mi’s. We store the valuesai’s in a structure described in
Lemma 3.2 of Mortensen [Mor03]. Built on q-heap of Fredman and Willard [FW94], the structure of Mortensen
can maintain anO(logε N)-element array of integers in the range[−O(N1−δ), O(N1−δ)] in O(logε N) space
such that updating the value of a specific element takesO(1) and the queryreport(A, i, j) = {k : i ≤ A[k] ≤ j}
takesO(1) time.

The operationincr (decr resp.) is supported by bulk-incrementing the corresponding entries of theP array (M
array resp.), which takesO(1) time. Only when an overflow occurs do we need to perform extra work. If an
entrypi (or mi) overflows, set it to0 and updateai. Note that multipleai’s may need to be updated at the same
time, but when this happens, we will have performed at leastN δ operations; sinceN δ > logε N , we can charge
the cost of updatingai’s to thoseN δ operations.

Let lo(x) = x modN δ andhi(x) = bx/N δc. Theprev(a, x) operation can be supported inO(1) as follows:
first computeC0 = {i : mi = hi(x)}, C1 = {i : mi = 1 + hi(x)}, andC≥2 = {i : mi ≥ 2 + hi(x)}, each
of which can be discovered inO(1) time by areport query. Then we compute the following sets:S0 = {i ∈
C0 : pi − mi ≥ lo(x)}, andS1 = {i ∈ C1 : N δ + pi − mi ≥ lo(x)}, which can be accomplished by simple
arithmetic operations and look-up tables of sizeO(N). It is easy to verify thatS0 ∪ S1 ∪ C≥2 = {i : A[i] ≥ x}.
We note that each of these sets can be compactly represented as a bit vector in a single word, and hence unions
and intersections can be done in constant time. Finally, consider thatmax{i : i > a anA[i] ≥ x} corresponds to
the most significant bit—in an appropriate bit-vector representation—of the set(S0 ∪ S1 ∪C≥2) ∩ [a − 1] . The
msb can be computed in constant time using the technique of Fredman and Willard [FW94]. Thenext operation
is symmetrical. �

We are now in a position to prove the key theorem of this section.

Theorem 6.2 (Dynamic Prefix-Sum Search Structure)An instanceS of the dynamic±1 prefix-sum problem
can be maintained inO(|S|) space such that all operations takeO(log |S|/ log log |S|) time.

Proof: We store the elements ofS ordered byt at the leaves of a weight-balanced B-tree (WBB-tree) [AV03,
Wil85, Die89] of orderB = logε N . While other alternatives exist, our data structure is easiest to describe with
a WBB-tree. An internal nodev with the childrenu1, . . . , uB keeps track of the following information:

• v.psumis the sum of all values (thev component) stored inside this subtree.
• v.prefix[i] is the sum of thepsum’s of the subtreeu1, . . . , ui (i.e., v.prefix[i] =

∑i
j=1 uj.psum). Let us

definev.prefix[0] = 0.
• v.bottom[i] records the following information. Let̀(ui) be the set of times of all the operations stored at

leaves of the subtreeui. For reasons that will become apparent, we definev.bottom[i] as(v.prefix[i− 1]−
min{prefix sum(t) : t ∈ `(ui)}). Essentially,bottom[i] records the value of the smallestprefix sum inside
the subtree rooted atui in a form which is easy to update.

These fields are stored in theS-structures of Lemma6.1so that (bulk) updates and queries takeO(1) time. We
now describe how to answer queries. Forprefix sum(t), we sum up the appropriate values theprefix array of
the nodes along the root-to-leaf path. Forpred(t, r), the key observation is that the subtree rooted atv contains
a time with prefix sumr if and only if the least prefix-sum value in the subtree is at most r. Starting at a leaf
corresponding tot, we walk up the tree (towards the root) until we find a node thathas the target prefix-sum value
inside the subtree. We now follow the largest child that possesses the target value until we reach a leaf. Theprev

operation (Lemma 6.1) allows for determining the largest child that contains thetarget value inO(1). Thesucc

operation is symmetrical.

