Dynamic Mesh Refinement

Bendt Hudson

CMU-CS-07-162
December 2007

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Gary L. Miller, Chair
Anupam Gupta
Daniel D.K. Sleator
Umut A. Acar, Toyota Technological Institute at Chicago
Jonathan R. Shewchuk, University of California, Berkeley

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy.

Copyright(© 2007 Bendt Hudson

This work was supported in part by the National Science Fatiod under grants
ACI-0086093, CCR-0122581, and CCR-0085982.

Keywords: Computational Geometry, Scientific Computing, Mesh Refinement
Dynamic Algorithms

Abstract

Mesh refinement is the problem to produce a triangulatiopi¢atly De-
launay) of an input set of points augmented3iginerpoints, such that every
triangle or tetrahedron has gogdality (no small angles). The requirement
arises from the applications: in scientific computing andriaphics, meshes
are often used to discretely represent the value of a fumeh@r space. In
addition to the quality requirement, the user often hastispgments or poly-
gons (generally, a piecewise linear complex) they would Bke retained in
the mesh; the mesh mustspectthese constraints. Finally, the mesh should
besize-conformingthe size of mesh elements should be related to a particular
sizing function based on the distance between input fesitture

The static meshing problem is increasingly well-underdt@me can down-
load software with provable guarantees that on reasonaplg,ithe meshes
will have good quality, will respect the input, and will besiconforming;
more recently, these algorithms have started to come withmapruntimes of
O(nlg(L/s) +m), whereL/s is the spread of the input. As a first result, |
present experimental results of the first time-optimal ¢adailable online at
spar se- meshi ng. com

Increasingly, static meshing is insufficient: users wamhtaify the mesh
over time. Throwing away the old mesh and remeshing fronmtdtia a com-
mon approach, but that suffers from slow runtime, and froimtegpolation
error because the old and new meshes may be almost unreMtesh sta-
bility analyzes the correspondence between meshes for two ifffhésnain
theoretical result of this thesis is an algorithm that has/able bounds on
stability: upon inserting or removing a feature that in tmafimesh is repre-
sented using points, the mesh only modifi&g(% 1g(L/s)) mesh simplices.

Finally, stability can be exploited to produce an efficidghamicalgo-
rithm. Under theself-adjusting computatiomamework, with a small amount
of additional effort, 1 show that my algorithm can be dynaedzo run in
O(kl1g(L/s)) time per update, usin@(nlg(L/s) + m) space.

| owe a great debt to my parents, Richard Hudson andl&iShevalier, who raised me
a scientist and an academic. It took me 23 years, but whem lI'sairite a thesis when
I'd grow up, | wasn'’t kidding.

My best teachers in France and in Canada all taught me gegm#iich speaks well
for the field. At Brown, Roberto Tamassia showed me you coult beta geometer and a
computer scientist; he and the rest of the CS department gaammarly taste for teaching
and research. Mark Johnson in Linguistics and €®&ikters in Geology let me discover
that though | was a computer scientist by training and tragelying my knowledge to
the pursuit of the sciences made it all the more exciting.

My advisor, Gary Miller, somehow managed to instill upon rhe ability to do re-
search. Through constant meetings occasionally turnittgshouting matches with him
and with Todd Phillips, we have muddled through vast wastidaf bad ideas and some-
how managed to pick out one or two good ones in passing. Umat Aar reasons unclear,
took a chance that perhaps we should work together; no gigmiwould have been dy-
namized without his help. Jonathan Shewchuk has alwaysihdba background, if not
the foreground. Much of my meshing work bears his imprimaisrdoes my tea cabinet.

Contents

1 Introduction and background 1
1.1 Qualitymeasures e e 2
1.2 Inputdescription
1.3 Sizingfunctions
1.4 Static and dynamic algorithms 9
1.5 Bucketed priorityqueues 21
1.6 Claims e 15
1.7 Relatedwork 15
1.7.1 Relationstopriorwork 20
2 The SVR algorithm 23
2.1 Traditional Delaunay refinement 23
2.2 SVRINUItion 27
2.3 AlgorithmListing 29
3 A Practical Implementation of SVR 35
3.1 Pointlocationstructure 35
3.2 Designandimplementation o L. 39
3.3 Numericalrobustness 14
3.4 Experimentinputs 42
3.5 Parametersettings 3 4

3.6 Experimental results
3.6.1 Cache performance and profiling
3.7 Extensions and future goals

Dynamic Meshing for Point Clouds

4.1 Building a quad-tree for point location

41.1
41.2
41.3
4.1.4

4.2 Choosing Steiner points
4.3 Efficient algorithm

43.1
4.3.2
4.3.3
4.3.4

The quad-tree is size-conforming
BUILDQT runsinO(nlg L/s)time
BUILDQTisO(lgL/s)-stable
BUILDQT response time i©(lg L/s)

Delaunizing

Static runtime

Dynamic stability

Main theorem

4.4 Bounding box to ignore boundary effects. L

Handling Input Segments

5.1 Building the quad-tree
5.1.1 Analysis
5.1.2 Practicalities

5.2 Choosing Steiner points withsegments

5.2.1 Conceptual algorithm

5.2.2 A complete mesh with segments is size-conforming

5.3 Efficient algorithm
5.4 Remarks

Dynamic Meshing for PLC Input

6.1 Building the quad-tree

6.2 Choosing Steiner points with features 102

6.2.1 Acomplete meshisagoodmesh. 103
6.3 Efficientalgorithm 6.0
6.3.1 Dependency pathsareshort 107
6.4 Themainresultofthethesis 110
7 Closing Remarks 111
Bibliography 115

Vii

viii

Chapter 1

Introduction and background

In scientific computing, graphics, and in many geometricpssing problems, a key task
IS to take an input geometry and tile it with a collection ofadhobjects that are easier to
handle, such as triangles, tetrahedra, or perhaps cubesnesl The ancients already

did this in order to produce mosaics (using tiles insteachefrhore modern tendency to
use pixels). Topologically, each of the smaller elementaikhhave a small description,

to make them easy to manipulate and easy to reason aboug thenase of triangles and

cubes. Geometrically, applications impose requirememthe shape of each element: in
the applications | consider, the requirement will be thgaeeht elements have similar size
(for an appropriate definition of size), and that each eldérhas bounded distortion (for

an appropriate definition of distortion).

The goal here is to represent a functifrihat is continuous over space, and operate
on it. On each triangle (or on each tetrahedron, in three wmas), we can set a value
at each vertex and linearly interpolate within the elemdittis yields a piecewise linear
approximationf to f. Assuming thatf has bounded first and second derivatives in all
directions, if every element of the mesh is not too large, mradches a certain quality
criterion described below, thehis a good approximation t6 under theH; norm: that is,
the gradient off approximates the gradient 9§f

Mesh refinement is the task of taking as input the descripifom geometric object,
possiblyrefiningit by adding additional vertices, and producing as outpwtabkvertices
and triangles (or tetrahedra) that tile space and all haee goality. Of course, applica-
tions using the mesh will run in time governed by the size efittesh, so it is desirable to
output as few additional vertices and as few triangles asiples Finally, in a timestep-
ping finite element simulation, such as would be used to salligperbolic PDE, under
some commonly-used solution methods, the maximum alloeegth of the timestep is

1

governed by the size of the smallest element. Thereforeh miesnents must not be too
small.

1.1 Quality measures

In a finite element applicatiory, will be a property such as heat whose value we are trying
to calculate while simulating a physical process. The axipration quality of f defines
how accurate the simulation is. Classically, Bekmand Aziz [BA76] proved that in order
for the Finite Element Method to produce an accurate salutite mesh over which the
simulation is run must not contain any angles between twonsets that are close to
180° — that is, if the largest angle in the meshi&) — ¢°, they proved an error bound
that is a constant function ef This gives rise to th@o large anglescondition in mesh
refinement. In three dimensions, the angles of interesieaedngles (the angles between
two segments on a triangular face) and dihedral angles (ihlesbetween two triangular
faces on a tetrahedron). Solid angles do not affect theisnolgtality.

Typically, the values at each vertex that defﬁwill be computed by solving a linear
system of equationglz = b, where the entries ofi are affected by the shape of the
elements. Many solvers have their runtime regulated in ipathe condition number of
A. While large face or dihedral angles will cauféo be a bad approximation gf small
face, dihedral, or solid angles will cause the condition hamto degenerate [She02].
Therefore, in meshing, the goal is usually to produce meslitiasno angle close t0°,
which is called theno small anglescondition. A mesh with no angle of any type close to
zero has no angle of any type close 89)°: the no small angles condition is strictly harder
to satisfy than the no large angles condition.

The analyses of meshing algorithms are much simplified bygudifferent notions
of quality than the angles. In two dimensions, saying thargwangle in a triangle is
larger thana is equivalent to saying that it has radius/edge ratio noelatbanp (see
Figure 1.1). In such a case, | say the triangle has “good’usdeddge ratio. Another
equivalent definition is the aspect ratio, which is varigus¢fined (see Figure 1.2). In
three and higher dimensions, these definitions all gerzeralithe obvious way. However,
their correspondences are not maintained. In particulsimplex with good radius/edge
ratio may have a small angle; such a simplex is callstiver. See Figure 1.3.

Since the early days of theoretically-proved automatichimggs it has been known
how to provably produce meshes with good radius/edge ralibdugh developing soft-
ware to do so has been a greater challenge); techniquespaally prove that they will
output a mesh with radius/edge ratio no worse tk@nin two dimensions, og in three

2

%

Figure 1.1: lllustration of the radius/edge ratio quality criterion. Draw the circumscribingjec
of a triangle; it has radius. Let e be the length of shortest edge of the triangle. Tdaius/edge
ratio is r/e. In two dimensions, i) is the smallest angle, therfe = Tlne Therefore, a tri-
angle with small radius/edge ratio has no small angles. The corresponoiggciolds in two

dimensions.

1 .
4 7 L

Figure 1.2: |lllustration of two common definitions of thaspect ratio criterion. Draw the
circumscribing circle of a triangle; it has raditis(A) Draw the inscribed circle of a triangle; it has
radiusr’. A triangle has good aspect ratiaifr’ < o for some constant. This is often also called
theradius ratio. (B) Alternatively, letA be the area of the largegt — 1)-face of the simplex. Let
h be the height of the simplex — the distance from the remaining point to the pléinediby the
smallest face. Then the simplex has good aspect rafigi#?~! < . The two quality measures
are equivalent up to constants. Unfortunately, the literature uses thetsaméor both, and also
sometimes a for different power of these criteria, including their recifroca

L

Figure 1.3: A sliver in three dimensions. The four points are equally spaced aboutaheter
of the sphere. Therefore, the radius/edge rati¢g’2s However, the largest ball inscribed to the
tetrahedron has zero radius, so the aspect ratio is infinite (equivaldrghpeight of the fourth
point off any face is zero). Note also that the sliver has dihedral arafleoth0° and 180°, but
any two neighbouring segments formis or 90° angle. In higher dimension, a sliver is defined
by Li to be a simplex that has good radius/edge, but either the entire simpdabaaspect ratio,
or one of the faces is itself a sliver [Li03].

Figure 1.4: The Voronoi aspect ratio af is defined by the distancB from v to the farthest
point in its Voronoi cell {.e. the largest radius of any Delaunay simplex arouhdnd by the
radiusr of the largest ball at that does not leave the Voronoi cell (which is half the distance to
the nearest neighbour). B/r < 7, the Voronoi cell has good aspect ratio. Note that if for all
cells,R/ NN(v) < p, then the Delaunay triangulation has radius/edge ratio at m@onversely,

for any Delaunay mesh with radius/edge ratio boyndhere is a constant, that bounds the
Voronoi aspect ratio of the same point set [Tal97] (this fact is trivial ia mensions but requires
substantial proof in higher dimension).

dimensions. Much less is known about eliminating slivees the Related Work section
for details. However, many techniques exist that take astiapnesh with every element
having good radius/edge ratio, and produce as output ohewislivers, with varying lev-
els of theoretical and practical success (the provablecasaios are tiny, but in practice
they generally eliminate dihedral angles smaller than aboto 5°, and larger than about
175° to 179° depending on the technique and implementation). Furthexnas proved by
Miller et al, slivers do not affect solution quality in the Control Volurikethod, which
is a simulation technique comparable to the Finite Elemeethidd [MTT96]. All that
matters for the Control Volume Method is that the Voronoi célevery point have good
aspect ratio (as defined in Figure 1.4), a quality that is ieapby ensuring the simplices
all have good radius/edge ratio. Alternatively, we canallyeachieve good aspect ratio
Voronoi cells. As we discovered while developing SVR, andsbdbund while develop-
ing this thesis, it is substantially more convenient to tleéoally analyze the use of the
Voronoi aspect ratio condition.

1.2 Input description

The task of describing the input geometry is a field of its owangely, CAD). At mini-
mum, an input geometry should allow for specifying pointttill appear in the mesh.
The mesh should then fill a certailomain(). | take the domain to be a box, sufficiently
larger than the input geometry that no meshing activity ccaiear the boundary of the
box (see Section 4.4). Quite naturally, the user may alsd Wwaensure that certain seg-
ments, denoted as a pair of points, appear in the mesh. la dimgensions, the user may
also want to ensure that certain polygons appear. Such an impermed aPiecewise
Linear Complexby Miller et al[MTT *96]. Copying their definition:

Definition 1.2.1 (Piecewise Linear Complex [MTT 96, Definition 3.2]) A piecewiselin-
ear complex (PLC) is a setY’ of polytopes with the following properties:

e The setis closed under taking boundaries: For e@ch X, the boundary of is a
union of polytopes irt’.

e X is closed under intersection: For any twoand f’ in X, the intersectiory N f’
is itself a polytope inY'.

o If dim(f N f) = dim(f) thenf C f" anddim(f) < dim(f’)

5

The algorithms and software | present in this thesis funtbguire that if two polytopes
f and f” intersect, then eithef C f’ or they form an angle of at lea86° — they must
intersect ahon-acuteangles. This has two effects. For one, it limits the numbérigiier-
dimensional polytopes that are incident on any single pplgt(for instance, it limits the
number of segments incident on a point). The other effedtasif we place the center of
a ballb on a featuref, andb does not intersect the boundary ffthen any other feature
f' thatb intersects is disjoint fronf.

The input description is somewhat restrictive: it does flotafor curves, nor does it
allow for for even moderately sharp angles. It is likely pbksto extend the algorithms
herein with relatively minimal difficulty to allow for inpuhat also allows arcs andeRier
curves, perhaps building upon the work of Ollivier-Goochd &oivin [BOGO02]. There
is substantially less work on meshing with curved surfabasthere does not seem to be
a fundamental difficulty to overcome. Acute angles are a nhatder problem; see the
Related Work in Section 1.7.

Given a PLCX, | need to define a notion of what it means to represgnising a
mesh. A meshV/ is itself a PLC. Following the literature, | say thaf respectsX’ if
every polytope inX’ appears as a union of polytopesii. For example, a segment in
X should show up as a set of edges of the mesh simplices, and/gopah X should
appear as a set of triangles in the mesh. In practice, thissisngially impossible: due to
numerical error, it is very likely that the set of segmenthmmesh that ostensibly respects
a segment it’ in fact do not coincide. Using exact arithmetic would sols issue, but
requires asymptotically more time and space. Using rohwstamical predicates [She97a]
only somewhat mitigates the issue. In the algorithms, | m&sa model of computation
where we can apply the standard arithmetic operations toteabers of exact precision
in constant time, and leave it to future work to analyze tlgoaihms under a floating-
point model.

A useful metric for the input space is ispread Let L be the length of a side of
the box that defines the meshing domain. kdie the shortest distance between any
two disjoint features. Then the spreadligs. The quality measures each imply that at
most, two neighbouring elements in the output mesh havetdbelwsame size, to within
a constant. Therefore, the quantity L/s appears repeatedly in this thesis and in the
literature. Assuming integer inputs with words of lengthl. < 2* while s > 1. Normally
the assumption is that = O(lgn), SOL/s € poly(n). With floating point input (where a
floating-point number consists of a word-sized integer lieréxponent, and a word-sized
integer for the mantissa), the spread can be exponential in

In the application at hand — meshing for scientific computamgl graphics — the
length of a timestep is commensurate with the size of thelsstatlement, which must

6

of course be commensurate withlf we intend to simulate a period of simulated time of
about©(L), then it will take©(L/s) timesteps to do this. This motivates taking on the
assumption, common in computational geometry, that evesnvelccepting floating point
or real input we can consider the spread to be only polynoimial

1.3 Sizing functions

A very important definition, from Ruppert [Rup95] and extendechigher dimension
by Miller et al [MTT *96], is that of the local feature size, which produces a oootis
function over space that describes the spacing betweenhfegiures near any point.

Definition 1.3.1 (Local feature size)Given a PLCX, the local feature size at a point
in space, denotetfs(z), is the radius of the smallest ball centered thahat encloses a
pair of disjoint featuresf and /' (i.e, f N f = 0). The local feature size is a Lipschitz
function: for any two points andy, Ifs(z) < Ifs(y) + ||zy|].

In two dimensions, the following holds: consider a mesh obendin (2, where the
mesh respects the inpdf and every element has good radius/edge quality. It may or
may not be Delaunay. Ruppert proves [Rup95] that every poiat(2 lies in a triangle
7 that has circumradius such that- < O(lfs(z)). This implies, not entirely trivially,
that even in the smallest possible valid mesh, the numbgr of triangles obeysn,,: €
Q(/[, @dx)' At the same time, Ruppert shows an algorithm that producessh mhere

every pointz € Q lies in a triangle with radius > Q(1fs(z)). This implies that the mesh
his algorithm produced had size € O(@d‘r)' In other wordsyn € ©(m,,): the
mesh that Ruppert’'s algorithm produces is constant-cothgetvith the optimal mesh
that any algorithm could produce.

The proof depends on the mesh being of good aspect ratiorda thmensions, it still
holds for any good aspect ratio simplicial mesh. Howeverstatement that € O(Ifs(x))
is no longer true when demanding only good radius/edge rsesBkrewchuk [She98b]
shows an example of two skew edges, which generate tiny feetlire size where the
two edges almost meet. However, a sliver can resolve botlseddnis discorrespondence
complicates the analysis of the size guarantees of highesrtsional meshing algorithms.
Meshing algorithms that produce good radius/edge meshgsding the ones | mention
here, typically still prove that > Q(lfs(z)).

Instead of discussing the size of the meshes my algorithmdupe relative to the
optimal radius/edge mesh, | will show that the meshesee-conforming That is, the

7

local feature size defined by the vertices of the final outpasimis a function not far
different than the local feature size defined by the inputréMformally, define théocal
mesh sizeatz € (Q, lms(x) as the distance from to the second-nearest vertex of the
output mesh.

Definition 1.3.2 (Size-conforming) A mesh made up of a finite set of vertidésc R?,
such that the mesh respects an input PX@nd tiles a domairn?, is size-conforming if
for everyz € Q,

Ims(x) < Ifs(z) < clms(z)

for some constant

As proved by Ruppert (after the obvious generalization tdvéiglimension), a size-
conforming mesh contair8([, _, Ifs~(2)dz) elements. This is the same number of el-
ements as in the smallest mesh that resp&cend has good aspect ratio. Algorithms
exist that take as input a size-conforming mesh with goodusaeldge quality, and pro-
duce a good aspect ratio mesh of either exactly the same isa@yolinearly more ver-
tices [ELM"00, CDE00, LTO01, LiO3].

An interesting aside is that in the field of surface recortsiton, the local feature size,
defined only on the manifold being reconstructed, is theadis# to the medial axis. This
alternative description matches the description | gave legerywhere oY, assuming
the angle between intersecting segments is obtuse (gtlatier than90°); but if the
angle is right or acute, the medial axis touches the surfadettzereby defines regions
with Ifs(z) = 0. The surface reconstruction definition of local feature s&zwell defined
on curved inputs. This is another reason to expect that dxtgithe techniques here to be
able to mesh curved input will be a smaller change than findiggrithms that can handle
acute angles.

Often in scientific computing, the local feature size is ffisiently fine: to visualize
why, think of an eddy swirling in the middle of the ocean. Wdl weed small elements
simulate it accurately, even though the geometry suggestg biuge elements there since
the coastline is so far away. In the present work, | abstraalydrom such requirements;
they can be imposed for instance by adding a few additionattpavhere further refine-
ment is needed.

1.4 Static and dynamic algorithms

Traditionally, the meshing problem has been to take an idpstription (such as a PLC)
and produce a quality mesh. Practitioners assume that awikdle used for hundreds
of simulations, each one running for minutes to hours. Tioeee the computation time
spent generating the mesh is no object; instead, meshyyuaétsh size, and most of all
correctness are far more important than runtime.

Increasingly, however, we are interested in simulatingcesses where the geometry
changes during the simulation: blood cells moving througthannel, pump blades ro-
tating, valves opening, etc. Another realm of interest i@pimizing the shape of an
engineering component: the task is to take an input geonretmya simulation and com-
pute a quantity of interest (such as, for a heart pump, themman strain any blood cell
will suffer), then to automatically change the geometrglsiiy and re-run the simulation.
If the new geometry is better with respect to the quantityntériest, repeat the process, in
a hill-climbing approach.

In the algorithms literature, there are two closely relatedcepts that are sometimes
conflated into the term “dynamic.” According to the definit®ol prefer to use, in the
dynamic setting, we take a fixed input and compute the solution to Blpne. Then, the
adversary can add or remove part of the input, and ask us deifite solution accordingly
the problem. Let: be the greater of the size of the input before or after the ghaAn
algorithmrespondgo the change in timé&(f(n)) if it can, starting with the initial output
and some other data structures, change the output to bedawsliver to the new problem,
in time O(f(n)). In terms of meshing, one could use a dynamic meshing atgorio
maintain a quality mesh as, for example, a crack creepsghrthe domain, one break at
a time; or when a solenoid valve is essentially instantasigaapened. It is in this sense
that the algorithm | present that forms the core of the thiesasdynamic algorithm.

In akinetic setting, the input size does not change over time [Gui9&}eld, the input
(assumed to be geometric) changes continuously over titris.assumed that the input
will change discontinuously only at specific points in tinidne goal is to maintain a valid
output and some internal data structures as the input canisly moves. The analysis will
normally compare the number and cost of changes in the mitdata structures, against
the number of changes to the output. A kinetic mesher wouldrieethat maintains a
quality mesh as fluid entrains a blood cell, for example. Tinetic meshing problem (or,
more commonly, thenoving mesh problenms beyond the scope of my thesis, though there
are deep links between the dynamic and kinetic settings.

History independence in the sense defined by Micciancio [Mic97], states that an

9

algorithm will produce an identical output given an inputhwaut regard to the history of
changes. Thatis, if after a long series of changes, kinetlyiwamic, we were to rerun the
algorithm from scratch on the current input, it would prog@an output that is equivalent
to the one that was dynamically maintained. The notion ohadence is usually obvious:
In the meshing problem, equality is defined by the coordmatehe mesh vertices, and
the topology of the mesh. The advantage of history indepsselis that it limits the need
to analyze the correctness of our algorithms to the simglatic case; the disadvantage is
that in some cases — meshing might come to mind, the algotitsra lot of freedom in
choosing the output. Specifying that the dynamization ballhistory-independent limits
that freedom.

When an algorithm is history independent, it is well definedtithe output is, given
the static algorithm that is needed to compute the initidliten. This brings up the
guestion of automatically dynamizing a static algorithmheTask is to simulate rerun-
ning the static algorithm from scratch, while hopefully sgimg time related to a notion
of a difference between the two runs of the algorithm. Aetal formalized one such
approach, calling iself-adjusting computation (SAC) and provided algorithms to in-
deed efficiently simulate a static algorithm under dynanmi&ionetic changes to the in-
put [Aca05, ABBT06, ABT06]. We can describe the run of a prograseatially as a
circuit (I use more formal notions later), where each gaselsan a bounded number of
operands and produces a result. Updating to run on a newimglves propagating val-
ues through the circuit, but also creating new sub-cirdaiperations that are performed
in one but not the other run), and eliminating old sub-ciicul he algorithm that performs
this propagation of changes is imaginatively calledadhange propagationalgorithm. In
order to avoid propagating changes through parts of theitittat it will later decide are
not needed, SAC maintains an order maintenance structatrdéfines a total ordering on
the gates — namely, the order in which the static algorithitraity ran the corresponding
operations. The change propagation algorithm uses atgrigueue to ensure that it re-
executes the program in order, and thereby avoids updatbagn@utation present in the
old circuit, but no longer present in the new one. Efficierdates depend on the following
definitions:

Definition 1.4.1 (Trace [Aca05, Definition 8]) Thetrace is an ordered, rooted tree that
describes the execution of a progrdfon an input. Every node corresponds to a function
call, and is labeled with the name of the function; its argutagthe values it read from
memory; and the return values of its children. A parentathélationship represents a
caller-callee relationship.

Definition 1.4.2 (Cognates and Trace Distance [Aca05, Deftion 12]) Giventwo traces

10

T and T’ of a programP, a nodeu € T is acognate of a nodev € T" if u andv have
equal labels. We say a programasncise if a nodeu € T does not have a cognate in
other than itself. Thé&race distance betweeri” and7” is equal to the symmetric difference
between the node-setsBfand7”, i.e., distance i$7'| + |T"| — 2|C| whereC'is the set of
cognates of " and7”.

Definition 1.4.3 (Monotone Programs [Aca05, Definition 15])LetT and7” be the trace
of a concise program with inputs that differ by a single insertor deletion. We say’ is
monotone if operations in7" happen in the same order as their cognate§’irduring a
pre-order traversal of the traces.

The main theorem of Acar [Aca05] states that for monotong@aums, the time for
change propagation is the same as the trace distance if itréypgueue overhead can
be bounded by a constant. For the theorem, we say that a prag@(f(n))-stable for
some input change, if the distance between the tra¢ds of the program with inputg
and[’, wherel’ is obtained from/ by applying the change, is bounded ®yf(n)). For
the proofs, | will generally abstract away from trace noded ase a more fuzzy notion
of an “operation,” and show that there are at most a constamber of trace nodes per
operation.

Theorem 1.4.4 (Update time [Aca05, Theorem 34])Jf a program P is monotone under
a single insertion/deletion, and 3(f(n))-stable, and if the priority queue can be main-
tained inO(1) time per operation, then change propagation after an irneaftieletion
takesO(f(n)) time.

Given that SAC is history-independent, the space usage GfiSBounded by the static
runtime of the algorithm. Even if the update time is large CSgtores only an amount of
memory linear in the length of the current trace. In some sasenay be possible to
further reduce the memory usage, as | will briefly discussdynamizing the quadtree
algorithm.

The method | use to prove my algorithm ap¢f(n))-stable will be an exercise quite
familiar to anyone who has designed a parallel algorithrdeé&d, the key idea is to define
a notion of dependency: operatiordepend®n operatior if b must be computed before
a. To prove a parallel bound, we must quite explicitly reasbowu dependencies and
show that any path of dependency is short. The dynamic gatiboth more stringent
and more permissive: not only must every dependency patimdnt, shere must not be
too many paths, because the change propagation is run essedn the other hand, a

11

dependency path may be long without causing issues in thanaignresponse time if
change propagation can stop propagation (because aniopdratng propagated wrote
the same value to its output as it had written before).

In this thesis, | will give stability bounds for various alifbms. The way in which they
are written strongly implies that the algorithms are als@fpalizeable. Naively paralleliz-
ing them at the moment will add a logarithmic term in the rongi It is likely that one
could use methods other than SAC to dynamize (for instancand-coded specialization
thereof), without substantially changing the theoretarslysis. In particular, the bounds
| give also imply that even after throwing away the mesh mnmg the static algorithms
from scratch, the new mesh will mostly match the old, ava@dwinterpolation error.

1.5 Bucketed priority queues

Meshing algorithms (my own included) frequently recommgraiiforming operations
in a particular order that depends on the geometry of thesitenthe queue. For in-
stance, it may be advantageous to process tetrahedra inafridegest radius first as per
Miller [Mil04], or shortest shortest-edge first as per Hald?dl andUngdr [HPUO5]. The
most natural approach is to put the tetrahedra to be prat@ssepriority queue, keyed
by their characteristic length (the length of the shortelfes or the reciprocal of the ra-
dius). Then the algorithm camngERT all the tetrahedra into a priority queue, and call
DELETEMIN to decide which element to process next. Generally in megshire De-
CREASEKEY operation is not needed; aeDETE operation may be useful for tetrahedra
that are destroyed before being processed, but it is inipeabbth simpler and faster to
simply ignore a result from BLETEMIN that refers to a deleted simplex.

In a comparison model, computing the exact minimum will tékég |Q|) per opera-
tion, where|Q| is the number of items in the priority queue. However, it ienfthe case
that we need only approximate the order in the priority quetithe true minimum has
key [, then it is safe to report another item if the other item haslke< ~I, for some
constanty > 1 that depends on the application. On its own, this allowao@pproximate
exponentially reduces the runtime, but the runtime stiflefeds orjQ)|.