7



For insertions and deletions, we insert or delete a leaf in the tree and update the summary fields whose values
change. Note that we can only affect values of the nodes alongthe path we traverse. Moreover, the values change
by at most1 and can be updated in bulk inO(1) using operations of theS-structure. In a WBB-tree, a node
is marked before a split, which then occurs at the marked position. Known bounds [AV03, Mor03] show that
there is enough time to create two copies for each side beforethe split takes place. Using the global-rebuilding
technique of Overmars [Ove83], we perform deletions by simply removing the leaves without reorganizing the
tree; in the meantime, a new tree is gradually constructed. �

6.2 Efficient Retroactive Stacks

We describe an efficient retroactive stack that builds on thedynamic±1 prefix-sums of the previous section.

Theorem 6.3 A retroactive stackSr with traceR can be maintained inO(|R|) space such that any revision

operation takes amortizedO
(

log |R|
log log |R|

)

time.

Proof: We keep all stack operations in a dynamic prefix-sum search structurePSS of Theorem 6.2. Each stack
operation is assigned a value:push is +1 andpop is−1. This translation gives thatprefix sum(t), the prefix sum
of up to timet, is the height of the stack att. For a traceR, we define the rank at timet to be the height of the
stack at that time.

During a revision process, we maintain a (standard) stackSI of inconsistentpop’s. The stack has the property
that the trace is consistent up to the time at the top of the stack. Thus, when the trace is consistent,SI is empty.
For invoke(push(k), t), we insert(t,+1) into PSS, use asucc query to compute thepop operation whose value
now changes, and add it toSI . If the newpush operation has rankr, thepop operation whose value is affected has
rankr− 1. For invoke(pop(), t), we insert(t,−1) into PSS and use apred query to determine the corresponding
push. If the newpop has rankr, use asucc query to find the earliest next operation with rankr − 1 and push it
to the stack (if not at the stack’s top already). Note that before this operation, the stack was consistent up to the
time at the then top of the stack; invoking such an operation can introduce an earlier inconsistent time, which we
place at the stack’s top.

For revoke(t), we remove the corresponding entry fromPSS. If the operation is apush, use asucc query to
compute thepop operation that previously popped this key and push it toSI if the element is not already there.
When we revoke a pop, chances are that it is the pop with the earliest inconsistent time, in which case we remove
t from the top of the stack and calculate the new inconsistent time. For all cases of revoking apop, if the pop

being revoked has rankr, locate the next operation with rankr − 1 and push it toSI (if not there already).

After revisions some operations may re-synchronize. We nowclean upSI and report the next inconsistent time.
To clean up, check thepop operation at the top ofSI : we use apred query to determine the value of apop

operation if one were to re-issue it at that time. If the valuematches the original value of thepop operation, we
discard it from the stack—the operation is no longer inconsistent.3 Repeat this process until no more element is
removed or the stack is empty. Finally we report the time at the top ofSI as the earliest inconsistent time.

In all above operations, the queriessucc andpred takeO(log |R|/ log log |R|) per operation. Each operation
on SI takesO(1). Therefore, any revision operation takes amortizedO(log |R|/log log |R|) time. Since the
revision sequence is monotone, each element ofSI can be discarded only once. Thus its cost can be charged to
the operation that places it to the stack. �

3This requires an equality check on the keys. Even if the keys don’t accept equality, we can match by comparing the time of the
corresponding push operations for the keys.

8



6.3 A Lower-bound

In this section, we show that the stack data structure presented in the previous section is the best possible up to
constant factors by proving the following theorem:

Theorem 6.4 There is a sequence ofm > n operations on a retroactive stack where|R| = O(n) that require
Ω( m log n

log log n
) time.

The argument outlined below is a simple reduction from the marked-ancestor problem. The marked-ancestor
problem is to maintain a data structure on a fixed rooted tree to support the following operations:mark(v) marks
the nodev, unmark(v) unmarks the nodev, andfirstmarked(v) reports the first marked node on the path fromv
to the root node. In FOCS’98, Alstrup et al. [AHR98] showed that,

Theorem 6.5 (Alstrup-Husfeldt-Rauhe) In the cell-probe model with word sizeO(log n), there is a sequence
of m > n operations in the marked ancestor problem onn nodes that requiresΩ(m log n/ log log n) time.

We now briefly describe the reduction. Consider an Euler’s tour on the tree. For each nodev, let fv and`v be
the first and last times the tour visitsv. Markingv (unmarking resp.) corresponds to invoking (revoking resp.) a
pair of push atfv and pop at̀ v. The queryfirstmarked(v) can be answered by considering the result of a pop at
fv

4. We can support each operation in the marked-ancestor problem using a constant number of retroactive stack
operations, concluding the proof.

7 Queues

Consider aqueuedata structureQ with the following operations:enqueue(e), which puts the elemente to the end
of Q, anddequeue(), which removes and returns the element at the front of the queue. We prove the following:

Theorem 7.1 A retroactive queueQr with traceR over timesT can be maintained inO(|R|) space so that all
operations takeO(log log |T |) expected amortized time.

Proof: We maintain two ordered sets indexed on their first component: E ⊆ T × U × (T ∪ {null}) stores the
times, values, and corresponding dequeue times of allenqueue operations;D ⊆ T × (T ∪ {null}) stores the
dequeue times and corresponding enqueue times of alldequeue operations. Both sets are kept as ordered-subset
structures. LetlookAt(t) return the time of theenqueue operation at the front of the queue at timet andnull

if the queue is empty. Note thatlookAt(t) can be computed inO(log log |T |) by apred query onD and asucc

query onE.

For invoke(enqueue(e), t), we insert(t, e,null) into E and setp to thedequeue pair of theenqueue right aftert.
For invoke(dequeue(), t), we insert(t, lookAt(t)) into D and setp to the successor oft in D. In both cases, we
update the corresponding pair as necessary.

Revoking an operation removes the corresponding element from D or E depending on the operation. We then
update the corresponding pair as necessary. If revoking anenqueue, we setp to thedequeue pair of theenqueue

being revoked. If revoking adequeue, we setp to thedequeue operation right aftert.

To report the earliest inconsistent time, we considerp. If p is unset or if theenqueue pair ofp is the same as what
lookAt returns, the trace is consistent. Otherwise, we reportp. �

8 Ordered Sets

Given an ordered universe of keysK, an ordered set maintainsD ⊆ K, with the operations:

4To restore the trace back to the original state, we need to invoke a pop and subsequently revoke both of them.

9



• insert(k) : Insertk into D.

• delete(k) : Deletek from D

• succ(k) : Returnmin{k′ ∈ D : k′ ≥ k}.

It is straightforward to allow data to be associated with keys and to support a corresponding predecessor query, but
we leave these out to simplify the exposition. We assume the comparison model forK and under this model an
ordered dictionary has a lower bound ofΩ(log |D|) time for at least some of the operations. A retroactive version
cannot do better. We show, however, that we can match the lower bounds within expectation and amortization.

Theorem 8.1 A retroactive ordered setDr with traceR can be maintained inO(|R|) space such that any
revision sequence involvingn revised updates (insert or delete) andm revokedsucc operations takesO((m +
1)n log |R|) time.

Proof: The retroactive version of the dictionary data structure has a natural geometric representation. Consider
Figure1 below representing a set ofinsert, delete, andsucc operations over time.

Time

Key

Figure 1: The geometric representation.

Let the vertical axis (y-axis) represent keys and the hor-
izontal axis (x-axis) represent the timesT . An instance
of a retroactive data structure can be represented as pla-
nar segments and points. A horizontal segment([t1, t2], k)
denotes the lifespan of the keyk—it is inserted att1 and
deleted att2. A vertical segment(t, [k1, k2]) denotes the
querysucc(k1) at timet whose return key isk2. Insertions
and deletions are represented by points at the correspond-
ing keys and times, and we also include points at the top
of each vertical segment. As always, we assume that each
operation occurs at a unique time (i.e., we can uniquely re-
fer to an operation by its time). Since the standard setup

and the geometric representation are equivalent, we will use them interchangeably in subsequent discussions as
convenient.

The set of horizontal segmentsH and set of vertical segmentsV are stored as two point-location data structures
(cf., Section2). These structures support the queriesabove(k, t), which reports the first horizontal segment hit
by the ray shooting upward from the point(t, k), andright(k, t), which reports the first vertical segment hit by
the ray shooting rightward from the point(t, k). We also store all points in setsSk indexed by their keyk (y-
coordinate). The sets can be accessed using a balanced tree on K, and each set can be stored as a balanced tree
onT . The geometric representation is the setH ∪ V ∪ (∪k Sk).