However, in my application we know yet more: when an item wigly / is removed
from the queue and processed, the processing may add new giertne queue. Those
new items will have ke (), so they will go near the “front” of the priority queue. This
allows achieving constant-time approximate priority qeieperations. The structure is as
follows: | store a sorted linked list. Each node in the linkistl is a pair consisting of
a numberl, by which | sort; and a bucket — an unsorted set of items whegdigs in

12

[[,71). INSERTON an item with keyt searches from the head of the list until it finds the
bucket that contains, then adds the item to that bucket. If there is no such butket,
insertion algorithm creates a new bucket and links it inelist. Adding to a bucket will
take constant time, and by the assumption that new itemskegverith a constant factor
of the previously-deleted item’s key, onfy(1) buckets will need to be considered before
finding the appropriate bucket or determining there is ndiduaket. A DELETEMIN
operation simply looks up the head of the stored list and v@si@n arbitrary item from
that bucket, deleting the linked list node if the bucket ex#by emptied. Therefore, under
these two assumptions — that we may approximate the priguigyie order, and that items
are created close in keyspace to the previously-deleted-tethe priority queue costs are
O(1) per insertion and deletion.

When creating a new bucket, the question arises as to whateruhdbucket should
take. For simplicity, we would prefer that buckets do notréyg this is not critical, but
shedding this requirement complicates the analysis witkmaplifying the implementa-
tion. The easiest way to ensure the non-overlap conditiéor ihe first insertion into the
bucketed queue to use a bucket number equal to the key ofetimebiéing inserted, and
to subsequently use powers-ptimes the first bucket number. Thus, when a new bucket
is to be created, we look at the number of the next-smallenéat-larger) bucket, and
multiply (or divide) by~ until we find an appropriate number. We should be careful for
the case of removing the item in the queue that has the smidigsand there remaining
only items with much larger keys — the repeated division apph would then take time
logarithmic in the ratio between the deleted key and the-sexllest key. To handle this,
we can simply remember the number of the last bucket that \Vetatk

Alternately, if numbers are in a floating-point represantatthen the bucket number
can be read directly as the exponent of the key. For exampteeiSVR implementation,
| use a bucketed priority queue on tetrahedra in which theke$;, the square of the cir-
cumradius. Reading the floating-point exponent as an intbgeefore buckets according
to [r,+/2r). This can be a substantial constant factor faster than tegpetvision, and
only requires storing a small integer rather than a floagogt double.

In the static case, there are many possible implementatibeach a priority queue
beyond the one | have mentioned. The details are immateriaiyt later proofs, so |
generalize to the following definition:

Definition 1.5.1 ¢y-bucketed priority queue) A ~-bucketed priority queueis a structure
that supportdNSERTand DELETEMIN calls. When the smallest key in the set, ithen
DELETEMIN is guaranteed to spen@(1) time before returning a value whose key is in
[l,v1). Having deleted an item with kéy~v[), we can nowNSERTitems with keyd(!) in

13

A bucket is a pair R, a set of items
@ is a record{ buckets: sorted list of buckets, la#t:}
The list is sorted by the bucket numbers, smallest first.

INSERT(Q, k: real,v: item)
1: Find the bucket/, S) such that: < [I,])
2: if there is no such buckéten

3 S «nil

4. if there is no buckeahen

5: l—k

6: Set the “last” field to:

7. else

8: Computei such that: € [y'last v last)

9: [— ~ilast

10: endif

11: Insert the bucketl, S) into the buckets list in sorted order
12: end if

13: Add v to the listS

DELETEMIN(Q)

14: Read the first bucket @) as(/, S)

15: Set the “last” field td

16: Remove the first elementof S

17: If S'is now empty, remove the bucket
18: return v

Figure 1.5: They-bucketed priority queue described in the texteLBTEMIN is clearly
deterministically constant-time.NEERT has a potentially expensive operation in finding
the appropriate bucket; the assumption that new items wiltlbse in size to the current
minimum limits this cost to be constant. Computinmay be expensive or inexpensive,
depending on machine model: with= 2 on an floating-point machine, it is constant
time, whereas if only multiplication is allowed, it has trense asymptotic cost as finding
the appropriate bucket.

14

constant time. More generally, when the minimum key in the€iganin, we can insert
an item with key: in time O(| log,, -&-|).

m

In the dynamic case, it is difficult to analyze the stabilitydaesponse time of this
~v-bucketed priority queue without knowing how it will be useldtherefore defer these
guestions until the dynamic analysis of my meshing algorghwhich will refer to the
specific algorithm | described here.

1.6 Claims

Here are the claims | make for this thesis:

e The first implementation of a time-optimal Delaunay refinatneode in two and
three dimensions. On point clouds in three dimensions,theasfastest known re-
finement code.

e The first dynamic algorithm for maintaining a size-confangiquadtree or octree
over a point cloud, or over a suitable PLX If a featuref intersectsn; quadtree
cells when it is present, then adding it to the PLC or remoitifrgm the PLC takes
O(mylg L/s) time. The data structures to support this consunielg L/s + m)
space.

e The first dynamic algorithm for maintaining a quality, siz@aforming simplicial
mesh that respects a suitable PRCTin the same time and space bounds as to pro-
duce the quadtree. The algorithm works in any fixed dimengion

e A sufficient condition for being able to provably ignore bodarny effects while
meshing.

¢ A new framework to use to guide the choice of Steiner pointe fiew framework
gives somewhat greater freedom than traditional appreactieich is likely to be
useful from both the theoretical and practical point of view

1.7 Related work

Chew gave the first algorithm to provable produce a qualityhmastwo dimensions
[Che89]. His algorithm did not however produce a size-canfog mesh; instead, it pro-

15

duced a nearly uniform mesh, where all triangles were alleusame size. Meshes gen-
erated by Chew’s algorithm are therefore often must largan tteeded. Ruppert adapted
Chew’s algorithm and proved that his own algorithm producesaaled mesh of good
quality, with only a constant factor more vertices than isiropl [Rup95, first published
1992]. He lay the foundations (discussed in Section 1.3Matyzing the size of a mesh as
compared to the optimal. Both these algorithms use so-cBkgalunay refinement: as an
invariant, they maintain the Delaunay triangulation [P8I8r Constrained Delaunay trian-
gulation [Che87] of the input and any additional Steiner inserted so far. Iteratively,
they detect a trianglewhich is unsatisfactory (has bad radius/edge quality, Xargple).
Recall that the Delaunay triangulation is defined as thoaadtes whose circumscribing
disc is empty. Therefore, if a triangle is unsatisfactarys iquite natural and effective to
insert the center of that disc, and recompute the Delaumayglation. In three dimen-
sions, the pattern was repeated by Chew [Che97] and later 8b&W8he98b], who first
showed how to produce a quality radius/edge mesh with uniilement size, then with
graded elements. None of these algorithms claim any irttegesuntimes, and indeed
some lower-bound examples exist that can make the algaitake quadratic time. The
situation is even worse in three dimensions, where thelrtelaunay triangulation can
have siz&(n?) even as the output has size oNn).

The chief practical difficulties with the Delaunay refinerhalyorithms have been the
difficulty they have handling of small input angles, and tedency in three dimensions
to produce slivers. It is known in two dimensions that Ruppaigorithm works as-is on
inputs with angles o0° or more between any two segments. The same holds in three
dimensions, but this is small comfort since two polygonakta must meet at non-acute
angles, and segments are normally only used to bound fa<atmus simple tricks can
be used to ensure that Ruppert’s algorithm terminates @espith smaller angles. Even
defining what the proper input should be in these cases lkg/tritthe input has an angle
of 1°, itis fundamentally impossible to both respect the input produce a mesh with no
angle less thaf0°. Simple tricks such as Shewchuk’s “terminator” can produneshes
with no small angles except “near” a small input angle. Sadlyhree dimensions, no
simple tricks are known that have interesting provable bsurkEliminating slivers from
three-dimensional meshes is an industry unto itself. Amasylts that can provably
eliminate slivers, | outline the work of Edelsbrunredral and of Chenget al [ELM 100,
CDE"00], which showed that slivers are brittle objects that piesar when faced with
minor perturbations, even without adding new Steiner goiAtternatively, Chew showed
how to eliminate slivers in a uniform mesh by being carefuewladding Steiner points,
inserting not the circumcenter but a point close to the arcenter [Che97]. Randomly
choosing a point near the circumcenter, checking whethweiillitcreated a sliver, and
trying again if it did, we can be assured that no slivers weiinain in the output. Li

16

and Teng extended this to graded meshes by allowing theiameatt slivers, if they are
substantially larger than the simplex being processedatiger slivers can then recursively
be addressed [LTO1, Li03]. While these techniques provatdyyrce meshes with aspect
ratio at most some constani the value ofs they prove they can achieve is miniscule.
Labelle [Lab06] demonstrated that by running standard el refinement but using
lattice points rather than circumcenters, he can provettfebutput mesh will have no
dihedral angle less that0° for point cloud input. Lattice refinement has not yet been
extended to handle PLC features. It is very likely that bd#h Iti-Teng technique and
Labelle’s lattice refinement can be used in a dynamicalylstcode.

Closely related to the Delaunay meshing algorithms are tligpheking algorithms
[MTT 196, Tal97, LTU99b, LTU99a]. These operate by computing akebn-overlapping
balls with radius driven by a spacing function such as thalléeature size. The mesh
vertices are at the center of each ball. These can be alsotméalee account of PLC in-
put [MTT*96]. In spirit, Delaunay refinement is just a flavour of badleging refinement:
both involve inserting points at the center of an empty bdihfortunately, ball packing
quite explicitly adds as many points as possible and hasaatipe been found to create
large meshes [LTU99b]. Related to dynamic updates, Millalmdr, and Teng [MTT99]
showed how to use ball packing techniques to coarsen a mesfigat be required to do
after removing a feature from the input.

Simultaneously with the developments in the realm of Dedgurefinement, Bern,
Eppstein, and Gilbert showed how to use a quadtree to praagelity mesh [BEG94,
first published 1990]; Bern, Eppstein and Teng later paradldlthe algorithm [BET99,
first published 1993]. The technique defines a quadtree wdtpsees are size-conforming,
then warps the corners of the quadtree cells to respect ploe points. In the presence of
segments, it treats the intersection between a segmentargide of a quadtree cell as
an input point. Finally, they use a stencil to show how tongialate the resulting shapes.
Mitchell and Vavasis soon extended this to higher dimen®r00, first published 1992].
Bernet al. showed that if the input is defined byvertices, and the output contaimscells,
then their algorithm runs i®(n 1g n+m) time on integer or floating-point input. Mitchell
and Vavasis show the same assuming constant-time teste whsgher a quadtree cell
and a polygon intersect, barring which their algorithm cageherate t6)(mn) time; it
is sufficient to require that the polygons are defined by a dedmumber of segments on
their boundary. In other words, quadtree-based meshesasgmeptotically the same opti-
mal size as Delaunay-based meshes, but can be producedtaesyatly faster. However,
in practice, algorithms based on quadtrees output many pargs than do Delaunay
refinement algorithms.

The first interesting running time proved on Delaunay refiaetfthwas by Spielman,

17

Teng, andJngdr, who showed that Ruppert’s algorithm can be ruifig? L/s) paral-
lel rounds, with each round running @ (polylog(m)) parallel time [STUO7, first pub-
lished 2002]. They did not explicitly show a bound on the wdhough one can trivially
deparallelize the algorithm to find that in two dimensions;uns in near-linear work,
albeit with large polylogarithmic factors. Miller [MilO4proved the first practical sub-
guadratic sequential time bound on a variant of Delaunageefent, with time essentially
O((n + m)lgL/s) on PLC input in two dimensions. Around this timéngor showed
that by choosing a different point in the circumball, onet the termed theff-center he
could produce a somewhat smaller mesh in practice than walaiuDay refinement can
offer [Ung04]. The new point has the advantage that computing ini®ee local opera-
tion: its coordinates depend only on the shortest edgessitite triangle is of almost good
radius/edge quality. The locality allowed Spielman, Teangg Ungdr to shave one loga-
rithmic factor off their analysis [ST04]. More excitingly, it also allowed Har-Peled and
Ungdr to use a quadtree for point location and off-centers feirr points to choose a set
of points whose Delaunay triangulation forms a quality uatédge mesh i@(nlgn+m)
time [HPUO5]. Finally, using the Delaunay triangulation plus a veajve point location
structure, Hudson, Miller, and Phillips developed the figgtimal-timeO(nlg L/s + m)
Delaunay meshing algorithm that handles PLC input (alsofitet subquadratic space al-
gorithm in three or higher dimensions) [HMPO6]; this quicldd to the development of a
parallel algorithm inD(lg L/s) rounds of parallel deptt(Ilg m) each, with no additional
work [HMPO7b].

Various other meshing techniques have been proposed. kbedge bisection chooses
a Steiner point for a bad-quality triangle by bisecting thiegest edge, rather than insert-
ing the circumcenter. Adding a number of details, it app#aasthis technique is soon to
be proven correct and size-conforming in two dimensions/ahding front methods start
at the boundary of the PLC features and build triangles cattetdra from there out toward
the boundary of the domain. These methods typically faceestifficulties on compli-
cated geometries, though they are not insurmountable. ErePEled andIngdr tech-
nique is reminiscent of an advancing-front technique in tha off-centers it inserts are
spawned from regions with small local feature size and gnavward to regions with larger
local feature size. Labelle and Shewchuk recently showed tbomesh an implicitly-
defined surface, rather than a PLC, in such a way as to obtaingsguarantees on the
dihedral angles [LS07]. Given a poor-quality mesh, a hugaber of mesh optimization
passes have been proposed that move the mesh vertices ardwompes of improving the
quality of the elements: at the International Meshing Roabldt, there are normally sev-
eral sessions each for tetrahedral and hexahedral meshizgaion. Many are guaranteed
never to reduce mesh quality, and most are guaranteed nwdd br delete any vertices.
Typically, they act locally, which implies that it should dgnamically stable to run a few

18

passes of a mesh optimizer after running my algorithms.

Shewchuk implemented Ruppert’s algorithm for two dimensi@he96], and his own
in three dimensions [She98b]. Triangle has been quite ssfide Pyramid has not yet
been publicly released. Mitchell and Vavasis implement&GJIMV00], also known as
Qmesh, which is based on the octtree algorithm; this codadky $10 longer supported.
Hang Si has implemented Delaunay refinement algorithmsgahdth substantial engi-
neering to handle real-world inputs, and packaged it asde{Si06].

Commercially, the most successful codes are based on TetMEkls is a major
piece of software encompassing a huge number of heuristitsyash optimization passes
which, in practice, appear to often produce small and goadityuneshes. TetMesh lacks
theoretical guarantees; when one meshing heuristic thiésadvice is to change which
heuristic to use. Many in the scientific computing world, exsplly in National Labs run
by the US Department of Energy, prefer to use so-called hekah meshes, which use
distorted cubes as their basic element. Producing hexahedshes appears to be very
difficult both from a theoretical and a practical standpoint

Kinetic meshing has attracted some attention. There arenain approaches taken in
the literature. The easiest is to remesh from scratch [KFCBWHHTO7]. Unfortunately,
it is of course quite wasteful to entirely throw away an altrgeod mesh. Worse, the two
meshes may differ in every triangle, causing reinterpofagrror when copying values
from the old mesh to the new. Another approach is to locallyash [CCM 04, MBFO04].
Itis easy to implement locally improving the quality. Hoveevto be size-conforming (and
size-optimal), we must alsmarsenthe mesh [MTT99, LTU99b]. Sadly, it is unclear how
to make mesh coarsening a local operation: coarsening mutiém lg m) time, which is
asymptotically more expensive than remeshing, althouginantice is much faster.

Dynamic meshing is a much less well-trodden field. Topolalgzhanges during
kinetic meshing are typically handled in @i hoc manner, and not seen as dynamic
changes. Chew has mentioned in personal communicationrttafracture simulation
project with which he collaborated, many of the mesh updat® exactly dynamic up-
dates as | have described; to those, their technique wasestefrom scratch. Nienhuys
and van der Stappen describe a technique to remesh localigntdate the new surfaces
caused by a scalpel cut through simulated tissue; they tetoeally and add a few new
points [NvdS04]. Experimentally, they claim interestimgults; unfortunately, they theo-
retically prove neither runtime nor correctness. Coll, Gieerr and Sellags described a
dynamic remeshing algorithm based on mesh optimization [@ESSadly, they did not
analyze the runtime of their technique, though they did elitavcorrectness.

19

1.7.1 Relations to prior work

The SVR algorithm is something of a hybrid of quad-tree anthDeay refinement tech-
niques. Like the naive quadtree algorithm, SVR always naaista quality mesh (with,
therefore, low degree) and refines top-down, only at thestagtrecovering the input. Like
a Delaunay refinement approach, SVR maintains the Delauizagutlation of the set of
points it has thus far processed, and uses circumballs glises as its fundamental ob-
jects. The code is in the tradition of Triangle, Pyramid Gen, and QMG: cross-platform
codes implementing provably good algorithms, and cos-fioe research use.

My dynamically stable mesher has a longer pedigree, evaniggnproof techniques.
It directly uses a quadtree, and therefore is a quadtregitigp Borrowing the idea
of Har-Peled andJngor, however, the quadtree points are never inserted theiputpd
instead it is only used for point location in lieu of maintaig a Delaunay mesh. The gap
balls with which | define legal insertions are from Talmor duad thesis work (with Miller
et al) on ball-packing and Delaunay refinement. Mine is a paraltgrithm, though | use
the parallelism only in order to get good dynamic stabilityits under the paradigm first
developed by Spielmaet al [STUO7, STUO4]. Finally, the encroachment and yielding
rules of Chapter 6 are from SVR. As with the algorithm of HareledindUngdr, a claim
could also be made that mine is an advancing front algorithaygh it was not conceived
as such.

The general technique | adopt is to use a graded, size-coirfgrquadtree as a point
location structure to choose Steiner points. A number oéotynamic point location
structures have been developed, some of them based onepgdtr particular, Eppstein,
Goodrich, and Sun show how to dynamically maintain what tteggn askip quadtree
under point insertions and deletions [EGS05], work thatesha surprising number of
keywords with this work. Because of the highly restrained wayhich | use the quadtree
| build, it can answer the relevant range querie®in) time (see Lemma 4.3.3), and can
support insertions of new Steiner points also in constam tilt is unclear how to use skip
quadtrees to support these operations without paying ai@dd O(lgn) term in the
runtime; it is equally unclear how to represent higher-disienal PLC features in a skip
guadtree. My algorithms run in two phases: first they buikel pleint location structure,
then they query the structure and build the mesh. The rur(timgh static and dynamic) is
at the moment dominated by the first phase. A faster pointitmtatructure may speed it
up in practice. However, any replacement structure must ¢ake to keep the query cost
in constant time: an additional logarithmic term on quen&aild make the time of the
second phase dominate the asymptotics.

Those who have witnessed the slow development of dynamiegadmull algorithms

20

may be surprised by my claims of having discovered a relgtaienple algorithm that out-

puts a Delaunay triangulation (note that the Delaunay prabh dimensionl is equivalent

to the convex hull problem in dimensia@n-1). The dynamic Delaunay triangulation prob-
lem is famously difficult, because the insertion of a singlgpcan cause linear change in
the output triangulation. However, examples of this betawviequire maintaining a mesh
with very skinny triangles. In a quality mesh, no skinny igée is present in the output.
Indeed, the algorithms | present never represent a verpgkiiangle even in intermediate

stages of the algorithm.

21

22

Chapter 2

The SVR algorithm

The first result of this thesis is an implementation of therS@&oronoi Refinement (SVR)
algorithm, which is the first optimal-time Delaunay refinemhalgorithm. This chapter re-
views the previously published algorithm [HMPO6] includisketches of the proofs to
clarify the degrees of freedom we can work with in the implatagon. The main new
content of this chapter are a longer description of the fisinibehind SVR and the prob-
lems faced by traditional Delaunay refinement methods; andra exhaustive algorithm
listing that has previously appeared.

2.1 Traditional Delaunay refinement

Traditional Delaunay refinement algorithms first constiaiconformingDelaunay trian-
gulation of the input (or @onstrained Delaunaynesh), which respects the input but has
elements of arbitrarily bad quality. Next, the algoritherétively finds a simplex of bad ra-
dius/edge condition, and removes it from the mesh by caigT. A simplex appears in
the Delaunay triangulation if and only if its circumball is\pty of any other points, so by
inserting any point in the circumball and recomputing théaDeay triangulation will re-
move the bad-quality simplex. Chew [Che89, Che97] showed thed@edure that inserts
the center of the circumball will terminate; Ruppert [Rup9Bpwed it would terminate
with a mesh of nearly optimal size (within a constant fagtafiile Shewchuk [She98b]
first extended Ruppert’s technique to three dimensions.

To handle features, the algorithms will snap candidateioicenters to the boundaries
as the need arises. A simplex of a PLC feature will appearamtésh if and only if it has
some circumscribing ball that is empty of any mesh vertiogeparticular, it will appear if

23

TRADITIONAL DELAUNAY REFINEMENT(X C R¢, p)
1: Let M be a conforming Delaunay triangulation &f
2. () — the set of all bad-quality Delaunay simplices/af
3: while @ is non-emptydo
4. Lets «— TOP(Q)
5. if sis no longer in the meslskip
6: SPLIT(S)
7. end while
8:
SPLIT(s: a simplex of dimension)
9: Letp « circumcenter(s)
10: if p encroaches a feature’s simpléof dimension’ < ¢ then
11: Yield SPLIT(s)
12: else
13: Perform a Delaunay insertion pfinto M, creating a vertex
14: for each simplex € link(v) do
15: if s has bad radius/edge quality, adtb @
16: end for
17: end if

Figure 2.1: The traditional Delaunay refinement algoritloe to Chew [Che89], Rup-
pert [Rup95], and Shewchuk [She98b], and refined by many thEne algorithm first

computes a conforming or constrained Delaunay triangaaidf the input (for simplicity,

| describe the conforming Delaunay case here), then itetgtimproves it, taking care
that the triangulation continues to conform to the inputthree dimensions, this is not
always possible, which requires an auxiliary structure tontain unresolved boundary
facets [She98b, MPWO02].

the smallest-radius circumscribing ball is empty. Though is not a necessary condition,

it is relatively easy to describe and analyze. Accordinglis common in the literature

to define the circumball of a lower-dimensional simplex & {unique) smallest-radius
circumscribing ball. To maintain the invariant that thecaimball of a lower-dimensional
simplex is empty, when inserting a triangle’s circumcenteuld violate the invariant,
traditional refinement (and also SVR) willeld and insert the segment’s midpoint first.
In higher dimension, this procedure may recursively yietmhf circumcenters of full-
dimensional simplices tGl — 1)-dimensional ones down to segments (1-dimensional sim-
plices).

The runtime of traditional Delaunay refinement has beencdiffito analyze. In two

24

dimensions, itis clear that each insertion can be made tmrime linear in the size of the
mesh at that point, which gives us an uninteresting time 8afi®(m?). When the order
of operations is left arbitrary as in Chew’s, Ruppert’s, andvigthuk’s algorithms, exam-
ples (see Figure 2.2) exist where the output siz@(is) — just under3n, using Triangle
—, yet each vertex insertion modifies a linear number of gies, giving us a lower bound
of Q(n?). Miller worked around this difficulty by proposing to ordéret work queue?)
largest circumradius first. This produces an optimal-ti{e 1gn + m) algorithm when
there are no segment features (because the priority quaeuleecapproximate), and one
that runs in a logarithmic factor slower than optimal wheeréhare features (because the
priority queue must then be strict). Conversélypgor recognized that one gets a smaller
output size by working on the shortest edge first, in whichedag worst-case example
applies. Therefore, practical codes can determinisyidadl made to take quadratic time
on admittedly non-practical inputs.

In three or higher dimensions, the situation is far simpleis well known that there
are point sets where the Delaunay triangulation hasiz&"/?1) [McM70]. In particular,
the moment curve, where poipt has coordinate§, i2, . . . , i), achieves this bound. For
an example that comes up in application, consider a galattyawentral quasar. Almost
all the mass of the galaxy except the quasar will be conceatie@most on a circle, while
the quasar will emit jets perpendicular to the galactic plawe can model this as a set
of n; points on the circler? + y? = 1 with z = 0, and another set of, points on the
linez = y = 0. See Figure 2.3. The Delaunay triangulation of this inpg &eactly
ni(ny — 1) tetrahedra (which i$©(n?) whenn, = n,): consider a consecutive pair of
points on the line, and another consecutive pair of pointthercircle. We can expand a
ball out with on its surface the two points on the line by mgviormal to the line. In this
plane, we can choose to move in the direction of the midpatwben the two points on
the circle. Clearly, the ball will never intersect any otheirjts on the line, since it is being
grown orthogonal to it. Equally clearly, the first points e ttircle that ball will intersect
are the pair that we have chosen. This witnesses that tladéetron formed by the four
chosen points is Delaunay. By symmetry, we have proverethat/successive pair on the
circle forms a Delaunay triangle wittverysuccessive pair on the line. On the other hand,
after refining this pathological example, we can prove [HM&Ghat the output size (both
number of vertices and number of tetrahedra) will be onlgdinin the number of vertices
in the input. This prediction is borne out by experimentshigghe SVR implementation,
which show that the answeris = 42n tetrahedra.

25

1
(3VB,15)
(3/3,0.5)
L]
L] _ _
@) (b) (©

80 80
60 60
40 40
20 20
0 0

0 250 500 750 1000 0 250 500 750 1000

(d) (e)

Figure 2.2: An example, modified from one of Jernej Barbic §peal communication),
that can require Ruppert’s algorithm to run in quadratic tiwvkeen processing triangles
in order of shortest edge first (which is what Triangle appr@ates). Ruppert reportedly
previously developed an equivalent example, also unphdddis (a) Let: = n — 4. We
placen — 3 points along the axis so that the separation between successive pointsus abo
1 but grows slightly, by a tiny (not pictured). We place a point at the off-center of the
bottom-most edge, so that it subtends a quality trianglecofaplete the area, we place
two more points far enough that every point ongrexis has a Delaunay edge with the off-
center point. (b) When choosing to process triangles shatige first, the shaded triangle
will be chosen, which inserts a new vertex directly abovedideoff-center. Note that this
new point is the off-center of the shaded triangle, not jtsstircumcenter. (c) Inserting
the chosen point requires updating all but a small numberiafdles, and leads us to
essentially the same situation as before, proving the atiaduntime. (d) Runtime of
Triangle, version 1.5, running on an unloaded Mac Pro 3 G @ore2 Duo. | presume
the runtime is highly variable because Triangle only appnates the smallest-first order
required to exhibit the pathology. (e) The upper envelopthefruntimes, compared to a
O(n?) fit.

26

Figure 2.3: Pathological example wih points on a line and00 on a circle.

2.2 SVR intuition

The difficulty of analyzing, even in two dimensions, the iom of traditional Delau-
nay refinement comes from the fact that in the intermediatehe® vertices have almost
arbitrary degree — up to linear. Indeed, the problem in tlteeensions is that every
vertex has linear degree. However, in the final output, evertex has bounded degree:
at most 12 in two dimensions when the angle bounghis(easily computed by dividing
360° into 30°), and still a constant function ¢fin higher dimension [MTTW95, Tal97].
The last statement suggests that one way to bound the degi@aglogical quantity that
affects runtime, is to bound the quality, a geometric qupterhaps easier to analyze.
SVR is thus built around the following invariargvery intermediate mesh has reasonable
radius/edge quality— this implies that the mesh is alwagparse Achieving the user-
demanded bound is too demanding and unnecessary, so we allow intermedieshes
to degrade to somg that is a constant function ¢f, of the dimension/, and of other
user-specified parameters independent of the input coafigar

We can thus describe SVR as an algorithm that alternatesebattwo goals: first
and foremost, it must maintain quality. Thus, the initiatstis to hold a good-quality
triangulation of a bounding box around the input, which doesresolve the input at all.
Whenever the mesh contains an element of bad quality (woase}hSVR states that we
must process that element first, as if running traditiondaDeay refinement (albeit with
a slightly modified $LIT procedure). Only once the mesh is again of good quality will
SVR try to resolve the input. A simplex that contains an inpaitt in its circumball is
clearly not a simplex that will be output, so SVR will alselST that simplex.

Recall that to eliminate a simplex, we need only insert sonn& pathin its circumball.

27

Traditional methods insert the circumcenter. However, WRSnot all of the input is
included in the mesh; the circumcenter may be very close tagrt point, which would
create an artificially small feature. Conversely, if indeleeré is an uninserted input point
within the circumball, SVR may as well use it instead of theeemcenter — unless the
input point lies too near a current mesh vertex (namely, gipusly-inserted input point).

To preferentially use an uninserted input point, but ensaéit is far from any existing
mesh vertex, SVR searches for a point in the shrunkeni@llkr) whereB(c, r) is the
circumball of the given simplex, ankl is a positive constant less than 1. See the next
section (Figures 2.5 through 2.8) for a full algorithm gtiand description.