For any revision involving an update (insert or delete) we immediately update the point corresponding to the
revision and the horizontal segment it affects. This involves inserting, deleting, extending, or trimming the
horizontal segment, and can be done using at most two insertions and deletions on the point location structure.
This can leave the geometric interpretation inconsistent by, for example, introducing segment crossings. We
cannot, however, afford to fix all these since a single updatecould createΘ(|R|) such inconsistencies. The idea
will be to only keep track of the earliest inconsistency for each key.

During a monotone revision sequence on the retroactive structure we therefore allow for the following two kinds
of inconsistencies: anopen inconsistencyis a vertical segment for which the top point does not lie on a horizontal
segment, and across inconsistencyis a vertical segment that crosses multiple horizontal segments. We associate
an open inconsistency with the key of its top point and a crossinconsistency with all the keys for horizontal
segments it crosses. During the whole revision sequence we maintain for each keyk the earliest inconsistencyik
associated with it, and also keep a priority queuePQ over time of all these earliest inconsistencies. This allows

10



us to track the overall earliest inconsistency. In the discussion below we assumePQ is updated wheneverik is
updated.

When we invoke an insert, or revoke a delete on keyk at timet we can insert or extend a horizontal segment,
which can either create cross inconsistencies or fix open inconsistencies. Ifik is a open inconsistency we delete
it. Because of the monotone revision sequence condition there cannot be any more inconsistencies onk. If ik is
a cross inconsistency, we do nothing (we already know the next inconsistency). If there is noik we search for the
next cross inconsistency usingright(k, t) and if there is one we insert it asik.

When we invoke a delete, or revoke an insert on keyk at timet we can delete or trim a horizontal segment, which
can create open inconsistencies or fix cross inconsistencies. If ik is a cross inconsistency on asucc(k′) operation
at timet′ we deleteik—there cannot be more inconsistencies onk. If ik is an open inconsistency we do nothing.
If there is noik we check for the next open inconsistency inSk and if there is one we insert it asik.

For aninvoke(succ(k), t) we do anabove(k, t) to find k′, add the vertical segment(t, [k, k′]), and returnk′. No
inconsistencies are affected. Consider arevoke(t) for an succ operation att. The vertical segment associated
with this operation could be involved in up tol inconsistencies wherel is the number of revised updates so far
in the monotone revision sequence (only these can create inconsistencies). This is bounded byn. For each key
k that has an inconsistency att (can be found inPQ) we need to identify the next inconsistency, if there is one,
and updateik. For cross inconsistencies we search for it withright(k, t) and and for an open inconsistency we
useSk.

All revisions except revoking asucc operation involve at most a constant number of point location, dictionary,
ordered set, or priority queue operations which all takeO(log |R|) worst case time. The revoke of asucc opera-
tions takes at mostlog |R| time per inconsistency for a total ofn log |R| time. The total time is therefore bounded
by (m + 1)n log |R| total time. The space is bounded by the space required by the two point location structures
and the setsSk. This is all linear in the number of operations in the traceR. �

9 Priority Queues

In this section, we consider a priority queue data structure. Given a total-ordered universe of keysK, a priority
queue maintains a setPQ ⊆ K and supports the following operations:

• insert(k) : insert a keyk to the priority queue. We assumek 6∈ PQ.

• min() : return the minimum key ofPQ or null if PQ is empty. This operation doesnot delete the key.

• delete(k) : delete the keyk if existed.

Theorem 9.1 A retroactive priority queuePQr with traceR over timesT can be maintained inO(|R|) space
so that all operations takeO(log |R|) expected amortized time.

Proof: We use the same setup as that of the retroactive ordered sets (Section 8) except that now all vertical
segments begin aty = −∞ and correspond tomin queries. Recall that anopen inconsistencyis a vertical
segment for which the top point does not lie on a horizontal segment, and across inconsistencyis a vertical
segment that crosses multiple horizontal segments.

For all keys, we keep their earliest open inconsistent times. But, we maintain only a single cross inconsistency
for the least key with a cross inconsistency. This cross consistency must appear before all other cross inconsis-
tencies, because if a vertical segment (query) intersects ahorizontal segment of a bigger key, the vertical segment
intersects the segment of the smallest key — all vertical segments begin aty = −∞. For this reason, when
we revoke a query (min), at most one cross inconsistency has to be updated. Invoking aninsert(k) or revoking
a delete(k) may introduce more cross inconsistency; however, we only have to do aright query if thek is the
minimum key with a cross inconsistency. �

11



In this setting, we do not need a general point-location datastructure: theabove query always starts aty = −∞,
and theright query deals with a special type of segments—their bottom endpoints are at−∞. In both cases,
variants of McCreight’s priority search tree [McC85, Wil00] can be used to achieveO(log |S|) time andO(|S|)
space with simple balanced tree operations by storing an additional value (minimum) at each internal node.