Proofs are much simplified by using tMeronoi diagram as the intermediate mesh,
rather than using the Delaunay triangulation; thence timeenaf our algorithm. The two
are duals of each other, so a data structure for one is a datiuse for the other. The
type of the intermediate structure is an implementatioraitieits purpose is not to be
triangular (or tetrahedral, or Voronoi), but rather to pdavfor fast range queries when
looking for a point inB(c, kr), to provide a mechanism for determining whether the mesh
is locally of good quality, and to drive recovery of uningelpoints and features. A key
philosophy of the design of SVR was that implementationitéeshould not be enshrined
within the algorithm or its proofs, in the hopes that this wiballow substantial room for
constant-factor improvements.

The proof that SVR produces a quality mesh of small size &ixgly unenlightening;
it follows the same line of argument as Ruppert’s originabalhpm [Rup95]; see also
the size-conformance proofs in the later chapters of tlasih In essence, the algorithm
works because it inserts roughly the same vertices thatitadl refinement would insert.
The difference is that SVR inserts the vertices in a diffeceder.

SVR'’s runtime is bounded to be if(nlg L/s + m). Fundamentally, there are only
two proofs underlying this runtime. First, we prove that thesh quality never get worse
than some’ which is a constant function ¢f %, and the dimension. Individual insertions
may degrade the quality of the mesh, but an inductive argustesws that the degrada-
tion is limited. In essence, splitting a good-quality elemmay create mediocre-quality
elements, but splitting mediocre elements cannot createslganents. This implies that
the mesh is of bounded degree. The bounded degree in turiesiibat most operations
are constant time: in particular, inserting a vertex wikganly constant time, establish-
ing theO(m) term of the runtime. Second, we show, using a packing argyrtieat any
input point participates in onlg(lg L/s) range queries, and that Steiner points inserted
on lower-dimensional features are involved in odlyl) range queries; using a similar
argument, we show the same holds for updating the range uergture. Given the
bounded-quality assumption, each query is constant time;provides the)(nlg L/s)

28

term, and also contributes to tki&m) term. In other words, point location is almost the
entire cost of mesh refinement using SVR.

2.3 Algorithm Listing

SVR suffers from some schizophrenia as to whether it is teulyoronoi-based or a
Delaunay-based algorithm. Generally, it is easiest te stet proofs in the Voronoi and
the algorithms in the Delaunay. Converting between the tweieerally not hard; | use the
word ‘cell’ to be deliberately vague about which | mean, vdeexr | use the term ‘Voronoi
cell’ or ‘Delaunay simplex’ in those few times where it is iofpant to be specific.

The fundamental invariant in SVR is that the mesh being raaiet in memory always
has good quality. To achieve this, we initially only repmasgart of the input. Points of
the input that are not yet inserted are kept in a point looagtoucture related to the mesh;
see Section 3.1 for a discussion of a few different such &tres; in the present chapter,
the structure is deliberately left vague. While the interra@imesh always has bounded
radius/edge ratio (or bounded Voronoi aspect ratio), thatity bound is in general some
¢ > p. To maintain qualityy’, and to eventually recover the input, the mesher must
alternate between ensuring good quality by eliminatingiskicells (those with quality
worse thanp) and eliminating crowded Voronoi cells (those that con@muninserted
point of the input). Priority is given to eliminating skinmglls. For ease of analysis and
programming, the crowded and skinny cells are all put ontoeug, whose responsibility
it is to properly prioritize the different types of events.

A cell on the queue needs to be either eliminated (if it is apéx) or shrunken (if
it is a Voronoi cell). To shrink a Voronoi celV (v), we must insert a mesh vertex
such that some points i (v) will be closer tou than towv; this corresponds exactly to
inserting a point in the circumball of one of the Delaunayioes that has as a vertex.
Therefore, eliminating a Delaunay simplex or shrinking aovimi cell are fundamentally
the same operation. Inserting a new vertex anywhere witlwincamball eliminates the
corresponding Delaunay simplex; however, we must takeafareo things:

¢ If the vertex corresponds to a Steiner point (a point not mittput), it must not
violate the size conformality requirement by being closartionput feature.

¢ If the vertex is an input point, it must not violate the inteainate quality guarantee
by being close to a mesh vertex.

We defined a procedure that accounts for both these requitsmbustrated in Fig-

29

Figure 2.4: If a simplexs is undesirable for some reason, we wish to insert a point in its cir-
cumball, the outer circle pictured. Any point in the ball will destroy the simplex,ifiserting an
uninserted poing very near a current mesh vertex would create a new simplex of arbitrady b
quality. Therefore, the search is over the shrunken ball of rddiushown shaded. If there is an
uninserte as there is in this illustration, it will be inserted,; if not, the centevill be inserted.

ure 2.4. Given an undesirable Voronoi cEllv), we say that the largest-radius Delaunay
simplex that has as a vertex is itself undesirable. Given an undesirableudaiasimplex,
the two most natural points to insert are the circumcenténe@timplex being eliminated,
or an input point that lies within the circumball. The ruledisscribed as follows: first,
consider the circumcenter. Search out to a raéliyswith £ < 1, from the circumcenter.
Upon finding an input point within that radiusarpto the input point and use it instead; if
there is no such input point, insert the center. Settiag0 violates the first condition (we
create arbitrarily small features that should not existjtisg £ = 1 violates the second
(we emulate Ruppert/Shewchuk refinement, allowing arliyrbad intermediate quality).
The proofs of correctness and runtime apply for argy (0, 1), which means that choosing
k is an engineering question that | relegate to the next chapte

A critical detail is that wemust when processing a crowded Voronoi cEl{v) of a
Steiner point, insert an uninserted input pgintk V' (v). Intuitively, we know this is safe,
because must be far from (otherwise, the warping procedure would have chgsever
v); it is therefore desirable from a constant-factor stamupo blindly insertp. The fact
that it is required for termination is less obvious, and kadly for somek: essentially,
without this rule, we might insert Steiner points in ringadietingp but never inserting
itself.

The method for implementing the query for whethfc, kr) contains a point, or
whether a cellV (v) is crowded, is purposely left undefined here as an implertienta
detail; | overview several alternatives in the next chapter

Handling input features is done by maintaining a méshfor each polytope € X'

30

SVR(X, p, k)
. Create(), ordered according to @UPARE
. INITIALIZE the meshes, the point location structures, and the workegideu
. while @ is not emptydo
w « the highest-priority work item
SPLIT(w)
end while
: OutputM

Figure 2.5: The SVR main loop.

Skinny cells in low-dimensional meshes are prioritizedaahef skinny cells in the higher-
dimensional and the full-dimensional mesh. When a new vertgppears in the mesh for
f, meshes for the polytopes that contdifi.e. that havef on their boundary) addto their
list of uninserted points. Given a Delaunay simpéex M, consider the circumball of.

If, in a meshM -+ for a higher-dimensional featur€", that ball contains no points, and if
all the vertices of appear inV/;+, then clearlys is Delaunay and thus appears as a simplex
in My+. SVR maintains the invariant that every meghy protectsthe diametral balls
of all the Delaunay simplices of all its lower-dimensionaafures and keeps those balls
empty. To achieve this, wheW ;+ considers adding a mesh vertgt first checks whether
that vertex lands within a diametral ballthat it is protecting. If indeed encroaches
upon the protected ball, ther s+ enqueues the simplex corresponding,tgiving it the
highest possible priority, and also re-enqueues whatewek ivwas processing that led it
to encroach on a protected ball, with obviously lower ptyori

Encroached cells are processed before skinny cells, whegbracessed before crowded
cells. In the event of a tie, events are processed lowestbian first (an encroached
segment before an encroached triangle, but an encroadn&icetegron before a skinny tri-
angle). It should be noted that we need not explicitly hatalledimensional crowding:
if the ambient-dimensional mesW decides to insert a poiptthat crowds a simplex in
low dimension, it will immediately cause encroachmenp @i s, which will be resolved
by insertingp into the lower-dimensional mesh.

| divide the algorithm into four parts. The main loop initi@ds, then iterates until the
gueue is empty (Figure 2.5). Initialization creates thedd@tuctures needed for the algo-
rithm (Figure 2.6). The BLIT operation handles checking for encroachment and warping
(Figure 2.7). The NSERT operation performs the mesh and point location structure up
dates when we finally do in fact insert a vertex (Figure 2.8)e Work queue is ordered
according to © MPARE.

31

INITIALIZE
1: Create a bounding bak large enough to ignore boundary effects
Let M < DelaunayB)
For eachf € X, let M «— Delaunayf)
Initialize the point location structur® with M and X’
For eachf € X, initialize P, with M, f, and subpolytopes of
for every vertexo € M do
If v is crowded, add a work itemOWDED(v)
end for
for every simplexs in every mesh\/; do
If s has radius/edge quality worse tharadd KINNY (s)
If sis encroached in a higher-dimensional mesh, addBOACHED(s)
12: end for

ol
= o

Figure 2.6: Initialization: create the meshes for eachuieatnd for ambient space.
Create point location structures. Seed the work queue.

32

SPLIT(w)
1: if w = CROWDED(v) andwv has containing dimensiahthen
2. Choose an arbitrary poiptthat crowdsy

3: Find a simplexs aroundv whose circumball includes
4: Call SPLIT(p,)
5. If SPLIT did not insert any points, add back to the work queue
6: else ifw = CROWDED(v) andv has containing dimensian< d then
7. SPLIT the simplex around with largest radius
8: else{w refers to a simplex in M}
9: if w also refers to a point then
10: letc «— p
11: else
12: Compute the circumcenterof s, with radiusr
13: if P; knows about a point in the ball B(c, kr) then
14: Warpg ¢ < p
15: end if
16: endif
17: if ¢ encroaches upon a simplexof a lower-dimensional featurg then
18: Add w back to the work queue
19: Yield Add ENCROACHED(s') to the work queue
20: else
21: INSERT(c, s)
22: endif
23: end if

Figure 2.7: Handling a work item, which will inevitably le&al splitting a simplex by in-
serting a point in its circumball. Splitting may warp to apirn point, or it may temporarily
yield to one or more lower-dimensional simplices it encrescupon.

33

-
Q

11:

© NN

INSERT(p, $)

1:

Let M, be the mesh of whichis an element, and, the corresponding PLC polytope.
Perform a Delaunay insertion pfinto M,
Let (K, C) be the sets of simplices resp. destroyed and created by
UpdateP;, accordingly
for each featuref;" that hasf, as a subpolytopdo
UpdateP;+ to ignoreX” and take account @' andp
end for
if p has containing dimensiatim(f;) < d then
Look up in P the vertexv whose Voronoi cell contains
Add CROWDED(v) to the work queue
end if

Figure 2.8: Inserting a point into a mesh in SVR. This requirpdating the appropri-
ate mesh, but also updating the set of protected balls angemed points that higher-
dimensional meshes maintain via the point location strestu Also, when points are
created, we mark a corresponding vertex of the top-dimeasimesh as being crowded.

COMPARE(w1, ws)

1
2
3
4

: ENCROACHEDcomes first. If both are encroached, lower dimension com&s fir
: SKINNY comes first; if both are skinny, lower dimension comes first.

: CROWDED comes last.

: Break ties arbitrarily.

Figure 2.9: Items on the work queue are ordered accordingptoFBRE. Two work items
that match both on reasonEROACHED, SKINNY , or CROWDED) and on dimension are
ordered arbitrarily. This ordering can be computed in camstime.

34

Chapter 3

A Practical Implementation of SVR

Having reviewed the algorithm and proof sketches, | now repoa C++ implementation

of the static algorithm, and some significant constantslaointime improvements we

developed for the implementation. This chapter is exparfaed a report presented at the
International Meshing Roundtable [AHMPO7].

3.1 Pointlocation structure

During SPLIT, two types of point location query must be performed: first,agk whether
there is an uninserted point in the warp region, as desciib&tgure 2.4. Next, we ask
whether the point chosen to be inserted encroaches upooasy-tlimensional protected
ball. Updating these structures is left todERT and INITIALIZE . Recall that SVR runs
in O(nlg L/s + m) time. The first term is due entirely to these range queriespanat
location operations; the second term also includes some @ogts. This suggests that
these operations will drive the runtime, and indeed we wéle 8 extract substantial
speedups by focusing on them. This section overviews theldgment of a data that in
practice offers great advantage over the more naive meitestsibed in the theoretical
papers. To date, the best technique is only applied to thesarted points; the code to
handle input features is still young.

In order to retain the asymptotic guarantees, the quergtsireimust be able to respond
to a range query looking for an uninserted point in an emplly®&c, k) in constant time,
plus the time to consider the points themselves. During geauery, every uninserted
pointp that is considered (and potentially rejected) must be &uli€||cp|| € O(r). The
same holds also for updates: upon inserting a vertdke structure must only perform

35

reads or writes relating poings such that||vp|| € O(NN(v)). Finally, the analogous
statements must be true for checking for encroachment.

By circumball: When we perform the queries, we have in hand a simplex thateve ar
destroying, and even after warping, any point that we insgrbe within the circumball of
the simplex. Therefore, it is intuitive to maintain pointsddower-dimensional protected
balls associated with the circumballs of the mesh simpliddgen, to check whether we
need to warp, we simply look up the set of points in the circalintf the present simplex
and find one that lies in thér shrunken ball. To check whether the chosen point en-
croaches, we query each of the protected balls that intettseecircumball. The simplicity
of this approach is obvious. There are some significant desgdges unfortunately: an
uninserted point may be present in the circumballs of ségarglices, which duplicates
the storage. It also requires duplicate elimination whedatipg, to make sure that the
same point is not added repeatedly to a single circumbalineScare must be taken to
make sure that points are indeed assigned to the circumibalisich they lie: it is best to
use a robusiNsPHEREpredicate for this.

By simplex: The traditional point location structure for triangulatg) dating back at
least to Kirkpatrick [Kir83], uses the triangles to driveipolocation. That is, points are
kept in the triangles. To test whether a point lies within thuery region, is somewhat
more complicated than above: we iterate over the set ofgiggrthat intersects the query,
and in each triangle, iterate over all the points it conta@@nversely, updates are cheaper:
we simply reallocate the points in all the triangles thatevéestroyed. Each point appears
exactly once, and will lie in exactly one of the new trianglé# lies on a segment, break
ties arbitrarily). During this reassignment, it is criti¢a ensure that numerical errors do
not cause a point to fail to be assigned to any triangle. | vskdstoRIENT3D predicates
for this. In my admittedly inexaustive experiments, theiisgs in memory and reassign-
ment time compared to using circumballs were quite sulislaiRecognize that there is
a tradeoff between reassignment time and query time: gtamnithe circumballs gives for
faster queries, but slower reassignment, as compared [@icgs. However, every query
leads to the destruction of a large number of simplices (@nage six in two dimensions,
about 18 in three dimensions in our experiments). In othedgajcsubstantially more re-
assignment is performed than queries.

By Voronoi: Determining whether a point lies within a simplex, or determining
whether it lies within the circumball of a simplex, is an empee operation: both involve
solving the determinant of a dense raik2 matrix. Using the dual Voronoi diagram gives
a substantially cheaper update: when a new mesh vertexededs uninserted points in
the affected Voronoi cells (that is, the cells of the veritteat in the Delaunay triangulation
form the link of the new vertex) need only be tested to see kidrghe new vertex is closer

36

Figure 3.1: lllustration of the intuition for why using thenoi with concentric shells
can give a dramatic benefit over naively using the Voronaydien. Any concentric shell
that the query ball does not intersect need not be searchedaltows SVR to avoid
checking the dense cluster of points.

or further than the vertex that currently owns them. Thidss an operation that requires
far less numerical robustness: being off by a smaflay position the point in the wrong

Voronoi cell, but will never entirely lose track of the pgirgnd queries are essentially
unaffected by such small errors, since they will search httonoi cells in any case.

Queries are more expensive even than the simplex-basedus&ufor the simple reason
that the set of Voronoi cells that covers the query disk al®eers a much larger area
outside the query disk than do the equivalent simplicesmipiémentation, there was no
immediate benefit to using the Voronoi diagram for point taoainstead of using the

simplices.

The definition of crowding needs to be changed when usingngroells: now, a
Voronoi cell is crowded, rather than a simplex. When a Vorarsdii of a Steiner vertex is
crowded, it is guaranteed that any uninserted input poiiatrifom the vertex (or it would
have warped), so we can blindly insert any one of the verti¢éisen it is a Voronoi cell
of an input point, the SVR algorithm specifies to insert théhkst Voronoi node. Since
the code now uses Voronoi cells for point location, this istMhdescribed in Figure 2.7.

One pitfall which befell me was that vertices have a longilife, unlike simplices;
but they only lose vertices over that lifetime. Therefohe structure that stores the set of
points in the Voronoi cell must shrink over time. In partaylthe standarst d: : vect or
class does not shrink, which then causes the point locatiioatsres to require asymptot-
ically more space.

By Voronoi, in concentric shells: Consider a dense cluster of points, as in Figure 3.1.

37

Early in the run of SVR, some simplex will warp to one of the gsjrcall it v, when
choosing a point to insert, and all the remaining points Wél assigned t@. Those
points will then be checked for relocatidnlg L/s) times each, and will each time reply
that they are closer to than to the new vertex. A fix for this is to assign the points in
concentric shells around, with the radius of each being a constant factor larger than
the previous. When a new vertex appears, we know not to check any point in any
concentric shell that is entirely closer¢ahan tov’. In other words, points will only be
checked for reassignment when the local mesh size has stodr&kcommensurate with
their distance fromv. Similarly, queries inspect all the points in each congesstrell, from
the outermost until reaching a concentric shell too clogbéorertex for the query to give
a positive answer. Asymptotically, this is no change: camtsing the concentric shells
takesO(lg L/s) per input point to find the appropriate shell, using a stnecuery similar

to the~-bucketed priority queue described earlier (Section IHewever, the operations
are cheaper, and it allows the memory hierarchy to safelst &@m cache the geometric
coordinates of the uninserted points. During developnemitching to concentric shells
immediately halved the runtime as compared to using the ndardiagram naively, or
using simplices.

Despite the saluatory effect of concentric shells with eespo the number of point
relocations that are performed, relocations are still gdaxpense. On an IEEE floating
point machine given a point, we can find the index of the appropriate concentric shell
aroundv by computing the square of the distance, then right-sigiftip 53 bits to retain
only the exponent of the squared distance. Using this dyreatans that the concentric
shells grow by a factok/2; | did not experiment with changing the growth factor by
modifying the exponent. Note also that the exponent is agait rather than a double,
which reduces the memory overhead of each concentric Swh low-level tricks as this
one, which only avoids computing a square root and a fewidivis have a surprisingly
important effect.

Other ideas: In some circumstances, no point location needs to be donk ana
particular, if there is no remaining uninserted input, wa short-cut the query. On the
bunny dataset, this occurs in the final 10% of point insestiam the pathological input,
this is closer to 30% of insertions (see Section 3.4 for theedjgtion of the experimental
inputs). Detecting this situation is cheap: simply a mestheveounter.

The concentric shells avoid wasting time negatively answeiange queries with re-
spect to points close to a mesh vertex. Another weaknessrongebased point location,
which the concentric shells do not improve, is that a queiyimating from one side of the
Voronoi cell will touch points on the opposite side of thelc&Vorse, if the Voronoi cell
is of mediocre aspect ratio, and the query comes from a sttt the outermost shells

38

will still be inspected. In other words, we do not yet have adysolution to point location

for points far from a vertex. Possibilities include usingydihd: Voronoi shells near the

vertices, simplices in open space. Another possibilitpisge the Voronoi cells of both
mesh vertices and element circumcenters. These remane futark. Given the success of
the prior speedups, Amdahl’s Law currently limits the efffecany further improvement.

However, | optimistically claim that point location willdely become the limiting factor

again as SVR proceeds to tackle increasingly large problems

3.2 Design and implementation

The goal of the SVR codebase, beyond merely implementingltdeithm, is to provide
a useful library for writing arbitrary-dimensional mesginode, and to provide a richer
API than is often provided in meshing codes for accessingrigsh (in particular, for
modifying it). For ease of interface with other codes, theRSmplementation is in C++.
For efficiency in the face of generality, | heavily use thegmaetric polymorphism of the
C++ template mechanism, which modern compilers can comgédsanably well; | avoid
polymorphism based on dynamic dispatch due to its runtinse ddne code can be roughly
divided into four modules: (1) support classes and I/O. (¢ Tesh topology. (3) The
mesh geometry, and geometric predicates. (4) The mestgogtaim itself.

Given that the code is in C++, | made extensive use of the Stdn@mplate Library
(STL) and of the Boost libraries. These provide for type-said reasonably efficient
data structures. However, “reasonably” was not alwaysdastigh; as the need arose, |
replaced certain components with my own. In particular,plemented a memory alloca-
tion routine based on a global freelist, for fast allocatbamall items (up to and including
the size of a simplex). | also created a hash table that foeagsas is substantially faster
than the GCC implementation of the standard hash table, dvet similar structures.
When iterating over a set maintained as a hash table, no arégplicit. The default STL
implementation is to order them in an order related to thaghhvalues, which in turn are
often based on pointer values. Given that any change in meaillmcation may change
all pointers subsequently allocated, this makes debuggmagperformance profiling dif-
ficult: a seemingly innocerpir i nt f may cause quite different behaviour. | therefore
make a concession in the direction of debuggability hereveniterate over hash tables,
but rather | simultaneously maintain a linked list for any @eer which iteration will be
required.

The topological structure is a standard pointer-basedIgi@pcomplex, withd + 1
vertices and/+ 1 neighbour pointers per mesh element. It takes templateraagts for the

39

dimensiond, the type of the vertices, and for optional user data to htta@ach simplex.
In an attempt to avoid memory errors, simplices are refer@oeinted. This means it is
safe to hold a handle to a simplex even after destroying induneshing; conversely, it
means that accidentally holding a handle to a simplex leadsmory overuse. Access to
the simplicial complex is via two mechanisms: a generic llefdr breadth-) first search
routine which takes a closure as an argument, which is thecler® code usually uses;
and safe low-level access to navigation routines for speethuse. Simplices are keptin
a fixed topological orientation. All access is properly atexl, which avoids sign-flipping
bugs. | implement the “switch” access routines defined bydBns[Bri93]. A handle
to a simplex in three dimensions can be used to denotes ayvedege, triangle, and
tetrahedron. A 0-switch changes which vertex is being dshdiut leaves fixed the edge,
triangle, and tetrahedron. A 1-switch changes only the setge A single switch operation
flips the orientation of the handle, so | require that switplerations occur in pairs. The
topological structure implements insertion of a vertex bieting a given set of simplices,
and replacing them with the star that has the new vertex apeg, and a simplex for each
of the exterior faces of the deleted set. | do not implemeps fbir deletion of vertices.

| define the geometric structures on top of the topology. isltyer, vertices must have
coordinates. A Delaunay triangulation has two, possib$finict, associated dimensions:
the ambientdimension of the points, and the dimension of the object imeshing (a
polygon in three dimensions, for example). | call the latitertopologicaldimension. For
triangulations with topological dimension less than thebamt, we compute a basis for
the plane in which the triangulation lies using repeatedagqg of the moment matrix
to compute the largest eigenvectors. While points are magdan ambient space, the
INSPHERE test used while updating the Delaunay triangulation is @efim the basis,
which, using Shewchuk’s predicates [She97a], allowsdmsistenpredicate calculations.
Circumcenter computations are done directly in ambientespiacthe hope of avoiding
accumulating error from projecting into the basis of theaplacomputing the circumcenter,
then projecting back to the ambient basis.

The library includes a number of geometric primitives — pejmmatrices, circum-
center computation, and geometric predicates su¢asr cl e orori ent 3d. These
are largely based on suggestions or published work by Shén8&he96, She99]. As a
runtime optimization — one with major effect — each simplésoamaintains its circum-
center and radius. On a 32-bit machine, this data approgigndbubles the in-memory
size of a simplex; in future work, | intend to implement a wayuse an LRU cache to
reduce the overhead.

The API of the geometric structures is arbitrary-dimenalotdowever, for the most
part, they currently only work in one, two, or three dimemsioand will give a compiler

40

error in four or higher dimension. Circumcenter computatiglhwork in higher dimen-
sion, but it is currently implemented using LAPACK. | repldciat code with special-
dimensional code because the data marshalling costs to aoioate between my code
and LAPACK dwarfed the cost of the numerical computationifitéey a factor of almost
4:1. LAPACK assumes that matrices will be large, whereasetlggpmetric primitives
typically involve at the most & x 5 matrix. Fast geometric predicates could be produced
in higher dimension, albeit at high labour cost; an autootatthnique [NBHO1] exists but

Is at the moment unimplemented due to bitrot. For workingshosv code, one could use
one of the many generators of exact predicates, such ashbodéd with CGAL.

The mesh algorithms and structures are described in gresl ideother sections. The
API of the mesh algorithms takes in a description of a PLC aset af constants regulating
the meshing (this is for development, as the default settamg acceptable), and returns an
instance of a Delaunay triangulation. The user then hasadodhe same APIs | used to
implement the refinement algorithms.

3.3 Numerical robustness

SVR requires accurately making a number of numerical coatjmuts, particularly in-
sphere tests and computing the circumcenter of a simplex.aFRphere defined by a
full-dimensional simplex, Shewchuk has defined a fast baterumerical predicate and
released the code into the public domain [She97a]. Howekier,code does not com-
pute, for example, whether a poipties within a ball B(c, kr) wherec is defined based
on a triangle in space, andis the circumradius of that triangle, reduced by a faétor
Nanevskiet al. extended Shewchuk’s work, and designed and implementedtamatic
method of generating new fast but exact predicates [NBHOa&fly$the code no longer
works due to bit-rot. Various other authors have producggastt and compilers for exact
predicates, which generally produce correct but very slogec

A minor issue is that Shewchuk’s predicates assume that etatipns will not un-
derflow into denormalized numbers (and that neither willytbeerflow into infinity). In
experiments, | started seeing underflow issues occurrirenvyaoints were separated by a
distance of about0~?; simply scaling the entire space fixed this problem. It appézat
the problem of generating fast numerical predicates forlmenawith small exponents is
not yet solved in a downloadable package.

Most of the predicates used by SVR are robust by nature. Thékariant of SVR,
that elements in intermediate meshes have good qualityrenshat every computation
will return unambiguous results in two dimensions; indgedfiling information indicates

41

that Shewchuk’s predicates almost always give the corresstvar even only using the non-
robust calculation, except when computing the initialrtgalation, which has a number
of cocircularities.

Unfortunately, slivers bypass that guarantee in three dgo@s by being of bad as-
pect ratio but being present in our intermediate meshes.sEmard computation of the
circumcenter involves solving a linear systetm = b wheredet A is the volume of the
simplex. A sliver has (almost) zero volume, which makes #hikegenerate system. Simi-
larly, the in-sphere predicate on a sliver tries to compugedieterminant of a matrix whose
rows, on a perfectly flat sliver, are linearly dependent. @guently, even exact compu-
tation returns that every point in space is on the surfachetircumsphere of the sliver.
On point clouds examples, SVR does not appear to suffer fhaset sliver-based issues.
Sadly, they arise with some frequency on PLC inputs. It resiapen how to resolve this
issue.

3.4 Experiment inputs

For the runtime experiments on point-cloud, | used thressea of input. The first is the
set of points that define the Stanford Bunny. This is a set 0984®ints, sampled roughly
uniformly from a smooth surface; it is a standard exampleomguter graphics and in the
meshing community. Amenta, Attali, and Devillers [AADOBcently showed that given
a uniform sample in three dimensions from a manifold in twamelision, the Delaunay
triangulation of this has linear size. Therefore, one sti@xlpect that SVR would have
only limited benefit over prior Delaunay refinement alganghin this case.

The second example is a pathological case, described ime~&y8. | evenly sample
n/2 points on a vertical line, and/2 points on a circle centered on the line, and place the
assemblage in a sufficiently large bounding box. This examjis one of the driving ex-
amples for the development of SVR: any technique that stgrt®mputing the Delaunay
triangulation of the input is doomed to build abait/ 4 tetrahedra just on the initialization
step here, whereas SVR only takes space commensurate wifim#éh size of the mesh,
which in experiments i$2n tetrahedra.

Finally, | use a regulak x k£ x k integer grid. The grid is trivial to mesh: its Delau-
nay triangulation has radius/edge ratit\/2, so we never insert Steiner points except in
the expanded bounding box. As we very recently proved [HM#P,0id the bounding box
outside a convex shape, the number of points inserted igrlineghe number of points on
the surface of the shape, so there fteoints in the cube and oni§(%?) Steiner points
outside it. The goal of this example was to test the cachepadgnce of the implementa-

42

tions.

In addition to the point-cloud inputs, | ran SVR on some exiEsmf PLC inputs
donated by Shewchuk and by Phillips. Some of Shewchuk’s pleanand most examples
to be freely found online, include triangulated surfacebede automatically are invalid
input for SVR, as they clearly have angles between segmenth marse thar$0°, and
in fact worse than thé0° lower bound that might avoid infinite refinement; indeed, SVR
cannot mesh inputs consisting of triangulated surfacesstMbShewchuk’s examples
include angles between faces of slightly less th@h Despite violating the theoretical
guarantees, these inputs can be meshed by SVR. Many of thepkesaimclude holes in
the input polygons that are not specified in the input. | adukdck that tries to detect the
holes, which successfully handles some but not all inpdesally, one would implement
a truly correct hole-detecting routine. The examples bydiBdillips were engineered to
quite precisely match the requirements of SVR as publishéuaki theoretical papers: each
facet is convex, ha®(1) points on its surface, and has bounded aspect ratio. Segment
on the boundary of a facet are not encroached by other veicéhe facet, and all input
angles are non-acute.