We recall that sortingn elements requiresΩ(n log n) in the comparison model. Since we can use a priority queue
to sort, there is a sequence ofO(n) operations on a retroactive priority queue that requireΩ(n log n) time.

10 Discussions

It remains an interesting open problem to see if a retroactive ordered-set data structure can be maintained in
O(log |R|) time, matching the sorting lower-bound in the comparison model.

References

[AHR98] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. InFOCS ’98: Proceedings
of the 39th Annual Symposium on Foundations of Computer Science, pages 534–544, Washington, DC, USA,
1998. IEEE Computer Society.

[AV03] Lars Arge and Jeffrey Scott Vitter. Optimal externalmemory interval management.SIAM J. Comput.,
32(6):1488–1508, 2003.

[BCD+02] Michael A. Bender, Richard Cole, Erik D. Demaine, MartinFarach-Colton, and Jack Zito. Two simplified
algorithms for maintaining order in a list. InLecture Notes in Computer Science, pages 152–164, 2002.

[Ble07] Guy E. Blelloch. Space-efficient dynamic orthogonal point location, segment intersection, and range reporting.
(submitted to SODA’08), 2007.

[BV07] Guy E. Blelloch and Virginia Vassilevska. Ordered subsets with applications. (submitted to SODA’08), 2007.

[Die89] Paul F. Dietz. Optimal algorithms for list indexingand subset rank. InWADS, pages 39–46, 1989.

[DIL04] Erik D. Demaine, John Iacono, and Stefan Langerman.Retroactive data structures. InSODA ’04: Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 281–290, Philadelphia, PA, USA,
2004. Society for Industrial and Applied Mathematics.

[DS87] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. InProceedings of the 19th ACM
Symposium on Theory of Computing (STOC), pages 365–372, 1987.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum spanning trees and
shortest paths.J. Comput. Syst. Sci., 48(3):533–551, 1994.

[McC85] Edward M. McCreight. Priority search trees.SIAM J. Comput., 14(2):257–276, 1985.

[MN90] Kurt Mehlhorn and Stefan Näher. Dynamic fractionalcascading.Algorithmica, 5(2):215–241, 1990.

[Mor03] Christian Worm Mortensen. Fully-dynamic two dimensional orthogonal range and line segment intersection
reporting in logarithmic time. InSODA ’03: Proceedings of the 14th annual ACM-SIAM symposiumon discrete
algorithms, pages 618–627, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[Mor06] Christian Worm Mortensen. Fully dynamic orthogonal range reporting on ram.SIAM J. Comput., 35(6):1494–
1525, 2006.

[Ove83] Mark H. Overmars.The Design of Dynamic Data Structures. Springer, 1983.

[PD04] Mihai Păatraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem. InSODA ’04: Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 20–29, Philadelphia, PA, USA,
2004. Society for Industrial and Applied Mathematics.

[RR96] G. Ramalingam and T. Reps. On the computational complexity of dynamic graph algorithms.Theoretical
Computer Science, 158(1–2):233–277, 1996.

12



[WC79] Mark N. Wegman and Larry Carter. New classes and applications of hash functions. InProceedings of the 20th
Annual IEEE Symposium on Foundations of Computer Science, pages 175–182, 1979.

[Wil85] Dan E. Willard. Reduced memory space for multi-dimensional search trees (extended abstract). InSTACS,
pages 363–374, 1985.

[Wil00] Dan E. Willard. Examining computational geometry,van emde boas trees, and hashing from the perspective of
the fusion tree.SIAM J. Comput., 29(3):1030–1049, 2000.

13


	Introduction
	Preliminaries and Notations
	The Framework
	General Theory
	Dictionaries and Arrays
	Stacks
	Dynamic 1 prefix-sum problem
	Efficient Retroactive Stacks
	A Lower-bound

	Queues
	Ordered Sets
	Priority Queues
	Discussions