3.5 Parameter settings

There are two main knobs to turn in SVR: the radius/edge quatitindp, and the warping
parametek. The proofs show that SVR will have optimal runtime for anyps@antt < 1,

andkép > \/§(H. However, the parametéronly affects the algorithm when there are

uninserted points. One trick we can employ is to use, intgtreomep’ > ﬁdil/kd,
to define what makes a skinny simplex. Once all uninsertedtpdiave been brought
into the mesh, we can then improve the mesh quality to thespssifiedp by adding a
low-priority class of events: any simplex that has qualigtter thany’, but worse than
p, is added to the queue as aOMERATELYSKINNY with priority less than ROWDED.
Clearly, if no elements are crowded, every vertex is in thelm&he $LIT operation can
be left as-is, although the search for a point to warp to isteehime since there is no
point anywhere that it could find.

In other words, the user may demand any qualisp long as it is strictly greater than
two in three dimensions, and afly< k£ < 1. Users will typically want a mesh with as
small as possible. The proofs that require- 2 are very likely loose on examples that
arise in practice, since we and others note that inputs candshed with rather smaller
values forp with little difficulty, so | set a default value of = 2.

43

6 ‘ ‘ ‘ 100

5&4’ 80 -

60 r

40 |

Ll | 20 ¢

1 1 1 0 1 1 1
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

(a) Stanford Bunny: runtime (b) Stanford Bunny: size

5 ‘ ; ‘ 80

\'ﬁ/ 60 | 1

40 |

20 +

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

(c) Line & Circle: runtime (d) Line & Circle: size

Figure 3.2: Left: Runtime in seconds, versés Right: Number of vertices that SVR
outputs in thousands, versksSee the discussion in the main text.

The effect of the value of is less well understood from the axioms. Intuitively, one
would expect that ak approaches unity, the number of Steiner points in the owstporld
decline, since SVR will more frequently be allowed to warhea than inserting a Steiner
point. Conversely, as shrinks to zero, it should insert increasingly many vedicghus,
if runtime is no object, one should sketo 1.0 (modulo possible numerical errors arising
from using inexact arithmetic to determine if a point is ie tharp region, although these
should be easy to fix). On the other hand, runtime is the maisareto use SVR. Clearly,
ask gets very small, SVR will insert a huge number of Steiner fmiand these insertions
will regulate the runtime. Ag: gets very close to 1, we should expect the quality of
the skinniest element seen during refinement to get worseeS3he quality bounds the
degree of mesh vertices, this means we lose the bounds omeurs a lower-order yet
still significant effect, increasing increases the volume of the ball that must be searched,
which also increases runtime.

44

I ran an experiment to determine the optimal setting: .of tested SVR withp = 2
and varyingk from 0.20 to 0.99 in steps of 0.01 on two inputs: the Stanfandny, and
then = 10,000 pathological example. Figure 3.2 summarizes the resulssexpected,
in general output size increaseskas made smaller. Also, in general runtime increases
at very low values of:, because insertions predominate; and at very high valués of
because of bad quality. It is not clear why the pathologic& &nd circle example sees an
increase in mesh size with high valuestofGiven the results on these two examples, and
giving greater credence to the non-pathological exampleeasy indicative of standard
behaviour, we set the defaditto 0.9 and use that in all further experiments.

3.6 Experimental results

Pictures of a set of PLC examples meshed by SVR appear ind=B)@r The2cube?2
andhouse?2 examples are credited to Shewchuk; the four dumbbells ebearmgrom
Phillips; thenal cola example is from Ollivier-Gooch; andava is from Vavasis (the
latter two communicated to me by Shewchuk). These show titlteid, SVR is able to
mesh some PLCs, even when strictly speaking they violateéthesquirement on angles
between faces (witness the baséiolise2 and the bottom-right ofial cola; the base
of vava, not visible in the picture, also has an acute angle). Thénesegenerated grade
from small features to large, which is especially visiblenal cola and in the cutaway
view of the four dumbbells. SVR meshes a volume; to genehaset pictures, as a post-
processing pass | did a walk starting from the vertices obthending box, removing any
simplex that could be reached without crossing a triangke BEC facet. My code works
for convex faces; the test of whether a triangle belongs th.@ facet is imperfect for
non-convex faces, which covers up a holéouse?2.

To evaluate the runtime of SVR with respect to prior codeanlsome experiments on
point-cloud inputs. | have not yet had the opportunity torgpgignificant effort on speed-
ing up the handling of PLCs, so | report no such numbers heremipare to the codes
Pyramid [She98b] and TetGen [Si06]. The experiments wemeorua desktop 3.2 GHz
Pentium D, with 2 GB of RAM running Linux 2.6. | used the gcc calap version 4.2.1,
and flagss DNDEBUG-nB2 -2 -g -fom t - f rane- poi nter -t une=nati ve.
Results under older versions of gcc, different compiler flagsl on different platforms,
are qualitatively similar. One file in TetGen cannot be ojted, for reasons that escape
me (it is Shewchuk’s numerical predicates library, whichrkegperfectly well under opti-
mization in both SVR and Pyramid); that file is compiled witlet n82 - Q0 flags. The
- nB2 flag is required because all three codes currently only su@sbit pointers on

45

(a)2cube?2

(c) Four dumbbells

(e)nal cola (f) vava

Figure 3.3: Pictures of the meshes SVR generates for a nuaid®cC inputs. Each
example was meshed using the default settings ef 0.9 andp = 2.0. The entire vol-
ume was meshed; for display, | removed all simplices redelfatim the exterior without

crossing a PLC facet.
46

Input SVR Pyramid TetGeﬁ SVR Pyramid TetGen
Stanford Bunny{ = 34890) 4.62 6.35 12. 59702 59040 74269
Line & Circle (n = 2000) 0.80 4.79 6.5 12119 14003 14573
Line & Circle (n = 20000) 7.62 N/A N/A || 120933 N/A N/A
503 Grid (n = 125000) 11.30 15.96 459 129839 129929 130140
1002 Grid (n = 10°) 97.71 179.04 400.3 1016262 1017799 1018684

Figure 3.4: Comparison of the SVR, Pyramid, and TetGen codesfew point-cloud
inputs. Both Pyramid and TetGen ran out of memory onithe 20000 Line & Circle
example, and could not complete; otherwise, all examplés fitemory.Left: Execution
times (seconds of CPU plus system time) versus inputs. Aeesf§ runs.Right: Output
size, in vertices. All three methods produce meshes of appaiely the same size.

this combination of platforms and compilerA. priori there is no reason to believe that
the update to 64-bit machines would be at all difficult for afithe codes, and indeed
Pyramid is known to run in 64-bit mode on other combinatiohglatform and compiler.

The experiments use the default parameter settings-ef0.9 for SVR, andp = 2.0
for all three codes. | measure time using the UNIX ‘time’ ityjlsumming the reported
user and system times, averaged over five runs. The examplédsose described in Sec-
tion 3.4: the Stanford bunny; the pathological examplewia sizes; and the grid, in two
sizes. Figure 3.4 summarizes the result of the experimekgésexpected, on the patho-
logical inputs, SVR is substantially faster. Indeed, eveil\a modest number of input
points — just10* points on the line and0* on the circle, both Pyramid and TetGen run
out of memory. Each simplex takes at least 8 words to des¢filerds for the vertices,
and 4 words for the neighbours), which is 32 bytes; the apprately 10® simplices in the
initial Delaunay that both Pyramid and TetGen try to compgh&refore consume 3.2 GB,
which exceeds the limit of addressable memory for 32-bit psggrams under Linux. In-
terestingly, SVR is also faster on non-pathological inpatsl scales better than Pyramid
or TetGen do as the input size grows. The output size of adletiprograms is similar,
which shows that SVR does not trade away good output sizésftneoretical guarantees.

TetGen does not support directly generating a quality mesh & point-cloud input;
instead, it requires first computing its Delaunay triangatg then invoking TetGen a
second time to improve the quality. It is clear from discassiwith Si that this is an
oversight; and, in particular, it is disastrous from a mnmgistandpoint for the pathological
examples. In deference to the fact that this is an easily fixeg] | report the runtime
after subtracting the cost of outputting the intermediaésimto file and re-reading it into
memory. This slightly reduces the precision of the runtimehbers for TetGen.

a7

80

700

—— Pyramid ‘ — Pyramid
70 I 600 L
60 ¢ 500 |
07 400
40 |
300 |
30 ¢]
20 I] 200 +
o}] 100
e : : : : 0 : : : : :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
(a) 27 Bunnies: runtime (b) 27 Bunnies: size
160 : 1200 .
—— Pyramid —— Pyramid
140 ¢ 1000 |
120 t
100 | 800
80 t] 600
60 400 |
40 t
20 | 200
0 : : : : 0 : : : :
0 200 400 600 800 1000 0 200 400 600 800 1000
(c) Grid: runtime (d) Grid: size
30 600
— Pyramid — Pyramid
25 ¢ 500 +
20 1 400
15 | 1 300 |
10 | 1 200
st 7 1 100
o 0 —_—
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

(e) Line & Circle: runtime (f) Line & Circle: size

Figure 3.5: Scaling examples comparing SVR and Pyrairédt: Time on they axis is
in seconds. Input size on theaxis is in thousands of pointRight: Number of points (in
thousands) in the outpus number of points in the input (in thousands). Jobs weredkill
upon allocating over 500 MB of memory.

48

| ran some experiment to see how well SVR scales to largetsnduvo of the point-
cloud inputs (the grid and line and circle) were describeahmbviously scalable manner.
For the Bunny, | made 27 copies of the bunny ifi:a3 x 3 grid, a total of 940518 points,
and randomly sampled from this set. These experiments warnesing the same compiler
settings as before, but on a factory-standard MacBook Ptoavit.16 GHz Intel Core 2
Duo processor and 1 GB of RAM. In order to be able to run a largebar of examples
overnight without getting stuck on a thrashing job, | haddixstem automatically Kill jobs
that allocated more than 500 MB as reporteddlsy The results, in Figure 3.5, show that
SVR scales well with input size: at all sizes, it runs fastamnt Pyramid, and increasingly
so as the input size increases. However, SVR uses more meduaryo the caching of
circumcenters; the 500 MB cutoff affected SVR sooner thaffécted Pyramid, except
on the pathological examples. The output size differentedEn Pyramid and SVR is
negligible: it is nigh-impossible to distinguish the twarees without a magnifying glass.
| also ran another experiment, not shown in the figure, withtax 150 x 150 grid. SVR
on this input exceeded the bounds of physical memory by arfadttwo. Despite this,
it was able to consume 4% of CPU, indicating good location tdremnce as would be
expected from this fundamentally parallel algorithm.

3.6.1 Cache performance and profiling

During the development of SVR, | made heavy use of the Valgimadithain to study the
cache performance and instruction profile of running codee $VR code is an unstruc-
tured numerical program; therefore, systems folklorengsties we should expect to issue
about one instruction per clock cycle if we are CPU-boundabiee of the heavy cost of
branching. This is approximately what we in fact do see aaltjin somewhat unsurpris-
ingly the ratio appears to be falling as | reduce the numbesoofiputations needed to
compute the mesh.

A large fraction of runtime — approximately 20% on the Stadfobunny example —
is spent outputting the file to disk. One of the goals of SVRoisitow using the mesh
through the API, instead of needing to write it to disk andstate it to another in-memory
format, so | ignore this cost in the profiling discussion. ¥ temaining time, more than
one third of the number of instructions issued and of the eaunisses (and thus, one
assumes, over a third of the total runtime) are related tongéac computations. There
are principally three reasons for SVR to perform geometaicudations, each of them
taking an equal fraction of the runtime: (1) computing cimaenters, (2) computing the
I nspher e predicate when inserting a point, and (3) computing distarduring point
location. To reduce the cost of computing circumcentergriesthe circumcenters | have

49

computed; it is unclear whether there is any more savinge foebformed here. It should
be possible to use the stored information to help witlspher e: in many cases, simply
checking the distance of the query point to the circumcesftére simplex should give us
a sufficiently accurate answer, and only if not should we rteexhll the exact predicate.
The question of point location was the focus of Section 3slmentioned there, it is
quite likely that further improvement could occur. Anothleird of the time is related to
topological changes in the simplicial complex. | expendesgaificant amount of effort
optimizing this code, and find it unlikely to be able to muchpnaove its performance
without a substantially different data structure such asrapressed meshla Blandford
et al[BBCKO5, Bla05].

Cache efficiency is good, though not stellar. The instructiache essentially never
misses. However, on modestly-sized examples (such as tirg/huabout 1.5% of data
reads missed in L1 and had to fetch from L2 cache. About onevéndi those — 0.3%
overall — of data reads went to main memory. Keeping in mirad Batency on a modern
machine is in the teens of cycles for a miss to L2 cache, andhiovdreds for main mem-
ory, this suggests that the program is likely to be freqyespiending time stalled waiting
for memory, but not predominantly so. This in turn implieattany further reduction in
CPU time will need to include reductions in the size of the vingkset.

| should note that SVR handles its own memory allocationngy¢e systemral | oc
andf r ee routines is disastrous both in terms of cache efficiency amastruction count.
Furthermore, to be generionl | oc andf r ee need to tag each allocated block with an
additional word of data to store the size of the allocateahldBut the vast majority of
allocations that SVR performs are all of the same size: lyslisi nodes (two words) and
tetrahedra (19 words); furthermore, SVR knows the sizeeddtallocations and dealloca-
tions at compile time. | therefore use freelists, one pex slass, for memory allocation.
The systemmal | oc is only invoked for items larger than 20 words, or, for smiedhis,
one megabyte at a time. This substantially reduces thevelaterhead for the size coun-
ters and eliminates the vast majority of callswafl | oc andf r ee. Allocating and freeing
usually takes only two memory accesses in this framewortt,samilarly little computa-
tion. Freelists have a tendency to cause items allocatese ahatime to be allocated close
in address space, although this specific benefit decreasesimoe as the freelist becomes
mixed.

A major cost of using C++ is that complicated memory allocasohemes are almost
impossible to explore. In particular, to avoid memory leaksiust maintain reference
counts, which has a known negative cache-performance imghapping a pointer to the
head of a list of handles to simplices in a reference-couatettonment means iterating
over the list and touching each simplex, while doing so inrbgge collected environment

50

costs zero time. Furthermore, a copying garbage collesfoee to move simplices around
to create memory-space locality between topological r@ghs — or even to compress
the mesh.

The most important remaining method to reduce the runtinte isduce the number
of Steiner vertices in the output. This would reduce the nmynfi@otprint, reduce the
number of in-circle and circumcenter computations, andecedhe number of topological
changes. Itis also desirable as a goal unto itself. One mpg that recent work byngor
on producing small meshes in two and three dimensions wil imethis respect.

3.7 Extensions and future goals

Moderately small input angles seem to mostly work, usu@lyen how often small angles
appear in inputs, this is an insufficient level of relialyiliCheng, Dey, Levine, and Ramos
have produced provable algorithms and a correct but relgtslow implementation for
small angles [CDRO7, CDLO7]. Their work also handles piecestseothcomplexes, the
obvious extension of PLCs to the curved surfaces common in Géits. Their frame-
work does not immediately extend to SVR’s framework, but ihighly likely possible
to marry the two to get a mesher that is provably fast and aweyminating with small
meshes on clean CAD input.

Slivers, as mentioned before, cause numerical robustesgsd even while meshing,
especially on PLC inputs. The geometric primitives and jmegtes need to be analyzed
and fixed to handle slivers in order to obtain truly robustecod

We proved that the SVR algorithm can be made parallel [HMPO7the parallel
algorithms community seems to view mesh refinement as a geadtoy problem for
their automatic and semi-automatic parallelization tegives [KCPO06]. While itis largely
known how to parallelize traditional dense matrix problennsstructured problems like
meshing are still open. SVR fits well in the category of whastarting to be known
as workset parallel programs: SVR maintains a work queu&ymné whose items are
independent. | developed the current SVR code with an eyésdnture parallelization,
and hope that it will not be overly onerous to extend it to th@red-memory parallel case.
In the near future, | believe that it is worth pursuing consfactor improvements: it
seems likely that we can halve the runtime of the singlesttheel SVR, whereas achieving
that level of improvement usually takes three or four preoes in a parallel program.
A further benefit to waiting is that commodity machines akelly to by then have eight
cores, at which point parallelization will become more intpat.

51

52

Chapter 4

Dynamic Meshing for Point Clouds

Consider an input consisting of a list of points, denoted tgirthoordinates, lying in a

box of appropriate size (see Section 4.4). The goal is toipeca dynamic algorithm that
can handle adding or removing a point from the input. While mregs point clouds is far

simpler than handling the full generality of also conforgiie PLC inputs, nevertheless,
several of the core concepts needed to analyze higher-diore inputs already arise.
Indeed, despite the apparent oversimplification, thiseddhgest chapter of the thesis.

In joint work with Acar [AHO6], we conjectured that SVR was grnémically stable
algorithm, based on some preliminary experimental reski#tsindicated as much. | can
now prove that conjecture false, in the adversarial settngay still hold against a weak-
ened adversary). Consider the example in Figure 4.1. In SVReiae® point may “warp”
to the input early on — indeed, for realistic parameter sg8j it will always do so in the
very first iteration of the main loop. Every Steiner pointarted from then on depends,
if only in the low-order bits, on the coordinates of the firsirg that was chosen. By the
same token, while input points have fixed coordinates, haint location is through sim-
plices or vertices whose coordinates depend on the firsttiose Changing the first point
is therefore extremely expensive for dynamic stabilityainadversarial setting, unfortu-
nately, the adversary may place a pginh a position where, when the adversary toggles
whether or nop is part of the input, SVR is required to change its decisiotoaghich
vertex it should insert first. This then can force SVR to cleamgpoint location structures
and to change the location of almost every Steiner pointsierits, which means the re-
sponse time can be no faster than linear in the size of theibuRandomization does not
help: it is easy to create examples with only one choice d@llegrp move in SVR, but an
arbitrary number of uninserted points. The example shoas3NVR is not dynamically
stable, and cannot be made dynamically stable without antiat modification.

53

L

Figure 4.1: Even with randomization, the adversary can force SVR to make a deterministic
choice of warp location and thus change the position in the point locationstes®f an arbitrary
number of points.

This chapter presents a different meshing algorithm fontpdouds that is both effi-
cient in the static case, and dynamically stable. The chapie three sections. | start by
building a quadtree that conforms to the local feature sizhow that a relatively naive
guadtree construction algorithm is dynamically stablextNeshow how to produce a
good quality mesh using a very general technique. This skseation does not concern
itself with runtime complexity at all; instead, it shows theith an appropriate choice of
Steiner points to add, we can arrive with a set of points whsl@unay triangulation is
a quality mesh of the input point cloud. Finally, in a thirccgen | show how to use the
guadtree to quickly implement the technique of the secoatis®e In the end, then, we see
an algorithm that provably produces a mesh that respecigpé has good radius/edge
quality, is size-conforming, and in the face of a point bedmgled or removed from the
input, responds id(lg L/s) time, which is an optimal time bound. The first three sections
ignore any unusual effects near the boundary of the domdiaraworonoi cells become
unbounded. To close the chapter, | show that how to speagfyribut domain such that
no special handling is required for these boundary effextéch greatly simplifies both
proofs and implementations.

4.1 Building a quad-tree for point location

Borrowing definitions from Bern, Eppstein, and Gilbert [BEG2#g¢ell is an axis-aligned
hypercube of the specified dimension; | denote the lengthsadeof a celk using|c|. A

54

Figure 4.2 Left: four crowded cells. The upper-left and lower-right cells each fmpeint,
so they crowd each other. In prior work, the lower-left and uppétriglls would not be said to
be crowded; this is a constant factor improvement that complicates thesptadfone which an
implementation might find important in practideight: ill-graded cells. The shaded cells are four
times larger than one of their neighbours. Note that neighbourhood goesthcorners.

guad-tree is a cell subdivided into smaller cells. Two dellhe quad-tree are neighbours
if they share a corner. During meshing, we track the locatiquoints relative to the cells.
A cell ¢ is said to becrowded if there are at least two input points that lie in the union of
¢ and of its neighbours — that is, eithecontains two points, its neighbours contain two
points, orc and one of its neighbours each contain one point. A cell-graded? if it
has a neighbout' such thatc|/|c/| > 4. We say that a quadtree vgell-gradedif every
unsplit cell is both well-graded and uncrowded. It is notchir prove that a well-graded
guad-tree produces a size-conforming, good quality mesk tsrangulated. Note that this
mesh does not respect the input; it merely conforms to i@l i@ature size.

Figure 4.3 shows the algorithm for building a quad-tree. @lgsrithm starts with a
bounding box (square) of the the point set, with side lerdgth maintains avork queue
Q of work items,i.e., pointers to cells that need to be split, and a mapping frach eell
to the set of input points that it containg.is partitioned intdg /s buckets such that the
bucketQ; is a queue containing the cells of size exadt/i2’. The “top” of the queue has
the largest element. For dynamic stability, we will alsouieg that each bucket maintain
FIFO order (it must be a queue); this is not necessary foicstantime. Cells may be
pushed repeatedly onto the queue to no ill effect. The dlyariterates over the work
gueue until it is empty. On each iteration, it finds a cell thed not yet been split, splits it,
reassigns points, and pushes new work onto the queue.

We now wish to establish three theoretical results: Filstt the output quad-tree is,
as we claim, size-conforming. Second, that we can compirt&itn lg L /s) time. Third,
that upon appropriate updates (namely, adding or a remavpgnt from the input), we
can respond to the change and simulate running from scratamly O(lg L/s) time.

1The original term was “unbalanced.” Our experience in caerfee reviews shows that the “balance”

term is confusing: quite reasonably, many think it refershi® depth of the quad-tree. Grading is a term
commonly used in engineering for the very concept we wishfoess.

55

BUILDQT(P: point set,L: real,d: int)
1: P: map from quad-tree cells to points Bf
2: (). a 2-bucketed priority queue of cells, keyed by size, larfjes
3: Add the associatioft), L]? — P to P
4: if [0, L]? is crowded (that is,P| > 2) then

5 Q< {[0,L]%}

6: end if

7: while |Q| > 0 do

8: ¢« DELETEMIN(Q)

9: Splitcinto2¢ smaller cells{c;}
10: for eachpointp € P(c) do
11: Find thec; that containg
12: Add p to P(c;)
13: end for

14: Delete the entryP(c)
15: for every neighbout’ of ¢ do

16: if ¢ isill-graded (/| = 2|c|) then
17: enqueue’ onto()

18: end if

19: end for

20: for every childe; of ¢ do

21: for every neighbout, of ¢; do
22: if ¢; is crowded (that is|P(c;) U P(c;)| > 2) then
23: enqueue; onto)

24: skip to the next child

25: end if

26: end for

27: end for

28: end while

Figure 4.3: Static algorithm for building the point locatiquad-tree given a point-set
input. This algorithm runs in timé&(nlg L/s). See also Figure 4.4 which contains the
changes that allow self-adjusting computation to achiagéresponse time.

56

Intuitively, the mesh is size-conforming because it segggrany two points by at least one
cell (and thus cells are not too large), but only splits fartto achieve good grading (thus
cells are not too small). The main asymptotic cost for refiaenis to relocate points in
Line 10; when a point is split, the size of the cell it occup@és by half. This can only
happerO(lg L/s) times per point, which gives the runtime and response tinuads.

4.1.1 The quad-tree is size-conforming

Lemma 4.1.1 If a cell c is crowded, then its parent™ was crowded.

Proof: The neighbours of are also neighbours ef", unless they are children of .
Points that crowd therefore also crowd™. m

Lemma 4.1.2 (Crowded cells are small)During the algorithm, all unprocessed crowded
cells are of the size of the smallest cells in the mesh, ortlgxadce that size.

Proof: Initially, this is trivially true (there is only one cell irhe mesh). Later, consider
the cellct that was split to create a crowded cellAccording to Lemma 4.1.1;" was
itself crowded, and thus by induction was the smallest orlpesnallest cell in the mesh.
Upon splittingc™, ¢* is the largest bad cell in the mesh: there cannot be any largeded
cells, or the work queue would have returned them insteaérefbre, all crowded cells
are of size|ct| or |c*|/2. Having splitct, the new cells are half the size of. Cells
crowded byc were already crowded hy", so only the new cells can be newly-crowded,
and the new cells are all the smallest cells in the mesin

Lemma 4.1.3 (Cell size lower-bounded bifs) When a cellc is created, for all points
z € citis the case thalfs(z) < 4.5v/d|c|.

Proof: Whenc s created, it is because the algorithm is splittifig There are two reasons

to splitc™: for crowding or for grading. If for crowding, thert and a neighbout' contain

two inputsp andq in ¢™ U ¢/. The two inputs are, at the farthest, on opposite corners of
ctandd: |pg| < Vd(|ct| + |¢|). Because’ is crowded, and because the queue orders
largest-firstc’| < |ct|. This proves that there is a pointe ¢*Uc wherelfs(y) < v/d|c*|.

The local feature size at € c is thus no larger thalfs(z) < Ifs(y) + ||zy|| < 3Vd|c|.

Alternately, ifct was split for grading, there was a neighbeuhat was much smaller:
|| = |c¢t|/4 = |c|/2. By induction (since’ was created before), we can assume
thatlfs(y) < 4.5/d|c/| for all pointsy € ¢/. The Lipschitz condition lets us know that

57

Ifs(z) < lfs(y) + ||zy||- We can choosg to be the closest point id to =, which may
be as far as the length of the diagonalcdt ||zy|| < 2v/d|c|. Overall then, we get

Ifs(z) < (4.5Vd/2 +2Vd)|c| = LVd|c| < 4.5Vd|c|. =

Theorem 4.1.4 (Size-conforming)The mesh output BBUILD QT(P) is size-conforming:
for any pointz € [0, L)¢, the cellc, that containse satisfies

klowlcx‘ S lfS(SL’) S khi‘cm|

For constants;,,,, and k,; depending only on dimension.

Proof: Lemma 4.1.3 shows the upper boundlfsn The lower bound is as follows: if is
on the medial axis of the point cloud, then there are at l@aspbintsp andq equidistant
to z, which definelfs(z). Only one of the two can be ia, and its neighbours or elsg
would be crowded; wlog. lej be outside the neighbourhood@f Thenlfs(x) = |zq| >
|'| > |e.|/2 (otherwise” would cause bad grading with).

Otherwise,z is off the medial axis. Ley be the closest point on medial axis that
minimizes|zy| + lfs(y); this quantity islfs(x). Both terms are positive, so we know that
Ifs(x) is at least as large either of them in isolation.c/fis not a neighbour of,, then
Ifs(x) > |zy| > || > |ei|/2. Butif ¢, is in a neighbour ot,, then by the argument
above lfs(x) > Ifs(y) > || /2 > |c.|/4.

The constants are,; = 4.5 x v/d andk,,,, = 1/4. Importantly, however, in cells that
contain inputlfs(z) > [¢[/2. =

4.1.2 BUILDQT runsin O(nlgL/s) time

Lemma 4.1.5 (Always-quality) At any point during the run of the algorithm,dfand ¢’
are neighbours, then their sizes differ by a factor at mogt. fo

Proof: Consider a celt™ that is split, creating;, and consider a neighboutof c¢. By
Lemma 4.1.2, itz" is a crowded cell, then the mesh is well-graded and neiglsiditfer
in size by a factor at most 2| < 2|c¢*|. On the other hand, if" is an ill-graded cell, then
by the queue order we can assume thamust again be at mo&tc* | because otherwise
¢ would have been processed first. In either casghalf the size of*, soc and(differ
in size by at most a factor four. =

Lemma 4.1.6 At every step of the algorithm, cells in the quad-tree hayve) neighbours.

58

Proof: Since the size between neighbours differs only by a factdowf, we can only
pack at most six neighbours per side of a cell (four along ithe, plus one on each end),
for a total number of cells equal & — 4¢. =

Lemma 4.1.7 (Splitting is fast) Except for relocating points, handling a work queue event
takes constant time.

Proof: In any reasonable representation, checking whether aalbéen split is trivial,
as is doing the structural modification to the quadtree. Reillog points we have explicitly
excluded from the accounting in this lemma. Iterating ougtdcen x neighbours is a
constant number of iterations since there 2frehildren andO(1) neighbours. Checking
for grading is obviously constant time. The sét§;) and P(c;) may be large, but when
checking whether their union contains more than one poinbmh need to count to two
andstop. =

Lemma 4.1.8 Any given input poing is relocated at mosb(lg L /s) times over the course
of the algorithm. Each relocation cost(1) time.

Proof: A pointp initially lies in the root cell[0, L]¢. Every time it is relocated, the size of
its new cell is exactly half the size of its old cell. Because thuitput is size-conforming,
the smallest cell is of siz€(s), sop can only be relocatetk(L¢/Q(s)) € O(lgL/s)
times. Relocating only takes the time to find the new cell out“ofiew cells, and thus
takesO(1) time. More precisely, it takeg greater-than tests because we are using an
axes-aligned quadtree. m

Theorem 4.1.9 TheBuILD QT routine runs in time)(nlg L/s).

Proof: Points are relocate@(lg L/s) times each and there arepoints. Furthermore,
every split costg)(1) additional time. There ar@(m) splits because the output is size-
conforming, andn € O(nlg L/s) because the input is a point cloud. m

4.1.3 BUILDQTis O(lg L/s)-stable

To establish the runtime of our dynamic algorithm, we deteenthestability of the out-
put relative to changes in the input. The arguments will lmailfar to designers of par-
allel algorithms — indeed, we draw on packing arguments fpsiar parallel meshing
results [STU04, STUO7, HMPO7b]. Our runtime is regulated in large part by théada

59

dependence structure of our algorithm. We must show thagriegnce paths are at most
O(lg L/s) long. Unlike in parallel algorithms, we must also show the tependences
cannot fan out: even constant fanout would give us a runtif@(poly(L/s)), which is
completely unacceptable.

Formalizing the notion of stability, consider a run of oug@iithm. It reads in the
points, performs some operations, reads and writes to methen returns an output. We
can define amxecution tracen the following way: operations and memory locations are
nodes; there is an edge from a memory locatido an operatiory if f readsa; and there
is an edge from operatiofi to memory locatiord if f writesb. If f readsa and writes
b, we say thab has adata dependencyn a. Thedynamic stabilityof one pointp is the
symmetric difference between the sets of nodes in tfaagherep is not present, and the
nodes in another track wherep is present. Note that this is a symmetric difference, so
that the stability of adding and removing the same point gtak

To abstract away from memory locations and return to the roonefortable world of
input points and quadtree cells, | say a eddlamesp if the operation that splitsis a trace
descendent of the memory location that stgrehus, a celt blames a poinp if p is one
of the (possibly many) points that crowds Inductively, c also blame9 if ¢ is made to
be ill-graded because a neighbouring eélvas created by a split, andblamesp. Note
that a cell may blame its splitting on many points; indeedjlitalways blame at least two
points.

If we consider a given cell and a poinp that it blames, then the distance in inductive
hops fromc to p is at mostO(lg L/s): in every hop, we either directly blame or we
blamep through a neighbour of half the size. Thus the trace is ashataph; it remains
to be shown that the number of descendents of an input poiatnimber of cells that
blame it) is bounded.

Lemma 4.1.10 Assume is blamed for the split of a cetl. Then||pc|| € O(|¢|).

Proof: If cis being split for crowding, thepis either withinc or is in a neighbout’ of ¢,
and|c| = |c|. Thus||pc|| < |¢|. If insteadc is being split for grading, then we can follow
the causal chain that leads to a eélthat was split for crowding by. Label the chain;
with ¢o = ¢ and¢;, = ¢. Because of the grading condition, we know that = 2|c; 4|
and thus|c| = 2*|¢/|. The distance we can travel along the chain is maximizedeif th
chain follows the diagonal of the cells, a total distancélof 2*)v/d|¢/|. Finally, ¢ either
containgp or neighbours an equal-sized cell that containshus the distance fromto ¢

is at most(2 4 2%)V/d|c/| = (1 +2"%)V/d|c|, withk > 1andd > 1. m

Lemma 4.1.11 Any pointp is blamed for at mosb(lg L/s) splits.

60

Proof: Given a size clas®, the prior lemma showed that any cell of sZ¢hat is blamed
onp must have distance at mast2'). In dimensiond, these cells have volunig’)? each,
and must fit within a volume of)(2!4). Therefore, there can be oniy(1) splits in size
classl that are blamed op. Because the output is size-conforming (Theorem 4.1.4)ethe
areO(lg L/s) size classes. m

At this point we have accounted for the stability of the mesklf: only O(lg L/s)
will be created or destroyed upon a single-point insertitm.the scientific computing
application, this limits numerical error due to reinteigga@n. However, to establish the
dynamic response time of the algorithm, we must also accourghanges in structures
only used internally. The principal such structure is theptocation structure — the
assignment of points to cells. To account for point locatiosts, we need to be a bit more
careful about blame. If a split relocates a point, therewoegdossibilities: the split is due
to crowding, or the split is due to grading. Lemma 4.1.2 implhat splits due to grading
only occur on cells with at most one point inside, so payingtfe relocation is only a
constant extra cost. Splits due to crowding may be veryy,dsit the presence or absence
of a pointp only changes the decision about whether to split a crowdiéd dep is exactly
the second point in the cell and its neighbours. This allogviowcut the causal chain and
only have a poing blame its relocation op whenp is exactly the second point in the cell.

Lemma 4.1.12 Only O(lg L/s) point location decisions blame any given input pgint

Proof: AsseeninlLemma4.1.8, every pointis reassigned at mdstL/s) times during
the algorithm. What is left is to see how many other points aassigned because of the
presence op that would not otherwise be reassigned.(their containing cell was split
because was present, but would not have been split weadsent).

There are two reasons a point can be reassigned: eithemitaisiowded cell being
split, or it is in an ill-graded cell being split. A reassigant due to a crowded cellcan
only be affected if the point was either in the cell or in a neighbout’ of c. Furthermore,
we know that there was exactly one other point ar ¢ — otherwise the algorithm would
split regardless of the presence or absenge @n the other hand, Lemma 4.1.2 implies
that any ill-graded celk must be uncrowded — therefore only has one point inside. In
other words, if a split reassigns any points, it reassigastxone point. The set of splits
is O(lg L/s)-stable, and thus so is the set of point reassignments.

Putting these observations together, we get the final restliis section:

Theorem 4.1.13TheBuiLD QT algorithm isO(lg L/s)-stable under single point inser-
tions and deletions.

61

4.1.4 BUILD QT response time isO(lg L/s)

The stability bound just proved does not yet immediatelpgtate into a dynamic algo-
rithm. However, it suggests that we can use self-adjustorgputation (SAC) to auto-
matically dynamize BILD QT. Under the SAC framework, an execution afiBD QT is
seen as a set aperations which | will define shortly. Acar [Aca05] proved that under
certain assumptions, SAC can respond to a change in timd txtree stability bound.
The assumptions are (1) the progransascise— no operation is done twice, and (2) the
program ismonotone— in every trace that performs operations batndb, their relative
order is the samez occurs beforé.

We can think of an operation as being a sequence of machitmadtiens, such that the
entire sequence can be run in constanttime. Thug,BQT line 8 ¢ < DELETEMIN(Q))
is an operation because we use a 2-bucketed approximatiypgiceue, in which [ELETE-
MIN is constant time. By contrast, relocating points in the lo@ptsg line 10 is not an
operation, though each iteration of the loop is. For sinigli¢ describe the body of the
main loop as a single operation, which implements the loagisg line 10 as a recursive
function call.

Lemma 4.1.14BuiLD QT is concise.

Proof: A crowded cell; is only added to the priority queue once, by its parent (liag 2
It cannot also be added to the queue as an ill-graded celiuiseauntik; is processed, no
smaller cell can be processed. Similarly, an ill-graded €atill also only be added once
(line 17: when it is added to the work queue, untiis processed, no other smaller cell is
processed. Therefore, each iteration of the main loop ortyis (at most) once per cell.
Finally, a point cannot be relocated from a eetb a sub-celt; of ¢ more than once, since
cisonly splitonce. =

Monotonicity is harder to prove, at least in part becaus@.BQT as presented is not
monotone. Consider two execution traces efiB>QT, 7" and7',, where the input for
the latter differs from the input from the former in that itsh@n additional poing. In 7", ,

a cell may be split because it contajnand another point; ifi’_, it may be that the cell
was split because it was ill-graded. To repair this, | chahgealgorithm in the following
two ways: (1) the set of neighbours that are checked in linenligt be traversed in a
canonical order (for example, clockwise in two dimensio() the queue will now store
not only the names of cells to be split, but also a “reasonptib . The reason field is for
crowded cells (those enqueued in line 23) is the cell it3&ten a celk being split due to
crowding enqueues its neighbours in line 17, the reasonfielthose ill-graded cells is
set toc. Finally, when an ill-graded cell being split with reasoanqueues its neighbours,

62

the reason field for remains is More briefly, every cell enqueued directly or indirectly
by the split of a crowded cell has the same “reason” field. $ger€ 4.4 for the modified,
monotone algorithm.

This modified algorithm, | claim, is monotone. To prove mamotity, consider two
operations: andb such that there is an input that induces a trace wherecurs beforé.
| say that the program isionotone with respect i@ andb if in everytrace where: and
b both appearq occurs beforé. | distinguish three classes of operations: splits due to
crowding (those enqueued in line 24); splits due to gradihgse enqueued in line 18);
and point location operations (lines 12 and 13). The proaf igarts, showing that for
anya drawn from one class of operations a@ndrawn from another class, the program is
monotone relative to them.

Fact 4.1.15BuILD QT-DYN is monotone relative to pairs of split operations that aré¢tbo
due to crowding.

Proof: Crowded cells are enqueued immediately when they are creh@fore, they
are dequeued in order of size. This shows that,if # |c,|, their relative order is de-
termined by their relative size. If instedd | = |c»|, then consider the crowded celis
andc] that enqueued them. & andc; are the same cell, then the fact that the algo-
rithm uses a canonical ordering for numbering children obdenmeans that; andc
are enqueued in the same relative order in any trace whisrgplit for crowding. Each
bucket of the 2-bucketed priority queue maintains a det@stic ordering of its items in
each bucket (LIFO, for example). Therefore, the order inclwhi andc, are dequeued is
uniquely determined by the order in which they are enquewbd;h we argued was the
same for all traces.

If instead ¢ andc; are not the same cell, then the relative orderofind ¢, on
the queue is determined by the relative order,0findc; (again assuming deterministic
ordering of the queue). We can iterate this argument urgilléast common ancestor of
c1 andc,y, which we just argued pushes its children on the queue inahreesorder in all
traces. Thus, two crowded cells are dequeued and split isadhe relative order in any
trace in which they are both crowded. m

As a proof aid for dealing with ill-graded cells, considee thull quadtree of infinite
depth (.e. the object that results from the infinite process of spiitcells in breadth-first
order). Looking at a celt, in this infinite quadtree, we can identify a unique &étof
neighbouring cells of twice the size. This is the set of cilid, in the worst case,could
enqueue due to grading wheris split. In turn, the cells irC” have neighbours of twice
the size. | define thehadowof a cell ¢ as the transitive closure of this neighbourhood

63

BUILDQT-DYN(P: point set,L: real,d: int)
1: P: map from quad-tree cells to points Bf
2: (): a 2-bucketed priority queue of pairs of celtsr), keyed by|c|, largest first
3: Each bucket of) must be deterministically ordered based on insertion ofid&O,
for example)
add the associatio, L|* — P to P
if [0, L] is crowded (that is|P| > 2) then
Q < {[0, L]}
end if
while |Q| > 0do
(¢,r) « DELETEMIN(Q)
10: splitcinto 2¢ smaller cells{c;} in a canonical order
11: for eachpointp € P(c) do

© N

12: find thec; that containg
13: addp to P(c;) with a tag ofr
14: end for

15: delete the entry’(c)
16: for every neighbout’ of ¢ in a canonical ordedo

17: if ¢ isill-graded (/| = 2|c|) then
18: enqueudd,) ontoQ

19: end if

20: end for

21: fori=0t02¢—1do

22: for every neighbout; of ¢; do
23: if ¢; is crowded (that is|P(c;) U P(c;)| > 2) then
24: enqueued;, ¢;) onto@

25: skip to the next child

26: end if

27: end for

28: end for

29: end while

Figure 4.4: The algorithm of Figure 4.3, modified so that thegpam ismonotongDef-
inition 1.4.3). The modifications are: | clarify the order @dch bucket of the priority
queue, | tag queue entries with a “reason” fieJdand | tag point location entries with
the “reason” field. Under self-adjusting computation, thigorithm has response time
O(lg L/s) when adding or removing a point frof.

64

operation: intuitively, the shadow ofis the set of all the cells thatcould ultimately cause
to be enqueued due to grading. Thanks to the order of thatgrepreues, after splitting,
the entire shadow af is split before any other cell with |¢/| < |¢| will be processed: the
shadow of consists only of cells larger than Effectively, BUILD QT-DYN is a recursive
function: after splitting a cell, we “clean” the effect oflgpng it, removing any ill-graded
cells; the priority queue serves as the stack in the reaislls. In particular this means
that after splitting a crowded cel| but before splitting another crowded cell, every split
performed has for its reason field; | call this thehadow property. We can now return
to proving the monotonicity lemmas.

Fact 4.1.16 BUILDQT-DYN is monotone relative to any pair of split operations whose
corresponding queue elemetits,) and (¢, 7o) have different reason fields # .

Proof: The shadow property implies that the relative order,cdindc, depends only on
the relative order of, andr,, which are both cells that were split due to crowding. We
already proved that B1LD QT-DYN is monotone with respect to suchandr,. =

Fact 4.1.17 BUILD QT-DYN is monotone relative to any pafr;,r) and(cz,).

Proof: The algorithm requires imposing a canonical order on thghimurs of the cell
r (for example, in two dimensions, counterclockwise fromlthveer-left corner would be
a natural choice), and enqueueing the large neighboursitrotder. This imposes a total
order in which the neighbours will be dequeued in any tracecuRsively, the shadow
property imposes a total order on all splits that could covaddy be done with reason

|

Fact 4.1.18 BUILD QT-DYN is monotone relative to any two point location operations, or
to any one point location operation and a split.

Proof: While splitting a celle, until all points inc are relocated, no other splits occur;
thus the relative order of point relocations and splits eniital to the relative order of
the split ofc and other splits. Within a cell that was created upon splitting a cetl, the
order of point locations is determined by the order of poawiations when splitting™.
Inductively this reduces to the order of point locationsha initial node/0, L], which is
input. m

Lemma 4.1.19 (ByiLD QT-DYN monotonicity) The dynamically-stablBuiLD QT-DYN
algorithm, as described in Figure 4.4, is concise and moneto

65

Adding a tag is a constant-time operation — just one or two agyuments to each
function, which the program reads but whose value it ignor&pecifying the order
of queues and lists will only cost time if the ordering is expge to maintain. How-
ever, FIFO or LIFO orderings work and can be maintained instamt time. Thus, the
static runtime of the dynamically-stableuB.D QT-DYN is identical to that of the original
BuILD QT-DYN algorithm. The question that remains is whether the stalahalysis still
holds in the face of distinguishing cells that in the prioalysis were seen to be identical.
Consider a celt whose split operation is re-executed by the change projpsgagorithm
when updating the trace fdr to generate the trace far,. The re-execution will occur
only if the reason field on the priority queue changes. Theawedieldr will only change
if » was not crowded i} but is crowded in7», which implies that- contains or is a
neighbour of the new point Thus,c blamesp and is indeed accounted for in the stability
analysis. Equally, this shows that a cell whose split isxeeated contains at most one
point in 77, and at most two iffy; therefore, the re-executed point location costs are only
constant per re-executed split. Together with the coneseand monotonicity result, this
shows:

Theorem 4.1.20When run under the self-adjusting computation framewBikLD QT-
DYN can construct a graded quad-tree@(n lg L/s) time over an input of. points with
the closest pair of points being at distanc&om each other. Furthermore, when a point
is added to the inpuBUILD QT-DYN can respond to the change in tifi&lg L/s), where

s Is the distance between the closest pair after adding thetp&@milarly, BUILD QT-
DYN can respond to the removal of a point from the input in titngg L./s), wheres is
the closest pair distance before removing the point. Asponding to the change, the
guadtree is indistinguishable from a quadtree built fromasth over the new input.

4.2 Choosing Steiner points

The prior section showed how to produce statically, and tgpdgnamically, a size-con-
forming quadtree. This is not yet a mesh: it does not confarmié points themselves,
only to the spacing function between points; it is also niangular, which may be prob-
lematic for some users. Begt al. described how to warp the points of the quadtree, and
triangulate the result. However, quadtrees have many nmnégthan are necessary: con-
sider for instance that splitting a single cell may add asyvamnfive points, as compared

to circumcenter refinemerdt la Ruppert. The current section shows a conceptual algo-
rithm, and proves it correct. In this section, | reach for thest general algorithm that
builds a quality, size-conforming mesh; the hope is that toyvimg correct a very wide

66

class of possible Steiner points, later authors (includnygelf) can generate an efficient
algorithm that outputs very few points in practice. The slaESteiner points | describe
encompasses both circumcenters (as per Ruppert’s alggitbp®5]) and off-centers (as
perUngor [Ung04]), and many choices beyond those.

| start with some definitions. Recall that | will be producinget of Steiner points
whose Delaunay triangulation is a quality mesh. It is thenefjuite natural to develop a
fixation ond-dimensional spheres and the balls they enclose. Assumexistence of a
finite set of pointsP C R¢, and a bounded domain C R?. | denote a balb with its
center atc and with radius- as B(c,r). Unless clearly stated otherwise, this is an open
ball. A point on the surface dfis not considered to be in the ball. | use two special types
of balls, as follow:

Definition 4.2.1 (Gap ball [Tal97]) A gap ball on a vertexy is any ballb = B(c, r) such
that (1)c is within the domairn2, (2) v is on the surface df, (3) there is no point irP that
lies in the open balb.

Definition 4.2.2 (Circumball) Given ad-simplexs composed ofl + 1 points in general
position, the circumball of is the ballb = B(c,r) such that every vertex aflies on
the surface ob (that is, b is the ball corresponding to the circumscribing spherespf
Given instead an-simplexs, i < d, the circumball is the ball whose center is on the affine
plane ofs and that has alt + 1 vertices on its surface. Equivalently, the circumball is th
smallest ball that circumscribes

Recall that Delaunay entitled his seminal pager la splere vide(On the empty
sphere): al-simplex isDelaunayif, and only if, its circumball is empty of any points
in P. Clearly, the circumball of a Delaunay simplex is a gap balleach vertex of the
simplex. An lower-dimensional simplex (a segment, or giarin three dimensions, etc)
is said to be Delaunay if, there is at least one empty balldlmatimscribes the simplex.
That empty ball is a gap ball on every vertex of the simplexe Tincumball of a simplex
is a particular circumscribing ball; a lower-dimensionahglex may be Delaunay even if
its circumball is non-empty; however, if the circumball odimnplex is indeed empty, then
the simplex is Delaunay.

Consider now the Voronoi cell of a vertexwhich has nearest neighbour By the
triangle inequality, it is clear that the circumball of thegsentvu is empty. Indeed, this
circumball is the smallest-radius gap ball aroundviore generally, the center of any gap
ball on v lies within the Voronoi cell ofv. Therefore, a sufficient witness to the poor
guality of the Voronoi cell ofv is a pair of gap balls: one describing the distance to the

67

U1

V2

U3
[

Figure 4.5: Completingv. Left: The vertexv has a bad aspect ratio Voronoi cell, as evidenced
by the gap balls om, which are much larger than the distanpey|| = NN(v). The Voronoi cell
could be arbitrarily larger than is showiRight: After iteratively insertingv; throughwvs at the
centers of large gaps, no large gap remains, and the Voronoi aeisaff good quality.

nearest neighbour, and one with radius p NN(v) wherep is the user-specified quality
threshold. That is, we need not compute the Voronoi cell.

This produces an obvious algorithm: starting with the @ipoint set, look at each
point in turn. If it has good quality, we can move on. If noteththere is at least one
offensively large gap ball. Add the center of that ball, ahdak again, until the vertex is
completely surrounded by points that hide any large gaps fto

Definition 4.2.3 (Complete) A vertexwv is said to becomplete if it has no gap ball of
radius larger thanp NN(v).

The claim is that this procedure produces the quality mestwandld like to have.
Clearly, the mesh respects the input point set. Equally lgleae mesh is of good quality,
except perhaps near the boundary of the mesh. For now, ighereoundary effects; |
will show in Section 4.4 that we can set up the domain suchitieindeed safe to ignore
boundary effects. What is left is to show is that the mesh yhasated respects the local
feature size (which also shows that the procedure doesgtntéaminatey.

2It is more natural to write the lemma a&(v) € Q(Ifs(v)), becauseNN changes over time and is

controlled by the algorithm, whered is fixed by the input. However, writing it in the forifs(v) €
O(NN(v)) is more convenient in the proofs.

68

Lemma 4.2.4 When the iterative routine chooses to insert an off-center

Ifs(v) € O(NN(v))

Proof: The pointv is being inserted in order to complete a mesh veutexhose nearest
neighbouris/. By definition,v is the center of an empty ball of radius at lea3tN(«), on
the surface of which lies. This setSNN(v) > p NN(u). If both « andu’ are input points,
thenlfs(u) = NN(u) < NN(v)/p. By the Lipschitz conditionifs(v) < Ifs(u)+||uv]|, into

which we substitute the prior bounds to conclidév) < NN(v)p—;l. Thus, for ¢ > %1
the statement holds.

Otherwise, letV be the newer of. and’. By induction, we know that whefi was
inserted,Ifs(U) < ¢NN(U), and that at the timeNN(U) < [luv/||. Again appealing
to the Lipschitz condition]fs(v) < lfs(U) + ||Uv||. The distance fronU to v is at
most||uv|| + ||uv'||, SO again we can substitute to gég—c + 1) NN(v). Thus, forc >

(%f + 1) the statement holds. This evaluatesdto %} . The two boxed constraints are
simultaneously satisfiable for apy> 1. =

Theorem 4.2.5 (Completing is size-conforming)There exists a constaay; that depends
only on the dimension and gnsuch that after completing the mesh until no incomplete
vertex is left, for every point in the Delaunayi-simplexr, that containse,

Ims(z) < Ifs(z) < cp; lms(x)

Proof:

All points of the input are in the output, so the lower boundiwious. The up-
per bound is implied by Lemma 4.2.4. Given an arbitrary paintonsider its nearest
neighbourv, which is a vertex of the mesh (see Figure 4.6). In other wardges in
the Voronoi cell ofv. Whenz is on the boundary of the Voronoi cell, it is equidistant
betweenv and a second point. Therefore, the smallest distancerthah have between
it and its second-nearest pointlias(z) > NN(v)/2. By the Lipschitz condition, we
know thatlfs(z) < Ifs(v) + ||zv||. Because the Voronoi cell of is of good quality,
[|lzv]| < pNN(v) < 2plms(x). The first term is an inductive argument:

Let v be the nearest neighbour of If v was inserted aftet, then by Lemma 4.2.4,
we know thatfs(v) < ¢NN(v). On the other hand, if was inserted after, then we only
know that at the time: was insertedlfs(u) < ¢NN(u). Butv was a neighbour of; at
that time, sdfs(u) < ¢||uv|| = ¢ NN(v). This allows us to use the Lipschitz condition to
compute the local feature sizeatlfs(v) < Ifs(u) + NN(v) < (1 + ¢) NN(v).

69

Figure 4.6: lllustration of the proof of Theorem 4.2.5. Ttwdldw pointz is an arbitrary
point in space; it lies in the Voronoi cell of a mesh vertexvhose nearest neighbouris
The cell ofv has out-radiugz and in-radius-.

Substituting back in téfs(z) < Ifs(v) + ||zv|| we get that there exists a constapt
namely2(1 + ¢ + p), such thatfs(z) < ¢z lms(z). =

4.3 Efficient algorithm

Implementing the conceptual algorithm requires efficiefitiding large empty gaps. The
key to efficiency will be to work in a bottom-up fashion: we qalete vertices in (approxi-
mate) order of their distance to their nearest neighboortsst distance first. Lemma4.3.1
shows that work only progresses: when a new vertexcreated while completing a ver-
tex u, NN(v) is substantially larger thaNN(«). Thanks to this progress property, | can
prove that when the algorithm computes a gap ball, the gdpblylintersects a bounded
number of the cells of the quadtree constructed byLB QT. This shows that the postpro-
cess to turn a graded quadtree into a quality Delaunay m&sh tanly linear time in the
size of the output. Philosophically, this makes sense:dimglthe quadtree is analogous
to sorting, and this postprocess is simply a filter process the sorted structure.

The main loop invariant this algorithm maintains is thatrgwesrtex with nearby near-
est neighbour is complete. The priority queue is orderethbyearest neighbour, smallest
first. The following shows that work in one bucket only createork in a strictly later
bucket. Therefore, once a bucket relating to length rahge) has been fully processed,
every vertex that has a nearest neighbour closer ghancomplete.

70

CHOOSESTEINERYP, QT, P, p, 7)
1: P: set of points inR?
2. QT: graded quadtree dR, such as from BILDQT
3: P: map storing the correspondence between quadtree cellgeatites
4: Q. work queue, bucketed with factpr
5. foreachp € P do
let ¢ be the quadtree cell that contaims
add a @MPUTENN(p) event, with keyi¢|/2, to @
end for
. while @ not emptydo
10: w < pop@)
11: if wis a COMPUTENN event orw then

© N

12: Compute the exact nearest neighboy6teiner or input) ta
13: if ||uv|| < NN(v) then

14: add a @MPLETE(v) event, with key||uv||, to @

15: end if

16: else ifw is a COMPLETE event onv then
17: while 3 a gap balb = B(x,r) with r € (p NN(v),yNN(v)) do

18: Let ¢, be the cell that contains

19: Addc, <« xto P

20: Add COMPLETE(x), with key ||zv||, to @
21: end while

22 endif

23: end while

Figure 4.7: Static algorithm to compute Steiner pointsegia graded quadtree. The
parametep must be strictly greater than 1. The parameteffects runtime; it must be at
least as large as

71

Lemma 4.3.1 (Completing only leaves large incompletestonsider an incomplete ver-
tex v with nearest neighbout. While working to complete, any new vertex’ thus
created has a nearest neighbour (name)yat distance at leagtvy’|| > p||uv||.

Proof: The vertexy’ is the center of a ball that hason its surface, which proves that
is the nearest neighbour t6. The radius of that ball is, by construction, at leal$tv||.
|

Given the loop invariant, we can now prove that both prireitoperations of the
CHOOSESTEINERS algorithm (namely, computing the nearest neighbour, ardirfgha
large gap ball) can be implemented in constant time. Comgutie@ nearest neighbour for
a ComPUTENN event can be done using Dijkstra’s algorithm. Nodes ofsé&rch graph
are quadtree cells and mesh vertices, and the distance Euttielean distance from the
object tov; there is an edge in the search graph from a cell to its neigisband from a
cell to the mesh vertices it contains. This search is esdné sweep, growing a circle
out of v, which stops upon reaching a mesh vertex. The runtime isrdgidated by the
number of quadtree cells the final query circle intersectsn@ding a gap ball of radius
r € (pNN(v),vNN(v)) during COMPLETE can be implemented using a similar set of
searches. In either case, the query comes down to being aty emgle with radius at
mostO(NN(v)).

Lemma 4.3.2 In a partial mesh where all vertices with nearest neighbouselthan are
complete, for any point € €, if Ifs(z) < [/2, thenz lies in the Voronoi cell of a complete
vertex.

Proof: | start with a simple observation: at any point €2, there is at least one vertex
within distancdfs(y) of y (in fact, there are at least two); we can write thi\a$(y) <
Ifs(y). Letwv be the vertex that hasin its Voronoi cell. The Lipschitz condition says that
Ifs(v) < lfs(x) + |zv|. But|zv| = NN(z) < Ifs(z), so we havéfs(v) < 21fs(z) < I.
Finally, NN(v) < lfs(v) < [. Thereforep is complete. =

Lemma 4.3.3 (Gap searches are fasth a partial mesh where all Delaunay edges shorter
than! are complete, any gap ball on a vertexwith nearest neighbouXN(v) € 6(7), and
with radiusr € ©(l), intersects at mosD(1) quad-tree cells.

Proof: Consider the celk;,, that containg. By the size-conforming theorem (4.1.4), the
cell has size9(NN(v)) = ©(l), as do its neighbours. A celltakes up volumér|?, so the
gap ball can only intersect a constant number of cells of Gi@e,|). In other words, if

72

the gap ball is to intersect a large number of cells, it mustrgect some small cells. For
a contradiction, assume the gap ball does, indeed, inteasguall cell, of size lesgc, |
for somee to be described later. Let be one such cell, and letbe a point common to
c_ and the gap ball. Walk along the ray frorto v, stopping upon crossing cells (for

a particular constarnit to be described), and letting the stopping point be cajled@hen
there is an empty ball centerediathat intersects at least+ 1 cells.

The last cell visited in this walk must have size at nigj$t_ | since the quadtree was
well-graded. The local feature size @tis no greater thaw,;2*|c_|; that is, there is a
Delaunay edge in the input with length at mog**!|c_|. Usinge = %2’““ ensures
that this length is strictly less thdnwhich means that the algorithm éﬁ”ready completed
the edge. But them must lie in a Voronoi cell of good aspect ratio, as proved abov
Therefore, the empty ball centered;atwhich we previously proved intersectéd+ 1
cells, is contained in the union of circumballs of completedices. Completed simplices
are size-conforming (they will be in the output); and sincedytree cells also are, the
empty ball centered atcan only be intersecting a constant number of quad-tres. c&dit
k to that constant. Then we have a contradiction, which leade the conclusion that all
cells that the gap ball onwith radius©(!) intersects only quadtree cells of si2¢l), and
thus only intersects a constant number of themm

Finally, recall that in a quality radius/edge mesh, evergtesehas bounded degree
[MTTWO5]. This proves that the loop in ad@PLETE(v) event has a bounded number of
iterations. Therefore, every event is processed in conhstae.

4.3.1 Delaunizing

The CHOOSESTEINERSalgorithm computes a set of points and never explicitly corap
their Delaunay triangulation. However, a simplex congdof complete vertices is never
destroyed. Therefore, we can simply note this and outpuithplex immediately at that
time; every simplex of the output is reported since everypsix in the output is made
up of complete vertices. Alternatively, as proposed by Plaled andJngor, we can run

a third pass that does explicitly compute the Delaunay: &@heoutput vertex (Steiner or
input), compute its set of Delaunay balls. Since every xagteomplete, every search will
be a gap of radius < p NN(v), which is constant time. Since every vertex in the output
has bounded degree, it tak@$l) time per vertex, oO(m) C O(nlg L/s) total time.

73

4.3.2 Static runtime

Theorem 4.3.4 After runningBuILD QT, CHOOSESTEINERS, and computing the Delau-
nay triangulation of the output points, we have constructeakesh that respects the input,
has radius/edge quality no worse thanand is size-conforming. Furthermore, running
these algorithms takes a total 6f(n 1g L/s) time.

Proof: The output points include the input points, so the meskhdtitiviespects the input.
Upon completing all the vertices, we have a quality mesh, uteobdoundary concerns to
be addressed in Section 4.4. Lemma 4.2.5 shows that thetositpiso size-conforming.
Computing the quadtree is the bulk of the runtimeQdt lg L./s) time. Computing the
Steiner points and the Delaunay triangulation takes omhe tiinear in the output size,
which isO(nlg L/s) in the worst case, but much smaller in common casea

4.3.3 Dynamic stability

To establish dynamic stability of K@ OSESTEINERS, | use the same argument as in the
section on BILDQT: namely, when a Steiner pointis added to the mesh, it is added to
complete a vertex. Naturally,u blamesv. However, the coordinates afalso depend on
a few other vertices, in particular the nearest neighbout ahd any other vertices on the
surface of the gap ball whose center define&inally, while completing, the search will
iterate overO(1) quadtree cells, which may have changed due to changes ingbg o
we must blame those as well.

Inthe BUILD QT section, the argument was that every step of blame cutractieaistic
length in half, and thus if a quadtree cell blamed a pginthe cell had characteristic
approximately equal to the distance frgm The situation is slightly more complicated
now, because the vertices on the surface of the gap ball nvaydmaracteristic as large as
that of v. Indeed, we can construct an example (see Figure 4.8) wherehiaracteristic
does not grow, and geometric information can leak arblyréar away. Spielman, Teng,
andUngdr show how to sidestep this issue by colouring the work qirelieear work and
constant parallel depth in their parallel algorithms [®17, STU04] (they call it computing
a maximal independent set, but this is a misnomer as the igekgrge, but not maximal).
The CHOOSESTEINERSalgorithm modified to use colouring is in Figure 4.10.

Work in CHOOSESTEINERS s ordered according to a bucketed priority queue, with
bucketing factop. Two vertices in the bucket, pl) are independent if we are sure they
can be completed in parallel without the one affecting thetThis happens if the off-
centers of one are not contained within the gap balls of theroRecall that the gap balls

74

a b c

Figure 4.8: An illustration of a long chain of dependencyeTihput isn (here,n = 4)
equally-spaced points on a line. The first vertex to be pmEmbs, adds an off-center’

at distancep directly above itself. Its neighbout casting a similar gap ball, runs ini6
and thus creates @ somewhat off from the vertical. Vertexcasts a gap ball and finds
it to have small radius, and thus adds no off-center. Thencbamntinues with/ force to
addd’ slightly off from the vertical. Clearly, the dependency caogagate arbitrarily far.
However, it would be safe to addand a hypothetical” at distance directly abovel: a
andd are in a sensmdependentExplicitly exploiting the independence allows breaking
artificially long chains of dependency.

- T \/\
.
-
= / 3 |
= W !
P
\ U\\
<
\\ P

Figure 4.9: The grid used to determine independence. gartltat lie in a shaded square
cannot conflict with vertices lying in a separate shadedreguanly O(1) vertices lie in
any given square, so they can be processed serially. Afdingythrough all3¢ ways
of regularly shading squares, every vertex has been assamnerder in which it will be
processed.

75

CHOOSESTEINERY P, QT, P, p)
1: P: set of points irR?
2: QT: graded quadtree dR, such as from BILDQT
3: P: map storing the correspondence between quadtree cellgeaintes
4: (Q: work queue, bucketed with factpr
5. foreachp € P do
6: letc be the quadtree cell that contains
7: add a @MPUTENN(p) event, with keyic|/2, to @
8: end for
9: while @ not emptydo
10: Let W be the set of smallest items ¢h
11: if There are any GMPUTENN items inl/ then

12: for each CoMPUTENN(v) item in W do

13: Compute the exact nearest neighboa{6teiner or input) ta
14: add a @MPLETE(v) event, with key||uv||, to @

15: end for

16: loop again

17: endif

18: LetG be agrid on0, L] with grid elements of siz&yp

19: for each COMPLETE(v) item in W do

20: Add a pointer tav from the grid element ofr that contains v
21: end for

22: Use(to colourW usingA colours

23: for each colout € [1...A] do

24: for each element GMPLETE(v) of W with colour: do
25: Completev

26: end for

27: end for

28: end while

Figure 4.10: Dynamically-stable algorithm to compute &eipoints, given a graded
guadtree. Unlike in the static algorithm, we now need to fedlsesequence the Gm-
PLETE(v) events within a bucket in order to avoid long chains of delesicy.

76

of a vertexv have radius at mostNN(v) < ~pl. Therefore, ifu andv are at distance
3vpl, they must be independent. The task now is to colour thecesitieach colour is an
independent set.

To compute the colouring, make a grid with side lengtlp/. Note that this grid is
unrelated to the quadtree. A vertexat a point(zy, ..., z4) is assigned to the grid square
(..., |z:i/(3ypl)],...). It would be a bad idea to create the grid explicitly; insteael can
use a hash table to store only the non-empty grid squareberié taren; vertices in the
bucket, then this takes expected timéen,).

Each grid square will have at most a constantertices within it (I prove this in
Lemma 4.3.5). In a given grid square, it may or may not be p&std process two vertices
in parallel; pessimistically, the colouring will ugecolours in each grid square. Adjacent
grid squares may also have non-independent vertices, &0 iftid squares are adjacent,
they must be coloured at different times. However, if we &vaample every other (in
L, distance) square from the grid, all vertices in one sampjedi®es are independent of
all those in another sampled squafeevery point ins is at leasBypl from every point in
s’ (see Figure 4.9). Colour the vertices in this sample, usintgpupcolours. Then shift
the sample by one square, and repeat. Each shift takeurs; we only nee@? shifts to
ensure that every square has been sampled.

Lemma 4.3.5 Each grid element contains at most a constant number ofoesrti

Proof: The volume of a grid element while processing a bucket of [giz#) is (3ypl).
Every point being coloured has nearest neighddNfv) > [and thus has an empty ball
around it of volumeV(1/2)?, of which at least 2~¢ fraction must lie within the grid
element. Thus, the constant is no more they p)?V,; whereV/ is the volume of the unit
sphere in dimensiod. This proof is loose. =

The ordering chosen by the colouring is congruent with aeiang of the work items
in a given bucket, and the prior proofs did not depend on tderang within buckets, so
the algorithm remains correct. Colouring takes linear tireeery vertex in the bucket
[l, pl) is inspected once, and every non-empty square is inspeaiesl oThere are no
more non-empty squares than vertices. This means the siatime is unmodified from
before:O(m) time to choose the Steiner points. What remains to be provbd idynamic
stability bound. The blame argument can now be articulaiéy f

Lemma 4.3.6 (Blame within rounds packs)Consider two Steiner pointsandw created
while processing events with nearest neighbout,ipl). If v blamesu, then||uv|| € O(1).

77

Proof: If, at some point during thehi | e loop, the gap balls ofi intersect those of,
then the claim is obvious since the gap balls have ra@ius. If not, then there is a path

v = v, v1,...,v = u Of blame, whose gap balls intersect pair-wise. Any two aghac
verticesy; andv;,; are withinO([) of each other. By the construction of independent sets,
k is a constant. Therefore, the distance froto « is at total of at mosO (/). m

Lemma 4.3.7 (Blame across rounds packslf, while processing events with nearest neigh-
bour in [I, pl), the algorithm creates a Steiner pointand v blames a vertex inserted
when processing smaller events, thenw|| € O(1).

Proof: If v blamesu directly, thenu is on the gap ball that defines The distance from

to u in this case is at mosg®(p?l). Otherwise, blame is via a chain= vy, vy, . .., vx = u.
Among a set of; inserted while processing the same budKep!’), we just saw that the
distance is at mos?(/’). We can therefore compress the chainte v, v},...,v, = u

where each vertex is in a different bucket. The distance frgnprocessed in bucket
', pl'), to v, processed in a smaller bucketi§!’) C O(lp~*). The total distance from
v tou, then, is the convergent sum, O(lp™") C O(l). =

4.3.4 Maintheorem

Theorem 4.3.8 (Dynamic Stability of GHOOSESTEINERS) Under single-point additions
and removals, th€HOOSESTEINERSalgorithm, composed with tHeuILD QT algorithm,

is O(lg L/s) dynamically stable. This leads to an algorithm that resptalchanges in
the same time.

Proof: If a Steiner pointy blames an input point, then by Lemma 4.3.7, the distance
llop|| € ©(NN(v)). Therefore, onlyO(1) Steiner points created in each bucket blame
p due to chains of off-centers. We already know from Theoreinl4. that onlyO(1)
quadtree cells of any given size blameherefore, onlyO(1) Steiner points in each bucket
blamep due to changes in the quadtree. Given ther&Hig L /s) buckets, this bounds the
total number of Steiner points that blameFinally, each Steiner point h&¥ 1) simplices

in the final Delaunay mesh since it is of good quality; obljlg L /s) triangles will change.

Monotonicity is ensured by the standard arguments. Thegghpropagation queue is
slightly more complicated. GMPUTENN events can be bucketed pyand LIFO within a
bucket, to properly maintain the order of operations. Tleessing of ©OMPLETE events
is in two parts: the first must be bucketed byand LIFO, to determine the colouring.
The second must additionally be bucketed by the colour. 3tills/ields a constant-time
priority queue. =

78

4.4 Bounding box to ignore boundary effects

With the provable algorithm in hand, |1 can now explain how hmase an appropriate
meshing domain for the input. The bounding shape | proposebisx, [0, L]¢, with the
faces split intoN;! grids; there are thud/¢ = — (Ny,, — 2)¢ vertices defining the box.

The input will be restricted to lie in a concentric box withisilengthl. The valuesV,,,
and! are functions of each other, and&nd the dimension.

We mentioned above that a complete mesh was a quality mesh bagpindary effects.
Miller, Pav, and Walkington [MPWO02] proved that in a mesh wiih encroached bound-
ary, the circumcenter of every simplex lay inside the domainder this condition, then,
any simplex with bad radius/edge ratio would have an astmtigap ball of large radius;
conversely, if the mesh is complete but there is a bad rastige/ ratio simplex, it must
be that the domain boundary is encroached. Thus, it suffcebdoseN,,, andl such
that at all points during the algorithm, no matter the ordexhich we choose to complete
vertices, the boundary remains unencroached. Cldamyst be small enough that none
of the points in the input encroach the boundary. But this maisi be true for the off-
centers of input vertices, and recursively for the off-eesbf Steiner vertices. Generally,
increasingV,,,, increases.

Lemma 4.4.1 (We can ignore boundary effects)Given used-defined constari{sN,
and p that satisfyl < (1 — 2L (\f + 1))L, no off-center generated while completing
the mesh encroaches upon tbe boundary box.

Proof: If avertexv encroaches upon the boundary, it lies in the circumball efgimplex
7, With i < d. That is, the distance from to the boundary can be no greater thdn).
This simplex is composed froin4- 1 points on a regular grid with spacifdg/ (Ny, — 1),

S07(7) = ViL/(Nigy — 1). Atmost,i = d — 1, andr(7) = £/

Assuming it is a Steiner vertex, that encroaches, then it was created as the off-
center of some;. The nearest neighbour of is, thereforep,. FurthermoreNN (vy) >
pNN(v1). In turn, v; may be input or Steiner. Since our goal is to calculate how far
from the boundary the input must lie, in the worst casejs a Steiner created recur-
sively by a vertexv,. This defines a chaimg, v, ..., vo. FOr anyw; in the chain,
we haveNN(v;) > pNN(v;41), which unrolls toNN(v;) < p~*NN(v). We also have
that ||v;v;11]| = NN(v;). The distance fromy; to the boundary is thus at mogb;vy||
plus the distance from, to the boundary, which is at mostr). Calculating the sum to
U Shows that the input can only cause encroachment on the Bouifd L — 1)/2 <
> o2, p " NN(uvp) + (7). Finally, a proof by Shewchuk [She98b, Lemma 1] shows that

79

if vo encroaches any simplex of the boundary, then there is a lboyindrtexp such that
NN(vg) < ||lvop|| < v2r(7). Putting it all together, we see that it suffices to satisfy

Ll > (p—“j +1)r(7), wherer(r) = vad:fl, to ensure that no input vertex or Steiner point

can ever encroach upon the boundarys

We are now free to optimizeand V,,, at will for any givenp. One reasonable setting
has the length of a side in the bounding box be the sametlaat is,L/(Ny, — 1) = [. For
p = 2, this means thatv,,, = 7 satisfies the equations in two dimensions, aijg. = 9
in three dimensions. The former yields a box with 24 point#,onhile the latter has 386
points. This validates the assumption made much earlidisrchapter that we can ignore
boundary effects.

80

Chapter 5

Handling Input Segments

In the previous chapter, we saw how to maintain a mesh ovemardigally changing
point cloud. This is likely to be sufficient fog.g. astrophysics simulations, but many
applications will have additional features, such as aroiffn aeronautics), mountain
ranges (in meteorology), reactor walls (in nuclear engingg, faults (in geology), and so
on, which must appear in the output mesh. The current chaptavs how to extend the
point-cloud algorithm to the case where we have constrématsare linear segments.

The input description is as follows: all input lies in a blox — 1)/2, (L +1)/2]¢, plus
the corners of a grid as described in Section 4.4. Input p@rg given as an index and a
point. Input segments are given as a pair of point indicesqoordinates). For my proofs,
| require that the segments meet at non-acute ang(ésof more). Input segments must
not intersect, except for meeting at common endpointsjaitpiinput segments must not
intersect input points that are not their endpoints. | dorequire that segments form a
convex, manifold, or even a connected shape. Similarlyatpanay be isolated in space
and need not be the endpoint of a segment. The algorithm ddllSteiner points that lie
either exactly on a segment, or in the ambient space.cbh&ining dimensioof a point
is 0 if it is an input point, 1 if it lies on a segment, @if it lies in ambient space.

As before, the algorithm first produces a size-conformingdikee, then chooses loca-
tions for Steiner points. The local feature size is now defiffellowing Ruppert) as the
distance between two features, points or segments, wheHdigjoint — that is, they do
not share an endpoint. In order to produce a meshréfsgiectshe segments of the input,
| will ensure that the Delaunay triangulation of the Steipeints includes the segments
as a collection of Delaunay edges, possibly adding pointhersegment as needed. On
point-cloud inputs, the Voronoi aspect ratio quality tha may demand is any strictly
greater than one. When segments are involved, the bestygwalitan provably guarantee

81

isp > 2.

The updates | will allow are now of two types: the user can addemove a new
segment; or the user can add or remove a point that is not thgoert of any segment.
To remove a point that is an endpoint, the user must first renevery segment on the
point. As before, the user may not changealso, the user may not move a point without
removing all its segments, removing the point, re-adding its new location, and re-
adding all the segments. Clearly, any segment being addeichmiLgoss another segment,
and any new segment must be at a non-acute angle with exsggrmgents — otherwise,
the input would be illegal.

The dynamization argument will be almost verbatim from therpsection. Building
the quadtree is only slightly complicated by the presencgegiments. Choosing Steiner
points is more strongly affected, but fundamentally theadgization argument for point
clouds rested on the fact that a vertewith nearest neighbou¥N(v) only created new
Steiner points with nearest neighbquNN(v), and thus (combined with the colouring
argument), only)(1) Steiner points of any given size could be affected by an ippittp.
| will show that in the presence of segments, a verterly creates new Steiner points with
nearest neighbouf NN(v), with one exception where | need to argue with one additional
indirection: v creates a Steiner point that creates a Steiner point wittstardi nearest
neighbour.

A critical difference is that a new segment may change thal lteature size over a
large area. Certainly, no history-independent dynamicralgo can update in time faster
than linear in the number of points, callit;, that an optimal mesh puts onto the new
segment. No matter where the algorithm places its Steinatgpahe adversary can place
a facet such that it does not pass through the current setimtspgnd thereby require at
leastm ; work: dropping the history independence condition can salye us a factor of
two (we may be able to ignore deletions), which shows that ymanhic algorithm can
respond faster than i2(m) time. | will show that the algorithm of this section updates
in O(mylg L/s) time, a logarithmic factor off optimal.

As before, the overall algorithm follows the stencil:

REFINEPSLG(, P: points in[O,L]d, S: segmentsy: quality bound)
1: QT+ BUILDQT(L,P,S)
2: P’ — CHOOSESTEINERSQT, p)
3: M «— TRIANGULATE(P U P, T)

82

5.1 Building the quad-tree

Building the quadtree (see Figure 5.1) tolfsg-conforming is very similar to building
anlfsy-conforming quadtree. | add one mapping, from quadtres tellhe segments that
cross that cell; and | generalize the definition of crowdiRgcall thatlfs; is defined as
the smallest ball centered at a given pginihat touches a pair of non-intersecting features
(segments or points); therefore, | split a cell if it inteatsesuch a pair. Of course, as was
the case with points, this is insufficient if features hapfehe within ¢ of a boundary
between two cells. Thus | check that two neighbouring callaot between them contain
two non-intersecting features.

5.1.1 Analysis

| now proceed to prove certain properties about the quadkreealgorithm constructs.
Namely: the quadtree is graded and size-conforming. Fumibie, each split takes con-
stant time except for relocating the features, and eachre# relocated a bounded num-
ber of times, which yields the desired runtime. Finally, arif ¢ being split is at distance
O(|c|) from any featuref it blames, which yields the dynamic stability bound. Thegfro
of size conformality is identical to that of Theorem 4.1.heTruntime and dynamic sta-
bility bounds need the following proofs:

Lemma 5.1.1 (Constant-time splits)Barring Lines 12—-17, each iteration of the “while”
loop inBUILD QT takesO(1) time.

Proof: Checking whether is a leaf cell is a constant-time operation. There @té)
neighbours of the cellbeing splitin the while loop. Therefore, checking them faadjng

is O(1) time. Similarly, there are a constant number of new childoeaating them and
linking them in will take constant time. Finally, the doubtested “for” loop is over a
constant number of children, times a constant number ohieigrs, and thus is a constant
number of iterations.

The setsP and.S may be larger than constant size. However, they are only insed
single conditional; if they are large, then the value of tbaditional is true and we can
short-cut execution. Conversely, if the conditional is éalthe sets were small. This is
obvious in the tesP > 2. To test whether all segmentsshshare an endpoint, we merely
keep track of the intersection of the sets of endpointS.oAs soon as that set is empty,
we can stop and answer the conditional affirmatively. Everyex in the PLC has degree
at most2? because segments must be at least orthogonal to each othes, wsill find an

83

BuiLbQT(L, P, S)

1. T « [0, L]

2: Qqt <+ [0, L]*

3: initialize P to hold pointers fromo, L]¢ to everyp € P
4: initialize S to hold pointers froni0, L]¢ to everys € S
5: while Q4 not emptydo

6: ¢« PORAQqi)

7. if cis not a leaf cell, skip

8: for eachneighbour’ of ¢ do

o: if || = 2|c| then add’ to Qg
10: end for
11: Splitcinto 2¢ children
12: foreachp € P(c) do
13: Add p to the P entry of the unique child that contaips
14: end for
15: foreachs € S(c) do

16: Add s to theS entry of every child that intersects
17: end for

18: for eachchild ¢~ of cdo

19: for each neighbour’ of ¢~ do
20: P — P(c")UP()
21: S — S(c)uS(d)
22: if |P| > 2

or |P| = 1 and it is not an endpoint of
or not all segments ¥ share a common endpoititen

23: add bothc™ andc’ to Qg
24: end if
25: end for
26: end for
27: end while

Figure 5.1: The algorithm to build a size-conforming queskt The splitting rules are
expanded to split if two disjoint features lie in neighbagricells (two points, a point and
a segment, or two segments).

84

empty set as soon as we see at most twice that many segmeiots, Gimce cellg™ and
¢ may both intersect any single segment)Pltontains exactly one element, intersétt
with the set of endpoints, again in constant times

To make the analysis easier, | define a sepsg#udo-verticeson each segment. If a
segmentf intersects fewer thar cells, wherex is any constant at least 2, the pseudo-
vertices are just the two endpoints and the edge is considetse “short”. If f intersects
more cells, the edge is considered “long” and | split it: cmptoally create a pseudo-
vertex at the midpoint, and splitinto subsegmentg; and f”, at the midpoint off. Both
subsegments will be barely short: after only a constant reurabfurther splits that affect
f's f will become long (and similarlyf”). The set of midpoints forms a well-graded,
Ifs-conforming mesh of the segment. Remember, however, thee #re not real vertices:
| never construct them in the algorithm — only in the analysis

Lemma 5.1.2 (Query structure update costs)Lines 12—17 rurO(lg L/s) times per in-
put point, andO(lg L/s + my) times for segment numbgrwherem; = ff Ifs™! (x)dz is
the number of points needed to size-resolve the segfnent

Proof: At any step in the algorithm, an input poimties in exactly one celk. If cis later

split, p is relocated ta’, which takesO(1) geometric tests sinceonly has2? children.

The size of¢ is exactly half that of;, so this can only occur logarithmically many times,
with the numerator being (L) and the denominator, because the quadtree conforms to
local feature size, no smaller th&{s).

If a short segmenf intersects only one cell, it behaves exactly as a point. dddi
f intersects onlyx or fewer cells, then all the cells thdtintersects are within a factor
2" in size of each other because the quadtree is graded. Therefe can meaningfully
identify with f a characteristic size: the size of the smallest cell it aets. After splitting
 cells that intersecf, the characteristic must have fallen by at least half. Argnsent
that intersects cells in the final output is therefore only relocatedg L/s) times.

To account for long segments, note that any segment is shtié deginning of the
algorithm. Account for it as above untfl intersects more thar cells. In other words,
the initial location of f within the mesh cost®(lg L/s) relocations. Afterwards, notice
that the subsegmerit will be relocated)(1) times before being conceptually split again.
Every midpoint is associated with two subsegments, eactinwiwis relocated)(1) times,
so the number of relocations@¥(lg L/s + my) intotal. m

Note also the following: Uncrowded but ill-graded cells Mibhve only zero or one
vertex inside, and zero & segments inside — otherwise, they would be crowded.

85

Theorem 5.1.3BUILDQT runs in timeO(nlg L/s + m) to produce a size-conforming
graded quad-tree.

Proof: The quadtree conforms to the local feature size (Theoremy do the number of
splits isO(m). Each split take®)(1) time except for maintaining’ andS (Lemma 5.1.1).
The maintenance cost {3(lg L/s + my) for each segment or input point (with; = 0
for points), which sums t®(nlg L/s + 3>, ms) CO(nlgL/s+m). =

Theorem 5.1.4 After adding or removing a feature from the inpBt)ILD QT can respond
intimeO(mylg L/s).

Proof: For a point feature, this was proved by Lemma 4.1.11. For eneagfeature,

it is easy to see that Lemma 4.1.10 applies: any €eking split due tof has||cf|| €
O(|c|), where the distance is defined according to the nearest agpteetween: and

f. Consider now the point on f that is closest te. That point isO(|c|) from one of
the pseudo-vertices (possibly much closer), because tia¢ fieature size at is at most
Ifs(c) + ||cz||, both terms of which aré(|c|). Therefore, cells that blamg for being
split pack around pseudo-vertices: each pseudo-vertebaisda forO(1) cells of each
size, there aré(lg L/s) sizes of cells and)(m) pseudo-vertices; a total, as claimed, of
O(mylg L/s). Since every split is constant time (Lemma 5.1.1) exceppént location
charges, this drives the response time.

Given that a cell that is split according one input but not ¢itieer must hold few
features, point location costs aégm, + 1g L/s) for f and at mosO(lg L/s) for all
others, which is dominated by the worst-case cost of thésspli

As before, | appeal to the standard tricks of creating aidifidependencies to ensure
conciseness and monotonicity of all operations, and toempht the change propagation
priority queue in constant time per operation.m

5.1.2 Practicalities

In the implementation of SVR, we found that the largest caristactor costs of the
algorithm were the point and range queries — not surprigjngince they cause the
O(nlg L/s) term of the total runtime analysis, whereas each point icre@nly affects
the O(m) term. Therefore, | wish to note some shortcuts to thelB QT implemen-
tation. Relocation of points is very cheag:floating-point comparisons are all that is
required to determine which of thz¢ sub-cells contains the cell. A point may lie ex-
actly on the boundary between two cells; we must take some toamake sure to use

86

greater-than or greater-or-equal tests consistenthhatocells are well-formed and non-
overlapping. Ensuring that only one cell contains any ornet@voids requiring any code
to detect duplicates it?: calling a cell crowded because a point is in both a cell and it
neighbour is an annoyingly common bug in simple quad-trggementations. Relocation
of segments is slightly more expensive, but equally sttéagivard. To determine whether
all segments irb share an endpoint, we compute the intersection of all thelpeints,
short-cutting when the partial intersection set becomgstgnbuplicates are idempotent
in this process, which is helpful given that duplicates arewoidable.

Empty cells need not be split for crowding. Indeed, in thegioal BEG algorithm,
the definition of crowding explicitly excludes empty cellsot splitting empty cells for
crowding clearly does not affect the grading guarantee, artyg helps to achieve size-
conformality with fewer cells. Therefore, if- or ¢ are empty, we can skip the body of
the doubly-nested for loop, saving both time and memoryeraktely, if the conditional
would return “true” forc™ in isolation, we need not iterate over all neighbourgofand
perform the test. We also need not add all neighbours @b the queues: the neighbour
¢ was already tested againstunless it was empty (in which case it need not be split), or
unless it is itself also a child af (in which case it will shortly be checked). Finally,df
was crowded on its own (it contained two points, or two namfisecting segments), then
clearly all its children:~ are crowded: every child is a neighbour of every other child.

5.2 Choosing Steiner points with segments

Having built a size-conforming quadtree, we now proceedréate the Steiner points.
In the prior chapter, the only requirement was that we cotepddl vertices. Now we
have the significant new requirement to make sure that thaubal triangulation of the
Steiner points (plus the original inpugspectdhe constraining segments. To ensure this,
the concept of completion will be expanded. Far from segmedieiner points will be
chosen as before. Near a segment, however, Steiner poihtsevin a sense snapped to
the segment. Philosophically, this snapping dates to Chewgdg]rand Ruppert [Rup95]
in that it is based on gap balls. The particular mechanisnelhese is novel: as was
the case with point clouds, the Delaunay balls that Chew angp&tiuse may be too
expensive to compute, so | blow up gap balls only up to a digtaalated to the quality
requiremenp and the local feature size. This mechanism is the main newibation of
the current chapter. The development of the algorithm isnafyat conceptual to prove
structural properties, and later made to be efficient.

87

u r > pNN(v
v

(@) Consider a gap ball on (b) Consider a gap ball om (c) Consider a gap ball on of
of radiusr > pNN(v). If the whose center lies on a segmentadiusr > pNN(v). If a point
smaller ball B(x, kr) |s empty s on whichv does not lie. Then z; on a segmenst lies in the
of all segments, even including s isencroachedand itis permis- smaller ball B(z, kr), it is per-
ones non-disjoint fronw, then it sible to insertc. missible to addrs;. Notably, s
is permissible to insett. need not be disjoint from.

Figure 5.2: List of permissible insertions for completingeatexv with nearest neigh-
bourw, in the possible presence of a constraining segmeithe GOMPLETE algorithm
iteratively adds permissible points until there is no pasifile insertion around.

5.2.1 Conceptual algorithm

First, | update slightly the definition of the nearest neiginbof a vertexv: it is now the

nearest mesh vertex tg or the distance to the nearest segmettiat is disjoint from any
segment on which lies: NN(v) is the diameter of the smallest gap balbahat touches
a mesh vertex, or that touches a segment disjoint from anyaegon whichv lies (of

which there may zero, one, or several).

To complete a vertex, | suggest a list of permissible ingegti(see Figure 5.2); each
one describes a situation that proves that the mesh doestigfly our requirements of
guality and of respecting the input. Once there are no pesibiesinsertions, the mesh is
complete. In the case of point clouds, there was only oneigsiiote insertion: Ifv has a
gap ball with radius > p NN(v), then it is permissible to insert the center of this ballsthi
corresponds to harboring a simplex of bad radius/edgetgudle presence of segments
complicates matters: we need to ensure we do not inserteBteaints overly near input
segments, which would violate the size-conformality ctindi If v has a gap balh =
B(z,r) with radiusr > pNN(v), and if there is a segmentthat passes through the

88

smaller concentric balB(x, r/2), it is permissible to insert any point € s N B(z,7/2).

If no segment passes through this shrunken ball, thisrpermissible to insert. The factor
of one half is optimal, but not critical; any constant styidess than one will work. To
establish that /2 is optimal, in the description and proofs | useThis idea of shrinking
the gap ball by a factok is from SVR, though there it appears in a slightly different
context.

To ensure that input segments appear in the Delaunay tietiguof the output, fol-
lowing Chew | require that the circumball of any subsegmengingty of points — that
it not be encroached Given a segment and a vertexo not ons, if v has a gap ball
b = B(z,r) whose center happens to lie enthenv encroaches. This is congruent
with Chew’s definition of encroachment: if there is an empti} bantered ons that has
a vertexv on its surface, then clearly some subsegment isfencroached by. Given
such a gap ball, it is permissible to insert the cemteFhis offers more choice af than in
Chew'’s algorithm (or than the equivalent operation in Ruppe®hewchuk’s, and various
other such algorithms): in my formulationneed not be the midpoint of an encroached
subsegment.

5.2.2 A complete mesh with segments is size-conforming

Lemma 5.2.1 There is a set of constantswithi € {0, 1, d}, andc = max ¢;, that depend
only onp, such that whelCoOMPLETE(v) inserts a point: with containing dimension

Ifs(x) < ¢; NN(x)

Proof: Clearly,cy = 1; it is only defined for ease of reference. The proof followes set
of permissible moves closely, with a case for every move hiéase constrains the value
of some;; after computing the constraints, | show they are satisiabl

Almost every line is an inductive statement, with the inducteing over the order
in which points are inserted. Consider a vertexand its current nearest neighbaurf
v postdates, thenlfs(v) < ¢NN(v). On the other hand, i, postdates, then instead
Ifs(v) < Us(u) + ||uv|| where|luv|| = NN(v) by definition. Whenu was inserted, its
nearest neighbour was no further tharso the induction yields thafs(u) < c||uv]|. In
either caselfs(v) < (1 + ¢) NN(v) in the current mesh.

Case 5.2a: The Lipschitz condition tells i z) < 1fs(v) + ||vz||. The former term is,
inductively, Ifs(v) < (1 + ¢) NN(v). We know thatNN(v) < r/p; also, given

89

that the smaller ball is empty, < NN(z)/k. Thus,lfs(z) < %NN(@. We

deducec, > 1*%;9 .

Case 5.2b: I is of containing dimension O or 1, thenands are from disjoint features
(because of the non-acute input assumption, a ball centered¢annot intersect
a segment’ that intersects except at the common endpoint ofand s’) and
Ifs(z) < |jvz|| = NN(z). This constrainsc, > 1]. Otherwise is a vertex of
containing dimension. By the Lipschitz conditionlfs(z) < fs(v) + ||vz||. We
know inductively thatfs(v) < (1+¢;) NN(v). Clearly,NN(v) < ||vz]||, by which
we concludefs(z) < (2 + ¢g) NN(z) and/c; > 2+ ¢4

Case 5.2¢c: INN(z,) is defined by a second segment, the¥i(z,) = Ifs(z,) and c; > 1|.
Otherwise, induction and Lipschitz agive, as in the proof of Case 5.2&(z) <
(% + 1)r. However, we are not insertingbut ratherc,. The distancé|zz|| is
at mostkr. Also, sinceNN(z,) is defined by a vertex and the gap ball centered
at z is empty of points, the distance from to its nearest neighbour is at least
NN(zs) > (1 — k)r. Plugging this in talfs(z,) < lfs(z) + ||zz|| yields that
lfs(zs) < (H+ 1+ k)r < (552 + 1+ k)72 NN(x,). Allin all, this constrains

14c 1+k
€12 Gopyy Tk |

Case 5.2b shows that > ¢4, and therefore = ¢;. Substituting in, we therefore get

the pair of constraints; > % from Cases 5.2b and 5.2a, awg > % from

Case 5.2c, assuming botl» > 1 and(1 — k)p > 1. This means that we can allow the
user to demangd > 2, independent of dimension, by settihg= 1/2. At this setting, we
can easily evaluate the constants= 1, ¢; = 4/)”%22, andc, = Z%g. n

Lemma 5.2.2 Upon completing the mesh, it contains no overly large mesimehts: for
every mesh vertexof containing dimension less thanwe have thaNN(v) < 21fs(v).

Proof: The vertexv lies on a featurg. The local feature size atis defined by a ball that
touches, at a poiny, a featuref’ disjoint from f: lfs(v) = ||vyl||. Letu be the vertex on
[’ closest tay. Clearly, the nearest mesh vertexit@ no farther tham: NN(v) < ||uv]|.
The ball B(y, ||uy||) is an empty ball — ity were within the bally would not be complete
according to Case 5.2b. Therefoley|| < ||vy|| = lfs(v). This proves

NN(v) < [Juv|] < [|uy|| + ||yv]| < lifs(v) + lfs(v)

90

Figure 5.3: lllustration of the proof of Lemma 5.2.3.

Lemma 5.2.3 Upon completing the mesh, for every point €2, we have that
Ims(z) < 101fs(x)

Wherelms(x) denotes the local mesh size (the local feature size indugéutEbvertices of
the mesh).

Proof: The local feature size atis defined by a ball centered atwhich on its surface
intersects a featurg at some point (see Figure 5.3)tfs(x) = ||zy||. Takeu to be the
nearest mesh vertex tpthat lies on the featurg. If f is a point, theny = f = u.
More generally,f may be a segment. By the Lipschitz conditionlars, we know that
Ims(x) < lms(u) + ||ux||. Lemma 5.2.2 proved thains(u) < 2l1fs(u). We can apply
the Lipschitz condition, this time olfs, to deducdfs(u) < lfs(z) + ||ux||. So we know
Ims(xz) < 21fs(x) + 3||uzx||. The distance fromu to x is ||uzx|| < ||zy|| + |lyu|| =
Ifs(z) + ||yul||. Because the mesh is complete, we know that the®@Jl ||uy||) is empty
of points or features — otherwise, Case 5.2b would apply tweeit or another vertex.
Thus, |Juy|| < lfs(y). At the same timelfs(y) < lfs(z) + ||zy|| = 21fs(z). Therefore,
|luz|| < 31fs(z). Plugging back in to the inequality before, we hane(r) < 101fs(x).
|

Theorem 5.2.4 A complete mesh is a size-conforming mesh, its Voronoi anadpas good
aspect ratio, and its Delaunay tessellation respects tpatn

91

Proof: Lemmas 5.2.1 and 5.2.3 prove that the mesh is size-confgrmainany point in
the meshing domain, the spacing induced by the mesh versiegthin a constant factor
of the spacing induced by the segments and input points.

A vertex with a bad aspect ratio Voronoi cell would not be ctetg according to
one of Cases 5.2a or 5.2c. Lastly, if a vertewere to lie within the diametral ball of a
subsegment of, thenv would not be complete according to Case 5.2b. This shows that
every segment is composed of subsegments, each of which is individualliabey.
|

5.3 Efficient algorithm

| adapt the GIOOSESTEINERS algorithm from the previous chapter, but with the new
definition of completion. See Figure 5.6. The efficient inmpéatation of completion
depends on using a bucketed priority queue, where each took&ining vertices with
NN(v) € [I,0(1)). The constant here will differ from the constapj {n the prior chap-
ter. The proof that this is efficient depends on Lemma 4.318chvstated the algorithm
can quickly search for a gap while processing the smallestaiing bucket. Its proof
depended upon the claim that every new vertexeated by ©MPLETE had its nearest
neighbour such that would be processed in a later bucket, as proved for pointdslou
in Lemma 4.3.1. This is clearly true for points created by G&@a, or 5.2¢, as long
as we the bucketing constant ig (that is, p/2): each bucket contains vertices with
NN(v) € [l,kpl). However, Case 5.2b violates this assumption. Indeed, densivo
edges passing near each other, as in Figure 5.4. There is at gapith center oncd
that inserts a vertex with nearest neighbour at distah€&indamentally, the issue is that
completing vertices is insufficient to getting good runtimieen the local feature size is
dictated by a pair of segments. For this reason, | define aratpe DISENCROACH(, s),
detailed in Figure 5.5. As the ®OSESTEINERS algorithm progresses, IBENCROACH
inserts vertices oRm so that points o with small local feature size always have a nearby
complete vertex.

Lemma 5.3.1 When a vertex is inserted as a result dDISENCROACH Ifs(v) < ¢; NN(v).

Proof: If the empty ball centered attouched a disjoint segment, or touched a vertex that
is not an endpoint, thelfis(v) = NN(v). The remaining case in whichis indeed created

is that the empty ball touched a vertexf containing dimensiod. Thenv is the center of

a gap ball onu that has its center on a segment; thusENCROACHemulates Case 5.2b
of COMPLETE, which was already analyzed. =

92

Figure 5.4: The maximal gap at along the input segmeb causes Case 5.2b ofdMPLETE
to create a new vertex on cd with NN(u) = ||ab||/2, near where the two skew segments almost
meet. The new vertex can in turn, by the same case, insert a new verteith NN (v) ~ e.

DISENCROACH(, $)
1: for eachx € cN s do
2: Grow aballb = B(z,r) until it touches a disjoint segment or a mesh vertex
3: If btouched a vertex that lies ons, continue the loop.
4: Otherwise, add
5. end for

Figure 5.5: A routine to avoid the problem described in Figure 5.4. Having computed the
quadtree, we already have a good estimate of the local feature sizevheeey Therefore, we can
add points on segments even before finding points to complete in the area.

93

Lemma 5.3.2 DISENCROACHiInserts at mos© (1) vertices in a quadtree cefl

Proof: The segment has length at mostd|c| throughe. According to Lemma 5.3.1, any
vertex inserted by BBENCROACHhas nearest neighbour no closer thiafv)/c;. Because
¢ contains one input segment, no neighbour does, which lowendslfs(z) > |c|/2
everywhere ire. In other words, every vertex ha&N(v) > |c|/2¢;. Only 2¢,+/d vertices
can befitinthiscell. m

Lemma 5.3.3 During CHOOSESTEINERS, if all work with key! or less has been pro-
cessed, then for any poimton any segment, with Ifs(z) < (1 — k)pl, there is a vertex
such that|zv|| < Ifs(x).

Proof: Let ¢ be the cell in whiche lies. DISENCROACH explicitly ensures that every
pointz in ¢ N s has a vertex on s within distancéfs(z). Since there is a feature inno
neighbour ofc can contain a disjoint feature; therefot&(y) > |c¢|/2 for all y in ¢ — in
particular,lfs(z) > |c|/2. If Ifs(z) < (1 — k)pl, this implies|c|/2 < (1 — k)pl. Given that
Q(TCW is precisely the key associated with, ¢ has been processed, S0SSBNCROACH
has been called andhas a nearby vertex. m

Lemma 5.3.4 During CHOOSESTEINERS, While processing the buckigt (1—k)pl), when
a new vertex is inserted, then eitheXN(z) > (1 — k)pl, or every vertey thatx in turn
inserts has\\N(y) > (1 — k)pl.

Proof: When Case 5.2ainsertsNN(z) > (1—k)p NN(v) (since there may be a segment
within the gap ball, but none near the center); meanwhil(v) > [. The same holds for
Case 5.2c. For points created bysSsBNCROACH NN(z) = Ifs(x) > |c|/2 > (1 — k)p.
The only truly interesting case is Case 5.2b.

Consider the point on s that is being inserted due to encroachment. Its nearedt-neig
bour, and the point currently being completed,.i$f v is an input point or a containment
dimension 1 vertex, them andv are on disjoint features; therefoiés(z) < ||zv||. We
know Ifs(x) > (1 — k)pl or else there would be a vertex within distariégz) of z,
contradicting thaB3(z, ||vzx||) is an empty ball. Thereforgvzx|| > (1 — k)pl.

The only remaining case is Case 5.2b, wheis a containment dimensiahvertex.
Given thatr is a containment dimension 1 point, we saw earlier in thigptiwat any vertex
y thatz will create will haveNN(y) > (1 — k)p NN(x). We also know thalfs(z) > (1 —
k)pl because3(z, ||vz||) is empty of points; this further shows that the ball is alsgpgm
of disjoint segments, leaving onlyto be the nearest neighbour of NN(z) = ||vz||.

94

CHOOSESTEINERYP, S, QT, P, S, p, 7, k)
1: P: map storing the correspondence between quadtree cellgeaincks
2: S: map storing the correspondence between quadtree cellsegntents
3: Q: work queue, bucketed with fact¢t — k)p
4: for eachcell cin QT do
5. If ¢ contains a poinp, enqueue a GMPUTENN(p) event with priorityk;,.|c|
6: Otherwise, ifc contains a segment enqueue a BENCROACHs, ¢) event with

|l

priority AR
7. end for
8: while ¢ not emptydo
90 w+« POAQ)
10: if wisa CoMPUTENN(p) eventthen
11 Grow a ballb = B(p,) until it touches a disjoint segment or mesh vertex

12: Add a COMPLETE(p) event with priorityr
13: else ifw is a DISENCROACH3, ¢) eventthen

14: Disencroacths overc

15: For each new vertex (if any), INSERT(v)
16: elseifwis a COMPLETE(u) eventthen

17: Completeu

18: For each new vertex (if any), INSERT(v)
19: endif

20: end while

INSERT(v)

21: Add a CoMPLETE(v) event with priorityNN(v)
22: for eachv’ in the link of v do

23: Add a CoMPLETE(v') event with priority||vv’||
24: end for

Figure 5.6: Algorithm to complete a mesh such that it is qua$iize-conforming, and
respects input points and segments. The rfiagpes not change during the algorithm,
since no new segments are added. The rRaghanges as new vertices are added. To
ensure short dependency paths, use gridding and colowingeationed in the previous
chapter. Parametermust be strictly larger than 2; must be a constant larger thank
should bel /2.

95

Finally, the distance from to s is certainly no further thafjvz||, so the nearest neighbour
to v is ||vz|| > NN(v). Stringing these together shows:

NN(y) = (1 = k)pNN(z) > (1 = k)p[|vz]| = (1 = k)p NN(v) m

The flurry of proofs we just saw tells us the following: wheR@OSESTEINERS pro-
cesses an event from the work queue, it may add items to thentdoucket, but never to
a smaller bucket. This is sufficient for the proof of Lemma.3.3Therefore, | can claim
the runtime is fast:

Theorem 5.3.5 (Static Meshing with Segments is FasffheCHOOSESTEINERSroutine
described in Figure 5.6 runs i@(m) time. In conjunction wittlBuILD QT, this produces
a quality, size-conforming mesh that respects the inputtp@nd segments, in total time
O(nlg L/s+m).

Proof: A CoMPUTENN event involves casting a single query of radius at niggp) <
cni(1 — k)pl aroundp to find its nearest neighbour, and thus takgd) time per input
vertex, a total ofO(n) time. Every query to support alBENCROACH event involves
casting a query of radius at mdsi(z) < kp;(1 — k)pl around a point: € ¢N s. This
results in either inserting a new vertex, or finding an oldaser After O(1) queries, the
event has been processed. This event occurs at most oncegutrag cell, so)(1) time
per cell, and there ai@(m) cells. A COMPLETE event involves casting at most a constant
number of queries, each of radius at me3N(v) € O(Ifs(v)) around a mesh vertex
Thus each query take3(1) time, and there ar®(m) mesh vertices in the output. =

Theorem 5.3.6 (Dynamic Meshing with Segments is FasffheCHOOSESTEINERSIOU-
tine is O(mylg L/s)-stable to adding a featurg that hasm,; mesh vertices on it af-
ter adding it, or to removing a feature withh ; mesh vertices before removing it, where
my = 1 for input points. Combined witBuiLD QT, this gives arO(mlg L/s) response
time to dynamic changes.

Proof: The first order of business is to prove that we can colour the\gaeue appro-
priately. While processing buckét (1 — k)pl), two COMPLETE events at distanceypl
are independent. Similarly, twoIBENCROACHevents at distancek;;/ are independent.
CompPUTENN events are all independent. Therefore, we can colour trk gueue using
the technique of gridding space to achieve a constant nuofamiours. A bucket may
need to be processed twice: a vertex of containing dimenkioay create a GMPLETE

96

event in the same bucket due to Case 5.2b. However, the new\gikebe for a vertex
of containing dimension 1, so this will not be repeated, avgad in Lemma 5.3.4. Thus,
after a constant number of iterations, the smallest evebétprocessed will have grown
by a factor(1 — k)p.

Stability: If a Steiner pointb blames a featurg, then letz be the closest point ofito
v. That events grow after a constant number of rounds proeegth|| € O(NN(v)); the
proof is analogous to that given in Lemma 4.3.7. Consider énexw, on f that is closest
to x. Because of the non-encroachment condition (Case 5|2b)| < ||vx||. Therefore,
Steiner points that blam¢ pack around the vertices that lie gin which proves that at
mostO(m lg L/s) vertices blamef.

Response time:Finally, after the standard arguments for concisenessptoaicity,
and change propagation priority queue; and after compdungbdb QT and GHOOSES-
TEINERS it becomes clear that the response time to adding (or rergpan input point
is O(lg L/s), while the response time to adding (or removing) an inputreeg which,
when present, has points on itisO(mslg L/s). =

5.4 Remarks

The idea of ensuring that input segments appear in the Dajatniangulation by ensur-
ing that each of their subsegments has an empty diametitaklhle to Chew [Che89],
and was widely adopted [Rup95, She97b, She98b, LTO1, MPW02xample]. Lee and
Lin [LL85] define the “generalized Delaunay triangulatiainanks to Chew [Che87] now
known by the name of Constrained Delaunay Triangulation (Chjch explicitly en-
sures that the subsegments appear even if their diametigblba non-empty, which has
been used with great success in two dimensions. It seenig tila the set of permissible
insertions could be adapted to conform to the philosophy of-G&sed meshing. How-
ever, my focus is on higher-dimensional meshing, and extgnithe CDT even to three
dimensions is non-trivial: the CDT of an input does not alwaxist, even when it does
it may be NP-hard to compute it, and even when it is provably-hard to compute it,
implementing the algorithms remains non-easy [She98a].

Cases 5.2c¢ and 5.2a cause my algorithm to only be able to prosheshes with
Voronoi aspect ratio 2.0 in two dimensions. Traditionallygorithms are able to pro-
duce meshes with radius/edge ra{i@. It is not yet clear to me whether the difference
is a proof theoretic one, or an algorithmic one. If it is aiffonic, | suspect that less
aggressive yielding would be the solution. Another ideaiade diametral lenses rather
than diametral balls, which is used especially in two din@msto improve the quality
bound.

97

98

Chapter 6

Dynamic Meshing for PLC Input

Having shown how to produce a quality mesh over point cloymiirand maintain it
through dynamic updates; then how to additionally handpeiirsegments, | can finally
discuss the final details for handling full-dimensionaltigas. Only two changes are re-
quired: one, to define the input; the other, to redefine thaildedf inserting a new mesh
vertex. At the close of this chapter, we have the main regulhis thesis.

The input | desire to handle isRiecewise Linear ComplefPLC), see Section 1.2.
Intuitively, a PLC is what one would draw in a CAD program: a gkpiecewise linear
objects —features vertices (dimension 0), segments (dimension 1), polyg@hsand so
on. Features must intersect in a well-behaved manner: Iféaturesf and f’ intersect,
the intersection is required to itself be a featyife Geometrically, each feature must be a
closed manifold. If a feature is not closed, it is ill-defirtegproduce a mesh of the feature.
If a feature is non-manifold, it is trivial to subdivide ittma set of manifold features.

In terms of a programmatic description, the simplest isdidiset of input points, each
one a pair of a unique index and a point R?. Then, list a set of segments, each one
an index for the segment, and two indices of input points.nTlaeset of polygons as an
index for the polygon, followed by indices for the segmentd @oints that the polygon
intersects (including its boundary). For a PLC in dimengjozater than three, the format
is generalized in the obvious manner.

| assume the existence of a black box query for deciding velethypercube ifR?
intersects a feature; this query should take constant tinhether assume the existence
of a query that returns, given an arbitrary point R?, and a feature, the closest point
y € f, again in constant time. Both are easily implementable fowew features with
boundaries of constant size (independent of the desarmiiogth — even if there are

99

many internal features, only the size of the boundary n@ttefhe question of imple-
menting these queries for a non-convex feature, or in cahstae for a feature with more
than a constant-bounded number of vertices on their boyniddeft for the reader.

The goal will be to output a set of points whose Delaunay gudationrespectshe
PLC. A feature in dimension is respected if it is tiled by a set éfsimplices, each of
which is Delaunay according to the output point set. As isonisally common, | ensure
a stronger condition: each of tliesimplices has a ball centered on the simplex that goes
through all of itsi + 1 points, termed thdiametral ball That ball will be empty of any
points.

In order for the algorithm to provably terminate, any twotfeas must intersect at
orthogonal or obtuse angles. This is so that two equal-déineal features that intersect
in a common lower-dimensional feature do not encroach et ¢i.e. they do not insert
points into each others’ diametral balls), which could eaas infinite loop. Defining
the local feature sizet any pointz, denotedfs(x), as the radius of the smallest ball that
intersects two featureg and f’ that are mutually disjoint, | will prove that in the output,
every mesh vertex has a neighbour not much farther than local feature sizealbatnot
much closer. That is, the output is size-conforming.

It is interesting to note that another definition of localttea size, used in surface re-
construction, is that the local feature size of a paion a manifold surface is the distance
from z to the medial axis of the surface. The medial axis of a piesewnear surface
touches the surface precisely when the surface has an angfé or less. The mesh my
algorithm outputs is size-conforming, so if the local featsize is zero, then the number
of vertices required would be infinite.

Dynamic updates that take place must leave an input thatwestd| the requirements
above. In particular, in order to remoeeg.a segment from the input, all polygons that
name that segment must first be removed. Otherwise, thogggra would now be ill-
formed, in that they would not be closed manifolds. Simylathen adding a new feature
f, it must not intersect another feature except in a loweretision subfeature of, and
even then, intersections must be at non-acute angles.

The exposition here is much abbreviated from prior chapte¥sause so much is in
common with the prior claims, algorithms, and proofs. | Higjt only the differences,
except that | provide full algorithm descriptions for comginess and to help in an eventual
implementation.

100

BuiLDQT(L, P, X)
1. T« [0,L]"
2: Qqt — [0, L)
3: initialize F to hold pointers from0, L]? to everyf € X
4: while Q4 not emptydo
: ¢« POR(q)
if ¢is not a leaf cell, skip
for each neighbour of ¢ do
if |'| = 2|c| then add’ to Qg
end for
10: Split ¢ into 2¢ children
11: foreachf € F(c) do
12: Add f to the F entry of every child that intersecys

© o Nog

13: end for

14. for eachchild ¢~ of cdo

15: for each neighbour of ¢~ do

16: F— F(c)UF()

17: if not all features irf’ share a common input poititen
18: add bothc™ andc’ to Qg

19: end if

20: end for

21: end for

22: end while

Figure 6.1: The algorithm to build a size-conforming quesktfor PLC input.

6.1 Building the quad-tree

Building the quadtree (see Figure 6.1) tolfseconforming to the PLC input is almost
identical to doing so for segments. Since a feature may now pp&nt, a segment, or a
higher-dimensional object, | simplify the exposition t@ag only of “features” rather than
specifying what kind.

Checking whethey intersects a cell in Line 12 invokes the black-box constané
query to see whethef intersects a cel; this is where this query is used.

If two features are non-disjoint, then in particular, theysnshare an input point. This
means that to see whether a cell contains two disjoint feafut is sufficient to test if
all the features share a common point. Testing for a commant pan be an expensive

101

operation if the description of a feature is allowed to gravge; but the test must operate
in constant time. For this reason (and in order to implemieatiiack box from above
in constant time), | require the description of a featureamea only a constant-bounded
number of input points. Violating this, and having a featwith A points on it, adds a
factorO(A) to the runtimes | prove.

The proofs of the prior chapter all apply, modulo replacing word “segment” with
the word “feature.” Therefore, | claim the following theardnolds:

Theorem 6.1.1 BUILD QT produces a size-conforming quadtree over a PLC inputn
time O(nlg L/s + m). To the addition or removal of a featureéwhich, when present,
intersectsn; quadtree cellsBUILD QT responds irO(m lg L/s) time.

6.2 Choosing Steiner points with features

In the case of choosing Steiner points for segments, there Wheee rules. The first
eliminated large gaps far from any segments, which is the gpkration needed when
operating on point cloud inputs — this is the rule that ensdine output will have good
qguality. The second eliminated encroachments near segreerthat they would appear
in the output mesh. The third handled the case of a large gagevtenter would be near
a segmentyielding to the segment if needed. The most obvious generalizatidheske
rules to three dimensions requires seven cases: (1) a lag&igh no nearby features.
(2) A large gap with a nearby segment. (3) A large gap with alnetace but no nearby
segment. (4) A large gap with a nearby face and an almost yjsagment but not nearby
enough that rule 2 applies. (5) An encroached segment. (@msroached facet with no
nearby segment. (7) An encroached facet with a nearby seghers not encroached.
Clearly, to produce an arbitrary-dimensional algorithmekd a more tractable way to
generalize.

Fundamentally, we only need two rules, which | describe guFe 6.2. The first rule
handles large gaps. The second rule handles encroachrifémiways insert a point in
a large gap, or in an encroachment gap. However, insteadsefting the center of the
gap, it might be better tgield to insert a point on a lower-dimensional feature. Ldie
a constant less than 1. Consider a #&(k,) with a center: that we are considering for
insertion, where: has containing dimensian If the gap ball contains a lower-dimensional
input feature within distanckr, then | propose to yield to that feature and insert the ctoses
pointy on that feature (or, indeed, any point within distakeeof). Recursivelyy may
need yield again. For ease of notation in the proofs belofinel¢he complement of as

102

E=(1-k).

6.2.1 A complete mesh is a good mesh

If we repeatedly call OMPLETE, described in Figure 6.2 on every vertex until no new
vertices are added, the resulting mesh is size conformingdolso, | need to first know
the effect of yielding:

Lemma 6.2.1 (Yielding effects)Letv be a vertex with a ga@(z,), which subsequently
yields to insert a vertey. Letx have containing dimensian Then||zy|| < (1 — k41)r

if « = d (that is, if z is being inserted to ensure quality), afidy|| < (1 — k% 2)rifa < d
(that is, x is being inserted for encroachment). If the nearest neighlody is a disjoint
feature, theN(y) = Ifs(y). Otherwise NN(y) > k91 if a = d, andNN(y) > k42 if

a < d.

Proof: Letz = yo,v1,...y; = y be the sequence of yields that led franto 3. Clearly,
the more yields are performed, the fartipas from x, and the closer to the edge of the gap
ball y is. Therefore, we can assume that in the worst case|l.

Leta be the containing dimension of At mosta — 1 yields can have been performed,
since segments do not yield. Letbe the radius of the ball during thi¢h yield; o = 7.
Clearly,r; = k/r. Also, wheny; yields toy;,, we know that|y;y; || < kr;. Thus, the
total distance from: to y is at mosty =5 ||y;y1|| < kr Y00k < (1 — k= Y)r

If the nearest neighbour of is a disjoint feature, thetNN(y) = Ifs(y). Otherwise,
the nearest neighbour of is a vertex. We know there are no vertices within the ball
b = B(z,r), and on every yield, the remaining ball is nested withinTherefore, the
nearest neighbour ofis at distanc&N(y) > r — ||zy|| > k> 'r. =

The two rules will iteratively insert points, possibly yiihg at every step. Assume
the existence of two constants,andc,. | claim that when a vertex is inserted that had
containing dimensior, it haslfs(v) < ¢; NN(v). If it has containing dimension < d,
thenlfs(v) < ¢;NN(v). Let ¢ = max(¢;,¢q). By the inductive argument we have seen
twice before, if these two claims hold, then at any time dyitime algorithm aftep was
inserted, it is the case th#k(v) < (1 + ¢) NN(v). | now proceed to prove the claims.
As before, each case of the proof constrains the constdritse constraints can all be
simultaneously satisfied, then the proof holds.

Lemma 6.2.2 Assume th€COMPLETE algorithm is processing a gap balb(z,r) on a
vertexv, withr > p NN(v) — that is, assume it is inserting a point due to bad quality in

103

7
W,

(a) For quality: consider insert- (b) For encroachment: consider

ing the center of any gap ballon inserting the center of a gap ball

v of radiusr > p NN(v). onv, if z € f andf is disjoint
from any feature on whichlies.

(c) Yielding: If we are considering inserting
of containing dimension, check whether there
is a featuref of containing dimensiory <
within kr of . If so, recursively considey on
f, with a ball of radiug1 — k)r. If not, insertz.

Figure 6.2: The rules for handling PLC features. TheMPLETE algorithm consists
of checking if either of the first two cases apply. If so, it okes a permissible gap ball
B(z,r) and recursively checks whetheshould yield according to the third rule.

104

the mesh. If it succeeds in insertingthenlfs(z) < ¢; NN(z). If it instead yields and
inserts a vertey of containing dimension < d, thenlfs(y) < ¢; NN(y).

Proof: If z isinserted, thetfs(z) < lfs(v) 4 r. Inductively,lfs(v) < (1 + ¢) NN(v). We
know thatNN(v) < r/p. Finally, since we did not yield; < NN(z)/k. This sums to

Ifs(x) < (¢ + 1) NN(x)/k, which satisfies the Lemma assumjng > ”k;p*’) :

In the other casey was inserted as the result of (possibly recursive) yielditig
the nearest neighbour gfis a disjoint featurelfs(y) = NN(y) which limits|c; > 1]
Otherwise, | proceed using the Lipschitz condition as uslaly) < 1fs(v) + [Jvyl].
Lemma 6.2.1 boundguvy|| < (2 — k4 1)r < 2r andr < NN(y)/k%"L. The argument
above shows thafs(v) < +*¢r. Thus,

1 1 2
+C+2)T§MNN

1f; < _
W< (— e

(y)

This requires that, > t5ct22 | m

Lemma 6.2.3 Assume th€CoMPLETE algorithm is processing a gap balb(z,r) on a
vertexv, with z centered on a featurg. If = is inserted, lety = x. Otherwise; yields to
a pointy. In either caselfs(y) < ¢; NN(y).

Proof: If NN(y) = Ifs(y) then we are done.

Otherwise, Lemma 6.2.1 proves tl‘%f—g) > r. If v has containing dimension less
thand, thenv andz lie on different featurestfs(y) < [|vy|| < (2 — k¥ 2)r < 2r. Thus
Ifs(y) < = NN(y). This constrains; > -5, which is overshadowed by the next
paragraph.

If insteadv has containing dimension exactly then we can inductively assume that
Ifs(v) < (1 + ¢4) NN(v). Whenv was insertedy did not yield to the feature on which
x lies, sokNN(v) < |lvz|| = r. The Lipschitz condition and Lemma 6.2.1 give us
fs(y) < fs(v) + |loy]] < (22 +2)r. Givenr < 554, we can concludéfs(y) <

(5% 4+ -25)NN(y). This constrainsc; > <4t2% | Notice also that this shows that
Ci > Cq. |

Lemma 6.2.4 (Spacing is not too small)T here exist constantsc;, andc, such that when
CoMPLETE adds a vertex, Ifs(v) < ¢NN(v).

105

Proof: From the boxes in the two prior proofs, we know that

14+c+2
€262 ,gd—lp
P
In other words¢ > Ef_"ﬁgl_l, so long ag*!p > 1. Simultaneously,
1+cqg+ 2k
c>¢> 2
kzkxd*?
wherec,; > ”%p*p. Thus,c > %’;ﬁf_’f’), so long as the denominator is strictly posi-

tive. We conclude from this exercise that withandp set such that both?!p > 1 and
k*k?=2p > 1, COMPLETE outputs a mesh with spacing no smaller than local featuee siz
|

We can optimize: accordingly. Clearly, we may as well haw¢? 2 = k% !; other-
wise, one constraint or the other is harder to satisfy. Tigses for setting = (1 — k),
namelyk = 1/2. Then, to ensure that’'p > 1, we need thap > 2%~!. Note that
the d term there is an upper bound: if our input is in ambient dineng but only has
features of dimension at mostwe can allowp > 2!, In other words, for point clouds
in arbitrary dimensiony > 1 as we saw two chapters ago; for segments, 2 as we saw
in the previous chapter. For PLC inputs in dimensiop 3, 4.

Theorem 6.2.5A mesh over a domaif with a constraining PLC that is complete is
size-conforming, quality, and respects the PLC, as long asd.

Proof: Lemma 6.2.4 shows that when a vertex is added, its neargghbwir is not
much closer than local feature size allows. The standardcing argument shows that
this remains the case at the end of the algorithm. The argisneéremma 5.2.2 and
Lemma 5.2.3 are agnostic of the types of features, so thdy &pPLC inputs as well as
for just features. Together, this implies that the meshzis-sonforming.

The lack of any gap of radiusNN(v) around any vertex implies that there is no
Delaunay simplex in the output that has bad quality. The lafckny gap that denotes
the encroachment of a boundary implies that each featureaapjas a union of Delaunay
facets, and thus the mesh respects the inpui

6.3 Efficient algorithm

The key to efficient operation is the trick, again, of buckgta series of OMPLETE and
DisSeENCROACHtasks, along with ©MPUTENN for input vertices whose nearest neigh-

106

bour we do not exactly know. Work with key [h /31) is processed essentially in parallel.
It is critical that a vertex only spawn work in a later buckatat least that it only spawn
a constant amount of work in the current or prior bucket. Thekbting constant is
determined by the proofs to ensure that this “growth” propkolds. See Figure 6.3.

The same example we saw in the chapter on meshing with segnegpiires me again
to define a DSENCROACHoOperation for efficient operation. The goal is to make suag th
encroachment of one input feature on another does not spatices with smaller nearest
neighbour than the current bucket. The disencroachmeoéptwe ensures this by making
sure that areas with smaft are not encroached by other features. If an area with l&ge
is encroached, then the new vertex has a large nearest peiglso there is no problem.
See Figure 6.4.

The DISENCROACHoOperation is size-conforming: if the baltouches a vertex that
does not lie onf, then insertinge corresponds to an “encroach” completion@nwvhich
we have already analyzed. Otherwise, the ball has rafiius, so after yielding, the new
vertex has\N(y) > k921fs(z). By Lipschitz,Ifs(y) < Ifs(x) +||zy|| < (2—k?72) Ifs(x).
Thereforelfs(y) < 55> NN(y).

Lemma 6.3.1 (DSENCROACH disencroaches.)Set the priority for thddISENCROACH()
operation to% for a given constany. While processing a buckgt 1), for anyx that lies
on a featuref andlfs(z) < nl, thenz has a vertex: on f such thaf|uz|| < lfs(z) where
the inequality is strict.

Proof: The claim is that ififs(z) < nl, thenc was disencroached; contrapositivelyy if
has not yet been disencroached, thiefw:) > 7nl. We are processing a buckeétsl), so

for ¢ to be unprocessed;| > é Given thatc contains inputlfs(z) > |c|/2 > leey. We

want to ensure thafs(z) > nl. Then it suffices to set the:y such thatﬁ >nl. =

6.3.1 Dependency paths are short

Lemma 6.3.2 (Quality insertions grow) If v has a gap ballB(x,r) with radiusr >
p NN(v), then after yielding ta;, NN(y) > 3 NN(v).

Proof: Lemma 6.2.1 shows thatN(y) > k41 > k% !pNN(v). Solong ass < k41p)|,
the lemmais proved. =

Lemma 6.3.3 (Encroachment from features)Let v be a vertex with containing dimen-
sion less thani. Assume has a gap ballB(z,r) with x on a feature disjoint from the

107

CHOOSESTEINERYP, X, QT, X, p)
1: P: map storing the correspondence between quadtree celleaincks
2: S map storing the correspondence between quadtree cellsegnients
3: : work queue, bucketed with factgor
4: for eachcellcin QT do

5. If ¢ contains a poinp, enqueue a GMPUTENN(p) event with priority|c|/2
6: If ¢ contains a featurg, enqueue a BENCROACH«) event with priority%
7: end for
8: while 2 not emptydo
90 w+« POAQ)
10: if wis a CoMPUTENN(p) eventthen
11: Grow a ballb = B(p, r) until it touches a disjoint segment or mesh vertex

12: Add a COMPLETE(p) event with priorityr
13: else ifw is a DISENCROACHs, ¢) eventthen

14: Disencroacls overc

15: For each new vertex (if any), INSERT(v)
16: elseifw is a COMPLETE(u) eventthen

17: Completeu

18: For each new vertex (if any), INSERT(v)
19: end if

20: end while

INSERT(v)

21: Add a CoMPLETE(v) event with priorityNN(v)
22: for eachv’ in the link of v do

23: Add a CoMPLETE(v') event with priority||vv’||
24: end for

Figure 6.3: Algorithm to complete a mesh such that it is dyasize-conforming, and
respects input points and segments. The ntYagoes not change during the algorithm,
since no new features are added. The Raghanges as new vertices are added. To ensure
short dependency paths, use gridding and colouring asidedan Chapter 4. Set the
constants? = p/2¢°1 andn > p?/2¢ as described in the text. The parametenust be
strictly larger thar2?—1.

108

DISENCROACH(, f)
1: for eachx € ¢cN f do
2. Grow aballb = B(z,r) until eitherr = lfs(x), or b touches a vertex
3: If btouches a vertex, andu lies onf, go on.
4. Otherwise, insert, possibly yielding tay.
5. end for

Figure 6.4: The disencroach operation, taking into acc&®u@ features. The chief
difference from the eponymous operation on segments isdéé to possibly yield instead
of insertingz.

feature on whichv lies. Lety be the vertex that is inserted after yielding framThen

NN(y) > 8 NN(v)

Proof: On the one hand, we are processingoNN(v) < . On the other, the distance
from v to = establishes local feature sizeaat ||vz|| > Ifs(x). The ball B(z, ||vz]||) is
empty, soz must be in a cell not yet disencroachdds(x) > nl. Finally, NN(y) >

k4-2[|vz|| > k% 2pl. Settingn such thaty > 2, | provides the bound. Given the free
variable, is not constrained by this case. m

Lemma 6.3.4 (Encroachment from space) et v be a vertex with containing dimension
d, andv was inserted by a vertex Assume has a gap ballB(z, r) with 2 on a feature.
Lety be the vertex that is inserted after yielding framThen

NN(y) > BNN(u)

Proof: Whenu insertedv, it was because of a gap of radits > p NN(u), since only
quality can cause the creation of vertices in space. Givetwtdid not yield, NN(v) >

kr,. Later, wherv tried to insertz, it was the center of a gap of radius > NN(v). If =

yielded toy, thenNN(y) > k% 2r,. Thus,NN(y) > k% 2kp NN (u).

Assuming 3 < k% %kp|the lemmais proved. =m

The proofs show that witl = min(k%!p, k%~2kp) andn > Ef—:, work only grows.
Atk =1/2,3 = p/2¢ ! andn > p?/2¢. This constraing > 2¢-! as was already required
for the algorithm to terminate.

109

6.4 The main result of the thesis

Theorem 6.4.1 Given a PLC inputt’ in fixed dimensioni, with all input angles non-
acute, and a user-desired Voronoi quality boyng 2971, the algorithmsBuiLpD QT and
CHOOSESTEINERS run in O(nlg L/s + m) time to produce a quality, size-conforming
(and hence optimal-size) mesh whose Delaunay respécts

Furthermore, upon adding or removing one of the PLC featyfres X', which when
present hasn vertices on it, the algorithms respond in tir@g¢m g L/s).

Proof. Every event on the work queue can be processed in constantttiey all involve

a series 0fO(1) range queries, where each range query has ragljifs(v)) for Com-
PUTENN or COMPLETE events, 0©(|c|) for DISENCROACHevents. Lemma 4.3.3 shows
that each query can therefore be completed in constant Tihie bounds the total runtime.

Dynamic stability can be established by colouring the jobbsh® work queue. After
colouring jobs of sizél, 51) at most a constant number of times, we are assured that no
more will be created. Any vertex is blamed for at mos©(1) vertices inserted in the
same bucket as the bucket in whichvas processed, or in any single later bucket. There
areO(lg L/s) buckets, which proves the stability bound.m

110

Chapter 7

Closing Remarks

In this thesis, | implemented code for one meshing algorjttund developed a new mesh-
ing algorithm. Future work includes implementing code fog hew meshing algorithm,
and developing new new meshing algorithms.

| see as the principal theoretical advance of this thesigableniques for analyzing
dependencies in a broad class of meshing algorithms. Beywndyinamic algorithm |
proposed, this almost immediately yields a parallel ataniwith logarithmic depth. The
bounding box argument of Section 4.4 can be used to proveemtence of a simplex
from any activity in the mesh at some practical constanadise away, which will surely
be useful in out-of-core and distributed meshing. Solviregkinetic problem also involves
dependency tracking, of a sort closely related to thosedrmamic problem.

| have already discussed future goals of the present impiatien of SVR. Summa-
rizing, they are to make the implementation more robust énfélte of slivers and illegal
input, and to speed up the program by reducing the work iopers and by parallelizing
it. The new dynamically-stable algorithm should also firstay onto a processor, since
it should allow substantial speedup. In terms of remainiveptetical advances, none of
the algorithms | mention properly handle input angles lass torthogonal. This is the
most important problem blocking wider adoption of provaig@i&nement algorithms at the
moment: the algorithms are only proven to work over too sialbss of inputs. Natively
meshing curved surfaces is another important needed aglviramugh less critically so
than small angles.

On a smaller scale of improvement, and nearer-term, it iemely likely that the siz-
ing arguments developed to prove that bounding boxes areempiexpensive [HMPO7a]
can be adapted to reduce the multiplicative logarithmitdiam the response time from

111

O(klg L/s) to an additiveO(k + 1g L/s). This is a purely theoretical question: no matter
the true answer, the algorithm will run at the same speed.eNmportantly, currently
the dynamic mesher uségnlg L/s + m) space to track dependencies for change prop-
agation. It seems likely that this could be reducedXon): On point-cloud input, the
dynamic BuILDQT can reduce the size usage by storing only a count in eaeiderb
cell of the number of points in the cell. When a new point is addttethe cell, it does
not affect whether it will be split, which means that we need know the old points’
coordinates. When an old point is removed, we can update th&.cAnywhere that the
count goes to one, the remaining point can be found by lookimgn one level in the
guadtree. Performing similar optimizations should be gtiksible in the face of features
and, hopefully, during 00SESTEINERS Another near-term theoretical advance would

be to reduce the requirement on the user-requestableygbalind from2?-! to \/§CH.
It is not entirely clear if this is purely a proof-theoreticoplem, or one requiring some
updates to the algorithm.

It is my hope that the new meshing algorithm will prove to alleetter point location
strategies than standard circumcenter refinement. Hisityjeach Steiner point was con-
sidered independent of any future points to be added. Inréimedwork of my algorithms,
we surround a vertex with new Steiner points, which suggesitsy some technique to
optimize the placement of all the points at once. Partityldnope that this can be used
to eliminate slivers more effectively than in a one-atradiframework, since on choos-
ing the points to insert, we can easily ensure that they ddorat slivers among each
other. Another use of the freedom my algorithm allows in ppiacement is, afingor
and his students have been doing, to find positions for ptiatsn practice allow the user
to request much better radius/edge ratio than can be prdveday even be possible to
prove some results on these lines. Finally, in the dynangiordhm, dependencies can
priori cross the Voronoi cell of the vertex being completed. Itkelly that in practice, it
should be possible to independently choose Steiner paomtgpposite sides of the vertex
and thereby reduce the propagation during dynamic chaadfesit(not provably).

New capabilities in meshing will open up new capabilitiesdrentific computing. Par-
allel, out of core, and distributed meshing will let engireegenerate unstructured meshes
even on supercomputers, temporarily slaking their thostfditional cycles. More im-
portantly, | believe that asymptotically faster genenmatad unstructured meshes should
allow commodity hardware to solve substantially hardebfms than has been possi-
ble in the past. Meshing is a major cost in many problems aras#t to the commu-
nity. Dynamically-stable meshing is of clear applicalilio problems where the domain
changes essentially discontinuously; here, | have showmntbaremesh in logarithmic
rather than merely near-linear time. Graphics and sciergdimputing are both highly

112

interested in solving fluid-structure interaction probfenwhich are most naturally ap-
proached in a Lagrangian framework. Provable techniqussdban the work here should
enable kinetic meshing to avoid the problems of tangling mwegh quality loss that are
currently the bane of moving mesh approaches.

113

114

Bibliography

[AADO7]

[ABBTO6]

[ABTO6]

[Aca05]

[AHO6]

[AHMPO7]

[BAT76]

[BBCKO5]

Nina Amenta, Dominique Attali, and Olivier Devilis. Complexity of De-
launay triangulation for points on lower-dimensional gagra. InNSODA
2007.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kani@ngwongsan.
An experimental analysis of self-adjusting computatiomACM-SIGPLAN
Conference on Programming Language Design and Implemen;&006.

Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsanindtic algo-
rithms via self-adjusting computation. HBuropean Symposium on Algo-
rithms 2006. See also CMU Computer Science Department TechnicalRepo
CMU-CS-06-115.

Umut A. Acar.Self-Adjusting Computatio?hD thesis, Department of Com-
puter Science, Carnegie Mellon University, May 2005.

Umut A. Acar and Benitt Hudson. Optimal-time dynamic mesh refine-
ment: preliminary results. IRkall Workshop on Computational Geometry
Northampton, Mass., 2006.

Umut A. Acar, Bendt Hudson, Gary L. Miller, and Todd Phillips. SVR: Prac-
tical engineering of a fast 3D meshing algorithm. Iernational Meshing
Roundtablepages 45-62, 2007.

Ivo Babwska and A. K. Aziz. On the Angle Condition in the Finite Element
Method. SIAM Journal on Numerical Analysi$3(2):214-226, April 1976.

Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze,da@lemens
Kadow. Compact Representations of Simplicial Meshes in Twb Eiree
Dimensions. International Journal of Computational Geometry and Appli-
cations 15(1):3—-24, February 2005.

115

[BEG94] Marshall Bern, David Eppstein, and John R. Gilbert. vBbly Good Mesh
GenerationJournal of Computer and System Sciendét3):384—-409, June
1994,

[BET99] Marshall W. Bern, David Eppstein, and Shang-Hua TePa.allel construc-
tion of quadtrees and quality triangulationisiternational Journal of Com-
putational Geometry and Application®(6):517-532, 1999.

[Bla05] Daniel K. Blandford.Compact Data Structures with Fast Queri¢zhD the-
sis, Computer Science Department, Carnegie Mellon UniyeiRittsburgh,
Pennsylvania, October 2005. CMU CS Tech Report CMU-CS-05-196.

[BOGO02] Charles Boivin and Carl F. Ollivier-Gooch. Guaranteg@lity triangular
mesh generation for domains with curved boundarieternational Journal
for Numerical Methods in Engineering5 (10):1185-1213, 2002.

[Bri93] E. Brisson. Representing geometric structured iimensions: Topology
and orderDiscrete and Computational Geomet8;387-426, 1993.

[BWHTO7] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, &rdg Turk. A finite
element method for animating large viscoplastic floWCM Trans. Graph.
26(3), 2007.

[CCM*04] David Cardoze, Alexandre Cunha, Gary L. Miller, Todd Rpd] and Noel
Walkington. A bezier-based approach to unstructured ngoweshes. In
Symposium on Computational Geomepages 71-80, 2004.

[CDE"00] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbruniichael A.
Facello, and Shang-Hua Teng. Sliver Exudatiodournal of the ACM
47(5):883-904, September 2000.

[CDLO7] Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. Agtical Delaunay
meshing algorithm for a large class of domains. International Meshing
Roundtablepages 477-494, 2007.

[CDRO7] Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delgueinement
for piecewise smooth complexes. 8ODA '07: Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algorithpages 1096—
1105, Philadelphia, PA, USA, 2007. Society for Industriad &pplied Math-
ematics.

116

[CGSO06] Narcis Coll, Mari#é Guerrieri, and J. Antoni Selkes. Mesh modification un-
der local domain changes. Irbth International Meshing Roundtableages
39-56, 2006.

[Che87] L. Paul Chew. Constrained Delauany triangulationn FBroc. ACM Sympo-
sium on Comp. Geometrgages 213—-222, 1987.

[Che89] L. Paul Chew. Guaranteed-quality triangular meshieshnical Report TR-
89-983, Department of Computer Science, Cornell Universgo.

[Che97] L. Paul Chew. Guaranteed-Quality Delaunay MeshingDn In Proceed-
ings of the Thirteenth Annual Symposium on Computationai@éy, pages
391-393, Nice, France, June 1997. Association for Compiachinery.

[Del34] Boris Nikolaevich Delaunay. Sur la Sgte Vide. I1zvestia Akademia Nauk
SSSR, VII Seria, Otdelenie Matematicheskii i Estestveniguk 7:793—
800, 1934.

[EGSO05] David Eppstein, Michael T. Goodrich, and Jonathberng Sun. The skip
guadtree: a simple dynamic data structure for multidinmmaidata. Ir21st
Symposium on Computational Geomepgges 296-305, 2005.

[ELM T00] Herbert Edelsbrunner, Xiang-Yang Li, Gary L. Miller, dreas Stathopou-
los, Dafna Talmor, Shang-Hua Teng, Alpdngdr, and Noel Walkington.
Smoothing and cleaning up slivers. $TOGC pages 273-277, Portland, Ore-
gon, 2000.

[Gui98] Leonidas J. Guibas. Kinetic Data Structures—A &taftthe Art Report. In
Proceedings of the Third Workshop on Algorithmic Foundagiof Robotics
pages 191-209, Houston, Texas, 1998.

[HMPO06] Bendt Hudson, Gary L. Miller, and Todd Phillips. Sparse VoroRafine-
ment. InProceedings of the 15th International Meshing Roundtapsges
339-356, Birmingham, Alabama, 2006. Also available as Caendgllon
University Tech. Report CMU-CS-06-132.

[HMPO7a] Bendt Hudson, Gary L. Miller, and Todd Phillips. Bounding the to$
bounding boxes in mesh generation. In submission, 2007.

[HMPO7b] Bendt Hudson, Gary L. Miller, and Todd Phillips. Sparse Patdlelau-
nay Refinement. 119th ACM Symposium on Parallelism in Algorithms and
Architectures2007.

117

[HPUO5] Sariel Har-Peled and Alpéingor. A time-optimal Delaunay refinement al-
gorithm in two dimensions. 181st Symposium on Computational Geometry
pages 228-236, 2005.

[KCPO06] Milind Kulkarni, L. Paul Chew, and Keshav Pingali. dgitransactions in de-
launay mesh generation. Workshop on Transactional Memory Workloads
2006.

[KFCOO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Cheetgrand James F.
O’Brien. Fluid animation with dynamic meshes. Rroceedings of ACM
SIGGRAPH 2006August 2006.

[Kir83] David G. Kirkpatrick. Optimal search in planar subdions. SIAM J. Com-
put, 12(1):28-35, 1983.

[Lab06] Francois Labelle. Sliver Removal by Lattice Refinaeimén Proceedings of
the Twenty-Second Annual Symposium on Computational Ggo#ss$oci-
ation for Computing Machinery, June 2006.

[LiO3] Xiang-Yang Li. Generating well-shapedtdimensional Delaunay meshes.
Theor. Comput. SGi296(1):145-165, 2003.

[LL85] D. T. Lee and A. K. Lin. Generalized Delaunay triangtibn for planar
graphs.Discrete and Computational Geomet@985.

[LSO7] Francois Labelle and Jonathan Richard Shewchulsul$ace stuffing: Fast
tetrahedral meshes with good dihedral angles. AGM Transactions on
Graphics 2007.

[LTO1] Xiang-Yang Li and Shang-Hua Teng. Generating wébysed Delaunay
meshes in 3D. IfProceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithmspages 28-37. ACM Press, 2001.

[LTU99a] Xiang-Yang Li, Shang-Hua Teng, and Algéngor. Biting: Advancing front
meets sphere packingnternational Journal of Numerical Methods in Engi-
neering 1999.

[LTU99b] Xiang-Yang Li, Shang-Hua Teng, and AlpEingdr. Simultaneous refine-
ment and coarsening for adaptive meshifgngineering with Computers
15(3):280-291, September 1999.

118

[MBFO4]

[McM70]

[Mic97]

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtuadecalgorithm for
changing mesh topology during simulation.StGGRAPH 2004.

Peter McMullen. The maximum numbers of faces of awenpolytope.
Mathematikal7:179-184, 1970.

Daniele Micciancio. Oblivious data structures:péipations to cryptography.
In Proceedings of the 29th Annual ACM Symposium on Theory of Gormgpu
pages 456464, 1997.

[Mil04] Gary L. Miller. A time-efficient Delaunay refinemedgorithm. InFifteenth

[MPWO02]

[MTT *96]

[MTT99]

[MTTWO5]

Annual ACM-SIAM Symposium on Discrete Algorithpages 400—-409, New
Orleans, 2004.

Gary L. Miller, Steven E. Pav, and Noel J. WalkingtoRully Incremental

3D Delaunay Refinement Mesh GenerationElaventh International Mesh-

ing Roundtable pages 75-86, Ithaca, New York, September 2002. Sandia
National Laboratories.

Gary L. Miller, Dafna Talmor, Shang-Hua Teng, Noel Wallion, and Han
Wang. Control Volume Meshes Using Sphere Packing: GenetdRefine-
ment and Coarsening. Fifth International Meshing Roundtahlpages 47—
61, Pittsburgh, Pennsylvania, October 1996.

Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. tlopal coarsening of
unstructured meshesournal of Algorithms31(1):29-65, Apr 1999.

Gary L. Miller, Dafna Talmor, Shang-Hua Teng, andélaValkington. A
Delaunay based numerical method for three dimensions:rgtowe, formu-
lation, and partition. IfProceedings of the 27th Annual ACM Symposium on
Theory of Computingpages 683-692, Las Vegas, May 1995. ACM.

[MVO0O0] Scott A. Mitchell and Stephen A. Vavasis. Quality rhegeneration in higher

[NBHO1]

dimensions SIAM J. Comput.29(4):1334-1370 (electronic), 2000.

Aleksandar Nanevski, Guy E. Blelloch, and Robert Harpaitomatic Gen-
eration of Staged Geometric Predicates. International Conference on
Functional Programmingpages 217-228, Florence, Italy, September 2001.

[NvdS04] Han-Wen Nienhuys and A. Frank van der Stappen. A&y approach to

interactive cutting in triangulated surfaces. Aifth International Workshop
on Algorithmic Foundations of Robotic2004.

119

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for gyat-dimensional
mesh generationl. Algorithms 18(3):548-585, 1995. Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA) (Austin, TX993).

[She96] Jonathan Richard Shewchuk. Triangle: Engineerig Quality Mesh Gen-
erator and Delaunay Triangulator. In Ming C. Lin and Dineshnilzha,
editors, Applied Computational Geometry: Towards Geometric Engieer
ing, volume 1148 ofLecture Notes in Computer Scienqeges 203-222.
Springer-Verlag, Berlin, May 1996. From the First ACM Workphan Ap-
plied Computational Geometry.

[She97a] Jonathan Richard Shewchuk. Adaptive Precisicatiftp-Point Arithmetic
and Fast Robust Geometric Predicai@screte & Computational Geometry
18(3):305—-363, October 1997.

[She97b] Jonathan Richard Shewchibdelaunay Refinement Mesh Generati¢gthD
thesis, School of Computer Science, Carnegie Mellon UniteRittsburgh,
Pennsylvania, May 1997. Available as Technical Report CMU9ZS-37.

[She98a] Jonathan Richard Shewchuk. A Condition Guarargglm Existence of
Higher-Dimensional Constrained Delaunay Triangulatiolms Proceedings
of the Fourteenth Annual Symposium on Computational Gegnpetges 76—
85, Minneapolis, Minnesota, June 1998. Association for Qaimg Machin-
ery.

[She98b] Jonathan Richard Shewchuk. Tetrahedral Mesh &@meby Delaunay Re-
finement. InProceedings of the Fourteenth Annual Symposium on Computa-
tional Geometrypages 86—95, Minneapolis, Minnesota, June 1998. Associ-
ation for Computing Machinery.

[She99] Jonathan Richard Shewchuk. Lecture notes on geonmaiustness, 1999.

[She02] Jonathan Richard Shewchuk. What Is a Good Linear Ei@mimterpola-
tion, Conditioning, and Quality Measures. lheventh International Mesh-
ing Roundtablepages 115-126, Ithaca, New York, September 2002. Sandia
National Laboratories.

[Si06] Hang Si. On refinement of constrained Delaunay tewladlizations. IPro-
ceedings of the 15th International Meshing Roundta®096.

[STUO4] Daniel Spielman, Shang-Hua Teng, and Alpegor. Parallel Delaunay re-
finement with off-centers. IEUROPAR 2004.

120

[STUO7] Daniel Spielman, Shang-Hua Teng, and Alpegor. Parallel Delaunay re-
finement: Algorithms and analyseSCGA 17:1-30, 2007.

[Tal97] Dafna Talmor. Well-Spaced Points for Numerical Method$hD thesis,
Carnegie Mellon University, Pittsburgh, August 1997. CMU CShTRe-
port CMU-CS-97-164.

[Ung04] AlperUngdr. Off-centers: A new type of Steiner point for computingesi
optimal quality-guaranteed Delaunay triangulations LATIN, pages 152—
161, 2004.

121

